Construction in GCLC language


dim 120 120

point M_{b} 95 67.5
point N 72.5 61.93

color 220 0 0
fontsize 11

cmark_rt M_{b}
cmark_r N
color 0 0 0
fontsize 10


% point M_{a} is given by the problem setting, but it has to belong to the circle k(N,M_{a}) which is constructible from the others objects given 
% NDG:  points M_{b} and N are not the same
% Constructing a circle k(N,M_{a}) whose center is at point N and which passes through point M_{b}
circle k(N,M_{a}) N M_{b} 

color 200 200 200
drawcircle k(N,M_{a})
color 0 0 0




% Generating number V[_G116613] with value 0.8416885744436208
number V[_G116613] 0.8416885744436208 


% Calculating value V[_G116634] using formula V[_G116613]*360
expression V[_G116634]  { V[_G116613]*360  } 


% Constructing a point M_{a} which is an image of the point V[_G116634] in a rotation around the point N for the angle M_{b}
rotate M_{a} N V[_G116634] M_{b} 
color 220 0 0
fontsize 11
cmark_b M_{a}
color 0 0 0
fontsize 10

color 200 200 200
drawarc_p N M_{b} V[_G116634] 
color 0 0 0



% Constructing a free point A
point A 80 95

cmark_t A



% Constructing a point C such that AC/AM_{b}=2
towards C A M_{b} 2 
cmark_b C
color 200 200 200
drawsegment A C 
color 0 0 0



% Constructing a point B such that M_{a}B/M_{a}C=-1
towards B M_{a} C -1 
cmark_b B
color 200 200 200
drawsegment C B 
color 0 0 0



drawsegment A B
drawsegment A C
drawsegment B C

% Non-degenerate conditions:  points M_{b} and N are not the same
% Determination conditions: