
АЛГЕБРА 2

ДОДАТНО О ГРУПАМА

ЗОРАН ПЕТРОВИЋ

У овом одељку бавићемо се скоро искључиво коначним групама, тако да

сматрамо да су све групе које се овде појављују коначне, сем ако се посебно

не истакне да могу бити и бесконачне. Кратка напомена о ознакама: ⊂ увек

означава прави подскуп.

Коначне p-групе

Најпре дајемо пар дефиниција.

Дефиниција 1. Нека је p прост број. За коначну групу G кажемо да је једна

p-група, уколико је |G| = pn за неко n > 1. 👌

Дефиниција 2. Нека је G група и H 6 G. За H кажемо да је максимална

уколико не постоји подгрупаK 6 G за коју је H ⊂ K ⊂ G. 👌

Приметимо да произвољна група не мора садржати максималну подгрупу.

Пример 3. Група (Q,+) не садржи максималну подгрупу.

👉Претпоставимо да јеA максимална подгрупа одQ. Како је (Q,+)Абелова
група, свака подгрупа је нормална и можемо посматрати количничку групу

Q/A. Једине подгрупе ове групе су цела група и тривијална подгрупа. Наиме,
ако би L 6 Q/A била нека подгрупа различита од ове две, онда би π−1[L],
где је π : Q → Q/A канонска пројекција, била права подгрупа од Q, која је
стриктно већа од A, а то није могуће, јер је A максимална подгрупа од Q.

Дакле, мора бити Q/A ∼= Zp за неки прост број p. Нека је x ∈ Q \ A. Тада
је A = p(xp +A) = x+A, па бисмо добили да x ∈ A. ✌️

У случају коначне групе G, јасно је да постоји максимална подгрупа. На-

име, пођимо од тривијалне подгрупе H0 = {e}. Ако она није максимална,

онда постоји H1 6 G, тако да је H0 ⊂ H1. Уколико ни H1 није максимална,

постојиH2 6 G, тако да јеH1 ⊂ H2. Но, не можемо наставити тако неограни-

чено, јер је група G коначна, а низ |H0|, |H1|, |H2|, . . . је строго растући низ
природних бројева. Зато се овај процес мора завршити неком максималном

подгрупом. Сличан доказ нам даје да је свака права подгрупа коначне групе

садржана у некој максималној подгрупи те групе.

Означимо са P(G) скуп свих подгрупа групе G. Тада G дејствује на P(G)
са: g ∗ H := gHg−1. Ако је H 6 G, онда је ΣH = {g ∈ G : gHg−1 = H}.

Date: Јануар 2025.

1



Знамо да је ово подгрупа од G. Користи се ознака NG(H)  за ову подгрупу и
назив: нормализатор подгрупеH у групи  G. Својства нормализатора описана

су следећим ставом.

Став 4. Нека је G група и H 6 G.

(1) Z(G) ⊆ NG(H).
(2) H / NG(H).
(3) Ако јеK 6 G и H /K, онда јеK ⊆ NG(H).
(4) Ако јеK ⊆ NG(H), oнда јеKH 6 G,H/KH иKH/H ∼= K/(H∩K).

✍️ 1. и 2. директно следе из дефиниције.

3. Како је H нормална подгрупа (под)групе K, онда је kHk−1 = H за све

k ∈ K, али то управо значи да k ∈ NG(H)  за свако k ∈ K.

4. Ово је једноставна генерализације друге теореме о изоморфизму за групе.

Урадите то за вежбу. 📕

Важи следећа теорема.

Теорема 5. Нека јеG коначна p-група, e неутрал уG,K максимална подгрупа

у G и |G| = pn.

a) Z(G) 6= {e}.
b) Постоје нормалне подгрупе G0, G1, . . . , Gn такве да је

{e} = G0 ⊂ G1 ⊂ · · · ⊂ Gn−1 ⊂ Gn = G.

Тада је |Gj | = pj за све j.
c) K / G и |G : K| = p.

✍️ a) Ово би требало да је доказано у Алгебри 1, али ево ипак доказа. Посма-

трамо дејство групе G на самој себи задато са: g ∗ a := gag−1. Орбите при

овом дејству су класе конјугованости у G. Но, знамо да ред орбите дели ред
групе, па је ред сваке орбите облика pr за неко r > 0. Но, орбита је једночлана
акко a ∈ Z(G). Ако су Ω1, . . . ,Ωk орбите које нису једночлане, онда имамо

једнакост

(1) |G| = |Z(G)|+ |Ω1|+ · · ·+ |Ωk|.

Но, како p | |G| и p | |Ωi| за све i = 1, k, онда и p | |Z(G)|, па Z(G) 6= {e}.

b) Доказ изводимо индукцијом по n. Уколико је n = 1, онда је G ∼= Cp и

узимамо да је G0 = {1}, a G1 = G. Претпоставимо да је тврђење доказано за
све групе реда ps, где је s < n и нека је |G| = pn. По делу под a), Z(G) 6= {e},
па по Кошијевој теореми у Z(G) постоји елемент x реда p. Како x ∈ Z(G),
подгрупа 〈x〉 је нормална у G и можемо посматрати групу G = G/〈x〉. Но,
|G| = pn−1 и по индуктивној хипотези постоји низ нормалних подгрупа од

G:

{〈x〉} = G0 ⊂ G1 ⊂ · · · ⊂ Gn−1 ⊂ Gn−1 = G.
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Ако саπ : G → G/〈x〉, означимо канонску пројекцију и ако јеGi+1 = π−1[Gi],
онда добијамо тражени низ нормалних подгрупа:

{e} = G0 ⊂ G1 ⊂ · · · ⊂ Gn−1 ⊂ Gn = G.

Наиме, инверзна слика нормалне подгрупе је нормална подгрупа. Приметимо

да је овде G1 = 〈x〉 и да је |Gj | = pj , за све j.

c) Радимо индукцијом по n. За n = 1 заиста нема шта да се ради. Нека је
|G| = pn и претпоставимо да тврђење важи за све природне бројеве мање од

n.
Претпоставмо да постоји максимална подгрупаK која није нормална под-

група од G. Како је K / NG(K) закључујемо да NG(K) 6= G, па мора бити
K = NG(K). Како је, на основу претходног става, Z(G) ⊆ NG(K), закључу-
јемо да је Z(G) ⊆ K. Као и у доказу претходног дела, посматрамо x ∈ Z(G)
 реда p и канонску пројекцију π : G → G = G/〈x〉. Приметимо да је тада

K = π[K] максимална подгрупа групе G. Наиме, како је свака подгрупа

од G облика L = L/〈x〉 за неку подгрупу L групе G (ако је X 6 G, онда
је L = π−1[X] 6 G, a X = π[π−1[X]], јер је π ,,на”), претпоставимо да

је K ⊂ L. Но, тада је и K ⊆ L, но не може важити једнакост K = L,
јер бисмо тада имали и K = L. Дакле, K ⊂ L, те, како је K максимална,

имамо да је L = G, те следи да је L = G и закључујемо да је K максимална.

Како је |G| = pn−1, по индуктивној хипотези закључујемо да јеK /G и да је

|G : K| = p. Но, K је тада нормална подгрупа као инверзна слика нормалне

подгрупе, а π индукује изоморфизам π̃ : G/K → G/K (уверите се да је то

тако), те је |G : K| = |G : K| = p. 📕

Колико има неизоморфних p-група датог реда? Ево кратке таблице за 2-
групе (до 210).

ред број класа изоморфизама

4 2

8 5

16 14

32 51

64 267

128 2328

256 56092

512 10494213

1024 49487365422

Ево и једне процене за број класа изоморфизама група реда pn, у ознаци

v(pn), за ма који прост број p: v(pn) = p2n
3/27 +O(n8/3).
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Теореме Силова

Докажимо најпре једну лему.

Лема 6. Нека је G коначна група иK 6 H 6 G. Тада важи једнакост

|G : K| = |G : H| · |H : K|.

