Uvod u matematicku logiku

— predavanja —

Slavko Moconja

Sadrzaj
1 Iskazi, promenljive i predikati

2 Iskazna logika

2.1 Izgradnjaiskazne formule . . . . . . .. oL
2.2 Semantika iskazne logike . . . . . . ... L e
Digresija: Princip potpune indukcije . . . . . . . . . e
Semantika iskazne logike (nastavak) . . . . .. ... L L
2.3 Lema o0 smeni . . . . .. oL e e e e e e e e e e e e e e e
2.4 Logicka ekvivalentnost i normalne forme . . . . . . .. ... L L L
2.5 Prirodna dedukcija . . . . ..o
2.6 Izvedena pravila prirodne dedukcije . . . . . . ..o L
2.7 Logicka posledica i teorema saglasnosti . . . . . . .. .. .. Lo Lo
2.8 Slaba teorema potpunosSti . . . . . . . .. L e e e e e e e
2.9 Teorema kompaktnosti . . . . . . .. L e
Digresija: Aksioma izbora . . . . . . . . .. e e e e e e e e e
Teorema kompaktnosti (nastavak) . . . . . ... oL e
2.10*Primeri primene teoreme kompaktnosti . . . . . . . ...
2.10.1 Uredenja racionalnih brojeva . . . . . . . . ... L
2.10.2 Linearizacija parcijalnih uredenja . . . . . . . . .. L. Lo Lo
2.10.3 4-obojivost planarnih grafova . . . .. . ... ..
2.10.4 Remzijeva teorema . . . . . v v v i it e e e e e e e e e e e e e
2.11 Teorema potpunosti . . . . . . . . o i o e e e e e e e e
Skupovi
3.1 Podskup . . . .o e
3.2 Osnovie skupovne OPeracije . . . . . . . v v v vt it e e e e e e e
3.3 Veza za iskaznom logikom . . . . . . . .. e
3.4 Algebarska normalna forma . . . . ... L L e
3.5 Partitivoni skup . . . . .o
3.6 Dekartov proizvod . . . . . .. e e
Relacije
4.1 Podrelacija i skupovne operacije sa relacijama . . . ... ... ... . oo L
4.2 Inverzna relacija . . . . . . .. e e e e e e e e e e
4.3 Komporzicija relacija . . . . . . ..o e e
4.4 Osobine binarnih relacijana skupu S . . . . . . .. L L
4.5 Ekvivalencije . . . . ... e
4.6 Uredenja . . . . . o o it e e e

o CU Ul R

10
11
15
17
20
22
24
26
26
26
27
28
29
31
33

33
34
35
39
41
43
43



4.7% Vitalijev sKup . . . v o o e e 62

1 Iskazi, promenljive i predikati

Iskaz je reenica ili matematicki izraz koji ima istinitosnu vrednost, tj. tacan je ili netacan.! Npr. reenica

,Povriina kvadrata stranice a jednaka je a®.” je primer ta¢nog iskaza, ,Svaki prvougaonik je kvadrat.” je primer
neta¢nog iskaza, ,lzracunati obim kvadrata stranice a.” nije iskaz. Sli¢no, izraz 7,sing = g” je primer taénog

iskaza, ,,sin 7 = 57 je primer netacnog iskaza, dok ,sinz = %” nije iskaz.

Tac¢nost iskaza Cesto zavisi od (matematickog) konteksta, pa je tako iskaz ,,Ako su u ravni 7t date prava p
i tacka P van nje, onda u 7 postoji jedinstvena prava koja prolazi kroz P i ne sefe p.” tacan u euklidskoj
geometriji (geometrija sa kojom smo upoznati), ali je neta¢an u hiperboli¢koj geometriji. Takode, ponekad je
jasno da je neka recenica iskaz, ali njeova tac¢nost nije poznata. Npr. ,Svaki paran prirodan broj veéi od dva je
zbir dva prosta broja.” ocigledno jeste iskaz (ovo bi trebalo da je ili ta¢no ili netatno), medutim tacnost ovog
iskaza nije poznata (u pitanju je ¢uvena Goldbahova hipoteza).

U matematici postoji nekoliko standardnih konstrukcija kojima polazeéi od prostijih iskaza gradimo slozenije.

Negacija iskaza @ je iskaz ,Ne vazi ¢.” koji obelezavamo sa —¢ (Citamo ,ne ¢”). Tafnost iskaza —~@ suprotna
je tacnosti iskaza ¢ (ako je @ tacan, —@ je netadan, i ako je ¢ netacan, -¢ je tacan). To najcesce zapisujemo

slede¢om istinitosnom tablicom:

@ | -
T|N
N| T

Konjunkcija iskaza @ i1 je iskaz ,VaZe oba @ i1.” koji obelezavamo sa ¢ A (Gitamo ,,¢ i {”). Konjunkeija

© A je tatna samo u slucaju da su oba iskaza @ iV tacni:

AP

= =2 38
28243«

Z2 =2 2 9|>

(Inkluzivna) disjunkcija iskaza @ i1 je iskaz ,VaZi bar jedan od ¢ i1.” koji obelezavamo sa ¢ v1p (najéescée

¢itamo ,,@ ili P”). Disjunkcija @ v je netatna samo u slu¢aju da su oba iskaza ¢ i netacni:

e b |lovy
T T| T
T N| T
N T| T
N N| N

Ekskluzivna disjunkcija iskaza @ i1 je iskaz ,VaZi tatno jedan od @ i{.” koji obelezavamo sa @ v (najéescée

¢itamo ,ili ¢ ili ). Ekskluzivna disjunkcija ¢ v je ta¢na samo kada je jedan od iskaza ¢ i\ tacan a drugi

netacan:
¢ Y ovy
T T N
T N T
N T T
N N N

1U ovom tekstu ta¢no obelezavamo sa T, a netaéno sa N.
2Primetite razliku, ¢ v se &ita ¢ ili P”, a @ VP se &ita ,ili @ ili P”.



(Materijalna) implikacija iskaza @ i1 je iskaz ,Ako vazi ¢, onda vazi \.” koji obelezavamo sa ¢ —
(¢itamo ,ako @, onda V7, ili iz ¢ sledi V", ili , povladi V”, ili b, ako @7, ili ,,¢@, samo ako V", ili ,¢ je

dovoljan uslov za V", ili ,,b je potreban uslov za ¢”). Iskaz @ — 1 je netacan samo u slu¢aju da je @ tadan i

netacan:
o b |-V
T T T
T N N
N T T
N N T

Ekvivalencija iskaza @ 1 je iskaz ,JIskazi @ i su jednake tacnosti.” koji obelezavamo sa @ <> 1 (Citamo
,»@ ako 1 samo ako {”, ili ,,@ je ekvivalentno sa V", ili ;@ je potreban i dovoljan uslov za 1”). Ekvivalencija je

tacna samo kada su ¢ i1 jednake tacnosti:

¢ b |ow
T T T
T N| N
N T N
N N T

Promenljiva je simbol koji koristimo da predstavimo matematicke objekte. Univerzum diskursa neke promenljive
je skup ¢ije objekte ona predstavlja (tj. skup u kome ona uzima vrednosti). Univerzum diskursa je najéesce
jasan iz konteksta. Univerzum diskursa promenljive z éemo obelezavati sa U,. Npr. ako posmatramo izraz
ﬁaa

2

nsinx = , dosada$nje matematicko obrazovanje nam kaze da x uzima vrednosti u skupu R, tj. U, = R.
Sliéno, ako posmatramo izraz ,p || ¢”, najverovatnije govorimo o paralelnosti dve prave, tj. promenljive p i ¢
predstavljaju prave, pa je U, = U, neki skup pravih. Nekada nam je univerzum diskursa promenljive eksplicitno
reCen u tekstu. Npr. u zadatku: ,Naéi realna reSenja jednacine z + \/m =3.”, eksplicitno nam je receno da
je Uz =R.

Predikat je reCenica ili matematicki izraz u kome figuriSe jedna ili vise promenljivih, a koji postaje iskaz
(tacan ili netacan) kada svaka promenljiva uzme konkretnu vrednost iz svog univerzuma diskursa. Tako je npr.
,,& je prost broj” predikat u kome figurise promenljiva x ¢iji je univerzum diskursa najverovatnije skup prirodnih
brojeva. Ako prethodni predikat obelezimo sa P(z), vidimo da je P(3) tacan iskaz, a da je P(4) netacan iskaz.
Ako sa Q(z,a,b,c) obelezimo predikat ,,az? + bz + ¢ = 07, gde je U, = C i U, = Uy, = U, = R, lako vidimo da je
npr. Q(,1,0,1) tacan iskaz, a da je npr. Q(-1,2,1,1) netacan iskaz.

Neka je P(z) predikat. Iskaz ,Za svaki objekat ¢ (odgovarajuceg univerzuma diskursa U,) iskaz P(t) je

tacan."

obelezavamo sa (V) P(z), i ¢itamo ,Za svako = vazi P(x).” Dakle, iskaz (Va) P(z) je tacan ako je
iskaz P(t) tacan za sve t € U,. Npr. iskaz (V)22 > 0, gde je U, = R, jeste tacan jer je kvadrat svakog realnog
broja nenegativan; iskaz (V) z? > 0, gde je ponovo U, = R, je netacan jer kvadrat nule nije pozitivan. Simbol
V se zove univerzalni kvantifikator, a za iskaz (V) P(x) kaZemo da je dobijen univerzalnom kvantifikacijom.

Standardne iskazne konstrukcije (negacija, konjunkeija, itd.) mogu da se primenjuju i na predikate, pri ¢emu
dobijamo komplikovanije predikate. Vrednosti takvih predikata se ra¢unaju kao i u sluc¢aju iskaza.

Neka je i dalje P(«) predikat. Iskaz ,Za neki (bar jedan) objekat ¢ (odgovarajuceg univerzuma diskursa U,)
iskaz P(t) je taan." obeleZavamo sa (3z) P(z), i ¢itamo ,Postoji « tako da vazi P(x).”, ili ,Za neko z vazi
P(x).” Iskaz (3x) P(x) je tacan ako je iskaz P(t) tacan za bar jedan objekat t € U,. Npr. iskaz (3x)z? <0,
U, = R, je tacan jer je kvadrat nule jednak nuli; iskaz (3z)z? < 0, U, = R, je netacan. Simbol 3 se zove
egzistencijalni kvantifikator, a za iskaz (3z) P(x) kazemo da je dobijen egzistencijalnom kvantifikacijom.

Kvantifikaciju moZzemo da primenimo i na predikate sa viSe promenljivih, ali u tom slucaju ne dobijamo
iskaz nego novi predikat. Neka je P(x,y1,...,y,) predikat. Tada je (Va) P(x,y1,---,Ys) novi predikat ¢ije su
promenljive yi,...,y, odreden na slede¢i nacin: za objekte t; € Uy, ,...,t, € Uy, iskaz (V) P(x,t1,...,t,) je

tacan ako je za sve objekte s € U, iskaz P(s,t1,...,t,) tacan. Sli¢no, (3z) P(z,y1,...,yn) je novi predikat ¢ije



su promenljive y1,...,y, odreden sa: za objekte t; € Uy, ,...,t, € Uy, iskaz (3z) P(z,t1,...,t,) je tacan ako je
za neki (bar jedan) objekat s € U, iskaz P(s,t1,...,t,) tacan. Na ovako dobijene predikate ponovo moZemo da
primenimo postupak kvantifikacije, pa npr. mozemo da dobijemo iskaz (Vx)(Jy) P(x,y) ili (3z)(Ty) P(x,y),
itd.
Neka je P(x) predikat i .S € U,. Ogranicenja kvantifikatora na skup S su iskazi (Vz € S) P(x) i (3x € S) P(x)
definisani sa:
(VeeS)(xeS—>P(x)) 1 (JzeS)(xeSAP(x)).

Primetimo da (Y € S) P(z) ima znacenje ,za sve t € S vazi iskaz P(t)”, i da (3x € §) P(x) ima znacenje ,za
bar jedan ¢ € S vaZzi iskaz P(t)”. Na isti na¢in definiSemo ogranicenja kvantifikatora (Va € S) Q(x,y1,...,Yn) 1
(E'J}E S)Q(m7ylaayn)

Primetimo, specijalno, da je iskaz (Vx € @) P(x) uvek logicki tacan, a iskaz (3x € @) P(x) uvek logicki

netaCan. Zaista, za svako t € U, imamo:

teg—>P(t) 1 teanaP(t).
——

——
N N
——— S—
T N
Sliéno, predikat (Vz € @) Q(x,y1,...,yn) je taan nezavisno od izbora vrednosti za promenljive yi,...,yn, a
predikat (3z € @) Q(x,y1,. .., yn) je netatan nezavisno od izbora vrednosti za promenljive y1,. .., yp,.

2 Iskazna logika

2.1 Izgradnja iskazne formule

Definicija 2.1. Iskazne formule su konacni nizovi slede¢ih simbola:

e iskaznih slova koje obi¢no zapisujemo malim latiniénim slovima p,q,,..., moguée sa indeksima; skup

iskaznih slova obelezavamo sa P;
o logickih konstanti: L (kontradikcija) i T (tautologija);

o logickih veznika: - (negacija), A (konjunkcija), v (disjunkcija), v (ekskluzivna disjunkcija), - (implikacija)

i < (ekvivalencija);
e pomo¢nih simbola zagrada.
Iskazne formule gradimo primenom sledeé¢ih pravila u kona¢no mnogo koraka:

e iskazna slova i konstante su iskazne formule;

e ako su @ i (veé izgradene) iskazne formule, onda sui-@, (@A), (vh), (pv), (¢ > )i (@ <))
iskazne formula.

Skup svih iskaznih formula obelezavamo sa ©.

Ako je nedvosmisleno jasno o kojoj formuli je re¢, brisa¢emo visak zagrada (npr. spoljne zagrade). Pri tome
podrazumevamo da veznik - ima najvisi prioritet, v i A srednji preoritet, a v, — i <> najnizi prioritet, pa tako

sa ~pV q = r A =s je krace zapisana formula (((-=p) v q) = (r A (=$))).

Komentar 2.2. Primetimo da je u svakoj formuli broj pojavljivanja iskaznih slova i broj pojavljivanja veznika
konacan. Konacan skup iskaznih slova koja se pojavljuju u formuli ¢ obelezavamo sa P(@), a broj pojavljivanja

veznika u formuli ¢ obelezavamo sa sl(@) i zovemo ga sloZenost formule @.



Komentar 2.3. Ako je si(@) =0, onda je ¢ konstanta ili slovo. Ako je si(¢) > 0, onda je ¢ oblika —, ili
oblika 1 * 0 za neki veznik * € {A,v,v,—> <}. Ako je @ oblika w1, primetimo da je sl({) = si(@) -1 < sl(@)
(zaista, @ ima jedan veznik - vise od V); ako je @ oblika 1 * 0, primetimo da je sl(\{)+sl(0) = sl(¢@) -1 (zaista,
¢ ima jedan veznik * vige od VP 1 0 zajedno), odakle sledi sl(\) < sl(@) i sl(0) < sl(@).

Takode, P(1) = P(T) =@ i P(p) = {p}. Ako je ¢ oblika -, primetimo da je P(¢) = P(). Ako je ¢ oblika
P * 0, primetimo da je P(¢@) = P({) u P(0); specijalno, P({) c P(p) i P(0) < P(@).

2.2 Semantika iskazne logike

Definicija 2.4. Valuacija je bilo koje dodeljivanje ta¢nosti iskaznim slovima: v : P - {T, N}. Skup svih
valuacija oblezavacemo sa V.
Za fiksiranu valuaciju v odredujemo istinitosnu vrednost svake formule ¢ pri valuaciji v, u oznaci 9(@),

rekurento po izgradnji formule na sledeé¢i naéin:
e 0(1)=Niod(T)=T;
e O(p) = v(p) za svako slovo p € P;

e U(-@) tatunamo po tablici za negaciju:

(@) | 9(-9)
T N
N T

o 0(peAY), (e Vv), (e Vv), (e > ) i0(p <) ratunamo po tablicama:

o(e) () | (ead) d(evi) H(evip) (e —>1P) (@)
T T T T N T T
T N N T T N N
N T N T T T N
N N N N N T T

Ako je 9(@) = T (formula @ je tafna pri valuaciji v), to jo§ zapisujemo sa v £ @ i ¢itamo v zadovoljava
formulu @. Ako je 0(¢@) = N (formula ¢ je neta¢na pri valuaciji v), to jo$ zapisujemo sa v i @ i ¢itamo v porice

(ili ne zadovoljava) formulu @.

Intuitivno je jasno da vrednost formule pri valuaciji v zavisi samo od vrednosti kona¢no mnogo slova koja

se u toj formuli pojavljuju. To ¢emo strogo i da dokaZemo.
Teorema 2.5. Neka @ € @ i v e V. Vrednost 9(@) zavisi samo od vrednosti valuacije v na skupu slova P(@).
Dokazi teorema koje govore o formulama (kao $to je prethodna teorema) najcesce se izvode koristeci princip
potpune indukcije.
Digresija: Princip potpune indukcije
Skup prirodnih brojeva je N = {0,1,2,3,4,...}.
Princip matematicke indukcije je jedan od osnovnih postupaka za dokazaivanje u matematici. U pitanju je
sledeée tvrdenje:
Aksioma 2.6 (Princip matematicke indukcije). Neka je P(n), n € N, predikat. Ako su ta¢ni iskazi:
e P(0),i (baza indukcije)

o (Vn)(P(n) - P(n+1)), (indukcigski korak)



onda je i iskaz (Vn) P(n) tacan.

Primetimo da je princip matematicke indukcije intuitivno jasan. Naime, baza indukcije kaZze da je P(0)
tacan iskaz. Iz koraka znamo da je P(0) — P(1) tacan iskaz, pa kako je P(0) tacan, zaklju¢ujemo i da je P(1)
tafan. Ponovo iz koraka znamo da je P(1) — P(2) tacan iskaz, pa kako je P(1) tacan, zaklju¢ujemo i da je

P(2) tacan. Nastavljajuci ovaj postupak zaklju¢ujemo da je (Vn) P(n) tacan iskaz.

Dokaz iskaza (Vn) P(n) koristeéi princip matematicke indukcije svodi se na dokaz baze indukcije (iskaza
P(0)) i indukcijskog koraka (iskaza (Vn)(P(n) - P(n +1))). Baza indukcije obi¢no je stvar lake provere. Za
dokaz indukcijskog koraka uoc¢avamo proizvoljno n € N i dokazujemo implikaciju P(n) — P(n +1). Za dokaz
poslednje implikacije obi¢no koristimo postupak dedukcije: pretpostavljamo da vazi P(n), Sto je pretpostavka
koju nazivamo indukcijska hipoteza i obeleZavamo sa (IH), i cilj je da dokazemo P(n+1) pogodno koriste¢i (IH).

Sam zapis dokaza indukcijom obi¢no je sledeceg oblika:

Dokazimo (Vn) P(n) indukcijom po n.
Baza indukcije. Proveravamo da vazi P(0).
Indukcijski korak. Neka je n € N proizvoljno.
Pretpostavimo P(n) (IH), i dokazimo P(n +1).
Sada pisemo dokaz za P(n+ 1) pogodno koristeéi (IH).

Navedimo nekoliko primera primene principa matematicke indukcije.
Primer 2.7. Dokazati 64 | 32"*2 - 8n -9 za sve n e N.

Resenje. Dokazimo (Vn)64 | 3272 - 8n - 9 indukcijom po n.

Baza indukcije. Za n = 0 proveravamo 64 | 320+2

Indukcijski korak. Neka je n € N proizvoljno. Pretpostavimo 64 | 322 — 8n -9 (IH), i dokaZimo 64 |
32(n+1)+2

-8-0-9, tj. 640, Sto je trivijalno ta¢no.

-8(n+1)-9. Imamo sledeéi racun:
(D2 _Q(n+1)-9 = 9.322_8p-17
= 9-(3%2_-8n-9)+64n+64 namestamo na (IH).
Po (IH) 64 deli prvi sabirak, dok su drugi i treci ocigledno deljivi sa 64. Prema tome, 64 deli ceo zbir, tj.
64 | 32("*D+2 _8(n + 1) - 9, Sto smo i zeleli da dokazemo. O

Princip matematicke indukcije mozemo da koristimo i za iskaze oblika (Vn > ng) P(n). U tom slu¢aju baza
je iskaz P(ng), a korak je iskaz (Vn 2 ng)(P(n) —» P(n+1)).

Primer 2.8. Dokazati 2" > n? za sve n 2 5.

Resenje. Dokazimo (Vn > 5)2" > n? indukcijom po n.
Baza indukcije. Za n =5 proveravamo 2° > 52, tj. 32 > 25 &to jeste tacno.

Indukcijski korak. Neka je n > 5 proizvoljno, pretpostavimo 2" > n? (IH), i dokazimo 2" > (n + 1)2.

Izvodimo sledeéi racun:
ntt o= 2.2m
> 2.n? po (IH)
= n?+n?
> n?+2n+1 jern?>2n+lzanzh
= (n+1)2
(U pretposlednjem koraku smo koristili n? > 2n + 1 ako i samo ako (n—1)? > 2, §to za n > 5 jeste tacno jer je

tada n—1>4, paje (n—1)% > 16 >2.) Prema tome, dokazali smo 2"*! > (n +1)?, kao §to smo i Zeleli. O

Ponekad u dokazima iskaza (Vn) P(n) ili (Vn > ng) P(n) nije lako ustanoviti indukeijski korak, ali je mogucée
ustanoviti implikacije oblika P(n) A P(n+1) » P(n+2) ili P(n) AP(n+1) A P(n+2) - P(n+3), ili opstije
Pn)aP(n+1)A---AP(n+(k-1)) > P(n+k) za neko fiksirano k > 2. U tom slucaju takode je moguce
iskoristiti princip indukcije, pri ¢emu je baza iskaz P(ng) A P(ng + 1) A--- A P(ng + k), a korak je iskaz (Vn >
ng)(P(n) AP(n+1)A--AP(n+k-1) > P(n+k)).



Primer 2.9. Niz (a,) definisan je sa ap =0, a1 =1, as =4 1 any3 = 3ans2 — 3ans1 + ap, za sve n € N. Dokazati

a, =n? za sve n € N.

Resenje. Dokaz izvodimo indukcijom po n sa tri indukcijske hipoteze.
Baza indukcije. Zan=0,n=11in=2imamo ag=0=0% a;=1=1%1i ay = 4 = 22 direktno po definiciji.

Indukcijski korak. Neka je n € N proizvoljno, pretpostavimo a,, = n2, api1 = (n+1)? i apo = (n+2)? (IH),

i dokaZimo a,.3 = (n+3)2. Krenimo s leve strane:

Ups3 =  BApio — 3Aps1 + ap po definiciji
= 3(n+2)2-3(n+1)2+n? po (IH)
= 3n?+12n+12-3n%-6n -3 +n?
= n?2+6n+9
= (n+3)%
kao $to smo i zeleli. O

Iskaz (Vn) P(n) moguce je zakljuciti ako znamo da za svako n € N moZemo zakljuciti P(n) koristeéi sve

P(m) za m < n kao hipoteze. Odgovarajuéi princip ¢e nam posebno biti koristan:

Teorema 2.10 (Princip potpune indukcije). Neka je P(n), n € N, predikat. Ako je tacan iskaz:
o (¥n)((¥m <n) P(m) - P(n)),

onda je i iskaz (Vn) P(n) tacan.

Dokaz. Uoc¢imo predikat Q(n): (Ym < n) P(n); pretpostavka teoreme tada glasi (Vn)(Q(n) — P(n)). Prime-
timo da je dovoljno da dokazemo (¥Yn) Q(n). Zaista, tada je za proizvoljno k iskaz Q(k+1) tacan, pa je specijalno
tacan i iskaz P(k), odakle zaklju¢ujemo (Vn) P(n) (jer je k bilo proizvoljno). Ta¢nost iskaza (Yn) Q(n) dokazu-
jemo koristeé¢i princip matematicke indukcije.

Baza indukcije. Iskaz Q(0):(Vm < 0) P(m) je logicki tacan jer je (Vm < 0) ogranifenje univerzalnog kvan-
tifikatora na prazan skup.

Indukcijski korak. Neka je k proizvoljno, i pretpostavimo da je iskaz Q(k) := (Vm < k) P(m) ta¢an. Prime-

timo da je Q(k+1) logicki ekvivalentan sa Q(k) A P(k), prema tome dovoljno je da dokazemo da je P(k) tacan.
Medutim to sledi iz pretpostavke teoreme (Vn)(Q(n) - P(n)) i indukcijske hipoteze Q(k). O

Da bismo potpunom indukcijom dokazali (Vn) P(n), postupamo na sledeé¢i nain: za proizvoljno n € N
pretpostavljamo (Vm < n) P(k), i cilj nam je da dokaZemo P(n). Primetimo da princip potpune indukcije ne
zahteva bazni korak, medutim u praksi je obi¢no potrebno razmotriti nekoliko specijalnih slu¢ajeva koje mozemo

smatrati bazom.
Primer 2.11. Niz (a,,) definisan je sa ag =01 a, = ajn|+lzanz1. Dokazati logs(n + 1) < ay,, za sve n € N.

Regenje. Dokaz izvodimo potpunom indukcijom po n. Neka je n € N proizvoljno, pretpostavimo (Vm <
n) logs(m + 1) < an, (IH), 1 dokazimo logs(n +1) < an. S obzirom na definiciju niza, razmotricemo dva
slucaja.

1° n = 0: Treba da proverimo logs; 1 < ag, tj. 0 <0, §to je ofigledno tacno.

2° n > 1: Imamo slededi racun:

an = Qo]+ 1 po deﬁniciji
> log3([ﬁJ+1)+1 po (IH) jer [%J<nzan
> log3”+1+1 Jer[ J+1 %
= logg(n+1).
(Iskoris¢ena nejednakost [ J +12 "T” ekvivalentna je sa 3 — [ J < % koju lako dokazujemo ako razmotrimo
slucajeve n=3m, n=3m+11in=3m+2, za meN.) Dokazali smo Zeljenu nejednakost. O

Primer 2.12. Data je Sahovska tabla koja je beskona¢na ,u desno" i ,na gore". U donjem levom uglu nalazi

se skaka¢. Dokazati da skakaC moze da prede na bilo koje drugo polje u konaéno mnogo poteza.



Resenje. Numerisimo polje u n-tom redu i m-toj koloni sa (m,n), m,n > 0. Prema tome, skaka¢ je na pocetku
na polju (0,0) i mi Zelimo da dokaZzemo da skaka¢ moze da prede u kona¢no mnogo koraka na polje (m,n) za
proizvoljne m i n. Dokaz ¢emo izvesti potpunom indukcijom po k =m + n.

Neka je k € N proizvoljno, pretpostavimo da skaka¢ moZe da dode na polje (m',n’) za m’' +n’ <k (IH), i
dokazimo da skaka¢ moZe da dode na polje (m,n) zam+n = k. Akojem > 2, m-2 e Ni(m-2)+(n+1) < m+n =k,
pa po (IH) skaka¢ moZe da dode na polje (m—2,n+1). Odatle u jednom skoku dolazimo na polje (m,n). Sli¢no,

ako je n > 2, po (IH) skaka¢ moZe da dode na polje (m+1,n—2), odakle u jednom skoku dolazi na polje (m,n).

n

m—2 m m m+1

Prema tome imamo samo nekoliko specijalnih slu¢ajeva da proverimo. Treba da dokazemo da moZemo da
dodemo na polja (m,n) za m,n < 2, tj. do polja (0,0), (0,1), (1,0) i (1,1). Za (0,0) nemamo Sta da dokaZemo
(veé¢ se nalazimo na tom polju). Nizom skokova (0,0) ~ (2,1) ~ (1,3) — (0,1) dolazimo do (0,1), simetri¢nim
nizom (0,0) ~ (1,2) ~ (3,1) ~ (1,0) dolazimo do (1,0), a nizom (0,0) ~ (2,1) » (0,2) » (2,3) » (1,1)
dolazimo do (1,1).

Semantika iskazne logike (nastavak)
Dokazimo sada teoremu 2.5:

Dokaz teorema 2.5. Uo€imo predikat P(n), n € N: Za svaku formulu ¢ sloZenosti n, vrednost ¢(¢) zavisi samo
od vrednosti valuacije v na skupu slova P(¢). Primetimo da je dovoljno da dokazemo iskaz (Vn) P(n). To
¢emo da uradimo potpunom indukcijom po n.

Neka je n € N proizvoljno, pretpostavimo da gornje tvrdenje vazi za formule slozenosti m < n  (IH), i
dokazimo ga za formulu ¢ sloZenosti n. U skladu sa definicijom 2.1, razmatramo sledece slucajeve:

1° @ je konstanta: Ako ¢ = L, po definiciji 2.4, 9(¢@) = (1) = N nezavisno od v . Sli¢no, ako je ¢ = T,
(@) =T nezavisno od v.

2° @ je slovo: Neka je @ = p; tada P(¢@) = {p}. Po definiciji 2.4 imamo 9(¢@) = 9(p) = v(p); vrednost na
desnoj strani o¢igledno zavisi samo od vrednosti valuacije v na skupu P(@).

3° @ = —: Primetimo sli(Pp) =n-1<n i P(1p) = P(¢). Po (IH) imamo da 9(1p) zavisi samo od vrednosti
valuacije v na skupu P(\), a po definiciji 2.4, 9(@) zavisi samo od vrednosti ¢(1); dakle, 0(¢@) zavisi samo od
vrednosti valuacije v na skupu P({) = P(@).

4° @ =9 =0, x€{A,Vv,v,> <} Primetimo sl({),sl(0) < sl(p) = n i P(p) = P(p) u P(6). Po (IH)

znamo da 9() 1 9(0) zavise samo od vrednosti valuacije v redom na skupovima P() i P(6), a po definiciji

2.4, 9(@) zavisi samo od vrednosti 0(\) i 9(0); dakle, 9(@) zavisi samo od vrednosti valuacije v na skupu

P(p)u P(0) = P(e).
Zavr§ili smo dokaz. O

Definicija 2.13. Formula ¢ je:



e zadovoljiva ako za neku valuaciju v vazi 0(@) =T (piSemo i v E @ i ¢itamo ,,v zadovoljava @7, ili ,,v je

model za @");

b

e poreciva ako za neku valuaciju v vazi (@) = N (piSemo i v # @ i ¢itamo ,,v ne zadovoljava (porice) @”.

ili ,v je kontramodel za @”);
e tautologija, u oznaci = @, ako za sve valuacije v vazi (@) =T (tj. nije poreciva);
e kontradikcija ako za sve valuacije v vazi 0(¢@) = N (tj. nije zadovoljiva).
Primetimo da ¥ ¢ znaci da je @ poreciva (ne da je kontradikcija).
Primer 2.14. Ispitati da li je formula (p A =r) v (¢ A =1) = (p v ¢ > r) zadovoljiva/poreciva?

Resenge. Zapisimo tablicu date formule u svim valuacijama njenih slova:

p g r|((p A =~ 1) v (¢ A -1) > ((pVv g - 1)
T T T N N N N N T T T
T T N T T T T T N T N
T N T N N N N N T T T
T N N T T T N T N T N
N T T N N N N N T T T
N T N N T T T T N T N
N N T N N N N N T N T
N N N N T N N T T N T
Iz tablice je jasno da je formula i zadovoljiva i poreciva (pa nije ni tautologija ni kontradikcija). O

Primer 2.15. Dokazati da je formula (p A (=g = =p)) A (=g V =r) = (r = —=p) tautologija.

Resenje. Pretpostavimo suprotno, formula je poreciva, tj. postoji valuacija v takva da je formula neta¢na. Tada
je o((pA (=g > -p)) A(=qVv -r)) =T i 0(r > -p) = N, odakle d(p A (¢ > -p)) =T, 0(-qv-r) =T, 0(r) =T
i (-p) = N. Iz prve jednakosti imamo 0(-q - -p) = T, pa kako je 0(-p) = N mora biti i 6(-¢) = N. Odatle i
(=g Vv —r) =T je 0(-r) =T, $to je u kontradikciji sa o(r) =T.

Alternativno, moZemo da napiSemo tablicu formule:

p g r|((p A (¢ > —p) A (2q v -r)) > (r > -p)
T T T T N T N N N N N T N N
T T N T N T N T N T T T T N
T N T N T N N N T T N T N N
T N N N T N N N T T T T T N
N T T N N T T N N N N T T T
N T N N N T T N N T T T T T
N N T N T T T N T T N T T T
N N N N T T T N T T T T T T
iz koje vidimo da je formula tautologija. O

Zadatak 2.16 (Spisak osnovnih tautologija). Dokazati da su sledeée formule tautologije:

1° pv-p; 2° =(pA-p); 3° p-p; 4° —=p < p;
5° pAp<p; 6° pvp<p; 7 PAT < p; 8 pALle L
9° pvT T, 10° pv 1< p; 11° pA(pvq) < p; 12° pv(pAq) < p;

13° pAgeqAp; 14° pvgeqvp; 15° (p<q) < (¢ < p);



16° pA(gar) < (pAg) AT 17° pv(gvr) < (pvq)vr;
18° (pe(ger)) < ((peoq) <r);
19° pa(gvr) < (paq)v(par); 20° pv(gar) < (pva)r(pvr);

21° =~(pAg) < -pV g 22° ~(pvq) < -pA-g;

23° (p—q) < (=g~ -p); 24° (p—>q) < (pr-g— L)
25° pA(p—q)— g 26° (p—q) A—q— -p;

27° (pvag)A-p =g 28° (p=>q)nr(g—>r)—=>(p—>r).

Komentar 2.17. Tautologija 1 naziva se zakon iskljucenja treeg (tertium non datur). Tautologija 4 je zakon
duple negacije. Tautologije 5 1 6 nazivaju se zakoni idempotencije za konjunkciju i disjunkciju. Tautologije 11
i 12 su zakoni apsorbcije. Tautologije 13-14 su komutativni zakoni, a 16-18 asocijativni zakoni za konjunkciju,
disjunkciju i ekvivalenciju. Tautologije 19 i 20 su distributivni zakoni konjunkcije prema disjunkciji i disjunkcije
prema konjunkciji. Tautologije 21 i 22 su De Morganovi zakoni. Tautologija 23 je zakon kontrapozicije. Tau-
toloija 24 je zakon svodenja na protivrednost (reductio ad absurdum). Tautologija 25 je modus ponens, a 26 je

modus tollens. Tautologija 27 naziva se disjunktivni silogizam, a 28 hipoteticki silogizam.

2.3 Lema o smeni

Komentar 2.18. Zapisom ¢ = @(p1,pe,...,px) istifemo da su sva slova koja se pojavljuju u formuli ¢ neka (i
mozda ne sva) od pi,po,...,pk, tj. da je P(@) S {p1,p2,...,px}. Pa tako ako je @ formula p - ¢, mozemo da
pisemo @ = @(p,q) ili @ = @(p,q,r), ali necemo da pisemo @ = @(p) ili @ = @(q,7).

Definicija 2.19. Neka su @ = @(p1,p2,...,pk), V1,¥2,...,Pg formule. Oznacavamo sa @ (b1, Pso,..., Pk)
formulu ¢ u kojoj smo sva pojavljivanja slova p; zamenili sa \; za sve i = 1,...,k. (Npr. ako je ¢ = @(p,q)

formula p > ¢ A p, onda je @(pvgq,s—>r) formulapvg—> (s =>7)A(pVvg).)

Lema 2.20 (Lema o smeni). Neka su @ = @(p1,pa,...,0k), U1,¥2,..., Py formule i v valuacija. Tada je:

(@1, 2, ..., Px)) =0 (@),

gde je w bilo koja valuacija takva da w(p;) =0(;) zasve i=1,... k.

Dokaz. Dokaz izvodimo potpunom indukcijom po sloZenosti formule @. Neka je n € N proizvoljno, pretpostavimo
da tvrdenje vazi za formule slozenosti m < n (IH), i dokazimo da tvrdenje vazi za formulu ¢ slozenosti n.
Razmatramo sledece sluc¢ajeve:

1° @ je konstanta: Pretpostavimo @ = 1. Primetimo da je @(1,...,Px) = 1, pa direktno po definiciji 2.4

(@1, -, b)) =0(L) = N = (L) = ().

Sli¢no postupamo ako je @ =T.
2° @ je slovo: Kako su slova formule ¢ po pretpostavci medu py, ..., px, mora biti p=p; zanekoi=1,... k:

@ =p;. Tada je @(P1,...,¥x) =;, pa kako po pretpostavci imamo w(p;) = 0(1;) ra¢unamo:

(@1, 0r)) =0(;) = w(p;) =w(pi) = w(P).

