Vladica Andrejić - publications
Publications
- [1] V. Andrejić : On Fibonacci powers, Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 17 (2006), 38-44. ISSN: 0353-8893, M51. DOI PDF
- [1] F. Luca : Fibonacci Numbers with the Lehmer Property, Bull. Polish Acad. Sci. Math. 55 (2007), 7-15. DOI
- [2] F. Luca, F. Nicolae : $\phi(F_n)=F_m$, Integers 9 (2009), 375--400. PDF
- [3] В. М. Ширяев : Простые числа и канонические разложения натуральных чисел, БГУ, Минск, 2013. URI PDF
- [4] D. Andrica, V. Crişan, F. Al-Thukair : On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab J. Math. Sci. 24 (2018), 9-15. DOI
- [5] J. Klaška : Donald Dines Wall's Conjecture, Fibonacci Q. 56 (2018), 43-51. Detail
- [6] S. Earp-Lynch : Diophantine Triples and Linear Forms in Logarithms, master's thesis, Faculty of Mathematics and Science, Brock University, St. Catharines, Ontario, 2019. URL PDF
- [7] B. Earp-Lynch : Linear Forms in Logarithms and Fibonacci Numbers, master's thesis, Faculty of Mathematics and Science, Brock University, St. Catharines, Ontario, 2019. URL PDF
- [8] D. Andrica, O. Bagdasar : Recurrent Sequences (Key Results, Applications, and Problems), Springer, 2020. DOI
- [9] D. Andrica, O. Bagdasar : On Some New Arithmetic Properties of the Generalized Lucas Sequences, Mediterr. J. Math. 18, 47 (2021). DOI
- [10] D. Andrica, O. Bagdasar : Pseudoprimality related to the generalized Lucas sequences, Math. Comput. Simul. (2021). DOI
- [11] A. Noubissie : Study of the exponential Diophantine equations $F_n\pm F_m=ls^l$, (2021). RG PDF
- [12] O. Kihel, J. Larone, A. Noubissie : Study of the exponential Diophantine equations $F_n\pm F_m=ls^l$ and $tF_n+sF_m=y^a$, (2021). RG PDF
- [2] V. Andrejić, Z. Rakić : On the duality principle in pseudo-Riemannian Osserman manifolds, J. Geom. Phys. 57 (2007), 2158-2166. ISSN: 0393-0440, IF 2007: 0.986 M21. DOI
- [1] Z. Rakić : On the duality principle for null vectors, SFIN XXII A1 (2009), 357-367. PS
- [2] M. Brozos-Vázquez, E. Merino : Equivalence between the Osserman condition and the Rakić duality principle in dimension 4, J. Geom. Phys. 62 (2012), 2346-2352. DOI arXiv
- [3] M. Ivanova, V. Videv, Z. Zhelev : Rakić duality principle in the almost Hermitian geometry, J. Geom. 104 (2013), 495-504. DOI
- [4] Y. Nikolayevsky, Z. Rakić : A note on Rakić duality principle for Osserman manifolds, Publ. Inst. Math., Nouv. Sér. 94 (2013), 43-45. DOI PDF
- [5] P. Gilkey, B. Lim : Projective affine Osserman curvature models, J. Fix. Point Theory A. 16 (2014), 243-258. DOI arXiv
- [6] Y. Nikolayevsky, Z. Rakić : The duality principle for Osserman algebraic curvature tensors, Linear Algebra Appl. 504 (2016), 574-580. DOI
- [3] V. Andrejić : On a combinatorial game, Publ. Inst. Math., Nouv. Sér. 86 (2009), 21-25. ISSN: 0350-1302, M24. DOI PDF
- [1] A. Fraenkel : Cobinatorial Games, The Electronic Journal of Combinatorics, Dynamic Surveys (2012). Link PDF
- [4] V. Andrejić : On certain classes of algebraic curvature tensors, SFIN XXII A1 (2009), 43-50. M52. PS
- [5] V. Andrejić : Strong duality principle for four-dimensional Osserman manifolds, Krag. J. Math 33 (2010), 17-28. ISSN: 1450-9628, M51. PDF
- [6] V. Andrejić : Duality principle and Special Osserman Manifolds, Publ. Inst. Math., Nouv. Sér. 94 (2013), 197-204. ISSN: 0350-1302, IF 2013: 0.152 M23. DOI PDF
- [1] Y. Nikolayevsky, Z. Rakić : The duality principle for Osserman algebraic curvature tensors, Linear Algebra Appl. 504 (2016), 574-580. DOI
- [7] V. Andrejić : Quasi-special Osserman manifolds, Filomat 28 (2014), 623-633. ISSN: 0354-5180, IF 2013: 0.753 M21. DOI PDF
- [1] Y. Nikolayevsky, Z. Rakić : The duality principle for Osserman algebraic curvature tensors, Linear Algebra Appl. 504 (2016), 574-580. DOI
- [8] V. Andrejić, Z. Rakić : On some aspects of duality principle, Kyoto J. Math. 55 (2015), 567-577. ISSN: 2156-2261, IF 2014: 0.796 M21. DOI
- [1] Y. Nikolayevsky, Z. Rakić : The duality principle for Osserman algebraic curvature tensors, Linear Algebra Appl. 504 (2016), 574-580. DOI
- [9] V. Andrejić, M. Tatarevic : Searching for a counterexample to Kurepa's conjecture, Math. Comp. 85 (2016), 3061-3068. ISSN: 0025-5718, IF 2016: 1.569 M21. DOI arXiv
- [1] R. Rajkumar : Searching for a counterexample to Kurepa’s conjecture in average polynomial time, master's thesis, School of Mathematics and Statistics, Sydney, 2019. PDF
- [2] I. Mező : Combinatorics and Number Theory of Counting Sequences, Chapman and Hall / CRC Press, 2019. DOI
- [3] M. Banković, V. Filipović, J. Graovac, J. Hadži-Purić, A. R. Hurson, A. Kartelj, J. Kovačević, N. Korolija, M. Kotlar, N. B. Krdžavac, F. Marić, S. Malkov, V. Milutinović, N. Mitić, S. Mišković, M. Nikolić, G. Pavlović-Lažetić, D. Simić, S. Stojanović Djurdjević, S. Vujičić Stanković, M. Vujošević Janičić, M. Živković : Teaching graduate students how to review research articles and respond to reviewer comments, Advances in Computers, 2019. DOI
- [4] Ž. Mijajlović : Fifty years of Kurepa's !n hypothesis, Bull., Cl. Sci. Math. Nat., Sci. Math. 46 (2021), 169-181. PDF
- [5] N. Fabiano, N. Mirkov, Z. Mitrović, S. Radenović : On some new observations on Kurepa's left factorial, Math. Anal. Contemp. Appl. 4 (2022), 1-8. DOI PDF
- [6] N. Fabiano, M. Gardašević-Filipović, N. Mirkov, V. Todorčević, S. Radenović : On the Distribution of Kurepa's Function, Axioms 11 (2022), 388. DOI PDF
- [7] L. Gallardo : Bell numbers and Kurepa's conjecture, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 76 (2022), 17-23. DOI PDF
- [8] A. Petojević, S. Gordić, M. Mandić, M. Gorjanac Ranitović : New Equivalents of Kurepa's Hypothesis for Left Factorial, Axioms 12 (2023), 785. DOI
- [9] N. Fabiano, N. Mirkov, Z. Mitrović, S. Radenović : Collatz Hypothesis and Kurepa’s Conjecture. In Advances in Number Theory and Applied Analysis, World Scientific Publishing Co. Pte. Ltd., 2023. DOI
- [10] L. Gallardo : Artin-Schreier, Erdős, and Kurepa's conjecture, Rad HAZU. Matematičke znanosti, 27=555 (2023), 111-121. DOI PDF
- [10] V. Andrejić, M. Tatarevic : On distinct residues of factorials, Publ. Inst. Math., Nouv. Sér. 100 (2016), 101-106. ISSN: 0350-1302, IF 2014: 0.270 M23. DOI PDF arXiv
- [1] L. Gallardo : Bell numbers and Kurepa's conjecture, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 76 (2022), 17-23. DOI PDF
- [2] A. Petojević, S. Gordić, M. Mandić, M. Gorjanac Ranitović : New Equivalents of Kurepa's Hypothesis for Left Factorial, Axioms 12 (2023), 785. DOI
- [3] N. Fabiano, N. Mirkov, Z. Mitrović, S. Radenović : Collatz Hypothesis and Kurepa’s Conjecture. In Advances in Number Theory and Applied Analysis, World Scientific Publishing Co. Pte. Ltd., 2023. DOI
- [4] L. Gallardo : Artin-Schreier, Erdős, and Kurepa's conjecture, Rad HAZU. Matematičke znanosti, 27=555 (2023), 111-121. DOI PDF
- [11] V. Andrejić : On Lorentzian spaces of constant sectional curvature, Publ. Inst. Math., Nouv. Sér. 103 (2018), 7-15. ISSN: 0350-1302, M24. DOI PDF
- [12] V. Andrejić, K. Lukić : On quasi-Clifford Osserman curvature tensors, Filomat 33 (2019), 1241-1247. ISSN: 0354-5180, IF 2019: 0.848 M22. DOI PDF arXiv
- [13] V. Andrejić, A. Bostan, M. Tatarevic : Improved algorithms for left factorial residues, Inf. Process. Lett. 167 (2021), 106078. ISSN: 0020-0190, IF 2020: 0.959 M23. DOI arXiv
- [1] Ž. Mijajlović : Fifty years of Kurepa's !n hypothesis, Bull., Cl. Sci. Math. Nat., Sci. Math. 46 (2021), 169-181. PDF
- [2] N. Fabiano, N. Mirkov, Z. Mitrović, S. Radenović : On some new observations on Kurepa's left factorial, Math. Anal. Contemp. Appl. 4 (2022), 1-8. DOI PDF
- [3] L. Gallardo : Bell numbers and Kurepa's conjecture, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 76 (2022), 17-23. DOI PDF
- [4] A. Petojević, S. Gordić, M. Mandić, M. Gorjanac Ranitović : New Equivalents of Kurepa's Hypothesis for Left Factorial, Axioms 12 (2023), 785. DOI
- [5] L. Gallardo : Artin-Schreier, Erdős, and Kurepa's conjecture, Rad HAZU. Matematičke znanosti, 27=555 (2023), 111-121. DOI PDF
- [14] V. Andrejić : The Proportionality Principle for Osserman Manifolds, J. Geom. Phys. 176 (2022), 104516. ISSN: 0393-0440, IF 2020: 1.249 M22. DOI
- [15] V. Andrejić : Two-root Riemannian Manifolds, Mediterr. J. Math. 20 (2023), 100. ISSN: 1660-5446, IF 2021: 1.305 M21 DOI arXiv
- [16] V. Andrejić, K. Lukić : On the existence of a curvature tensor for given Jacobi operators, Filomat 37 (2023), 8465-8471. ISSN: 0354-5180, IF 2021: 0.988 M22. DOI PDF arXiv
- [17] V. Andrejić, K. Lukić : The Orthogonality Principle for Osserman Manifolds, Acta Math. Hungar. 173 (2024), 246-252. ISSN: 0236-5294, IF 2022: 0.9 M22. DOI PDF arXiv