Construction in GCLC language
dim 120 120
point M_{c} 50 67.5
point N 72.5 61.93
color 220 0 0
fontsize 11
cmark_lt M_{c}
cmark_r N
color 0 0 0
fontsize 10
% point M_{b} is given by the problem setting, but it has to belong to the circle k(N,M_{a}) which is constructible from the others objects given
% NDG: points M_{c} and N are not the same
% Constructing a circle k(N,M_{a}) whose center is at point N and which passes through point M_{c}
circle k(N,M_{a}) N M_{c}
color 200 200 200
drawcircle k(N,M_{a})
color 0 0 0
% Generating number V[_G71297] with value 0.6888458595336286
number V[_G71297] 0.6888458595336286
% Calculating value V[_G71318] using formula V[_G71297]*360
expression V[_G71318] { V[_G71297]*360 }
% Constructing a point M_{b} which is an image of the point V[_G71318] in a rotation around the point N for the angle M_{c}
rotate M_{b} N V[_G71318] M_{c}
color 220 0 0
fontsize 11
cmark_rt M_{b}
color 0 0 0
fontsize 10
color 200 200 200
drawarc_p N M_{c} V[_G71318]
color 0 0 0
% Constructing a free point A
point A 80 95
cmark_t A
% Constructing a point C such that AC/AM_{b}=2
towards C A M_{b} 2
cmark_b C
color 200 200 200
drawsegment A C
color 0 0 0
% Constructing a point B such that AB/AM_{c}=2
towards B A M_{c} 2
cmark_b B
color 200 200 200
drawsegment A B
color 0 0 0
drawsegment A B
drawsegment A C
drawsegment B C
% Non-degenerate conditions: points M_{c} and N are not the same
% Determination conditions: