Racunarski sistemi

Stefan Miskovié

7 Otkrivanje i korekcija gresaka

U racunaru prilikom prenosa podataka, bilo da se radi o dva udaljena uredaja ili
unutar jednog racunarskog sistema, moze doc¢i do pojave gresaka. Greske se mogu pojaviti
na prenosnom putu ili na lokacijama gde se nalaze otpremni i prijemni uredaji. One se
manifestuju tako Sto se jedan bit ili niz susednih bitova poremeti (umesto 0 na odredenom
mestu stoji 1, ili obratno). Postoje dva pristupa za otkrivanje gresaka:

o Kontrola greske unazad, kod koje se samo moze ustanoviti da li je doslo do greske
ili ne. Ukoliko jeste doslo do greske, poruka se Salje ponovo. Ovde se uz bitove
poruke Salju i odredeni dodatni bitovi, koji omogucavaju primaocu da otkrije pris-
ustvo greske. Sa povecanjem poruke, oni i dalje ne zauzimaju mnogo memorijskog
prostora. Zbog toga su najc¢es¢e pogodni pri komunikaciji izmedu dva udaljena
uredaja.

o Kontrola greske unapred, kod koje se moze ustanoviti da li je doslo do greske i
izvrsiti korekcija. Ukoliko jeste doslo do greske, korekcija se vrsi na odredenom bitu
ili bloku bitova. I ovde se uz bitove poruke salju dodatni bitovi, koji omogucavaju
primaocu ne samo da otkrije prisustvo greske, ve¢ i mesto na kome se ona nalazi.
Sa povecanjem poruke memorijski prostor koji oni zauzimaju brzo povecava. Zbog
toga su najcesé¢e pogodni pri komunikaciji unutar jednog ra¢unarskog sistema.

Izbor algoritma za otkrivanje gresaka zavisi od tipa greske i broja bitova sa greskom.
Tip greske moze biti pojedinacan ili proSiren. U prvom slucaju se radi o gresci na jednom
bitu, a u drugom o gresci na nizu uzastopnih bitova. Broj bitova sa greskom (eng.
bits error rate — BER) predstavlja verovatno¢u da jedan bit u definisanom vremenskom
intervalu ima gresku. Na primer, ako je BER = 107%, to znadi da u proseku 1 od 10°
bitova ima gresku u datom intervalu vremena.

U nastavku ¢e biti pomenuta tri pristupa za otkrivanje gresaka — kontrola parnosti,
kontrola zbira bloka i ciklicka provera redundanci. Bié¢e opisan i jedan metod za otkrivanje
i korekciju gresaka — Hamingov SEC kod.

7.1 Kontrola parnosti

Kod kontrole parnosti se uz poruku salje i dodatan bit koji ima vrednost 1 ako je broj
jedinica u poruci neparan, a vrednost 0 ako je broj jedinica paran. Na primer, pri slanju
poruke 101101 posiljalac ¢e nadovezati i bit 0, buduéi da je broj jedinica paran. Poruka
koja se salje je oblika 1011010. Ako nije doslo do greske, primalac ¢e tu poruku i primiti.
Neka je, na primer, doslo do greske na prvom bitu. Poruka koju dobija primalac je tada
0011010. Na osnovu dela 001101 primalac zaklju¢uje da ima neparan broj jedinica, a

kodiran bit je 0, ¢ime konstatuje da je doslo do greske. Na ovaj nacin se moze ustanoviti
da li je doslo do greske ako je promenjen neparan broj bitova. Ali ako dva bita promene
vrednosti, parnost ¢e ostati ista, pa se u tim slucajevima ne moze ustanoviti greska.

7.2 Kontrola zbira bloka

Kod kontrole zbira bloka se uz poruku salje i dodatan broj (zapisan u binarnom
sistemu na odgovarajuéi broj bitova) koji predstavlja broj jedinica u poruci. Na primer,
pri slanju poruke 101101 posiljalac ¢e nadovezati i broj 4, budué¢i da u njoj postoje 4
jedinice. Poruka koja se Salje je oblika 101101|4. Ako nije doslo do greske, primalac ¢e tu
poruku i primiti. Neka je, na primer, doslo do greske na treé¢em i ¢etvrtom bitu. Poruka
koju dobija primalac je tada 100001|4. Na osnovu dela 100001 primalac zakljucuje da
postoje dve jedinice, a kodiran broj je 4, ¢ime konstatuje da je doslo do greske. Na ovaj
nacin se moze ustanoviti da li je doslo do greske ako je promenjen broj bitova tako da broj
jedinica ne ostaje isti. Ali ako dva bita 0 i 1 promene vrednosti ili se izvrsi zamena dva
susedna bita, broj jedinica ¢e ostati isti, pa se u takvim situacijama ne moze ustanoviti
greska.

7.3 Ciklicka provera redundanci

Kod ciklicke provere redundanci (alternativni naziv je CRC metoda) posiljalac pri-
maocu Salje kodiranu poruku i polinom generator (koji ¢e u nastavku biti objasnjen).
Primalac na osnovu kodirane poruke i oblika polinoma generatora moze ustanoviti da
li je doslo do greske. Ukoliko nije doslo do greske, moze se iz kodirane poruke izdvojiti
pocetna poruka, a ako je doslo do greske, primalac javlja poSiljaocu da poruku ponovo
posalje.

Neka je poruka koju posiljalac treba da posalje primaocu 11100110. Posiljalac sam
bira polinom generator G(x), pri ¢emu je to bilo koji polinom ¢&iji koeficijenti mogu da
budu samo 0 ili 1. Neka je odabran polinom G(z) = z*+z®+ 1. Bududi da su koeficijenti
ovakvog polinoma binarne cifre, svaki polinom generator moze da ima svoj binarni zapis
koji se dobija izlistavanjem koeficijenata pocev od najviseg stepena. U nasem slucaju se
dobija da je

Gr)=a"+2°+1=1-2"+1-2°+0- 22 +0-2' +1-2°,

pa je binarni zapis polinoma G(z) dat sa 11001. Na poruku koja se Salje je potrebno dodati
onoliko nula koliki je stepen polinoma generatora (u ovom slucaju 4), a zatim izvrsiti
deljenje tog broja i binarnog ekvivalenta. Pritom je deljenje ta dva binarna broja nesto
jednostavnije od klasi¢nog deljenja, buduéi da se umesto oduzimanja u svakom koraku vrsi
ekskluzivna disjunkcija, i samim tim nema ni pozajmica. U nasem sluc¢aju se na pocetnu
poruku 11100110 nadovezuje niska 0000, a dobijeni binarni zapis se deli sa 11001. U
osnovi, ovde se pocetna poruka takode moze zameniti polinomom, a nadovezivanje k
nula (gde je k stepen polinoma G(x)) predstavlja mnoZenje te poruke sa x*. Deljenje sa
binarnim zapisom polinoma je zapravo deljenje sa polinomom G(z). Medutim, u nasem
sluc¢aju ¢e sve biti zapisano binarnim brojevima, jer je tako zapis znatno jednostavniji.
Kod ovog deljenja nije od znacaja koli¢nik, ve¢ samo ostatak. Postupak deljenja je sledeéi:

111001100000 / 11001
11001
10111
11001
11100
11001
10100
11001
11010
11001
110

Poruka koja se salje primaocu je pocetna poruka na koju je nadovezan ostatak. Os-
tatak je potrebno dopuniti vode¢im nulama, tako da bude zapisan na onoliko mesta koliki
je stepen polinoma. Dakle, ostatak postaje 0110, a poruka koja se salje je 111001100110.
Uz takvu kodiranu poruku treba poslati i polinom generator G(z) = z* + 23 + 1.

Razmotrimo sada kroz primer i obrnut scenario. Neka je do primaoca stigla kodirana
poruka 1100101101 i polinom generator G(z) = z*+1 koji je izabrao posiljalac. Primalac
najpre ustanovljava da je binarni zapis polinoma G(z) dat sa 101, buduéi da je G(x) =
1-2240-2'+1-2°. Primalac sada vrsi deljenje kodirane poruke i binarnog zapisa polinoma,
na analogan nacin kao u prethodnom sluc¢aju. U osnovi tog deljenja se vrsi deljenje dva
polinoma — kodirane poruke koja se moze predstaviti polinomom sa koeficijentima 0 i 1
i polinoma generatora G(x). Postupak deljenja izgleda ovako:

1100101101 / 101
101
110
101
111
101
100
101
111
101
100
101
11

Ako je ostatak 0, poruka je uspesno primljena, a inace to nije slucaj. Ovde je ostatak
11, pa poruka nije uspesno primljena. Primalac tada sugerise posiljaocu da poruku
ponovo posalje. Da poruka jeste uspesno primljena, bilo bi potrebno odrediti njen polazni
oblik. Ako je stepen polinoma generatora k, polazni oblik poruke se dobija odbacivanjem
njenih poslednjih £ bitova.