3° @ = -0: Formula o je sloZenosti n -1 < n, i jasno je da je 0 = o(p1,...,pk), pa mozemo da primenimo
(IH):
@(G(L")la s a-l\bk)) = UA}(O-)

Kako je @(1,...,¥x) = ~0(P1,...,P), prema prethodnoj jednakosti vazi:

(@1, ¥r)) = w(@).

10



4° @ =0%0, x€{A,Vv,v,> <}: Formule 016 su jasno slozenosti manje od n, i takode je jasno da mozemo

da pisemo o =0(p1,...,px) 10 =06(p1,...,px), pa moZemo da primenimo (IH) na formule o i 0, tj.:
(01, b)) = i(0) i (O, .. b)) = D(0).

Kako je jos ocigledno @(P1,..., ) = o(Py,...,¥g) * 0(P1,..., ), po definiciji 2.4 prema prethodnim jed-
nakostima imamo:

Dokazali smo lemu. O
Imamo direktnu posledicu leme o smeni:

Tvrdenje 2.21. Neka su @ = @(p1,...,px), L1,- .., g formule i neka je = @. Tada je i E @(P1, ..., Pk).

Dokaz. Neka je v proizvoljna valuacija i neka je w valuacija takva da w(p;) =0(\;) zasvei=1,..., k. Tada je:
(@(b1,...,0r)) = w(@) polemi2.20
= T jer je E @.
Kako je ({1, ..., Px) tafna za proizvoljnu valuaciju v, vazi £ @(U1,...,Pg). O

Primer 2.22. Dokazati da je formula (p <> gvr)A((p<qvr) —> (gvr—s)) - (¢vr—s) tautologija.

Resenje. NaSa formula jednaka je @(p < gvr,qvr — s), gde je ¢(a,b) = an (a - b) > b tautologija modus

ponens. Prema tvrdenju 2.21 i na8a formula je tautologija. O

2.4 Logicka ekvivalentnost i normalne forme

Definicija 2.23. Formule @ i su logicki ekvivalentne, u oznaci @ =1, ako za sve valuacije v vazi 0(¢@) = 0(),

tj. ako je formula ¢ < 1V tautologija.

Primer 2.24. Neke od osnovnih tautologija iz zadatka 2.16 nam daju sledece ekvivalentne formule:
4° —-p=p; 5% pAp=p; 6° pvp=p;

7 pATEDp; 8 pAl=l; 9° pvT=T; 10° pvi=p;

11° pa(pvg)=p; 12° pv(prg)=p;

13° prg=qap; 14° pvg=qvp; 15° pegqEqep;

16° pA(gar)=(pag) AT 17° pv(qvr)=(pvq) vr; 18 peo(ger)=(peoq) o
19° pa(gvr)=(prg)v(par); 20° pv(gar)=(pVvag) A(pvr);

21° ~(pAgq)=-pV g 22° =(pVvq) =-pA-g;

23° P = q=-q— -p; 24° P=>q=pA-q— L.

Tvrdenje 2.25. Neka su @1 = @1(p1,---,0k), ©2 = ©2(p1,.--,0k), W1,...,¥g 1 01,...,02 formule i pret-
postavimo @1 = @2 11; =0; zasve i=1,..., k. Tada je:

(01(11)1,..-,11)7;) = (92(617-“76/6)'

Dokaz. Neka je v proizvoljna valuacija i neka je w valuacija takva da w(p;) = 0(;) za sve i = 1,..., k. Kako je
P; =0, zasvei=1,...,k, vaziiw(p;) =0(0;) zasve i =1,..., k. Sada imamo:
o(@1(P1,...,¥k)) = (@) po lemi 2.20
= W(¢2) jer @1 = @2
= 9(@2(01,...,62)) po lemi 2.20.
Kako je v proizvoljna valuacija, zaklju¢ujemo @1({1,...,Px) = @2(01,...,0%). O

Primer 2.26. Dokazati da su formule (-pVv ¢q) - (r < s) i =(p = q) v (s < r) logicki ekvivalentne.
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Resenje. Uoc¢imo formule @1 = @1(a,b) =a—>bi @2 = @2(a,b) =-a Vb, i primetimo @; = 2. Sada imamo:
(-pva) > (res) = @i(-pvqr<s)
@2(p = q,8 < 7) po tvrdenju 2.25

(P> v (ser),
gde u drugom koraku mozemo da primenimo tvdenje 2.25 jer @1 = @3, -pVg=p—>qir< s=s<r. O

Primer 2.27. Dokazati da je (p > 1) A (¢ > 1) < (pVv q— r) tautologija.

Resenje. Izvodimo niz ekvivalentnih zamena, implicitno koristeéi tvrdenje 2.25, a detaljnije objasnjenje primene
tvrdenja ostavljamo za kasnije:
(p=>r)rn(g—r) < (pvg—r)

(=pvr)A(=gvr) < -(pvg)vr
(-pA-q)vr e (spA-g) VT
= T
U prvom koraku smo izvrgili ekvivalentne zamene p > r = -pvr, g—>r=-qvripvg—->r=-(pvqg)Vvr.

Fomalno, primenili smo tvrdenje 2.25 na formule @1(a,b,c) = @2(a,b,c) = arb < ¢ i zakljucili @1(p - r,q —
TpVg—>T)=@2(-pVr, gV, ~(pVvq) V).

U drugom koraku izvrsili smo ekvivalentne smene (=p Vv ) A (=g Vv 1) = (=p A =q) v r (distributivan zakon)
i =(pvq)=-pna-q (De Morganov zakon). Formalno, uo¢imo formule ¢4(a,b,c) = @2(a,b,c) =a < bvecipo
tvrdenju 2.25 zaklju¢imo @1((=pvr)A(-qvr),=(pvq),r) = @2((=p A =q) Vr,-pA-q,T).

U trecem koraku koristimo tautologiju @(a) = a < a i tvrdenje 2.21 da zakljuc¢imo da je @((=p A =q) v 1)
tautologija.

Kako smo polaznu formulu ekvivalentnim smenama sveli na tautologiju, i polazna formula je tautologija.
O

Definicija 2.28.  a) Literal je iskazno slovo ili negacija iskaznog slova.
b) (Disjunktivna) klauza je disjunkcija literala.
¢) Konjunktivna klauza je konjunkcija literala.
d) Formula je u disjunktivnoj normalnoj formi (DNF) ako je disjunkcija konjunktivnih klauza.
e) Formula je u konjunktivnoj normalnoj formi (KNF) ako je konjunkcija klauza.

Teorema 2.29 (Teorema o normalnim formama). Svaka formula logicki je ekvivalentna formuli u DNF i formuli
u KNF.

Dokaz. Svaka formula se svodi na formulu u DNF i na formulu u KNF koristec¢i tvrdenje 2.25 slede¢im algorit-
mom.

Prvi korak. Zamenimo pojavljivanja veznika v, <> i — koristeéi ekvivalencije:

pvqg = (pA-q)v(-prq) ii pvg = (pvg)Ar(-pVv-q),
peq = (pAgv(-pa-g) ili peq = (pv-q)a(-pva),i
p—=>q = -pvgq ii p=>q = =(pr-q).

Nakon prvog koraka formula je zapisana koriste¢i veznike —, A 1 V.

Drugi korak. Sve negacije ,,ubacimo" u zagrade koriste¢i De Morganove zakone:

-(pAq) = -pv-g 1 =(pveg) = -pA-g,

pri ¢emu dvostruke negacije briSemo koristeéi zakon ——p = p.
Nakon drugog koraka formula je zapisana koriste¢i veznike -, A i v pri ¢emu se — nalaze samo uz slova.

Tredi korak. Sredujemo formulu na DNF/KNF koriste¢i distributivne zakone:

pa(gvr) = (prg)v(par) 1 pvigar) = (pvga(pvr).

Cetvrti korak. Uprostimo izraze koristeéi:
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PAp
PAT

Primer 2.30. Nadimo DNF i

(peq)—r

pv-p
pVvl

bPA-p
PAL

pvp
pVvT

b,
b,

b,
T

KNF formule (p < ¢) — r. Pratimo algoritam:

((pv=q) A(-pVvq)) - r — eliminacija <

=((pv=¢)A(=pVq))Vvr — eliminacija >

(-pAq) Vv (pA—qg)Vr — ubacivanje - i brisanje —-

Dobijena formula je ve¢ u DNF, tako da tu mozemo da stanemo. Da bismo nasli KNF, nastavljamo sa distribu-

tivnim zakonima:

(peq) —r

Dobijena formula je u KNF.

(=pAq) Vv (pA=q)Vvr — dobijena formula gore

(-pvpvr)A(=pv-qvr)r(gvpvr)a(gVv-qgVvr)

— distributivnost ,svaki sa svakim"

(Tvr)Aa(-pv-qvr)a(gvpvr)a(Tvr) —sredivanje

TA(-pv-qVvr)A(gvpvVvr)AT - sredivanje

(-pv-qVvr)A(qvpvr) — sredivanje.

Sledec¢a teorema ¢e nam reéi kako da DNF i KNF formule procitamo iz njene tablice. Za pe Piv eV

definiSemo oznake p¥ i p? sa:

(O

ako v(p) =T, -p akov(p) =T,

ako v(p) = N.

p

i)
e

-p ako v(p) = N, p

Teorema 2.31 (Teorema o kanonskim normalnim formama). Neka je ¢ € @, P(¢@) = {p1,...

skup svih valuacija slova pq, ...

a) Ako ¢ # 1, onda:

b) Ako ¢ # T, onda:

» P

o=\ (I ApyA--ADy).
veVo
vEQ

N (Y vpsv--vpy).
veVo
vit@

,Pnt, 1 neka je Vo

Dokaz. Dokazac¢emo deo a), dokaz za b) je slican. Najpre primetimo da je w(p”) = T ako i samo ako w(p) = v(p);

specijalno, 0(p"”) = T. Neka je

w proizvoljna valuacija.

Preptostavimo najpre w k& . Tada w ucestvuje u disjunkciji na desnoj strani, tj. formula p{” A--- A p¥ je

jedna od disjunkata na desnoj strane. Kako je w(py) =T, to w = py’ A--- A p¥, pa w zadovoljava formulu na

desnoj strani.

Pretpostavimo sada da w zadovoljava formulu na desnoj strani. To znaci da postoji v E ¢ tako da w E

Py A--Aph. Iz wE py sledi w(p;) = v(p;), pa kako se v i w poklapaju na slovima formule ¢, imamo da

w(@) =0(p). Kako vE @, toiwE @.

Dakle, u svim valuacijama

leva i desna strana imaju iste vrednosti, te smo zavrsili dokaz.
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Primer 2.32. Zapisimo KDNF i KKNF formule ¢ = @(p,gq,r) ¢ija je tablica:

Z2 2223343 3[=
228998224433
2828283 2-3|-
Z 28233 2-4|s6

Prema prethodnoj, da bismo zapisali KDNF treba da izdvojimo sve valuacije u kojima je ¢ ta¢na:

p qg |
T T T|T
T N T|T
T N N|T
N T N|T

Prvoj valuaciji odgovara disjunkt p AqAr, drugoj pA—-gAr, tre¢oj pA =g A-r i &etvrtoj -pAgA -1, pa je KDNF:

(pAgar)v (pA-gAr)V (PA=gA-T)V (=DAGA-T).

Da bismo zapisali KKNF treba da izdvojimo sve valuacije u kojima je ¢ netac¢na:

2 =22 8
=2 23 H=
2NN =
2 =22 =26

Prvoj valuaciji odgovara konjunkt —p v —q v r, drugoj p v —q v =r, tre¢oj pv q Vv =r, i etvrtoj pVv q Vv r, pa je
KKNF:
(=pv-gvr)an(pv-gv-r)A(pvgv-r)a(pvqgvr).

Na kraju ovog odeljka naglasimo i sledeée opazanje:

Tvrdenje 2.33. Svaka formula logicki je ekvivalentna formuli koja je zapisana koriste¢i samo slova, konstantu

L i veznik —.
Dokaz. Za dokaz dovoljno je da primetimo sledeée ekvivalencije:
e T=1—>1;

e —-p=p—>1;

pAgq=-(p——q) (5to je zapisivo na jeziku L i - prema prethodnoj tacki);

® pVq=-p— ¢ (ista napomena);

pvq=(-p—q)A(q— -p) (ista napomena);

e p<q=(p—q)A(q—p) (ista napomena).
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2.5 Prirodna dedukcija

Videli smo da je skup simbola {1,—} dovoljan da se do na ekvivalentnost izraze svi ostali simboli (tvrdenje
2.33). Sada ¢emo pretpostaviti da smo od samog pocetka formule gradili koriste¢i samo simbole {1,—>}. To

znali da je odgovarajuca definicija formule sledeca:

e iskazna slova i konstanta 1 su formule;

e ako su @ i1 (veé) izgradene formule, onda je i (¢ — 1) formula;

e svaka formula se gradi koristeé¢i prethodna dva pravila u kona¢no mnogo koraka.
Sada mozemo da kazemo da su preostali simboli definisani slede¢im skracenicama:

e T:=1—>1,

[ ] —|(p::(p—>J_’

@A i==(@ > ),
* V=@ >, i
e poPi=(p->P)r (o).

Prirodna dedukcija je sistem za formalno dokazivanje formula iz polaznih premisa koji se bazira na uobica-

jenim deduktvnim postupcima matematic¢kog dokaza. Osnovna pravila zakljucivanja su sledeca etiri:

© pp -@ pp
N 1
B e YT i D RAA
(G P @Y (@

Zovemo ih redom reiteracija, modus ponens, pravilo dedukcije i reductio ad absurdum. Pravilo R kaze: iz formule
@ mozemo da zaklju¢imo ¢. Pravilo MP kaze: iz @ i @ - { mozemo da zaklju¢imo . Pravilo D kaze: ako
pod pretpostavkom ¢ dokazemo 1\ mozemo da zaklju¢imo @ — 1. Pravilo RAA kaZe: ako pod pretpostavkom
- dokaZzemo kontradikciju moZzemo da zaklju¢imo @.

Neka su ¢ formula i £ skup formula. Dokaz u prirodnoj dedukciji formule ¢ iz premisa X je konac¢an niz
koraka u kojem koriste¢i premise (formule iz X) i poStujuéi navedena pravila dolazimo do zakljucka ¢. Preciznije,
u svakom koraku mozemo ili da konstatujemo neku od premisa ili da primenimo neko od gornjih pravila na
prethodno izvedene formule u dokazu kako bismo izveli novu formulu. Poslednja formula u dokazu treba da
bude bag formula ¢.

Pravila R i MP direktno se odnose na jednu, odnosno dve prethodne formule u dokazu. Pogledajmo sledeéi

primer:
Primer 2.34. Iz premisa @, @ — 1, - 0 moze se dokazati 0.

Resenje. Zapisimo najpre dokaz, pa ¢emo ga prokomentarisati.

1@ premisa
2 @ premisa
3 -0 premisa
4 Y MP(1,2)
5 0 MP(3,4)

Svaki korak u dokazu numeriSemo kako bismo lakse pratili postupak. Takode sa desne strane pisemo oprav-
danje date formule. U prva tri koraka smo konstatovali date premise. U koraku Cetiri primenili smo pravilo
modus ponens na formule iz prvog i drugog koraka kako bismo zakljuéili formulu {. Kona¢no u petom koraku
jo§ jednom primenjujemo pravilo modus ponena na formule iz treéeg i ¢etvrtog koraka i zaklju¢ujemo formulu

0. S obzirom da je cilj i bio da izvedemo formulu 6, ovim korakom smo i zavrsili dokaz. O
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Pravila D i RAA zahtevaju da u okviru dokaza napisemo odreden poddokaz koji zapocinjemo odgovaraju¢om
dodatnom pretpostavkom (pp). Treba voditi ra¢una da datu pretpostavku nemamo kao premisu, tako da
poddokaz u kojem je koristimo naglasavamo pisanjem linije s leve strane poddokaza koja nam govori dokle traje
vazenje date pretpostavke. Sama pretpostavka i formule dobijene u okviru poddokaza ne smeju se koristiti van
samog poddokaza. Poslednja formula dokaza ne sme da bude unutar poddokaza, tj. sve poddokaze moramo da
zavr$imo do tog trenutka.

Pogledajmo jo§ dva primera:
Primer 2.35. Iz premisa ¢ — 1, - 0 moze se dokazati @ — 0.

Resenje. Ponovo zapiSimo dokaz, pa ¢emo ga prokomentarisati:

1 @Y premisa
2 -0 premisa
3 | pp

4 VP MP(1,3)
5 0 MP(3,4)

6 @ —>0 D(3-5)
U prva dva koraka smo konstatovali premise. S obzirom da treba da dokazemo formulu koja je u obliku imp-
likacije, idemo na pravilo dedukcije, pa u treéem koraku otvaramo poddokaz sa odgovarajué¢om pretpostavkom.
U koracima cetiri i pet koristimo modus ponens. Kako smo u petom koraku dogli do zeljenog zakljucka, zat-

varamo poddokaz i koristimo previlo dedukcije u Sestom koraku. O
Primer 2.36. Bez premisa moze se dokazati (¢ — (Y - 0)) = ((¢ =~ V) = (¢ = 0)).

Resenje. Zapisimo dokaz:

1 - {W-0) pp

2 -y pp

3 ® pp

4 P MP(2,3)
5 V-0 MP(1,3)
6 0 MP(4,5)
7 ©—0 D(3-6)
8 (¢ ~>)~>(9—0) D(2-7)

0o (> (W—-0)~>{(¢—>¥)~>(9p—0)) D(1-8)
Kako dokazujemo formulu u obliku implikacije, idemo na pravilo dedukcije i zapo€injemo poddokaz sa

odgovaraju¢om pretpostavkom @ — (P — 0), sa Zeljom da dokaZzemo formulu (¢ — 1) - (@ - 0). S obzirom
da je i ova formula u obliku implikacije, ponovo idemo na pravilo dedukcije i yapo;injemo novi poddoka sa
pretpostavkom ¢ — 1 i zadatko da dokazemo ¢ — 0. Ponovo, kao je i ovo implikacije, u treéem koraku
otvaramo jo$ jedan poddokaz sa pretpostavkom ¢ i zadatkom da dokazemo 6. To radimo koriste¢i MP u

sledec¢a tri koraka. Na kraju zatvaramo poddokaze po pravilu dedukcije u poslednja tri koraka. O

Definicija 2.37. Ako se iz premisa X moZe dokazati formula ¢, to ¢emo zapisivati sa X + ¢ (Citamo ,,~ dokazuje
@", L izvodi @", ili ,,sekvent L + @ je dokaziv").
Ako je X konacan, umesto {{1,...,P,} F @ piSemo Py,..., P, - @. Takode, umesto @ + @ piSemo samo

@ i u tom slucaju za @ kazemo da je teorema.

U primeru 2.34 dokazali smo sekvent @, @ — P, - 0 + 0, u primeru 2.35 dokazali smo ¢ - P,y - 0 +
¢ — 0, a u primeru 2.36, - (¢ > (P > 0)) > ((¢ > P) - (¢ — 0)), tj. ova formula je teorema.

Odmah ¢emo da dokaZzemo jednu jednostavnu, ali korisnu teoremu:
Teorema 2.38 (Teorema dedukeije). Z, o -\ <= Z+ @ =)

Dokaz. (=) Pretpostavimo X + ¢ — 1 i uo¢imo jedan dokaz ovog sekventa (dokaz levo):
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n  @->1 ~ n @1

(n+1) @ premisa
(n+2) ¥ MP(n,n+1)

Od premisa u ovom dokazu koristimo samo formule iz £. Pogledajmo dokaz na desnoj strani. Prepisimo
prethodni dokaz, dodajmo premisu @ u koraku (n + 1) i pozivajuéi se na modus ponens zakljucijemo 1. Time
smo konstruisali dokaz za X, @ 1.

(<) Pretpostavimo X, @ 1. Uoc¢imo jedan dokaz ovog sekventa (dokaz levo):

0o @ premisa 0 () PP
1 1 1
I ~ : ~ : :
no P no P n P

(n+1) @ >4  D(0-n)
U ovom dokazu se od premisa javljaju formule iz £ i ¢. Prepravimo dokaz na sledeé¢i nac¢in (dokaz u sredini).
Dodajmo ispred celog dokaza nultu formulu ¢ koju opravdamo kao premisa, a u koracima 1 —n svako pojavlji-
vanje premise ¢ opravdamo kao R(0). Primetimo da je i ovo dokaz sekventa X, @ + 1, premisa ¢ javlja se
jedino u koraku 0, a u koracima 1 — n jedine premise su iz . Sada ovakav dokaz prepravimo na slede¢i nacin
(dokaz desno). Prograsimo formulu ¢ u koraku 0 za pretpostavku i pretvorimo ceo dokaz 0 — n u poddokaz sa
ovom pretpostavkom. U koraku (n + 1) iskoristimo pravilo dedukcije da se resimo poddokaza. Od premisa u

ovom dokazu su samo formule iz X, tj. zapisali smo dokaz sekventa X + @ — 1. O

2.6 Izvedena pravila prirodne dedukcije

Sekvent dokazan u primeru 2.35 mozemo da koristimo i kao pravilo:

-y P06
-0

HS

Zovemo ga hipoteticki silogizam.

U sledeé¢im primerima dokazujemo izvestan broj izvedenih pravila.

Primer 2.39 (Eliminacija i uvodenje negacije). Dokazati slede¢a dva pravila:
¢ pp

® -9 . -
— [ 1 ———————— U
1 -

Resenge. Ako se setimo da je —@ po definiciji zamena za @ — L, zamenom 1 sa 1 u pravilima MP i D, Dobijamo

—g 1 =y kao njihove specijalne slucajeve. O

Primer 2.40 (Ez falso quodlibet). Dokazati 1 + @, tj. pravilo:

L EFQ
©
Resenje. Dokaz je:
11 premisa 1 ) 9)8)
2 - ppP . 3 2 L premisa
ili krace
3 1 R(1) 3 @ RAA(1-2)

4 @ RAA(2-3)
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Primer 2.41 (Eliminacija i uvodenje duple negacije). Dokazati -—¢@ + @ i @ - =—@, tj. pravila:

ﬂ—|(p . (p
il 5 1 —— "y
(¥ i

Resenge. Dokazi su:

1 =@ premisa 1@ premisa

2 -@  pp : 2 -@  pp

3 1 -g(1,2) 3 1 -g(1,2)

4 @ RAA(2-3) 4 - - (2-3)
Primetimo da ovde, zarad krac¢eg dokaza, koristimo ve¢ dokazana pravila eliminacije i uvodenja negacije. O

Primer 2.42 (Modus tollens). Dokazati ¢ — P, - E =@, tj. pravilo:

o> -

MT
%

Resenje. Dokaz je:

1 @Y premisa

2 ) premisa

3 P pp

4 ) MP(1,3)

5 1 _‘E(274)

6 @ -u(3-5)

O
Primer 2.43 (Kontrapozicija). Dokazati @ > Y+ - > =@ i - > -@ + @ >, tj. pravila:
@ - K i - - =@ K
- > - )

Resenje. Dokazi su:

1 -1y premisa 1 - - premisa

2 - pp 2 ¢ PP

3| -~ MT(1,2) 3| e --v(2)

5 'LI) iy ) (4)
6 @ > D(2-5)
O

Primer 2.44 (Eliminacija i uvodenje disjunkcije). Dokazati @ - e v, b oevipievi, ¢ -0, -0+ 0,

tj. pravila:

Resenje. Setimo se da je @ v po definiciji zamena za formulu —¢@ — 1. Dokazi su:

premisa
PP
-5(1,2)
EFQ(3)
D(2-4)

P vy -0 -0
——— VU VE
vy 0
1P premisa 1 —@ -1
2 - pp 2 -0
3 P R(1) 3 p—>06
4 =@ > D(2-3) 4 -0
5 | ~@
6 P
7 0
8
9 0O

18

premisa
premisa

premisa



Komentar 2.45. Imajuéi u vidu pravilo dedukcije, pravilo Vg moZemo da formuliSemo i na sledeci naéin:

Primer 2.46 (Disjunktivni silogizmi). Dokazati @ v, =+ @ i @ v, =@ 1), tj. pravila:

Resenje. Kako je @ v zamena za —¢@ — 1\, prvo pravilo sledi iz MT i --g, a drugo direktno iz MP.

©

[OAVA) 0

pp

v pp

0

©V

¥
()

- DS

0

VE

-
DS
n

Primer 2.47 (Tertium non datur). Dokazati - @ v =@, tj. pravilo:

oVvV-9

Resenje. Kako je @ v -~ zamena za ~¢@ — —@, dokaz je:

1

2

| -
=@ = @

pp
D(1-1)

TND

O

O

Primer 2.48 (Eliminacija i uvodenje konjunkcije). Dokazati @ AV F @, @ AV F P i @, F @ A, tj. pravila:

AP

©

ANE

i

QAP

ANE

<ple

U
CR)

Resgenje. Kako je @ A po definiciji zamena za ~(@ — —-1), dokazi su:

1

2

3

4

[}

(@ = )
-¢

©

(0]
VP
¢ -
-
1
(¢~ )

premisa
PP

pp
-£(2,3)
EFQ(4)
D(3-5)
-£(1,6)
RAA(2-7)

premisa
premisa
pp

MP(1,3)
-g(2,4)
-u(3-5)

1 =(p > ) premisa

2 - pp

3 @ pp

4 - R(2)

5 @ - D(3-4)

6 1 -g(1,5)

7 P RAA(2-6)

O

Primer 2.49 (Eliminacija i uvodenje ekvivalencije). Dokazati ¢ « V@ >, o PP > i@ ->P,p -
© + @ <, tj. pravila:

Q<Y
—_— >

-y

Y@

e
—_— >

-V Yoo

e

U

Regenje. Kako je po definiciji @ <> 1V zamena za (¢ - ) A (P — @), ova pravila su specijalni slu¢ajevi Ag i

AU -
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Primer 2.50 (De Morganova pravila). Dokazati =(@ Al) =@V -1, =@Vv-P F (@A), (V) - @A)
i-@ A=Y+ -(@ V), tj. pravila:

~(PA%) vy o ~levy) o ~OAY
A =(p AY) =@ A (e V)
Resenje. Dokazi prva dva pravila su:
1 =(@A) premisa 1 =@V premisa
2 @) --g(1) po def. A 2 | pp
3| - pp 3 | - --u(2)
4 @ --£(3) 4 - MP(1,3) po def. v
5 - MP(2,4) 5 @ > D(24)
6 -V D(3-5) po def. v 6 (o) --u(5) po def. A
Dokazi preostala dva pravila su:
1 —(pv) premisa 1 =@ A-P premisa
2 - > - pp 2 -p >y pPp
3 -¢ pp 3 -@ pp
4 P MP(2,3) 4 n MP(3,2)
5 ¥ --5(4) 5 - --u(4)
6 - > D(3-5) 6 - > - D(3-5)
7 L -£(1,6) po def. v 7 L -£(1,6) po def. A
8 @AY RAA(2-7) po def. A 8 —(pVv) RAA(2-7) po def. v

2.7 Logicka posledica i teorema saglasnosti

Definicija 2.51. Neka Zc ® i @ € ©.
a) Valaucija v zadovoljava skup formula X, u oznaci v £ X, ako za sve formule o € £ vazi ¢(0) =T.
b) Skup formula X je zadovoljiv ako postoji valuacija v takva da v = Z.

¢) Formula ¢ je logicka posledica skupa formula X, u oznaci £ = @, ako za sve valuacije v vazi implikacija
vE X povladi 0(¢@) =T.

Lema 2.52. Skup formula X je zadovoljiv ako i samo ako X # 1.

Dokaz. (=) Pretpostavimo L je zadovoljiv, tj. postoji valuacija v takva da v = X. Kako je svakako 0(L) = N,
zaklju¢ujemo X i 1.

(<=) Pretpostavimo X # L. To znaci da postoji valuacija v takva da v £ Z, ali ©(1) = N, specijalno neka

valuacija zadovoljava L, tj. X je zadovoljiv. O
Lema 2.53. Neka je ¢ formula. Tada @ = @ ako i samo ako & .

Dokaz. Primetimo da @ £ @ zna¢i (Vv)(v E @ - 0(¢@) = T). Takode v = @ znaci (Vo € @) (o) = T, $to je
logicki tacan iskaz jer je dobijen ogranic¢enjem univerzalnog kvantifikatora na prazan skup. Kako je v E @ logicki
tafan, implikacija v = @ — (@) = T ekvivalentna je sa (@) =T, pa @ £ @ svodi se na (Yv)9(¢@) =T, §to sa
druge strane znaci = @. O

Teorema 2.54 (Teorema saglasnosti). Neka je X c® i@ e ®. Ako L+ @, onda X = @.

Za sekvent X + @, oznafimo sa d(X + @) duzinu najkraceg dokaza u prirodnoj dedukeiji (koji koristi samo
osnovna pravila) ovog sekventa ako je on dokaziv; ako nije dokaziv mozemo da definisemo d(Z + @) = oco. Dakle,
Y + @ je dokaziv ako i samo ako d(Z + @) e N*.

20



Dokaz teoreme 2.5/. Dovoljno je da dokazemo sledece za sve n > 1: Za svaki sekvent X + @, ako je d(Z + @) = n,
onda X = ¢@. Dokaz izvodimo potpunom indukcijom po n. Neka je n > 1 proizvoljno, pretpostavimo da tvrdenje
vaZi za sekvente Cija je duZina najkraceg dokaza k, 1 < k <n (IH), i dokazimo tvrdenje za sekvente ¢ija je
duzina najkraceg dokaza jednaka n. Pretpostavimo da imamo sekvent X + ¢ takav da d(Z + @) = n. Uocimo

neki najkraéi dokaz ovog sekventa:

no Q@ opravdanje
u kome se od premisa javljaju samo formule iz £. Diskutova¢emo po opravdanju, tj. imamo sledeé¢ih pet

slucajeva.

1° opravdanje=premisa: Ako je @ premisa, to znadi da @ € X, pa o¢igledno vazi X £ ¢. (Primetimo jednu

¢injenicu koja nije bila bitna u dokazu. Naime, ako je opravdanje premisa, mora biti n = 1 jer smo uo¢ili najkraci
dokaz.)
2° opravdanje=R: Dokaza¢emo da ovaj sluc¢aj nije mogué¢. Ako je opravdanje reiteracija, mora biti oblika

R(m), gde je m <n i u koraku m je formula @, tj. dokaz je sledeceg oblika:

1
mo @

n @ R(m)
Ako bismo prekinuli prethodni dokaz nakon prvog koraka, takode bismo imali dokaz za X + @, koji je krac¢i od
n. Kako ovo nije moguce, zaklju¢ujemo da ovaj slucaj nije mogué. (Zapravo smo dokazali da se najkraéi dokaz
ne moze zavrsiti reiteracijom.)
3° opravdanje=MP: Ako je opravdanje modus ponens, mora biti oblika MP(k,m), gde k < m < n, formula u
k-tom koraku je 1 i formula u m-tom koraku je P — ¢ (ili obratno). (Takode moZemo zakljucitii dajem =n-1

jer smo uod¢ili najkra¢i dokaz, Sto nece biti bitno.) Dakle, dokaz je sledec¢eg oblika:

1

koo
m P>
no@ MP (k,m)

Primetimo da ako prekinemo dokaz posle k-tog, odnosno m-tog koraka, dobijamo dokaze za sekvente X + 1 i
Y+ - @ duzine k < n, odnosno m < n. Prema tome d(Z + V),d(Z + 1V - @) < n, pa mozemo da primenimo
(IH) i zaklju¢ujemo L =1 i £ =1 — @. Dokazimo sada L = @. Neka je v valuacija takva davE Z. Iz L1 i
Y=Y - @ imamo 9(Y) =T 1 0(P - @) =T, odakle sledi (@) =T. Dakle, L E @.

4° opravdanje=D: Ako je opravdanje pravilo dedukcije, mora biti oblika D(k-m), gde k < m < n, formula ¢
je oblika 1\ — 6, u k-tom koraku je pretpostavka 1 i formula u m-tom koraku je 0. (Takode mozemo zakljuciti

i da je m=n-1 jer smo uocili najkraéi dokaz, §to neée biti bitno.) Dakle, dokaz je slede¢eg oblika (levo):

1 1

k VP PP EooP premisa
. - L

m 0 m 0



Prepravimo ovaj dokaz na sledeé¢i nacin (dokaz desno). Prekinimo dokaz posle m-tog koraka i proglasimo
pretpostavku 1V u k-tom koraku za premisu, pri ¢emu poddokaz od k-tog do m-tog koraka postaje glavni deo
dokaza (sklanjamo crtu poddokaza s leve strane). Time dobijamo dokaz za sekvent £, + 0 duzine m <n (P je
s leve strane sekventa jer smo je proglasili za premisu). Prema tome d(Z,{ + 6) < n, pa mozemo da primenimo
(IH) i zakljuéujemo X, = 0. Dokazimo sada X = @, tj. Z = — 0. Neka je v valuacija takva da v £ X. Ako
je 0(P) = N, vazi 9(Y - 0) =T. Ako je o(P) =T, tada v = Z,1, pa kako Z,1{ = 0, dobijamo ¢(0) = T, odakle
ponovo vazi o(Pp - 0) =T. Dakle, L = @.

5° opravdanje=RAA: Ako je opravdanje reductio ad absurdum, mora biti oblika RAA(k-m), gde k <m < n,

u k-tom koraku je pretpostavka - i formula u m-tom koraku je 1. (Takode moZemo zakljuciti i da je m =n—1

jer smo uodili najkraci dokaz, §to nece biti bitno.) Dakle, dokaz je slede¢eg oblika (levo):

1 1

I.c - PP k '—|(p premisa
. | I

1:1 (p RAA(k-m)

Ponovo prepravljamo ovaj dokaz na sledeé¢i na¢in (dokaz desno). Prekinimo dokaz posle m-tog koraka i pro-
glasimo pretpostavku —¢@ u k-tom koraku za premisu, pri ¢emu poddokaz od k-tog do m-tog koraka postaje
glavni deo dokaza (sklanjamo crtu poddokaza s leve strane). Time dobijamo dokaz za sekvent X, ~¢ E 1 duZine
m <n. Prema tome d(Z,-¢ + 1) <n, pa moZemo da primenimo (IH) i zaklju¢ujemo Z,-¢ E 1. DokaZimo sada
Y = @. Neka je v valuacija takva da v £ Z. Ako je 0(-@) =T, vazi v £ £, -, pa kako L, -¢ E 1, dobijamo
(L) =T, 8to je besmisleno. Prema tome mora biti 9(-¢@) = N, tj. 6(¢@) =T. Dakle, L~ @.

Zavrsili smo dokaz. O
Definicija 2.55. Skup formula X je konzistentan ako I w 1.

Jos jedna verzija teoreme saglasnosti je:
Posledica 2.56 (Teorema saglasnosti). Ako je skup X zadovoljiv, £ je konzistentan.
Dokaz. Dokazimo kontrapoziciju. Ako I nije konzistentan, tj. £ + 1 po teoremi 2.54, £ = 1, pa Z nije zadovoljiv

po lemi 2.52. O

2.8 Slaba teorema potpunosti
Prema teoremi saglasnosti za sve @ € ® specijalno vazi:

o = E .

Cilj ovog odeljka je da dokazemo da vaZi i obratna implikacija:

Teorema 2.57 (Slaba teorema potpunosti). Za sve @ € O vazi:
F@ < Eo.

Za dokaz nam je potrebna kratka priprema.
Lema 2.58. Neka X c O, ¢, € ©.
a) Vazi @ - ,-~@ > +1.

b) Ako @, VP i D,-¢ +1p, onda O 1.
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Dokaz. a) Dokaz sekventa je:

1 -V premisa
2 - =P premisa
3 - pretpostavka

4 - MT(1,3)
5 =@ MT(2,3)
6 1L -g(4,5)
7 P RAA(3-6)

b) Prema teoremi dedukcije @, @ -1 i ®,-¢@ P povlate D+ @ > i O+ - —P; prema a), ® . O

Neka v eV i @ € @. Definisemo @ € © sa:

. o i(e)=T,
- @((p):N.

Lema 2.59. Neka @, € @, veV. Vazi: ", b? + (¢ = P)°.
Dokaz. Dokaz leme se svodi na dokazivanje sledeca Cetiri sekventa:
V=0 ->V, @,-Ybr-(¢->V), -0, Yre->Y i -@,-+-oe->1.

Prva dva dokaza pokazuju prvi, treéi i Cetvrti sekvent, treéi dokaz pokazuje drugi sekvent:

. 1@ premisa
) 1 =@ premisa .

1P premisa 2 - premisa

2 © pretpostavka
2 © pretpostavka (12) 3 © -V pretpostavka

3 1 - R
s | P R(1) " E];Q(S) P MP(1,3)

4
4 Q-1 D(2-3) 5 L -£(2,4)

e~ DR 5 (o) u(35)

Tvrdenje 2.60. Neka @ = @(p1,...,pn) €@ iveV. Vazi: pj,...,ph+ @".

Dokaz. Dokaz izvodimo potpunom indukcijom po sl(@). Neka je najpre si(¢@) = 0. Ako je @ = 1, dokazujemo
pY,...,pp L jer 1V =-1 za sve veV. Tosledi iz + -1, a dokaz je:

1 ‘ 1 pretpostavka

2 -l RAA(1-1)
Ako je @ =p;, treba da dokazemo pY,...,p, + p?, §to je ocigledno.

Neka je sl(@) > 0. Tada je @ =1 — 0 za neke {,0 € @, P =P(p1,...,0n), 0 =0(p1,...,0n) 1 sl(V),sl(0) <
sl(@). Prema indukcijskoj hipotezi py,...,ph =¥ ip},...,p> 0", pa prema lemi 2.59, p},... . pt + @". O

Dokaz teoreme 2.57. Kao $to smo veé rekli smer (=) je specijalan slucaj teoreme saglasnosti. Za (<) pret-
postavimo £ ¢@. Neka je P(@) = {p1,...,pn}; tada je @ = @(p1,...,pn). Neka je v proizvoljna valuacija slova
D1y, Pn-1. Ako dodefinisemo v(p,) = T, prema tvrdenju 2.60 vazi:

Py Pp-1:Pn = @,
a ako dodefinisemo v(p, ) = N, prema tvrdenju 2.60 vazi:
Py s Ppo1s Do = @
(U oba sludaja, na desnoj strani sekventa je @V = @ jer = ¢@.) Iz prethodna dva sekventa, prema lemi 2.58, sledi:
Plse s Pna - @ (*)
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Neka je sada v proizvoljna valuacija slova p1,...,p,-2. Ako dodefinisemo v(p,-1) =T, prema () vaZi:

v v
Pis--sPp_2,Pn-1F @,

a ako dodefiniSemo v(p,-1) = N, prema (*) vazi:
pqu7 s 7p11fb_2’ “Pn-1+ @.

Iz prethodna dva sekventa, prema lemi 2.58, sledi:

DisesDpo b @. (%)

Nastavljajuéi ovaj postupak zaklju¢ujemo + . O

2.9 Teorema kompaktnosti
Podsetimo se pojma zadovoljivosti, i defini§imo pojam konaé¢ne zadovoljivosti.
Definicija 2.61. Neka je X ¢ @ skup formula.
a) I je zadovoljiv ako postoji valuacija v takva da v = I (tj. takva da (Ve € Z) 0(¢@) =T).
b) Z je konacno zadovoljiv ako je svaki konafan podskup od X zadovoljiv.
Cilj ovog poglavlja je da dokazemo teoremu kompaktnosti:

Teorema 2.62 (Teorema kompaktnosti). Neka je X ¢ @. Tada:
Y je zadovoljiv. <= X je konac¢no zadovoljiv.

Smer (=) je ofigledan (naime svaka valuacija koja zadovoljava L zadovoljava i sve njegove podskupove,
pa i sve njegove kona¢ne podskupove). Za dokaz (<) potrebna nam je priprema. Najpre ¢emo da dokazemo
specijalan slucaj smera (<) (teorema o kanonskoj valuaciji), na koji ¢emo kasnije da svedemo dokaz same

teoreme kompaktnosti.
Definicija 2.63. Neka je £ ¢ @. Skup I je zatvoren za slova ako za svako slovo pe P vazi pe X ili -p e X.

Teorema 2.64 (Teorema o kanonskoj valuaciji). Neka je £ ¢ @ kona¢no zadovoljiv skup formula koji je zatvoren
za slova. Tada postoji jedinstvena valuacija vy takva da vy E L.

Specijalno, X je zadovoljiv.

Dokaz. Kako je ¥ zatvoren za slova, za svako slovo p € P vazi p € £ ili -p € £, medutim kako je £ konacno
zadovoljiv i kako skup {p,-p} nije zadovoljiv, ne mogu da vaZe oba p € £ i -p € X; dakle, za svako slovo p € P

vazi ta¢no jedno od pe€ L i —=p € L. Definisimo valuaciju vy sa:

T peZ,
N ﬁpEZ;

v (p) =

prema prethodnoj napomeni, vy je dobro definisana valuacija. Primetimo da po samoj definiciji vy, za svako
pe P vazi pvt e £.°
Dokazimo vy £ X. Neka je @ € I proizvoljna formula, i neka je P(¢) = {p1,...,pn}. TadaTl={@,p{*,...,ppr} C

L, pa po kona¢noj zadovoljivosti postoji valuacija v takva da v £ TI. Iz v £ p;* sledi v(p;) = vs(p;) za sve

p Uz(p) =T,

3Setimo se da je pt =
-p vz(p)=N.
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i=1,...,n, tj. valuacije v 1 v se poklapaju na slovima formule @. Odatle 05 (@) = 9(9) =T, tj. vs £ @. Dakle,
vy E .
Ako je v valuacija takva da v = L, zbog zatvorenosti za slova, v = p ako i samo ako p € £, tj. ako i samo ako

vy £ p. Dakle, v = vs, §to dokazuje Zeljenu jedinstvenost valuacije vs. Zavrsili smo dokaz. O

Sada je ideja da svedemo dokaz teoreme kompaktnosti na prethodnu teoremu tako $to ¢emo dokazati da se
svaki kona¢no zadovoljiv skup formula moZe prosiriti do kona¢no zadovoljivog skupa formula koji je zatvoren

za slova. Potrebne su nam dve leme.

Lema 2.65. Neka je Zc @ i ¢ € ®. Ako je X konac¢no zadovoljiv, bar jedan od skupova Zu{@} i Zu{-@} je

konac¢no zadovoljiv.

Dokaz. Pretpostavimo I je konacno zadovojiv, i pretpostavimo suptorno, L u {@} i £Z U {-¢} nisu kona¢no
zadovoljivi. Tada postoje konaéni podskupovi X1, %5 € X takvi da £y u{@} i £y U {-¢@} nisu zadovoljivi. Skup
21U X, je konacan podskup od X, pa postoji valuacija v takva da v E Z1UZs. Iz vEZy i v i Xy U{@} sledi
(@) =N, dok iz vE Zg i v# Zyu{-@} sledi 0(¢) = T; kontradikeija. O

Lema 2.66. Neka je Ly € X1 € X5 € --- € @ rastuéi niz skupova formula. Ako su svi skupovi X,, kona¢no

zadovoljivi, onda je i X* := U;~, Z,, kona¢no zadovoljiv.

Dokaz. Neka je TT ¢ X* proizvoljan konacan podskup; treba da dokazemo da je TT zadovoljiv. Neka je TT =
{@1,..., 91} Po definiciji £*, za svako i = 1,...,k vazi da @; € L,,, za neko n;, pa kako je niz rastuci za sve
t=1,...,k vaZi @; € Zn, gde je N = max{ny,...,ng}, tj. T € Xx. Dakle, TT je konafan podskup kona¢no
zadovoljivog skupa Ly, odakle sledi da je TT zadovoljiv. O

Sledeca teorema je glavni korak u svodenju teoreme kompaktnosti na teoremu o kanonskoj valuaciji.

Teorema 2.67 (Lindenbaumova teorema). Neka je £ ¢ @ kona¢no zadovoljiv skup formula. Tada postoji

kona¢no zadovoljiv skup formula X* takav da Z* 2 X i * je zatvoren za slova.

U opstem slucaju dokaz Lindenbaumove teoreme koristi aksiomu izbora (malo kasnije ¢emo diskutovati o

ovome), pa ¢emo za pocetak da dokaZemo specijalan slucaj.

Dokaz teoreme 2.07 ako je P prebrojiv. Pretpostavimo da je skup slova P prebrojiv. O prebrojivim skupovima

¢éemo kasnije pricati, za sada je dovoljno da znamo da mozemo da pretpostavimo da je:

P= {p07p17p27 cee }

Definisimo rastuéi niz kona¢no zadovoljivih skupova Ly € X € X5 € ... rekurzijom na sledeéi naéin:
e Yy=21; po pretpostavci Xy je kona¢no zadovoljiv.

e Pretpostavimo da smo definisali konacno zadovoljiv skup Z,,, definiS§emo:

5 2. u{p,} ako je L,u{p,} zadovoljiv,
n+l =
" Y, u{-p,} inace.

Skup X, .1 je kona¢no zadovoljiv prema lemi 2.65, i o¢igledno Z,,41 2 £,,.

Prema konstrukeiji skup X* := U;~y Z,, je zatvoren za slova i £* 2 Z, a prema lemi 2.66, skup X* je kona¢no

zadovoljiv. O
Sada mozemo da dokazemo teoremu kompaktnosti:

Dokaz teoreme 2.62. Veé smo rekli, smer (=) je ocigledan, pa dokazujemo (<=). Neka je L kona¢no zadovoljiv
skup formula. Prema teoremi 2.67 prosirimo X do kona¢no zadovoljivog skupa formula X* koji je zatvoren za

slova. Prema teoremi 2.64, X* je zadovoljiv, pa je i £ zadovoljiv kao njegov podskup. O
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Prethodni dokaz oslanja se na Lindenbaumovu teoremu koju smo dokazali samo u specijalnom slucaju. Opsti

slucaj zavisi od aksiome izbora, pa ¢emo sada reéi nekolioko reci o tome.

Digresija: Aksioma izbora

Definicija 2.68. Neka je F familija skupova.
a) Familija J je lanac skupova ako za svaka dva skupa X, Y e Fvazi X cY iliY c X.
b) Skup A € F je maksimalan element familije F ako za svaki skup X € F vazi A ¢ X.

Aksioma 2.69 (Cornova lema). Neka je F neprazna familija skupova. Pretpostavimo da za svaki neprazan

lanac £ € F vazi UL € F.* Tada F ima maksimalan element.

Teorema kompaktnosti (nastavak)

Da bismo dokazali teoremu kompaktnosti u opstem sluc¢aju, dovoljno je da dokazemo Lindenbaumovu teoremu
u opStem slucaju. U dokazu ¢emo iskoristiti Cornovu lemu, i za dokaz ¢e nam biti potrebna nesto opStija verzija

leme 2.66 (sa sustinski istim dokazom):
Lema 2.70. Ako je £ lanac kona¢no zadovoljivih skupova formula, onda je i [J£ konac¢no zadovoljiv.

Dokaz. Neka je TT ¢ UL proizvoljan konacan podskup; treba da dokazemo da je TT zadovoljiv. Neka je TT =
{@1,...,0r}. Zasvako i =1,... k vazi da @; € £; za neko X; € £, pa kako je £ lanac za sve i = 1,... k vazi
@; € X, gde je L najveéi od skupova Xq,...,X. Dakle, TT € X, tj. TT je kona¢an podskup kona¢no zadovoljivog
skupa X, odakle sledi da je TT zadovoljiv. O

Sada moZemo da dokaZemo Lindenbaumovu teoremu.

Dokaz teoreme 2.67 u opstem slucaju. Neka je X konaéno zadovoljiv, i neka je:
F:={TTc ®:ZcTTiTT je kona¢no zadovoljiv}.

Familija & je neprazna jer ocigledno X ¢ F. Takode, prema lemi 2.70 za svaki neprazan lanac £ ¢ F vazi
UL € F. Prema Cornovoj lemi (aksioma 2.69), ¥ ima maksimalni element X*. O¢igledno X ¢ X* i * je kona¢no
zadovoljiv jer Z* € F. Ostaje da proverimo da je I* zatvoren za slova.

Neka je p € P proizvoljno slovo. Pretpostavimo p ¢ £*. Tada je £* u {p} 2 Z*, pa zbog maksimalnosti £* u
F sledi da Z* u{p} ¢ F, odakle £* U {p} nije konacno zadovoljiv. Prema lemi 2.65, £* u{-p} mora biti kona¢no
zadovoljiv, tj. Z* u{-p} € F, pa kako je Z* ¢ Z* u {-p} i kako je Z* maksimalan u F, mora biti Z* = Z* u {-p},

odakle —p € Z*. Zavr§ili smo dokaz. O

2.10* Primeri primene teoreme kompaktnosti

Dac¢emo nekoliko primera primene teoreme 2.62. Generalna ideja je da polazni problem, koji se odnosi na neku
beskona¢nu konfiguraciju, pametno pretvorimo u problem zadovoljivosti nekog skupa iskaznih formula. Samu
zadovoljivost skupa dokazujemo koristeéi kompaktnost tako Sto proverimo da su svi njegovi kona¢ni podskupovi
zadovoljivi. Za poslednje je obi¢no potrebno da reSimo polazni problem za konac¢ne konfiguracije, $to je ponekad

mnogo lakSe nego resiti polazni problem.

4UL je oznaka za uniju Uxeg X.
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2.10.1 Uredenja racionalnih brojeva

Problem 2.71. Dokazati da se racionalni brojevi mogu poredati tako da ne postoji rastuéi (u smislu uocenog
poretka) aritmeticki niz duZine tri. Drugim re¢ima, moguce je definisati linearni poredak < na Q tako da kadgod

a <b<c, niz (a,b,c) nije aritmeticki niz (tj. b—a # c-b).
Prethodni problem ¢emo resiti koriste¢i kompaktnost, za Sta ¢e nam biti potrebna slede¢a (kona¢na) lema.

Lema 2.72. Za svako n € N, elementi 0,1,2,...,2" - 1 se mogu poredati tako da u ovom poretku ne postoji

rastuéi aritmeticki niz duZine tri.

Dokaz. Dokaz izvodimo indukcijom po n.

Baza indukcije. Za n =0 nemamo $ta da dokaZemo jer imamo samo jedan element. Za n = 1 imamo samo
dva elementa 0 i 1, pa bilo da ih poredamo 0 < 1 ili 1 < 0, uslov je ispunjen. Prvi zanimljiv slu¢aj je n = 2,
i treba da poredamo elemente 0,1,2,3 tako da nemamo rastuéi aritmeticki niz duzine tri. Jedan nacin da to
uradimo je:

0<2<1<3.

Indukcijski korak. Pretpostavimo da smo poredali 0,1,...,2™ — 1 u niz:

ag <ap <---<dagn_1

L2l 1

tako da u prethodnom nizu nemamo rastuéi aritmeticki niz duzine tri. Sada ¢emo poredati 0,1, ..
niz koji zadovoljava trazeni uslov. Primetimo da je {0,1,...,2"*' -1} = {2ag,2a1,...,2a2:_1} U {2a0 + 1, 2a; +

1,...,2agn_1 + 1}. Trik je da ih poredamo na slede¢i nacin:
2a9 < 2a1 <+ <2a9n_1 <2a9+1<2a1+1<--<2a9n_1+1.

Primetimo da u prvoj polovini nemamo rastuéi aritmeticki niz duzine tri jer za i < j < k, (2a;,2a;,2a;) je
aritmeticki niz ako i samo ako (a;, a;,ax) je aritmeticki niz, a poslednje ne vazi po indukeijskoj hipotezi. Sli¢no,
u drugoj polovini nemamo rastudi aritmeticki niz duzine tri jer za i < j < k, (2a;+1,2a;+1,2a,+1) je aritmeticki
niz ako i samo ako (a;,a;,ax) je aritmeticki niz. Za ¢ < j i k, niz (2a;,2a;,2ax + 1) nije aritmeticki jer je razlika
prva dva ¢lana parna, a razlika druga dva neparna. Sli¢no, za i i j < k, (2a;,2a; + 1,2a;, + 1) nije aritmeticki

n+1
2

jer je razlika prva dva ¢lana neparna, a razlika druga dva parna. Prema tome, poredali smo 0,1, .. -1 na

odgovarajuéi nacin. O

Resenje problema 2.71. Iskodirajmo sada nas problem u iskaznoj logici. Uoci¢emo skup slova P = {p,:a,b €

Q, a # b} i slededi skup iskaznih formula:

L = {papVPaiabeQ, a+b}
U {Pap ADbc = Pacia,byceQ,azb*c*a}
U {=(pap ADbec):(a,b,c)e A},

gde je A skup svih nekonstantnih, racionalnih, aritmetickih nizova duZine tri. Primetimo da ako moZemo da

poredamo @Q na Zeljeni nac¢in, onda imamo sledec¢u valuaciju koja zadovoljava skup X:

T akoa<bd

v(Pap) = { N akob<a

Zaista, formule p,p V Py o su tacne jer vazi ili @ < b ili b < a, formule pg p A Ppc = Pa,c sU tacne jer a <bib<c
povlade a < ¢, i na kraju formule —(pqp A pp,c) su tacne jer ako (a,b,c) € A, kako poredak zadovoljava zeljeni
uslov, ne moZe vaziti a <bib<c.

Sa druge strane, ako imamo valuciju v koja zadovoljava L, na skupu Q mozemo definisati Zeljeni poredak
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na sledeci nacin:

a<b <= v(pep) =T, zarazliite a,b e Q.

Ovo zaista jeste poredak jer v zadovoljava prva dva skupa formula, a takode ako (a,b,c) € A, kako je pgp A Db,c
netacna, niz (a,b,c) nije rastudi.