✍️ На основу Лагранжове теореме имамо следеће једнакости:

|G| = |H| · |G : H|, |H| = |K| · |H : K|, |G| = |K| · |G : K|.

Из прве две једнакости добијамо: |G| = |K| · |H : K| · |G : H|, те онда из
треће закључујемо да важи тражена једнакост. 📕

Дефиниција 7. Нека је |G| = prm, где је r > 1 и p - m. Тада сваку подгрупу

од G реда pr, ако постоји, називамо Силовљева p-подгрупа групе G. 👌

Испоставља се да таква подгрупа увек постоји. То је садржај следеће теореме.

Теорема 8. Нека јеG коначна група. Тада за сваки прост број p који дели ред
групе постоји Силовљева p-подгрупа.

✍️ Нека је p прост број, који дели ред групе G. Доказ изводимо индукцијом
по реду групе. База индукције се односи на |G| = p и ту немамо шта да

доказујемо. Претпоставимо да је |G| = n и да је тврђење тачно за све подгрупе
са мање од n елемената. Разматрамо два случаја.

1. У G постоји права подгрупа H чији индекс није дељив са p. Како је

|H| < |G|, по индуктивној хипотези постоји Силовљева p-подгрупа од H .

Но, ако је |G| = prm, где p - m, како је |G| = |H| · |G : H| по Лагранжовој
теореми, а по претпоставци p - |G : H|, добијамо да је |H| = prm′, где p - m′.
Стога је Силовљева p-подгрупа од H уједно и Силовљева p-подгрупа од G.

2. Претпоставимо да p дели индекс сваке праве подгрупе од G. Као и

у доказу у којем смо показали да је центар сваке p-подгрупе нетривијалан,
посматрајмо дејство саме групе G на себе конјуговањем. Поново добијамо

исту једнакост (1). Но, како је при дејству групе ред орбите једнак индексу

стабилизатора, добијамо да поново p | |Ωi| за све i. Како p | |G| добијамо
да p | |Z(G)|. Према Кошијевој теореми у Z(G) постоји елемент x реда

p. Поново посматрамо групу G = G/〈x〉. Kako je G = pr−1m, можемо да

применимо индуктивну хипотезу под условом да је r − 1 > 0. Но, ако је

r = 1, онда смо већ добили тражену Силовљеву подгрупу: то је подгрупа

〈x〉. Дакле, уколико је r > 1, по индуктивној хипотези добијамо Силовљеву

p-подгрупуK / G. Она је реда pr−1. Но, тада је група K = π−1[K] реда pr и

то је тражена Силовљева p-подгрупа групе G. 📕

Дакле, Силовљеве p-подгрупе увек постоје. Сада ће нам требати једна

техничка лема.
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Лема 9. Нека  p-група H дејствује на коначном скупу X . Тада је

|XG| ≡ |X| (mod p),

где је XG := {x ∈ X : (∀g ∈ G)g · x = x}.

✍️ Како је ред орбите једнак индексу стабилизатора представникa те орбите

и како је група која дејствује наX једна p-група, то је ред сваке неједночлане
орбите дељив са p. Наравно, унија једночланих орбита је баш XG. Tражени

резултат следи. 📕

Теорема 10. Нека је G коначна група.

1. Свака p-подгрупа од G садржана је у некој Силовљевој p-подгрупи.
2. Сваке две Силовљеве p-подгрупе су конјуговане једна другој.
3. Број Силовљевих p-подгрупа од G при дељењу са p даје остатак 1.
4. Број Силовљевих p-подгрупа од G дели ред групе G.

✍️ 1. и 2. Нека је H нека p-подгрупа и P нека Силовљева p-подгрупа. Прет-
поставимо најпре да јеH ⊆ NG(P ). На основу става 4, добијамо: HP 6 G и

|HP : P | = |H : H ∩ P |. Уколико би било |H : H ∩ P | > 1, добили бисмо

да јеHP једна p-podgrupa која има више елемената од Силовљеве p-podgrupe
P што није могуће. Закључујемо да је |H : H ∩ P | = 1, што значи да је

H = H ∩ P , тј. H ⊆ P . Дакле, у овом случају смо добили тражени резултат.

Означимо сада са S скуп свих конјугата од P и нека G дејствује на S
конјуговањем. Дакле, S је орбита од P при овом дејству и стога је број елеме-

ната у S једнак индексу стабилизатора. Но, овде је стабилизатор баш NG(P )
и добили смо да је |S| = |G : NG(P )|. Како је P ⊆ NG(P ), добијамо да

p - |G : NG(P )|, тe p - |S|.
Нека сада H дејствује на S конјуговањем. На основу леме имамо да је

|SH | ≡ |S|(mod p), те p - |SH |. То значи да SH 6= ∅, јер свакако p | 0.
Дакле, постоји Q ∈ SH . То значи да (∀h ∈ H)hQh−1 = Q, те добијамо да
je H ⊆ NG(Q). На основу првог дела доказа добијамо да је H ⊆ Q. Како је
Q ∈ S , то постоји g ∈ G тако да је Q = gPg−1. Дакле, добили смо следеће:

ако јеH ма која p-подгрупа и P ма која Силовљева p-подгрупа, онда постоји
g ∈ G тако да јеH ⊆ gPg−1. Како је и gPg−1 Силовљева p-подгрупа, добили
смо да је свака p-подгрупа садржана у некој Силовљевој p-подгрупи. Но, ако
је H и сама Силовљева p-подгрупа, онда из укључења H ⊆ gPg−1 следи

заправо једнакостH = gPg−1 и тиме смо показали да су сваке две Силовљеве

p-подгрупе конјуговане.
3. Ми сада знамо да је S заправо скуп свих Силовљевих p-подгрупа. Нека

јеH сада нека Силовљева p-подгрупа и нека она дејствује на S конјуговањем.

НекаK ∈ SH . Као што смо видели, то значи да је H ⊆ K. Но, пошто су обе

Силовљеве, добијамо K = H , те је заправо SH = {H}. На основу техничке
леме добијамо да је 1 = |SH | ≡ |S|(mod p) што се и тражило.

4. Како је број Силовљевих p-подгрупа заправо једнак индексу нормализа-

тора ма које од њих, тај број свакако дели ред групе G. 📕
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Напомена. Ако са sp означимо број Силовљевих p-подгрупа и ако је |G| =
prm, онда имамо да је sp ≡ 1 (mod p), а како sp | |G|, имамо да sp | m. 👍

Полудиректан производ

Дефиниција 11. Нека је G група, H 6 G,K / G тако да важи:

G = KH, и K ∩H = {e}.

Тада кажемо да јеG унутрашњи полудиректан производK саH ито означавамо

за: G = K oH . 👌

Услучају наведеном у дефиницији, кажемо и да јеK нормални комплемент

од H. Погледајмо неки пример.

Пример 12. а) Sn = An o 〈(12)〉.
б) Dn = 〈ρ〉o 〈σ〉. ✌️

Анализирајмо мало овај унутрашњи директан производ. Пре свега, прес-

ликавање f : K ×H → K oH , дато са: f(k, h) = kh јесте бијекција. Наиме,

јасно је да је ,,на”, а ако је f(k, h) = f(k1, h1) имамо да је kh = k1h1, па је
K 3 k−1k1 = hh−1

1 ∈ H , а како је K ∩ H = {e}, добијамо да је k−1k1 =

e = hh−1
1 , тј. (k, h) = (k1, h1). Но, f не мора бити изоморфизам – ако би било

тако, имали бисмо да је G ∼= K ×H , а горњи примери нам показују да то не

важи увек.

Погледајмо како да дефинишемо операцију наK×H тако да f буде изомор-
физам. Посматрајмо производ (kh) · (k1h1). Наш задатак је да га напишемо

у облику k′h′, за неке k′ ∈ K, h′ ∈ H . То није тешко, користимо да јеK / G:

(kh) · (k1h1) = khk1h1 = (k(hk1h
−1))︸ ︷︷ ︸

k′

(hh1)︸ ︷︷ ︸
h′

.

Овде имамо да hk1h
−1 ∈ K зато што јеK/G, па је hKh−1 = K. Сада видимо

како да дефинишемо производ на скупуK ×H да би f био изоморфизам:

(k, h)� (k1, h1) := (k(hk1h
−1), hh1).

Дакле, множење на другој координати се не мења, док се на првој мало ,,уврне”

други фактор. Приметимо да је функција из K у K дефинисана са: k 7→
hkh−1 један аутоморфизам групеK. Дакле, сваком елементу изH придружи-

ли смо један аутоморфизам групе . Ово нас доводи до појма спољашњег

полудиректног производа.

Нека су (K, ∗) и (H, ·) групе и ϕ : H → Aut(K) хомоморфизам. На скупу
K ×H задајемо операцију множења са:

(k, h)� (k1, h1) := (k ∗ ϕ(h)(k1), h · h1).
6



Став 13. Са овако дефинисаном операцијом,K×H постаје група, коју назива-

мо спољашњи полудиректни производ групе K са групом H. Користићемо

ознакуK oϕ H . Осим тога,K ′ = K × {eH} је нормална подгрупа ове групе,
H ′ = {eK}×H је њена подгрупа иKoϕH је унутрашњи директан производ

K ′ саH ′.

✍️ Рутински је проверити да је ово група, мада јесте мало дужа провера.

Проверимо најпре асоцијативност.

(
(k, h)� (k1, h1)

)
� (h2, k2) = (k ∗ ϕ(h)(k1), h · h1)� (k2, h2)

= ((k ∗ ϕ(h)(k1)) ∗ ϕ(h · h1)(k2), (h · h1) · h2)
= (k ∗ (ϕ(h)(k1) ∗ (ϕ(h) ◦ ϕ(h1))(k2)), h · (h1 · h2))
= (k ∗ (ϕ(h)(k1) ∗ ϕ(h)(ϕ(h1)(k2))), h · (h1 · h2))
= (k ∗ (ϕ(h)(k1 ∗ ϕ(h1)(k2))), h · (h1 · h2))
= (k, h)� (k1 ∗ ϕ(h1)(k2), h1 · h2)
= (k, h)�

(
(k1, h1)� (k2, h2)

)
.

Неутрал је (eK , eH):

(k, h)� (eK , eH) = (k ∗ ϕ(h)(eK), h · eH) = (k ∗ eK , h) = (k, h).

(eK , eH)� (k, h) = (eK ∗ ϕ(eH)(k), eH · h) = (idK(k), h) = (k, h).

Овде користимо да је ϕ(eH) = idK – неутрал се слика у неутрал. Нађимо

инверз. Нека је (k′, h′)� (k, h) = (eK , eH). То значи да је k′ ∗ϕ(h′)(k) = eK ,
h′ · h = eH . Дакле, h

′ = h−1, док је

k′ =
(
ϕ(h−1)(k)

)−1
= ϕ(h−1)(k−1).

Провера:

(k, h)� (ϕ(h−1)(k−1), h−1) = (k ∗ ϕ(h)(ϕ(h−1(k−1)), h · h−1)

= (k ∗ ϕ(h)(ϕ(h−1)(k−1)), eH)

= (k ∗ (ϕ(h) ◦ ϕ(h−1))(k−1), eH)

= (k ∗ ϕ(h · h−1)(k−1), eH)

= (k ∗ ϕ(eH)(k−1), eH)

= (k ∗ idK(k−1), eH)

= (k ∗ k−1, eH)

= (eK , eH).

Дакле, (k, h)−1 = (ϕ(h−1)(k−1), h−1).
7



Покажимо и да јеK ′ = K × {eh} нормална подгрупа.

(k, eH)−1 � (k1, eH) = (ϕ(e−1
H )(k−1), e−1

H )� (k1, eH)

= (k−1, eH)� (k1, eH)

= (k−1 ∗ ϕ(eH)(k1), eH · eH)

= (k−1 ∗ k1, eH) ∈ K ′.

(k, h)−1 � (k1, eH)� (k, h) = (ϕ(h−1)(k−1), h−1)� (k1 ∗ ϕ(eH)(k), eH · h)
= (ϕ(h−1)(k−1) ∗ ϕ(h−1)(k1 ∗ k), h−1 · h)
= (ϕ(h−1(k−1 ∗ k1 ∗ k)), eH) ∈ K ′.

Приметимо да јеK ′ ∼= K. Проверу да јеH ′ подгрупа изоморфна саH остав-

љамо читаоцима. Но, јасно је да K ′ � H ′ = K oϕ H , као и K ′ ∩ H ′ =

{(eK , eH)}. Стога је заистаK oϕ H = K ′ oH ′. 📕

Урадимо неки пример спољашњег полудиректног производа. Дакле, изабе-

римо групе H иK и хомоморфизам ϕ : H → Aut(K). Приметимо најпре да,
ако је ϕ константан хомоморфизам, тј. хомоморфизам који све елементе изH
слика у idK , добијамо заправо директан производ – погледајте како операција

изгледа у том случају. Значи, тражимо нешто занимљивије. Но, не може се

увек наћи тако нешто. На пример, ако бисмо узели да јеH = Z3, аK = Z8, не

може се наћи нетривијалан хомоморфизам ϕ : Z3 → Aut(Z8). Наиме, сваки
аутоморфизам групе Z8, која је циклична, је потпуно одређен када је задат на

генератору, узмимо да је то 1. Но, да бисмо добили бијекцију, тај генератор

се мора сликати у генератор, дакле, могућности за аутоморфизам су да се 1

слика у неки од елемената скупа {1, 3, 5, 7}. То значи да је |Aut(Z8)| = 4.
Но, Z3 је такође циклична група и то реда 3. Како ред слике ма ког елемента

при хомоморфизму мора да дели ред тог елемента (поновите то из Алгебре

1), ред слике генератора групе Z3 мора бити или 1 или 3. Ако је 1, то значи

да се слика у неутрал, стога претпоставимо да је 3. Али ред елемента дели

ред групе, па бисмо добили да 3 | 4. Дакле, овако не можемо добити пример.
Но…

Пример 14. Одредити полудиректан производZ3oϕZ8, који није изоморфан

директном производу ових група.

👉 Тражимо нетривијалан хомоморфизам ϕ : Z8 → Aut(Z3). Но група Z3

има два аутоморфизма: x 7→ x и x 7→ 2x. Заправо је Aut(Z3) ∼= C2 и

генератор је овај други аутоморфизам. Сада немамо проблем, јер је група

Z8 реда 8, а 2 | 8. Дефинишемо ϕ : Z8 → Aut(Z3) са: ϕ(m)(x) := 2mx, где
m ∈ Z8 = {0, 1, . . . , 7}, a x ∈ Z3 = {0, 1, 2}. Ево како изгледа операција у
групи Z3 oϕ Z8: (x,m)⊕ (y, n) = (x+3 2

my,m+8 n).
Покажимо да ова група није комутативна, те стога није изоморфна са Z3×

Z8. Имамо да је (x, 1) ⊕ (y, 2) = (x +3 2y, 1 +8 2) = (x +3 2y, 3), док је

(y, 2) ⊕ (x, 1) = (y +3 22x, 2 +8 1) = (y +3 x, 3). Но, x +3 2y = y +3 x
8



акко је y = 0. Дакле, ако је y 6= 0, једнакост не важи. Добили смо једну

некомутативну групу реда 24. ✌️

Пример 15. Одредити полудиректан производ (Z2 × Z2) oϕ Z3, који није

изоморфан директном производу ових група.

