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1 Iskazi, promenljive i predikati

Iskaz je rečenica ili matematički izraz koji ima istinitosnu vrednost, tj. tačan je ili netačan.1 Npr. rečenica
„Površina kvadrata stranice a jednaka je a2.” je primer tačnog iskaza, „Svaki prvougaonik je kvadrat.” je primer
netačnog iskaza, „Izračunati obim kvadrata stranice a.” nije iskaz. Slično, izraz „sin π

4
=
√
2
2

” je primer tačnog
iskaza, „sin π

4
= 5” je primer netačnog iskaza, dok „sinx =

√
2
2

” nije iskaz.
Tačnost iskaza često zavisi od (matematičkog) konteksta, pa je tako iskaz „Ako su u ravni π date prava p

i tačka P van nje, onda u π postoji jedinstvena prava koja prolazi kroz P i ne seče p.” tačan u euklidskoj
geometriji (geometrija sa kojom smo upoznati), ali je netačan u hiperboličkoj geometriji. Takođe, ponekad je
jasno da je neka rečenica iskaz, ali njeova tačnost nije poznata. Npr. „Svaki paran prirodan broj veći od dva je
zbir dva prosta broja.” očigledno jeste iskaz (ovo bi trebalo da je ili tačno ili netačno), međutim tačnost ovog
iskaza nije poznata (u pitanju je čuvena Goldbahova hipoteza).

U matematici postoji nekoliko standardnih konstrukcija kojima polazeći od prostijih iskaza gradimo složenije.
Negacija iskaza φ je iskaz „Ne važi φ.” koji obeležavamo sa ¬φ (čitamo „ne φ”). Tačnost iskaza ¬φ suprotna

je tačnosti iskaza φ (ako je φ tačan, ¬φ je netačan, i ako je φ netačan, ¬φ je tačan). To najčešće zapisujemo
sledećom istinitosnom tablicom:

φ ¬φ

T N

N T

Konjunkcija iskaza φ i ψ je iskaz „Važe oba φ i ψ.” koji obeležavamo sa φ∧ψ (čitamo „φ i ψ”). Konjunkcija
φ ∧ψ je tačna samo u slučaju da su oba iskaza φ i ψ tačni:

φ ψ φ ∧ψ

T T T

T N N

N T N

N N N

(Inkluzivna) disjunkcija iskaza φ i ψ je iskaz „Važi bar jedan od φ i ψ.” koji obeležavamo sa φ∨ψ (najčešće
čitamo „φ ili ψ”). Disjunkcija φ ∨ψ je netačna samo u slučaju da su oba iskaza φ i ψ netačni:

φ ψ φ ∨ψ

T T T

T N T

N T T

N N N

Ekskluzivna disjunkcija iskaza φ i ψ je iskaz „Važi tačno jedan od φ i ψ.” koji obeležavamo sa φ∨ψ (najčešće
čitamo „ili φ ili ψ”2). Ekskluzivna disjunkcija φ∨ψ je tačna samo kada je jedan od iskaza φ i ψ tačan a drugi
netačan:

φ ψ φ ∨ψ

T T N

T N T

N T T

N N N

1U ovom tekstu tačno obeležavamo sa T , a netačno sa N .
2Primetite razliku, φ ∨ψ se čita „φ ili ψ”, a φ ∨ψ se čita „ili φ ili ψ”.
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(Materijalna) implikacija iskaza φ i ψ je iskaz „Ako važi φ, onda važi ψ.” koji obeležavamo sa φ → ψ

(čitamo „ako φ, onda ψ”, ili „iz φ sledi ψ”, ili „φ povlači ψ”, ili „ψ, ako φ”, ili „φ, samo ako ψ”, ili „φ je
dovoljan uslov za ψ”, ili „ψ je potreban uslov za φ”). Iskaz φ→ ψ je netačan samo u slučaju da je φ tačan i ψ
netačan:

φ ψ φ→ ψ

T T T

T N N

N T T

N N T

Ekvivalencija iskaza φ i ψ je iskaz „Iskazi φ i ψ su jednake ťačnosti.” koji obeležavamo sa φ↔ ψ (čitamo
„φ ako i samo ako ψ”, ili „φ je ekvivalentno sa ψ”, ili „φ je potreban i dovoljan uslov za ψ”). Ekvivalencija je
tačna samo kada su φ i ψ jednake tačnosti:

φ ψ φ↔ ψ

T T T

T N N

N T N

N N T

Promenljiva je simbol koji koristimo da predstavimo matematičke objekte. Univerzum diskursa neke promenljive
je skup čije objekte ona predstavlja (tj. skup u kome ona uzima vrednosti). Univerzum diskursa je najčešće
jasan iz konteksta. Univerzum diskursa promenljive x ćemo obeležavati sa Ux. Npr. ako posmatramo izraz
„sinx =

√
2
2

”, dosadašnje matematičko obrazovanje nam kaže da x uzima vrednosti u skupu R, tj. Ux = R.
Slično, ako posmatramo izraz „p ∥ q”, najverovatnije govorimo o paralelnosti dve prave, tj. promenljive p i q
predstavljaju prave, pa je Up = Uq neki skup pravih. Nekada nam je univerzum diskursa promenljive eksplicitno
rečen u tekstu. Npr. u zadatku: „Naći realna rešenja jednačine x +

√
3 +
√
x = 3.”, eksplicitno nam je rečeno da

je Ux = R.
Predikat je rečenica ili matematički izraz u kome figuriše jedna ili više promenljivih, a koji postaje iskaz

(tačan ili netačan) kada svaka promenljiva uzme konkretnu vrednost iz svog univerzuma diskursa. Tako je npr.
„x je prost broj” predikat u kome figuriše promenljiva x čiji je univerzum diskursa najverovatnije skup prirodnih
brojeva. Ako prethodni predikat obeležimo sa P (x), vidimo da je P (3) tačan iskaz, a da je P (4) netačan iskaz.
Ako sa Q(x, a, b, c) obeležimo predikat „ax2 + bx + c = 0”, gde je Ux = C i Ua = Ub = Uc = R, lako vidimo da je
npr. Q(i,1,0,1) tačan iskaz, a da je npr. Q(−1,2,1,1) netačan iskaz.

Neka je P (x) predikat. Iskaz „Za svaki objekat t (odgovarajućeg univerzuma diskursa Ux) iskaz P (t) je
tačan." obeležavamo sa (∀x)P (x), i čitamo „Za svako x važi P (x).” Dakle, iskaz (∀x)P (x) je tačan ako je
iskaz P (t) tačan za sve t ∈ Ux. Npr. iskaz (∀x)x2 ⩾ 0, gde je Ux = R, jeste tačan jer je kvadrat svakog realnog
broja nenegativan; iskaz (∀x)x2 > 0, gde je ponovo Ux = R, je netačan jer kvadrat nule nije pozitivan. Simbol
∀ se zove univerzalni kvantifikator, a za iskaz (∀x)P (x) kažemo da je dobijen univerzalnom kvantifikacijom.

Standardne iskazne konstrukcije (negacija, konjunkcija, itd.) mogu da se primenjuju i na predikate, pri čemu
dobijamo komplikovanije predikate. Vrednosti takvih predikata se računaju kao i u slučaju iskaza.

Neka je i dalje P (x) predikat. Iskaz „Za neki (bar jedan) objekat t (odgovarajućeg univerzuma diskursa Ux)
iskaz P (t) je tačan." obeležavamo sa (∃x)P (x), i čitamo „Postoji x tako da važi P (x).”, ili „Za neko x važi
P (x).” Iskaz (∃x)P (x) je tačan ako je iskaz P (t) tačan za bar jedan objekat t ∈ Ux. Npr. iskaz (∃x)x2 ⩽ 0,
Ux = R, je tačan jer je kvadrat nule jednak nuli; iskaz (∃x)x2 < 0, Ux = R, je netačan. Simbol ∃ se zove
egzistencijalni kvantifikator, a za iskaz (∃x)P (x) kažemo da je dobijen egzistencijalnom kvantifikacijom.

Kvantifikaciju možemo da primenimo i na predikate sa više promenljivih, ali u tom slučaju ne dobijamo
iskaz nego novi predikat. Neka je P (x, y1, . . . , yn) predikat. Tada je (∀x)P (x, y1, . . . , yn) novi predikat čije su
promenljive y1, . . . , yn određen na sledeći način: za objekte t1 ∈ Uy1 , . . . , tn ∈ Uyn iskaz (∀x)P (x, t1, . . . , tn) je
tačan ako je za sve objekte s ∈ Ux iskaz P (s, t1, . . . , tn) tačan. Slično, (∃x)P (x, y1, . . . , yn) je novi predikat čije
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su promenljive y1, . . . , yn određen sa: za objekte t1 ∈ Uy1 , . . . , tn ∈ Uyn iskaz (∃x)P (x, t1, . . . , tn) je tačan ako je
za neki (bar jedan) objekat s ∈ Ux iskaz P (s, t1, . . . , tn) tačan. Na ovako dobijene predikate ponovo možemo da
primenimo postupak kvantifikacije, pa npr. možemo da dobijemo iskaz (∀x)(∃y)P (x, y) ili (∃x)(∃y)P (x, y),
itd.

Neka je P (x) predikat i S ⊆ Ux. Ograničenja kvantifikatora na skup S su iskazi (∀x ∈ S)P (x) i (∃x ∈ S)P (x)
definisani sa:

(∀x ∈ S)(x ∈ S → P (x)) i (∃x ∈ S)(x ∈ S ∧ P (x)).

Primetimo da (∀x ∈ S)P (x) ima značenje „za sve t ∈ S važi iskaz P (t)”, i da (∃x ∈ S)P (x) ima značenje „za
bar jedan t ∈ S važi iskaz P (t)”. Na isti način definišemo ograničenja kvantifikatora (∀x ∈ S)Q(x, y1, . . . , yn) i
(∃x ∈ S)Q(x, y1, . . . , yn).

Primetimo, specijalno, da je iskaz (∀x ∈ ∅)P (x) uvek logički tačan, a iskaz (∃x ∈ ∅)P (x) uvek logički
netačan. Zaista, za svako t ∈ Ux imamo:

t ∈ ∅
´¸¶
N

→ P (t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T

i t ∈ ∅
´¸¶
N

∧P (t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N

.

Slično, predikat (∀x ∈ ∅)Q(x, y1, . . . , yn) je tačan nezavisno od izbora vrednosti za promenljive y1, . . . , yn, a
predikat (∃x ∈ ∅)Q(x, y1, . . . , yn) je netačan nezavisno od izbora vrednosti za promenljive y1, . . . , yn.

2 Iskazna logika

2.1 Izgradnja iskazne formule

Definicija 2.1. Iskazne formule su konačni nizovi sledećih simbola:

• iskaznih slova koje obično zapisujemo malim latiničnim slovima p, q, r, . . . , moguće sa indeksima; skup
iskaznih slova obeležavamo sa P ;

• logičkih konstanti: � (kontradikcija) i ⊺ (tautologija);

• logičkih veznika: ¬ (negacija), ∧ (konjunkcija), ∨ (disjunkcija), ∨ (ekskluzivna disjunkcija), → (implikacija)
i ↔ (ekvivalencija);

• pomoćnih simbola zagrada.

Iskazne formule gradimo primenom sledećih pravila u konačno mnogo koraka:

● iskazna slova i konstante su iskazne formule;

● ako su φ i ψ (već izgrađene) iskazne formule, onda su i ¬φ, (φ∧ψ), (φ∨ψ), (φ∨ψ), (φ→ ψ) i (φ↔ ψ)

iskazne formula.

Skup svih iskaznih formula obeležavamo sa Φ.

Ako je nedvosmisleno jasno o kojoj formuli je reč, brisaćemo višak zagrada (npr. spoljne zagrade). Pri tome
podrazumevamo da veznik ¬ ima najviši prioritet, ∨ i ∧ srednji preoritet, a ∨, → i ↔ najniži prioritet, pa tako
sa ¬p ∨ q → r ∧ ¬s je kraće zapisana formula (((¬p) ∨ q) → (r ∧ (¬s))).

Komentar 2.2. Primetimo da je u svakoj formuli broj pojavljivanja iskaznih slova i broj pojavljivanja veznika
konačan. Konačan skup iskaznih slova koja se pojavljuju u formuli φ obeležavamo sa P (φ), a broj pojavljivanja
veznika u formuli φ obeležavamo sa sl(φ) i zovemo ga složenost formule φ.
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Komentar 2.3. Ako je sl(φ) = 0, onda je φ konstanta ili slovo. Ako je sl(φ) > 0, onda je φ oblika ¬ψ, ili
oblika ψ ∗ θ za neki veznik ∗ ∈ {∧,∨,∨,→,↔}. Ako je φ oblika ¬ψ, primetimo da je sl(ψ) = sl(φ) − 1 < sl(φ)

(zaista, φ ima jedan veznik ¬ više od ψ); ako je φ oblika ψ∗θ, primetimo da je sl(ψ)+sl(θ) = sl(φ)−1 (zaista,
φ ima jedan veznik ∗ više od ψ i θ zajedno), odakle sledi sl(ψ) < sl(φ) i sl(θ) < sl(φ).

Takođe, P (�) = P (⊺) = ∅ i P (p) = {p}. Ako je φ oblika ¬ψ, primetimo da je P (φ) = P (ψ). Ako je φ oblika
ψ ∗ θ, primetimo da je P (φ) = P (ψ) ∪ P (θ); specijalno, P (ψ) ⊆ P (φ) i P (θ) ⊆ P (φ).

2.2 Semantika iskazne logike

Definicija 2.4. Valuacija je bilo koje dodeljivanje tačnosti iskaznim slovima: v ∶ P → {T,N}. Skup svih
valuacija obležavaćemo sa V.

Za fiksiranu valuaciju v određujemo istinitosnu vrednost svake formule φ pri valuaciji v, u oznaci v̂(φ),
rekurento po izgradnji formule na sledeći način:

● v̂(�) = N i v̂(⊺) = T ;

● v̂(p) = v(p) za svako slovo p ∈ P ;

● v̂(¬φ) tačunamo po tablici za negaciju:
v̂(φ) v̂(¬φ)

T N

N T

● v̂(φ ∧ψ), v̂(φ ∨ψ), v̂(φ ∨ψ), v̂(φ→ ψ) i v̂(φ↔ ψ) računamo po tablicama:

v̂(φ) v̂(ψ) v̂(φ ∧ψ) v̂(φ ∨ψ) v̂(φ ∨ψ) v̂(φ→ ψ) v̂(φ↔ ψ)

T T T T N T T

T N N T T N N

N T N T T T N

N N N N N T T

Ako je v̂(φ) = T (formula φ je tačna pri valuaciji v), to još zapisujemo sa v ⊧ φ i čitamo v zadovoljava
formulu φ. Ako je v̂(φ) = N (formula φ je netačna pri valuaciji v), to još zapisujemo sa v /⊧ φ i čitamo v poriče
(ili ne zadovoljava) formulu φ.

Intuitivno je jasno da vrednost formule pri valuaciji v zavisi samo od vrednosti konačno mnogo slova koja
se u toj formuli pojavljuju. To ćemo strogo i da dokažemo.

Teorema 2.5. Neka φ ∈Φ i v ∈ V. Vrednost v̂(φ) zavisi samo od vrednosti valuacije v na skupu slova P (φ).

Dokazi teorema koje govore o formulama (kao što je prethodna teorema) najčešće se izvode koristeći princip
potpune indukcije.

Digresija: Princip potpune indukcije

Skup prirodnih brojeva je N = {0,1,2,3,4, . . .}.

Princip matematičke indukcije je jedan od osnovnih postupaka za dokazaivanje u matematici. U pitanju je
sledeće tvrđenje:

Aksioma 2.6 (Princip matematičke indukcije). Neka je P (n), n ∈ N, predikat. Ako su tačni iskazi:

• P (0), i (baza indukcije)

• (∀n)(P (n) → P (n + 1)), (indukcijski korak)
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onda je i iskaz (∀n)P (n) tačan.

Primetimo da je princip matematičke indukcije intuitivno jasan. Naime, baza indukcije kaže da je P (0)

tačan iskaz. Iz koraka znamo da je P (0) → P (1) tačan iskaz, pa kako je P (0) tačan, zaključujemo i da je P (1)

tačan. Ponovo iz koraka znamo da je P (1) → P (2) tačan iskaz, pa kako je P (1) tačan, zaključujemo i da je
P (2) tačan. Nastavljajući ovaj postupak zaključujemo da je (∀n)P (n) tačan iskaz.

Dokaz iskaza (∀n)P (n) koristeći princip matematičke indukcije svodi se na dokaz baze indukcije (iskaza
P (0)) i indukcijskog koraka (iskaza (∀n)(P (n) → P (n + 1))). Baza indukcije obično je stvar lake provere. Za
dokaz indukcijskog koraka uočavamo proizvoljno n ∈ N i dokazujemo implikaciju P (n) → P (n + 1). Za dokaz
poslednje implikacije obično koristimo postupak dedukcije: pretpostavljamo da važi P (n), što je pretpostavka
koju nazivamo indukcijska hipoteza i obeležavamo sa (IH), i cilj je da dokažemo P (n+1) pogodno koristeći (IH).

Sam zapis dokaza indukcijom obično je sledećeg oblika:
Dokažimo (∀n)P (n) indukcijom po n.
Baza indukcije. Proveravamo da važi P (0).
Indukcijski korak. Neka je n ∈ N proizvoljno.

Pretpostavimo P (n) (IH), i dokažimo P (n + 1).
Sada pišemo dokaz za P (n + 1) pogodno koristeći (IH).

Navedimo nekoliko primera primene principa matematičke indukcije.

Primer 2.7. Dokazati 64 ∣ 32n+2 − 8n − 9 za sve n ∈ N.

Rešenje. Dokažimo (∀n)64 ∣ 32n+2 − 8n − 9 indukcijom po n.
Baza indukcije. Za n = 0 proveravamo 64 ∣ 32⋅0+2 − 8 ⋅ 0 − 9, tj. 64 ∣ 0, što je trivijalno tačno.
Indukcijski korak. Neka je n ∈ N proizvoljno. Pretpostavimo 64 ∣ 32n+2 − 8n − 9 (IH), i dokažimo 64 ∣

32(n+1)+2 − 8(n + 1) − 9. Imamo sledeći račun:
32(n+1)+2 − 8(n + 1) − 9 = 9 ⋅ 32n+2 − 8n − 17

= 9 ⋅ (32n+2 − 8n − 9) + 64n + 64 nameštamo na (IH).
Po (IH) 64 deli prvi sabirak, dok su drugi i treći očigledno deljivi sa 64. Prema tome, 64 deli ceo zbir, tj.
64 ∣ 32(n+1)+2 − 8(n + 1) − 9, što smo i želeli da dokažemo.

Princip matematičke indukcije možemo da koristimo i za iskaze oblika (∀n ⩾ n0)P (n). U tom slučaju baza
je iskaz P (n0), a korak je iskaz (∀n ⩾ n0)(P (n) → P (n + 1)).

Primer 2.8. Dokazati 2n > n2 za sve n ⩾ 5.

Rešenje. Dokažimo (∀n ⩾ 5)2n > n2 indukcijom po n.
Baza indukcije. Za n = 5 proveravamo 25 > 52, tj. 32 > 25 što jeste tačno.
Indukcijski korak. Neka je n ⩾ 5 proizvoljno, pretpostavimo 2n > n2 (IH), i dokažimo 2n+1 > (n + 1)2.

Izvodimo sledeći račun:
2n+1 = 2 ⋅ 2n

> 2 ⋅ n2 po (IH)
= n2 + n2

> n2 + 2n + 1 jer n2 > 2n + 1 za n ⩾ 5

= (n + 1)2.
(U pretposlednjem koraku smo koristili n2 > 2n + 1 ako i samo ako (n − 1)2 > 2, što za n ⩾ 5 jeste tačno jer je
tada n − 1 ⩾ 4, pa je (n − 1)2 ⩾ 16 > 2.) Prema tome, dokazali smo 2n+1 > (n + 1)2, kao što smo i želeli.

Ponekad u dokazima iskaza (∀n)P (n) ili (∀n ⩾ n0)P (n) nije lako ustanoviti indukcijski korak, ali je moguće
ustanoviti implikacije oblika P (n) ∧ P (n + 1) → P (n + 2) ili P (n) ∧ P (n + 1) ∧ P (n + 2) → P (n + 3), ili opštije
P (n) ∧ P (n + 1) ∧ ⋅ ⋅ ⋅ ∧ P (n + (k − 1)) → P (n + k) za neko fiksirano k ⩾ 2. U tom slučaju takođe je moguće
iskoristiti princip indukcije, pri čemu je baza iskaz P (n0) ∧ P (n0 + 1) ∧ ⋅ ⋅ ⋅ ∧ P (n0 + k), a korak je iskaz (∀n ⩾
n0)(P (n) ∧ P (n + 1) ∧ ⋅ ⋅ ⋅ ∧ P (n + k − 1) → P (n + k)).
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Primer 2.9. Niz (an) definisan je sa a0 = 0, a1 = 1, a2 = 4 i an+3 = 3an+2 − 3an+1 + an za sve n ∈ N. Dokazati
an = n

2 za sve n ∈ N.

Rešenje. Dokaz izvodimo indukcijom po n sa tri indukcijske hipoteze.
Baza indukcije. Za n = 0, n = 1 i n = 2 imamo a0 = 0 = 0

2, a1 = 1 = 12 i a2 = 4 = 22 direktno po definiciji.
Indukcijski korak. Neka je n ∈ N proizvoljno, pretpostavimo an = n

2, an+1 = (n + 1)2 i an+2 = (n + 2)2 (IH),
i dokažimo an+3 = (n + 3)2. Krenimo s leve strane:

an+3 = 3an+2 − 3an+1 + an po definiciji
= 3(n + 2)2 − 3(n + 1)2 + n2 po (IH)
= 3n2 + 12n + 12 − 3n2 − 6n − 3 + n2

= n2 + 6n + 9

= (n + 3)2,
kao što smo i želeli.

Iskaz (∀n)P (n) moguće je zaključiti ako znamo da za svako n ∈ N možemo zaključiti P (n) koristeći sve
P (m) za m < n kao hipoteze. Odgovarajući princip će nam posebno biti koristan:

Teorema 2.10 (Princip potpune indukcije). Neka je P (n), n ∈ N, predikat. Ako je tačan iskaz:

• (∀n)((∀m < n)P (m) → P (n)),

onda je i iskaz (∀n)P (n) tačan.

Dokaz. Uočimo predikat Q(n)∶ (∀m < n)P (n); pretpostavka teoreme tada glasi (∀n)(Q(n) → P (n)). Prime-
timo da je dovoljno da dokažemo (∀n)Q(n). Zaista, tada je za proizvoljno k iskaz Q(k+1) tačan, pa je specijalno
tačan i iskaz P (k), odakle zaključujemo (∀n)P (n) (jer je k bilo proizvoljno). Tačnost iskaza (∀n)Q(n) dokazu-
jemo koristeći princip matematičke indukcije.

Baza indukcije. Iskaz Q(0)∶ (∀m < 0)P (m) je logički tačan jer je (∀m < 0) ograničenje univerzalnog kvan-
tifikatora na prazan skup.

Indukcijski korak. Neka je k proizvoljno, i pretpostavimo da je iskaz Q(k) ∶= (∀m < k)P (m) tačan. Prime-
timo da je Q(k+1) logički ekvivalentan sa Q(k)∧P (k), prema tome dovoljno je da dokažemo da je P (k) tačan.
Međutim to sledi iz pretpostavke teoreme (∀n)(Q(n) → P (n)) i indukcijske hipoteze Q(k).

Da bismo potpunom indukcijom dokazali (∀n)P (n), postupamo na sledeći način: za proizvoljno n ∈ N
pretpostavljamo (∀m < n)P (k), i cilj nam je da dokažemo P (n). Primetimo da princip potpune indukcije ne
zahteva bazni korak, međutim u praksi je obično potrebno razmotriti nekoliko specijalnih slučajeva koje možemo
smatrati bazom.

Primer 2.11. Niz (an) definisan je sa a0 = 0 i an = a⌊n
3
⌋ + 1 za n ⩾ 1. Dokazati log3(n + 1) ⩽ an za sve n ∈ N.

Rešenje. Dokaz izvodimo potpunom indukcijom po n. Neka je n ∈ N proizvoljno, pretpostavimo (∀m <

n) log3(m + 1) ⩽ am (IH), i dokažimo log3(n + 1) ⩽ an. S obzirom na definiciju niza, razmotrićemo dva
slučaja.

1○ n = 0: Treba da proverimo log3 1 ⩽ a0, tj. 0 ⩽ 0, što je očigledno tačno.
2○ n ⩾ 1: Imamo sledeći račun:
an = a⌊n

3
⌋ + 1 po definiciji

⩾ log3(⌊
n
3
⌋ + 1) + 1 po (IH) jer ⌊n

3
⌋ < n za n ⩾ 1

⩾ log3
n+1
3
+ 1 jer ⌊n

3
⌋ + 1 ⩾ n+1

3

= log3(n + 1).
(Iskorišćena nejednakost ⌊n

3
⌋ + 1 ⩾ n+1

3
ekvivalentna je sa n

3
− ⌊n

3
⌋ ⩽ 2

3
, koju lako dokazujemo ako razmotrimo

slučajeve n = 3m, n = 3m + 1 i n = 3m + 2, za m ∈ N.) Dokazali smo željenu nejednakost.

Primer 2.12. Data je šahovska tabla koja je beskonačna „u desno" i „na gore". U donjem levom uglu nalazi
se skakač. Dokazati da skakač može da pređe na bilo koje drugo polje u konačno mnogo poteza.
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Rešenje. Numerišimo polje u n-tom redu i m-toj koloni sa (m,n), m,n ⩾ 0. Prema tome, skakač je na početku
na polju (0,0) i mi želimo da dokažemo da skakač može da pređe u konačno mnogo koraka na polje (m,n) za
proizvoljne m i n. Dokaz ćemo izvesti potpunom indukcijom po k =m + n.

Neka je k ∈ N proizvoljno, pretpostavimo da skakač može da dođe na polje (m′, n′) za m′ + n′ < k (IH), i
dokažimo da skakač može da dođe na polje (m,n) za m+n = k. Ako je m ⩾ 2, m−2 ∈ N i (m−2)+(n+1) <m+n = k,
pa po (IH) skakač može da dođe na polje (m−2, n+1). Odatle u jednom skoku dolazimo na polje (m,n). Slično,
ako je n ⩾ 2, po (IH) skakač može da dođe na polje (m+1, n−2), odakle u jednom skoku dolazi na polje (m,n).

m − 2 m

n

n + 1

m m + 1

n − 2

n

Prema tome imamo samo nekoliko specijalnih slučajeva da proverimo. Treba da dokažemo da možemo da
dođemo na polja (m,n) za m,n < 2, tj. do polja (0,0), (0,1), (1,0) i (1,1). Za (0,0) nemamo šta da dokažemo
(već se nalazimo na tom polju). Nizom skokova (0,0) ↦ (2,1) ↦ (1,3) ↦ (0,1) dolazimo do (0,1), simetričnim
nizom (0,0) ↦ (1,2) ↦ (3,1) ↦ (1,0) dolazimo do (1,0), a nizom (0,0) ↦ (2,1) ↦ (0,2) ↦ (2,3) ↦ (1,1)
dolazimo do (1,1).

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Semantika iskazne logike (nastavak)

Dokažimo sada teoremu 2.5:

Dokaz teorema 2.5. Uočimo predikat P (n), n ∈ N: Za svaku formulu φ složenosti n, vrednost v̂(φ) zavisi samo
od vrednosti valuacije v na skupu slova P (φ). Primetimo da je dovoljno da dokažemo iskaz (∀n)P (n). To
ćemo da uradimo potpunom indukcijom po n.