Prema tome sveli smo problem na dokaz da je £ zadovoljiv skup. Po kompaktnosti, tj. teoremi 2.62, dovoljno
je da dokazemo da su kona¢ni podskupovi od £ zadovoljivi. Pa neka je Ly proizvoljan konacan podskup od Z.
Samo kona¢no mnogo slova pojavljuje se u skupu Xy, pa se i samo kona¢no mnogo racionalnih brojeva pojavljuje
kao indeksi ovih slova. Neka je Qg € Q konac¢an podskup racionalnih brojeva koji se pojavljuju kao indeksi slova

u skupu Xy; dakle, imamo:

Lo € A{PapVPbaia,beQo,a#b}
u {pa,b/\pb,c_)pa,(!:avbaCEQOva#zb#zc#za}
U {_'(pa,b/\pb,t:):(a‘ab7 C) EAI"‘IQ%}

Oznadimo sa X; skup na desnoj strani. Dovoljno je da dokazemo da je on zadovoljiv, jer je onda i manji skup
Yo jasno zadovoljiv. Kako je @)y konac¢an mozemo da nademo prirodan broj M takav da Ma € Z za sve a € Q
(uzmimo M da bude NZS svih imenilaca brojeva iz @)y zapisanih u obliku skrac¢enog razlomka). Dalje nademo
prirodan broj K takav da Ma+K > 0 za sve a € Qy. Kona¢no izaberimo prirodan broj N takav da Ma+K <2V,
za sve a € A. Prema lemi 2.72, brojeve 0,1,...,2" -1 mozemo da poredamo tako da u ovom poretku nemamo
rastuéi aritmeticki niz duZine tri; oznac¢imo ovaj poredak sa <. Primetimo da su brojevi Ma + K, a € @y,

poredani u ovom poretku. Defini§imo valuaciju v slova pq_p, a,b € Qo, a # b sa:

( ) T Ma+K<Mb+K
’l] =
Pa.b N Mb+K<Ma+K

i primetimo da v zadovoljava X;. Zaista, formule p,p V Dp.q 1 Da,b A Pb,c = Pa,c SU tacne jer su Ma+ K, a € Qo,
poredani u odnosu na <. Formule p, , A pp. za (a,b,c) € An Q3 su netacne jer je niz (a,b,c) aritmeticki ako i
samo ako je niz (Ma+ K, Mb+ K, Mc+ K) aritmeticki, pa ne vazi Ma+ K < Mb+ K <Mc+ K.

Dakle, X je zadovoljiv i time smo resili problem. O

Zadatak 2.73. Dokazati da se realni brojevi mogu poredati tako da ne postoji rastuéi aritmeticki niz duzine

5

tri.

2.10.2 Linearizacija parcijalnih uredenja

Problem 2.74. Dokazati da postoji strogo linerano uredenje < na P(N) tako da A ¢ B povlaci A < B za sve
A, B c N. (Tj. dokazati da se relacija podskupa na P(N) moze dodefinisati do linearnog uredenja.)

Ponovo najpre dokazujemo odgovarajuéu kona¢nu verziju problema.

Lema 2.75. Za proizvoljne n>11 A;,..., A, ¢ N, A;,..., A, se mogu poredati tako da ako A; ¢ A;, onda je i

A;<Aj, zasve 1<i,j<n.

Dokaz. Dokaz izvodimo indukcijom po n.

Baza indukcije. Ako je n = 1 nemamo Sta da dokaZemo. Razmotrimo i slu¢aj (8to nije neophodno) n = 2.
Ako imamo dva podskupa A, B ¢ N, postupamo na slede¢i na¢in. Ako je A ¢ B, stavili bismo A < B, a ako je
B ¢ A, stavili bismo B < A. Ako nije ni A ¢ B ni B ¢ A, mozemo da definiSemo bilo A < B bilo B < A, u oba
slu¢aja imamo zadovoljavajuée redanje.

Indukcijski korak. Pretpostavimo da imamo sada podskupove Ai,...,A,,A,+1- Njih je samo konacno

mnogo, pa mozemo nademo A; tako da A; ¢ A; za sve j # i. (Zaista, ako nijedan A; ne zadovoljava ovaj

50vo je tezi zadatak. Mozete da pokuSate da ga resite na sledeéi nacin. Skup R je vektorski prostor nad Q, pa mozemo da
uodimo jednu njegovu bazu nad Q. Koristeéi rezultat problema 2.71 i zapis realnog broja u uocenoj bazi, pokuSajte da konstruisite
Zeljeni poredak.
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uslov, onda za svaki A; moZemo da nademo A; takav da A; ¢ A;. Sada imamo A; 2 A;, za neko ji, pa
Aj, 2 Aj, za neko jo, pa Aj, 2 Aj,, itd. U n+1 koraka nalazimo niz medusobno razli¢itih n + 2 podskupova:
A1245, 245, 245,22 44,0,
$to nije moguce jer imamo samo n + 1 skupova Ay, ..., A,, Apy1.) Po indukeijskoj hipotezi znamo da skupove
Ar, ..o, Ais1, A, ..o, Anr moZemo da poredamo tako da A; © Ay povladi A; < Ay za sve j,k # . Sada
je dovoljno da dodefinisemo ovo redanje tako $to skup A; stavimo ispred svih. Zeljeni uslov ocigledno je

zadovoljen. O

Resenge probleme 2.7/. Sada éemo iskodirati nag problem u iskaznoj logici. Uo¢imo skup slova P = {pa p: A, B ¢
N, A # B} i skup iskaznih formula:

Y = {paBvppaABcN, A+ B}
U {paBADpB.C—paciABCCN AzB#C %A}
U {papAgBcN}.

Ako moZemo da nademo refenje < problema 2.74, primetimo da moZ%emo da definiSemo i valuaciju v koja

zadovoljava X na sledeéi naéin:

T ako A<B
= A,B N7 AiB
v(pa.s) { N ako B< A “ )

Sa druge strane, ako je X zadovoljiv i ako je v neka valuacija koja ga zadovoljava, mozemo da definiSemo Zeljeno

uredenje < na sledeéi nacin:
A<B <= v(pap)=T,za A, BeN A+ B.

Zaista, kako su formule p4 g v pp a tacne, za svaka dva razlicita skupa A i B smo odredili da li je A < B ili je
B < A. Takode, kako su formule pa g App,c = pa,c tatne, definisana relacija je i tranitivna, pa smo korektno
definisali linearno uredenje. Konaé¢no, za A ¢ B ¢ N, tacna je formula p4 g, pa zaista vazi i A < B.

Prema tome, dovoljno je da dokazemo da je X zadovoljiv skup formula. Po kompaktnosti (teorema 2.62),
dovoljno je da dokazemo da je svaki konacan podskup X, ¢ X zadovoljiv, pa uo¢imo proizvoljan konacan £y c ¥.
Kako je Xy konacan, samo kona¢no mnogo skupova Ay,..., A, € N pojavljuju se kao indeksi slova u skupu .
Dakle:

Lo S {pa,a, Vpa;a:1<i,j<n,i#j}
U {pa,a; ADA A = DA A LS G k<n, %5 #k#4)
U {pAi,Ajil <i,j<n, A; & Aj}.
Ozna¢imo sa X; skup na desnoj strani i primetimo da je dovoljno da dokaZemo da je on zadovoljiv. Prema
lemi 2.75 moZemo da uo¢imo linearno uredenje < skupova Aj,..., A, koje prosiruje relaciju podskupa. Sada

definiSemo valuaciju v sa:

T ako A; < A;

za 1l<i,7<n,1#7.
N ako Aj < A;

U(pAi,Ai) = {

Sada direktno vidimo da v zadovoljava skup X, §to zavrSava reSenje problema 2.74. O

Zadatak 2.76. Dokazati da se (bilo koje) parcijalno uredenje na (bilo kom) skupu S moze dodefinisati do

linearnog uredenja.

2.10.3 4-obojivost planarnih grafova

Graf je (konaCan ili beskonacan) skup tacaka (cvorova grafa) od kojih su neke povezane ivicama. Graf je
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planaran ako je moguée da ga nacrtamo u ravni tako da se nikoje dve ivice ne preseku. Graf je k-obojiv ako
svaki ¢vor grafa mozemo da obojimo u jednu od k boja tako da jednako obojeni ¢vorovi nisu spojeni ivicom.

(Pretpostavljamo da nijedan &vor nije povezan ivicom sam sa sobom.)
Problem 2.77. Dokazati da je planaran graf 4-obojiv.

Kona¢ni planarni grafovi jesu 4-obojivi:
Teorema 2.78 (Teorema o Cetiri boje). Konacan planaran graf je 4-obojiv.

Prethodna teorema je ¢uvena jer je prva teorema koja je dokazana uz pomo¢ racunara 1976. godine.

Resenje problema 2.77. Da bismo dokazali beskona¢nu verziju teoreme, tj. u potpunosti resili problem 2.77,
iskoristicemo kompaktnost. Uo¢imo graf G koji je dat skupom ¢évorova V' i skupom ivica E. Uoc¢imo slede¢i
skup iskaznih slova:

P ={py,cy, 20, bpiv € VY,

i skup iskaznih formula:

Z _ (pv N —Cy AN —Zy N —\bv) Vv (_|pv N Cy AN =2y N —\bU)V Cve V
V(=py A=Cy Az A=by) V (5py A =Cy A =2y Aby)

) V
U {=(Po Apw) A=y Acw) A=(z0 Azw) A=(by Aby) o }

povezani ivicom

Ako je graf G 4-obojiv, npr. bojama plavom, crvenom, zelenom i belom, moZemo da definisemo valuaciju u

koja zadovoljava L na sledeéi nacin:

N inace

(00) T ako je ¢vor v plav
u(py) =
P N inade

{ T ako je ¢vor v crven
) T ako je ¢vor v zelen (by) T ako je ¢vor v beo
_ u -
N inace N inace
za sve v € V. Formule prvog skupa su tacne jer je svaki ¢vor obojen u ta¢no jednu boju. Formule drugog skupa
su tac¢ne jer dva povezana ¢vora nisu obojena istom bojom.
Sa druge strane, pretpostavimo da je £ zadovoljiv i neka je u valuacija koja ga zadovoljava. Tada mozemo

da bojimo graf na slede¢i na¢in. Za ¢vor v € V obojimo:

vijeplav <= u(p,)=T, vjecrven :<= (co

(b

)=T,
)=T.

u
u

vjezelen <= wu(z,)=T, vjebeo :<=

Kako su formule prvog skupa tac¢ne, za svako v ta¢no je tacno jedno od slova p,, ¢y, 2y, by, pa smo prethodnom
definicijom svakom ¢voru dodeli ta¢no jednu boju. Takode, kako su formule drugog skupa ta¢ne, dva povezana
¢vora nismo obojili istom bojom. Prema tome, dobili smo odgovarajuée bojenje.

Dakle, dovoljno je da dokazemo da je X zadovoljiv. Po kompaktnosti dovoljno je da dokaZzemo da su konaé¢ni
podskupovi od X zadovoljivi. Neka je Ly € £ proizvoljan konac¢an podskup. Kako je Xy konacan, samo kona¢no
mnogo v € V pojavljuje se kao indeks slova u L, pa neka je V) € V konacan podskup onih v koji se pojavljuju
kao indeksi u Zy. Dakle:

5, < (Po A =Cy A=zy A=by) V (mPy A Cy A=z A =by )V Cvelh
V(=py A =Cy A 2y A =by) V (5py A —Cy A =2y Aby)

v,w e Vy su
U {=(po APw) A=(Co Acw) A=(20 A ziw) A=(by Aby) : 0 }

povezani ivicom

Neka je £; skup na desnoj strani; dovoljno je da dokazemo da je on zadovoljiv. Neka je Gy kona¢an podgraf

od G ¢iji su ¢évorovi Vy. Graf Gy jasno je konacan i planaran, pa prema teoremi o Cetiri boje mozemo da ga
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4-obojimo (recimo u boje plava, crvena, zelena i bela). Sada defininiSemo valuaciju u koja zadovoljava £, sa:

)

T ako je ¢vor v plav T ako je ¢vor v crven
u(pv) = U(Cv) =

N inace N inace

T ako je ¢vor v zelen T ako je ¢vor v beo
u(zy) = »ou(by) = .
N inace

N inace
za sve v € V. Kao i gore, lako vidimo da wu zaista zadovoljava X;. Time smo zavrs§ili reSenje problema. O

Zadatak 2.79. Dokazati da je graf k-obojiv ako i samo ako su svi njegovi kona¢ni podgrafovi k-obojivi.

2.10.4 Remzijeva teorema

Potpun graf K, je graf sa n ¢vorova kod koga su svaka dva razli¢ita ¢vora povezana ivicom.

AVHEH

Teorema 2.80 (Remuzijeva teorema). Za svaka dva prirodna broja m,n > 1 postoji prirodan broj N takav da

za svako bojenje ivica potpunog grafa Ky u dve boje, crvenu i plavu, postoji podgraf koji je kopija K,, i ¢ije
su sve ivice crvene ili postoji podgraf koji je kopija K, i ¢ije su sve ivice plave.

Najmanji takav broj N obelezavamo sa R(m,n) i zovemo ga Remzijev broj.

Primer 2.81. Dokazimo R(3,3) = 6, tj. kako god obojimo ivice grafa K u dve boje, crvenu i plavu, uvek ¢e
postojati ili crveni trougao ili plavi trougao. Izaberimo proizvoljno teme A. Iz A izlazi pet ivica, pa neke tri,
nazovimo ih AB, AC' i AD, su iste boje, recimo crvene. Ako je neka od ivica BC, BD i C'D crvena, nasli smo

crveni trougao; u suprotnom, BC'D je plavi trougao.
Ovo pokazuje da je R(3,3) < 6. Sledeéa slika pokazuje da R(3,3) £ 6, odakle R(3,3) = 6:

RAANN

<Y

Prethodni primer ima sledeé¢u popularnu interpretaciju: u svakoj grupi od Sest ljudi postoje tri osobe koje
se medusobno poznaju ili tri osobe koje se medusobno ne poznaju. Zaista, ako zamislimo potpun graf izmedu
osoba, i obojimo ivicu izmedu dve osobe crveno ako se one poznaju, odnosno plavo ako se one ne poznaju,
prethodni primer nam kaZe da postoje tri osobe koje se medusobno poznaju ili tri osobe koje se medusobno
ne poznaju. Ovim jezikom Remzijeva teorema se moze izraziti na sledeéi nacin: Za svaka dva prirodna broja
m,n 2 1 postoji najmanji prirodan broj R(m,n) takav da u svakoj grupi od R(m,n) ljudi postoji m osoba koje
se medusobno poznaju ili n osoba koje se medusobno ne poznaju.

Remzijevu teoremu dokazacemo koristeéi kompaktnost i njenu beskonaénu verziju (koja je laksa za dokaz):

Teorema 2.82 (Beskonana Remzijeva teorema). Za svako bojenje ivica grafa K, u dve boje postoji podgraf
koji je kopija K,, i ¢ije su sve ivice obojene istom bojom."
(Ako Zelite, u svakoj grupi od beskona¢no mnogo ljudi postoji beskonaéno mnogo osoba koje se medusobno

poznaju ili beskona¢no mnogo osoba koje se medusobno ne poznaju.)

6Sa K., smo obelezili potpun graf sa prebrojivo mnogo &vorova (npr. &évorovi su oznaceni prirodnim brojevima).
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Dokaz. Neka je K, potpuni graf u kome su ¢vorovi indeksirani prirodnim brojevima, i neka je dato neko
crveno/plavo bojenje ivica. Rekurentno definiSemo opadajuéi niz beskona¢nih podskupova prorodnih brojeva

(Sp) i niz prirodnih brojeva (a,) takav da a, € S, na sledeéi nacin:
e Stavimo Sy =Niag=0.

e Pretpostavimo da smo definisali beskona¢an S, i a,, tako da a, € S,. Skup S, \ {a,} podelimo na dva
dela: C:={x € Sy, {an}:an—2 je crvena} i P:={x € S,\{an}:a, -z je plava}. Kako je CuP =S, \{a,},
bar jedan od C'i P je beskonacan, pa stavimo Sy, 1 := C ako je C beskonacan i S, .1 := P ako je C konacan
(u kom slu¢aju je P beskonacan); jasno Sy4+1 ¢ Sp. U svakom sludaju izaberimo proizvoljno a1 € Sp41.

Nastavimo postupak.

Primetimo da su po konstrukciji svi a, medusobno razli¢iti. Takode, primetimo da za svako n imamo
A € Spy1 za m > n, $to znadi da su ivice a, — a,, za m > n sve iste boje. Podelimo sada skup {a,:n € N} na
dva dela: {an,:(Vm > n)a, - an, je crvena} i {a,: (Ym > n)a, — a,, je plava}. Bar jedan od ovih skupova je
beskonacan, npr. neka je S = {a,:(Vm > n)a, — an, je crvena} beskonacan. Sada je ocigledno da su sve ivice

podgrafa sa ¢vorovima iz skupa S crvene, pa je u pitanju Zeljena kopija K. Zavr§ili smo dokaz. O
Dokazimo sada Remzijevu teoremu:

Dokaz teoreme 2.80. Fiksirajmo m,n > 1. Uo¢imo graf K, u kome su ¢vorovi indeksirani prirodnim brojevima,

i uo¢imo skup iskaznih slova P := {p; ;:0<i<j}. Za A, BCN, |A|=m i|B| = n, ozna¢imo:

pa= AN pij 1 Bs= A -pij
i,j€A i,j€B
i<J i<j
Ako p; ; Citamo kao ,jivica i — j je crvena", a —p; ; kao ,ivica i - j je plava", onda p4 ima znacenje ,podgraf sa

skupom temena A je crven", a g ima znacenje ,podgraf sa skupom temena B je plav". Neka je:
Y = {-pa:AcN |Al=m} u {-Bp:BcN, |B|=n}.
Tvrdimo da X nije zadovoljiv. Pretpostavimo suprotno, v £ £. Obojimo K, na slede¢i nacin:

. . .. |crvena akov(p;;)="T,
ivica i —j je
plava  ako v(p; ;)= N.
Prema teoremi 2.82 postoji beskonacan skup S € N takav da su ivice grafa nad ¢vorovima iz skupa S ili crvene
ili plave; bez umanjenja opstosti pretpostavimo da su crvene. Tada za bilo koji skup A € S, |A| =m, vazi v E pa,
Sto protivreci pretpostavci v = L. Dakle, X nije zadovoljiv.
Po teoremi kompaktnosti, neki kona¢an podskup Xy € X nije zadovoljiv. Neka je N najveéi broj koji se

pojavljuje kao indeks nekog slova u skupu Xy. Tada je Xg € X4, gde je X; skup:
Z1 = {—'pAZAE {0717"'3N}7 |A| :m} u {_'BB:B S {0717"'7N}7 |B| :n}v

i o¢igledno X; nije zadovoljiv (jer sadrzi nezadovoljiv podskup ).

Sada tvrdimo da za svako crveno/plavo bojenje ivica grafa Ky, postoji crveno obojena kopija K, ili plavo
obojena kopija K,,. Obelezimo ¢vorove naseg grafa sa 0,1,..., NV, i fiksirajmo neko bojenje. Defini§imo valuaciju
slova p; j, 0<i<j< N sa:

T ako je ivica i — j crvena,
v(piz) =
N ako je ivica 7 — j plava.
Kako v # Z; postoji A<{0,1,...,N} tako da |A| =m i v # —pa, ili postoji B €{0,1,...,N} tako da |B|=ni
vH# =B p. Ako postoji Ac{0,1,..., N} tako da |A] =m iv# -pa, tada v E p4 $to znaci da su sve ivice podgrafa
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na skupu A crvene, a ako postoji B <{0,1,...,N} tako da |B|=n i v # -Bp, tada v = 3 Sto znadi da su sve
ivice podgrafa na skupu B plave. Zavrsili smo dokaz. O
2.11 Teorema potpunosti

Cilj ovog odeljka je da dokazemo:

Teorema 2.83 (Teorema potpunosti). Neka je Zc @ i ¢ € ®. Tada:
S <— LE@o.

Dokaz. Smer (=) je teorema saglasnosti, pa dokazujemo (<). Pretpostavimo X E ¢. To znac¢i da Zu {-¢}
nije zadovoljiv, pa po teoremi kompaktnosti nije ni kona¢no zadovoljiv, tj. postoje formule 11, ... 1, € X takve
da {V1,..., ¥y, -0} nije zadovoljiv. To znaci da y,..., P, E @, ili, ekvivalentno, vazi £ Pg A+ A, - @.
Po slaboj teoremi potpunosti imamo + 11 A--- A, - @, odakle po teoremi dedukcije sledi Py A--- AP, + @.

Imajuéi u vidu pravilo uvodenja konjunkcije zakljuéujemo da q,..., ¥, + @. Kako q,...,1, € X, kona¢no
zaklju¢ujemo L + @. Zavrsili smo dokaz. O
3 Skupovi

Pojam skupa je osnovni pojam u matematici. U uobifajenom formalnom zasnivanju matematike skup je prvi
pojam, pojam koji nema definiciju, ¢ije se osobine aksiomatski opisuju. Aksiomatsko zasnivanje skupova izlazi
van okvira kursa za prvu godinu studija, tako da éemo se zadrzati na ne¢emu Sto je intuitivno objasnjenje skupa,

uvodedi osnovne operacije za manipulaciju sa skupovima.

Definicija 3.1 (Intuitivna definicija skupa). Skup je celina koja okuplja odredeni broj objekata koje nazivamo
elementima tog skupa.
Cinjenicu da je objekat x element skupa A zapisujemo sa x € A (Citamo ,,x je element od A" ili ,x pripada

A"); u suprotnom, ako -x € A, piSemo z ¢ A (,,z nije element od A" ili ,x ne pripada A").

Ako je skup konacan, npr. skup koji sadrzi brojeve 1, 2, 5 i 8, zapisujemo koristeéi viticaste zagrade izmedu
kojih navedemo njegove elemente: {1,2,5,8}. Tada 2 € {1,2,5,8} znaci da 2 jeste element skupa {1,2,5,8},
dok 3 ¢ {1,2,5,8} znaci da 3 nije element ovog skupa. Ako je skup konacan, ali ima previSe elemenata da bi
bilo racionalno sve ih navesti, moZemo da ih nabrojimo koristeéi ... ako je to moguée, tj. ako je jasan Sablon
po kome smo elemente nabrojali. Npr. {2,3,4,...,17} je skup prirodnih brojeva izmedu 2 i 17 (ukljuc¢ujuéi ova
dva broja), {1,3,5,...,997,999} je skup svih neparnih brojeva prve hiljade. Takode, ... moZemo da koristimo
i za zapis beskona¢nih skupova koje je moguce nabrojati po nekom Sablonu. Npr. {0,2,4,...} je skup svih
parnih prirodnih brojeva, {0,1,4,9,16,...} je skup svih kvadrata prirodnih brojeva, {...,-3,-1,1,3,5,...} je
skup svih neparnih celih brojeva, i sl.

Jedan od najéesé¢ih nacina za zapis skupa je zapis koji koristi tzv. operator okupljanja. To znaci sledeé¢e. Ako

je p(x) predikat gde z ima svoj univerzum diskursa, sa:

{zp(x)} il {zele:p(z)}

obelezavamo skup svih elemenata univerzuma diskursa za koje vazi predikat p. Npr. skup {n e N: 2 |n } je
skup svih prirodnih brojeva deljivih sa dva, tj. skup svih parnih prirodnih brojeva. Iako u praksi ovu vrstu
zapisa koristimo vrlo slobodno bez bilo kakvih problema, formalno bi trebalo biti oprezan. Ako je nas predikat

X ¢ X, gde je univerzum diskursa promenljive X univerzum svih skupova, mozemo da uo¢imo skup:

S={X:X¢X}.
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Dali SeS? Ako S €S, onda S zadovoljava predikat koji ga opisuje, tj. S ¢ .S. Ako S ¢ S, onda S zadovoljava
predikat X ¢ X, pa po definiciju skupa S imamo S € S. Dakle, S € S ako i samo ako S ¢ S. Ovo je kontradikcija.
Ovaj primer zove se Raselov paradoks, koji je posluzio kao polazna motivacija za strogo zasnivanje koncepta
skupa. RazreSenje Raselovog paradoksa je slede¢e. Ne moZemo da dozvolimo da je kolekcija S zapisana gore
skup. Strogo zasnivanje dozvoljava formiranje skupa {x: p(z)}, pod uslovom da je poznato da univerzum diskursa
promenljive x jeste skup. S tim u vezi, univerzum svih skupova ne moze da postoji (tj. ne moze da bude skup),
kako bismo izbegli Raselov paradoks.

Jos jedan od Cestih nacina zapisa skupa je i sledeéi. Ako za elemente z skupa S imamo neki nac¢in f da
izra¢unamo neku vrednost f(x), sa {f(z):z € S} obelezavamo skup svih elemenata f(z) kad = prode skup S.

Npr. {2n:n € N} je jo§ jedan nacin da zapiSemo skup parnih brojeva.

Definicija 3.2. Skupovi A i B su jednaki, A = B, ako imaju iste elemente, tj. vazi iskaz:
(Vz)(z e Az e B).

Jednakost skupova ima ocekivana svojstva:
o (VA) A=A;
e (VA,B)(A=B > B=A);,
e (VA,B,C)(A=BAB=C—-A=0C).
Definicija 3.3. Prazan skup, u oznaci @, je skup koji nema elemente, tj. (Vz) x ¢ @.

Po definiciji jednakosti dva skupa bez elemenata moraju biti jednaka, tako da je u redu da mu damo ime

prazan skup i oznaku &.

3.1 Podskup

Definicija 3.4. Neka su A i B skupovi. Kazemo da je A podskup od B ili B je nadskup od A, u oznaci A € B,

ako su svi elementi skupa A ujedno i elementi skupa B, tj. vaZi iskaz:
(Vz)(x e A—>x e B).

Skupovi su ¢esto zgodni za skiciranje, $to u velikoj meri pomaze u razumevanju problema. Pa tako ¢injenicu

da je A ¢ B mozemo da skiciramo sa:

-~

Skupove A i B skicirali smo kao krugove, zamisljamo da su elementi skupa A unutar kruga A, elementi skupa
B unutar kruga B, pa ¢injenicu da je A € B skiciramo tako $to je krug A ceo unutar kruga B.

Po definiciji je jasno kako obi¢no dokazujemo da je A € B. NajceSée uo¢imo proizvoljan element x, pret-
postavimo = € A i ciljamo da dokazemo x € B (kombinacija postupka generalizacije i dedukcije). Mozemo da
dokaZemo A € B i kombinacijom postupka generalizacije 1 dedukcije kontrapozicije: uo¢imo proizvoljan element
x, pretpostavimo x ¢ B i ciljamo da dokazemo x ¢ A. Konacno, moZemo da koristimo i kombinaciju postupka
generalizacije 1 svodenja na protivreénost: uo¢imo proizvoljan element z, pretpostavimo x € A i x ¢ B, i ciljamo
da nademo kontradikciju.

Direktno po definiciji vidimo nekoliko osobina relacije podskupa:

o (VA) @ cA;
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o (VA) Ac A;
e (VA,B)(AcBABc A< A=DB);
e (VA,B,C)(AcBABc<C—>AcC).
Tre¢a osobina nam najceSée sluZi za dokaz jednakosti dva skupa. Naima, ako Zelimo da dokaZemo A = B,

najéescée ¢emo dokazati A< Bi Bc A.

3.2 Osnovne skupovne operacije

Definicija 3.5. Presek skupova A i B je skup zajednickih elemenata skupova A i B:
AnB={x:xe Anze B},

ti, re AnBakkoxreAixeB.

Presek skupova A i B skiciramo sa (Srafiran deo):

AnB

Prethodna sli¢ica, dva kruga koja se seku, zove se Venov dijagram za sva skupa. Na Venovom dijagramu
moZemo verno da predstavimo odnos dva skupa.

Po definiciji preseka lako vidimo nekoliko osnovnih osobina preseka:
e (VA,B) AnB=BnA;

e (VA,B,C) An(BnC)=(AnB)nC;

e (VA,B)(AnB =A<« Ac B);

e specijalno, (VA) gnA=2 i (VA) AnA=A.

Zbog druge osobine, asocijativnosti preseka, zapis AnBnC, ili presek vise od tri skupova, ima smisla i predstavlja

skup zajednickih elemenata svih skupova koji ucestvuju u preseku.

Definicija 3.6. Unija skupova A i B je skup svih elemenata skupova A i B:
AuB={z:xe Avze B},

tj. re AuB akko z € A ili x € B.

Na Venovom dijagramu uniju skupova A i B skiciramo sa:

AuB

Po definiciji diretno imamo sledeée osnovne osobine unije:
e (VA,B) AuB=BUA;

e (VA,B,C) Au(Bu(C)=(AuB)uC;
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e (VA,B)(AuB=B <+ AcB);
e specijalno, (VA) guA=A i (VA) AuA=A.

Zbog druge osobine, asocijativnosti unije, zapis Au B u (), ili unija viSe od tri skupova, ima smisla i predstavlja

skup svih elemenata skupova koji uéestvuju u uniji.
Zadatak 3.7. Dokazati sledece osobine:
e (VA,B) An(AuB) = 4;
e (VA,B) Au(AnB) = 4;
e (VA,B,C) An(Bu(C)=(AnB)u(AnC);
e (VA,B,C) Au(Bn(C)=(AuB)n(Au().

Jednakosti u kojima ucestvuju tri skupa mozemo da vidimo i na Venovom dijagramu za tri skupa, koga

skiciramo na sledeéi nadin:

A B

Svaki element moZemo predstaviti na prethodnom dijagramu u jednoj od osam oblasti u zavisnosti da li pripada

ili ne datim skupovima.

Primer 3.8. Za proizvoljne skupove A, B, C ispita¢emo u kom su odnosu skupovi An(BuC)i(AnB)uC.

Najpre ¢emo da skiciramo ove skupove na Venovom dijagramu:

c

se¢emo Ai BuC An(BuC) uniramo AnBiC (AnB)uC
Venov dijagram nam sugeriSe slede¢u hipotezu:
(VA,B,C) An(BuC)<c(AnB)uC.

(Tj. levi skup je deo desnog skupa.) Dokazimo prethodnu inkluziju i formalno.

Neka su A, B, C proizvoljni skupovi, neka je x proizvoljan element i neka x € An(BuC); cilj je da dokazemo
2e(AnB)uC. Izzxe An(BuC),ze Aize BUuC. Iz x € BuC imamo dva sludaja: z € Bili z € C.

1° AkozeB,tadaxze AnB,paxze(AnB)uC.

2° Akoze(C,tadaze (AnB)uC.

U svakom slucaju x € (An B)uC, i zavrsili smo dokaz.

Odrdedimo sada i neki jednostavan potreban i dovoljan uslov da vazi jednakost An (BuC)=(AnB)uC.

Ako se vratimo na sliku, jednakost ¢e vaZziti ako je sledeci skup prazan:
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To znadi da su jedini elementi skupa C' oni koji ve¢ pripadaju skupu A, tj. C' ¢ A. Dakle, moZemo da postavimo
sledeé¢u hipotezu:
(VA,B,C)(An(BuC)=(AnB)uC <« (CcA).

Dajemo formalni dokaz. Neka su A, B, C proizvoljni skupovi.

(=) Preptostavimo An(BuC(C) = (AnB)uC idokazimo C ¢ A. Neka je = € C proizvoljan element, cilj je
da dokazemo z € A. Iz x € C sledi x € (An B)uC. Kako je An(BuC)=(AnB)uC, imamo € An(Bu(C),
pa specijalno x € A. Time smo zavr§ili dokaz smera (=).

(<) Pretpostavimo da je C ¢ A i dokazimo An (BuC) = (AnB)uC. Inkluzija (€) veé¢ smo dokazali
u opstem slucaju, pa dokazujemo (2). Neka je z € (An B)uC i cilj je da dokazemo x € An(BuC(C). Iz
2z € (AnB)uC imamo dva slucaja x e AnBilizeC.

1° Akoz e AnB,ze AixeB. Iz poslednjeg je i z € BuC, pa imamo z € An (Bu().

2° Akox e C,ondaxe BuC,aliixeAjer CcA. Dakle, opet jeze An(BuC).

U svakom slucaju je x € An (Bu(), i zavrsili smo dokaz.

Definicija 3.9. Razlika skupova A i B (tim redom) je skup elemenata iz A koji nisu u B:
ANB={z:xz e Arnx ¢ B},

tj.xe ANBakkoxeAix¢B.

Na Venovom dijagramu razlike A\ B i B \ A skiciramo sa:

ANB

Prethodna skica veé sugeriSe da komutativan zakon A\ B = B\ A ne vaZi u op$tem slu¢aju (zapravo nije tesko
videti da A\ B = B\ A vazi akko A = B).

Od osnovnih osobina izdvajamo:

e (VA,B)(ANB=g < AcB);

(VA,B) AN\B=A~N(AnB)=(AuB)\ B;

AN(BnC)=(A~NB)u(A\C);

AN(BUC)=(ANB)n(ANC);

(AnB)~C=(A~C)n(B~C);

(AuB)NC=(A~NC)u(B~\C).

Zadatak 3.10. Ispitati u kom su odnosu skupovi A\ (B~ C) i (AN B)\ C u opstem sludaju. Odrediti neki

jednaostavan potreban i dovoljan uslov da vazi jednakost.
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Definicija 3.11. Simetricna razlika skupova A i B je skup onih elemenata koji su u ta¢non jednom od ovih
skupova:
AAB={x:xe Avze B},

tj. re AA B akkoilize Aili x € B.

Venov dijagram simetri¢ne razlike je:

AAB

Od osnovnih osobina izdvajamo:

e (VA,B) AAB=BA A

e (VA B,C)AA(BAC)=(AAB)AC,

o (VA,B) AAB=(ANB)u(B~A)=(AuB)~ (AnB).

Prema drugoj osobini, asocijativnosti simetri¢ne razlike, zapis A A B A C, kao i simetri¢na razlika vise od tri
skupova, ima smisla. Element pripada simetri¢noj razlici nekog broja skupova akko je element neparno mnogo
od njih.

Definicija 3.12. Komplement skupa A je skup svih elemenata koji nisu u A (ali jesu u unapred poznatom
podrazumevanom univerzumu):

A¢={x:x ¢ A},

tj. x € A° akko = ¢ A, za bilo koji element x iz univerzuma. Dakle, A° racunamo relativnho u odnosu na
podrazumevani univerzum, i tada mozemo da zapiSemo A¢ = U~ A. U formalnom zasnivanju skupova, apsolutni

komplement ne moze da postoji.

Simetri¢nu razliku skiciramo sa:

Od osobina izdvajamo:
o (VA) (A%)° =4
e (VA,B) ANB=An B
e (VA,B) (An B)° = A° U BS;
e (VA,B) (AuB)® = A°n B
e (VA,B) (AA B)° = A° & B°.

Skupovne izraze u kojima ucestvuje vise od tri skupa nije jednostavno skicirati. Venov dijagram za Cetiri

skupa mozemo nacrtati na sledeéi nac¢in:
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ili

Postoje i Venovi dijagrami za pet i viSe skupova, ali su znac¢ajno komplikovaniji.

3.3 Veza za iskaznom logikom

Fiksirajmo simbole za skupove Aj, As,..., Ax. Skupovni izraz nad ovim simbolima rekurentno gradimo u

kona¢no mnogo koraka na sledeé¢i nacin:
e svaki simbol A; je skupovni izraz;

e ako su 0; i 0y ve¢ izgradeni skupovni izrazi, onda su i 01 N oy, 01 U 02, 01 \ 02, 01 & 02 i 0f skupovni

izrazi.

Slozenost skupovnog izraza o, sl(0), je broj skupovnih operacija u izrazu o, npr. sl(A;) =0, sl(A; \ Ag) =1,
Sl((Al A Ag) A Al) = 3, itd.
Svakom skupovnom izrazu o nad simbolima Aj, As, ..., A pridruZzujemo iskaznu formulu ¢ nad slovima

P1,P2, ..., Pk (iskazno slovo p; odgovara skupovnom simbolu A;) rekurentno na sledeéi nag¢in:
e ako je 0= A;, onda je ¢ = p;;
e ako je 0 =01 N 09, onda je G =01 A O9;
e ako je 0 = 01 U039, onda je 6= 61V Og;

e ako je 0 = 01 \ 09, onda je 6 = Gy A =0o;

ako je 0= 01 A 09, onda je 6= 07 Vv 09;
e ako je 0 =07, onda je 6= -0

Npr. izrazu (A \ A§) A Aq pridruzimo (p1 A ==pa) V p1, izrazu (Aa N A3)¢ U As pridruzimo —(pa2 A ps) V ps, itd.

Fiksirajmo sada konkretne skupove A1, As,..., Ax. Elementom x odredena je slede¢a valuacija v,:
() T ako xze€ A;
ve(pi) =
P N akozxt¢A;
Primetimo da valuacija v, ne zavisi samo od x, ve¢ i od izbora Ay, As, ..., A, ali kako smo njih fiksirali, ne¢emo

ih naglasavati u zapisu. Uvek ¢e biti jasno u odnosu na koje skupove smo definisali v,.

Lema 3.13. Neka su Aj, Ao, ..., Ay proizvoljni skupovi, z proizvoljan element i o proizvoljan izraz nad
Al,AQ, e ,Ak. Tada:

re0o < 0,(6)=T.

