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0.1 Dejstvo grupe na skup

0.1.1 Definicija dejstva i osnovni pojmovi

Definicija 0.1. Neka je G bilo koja grupa i X neprazan skup. Dejstvo grupe G na
skup X je svako preslikavaǌe · : G×X → X za koje va�i: 1) g ·(h ·x) = (gh) ·x; 2) e ·x = x
za sve g, h ∈ G, x ∈ X, pri qemu je e neutral grupe G.

Definicija 0.2. Neka je G bilo koja grupa i X neprazan skup. Dejstvo grupe G na
skup X je svaki homomorfizam ϕ : G → SX , gde je SX simetriqna grupa skupa X (grupa
svih permutacija skupa X).

Pokaza�emo da su ove dve definicije ekvivalentne.

Def1 ⇒ Def2:
Ako je · jedno dejstvo, kako ono indukuje homomorfizam ϕ : G → SX? -Svakom elementu
g ∈ G pridru�i�emo permutaciju πg ∈ SX , odre�enu sa πg(x) = g · x. Za poqetak treba
proveriti da smo zaista dobili permutaciju, odnosno bijekciju skupa X: πg je ”1-1”
jer πg(x) = πg(y) ⇔ g · x = g · y ⇔ g−1 · (g · x) = g−1 · (g · y) ⇔ (g−1g) · x = (g−1 · g) · y ⇔
e · x = e · y ⇔ x = y
πg je ”na” jer y = πg(x) ⇔ y = g ·x ⇔ g−1 ·y = g−1 ·(g ·x) ⇔ g−1 ·y = (g−1g)·x ⇔ g−1 ·y =
e · x ⇔ x = g−1 · y Dakle, za svako g ∈ G preslikavaǌe πg je permutacija iz SX . Sada
treba pokazati da je pridru�ivaǌe ϕ : G → SX , ϕ(g) = πg jedan homomorfizam grupa G i
SX : ϕ(gh) = πgh = πg◦πh = ϕ(g)◦ϕ(h) jer πgh(x) = (gh)·x = g ·(h·x) = πg(πh(x)) = (πg◦πh)(x)
za sve x ∈ X.

Def2 ⇒ Def1:
Neka je sada ϕ : G → SX jedan homomorfizam grupa. Kako da pomo�u ǌega definixemo
preslikavaǌe · : G×X → X koje zadovoǉava uslove 1) i 2) iz prve definicije dejstva?
-Stavi�emo g · x = ϕ(g)(x). Proveravamo 1): g · (h · x) = ϕ(g)(ϕ(h)(x)) = (ϕ(g) ◦ ϕ(h))(x) =
ϕ(gh)(x) = gh · x 2) e · x = ϕ(e)(x) = IdX(x) = x

Svako dejstvo indukuje dve vrste podskupova, jedne od X, a druge od G.

Definicija 0.3. Neka grupa G dejstvuje na nepraznom skupu X. Ako je x bilo koji
element (taqka) iz X, orbita taqke x je

Ωx = {g · x : g ∈ G}.

Iz uslova iz definicije dejstva odmah sledi da je sa

x ∼ y ⇔ y ∈ Ωx

definisana jedna relacija ekvivalencije:

refleksivnost: x ∼ x ⇔ x ∈ Ωx, a ovo je taqno jer x = e · x
simetriqnost:x ∼ y ⇔ y ∈ Ωx ⇔ y = g · x za neko g ∈ G, odakle je x = g−1 · y, pa

x ∈ Ωy, tj. y ∼ x
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tranzitivnost: x ∼ y ∧ y ∼ z ⇔ y ∈ Ωx ∧ z ∈ Ωy ⇔ y = g · x ∧ z = h · y za neke
g, h ∈ G, a onda je z = h · (g · x) = (hg) · x, pa z ∈ Ωx, odnosno x ∼ z

Klase ove ekvivalencije su upravo orbite:

Cx = {y ∈ X : x ∼ y} = {y ∈ X : y ∈ Ωx} = Ωx.

Odavde sledi veoma va�na osobina orbita, koju �emo koristiti vixe puta u nastavku:
razliqite orbite su disjunktne i ǌihova unija je upravo skup X. Tako�e, za dejstvo
ka�emo da je tranzitivno ako ima taqno jednu orbitu. To znaqi da za svake dve taqke
x, y ∈ X postoji g ∈ G za koje je y = g · x.

Druga vrsta podskupova koje pridru�ujemo jednom dejstvu nalazi se u G i za ǌih
�e se ispostaviti da su i podgrupa.

Definicija 0.4. Stabilizator elementa (taqke) x ∈ X u odnosu na uoqeno dejstvo je

Σx = {g ∈ G : g · x = x}.

Ponovo koristimo uslove iz definicije dejstva da doka�emo da je Σx podgrupa od
G: iz prvog uslova sledi da ako g, h ∈ Σx, tj. g ·x = x i h ·x = x, onda (gh) ·x = g · (h ·x) =
g · x = x, odnosno gh ∈ Σx; iz drugog je e ∈ Σx (jer e · x = x) i na kraju iz g ∈ Σx, tj.
g · x = x mno�eǌem sa g−1 dobijamo g−1 · (g · x) = g−1 · x, odnosno (g−1g) · x = g−1 · x ili
x = g−1 · x, pa g−1 ∈ Σx.

Teorema 0.1. Ako je · : G × X → X bilo koje dejstvo konaqne grupe G na skup X, broj
elemenata orbite proizvoǉne taqke x ∈ X je jednak indeksu ǌenog stabilizatora u grupi
G:

|Ωx| = [G : Σx]

Dokaz. Znamo da je indeks neke podgrupe broj ǌenih levih (ili desnih) koseta, odnosno
[G : Σx] = |G/Σx|. Da bi dva skupa bila istobrojna, treba na�i bijekciju izme�u ǌih.
Iz same definicije orbite i koseta, odmah imamo prirodno preslikavaǌe f : Ωx →
G/Σx, dato sa

f(g · x) = gΣx.

Poka�imo da je f inȷektivno:f(g ·x) = f(h ·x) ⇔ gΣx = hΣx ⇔ g−1h ∈ Σx ⇔ (g−1h) ·x =
x ⇔ g−1 · (h · x) = x ⇔ g · x = h · x;

i surjektivno: ako je gΣx ∈ G/Σx proizvoǉan koset, za element g koji ga odre�uje
je f(g · x) = gΣx.

Dakle, f je bijekcija i |Ωx| = |G/Σx| = [G : Σx]. Ovo se mo�e napisati i kao
|Ωx| = |G|

|Σx| ili |Ωx||Σx| = G|.

Bernsajdova lema

Slede�e tvr�eǌe je osnovno sredstvo za odre�ivaǌe broja orbita dejstva konaqne
grupe na skup.
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Teorema 0.2. (Bernsajdova lema) Neka je · : G × X → X dejstvo konaqne grupe G na
konaqan skup X i neka je Fix(g) = {x ∈ X : g · x = x} skup taqaka koje fiksira element
g ∈ G. Oznaqimo sa X/G skup svih orbita ovog dejstva. Tada je

|X/G| = 1

|G|
∑
g∈G

|Fix(g)|.

Dokaz. Posmatrajmo skup {(x, g) : g ·x = x}. ǋega mo�emo da prebrojimo na dva naqina,
”uzdu�” i ”popreko”:

|{(x, g) : g · x = x}| =
∑
g∈G

|Fix(g)| =
∑
x∈X

|Σx|.

Sada iz
∑

g∈G |Fix(g)| =
∑

x∈X |Σx| i prethodne teoreme dobijamo∑
g∈G

|Fix(g)| =
∑
x∈X

|G|
|Ωx|

,

odnosno
1

|G|
∑
g∈G

|Fix(g)| =
∑
x∈X

1

|Ωx|
.

Neka je Ωx proizvoǉna orbita. Ona ima |Ωx| elemenata, i razlomak 1
|Ωx| se pojavǉuje u

sumi na desnoj strani prethodne jednakosti po jednom za svako x ∈ Ωx, dakle |Ωx| puta
ukupno. To znaqi da svaka orbita toj sumi doda jedinicu, pa je desna strana u stvari
brojaq orbita: ∑

x∈X

1

|Ωx|
=

∑
Ω∈X/G

1 = |X/G|.

Sada samo izjednaqimo sa levom stranom i dobijemo tra�enu formulu za broj svih
orbita uoqenog dejstva

|X/G| = 1

|G|
∑
g∈G

|Fix(g)|.

Primeri dejstava

1) Neka je G grupa svih rotacija euklidske ravni E oko fiksirane taqke O (lako
se proveri da je G grupa, kompozicija dve rotacije oko taqke O je rotacija za zbir
ǌihovih uglova, identiteta je rotacija za 0 stepeni, rotacija inverzna rotaciji za
ugao θ je rotacija za −θ). G dejstvuje na E tako xto rotacija ρ pomeri taqku A u
ρ(A). Opet se lako vidi da rotacija za φ, pa za θ, taqku A pomera isto kao rotacija
za φ + θ, a identiteta fiksira sve taqke, odnosno da su zadovoǉeni uslovi dejstva.
Xta su orbite i stabilizatori ovog dejstva? - Orbite su svi koncentriqni krugovi
sa centrom u O. Stabilizator svake taqke je id.
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2) Neka je G grupa i H podgrupa grupe G. Oznaqimo sa X koliqniqki skup G/H i
posmatrajmo preslikavaǌe · : G × X → X odre�eno sa g · (aH) = gaH. Pravolinijski
sledi da su ispuǌeni uslovi iz definicije dejstva: 1)g · (h · (aH)) = g · (haH) = ghaH =
(gh) · aH; 2) e · aH = eaH = aH. Tvrdimo da je ovo dejstvo tranzitivno: ako je aH
fiksiran koset i bH proizvoǉan, onda bH ∈ ΩaH jer jednaqina ga = b ima rexeǌe po g
u grupi G, pa je g ·aH = bH. Dakle, postoji samo jedna orbita ovog dejstva, ΩaH = G/H.

3) Neka je G = Cn = {z ∈ C : zn = 1} - grupa n-tih korena jedinice Cn = {cos 2kπ
n +

isin 2kπ
n : 0 ≤ k < n}, pa odmah sledi da je Cn izomorfna cikliqnoj grupi Cn. G dejstvuje

na kompleksne brojeve na slede�i naqin: g · z = gz - mno�eǌe dva kompleksna broja,
pa trivijalno va�e uslovi za dejstvo (geometrijski ovo je rotacija oko koordinatnog
poqetka za ugao 2kπ

n )

Ako je z 6= 0, Ωz = {z(cos 2kπ
n + isin 2kπ

n ) : 0 ≤ k < n} = {ze 2kπ
n : 0 ≤ k < n}, a Ω0 =

0. Orbite taqaka z 6= 0 su n-toqlane, pa su po teoremi o orbiti i stabilizatoru,
stabilizatori jednoqlani, Σz = 1, z 6= 0, dok je orbita nule jednoqlana, pa je ǌen
stabilizator cela grupa G, Σ0 = Cn.

-Jox jedan va�an primer dejstva je dejstvo grupe na samu sebe, konȷugacijom.

0.1.2 Konȷugacija i jednaqina klasa

Neka je G proizvoǉna grupa. Za X = G posmatrajmo preslikavaǌe · : G×X → X dato
sa g · x = gxg−1, g, x ∈ G. Proverimo da je ovo zaista jedno dejstvo: 1) g · (h · x) =
g · (hxh−1) = ghxh−1g−1 = (gh)x(gh)−1 = (gh) · x 2) e · x = exe−1 = x.

Ovo dejstvo zovemo dejstvo grupe na samu sebe konȷugacijom.
Hajde da na�emo orbite i stabilizatore ovog dejstva.
Ωx = {g · x : g ∈ G} = {gxg−1 : g ∈ G} = Kx - klasa konȷugacije elementa x u grupi

G. Primetimo da ono xto znamo da va�i za orbite ovde ima za posledicu da su dve
razliqite klase konȷugacije i disjunktne i da je grupa G unija klasa konȷugacije ǌenih
elemenata.

Σx = {g ∈ G : g · x = x} = {g ∈ G : gxg−1 = x} = {g ∈ G : gx = xg} = Cx - centralizator
elementa x u grupi G

Ako je grupa G konaqna, iz teoreme o orbiti i stabilizatoru znamo da |Ωx| | |G|.
Pitamo se xta znaqi da je orbita neke taqke pri ovom dejstvu jednoqlana:

|Ωx| = 1 ⇔ |Kx| = 1 ⇔ gxg−1 = x, ∀g ∈ G ⇔ gx = xg, ∀g ∈ G ⇔ x ∈ CG = Z(G)

Dakle, klasa konȷugacije elementa x je jednoqlana akko je taj element u centru grupe
G, pa je broj jednoqlanih klasa konȷugacije upravo red centra grupe. Daǉe, znamo da
je svaki skup na koji neka grupa dejstvuje, unija disjunktnih orbita tog dejstva, pa
je G =

⊔
Ωx =

⊔
Kx xto implicira da je red grupe G zbir brojeva elemenata pa

disjunktnim klasama konȷugacije:

|G| =
∑

|Kx| =
∑

|Kx|=1

|Kx|+
∑

|Kx|>1

|Kx| = |CG|+
∑

|Kx|>1

|Kx|.
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Dodatno va�i da broj elemenata u svakoj orbiti deli red grupe G (jer je jednak indeksu
stabilizatora odgovaraju�e taqke): |Ωx| = |Kx| | |G|, pa je druga suma ne samo po
brojevima ve�im od 1, nego po nekim deliocima |G| ve�im od 1. Ovim smo dokazali
tvr�eǌe koje ima poseban naziv i dosta primena u nastavku:

Teorema 0.3. (Jednaqina klasa) Ako je G konaqna grupa, CG ǌen centar i Kx ǌene klase
konȷugacije sa bar po dva elementa, onda |Kx| | |G| i

|G| = |CG|+
∑

|Kx|>1

|Kx|.

Primer 0.1. Ako je G grupa qiji je red pn, gde je p prost, a n prirodan broj, onda
ǌen centar nije trivijalan, CG 6= {e}.

-Iz jednaqine klasa imamo |G| = |CG|+
∑

|Kx|>1 |Kx|, pri qemu brojevi |Kx| dele |G|.
Ovde je |G| = pn, pa su i svi |Kx| oblika pk za 1 ≤ k. Dakle, p |

∑
|Kx|>1 |Kx|, a svakako

p | |G|, pa onda p | |G| −
∑

|Kx|>1 |Kx|, xto je upravo red centra. To znaqi da red centra
nije 1, i da je deǉiv sa p.

Definicija 0.5. Grupa qiji je red stepen prostog broja p zove se p-grupa.

- Na primer, grupa reda 49 je 7-grupa, a grupa reda 125 je 5-grupa.

Primer 0.2. Svaka grupa reda p2, gde je p prost broj, je komutativna.
-Iz Lagran�ove teoreme imamo da red centra deli red grupe, a iz prethodnog primera
sledi da red centra ove grupe nije 1. Ostaju dve mogu�nosti: red centra je p ili red
centra je p2. Prva otpada jer ako bi red centra bio p, onda bi i ǌegov indeks u grupi
G bio p, a znamo od ranije da ”indeks centra nije prost broj”. Dakle, red centra je
isto p2, pa je CG = G, a samim tim je i cela G komutativna.

Tako�e, prema teoremi o klasifikaciji komutativnih grupa, mo�emo u potpunosti
da opixemo ovakve grupe: one su ili cikliqne ili direktni proizvodi dve cikliqne
grupe:

|G| = p2 ⇒ G ∼= Zp2 ∨ G ∼= Zp × Zp.

Primer 0.3. Broj razliqitih konȷugata podgrupe H u konaqnoj grupi G jednak je
indeksu ǌenog normalizatora u toj grupi.
-Da se podsetimo xta je normalizator nekog skupa S u grupi G, S ⊂ G: NS = {g ∈ G :
gS = Sg}. To je uvek podgrupa grupe G (proverite ako niste do sada). Posebno, za S
mo�emo da uzmemo neku podgrupu i onda dobijamo normalizator podgrupe NH = {g ∈ G :
gH = Hg}. To je podgrupa grupe G koja sadr�i H i zapravo je najve�a podgrupa grupe
G u kojoj je H normalna, jer se definicija normalizatora mo�e napisati i ovako:
NH = {g ∈ G : gHg−1 = H}.

Vratimo se sada na nax primer. Uoqi�emo dejstvo grupe G na skup X svih podgrupa
grupe G: X = {H : H ≤ G}, dato sa g · H = gHg−1, g ∈ G, H ∈ X (provera da je ovo
dejstvo je ista kao kod dejstva konȷugacijom na elemente). Jasno je da su u orbiti
taqke (tj. podgrupe) H svi ǌeni konȷugati, pa je broj elemenata u orbiti jednak broju
razliqitih konȷugata podgrupe H. Xta je stabilizator taqke H?

ΣH = {g ∈ G : g · H = H} = {g ∈ G : gHg−1 = H} = {g ∈ G : gH = Hg} = NH -
normalizator podgrupe H u grupi G.

Iz teoreme o orbiti i stabilizatoru sledi da je broj elemenata u orbiti jed-
nak indeksu stabilizatora, a kod nas to taqno znaqi da je broj razliqitih konȷugata
podgrupe H jednak indeksu ǌenog normalizatora u grupi G.
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0.1.3 Koxijeva lema

Iz Lagran�ove teoreme znamo da red elementa u konaqnoj grupi G deli red same
grupe. Obrnuto, naravno, ne va�i: za svaki broj k koji deli |G|, u G ne mora da
postoji element reda k. Me�utim, ako je k prost, to �e va�iti.

Teorema 0.4. (Koxijeva lema) Ako je red konaqne grupe G deǉiv prostim brojem p, onda
u G postoji element reda p.

Dokaz. Pre svega, primetimo da je element g reda p, gde je p prost, akko je g 6= e
i gp = e (ovo sledi iz gk = e ⇒ ω(g) | k). Neka je Cp = 〈a〉 cikliqna grupa reda
p. Posmatra�emo skup X onih p-torki sa komponentama iz G qiji je proizvod jednak
neutralu e grupe G,

X = {(g1, g2, . . . , gp) ∈ Gp : g1g2 · · · gp = e}

i preslikavaǌe · : Cp ×X → X dato na generatoru sa a · (g1, g2, . . . , gp) = (g2, g3, . . . , gp, g1)
(odnosno na bilo kom elementu ai sa ai · (g1, g2, . . . , gp) = (gi+1, gi+2, . . . , gp, g1, . . . , gi).)
Pre svega treba proveriti da smo ovim cikliqnim pomeraǌem komponenata date p-
torke ostali u skupu X, odnosno da iz g1g2 · · · gp = e sledi g2g3 · · · gpg1 = e. Ovo je
taqno jer mno�eǌem prve jednakosti sleva sa g−1

1 dobijamo g2 · · · gp = g−1
1 , a kada ovu

jednakost pomno�imo sa g1 zdesna dobijamo upravo g2g3 · · · gpg1 = e. Daǉe, mno�eǌem
ove jednakosti sa g−1

2 dobili bismo g3 · · · gpg1g2 = e itd.
Jasno je da je ovo preslikavaǌe jedno dejstvo cikliqne grupe Cp na X (mno�eǌe sa

ai pomeri prvih i komponenata p-torke na kraj, a daǉe mno�eǌe sa aj prebaci slede�ih
j elemenata iza onih i - efekat je isti kao da smo mno�ili sa ai+j; tako�e, e = ap

pomeri cikliqno p-torku za p mesta, odnosno ona ostaje ista).
Primetimo da lako mo�emo da odredimo broj elemenata u skupu X - u (g1, g2, . . . , gp)

za koju je g1g2 · · · gp = e mo�emo proizvoǉno da izaberemo g1, g2, . . . , gp−1, a onda je
gp odre�eno sa gp = (g1g2 · · · gp−1)

−1. Za svaki od prvih p − 1 elemenata imamo |G|
mogu�nosti, pa je |X| = |G|p−1. Posebno, poxto p | |G|, sledi da p | |X| (xtavixe,
pp−1 | |X|).

Kad smo odredili |X| idemo na sumiraǌe po disjunktnim orbitama:

X = Ω1 t Ω2 t · · · t Ωn,

|X| = |Ω1|+ |Ω2|+ · · ·+ |Ωn|.

Znamo da je broj elemenata u orbiti jednak indeksu stabilizatora odgovaraju�e taqke,
xto znaqi da deli red grupe koja dejstvuje. Kako je kod nas to grupa Cp, sledi da
|Ωi| ∈ {1, p} za svako 1 ≤ i ≤ n. Jednu jednoqlanu orbitu sigurno imamo, to je Ω(e,e,...,e).
Tvrdimo da mora postojati bar jox jedna jednoqlana orbita, jer bismo u suprotnom
imali:

|X| = 1 + (n− 1)p,

ali p | |X|, pa bi sledilo da p | 1, kontradikcija! Dakle, i orbita neke taqke
(g1, g2, . . . , gp) je jednoqlana. Xta to znaqi?

a · (g1, g2, . . . , gp) = (g1, g2, . . . , gp) ⇒ (g1, g2, . . . , gp) = (g2, g3, . . . , gp, g1),
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a ovo daje da je g1 = g2 = · · · = gp (= g). Dakle, sve komponente te taqke su me�usobno
jednake (i razliqite od e jer je to druga taqka qija je orbita jednoqlana). Sada iz
toga da ta taqka pripada skupu X imamo g · g · · · g = e, g 6= e, odnosno gp = e i g 6= e.
Prema prvoj reqenici u dokazu, g je element reda p.

0.1.4 Teorema o faktorijelu

Teorema 0.5. (Teorema o faktorijelu) Neka je H podgrupa grupe G konaqnog indeksa n.
Tada postoji normalna podgrupa N grupe G koja je sadr�ana u H i za qiji indeks u grupi
G va�i:

[G : N ] | n!.

Dokaz. Neka je X = G/H. Jasno je da je | X |= [G : H] = n. Imali smo kod primera
dejstava da je preslikavaǌe · : G ×X → X definisano sa g · (aH) = gaH jedno dejstvo
grupe G na skup X. Setimo se druge definicije dejstva - ovo je ekvivalentno tome da
je ϕ : G → SX dato sa ϕ(g)(aH) = gaH homomorfizam grupa. Jezgro ovog homomorfizma
je normalna podgrupa od G. Tvrdimo da je ona sadr�ana u H:
neka g ∈ Kerϕ, to znaqi da je ϕ(g) = IdX ⇔ ϕ(g)(aH) = aH za svako a ∈ G, odnosno
gaH = aH za svako a ∈ G. Posebno, gH = H, a odavde g ∈ H, xto daje Kerϕ ⊂ H.
Sada primenimo Prvu teoremu o izomorfizmima grupa: G/Kerϕ ∼= Imϕ, ali Imϕ ≤
SX = Sn, pa |Imϕ| | |Sn| = n!, odnosno |G/Kerϕ| | n! ili ekvivalentno [G : Kerϕ] | n!.

Dakle, Kerϕ je tra�ena normalna podgrupa - sadr�ana je u H i konaqnog je indeksa.

Ispostavǉa se da je Kerϕ = CoreH, gde je CoreH definisana kao presek svih konȷugata
podgrupe H: CoreH =

∩
a∈G aHa−1 - karakterizacija ove podgrupe je da je to najve�a

podgrupa od H koja je normalna u G! (⋆)

Kerϕ = CoreH:
⊆: Kerϕ je podgrupa od H koja je normalna u G, a CoreH je najve�a takva, pa Kerϕ ⊆
CoreH
⊇: neka g ∈ CoreH, onda g ∈ aHa−1,∀a ∈ G ⇔ ga ∈ aH, ∀a ∈ G ⇔ gaH = aH, ∀a ∈ G ⇔
ϕ(g) = IdX ⇒ g ∈ Kerϕ

⋆ : Neka je H ≤ G i CoreH =
∩

a∈G aHa−1. Pre svega, CoreH je podgrupa od G kao
presek nekih podgrupa (konȷugati podgrupe su podgrupe; presek proizvoǉne familije
podgrupa je opet podgrupa). CoreH ⊆ H jer je i H me�u podgrupama qiji je CoreH
presek. Daǉe, CoreH ▹G: uzmimo proizvoǉno b ∈ G i posmatrajmo bCoreHb−1,

bCoreHb−1 = b(
∩
a∈G

aHa−1)b−1 =
∩
a∈G

baH(ba)−1 = CoreH.

Posledǌa jednakost sledi iz toga xto je mno�eǌe u grupi bijekcija, pa kad a ”pro�e”
celo G isto se desi i sa ba za fiksirano b ∈ G. Na kraju, ako je K normalna podgrupa
od G sadr�ana u H, tada je za svako a ∈ G, K = aKa−1 ⊆ aHa−1, pa je onda K sadr�ana
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i u preseku svih konȷugata od H, a to je taqno CoreH, K ⊆ CoreH. Dakle, CoreH je
najve�a podgrupa od H koja je normalna u G.

Primer 0.4. Neka je H podgrupa grupe G qiji je indeks p najmaǌi prost broj koji
deli |G|. Tada je H normalna podgrupa grupe G.

-Primenimo n!-teoremu: [G : CoreH] | p!. Broj [G : CoreH] ima svoju faktorizaciju
oblika pα1

1 pα2
2 · · · pαk

k , gde su svi pi ≥ p zbog uslova da je p najmaǌi prost broj koji
deli |G|, a [G : CoreH] je jedan delilac broja |G|. Odavde sledi da za svako i, pi | p!.
S druge strane, u p! se ne pojavǉuju prosti brojevi ve�i od p, xto daje pi = p za
sve i. Zakluqujemo da je [G : CoreH] = pα, a onda iz pα | p! dobijamo α = 1. Dakle,
[G : CoreH] = p, xto upore�eno sa [G : H] = p i CoreH ⊆ H konaqno daje H = CoreH, a
samim tim je i H normalna podgrupa od G.

Primena n!-faktorijel teoreme ide u dva pravca: nekada pokazujemo da je H =
CoreH qime dobijamo da je H normalna, a nekada samo tra�imo pravu normalnu pod-
grupu od G (to �e biti CoreH) da bismo pokazali da G nije prosta. U svakom sluqaju
za H biramo podgrupu malog indeksa.
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0.2 Teoreme Silova

Na osnovu Lagran�ove teoreme, ako je H podgrupa konaqne grupe G, tada |H| | |G|.
Obrat ovog tvr�eǌa ne va�i u opxtem sluqaju: ako neki broj deli red grupe G, G ne
mora da ima podgrupu tog reda (videli smo da ovo npr. va�i kod cikliqnih grupa).
Ipak, podgrupe odre�enih redova (koji su prosti brojevi ili stepeni prostih brojeva)
postoje u svakoj konaqnoj grupi. Vixe informacija o ǌima daju nam teoreme Silova.

0.2.1 Prva teorema Silova

Teorema 0.6. (Prva teorema Silova) Neka je G grupa qiji je red |G| = prm, gde je p
prost broj, m i r prirodni, i m nije deǉiv sa p. Tada grupa G ima podgrupu reda pr.

Dokaz. Dokaz izvodimo indukcijom po redu grupe G, odnosno i po r i po m. Baza
indukcije su sluqajevi r = 1 ili m = 1. Ako je r = 1, tvr�eǌe sledi iz Koxijeve leme,
dok je za m = 1 sama grupa G tra�ena podgrupa. Pretpostavimo sada da tvr�eǌe va�i
za sve grupe reda psn pri qemu je ili 1 ≤ s < r ili 1 ≤ n < m i naravno p ne deli n.

Razlikujemo dva sluqaja:

1) U G postoji prava podgrupa H takva da p ne deli indeks [G : H].
Iz Lagran�ove teoreme je |G| = |H|[G : H] = prm, pa poxto p ne deli [G : H], bi�e
|H| = prn, gde n nije deǉiv sa p i n < m. Na osnovu induktivne pretpostavke, H ima
podgrupu reda pr, xto je onda i tra�ena podgrupa grupe G.

2) p deli indeks svake prave podgrupe grupe G.
Ovde primeǌujemo 3 tvr�eǌa koja znamo od ranije.
-Prvo je jednaqina klasa: |G| = |CG| +

∑
|Kx|>1 |Kx|, pri qemu su brojevi |Kx| = |Ωx|

pa su jednaki indeksima odgovaraju�ih stabilizatora [G : Σx]. Svi ovi indeksi su
deǉivi sa p, iz qega sledi da je i red centra |CG| deǉiv sa p.
-Daǉe, na osnovu Koxijeve leme postoji element x iz centra qiji je red bax p. Posma-
trajmo podgrupu H = 〈x〉 koja je tako�e reda p. Xtavixe, ona je i normalna podgrupa
grupe G, jer x pripada centru, pa komutira sa svim elementima iz G. Dakle, imamo
|G/H| = pr−1m i onda mo�emo primeniti induktivnu pretpostavku: G/H ima podgrupu
K reda pr−1

-Na kraju, primeǌujemo Tre�u teoremu o izomorfizmima koja ka�e da K mora biti
oblika K = K/H, gde je K podgrupa grupe G koja sadr�i H (K = {a ∈ G : aH ∈ K} ili
K = π−1(K), gde je π : G → G/H prirodni epimorfizam). Onda je

|K| = |H||K/H| = |H||K| = ppr−1 = pr

i K je podgrupa grupe G koju smo tra�ili.
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Definicija 0.6. Ako je G grupa qiji je red |G| = prm, gde je p prost broj, r ≥ 1 i m
prirodan broj koji nije deǉiv sa p, tada svaku podgrupu od G reda pr zovemo Silovǉeva
p-podgrupa grupe G ili kra�e Sp-podgrupa grupe G.

Dakle, prethodna teorema tvrdi da Silovǉeve p-podgrupe grupe G postoje za svaki
prost broj p koji deli red grupe G.

0.2.2 Druga teorema Silova

Teorema 0.7. (Druga teorema Silova) Neka je G grupa qiji je red |G| = prm, gde je p
prost broj, m i r prirodni, i m nije deǉiv sa p. Tada:
1) Svaka p-podgrupa grupe G sadr�ana je u nekoj Silovǉevoj p-podgrupi grupe G.
2) Sve Silovǉeve p-podgrupe grupe G su me�usobno konȷugovane.
3) Broj svih Silovǉevih p-podgrupa deli |G|.

Dokaz. Neka su H i K proizvoǉne podgrupe grupe G i X = G/K. Preslikavaǌe
H × X → X definisano sa (h, aK) 7→ haK je jedno dejstvo (imali smo kod primera
dejstava - koset dejstvo, G deluje na skup koseta neke ǌene podgrupe). Poxto ovo
va�i za bilo koje dve podgrupe, sada �emo sukcesivno birati H i K tako da dobijemo
�eǉena tvr�eǌa.
-Prvo uzimamo da je K neka Silovǉeva p-podgrupa grupe G. Poxto je K reda pr, skup
X ima |X| = |G/K| = |G|

|K| = prm
pr = m elemenata. Prebrojmo sada X po disjunktnim

orbitama uoqenog dejstva:

m = |X| = |Ω1|+ |Ω2|+ · · ·+ |Ωn|.

Iz uslova da p ne deli m dobijamo da broj elemenata u bar jednoj orbiti nije deǉiv
sa p, neka je to orbita neke taqke aK, |ΩaK | nije deǉiv sa p.
-Daǉe uzmemo da je H p-podgrupa, |H| = pk. Na osnovu teoreme o orbiti i stabiliza-
toru |H| = pk = |ΩaK ||ΣaK |, gde je aK koset iz prethodne reqenice. Odavde imamo
da broj |ΩaK | nije deǉiv sa p, a deli pk, iz qega zakǉuqujemo da on mora da bude 1:
|ΩaK | = 1, odnosno da je ΩaK = {aK}. To daǉe znaqi da je haK = aK, ∀h ∈ H. Poxto aK
nije podgrupa, pomno�i�emo sa a−1 da dobijemo podgrupu: haKa−1 = aKa−1, ∀h ∈ H.
Dakle, za podgrupu K̃ = aKa−1 je hK̃ = K̃ za svako h ∈ H, odnosno HK̃ = K̃, xto
povlaqi da je H ⊂ K̃. Me�utim, |K̃| = |aKa−1| = |K| = pr, pa je i K̃ Silovǉeva p
podgrupa.
Time smo pokazalai da je proizvoǉna p-podgrupa H sadr�ana u nekoj Silovǉevoj p-
podgrupi K̃.
-Na kraju �emo uzeti da je i H Silovǉeva p-podgrupa. Sada iz H ⊆ K̃ i |H| = |K̃|
sledi da je H = K̃, tj. H = aKa−1, odnosno H i K su konȷugovane. To pokazuje da su
svake dve Silovǉeve p-podgrupe me�usobno konȷugovane.

Dakle, ukupan broj Silovǉevih p-podgrupa je jednak broju svih razliqitih konȷugata
bilo koje od ǌih. Imali smo ve� da je broj konȷugata neke podgrupe jednak indeksu
ǌenog normalizatora, xto povlaqi da taj broj deli red grupe G, i time je dokazano i
posledǌe tvr�eǌe ove teoreme.
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Ako sa Sp oznaqimo skup svih Silovǉevih p-podgrupa i sa sp = |Sp|, za sada imamo
sp||G|.

�elimo da doka�emo da je broj sp kongruentan sa 1 po modulu p. Za to nam najpre
treba slede�e pomo�no tvr�eǌe.
Za bilo koje dejstvo · : G×X → X, oznaqimo sa

XG = {x ∈ X : g · x = x, ∀g ∈ G}

skup ǌegovih fiksnih taqaka.

Lema 0.1. Ako je G p-grupa i X konaqan skup, onda je

|XG| ≡p |X|.

Dokaz. Kao i ranije, broj elemenata u skupu X jednak je zbiru po disjunktnim or-
bitama: |X| = |Ω1|+ |Ω2|+ · · ·+ |Ωn| =

∑
|Ωx|=1 |Ωx|+

∑
|Ωx|>1 |Ωx|. Primetimo odmah da su

brojevi elemenata u vixeqlanim orbitama deǉivi sa p jer je |Ωx| = [G : Σx] =
pn

|Σx| , pa
1 < |Ωx| | pn povlaqi p | |Ωx|. S druge strane, |Ωx| = 1 ⇔ g · x = x, ∀g ∈ G ⇔ x ∈ XG.
To upravo znaqi da je skup svih fiksnih taqaka unija jednoqlanih orbita, pa poqetna
jednakost postaje |X| = |XG|+ p(. . .) iz qega sledi p | |X| − |XG| xto je ekvivalentno sa
|XG| ≡p |X|.

Teorema 0.8. Neka je G grupa qiji je red |G| = prm, gde je p prost broj koji ne deli m.
Broj Silovǉevih p-podgrupa od G kongruentan je sa 1 po modulu p:

sp ≡p 1.

Dokaz. Neka je X = Sp skup svih Silovǉevih p-podgrupa grupe G. Uzmimo jednu
Silovǉevu p-podgrupu, H ∈ Sp, i posmatrajmo ǌeno dejstvo na X konȷugovaǌem:
· : H × X → X, h · K = hKh−1 (imali smo ve� da je konȷugacija dejstvo, a H ∈ Sp ⇒
hKh−1 ∈ Sp).
Pokaza�emo da je skup fiksnih taqaka ovog dejstva jednoqlan, XH = {H}. Jasno je da
H ∈ XH , jer je h ·H = hHh−1 = H za svako h ∈ H. Neka sada K ∈ XH . To znaqi da je
h·K = hKh−1 = K, za svako h ∈ H, odnosno hK = Kh, za svako h ∈ H, ili HK = KH xto
znamo da je ekvivalentno tome da je HK ≤ G. Usput smo iz hKh−1 = K, za svako h ∈ H,
dobili da je H sadr�ana u normalizatoru od K, H ⊆ NK . Sada iz H ⊆ NK i K ⊆ NK

sledi HK ⊆ NK , pa je posebno K▹HK. Primeǌujemo Drugu teoremu o izomorfizmima
grupa: HK/K ∼= H/H ∩K, odnosno [HK : K] = [H : H ∩K]. Me�utim, |HK| | |H||K|, xto
povlaqi da je HK p-podgrupa grupe G, ali |H| ≤ |HK| ≤ pr, pa je |HK| = pr. To daǉe
implicira da je [HK : K] = 1, odnosno [H : H ∩K] = 1, tj. H = H ∩K. Ovo znaqi da je
H ⊆ K, i jox su istih redova, pa je konaqno H = K.
Dakle, XH = {H}, pa je prema prethodnoj lemi |X| = |Sp| ≡p |XH | = 1, odnosno

sp ≡p 1.

Poxto smo ve� dokazali da sp||G|, sada iz sp|prm i sp ≡p 1 sledi sp|m. Dakle, za
broj Silovǉevih p-podgrupa grupe G reda prm va�i sp|m i sp ≡p 1. To nam omogu�ava
da suzimo broj mogu�ih vrednosti za sp i u nekim sluqajevima dobijemo samo sp = 1.
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Zaxto je ovo va�no? Po delu 2) Druge teoreme Silova, sve Silovǉeve p-podgrupe su
me�usobno konȷugovane, pa je sp broj ustvari broj konȷugata bilo koje od ǌih. Ako je
sp = 1, onda je ta (jedinstvena) Silovǉeva podgrupa i normalna u grupi G!

Tako�e, ako za neku grupu i sve proste brojeve koji dele ǌen red va�i da su odgo-
varaju�e Silovǉeve podgrupe jedinstvene, a time i normalne, dobijamo razlagaǌe te
grupe u direktan proizvod ǌenih Silovǉevih podgrupa.

Tvr�eǌe 0.9. Konaqna grupa je direktan proizvod svojih Silovǉevih podgrupa ako i samo
ako su te podgrupe i normalne.

Dokaz. Ako je grupa G direktan proizvod svojih Silovǉevih podgrupa, one su svakako
normalne.
Neka su sada sve Silovǉeve podgrupe grupe G i normalne i neka je red te grupe
|G| = n = pr11 pr22 · · · prkk . Brojevi prii su naravno uzajamno prosti, ali primetimo da su
i brojevi mi =

n
p
ri
i

uzajamno prosti, u smislu da je ǌihov najve�i zajedniqki delilac

1: (m1,m2, . . . ,mk) = 1. Za dva prirodna broja smo imali da onda postoji ǌihova
”linearna kombinacija” sa celobrojnim koeficijentima koja je jednaka 1. Indukcijom
se lako pokazuje da to va�i i za ovih k brojeva (NZD od m1 i NZD-a od m2, . . . ,mk je
tako�e 1, pa krenemo od te kombinacije i ona nam daje kombinaciju svih m1,m2, . . . ,mk

qija je vrednost 1). Dakle, postoje celi brojevi n1, n2, . . . , nk za koje je

m1n1 +m2n2 + · · ·mknk = 1.

Podsetimo se da smo ovu jedinicu u zadacima sa redovima elemenata qesto koristili
da neki element grupe G ”razbijemo” u proizvod dva ili vixe elemenata. Tako �emo
uraditi i sada. Neka je g ∈ G proizvoǉan. Iz g = g1 = gm1n1+m2n2+···mknk dobijamo da je
g = gm1n1gm2n2 · · · gmknk , odnosno g = g1g2 · · · gk gde je gi = gmini . Primetimo sada da kad

svaki gi stepenujemo sa prii dobijamo g
p
ri
i

i = gminip
ri
i = g

n

p
ri
i

nip
ri
i

= gnni = (gn)ni = eni = e.
To znaqi da red elementa gi deli prii , pa je on u nekoj Silovǉevoj pi-podgrupi grupe
G. Ali, po pretpostavci, te podgrupe su jedinstvene. Dakle, gi pripada Hi, gde je
Hi jedinstvena Silovǉeva podgrupa reda prii za sve i ∈ {1, 2, . . . , n}, i svaki element
g ∈ G je proizvod g = g1g2 · · · gk. Odavde je G = H1H2 · · ·Hk. Uslov Hi▹G ve� imamo, pa
ostaje da se proveri jox samo tre�i uslov za razlo�ivost grupe G u direktan proizvod
podgrupa H1,H2, . . .Hk, koji glasi (H1H2 · · ·Hl)∩Hl+1 = {e} za svako 1 ≤ l ≤ k−1. Uzmimo
proizvoǉno g = g1g2 . . . gl ∈ H1H2 · · ·Hl. Redovi podgrupa Hi su uzajamno prosti i sve
one su normalne, pa osim toga xto su preseci dve po dve trivijalni, one �e komutirati
qlan po qlan (va�i: H,K▹G i (|H|, |K|) = 1 povlaqi H ∩K = {e} i hk = kh za svako h ∈
H, k ∈ K: za presek je lako, a za komutiraǌe posmatramo hkh−1k−1 - on pripada i jednoj
i drugoj jer hkh−1 ∈ K, k−1 ∈ K, pa i proizvod pripada K, a tako�e h ∈ H, kh−1k−1 ∈ H,
pa i proizvod pripada H; dakle, hkh−1k−1 ∈ H ∩K = {e}, a hkh−1k−1 = e ⇔ hk = kh).

To znaqi da je gp
r1
1 p

r2
2 ···prl

l = (g1g2 . . . gl)
p
r1
1 p

r2
2 ···prl

l = (g
p
r1
1

1 )p
r2
2 ···prl

l · · · (gp
rl
l

l )p
r1
1 ···p

rl−1
l−1 = e, pa

red elementa g deli pr11 pr22 · · · prll . S druge strane, g ∈ Hl+1, pa ǌegov red mora da deli
p
rl+1

l+1 . Me�utim, brojevi pr11 pr22 · · · prll i p
rl+1

l+1 su uzajamno prosti, pa je taj red 1, odnosno
(H1H2 · · ·Hl) ∩Hl+1 = {e}.
Dakle, ispuǌena su sva tri uslova i va�i G ∼= H1 ×H2 × · · · ×Hk.
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0.3 Prsteni

0.3.1 Definicija i osnovne osobine prstena

Definicija 0.7. Prsten je algebarska struktura (R,+, ·), gde je R neprazan skup, a +
i · dve binarne operacije, koja zadovoǉava uslove

1) (R,+) je Abelova grupa:

• za sve a, b, c ∈ R va�i (a+ b) + c = a+ (b+ c)

• postoji element 0 ∈ R takav da za sve a ∈ R va�i a+ 0 = 0 + a = a

• za svako a ∈ R postoji −a ∈ R takav da je a+ (−a) = (−a) + a = 0

• za sve a, b ∈ R va�i a+ b = b+ a

2) (R, ·) je semigrupa:

• za sve a, b, c ∈ R va�i (a · b) · c = a · (b · c)

3) Operacija · je distributivna prema +

• za sve a, b, c ∈ R va�i a · (b+ c) = a · b+ a · c i (b+ c) · a = b · a+ c · a.

Napomena 0.5. U definiciji prstena umesto (R, ·) je semigrupa mo�e da stoji (R, ·) je
monoid, i u tom sluqaju ne razlikujemo prstene sa jedinicom i bez jedinice.

Definicija 0.8. Prsten (R,+, ·) u kome postoji element 1 takav da za sve a ∈ R va�i
a · 1 = 1 · a = a naziva se prsten sa jedinicom.

Primer 0.6. Struktura (5Z,+, ·) gde su + i · sabiraǌe i mno�eǌe celih brojeva, zado-
voǉava sve aksiome prstena, ali nema jedinicu. Ovo je primer prstena bez jedinice.

U nastavku �emo se baviti skoro iskǉuqivo prstenima sa jedinicom.

Iako nam je ve�ina pojmova u vezi prstena poznata od ranije, re�i �emo par reqi o
oznakama i terminologiji. Operacije prstena najqex�e oznaqavamo sa + i · i zovemo
sabiraǌe i mno�eǌe. Ne naglaxavamo ih ako se podrazumevaju, pa ka�emo samo prsten
R umesto prsten (R,+, ·). Grupu (R,+) zovemo aditivna grupa prstena R. ǋen neutral
�emo zvati nula prstena R. Inverz elementa a ∈ R �emo, kao i do sada kad je operacija
oznaqena aditivno, zvati suprotan element elementa a (da bismo ga razlikovali od
inverza u odnosu na mno�eǌe).
Semigrupu (R, ·) zovemo multiplikativna semigrupa prstena R. Ako je u pitaǌu prsten
sa jedinicom, odgovaraju�i monoid (R, ·, 1) je multiplikativni monoid prstena R, a
kao xto smo ve� definisali, ǌegov neutral je jedinica prstena R. Za prsten ka�emo
da je komutativan ako je ǌegovo mno�eǌe komutativno (jer sabiraǌe svakako jeste),
odnosno ako je ab = ba za sve a, b ∈ R. Daǉe, za element a ka�emo da je inverzibilan
u prstenu sa jedinicom R, ako je inverzibilan u ǌegovom multiplikativnom monoidu,
odnosno ako postoji a−1 ∈ R za koje je a · a−1 = a−1 · a = 1. U komutativnom prstenu
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inverz elementa a oznaqavamo i sa a−1 = 1
a jer je onda bez zabune a−1 · b = b · a−1 = b

a .
Skup inverzibilnih elemenata monoida (R, ·, 1) zva�emo skup inverzibilnih elemenata
prstena R i kao i ranije oznaqavati sa R∗ (znamo da je R∗ grupa u odnosu na mno�eǌe,
jer je (a · b)−1 = b−1 · a−1 i (a−1)−1 = a). Tako�e, za element a ka�emo da je regularan
u prstenu R ako je regularan u ǌegovoj multiplikativnoj semigrupi (R, ·), odnosno
ako dopuxta kra�eǌe (regularan sleva ako a · x = a · y ⇒ x = y, regularan zdesna ako
x · a = y · a ⇒ x = y; regularan ako je regularan i sleva i zdesna).

Zakǉuqak koji se name�e je da osobine prstenu daje mno�eǌe (jer za sabiraǌe ve�
va�i sve xto mo�e da va�i).

Posledice aksioma ili pravila raqunaǌa u prstenu

Neka je (R,+, ·) prsten. Sve xto od ranije znamo da va�i za komutativne grupe, va�i�e
u grupi (R,+), pa i u samom prstenu R. Isto to se odnosi na sve osobine semigrupe ili
monoida (R, ·). Tako�e, ove dve operacije su povezane distributivnim zakonom. Kao i
kod vektorskih prostora, on se mo�e lako uopxtiti na konaqno elemenata prstena:

• (a1 + a2 + · · · + am) · b = a1 · b + a2 · b + · · · + am · b (dokazuje se indukcijom po m -
oznaqimo sa a = a1, a sa c = a2 + · · · am), pa sledi iz (a+ c) · b = a · b+ c · b)

• a · (b1 + b2 + · · ·+ bn) = a · b1 + a · b2 + · · ·+ a · bn (indukcijom po n)

• (a1 + a2 + · · ·+ am) · (b1 + b2 + · · ·+ bn) =
∑

i,j ai · bj

Tvr�eǌe 0.10. U prstenu R va�i:
1) a · 0 = 0; 0 · a = 0
2) (−a) · b = −(a · b); a · (−b) = −(a · b)

Dokaz. 1) Nula prstena je ǌegov neutral za sabiraǌe i zato nije aksiomama povezana
sa mno�eǌem. Iskoristi�emo distributivnost da je pove�emo sa mno�eǌem, a krenu�emo
od taqne jednakosti 0+ 0 = 0. Pomno�imo ovu jednakost sleva elementom a: a · (0+ 0) =
a · 0, iskoristimo distributivnost: a · 0+a · 0 = a · 0. Sada je ovo jednakost u aditivnoj
grupi (R,+), a u ǌoj mo�emo lako da raqunamo: x + x = x, gde smo oznaqili x = a · 0,
nam posle dodavaǌa −x na obe strane daje ((−x) + x) + x = (−x) + x, odnosno 0 + x = 0,
tj. x = 0. Za 0 · a = 0 opet kre�emo od 0 + 0 = 0, samo xto mno�imo sa a s desne strane.
2) Ovde kre�emo od definixu�e relacije elementa (−a): to je element koji sabran
sa a daje nulu prstena, (−a) + a = 0. Pomno�imo ovo zdesna sa b: ((−a) + a) · b = 0 · b
i iskoristimo distributivnost: (−a) · b + a · b = 0 · b. Iz 1) je 0 · b = 0, pa imamo
(−a) · b+a · b = 0. Ovo je opet definixu�a relacija suprotnog elementa za element a · b:
”nexto” plus a ·b je nula znaqi da je to ”nexto” upravo −(a ·b), odnosno (−a) ·b = −(a ·b).
Za drugu relaciju mno�imo b+ (−b) = 0 sleva sa a.

U semigrupi smo uveli n-ti stepen elementa, gde je n ∈ N, pa tako i u prstenu
mo�emo da govorimo o an = a · a · · · · · a. Onda bi (ab)n bio proizvod (ab) · (ab) · · · · · (ab) n
puta. Ako je prsten komutativan, ovaj proizvod �e biti anbn:

ab = ba ⇒ (ab)n = anbn.
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Od ranije znamo da i stepen zbira dva realna ili cela broja mo�emo lepo da
zapixemo. Primetimo da smo za to (neprimetno) koristili komutativnost ǌihovog
mno�eǌa. I u svakom komutativnom prstenu �e va�iti binomna formula, koja se
dokazuje indukcijom:

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.

Tako�e, va�i i slede�a formula koju smo imali za realne brojeve:

an − bn = (a− b)(an−1 + an−2b+ an−3b2 + · · ·+ a2bn−3 + abn−2 + bn−1),

a za neparno n i

an + bn = (a+ b)(an−1 − an−2b+ an−3b2 − · · ·+ a2bn−3 − abn−2 + bn−1),

Primetimo da prethodne formule va�e i u nekomutativnom prstenu ako elementi a i
b komutiraju, to jest ako je ab = ba.

Primeri prstena

1) Skup celih brojeva u odnosu na sabiraǌe i mno�eǌe, (Z,+, ·), je komutativan prsten
sa jedinicom. Inverzibilni elementi ovog prstena su

Z∗ = {1,−1}

2) Skup ostataka pri euklidskom deǉeǌu sa n, Zn = {0, 1, 2, . . . , n−1} je prsten u odnosu
na sabiraǌe i mno�eǌe po modulu n:

r +n s = rest(r + s, n), r ·n s = rest(r · s, n).

(Zn,+n, ·n) je tako�e komutativan prsten sa jedinicom. ǋegovi inverzibilni elementi
su oni r maǌi od n koji su uzajamno prosti sa n: Z∗

n = {r ∈ Zn : (r, n) = 1}.

3) Skup svih realnih kvadratnih matrica reda n je prsten u odnosu na sabiraǌe i
mno�eǌe matrica, (Mn(R),+, ·). Ovo je prsten sa jedinicom (to je En - jediniqna ma-
trica reda n), koji nije komutativan. ǋegovi inverzibilni elementi su sve matrice
ranga n, odnosno determinante razliqite od nule: Mn(R)∗ = {A ∈ Mn(R) : detA 6= 0}.
Tako�e, umesto R ovde mo�e da stoji bilo koji prsten R. Jedinica nekomutativnog
prstena Mn(R) u tom sluqaju je dijagonalna matrica koja na dijagonali ima jedinice
prstena R, a ǌegovi inverzibilni elementi su sve matrice qija je determinanta in-
verzibilna u prstenu R: Mn(R)∗ = {A ∈ Mn(R) : detA ∈ R∗}.

4) Skup polinoma sa realnim koeficijentima je prsten u odnosu na sabiraǌe i mno�eǌe
polinoma, (R[X],+, ·). To je komutativan prsten sa jedinicom, qiji su inverzibilni el-
ementi samo skalari (konstantni polinomi) razliqiti od nule: R[X]∗ = {a ∈ R : a 6= 0}.
I ovde mo�emo umesto poǉa R staviti bilo koji prsten R, dobi�emo opet komutati-
van prsten sa jedinicom, qiji su inverzibilni elementi samo inverzibilni skalari
R[X]∗ = R∗.
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Napomena: I u ovom i u prethodnom primeru, prsteni koji dobijemo se razlikuju ako
je R samo prsten od onih gde je R i poǉe. Razlika �e biti vidǉivija u nastavku.
U zadacima i primerima �e, kao i do sada, matrice i polinomi biti uglavnom nad
poǉem realnih brojeva.

5) Za prstene (R1,+1, ·1) i (R2,+2, ·2), na skupu R1 × R2 imamo strukturu prstena u
odnosu na operacije + i · date sa

(x1, x2) + (y1, y2) = (x1 +1 y1, x2 +2 y2)

i
(x1, x2) · (y1, y2) = (x1 ·1 y1, x2 ·2 y2),

za sve x1, y1 ∈ R1 i sve x2, y2 ∈ R2, qija je nula (0R1
, 0R2

) i jedinica (1R1
, 1R2

)(proverite
ako �elite).

0.3.2 Potprsteni i homomorfizmi

Definicija 0.9. Neka je (R,+, ·) prsten sa jedinicom 1R. Za prsten (K,+, ·) ka�emo da
je potprsten prstena R ako je (K,+) podgrupa aditivne grupe (R,+), a (K, ·) podmonoid
multiplikativnog monoida (R, ·). To znaqi da je K neprazan podskup skupa R za koji
va�i:
1) a, b ∈ K ⇒ a− b ∈ K,
2) a, b ∈ K ⇒ a · b ∈ K,
3) 1R ∈ K.

Napomena 0.7. Ako je (R,+, ·) prsten bez jedinice, u prethodnoj definiciji izostavl-
jamo uslov 3). Nadaǉe, svi prsteni koje �emo posmatrati �e biti prsteni sa jedini-
com.

Primer 0.8. (Zn,+n, ·n) nije potprsten prstena (Z,+, ·), jer nije zatvoren za ǌegove
operacije.

Primer 0.9. Skup svih matrica iz Mn(R) qije su sve komponente jednake je komutati-
van prsten u kom su svi ne-nula elementi inverzibilni. Me�utim, on nije potprsten
prstena Mn(R), jer ne sadr�i jediniqnu matricu (ǌegova jedinica je matrica qije su
sve komponente 1)!

Definicija 0.10. Neka su (R1,+1, ·1) i (R2,+2, ·2) dva prstena sa jedinicom. Preslika-
vaǌe f : R1 → R2 je homomorfizam prstena R1 u prsten R2 ako je istovremeno homomor-
fizam grupe (R1,+1) u grupu (R2,+2) i monoida (R1, ·1) u monoid (R2, ·2), odnosno ako
zadovoǉava uslove:
1) f(a+1 b) = f(a) +2 f(b),
2) f(a ·1 b) = f(a) ·2 f(b),
3) f(1R1

) = 1R2
.
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Homomorfizam koji je inȷektivan zove se monomorfizam, a onaj koji je surjektivan,
epimorfizam. Bijektivan homomorfizam prstena je izomorfizam prstena. Za prstene
R1 i R2 ka�emo da su izomorfni ako postoji bar jedan izomorfizam f : R1 → R2 i tada
pixemo R1

∼= R2.

Primer 0.10. Preslikavaǌe f : Z → Zn definisano sa f(m) = rest(m,n) = ρ(m,n) -
ostatak koji m daje pri euklidskom deǉeǌu sa n, je jedan homomorfizam prstena (ovo
preslikavaǌe je saglasno sa sabiraǌem i mno�eǌem, tj. ostatak zbira jednak je zbiru
ostataka i ostatak proizvoda jednak je proizvodu ostataka - proverite ako niste ranije
kod kongruencija po modulu n).

Primer 0.11. Neka je f : R1 → R2 homomorfizam prstena. ǋegova slika, koja se defin-
ixe kao Imf = {f(a) : a ∈ R1} je jedan potprsten prstena R2. Ovo se lako proverava:
f(a) +2 f(b) = f(a+1 b) ∈ Imf , f(a) ·2 f(b) = f(a ·1 b) ∈ Imf , i jox 1R2

= f(1R1
) ∈ Imf .

0.3.3 Ideali prstena

Neka su dati prsteni R i K. Nadaǉe �emo operacije ova dva prstena oznaqavati isto,
+ i ·, a iz konteksta �e biti jasno u kom prstenu se radǌa dexava. Tako�e, proizvod
elemenata a i b �emo skoro uvek oznaqavati sa ab umesto a · b. Videli smo da je slika
svakog homomorfizma f : R → K jedan potprsten prstena K. ǋegovo jezgro, koje se
definixe kao

Kerf = {x ∈ R : f(x) = 0K}
je zatvoreno za sabiraǌe i mno�eǌe, ali ako bi mu pripadala jedinica prstena R,
onda bi bilo f(a) = f(a · 1R) = f(a) · f(1R) = f(a) · 0K = 0K i za sve elemente a ∈ R, pa
1R ∈ Kerf samo u sluqaju nula-homomorfizma. Dakle, jezgro nije potprsten, ali ima
slede�u osobinu: dovoǉno je da neki element pripada jezgru da bi ǌegov proizvod sa
bilo kojim elementom prstena bio opet u jezgru, jer

a ∈ Kerf ⇒ f(ax) = f(a) · f(x) = f(a) · 0K = 0K

za sve x ∈ R. Isto va�i i za xa. To nas motivixe da definixemo slede�u podstrukturu
prstena:

Definicija 0.11. Neka je R prsten i I neprazan podskup od R. I je ideal prstena R
ako va�i:
1) (I,+) je podgrupa aditivne grupe prstena (R,+),
2) za sve x ∈ R i a ∈ I je ax, xa ∈ I.