Neka je n ∈ N proizvoljno, pretpostavimo da gornje tvrđenje važi za formule složenosti m < n (IH), i
dokažimo ga za formulu φ složenosti n. U skladu sa definicijom 2.1, razmatramo sledeće slučajeve:

1○ φ je konstanta: Ako φ = �, po definiciji 2.4, v̂(φ) = v̂(�) = N nezavisno od v . Slično, ako je φ = ⊺,
v̂(φ) = T nezavisno od v.

2○ φ je slovo: Neka je φ = p; tada P (φ) = {p}. Po definiciji 2.4 imamo v̂(φ) = v̂(p) = v(p); vrednost na
desnoj strani očigledno zavisi samo od vrednosti valuacije v na skupu P (φ).

3○ φ = ¬ψ: Primetimo sl(ψ) = n − 1 < n i P (ψ) = P (φ). Po (IH) imamo da v̂(ψ) zavisi samo od vrednosti
valuacije v na skupu P (ψ), a po definiciji 2.4, v̂(φ) zavisi samo od vrednosti v̂(ψ); dakle, v̂(φ) zavisi samo od
vrednosti valuacije v na skupu P (ψ) = P (φ).

4○ φ = ψ ∗ θ, ∗ ∈ {∧,∨,∨,→,↔}: Primetimo sl(ψ), sl(θ) < sl(φ) = n i P (φ) = P (ψ) ∪ P (θ). Po (IH)
znamo da v̂(ψ) i v̂(θ) zavise samo od vrednosti valuacije v redom na skupovima P (ψ) i P (θ), a po definiciji
2.4, v̂(φ) zavisi samo od vrednosti v̂(ψ) i v̂(θ); dakle, v̂(φ) zavisi samo od vrednosti valuacije v na skupu
P (ψ) ∪ P (θ) = P (φ).

Završili smo dokaz.

Definicija 2.13. Formula φ je:

8



• zadovoljiva ako za neku valuaciju v važi v̂(φ) = T (pišemo i v ⊧ φ i čitamo „v zadovoljava φ”, ili „v je
model za φ”);

• poreciva ako za neku valuaciju v važi v̂(φ) = N (pišemo i v /⊧ φ i čitamo „v ne zadovoljava (poriče) φ”.
ili „v je kontramodel za φ”);

• tautologija, u oznaci ⊧ φ, ako za sve valuacije v važi v̂(φ) = T (tj. nije poreciva);

• kontradikcija ako za sve valuacije v važi v̂(φ) = N (tj. nije zadovoljiva).

Primetimo da /⊧ φ znači da je φ poreciva (ne da je kontradikcija).

Primer 2.14. Ispitati da li je formula (p ∧ ¬r) ∨ (q ∧ ¬r) → (p ∨ q → r) zadovoljiva/poreciva?

Rešenje. Zapišimo tablicu date formule u svim valuacijama njenih slova:

p q r ((p ∧ ¬ r) ∨ (q ∧ ¬ r)) → ((p ∨ q) → r)

T T T N N N N N T T T

T T N T T T T T N T N

T N T N N N N N T T T

T N N T T T N T N T N

N T T N N N N N T T T

N T N N T T T T N T N

N N T N N N N N T N T

N N N N T N N T T N T

Iz tablice je jasno da je formula i zadovoljiva i poreciva (pa nije ni tautologija ni kontradikcija).

Primer 2.15. Dokazati da je formula (p ∧ (¬q → ¬p)) ∧ (¬q ∨ ¬r) → (r → ¬p) tautologija.

Rešenje. Pretpostavimo suprotno, formula je poreciva, tj. postoji valuacija v takva da je formula netačna. Tada
je v̂((p ∧ (¬q → ¬p)) ∧ (¬q ∨ ¬r)) = T i v̂(r → ¬p) = N , odakle v̂(p ∧ (¬q → ¬p)) = T , v̂(¬q ∨ ¬r) = T , v̂(r) = T
i v̂(¬p) = N . Iz prve jednakosti imamo v̂(¬q → ¬p) = T , pa kako je v̂(¬p) = N mora biti i v̂(¬q) = N . Odatle i
v̂(¬q ∨ ¬r) = T je v̂(¬r) = T , što je u kontradikciji sa v̂(r) = T .

Alternativno, možemo da napišemo tablicu formule:

p q r ((p ∧ (¬q → ¬p)) ∧ (¬q ∨ ¬r)) → (r → ¬p)

T T T T N T N N N N N T N N

T T N T N T N T N T T T T N

T N T N T N N N T T N T N N

T N N N T N N N T T T T T N

N T T N N T T N N N N T T T

N T N N N T T N N T T T T T

N N T N T T T N T T N T T T

N N N N T T T N T T T T T T

iz koje vidimo da je formula tautologija.

Zadatak 2.16 (Spisak osnovnih tautologija). Dokazati da su sledeće formule tautologije:
1○ p ∨ ¬p; 2○ ¬(p ∧ ¬p); 3○ p→ p; 4○ ¬¬p↔ p;
5○ p ∧ p↔ p; 6○ p ∨ p↔ p; 7○ p ∧ ⊺ ↔ p; 8○ p ∧ � ↔ �;
9○ p ∨ ⊺ ↔ ⊺; 10○ p ∨ � ↔ p; 11○ p ∧ (p ∨ q) ↔ p; 12○ p ∨ (p ∧ q) ↔ p;
13○ p ∧ q↔ q ∧ p; 14○ p ∨ q↔ q ∨ p; 15○ (p↔ q) ↔ (q↔ p);
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16○ p ∧ (q ∧ r) ↔ (p ∧ q) ∧ r; 17○ p ∨ (q ∨ r) ↔ (p ∨ q) ∨ r;
18○ (p↔ (q↔ r)) ↔ ((p↔ q) ↔ r);
19○ p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r); 20○ p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r);
21○ ¬(p ∧ q) ↔ ¬p ∨ ¬q; 22○ ¬(p ∨ q) ↔ ¬p ∧ ¬q;
23○ (p→ q) ↔ (¬q → ¬p); 24○ (p→ q) ↔ (p ∧ ¬q → �);
25○ p ∧ (p→ q) → q; 26○ (p→ q) ∧ ¬q → ¬p;
27○ (p ∨ q) ∧ ¬p→ q; 28○ (p→ q) ∧ (q → r) → (p→ r).

Komentar 2.17. Tautologija 1 naziva se zakon isključenja trećeg (tertium non datur). Tautologija 4 je zakon
duple negacije. Tautologije 5 i 6 nazivaju se zakoni idempotencije za konjunkciju i disjunkciju. Tautologije 11
i 12 su zakoni apsorbcije. Tautologije 13–14 su komutativni zakoni, a 16–18 asocijativni zakoni za konjunkciju,
disjunkciju i ekvivalenciju. Tautologije 19 i 20 su distributivni zakoni konjunkcije prema disjunkciji i disjunkcije
prema konjunkciji. Tautologije 21 i 22 su De Morganovi zakoni. Tautologija 23 je zakon kontrapozicije. Tau-
toloija 24 je zakon svođenja na protivređnost (reductio ad absurdum). Tautologija 25 je modus ponens, a 26 je
modus tollens. Tautologija 27 naziva se disjunktivni silogizam, a 28 hipotetički silogizam.

2.3 Lema o smeni

Komentar 2.18. Zapisom φ = φ(p1, p2, . . . , pk) ističemo da su sva slova koja se pojavljuju u formuli φ neka (i
možda ne sva) od p1, p2, . . . , pk, tj. da je P (φ) ⊆ {p1, p2, . . . , pk}. Pa tako ako je φ formula p → q, možemo da
pišemo φ = φ(p, q) ili φ = φ(p, q, r), ali nećemo da pišemo φ = φ(p) ili φ = φ(q, r).

Definicija 2.19. Neka su φ = φ(p1, p2, . . . , pk), ψ1,ψ2, . . . ,ψk formule. Označavamo sa φ(ψ1,ψ2, . . . ,ψk)

formulu φ u kojoj smo sva pojavljivanja slova pi zamenili sa ψi za sve i = 1, . . . , k. (Npr. ako je φ = φ(p, q)
formula p→ q ∧ p, onda je φ(p ∨ q, s→ r) formula p ∨ q → (s→ r) ∧ (p ∨ q).)

Lema 2.20 (Lema o smeni). Neka su φ = φ(p1, p2, . . . , pk), ψ1,ψ2, . . . ,ψk formule i v valuacija. Tada je:

v̂(φ(ψ1,ψ2, . . . ,ψk)) = ŵ(φ),

gde je w bilo koja valuacija takva da w(pi) = v̂(ψi) za sve i = 1, . . . , k.

Dokaz. Dokaz izvodimo potpunom indukcijom po složenosti formule φ. Neka je n ∈ N proizvoljno, pretpostavimo
da tvrđenje važi za formule složenosti m < n (IH), i dokažimo da tvrđenje važi za formulu φ složenosti n.
Razmatramo sledeće slučajeve:

1○ φ je konstanta: Pretpostavimo φ = �. Primetimo da je φ(ψ1, . . . ,ψk) = �, pa direktno po definiciji 2.4
imamo:

v̂(φ(ψ1, . . . ,ψk)) = v̂(�) = N = ŵ(�) = ŵ(φ).

Slično postupamo ako je φ = ⊺.
2○ φ je slovo: Kako su slova formule φ po pretpostavci među p1, . . . , pk, mora biti p = pi za neko i = 1, . . . , k:

φ = pi. Tada je φ(ψ1, . . . ,ψk) = ψi, pa kako po pretpostavci imamo w(pi) = v̂(ψi) računamo:

v̂(φ(ψ1, . . . ,ψk)) = v̂(ψi) = w(pi) = ŵ(pi) = ŵ(φ).

3○ φ = ¬σ: Formula σ je složenosti n − 1 < n, i jasno je da je σ = σ(p1, . . . , pk), pa možemo da primenimo
(IH):

v̂(σ(ψ1, . . . ,ψk)) = ŵ(σ).

Kako je φ(ψ1, . . . ,ψk) = ¬σ(ψ1, . . . ,ψk), prema prethodnoj jednakosti važi:

v̂(φ(ψ1, . . . ,ψk)) = ŵ(φ).
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4○ φ = σ ∗ θ, ∗ ∈ {∧,∨,∨,→,↔}: Formule σ i θ su jasno složenosti manje od n, i takođe je jasno da možemo
da pišemo σ = σ(p1, . . . , pk) i θ = θ(p1, . . . , pk), pa možemo da primenimo (IH) na formule σ i θ, tj.:

v̂(σ(ψ1, . . . ,ψk)) = ŵ(σ) i v̂(θ(ψ1, . . . ,ψk)) = ŵ(θ).

Kako je još očigledno φ(ψ1, . . . ,ψk) = σ(ψ1, . . . ,ψk) ∗ θ(ψ1, . . . ,ψk), po definiciji 2.4 prema prethodnim jed-
nakostima imamo:

v̂(φ(ψ1, . . . ,ψk)) = ŵ(φ).

Dokazali smo lemu.

Imamo direktnu posledicu leme o smeni:

Tvrđenje 2.21. Neka su φ = φ(p1, . . . , pk), ψ1, . . . ,ψk formule i neka je ⊧ φ. Tada je i ⊧ φ(ψ1, . . . ,ψk).

Dokaz. Neka je v proizvoljna valuacija i neka je w valuacija takva da w(pi) = v̂(ψi) za sve i = 1, . . . , k. Tada je:
v̂(φ(ψ1, . . . ,ψk)) = ŵ(φ) po lemi 2.20

= T jer je ⊧ φ.
Kako je φ(ψ1, . . . ,ψk) tačna za proizvoljnu valuaciju v, važi ⊧ φ(ψ1, . . . ,ψk).

Primer 2.22. Dokazati da je formula (p↔ q ∨ r) ∧ ((p↔ q ∨ r) → (q ∨ r → s)) → (q ∨ r → s) tautologija.

Rešenje. Naša formula jednaka je φ(p ↔ q ∨ r, q ∨ r → s), gde je φ(a, b) = a ∧ (a → b) → b tautologija modus
ponens. Prema tvrđenju 2.21 i naša formula je tautologija.

2.4 Logička ekvivalentnost i normalne forme

Definicija 2.23. Formule φ i ψ su logički ekvivalentne, u oznaci φ ≡ ψ, ako za sve valuacije v važi v̂(φ) = v̂(ψ),
tj. ako je formula φ↔ ψ tautologija.

Primer 2.24. Neke od osnovnih tautologija iz zadatka 2.16 nam daju sledeće ekvivalentne formule:
4○ ¬¬p ≡ p; 5○ p ∧ p ≡ p; 6○ p ∨ p ≡ p;
7○ p ∧ ⊺ ≡ p; 8○ p ∧ � ≡ �; 9○ p ∨ ⊺ ≡ ⊺; 10○ p ∨ � ≡ p;
11○ p ∧ (p ∨ q) ≡ p; 12○ p ∨ (p ∧ q) ≡ p;
13○ p ∧ q ≡ q ∧ p; 14○ p ∨ q ≡ q ∨ p; 15○ p↔ q ≡ q↔ p;

16○ p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r; 17○ p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r; 18○ p↔ (q↔ r) ≡ (p↔ q) ↔ r;
19○ p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r); 20○ p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r);
21○ ¬(p ∧ q) ≡ ¬p ∨ ¬q; 22○ ¬(p ∨ q) ≡ ¬p ∧ ¬q;
23○ p→ q ≡ ¬q → ¬p; 24○ p→ q ≡ p ∧ ¬q → �.

Tvrđenje 2.25. Neka su φ1 = φ1(p1, . . . , pk), φ2 = φ2(p1, . . . , pk), ψ1, . . . ,ψk i θ1, . . . ,θ2 formule i pret-
postavimo φ1 ≡ φ2 i ψi ≡ θi za sve i = 1, . . . , k. Tada je:

φ1(ψ1, . . . ,ψn) ≡ φ2(θ1, . . . ,θk).

Dokaz. Neka je v proizvoljna valuacija i neka je w valuacija takva da w(pi) = v̂(ψi) za sve i = 1, . . . , k. Kako je
ψi ≡ θi za sve i = 1, . . . , k, važi i w(pi) = v̂(θi) za sve i = 1, . . . , k. Sada imamo:

v̂(φ1(ψ1, . . . ,ψk)) = ŵ(φ1) po lemi 2.20
= ŵ(φ2) jer φ1 ≡ φ2

= v̂(φ2(θ1, . . . ,θ2)) po lemi 2.20.
Kako je v proizvoljna valuacija, zaključujemo φ1(ψ1, . . . ,ψk) ≡ φ2(θ1, . . . ,θk).

Primer 2.26. Dokazati da su formule (¬p ∨ q) → (r↔ s) i ¬(p→ q) ∨ (s↔ r) logički ekvivalentne.
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Rešenje. Uočimo formule φ1 = φ1(a, b) = a→ b i φ2 = φ2(a, b) = ¬a ∨ b, i primetimo φ1 ≡ φ2. Sada imamo:
(¬p ∨ q) → (r↔ s) = φ1(¬p ∨ q, r↔ s)

≡ φ2(p→ q, s↔ r) po tvrđenju 2.25
= ¬(p→ q) ∨ (s↔ r),

gde u drugom koraku možemo da primenimo tvđenje 2.25 jer φ1 ≡ φ2, ¬p ∨ q ≡ p→ q i r↔ s ≡ s↔ r.

Primer 2.27. Dokazati da je (p→ r) ∧ (q → r) ↔ (p ∨ q → r) tautologija.

Rešenje. Izvodimo niz ekvivalentnih zamena, implicitno koristeći tvrđenje 2.25, a detaljnije objašnjenje primene
tvrđenja ostavljamo za kasnije:

(p→ r) ∧ (q → r) ↔ (p ∨ q → r) ≡ (¬p ∨ r) ∧ (¬q ∨ r) ↔ ¬(p ∨ q) ∨ r

≡ (¬p ∧ ¬q) ∨ r↔ (¬p ∧ ¬q) ∨ r

≡ ⊺.
U prvom koraku smo izvršili ekvivalentne zamene p → r ≡ ¬p ∨ r, q → r ≡ ¬q ∨ r i p ∨ q → r ≡ ¬(p ∨ q) ∨ r.

Fomalno, primenili smo tvrđenje 2.25 na formule φ1(a, b, c) = φ2(a, b, c) = a ∧ b ↔ c i zaključili φ1(p → r, q →

r, p ∨ q → r) ≡ φ2(¬p ∨ r,¬q ∨ r,¬(p ∨ q) ∨ r).
U drugom koraku izvršili smo ekvivalentne smene (¬p ∨ r) ∧ (¬q ∨ r) ≡ (¬p ∧ ¬q) ∨ r (distributivan zakon)

i ¬(p ∨ q) ≡ ¬p ∧ ¬q (De Morganov zakon). Formalno, uočimo formule φ1(a, b, c) = φ2(a, b, c) = a ↔ b ∨ c i po
tvrđenju 2.25 zaključimo φ1((¬p ∨ r) ∧ (¬q ∨ r),¬(p ∨ q), r) ≡ φ2((¬p ∧ ¬q) ∨ r,¬p ∧ ¬q, r).

U trećem koraku koristimo tautologiju φ(a) = a ↔ a i tvrđenje 2.21 da zaključimo da je φ((¬p ∧ ¬q) ∨ r)

tautologija.
Kako smo polaznu formulu ekvivalentnim smenama sveli na tautologiju, i polazna formula je tautologija.

Definicija 2.28. a) Literal je iskazno slovo ili negacija iskaznog slova.

b) (Disjunktivna) klauza je disjunkcija literala.

c) Konjunktivna klauza je konjunkcija literala.

d) Formula je u disjunktivnoj normalnoj formi (DNF) ako je disjunkcija konjunktivnih klauza.

e) Formula je u konjunktivnoj normalnoj formi (KNF) ako je konjunkcija klauza.

Teorema 2.29 (Teorema o normalnim formama). Svaka formula logički je ekvivalentna formuli u DNF i formuli
u KNF.

Dokaz. Svaka formula se svodi na formulu u DNF i na formulu u KNF koristeći tvrđenje 2.25 sledećim algorit-
mom.

Prvi korak. Zamenimo pojavljivanja veznika ∨, ↔ i → koristeći ekvivalencije:

p ∨ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q) ili p ∨ q ≡ (p ∨ q) ∧ (¬p ∨ ¬q),
p↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q) ili p↔ q ≡ (p ∨ ¬q) ∧ (¬p ∨ q), i
p→ q ≡ ¬p ∨ q ili p→ q ≡ ¬(p ∧ ¬q).

Nakon prvog koraka formula je zapisana koristeći veznike ¬, ∧ i ∨.
Drugi korak. Sve negacije „ubacimo" u zagrade koristeći De Morganove zakone:

¬(p ∧ q) ≡ ¬p ∨ ¬q i ¬(p ∨ q) ≡ ¬p ∧ ¬q,

pri čemu dvostruke negacije brišemo koristeći zakon ¬¬p ≡ p.
Nakon drugog koraka formula je zapisana koristeći veznike ¬, ∧ i ∨ pri čemu se ¬ nalaze samo uz slova.
Treći korak. Sređujemo formulu na DNF/KNF koristeći distributivne zakone:

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) i p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

Četvrti korak. Uprostimo izraze koristeći:
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p ∧ p ≡ p, p ∨ p ≡ p, p ∧ ¬p ≡ �, p ∨ ¬p ≡ ⊺,
p ∧ ⊺ ≡ p, p ∨ ⊺ ≡ ⊺, p ∧ � ≡ �, p ∨ � ≡ p.

Primer 2.30. Nađimo DNF i KNF formule (p↔ q) → r. Pratimo algoritam:

(p↔ q) → r ≡ ((p ∨ ¬q) ∧ (¬p ∨ q)) → r – eliminacija ↔

≡ ¬((p ∨ ¬q) ∧ (¬p ∨ q)) ∨ r – eliminacija →

≡ (¬p ∧ q) ∨ (p ∧ ¬q) ∨ r – ubacivanje ¬ i brisanje ¬¬

Dobijena formula je već u DNF, tako da tu možemo da stanemo. Da bismo našli KNF, nastavljamo sa distribu-
tivnim zakonima:

(p↔ q) → r ≡ (¬p ∧ q) ∨ (p ∧ ¬q) ∨ r – dobijena formula gore

≡ (¬p ∨ p ∨ r) ∧ (¬p ∨ ¬q ∨ r) ∧ (q ∨ p ∨ r) ∧ (q ∨ ¬q ∨ r)

– distributivnost „svaki sa svakim"

≡ (⊺ ∨ r) ∧ (¬p ∨ ¬q ∨ r) ∧ (q ∨ p ∨ r) ∧ (⊺ ∨ r) – sređivanje

≡ ⊺ ∧ (¬p ∨ ¬q ∨ r) ∧ (q ∨ p ∨ r) ∧ ⊺ – sređivanje

≡ (¬p ∨ ¬q ∨ r) ∧ (q ∨ p ∨ r) – sređivanje.

Dobijena formula je u KNF.

Sledeća teorema će nam reći kako da DNF i KNF formule pročitamo iz njene tablice. Za p ∈ P i v ∈ V
definišemo oznake pv i pv sa:

pv ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

p ako v(p) = T,

¬p ako v(p) = N,
i pv ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

¬p ako v(p) = T,

p ako v(p) = N.

Teorema 2.31 (Teorema o kanonskim normalnim formama). Neka je φ ∈Φ, P (φ) = {p1, . . . , pn}, i neka je V0

skup svih valuacija slova p1, . . . , pn.

a) Ako φ ≢ �, onda:
φ ≡ ⋁

v∈V0
v⊧φ

(pv1 ∧ pv2 ∧ ⋅ ⋅ ⋅ ∧ pvn).

b) Ako φ ≢ ⊺, onda:
φ ≡ ⋀

v∈V0

v /⊧φ

(pv1 ∨ pv2 ∨ ⋅ ⋅ ⋅ ∨ pvn).

Dokaz. Dokazaćemo deo a), dokaz za b) je sličan. Najpre primetimo da je ŵ(pv) = T ako i samo ako w(p) = v(p);
specijalno, v̂(pv) = T . Neka je w proizvoljna valuacija.

Preptostavimo najpre w ⊧ φ. Tada w učestvuje u disjunkciji na desnoj strani, tj. formula pw1 ∧ ⋅ ⋅ ⋅ ∧ pwn je
jedna od disjunkata na desnoj strane. Kako je ŵ(pwi ) = T , to w ⊧ pw1 ∧ ⋅ ⋅ ⋅ ∧ pwn , pa w zadovoljava formulu na
desnoj strani.

Pretpostavimo sada da w zadovoljava formulu na desnoj strani. To znači da postoji v ⊧ φ tako da w ⊧

pv1 ∧ ⋅ ⋅ ⋅ ∧ pvn. Iz w ⊧ pvi sledi w(pi) = v(pi), pa kako se v i w poklapaju na slovima formule φ, imamo da
ŵ(φ) = v̂(φ). Kako v ⊧ φ, to i w ⊧ φ.

Dakle, u svim valuacijama leva i desna strana imaju iste vrednosti, te smo završili dokaz.
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Primer 2.32. Zapišimo KDNF i KKNF formule φ = φ(p, q, r) čija je tablica:

p q r φ

T T T T

T T N N

T N T T

T N N T

N T T N

N T N T

N N T N

N N N N

Prema prethodnoj, da bismo zapisali KDNF treba da izdvojimo sve valuacije u kojima je φ tačna:

p q r φ

T T T T

T N T T

T N N T

N T N T

Prvoj valuaciji odgovara disjunkt p∧q∧r, drugoj p∧¬q∧r, trećoj p∧¬q∧¬r i četvrtoj ¬p∧q∧¬r, pa je KDNF:

(p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r).

Da bismo zapisali KKNF treba da izdvojimo sve valuacije u kojima je φ netačna:

p q r φ

T T N N

N T T N

N N T N

N N N N

Prvoj valuaciji odgovara konjunkt ¬p ∨ ¬q ∨ r, drugoj p ∨ ¬q ∨ ¬r, trećoj p ∨ q ∨ ¬r, i četvrtoj p ∨ q ∨ r, pa je
KKNF:

(¬p ∨ ¬q ∨ r) ∧ (p ∨ ¬q ∨ ¬r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ q ∨ r).

Na kraju ovog odeljka naglasimo i sledeće opažanje:

Tvrđenje 2.33. Svaka formula logički je ekvivalentna formuli koja je zapisana koristeći samo slova, konstantu
� i veznik →.

Dokaz. Za dokaz dovoljno je da primetimo sledeće ekvivalencije:

• ⊺ ≡ � → �;

• ¬p ≡ p→ �;

• p ∧ q ≡ ¬(p→ ¬q) (što je zapisivo na jeziku � i → prema prethodnoj tački);

• p ∨ q ≡ ¬p→ q (ista napomena);

• p ∨ q ≡ (¬p→ q) ∧ (q → ¬p) (ista napomena);

• p↔ q ≡ (p→ q) ∧ (q → p) (ista napomena).
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2.5 Prirodna dedukcija

Videli smo da je skup simbola {�,→} dovoljan da se do na ekvivalentnost izraze svi ostali simboli (tvrđenje
2.33). Sada ćemo pretpostaviti da smo od samog početka formule gradili koristeći samo simbole {�,→}. To
znači da je odgovarajuća definicija formule sledeća:

• iskazna slova i konstanta � su formule;

• ako su φ i ψ (već) izgrađene formule, onda je i (φ→ ψ) formula;

• svaka formula se gradi koristeći prethodna dva pravila u konačno mnogo koraka.

Sada možemo da kažemo da su preostali simboli definisani sledećim skraćenicama:

• ⊺ ∶= � → �,

• ¬φ ∶= φ→ �,

• φ ∧ψ ∶= ¬(φ→ ¬ψ),

• φ ∨ψ ∶= ¬φ→ ψ, i

• φ↔ ψ ∶= (φ→ ψ) ∧ (ψ→ φ).

Prirodna dedukcija je sistem za formalno dokazivanje formula iz polaznih premisa koji se bazira na uobiča-
jenim deduktvnim postupcima matematičkog dokaza. Osnovna pravila zaključivanja su sledeća četiri:

φ

φ
R

φ φ→ ψ

ψ
MP

φ pp

⋮

ψ

φ→ ψ
D

¬φ pp

⋮

�

φ
RAA

Zovemo ih redom reiteracija, modus ponens, pravilo dedukcije i reductio ad absurdum. Pravilo R kaže: iz formule
φ možemo da zaključimo φ. Pravilo MP kaže: iz φ i φ → ψ možemo da zaključimo ψ. Pravilo D kaže: ako
pod pretpostavkom φ dokažemo ψ možemo da zaključimo φ→ ψ. Pravilo RAA kaže: ako pod pretpostavkom
¬φ dokažemo kontradikciju možemo da zaključimo φ.

Neka su φ formula i Σ skup formula. Dokaz u prirodnoj dedukciji formule φ iz premisa Σ je konačan niz
koraka u kojem koristeći premise (formule iz Σ) i poštujući navedena pravila dolazimo do zaključka φ. Preciznije,
u svakom koraku možemo ili da konstatujemo neku od premisa ili da primenimo neko od gornjih pravila na
prethodno izvedene formule u dokazu kako bismo izveli novu formulu. Poslednja formula u dokazu treba da
bude baš formula φ.

Pravila R i MP direktno se odnose na jednu, odnosno dve prethodne formule u dokazu. Pogledajmo sledeći
primer:

Primer 2.34. Iz premisa φ,φ→ ψ,ψ→ θ može se dokazati θ.