7.4 Hamingov SEC kod

Hamingov SEC kod (SEC kod je skracenica od engleskog termina single error detection
code), za razliku od prethodnih algoritama, moZe da otkrije postojanje greske i da izvrsi
korekciju na bitu na kome se greska pojavila. Algoritam ¢e biti objasnjen na primeru

konkretne poruke koja ima 12 bitova. Svaka poruka koja ¢e biti razmatrana ¢e u nasem
sluc¢aju imati isto toliko bitova.

Pretpostavimo da je kodirana poruka koju je posiljalac poslao primaocu 101001100110.
Ovo znaci da prvih 8 bitova predstavlja bitove poruke, a poslednja 4 kontrolne bitove.
Primalac ¢e sada na osnovu bitova poruke generisati svoje kontrolne bitove i uporediti
ih sa kontrolnim bitovima koju mu je prosledio posiljalac. Na osnovu toga ¢e zakljuciti
da li je doslo do greske na nekom bitu, i ako jeste odraditi potrebne korekcije. Neka su
bitovi poruke oznaceni sa msg, ..., mq, a kontrolni bitovi sa ¢y, ..., c; na slede¢i nacin:

mg | My | Mg | Ty | TNy | T3 | TN | TN | C4 | C3 | C2 | C1

r1{oy1}0(0}1 1T }]00]1T]1]0

Sada je potrebno formirati tablicu Hamingovih SEC kodova. U prvoj koloni su dekadni
brojevi od 12 do 1, u drugoj koloni odgovarajué¢i binarni brojevi zapisani pomocu 4 bita,

a u trecoj se svakom broju (od 12 do 1) dodeljuje neki od bitova ms, ..., my, ¢y, ..., 1.
Bitovi ¢y, ..., c¢; se dodeljuju onim brojevima koji su stepeni dvojke (brojevima 1, 2, 4 i
8), a na preostala mesta se dodaju bitovi msg, ..., m; na nacin prikazan u sledeéoj tabeli:

12 | 1100 | mg

11 | 1011 | my

10 | 1010 | mg

9 | 1001 | ms

8 | 1000 | ¢4

7 1 0111 | my

6 | 0110 | ms

5 | 0101 | my

4 10100 | c3

3 | 0011 | my

2 10010 | co

1 10001 | ¢
Zatim se izracunavaju kontrolni bitovi ¢, ...,] preko bitova msg, ..., m; tako sto se

redom u cetvrtoj, trecoj, drugoj i prvoj koloni svih binarnih zapisa iz tabele u odgo-
varaju¢u formulu ubace oni bitovi m; ¢ija je vrednost 1 i izvrsi se njihova ekskluzivna
disjunkcija. Drugim recima, vazi:

G=ms®mgdm;Emg=0010061=0,
G=ma@®mzdEmyPEmg=1010001=1,
G=mEm3dmdmgdm; =01000100=0,
G=mi@&me®EmyEmsdm;=001606060=1.

Konacno, izra¢unava se vrednost cycszcac; @ cycschc) = 0110 @ 0101 = 0011. U tabeli,
u redu gde je broj 0011, nalazi se bit m;. To znaci da je doslo do greske bas na tom bitu i
da je tu vrednost bita potrebno invertovati. Zbog toga je ispravna poruka 10100111. Ako
je u pravcu odgovaraju¢eg broja u tabeli neka od vrednosti cy, ..., c; ili ako je rezultat
poslednje ekskluzivne disjunkcije broj koji se ne nalazi u tabeli (dekadna vrednost mu je
manja od 1 ili veéa od 12), ne dolazi do greske.