Da je I ideal prstena R oznaqavamo sa I ▹R.

Napomena 0.12. Prvi uslov iz definicije se mo�e zameniti uslovom a, b ∈ I ⇒ a+b ∈
I.

Zaxto? Iz drugog uslova �emo dobiti: 0 ∈ R i a ∈ I povlaqi a · 0 = 0 ∈ I, kao i
(−a) = (−1) · a ∈ I za sve a ∈ I, pa je (I,+) zaista podgrupa od (R,+).
Tako�e, ako je prsten R komutativan, xto �e uglavnom biti sluqaj, drugi uslov postaje
samo x ∈ R i a ∈ I povlaqi ax ∈ I.
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Primer 0.13. Neka je R komutativan prsten i a ∈ R proizvoǉan element. Lako se
proveri da je skup

〈a〉 = aR = {ax : x ∈ R}

jedan ideal prstena R (ax + ay = a(x + y) ∈ 〈a〉, kao i (ax)y = y(ax) = a(xy) ∈ 〈a〉) i
ka�emo da je to glavni ideal generisan elementom a.

Primer 0.14. U prstenu Z svi ideali su glavni.

- I▹Z povlaqi (I,+) ≤ (Z,+), a znamo da su podgrupe cikliqne grupe tako�e cikliqne,
pa je I oblika nZ za neki ceo broj n. Sada se lako proveri da nZ zadovoǉava i drugi
uslov iz definicije ideala ((nx)y = y(nx) = n(xy) ∈ nZ). Dakle, osim {0} i celog
prstena, ideali prstena celih brojeva su 2Z, 3Z itd.

Primer 0.15. Ako ideal sadr�i jedinicu ili bilo koji inverzibilni element prstena,
on je jednak celom prstenu.

- 1 ∈ I, x ∈ R ⇒ 1 ·x ∈ I, pa bi bilo R ⊂ I, tj. I = R. Sliqno, ako je neki inverzibilni
element u I, onda �e proizvod ǌega i ǌegovog inverza biti opet u I, a taj proizvod je
1.

Posledica: Neka je F poǉe i I ▹ F. Tada je I = {0} ili I = F. (U poǉu nema pravih
ideala.)

Primer 0.16. Jezgro homomorfizma prstena je ideal.

-Videli smo ve� da je za homomorfizam f : R → K, skup

Kerf = {x ∈ R : f(x) = 0K}

zatvoren za sabiraǌe i da je dovoǉno da jedan qinilac pripada ǌemu da bi proizvod
opet bio tu. Kao i kod vektorskih prostora i grupa, i ovde va�i:

f je ”1− 1” ⇔ Kerf = {0R}.

Primer 0.17. Ako je F poǉe, svaki ideal prstena F[X] je glavni.

-Neka je I ▹F[X]. Ako je I = {0}, on je glavni, generisan nula-polinomom. Neka je sada
I 6= {0} i neka je a(x) ne-nula polinom iz I qiji je stepen minimalan. Uzmimo bilo
koji polinom p(x) iz I i euklidski ga podelimo polinomom a(x): p = aq+ r, pri qemu je
stepen polinoma r strogo maǌi od stepena polinoma a. Iz a ∈ I sledi da je i aq ∈ I,
pa daǉe iz p ∈ I dobijamo r = p− aq ∈ I. Zbog stepena sada mora biti r ≡ 0, xto znaqi
da je p = aq, odnosno da p ∈ 〈a〉. Dakle, I = 〈a〉.

Operacije sa idealima

Neka su I i J ideali prstena R. Tada je ǌihov presek tako�e jedan ideal:

a, b ∈ I ∩ J ⇒ a, b ∈ I ∧ a, b ∈ J ⇒ a+ b ∈ I ∧ a+ b ∈ J ⇒ a+ b ∈ I ∩ J,

a ∈ I ∩ J, x ∈ R ⇒ a ∈ I ∧ a ∈ J ∧ x ∈ R ⇒ ax, xa ∈ I ∧ ax, xa ∈ J ⇒ ax, xa ∈ I ∩ J.
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Ovo je oqekivano, ali isto tako znamo da unija ne�e biti ideal (nije ni podgrupa,
znamo od ranije). Zato pravimo najmaǌi ideal koji sadr�i dva data, i zovemo ga zbir
ideala I i J :

I + J = {a+ b : a ∈ I, b ∈ J}
Lako se proveri da smo dobili ideal:

a+ b+ a1 + b1 = (a+ a1) + (b+ b1) ∈ I + J

(a+ b)x = ax+ bx ∈ I + J

za a ∈ I, b ∈ J, x ∈ R.

Poxto u prstenu, osim sabiraǌa, postoji i mno�eǌe, prirodno je da se pitamo
xta bismo podrazumevali pod proizvodom dva ideala. Ako bismo, po analogiji sa
sabiraǌem, IJ definisali kao IJ = {ab : a ∈ I, b ∈ J}, naixli bismo na problem kod
provere da je ovaj skup zatvoren za sabiraǌe: ab+a1b1 ne mora da bude oblika nexto iz
I puta nexto iz J . To prevazilazimo tako xto za elemente proizvoda ideala uzimamo
sume konaqno proizvoda:

IJ = {a1b1 + · · ·+ anbn : ak ∈ I, bk ∈ J}

Sada se lako vidi da je zbir dva elementa iz IJ opet element iz IJ , a drugi uslov je
svakako ispuǌen: x(a1b1 + · · · + anbn) = (xa1)b1 + · · · + (xan)bn, a xak pripada I. Isto i
za mno�eǌe zdesna, samo �e tada bkx pripadati J .

Va�i: IJ ⊂ I ∩ J.

Zaxto? Neka je a1b1 + · · · + anbn proizvoǉan element iz IJ . Poxto su svi a-ovi u I,
ǌihovi proizvodi sa b-ovima �e biti opet u I, a kako je I zatvoren za sabiraǌe, i
cela suma a1b1 + · · ·+ anbn �e pripadati I. Iste argumente koristimo da poka�emo da
je ova suma u J : bk pripada J za svako k, pa akbk pripada J za svako k, a onda i ǌihov
zbir. Dakle, element a1b1 + · · ·+ anbn je i u I, i u J , pa i u I ∩ J . Obrnuto ne va�i u
opxtem sluqaju, a nexto kasnije �emo videti u kom odnosu treba da budu dva ideala
da bi ǌihov presek bio sadr�an u proizvodu.

Primer 0.18. Poxto su u prstenu Z svi ideali glavni, zbir, presek i proizvod dva
ideala �e opet biti glavni ideal. Tako je, na primer,

24Z+ 40Z = 8Z,

24Z ∩ 40Z = 120Z,

24Z · 40Z = 960Z.

Proverite da va�i:
mZ+ nZ = dZ,

mZ ∩ nZ = sZ,

mZ · nZ = mnZ,

gde je d = NZD(m,n), a s = NZS(m,n).
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0.3.4 Karakteristika prstena

Neka je R prsten i P bilo koji ǌegov potprsten. Po definiciji, P sadr�i 1R, pa
poxto je zatvoren za operacije prstena, sadr�a�e i 1R + 1R, zatim 1R + 1R + 1R itd,
kao i (−1R), (−1R) + (−1R) . . . Tako�e, 0R ∈ P , pa P sigurno sadr�i skup

{m1R : m ∈ Z}

Ovaj skup je sam za sebe jedan prsten koji se zove karakteristiqni potprsten prstena
R i oznaqava sa R0. To je, dakle, minimalni potprsten prstena R. U odnosu na ǌegovu
kardinalnost razlikujemo dve vrste prstena. Prva mogu�nost je da je R0

∼= Z, pri
qemu je izomorfizam dat sa m ↔ m1R. Iz inȷektivnosti ovog preslikavaǌa sledi da
je onda

k1R = 0 ⇔ k = 0

Tada ka�emo da je prsten R karakteristike nula i pixemo charR = 0. Dakle, charR = 0
znaqi da je R0

∼= Z i da sabiraǌem 1R same sa sobom ne mo�emo dobiti 0R.
U suprotnom, odnosno ako je zbir nekoliko 1R jednak 0R, karakteristika prstena je
najmaǌi prirodan broj k za koji je k1R = 0R. Primetimo da je onda i za svaki element
x ∈ R:

kx = k(1Rx) = 1Rx+ · · ·+ 1Rx = (1R + · · ·+ 1R)x = (k1R)x = 0Rx = 0R

Tako�e, jasno je da je
charR = k ⇔ R0

∼= Zk,

jer m1R = (kq + r)1R = kq1R + r1R = r1R, gde je 0 ≤ r < k.

Primer 0.19. charZ = 0, charZk = k

Primer 0.20. Ako je R prsten, onda prsteni R[X] i Mn[R] imaju istu karakteristiku
kao i sam prsten R.
(Odmah se vidi, jer 1R[X] = 1R, a jediniqna matrica En ima na dijagonali 1R.)

0.3.5 Deliteǉi nule i domeni

Definicija 0.12. Element a prstena R je levi deliteǉ nule u tom prstenu ako postoji
element b ∈ R \ {0} za koji je ab = 0. (a je desni deliteǉ nule ako postoji b ∈ R \ {0} za
koji je ba = 0.)

Nula prstena je uvek deliteǉ nule. Ako je a 6= 0 deliteǉ nule, ka�emo da je a pravi
deliteǉ nule (bilo levi bilo desni).
Za prsten koji nema prave deliteǉe nule ka�emo da je domen, a ako je uz to i komu-
tativan, ka�emo da je oblast celih(ili komutativni domen, ili integralni domen).
Dakle, R je domen ako za bilo koja dva elementa va�i:

ab = 0 ⇒ a = 0 ∨ b = 0.
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Primer 0.21. Prsten celih brojeva je domen, dok Zn, gde n nije prost broj, nije. Na
primer, u Z20 je 4 · 5 = 0. Tako�e, znamo da u prstenu matrica (npr. u M2[R]) postoje
pravi deliteǉi nule, odnosno da postoje ne-nula matrice takve da je ǌihov proizvod
nula-matrica.

Deliteǉi nule su blisko povezani sa regularnox�u u prstenu:

ax = ay ⇔ a(x− y) = 0,

pa ako a nije regularan sleva, postoja�e razliqiti x i y za koje je ax = ay, a samim
tim i element b = x− y razliqit od nule za koji je ab = 0, i obrnuto. Dakle, a je levi
deliteǉ nule akko nije regularan sleva (odnosno, a je desni deǉiteǉ nule akko nije
regularan zdesna.)

Videli smo da u prstenima Zn, gde n nije prost broj, postoje pravi deliteǉi nule,
dok u Zp, gde je p prost broj, ne postoje:

r ·p s = 0 za neke r, s ∈ Zp ⇒ p|rs u Z ⇒ p|r ∨ p|s ⇒ r = 0 ∨ s = 0

Va�i i slede�e:

Tvr�eǌe 0.11. Ako je R domen, onda je ǌegova karakteristika ili nula ili neki prost
broj.

Dokaz. Ako je charR = 0, onda je u redu. Neka je sada charR = k > 0. Poka�imo da
je k prost. Pretpostavimo da je k = rs. Poxto je zbir k jedinica prstena R jednak 0R,
bi�e

0R = k1R = rs1R = (r1R)(s1R),

pa poxto R nema prave deliteǉe nule, bi�e r1R = 0R ili s1R = 0R. Po defini-
ciji karakteristike prstena, k je najmaǌi prirodan broj za koji je k1R = 0R, pa iz
prethodnog sledi da je k ≤ r ili k ≤ s. Sada iz k = rs imamo k = r ili k = s. Dakle, k
nema pravi rastav, to jest, prost je.

0.3.6 Koliqniqki prsten

Kao xto je to sluqaj sa normalnim podgrupama kod grupa, kod prstena su ideali u
tesnoj vezi sa kongruencijama i homomorfizmima. Jezgro bilo kog homomorfizma je
ideal, kao i klasa nule bilo koje kongruencije. S druge strane, sam ideal indukuje i
homomorfizam i kongruenciju.

Teorema 0.12. Neka je R prsten i I ǌegov ideal. Tada je relacija ∼ definisana sa:

a ∼ b ⇔ a− b ∈ I

jedna kongruencija prstena R.

Dokaz. Da je ∼ ekvivalencija sledi�e iz toga xto je (I,+) grupa:

refleksivnost a ∼ a ⇔ a− a = 0 ∈ I
simetriqnost a ∼ b ⇔ a− b ∈ I ⇔ b− a = −(a− b) ∈ I ⇔ b ∼ a
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tranzitivnost a ∼ b ∧ b ∼ c ⇔ a− b ∈ I ∧ b− c ∈ I ⇒ (a− b) + (b− c) ∈ I ⇒
a− c ∈ I ⇒ a ∼ c

Proverimo sada da je ∼ saglasna sa sabiraǌem:

a ∼ a′ ∧ b ∼ b′ ⇔ a−a′ ∈ I ∧ b−b′ ∈ I ⇒ (a−a′)+(b−b′) ∈ I ⇒ (a+b)−(a′+b′) ∈ I ⇒ a+b ∼ a′+b′

i sa mno�eǌem:

a ∼ a′ ∧ b ∼ b′ ⇔ a− a′ ∈ I ∧ b− b′ ∈ I ⇒ ab− a′b′ = (a− a′)b+ a′(b− b′) ∈ I ⇒ ab ∼ a′b′,

gde smo iskoristili drugo svojstvo ideala, to jest da a − a′ ∈ I i b ∈ R povlaqi
(a− a′)b ∈ I i isto za a′(b− b′) ∈ I.

Xta su klase ove ekvivalencije, odnosno kongruencije?

Ca = a/ ∼= {x ∈ R : x ∼ a} = {x ∈ R : x− a ∈ I} = {x ∈ R : x ∈ a+ I} = a+ I

Od ranije znamo da kada imamo kongruenciju, koliqniqki skup (skup klasa) je alge-
barska struktura istog tipa kao i polazna. U ovom sluqaju to znaqi da smo dobili
prsten R/ ∼, koji �emo nadaǉe oznaqavati R/I i zvati koliqniqki prsten datog prstena
R po ǌegovom idealu I:

R/I = {a+ I : a ∈ R}.

ǋegova nula je I = 0+I (klasa nule prstena R), jedinica 1+I (klasa jedinice prstena
R), a operacije u ǌemu su:

(a+ I) + (b+ I) = a+ b+ I

(a+ I) · (b+ I) = ab+ I

(zbir klasa je klasa zbira predstavnika, proizvod klasa je klasa proizvoda).
Tako�e, kao i uvek kod kongruencija, imamo prirodni epimorfizam (prstena R i

R/I) dat sa π(a) = a+ I.

Napomena 0.22. Mogli smo prvo aditivnu grupu prstena (R,+) da poseqemo po ǌenoj
podgrupi (I,+) (koja je normalna jer je grupa komutativna) i da dobijemo koliqniqku
grupu (skup koseta): (R,+)/(I,+) = {a + I : a ∈ R}, a onda na ǌoj da dodefinixemo
mno�eǌe sa (a+ I) · (b+ I) = ab+ I i proverimo da va�e preostale aksiome prstena.

Primer 0.23. Neka je dat prsten R = Z i ǌegov ideal I = nZ. Tada je koliqniqki
prsten

R/I = Z/nZ = {m+ nZ : m ∈ Z} = {nq + r + nZ : 0 ≤ r < n} = {r + nZ : 0 ≤ r < n}

odnosno,
Z/nZ = {nZ, 1 + nZ, . . . , (n− 1) + nZ}.

Operacije u ǌemu su
(r + nZ) + (s+ nZ) = (r +n s) + nZ i

(r + nZ) · (s+ nZ) = (r ·n s) + nZ,

a nula i jedinica, redom, nZ i 1 + nZ.
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Oqigledno je Z/nZ ∼= Zn.
Primetimo da je

Z/nZ = Z/ =n,

gde je =n kongruencija po modulu prirodnog broja n, jer

a− b ∈ I ⇔ a− b ∈ nZ ⇔ n | a− b ⇔ a =n b.

Teoreme o izomorfizmima

Ponovimo da je kod prstena uloga ideala ista kao uloga normalnih podgrupa kod grupa.
Tako�e, potprsteni odgovaraju podgrupama, pa su teoreme o izomorfizmima u klasi
prstena formulisane na bukvalno isti naqin kao i teoreme o izomorfizmima u klasi
grupa, samo se svuda req ”podgrupa” zameǌuje sa ”potprsten”, a ”normalna podgrupa”
sa ”ideal”. Tako prva teorema glasi:

Teorema 0.13. (Prva teorema o izomorfizmima za prstene) Neka je f : R → K homo-
morfizam prstena. Ako je π : R → R/Kerf prirodni epimorfizam i σ : Imf → K inkluz-
ija, tada postoji taqno jedno preslikavaǌe Φ : R/Kerf → Imf za koje je f = σ ◦Φ◦π. Pri
tom je Φ i izomorfizam, i va�i

R/Kerf ∼= Imf

.

Primer 0.24. Neka je f : Z → Zn homomorfizam prstena dat sa f(m) = ρ(m,n), gde je
ρ(m,n) ostatak koji m daje pri euklidskom deǉeǌu sa n. Ovo je epimorfizam, pa je
Imf = Zn. Xta mu je jezgro?

Kerf = {m ∈ Z : ρ(m,n) = 0} = nZ

Dakle, na osnovu prethodne teoreme je

Z/nZ ∼= Zn.

Videli smo ve� da je zbir dva ideala ideal. Analogno se definixe i zbir ideala I
i potprstena P , i lako se proveri da je taj skup I + P jedan potprsten.

Teorema 0.14. (Druga teorema o izomorfizmima za prstene) Ako je P potprsten, a
I ideal prstena R, tada je ǌihov presek ideal od P i va�i:

(I + P )/I ∼= P/(I ∩ P ).

Na kraju, ako je I ideal, a P potprsten prstena R, P/I �e biti potprsten prstena R/I.

Teorema 0.15. (Tre�a teorema o izomorfizmima za prstene) Za svaki ideal I prstena
R postoji bijekcija P ↔ P/I skupa svih potprstena prstena R koji sadr�e I i skupa
svih potprstena prstena R/I. Tako�e, postoji bijekcija J ↔ J/I izme�u skupa svih ide-
ala prstena R koji sadr�e I i skupa svih ideala prstena R/I, i za svaki od tih ideala
J ⊃ I va�i

(R/I)/(J/I) ∼= R/J.