Rešenje. Zapišimo najpre dokaz, pa ćemo ga prokomentarisati.
1 φ premisa
2 φ→ ψ premisa
3 ψ→ θ premisa
4 ψ MP(1,2)
5 θ MP(3,4)

Svaki korak u dokazu numerišemo kako bismo lakše pratili postupak. Takođe sa desne strane pišemo oprav-
danje date formule. U prva tri koraka smo konstatovali date premise. U koraku četiri primenili smo pravilo
modus ponens na formule iz prvog i drugog koraka kako bismo zaključili formulu ψ. Konačno u petom koraku
još jednom primenjujemo pravilo modus ponena na formule iz trećeg i četvrtog koraka i zaključujemo formulu
θ. S obzirom da je cilj i bio da izvedemo formulu θ, ovim korakom smo i završili dokaz.
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Pravila D i RAA zahtevaju da u okviru dokaza napišemo određen poddokaz koji započinjemo odgovarajućom
dodatnom pretpostavkom (pp). Treba voditi računa da datu pretpostavku nemamo kao premisu, tako da
poddokaz u kojem je koristimo naglašavamo pisanjem linije s leve strane poddokaza koja nam govori dokle traje
važenje date pretpostavke. Sama pretpostavka i formule dobijene u okviru poddokaza ne smeju se koristiti van
samog poddokaza. Poslednja formula dokaza ne sme da bude unutar poddokaza, tj. sve poddokaze moramo da
završimo do tog trenutka.

Pogledajmo još dva primera:

Primer 2.35. Iz premisa φ→ ψ,ψ→ θ može se dokazati φ→ θ.

Rešenje. Ponovo zapišimo dokaz, pa ćemo ga prokomentarisati:
1 φ→ ψ premisa
2 ψ→ θ premisa
3 φ pp
4 ψ MP(1,3)
5 θ MP(3,4)
6 φ→ θ D(3–5)

U prva dva koraka smo konstatovali premise. S obzirom da treba da dokažemo formulu koja je u obliku imp-
likacije, idemo na pravilo dedukcije, pa u trećem koraku otvaramo poddokaz sa odgovarajućom pretpostavkom.
U koracima četiri i pet koristimo modus ponens. Kako smo u petom koraku došli do željenog zaključka, zat-
varamo poddokaz i koristimo previlo dedukcije u šestom koraku.

Primer 2.36. Bez premisa može se dokazati (φ→ (ψ→ θ)) → ((φ→ ψ) → (φ→ θ)).

Rešenje. Zapišimo dokaz:
1 φ→ (ψ→ θ) pp
2 φ→ ψ pp
3 φ pp
4 ψ MP(2,3)
5 ψ→ θ MP(1,3)
6 θ MP(4,5)
7 φ→ θ D(3–6)
8 (φ→ ψ) → (φ→ θ) D(2–7)
9 (φ→ (ψ→ θ)) → ((φ→ ψ) → (φ→ θ)) D(1–8)

Kako dokazujemo formulu u obliku implikacije, idemo na pravilo dedukcije i započinjemo poddokaz sa
odgovarajućom pretpostavkom φ → (ψ → θ), sa željom da dokažemo formulu (φ → ψ) → (φ → θ). S obzirom
da je i ova formula u obliku implikacije, ponovo idemo na pravilo dedukcije i yapo;injemo novi poddoka sa
pretpostavkom φ → ψ i zadatko da dokažemo φ → θ. Ponovo, kao je i ovo implikacije, u trećem koraku
otvaramo još jedan poddokaz sa pretpostavkom φ i zadatkom da dokažemo θ. To radimo koristeći MP u
sledeća tri koraka. Na kraju zatvaramo poddokaze po pravilu dedukcije u poslednja tri koraka.

Definicija 2.37. Ako se iz premisa Σ može dokazati formula φ, to ćemo zapisivati sa Σ ⊢ φ (čitamo „Σ dokazuje
φ", „Σ izvodi φ", ili „sekvent Σ ⊢ φ je dokaziv").

Ako je Σ konačan, umesto {ψ1, . . . ,ψn} ⊢ φ pišemo ψ1, . . . ,ψn ⊢ φ. Takođe, umesto ∅ ⊢ φ pišemo samo
⊢ φ i u tom slučaju za φ kažemo da je teorema.

U primeru 2.34 dokazali smo sekvent φ,φ → ψ,ψ → θ ⊢ θ, u primeru 2.35 dokazali smo φ → ψ,ψ → θ ⊢
φ→ θ, a u primeru 2.36, ⊢ (φ→ (ψ→ θ)) → ((φ→ ψ) → (φ→ θ)), tj. ova formula je teorema.

Odmah ćemo da dokažemo jednu jednostavnu, ali korisnu teoremu:

Teorema 2.38 (Teorema dedukcije). Σ,φ ⊢ ψ ⇐⇒ Σ ⊢ φ→ ψ.

Dokaz. (⇒) Pretpostavimo Σ ⊢ φ→ ψ i uočimo jedan dokaz ovog sekventa (dokaz levo):
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1

⋮ ⋮

n φ→ ψ ↝

1

⋮ ⋮

n φ→ ψ

(n + 1) φ premisa
(n + 2) ψ MP(n,n + 1)

Od premisa u ovom dokazu koristimo samo formule iz Σ. Pogledajmo dokaz na desnoj strani. Prepišimo
prethodni dokaz, dodajmo premisu φ u koraku (n + 1) i pozivajući se na modus ponens zaključijemo ψ. Time
smo konstruisali dokaz za Σ,φ ⊢ ψ.

(⇐) Pretpostavimo Σ,φ ⊢ ψ. Uočimo jedan dokaz ovog sekventa (dokaz levo):

1

⋮ ⋮

n ψ

↝

0 φ premisa
1

⋮ ⋮

n ψ

↝

0 φ pp
1

⋮ ⋮

n ψ

(n + 1) φ→ ψ D(0 − n)

U ovom dokazu se od premisa javljaju formule iz Σ i φ. Prepravimo dokaz na sledeći način (dokaz u sredini).
Dodajmo ispred celog dokaza nultu formulu φ koju opravdamo kao premisa, a u koracima 1−n svako pojavlji-
vanje premise φ opravdamo kao R(0). Primetimo da je i ovo dokaz sekventa Σ,φ ⊢ ψ, premisa φ javlja se
jedino u koraku 0, a u koracima 1 − n jedine premise su iz Σ. Sada ovakav dokaz prepravimo na sledeći način
(dokaz desno). Prograsimo formulu φ u koraku 0 za pretpostavku i pretvorimo ceo dokaz 0 − n u poddokaz sa
ovom pretpostavkom. U koraku (n + 1) iskoristimo pravilo dedukcije da se rešimo poddokaza. Od premisa u
ovom dokazu su samo formule iz Σ, tj. zapisali smo dokaz sekventa Σ ⊢ φ→ ψ.

2.6 Izvedena pravila prirodne dedukcije

Sekvent dokazan u primeru 2.35 možemo da koristimo i kao pravilo:

φ→ ψ ψ→ θ

φ→ θ
HS

Zovemo ga hipotetički silogizam.
U sledećim primerima dokazujemo izvestan broj izvedenih pravila.

Primer 2.39 (Eliminacija i uvođenje negacije). Dokazati sledeća dva pravila:

φ ¬φ

�
¬E i

φ pp

⋮

�

¬φ
¬U

Rešenje. Ako se setimo da je ¬φ po definiciji zamena za φ→ �, zamenom ψ sa � u pravilima MP i D, Dobijamo
¬E i ¬U kao njihove specijalne slučajeve.

Primer 2.40 (Ex falso quodlibet). Dokazati � ⊢ φ, tj. pravilo:

�

φ
EFQ

Rešenje. Dokaz je:
1 � premisa
2 ¬φ pp
3 � R(1)
4 φ RAA(2–3)

ili kraće

1 ¬φ pp
2 � premisa
3 φ RAA(1–2)
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Primer 2.41 (Eliminacija i uvođenje duple negacije). Dokazati ¬¬φ ⊢ φ i φ ⊢ ¬¬φ, tj. pravila:

¬¬φ

φ
¬¬E i

φ

¬¬φ
¬¬U

Rešenje. Dokazi su:
1 ¬¬φ premisa
2 ¬φ pp
3 � ¬E(1,2)
4 φ RAA(2–3)

i

1 φ premisa
2 ¬φ pp
3 � ¬E(1,2)
4 ¬¬φ ¬U (2–3)

Primetimo da ovde, zarad kraćeg dokaza, koristimo već dokazana pravila eliminacije i uvođenja negacije.

Primer 2.42 (Modus tollens). Dokazati φ→ ψ,¬ψ ⊧ ¬φ, tj. pravilo:

φ→ ψ ¬ψ

¬φ
MT

Rešenje. Dokaz je:
1 φ→ ψ premisa
2 ¬ψ premisa
3 φ pp
4 ψ MP(1,3)
5 � ¬E(2,4)
6 ¬φ ¬U (3–5)

Primer 2.43 (Kontrapozicija). Dokazati φ→ ψ ⊢ ¬ψ→ ¬φ i ¬ψ→ ¬φ ⊢ φ→ ψ, tj. pravila:

φ→ ψ

¬ψ→ ¬φ
K i

¬ψ→ ¬φ

φ→ ψ
K

Rešenje. Dokazi su:
1 φ→ ψ premisa
2 ¬ψ pp
3 ¬φ MT(1,2)
4 ¬ψ→ ¬φ D(2–3)

i

1 ¬ψ→ ¬φ premisa
2 φ pp
3 ¬¬φ ¬¬U (2)
4 ¬¬ψ MT(1,3)
5 ψ ¬¬E(4)
6 φ→ ψ D(2–5)

Primer 2.44 (Eliminacija i uvođenje disjunkcije). Dokazati φ ⊢ φ ∨ψ, ψ ⊢ φ ∨ψ i φ ∨ψ,φ → θ,ψ → θ ⊢ θ,
tj. pravila:

φ

φ ∨ψ
∨U

ψ

φ ∨ψ
∨U

φ ∨ψ φ→ θ ψ→ θ

θ
∨E

Rešenje. Setimo se da je φ ∨ψ po definiciji zamena za formulu ¬φ→ ψ. Dokazi su:
1 φ premisa
2 ¬φ pp
3 � ¬E(1,2)
4 ψ EFQ(3)
5 ¬φ→ ψ D(2–4)

1 ψ premisa
2 ¬φ pp
3 ψ R(1)
4 ¬φ→ ψ D(2–3)

1 ¬φ→ ψ premisa
2 φ→ θ premisa
3 ψ→ θ premisa
4 ¬θ pp
5 ¬φ MT(2,4)
6 ψ MP(1,5)
7 θ MP(3,6)
8 � ¬E(4,7)
9 θ RAA(4–8)
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Komentar 2.45. Imajući u vidu pravilo dedukcije, pravilo ∨E možemo da formulišemo i na sledeći način:

φ ∨ψ

φ pp

⋮

θ

ψ pp

⋮

θ

θ
∨E

Primer 2.46 (Disjunktivni silogizmi). Dokazati φ ∨ψ,¬ψ ⊢ φ i φ ∨ψ,¬φ ⊢ ψ, tj. pravila:

φ ∨ψ ¬ψ

φ
DS i

φ ∨ψ ¬φ

ψ
DS

Rešenje. Kako je φ ∨ψ zamena za ¬φ→ ψ, prvo pravilo sledi iz MT i ¬¬E , a drugo direktno iz MP.

Primer 2.47 (Tertium non datur). Dokazati ⊢ φ ∨ ¬φ, tj. pravilo:

φ ∨ ¬φ
TND

Rešenje. Kako je φ ∨ ¬φ zamena za ¬φ→ ¬φ, dokaz je:
1 ¬φ pp
2 ¬φ→ ¬φ D(1–1)

Primer 2.48 (Eliminacija i uvođenje konjunkcije). Dokazati φ ∧ψ ⊢ φ, φ ∧ψ ⊢ ψ i φ,ψ ⊢ φ ∧ψ, tj. pravila:

φ ∧ψ

φ
∧E

φ ∧ψ

ψ
∧E

φ ψ

φ ∧ψ
∧U

Rešenje. Kako je φ ∧ψ po definiciji zamena za ¬(φ→ ¬ψ), dokazi su:
1 ¬(φ→ ¬ψ) premisa
2 ¬φ pp
3 φ pp
4 � ¬E(2,3)
5 ¬ψ EFQ(4)
6 φ→ ¬ψ D(3–5)
7 � ¬E(1,6)
8 φ RAA(2–7)

1 ¬(φ→ ¬ψ) premisa
2 ¬ψ pp
3 φ pp
4 ¬ψ R(2)
5 φ→ ¬ψ D(3–4)
6 � ¬E(1,5)
7 ψ RAA(2–6)

i:
1 φ premisa
2 ψ premisa
3 φ→ ¬ψ pp
4 ¬ψ MP(1,3)
5 � ¬E(2,4)
6 ¬(φ→ ¬ψ) ¬U (3–5)

Primer 2.49 (Eliminacija i uvođenje ekvivalencije). Dokazati φ↔ ψ ⊢ φ → ψ, φ↔ ψ ⊢ ψ → φ i φ → ψ,ψ →
φ ⊢ φ↔ ψ, tj. pravila:

φ↔ ψ

φ→ ψ
↔E

φ↔ ψ

ψ→ φ
↔E

φ→ ψ ψ→ φ

φ↔ ψ
↔U

Rešenje. Kako je po definiciji φ ↔ ψ zamena za (φ → ψ) ∧ (ψ → φ), ova pravila su specijalni slučajevi ∧E i
∧U .
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Primer 2.50 (De Morganova pravila). Dokazati ¬(φ∧ψ) ⊢ ¬φ∨¬ψ, ¬φ∨¬ψ ⊢ ¬(φ∧ψ), ¬(φ∨ψ) ⊢ ¬φ∧¬ψ
i ¬φ ∧ ¬ψ ⊢ ¬(φ ∨ψ), tj. pravila:

¬(φ ∧ψ)

¬φ ∨ ¬ψ
DM

¬φ ∨ ¬ψ

¬(φ ∧ψ)
DM

¬(φ ∨ψ)

¬φ ∧ ¬ψ
DM

¬φ ∧ ¬ψ

¬(φ ∨ψ)
DM

Rešenje. Dokazi prva dva pravila su:
1 ¬(φ ∧ψ) premisa
2 φ→ ¬ψ ¬¬E(1) po def. ∧
3 ¬¬φ pp
4 φ ¬¬E(3)
5 ¬ψ MP(2,4)
6 ¬φ ∨ ¬ψ D(3–5) po def. ∨

1 ¬φ ∨ ¬ψ premisa
2 φ pp
3 ¬¬φ ¬¬U (2)
4 ¬ψ MP(1,3) po def. ∨
5 φ→ ¬ψ D(2–4)
6 ¬(φ ∧ψ) ¬¬U (5) po def. ∧

Dokazi preostala dva pravila su:
1 ¬(φ ∨ψ) premisa
2 ¬φ→ ¬¬ψ pp
3 ¬φ pp
4 ¬¬ψ MP(2,3)
5 ψ ¬¬E(4)
6 ¬φ→ ψ D(3–5)
7 � ¬E(1,6) po def. ∨
8 ¬φ ∧ ¬ψ RAA(2–7) po def. ∧

1 ¬φ ∧ ¬ψ premisa
2 ¬φ→ ψ pp
3 ¬φ pp
4 ψ MP(3,2)
5 ¬¬ψ ¬¬U (4)
6 ¬φ→ ¬¬ψ D(3–5)
7 � ¬E(1,6) po def. ∧
8 ¬(φ ∨ψ) RAA(2–7) po def. ∨

2.7 Logička posledica i teorema saglasnosti

Definicija 2.51. Neka Σ ⊆Φ i φ ∈Φ.

a) Valaucija v zadovoljava skup formula Σ, u oznaci v ⊧ Σ, ako za sve formule σ ∈ Σ važi v̂(σ) = T .

b) Skup formula Σ je zadovoljiv ako postoji valuacija v takva da v ⊧ Σ.

c) Formula φ je logička posledica skupa formula Σ, u oznaci Σ ⊧ φ, ako za sve valuacije v važi implikacija
v ⊧ Σ povlači v̂(φ) = T .

Lema 2.52. Skup formula Σ je zadovoljiv ako i samo ako Σ /⊧ �.

Dokaz. (⇒) Pretpostavimo Σ je zadovoljiv, tj. postoji valuacija v takva da v ⊧ Σ. Kako je svakako v̂(�) = N ,
zaključujemo Σ /⊧ �.
(⇐) Pretpostavimo Σ /⊧ �. To znači da postoji valuacija v takva da v ⊧ Σ, ali v̂(�) = N , specijalno neka

valuacija zadovoljava Σ, tj. Σ je zadovoljiv.

Lema 2.53. Neka je φ formula. Tada ∅ ⊧ φ ako i samo ako ⊧ φ.

Dokaz. Primetimo da ∅ ⊧ φ znači (∀v)(v ⊧ ∅ → v̂(φ) = T ). Takođe v ⊧ ∅ znači (∀σ ∈ ∅) v̂(σ) = T , što je
logički tačan iskaz jer je dobijen ograničenjem univerzalnog kvantifikatora na prazan skup. Kako je v ⊧ ∅ logički
tačan, implikacija v ⊧ ∅ → v̂(φ) = T ekvivalentna je sa v̂(φ) = T , pa ∅ ⊧ φ svodi se na (∀v) v̂(φ) = T , što sa
druge strane znači ⊧ φ.

Teorema 2.54 (Teorema saglasnosti). Neka je Σ ⊆Φ i φ ∈Φ. Ako Σ ⊢ φ, onda Σ ⊧ φ.

Za sekvent Σ ⊢ φ, označimo sa d(Σ ⊢ φ) dužinu najkraćeg dokaza u prirodnoj dedukciji (koji koristi samo
osnovna pravila) ovog sekventa ako je on dokaziv; ako nije dokaziv možemo da definišemo d(Σ ⊢ φ) = ∞. Dakle,
Σ ⊢ φ je dokaziv ako i samo ako d(Σ ⊢ φ) ∈ N+.
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Dokaz teoreme 2.54. Dovoljno je da dokažemo sledeće za sve n ⩾ 1: Za svaki sekvent Σ ⊢ φ, ako je d(Σ ⊢ φ) = n,
onda Σ ⊧ φ. Dokaz izvodimo potpunom indukcijom po n. Neka je n ⩾ 1 proizvoljno, pretpostavimo da tvrđenje
važi za sekvente čija je dužina najkraćeg dokaza k, 1 ⩽ k < n (IH), i dokažimo tvrđenje za sekvente čija je
dužina najkraćeg dokaza jednaka n. Pretpostavimo da imamo sekvent Σ ⊢ φ takav da d(Σ ⊢ φ) = n. Uočimo
neki najkraći dokaz ovog sekventa:

1

⋮ ⋮

n φ opravdanje

u kome se od premisa javljaju samo formule iz Σ. Diskutovaćemo po opravdanju, tj. imamo sledećih pet
slučajeva.

1○ opravdanje=premisa: Ako je φ premisa, to znači da φ ∈ Σ, pa očigledno važi Σ ⊧ φ. (Primetimo jednu
činjenicu koja nije bila bitna u dokazu. Naime, ako je opravdanje premisa, mora biti n = 1 jer smo uočili najkraći
dokaz.)

2○ opravdanje=R: Dokazaćemo da ovaj slučaj nije moguć. Ako je opravdanje reiteracija, mora biti oblika
R(m), gde je m < n i u koraku m je formula φ, tj. dokaz je sledećeg oblika:

1

⋮ ⋮

m φ

⋮ ⋮

n φ R(m)

Ako bismo prekinuli prethodni dokaz nakon prvog koraka, takođe bismo imali dokaz za Σ ⊢ φ, koji je kraći od
n. Kako ovo nije moguće, zaključujemo da ovaj slučaj nije moguć. (Zapravo smo dokazali da se najkraći dokaz
ne može završiti reiteracijom.)

3○ opravdanje=MP: Ako je opravdanje modus ponens, mora biti oblika MP(k,m), gde k <m < n, formula u
k-tom koraku je ψ i formula u m-tom koraku je ψ→ φ (ili obratno). (Takođe možemo zaključiti i da je m = n−1

jer smo uočili najkraći dokaz, što neće biti bitno.) Dakle, dokaz je sledećeg oblika:

1

⋮ ⋮

k ψ

⋮ ⋮

m ψ→ φ

⋮ ⋮

n φ MP(k,m)

Primetimo da ako prekinemo dokaz posle k-tog, odnosno m-tog koraka, dobijamo dokaze za sekvente Σ ⊢ ψ i
Σ ⊢ ψ → φ dužine k < n, odnosno m < n. Prema tome d(Σ ⊢ ψ), d(Σ ⊢ ψ → φ) < n, pa možemo da primenimo
(IH) i zaključujemo Σ ⊧ ψ i Σ ⊧ ψ → φ. Dokažimo sada Σ ⊧ φ. Neka je v valuacija takva da v ⊧ Σ. Iz Σ ⊧ ψ i
Σ ⊧ ψ→ φ imamo v̂(ψ) = T i v̂(ψ→ φ) = T , odakle sledi v̂(φ) = T . Dakle, Σ ⊧ φ.

4○ opravdanje=D: Ako je opravdanje pravilo dedukcije, mora biti oblika D(k−m), gde k <m < n, formula φ
je oblika ψ→ θ, u k-tom koraku je pretpostavka ψ i formula u m-tom koraku je θ. (Takođe možemo zaključiti
i da je m = n − 1 jer smo uočili najkraći dokaz, što neće biti bitno.) Dakle, dokaz je sledećeg oblika (levo):

1

⋮ ⋮

k ψ pp
⋮ ⋮

m θ

⋮ ⋮

n ψ→ θ = φ D(k −m)

↝

1

⋮ ⋮

k ψ premisa
⋮ ⋮

m θ
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Prepravimo ovaj dokaz na sledeći način (dokaz desno). Prekinimo dokaz posle m-tog koraka i proglasimo
pretpostavku ψ u k-tom koraku za premisu, pri čemu poddokaz od k-tog do m-tog koraka postaje glavni deo
dokaza (sklanjamo crtu poddokaza s leve strane). Time dobijamo dokaz za sekvent Σ,ψ ⊢ θ dužine m < n (ψ je
s leve strane sekventa jer smo je proglasili za premisu). Prema tome d(Σ,ψ ⊢ θ) < n, pa možemo da primenimo
(IH) i zaključujemo Σ,ψ ⊧ θ. Dokažimo sada Σ ⊧ φ, tj. Σ ⊧ ψ → θ. Neka je v valuacija takva da v ⊧ Σ. Ako
je v̂(ψ) = N , važi v̂(ψ → θ) = T . Ako je v̂(ψ) = T , tada v ⊧ Σ,ψ, pa kako Σ,ψ ⊧ θ, dobijamo v̂(θ) = T , odakle
ponovo važi v̂(ψ→ θ) = T . Dakle, Σ ⊧ φ.

5○ opravdanje=RAA: Ako je opravdanje reductio ad absurdum, mora biti oblika RAA(k−m), gde k <m < n,
u k-tom koraku je pretpostavka ¬φ i formula u m-tom koraku je �. (Takođe možemo zaključiti i da je m = n−1

jer smo uočili najkraći dokaz, što neće biti bitno.) Dakle, dokaz je sledećeg oblika (levo):

1

⋮ ⋮

k ¬φ pp
⋮ ⋮

m �

⋮ ⋮

n φ RAA(k −m)

↝

1

⋮ ⋮

k ¬φ premisa
⋮ ⋮

m �

Ponovo prepravljamo ovaj dokaz na sledeći način (dokaz desno). Prekinimo dokaz posle m-tog koraka i pro-
glasimo pretpostavku ¬φ u k-tom koraku za premisu, pri čemu poddokaz od k-tog do m-tog koraka postaje
glavni deo dokaza (sklanjamo crtu poddokaza s leve strane). Time dobijamo dokaz za sekvent Σ,¬φ ⊧ � dužine
m < n. Prema tome d(Σ,¬φ ⊢ �) < n, pa možemo da primenimo (IH) i zaključujemo Σ,¬φ ⊧ �. Dokažimo sada
Σ ⊧ φ. Neka je v valuacija takva da v ⊧ Σ. Ako je v̂(¬φ) = T , važi v ⊧ Σ,¬φ, pa kako Σ,¬φ ⊧ �, dobijamo
v̂(�) = T , što je besmisleno. Prema tome mora biti v̂(¬φ) = N , tj. v̂(φ) = T . Dakle, Σ ⊧ φ.

Završili smo dokaz.

Definicija 2.55. Skup formula Σ je konzistentan ako Σ ⊬ �.

Još jedna verzija teoreme saglasnosti je:

Posledica 2.56 (Teorema saglasnosti). Ako je skup Σ zadovoljiv, Σ je konzistentan.

Dokaz. Dokažimo kontrapoziciju. Ako Σ nije konzistentan, tj. Σ ⊢ � po teoremi 2.54, Σ ⊧ �, pa Σ nije zadovoljiv
po lemi 2.52.

2.8 Slaba teorema potpunosti

Prema teoremi saglasnosti za sve φ ∈Φ specijalno važi:

⊢ φ Ô⇒ ⊧ φ.

Cilj ovog odeljka je da dokažemo da važi i obratna implikacija:

Teorema 2.57 (Slaba teorema potpunosti). Za sve φ ∈Φ važi:

⊢ φ ⇐⇒ ⊧ φ.

Za dokaz nam je potrebna kratka priprema.

Lema 2.58. Neka Σ ⊆Φ, φ,ψ ∈Φ.

a) Važi φ→ ψ,¬φ→ ψ ⊢ ψ.

b) Ako Φ,φ ⊢ ψ i Φ,¬φ ⊢ ψ, onda Φ ⊢ ψ.
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Dokaz. a) Dokaz sekventa je:
1 φ→ ψ premisa
2 ¬φ→ ψ premisa
3 ¬ψ pretpostavka
4 ¬φ MT(1,3)
5 ¬¬φ MT(2,3)
6 � ¬E(4,5)
7 ψ RAA(3–6)

b) Prema teoremi dedukcije Φ,φ ⊢ ψ i Φ,¬φ ⊢ ψ povlače Φ ⊢ φ→ ψ i Φ ⊢ ¬φ→ ψ; prema a), Φ ⊢ ψ.

Neka v ∈ V i φ ∈Φ. Definišemo φv ∈Φ sa:

φv ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ v̂(φ) = T,

¬φ v̂(φ) = N.

Lema 2.59. Neka φ,ψ ∈Φ, v ∈ V. Važi: φv,ψv ⊢ (φ→ ψ)v.

Dokaz. Dokaz leme se svodi na dokazivanje sledeća četiri sekventa:

φ,ψ→ φ→ ψ, φ,¬ψ ⊢ ¬(φ→ ψ), ¬φ,ψ ⊢ φ→ ψ i ¬φ,¬ψ ⊢ φ→ ψ.

Prva dva dokaza pokazuju prvi, treći i četvrti sekvent, treći dokaz pokazuje drugi sekvent:

1 ψ premisa
2 φ pretpostavka
3 ψ R(1)
4 φ→ ψ D(2–3)

1 ¬φ premisa
2 φ pretpostavka
3 � ¬E(1,2)
4 ψ EFQ(3)
5 φ→ ψ D(2–4)

1 φ premisa
2 ¬ψ premisa
3 φ→ ψ pretpostavka
4 ψ MP(1,3)
5 � ¬E(2,4)
6 ¬(φ→ ψ) ¬U (3–5)

Tvrđenje 2.60. Neka φ = φ(p1, . . . , pn) ∈Φ i v ∈ V. Važi: pv1, . . . , p
v
n ⊢ φ

v.

Dokaz. Dokaz izvodimo potpunom indukcijom po sl(φ). Neka je najpre sl(φ) = 0. Ako je φ = �, dokazujemo
pv1, . . . , p

v
n ⊢ ¬� jer �v = ¬� za sve v ∈ V. To sledi iz ⊢ ¬�, a dokaz je:

1 � pretpostavka
2 ¬� RAA(1–1)

Ako je φ = pi, treba da dokažemo pv1, . . . , p
v
n ⊢ p

v
i , što je očigledno.

Neka je sl(φ) > 0. Tada je φ = ψ → θ za neke ψ,θ ∈ Φ, ψ = ψ(p1, . . . , pn), θ = θ(p1, . . . , pn) i sl(ψ), sl(θ) <
sl(φ). Prema indukcijskoj hipotezi pv1, . . . , p

v
n ⊢ ψ

v i pv1, . . . , p
v
n ⊢ θ

v, pa prema lemi 2.59, pv1, . . . , p
v
n ⊢ φ

v.

Dokaz teoreme 2.57. Kao što smo već rekli smer (⇒) je specijalan slučaj teoreme saglasnosti. Za (⇐) pret-
postavimo ⊧ φ. Neka je P (φ) = {p1, . . . , pn}; tada je φ = φ(p1, . . . , pn). Neka je v proizvoljna valuacija slova
p1, . . . , pn−1. Ako dodefinišemo v(pn) = T , prema tvrđenju 2.60 važi:

pv1, . . . , p
v
n−1, pn ⊢ φ,

a ako dodefinišemo v(pn) = N , prema tvrđenju 2.60 važi:

pv1, . . . , p
v
n−1,¬pn ⊢ φ.

(U oba slučaja, na desnoj strani sekventa je φv = φ jer ⊧ φ.) Iz prethodna dva sekventa, prema lemi 2.58, sledi:

pv1, . . . , p
v
n−1 ⊢ φ. (∗)
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Neka je sada v proizvoljna valuacija slova p1, . . . , pn−2. Ako dodefinišemo v(pn−1) = T , prema (∗) važi:

pv1, . . . , p
v
n−2, pn−1 ⊢ φ,

a ako dodefinišemo v(pn−1) = N , prema (∗) važi:

pv1, . . . , p
v
n−2,¬pn−1 ⊢ φ.

Iz prethodna dva sekventa, prema lemi 2.58, sledi:

pv1, . . . , p
v
n−2 ⊢ φ. (∗∗)

Nastavljajući ovaj postupak zaključujemo ⊢ φ.

2.9 Teorema kompaktnosti

Podsetimo se pojma zadovoljivosti, i definišimo pojam konačne zadovoljivosti.

Definicija 2.61. Neka je Σ ⊆Φ skup formula.

a) Σ je zadovoljiv ako postoji valuacija v takva da v ⊧ Σ (tj. takva da (∀φ ∈ Σ) v̂(φ) = T ).

b) Σ je konačno zadovoljiv ako je svaki konačan podskup od Σ zadovoljiv.

Cilj ovog poglavlja je da dokažemo teoremu kompaktnosti:

Teorema 2.62 (Teorema kompaktnosti). Neka je Σ ⊆Φ. Tada:

Σ je zadovoljiv ⇐⇒ Σ je konačno zadovoljiv.

Smer (⇒) je očigledan (naime svaka valuacija koja zadovoljava Σ zadovoljava i sve njegove podskupove,
pa i sve njegove konačne podskupove). Za dokaz (⇐) potrebna nam je priprema. Najpre ćemo da dokažemo
specijalan slučaj smera (⇐) (teorema o kanonskoj valuaciji), na koji ćemo kasnije da svedemo dokaz same
teoreme kompaktnosti.

Definicija 2.63. Neka je Σ ⊆Φ. Skup Σ je zatvoren za slova ako za svako slovo p ∈ P važi p ∈ Σ ili ¬p ∈ Σ.

Teorema 2.64 (Teorema o kanonskoj valuaciji). Neka je Σ ⊆Φ konačno zadovoljiv skup formula koji je zatvoren
za slova. Tada postoji jedinstvena valuacija vΣ takva da vΣ ⊧ Σ.

Specijalno, Σ je zadovoljiv.

Dokaz. Kako je Σ zatvoren za slova, za svako slovo p ∈ P važi p ∈ Σ ili ¬p ∈ Σ, međutim kako je Σ konačno
zadovoljiv i kako skup {p,¬p} nije zadovoljiv, ne mogu da važe oba p ∈ Σ i ¬p ∈ Σ; dakle, za svako slovo p ∈ P

važi tačno jedno od p ∈ Σ i ¬p ∈ Σ. Definišimo valuaciju vΣ sa:

vΣ(p) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T p ∈ Σ,

N ¬p ∈ Σ;

prema prethodnoj napomeni, vΣ je dobro definisana valuacija. Primetimo da po samoj definiciji vΣ, za svako
p ∈ P važi pvΣ ∈ Σ.3

Dokažimo vΣ ⊧ Σ. Neka jeφ ∈ Σ proizvoljna formula, i neka je P (φ) = {p1, . . . , pn}. Tada Π = {φ, pvΣ1 , . . . , pvΣn } ⊆

Σ, pa po konačnoj zadovoljivosti postoji valuacija v takva da v ⊧ Π. Iz v ⊧ pvΣi sledi v(pi) = vΣ(pi) za sve

3Setimo se da je pvΣ =
⎧⎪⎪⎨⎪⎪⎩

p vΣ(p) = T,
¬p vΣ(p) = N.
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i = 1, . . . , n, tj. valuacije v i vΣ se poklapaju na slovima formule φ. Odatle v̂Σ(φ) = v̂(φ) = T , tj. vΣ ⊧ φ. Dakle,
vΣ ⊧ Σ.

Ako je v valuacija takva da v ⊧ Σ, zbog zatvorenosti za slova, v ⊧ p ako i samo ako p ∈ Σ, tj. ako i samo ako
vΣ ⊧ p. Dakle, v = vΣ, što dokazuje željenu jedinstvenost valuacije vΣ. Završili smo dokaz.

Sada je ideja da svedemo dokaz teoreme kompaktnosti na prethodnu teoremu tako što ćemo dokazati da se
svaki konačno zadovoljiv skup formula može proširiti do konačno zadovoljivog skupa formula koji je zatvoren
za slova. Potrebne su nam dve leme.

Lema 2.65. Neka je Σ ⊆Φ i φ ∈Φ. Ako je Σ konačno zadovoljiv, bar jedan od skupova Σ ∪ {φ} i Σ ∪ {¬φ} je
konačno zadovoljiv.

Dokaz. Pretpostavimo Σ je konačno zadovojiv, i pretpostavimo suptorno, Σ ∪ {φ} i Σ ∪ {¬φ} nisu konačno
zadovoljivi. Tada postoje konačni podskupovi Σ1,Σ2 ⊆ Σ takvi da Σ1 ∪ {φ} i Σ2 ∪ {¬φ} nisu zadovoljivi. Skup
Σ1 ∪ Σ2 je konačan podskup od Σ, pa postoji valuacija v takva da v ⊧ Σ1 ∪ Σ2. Iz v ⊧ Σ1 i v /⊧ Σ1 ∪ {φ} sledi
v̂(φ) = N , dok iz v ⊧ Σ2 i v /⊧ Σ2 ∪ {¬φ} sledi v̂(φ) = T ; kontradikcija.

Lema 2.66. Neka je Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ ⋅ ⋅ ⋅ ⊆ Φ rastući niz skupova formula. Ako su svi skupovi Σn konačno
zadovoljivi, onda je i Σ∗ ∶= ⋃∞n=0 Σn konačno zadovoljiv.

Dokaz. Neka je Π ⊆ Σ∗ proizvoljan konačan podskup; treba da dokažemo da je Π zadovoljiv. Neka je Π =
{φ1, . . . ,φk}. Po definiciji Σ∗, za svako i = 1, . . . , k važi da φi ∈ Σni za neko ni, pa kako je niz rastući za sve
i = 1, . . . , k važi φi ∈ ΣN , gde je N = max{n1, . . . , nk}, tj. Π ⊆ ΣN . Dakle, Π je konačan podskup konačno
zadovoljivog skupa ΣN , odakle sledi da je Π zadovoljiv.

Sledeća teorema je glavni korak u svođenju teoreme kompaktnosti na teoremu o kanonskoj valuaciji.

Teorema 2.67 (Lindenbaumova teorema). Neka je Σ ⊆ Φ konačno zadovoljiv skup formula. Tada postoji
konačno zadovoljiv skup formula Σ∗ takav da Σ∗ ⊇ Σ i Σ∗ je zatvoren za slova.

U opštem slučaju dokaz Lindenbaumove teoreme koristi aksiomu izbora (malo kasnije ćemo diskutovati o
ovome), pa ćemo za početak da dokažemo specijalan slučaj.

Dokaz teoreme 2.67 ako je P prebrojiv. Pretpostavimo da je skup slova P prebrojiv. O prebrojivim skupovima
ćemo kasnije pričati, za sada je dovoljno da znamo da možemo da pretpostavimo da je:

P = {p0, p1, p2, . . .}.

Definišimo rastući niz konačno zadovoljivih skupova Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . . rekurzijom na sledeći način:

• Σ0 = Σ; po pretpostavci Σ0 je konačno zadovoljiv.

• Pretpostavimo da smo definisali konačno zadovoljiv skup Σn, definišemo:

Σn+1 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Σn ∪ {pn} ako je Σn ∪ {pn} zadovoljiv,

Σn ∪ {¬pn} inače.

Skup Σn+1 je konačno zadovoljiv prema lemi 2.65, i očigledno Σn+1 ⊇ Σn.

Prema konstrukciji skup Σ∗ ∶= ⋃∞n=0 Σn je zatvoren za slova i Σ∗ ⊇ Σ, a prema lemi 2.66, skup Σ∗ je konačno
zadovoljiv.

Sada možemo da dokažemo teoremu kompaktnosti:

Dokaz teoreme 2.62. Već smo rekli, smer (⇒) je očigledan, pa dokazujemo (⇐). Neka je Σ konačno zadovoljiv
skup formula. Prema teoremi 2.67 proširimo Σ do konačno zadovoljivog skupa formula Σ∗ koji je zatvoren za
slova. Prema teoremi 2.64, Σ∗ je zadovoljiv, pa je i Σ zadovoljiv kao njegov podskup.
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Prethodni dokaz oslanja se na Lindenbaumovu teoremu koju smo dokazali samo u specijalnom slučaju. Opšti
slučaj zavisi od aksiome izbora, pa ćemo sada reći nekolioko reči o tome.

Digresija: Aksioma izbora

Definicija 2.68. Neka je F familija skupova.

a) Familija F je lanac skupova ako za svaka dva skupa X,Y ∈ F važi X ⊆ Y ili Y ⊆X.

b) Skup A ∈ F je maksimalan element familije F ako za svaki skup X ∈ F važi A ⊈X.

Aksioma 2.69 (Cornova lema). Neka je F neprazna familija skupova. Pretpostavimo da za svaki neprazan
lanac L ⊆ F važi ⋃L ∈ F.4 Tada F ima maksimalan element.

Teorema kompaktnosti (nastavak)

Da bismo dokazali teoremu kompaktnosti u opštem slučaju, dovoljno je da dokažemo Lindenbaumovu teoremu
u opštem slučaju. U dokazu ćemo iskoristiti Cornovu lemu, i za dokaz će nam biti potrebna nešto opštija verzija
leme 2.66 (sa suštinski istim dokazom):

Lema 2.70. Ako je L lanac konačno zadovoljivih skupova formula, onda je i ⋃L konačno zadovoljiv.

Dokaz. Neka je Π ⊆ ⋃L proizvoljan konačan podskup; treba da dokažemo da je Π zadovoljiv. Neka je Π =
{φ1, . . . ,φk}. Za svako i = 1, . . . , k važi da φi ∈ Σi za neko Σi ∈ L, pa kako je L lanac za sve i = 1, . . . , k važi
φi ∈ Σ, gde je Σ najveći od skupova Σ1, . . . ,Σk. Dakle, Π ⊆ Σ, tj. Π je konačan podskup konačno zadovoljivog
skupa Σ, odakle sledi da je Π zadovoljiv.

Sada možemo da dokažemo Lindenbaumovu teoremu.

Dokaz teoreme 2.67 u opštem slučaju. Neka je Σ konačno zadovoljiv, i neka je:

F ∶= {Π ⊆Φ∶Σ ⊆ Π i Π je konačno zadovoljiv}.

Familija F je neprazna jer očigledno Σ ∈ F. Takođe, prema lemi 2.70 za svaki neprazan lanac L ⊆ F važi

⋃L ∈ F. Prema Cornovoj lemi (aksioma 2.69), F ima maksimalni element Σ∗. Očigledno Σ ⊆ Σ∗ i Σ∗ je konačno
zadovoljiv jer Σ∗ ∈ F. Ostaje da proverimo da je Σ∗ zatvoren za slova.

Neka je p ∈ P proizvoljno slovo. Pretpostavimo p ∉ Σ∗. Tada je Σ∗ ∪ {p} ⊋ Σ∗, pa zbog maksimalnosti Σ∗ u
F sledi da Σ∗ ∪ {p} ∉ F, odakle Σ∗ ∪ {p} nije konačno zadovoljiv. Prema lemi 2.65, Σ∗ ∪ {¬p} mora biti konačno
zadovoljiv, tj. Σ∗ ∪ {¬p} ∈ F, pa kako je Σ∗ ⊆ Σ∗ ∪ {¬p} i kako je Σ∗ maksimalan u F, mora biti Σ∗ = Σ∗ ∪ {¬p},
odakle ¬p ∈ Σ∗. Završili smo dokaz.

2.10* Primeri primene teoreme kompaktnosti

Daćemo nekoliko primera primene teoreme 2.62. Generalna ideja je da polazni problem, koji se odnosi na neku
beskonačnu konfiguraciju, pametno pretvorimo u problem zadovoljivosti nekog skupa iskaznih formula. Samu
zadovoljivost skupa dokazujemo koristeći kompaktnost tako što proverimo da su svi njegovi konačni podskupovi
zadovoljivi. Za poslednje je obično potrebno da rešimo polazni problem za konačne konfiguracije, što je ponekad
mnogo lakše nego rešiti polazni problem.

4⋃L je oznaka za uniju ⋃X∈L X.
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2.10.1 Uređenja racionalnih brojeva

Problem 2.71. Dokazati da se racionalni brojevi mogu poređati tako da ne postoji rastući (u smislu uočenog
poretka) aritmetički niz dužine tri. Drugim rečima, moguće je definisati linearni poredak ≺ na Q tako da kadgod
a ≺ b ≺ c, niz (a, b, c) nije aritmetički niz (tj. b − a ≠ c − b).

Prethodni problem ćemo rešiti koristeći kompaktnost, za šta će nam biti potrebna sledeća (konačna) lema.

Lema 2.72. Za svako n ∈ N, elementi 0,1,2, . . . ,2n − 1 se mogu poređati tako da u ovom poretku ne postoji
rastući aritmetički niz dužine tri.

Dokaz. Dokaz izvodimo indukcijom po n.
Baza indukcije. Za n = 0 nemamo šta da dokažemo jer imamo samo jedan element. Za n = 1 imamo samo

dva elementa 0 i 1, pa bilo da ih poređamo 0 ≺ 1 ili 1 ≺ 0, uslov je ispunjen. Prvi zanimljiv slučaj je n = 2,
i treba da poređamo elemente 0,1,2,3 tako da nemamo rastući aritmetički niz dužine tri. Jedan način da to
uradimo je:

0 ≺ 2 ≺ 1 ≺ 3.

Indukcijski korak. Pretpostavimo da smo poređali 0,1, . . . ,2n − 1 u niz:

a0 ≺ a1 ≺ ⋅ ⋅ ⋅ ≺ a2n−1

tako da u prethodnom nizu nemamo rastući aritmetički niz dužine tri. Sada ćemo poređati 0,1, . . . ,2n+1 − 1 u
niz koji zadovoljava traženi uslov. Primetimo da je {0,1, . . . ,2n+1 − 1} = {2a0,2a1, . . . ,2a2n−1} ∪ {2a0 + 1,2a1 +

1, . . . ,2a2n−1 + 1}. Trik je da ih poređamo na sledeći način:

2a0 ≺ 2a1 ≺ ⋅ ⋅ ⋅ ≺ 2a2n−1 ≺ 2a0 + 1 ≺ 2a1 + 1 ≺ ⋅ ⋅ ⋅ ≺ 2a2n−1 + 1.

Primetimo da u prvoj polovini nemamo rastući aritmetički niz dužine tri jer za i < j < k, (2ai,2aj ,2ak) je
aritmetički niz ako i samo ako (ai, aj , ak) je aritmetički niz, a poslednje ne važi po indukcijskoj hipotezi. Slično,
u drugoj polovini nemamo rastući aritmetički niz dužine tri jer za i < j < k, (2ai+1,2aj+1,2ak+1) je aritmetički
niz ako i samo ako (ai, aj , ak) je aritmetički niz. Za i < j i k, niz (2ai,2aj ,2ak + 1) nije aritmetički jer je razlika
prva dva člana parna, a razlika druga dva neparna. Slično, za i i j < k, (2ai,2aj + 1,2ak + 1) nije aritmetički
jer je razlika prva dva člana neparna, a razlika druga dva parna. Prema tome, poređali smo 0,1, . . . ,2n+1 − 1 na
odgovarajući način.

Rešenje problema 2.71. Iskodirajmo sada naš problem u iskaznoj logici. Uočićemo skup slova P = {pa,b∶a, b ∈

Q, a ≠ b} i sledeći skup iskaznih formula:

Σ = {pa,b ∨ pb,a∶a, b ∈ Q, a ≠ b}

∪ {pa,b ∧ pb,c → pa,c∶a, b, c ∈ Q, a ≠ b ≠ c ≠ a}

∪ {¬(pa,b ∧ pb,c)∶ (a, b, c) ∈ A},

gde je A skup svih nekonstantnih, racionalnih, aritmetičkih nizova dužine tri. Primetimo da ako možemo da
poređamo Q na željeni način, onda imamo sledeću valuaciju koja zadovoljava skup Σ:

v(pa,b) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

T ako a ≺ b

N ako b ≺ a
.

Zaista, formule pa,b ∨ pb,a su tačne jer važi ili a ≺ b ili b ≺ a, formule pa,b ∧ pb,c → pa,c su tačne jer a ≺ b i b ≺ c
povlače a ≺ c, i na kraju formule ¬(pa,b ∧ pb,c) su tačne jer ako (a, b, c) ∈ A, kako poredak zadovoljava željeni
uslov, ne može važiti a ≺ b i b ≺ c.

Sa druge strane, ako imamo valuciju v koja zadovoljava Σ, na skupu Q možemo definisati željeni poredak
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na sledeći način:
a ≺ b ∶ ⇐⇒ v(pa,b) = T, za različite a, b ∈ Q.

Ovo zaista jeste poredak jer v zadovoljava prva dva skupa formula, a takođe ako (a, b, c) ∈ A, kako je pa,b ∧ pb,c

netačna, niz (a, b, c) nije rastući.
Prema tome sveli smo problem na dokaz da je Σ zadovoljiv skup. Po kompaktnosti, tj. teoremi 2.62, dovoljno

je da dokažemo da su konačni podskupovi od Σ zadovoljivi. Pa neka je Σ0 proizvoljan konačan podskup od Σ.
Samo konačno mnogo slova pojavljuje se u skupu Σ0, pa se i samo konačno mnogo racionalnih brojeva pojavljuje
kao indeksi ovih slova. Neka je Q0 ⊆ Q konačan podskup racionalnih brojeva koji se pojavljuju kao indeksi slova
u skupu Σ0; dakle, imamo:

Σ0 ⊆ {pa,b ∨ pb,a∶a, b ∈ Q0, a ≠ b}

∪ {pa,b ∧ pb,c → pa,c∶a, b, c ∈ Q0, a ≠ b ≠ c ≠ a}

∪ {¬(pa,b ∧ pb,c)∶ (a, b, c) ∈ A ∩Q3
0}.

Označimo sa Σ1 skup na desnoj strani. Dovoljno je da dokažemo da je on zadovoljiv, jer je onda i manji skup
Σ0 jasno zadovoljiv. Kako je Q0 konačan možemo da nađemo prirodan broj M takav da Ma ∈ Z za sve a ∈ Q
(uzmimo M da bude NZS svih imenilaca brojeva iz Q0 zapisanih u obliku skraćenog razlomka). Dalje nađemo
prirodan broj K takav da Ma+K ⩾ 0 za sve a ∈ Q0. Konačno izaberimo prirodan broj N takav da Ma+K < 2N ,
za sve a ∈ A. Prema lemi 2.72, brojeve 0,1, . . . ,2N − 1 možemo da poređamo tako da u ovom poretku nemamo
rastući aritmetički niz dužine tri; označimo ovaj poredak sa ≺. Primetimo da su brojevi Ma + K, a ∈ Q0,
poređani u ovom poretku. Definišimo valuaciju v slova pa,b, a, b ∈ Q0, a ≠ b sa:

v(pa,b) =

⎧⎪⎪
⎨
⎪⎪⎩

T Ma +K ≺Mb +K

N Mb +K ≺Ma +K
,

i primetimo da v zadovoljava Σ1. Zaista, formule pa,b ∨ pb,a i pa,b ∧ pb,c → pa,c su tačne jer su Ma +K, a ∈ Q0,
poređani u odnosu na ≺. Formule pa,b ∧ pb,c za (a, b, c) ∈ A ∩Q3

0 su netačne jer je niz (a, b, c) aritmetički ako i
samo ako je niz (Ma +K,Mb +K,Mc +K) aritmetički, pa ne važi Ma +K ≺Mb +K ≺Mc +K.

Dakle, Σ1 je zadovoljiv i time smo rešili problem.

Zadatak 2.73. Dokazati da se realni brojevi mogu poređati tako da ne postoji rastući aritmetički niz dužine
tri. 5

2.10.2 Linearizacija parcijalnih uređenja

Problem 2.74. Dokazati da postoji strogo linerano uređenje ≺ na P(N) tako da A ⊊ B povlači A ≺ B za sve
A,B ⊆ N. (Tj. dokazati da se relacija podskupa na P(N) može dodefinisati do linearnog uređenja.)

Ponovo najpre dokazujemo odgovarajuću konačnu verziju problema.

Lema 2.75. Za proizvoljne n ⩾ 1 i A1, . . . ,An ⊆ N, A1, . . . ,An se mogu poređati tako da ako Ai ⊊ Aj , onda je i
Ai ≺ Aj , za sve 1 ⩽ i, j ⩽ n.

Dokaz. Dokaz izvodimo indukcijom po n.
Baza indukcije. Ako je n = 1 nemamo šta da dokažemo. Razmotrimo i slučaj (što nije neophodno) n = 2.

Ako imamo dva podskupa A,B ⊆ N, postupamo na sledeći način. Ako je A ⊊ B, stavili bismo A ≺ B, a ako je
B ⊊ A, stavili bismo B ≺ A. Ako nije ni A ⊊ B ni B ⊊ A, možemo da definišemo bilo A ≺ B bilo B ≺ A, u oba
slučaja imamo zadovoljavajuće ređanje.

Indukcijski korak. Pretpostavimo da imamo sada podskupove A1, . . . ,An,An+1. Njih je samo konačno
mnogo, pa možemo nađemo Ai tako da Aj ⊈ Ai za sve j ≠ i. (Zaista, ako nijedan Ai ne zadovoljava ovaj

5Ovo je teži zadatak. Možete da pokušate da ga rešite na sledeći način. Skup R je vektorski prostor nad Q, pa možemo da
uočimo jednu njegovu bazu nad Q. Koristeći rezultat problema 2.71 i zapis realnog broja u uočenoj bazi, pokušajte da konstruišite
željeni poredak.
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uslov, onda za svaki Ai možemo da nađemo Aj takav da Aj ⊊ Ai. Sada imamo A1 ⊋ Aj1 za neko j1, pa
Aj1 ⊋ Aj2 za neko j2, pa Aj2 ⊋ Aj3 , itd. U n + 1 koraka nalazimo niz međusobno različitih n + 2 podskupova:

A1 ⊋ Aj1 ⊋ Aj2 ⊋ Aj3 ⊋ ⋅ ⋅ ⋅ ⊋ Ajn+1 ,

što nije moguće jer imamo samo n + 1 skupova A1, . . . ,An,An+1.) Po indukcijskoj hipotezi znamo da skupove
A1, . . . ,Ai−1,Ai+1, . . . ,An+1 možemo da poređamo tako da Aj ⊆ Ak povlači Aj ≼ Ak za sve j, k ≠ i. Sada
je dovoljno da dodefinišemo ovo ređanje tako što skup Ai stavimo ispred svih. Željeni uslov očigledno je
zadovoljen.

Rešenje probleme 2.74. Sada ćemo iskodirati naš problem u iskaznoj logici. Uočimo skup slova P = {pA,B ∶A,B ⊆

N, A ≠ B} i skup iskaznih formula:

Σ = {pA,B ∨ pB,A∶A,B ⊆ N, A ≠ B}
∪ {pA,B ∧ pB,C → pA,C ∶A,B,C ⊆ N, A ≠ B ≠ C ≠ A}
∪ {pA,B ∶A ⊊ B ⊆ N}.

Ako možemo da nađemo rešenje ≺ problema 2.74, primetimo da možemo da definišemo i valuaciju v koja
zadovoljava Σ na sledeći način:

v(pA,B) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

T ako A ≺ B

N ako B ≺ A
za A,B ∈ N, A ≠ B.

Sa druge strane, ako je Σ zadovoljiv i ako je v neka valuacija koja ga zadovoljava, možemo da definišemo željeno
uređenje ≺ na sledeći način:

A ≺ B ∶ ⇐⇒ v(pA,B) = T, za A,B ∈ N, A ≠ B.

Zaista, kako su formule pA,B ∨ pB,A tačne, za svaka dva različita skupa A i B smo odredili da li je A ≺ B ili je
B ≺ A. Takođe, kako su formule pA,B ∧ pB,C → pA,C tačne, definisana relacija je i tranitivna, pa smo korektno
definisali linearno uređenje. Konačno, za A ⊊ B ⊆ N, tačna je formula pA,B , pa zaista važi i A ≺ B.

Prema tome, dovoljno je da dokažemo da je Σ zadovoljiv skup formula. Po kompaktnosti (teorema 2.62),
dovoljno je da dokažemo da je svaki konačan podskup Σ0 ⊆ Σ zadovoljiv, pa uočimo proizvoljan konačan Σ0 ⊆ Σ.
Kako je Σ0 konačan, samo konačno mnogo skupova A1, . . . ,An ⊆ N pojavljuju se kao indeksi slova u skupu Σ0.
Dakle:

Σ0 ⊆ {pAi,Aj ∨ pAj ,Ai ∶1 ⩽ i, j ⩽ n, i ≠ j}

∪ {pAi,Aj ∧ pAj ,Ak
→ pAi,Ak

∶1 ⩽ i, j, k ⩽ n, i ≠ j ≠ k ≠ i}

∪ {pAi,Aj ∶1 ⩽ i, j ⩽ n, Ai ⊊ Aj}.

Označimo sa Σ1 skup na desnoj strani i primetimo da je dovoljno da dokažemo da je on zadovoljiv. Prema
lemi 2.75 možemo da uočimo linearno uređenje ≺ skupova A1, . . . ,An koje proširuje relaciju podskupa. Sada
definišemo valuaciju v sa:

v(pAi,Ai) =

⎧⎪⎪
⎨
⎪⎪⎩

T ako Ai ≺ Aj

N ako Aj ≺ Ai

za 1 ⩽ i, j ⩽ n, i ≠ j.

Sada direktno vidimo da v zadovoljava skup Σ1, što završava rešenje problema 2.74.

Zadatak 2.76. Dokazati da se (bilo koje) parcijalno uređenje na (bilo kom) skupu S može dodefinisati do
linearnog uređenja.

2.10.3 4-obojivost planarnih grafova

Graf je (konačan ili beskonačan) skup tačaka (čvorova grafa) od kojih su neke povezane ivicama. Graf je

29



planaran ako je moguće da ga nacrtamo u ravni tako da se nikoje dve ivice ne preseku. Graf je k-obojiv ako
svaki čvor grafa možemo da obojimo u jednu od k boja tako da jednako obojeni čvorovi nisu spojeni ivicom.
(Pretpostavljamo da nijedan čvor nije povezan ivicom sam sa sobom.)

Problem 2.77. Dokazati da je planaran graf 4-obojiv.