👉 Тражимо нетривијалан хомоморфизамϕ : Z3 → Aut(Z2×Z2). ГрупаZ2×
Z2 је изоморфна Клајновој групи V и из Алгебре 1 би требало да је познато да

је њена група аутоморфизама изоморфна групи S3. Заправо, у то се није тешко
уверити: овде су сви елементи сем неутрала реда 2 и аутоморфизам није

ништа друго до пермутација ових елемената. Како их има 3 и све пермутације

су дозвољене, група је изоморфна са S3. Но, овде ћемо другачије поступити.
Наиме, група Z2×Z2 је векторски простор димензије 2 над пољем Z2 и ауто-

морфизми ове групе су заправо изоморфизми овог простора. Но, они су задати

инвертибилним матрицама реда 2 над овим пољем. То су заправо следеће

матрице:(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
и

(
0 1
1 1

)
.

Дакле, има их 6. Ове матрице чине групу у односу на множење. Та група

се означава са SL2(Z2). Ознака SL је скраћеница за ,,специјална линеарна”,

а то означава матрице чија је детерминанта једнака 1 (како је детерминанта

из Z2, она није једнака 0 акко је једнака 1), 2 у индексу се односи на то да

су матрице реда 2, а Z2 да су компоненте у пољу Z2. Претходна дискусија

нам каже да је ова група изоморфна групи S3. Пробајте да се у то уверите,

можда је корисно да користите изоморфизам S3 ∼= D3, па да видите да је она

изоморфна диедарској групи.

Ради краћег писања, тј. да парове не пише као колоне, него као врсте, матри-

це ће дејствовати са десне стране на врсте. Како је група Z3 циклична реда 3,

тражимо матрице које су, као елементи групе, реда 3. То су заправо последње

две матрице у горњем списку:(
1 1
1 0

)2

=

(
0 1
1 1

)
,

(
1 1
1 0

)3

=

(
0 1
1 1

)
·
(
1 1
1 0

)
=

(
1 0
0 1

)
.

Дакле, дефинишемо ϕ : Z3 → Aut(Z2 × Z2) са: ϕ(n)(x, y) = (x, y) · ( 1 1
1 0 )

n.

Коначно, операција је на (Z2 × Z2)oϕ Z3 задата са:

((x, y),m)� ((u, v), n) = ((x, y) + (u, v)( 1 1
1 0 )

m,m+3 n).

Ова група није комутативна:

((x, y), 1)� ((u, v), 2) = ((x, y) + (u, v)( 1 1
1 0 ), 1 +3 2)

= ((x, y) + (u+2 v, u), 0)

= ((x+2 u+2 v, y +2 u), 0).
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((u, v), 2)� ((x, y), 1) = ((u, v) + (x, y)( 1 1
1 0 )

2, 2 +3 1)

= ((u, v) + (x, y)( 0 1
1 1 ), 0)

= ((u, v) + (y, x+2 y), 0)

= ((u+2 y, v +2 x+2 y, 0).

Ако узмемо, на пример да је x = y = 0, u = v = 1, добијамо најпре да је

((0, 0), 1)�((1, 1), 2) = ((0, 1), 0), а потом и ((1, 1), 2)�((0, 0), 1) = ((1, 1), 0).
Дакле, добили смо некомутативну групу која има цикличну подгрупу реда 3,

као и нормалну подгрупу изоморфну Клајновој групи. Знате ли о којој се

групи ради? ✌️

Наводимо сада, за крај овог одељка, без доказа, једну важну теорему, која

говори о постојању нормалног комплемента, као и једну њену примену.

Теорема 16. (Бернсајдова теорема о нормалном комплементу)Нека јеG кона-

чна група, P њена Силовљева подгрупа. Ако је P ⊆ Z(NG(P )), онда P има

нормалан комплемент у G. 📕

Пример 17. Група реда 552 не може бити проста.

Као што неки кажу, ово спада у рекреациону теорију група, али је прилично

популарна тема код нас на испитима, па …🤠

👉 Дакле, треба показати да свака групаG реда 552 има неку нетривијалну

нормалну подгрупу. Како је 552 = 23 · 3 · 23, имамо да je s23 ≡ 1 (mod 23) и
да s23 | 23 · 3 (подсетимо се да је s23 број Силовљевих 23-подгрупа). Дакле,
s23 ∈ {1, 24}. Ако је s23 = 1, онда је Силовљева 23-подгрупа нормална, а
ако је s23 = 24, ако са P означимо неку Силовљеву 23-подгрупу, имамо да је

24 = s23 = |G : NG(P )|, па, како је P ⊆ NG(P ) и |P | = 23, добијамо да је
P = NG(P ). Но, група реда 23 нужно је циклична, стога и комутативна, па је
тривијално испуњен услов из Бернсајдове теореме. Стога постоји нормална

подгрупа N / G, која је нормални комплемент од P . ✌️

За крај овог одељка један занимљив, а необавезан пример.

Пример 18. 👉 Сви смо чули за Рубикову (магичну) коцку. Са становишта

теорије група, имамо једну подгрупу групе S48 (имамо шест страна коцке

обојених са шест различитих боја и на свакој страни имамо по 8 квадратића

који се померају – централни се не померају; зато је овде 48), која је генерисана

ротацијама страна коцке. Може се показати да је ова група изоморфна групи(
C7
3 × C11

2

)
o
(
(A8 × A12)oC2

)
.

Само кратко појашњење. Нормална подгрупа изоморфна саC7
3×C11

2 је подгру-

па трансформација које не мењају позицију коцкица, само оријентацију. Како

имамо 8 коцкица у угловима, њихове три странице можемо да пермутујемо,

али не можемо у потпуности независно, када се изврши пермутација на њих

7, онда је на осмој фиксирано шта се може десити. Зато имамоC7
3 – циклично
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пермутујемо те три странице, а има укупно 7 позиција на којима имамо слобо-

ду. Слично имамо 12 коцкица које су на средини ивица и оне имају две

странице које видимо. Стога имамо C11
2 – на дванаестој је фиксирано шта

се може десити када се трансформише преосталих 11.

Подгрупа која није нормална изоморфна је са (A8 × A12) o C2. Ту се

ради о подгрупи у којој су трансформације које мењају само позиције малих

коцкица, али не и њихове оријентације. Поново, није све произвољно, имамо

парне пермутације коцкица у угловима (стога се појављује група A8), као и

парне пермутације коцкица на срединама ивица (стога група A12, а ту је и

пермутација реда два која замени две угаоне и две ивичне коцкице (група

C2).

У сваком случају, из горњег приказа можемо израчунати ред ове групе:

|
(
C7
3×C11

2

)
o
(
(A8×A12)oC2

)
| = 37·211·8!2 ·

12!
2 ·2 = 227·314·53·72·11. ✌️

Нилпотентне групе

Докажимо најпре једну корисну лему.

Лема 19. (Фратинијев аргумент) Нека јеG коначна група,K/G иP Силовље-

ва подгрупа одK, тада је G = NG(P )K.

✍️ Нека је g ∈ G произвољан елемент. Тада је g−1Pg ⊆ g−1Kg = K. Дакле,

g−1Pg је подгрупа одK, која има исти број елемената као и њена Силовљева

подгрупа P . Стога је и она Силовљева подгрупа одK, па су оне конјуговане у

K, тј. постоји k ∈ K тако да је k−1(g−1Pg)k = P , односно (gk)−1P (gk) = P ,
те gk ∈ NG(P ), па g ∈ NG(P )k−1 ⊆ NG(P )K. Како је g био произвољан

елемент групе G, закључујемо да је G ⊆ NG(P )K, тј. G = NG(P )K. 📕

Изводимо неке последице ове леме.

Последица 20. Нека је P Силовљева подгрупа коначне групе G и NG(P ) 6
H 6 G. Тада је H самонормализујућа, тј. H = NG(H).

✍️ На основу претпоставке и својстава нормализатора имамо да је

P / NG(P ) 6 H / NG(H) 6 G.