24

Dokazi ovih teorema su skoro isti kao odgovaraju�i za grupe, naravno uz poistove�ivaǌe
”podgrupa” ↔ ”potprsten” i ”normalna podgrupa” ↔ ”ideal”. (Ne treba da ih znate,
a ne morate ni formulacije teorema osim prve.)

0.3.7 Kineska teorema o ostacima za prstene

Znamo da se najve�i zajedniqki delilac dva prirodna broja mo�e izraziti kao ǌihova
”linearna kombinacija” sa celobrojnim koeficijentima, to jest da za sve m,n ∈ Z
postoje a, b ∈ Z za koje je ma + nb = d = NZD(m,n) (pokazali smo ovo koriste�i
Euklidov algoritam, u prvom semestru). Posebno, ako su m i n uzajamno prosti,
to jest ako je NZD(m,n) = 1, postoja�e a i b takvi da je 1 = ma + nb. Primetimo da
je onda i za svako k ∈ Z: k = mak + nbk, odnosno da se svaki element prstena Z mo�e
napisati kao zbir jednog elementa iz ideala mZ i jednog iz nZ, pa je mZ + nZ = Z.
Tada ka�emo i da su ideali mZ i nZ uzajamno prosti ili koprosti. To motivixe
slede�u definiciju:

Definicija 0.13. Za ideale I i J prstena R ka�emo da su koprosti ako je ǌihov zbir
ceo prsten, odnosno ako je I + J = R.

Teorema 0.16. (Kineska teorema o ostacima) Ako su ideali I i J komutativnog
prstena R koprosti, ǌihov proizvod je jednak ǌihovom preseku, IJ = I ∩ J , i va�i

R/IJ ∼= R/I ×R/J.

Tako�e, R/I1 . . . In ∼= R/I1 × · · · ×R/In, kad god su svaka dva od navedenih ideala koprosta.

Dokaz. Qiǌenicu da je I+J = R pretvaramo u operativni izraz: x+y = 1 za neke x ∈ I
i y ∈ J (svaki element iz R, pa i jedinica, se mo�e predstaviti kao zbir jednog iz I
i jednog iz J). Odavde sledi da je i svako a ∈ R oblika a = ax+ ay za te x i y. Znamo
da je IJ ⊂ I ∩ J . Neka je sada a ∈ I ∩ J . Element a je oblika a = ax+ ay za ove x ∈ I i
y ∈ J , pa je ax+ ay ∈ IJ (jer x ∈ I, a ∈ J , kao i a ∈ I, y ∈ J , i R komutativan). Dakle,
I ∩ J ⊂ IJ , a time i I ∩ J = IJ . Definiximo sada preslikavaǌe f : R → R/I ×R/J sa

f(a) = (a+ I, a+ J)

Tvrdimo da je ovo jedan homomorfizam prstena. Pre svega, R/I × R/J je prsten kao
Dekartov proizvod dva prstena (koliqniqka) (imali smo kod primera prstena). Treba
pokazati da je f saglasno sa sabiraǌima i mno�eǌima:

f(a+b) = (a+b+I, a+b+J) = ((a+I)+(b+I), (a+J)+(b+J)) = (a+I, a+J)+(b+I, b+J) = f(a)+f(b),

f(ab) = (ab+I, ab+J) = ((a+I)(b+I), (a+J)(b+J)) = (a+I, a+J) · (b+I, b+J) = f(a) ·f(b).

Ovde smo koristili definicije operacija u koliqniqkom prstenu i u Dekartovom
proizvodu. Va�i i f(1) = (1 + I, 1 + J) = 1R/I×R/J , pa je f zaista homomorfizam.
Xta mu je jezgro?

Kerf = {a ∈ R : f(a) = 0R/I×R/J} = {a ∈ R : f(a) = (I, J)} = {a ∈ R : (a+ I, a+ J) = (I, J)}

= {a ∈ R : a+ I = I ∧ a+ J = J} = {a ∈ R : a ∈ I ∧ a ∈ J} = I ∩ J.
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Za razliku od dosadaxǌih primera, ovde je te�e odrediti sliku nego jezgro (obiqno
se odmah vidi da li je preslikavaǌe ”na” ili xta mu je slika). Tvrdimo da je Imf =
R/I × R/J , to jest da je f epimorfizam. Neka je (b + I, c + J) proizvoǉan element iz
R/I×R/J . Treba pokazati da postoji a ∈ R tako da je f(a) = (a+ I, a+J) = (b+ I, c+J).
Vratimo se na elemente x ∈ I i y ∈ J za koje je x + y = 1. Posmatrajmo element
a = by + cx. On je daǉe jednak a = b(1 − x) + cx = b + (c − b)x, odnosno, a − b = (c − b)x,
pa poxto x ∈ I, bi�e a − b ∈ I. Ovo je ekvivalentno sa a + I = b + I. Analogno je
a = by + c(1 − y) = c + (b − c)y, odnosno, a − c = (b − c)y, xto uz y ∈ J daje a − c ∈ J .
To je opet ekvivalentno sa a + J = b + J . Dakle, za date b i c naxli smo a tako
da je f(a) = (b + I, c + J), pa je Imf = R/I × R/J . Primenimo sada prvu teoremu o
izomorfizmima za prstene, R/Kerf ∼= Imf , i to nam daje �eǉeni izomorfizam:

R/I ∩ J ∼= R/I ×R/J,

odnosno,
R/IJ ∼= R/I ×R/J.

Ostaje nam sluqaj kad imamo n ideala I1, . . . , In, uzajamno prostih u parovima. Tvrdimo
da su onda koprosti i ideali I = I1 i J = I2 · · · In. Zaxto? I1 je uzajamno prost sa
svakim Ik za 2 ≤ k ≤ n. To znaqi da za svako 2 ≤ k ≤ n postoje ak ∈ I = I1 i bk ∈ Ik za
koje je ak + bk = 1. Pomno�imo sve te jednakosti:

(a2 + b2)(a3 + b3) . . . (an + bn) = 1 ⇒ A+ b2b3 . . . bn = 1,

gde smo sa A oznaqili zbir svih proizvoda koji imaju bar jedan qinilac ak, to jest
koji pripadaju I. Onda je i A kao ǌihov zbir ponovo u I. S druge strane, B = b2b3 . . . bn
pripada I2I3 · · · In = J , pa iz A+B = 1 sledi I + J = R. Prema upravo dokazanom prvom
delu teoreme, va�i R/IJ ∼= R/I ×R/J , odnosno

R/I1I2 · · · In ∼= R/I1 ×R/I2 · · · In.

Sada primenimo induktivnu hipotezu i na isti naqin rastavimo drugi faktor u ovom
proizvodu.

Primer 0.25. Neka je R = Z, I = mZ i J = nZ. Otkomentarisali smo ve� da je
mZ+ nZ = Z akko je NZD(m,n) = 1, a imali smo i primer da je proizvod ovih ideala
mZ · nZ = mnZ, pa prethodna teorema u ovom sluqaju glasi:

Z/mnZ ∼= Z/mZ× Z/nZ,

ili
Zmn

∼= Zm × Zn.

Ovo je bax Kineska teorema o ostacima u prstenu Z koju smo ve� imali, jer ka�e da
ako su m i n uzajamno prosti, jednom paru elemenata r ∈ Zm i s ∈ Zn odgovara taqno
jedan element iz Zmn, ili, ekvivalentno, da sistem kongruencija

x = r (mod m)

x = s (mod n)

ima bar jedno zajedniqko rexeǌe, koje je i jedinstveno po modulu mn.
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0.3.8 Prosti i maksimalni ideali

Naglasili smo ve� analogiju izme�u normalnih podgrupa kod grupa i ideala kod
prstena. Kao xto seqeǌem grupe G po ǌenoj normalnoj podgrupi H dobijamo novu
grupu G/H, koja mo�e imati neke osobine koje poqetna grupa nema (xto posti�emo
izborom odgovaraju�e podgrupe H, na primer, kod uvo�eǌa izvoda smo tra�ili da
koliqnik bude komutativan), tako seqeǌem prstena R po ǌegovom idealu I dobijamo
novi prsten, koji mo�e biti ”finiji” od polaznog ako nametnemo dodatne uslove koje
treba da ispuǌava I. Za poqetak �emo tra�iti da koliqniqki prsten nema delioce
nule.

Definicija 0.14. Za ideal P prstena R ka�emo da je prost ako je P 6= R i ako va�i:

ab ∈ P ⇒ a ∈ P ∨ b ∈ P.

Teorema 0.17. Ideal P 6= R prstena R je prost akko koliqniqki prsten R/P nema prave
deliteǉe nule.

Dokaz. Neka je P 6= R prost. Posmatrajmo dva elementa u koliqniku qiji je proizvod
nula (odnosno sam P ).

(a+ P )(b+ P ) = P, to jest

ab+ P = P,

odakle sledi ab ∈ P . Kako je P prost, sledi da a ∈ P ili b ∈ P . Ovo opet znaqi da je
a + P = P ili b + P = P . Dakle, ako je u R/P proizvod dva elementa nula, bar jedan
od ǌih je nula, pa R/P nema prave deliteǉe nule. Obrnuto, neka R/P nema prave
deliteǉe nule. To znaqi da za sve a, b ∈ R va�i:

(a+ P )(b+ P ) = P ⇒ a+ P = P ∨ b+ P = P.

Ovo je ekvivalentno tome da

ab+ P = P ⇒ a+ P = P ∨ b+ P = P,

odnosno
ab ∈ P ⇒ a ∈ P ∨ b ∈ P,

pa je P prost.

Primer 0.26. Neka je R = Z i P = pZ. Za koje p ∈ Z je P prost ideal? (Primetimo da
a ∈ nZ znaqi da n | a.) Uslov

ab ∈ pZ ⇒ a ∈ pZ ∨ b ∈ pZ

je ekvivalentan sa
p | ab ⇒ p | a ∨ p | b,

a ovo znaqi da je p prost broj. Dakle, prosti ideali u prstenu celih brojeva su taqno
oni generisani prostim brojevima.

Primer 0.27. Neka je R = F[X], gde je F poǉe. Pokazali smo ve� da su i u ǌemu svi
ideali glavni. Poka�ite da je glavni ideal P = 〈p(X)〉 prost akko je p(X) nerastavǉiv
polinom.
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Napravili smo domen seqeǌem. Mo�emo li da ”profinimo” koliqniqki prsten jox
malo, recimo da tra�imo da on bude poǉe? Ispostavi�e se da za ispuǌeǌe ovog
zahteva treba da poqetni prsten poseqemo po dovoǉno velikim idealima, odnosno mak-
simalnim.

Definicija 0.15. Ideal M prstena R je maksimalan ako je pravi i ako ne postoji
pravi ideal razliqit od ǌega koji ga sadr�i, to jest, pravi ideal M je maksimalan
ako va�i

M ⊂ I ⊂ R ⇒ M = I ∨ I = R.

Teorema 0.18. Neka je M pravi ideal komutativnog prstena R. Tada je M maksimalan
akko je R/M poǉe.

Dokaz. Neka je M maksimalan ideal komutativnog prstena R. Treba pokazati da je
R/M poǉe, to jest da u ǌemu svaki element razliqit od nule ima inverz. Xta znaqi
da je a + M ∈ R/M razliqit od nule? Nula u R/M je M , pa je a + M 6= M akko a ne
pripada M . To daǉe znaqi da je ideal M strogo sadr�an u zbiru ideala generisanog
sa a i ideala M : M ⊂ 〈a〉+M . Dakle, postoji ideal koji sadr�i M , pa iz definicije
maksimalnosti, sledi da je taj ideal jednak celom prstenu: 〈a〉 + M = R. Ovo znaqi
da se svaki element iz R mo�e predstaviti kao zbir jednog iz 〈a〉 i jednog iz M , a to
posebno va�i i za jedinicu ovog prstena: 1 = ab+m za neke b ∈ R, x ∈ M . Primetimo da
je ovo ekvivalentno tome da se element ab razlikuje od jedinice prstena do na element
iz M , pa je: (a + M)(b + M) = ab + M = (1 − m) + M = 1 + (−m + M) = 1 + M . Ovo je
potvrda da je b+M inverz od a+M u R/M .

Obrnuto, neka je M ideal takav da je R/M poǉe, i neka je M ⊂ I ⊂ R. Treba
pokazati da je M = I ili I = R. Neka ne va�i prva jednakost, to jest M 6= I. To
znaqi da postoji x ∈ I \M , xto daǉe povlaqi da je x+M 6= M . U koliqniqkom prstenu
ovo znaqi da x +M nije nula, pa poxto je po pretpostavci taj koliqnik poǉe, x +M
�e imati inverz. Dakle, postoji y ∈ R tako da je (x + M)(y + M) = 1 + M , odnosno,
xy +M = 1 +M . To sad znaqi da xy − 1 ∈ M , odnosno xy − 1 = m za neko m ∈ M . Sada
jedinicu mo�emo da predstavimo kao zbir nekog elementa iz M i xy: 1 = xy + (−m).
Ovde je x ∈ I, pa sa ǌim i xy ∈ I, a (−m) ∈ M ⊂ I, pa i (−m) pripada I. Na kraju, kako
je I zatvoren za sabiraǌe, bi�e 1 = xy + (−m) ∈ I, xto povlaqi da je ideal I jednak
celom prstenu R. Dakle, ako ne va�i jednakost kod prve inkluzije, mora�e da va�i
kod druge, xto pokazuje da je M maksimalan ideal.

Primetimo da je svaki maksimalan ideal ujedno i prost (ako je R/M poǉe, onda je
svakako i oblast celih). Obrnuti ne va�i: uzmemo bilo koji ideal P takav da je R/P
bez deliteǉa nule, a da nije poǉe, na primer u R = Z[X] uzmemo P = 〈X〉. Xta je ovde
R/P? U P su svi polinomi oblika X · (...), to jest svi polinomi qiji je slobodan qlan
nula. Onda u koliqniqkom prstenu ima onoliko elemenata koliko ima mogu�nosti za
slobodan qlan:

p(X) + 〈X〉 = a0 + a1X + . . .+ amXm + 〈X〉 = a0 + 〈X〉, a0 ∈ Z

Dakle, Z[X]/〈X〉 ∼= Z. Kako je Z oblast celih, ideal 〈X〉 je prost, ali nije maksimalan,
jer Z nije poǉe.

Primer 0.28. U prstenu celih brojeva prosti i maksimalni ideali se poklapaju.

-Videli smo ve� da su prosti ideali u Z oblika pZ za p prost broj. Zaxto su oni
i maksimalni? Neka je M = pZ ⊂ I = nZ (svi ideali u Z su glavni.) To znaqi da i
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p ∈ nZ, to jest da n | p, pa je n = p ili n = 1, odnosno I = pZ = M ili I = Z. Po
definiciji, M je maksimalan.

Primer 0.29. Prosti i maksimalni ideali se poklapaju i u prstenu polinoma F[X],
gde je F poǉe. Oni su generisani nerastavǉivim polinomima.

Primer 0.30. Neka je R = R[X] i M = 〈X2 +1〉. Polinom X2 +1 je nerastavǉiv nad R,
pa kao koliqnik oqekujemo poǉe. Tvrdimo da je

R[X]/〈X2 + 1〉 ∼= C.

Uoqimo homomorfizam prstena f : R[X] → C dat sa f(p) = p(i) (ovo jeste homomorfizam
jer se izraqunavaǌe vrednosti polinoma u taqki sla�e sa sabiraǌem i mno�eǌem
polinoma). Ovo je i epimorfizam, jer za svako a + bi ∈ C se bar a + bX slika u ǌega.
Dakle, Imf = C. Xta mu je jezgro? Neka p(X) ∈ Kerf . To znaqi da je p(i) = 0.
Podelimo p euklidski sa X2 + 1: p(X) = (X2 + 1)q(X) + a+ bX, gde a, b ∈ R, i zamenimo
X = i. Dobijamo 0 = p(i) = 0 + a+ bi, to jest a+ bi = 0, a odavde a = b = 0. Sledi da je
p(X) = (X2 + 1)q(X), odnosno p ∈ 〈X2 + 1〉. Obrnuto svakako va�i, jer je f(X2 + 1) = 0,
pa je Kerf = 〈X2 + 1〉. Sada primenimo prvu teoremu o izomorfizmima:

R[X]/〈X2 + 1〉 ∼= C.

0.3.9 Deǉivost u prstenima

Nadaǉe �e nam R uvek biti oblast celih ili komutativan domen, to jest, komutativan
prsten bez pravih deliteǉa nule. Primetimo da je skup svih inverzibilnih elemenata
ovog domena, R∗, komutativna grupa u odnosu na mno�eǌe. Za dva elementa a, b ∈ R
�emo re�i da su pridru�eni ako se razlikuju do na inverzibilni element, i pisa�emo
a ∼ b. Dakle,

a ∼ b ⇔ a = αb, za neko α ∈ R∗.

Pridru�ene elemente poistove�ujemo kada govorimo o deǉivosti, xto �e biti jasno
u nastavku.

Primer 0.31. U prstenu celih brojeva inverzibilni elementi su {−1, 1}, pa su dva
elementa pridru�ena ako se razlikuju do na znak. U prstenu F[X], gde je F poǉe,
inverzibilni elementi su inverzibilni skalari, tj. F[X]∗ = F \ {0}. Primetimo da
kada govorimo o deǉivosti, najve�em zajedniqkom deliocu, rastavǉaǌu i sliqnim
pojmovima, brojevi 20 i −20 imaju iste osobine, kao i polinomi X2 + 5X + 4 i 3X2 +
15X+12, samo xto obiqno biramo pozitivan broj, i moniqan polinom, za predstavnike
svojih klasa.

Sada �emo definisati pojmove vezane za deǉivost u proizvoǉnom domenu, analogne
onima u Z.

Definicija 0.16. Neka je R komutativan domen. Za element b 6= 0 ka�emo da deli
element a ako je a = bq za bar jedno q ∈ R. Pixemo b | a.
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Ako je a = bq, ka�emo da je a deǉivo sa b u prstenu R, a b je delilac elementa a. Xta
mo�emo da zakǉuqimo iz prethodne definicije? Prvo da je koliqnik q jedinstven: R
nema delioce nule, pa su u ǌemu svi ne-nula elementi regularni, xto znaqi da iz
a = bq = bq′ sledi q = q′. Daǉe, a = bq znaqi da je a u glavnom idealu generisanom sa
b, pa je onda i qitav ideal generisan sa a sadr�an u idealu generisanom sa b:

a = bq ⇒ a ∈ 〈b〉 ⇒ 〈a〉 ⊂ 〈b〉.

Dakle, na jeziku glavnih ideala,

b | a ⇔ 〈a〉 ⊂ 〈b〉.

Tako�e, za ne-nula elemente a i b

a | b ∧ b | a ⇔ 〈a〉 = 〈b〉,

ali odavde ne sledi a = b ve� a ∼ b: a | b ∧ b | a ⇔ b = ap ∧ a = bq za neke p, q ∈ R,
pa je a = apq i poxto je a regularan, bi�e pq = 1, odnosno p, q ∈ R∗, a time i a ∼ b.
(Tako je i u prstenu Z i kod polinoma, primetite da 10 | (−10), kao i (−10) | 10, ali
nije 10 = −10 nego 10 ∼ (−10)).