Konačni planarni grafovi jesu 4-obojivi:

Teorema 2.78 (Teorema o četiri boje). Konačan planaran graf je 4-obojiv.

Prethodna teorema je čuvena jer je prva teorema koja je dokazana uz pomoć računara 1976. godine.

Rešenje problema 2.77. Da bismo dokazali beskonačnu verziju teoreme, tj. u potpunosti rešili problem 2.77,
iskoristićemo kompaktnost. Uočimo graf G koji je dat skupom čvorova V i skupom ivica E. Uočimo sledeći
skup iskaznih slova:

P = {pv, cv, zv, bv ∶ v ∈ V },

i skup iskaznih formula:

Σ =

⎧⎪⎪
⎨
⎪⎪⎩

(pv ∧ ¬cv ∧ ¬zv ∧ ¬bv) ∨ (¬pv ∧ cv ∧ ¬zv ∧ ¬bv)∨

∨(¬pv ∧ ¬cv ∧ zv ∧ ¬bv) ∨ (¬pv ∧ ¬cv ∧ ¬zv ∧ bv)
∶ v ∈ V

⎫⎪⎪
⎬
⎪⎪⎭

∪

⎧⎪⎪
⎨
⎪⎪⎩

¬(pv ∧ pw) ∧ ¬(cv ∧ cw) ∧ ¬(zv ∧ zw) ∧ ¬(bv ∧ bw) ∶
v,w ∈ V su

povezani ivicom

⎫⎪⎪
⎬
⎪⎪⎭

.

Ako je graf G 4-obojiv, npr. bojama plavom, crvenom, zelenom i belom, možemo da definišemo valuaciju u

koja zadovoljava Σ na sledeći način:

u(pv) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

T ako je čvor v plav
N inače

, u(cv) =

⎧⎪⎪
⎨
⎪⎪⎩

T ako je čvor v crven
N inače

u(zv) =

⎧⎪⎪
⎨
⎪⎪⎩

T ako je čvor v zelen
N inače

, u(bv) =

⎧⎪⎪
⎨
⎪⎪⎩

T ako je čvor v beo
N inače

za sve v ∈ V . Formule prvog skupa su tačne jer je svaki čvor obojen u tačno jednu boju. Formule drugog skupa
su tačne jer dva povezana čvora nisu obojena istom bojom.

Sa druge strane, pretpostavimo da je Σ zadovoljiv i neka je u valuacija koja ga zadovoljava. Tada možemo
da bojimo graf na sledeći način. Za čvor v ∈ V obojimo:

v je plav ∶ ⇐⇒ u(pv) = T, v je crven ∶ ⇐⇒ u(cv) = T,

v je zelen ∶ ⇐⇒ u(zv) = T, v je beo ∶ ⇐⇒ u(bv) = T.

Kako su formule prvog skupa tačne, za svako v tačno je tačno jedno od slova pv, cv, zv, bv, pa smo prethodnom
definicijom svakom čvoru dodeli tačno jednu boju. Takođe, kako su formule drugog skupa tačne, dva povezana
čvora nismo obojili istom bojom. Prema tome, dobili smo odgovarajuće bojenje.

Dakle, dovoljno je da dokažemo da je Σ zadovoljiv. Po kompaktnosti dovoljno je da dokažemo da su konačni
podskupovi od Σ zadovoljivi. Neka je Σ0 ⊆ Σ proizvoljan konačan podskup. Kako je Σ0 konačan, samo konačno
mnogo v ∈ V pojavljuje se kao indeks slova u Σ0, pa neka je V0 ⊆ V konačan podskup onih v koji se pojavljuju
kao indeksi u Σ0. Dakle:

Σ0 ⊆

⎧⎪⎪
⎨
⎪⎪⎩

(pv ∧ ¬cv ∧ ¬zv ∧ ¬bv) ∨ (¬pv ∧ cv ∧ ¬zv ∧ ¬bv)∨

∨(¬pv ∧ ¬cv ∧ zv ∧ ¬bv) ∨ (¬pv ∧ ¬cv ∧ ¬zv ∧ bv)
∶ v ∈ V0

⎫⎪⎪
⎬
⎪⎪⎭

∪

⎧⎪⎪
⎨
⎪⎪⎩

¬(pv ∧ pw) ∧ ¬(cv ∧ cw) ∧ ¬(zv ∧ zw) ∧ ¬(bv ∧ bw) ∶
v,w ∈ V0 su

povezani ivicom

⎫⎪⎪
⎬
⎪⎪⎭

.

Neka je Σ1 skup na desnoj strani; dovoljno je da dokažemo da je on zadovoljiv. Neka je G0 konačan podgraf
od G čiji su čvorovi V0. Graf G0 jasno je konačan i planaran, pa prema teoremi o četiri boje možemo da ga

30



4-obojimo (recimo u boje plava, crvena, zelena i bela). Sada defininišemo valuaciju u koja zadovoljava Σ1 sa:

u(pv) =

⎧⎪⎪
⎨
⎪⎪⎩

T ako je čvor v plav
N inače

, u(cv) =

⎧⎪⎪
⎨
⎪⎪⎩

T ako je čvor v crven
N inače

u(zv) =

⎧⎪⎪
⎨
⎪⎪⎩

T ako je čvor v zelen
N inače

, u(bv) =

⎧⎪⎪
⎨
⎪⎪⎩

T ako je čvor v beo
N inače

za sve v ∈ V . Kao i gore, lako vidimo da u zaista zadovoljava Σ1. Time smo završili rešenje problema.

Zadatak 2.79. Dokazati da je graf k-obojiv ako i samo ako su svi njegovi konačni podgrafovi k-obojivi.

2.10.4 Remzijeva teorema

Potpun graf Kn je graf sa n čvorova kod koga su svaka dva različita čvora povezana ivicom.

K3 K4 K5 K6 K7

Teorema 2.80 (Remzijeva teorema). Za svaka dva prirodna broja m,n ⩾ 1 postoji prirodan broj N takav da
za svako bojenje ivica potpunog grafa KN u dve boje, crvenu i plavu, postoji podgraf koji je kopija Km i čije
su sve ivice crvene ili postoji podgraf koji je kopija Kn i čije su sve ivice plave.

Najmanji takav broj N obeležavamo sa R(m,n) i zovemo ga Remzijev broj.

Primer 2.81. Dokažimo R(3,3) = 6, tj. kako god obojimo ivice grafa K6 u dve boje, crvenu i plavu, uvek će
postojati ili crveni trougao ili plavi trougao. Izaberimo proizvoljno teme A. Iz A izlazi pet ivica, pa neke tri,
nazovimo ih AB, AC i AD, su iste boje, recimo crvene. Ako je neka od ivica BC, BD i CD crvena, našli smo
crveni trougao; u suprotnom, BCD je plavi trougao.

Ovo pokazuje da je R(3,3) ⩽ 6. Sledeća slika pokazuje da R(3,3) /< 6, odakle R(3,3) = 6:

Prethodni primer ima sledeću popularnu interpretaciju: u svakoj grupi od šest ljudi postoje tri osobe koje
se međusobno poznaju ili tri osobe koje se međusobno ne poznaju. Zaista, ako zamislimo potpun graf između
osoba, i obojimo ivicu između dve osobe crveno ako se one poznaju, odnosno plavo ako se one ne poznaju,
prethodni primer nam kaže da postoje tri osobe koje se međusobno poznaju ili tri osobe koje se međusobno
ne poznaju. Ovim jezikom Remzijeva teorema se može izraziti na sledeći način: Za svaka dva prirodna broja
m,n ⩾ 1 postoji najmanji prirodan broj R(m,n) takav da u svakoj grupi od R(m,n) ljudi postoji m osoba koje
se međusobno poznaju ili n osoba koje se međusobno ne poznaju.

Remzijevu teoremu dokazaćemo koristeći kompaktnost i njenu beskonačnu verziju (koja je lakša za dokaz):

Teorema 2.82 (Beskonačna Remzijeva teorema). Za svako bojenje ivica grafa Kω u dve boje postoji podgraf
koji je kopija Kω i čije su sve ivice obojene istom bojom.6

(Ako želite, u svakoj grupi od beskonačno mnogo ljudi postoji beskonačno mnogo osoba koje se međusobno
poznaju ili beskonačno mnogo osoba koje se međusobno ne poznaju.)

6Sa Kω smo obeležili potpun graf sa prebrojivo mnogo čvorova (npr. čvorovi su označeni prirodnim brojevima).
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Dokaz. Neka je Kω potpuni graf u kome su čvorovi indeksirani prirodnim brojevima, i neka je dato neko
crveno/plavo bojenje ivica. Rekurentno definišemo opadajući niz beskonačnih podskupova prorodnih brojeva
(Sn) i niz prirodnih brojeva (an) takav da an ∈ Sn na sledeći način:

• Stavimo S0 = N i a0 = 0.

• Pretpostavimo da smo definisali beskonačan Sn i an tako da an ∈ Sn. Skup Sn ∖ {an} podelimo na dva
dela: C ∶= {x ∈ Sn∖{an}∶an−x je crvena} i P ∶= {x ∈ Sn∖{an}∶an−x je plava}. Kako je C⊍P = Sn∖{an},
bar jedan od C i P je beskonačan, pa stavimo Sn+1 ∶= C ako je C beskonačan i Sn+1 ∶= P ako je C konačan
(u kom slučaju je P beskonačan); jasno Sn+1 ⊊ Sn. U svakom slučaju izaberimo proizvoljno an+1 ∈ Sn+1.
Nastavimo postupak.

Primetimo da su po konstrukciji svi an međusobno različiti. Takođe, primetimo da za svako n imamo
am ∈ Sn+1 za m > n, što znači da su ivice an − am za m > n sve iste boje. Podelimo sada skup {an∶n ∈ N} na
dva dela: {an∶ (∀m > n)an − am je crvena} i {an∶ (∀m > n)an − am je plava}. Bar jedan od ovih skupova je
beskonačan, npr. neka je S = {an∶ (∀m > n)an − am je crvena} beskonačan. Sada je očigledno da su sve ivice
podgrafa sa čvorovima iz skupa S crvene, pa je u pitanju željena kopija Kω. Završili smo dokaz.

Dokažimo sada Remzijevu teoremu:

Dokaz teoreme 2.80. Fiksirajmo m,n ⩾ 1. Uočimo graf Kω u kome su čvorovi indeksirani prirodnim brojevima,
i uočimo skup iskaznih slova P ∶= {pi,j ∶0 ⩽ i < j}. Za A,B ⊆ N, ∣A∣ =m i ∣B∣ = n, označimo:

ρA ∶= ⋀
i,j∈A
i<j

pi,j i βB ∶= ⋀
i,j∈B
i<j

¬pi,j .

Ako pi,j čitamo kao „ivica i − j je crvena", a ¬pi,j kao „ivica i − j je plava", onda ρA ima značenje „podgraf sa
skupom temena A je crven", a βB ima značenje „podgraf sa skupom temena B je plav". Neka je:

Σ ∶= {¬ρA∶A ⊆ N, ∣A∣ =m} ∪ {¬βB ∶B ⊆ N, ∣B∣ = n}.

Tvrdimo da Σ nije zadovoljiv. Pretpostavimo suprotno, v ⊧ Σ. Obojimo Kω na sledeći način:

ivica i − j je
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

crvena ako v(pi,j) = T,

plava ako v(pi,j) = N.

Prema teoremi 2.82 postoji beskonačan skup S ⊆ N takav da su ivice grafa nad čvorovima iz skupa S ili crvene
ili plave; bez umanjenja opštosti pretpostavimo da su crvene. Tada za bilo koji skup A ⊆ S, ∣A∣ =m, važi v ⊧ ρA,
što protivreči pretpostavci v ⊧ Σ. Dakle, Σ nije zadovoljiv.

Po teoremi kompaktnosti, neki konačan podskup Σ0 ⊆ Σ nije zadovoljiv. Neka je N najveći broj koji se
pojavljuje kao indeks nekog slova u skupu Σ0. Tada je Σ0 ⊆ Σ1, gde je Σ1 skup:

Σ1 ∶= {¬ρA∶A ⊆ {0,1, . . . ,N}, ∣A∣ =m} ∪ {¬βB ∶B ⊆ {0,1, . . . ,N}, ∣B∣ = n},

i očigledno Σ1 nije zadovoljiv (jer sadrži nezadovoljiv podskup Σ0).
Sada tvrdimo da za svako crveno/plavo bojenje ivica grafa KN+1 postoji crveno obojena kopija Km ili plavo

obojena kopija Kn. Obeležimo čvorove našeg grafa sa 0,1, . . . ,N , i fiksirajmo neko bojenje. Definišimo valuaciju
slova pi,j , 0 ⩽ i < j ⩽ N sa:

v(pi,j) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T ako je ivica i − j crvena,

N ako je ivica i − j plava.

Kako v /⊧ Σ1 postoji A ⊆ {0,1, . . . ,N} tako da ∣A∣ = m i v /⊧ ¬ρA, ili postoji B ⊆ {0,1, . . . ,N} tako da ∣B∣ = n i
v /⊧ ¬βB . Ako postoji A ⊆ {0,1, . . . ,N} tako da ∣A∣ =m i v /⊧ ¬ρA, tada v ⊧ ρA što znači da su sve ivice podgrafa
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na skupu A crvene, a ako postoji B ⊆ {0,1, . . . ,N} tako da ∣B∣ = n i v /⊧ ¬βB , tada v ⊧ βB što znači da su sve
ivice podgrafa na skupu B plave. Završili smo dokaz.

2.11 Teorema potpunosti

Cilj ovog odeljka je da dokažemo:

Teorema 2.83 (Teorema potpunosti). Neka je Σ ⊆Φ i φ ∈Φ. Tada:

Σ ⊢ φ ⇐⇒ Σ ⊧ φ.

Dokaz. Smer (⇒) je teorema saglasnosti, pa dokazujemo (⇐). Pretpostavimo Σ ⊧ φ. To znači da Σ ∪ {¬φ}
nije zadovoljiv, pa po teoremi kompaktnosti nije ni konačno zadovoljiv, tj. postoje formule ψ1, . . . ,ψn ∈ Σ takve
da {ψ1, . . . ,ψn,¬φ} nije zadovoljiv. To znači da ψ1, . . . ,ψn ⊧ φ, ili, ekvivalentno, važi ⊧ ψ1 ∧ ⋅ ⋅ ⋅ ∧ ψn → φ.
Po slaboj teoremi potpunosti imamo ⊢ ψ1 ∧ ⋅ ⋅ ⋅ ∧ψn → φ, odakle po teoremi dedukcije sledi ψ1 ∧ ⋅ ⋅ ⋅ ∧ψn ⊢ φ.
Imajući u vidu pravilo uvođenja konjunkcije zaključujemo da ψ1, . . . ,ψn ⊢ φ. Kako ψ1, . . . ,ψn ∈ Σ, konačno
zaključujemo Σ ⊢ φ. Završili smo dokaz.

3 Skupovi

Pojam skupa je osnovni pojam u matematici. U uobičajenom formalnom zasnivanju matematike skup je prvi
pojam, pojam koji nema definiciju, čije se osobine aksiomatski opisuju. Aksiomatsko zasnivanje skupova izlazi
van okvira kursa za prvu godinu studija, tako da ćemo se zadržati na nečemu što je intuitivno objašnjenje skupa,
uvodeći osnovne operacije za manipulaciju sa skupovima.

Definicija 3.1 (Intuitivna definicija skupa). Skup je celina koja okuplja određeni broj objekata koje nazivamo
elementima tog skupa.

Činjenicu da je objekat x element skupa A zapisujemo sa x ∈ A (čitamo „x je element od A" ili „x pripada
A"); u suprotnom, ako ¬x ∈ A, pišemo x ∉ A („x nije element od A" ili „x ne pripada A").

Ako je skup konačan, npr. skup koji sadrži brojeve 1, 2, 5 i 8, zapisujemo koristeći vitičaste zagrade između
kojih navedemo njegove elemente: {1,2,5,8}. Tada 2 ∈ {1,2,5,8} znači da 2 jeste element skupa {1,2,5,8},
dok 3 ∉ {1,2,5,8} znači da 3 nije element ovog skupa. Ako je skup konačan, ali ima previše elemenata da bi
bilo racionalno sve ih navesti, možemo da ih nabrojimo koristeći . . . ako je to moguće, tj. ako je jasan šablon
po kome smo elemente nabrojali. Npr. {2,3,4, . . . ,17} je skup prirodnih brojeva između 2 i 17 (uključujući ova
dva broja), {1,3,5, . . . ,997,999} je skup svih neparnih brojeva prve hiljade. Takođe, . . . možemo da koristimo
i za zapis beskonačnih skupova koje je moguće nabrojati po nekom šablonu. Npr. {0,2,4, . . .} je skup svih
parnih prirodnih brojeva, {0,1,4,9,16, . . .} je skup svih kvadrata prirodnih brojeva, {. . . ,−3,−1,1,3,5, . . .} je
skup svih neparnih celih brojeva, i sl.

Jedan od najčešćih načina za zapis skupa je zapis koji koristi tzv. operator okupljanja. To znači sledeće. Ako
je p(x) predikat gde x ima svoj univerzum diskursa, sa:

{x∶p(x)} ili {x ∈ Ux∶p(x)}

obeležavamo skup svih elemenata univerzuma diskursa za koje važi predikat p. Npr. skup {n ∈ N∶ 2 ∣ n } je
skup svih prirodnih brojeva deljivih sa dva, tj. skup svih parnih prirodnih brojeva. Iako u praksi ovu vrstu
zapisa koristimo vrlo slobodno bez bilo kakvih problema, formalno bi trebalo biti oprezan. Ako je naš predikat
X ∉X, gde je univerzum diskursa promenljive X univerzum svih skupova, možemo da uočimo skup:

S = {X ∶X ∉X}.
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Da li S ∈ S? Ako S ∈ S, onda S zadovoljava predikat koji ga opisuje, tj. S ∉ S. Ako S ∉ S, onda S zadovoljava
predikat X ∉X, pa po definiciju skupa S imamo S ∈ S. Dakle, S ∈ S ako i samo ako S ∉ S. Ovo je kontradikcija.
Ovaj primer zove se Raselov paradoks, koji je poslužio kao polazna motivacija za strogo zasnivanje koncepta
skupa. Razrešenje Raselovog paradoksa je sledeće. Ne možemo da dozvolimo da je kolekcija S zapisana gore
skup. Strogo zasnivanje dozvoljava formiranje skupa {x∶p(x)}, pod uslovom da je poznato da univerzum diskursa
promenljive x jeste skup. S tim u vezi, univerzum svih skupova ne može da postoji (tj. ne može da bude skup),
kako bismo izbegli Raselov paradoks.

Još jedan od čestih načina zapisa skupa je i sledeći. Ako za elemente x skupa S imamo neki način f da
izračunamo neku vrednost f(x), sa {f(x)∶x ∈ S} obeležavamo skup svih elemenata f(x) kad x prođe skup S.
Npr. {2n∶n ∈ N} je još jedan način da zapišemo skup parnih brojeva.

Definicija 3.2. Skupovi A i B su jednaki, A = B, ako imaju iste elemente, tj. važi iskaz:

(∀x)(x ∈ A↔ x ∈ B).

Jednakost skupova ima očekivana svojstva:

● (∀A) A = A;

● (∀A,B)(A = B → B = A);

● (∀A,B,C)(A = B ∧B = C → A = C).

Definicija 3.3. Prazan skup, u oznaci ∅, je skup koji nema elemente, tj. (∀x) x ∉ ∅.

Po definiciji jednakosti dva skupa bez elemenata moraju biti jednaka, tako da je u redu da mu damo ime
prazan skup i oznaku ∅.

3.1 Podskup

Definicija 3.4. Neka su A i B skupovi. Kažemo da je A podskup od B ili B je nadskup od A, u oznaci A ⊆ B,
ako su svi elementi skupa A ujedno i elementi skupa B, tj. važi iskaz:

(∀x)(x ∈ A→ x ∈ B).

Skupovi su često zgodni za skiciranje, što u velikoj meri pomaže u razumevanju problema. Pa tako činjenicu
da je A ⊆ B možemo da skiciramo sa:

B

A

Skupove A i B skicirali smo kao krugove, zamišljamo da su elementi skupa A unutar kruga A, elementi skupa
B unutar kruga B, pa činjenicu da je A ⊆ B skiciramo tako što je krug A ceo unutar kruga B.

Po definiciji je jasno kako obično dokazujemo da je A ⊆ B. Najčešće uočimo proizvoljan element x, pret-
postavimo x ∈ A i ciljamo da dokažemo x ∈ B (kombinacija postupka generalizacije i dedukcije). Možemo da
dokažemo A ⊆ B i kombinacijom postupka generalizacije i dedukcije kontrapozicije: uočimo proizvoljan element
x, pretpostavimo x ∉ B i ciljamo da dokažemo x ∉ A. Konačno, možemo da koristimo i kombinaciju postupka
generalizacije i svođenja na protivrečnost: uočimo proizvoljan element x, pretpostavimo x ∈ A i x ∉ B, i ciljamo
da nađemo kontradikciju.

Direktno po definiciji vidimo nekoliko osobina relacije podskupa:

● (∀A) ∅ ⊆ A;
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● (∀A) A ⊆ A;

● (∀A,B)(A ⊆ B ∧B ⊆ A↔ A = B);

● (∀A,B,C)(A ⊆ B ∧B ⊆ C → A ⊆ C).

Treća osobina nam najčešće služi za dokaz jednakosti dva skupa. Naima, ako želimo da dokažemo A = B,
najčešće ćemo dokazati A ⊆ B i B ⊆ A.

3.2 Osnovne skupovne operacije

Definicija 3.5. Presek skupova A i B je skup zajedničkih elemenata skupova A i B:

A ∩B = {x∶x ∈ A ∧ x ∈ B},

tj. x ∈ A ∩B akko x ∈ A i x ∈ B.

Presek skupova A i B skiciramo sa (šrafiran deo):

A B
A ∩B

Prethodna sličica, dva kruga koja se seku, zove se Venov dijagram za sva skupa. Na Venovom dijagramu
možemo verno da predstavimo odnos dva skupa.

Po definiciji preseka lako vidimo nekoliko osnovnih osobina preseka:

● (∀A,B) A ∩B = B ∩A;

● (∀A,B,C) A ∩ (B ∩C) = (A ∩B) ∩C;

● (∀A,B)(A ∩B = A↔ A ⊆ B);

● specijalno, (∀A) ∅ ∩A = ∅ i (∀A) A ∩A = A.

Zbog druge osobine, asocijativnosti preseka, zapis A∩B∩C, ili presek više od tri skupova, ima smisla i predstavlja
skup zajedničkih elemenata svih skupova koji učestvuju u preseku.

Definicija 3.6. Unija skupova A i B je skup svih elemenata skupova A i B:

A ∪B = {x∶x ∈ A ∨ x ∈ B},

tj. x ∈ A ∪B akko x ∈ A ili x ∈ B.

Na Venovom dijagramu uniju skupova A i B skiciramo sa:

A B
A ∪B

Po definiciji diretno imamo sledeće osnovne osobine unije:

● (∀A,B) A ∪B = B ∪A;

● (∀A,B,C) A ∪ (B ∪C) = (A ∪B) ∪C;
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● (∀A,B)(A ∪B = B ↔ A ⊆ B);

● specijalno, (∀A) ∅ ∪A = A i (∀A) A ∪A = A.

Zbog druge osobine, asocijativnosti unije, zapis A∪B ∪C, ili unija više od tri skupova, ima smisla i predstavlja
skup svih elemenata skupova koji učestvuju u uniji.

Zadatak 3.7. Dokazati sledeće osobine:

● (∀A,B) A ∩ (A ∪B) = A;

● (∀A,B) A ∪ (A ∩B) = A;

● (∀A,B,C) A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C);

● (∀A,B,C) A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C).

Jednakosti u kojima učestvuju tri skupa možemo da vidimo i na Venovom dijagramu za tri skupa, koga
skiciramo na sledeći način:

A B

C

Svaki element možemo predstaviti na prethodnom dijagramu u jednoj od osam oblasti u zavisnosti da li pripada
ili ne datim skupovima.

Primer 3.8. Za proizvoljne skupove A, B, C ispitaćemo u kom su odnosu skupovi A ∩ (B ∪C) i (A ∩B) ∪C.
Najpre ćemo da skiciramo ove skupove na Venovom dijagramu:

A B

C

sečemo A i B ∪C

↝

A B

C

A ∩ (B ∪C)

A B

C

uniramo A ∩B i C

↝

A B

C

(A ∩B) ∪C

Venov dijagram nam sugeriše sledeću hipotezu:

(∀A,B,C) A ∩ (B ∪C) ⊆ (A ∩B) ∪C.

(Tj. levi skup je deo desnog skupa.) Dokažimo prethodnu inkluziju i formalno.
Neka su A,B,C proizvoljni skupovi, neka je x proizvoljan element i neka x ∈ A∩(B∪C); cilj je da dokažemo

x ∈ (A ∩B) ∪C. Iz x ∈ A ∩ (B ∪C), x ∈ A i x ∈ B ∪C. Iz x ∈ B ∪C imamo dva slučaja: x ∈ B ili x ∈ C.
1○ Ako x ∈ B, tada x ∈ A ∩B, pa x ∈ (A ∩B) ∪C.
2○ Ako x ∈ C, tada x ∈ (A ∩B) ∪C.
U svakom slučaju x ∈ (A ∩B) ∪C, i završili smo dokaz.
Odrdedimo sada i neki jednostavan potreban i dovoljan uslov da važi jednakost A ∩ (B ∪C) = (A ∩B) ∪C.

Ako se vratimo na sliku, jednakost će važiti ako je sledeći skup prazan:
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A B

C

To znači da su jedini elementi skupa C oni koji već pripadaju skupu A, tj. C ⊆ A. Dakle, možemo da postavimo
sledeću hipotezu:

(∀A,B,C)(A ∩ (B ∪C) = (A ∩B) ∪C ↔ C ⊆ A).

Dajemo formalni dokaz. Neka su A,B,C proizvoljni skupovi.
(⇒) Preptostavimo A ∩ (B ∪C) = (A ∩B) ∪C i dokažimo C ⊆ A. Neka je x ∈ C proizvoljan element, cilj je

da dokažemo x ∈ A. Iz x ∈ C sledi x ∈ (A ∩B) ∪C. Kako je A ∩ (B ∪C) = (A ∩B) ∪C, imamo x ∈ A ∩ (B ∪C),
pa specijalno x ∈ A. Time smo završili dokaz smera (⇒).
(⇐) Pretpostavimo da je C ⊆ A i dokažimo A ∩ (B ∪ C) = (A ∩ B) ∪ C. Inkluzija (⊆) već smo dokazali

u opštem slučaju, pa dokazujemo (⊇). Neka je x ∈ (A ∩ B) ∪ C i cilj je da dokažemo x ∈ A ∩ (B ∪ C). Iz
x ∈ (A ∩B) ∪C imamo dva slučaja x ∈ A ∩B ili x ∈ C.

1○ Ako x ∈ A ∩B, x ∈ A i x ∈ B. Iz poslednjeg je i x ∈ B ∪C, pa imamo x ∈ A ∩ (B ∪C).
2○ Ako x ∈ C, onda x ∈ B ∪C, ali i x ∈ A jer C ⊆ A. Dakle, opet je x ∈ A ∩ (B ∪C).
U svakom slučaju je x ∈ A ∩ (B ∪C), i završili smo dokaz.

Definicija 3.9. Razlika skupova A i B (tim redom) je skup elemenata iz A koji nisu u B:

A ∖B = {x∶x ∈ A ∧ x ∉ B},

tj. x ∈ A ∖B akko x ∈ A i x ∉ B.

Na Venovom dijagramu razlike A ∖B i B ∖A skiciramo sa:

A B
A ∖B

A B
B ∖A

Prethodna skica već sugeriše da komutativan zakon A∖B = B ∖A ne važi u opštem slučaju (zapravo nije teško
videti da A ∖B = B ∖A važi akko A = B).

Od osnovnih osobina izdvajamo:

● (∀A,B)(A ∖B = ∅ ↔ A ⊆ B);

● (∀A,B) A ∖B = A ∖ (A ∩B) = (A ∪B) ∖B;

● A ∖ (B ∩C) = (A ∖B) ∪ (A ∖C);

● A ∖ (B ∪C) = (A ∖B) ∩ (A ∖C);

● (A ∩B) ∖C = (A ∖C) ∩ (B ∖C);

● (A ∪B) ∖C = (A ∖C) ∪ (B ∖C).

Zadatak 3.10. Ispitati u kom su odnosu skupovi A ∖ (B ∖C) i (A ∖B) ∖C u opštem slučaju. Odrediti neki
jednaostavan potreban i dovoljan uslov da važi jednakost.
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Definicija 3.11. Simetrična razlika skupova A i B je skup onih elemenata koji su u tačnon jednom od ovih
skupova:

A△B = {x∶x ∈ A ∨ x ∈ B},

tj. x ∈ A△B akko ili x ∈ A ili x ∈ B.

Venov dijagram simetrične razlike je:

A B
A△B

Od osnovnih osobina izdvajamo:

● (∀A,B) A△B = B△A;

● (∀A,B,C) A△ (B△C) = (A△B) △C;

● (∀A,B) A△B = (A ∖B) ∪ (B ∖A) = (A ∪B) ∖ (A ∩B).

Prema drugoj osobini, asocijativnosti simetrične razlike, zapis A△B △ C, kao i simetrična razlika više od tri
skupova, ima smisla. Element pripada simetričnoj razlici nekog broja skupova akko je element neparno mnogo
od njih.

Definicija 3.12. Komplement skupa A je skup svih elemenata koji nisu u A (ali jesu u unapred poznatom
podrazumevanom univerzumu):

Ac = {x∶x ∉ A},

tj. x ∈ Ac akko x ∉ A, za bilo koji element x iz univerzuma. Dakle, Ac računamo relativno u odnosu na
podrazumevani univerzum, i tada možemo da zapišemo Ac = U∖A. U formalnom zasnivanju skupova, apsolutni
komplement ne može da postoji.

Simetričnu razliku skiciramo sa:

U

A

Ac
= U ∖A

Od osobina izdvajamo:

● (∀A) (Ac)c = A;

● (∀A,B) A ∖B = A ∩Bc;

● (∀A,B) (A ∩B)c = Ac ∪Bc;

● (∀A,B) (A ∪B)c = Ac ∩Bc;

● (∀A,B) (A△B)c = Ac △Bc.

Skupovne izraze u kojima učestvuje više od tri skupa nije jednostavno skicirati. Venov dijagram za četiri
skupa možemo nacrtati na sledeći način:
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A

D

B

C

ili

A

B C

D

Postoje i Venovi dijagrami za pet i više skupova, ali su značajno komplikovaniji.

3.3 Veza za iskaznom logikom

Fiksirajmo simbole za skupove A1,A2, . . . ,Ak. Skupovni izraz nad ovim simbolima rekurentno gradimo u
konačno mnogo koraka na sledeći način:

● svaki simbol Ai je skupovni izraz;

● ako su σ1 i σ2 već izgrađeni skupovni izrazi, onda su i σ1 ∩ σ2, σ1 ∪ σ2, σ1 ∖ σ2, σ1 △ σ2 i σc1 skupovni
izrazi.

Složenost skupovnog izraza σ, sl(σ), je broj skupovnih operacija u izrazu σ, npr. sl(A1) = 0, sl(A1 ∖A2) = 1,
sl((A1 ∖Ac

2) △A1) = 3, itd.
Svakom skupovnom izrazu σ nad simbolima A1,A2, . . . ,Ak pridružujemo iskaznu formulu σ̂ nad slovima

p1, p2, . . . , pk (iskazno slovo pi odgovara skupovnom simbolu Ai) rekurentno na sledeći način:

● ako je σ = Ai, onda je σ̂ = pi;

● ako je σ = σ1 ∩ σ2, onda je σ̂ = σ̂1 ∧ σ̂2;

● ako je σ = σ1 ∪ σ2, onda je σ̂ = σ̂1 ∨ σ̂2;

● ako je σ = σ1 ∖ σ2, onda je σ̂ = σ̂1 ∧ ¬σ̂2;

● ako je σ = σ1 △ σ2, onda je σ̂ = σ̂1 ∨ σ̂2;

● ako je σ = σc1, onda je σ̂ = ¬σ̂1

Npr. izrazu (A1 ∖Ac
2)△A1 pridružimo (p1 ∧ ¬¬p2) ∨ p1, izrazu (A2 ∩A3)

c ∪A5 pridružimo ¬(p2 ∧ p3) ∨ p5, itd.
Fiksirajmo sada konkretne skupove A1,A2, . . . ,Ak. Elementom x određena je sledeća valuacija vx:

vx(pi) =

⎧⎪⎪
⎨
⎪⎪⎩

T ako x ∈ Ai

N ako x ∉ Ai

.

Primetimo da valuacija vx ne zavisi samo od x, već i od izbora A1,A2, . . . ,Ak, ali kako smo njih fiksirali, nećemo
ih naglašavati u zapisu. Uvek će biti jasno u odnosu na koje skupove smo definisali vx.

Lema 3.13. Neka su A1,A2, . . . ,Ak proizvoljni skupovi, x proizvoljan element i σ proizvoljan izraz nad
A1,A2, . . . ,Ak. Tada:

x ∈ σ ⇐⇒ v̂x(σ̂) = T.

Dokaz. Fiksirajmo A1,A2, . . . ,Ak i x. Potpunom indukcijom po složenosti izraza σ izvodimo dokaz. Razma-
tramo sledeće slučajeve:

1○ σ = Ai: Tada je σ̂ = pi, pa je:

x ∈ σ ⇐⇒ x ∈ Ai ⇐⇒ vx(pi) = T ⇐⇒ v̂x(σ̂) = T,
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i tvrđenje važi u ovom slučaju.
2○ σ = σ1 ∩ σ2: Tada je σ̂ = σ̂1 ∧ σ̂2. Po indukcijskoj hipotezi imamo x ∈ σ1 ⇐⇒ v̂x(σ̂1) = T i x ∈ σ2 ⇐⇒

v̂x(σ̂2) = T , pa:

x ∈ σ ⇐⇒ x ∈ σ1 i x ∈ σ2 ⇐⇒ v̂x(σ̂1) = T i v̂x(σ̂2) = T ⇐⇒ v̂x(σ̂1 ∧ σ̂2
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=σ̂

) = T,

i tvrđenje važi i u ovom slučaju.
Na sličan način dokazujemo da tvrđenje važi i u slučajevima 3○ σ = σ1 ∪ σ2, 4○ σ = σ1 ∖ σ2, 5○ σ = σ1 △ σ2 i

6○ σ = σc1, čime završavamo dokaz.

Zadatak 3.14. Završiti dokaz prethodne leme.

Teorema 3.15. Neka su σ1 i σ2 dva skupovna izraza nad A1,A2, . . . ,Ak. Tada:

(i) (∀A1,A2, . . . ,Ak) σ1 ⊆ σ2 akko ⊧ σ̂1 → σ̂2;

(ii) (∀A1,A2, . . . ,Ak) σ1 = σ2 akko ⊧ σ̂1 ↔ σ̂2.

Dokaz. (i) (⇒) Pretpostavimo (∀A1, . . . ,Ak) σ1 ⊆ σ2 i dokažimo ⊧ σ̂1 → σ̂2. Pretpostavimo suprotno, postoji
valuacija v takva da v̂(σ̂1 → σ̂2) = N , tj. v̂(σ̂1) = T i v̂(σ̂2) = N . Izaberimo proizvoljan element x i pridružimo
valuaciji v sledeće skupove A1, . . . ,Ak:

Ai =

⎧⎪⎪
⎨
⎪⎪⎩

{x} ako v(pi) = T

∅ ako v(pi) = N
.

Elementu x i skupovima A1, . . . ,Ak sada možemo da pridružimo valuaciju vx kako smo opisali ranije. Primetimo
vx = v. (Zaista, ako je v(pi) = T , Ai = {x}, pa x ∈ Ai, pa je vx(pi) = T ; ako je v(pi) = N , Ai = ∅, pa x ∉ Ai, pa
je vx(pi) = N . Dakle, v(pi) = vx(pi).)

Dakle, v̂x(σ̂1) = T i v̂x(σ̂2) = N , pa po lemi 3.13, x ∈ σ1 i x ∉ σ2. To znači da σ1 ⊈ σ2, što nije moguće jer
σ1 ⊆ σ2 po pretpostavci važi za proizvoljne skupove A1, . . . ,Ak. Ova kontradikcija završava dokaz prvog smera.
(⇐) Pretpostavimo ⊧ σ̂1 → σ̂2 i dokažimo (∀A1, . . . ,Ak) σ1 ⊆ σ2. Neka su A1, . . . ,Ak proizvoljni skupovi, i

neka je x ∈ σ1 proizvoljno. Tada je v̂x(σ̂1) = T po lemi 3.13, pa kako je ⊧ σ̂1 → σ̂2 to je i v̂x(σ̂2) = T , odakle je
x ∈ σ2, opet po lemi 3.13. Prema tome, σ1 ⊆ σ2.

(ii) sledi direktno prema (i) imajući u vidu da je σ1 = σ2 akko σ1 ⊆ σ2 i σ2 ⊆ σ1, i ⊧ σ̂1 ↔ σ̂2 akko ⊧ σ̂1 → σ̂2
i ⊧ σ̂2 → σ̂1.

Primer 3.16. Da bismo dokazali da je (A∖B)∖C ⊆ A∖(B∖C) za proizvoljne skupove A,B,C, prema teoremi
3.15 dovoljno je da dokažemo:

⊧ (p ∧ ¬q) ∧ ¬r → p ∧ ¬(q ∧ ¬r),

gde skupovima A,B,C redom dodelimo slova p, q, r. Prethodno možemo da poverimo tablicom:

p q r (p ∧ ¬ q) ∧ ¬ r → p ∧ ¬ (q ∧ ¬ r)

T T T N N N N T T T N N

T T N N N N T T N N T T

T N T T T N N T T T N N

T N N T T T T T T T N T

N T T N N N N T N T N N

N T N N N N T T N N T T

N N T N T N N T N T N N

N N N N T N T T N T N T
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Razmotrimo obratnu inkluziju A ∖ (B ∖C) ⊆ (A ∖B) ∖C. Formula koja joj odgovara je:

p ∧ ¬(q ∧ ¬r) → (p ∧ ¬q) ∧ ¬r.

Tablica ove formule je:

p q r p ∧ ¬ (q ∧ ¬ r) → (p ∧ ¬ q) ∧ ¬ r

T T T T T N N N N N N N

T T N N N T T T N N N T

T N T T T N N N T T N N

T N N T T N T T T T T T

N T T N T N N T N N N N

N T N N N T T T N N N T

N N T N T N N T N T N N

N N N N T N T T N T N T

Jasno je da prethodna formula nije tautologija, pa prema teoremi 3.15 gornja inkluzija ne važi za proizvoljne
A,B,C. Međutim, tablica može da nam pomogne da odredimo neki jednostavan potreban i dovoljan uslov da
inkluzija važi. Naime, pridružena formula je netačna u valuacijama (T,T, T ) i (T,N,T ), pa prema lemi 3.13 ne
smemo da imamo element x za koji je vx jedna od ove dve valuacije. Dakle, ne smemo da imamo element koji
je i u A i u B i u C, kao ni element koji je u A i C, ali nije u B. Dakle, ne smemo da imamo element koji je u
A i C, tj. mora biti A ∩C = ∅. I zaista, sad možemo da dokažemo sledeće:

A ∖ (B ∖C) ⊆ (A ∖B) ∖C ⇐⇒ A ∩C = ∅.

Dokaz ostavljamo za vežbu.

Primer 3.17. Koristeći teoremu 3.15 možemo da dokažemo i identitet A ∩ (B △C) = (A ∩B) △ (A ∩C) koji
ćemo kooristiti u sledećem odeljku. Dovoljno je da proverimo:

⊧ p ∧ (q ∨ r) ↔ ((p ∧ q) ∨ (p ∧ r)).

I ovo vidimo iz tablice:

p q r p ∧ (q ∨ r) ↔ ((p ∧ q) ∨ (p ∧ r))

T T T N N T T N T

T T N T T T T T N

T N T T T T N T T

T N N N N T N N N

N T T N N T N N N

N T N N T T N N N

N N T N T T N N N

N N N N N T N N N

3.4 Algebarska normalna forma

Sada ćemo prikazati jedan aritmetički način za zapis i račun sa skupovnim izrazima. Najpre definišimo zbir i
proizvod dva skupa:

A +B ∶= A△B

A ⋅B ∶= A ∩B

Takođe, definišimo 0 ∶= ∅ i 1 ∶= U, gde U univerzum iz koga izdvajamo sve skupove o kojima govorimo.
Kao i obično, umesto A ⋅ B pišemo samo AB. Koristeći + i ⋅ možemo da predstavimo i ostale skupovne
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operacije:
Ac = 1 +A jer Ac = U△A

A ∖B = A +AB jer A ∖B = A△ (A ∩B)

A ∪B = A +B +AB jer A ∪B = A△B△ (A ∩B)

Već znamo da su + i ⋅ (tj. △ i ∩) komutativne i asocijativne operacije (zbog asocijativnosti + ne navodimo
zagrade u gornjem zapisu), i takođe izbegavamo da pišemo zagrade podrazumevajući, kao što je i uobičajeno,
da je ⋅ prioritetnija operacija u odnosu na +.

Ovako definisano množenje i sabiranje imaju sva očekivana svojstva. Pored već navedene komutativnosti i
asocijativnosti naglasimo i:

A + 0 = A jer A△∅ = A

A ⋅ 0 = 0 jer A ∩ ∅ = ∅

A ⋅ 1 = A jer A ∩U = A

A(B +C) = AB +AC jer A ∩ (B△C) = (A ∩B) △ (A ∩C)

Što se tiče treće osobine, setimo se da je U univerzum, pa je A ⊆ U, a što se tiče četvrte osobine, odgovarajući
identitet dokazali smo na kraju prethodnog odeljka.

Pored navedenih svojstava, definisano sabiranje i množenje imaju i dodatne osobine:

2A = A +A = 0 jer A△A = ∅

A2 = A ⋅A = A jer A ∩A = A

Zadatak 3.18. Proveriti sve navedene osobine korišćene u prethodnim pasusima.

Definicija 3.19. Skupovni monom nad skupovima A1,A2, . . . ,Ak je ili 1 ili proizvod nekoliko od ovih skupova,
npr. A4, A1A2, A2A3Ak, itd. Skupovni izraz σ nad A1,A2, . . . ,Ak je u algebarskoj normalnoj formi ili ANF ako
je zbir različitih skupovnih monoma, npr. 1+A1A2, A4 +A2A3Ak, itd. Za skupovni izraz u ANF još kažemo da
je u obliku Žegalkinovog polinoma.

Svaki skupovni izraz može se svesti na ANF koristeći jednakosti navedene gore. Do na raspored sabiraka
ANF je jedinstvena, pa možemo da dokažemo identitet σ1 = σ2 ako dokažemo da su ANF izraza σ1 i σ2 jednake.
Takođe, možemo da dokažemo σ1 ⊆ σ2 ako dokažemo ekvivalentnu jedankost σ1σ2 = σ1.

Primer 3.20. Zapišimo ANF izraza σ1 = (A ∖B) ∖C:

σ1 = (A +AB) ∖C = A +AB + (A +AB)C = A +AB +AC +ABC.

Zapišimo i ANF izraza σ2 = A ∖ (B ∖C):

σ2 = A +A(B ∖C) = A +A(B +BC) = A +AB +ABC.

Primetimo da dobijene ANF nisu jednake, pa σ1 = σ2 ne važi u opštem slučaju. Takođe primetimo da jednakost
važi akko AC = 0 (višak monom u σ1), tj. akko A ∩C = ∅.

Pomnožimo σ1 i σ2:

σ1σ2 = (A+AB+AC +ABC)(A+AB+ABC) =

= A2+A2B+A2BC+A2B+A2B2+A2B2C+

+A2C+A2BC+A2BC2+A2BC+A2B2C+A2B2C2 =

= A+AB+ABC+AB+AB+ABC+

+AC+ABC+ABC+ABC+ABC+ABC =
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= A+3AB+AC+7ABC = A+AB+AC+ABC = σ1,

gde smo iskoristili A2 = A, B2 = B, C2 = C, 2AB = 0 i 2ABC = 0. Kako je σ1σ2 = σ1, to znači da uvek važi
σ1 ⊆ σ2.

Primer 3.21. Dokažimo identitet (Ac ∪ (Ac ∖B))c = A koristeći ANF. Računamo:

(Ac∪(Ac∖B))c = 1+((1+A)∪((1+A)∖B)) = 1+((1+A)∪(1+A+(1+A)B)) =

= 1 + ((1 +A) ∪ (1 +A +B +AB)) = 1 + 1 +A + 1 +A +B +AB + (1 +A)(1 +A +B +AB) =

3+2A+B+AB+1+A+B+AB+A+A+AB+AB = 4+5A+2B+4AB = A,

gde smo implicitno koristili A2 = A, i gde 4 = 0, 4A = 0, 2B = 0 i 4AB = 0.

3.5 Partitivni skup

Definicija 3.22. Partitivni skup skupa A, P(A), je skup svih podskupova od A:

P(A) = {X ∶X ⊆ A},

tj. X ∈ P(A) akko X ⊆ A.

Npr. podskupovi skupa {1,2,3} su: prazan skup, tri jednočlana podskupa {1}, {2} i {3}, tri dvočlana
podskupa {1,2}, {1,3} i {2,3}, i jedan tročlan podskup – ceo skup {1,2,3}. Dakle:

P({1,2,3}) = { ∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3} }.

Jedini podskup praznog skupa je prazan skup: P(∅) = {∅}. Primetite da poslednji skup nije prazan, on ima
jedan element – prazan skup. Skup {∅} je jednočlan, pa ima dva podskupa: ∅ i {∅}, tj. P({∅}) = { ∅,{∅} }.
Takođe, dvočlani skup {∅,{∅}} ima podskupove: prazan skup, dva jednočlana podskupa {∅} i {{∅}} i jedan
dvočlan podskup – ceo skup {∅,{∅}}:

P({∅,{∅}}) = { ∅,{∅},{{∅}},{∅,{∅}} }.

Zadatak 3.23. Dokazati da je P(A ∩B) = P(A) ∩P(B).

Zadatak 3.24. Dokazati da je P(A) ∪P(B) ⊆ P(A ∪B), kao i da jednakost važi akko A ⊆ B ili B ⊆ A.

Zadatak 3.25. Ako je A konačan skup sa n elemenata, dokazati da P(A) ima 2n elemenata.

3.6 Dekartov proizvod

Definicija 3.26. Uređeni par elemenata a i b je matematički objekat, obično obeležen sa (a, b), koji zadovoljava
sledeću osobinu:

(a, b) = (a′, b′) ⇐⇒ a = a′ ∧ b = b′.

Formalno, uređeni par može da se definiše kao (a, b) = {{a},{a, b}}, i nije teško proveriti da ovako definisani
objekat zadovoljava prethodnu osobinu, ali zaista formalna definicija uređenog para nam nije od značaja, jedino
bitno je navedena osobina.

Element a u paru (a, b) je prva koordinata ili prva komponenta para, a element b je druga koordinata ili druga
komponenta para.

Na sličan način definišemo i uređenu n-torku ili vektor elemenata a1, a2, . . . , an. To je objekat (a1, a2, . . . , an)
koji zadovoljava osobinu:

(a1, a2, . . . , an) = (b1, b2, . . . , bn) ⇐⇒ a1 = b1 ∧ a2 = b2 ∧ ⋅ ⋅ ⋅ ∧ an = bn.
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Ako elementi u uređenim parovima žive u univerzumu U, par (a, b) možemo predstaviti na uobičajen način
u ravni:

U

U

(a, b)

a

b

Koordinatne ose su univerzum U, a uređen par je tačka u ravni koja se projektuje u svoje koordinate na
koordinatnim osama.

Definicija 3.27. Dekartov proizvod skupova A i B je skup:

A ×B = {(a, b)∶a ∈ A ∧ b ∈ B}.

Slično, Dekartov proizvod skupova A1,A2, . . . ,An je skup:

A1 ×A2 × ⋅ ⋅ ⋅ ×An = {(a1, a2, . . . , an)∶a1 ∈ A1 ∧ a2 ∈ A2 ∧ ⋅ ⋅ ⋅ ∧ an ∈ An}.

Npr. Ako je A = {1,2} i B = {a, b, c}, A×B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}, a B×A = {(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)}.

Zadatak 3.28. Ako skup A ima m, a skup B ima n elemenata, dokazati da A ×B ima mn elemenata.

Dekartov proizvod predstavljamo na slici kao pravougaonik na sledeći način:

U

U

A

B

A ×B

Zadatak 3.29. Dokazati:

● A × (B ∩C) = (A ×B) ∩ (A ×C);

● A × (B ∪C) = (A ×B) ∪ (A ×C);

● A × (B ∖C) = (A ×B) ∖ (A ×C);

● A × (B△C) = (A ×B) △ (A ×C).

Primer 3.30. Ispitajmo u kom su odnosu skupovi (A ∪ B) × (C ∪D) i (A × C) ∪ (B ×D). Skicirajmo date
skupove:
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U

U

A B

A ∪B

C ∪D

C

D
(A ∪B) × (C ∪D)

U

U

A B

C

D

A ×C

B ×D

(
A
×
C
)
∪
(
B
×
D
)

Slika nam sugeriše sledeću hipotezu: u opštem slučaju važi:

(A ×C) ∪ (B ×D) ⊆ (A ∪B) × (C ∪D).

Dokažimo je i formalno. Neka je (x, y) ∈ (A × C) ∪ (B ×D) proizvoljan uređen par. Tada imamo dva slučaja:
(x, y) ∈ A ×C ili (x, y) ∈ B ×D.

1○ Ako (x, y) ∈ A×C, tada x ∈ A i y ∈ C, pa sigurno x ∈ A∪B i y ∈ C ∪D, odakle (x, y) ∈ (A∪B) × (C ∪D).
2○ Ako (x, y) ∈ B ×D, tada x ∈ B i y ∈D, pa ponovo x ∈ A∪B i y ∈ C ∪D, odakle (x, y) ∈ (A∪B)× (C ∪D).
U svakom slučaju (x, y) ∈ (A ∪B) × (C ∪D), što znači da smo dokazali željenu inkluziju.
Razmotrimo i uslove pod kojima važi jednakost. Slika nam sugeriše da bi sledeće oblasti trebalo da su

prazne:

U

U

A B

C

D
(A ∖B) × (D ∖C)

(B ∖A) × (C ∖D)

Primetimo:
(A ∖B) × (D ∖C) = ∅ i (B ∖A) × (C ∖D) = ∅

akko (A ∖B = ∅ ili D ∖C = ∅) i (B ∖A = ∅ ili C ∖D = ∅)
akko (A ⊆ B ili D ⊆ C) i (B ⊆ A ili C ⊆D)
akko (A ⊆ B i B ⊆ A) ili (A ⊆ B i C ⊆D) ili

(D ⊆ C i B ⊆ A) ili (D ⊆ C i C ⊆D)
akko A = B ili (A ⊆ B i C ⊆D) ili (D ⊆ C i B ⊆ A) ili C =D.

Dakle, hipoteza je: Jednakost (A ×C) ∪ (B ×D) = (A ∪B) × (C ∪D) važi akko važi bar jedno od:

● A = B;

● C =D;

● A ⊆ B i C ⊆D;

● B ⊆ A i D ⊆ C.

Dokažimo je i formalno.
Smer (⇒) dokazaćemo kontrapozicijom. Pretpostavimo da ne važi nijedna od ponuđenih opcija. Dakle,

A ≠ B, C ≠D, (A ⊈ B ili C ⊈D) i (B ⊈ A ili D ⊈ C). Iz A ≠ B preptostavićemo da imamo element x takav da
x ∈ A i x ∉ B; obratan slučaj je simetričan. Svakako x ∈ A ∪B. Iz C ≠D imamo dva slučaja:
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1○ Imamo element y takav da y ∈ C i y ∉ D; svakako y ∈ C ∪ D. Iz četvrtog uslova, B ⊈ A ili D ⊈ C

razmotrićemo dva podslučaja:
1○1○ Važi B ⊈ A. Tada postoji i element x′ takav da x′ ∈ B i x′ ∉ A; svakako x′ ∈ A ∪ B. Svakako

(x′, y) ∈ (A ∪B) × (C ∪D). Međutim, (x′, y) ∉ A × C jer x′ ∉ A, ali i (x′, y) ∉ B ×D jer y ∉ D. Prema tome,
(x′, y) ∉ (A ×C) ∪ (B ×D), pa (A ∪B) × (C ∪D) ≠ (A ×C) ∪ (B ×D).

1○2○ Važi D ⊈ C. Tada postoji i element y′ takav da y′ ∈ D i y′ ∉ C; svakako y′ ∈ C ∪ D. Svakako
(x, y′) ∈ (A ∪B) × (C ∪D). Međutim, (x, y′) ∉ A × C jer y′ ∉ C, ali i (x, y′) ∉ B ×D jer x ∉ B. Prema tome,
(x, y′) ∉ (A ×C) ∪ (B ×D), pa (A ∪B) × (C ∪D) ≠ (A ×C) ∪ (B ×D).

2○ Imamo element y takav da y ∉ C i y ∈ D; svakako y ∈ C ∪ D. Tada (x, y) ∈ (A ∪ B) × (C ∪ D).
Međutim, (x, y) ∉ A × C jer y ∉ C, ali i (x, y) ∉ B ×D jer x ∉ B. Prema tome, (x, y) ∉ (A × C) ∪ (B ×D), pa
(A ∪B) × (C ∪D) ≠ (A ×C) ∪ (B ×D).

U svakom slučaju (A ∪B) × (C ∪D) ≠ (A ×C) ∪ (B ×D), čime smo dokazali prvi smer.
(⇐) Inkluziju (A×C) ∪ (B ×D) ⊆ (A∪B) × (C ∪D) dokazali smo u opštem slučaju, pa treba da dokažemo

samo obratnu inkluziju. Razmotrićemo sva četiri slučaja.
1○ Pretpostavimo A = B. Neka je (x, y) ∈ (A ∪ B) × (C ∪D) proizvoljan par. Kako je A = B, x ∈ A ∪ B

povlači x ∈ A i x ∈ B. Iz y ∈ C ∪D imamo dva podslučaja:
1○1○ Ako y ∈ C, tada (x, y) ∈ A ×C, pa i (x, y) ∈ (A ×C) ∪ (B ×D).
1○2○ Ako y ∈D, tada (x, y) ∈ B ×D, pa i (x, y) ∈ (A ×C) ∪ (B ×D).
U oba podslučaja, (x, y) ∈ (A ×C) ∪ (B ×D), što završava dokaz u slučaju 1○.
2○ Slučaj C =D razmatramo analogno kao 1○. Detalje ostavljamo za vežbu.
3○ Pretpostavimo A ⊆ B i C ⊆ D. Neka je (x, y) ∈ (A ∪ B) × (C ∪ D) proizvoljan par. Kako je A ⊆ B,

A∪B = B, pa x ∈ B. Kako je C ⊆D, C ∪D =D, pa y ∈D. Dakle, (x, y) ∈ B ×D, pa i (x, y) ∈ (A×C)∪ (B ×D),
što završava slučaj 3○.

4○ Slučaj B ⊆ A i D ⊆ C razmatramo analogno kao 3○. Detalje ostavljamo za vežbu.
Završili smo dokaz i drugog smera.

