Construction in GCLC language
dim 120 120
point B 20 40
point E_{b} 50 56.36
point T_{b} 94.25 68.88
color 220 0 0
fontsize 11
cmark_b B
cmark_r E_{b}
cmark_rt T_{b}
color 0 0 0
fontsize 10
% Constructing a point H such that BH/BE_{b}=2
towards H B E_{b} 2
cmark_rt H
color 200 200 200
drawsegment B H
color 0 0 0
% DET: points B and E_{b} are not the same
% Constructing a line h_{b} which passes through point B and point E_{b}
line h_{b} B E_{b}
color 200 200 200
drawline h_{b}
color 0 0 0
% DET: points B and T_{b} are not the same
% Constructing a line s_{b} which passes through point B and point T_{b}
line s_{b} B T_{b}
color 200 200 200
drawline s_{b}
color 0 0 0
% Constructing a line b which is perpendicular to line h_{b} and which passes through point T_{b}
perp b T_{b} h_{b}
color 200 200 200
drawline b
color 0 0 0
% NDG: points B and T_{b} are not the same; points E_{b} and B are not the same% DET: points B and T_{b} are not the same
% Constructing an angle V[_G13779] which is equal to the angle E_{b}BT_{b}
angle_o V[_G13779] E_{b} B T_{b}
% Calculating value angle[_G13858] using formula 1/pow(2,0)*V[_G13779]+0/pow(2,0)*180
expression angle[_G13858] { 1/pow(2,0)*V[_G13779]+0/pow(2,0)*180 }
% Constructing a point P_{\_G13855} which is an image of the point T_{b} in a rotation around the point B for the angle 1/pow(2,0)*V[_G13779]+0/pow(2,0)*180
rotate P_{\_G13855} B angle[_G13858] T_{b}
cmark_r P_{\_G13855}
color 200 200 200
drawarc_p B T_{b} angle[_G13858]
color 0 0 0
% Constructing a line BO which passes through point B and point P_{\_G13855}
line BO B P_{\_G13855}
color 200 200 200
drawline BO
color 0 0 0
% Constructing a line m(H_{a}H_{c}) which contains the point E_{b} and is parallel to the line BO
parallel m(H_{a}H_{c}) E_{b} BO
color 200 200 200
drawline m(H_{a}H_{c})
color 0 0 0
% NDG: lines m(H_{a}H_{c}) and b are not parallel% DET: lines m(H_{a}H_{c}) and b are not the same
% Constructing a point M_{b} which belongs to line m(H_{a}H_{c}) and line b
intersec M_{b} m(H_{a}H_{c}) b
cmark_rt M_{b}
% Constructing a line L_{\_G14374} which passes through point M_{b} and point B
line L_{\_G14374} M_{b} B
color 200 200 200
drawline L_{\_G14374}
color 0 0 0
% Constructing a point P_{\_G14475} with coordinates (0,0)
point P_{\_G14475} 0 0
cmark_r P_{\_G14475}
% Constructing a point P_{\_G14399} such that M_{b}P_{\_G14399}/M_{b}P_{\_G14475}=1
towards P_{\_G14399} M_{b} P_{\_G14475} 1
cmark_r P_{\_G14399}
color 200 200 200
drawsegment M_{b} P_{\_G14399}
color 0 0 0
% Constructing a point P_{\_G14444} such that M_{b}P_{\_G14444}/M_{b}P_{\_G14475}=3
towards P_{\_G14444} M_{b} P_{\_G14475} 3
cmark_r P_{\_G14444}
color 200 200 200
drawsegment M_{b} P_{\_G14444}
color 0 0 0
% Constructing a line L_{\_G14405} which passes through point B and point P_{\_G14444}
line L_{\_G14405} B P_{\_G14444}
color 200 200 200
drawline L_{\_G14405}
color 0 0 0
% Constructing a line L_{\_G14368} which contains the point P_{\_G14399} and is parallel to the line L_{\_G14405}
parallel L_{\_G14368} P_{\_G14399} L_{\_G14405}
color 200 200 200
drawline L_{\_G14368}
color 0 0 0
% Constructing a point G which belongs to line L_{\_G14368} and line L_{\_G14374}
intersec G L_{\_G14368} L_{\_G14374}
cmark_t G
% Constructing a point O such that HO/HG=1.5
towards O H G 1.5
cmark_t O
color 200 200 200
drawsegment H O
color 0 0 0
% NDG: points B and O are not the same
% Constructing a circle k(O,C) whose center is at point O and which passes through point B
circle k(O,C) O B
color 200 200 200
drawcircle k(O,C)
color 0 0 0
% NDG: line b and circle k(O,C) intersect
% Constructing points C and A which are in intersection of k(O,C) and b
intersec2 C A k(O,C) b
cmark_b C
cmark_t A
drawsegment A B
drawsegment A C
drawsegment B C
% Non-degenerate conditions: line b and circle k(O,C) intersect; points B and O are not the same; lines m(H_{a}H_{c}) and b are not parallel; points B and T_{b} are not the same; points E_{b} and B are not the same
% Determination conditions: lines m(H_{a}H_{c}) and b are not the same; points B and T_{b} are not the same; points B and T_{b} are not the same; points B and E_{b} are not the same