Oznaqimo sa D(a) skup svih delilaca datog elementa a. Jasno je da D(a) sadr�i sve
inverzibilne elemente prstena R, kao i sve elemente pridru�ene elementu a (a = αα−1a
za sve α ∈ R∗). Za ostale delioce elementa a ka�emo da su pravi. Za elemente koji
nemaju prave delioce koristimo isti naziv kao i u Z.

Definicija 0.17. Za element p komutativnog domena R ka�emo da je nerastavǉiv ili
atom u tom domenu ako nije inverzibilan ili nula i ako nema prave delioce u R.
Drugim reqima, p je atom ako va�i

p = ab ⇒ a ∈ R∗ ∨ b ∈ R∗

ili, ekvivalentno,
p = ab ⇒ p ∼ a ∨ p ∼ b.

To opet na jeziku glavnih ideala znaqi da ne postoji pravi ideal koji strogo sadr�i
〈p〉, pa je p nerastavǉiv akko je ideal 〈p〉 maksimalan u skupu svih glavnih ideala
domena R.

Definicija 0.18. Za element p komutativnog domena R ka�emo da je prost u tom
domenu ako nije inverzibilan ili nula i ako va�i:

p | ab ⇒ p | a ∨ p | b.

Odavde odmah sledi da je element p prost akko je ideal 〈p〉 prost ( p | ab ⇔ ab ∈ 〈p〉,
a p | a ∨ p | b ⇔ a ∈ 〈p〉 ∨ b ∈ 〈p〉.

Va�i: Svaki prost element je i nerastavǉiv.

-Neka je p prost.
p = ab ⇒ p | ab ⇒ p | a ∨ p | b.

Neka, na primer, p | a. Onda je a = pq za neko q ∈ R, pa iz p = ab imamo daǉe p = pqb,
odnosno qb = 1, pa je b inverzibilan. Analogno, ako bi p | b, dobili bismo da a ∈ R∗.

Obrnuto ne va�i!
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Primer 0.32. Primer prstena u kom atomi nisu prosti Neka je R skup svih poli-
noma iz Z[X] kojima su koeficijenti uz X parni,

R = {p = a0 + a1X + a2X
2 + . . .+ amXm : m ∈ N0, ai ∈ Z, a1 − paran}.

Lako se proveri da je R potprsten prstena Z[X] (koeficijent uz X u zbiru dva poli-
noma je zbir ǌihovih koeficijenata uz X, a koeficijent uz X u proizvodu dva polinoma
je zbir proizvoda slobodnih qlanova i koeficijenata uz X; jedinica i nula imaju ko-
eficijent nula uz X, pa su u R). Uoqimo element X2 ∈ R. On je nerastavǉiv u R (iako
je rastavǉiv u Z[X], ali X ne pripada R!) Me�utim, X2 nije prost u prstenu R, jer
na primer, X2 | 10X · 20X, ali X2 ne deli ni 10X ni 20X.

Primer 0.33. Jox jedan primer prstena u kom atomi nisu prosti Neka je

R = Z[
√
−5] = {p(

√
−5) : p ∈ Z[X]} = {a+ b

√
−5 : a, b ∈ Z}.

U ǌemu va�i
(1 +

√
−5)(1−

√
−5) = 9 = 3 · 3,

pa 3 deli proizvod na levoj strani, a ne deli nijedan od faktora. Dakle, 3 je u ovom
prstenu nerastavǉiv, ali nije prost.
(Za dokaz da je 3 nerastavǉiv uoqi se funkcija N(a + b

√
−5) = a2 + 5b2-norma, koja

slika R u N (to je zapravo kvadrat modula ovog kompleksnog broja) za koju va�i da
je N(xy) = N(x)N(y). Ako bi bilo 3 = pq, va�ilo bi i N(3) = N(p)N(q), odnosno
9 = N(p)N(q). Ovo je sada rastav u N, pa su mogu�nosti 1 · 9 i 3 · 3. Otkomentariximo
samo sluqaj N(p) = 1, N(q) = 9. Ako je p = a + b

√
−5, xta znaqi N(p) = 1? To znaqi

da je a2 + 5b2 = 1 za neke a, b ∈ Z. Odavde sledi a = 1 ili a = −1, a b = 0, pa je p = 1
ili p = −1, odnosno p je inverzibilan, pa ovo nije pravi rastav elementa 3. Sliqno
za ostale mogu�nosti.)

0.3.10 Faktorizacija

Definicija 0.19. Za komutativan domen R ka�emo da je atomiqan ako je u ǌemu svaki
element koji nije inverzibilan ili nula proizvod konaqno mnogo atoma, to jest ako
svako a ∈ R \ (R∗ ∪ {0}) ima bar jednu faktorizaciju

a = p1p2 · · · pn

u kojoj je svaki pi neki atom u R. Me�u ovim atomima mo�e biti i jednakih, a n je
du�ina te atomiqne faktorizacije od a. Smatra�emo da inverzibilni elemanti imaju
atomiqnu faktorizaciju du�ine nula.

Primer 0.34. U prstenu Z su 28 = 2 ·2 ·7 i 28 = (−2) ·7 ·(−2) dve atomiqne faktorizacije
elementa 28. Primetimo da su one jednake do na redosled i pridru�enost atoma koji
u ǌima uqestvuju.
Tako�e, u prstenu Q[X], element X2+5X+4 ima atomiqne faktorizacije X2+5X+4 =
(X + 1)(X + 4) = (7X + 7)( 17X + 4

7 ) koje se opet razlikuju do na pridru�enost atoma.
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Primer 0.35. Neka je R skup svih polinoma iz Z[X] kojima su koeficijenti uz X parni
(imali smo ga u proxloj lekciji). U ǌemu su 8X2 = 2 · 2X · 2X i 8X2 = 2 · 2 · 2 ·X2 dve
atomiqne faktorizacije elementa 8X2 koje nisu iste du�ine, niti su svi atomi prve
pridru�eni atomima druge.
Tako�e, u prstenu Z[

√
−5], element 9 ima dve atomiqne faktorizacije:

9 = (1 +
√
−5)(1−

√
−5) i 9 = 3 · 3, i ǌihovi atomi ponovo nisu pridru�eni.

Iz prethodnih primera mo�emo zakǉuqiti da se nepravilnosti (sa kojima se nismo
susretali do sada, u brojevnim skupovima i kod polinoma) javǉaju u onim domenima kod
kojih se prosti i nerastavǉivi elementi ne poklapaju. Naravno, �elimo da izdvojimo
klasu domena u kojima takvih nepravilnosti nema.

Definicija 0.20. Komutativni domen R je domen sa jednoznaqnom faktorizacijom ako
je atomiqan i ako su atomiqne faktorizacije ǌegovih elemenata jednoznaqne do na
redosled i pridru�enost atoma. To znaqi da, ako je

a = p1p2 · · · pm i a = q1q2 · · · qn

gde su pi i qj atomi, onda je m = n i postoji permutacija σ ∈ Sn takva da je za svako i,
pi ∼ qσ(i).

Napomena 0.36. U literaturi qesto domene sa jednoznaqnom faktorizacijom zovemo
UFD domeni, od ”unique factorization domain”.

Teorema 0.19. Atomiqan domen R je domen sa jednoznaqnom faktorizacijom akko su u
ǌemu svi atomi i prosti.

Dokaz. ⇒) Neka je R domen sa jednoznaqnom faktorizacijom i neka je u ǌemu element
p atom. Poka�imo da je p prost. Neka p | ab i neka su a = p1p2 · · · pm i b = q1q2 · · · qn
atomiqne faktorizacije od a i b. Onda je ab = p1p2 · · · pmq1q2 · · · qn jedna atomiqna
faktorizacija elementa ab. Kako p | ab, bi�e ab = pc, za neko c koje opet ima svoju
atomiqnu faktorizaciju. Dakle, ab ima atomiqnu faktorizaciju u kojoj figurixe
atom p, pa zbog jednoznaqnosti faktorizacije, p mora biti pridru�en nekom pi ili qj.
To daǉe znaqi da p | a ili p | b, pa je po definiciji p prost.
⇐) Neka su sada svi atomi u R prosti. Treba pokazati da su atomiqne faktor-
izacije (koje postoje zbog atomiqnosti) svih elemenata iz R jednoznaqne. Neka je
a = p1p2 · · · pm = q1q2 · · · qn. Po pretpostavci, svi atomi pi i qj su prosti, pa imamo da
prosto p1 deli q1q2 · · · qn, xto implicira da p1 | qj za neko j. Bez umaǌeǌa opxtosti,
pretpostavimo da p1 | q1. Me�utim, q1 je atom, pa je q1 = αp1 za neki inverzibilni
element α. Onda sledi αq1p2 · · · pm = q1q2 · · · qn, a odavde αp2 · · · pm = q2 · · · qn i sada
isti postupak mo�emo primeniti na ove dve atomiqne faktorizacije du�ina m − 1 i
n − 1 itd. Jasno je da �emo dobiti da je m = n i da su atomi pridru�eni, do na
redosled.

Osim klase domena sa jednoznaqnom faktorizacijom uvex�emo jox jednu znaqajnu klasu
domena.

Definicija 0.21. Komutativni domeni u kojima su svi ideali glavni zovu se glavni
ili glavnoidealski domeni.

Napomena 0.37. U literaturi qesto glavnoidealske domene zovemo PID domeni, od
”principal ideal domain”.
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Primer 0.38. Pokazali smo ve� da su u prstenu Z svi ideali glavni, pa je Z glavnoide-
alski domen.
Isto va�i i za prstene F[X], gde je F poǉe.

Nexto kasnije �emo pokazati da je svaki glavnoidealski domen ujedno i domen sa jed-
noznaqom faktorizacijom, to jest da va�i PID ⊂ UFD. Pre toga �emo uvesti jox dve
va�ne klase domena. Znamo da u prstenu celih brojeva najve�i zajedniqki delilac
dva broja raqunamo na dva naqina: ili rastavimo te brojeve na proste faktore i
onda uzmemo zajedniqke (”UFD” svojstvo prstena Z) ili ga tra�imo kori�eǌem Eukli-
dovog algoritma, pa onda izrazimo kao linearnu kombinaciju datih brojeva (”Bezuova
relacija” koja sledi iz ”PID” svojstva prstena Z).

Uveli smo ve� oznaku D(a) za skup svih delilaca elementa a. Oznaqimo sada sa
D(a, b) skup svih zajedniqkih delilaca datih elemenata a i b. Poxto je D(a, b) =
D(a) ∩D(b), ovaj skup sadr�i bar sve inverzibilne elemente prstena R. Ako su to i
ǌihovi jedini zajedniqki delioci, za a i b ka�emo da su uzajamno prosti ili koprosti
u prstenu R i umesto D(a, b) = R∗ pixemo D(a, b) = D(1) (inverzibilni elementi i jesu
delioci jedinice).

Skup zajedniqkih delilaca datih elemenata a i b ne mo�e uvek da se izrazi kao skup
delilaca jednog elementa. Ipak, ako je to sluqaj, to jest ako za date a i b postoji d ∈ R
za koji je D(a, b) = D(d), taj element d zovemo najve�i zajedniqki delilac elemenata a i
b i pixemo d = NZD(a, b). Iz ove definicije sledi da je d najve�i zajedniqki delilac
elemenata a i b ako za svako c ∈ R va�i:

c | a ∧ c | b ⇔ c | d.

Najve�i zajedniqki delilac dva elemenata je odre�en jednoznaqno do na pridru�enost,
jer ako je NZD(a, b) = d = d′, iz d′ | d ∧ d | d′ sledi da je d ∼ d′. NZD(a, 0) definixemo
kao i u Z, NZD(a, 0) = a.

Definicija 0.22. Komutativni domeni u kojima svaka dva elementa imaju najve�i
zajedniqki delilac zovu se Gausovi domeni.

Jasno je da je svaki domen sa jednoznaqnom faktorizacijom i Gausov. Poka�imo da
je i svaki glavnoidealski domen Gausov.

Teorema 0.20. U glavnoidealskom domenu svaka dva elementa imaju najve�i zajedniqki
delilac.

Dokaz. Neka je R glavnoidealski domen i a, b ∈ R. Posmatrajmo ideal 〈a, b〉 generisan
elementima a i b. Poxto je u R svaki ideal glavni, postoja�e d ∈ R takvo da je
〈a, b〉 = 〈d〉. Doka�imo da je to d jedan najve�i zajedniqki delilac od a i b. Prvo, iz
a, b ∈ 〈d〉 sledi da postoje a1, b1 ∈ R za koje je a = da1 i b = db1. Ovo opet ne znaqi nixta
drugo nego da d | a ∧ d | b, pa d ∈ D(a, b). Neka sada d′ | a ∧ d′ | b. Onda postoje a′, b′ ∈ R
za koje je a = d′a′ i b = d′b′. Iskoristili smo to da a, b ∈ 〈d〉, ali va�i i obrnuto,
d ∈ 〈a, b〉. Odavde je d = ar + bs za neke r, s ∈ R. Daǉe imamo

d = d′a′r + d′b′s = d′(a′r + b′s),

pa d′ | d. Po definiciji je d = NZD(a, b).
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Dakle, dokazali smo ne samo da svaka dva elementa a i b u glavnoidealskom domenu
imaju najve�i zajedniqki delilac, ve� i da postoje elementi r, s ∈ R za koje je taj
najve�i zajedniqki delilac d oblika d = ar+bs. Ovu relaciju zovemo Bezuova relacija,
a domene u kojima ona va�i Bezuovi.

Definicija 0.23. Komutativni domeni u kojima je suma svaka dva glavna ideala
tako�e glavni ideal zovu se Bezuovi domeni.

U dokazu prethodne teoreme smo videli da u Bezuovim domenima svaka dva elementa
a i b imaju najve�i zajedniqki delilac, i on je upravo to d za koje je 〈a〉 + 〈b〉 = 〈d〉.
Dakle, klasa Bezuovih domena je potklasa klase Gausovih domena.

Teorema 0.21. Svaki glavnoidealski domen je i domen sa jednoznaqom faktorizacijom.

Dokaz. Primeni�emo teoremu 0.19 pa �emo prvo dokazati da je u glavnoidealskom
domenu svaki atom prost.

Neka je R glavnoidealski domen i p nerastavǉiv element u ǌemu. Neka p | ab i neka
p ne deli a. Pokaza�emo da tada p mora da deli b. Pre svega, iz uslova da atom ne deli
neki element sledi da je ǌihov najve�i zajedniqki delilac 1: neka je d = NZD(a, p).
Odavde je p = p′d za neko p′ ∈ R. Ali p je atom, pa p′ ∈ R∗ ili d ∈ R∗. Ako bi bilo
p′ ∈ R∗, bilo bi p ∼ d, pa poxto d | a, sledilo bi p | a, suprotno pretpostavci da p ne
deli a. Ostaje d ∈ R∗, odnosno NZD(a, p) ∈ R∗, xto pixemo NZD(a, p) = 1. Poka�imo
sada da iz p | ab i NZD(a, p) = 1 sledi da p | b. Nalazimo se u glavnoidealskom
domenu, pa je najve�i zajedniqki delilac od a i p oblika ar+ps za neke r, s ∈ R, to jest
1 = ar+ ps. Pomno�imo ovu jednakost sa b: b = bar+ bps. Sada iz p | ab sledi da p deli
oba sabirka na desnoj strani, pa p | b.
Da bismo primenili teoremu 0.19 ostaje da poka�emo da je R atomiqan. Prvo �emo
dokazati da svaki neprazan skup ideala u R ima maksimalan element. Pretpostavimo
suprotno. Neka je J neprazan skup ideala koji ne sadr�i maksimalan element. Neka
je I1 ∈ J proizvoǉan ideal. Poxto nije maksimalan postoja�e ideal I2 ∈ J tako da je
I1 sadr�an u I2. Iz istih razloga postoji I3 za koji je I2 ⊂ I3 itd. Dobijamo striktno
rastu�i lanac ideala

I1 ⊂ I2 ⊂ I3 ⊂ · · ·

u J . Znamo da unija ideala u opxtem sluqaju nije ideal, ali to ne va�i za rastu�e
unije (isto kao kod podgrupa i potprostora). Unija J =

∪
n∈N In je ideal: neka a, b ∈ J ,

to znaqi da a ∈ Im, b ∈ In za neke m,n ∈ N i mo�emo pretpostaviti da je m ≤ n, xto
znaqi da su onda i a i b u In, pa je i ǌihov zbir u In, a time opet u J . Tako�e, za
a ∈ Im i x ∈ R, ax ∈ Im ⊂ J . Uverili smo se da je J ideal, ali R je glavnoidealski
domen, pa postoji a koje generixe J , J = 〈a〉. Sada iz a ∈ J sledi da a pripada nekom
Ik. Kako je Ik ideal, zajedno sa a sadr�i i 〈a〉. Dobijamo J = 〈a〉 ⊂ Ik, odnosno In = Ik
za svako n ≥ k, pa beskonaqan strogo rastu�i lanac ideala u R i ne postoji!
Pretpostavimo sada da u R postoje elementi koji nemaju faktorizaciju na atome.
Uoqimo skup ideala J zadat sa:

J = {〈a〉 : a ∈ R \ (R∗ ∪ {0}) i a nema faktorizaciju na atome}.

Upravo smo dokazali da u J postoji maksimalan element, neka je to 〈c〉. Kako c nema
faktorizaciju na atome, c ni sam nije atom, pa je c = ab gde a, b 6= 0 i a i b nisu
inverzibilni. Odavde je 〈c〉 ⊂ 〈a〉 i 〈c〉 ⊂ 〈b〉, pa a i b imaju faktorizacije na atome,
jer je 〈c〉 maksimalan u J . Neka su ǌihove atomiqne faktorizacije a = p1p2 · · · pm i b =
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q1q2 · · · qn. Onda je c = ab = p1p2 · · · pmq1q2 · · · qn jedna atomiqna faktorizacija elementa
c, xto je u suprotnosti sa qiǌenicom da c ∈ J .
Dakle, svi elementi u R imaju atomiqne faktorizacije, pa je po teoremi 0.19 R domen
sa jednoznaqnom faktorizacijom.

Dakle, PID ⊂ UFD. Obrnuto ne va�i. Mo�e se pokazati da ako je R domen sa jed-
noznaqnom faktorizacijom, onda je i R[X] domen sa jednoznaqnom faktorizacijom (mi
ne�emo). Odavde sledi da je Z[X] domen sa jednoznaqnom faktorizacijom. Me�utim,
on nije glavnoidealski, na primer ideal generisan sa 7 i sa X nije glavni, to jest ne
postoji polinom p(X) sa celobrojnim koeficijentima takav da je 〈7, X〉 = 〈p(X)〉.

Na kraju �emo, radi kompletnosti, samo definisati jox jednu klasu domena, koji su
”najfiniji”, to jest najbli�i poǉima.