Zadatak 3.31. Ispitati odnos između skupova:

● (A ∩B) × (C ∩D) i (A ×C) ∩ (B ×D);

● (A ∖B) × (C ∖D) i (A ×C) ∖ (B ×D);

● (A△B) × (C △D) i (A ×C) △ (B ×D).

4 Relacije

Definicija 4.1. Binarna relacija između skupova A i B je bilo koji podskup ρ ⊆ A ×B.

A

B

A ×B

ρ

Ako par (a, b) pripada relaciji ρ, (a, b) ∈ ρ, običaj je da to zapisujemo sa a ρ b i čitamo „a je u relaciji ρ sa b".
Sa druge strane, ako (a, b) ∉ ρ, običaj je da pišemo a /ρ b i čitamo „a nije u relaciji ρ sa b".

Ako je A = B, tj. ako je ρ ⊆ A ×A, kažemo da je ρ binarna relacija na skupu A.

U slučaju da su skupovi A i B konačni, relaciju ρ između skupova A i B možemo da predstavimo matricom
relacije, tj. tablicom čije su vrste označene elementima skupa A, a kolone elementima skupa B, i u polju
indeksiranim sa a ∈ A i b ∈ B upišemo istinitosnu vrednost (T ili N) iskaza a ρ b. Takođe, ρ možemo da
skiciramo grafom relacije. Naime, ako je element a ∈ A u relaciji ρ sa elementom b ∈ B, a ρ b, crtamo to kao
strelicu a→ b, dok u slučaju a /ρ b, ne crtamo ništa.
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Primer 4.2. Neka su A = {a1, a2, a3, a4} i B = {b1, b2, b3}. Primer relacije ρ između A i B je relacija:

ρ = {(a1, b1), (a1, b3), (a2, b1), (a4, b1), (a4, b2)}.

Činjenicu da npr. (a1, b1) ∈ ρ zapisujemo sa a1 ρ b1, a da npr. (a1, b2) ∉ ρ zapisujemo sa a1 /ρ b2. Matrica i graf
prethodne relacije su:

b1 b2 b3

a1 T N T

a2 T N N

a3 N N N

a4 T T N

A

B

a1

a2

a3

a4

b1

b2

b3

Primer 4.3. Neka je A = {1,2,3,4} i ρ relacija na A definisana sa x ρ y akko ∣x − y∣ ⩽ 1. Lako vidimo 1 ρ 1

(jer ∣1− 1∣ = 0 ⩽ 1), 1 ρ 2 (jer ∣1− 2∣ ⩽ 1), 1 /ρ 3 (jer ∣1− 3∣ ≰ 1), 1 /ρ 4, 2 ρ 1, 2 ρ 2, 2 ρ 3, 2 /ρ 4, 3 /ρ 1, 3 ρ 2, 3 ρ 3,
3 ρ 4, 4 /ρ 1, 4 /ρ 2, 4 ρ 3 i 4 ρ 4. Matrica relacije je zapisana ispod levo. Relaciju možemo da skiciramo kao u
prethodnom primeru (slika u sredini):

1 2 3 4

1 T T N N

2 T T T N

3 N T T T

4 N N T T

A A

1

2

3

4

1

2

3

4

1 2
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ali možemo da skiciramo kao i graf na slici desno.

4.1 Podrelacija i skupovne operacije sa relacijama

Neka su ρ,σ ⊆ A × B dve relacije između A i B. S obzirom da su ρ i σ pre svega skupovi, možemo govoriti
o tome da li je ρ ⊆ σ, možemo govoriti o preseku ρ ∩ σ, uniji ρ ∪ σ, razlici ρ ∖ σ, simetričnoj razlici ρ△ σ i
komplementu ρc. Iako to nije obavezno, kada govorimo o prethodnim stvarima uvek ćemo podrazumevati da su
ρ i σ obe između A i B (nećemo posmatrati ρ između A1 i B1, a σ između nekog A2 i B2).

Do kraja ovog odeljka pretpostavljamo da su ρ i σ dve relacije između A i B.

Definicija 4.4. Ako je ρ ⊆ σ kažemo da je ρ grublja od σ, odnosno da je σ finija od ρ. (Dakle, ∅ je najgrublja
relacija između A i B, a A×B je najfinija relacija između A i B.) To znači da a ρ b povlači a σ b, tj. ako postoji
strelica a

ρ
→ b, onda postoji i strelica a

σ
→ b (slika desno).

A

B

A ×B

σ

ρ

A B

a b

ρ

Ô⇒

A B

a b

σ

Što se tiče preseka, ρ ∩ σ su zajednički parovi, tj. strelice, relacija ρ i σ:
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A

B

A ×B

ρ

σ

A B

a b

ρ

σ

⇐⇒

A B

a b

ρ ∩σ

Na slici desno smo naznačili da strelica a
ρ∩σ
Ð→ b postoji ako i samo ako postoje obe strelice a

ρ
→ b i a

σ
→ b.

Unija ρ ∪ σ su svi parovi, tj. strelice, relacije ρ i relacije σ:

A

B

A ×B

ρ

σ

Na grafu to znači da strelica a
ρ∪σ
Ð→ b postoji ako i samo ako postoje bar jedna od strelica a

ρ
→ b i a

σ
→ b:

A B

a b

ρ

×
σ

ili

A B

a b

×
ρ

σ

ili

A B

a b

ρ

σ

⇐⇒

A B

a b

ρ ∪σ

(Činjenicu sa neka strelica ne postoji naglasili smo prekriženom tačkastom strelicom.)
Razlika ρ ∖ σ su svi parovi, tj. strelice, koje jesu ρ, ali nisu σ:

A

B

A ×B

ρ

σ

A B

a b

ρ

×
σ

⇐⇒

A B

a b

ρ ∖σ

Simetrična razlika ρ△ σ su svi parovi, tj. strelice, koji su u tačno jedno od relacija ρ i σ:

A

B

A ×B

ρ

σ

Na grafu to znači:

A B

a b

ρ

×
σ

ili

A B

a b

×
ρ

σ

⇐⇒

A B

a b

ρ△σ

Konačno, komplement relacije ρ, ρc, su svi parovi, tj. strelice, skupa A × B koji nisu u relaciji ρ (dakle,
komplement računamo relativno u odnosu na A ×B):

A

A ×B

B ρ

ρc

A B

a b

×
ρ

⇐⇒

A B

a b

ρc
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Primer 4.5. Komplement relacije ρ:

ρ = {(a1, b1), (a1, b3), (a2, b1), (a4, b1), (a4, b2)}

između A = {a1, a2, a3, a4} i B = {b1, b2, b3} dobijamo uzimajući sve strelice koje nisu ρ, i samo njih:

A
B

a1

a2

a3

a4

b1

b2

b3

ρ
Ð→

↝

A
B

a1

a2

a3

a4

b1

b2

b3

ρc

Ð→

Skupovno zapisano: ρc = {(a1, b2), (a2, b2), (a2, b3), (a3, b1), (a3, b2), (a3, b3), (a4, b3)}.

Sve osobine relacije ⊆ i operacija ∩,∪,∖,△ i c koje važe generalno za skupove, važe i za relacije.

4.2 Inverzna relacija

Definicija 4.6. Neka je ρ ⊆ A × B. Inverzna relacija relacije ρ ili inverz relacije ρ je relacija ρ−1 ⊆ B × A

definisana sa:
ρ−1 = {(b, a) ∣ (a, b) ∈ ρ},

tj. data sa b ρ−1 a akko a ρ b, odnosno dobijena obrtanjem svih strelica na grafu:

A B

a b

ρ

⇐⇒

A B

a b

ρ−1

Primer 4.7. Inverz relacije ρ:

ρ = {(a1, b1), (a1, b3), (a2, b1), (a4, b1), (a4, b2)}

između A = {a1, a2, a3, a4} i B = {b1, b2, b3} dobijamo obrtanjem svih strelica na grafu relacije ρ:

A
B

a1

a2

a3

a4

b1

b2

b3

ρ
Ð→

↝

A
B

a1

a2

a3

a4

b1

b2

b3

ρ−1

←Ð

Skupovno zapisano: ρ−1 = {(b1, a1), (b1, a2), (b1, a4), (b2, a4), (b3, a1)}.

Tvrđenje 4.8. Neka su ρ,σ ⊆ A ×B. Tada važi:

(i) (ρ−1)−1 = ρ;

(ii) ρ ⊆ σ povlači ρ−1 ⊆ σ−1;

(iii) (ρ ∩ σ)−1 = ρ−1 ∩ σ−1;

(iv) (ρ ∪ σ)−1 = ρ−1 ∪ σ−1;

(v) (ρ ∖ σ)−1 = ρ−1 ∖ σ−1;

(vi) (ρ△ σ)−1 = ρ−1 △ σ−1;

(vii) (ρc)−1 = (ρ−1)c.
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Dokaz. Dokazi svih delova su pravolinijski po definicijama. Npr. da bismo dokazali poslednji deo, (ρc)−1 =
(ρ−1)c, možemo da razmotrimo sledeću sliku:

A B

a b

(ρc
)
−1

⇐⇒

po definiciji
inverza

A B

a b

ρc

⇐⇒

po definiciji
komplementa

A B

a b
×
ρ

⇐⇒

po definiciji
inverza

⇐⇒

po definiciji
inverza

A B

a b
×

ρ−1

⇐⇒

po definiciji
komplementa

A B

a b

(ρ−1)c

Na slici smo različite relacije predstavili strelicama različitih boja. Prva ekvivalencija dobija se samo obr-
tanjem strelica po definiciji inverza. Druga ekvivalencija sledi po definiciji komplementa, tj. leva strelica postoji
akko desna ne postoji. Treća ekvivalencija ponovo važi po definiciji inverza, a četvrta po definiciji komple-
menta. Dakle, između b i a postoji crna strelica akko postoji narandžasta strelica, pa su ove dve relacije ((ρc)−1

predstavljena crnom i (ρ−1)c predstavljena narandžastom strelicom) jednake.
Formalno dokaz možemo da zapišemo na sledeći način: Neka su a ∈ A i b ∈ B. Imamo:

b (ρc)−1 a ⇐⇒ a ρc b po definiciji inverza
⇐⇒ ¬ a ρ b po definiciji komplementa
⇐⇒ ¬ b ρ−1 a po definiciji inverza
⇐⇒ b (ρ−1)c a po definiciji komplementa.

Prema tome, relacije (ρc)−1 i (ρ−1)c sadrže iste parove, pa su jednake.

4.3 Kompozicija relacija

Definicija 4.9. Neka su ρ ⊆ A ×B i σ ⊆ B × C relacije. Kompozicija relacija ρ i σ je relacija σ ○ ρ ⊆ A × C7

definisana sa:
a σ ○ ρ c ⇐⇒ (∃b ∈ B) a ρ b i b σ c,

za a ∈ A i c ∈ C. Na grafu to možemo predstaviti na sledeći način:

A

B

C

a c

σ ○ ρ

⇐⇒

A

B

C

a c

∃bρ σ

Dakle, imamo strelicu a
σ○ρ
Ð→ c akko imamo strelice a

ρ
Ð→ b i b

σ
Ð→ c za neki element b ∈ B.

Primer 4.10. Neka su A = {a1, a2, a3}, B = {b1, b2, b3, b4} i C = {c1, c2, c3, c4}, i relacije ρ ⊆ A ×B i σ ⊆ B ×C

date grafovima na slici levo:

A
B C

a1

a2

a3

b1

b2

b3

b4

c1

c2

c3

c4

ρ
Ð→

σ
Ð→

A
C

a1

a2

a3

c1

c2

c3

c4

σ○ρ
Ð→

7Obratite pažnju na redosled zapisa: zapisujemo relacije s desna na levo!
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Kompoziciju σ ○ ρ dobijamo nastavljajući strelice polazeći od elemenata iz A i završavajući u C. Npr. kako
a1

ρ
Ð→ b1

σ
Ð→ c1 imamo a1

σ○ρ
Ð→ c1, kako a1

ρ
Ð→ b3

σ
Ð→ c2 imamo a1

σ○ρ
Ð→ c2, itd. Dobijamo graf na slici desno.

Skupovno zapisano kompozicija relacija ρ i σ je σ ○ ρ = {(a1, c1), (a1, c2), (a1, c4), (a2, c1), (a3, c1), (a3, c2)}.

Tvrđenje 4.11. Neka su ρ ⊆ A ×B, σ ⊆ B ×C i τ ⊆ C ×D relacije. Tada:

(i) (σ ○ ρ)−1 = ρ−1 ○ σ−1; (ii) τ ○ (σ ○ ρ) = (τ ○ σ) ○ ρ.

Dokaz. (i) Najpre primetimo da su obe strane jednakosti definisane relacije iz C u A. Razmotrimo najpre
inkluziju (⊆) na grafu:

A

B

C

a c

(σ ○ ρ)−1

Ô⇒

po definiciji inverza
obrnemo strelicu

A

B

C

a c

σ ○ ρ

Ô⇒

po definiciji kompozicije
strelica levo se razlaže

kroz B

A

B

C

a c

bρ σ

Ô⇒

Ô⇒

po definiciji inverza
obrnemo strelice

A

B

C

a c

bρ−1 σ−1

Ô⇒

po definiciji kompozicije
nadovežemo strelice

A

B

C

a c

ρ−1 ○σ−1

Dakle, ako imamo (σ ○ ρ)−1-strelicu c → a, onda imamo i ρ−1 ○ σ−1-strelicu c → a, pa možemo da zaključimo
(σ ○ ρ)−1 ⊆ ρ−1 ○ σ−1. Nije teško videti da prethodna slika čitana zdesna na levo dokazuje i obratnu inkluziju.
Sada možemo zapisati i formalan dokaz: Neka su a ∈ A i c ∈ C proizvoljni elementi. Tada:
c (σ ○ ρ)−1 a ⇐⇒ a σ ○ ρ c po definiciji inverza

⇐⇒ a ρ b i b σ c, za neko b ∈ B po definiciji kompozicije
⇐⇒ b ρ−1 a i c σ−1 b, za neko b ∈ B po definiciji inverza
⇐⇒ c ρ−1 ○ σ−1 a po definiciji kompozicije

Prema tome, (σ ○ ρ)−1 = ρ−1 ○ σ−1.
(ii) Opet najpre primetimo da su obe relacije τ ○(σ○ρ) i (τ ○σ)○ρ iz A u D, pa ima smisla da ih upoređujemo.

Razmotrimo inkluziju (⊆) na grafu:

A

B

D

C

a

d

τ ○
(σ
○ ρ
)

Ô⇒

razlažemo strelicu
kroz C

A

B

D

C

a

d

c

σ ○ ρ

τ

Ô⇒

tamno plavu strelicu
razlažemo kroz B

A

B

D

C

a c

d

b
ρ σ

τ

Ô⇒
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Ô⇒

nadovežemo narandžastu
i svetlo plavu strelicu

A

B

D

C

a

d

b
ρ

τ
○
σ Ô⇒

nadovežemo strelice
A

B

D

C

a

d

(τ
○σ
) ○

ρ

Dakle, ako imamo τ ○ (σ ○ ρ)-strelicu a → d, onda imamo i (τ ○ σ) ○ ρ-strelicu a → d, pa τ ○ (σ ○ ρ) ⊆ (τ ○ σ) ○ ρ.
Postupajući unazad, prethodno razmatranje nam daje i obratnu inkluziju. Zapišimo sada i formalno dokaz:
Neka su a ∈ A i d ∈D proizvoljni. Imamo:
a τ ○ (σ ○ ρ) d ⇐⇒ a σ ○ ρ c i c τ d, za neko c ∈ C

⇐⇒ a ρ b i b σ c i c τ d, za neke b ∈ B, c ∈ C

⇐⇒ a ρ b i b τ ○ σ d, za neko b ∈ B

⇐⇒ a (τ ○ σ) ○ ρ d.
Svi koraci u prethodnom nizu su po definiciji kompozicije. Prema tome, τ ○ (σ ○ ρ) = (τ ○ σ) ○ ρ.

Komentar 4.12. Ako ρ ⊆ A×B, σ ⊆ B×C i τ ⊆ C×D, prema prthodnom tvrđenju (asocijativnosti kompozicije)
možemo da pišemo τ ○σ ○ ρ. Iz dokaza vidimo da a τ ○σ ○ ρ d znači da postoje b ∈ B i c ∈ C tako da a ρ b, b σ c

i c τ d, što kraće možemo da zapišemo i sa a ρ b σ c τ d. Analogno važi i ako imamo definisanu kompoziciju
više od tri relacije.

Primer 4.13. Neka ρ1,ρ2 ⊆ A×B i σ ⊆ B×C. Ispitajmo u kom su odnosu relacije σ○(ρ1∩ρ2) i (σ○ρ1)∩(σ○ρ2),
koje su obe između A i C.

Pretpostavimo najpre da imamo a σ ○ (ρ1 ∩ ρ2) c i razmotrimo graf:

A

B

C

a c

σ ○ (ρ1 ∩ ρ2)

Ô⇒

razlažemo strelicu
kroz B

A

B

C

a

b

c

ρ
1 ∩ ρ

2
σ

Ô⇒

po definiciji
preseka

A

B

C

a

b

cρ
1

ρ
2 σ

Ô⇒

Ô⇒

nadovežemo strelice
dva puta

A

B

C

a c

σ ○ ρ1

σ ○ ρ2
Ô⇒

po definiciji
preseka

A

B

C

a c

(σ ○ ρ1) ∩ (σ ○ ρ2)

Prema tome, ako imamo σ ○ (ρ1 ∩ ρ2)-strelicu a → c, onda imamo i (σ ○ ρ1) ∩ (σ ○ ρ2)-strelicu a → c, pa važi
σ○(ρ1 ∩ρ2) ⊆ (σ○ρ1)∩(σ○ρ2). Formalno, dokaz ove inkluzije zapisujemo sa: Neka su a ∈ A i c ∈ C proizvoljne.
Imamo:
a σ ○ (ρ1 ∩ ρ2) c Ô⇒ a ρ1 ∩ ρ2 b i b σ c, za neko b ∈ B po def. kompozicije

Ô⇒ a ρ1 b i a ρ2 b i b σ c, za neko b ∈ B po def. preseka
Ô⇒ a σ ○ ρ1 c i a σ ○ ρ2 c po def. kompozicije
Ô⇒ a (σ ○ ρ1) ∩ (σ ○ ρ2) c po def. preseka.

Dakle, u opštem slučaju važi σ ○ (ρ1 ∩ ρ2) ⊆ (σ ○ ρ1) ∩ (σ ○ ρ2).
Po definiciji kompozicije, prva implikacija se može obrnuti. Takođe, po definiciji preseka, druga i četvrta

implikacija se mogu obrnuti. Međutim, treća implikacija ne može. Pogledajmo graf:
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A

B

C

a c

σ ○ ρ1

σ ○ ρ2
Ô⇒

obe strelice se
razlažu kroz B,

međutim ne obavezno
kroz isti element

A

B

C

a

b1

b2

c
ρ1

ρ2

σ

σ

Sada vidimo da ne moramo obavezno da pređemo na presek ρ1 ∩ ρ2.
Poslednja sličica nam sugeriše i kontraprimer za obratnu inkluziju. Naime, uzmimo baš A = {a}, B = {b1, b2},

C = {c}, ρ1 = {(a, b1)}, ρ2 = {(a, b2)} i σ = {(b1, c), (b2, c)}. Tada je ρ1 ∩ ρ2 = ∅, pa je i σ ○ (ρ1 ∩ ρ2) = ∅. Sa
druge strane, σ ○ρ1 = {(a, c)} i σ ○ρ2 = {(a, c)}, pa je (σ ○ρ1)∩(σ ○ρ2) = {(a, c)}. Dakle, imamo primer u kome
važi:

σ ○ (ρ1 ∩ ρ2) ⊊ (σ ○ ρ1) ∩ (σ ○ ρ2).

Zadatak 4.14. Neka ρ1,ρ2 ⊆ A ×B i σ ⊆ B ×C. Dokazati:

(i) ρ1 ⊆ ρ2 povlači σ ○ ρ1 ⊆ σ ○ ρ2;

(ii) σ ○ (ρ1 ∪ ρ2) = (σ ○ ρ1) ∪ (σ ○ ρ2);

(iii) σ ○ (ρ1 ∖ ρ2) ⊇ (σ ○ ρ1) ∖ (σ ○ ρ2).

(iv) Primerom pokazati da u (i) ne mora da važi obratna implikacija.

(v) Primerom pokazati da u (iii) ne mora da važi obratna inkluzija.

4.4 Osobine binarnih relacija na skupu S

Definicija 4.15. Neka je ρ binarna relacija na skupu S. Ističemo nekoliko osobina koje relacija ρ može (i ne
mora) da ima:

(R) (∀x ∈ S) x ρ x; (refleksivnost)

(I) (∀x ∈ S) x /ρ x; (irefeksivnost)

(S) (∀x, y ∈ S)(x ρ y → y ρ x); (simetričnost)

(a) (∀x, y ∈ S)(x ρ y → y /ρ x); (asimetričnost)

(A) (∀x, y ∈ S)(x ρ y ∧ y ρ x→ x = y); (antisimetričnost)

(T) (∀x, y, z ∈ S)(x ρ y ∧ y ρ z → x ρ z). (tranzitivnost)

Na grafu relacije ρ uslov refleksivnosti kaže da oko svakog elementa postoji petlja, dok uslov irefleksivnosti
ide u drugu krajnost: ni oko jednog elementa nema petlje. Uslov simetričnosti kaže da ako imamo strelicu
x→ y, moramo da imamo i strelicu y → x:

ako x y , onda mora biti i x y .

Uslov simetričnosti odnosi se i na potencijalno jednake x = y, ali ne daje nikakvu informaciju (kaže samo da ako
imamo petlju u x, onda imamo petlju u x, što je uvek tačna implikacija).

Uslov asimetričnosti kaže da ako imamo sterlicu x→ y, onda nemamo strelicu y → x:

ako x y , onda mora biti
x y

× .
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I uslov asimetričnosti odnosi se na potencijalno jednake x i y. U tom slučaju uslov asimetričnosti kaže da je
tačna implikacija: ako postoji petlja u x, onda ne postoji petlja u x, što je tačno akko ni u jednom x nemamo
petlju. Dakle, asimetričnost specijlno podrazumeva irefleksivnost.

Uslov antisimetričnosti kaže da ako imamo obe strelice x → y i y → x, onda x i y moraju da budu jednaki.
Drugim rečima ako x ≠ y, nemamo sledeću situaciju:

x y

Primetimo da asimetrinost povlači antisimetričnost. Oba uslova zabranjuju obe strelice između različitih el-
emenata. Jedina razlika je što asimetričnost zabranjuje petlje, dok antisimetričnost dozvoljava da oko nekih
elemenata postoji petlja.

Uslov tranzitivnosti kaže da ako postoje strelice x→ y i y → z, mora da postoji i strelica x→ z:

ako x y z , onda mora biti i
x y z

.

I uslov tranzitivnosti odnosi se i na x, y, z od kojih su neki potencijalno jednaki. Ako je x = y ili y = z, implikacija
u uslovu tranzitivnosti očiglendo je zadovoljena. Ističemo slučaj x ≠ y i x = z. U ovom slučaju tranzitivnost
kaže da ako imamo obe strelice između dva različita elementa x i y, moramo da imamo i obe petlje u x i y:

ako x y , onda mora biti i
x y

.

Primer 4.16. Na skupu {1,2,3,4} uočimo relacije skicirane sa:

1

2 3

4

ρ

1

2 3

4

σ

1

2 3

4

τ

Ispitajmo koje osobine imaju ove relacije.
Relacija ρ nije refleksivna (jer nema petlje oko 1 i 2), a nije ni irefleksivna (jer ima petlje oko 3 i 4). Relacija

nije simetrična jer imamo 1 → 4, ali nemamo 4 → 1. Relacija nije ni asimetrična ni antisimetrična jer imamo
1 → 2 i 2 → 1 i 1 ≠ 2; relacija nije asimetrična jer nije ni irefleksivna. Konačno ρ nije ni tranzitivna jer imamo
2→ 1 i 1→ 4, ali nemamo 2→ 4.

Relacija σ nije refleksivna (nema petlju oko 1) ni irefleksivna (ima sve ostale petlje). Relacija nije simetrična
jer npr. 2 → 1 ali nije 1 → 2. Relacija nije asimetrična niti antisimetrična jer imamo 3 → 4 i 4 → 3. Konačno
relacija jeste tranzitivna. Nije teško izračunati da je σ ○ σ = σ, što znači da σ jeste trazitivna.

Relacija τ jeste refleksivna i simetrična, ali ne zadovoljava ostale osobine.

Definicija 4.17. Dijagonala skupa S je relacija na S data sa ∆S = {(x,x) ∣ x ∈ S}.

Primetimo da je ∆S samo druga oznaka za relaciju jednakosti na S.
Sada možemo da damo i sledeće, skupovne karakterizacije gore uvedenih osobina. Najpre, očigledno relacija

ρ na S je refleksivna akko ∆S ⊆ ρ, a ρ je irefleksivna akko ∆S ∩ ρ = ∅.
Kako je y ρ x akko x ρ−1 y, uslov simetričnosti ekvivalentan je sa ρ ⊆ ρ−1. Ovo je ekvivalentno i sa ρ = ρ−1

jer ρ ⊆ ρ−1 povlači i ρ−1 ⊆ (ρ−1)−1 = ρ.
Kako je y /ρ x akko x /ρ−1 y akko x (ρ−1)c y, uslov asimetričnosti ekvivalentan je sa ρ ⊆ (ρ−1)c, tj. sa ρ∩ρ−1 = ∅.
Sad lako vidimo i da je uslov antisimetričnosti ekvivalentan sa ρ ∩ ρ−1 ⊆ ∆S .
Konačno, razmotrimo i tranzitivnost. Iskaz (∀x, y, z ∈ S)(x ρ y ∧ y ρ z → x ρ z) ekvivalentan je sa:

(∀x, z ∈ S)((∃y ∈ S)(x ρ y ∧ y ρ z) → x ρ z). Kako je (∃y ∈ S)(x ρ y ∧ y ρ z) ekvivalentno sa x ρ ○ ρ z, uslov
tranzitivnosti ekvivalentan je sa ρ ○ ρ ⊆ ρ.
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4.5 Ekvivalencije

Zadatak 4.18. Na skupu {a, b, c} konstruisati relaciju ρ koja je:

(i) refleksivna i simetrična, ali nije tranzitivna;

(ii) refleksivna i tranzitivna, ali nije simetrična;

(iii) simetrična i tranzitivna, ali nije refleksivna.

Definicija 4.19. Relacija ≈ na skupu S je ekvivalencija ako je refleksivna, simetrična i tranzitivna.

Prvi primer ekvivalencije na bilo kom skupu je jednakost na tom skupu. Izborom simbola ≈ naglašavamo da
ekvivalencije imaju iste osnovne osobine kao i jednakost.

Primer 4.20. Neka je m ∈ N. Na skupu Z definišemo relaciju ≡m sa x ≡m y akko m ∣ x − y, tj. akko (∃k ∈
Z) x − y =mk.

Relacija ≡m je refleksivna jer za sve x ∈ Z važi x − x = m ⋅ 0. Ako je x ≡m y, tj. x − y = mk za neko celo k,
tada je y −x =m(−k) i −k ∈ Z, pa y ≡m x, što znači da je ≡m simetrična. Ako je x ≡m y i y ≡m z, tj. x− y =mk i
y − z =ml za neke cele k i l, sabiranjem je i x − z =m(k + l) i k + l ∈ Z, pa je x ≡m z, što dokazuje tranzitivnost.

Za m = 0, x ≡0 y akko x− y = 0 ⋅ k za neko k ∈ Z, akko x = y, pa je relacija ≡0 relacija jednakosti na skupu Z.
Za m = 1, x ≡1 y akko x − y = 1 ⋅ k za neko k ∈ Z, što je tačno za proizvoljne brojeve x i y. Dakle, ≡1 je relacija
Z ×Z.