Kako je P Силовљева подгрупа групе G, она је и Силовљева подгрупа свих

група у овом низу. Посебно, она је Силовљева подгрупа групе NG(H), која
садржи нормалну подгрупуH . Применом Фратинијевог аргумента добијамо

да је NG(H) = NNG(H)(P )H . Но, NNG(H)(P ) ⊆ NG(P ) ⊆ H , те добијамо

NG(H) ⊆ HH = H , што нам даје NG(H) = H . 📕

Последица 21. Нека је G коначна група и нека су у G све њене максималне

подгрупе нормалне. Тада су у G и све њене Силовљеве подгрупе нормалне и

група G је изоморфна директном производу својих Силовљевих подгрупа.
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✍️ Претпоставимо да G садржи неку Силовљеву подгрупу P која није нор-

мална. Дакле, NG(P ) је права подгрупа од G. Стога је она садржана у некој
максималној подгрупи H групе G (можда је и она сама максимална, ништа

не смета). По претпоставци је H / G, а P 6 NG(P ) 6 H , па је P Силовљева

подгрупа и одH . Фратинијев аргумент даје: G = NG(P )H . Но,NG(P ) ⊆ H ,

па добијамо да је G ⊆ HH = H , тј. G = H , што противречи претпоставци

да јеH максимална подгрупа одG, дакле, самим тим, и права подгрупа одG.
Закључујемо да су у G све Силовљеве погрупе нормалне. Посебно то значи

да за сваки прост број p, који дели ред групе, постоји тачно једна Силовљева
p-подгрупа од G.

Покажимо сада да јеG изоморфна производу својих Силовљевих подгрупа.

Neka je |G| = pα1
1 · · · pαk

k и нека јеHi Силовљева pi-погрупа од G; |Hi| = pαi
i .

Докажимо најпре да је hihj = hjhi за све hi ∈ Hi, hj ∈ Hj , i 6= j. Посматрамо

комутатор ова два елемента: [hi, hj ] = h−1
i h−1

j hihj . Како јеHi /G, имамо да

h−1
j hihj ∈ Hi, па, како hi ∈ Hi 6 G, добијамо да [hi, hj ] ∈ Hi. Слично, како

је Hj / G и h−1
j ∈ Hj , добијамо да h

−1
i h−1

j hi ∈ Hj , те [hi, hj ] ∈ Hj . Дакле,

[hi, hj ] ∈ Hi ∩Hj . Но, по Лагранжовој теореми имамо да |Hi ∩Hj | | |Hi|, тј.
|Hi ∩ Hj | | pαi

i . Такође |Hi ∩ Hj | | p
αj

j , те |Hi ∩ Hj | | |NZD(pαi
i , p

αj

j ) = 1.

Закључујемо да је Hi ∩ Hj = {e}, те је [hi, hj ] = e, тј. h−1
i h−1

j hihj = e, из
чега следи: hihj = hjhi.

Дефинишимо f : H1×· · ·×Hk → G са: f(h1, . . . , hk) := h1 · · ·hk. Покажи-
мо да је f један хомоморфизам група. Наиме:

f((h1, . . . , hk) · (h′1, . . . , h′k)) = f(h1h
′
1, . . . , hkh

′
k) = h1h

′
1 · · ·hkh′k.

Но, како елементи из различитихСиловљевих подгрупа комутирају, индукци-

јом по k се лако показује да је

h1h
′
1 · · ·hkh′k = (h1 · · ·hk) · (h′1 · · ·h′k) = f(h1, . . . , hk) · f(h′1, . . . , h′k).

Дакле, заиста је

f((h1, . . . , hk) · (h′1, . . . , h′k)) = f(h1, . . . , hk) · f(h′1, . . . , h′k),

те је f хомоморфизам група. На основу прве теореме о изоморфизму група,

имамо да јеH1×· · ·×Hk/Ker f ∼= Im f . Покажимо да јеKer f = {(e, . . . , e)}.
Наиме, ако је (h1, . . . , hk) ∈ Ker f , имамо да је h1 · · ·hk = e. Како hi комути-
рају, имамо да је (h1 · · ·hk)m = hm1 · · ·hmk за свако m ∈ Z. Узмимо да је

m = pα2
2 · · · pαk

k . Како је |Hi| = pαi
i , имамо да је h

p
αi
i

i = e за све i. Стога је
hmi = e за све i > 2. Добијамо:

e = em = (h1h2 · · ·hk)m = hm1 hm2 · · ·hmk = hm1 e · · · e = hm1 .

Из чињенице да је NZD(pα1
1 ,m) = 1, следи да постоје r, s ∈ Z такви да је

rpα1
1 + sm = 1. Тада је:

h1 = h11 = h
rp

α1
1 +sm

1 =
(
h
p
α1
1

1

)r

· (hm1 )s = er · es = e.
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Уколико узмемо да је m =
p
α1
1 ···pαk

k

p
αi
i

, аналогно добијамо је hi = e. Дакле,

језгро хомоморфизма f је тривијално. Стога је H1 × · · · × Hk
∼= Im f 6 G,

па је |Im f | = |H1 × · · · ×Hk| = pα1
1 · · · pαk

k = |G|, те добијамо да је заправо
Im f = G и да имамо тражени изоморфизам. 📕

Већ смо се у претходном доказу подсетили комутатора два елемента. При-

метимо да је група G комутативна ако и само ако важи:

(∀a0 ∈ G)(∀a1 ∈ G)([a0, a1] = e).

Но, овај поступак можемо итерирати, па посматрати

[[a0, a1], a2], [[[a0, a1], a2], a3], [[[[a0, a1], a2], a3], a4], . . . .

Дефиниција 22. За групуG кажемо да је нилпотентна уколико постоји n > 0
такав да важи:

(∀a0 ∈ G)(∀a1 ∈ G) · · · (∀an ∈ G)([[. . . [a0, a1], a2], . . . , an] = e).

Најмање такво n називамо степен нилпотентности групе G. 👌

Дакле, нетривијална група је комутативна ако и само ако је њен степен

нилпотентности једнак 1.

Пример 23. Група S3 није нилпотентна.

👉 Наиме,

[(12), (13)] = (12)−1(13)−1(12)(13) = (12)(13)(12)(13) = (123);

[[(12), (13)], (12)] = (123)−1(12)−1(123)(12) = (123);

[[[(12), (13)], (12)], (12)] = (123)−1(12)−1(123)(12) = (123);

...

Видимо да никада не добијамо тривијалну подгрупу. ✌️

Пример 24. Кватернионска група Q8 јесте нилпотентна.

👉 Подсетимо се да је Q8 = {1,−1, i,−i, j,−j, k − k} и да је

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1.

Покажимо да је [[a, b], c] = 1 за све a, b, c ∈ Q8. То ће нам дати да је Q8

нилпотентна и да је степен нилпотентности једнак 2. Заправо треба показазати

да [a, b] ∈ Z(Q8) = {1,−1} за све a, b. Ако је неки од њих већ у центру,

комутатор је једнак 1. Стога претпоставимо да они нису у центру. Но, за x ∈
Q8 \ {1,−1} имамо да је x−1 = −x, па је [a, b] = a−1b−1ab = (−a)(−b)ab =

(ab)2 ∈ {1,−1} = Z(G). ✌️

Пример 25. Диедарска група D4 јесте нилпотентна и то степена 2.
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👉У уџбенику Алгебрa за информатичаре можете наћи да је, за све x, y ∈ D4:

[x, y] ∈ 〈ρ2〉 = Z(G). Стога тражено следи. ✌️

Овде смо имали пример две групе реда 8 = 23 које су нилпотентне. У

следећем ставу доказујемо знатно општији резултат.

Став 26. Свака p-група, где је p прост број, јесте нилпотентна.

✍️ Дакле, нека је G група реда pn. Доказ изводимо индукцијом по n.
Уколико је n = 1, имамо групу реда p која је нужно циклична, па тиме и

комутативна, па тиме и нилпотентна.