Definicija 0.24. Neka je R komutativni domen. Za R ka�emo da je euklidski domen
ako na ǌemu postoji bar jedan euklidski algoritam, odnosno preslikavaǌe f : R → N0

koje zadovoǉava uslove:
1) Za svako a, b ∈ R, b 6= 0, postoje q, r ∈ R za koje je a = bq + r i f(r) < f(b).
2) Za sve a, b ∈ R \ {0} va�i f(a) ≤ f(ab).

Prvi uslov je nama dobro poznato euklidsko deǉeǌe s ostatkom, i na ǌemu se i u ovim
domenima zasniva naqin za odre�ivaǌe najve�eg zajedniqkog delioca dva elementa -
Euklidov algoritam. Xtavixe, euklidski domeni nisu samo Bezuovi, oni su potklasa
klase glavnoidealskih domena, ali to ne�emo ovde dokazati.

Primer 0.39. Prsten Z je euklidski, ǌegova euklidska funkcija je f(m) = |m|. Tako�e,
prsten F[X], gde je F poǉe, je euklidski, f(p) je stepen polinoma p.

Klase komutativnih domena koje smo definisali zadovoǉavaju slede�i lanac strogih
inkluzija:

komutativni domeni ⊃ Gausovi domeni ⊃ domeni sa jednoznaqnom faktorizacijom ⊃
glavnoidealski domeni ⊃ euklidski domeni ⊃ poǉa, kao i

komutativni domeni ⊃ Gausovi domeni ⊃ Bezuovi domeni ⊃ glavnoidealski domeni ⊃
euklidski domeni ⊃ poǉa.

Pri tom su klase Bezuovih domena i domena sa jednoznaqnom faktorizacijom neupore-
dive, i ǌihov presek je taqno klasa glavnoidealskih domena.
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0.4 Poǉa

0.4.1 Raxireǌa poǉa

Definicija 0.25. Poǉe je komutativan prsten u kom jedino nula nema inverz. Drugim
reqima, poǉe je algebarska struktura (F,+, ·) sa dve binarne operacije takva da je
(F,+) Abelova grupa, (F \ {0}, ·) tako�e Abelova grupa i operacija · je distributivna
u odnosu na operaciju +.

Primer 0.40. Najmaǌe poǉe karakteristike nula je poǉe racionalnih brojeva Q.
Skupovi realnih R i kompleksnih brojeva C su tako�e poǉa. Q je poǉe razlomaka nad
komutativnim domenom Z (elementima domena dodamo i ǌihove inverze -to je konstruk-
cija koja se mo�e izvesti nad svakom oblax�u celih R - elementi tog poǉa su oblika
ab−1 = b−1a = a

b , a, b ∈ R, b 6= 0). Definiciju realnih brojeva koriste�i racionalne i
neprekidnost ste dali u Analizi, a kompleksnim �ete se baviti u Kompleksnoj anal-
izi. (Za potrebe naxeg kursa je dovoǉno ono xto ste nauqili o brojevnim skupovima
i operacijama u ǌima u toku dosadaxǌeg xkolovaǌa, uz podse�aǌe na osobine poli-
noma nad pomenutim poǉima - faktorizaciju, nule, kandidate za nule, nerastavǉivost
- Nikola!)

Primer 0.41. Znamo da su Zp poǉa ako je p prost broj (inverzibilni elementi u Zn su
oni koji su uzajamno prosti sa n, pa su svi osim nule inverzibilni akko je n prost).
Dakle, najmaǌe poǉe ima 2 elementa i to je Z2.
Z3, Z5, Z7 itd. su tako�e poǉa.

Definicija 0.26. Za poǉe K ka�emo da je raxireǌe poǉa F i pixemo F ≤ K (ili
K ≥ F) ako K ima bar jedno potpoǉe F̃ izomorfno sa F.

Obiqno poǉa F i F̃ identifikujemo, i smatramo da je F potpoǉe od K (potpoǉe se
definixe analogno kao potprsten, sadr�i nulu i jedinicu poǉa i zatvoreno je za sve
operacije).

Setimo se sada primera vektorskih prostora iz Linearne algebre: svako poǉe je
vektorski prostor nad bilo kojim svojim potpoǉem. Xta su operacije u tom vektorskom
prostoru? Ako je F potpoǉe poǉa K, sabiraǌe ”vektora” u vektorskom prostoru K �e
biti obiqno sabiraǌe u poǉu K, a mno�eǌe ”vektora” iz K ”skalarom” iz F je opet
samo mno�eǌe u poǉu K (α ∈ F, v ∈ K ⇒ αv ∈ K). Ovaj vektorski prostor oznaqavamo
sa KF (jox jednom, to je dakle samo poǉe K, ali posmatrano kao vektorski prostor
nad F, xto nam omogu�ava da koristimo termine i tvr�eǌa iz teorije vektorskih
prostora).

Primer 0.42. Svako konaqno poǉe ima pn elemenata, gde je p prost broj.

-Neka je F konaqno poǉe. Onda je ǌegova karakteristika neki prost broj p (karakteris-
tika poǉa je ili nula ili prost broj, imali smo to tvr�eǌe za domene). Posmatrajmo
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karakteristiqni potprsten od F, F0 = {0F, 1F, . . . (p− 1)1F}. Primetimo da je on izomor-
fan sa Zp, pa je i sam jedno poǉe. Poxto smo ponovili da je svako poǉe vektorski
prostor nad bilo kojim svojim potpoǉem, F �e biti vektorski prostor nad F0. Kako je
F konaqno, i ǌegova dimenzija je konaqna, recimo n. Znamo da je svaki vektorski pros-
tor V dimenzije n nad poǉem K izomorfan sa Kn, pa je F ∼= Fn

0
∼= Zn

p , odakle neposredno
sledi | F |= pn.

Definicija 0.27. Za raxireǌe K poǉa F ka�emo da je konaqno ako je vektorski pros-
tor KF konaqne dimenzije. Tada se dimenzija tog prostora oznaqava sa

dim KF = [K : F]

i zove stepen raxireǌa K poǉa F.

Ako je [K : F] = n, sve F-baze vektorskog prostora KF su kardinalnosti n. Znaqi,
postoji bar jedan sistem od n elemenata poǉa K, na primer [e1, e2, . . . , en], takav da
svaki element iz K mo�e na jedinstven naqin da se predstavi kao linearna kombinacija
e-ova, sa koeficijentima iz F.

Primer 0.43. Poǉe kompleksnih brojeva je konaqno raxireǌe poǉa realnih brojeva
i va�i [C : R] = 2, jer je [1, i] jedna baza vektorskog prostora CR (svaki kompleksan broj
je oblika z = a · 1 + b · i za a, b ∈ R).

Primer 0.44. Poǉe realnih brojeva nije konaqno raxireǌe poǉa racionalnih bro-
jeva, jer ne postoji konaqno realnih brojeva takvih da se svi ostali izra�avaju kao
ǌihove linearne kombinacije sa racionalnim koeficijentima.

Teorema 0.22. Ako su K ≥ F i L ≥ K konaqna raxireǌa poǉa, tada je poǉe L konaqno
raxireǌe poǉa F i va�i:

[L : F] = [L : K][K : F].

Dokaz. Neka je [L : K] = m i [K : F] = n. Ovo znaqi da LK ima bazu od m elemenata, neka
je to e = [e1, e2, . . . , em], i da KF ima bazu od n elemenata, neka je to f = [f1, f2, . . . , fn].
Dokaza�emo da je sistem

h = {eifj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

jedna baza vektorskog prostora LF, to jest da je generatrisa i linearno nezavisan.

-generatrisa: neka je l proizvoǉan element iz L. Poxto je e baza za L nad K, postoje
αi ∈ K za koje je l = α1e1 + α2e2 + · · ·αmem. Daǉe, kako je f baza za K nad F, za svako αi

postoje βij ∈ F za koje je αi = βi1f1 + βi2f2 + · · ·+ βinfn. Dakle, svako l ∈ L je oblika

l =

m∑
i=1

(

n∑
j=1

βijfj)ei =

m∑
i=1

n∑
j=1

βijeifj

pri qemu su βij ∈ F, a proizvodi eifj su svakako iz L. To znaqi da je sistem h jedna
generatrisa F-vektorskog prostora L.

-linearna nezavisnost: Neka je

m∑
i=1

n∑
j=1

αijeifj = 0
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za neke αij ∈ F. Ovo je ekvivalentno sa

m∑
i=1

(

n∑
j=1

αijfj)ei = 0,

pa poxto su e1, e2, . . . , em linearno nezavisni u vektorskom prostoru LK, bi�e γi =
(
∑n

j=1 αijfj) = 0 za svako i. Me�utim, svaki γi je linearna kombinacija fj-ova, koji su
linearno nezavisni u vektorskom prostoru KF, pa je αij = 0 za sve 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Zakǉuqujemo da sistem h i linearno nezavisan.

Dakle, h je jedna baza vektorskog prostora LF, pa kako ona broji mn vektora, dimenzija
ovog prostora je upravo toliko, a po definiciji to je stepen raxireǌa [L : F] = mn.

Posledica. Jasno je da se prethodno tvr�eǌe o tranzitivnosti stepena raxireǌa
indukcijom mo�e produ�iti na konaqno poǉa: ako su F1 ≤ F2 ≤ · · · ≤ Fn poǉa takva da
su sva raxireǌa Fi ≥ Fi−1 konaqna, onda je i Fn konaqno raxireǌe poǉa F1 i va�i:

[Fn : F1] = [Fn : Fn−1][Fn−1 : Fn−2] · · · [F2 : F1].

0.4.2 Prosta raxireǌa poǉa

Neka je K bilo koje raxireǌe poǉa F i α fiksiran element iz K. Xta je najmaǌe
potpoǉe od K koje sadr�i F i α? Poxto je poǉe F zatvoreno za sve operacije, ostaje
da se pobrinemo za α. To raxireǌe za poqetak mora da sadr�i sve stepene 1, α, α2, . . . ,
zatim ǌihove proizvode sa elementima poǉa F i sve konaqne zbirove tako dobijenih
elemenata. Dobi�emo skup

{c0 + c1α+ c2α
2 + · · ·+ cmαm : m ∈ N0, ci ∈ F},

odnosno sve polinome po α sa koeficijentima iz F, i taj skup oznaqavamo

F[α] = {p(α) : p ∈ F[X]}.

Naravno, ovaj skup je zatvoren za sabiraǌe i mno�eǌe, pa je potprsten od K, ali ne
sadr�i inverze svih svojih elemenata. Zato dodajemo i ǌih i dobijamo

F(α) = {p(α)
q(α)

: p, q ∈ F[X], q(α) 6= 0}.

Ovo je tra�eno minimalno potpoǉe od K koje sadr�i i F i α. Ovakvo raxireǌe zove
se prosto raxireǌe poǉa F sa primitivnim elementom α.

Opxtije, za raxireǌe K poǉa F ka�emo da je prosto ako postoji bar jedno α ∈ K
za koje je K = F(α). Element α koji odre�uje ovakvo raxireǌe zove se primitivni
element tog raxireǌa.

Daǉe, sa svakim elementom α iz datog raxireǌa K poǉa F mo�emo posmatrati i
odgovaraju�e prosto raxireǌe F(α) poǉa F. U ǌemu su svakako elementi 1, α, α2, . . ..
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Razlikujemo dve va�ne klase elemenata iz raxireǌa K u odnosu na to da li je navedeni
niz elemenata, tj. vektora iz vektorskog prostora KF, linearno zavisan ili nezavisan
nad F. Ako su vektori 1, α, α2, . . . linearno zavisni, onda postoje ci ∈ F od kojih je bar
jedan razliqit od nule, takvi da je c0 + c1α+ c2α

2 + · · ·+ ckα
k = 0. To je ekvivalentno

tome da je α nula bar jednog ne-nula polinoma iz F[X]. Tada ka�emo da je element α
algebarski nad poǉem F. Na primer, brojevi

√
5, 3

√
7,

√
2+

√
7 su algebarski nad poǉem

Q.
U suprotnom, to jest ako je niz vektora 1, α, α2, . . . linearno nezavisan, odnosno

ako α ponixtava jedino nula polinom iz F[X], za ǌega ka�emo da je transcendentan
nad poǉem F (tada se α ponaxa isto kao neodre�ena kod polinoma, ”ne mexa” se sa
elementima iz F, i va�i F(α) ∼= F(X); na primer, brojevi π i e su transcendentni nad
poǉem Q).

Za algebarske elemente va�i da je prsten F[α] jednak poǉu F(α) i da je stepen raxireǌa
[F(α) : F] konaqan i lako se raquna.

Teorema 0.23. Neka je K raxireǌe poǉa F i α ∈ K. Element α je algebarski nad F akko
je F(α) = F[α]. U tom sluqaju postoji jedinstven moniqan polinom µ takav da za svaki
polinom p ∈ F[X] va�i

p(α) = 0 ⇔ µ | p.

Polinom µ je nerastavǉiv u prstenu F[X] i ǌegov stepen je upravo stepen raxireǌa
[F[α] : F].

Dokaz. Ako je F(α) = F[α], to znaqi da se svaki razlomak u qijem je imeniocu polinom
po α mo�e izraziti kao neki drugi polinom po α (oqigledno je da je F[α] ⊂ F(α), a
naxa pretpostavka je da va�i i obrnuta inkluzija). Na primer, 1

2α−5 = p(α) za neki
polinom p ∈ F[X], odakle je 1 = (2α − 5)p(α), tj. 2αp(α) − 5p(α) − 1 = 0, pa α ponixtava
polinom q(X) = 2Xp(X) − 5p(X) − 1 sa koeficijentima iz poǉa F, xto znaqi da je α
algebarski nad F.

Doka�imo sada glavni smer tvr�eǌa: neka je α algebarski nad F. To znaqi da α pon-
ixtava bar jedan ne-nula polinom iz F[X], odakle sledi da postoji i polinom najmaǌeg
stepena za koji to va�i. Uzmimo moniqan takav - neka je µ moniqan polinom najmaǌeg
stepena iz F[X] kog α ponixtava. Ako je p bilo koji polinom iz F[X], podeli�emo ga
euklidski sa µ: p = µq + r, pri qemu je stepen polinoma r maǌi od stepena polinoma
µ. Zamenimo X = α: p(α) = µ(α)q(α) + r(α), pa kako je µ(α) = 0, dobijamo p(α) = r(α).
Ako je p polinom za koji je p(α) = 0, prethodna jednakost daje r(α) = 0. Me�utim,
stepen polinoma r je strogo maǌi od stepena polinoma µ, pa je ovo mogu�e jedino ako
je r ≡ 0 (inaqe bi r bio minimalan, xto je u suprotnosti sa pretpostavkom da je to
µ). Dakle, p = µq, odnosno µ | p. Primetimo da smo ovim dobili i slede�e: za svaki
polinom p iz F[X], p(α) = r(α), pri qemu je r ostatak pri euklidskom deǉeǌu polinoma
p sa µ. Ovo znaqi da se p(α) mo�e izraziti kao linearna kombinacija stepena elementa
α koji su maǌi od stepena polinoma µ. Ako je stepen polinoma µ jednak m, dobijamo
p(α) = r(α) ∈ L[1, α, α2, . . . , αm−1], pa je ovaj sistem generatrisa vektorskog prostora
F[α] nad F. Tako�e, ako napravimo F-linearnu kombinaciju ovih stepena koja je jed-
naka nuli, c0 + c1α+ · · ·+ cm−1α

m−1 = 0, dobi�emo da su svi ci = 0, jer bi u suprotnom
postojao ne-nula polinom stepena strogo maǌeg od m kod α ponixtava. Dakle, sistem
[1, α, α2, . . . , αm−1] je jedna baza vektorskog prostora F[α], pa je dim F[α] = m.
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Zaxto je polinom sa navedenim osobinama jedinstven? Pretpostavimo da postoji jox
jedan moniqan polinom µ̃ koji zadovoǉava ove uslove. Iz upravo dokazanog svojstva
da taj polinom deli svaki drugi koji u α ima vrednost nula, sledi s jedne strane da
µ | µ̃, a s druge da µ̃ | µ. To znaqi da se razlikuju do na skalar, µ̃ = aµ, a ∈ F, ali kako
su oba moniqna, taj skalar je 1, tj. µ̃ = µ. Zaxto je µ nerastavǉiv? Pretpostavimo da

za neke polinome p i q va�i µ = pq. Zamenimo α: µ(α) = p(α)q(α), odnosno p(α)q(α) = 0.
Nalazimo se u poǉu L u kom nema pravih deliteǉa nule, pa je p(α) = 0 ili q(α) = 0.
Ovo povlaqi da µ | p ili µ | q, pa je jedan od ǌih skalar, a drugi pridru�en µ, xto
znaqi da µ nema pravu faktorizaciju.

Ostaje jox da doka�emo da je F[α] = F(α). Kao xto je ve� reqeno, F[α] ⊂ F(α). Treba
pokazati da va�i i obrnuto, to jest da se inverzi svih ne-nula elemenata iz F[α] mogu
izraziti kao polinomi po α. Neka je p(α) 6= 0 proizvoǉan element iz F[α] (p je naravno
polinom iz F[X]). Opet iz karakterizacije polinoma µ imamo: p(α) 6= 0 povlaqi da
µ ne deli p. Me�utim, µ je atom, pa je qiǌenica da ne deli neki drugi polinom
ekvivalentna tome da su uzajamno prosti: NZD(µ, p) = 1. Znamo da to daǉe znaqi da
postoje neki polinomi a(X) i b(X) za koje je µa + pb = 1. Uvrstimo α u prethodnu
jednakost: µ(α)a(α) + p(α)b(α) = 1. Ovde je µ(α) = 0, pa je p(α)b(α) = 1. Ovo taqno znaqi
da je b(α) inverz elementa p(α): 1

p(α) = b(α) ∈ F[α]. Dakle, svaki ne-nula element iz F[α]
ima inverz u F[α], pa je F[α] poǉe, to jest F[α] = F(α).

Polinom µ koji je definisan i opisan u upravo dokazanom tvr�eǌu zovemo mini-
malni polinom elementa α. ǋegov stepen je stepen elementa α. Pokazali smo da je
taj stepen jednak stepenu raxireǌa [F[α] : F].

Primer 0.45. Element
√
7 je algebarski nad poǉem Q. On ponixtava polinom X2 −

7, koji je nerastavǉiv nad Q po Ajzenxtajnovom kriterijumu (Nikola!), pa je to i
minimalni polinom ovog elementa. Dakle, stepen raxireǌa [Q[

√
7] : Q] = deg(X2 − 7) =

2.
Na isti naqin, 3

√
7 ponixtava polinom X3 − 7, koji je nerastavǉiv nad Q opet po

Ajzenxtajnovom kriterijumu, pa je to i minimalni polinom ovog elementa. Odatle je
stepen raxireǌa [Q[ 3

√
7] : Q] = deg(X3 − 7) = 3.