Zanimljivi slučajevi su kada je m ⩾ 2.

Definicija 4.21. Neka je ≈ ekvivalencija na skupu S i a ∈ S. Klasa elementa a je skup u oznaci [a]≈, ili samo
[a] ako je ekvivalencija ≈ jasna iz konteksta, definisan sa:

[a] = {x ∈ S ∣ x ≈ a}.

Zbog simetričnosti direktno imamo i [a] = {x ∈ S ∣ a ≈ x}.

Tvrđenje 4.22 (Osnovne osobine klasa). Neka je ≈ ekvivalencija na S i a, b ∈ S. Tada:

(i) a ∈ [a]; specijalno, [a] ≠ ∅;

(ii) a ≈ b akko [a] = [b];

(iii) a ≉ b akko [a] ∩ [b] = ∅.

Dokaz. (i) Uslov a ∈ [a] ekvivalentan je sa a ≈ a, što jeste tačno jer je ≈ refleksivna.
(ii) (⇒) Pretpostavimo a ≈ b. Dokažimo najpre [a] ⊆ [b]. Ako x ∈ [a], tada x ≈ a, pa kako a ≈ b, po

tranzitivnosti x ≈ b, tj. x ∈ [b]; dakle, [a] ⊆ [b]. Ovime smo dokazali da a ≈ b povlači [a] ⊆ [b]. Kako a ≈ b zbog
simetričnosti povlači i b ≈ a, prema prethodnom imamo i [b] ⊆ [a]. Dakle, važi [a] = [b].
(⇐) Pretpostavimo [a] = [b]. Kako a ∈ [a] prema (i), važi i a ∈ [b], što znači a ≈ b.
(iii) (⇒) Dokažimo kontrapoziciju. Pretpostavimo [a] ∩ [b] ≠ ∅ i neka je x ∈ [a] ∩ [b]. Tada a ≈ x i x ≈ b, pa

i a ≈ b zbog tranzitivnosti, što znači da ne važi a ≉ b.
(⇐) Pretpostavimo [a] ∩ [b] = ∅. Kako [a], [b] ≠ ∅ prema (i), to povlači [a] ≠ [b], odakle a ≉ b prema

(ii).

Prema (i) i (ii), x ∈ [a] akko x ≈ a akko [x] = [a], i x ∉ [a] akko x ≉ a akko [x] ∩ [a] = ∅. Dakle, svi elementi
u klasi su u relaciji samo sa elementima te klase i ni sa jednim više, i imaju tu istu klasu. Klase ekvivalencije
dele skup S na međusobno disjunktne (presek je prazan) neprazne delove. Ovakva podela skupa S naziva se
particija skupa S.
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Primer 4.23. Vratimo se na primer 4.20 i neka je m ⩾ 2. Izračunajmo klase relacije ≡m. Za a ∈ Z imamo:
x ∈ [a] ⇐⇒ x ≡m a

⇐⇒ x − a =mk za neko k ∈ Z
⇐⇒ x = a +mk za neko k ∈ Z

pa je [a] = {a +mk ∣ k ∈ Z}. Nije teško videti da imamo m različitih klasa. Naime, klasa [a] određena je
ostatkom pro deljenju broja a sa m. Zaista, ako je a =mq + r, 0 ⩽ r <m, tada a ∈ [r], pa je [a] = [r]. Sa druge
strane, za 0 ⩽ r1 < r2 < m, jasno je da m ∤ r1 − r2, pa r1 ≢m r2, što znači da [r1] ≠ [r2]. Dakle, imamo m

različitih klasa i one su određene ostacima pri deljenju sa m: [0], [1], . . . , [m − 1].

Definicija 4.24. Skup svih klasa ekvivalencije ≈ na skupu S zove se količnički skup i označava se sa S/≈:

S/≈ = {[a] ∣ a ∈ S}.

U prethodnom primeru Z/≡m = {[0], [1], . . . , [m − 1]}.

Definicija 4.25. Transverzala ili skup predstavnika ekvivalencije ≈ na skupu S je bilo koji podskup T ⊆ S koji
sadrži po tačno jedan element iz svake klase.

Npr. u gornjem primeru skup {0,1, . . . ,m − 1} je jedna prirodna transverzala ekvivalencije ≡m.

Primer 4.26. Na skupu R ×R definišemo relaciju ≈ sa:

(x1, y1) ≈ (x2, y2) ⇐⇒ y1 = y2.

Nije teško videti da je ≈ ekvivalencija. Izračunajmo klasu tačke (a, b):
(x, y) ∈ [(a, b)] ⇐⇒ (x, y) ≈ (a, b)

⇐⇒ y = b
tj. [(a, b)] = {(x, b) ∣ x ∈ R}. Prethodni skup je prava kroz (a, b)

paralelna sa x-osom:

x

y

[(a, b)]

(a, b)

Prema tome količnički skup, (R × R)/≈, je skup svih pravih paralelnih sa x-osom. Da bismo uočili neku
transverzalu treba sa svake od tih pravih da izaberemo po jednu tačku. Npr. y-osa je jedna transverzala.
Ili bilo koja prava koja nije paralelna sa x-osomo. Ili graf funkcije y = x3. Svi ovi skupovi seku prave paralelne
sa x-osom u po jednoj tački.

Primer 4.27. Na skupu R ×R definišemo relaciju ≈ sa:

(x1, y1) ≈ (x2, y2) ⇐⇒ x2
1 + y21 = x

2
2 + y22 .

Ponovo lako vidimo da je ≈ ekvivalencija, i računamo klasu tačke (a, b):
(x, y) ∈ [(a, b)] ⇐⇒ (x, y) ≈ (a, b)

⇐⇒ x2 + y2 = a2 + b2
tj. [(a, b)] = {(x, y) ∣ x2 + y2 = a2 + b2 ∈ R}. Ako sa r označimo

rastojanje (a, b) od koordinatnog početka, po Pitagorinoj teoremi je a2 + b2 = r2, pa je prethodni skup zapravo
skup tačaka (x, y) za koje je x2 + y2 = r2, i prepoznajemo da je u pitanju kružnica sa centrom u koordinatnom
početku poluprečnika r, tj. koja prolazi kroz (a, b):
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x

y

[(a, b)]

(a, b)

Prema tome količnički skup je skup svih kružnica sa centrom u koordinatnom početku (uključujući i jedan
degenerisan slučaj, [(0,0)] = {(0,0)}, što možemo da razumemo kao kružnicu sa centrom u koordinatnom
početku poluprečnika 0). Sa svake takve kružnice treba da odaberemo po jednu tačku da bismo odredili jednu
transverzalu, i jedan prirodan način je da uzmemo bilo koju polupravu sa temenom u koordinatnom početku.

Primer 4.28. Na skupu R data je relacija ≈ sa:

x ≈ y ⇐⇒ x − y ∈ Z.

Ova relacija takođe jeste ekvivalencija, a klasa broja a je:
x ∈ [a] ⇐⇒ x ≈ a

⇐⇒ x − a ∈ Z
⇐⇒ x = a + k za neko k ∈ Z

tj. [a] = {a + k ∣ k ∈ Z} = a +Z. Dakle, klasa elementa a je skup Z transliran za a:

−3 −2 −1 0 1 2 3

− 8
3 − 5

3 − 2
3

1
3

4
3

7
3

10
3

[0] = Z

[ 13 ] =
1
3 + Z

Primetimo da svaka klasa ima jedinstvenog predstavnika u intervalu [0,1). Zaista, za klasu [a] to je a − ⌊a⌋ ∈

[0,1). Prema tome jedna prirodna transverzala je interval [0,1).

Primer 4.29. Na skupu R data je relacija ≈ sa:

x ≈ y ⇐⇒ x − y ∈ Q.

I ova relacija jeste ekvivalencija, a klasa broja a je, slično kao u prethodnom primeru, skup Q transliran za a:
[a] = a+Q. Do sada smo imali prirodne načine da odaberemo transverzale, međutim u ovom slučaju, ako se malo
udubimo, videćemo da to nije tako. I zaista, može se pokazati da ne postoji prirodan način da konstruišemo
transverzalu.

S obzirom da ne postoji način da konstruišemo prethodnu transverzalu, prirodno je pitanje da li ona postoji.
Odgovor daje aksioma izbora.

Aksioma 4.30 (Aksioma izbora). Svaka ekvivalencija ima transverzalu.

Specijalne transverzale relacije iz primera 4.29 nazivaju se Vitalijevi skupovi, i već kod njih vidimo prve
čudne posledice aksiome izbora. Pogledajte odeljak 4.7*.

4.6 Uređenja

Definicija 4.31. Relacija ⊴ na skupu S je (parcijalno) uređenje (poredak) ako je refleksivna, antisimetrična i
tranzitivna.

Osnovni primeri uređenja su ⩽ na R ili ⊆ na familijama skupova. Primetimo da za uređenja koristimo oznaku
⊴ koja bi trebalo da nas podseća na osnovne primere. Ako a ⊴ b, element a doživljavamo kao manji (ili jednak)
od b, a b veći (ili jednak) od a. Treba da naglasimo jednu bitnu razliku između proizvoljnog uređenja i primera
⩽ na R. Naime, ⩽ na R ima i dodatnu osobinu linearnosti:
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(L) (∀x, y ∈ S)(x ⊴ y ∨ y ⊴ x) (linearnost)

koja kaže da za svaka dva elementa možemo da uporedimo koji je manji, a koji veći. Ovo u opštem slučaju ne
važi, i npr. ⊆ u opštem slučaju nema ovu osobinu. Npr. na skupu P({a, b, c}), skupove {a} i {b}, ili {a} i {b, c},
ili {a, b} i {a, c} ne možemo da uporedimo sa ⊆. Kad smo kod ovog primera, naglasimo i da uređenja možemo
da skiciramo na sledeći način:

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Na prethodnom dijagramu crtamo manje skupove ispod većih i crticom naglašavamo koji skup je neposredno
iznad nekog drugog. Kad god je moguće, ovako ćemo skicirati i druga uređenja. Na prethodnom dijagramu lako
uočavamo i odgovarajuće parove neuporediivh elemenata.

Ako uređenje ⊴ zadovoljava i uslov linearnosti, kažemo da je ⊴ linearno uređenje.

Definicija 4.32. Relacija ◁ na skupu S je strogo (parcijalno) uređenje (poredak) ako je irefleksivna, asimetrična
i tranzitivna (ekvalentno samo irefleksivna i tranzitivna, ekvivalentno samo asimetrična i tranzitivna).

Osnovni primeri strogog uređenja su < na R ili ⊊ na familijama skupova. Strogo uređenje je linearno ako
zadovoljava odgovarajući uslov linearnosti:

(L) (∀x, y ∈ S)(x◁ y ∨ x = y ∨ y◁ x) (linearnost)

Svako uređenje ima prirodno pridruženo strogo uređenje, i obratno. Pridruživanje je dato na sledeći način:

uređenje ←→ strogo uređenje
dato ⊴ Ð→ x◁ y ∶ ⇐⇒ x ⊴ y ∧ x ≠ y

x ⊴ y ∶ ⇐⇒ x◁ y ∨ x = y ←Ð dato ◁

Pridruženo (strogo) uređenje ima očekivane osobine. Npr. ako imamo uređenje ⊴ i pridruženo strogo uređenje
◁, ako a ⊴ b i b◁ c, onda a◁ c, itd.

Primer 4.33. Relacija deljivosti ∣ na N definisana sa a ∣ b akko b = ak za neko k ∈ N je uređenje. Refleksivnost,
a ∣ a, važi jer a = a ⋅ 1. Tranzitivnost važi jer a ∣ b i b ∣ c povlači b = ak i c = bl za neke k, l ∈ N, pa c = a(kl) i
kl ∈ N povlače a ∣ c. Konačno, za antisimetričnost pretpostavimo a ∣ b i b ∣ a, tj. b = ak i a = bl za neke k, l ∈ N.
Tada je b = b(kl), tj. b(1−kl) = 0. Ako je b = 0, onda je i a = bl = 0, i važi a = b, a ako je 1−kl = 0, tada je kl = 1,
pa je k = l = 1 jer k, l ∈ N; opet a = bl = b.

Primetimo da u smislu relacije deljivosti a ∣ b znači da je a manji a b veći element. Primetimo dve osobine.
Za svako a važi 1 ∣ a jer a = 1 ⋅ a, kao i a ∣ 0 jer 0 = a ⋅ 0. Dijagram ovog uređenja predstavljamo na sledeći način:
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1

2 3 5 7 11 13

4 6 9 10 1415

8 12

16

⋮

0

Naglasimo da je 0 na vrhu, veća od svih drugih elemenata.

Definicija 4.34. Neka je ⊴ uređenje na S, A ⊆ S i a ∈ S.
Element a je najmanji element skupa A ako a ∈ A i (∀x ∈ A) a ⊴ x.8

Element a je minimalni element skupa A ako a ∈ A i (∀x ∈ A) x ⋪ a.9

Dualno defininešemo pojmove najvećeg i maksimalnog elementa.

Primer 4.35. Vratimo se na primer 4.33. Skup A = N ima najmanji element 1 jer 1 ∣ a za sve a ∈ N, kao i
najveći element 0 jer a ∣ 0 za sve a ∈ N. Nijedan drugi element a ≠ 1 nije najmanji jer ne deli 1, i nijedan drugi
element a ≠ 0 nije najveći jer ga ne deli 0. Takođe, jedino „ispod" 1 ne postoje drugi elementi, što znači da je 1

i jedini minimalni element, kao i jedino „iznad" 0 ne postoje drugi elementi, što znači da je 0 jedini maksimalni
element.

Neka je sada B = N ∖ {1}:

1

2 3 5 7 11 13

4 6 9 10 1415

8 12

16

⋮

0

Skup B nema više najmanji element jer bilo koji a ≠ 1 ne deli sve preostale elemente u B, npr. a ∤ a + 1.
Međutim skup B ima beskonačno mnogo minimalnih elemenata: to su prosti brojevi. Jedino ispod njih nema
drugih „crvenih" elemenata.

Skup C = N ∖ {0} nema najveći element, ali nema ni maksimalne elemente. Zaista, za a ≠ 0 važi a ∣ 2a i
a ≠ 2a, pa a nije veći od 2a, što znači da a nije najveći, i od a je strogo veći 2a, što znači da a nije maksimalan.

Tvrđenje 4.36. Neka je ⊴ uređenje na S i A ⊆ S.

(i) Najmanji element skupa A, ako postoji, jedinstven je.

(ii) Najmanji element skupa A, ako postoji, je jedini minimalni element skupa A.
8Najmanji element u skupu je onaj koji je manji (ili jednak) od svih u tom skupu.
9Minimalni element u skupu je onaj od kojeg nijedan element iz tog skupa nije strogo manji.
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(iii) Ako je A lanac10, minimalni element skupa A, ako postoji, je i najmanji element skupa A.

Analogno važi i ako termine najmanji/minimalni zamenimo sa najveći/maksimalni.

Dokaz. (i) Pretpostavimo da su a, b ∈ A najmanji elementi. Tada je a ⊴ b jer je a najmanji, pa je manji i od b, i
b ⊴ a jer je b najmanji, pa je manji i od a. Zbog asimetričnosti a = b. Dakle, ako postoji, najmanji element je
jedinstven.

(ii) Pretpostavimo da je a ∈ A najmanji element. Za svako x ∈ A tada važi a ⊴ x, pa nije x◁ a, što znači da
a jeste minimalan. Da bismo videli da je jedini minimalan pretpostavimo da je b ∈ A minimalan element. Tada
je a ⊴ b jer je a najmanji, pa je manji i od b, ali a ⋪ b jer je b minimalni pa ništa, ni a, nije strogo manje od
njega. Prema tome a = b i zaključujemo da je a jedini minimalni u A.

(iii) Pretpostavimo da je A lanac i da je a ∈ A minimalni element. Tada za sve x ∈ A važi x ⋪ a, ali kako je
A lanac, x je uporediv sa a, pa mora biti a ⊴ x. Dakle, a je najmanji u A.

Definicija 4.37. Ako postoji, najmanji element skupa A obeležavamo sa min(A), a najveći element sa max(A).11

Primer 4.38. Prethodno tvrđenje povlači da ako skup A nema minimalne (maksimalne) elemente, ili ima bar
dva minimalna (maksimalna) elementa, onda A ne može da ima najmanji (najveći) element. Ostaje otvoreno
pitanje da li je moguće da A ima jedinstveni minimalni (maksimalni) element, a da ipak nema najmanji (najveći).
Odgovor je pozitivan. Npr. uočimo u primeru 4.33 skup A = {2n ∣ n ⩾ 0} ∪ {3}:

1

2 3 5 7 11 13

4 6 9 10 1415

8 12

16

⋮

⋮

0

Skup A ima jedinstveni maksimalni element 3, ali on nije najveći.

Tvrđenje 4.39. Neka je ⊴ uređenje na S i A ⊆ S je neprazan konačan podskup. Tada A ima minimalan element
(i slično, ima i maksimalan element).

Dokaz. Dokaz možemo izvesti indukcijom po broju elemenata n u skupu A. Ako je n = 1, tj. A = {a}, a je
očigledno minimalan element u A. Pretpostavimo da A ima n+1 element i izaberimo proizvoljni element a ∈ A.
Ako je a slučajno minimalan, završili smo posao. Pretpostavimo da a nije minimalan, pa postoji a′ ∈ A takav
da a′ ◁ a. Po indukcijskoj hipotezi skup A ∖ {a} ima minimalan element b, što znači da nijedan element u A

različit od a nije strogo manji od b. Prema tome a′ ⋪ b, pa kako a′ ◁ a, mora biti i a ⋪ b. To znači da nijedan
element u A nije strogo manji od b (za elemente različite od a to važi po izboru b, a sad smo videli da važi i za
a), pa je b minimalan u A.

Definicija 4.40. Neka je ⊴ uređenje na S i A ⊆ S.
Element a ∈ S je donje ograničenje za A ako (∀x ∈ A) a ⊴ x. Skup svih donjih ograničenja skupa A

obeležavamo sa A−.
Element a ∈ S je infimum skupa A ako je najveće donje ograničenje, tj. a =max(A−).
Dualno definišemo pojam gornjeg ograničenja, skup A+ i pojam supremuma.

10Skup A je lanac ako su svaka dva njegova elementa uporediva.
11Oznake min i max su skraćenice za minimum i maksimum, što su sinonimi za najmanji i najveći element, i ne treba mešati ove

termine sa minimalan i maksimalan.
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Komentar 4.41. Po definiciji ako neko donje ograničenje od A pripada A, ono je najmanji element skupa
A. Takođe, ako infimum skupa A postoji, mora biti jedinstven (jer je max(A−) jedinstven). Infimum skupa A

obeležavamo sa inf(A); supremum skupa A obeležavamo sa sup(A).
Dakle, po definiciji, inf(A) =max(A−) i sup(A) =min(A+).

Zadatak 4.42. Neka je ⊴ uređenje na S i A ⊆ S.

(i) Ako postoji min(A), onda je inf(A) =min(A).

(ii) Ako postoji inf(A) i inf(A) ∈ A, onda je min(A) = inf(A).

Analogno važi i ako min / inf zamenimo sa max / sup.

Primer 4.43. Vratimo se na primer 4.33. Uočimo A = {4,6}. Tada je A− skup zajedničkih delioca brojeva 4 i 6,
A− = {1,2}, pa je inf(A) =max(A−) = 2. Naglasimo da je infimum od A najveći među donjim ograničeninjima,
tj. zajedničkim deliocima, od A, pa je inf(A) zapravo NZD brojeva 4 i 6. Slično, gornja ograničenja skupa A su
zajednički sadržaoci brojeva 4 i 6, tj. A+ = {12n ∣ n ∈ N}, pa je sup(A) =min(A) = 12, što je NZS brojeva 4 i 6.

Primer 4.44. Na skupu {a, b, c, d, e, f, g} imamo tri uređenja data dijagramima:

a b

c

d e

f g

⊴

a b

c

d e

f g

⊴
′

a b

c

d e

f g

⊴
′′

U sva tri slučaja, skup A = {c, d, e} ima najveći element max(A) = c i dva minimalna elementa d i e. Skup
A+ = {a, b, c} i on ima najmanji element c, pa je sup(A) =min(A+) = c =max(A).

Što se tiče donjih ograničenja A−⊴ = ∅, A−⊴′ = {f} i A−⊴′′ = {f, g}. Prema tome inf⊴(A) ne postoji jer je A−⊴

prazan, inf⊴′(A) = max(A−⊴′) = f , a inf⊴′′(A) ponovo ne postoji jer A−⊴′′ , iako neprazan, nema najveći element
(ima dva maksimalna elementa).

Primer 4.45. U realnoj ravni definišemo uređenje ⊴ sa:

(x1, y1) ⊴ (x2, y2) ∶ ⇐⇒ x1 ⩽ x2 ∧ y1 ⩽ y2.

(Nije teško videti da je ⊴ zaista uređenje na R ×R.) Odredimo značajne tačke trouglova:

x

y

A(−2,3)

B(2,−2)

C(1,2)

x

y

D(−2,1)

E(1,−2)

F (2,2)

Šta na slici znači da je tačka A manja od tačke B? To znači da je A „levo-dole" u odnosu na B jer su joj
obe koordinate manje od koordinata tačke B. Dakle, skup manjih tačaka od A, A−, i skup većih tačaka od A,
A+ su (slika levo):
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A−

A+

x

y

A

x

y

A

B

C

x

y

A

B

C

ABC−

ABC+

Pogledajmo sliku u sredini. Primetimo da od tačaka na stranici AB, i samo od njih, nijedna tačka trougla nije
storgo manja, kao i da od tačaka na stranicama AC i BC, i samo od njih, nijedna tačka trougla nije strogo
veća. To znači da su tačke duži AB minimalni elementi trougla ABC u našem uređenju, a da su tačke duži AC
i BC maksimalni elementi trougla ABC. Prema tome trougao ABC nema ni najmanji ni najveći element jer
ima beskonačno mnogo minimalnih i maksimalnih elemenata. Primetimo i da su tačke A i B dve tačke trougla
koje su ujedno i minimalne i maksimalne.

Da bismo sračunali infimum i supremum trougla ABC treba da sračunamo ABC− i ABC+. Pogledjamo
sliku desno. Donje ograničenje trougla ABC mora da bude levlje od njegove najlevlje tačke i ispod od njegove
najniže tačke, pa vidimo da je ABC− = {(x, y) ∣ x ⩽ −2, y ⩽ −2}. Ovaj skup ima najveći element i to je baš tačka
(−2,−2), pa je inf(ABC) = (−2,−2). Na sličan način vidimo da je sup(ABC) = (2,3).

Što se tiče trougla DEF , slično kao malopre vidimo da su njegovi minimalni elementi tačke stranice DE, pa
najmanji element ne postoji. Sa druge strane, teme F jeste najveći element trougla DEF , pa i jedini makismalni
i supremum trougla (slika levo):

x

y

D

E

F

x

y

D

E

F

DEF−

Infimum računamo slično kao kod trougla ABC i vidimo inf(DEF ) = (−2,−2).

4.7* Vitalijev skup

Vratimo se na primer 4.29. Na R imamo definisanu ekvivalenciju ≈ sa x ≈ y akko x − y ∈ Q. Po aksiomi
izbora ova relacija ima bar jednu transverzalu T . Možemo da pretpostavimo da je T ⊆ [0,1). Zaista, izabranog
predstavnika svoje klase t ∈ T možemo zameniti sa predstavnikom iste klase t− ⌊t⌋ ∈ [0,1) (primetimo t ≈ t− ⌊t⌋

jer t − (t − ⌊t⌋) = ⌊t⌋ ∈ Z ⊆ Q), pa zamenom T sa {t − ⌊t⌋ ∣ t ∈ T} možemo pretpostaviti T ⊆ [0,1).
Želimo da odgovorimo na sledeće pitanje: Da li je moguće izračunati dužinu skupa T?
Nećemo ulaziti u zasnivanje pojma mere (konkretno dužine), navešćemo samo nekoliko prirodnih osobina

koje bi dužina trebalo da ima, a biće nam dovoljni da završimo ovaj primer. Označimo sa λ(S) dužinu skupa
S ⊆ R; jasno je da λ(S) ∈ [0,+∞]. Razne podskupove od R merimo na prirodan način. Uzimamo da je
svaka tačka dužine nula. Dužina intervala (a, b) je λ((a, b)) = b − a. Prirodno uzimamo da je dužina konačno

mnogo disjunktnih skupova jednaka zbiru njihovih dužina: λ(
n

⋃
i=1

Si) =
n

∑
i=1

λ(Si) ako su Si međusobno disjunktni.

Takođe, prirodno uzimamo da je dužina translatorno invarijantna, što znači da je dužina skupa a + S, koji je
dobijen translacijom skupa S za a, jednaka dužini skupa S: λ(a+S) = λ(S). Konačno, podskupovi nekog skupa
bi prirodno trebalo da su manje dužine: ako S ⊆ S′ onda λ(S) ⩽ λ(S′).
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Skrećemo pažnju na još jednu činjenicu. Pretpostavimo da imamo međusobno disjunktne skupove S1, S2, S3, . . . .

Kako smo već naglasili dužina skupa
n

⋃
i=1

Si jednaka je
n

∑
i=1

λ(Si), pa je prirodno da je dužina skupa S =
∞

⋃
i=1

Si

jednaka

λ(S) = lim
n→∞

λ(
n

⋃
i=1

Si) = lim
n→∞

n

∑
i=1

λ(Si).

Sve prethodno važi pod pretpostavkom da su odgovarajuće dužine definisane.
Vratimo se na transverzalu T ⊆ [0,1) ekvivalencije ≈. Dokazaćemo da ne možemo da izmerimo dužinu skupa

T . Pretpostavimo suprotno, λ(T ) = ϵ; jasno ϵ ⩾ 0, kao i ϵ ⩽ 1 jer T ⊆ [0,1).
Neka je Q ∩ (−1,1) = {q1, q2, q3, . . .}.12 Neka je Ti = qi + T – skup T transliran za qi; za sve i je λ(Ti) =

λ(qi + T ) = λ(T ) = ϵ. Primetimo da za različite i, j imamo Ti ∩ Tj = ∅. Zaista, ako x ∈ Ti ∩ Tj , tada je
x = qi + t′ = qj + t′′ za neke t′, t′′ ∈ T , pa je t′ − t′′ = qj − qi ∈ Q, odakle t′ ≈ t′′, pa kako je T transverzala mora

biti t′ = t′′, odakle je i qi = qj , pa i i = j. Prema tome, λ(
n

⋃
i=1

Ti) = nϵ. Uočimo skup S =
∞

⋃
i=1

Ti. Njegova dužina je

λ(S) = lim
n→∞

λ(
n

⋃
i=1

Si) = lim
n→∞

nϵ, što je 0 ako je ϵ = 0 i ∞ ako je ϵ > 0.

Primetimo da je (0,1) ⊆ S. Zaista, ako x ∈ (0,1), izaberimo t ∈ T tako da x ≈ t. Tada je x − t ∈ Q. Kako je
jasno i x − t ∈ (−1,1), x − t jednak je nekom qi, pa je x = qi + t ∈ Ti, odakle, x ∈ S. Ovo znači da je λ(S) ⩾ 1, što
eliminiše slučaj ϵ = 0.

Sa druge strane, kako je T ⊆ [0,1) i svaki qi ∈ (−1,1), translat Ti = qi + T sadržan je u (−1,2). Prema tome
i cela unija S sadržana je u ovom intervalu, a to znači da λ(S) ⩽ 3. Ovo eliminiše slučaj ϵ > 0.

Dakle, ako pretpostavimo da možemo da izmerimo dužinu od T , dolazimo do kontradikcije, pa zaključujemo
da skup T ne može da ima definisanu dužinu.

Skup T zove se Vitalijev skup.

12Videćemo da je skup Q ∩ (−1,1) prebrojiv, što znači da možemo nabrojati njegove elemente.
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