Претпоставимо да је тврђење тачно за све p-групе са мање од pn елемената
и нека је |G| = pn. Претпоставимо такође да она није комутативна (пошто

за комутативне немамо шта да радимо). Знамо да је Z(G) 6= {e} (видети

теорему 5). Означимо са G количничку групу G/Z(G). Kako je |G| = pk, за
неко 1 < k < n, по индуктивној хипотези имамо да јеG нилпотентна. Неке је

њен степен нилпотентности n и нека су a0, . . . , an ∈ G произвољни елементи.

Ако са x означимо класу елемента x у количничкој групи G, имамо да је

[[[a0, a1], a2], . . . , an] = e(= Z(G)).

Но, [[[a0, a1], a2], . . . , an] = [[[a0, a1], a2], . . . , an] и горња једнакост заправо

значи да је [[[a0, a1], a2], . . . , an] ∈ Z(G). Но, то нам даје да је

[[[[a0, a1], a2], . . . , an], an+1] = e,

за све an+1 ∈ G, те је G нилпотентна са степеном нилпотентности n+ 1. 📕

Став 27. а) Подгрупа нилпотентне групе и сама је нилпотентна.

б) Количничка група нилпотентне групе је такође нилпотентна.

в) Ако су G и H нилпотентне, онда је и G×H нилпотентна.

✍️ а) Дакле, нека је G нилпотентна група и L ма која њена подгрупа. Како

је G нилпотентна, то постоји n > 0 тако да је [[. . . [a0, a1], a2], . . . , an] = e за
све ai ∈ G. Но, тада је та једнакост тривијално испуњена и за све ai ∈ L, па
је и L нилпотентна.

б) Нека је G нилпотентна група и N / G. Нека је G = G/N . Како је G
нилпотентна, то постоји n > 0 тако да је [[. . . [a0, a1], a2], . . . , an] = e за све
ai ∈ G. Тада је

[[. . . [a0, a1], a2], . . . , an] = [[[a0, a1], a2], . . . , an] = e(= N).

Но, како је сваки елемент из G облика x за неко x ∈ G, добијамо да је и G
нилпотентна.

в) Претпоставимо да јеG степена нилпотентностиm, аH степена нилпотен-

тности n. Но, ако је [[. . . [a0, a1], a2], . . . , an] = e, за све ai ∈ G, онда је

и [[. . . [a0, a1], a2], . . . , ak] = e, за све k > n и све ai ∈ G. Стога, ако је

N = max{m,n}, имамо да је за све gi ∈ G, hj ∈ H:

[[. . . [g0, g1], g2], . . . , gN ] = eG као и [[. . . [h0, h1], h2], . . . , hN ] = eH .
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Стога је и

[[. . . [(g0, h0), (g1, h1)], (g2, h2)], . . . , (gN , hN )] = (eG, eH) = eG×H ,

Овде смо користили чињеницу да је [(g0, h0), (g1, h1)] = ([g0, g1], [h0, h1]) 📕

Сада ћемо формулисати и доказати теорему која даје више критеријума за

нилпотентност коначних група.

Теорема 28. Нека је G коначна група. Следећи услови су еквивалентни.

а) G је нилпотентна.

б) Ако јеH права подгрупа од G, онда јеH права подгрупа и одNG(H).
в) Све максималне подгрупе од G су нормалне.

г) Све Силовљеве подгрупе од G су нормалне.

д) G је изоморфна директном производу својих Силовљевих подгрупа,

које одговарају различитим простим делиоцима |G|.

✍️ а)=⇒ б). Наравно, ако јеG комутативна, онда је све јасно: свака подгрупа

је нормална, па је нормализатор сваке подгрупе једнак целој групи и ако је

подгрупа права, она не може бити једнака свом нормализатору. Претпоставимо

стога да G није комутативна. Приметимо да је Z(G) 6= {e}. Наиме, нека је
G степена нилпотентности n, а како G није комутативна, мора бити n > 1
и морају постојати a0, . . . , an−1 такви да је [. . . [a0, a1], . . . , an−1] 6= e, али
да за све x ∈ G важи: [[. . . [a0, a1], . . . , an−1], x] = e. То заправо значи

да [. . . [a0, a1], . . . , an−1] ∈ Z(G) \ {e}. Уколико Z(G) 6⊆ H , постоји x ∈
Z(G) \ H , али, пошто је Z(G) ⊆ NG(H), закључујемо да је x ∈ NG(H) \
H и доказ је завршен. У супротном, Z(G) ⊆ H и радимо индукцијом по

степену нилпотентности одG. База индукције се односи на ситуацију када је
G комутативна и то смо објаснили. Посматрамо G = G/Z(G). Јасно је да је
она мањег степена нилпотентности – погледати објашњење зашто је центар

нилпотентне групе нетривијалан. Како је H = H/Z(G) права подгрупа од
G, на основу индуктивне хипотезе закључујемо да је H права подгрупа од

NG(H). Дакле, постоји x ∈ NG(H)\H , за неки x ∈ G. Имамо да је xHx−1 =

H , али x 6∈ H . Из друге релације следи да x 6∈ H . Покажимо да x ∈ NG(H).
Уколико то не би било тачно, постојао би h ∈ H такав да xhx−1 6∈ H . Но,

xhx−1 ∈ H , што значи да је xhx−1 = h1 за неки h1 ∈ H . Дакле, важи

једнакост (подсетимо се да је a = aZ(G)): (xhx−1)Z(G) = h1Z(G), те је
xhx−1 ∈ h1Z(G). Но, Z(G) ⊆ H , h1 ∈ H , па је h1Z(G) ⊆ H и добили бисмо

да xhx−1 ∈ H , а знамо да то није тачно. Закључујемо да x ∈ NG(H) \H , те

је заиста H права подгрупа од NG(H).

б) =⇒ в). Нека је M максимална подгрупа од G. Посебно, она је права

подгрупа одG. На основу б) она је права подгрупа свог нормализатораNG(M).
Но, како јеM максимална подгрупа одG, не може постојати подгрупа ,,између”
M и G, те мора бити NG(M) = G, па закључујемо да јеM /G.

в) =⇒ г). Доказано у последици 21.

г) =⇒ д). Доказано у последици 21.
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д) =⇒ а). На основу става 27 имамо да је производ две нилпотентне и

сама нилпотентна група. Јасно је да се индукцијом онда може показати да је

производ коначно много нилпотентних нилпотентна група. Но, Силовљеве

подгрупе групе G су p-групе за неке просте бројеве p, а на основу става 26

имамо да су све p-групе нилпотентне и резултат следи. 📕

Следећи став нам даје још један потребан и довољан услов да би коначна

група била нилпотентна.

Став 29. Нека је G коначна група. Она је нилпотентна ако и само ако свака

два елемента, чији су редови узајамно прости бројеви, комутирају.

✍️ Претпоставимо најпре да је групаG нилпотентна и нека је |G| = pα1
1 · · · pαk

k .

На основу претходне теореме, имамо да је G ∼= P1 × · · · × Pk, где је Pi

Силовљева pi-подгрупа. Ако су x и y елементи групе такви да је

NZD(ω(x), ω(y)) = 1,

где се са ω(a) означава ред елемента a ∈ G, можемо, због поједностављења
ознака, претпоставити да смо поређали просте бројеве pi тако да је ω(x) =

pβ1
1 · · · pβr

r , ω(y) = p
βr+1

r+1 · · · pβk
k , где је 0 6 βi 6 αi. Ако са x′, односно y′

означимо елементе производа P1 × · · · × Pk, који одговарају елементима x
и y при горњем изоморфизму, онда је јасно да је x′ = (u1, . . . , ur, e, . . . , e) и
y′ = (e, . . . , e, ur+1, . . . , uk), за неке ui ∈ Pi. Но, тада је:

x′·y′ = (u1, . . . , ur, e, . . . , e)·(e, . . . , e, ur+1, . . . , uk) = (u1, . . . ur, ur+1, . . . , uk)

= (e, . . . , e, ur+1, . . . , uk) · (u1, . . . , ur, e, . . . , e) = y′ · x′,
но тада је и x · y = y · x.