0.4.3 Algebarska raxireǌa poǉa

Neka je K raxireǌe poǉa F i α1 ∈ K algebarski nad F. Tada je [F1 : F] = deg µα1
, gde

je F1 = F[α1] = F(α1). Neka je, daǉe, α2 ∈ K algebarski nad F1 i F2 = F1[α2]. Svaki
element iz F2 je oblika

∑
j(
∑

i aijα
i
1)α

j
2, gde aij ∈ F (polinom po α2 sa koeficijentima

iz F1 = F[α1]), odnosno
∑

aijα
i
1α

j
2, pa je F2 = F[α1][α2] = F[α1, α2]. S druge strane,

F2 = F1[α2] = F1(α2), jer je α2 algebarski nad F1, a to je daǉe F(α1)(α2), xto je po
definiciji poǉe (oblim zagradama oznaqavamo poǉe) i to najmaǌe poǉe koje sadr�i
F i elemente α1 i α2. Dakle,

F[α1, α2] = F(α1, α2).

Sada mo�emo nastaviti sa nekim α3 algebarskim nad F2 i tako daǉe.
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Teorema 0.24. Ako su α1, α2, . . . , αn elementi iz raxireǌa K poǉa F takvi da je α1 alge-
barski nad F i za svako i ∈ {2, . . . , n} element αi algebarski nad F(α1, α2, . . . , αi−1), tada
je

F[α1, α2, . . . , αn] = F(α1, α2, . . . , αn)

najmaǌe potpoǉe od K koje sadr�i sve α1, α2, . . . , αn. Tako�e, u ǌemu su svi elementi
algebarski i nad poǉem F.

Dokaz. Indukcijom po n. Za n = 1 to je teorema 0.23, a za n = 2 komentar koji
prethodi tvr�eǌu koje upravo dokazujemo. Neka je Fi = F(α1, α2, . . . , αi) i neka tvr�eǌe
va�i za n−1, odnosno Fn−1 = F[α1, α2, . . . , αn−1]. Poxto je αn algebarski nad Fn−1, bi�e
Fn = Fn−1[αn], a odatle Fn = F[α1, α2, . . . , αn]. Kako je Fn = F(α1, α2, . . . , αn), sledi prvi
deo tvr�eǌa.
Doka�imo sada da je svaki element iz Fn algebarski i nad F. Prema teoremi 0.23 svako
poǉe Fi je konaqno raxireǌe poǉa Fi−1 (jer je Fi = Fi−1[αi], pa je stepen raxireǌa
[Fi : Fi−1] jednak stepenu minimalnomg polinoma elementa αi nad poǉem Fi−1). Na
osnovu teoreme 0.22 i ǌene Posledice, dobijamo da je poǉe Fn konaqno raxireǌe samog
poǉa F. Uzmimo sada proizvoǉan element α ∈ Fn. Posmatrajmo elemente (odnosno
vektore iz F-vektorskog prostora Fn) 1, α, α2, . . .. Poxto je Fn konaqne dimenzije kao F-
vektorski prostor, ovi vektori su linearno zavisni. Dakle, postoji ǌihova linearna
kombinacija sa koeficijentima iz poǉa F koji nisu svi nula, a qija je vrednost nula.
To nam daje ne-nula polinom iz F[X] kog α ponixtava, xto znaqi da je α algebarski
element nad F.

Neka je sada K raxireǌe poǉa F i α i β 6= 0 elementi iz K koji su algebarski nad
F (tim pre je β algebarski nad F[α], pa je F[α, β] = F(α, β) po prethodnoj teoremi).
To poǉe F[α, β] sadr�i sve elemente koje mo�emo dobiti pomo�u α i β i svi oni su,
opet po prethodnoj teoremi, i algebarski nad F. Posebno, zbir, proizvod, suprotni
elementi, kao i inverzi algebarskih elemenata su ponovo algebarski, xto znaqi da je
skup svih elemenata iz K koji su algebarski nad F zatvoren za sve operacije poǉa.
Dakle, skup svih elemenata iz K koji su algebarski nad F je jedno potpoǉe poǉa K
koje oznaqavamo sa F[K] i zovemo algebarsko zatvoreǌe poǉa F u ǌegovom raxireǌu K.
Tako�e, za raxireǌe K poǉa F ka�emo da je algebarsko ako je K = F[K], odnosno ako su
svi elementi iz K algebarski nad F. Primetimo da smo u dokazu prethodne teoreme
pokazali da je svako konaqno raxireǌe i algebarsko (posledǌi deo dokaza, od Fn je
konaqno raxireǌe od F).

Posebno, za F = Q, a K = C, kompleksni brojevi koji su algebarski nad poǉem
racionalnih brojeva zovu se algebarski brojevi. Oni qine jedno potpoǉe poǉa C koje
oznaqavamo sa Q[C].

Primer 0.46. Odrediti stepen raxireǌa [Q[
√
2,
√
7] : Q]. Da li je ovo prosto raxireǌe

poǉa Q?

-Pre svega, prema teoremi iz ovog odeǉka je Q[
√
2,
√
7] = Q(

√
2,
√
7) najmaǌe natpoǉe

poǉa Q koje sadr�i elemente
√
2 i

√
7. Prema teoremi 0.22 va�i

[Q[
√
2,
√
7] : Q] = [Q[

√
2,
√
7] : Q[

√
2]] · [Q[

√
2] : Q].

Daǉe je [Q[
√
2] : Q] = 2, jer je stepen minimalnog polinoma elementa

√
2 nad Q jednak

2 (polinom X2 − 2 je nerastavǉiv prema Ajzenxtajnu). Tako�e, [Q[
√
2,
√
7] : Q[

√
2]] = 2,
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jer je minimalni polinom za
√
7 nad Q[

√
2] jednak X2 − 7 (jasno je da je ovo minimalni

polinom za
√
7 nad Q; minimalni polinom nad xirim poǉem bi eventualno delio ovaj,

me�utim u ovom sluqaju to bi znaqilo da je prvog stepena, odnosno da
√
7 ∈ Q[

√
2];

doka�ite da nije
√
7 = a+ b

√
2 za neke a, b ∈ Q !). Dakle, [Q[

√
2,
√
7] : Q] = 2 · 2 = 4.

Ovo jeste prosto raxireǌe poǉa Q, sa primitivnim elementom recimo
√
2+

√
7. Da je

Q[
√
2 +

√
7] ⊂ Q[

√
2,
√
7] je oqigledno, jer element

√
2 +

√
7 pripada Q[

√
2,
√
7]. Obrnutu

inkluziju pokazujemo tako xto svaki od elemenata
√
2 i

√
7 izrazimo preko

√
2 +

√
7 i

ǌegovog inverza (Nikola!). Dakle, Q[
√
2,
√
7] = Q[

√
2 +

√
7].

0.4.4 Korensko poǉe polinoma

U prethodnom delu smo elementima iz nekog raxireǌa poǉa F pridru�ili polinome
iz F[X], pomo�u kojih smo raqunali stepene raxireǌa odre�enih tim elementima.
Neka je sada situacija takva da je dat polinom f iz F[X], stepena n. Pitamo se xta
je najmaǌe raxireǌe poǉa F u kom se f mo�e rastaviti na linearne faktore. Drugim
reqima, tra�imo raxireǌe oblika F[α1, α2, . . . , αn] u kom su α1, α2, . . . , αn taqno sve nule
polinoma f . Za poqetak �emo pokazati da postoji prosto raxireǌe F(α) poǉa F takvo
da je α bax nula polinoma f , zapravo konstruisa�emo jedan model takvog raxireǌa.

Teorema 0.25. Za svaki moniqan i nerastavǉiv polinom f iz F[X] postoji prosto raxireǌe
F[α] poǉa F u kome je f(α) = 0. To poǉe je odre�eno jednoznaqno do na izomorfizam.

Dokaz. Ako takvo poǉe F[α] postoji, znamo dve stvari o ǌemu:

- ono je slika prstena F[X] u odnosu na preslikavaǌe p 7→ p(α);

- poxto je polinom f nerastavǉiv, on �e biti i minimalni polinom elementa α.

Posmatrajmo preslikavaǌe π : p 7→ p(α). Jasno je da je π homomorfizam (vrednost zbira
dva polinoma u nekom elementu je zbir ǌihovih vrednosti; isto va�i i za proizvod).
Tako�e je jasno da je ”na” (tako je i definisan F[α]), Imπ = F[α]. Hajde da na�emo
jezgro ovog homomorfizma:

Kerπ = {p ∈ F[X] : π(p) = 0} = {p ∈ F[X] : p(α) = 0} = {p ∈ F[X] : µα | p} = {p ∈ F[X] : f | p}

= {p ∈ F[X] : p = fq, q ∈ F[X]} = 〈f〉.

Primenimo sada prvu teoremu o izomorfizmima za prstene:

F[X]/〈f〉 ∼= F[α].

Oznaqimo sa K ovaj koliqniqki prsten. Primetimo odmah da je K poǉe poxto je f
atom u F[X] (imali smo da su ideali generisani atomima maksimalni u skupu glavnih
ideala, ali u prstenu F[X] svi ideali su glavni, pa je 〈f〉 maksimalan, i odgovaraju�i
koliqnik je poǉe!). To poǉe je potpuno odre�eno polinomom f , uzeli smo F[X] i samo
ga posekli po idealu generisanom sa f . Tvrdimo da je to tra�eno raxireǌe.
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Prvo, da li je K = F[X]/〈f〉 uopxte raxireǌe poǉa F? Treba nam utapaǌe (monomor-
fizam) poǉa F u poǉe K, a za to �e biti dovoǉno da uzmemo restrikciju odgovaraju�eg
koliqniqkog preslikavaǌa iz F[X] na F[X]/〈f〉:

c 7→ c+ 〈f〉

je homomorfizam iz F u F[X]/〈f〉 koji jeste ”1-1” (c+〈f〉 = c′+〈f〉 ⇔ c−c′ ∈ 〈f〉 ⇔ c = c′).
Daǉe, da li u tom raxireǌu postoji element koji je nula polinoma f? Oznaqimo sa a
element iz koliqnika koji je odre�en polinomom X: a = X+〈f〉 i izraqunajmo vrednost
polinoma f u a (radǌa se, dakle, dexava u K = F[X]/〈f〉, rezultat �e biti neki element
iz koliqnika, odnosno neka klasa ideala 〈f〉). Neka je f = c0 + c1X + c2X

2 + · · ·+ cmXm.
Raqunamo:

f(a) = f(X + 〈f〉) = c0(1 + 〈f〉) + c1(X + 〈f〉) + c2(X + 〈f〉)2 + · · ·+ cm(X + 〈f〉)m

= c0(1+〈f〉)+c1(X+〈f〉)+c2(X
2+〈f〉)+· · ·+cm(Xm+〈f〉) = c0+c1X+c2X

2+· · ·+cmXm+〈f〉

= f(X) + 〈f〉 = f + 〈f〉 = 〈f〉 = 0K

Dakle, a je nula polinoma f u poǉu K!

Za sada smo konstruisali raxireǌe K poǉa F u kom f ima nulu. Pokaza�emo da je
to raxireǌe i prosto. Izraqunajmo stepen [K : F]. Po definiciji to je dimenzija
vektorskog prostora KF. Kod nas je K koliqnik F[X]/〈f〉. Xta je baza ovog vektorskog
prostora nad F? Elementi u koliqniku su oblika p + 〈f〉, gde p ∈ F[X]. Podeli�emo
p euklidski sa f i onda je p + 〈f〉 = fq + r + 〈f〉, odnosno p + 〈f〉 = r + 〈f〉 = b0 + b1X +
b2X

2 + · · · + bm−1X
m−1 + 〈f〉, gde je m = degf . Odavde sledi da jednu F-bazu koliqnika

qine elementi [1 + 〈f〉, X + 〈f〉, X2 + 〈f〉, . . . , Xm−1 + 〈f〉], pa je [K : F] = m = degf .
S druge strane je stepen raxireǌa [F[a] : F] po teoremi 0.23 jednak stepenu minimalnog
polinoma elementa a, a to je f (komentar s poqetka dokaza, a je nula od f , i f je
nerastavǉiv nad F): [F[a] : F] = degf . Kako je F[a] potpoǉe poǉa K, a iste su dimenzije
kao vektorski prostori nad F, bi�e K = F[a].

Dakle, konstruisali smo prosto raxireǌe K poǉa F u kom polinom f ima nulu a. To
smo uradili samo pomo�u polinoma f i datog poǉa F (K = F[a] = F[X]/〈f〉, pri qemu je
a = X + 〈f〉). Opet prema komentaru na poqetku dokaza, svako raxireǌe sa tra�enim
osobinama �e biti izomorfno ovom, F[α] ∼= F[X]/〈f〉, pa je ono i jedinstveno do na
izomorfizam.

Primer 0.47. Polinom X2 +1 je nerastavǉiv nad poǉem realnih brojeva, pa je prema
prethodnoj teoremi R[X]/〈X2 +1〉 raxireǌe poǉa R u kom ovaj polinom ima nulu. Ako
tu nulu oznaqimo sa i, teorema ka�e da je R[i] ∼= R[X]/〈X2 + 1〉. Kako je X2 + 1 stepena
dva, raxireǌe R[i] je oblika R[i] = {a + bi : a, b ∈ R}, a to je upravo poǉe kompleksnih
brojeva (imali smo ve� kod maksimalnih ideala da je R[X]/〈X2 + 1〉 ∼= C). Primetimo
da ovo raxireǌe sadr�i i drugu nulu datog polinoma.

Primer 0.48. Polinom X2 − 2 je nerastavǉiv nad poǉem racionalnih brojeva, pa
je prema prethodnoj teoremi Q[X]/〈X2 − 2〉 raxireǌe poǉa Q u kom ovaj polinom ima
nulu. Ako tu nulu oznaqimo sa

√
2, iz dokaza teoreme sledi da je Q[

√
2] ∼= Q[X]/〈X2−2〉.

Raxireǌe Q[
√
2] je oblika Q[

√
2] = {a+b

√
2 : a, b ∈ Q} i tako�e sadr�i drugu nulu datog

polinoma.
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Primer 0.49. Polinom X3 − 2 je nerastavǉiv nad poǉem racionalnih brojeva, pa je
prema prethodnoj teoremi Q[X]/〈X3 − 2〉 raxireǌe poǉa Q u kom ovaj polinom ima
nulu. Ako je oznaqimo sa 3

√
2, bi�e Q[ 3

√
2] ∼= Q[X]/〈X3 − 2〉. Poxto je polinom X3 − 2

stepena tri, raxireǌe Q[ 3
√
2] je oblika Q[ 3

√
2] = {a+b 3

√
2+c( 3

√
2)2 : a, b, c ∈ Q}. Me�utim,

ono ne sadr�i preostale dve nule ovog polinoma (one su kompleksne, a Q[ 3
√
2]⊂ R).

Definicija 0.28. Raxireǌe K poǉa F je korensko poǉe polinoma p ∈ F[X] ako u K
postoje elementi α1, α2, . . . , αn za koje je K = F[α1, α2, . . . , αn] i

p = a(X − α1)(X − α2) · · · (X − αn),

gde je a vode�i koeficijent polinoma p.

Dakle, K je minimalno raxireǌe poǉa F nad kojim p ima linearnu faktorizaciju.

Teorema 0.26. Neka je F proizvoǉno poǉe. Svaki polinom p ∈ F[X] stepena n ima bar
jedno korensko poǉe K = F[α1, α2, . . . , αn].

Dokaz. Indukcijom po n = deg p. Ako je n = 1, p je oblika p = a(X −α) za neke a, α ∈ F,
pa je ǌegovo korensko poǉe upravo K = F.
Pretpostavimo sada da svaki polinom stepena n − 1 ima korensko poǉe i uzmimo
proizvoǉan polinom p stepena n. Da bismo iskoristili induktivnu hipotezu, treba
nam ”jedna nula maǌe”. Zato �emo prvo uzeti bilo koji atom (nerastavǉiv poli-
nom) koji deli p (ako je sam p atom, uze�emo ǌega). Po prethodnom tvr�eǌu, postoji
raxireǌe F1 = F[α1] poǉa F u kom je α1 nula tog atoma p1 (samim tim i polinoma p).
Onda je

p = (X − α1)q,

gde je q neki polinom iz F1[X]. Poxto je deg q = n − 1, na osnovu induktivne pret-
postavke q ima korensko poǉe oblika F1[α2, . . . , αn], xto je daǉe F[α1][α2, . . . , αn], odnosno
F[α1, α2, . . . , αn] i to je istovremeno tra�eno korensko poǉe polinoma p.

U odnosu na to da li zaista treba proxiriti poǉe da bi sa svakim polinomom nad
ǌim sadr�alo i sve ǌegove nule, istiqemo slede�u klasu poǉa.

Definicija 0.29. Za poǉe F ka�emo da je algebarski zatvoreno ako se podudara sa
korenskim poǉem svakog polinoma iz F[X], to jest ako svaki polinom iz F[X] ima lin-
earnu faktorizaciju u F[X].

Definicija 0.30. Algebarsko zatvoreǌe poǉa F je minimalno algebarski zatvoreno
poǉe koje sadr�i F. To je, dakle, raxireǌe poǉa F koje je i algebarsko i algebarski
zatvoreno.

Primer 0.50. Poǉe kompleksnih brojeva je algebarski zatvoreno, dok poǉa realnih
i racionalnih brojeva nisu.
Poǉe kompleksnih brojeva je algebarsko zatvoreǌe poǉa realnih brojeva. Algebarsko
zatvoreǌe poǉa Q je poǉe svih kompleksnih algebarskih brojeva, Q[C] (imali smo
definiciju i oznaku u proxloj lekciji).
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Primer 0.51. Odrediti korensko poǉe K polinoma p i stepen raxireǌa [K : Q].

1) p = X4 − 4

Rastavǉamo p na linearne faktore tamo gde mo�emo, a u ovom sluqaju je to poǉe
kompleksnih brojeva:

p = (X2 − 2)(X2 + 2) = (X −
√
2)(X +

√
2)(X − i

√
2)(X + i

√
2).

Sledi da je korensko poǉe

K = Q[
√
2,−

√
2, i

√
2,−i

√
2] = Q[

√
2, i

√
2] = Q[

√
2, i]

(posledǌa jednakost se veoma lako pokazuje). Treba na�i stepen raxireǌa:

[K : Q] = [K : Q[
√
2]] · [Q[

√
2] : Q] = 2 · 2 = 4

([Q[
√
2] : Q] = 2 smo ve� imali, a [K : Q[

√
2]] = [Q[

√
2, i] : Q[

√
2]] = 2 jer je minimalni

polinom za i i nad Q[
√
2] tako�e X2 + 1 - to je ǌegov minimalni polinom nad Q, a nad

Q[
√
2] ostaje drugog stepena jer ako bi bio prvog, sledilo bi da i ∈ Q[

√
2] ⊂ R, xto nije

taqno).

2) p = X4 + 4

p = (X2 + 2)2 − 4X2 = (X2 + 2X + 2)(X2 − 2X + 2) = ((X + 1)2 + 1)((X − 1)2 + 1) =

= (X + 1 + i)(X + 1− i)(X − 1 + i)(X − 1− i)

Odavde je korensko poǉe
K = Q[1 + i, 1− i] = Q[i]

i lako nalazimo stepen raxireǌa

[K : Q] = [Q[i] : Q] = 2,

jer je minimalni polinom za i nad Q opet X2 + 1.