Обратно, ако претпоставимо да елементи узајамно простих редова комути-

рају, можемо да искористимо доказ последице 21. Наиме, ту смо користили

чињеницу да су Силовљеве подгрупе нормалне да бисмо доказали да је f
хомоморфизам и да му је језгро тривијално. Но, нормалност нам је служила

баш за то да покажемо да елементи Силовљевих подгрупа, које одговарају

различитим простим бројевима, комутирају, а то овде већ имамо по претпо-

ставци. Стога доказ пролази и у овом случају. 📕

За крај овог одељка докажимо једну занимљиву чињеницу о коначним нил-

потентним групама.

Став 30. Нека јеG коначна нилпотентна група реда n. Тада уG важи обрат

Лагранжове теореме, тј. ако d | n, онда G садржи подгрупу реда d.

✍️ Нека јеn = pα1
1 · · · pαk

k и d = pβ1
1 · · · pβk

k и нека су, као и горе,Pi Силовљеве

pi-подгрупе. На основу теореме 5 постојеHi / Pi такве да је |Hi| = pβi
i . Тада

је H1 · · ·Hk тражена подгрупа реда d. 📕
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Фратинијева подгрупа

Све групе које овде разматрамо су коначне.

Дефиниција 31. Нека је G (коначна) група. Фратинијева подгрупа, у ознаци

Φ(G) дефинише се као пресек свих максималних подгрупа од G. 👌

Дефиниција 32. За елемент x ∈ G, где јеG група, кажемо да је негенератор

уколико за сваки подскуп X ⊆ G важи: 〈X〉 = G ⇒ 〈X \ {x}〉 = G. 👌

Подсетимо да 〈X〉 означава подгрупу генерисану скупомX – то је најмања

подгрупа која садржиX као свој подскуп. Видимо да се негенератор дефини-

ше као елемент који се може изоставити из ма ког генераторног скупа групе,

а да остатак и даље генерише групу. На пример, неутрал се може изоставити

из сваког генераторног скупа.

Став 33. Скуп свих негенератора у G једнак је Φ(G).

✍️ Претпоставимо да је a ∈ G негенератор и H максимална подгрупа од

 G. Желимо да докажемо да је a ∈ H . Нека је X = H ∪ {a}. Ако a 6∈ H ,

имамо да је 〈X〉 подгрупа одG, која садржиH као своју подгрупу, а садржи и

елемент који не припада H , па je H ⊂ 〈X〉. Како је H максимална подгрупа,

мора бити 〈X〉 = G. Но, 〈X \ {a}〉 = 〈H〉 = H 6= G, што противречи

претпоставци да је a негенератор. Закључујемо да a ∈ H . Како је H била

произвољна максимална подгрупа од G, добијамо да a ∈ Φ(G).
Обратно, нека је a ∈ Φ(G). Желимо да докажемо да је a негенератор. У

ту сврху, нека је X ⊂ G подскуп који не садржи a и нека је 〈X ∪ {a}〉 = G.
Докажимо да је тада и 〈X〉 = G. У супротном, 〈X〉 је права подгрупа од G,
па је она садржана у неком максималној подгрупи M < G (ознака < овде

означава праву подгрупу). Но, како a ∈ Φ(G) ⊆ M , имамо да a ∈ M . То

значи да је X ∪ {a} ⊆ M , па мора бити G = 〈X ∪ {a}〉 ⊆ M , што је наравно

немогуће. Тиме смо доказали да је a негенератор. 📕

Лема 34. Φ(G) / G.

✍️ Довољно је да покажемо да је, за свако x ∈ G и максималну подгрупу

M < G, подгрупа xMx−1 такође максимална. Наравно, јасно је да xMx−1 6=
G, јер би из једнакости следило да је M = G. Зато је xMx−1 ⊆ M ′ за неку
максималну подгрупу M ′ < G. Но, тада добијамо да је M ⊆ x−1M ′x, те
из чињенице да је M максимална подгрупа, следи да је M = x−1M ′x, те је

xMx−1 = M ′, тј. xMx−1 је максимална подгрупа. 📕

Следећа лема је веома занимљива и корисна.

Лема 35. Ако је H 6 G, HΦ(G) = G, онда је H = G.

✍️ Уколико јеH права подгрупа одG, онда је она садржана у некој максималној
подгрупи M . Но, и Φ(G) ⊆ M , па добијамо G = HΦ(G) ⊆ MM = M , што

није могуће. Закључујемо да је H = G. 📕
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Теорема 36. Φ(G) је нилпотентна.

✍️ Уколико је Φ(G) = {e}, немамо шта да доказујемо. Претпоставимо да је
Φ(G) 6= {e}. Докажимо да је свака Силовљева подгрупа одΦ(G) нормална. У
ту сврху, нека јеP Силовљева подгрупа одΦ(G). Како јеΦ(G)/G, Фратинијев
аргумент нам даје: G = NG(P )Φ(G). Но, тада из леме 35 добијамо да је

NG(P ) = G, па је P нормална. 📕

Следећа теорема, коју због недостатка времена нећемо доказивати, даје нам

два нова критеријума за нилпотентност коначних група. Ознака G′ означава
комутаторску подгрупу од G, тј. подгрупу генерисану свим комутаторима.

Том подгрупом ћемо се више бавити у наредном одељку.

Теорема 37. Нека је G коначна група.

а) G је нилпотентна акко је G/Φ(G) нилпотентна.

б) G је нилпотентна акко је G′ 6 Φ(G). 📕

Решиве групе

Решиве групе су, као и нилпотентне, генерализација комутативних група.

Видећемо да су, у случају коначних група, она мало више ,,удаљене” од кому-

тативних, али да имају и нека додатна корисна својства, што их чини прилично

значајном класом у оквиру класе свих коначних група. За почетак нека понав-

љања из Алгебре 1, уз нешто ново.

Дефиниција 38. Нека је G група и H 6 G. Дефинишемо извод подгрупе H ,

у ознаци H ′ са: H ′ := 〈[x, y] : x, y ∈ H〉. 👌

Користи се и ознака [H,H] за ову подгрупу, као и термин комутаторска

подгрупа.

Став 39. а) Ако је H / G, онда је и H ′ / G.

б) Ако је H 6 G, онда је H ′ 6 G′.
в) Ако је N / G, онда је G/N комутативна ако и само ако G′ ⊆ N .

✍️ а) Приметимо да важе следеће једнакости:

[x, y]−1 = (x−1y−1xy)−1 = y−1x−1yx = [y, x];

g[x, y]g−1 = gx−1y−1xyg−1 = (gx−1g−1)(gy−1g−1)(gxg−1)(gyg−1)

= (gxg−1)−1(gyg−1)−1(gxg−1)(gyg−1) = [gxg−1, gyg−1].

Дакле, инверз комутатора је комутатор, а и конјугат комутатора је комутатор.

Стога, ако јеH/G, аx, y ∈ H , имамо да gxg−1, gyg−1 ∈ H , па је и g[x, y]g−1 =
[gxg−1, gyg−1] ∈ H , те је и H ′ / G.

б) Ово је тривијално тачно.

в) Нека су x, y ∈ G. Као и раније, означимо количничку групуG/N саG а

класу елемента a са a. Тада:
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G је комутативна акко (∀x ∈ G)(∀y ∈ G)([x, y] = e)

акко (∀x ∈ G)(∀y ∈ G)([x, y] = N)

акко (∀x ∈ G)(∀y ∈ G)([x, y] ∈ N)

акко G′ ⊆ N. 📕

Докажимо сада, као примену ових резултата, теорему која повезује три

важне подгрупе сваке коначне групе: центар, комутаторску подгрупу и Фра-

тинијеву подгрупу.

Теорема 40. Ако је G коначна група, онда је G′ ∩ Z(G) 6 Φ(G).

✍️ Треба показати да јеG′∩Z(G) подскуп сваке максималне подгрупе одG.
Претпоставимо да то није тако, тј. да постоји максимална подгрупа H групе

G тако да G′ ∩ Z(G) 6⊆ H . Дакле, постоји a ∈ (G′ ∩ Z(G)) \ H . Како је

a ∈ Z(G), то је 〈a〉 / G, те је 〈a〉H 6 G. Но, H је максимална, a 6∈ H , те

закључујемо да је

(2) 〈a〉H = G.

Но, из ове једнакости и чињенице да је a ∈ Z(G) добијамо да јеH/G. Наиме,
ако је g ∈ G произвољан елемент, онда постоје m ∈ Z и h ∈ H тако да је

g = amh. Тада је

(3) gH = amhH = amH = Ham = Hham = Hamh = Hg,

па јеH/G. Сада нам једнакост (3) показује да јеG/H циклична са генератором

aH – добили смо да за свако g ∈ G постоји m ∈ Z тако да је gH = amH =
(aH)m. Но, како јеG/H циклична, она је комутативна, па на основу става 39

добијамо даG′ ⊆ H . Но, a ∈ G′, па бисмо добили да је a ∈ H што противречи

избору елемента a. Ова контрадикција завршава доказ. 📕

Навели смо дефиницију извода групе. Но, можемо наћи и други извод,

и трећи, итд. Наравно, дефиниција је индуктивна (рекурзивна): n-ти извод

групе G, у ознаци G(n) дефинишемо са:

G(0) = G;

G(n+1) = (G(n))′.

Сада дајемо дефиницију решивих група.

Дефиниција 41. За групуG кажемо да је решива уколико постоји n ∈ Nтако

да је G(n) = {e}. 👌

Приметимо да изводи групе G чине опадајући низ подгрупа од G:

G = G(0) ⊇ G′ ⊇ G′′ ⊇ · · ·
при чему је сваки члан у низу, почев од другог, нормална подгрупа претходног

и још је количничка група комутативна. Занимљиво је да важи следећа теорема.
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Теорема 42. ГрупаG је решива ако и само ако постоји опадајући низ подгрупа

(4) G = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = {e},
при чему је, за све i = 0, n− 1: Hi+1 / Hi и Hi/Hi+1 је комутативна група.

✍️ =⇒. За тражени низ можемо узети низ извода: Hi = G(i).

⇐=. Претпоставимо да постоји низ 4. Како јеG/H1 = H0/H1 комутативна

група, на основу става 39 добијамо да је G′ ⊆ H1. Докажимо индукцијом

да је за све i = 1, n: G(i) ⊆ Hi. Базу смо показали. Претпоставимо да

је G(i) ⊆ Hi. Како је Hi/Hi+1 комутативна, имамо да је H ′
i ⊆ Hi+1. По

индуктивној хипотези је G(i) ⊆ Hi, па је G(i+1) = (G(i))′ ⊆ H ′
i ⊆ Hi+1.

Добијамо да је G(n) ⊆ Hn = {e}, те закључујемо да је G(n) = {e} те је G

решива група. 📕

Пример 43. Диедарска група Dn је решива.

👉Погледајте пример 1.79 у уџбенику. Ту је показано да јеD′
n = 〈ρ2〉. Како је

подгрупа 〈ρ2〉 комутативна, комутатори свака два елемента уњој дају неутрал,
те је 〈ρ2〉′ = {ε}, тј. D′′

n = {ε}. ✌️

Пример 44. Групе S2, S3, S4 су решиве, док групе Sn, за n > 5 нису решиве.

👉 У примеру 1.78 у уџбенику је показано да је, за све n > 2: S′n = An. За

n = 2 имамо да је S′2 = {(1)}. За n = 3 је S′3 = A3, а A3
∼= C3, па је S′′3 = {1}.

У случају n = 4, имамо да је S′4 = A4, док директан рачун показује да је

A′
4 = V (урадите то за вежбу). Kako je grupa V комутативна, то је V ′ = {(1)},

те је G′′′ = {(1)}.
Но, ствари се битно мењају када је у питању случај n > 5. Наравно, имамо

да је S′n = An, но, за n > 5 важи: A′
n = An. Наиме, ако су a, b, c, d, e ∈

{1, . . . , n} различити бројеви, имамо да је

[(abc), (cde)] = (abc)−1(cde)−1(abd)(cde) = (cba)(edc)(abc)(cde) = (bec).

Стога сваки 3-цикл можемо да добијемо као комутатор два 3-цикла, Како 3-

цикли генеришу подгрупеAn добијамо да јеA′
n = An, те ни група Sn ни група

An нису решиве за n > 5. ✌️

Напомена. Придев решива у вези је са решивошћу алгебарске једначине ,,у

радикалима”, односно изражавањуњених решења као функција коефицијена-

та при чему је дозвољено да се користе једино операције сабирања, одузимања,

множења, дељења и налажења корена (отуд радикали), као што нам је познато

у случају решења квадратне једначине: ако је једначина ax2 + bx + c =

0, онда је x1 = −b−
√
b2−4ac
2 , а x2 = −b−

√
b2+4ac
2 . Постоје и одговарајуће

Карданове формуле за случај једначина трећег степена, као иФераријев метод

за свођење једначине четвртог степена на једначину трећег, али у случају

једначина степена већег од четвртог, решења се не могу изразити на овај

начин. Наиме, Галоа је показао како се свакој једначини може придружити

једна група и да је та једначина решива у радикалима ако и само ако је та
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група решива. Општој једначини n-тог степена придружује се група Sn, а
она, видели смо, није решива. 👍

Став 45. а) Подгрупа решиве групе и сама је решива.

б) Количничка група решиве групе је решива група.

в) Ако је N / G, N решива, G/N решива, онда је и G решива.

г) Директан производ коначно много решивих група је решива група.

✍️ а) Ако јеH 6 G, онда јеH(n) 6 G(n). Како јеG решива, то јеG(n) = {e},
за неко n, а тада је и H(n) = {e}.

б) Нека је N / G и π : G → G/N канонски епиморфизам: π(g) = gN .

Тада имамо да је π[G′] = (G)′. Наиме, како је инверз комутатора комутатор,
сваки елемент у комутаторској подгрупи је производ комутатора. Но, сваки

комутатор у количничкој групи је слика комутатора у почетној групи (то смо

већ користили). Стога ово важи. Индукцијом се лако покаже да је и π[G(n)] =

(G)(n) за све n >, те ако је G(n) = {e} за неко n, онда је (G)(n) = e = N .

в) Из претпоставке да је G решива, следи да постоји n тако да је (G)(n) =

e = N . Но, то заправо значи да је G(n) = N . Но, и N је решива, па постоји

m тако да је N (m) = {e}. Тада је G(n+m) = (G(n))(m) = N (m) = {e}.
г) Операције у директном производу су задате по координатама, па је кому-

татор елемената у производу уређена k-торка комутатора у одговарајућим

групама, те је (G1 × · · · × Gk)
′ = G′

1 × · · · × G′
k. Ако је G

(ni)
i = {ei}, онда

имамо да је

(G1 × · · · ×Gk)
(n) = G

(n)
1 × · · · ×G

(n)
k = {e1} × · · · × {ek}

ако узмемо да је n = max{n1, . . . , nk}. 📕

Следећи став појашњава оно што смо на почетку рекли о вези између нил-

потентних и коначних решивих група.

Став 46. Свака коначна нилпотентна група је решива.

✍️ На основу теореме 5 и теореме 45 имамо да је свака коначна p-група
решива. Како је, по теореми 28 свака коначна нилпотентна група изоморфна

директном производу решивих, тражено следи из става 45. 📕
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