Dokaz. Fiksirajmo Aq, As, ..., A i . Potpunom indukcijom po sloZenosti izraza o izvodimo dokaz. Razma-
tramo sledece slucajeve:

1° 0= A;: Tada je 6 = p;, pa je:

ze0 <= xeA; < v, (p;)=T — 0,(6) =T,
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i tvrdenje vazi u ovom slucaju.
2° 0 =01 N0og: Tada je 6 = 61 A G2. Po indukeijskoj hipotezi imamo © € 07 <= 0,(61) =T iz € 02 <—

0,(62) =T, pa:

TEO <> w€01x€0y <> 0,(61) =T 10,(62)=T < 0,(61AG2) =T,
| —
=5

i tvrdenje vazi i u ovom slucaju.
Na sli¢an na¢in dokazujemo da tvrdenje vazi i u sluc¢ajevima 3° 0 =0, U09,4° 0=01\02,5° 0=01 A 021

6° o = of, ¢ime zavrSsavamo dokaz. O
Zadatak 3.14. Zavrsiti dokaz prethodne leme.
Teorema 3.15. Neka su o7 i 05 dva skupovna izraza nad A;, Ao, ..., As. Tada:

(i) (VA1, A, ..., AL) 01 S 09 akko E G1 — Go;

(ii) (VA1, As, ..., Ax) 01 = 09 akko E G <> Oa.

Dokaz. (i) (=) Pretpostavimo (VAi,...,A;) 01 € 02 i dokazimo £ 67 — G63. Pretpostavimo suprotno, postoji

valuacija v takva da ©(6; - 62) = N, tj. 9(61) =T 1 9(62) = N. Izaberimo proizvoljan element x i pridruZimo

valuaciji v sledece skupove Aq,..., Ag:
A = {z} akowv(p;)=T
' @ akowv(p;)=N
Elementu x i skupovima Ay, ..., Ax sada mozemo da pridruZzimo valuaciju v, kako smo opisali ranije. Primetimo

vy =v. (Zaista, ako je v(p;) =T, A; = {x}, pa x € A;, pa je v.(p;) =T; ako je v(p;) = N, A; =@, pax ¢ A;, pa
je vz(p;) = N. Dakle, v(p;) = v, (pi).)

Dakle, 9,(61) =T i 0,(62) = N, pa po lemi 3.13, x € 07 i x ¢ 02. To znaci da o1 ¢ 02, $to nije moguce jer
071 S 02 po pretpostavci vazi za proizvoljne skupove Ay, ..., Ax. Ova kontradikcija zavrSava dokaz prvog smera.

(<) Pretpostavimo £ 61 - 09 i dokazimo (VAq,...,Ax) 01 € 09. Neka su Ay,..., Ay proizvoljni skupovi, i
neka je x € o1 proizvoljno. Tada je 9,(61) =T po lemi 3.13, pa kako je £ 61 — G2 to je i 9,(62) =T, odakle je
T € 09, opet po lemi 3.13. Prema tome, o1 € 09.

(ii) sledi direktno prema (i) imajuéi u vidu da je 01 = 02 akko 01 S 02 i 02 € 01, i = G1 <> 02 akko = 61 — 09

i|=6'2—>6'1. O

Primer 3.16. Da bismo dokazali da je (AN B)~C ¢ A\ (B~ C) za proizvoljne skupove A, B, C, prema teoremi
3.15 dovoljno je da dokazemo:

':(p/\ﬂq)/\—!T—)p/\—!(qA—!T'),

gde skupovima A, B, C' redom dodelimo slova p, g¢,r. Prethodno mozemo da poverimo tablicom:

p ¢ r|( A = g A - 1 > p A = (¢ A r)
T T T N N N N T T T N N
T T N N N N T T N N T T
T N T T T N N T T T N N
T N N T T T T T T T N T
N T T N N N N T N T N N
N T N N N N T T N N T T
N N T N T N N T N T N N
N N N N T N T T N T N T
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Razmotrimo obratnu inkluziju A~ (B~ C) c (AN B) ~ C. Formula koja joj odgovara je:

pA=(gA-T) > (PA=g) AT

Tablica ove formule je:

p ¢ r|p A - (g A = 1) > (p A - q A -
T T T T T N N N N N N N
T T N N N T T T N N N T
T N T T T N N N T T N N
T N N T T N T T T T T T
N T T N T N N T N N N N
N T N N N T T T N N N T
N N T N T N N T N T N N
N N N N T N T T N T N T

Jasno je da prethodna formula nije tautologija, pa prema teoremi 3.15 gornja inkluzija ne vazi za proizvoljne
A, B,C. Medutim, tablica moZe da nam pomogne da odredimo neki jednostavan potreban i dovoljan uslov da
inkluzija vazi. Naime, pridruzena formula je netacna u valuacijama (7,7,7) i (T, N,T), pa prema lemi 3.13 ne
smemo da imamo element x za koji je v, jedna od ove dve valuacije. Dakle, ne smemo da imamo element koji
jeiuAiu BiudC, kao ni element koji je u A i C, ali nije u B. Dakle, ne smemo da imamo element koji je u

A1iC, tj. mora biti AnC =@. I zaista, sad moZemo da dokaZemo sledece:
AN(BNCO)S(ANB)NC <+— AnC=g.

Dokaz ostavljamo za vezbu.

Primer 3.17. Koristedi teoremu 3.15 mozemo da dokazemo i identitet An (B A C) = (AnB) A (AnC) koji

é¢emo kooristiti u slede¢em odeljku. Dovoljno je da proverimo:

EpA(gvr) < ((prg)v(par)).

I ovo vidimo iz tablice:

p g rip A (g vir)e ((p rqg v (p A1)
T T T N N T T N T
T T N T T T T T N
T N T T T T N T T
T N N N N T N N N
N T T N N T N N N
N T N N T T N N N
N N T N T T N N N
N N N N N T N N N

3.4 Algebarska normalna forma

Sada ¢emo prikazati jedan aritmetic¢ki nacin za zapis i ra¢un sa skupovnim izrazima. Najpre definiSimo zbir i

proizvod dva skupa:
A+B = AAB
A-B = AnB

Takode, definisimo 0:= @ i 1:=U, gde U univerzum iz koga izdvajamo sve skupove o kojima govorimo.

Kao i obi¢no, umesto A - B piSemo samo AB. Koristeéi + i - mozemo da predstavimo i ostale skupovne
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operacije:
A = 1+A jer A = UL A
ANB A+ AB jer ANB AA(ANnB)
AuB A+B+AB jer AuB = AABA(AnB)

Veé znamo da su + i - (tj. A i n) komutativne i asocijativne operacije (zbog asocijativnosti + ne navodimo
zagrade u gornjem zapisu), i takode izbegavamo da piSemo zagrade podrazumevajuéi, kao §to je i uobicajeno,
da je - prioritetnija operacija u odnosu na +.

Ovako definisano mnozenje i sabiranje imaju sva ocekivana svojstva. Pored veé¢ navedene komutativnosti i

asocijativnosti naglasimo i:

A+0 = A jer Arg = A
A0 = 0 jer Ang = @&
A1 = A jer AnlU = A
A(B+C) = AB+AC jer An(Ba(C) = (AnB)Aa(An(O)

Sto se tice trece osobine, setimo se da je U univerzum, pa je A € U, a Sto se ti¢e Cetvrte osobine, odgovarajuci
identitet dokazali smo na kraju prethodnog odeljka.

Pored navedenih svojstava, definisano sabiranje i mnozenje imaju i dodatne osobine:

24 = A+ A 0 jer AAA = @
A2 = AA = A jee AnA = A

Zadatak 3.18. Proveriti sve navedene osobine koriSéene u prethodnim pasusima.

Definicija 3.19. Skupouvni monom nad skupovima A;, As, ..., A je ili 1 ili proizvod nekoliko od ovih skupova,
npr. Ay, AjAs, Ag A3 Ay, itd. Skupovni izraz o nad A;, As, ..., Ag je u algebarskoj normalnoj formi ili ANF ako
je zbir razli¢itih skupovnih monoma, npr. 1+ A1 As, Ay + A3 A3 Ay, itd. Za skupovni izraz u ANF jos kazemo da

je u obliku Zegalkinovog polinoma.

Svaki skupovni izraz moze se svesti na ANF koristeéi jednakosti navedene gore. Do na raspored sabiraka
ANF je jedinstvena, pa moZemo da dokazemo identitet o7 = 09 ako dokaZemo da su ANF izraza o; i 05 jednake.

Takode, mozemo da dokazemo o7 € 09 ako dokazemo ekvivalentnu jedankost o105 = 07.

Primer 3.20. Zapisimo ANF izraza o1 = (AN B)\C:
01=(A+AB)~\C=A+AB+(A+AB)C=A+AB+ AC + ABC.
Zapisimo i ANF izraza oo = AN (BN C):
0s=A+A(B~C)=A+A(B+BC)=A+AB+ ABC.

Primetimo da dobijene ANF nisu jednake, pa 07 = 02 ne vazi u opsStem sluc¢aju. Takode primetimo da jednakost
vazi akko AC =0 (visak monom u 03), tj. akko AnC = @.

Pomnozimo o 1 03:
0102 = (A+AB+AC+ABC)(A+AB+ABC) =
= A>+ A’B+A’BC+A’B+A*B*+ A’B*C'+
+A’C+A’BC+A’BC*+ A’ BC+A’B*C+A’B*C? =
= A+AB+ABC+AB+AB+ABC+

+AC+ABC+ABC+ABC+ABC+ABC =
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=A+3AB+AC+7ABC = A+ AB+AC+ABC = oy,

gde smo iskoristili A2 = A, B2 =B, C? = C, 2AB =01 2ABC = 0. Kako je 0,05 = 01, to znadi da uvek vazi

01 € 09.

Primer 3.21. DokaZzimo identitet (A°u (A°~ B))° = A koriste¢i ANF. Ra¢unamo:
(A°U(ANB))  =1+((1+A)u((1+A)\B)) =1+((1+A)u(1+A+(1+A)B)) =

=1+((1+A)u(1+A+B+AB))=1+1+A+1+A+B+AB+(1+A)(1+ A+ B+ AB) =
3+2A+B+AB+1+A+B+AB+A+A+AB+AB =4+5A+2B+4AB = A,

gde smo implicitno koristili A2 =A4,1igde4=0,44=0,2B=0i4AB=0.

3.5 Partitivni skup

Definicija 3.22. Partitivni skup skupa A, P(A), je skup svih podskupova od A:
P(A)={X:X c A},

tj. X e P(A) akko X c A.
Npr. podskupovi skupa {1,2,3} su: prazan skup, tri jednoclana podskupa {1}, {2} i {3}, tri dvoclana
podskupa {1,2}, {1,3} i {2,3}, i jedan tro¢lan podskup — ceo skup {1,2,3}. Dakle:

P({1,2,3}) = { @, {1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3} }.

Jedini podskup praznog skupa je prazan skup: P(@) = {@}. Primetite da poslednji skup nije prazan, on ima
jedan element — prazan skup. Skup {@} je jedno¢lan, pa ima dva podskupa: @ i {@}, tj. P({@}) ={ @,{@} }.
Takode, dvoclani skup {@,{@}} ima podskupove: prazan skup, dva jednoclana podskupa {@} i {{@}} i jedan
dvoélan podskup — ceo skup {@,{@}}:

Pz, {2}}) ={ 2. {2}, {{o}}. {2, {2}} }.

Zadatak 3.23. Dokazati da je P(An B) = P(A) nP(B).
Zadatak 3.24. Dokazati da je P(A) uP(B) c P(Au B), kao i da jednakost vazi akko A ¢ B ili B ¢ A.

Zadatak 3.25. Ako je A konacan skup sa n elemenata, dokazati da P(A) ima 2" elemenata.

3.6 Dekartov proizvod

Definicija 3.26. Uredeni par elemenata a i b je matematicki objekat, obi¢no obeleZen sa (a,b), koji zadovoljava
sledeéu osobinu:

(a,b) = (a',b') <= a=d" Ab=b.

Formalno, uredeni par moZe da se definise kao (a,b) = {{a},{a,b}}, i nije tesko proveriti da ovako definisani
objekat zadovoljava prethodnu osobinu, ali zaista formalna definicija uredenog para nam nije od znacaja, jedino
bitno je navedena osobina.

Element a u paru (a,b) je prva koordinata ili prva komponenta para, a element b je druga koordinata ili druga
komponenta para.

Na sli¢an na¢in definiSemo i uredenu n-torku ili vektor elemenata ay,as, ..., a,. To je objekat (ay,as,...,ay)

koji zadovoljava osobinu:
(al,ag,...,an) = (bl,bQ,...7bn) <~ a1 Zbl/\agzbg/\"'/\an:bn.
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Ako elementi u uredenim parovima Zive u univerzumu U, par (a,b) moZzemo predstaviti na uobic¢ajen nacin

u ravni:

.(mb)

a u

Koordinatne ose su univerzum U, a ureden par je tacka u ravni koja se projektuje u svoje koordinate na

koordinatnim osama.

Definicija 3.27. Dekartov proizvod skupova A i B je skup:
AxB={(a,b):ae Arnbe B}.
Sli¢no, Dekartov proizvod skupova Ay, Ao, ..., A, je skup:
Ay x Ag x - x Ay ={(a1,a9,...,an):a1 € Ay Aag € Ag A= Aay € Ay}

Npr. Akoje A ={1,2}i B = {a,b,c}, AxB = {(1,a),(1,b),(1,¢),(2,a),(2,0),(2,0)}, a BxA = {(a,1),(a,2), (b, 1), (b,2), (c
Zadatak 3.28. Ako skup A ima m, a skup B ima n elemenata, dokazati da A x B ima mn elemenata.

Dekartov proizvod predstavljamo na slici kao pravougaonik na sledeéi naécin:

u
AxB
B
A u
Zadatak 3.29. Dokazati:
e Ax(BnC)=(AxB)n(AxC); e Ax(BNC)=(AxB)\ (AxQO);
e Ax(BuC)=(AxB)u(Ax(C); e Ax(BAC)=(AxB)A (AxC).

Primer 3.30. Ispitajmo u kom su odnosu skupovi (Au B) x (CuD) i (AxC)u(Bx D). Skicirajmo date

skupove:
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(AuB)x(CuD)

CuD

Slika nam sugeriSe slede¢u hipotezu: u opstem sluc¢aju vazi:
(AxC)u(BxD)c(AuB)x(CuD,).

Dokazimo je i formalno. Neka je (x,y) € (A x C) u (B x D) proizvoljan ureden par. Tada imamo dva slucaja:
(z,y) e AxCili (z,y) e Bx D.
1° Ako (z,y) e AxC,tadaxe AiyeC, pasignrnox € AUBiyeCuD, odakle (z,y) € (AuB) x (CuD).
2° Ako (z,y) e Bx D, tadax e Biye D, paponovoze AuBiyeCuD,odakle (z,y) e (AuB)x(CuD).
U svakom slucaju (z,y) € (Au B) x (C'u D), §to znaci da smo dokazali Zeljenu inkluziju.
Razmotrimo i uslove pod kojima vazi jednakost. Slika nam sugeriSe da bi sledece oblasti trebalo da su

prazne:

(ANB)x(D\C)
D

(B\A)X(C'\D)

Primetimo:
(ANB)x(D~C)=g i (BNA)x(C\D)=2
akko (ANB=g ili D\C=9) i (BNA=g ili C\D=9)
akko (AcB ili DcC) i (BcA ili CcD)
akko (AcB i BcA)ili (AcB i CcD) ili
(DcC i BcA) ili (DcC i CcD)
akko A=B ili (AcB i CcD) ili (DcC i BcA) ili C=D.
Dakle, hipoteza je: Jednakost (Ax C)u (B x D) =(AuB) x (Cu D) vaZi akko vazi bar jedno od:

e A=D0;
e C=D;
e AcB i CcD;
e BCcAi DcC.

Dokazimo je i formalno.
Smer (=) dokazacemo kontrapozicijom. Pretpostavimo da ne vazi nijedna od ponudenih opcija. Dakle,
A+B,C+D,(A¢BiliC¢D) i (B¢Aili D¢C). Iz A+ B preptostavicemo da imamo element z takav da

x € Aix¢ B;obratan slucaj je simetri¢an. Svakako x € Au B. Iz C # D imamo dva slu¢aja:
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1° Imamo element y takav da y € C' iy ¢ D; svakako y € Cu D. Iz Cetvrtog uslova, B ¢ Aili D ¢ C
razmotri¢emo dva podslucaja:

1°1° Vazi B ¢ A. Tada postoji i element 2’ takav da 2’ € B i 2’ ¢ A; svakako 2’ € Au B. Svakako
(2',y) e (AuB) x (CuD). Medutim, (z',y) ¢ AxC jer 2’ ¢ A, alii (z',y) ¢ Bx D jer y ¢ D. Prema tome,
(z',y) ¢ (AxC)u(BxD),pa (AuB)x(CuD)#(AxC)u(BxD).

1°2° Vazi D ¢ C. Tada postoji i element y’ takav da 3’ € D iy’ ¢ C; svakako y' € C u D. Svakako
(z,9") e (AuB) x (CuD). Medutim, (x,y") ¢ AxC jery' ¢ C,alii(x,y") ¢ Bx D jer x ¢ B. Prema tome,
(z,y") ¢ (AxC)u(BxD),pa (AuB)x(CuD)#(AxC)u(BxD).

2° Imamo element y takav da y ¢ C' 1y € D; svakako y € CuD. Tada (z,y) € (Au B) x (C u D).
Medutim, (z,y) ¢ AxC jer y ¢ C, alii (z,y) ¢ Bx D jer « ¢ B. Prema tome, (z,y) ¢ (AxC)u (B x D), pa
(AuB)x(CuD)#(AxC)u(BxD).

U svakom slucaju (Au B) x (Cu D) # (AxC)u(Bx D), ¢&me smo dokazali prvi smer.

(<) Inkluziju (AxC)u(Bx D) c (AuB)x(CuD) dokazali smo u opstem slu¢aju, pa treba da dokaZemo
samo obratnu inkluziju. Razmotri¢emo sva Cetiri slucaja.

1° Pretpostavimo A = B. Neka je (z,y) € (Au B) x (C u D) proizvoljan par. Kako je A=B, x € AuB
povlati z € Aix e B. Iz ye C uD imamo dva podslucaja:

1°1° Ako y € C, tada (z,y) e AxC, pai (z,y) e (AxC)u (B x D).

1°2° Ako y € D, tada (x,y) e Bx D, pai (z,y) € (AxC)u (B x D).

U oba podsluc¢aja, (z,y) € (A x C)u (B x D), $to zavrsava dokaz u slucaju 1°.

2° Slu¢aj C = D razmatramo analogno kao 1°. Detalje ostavljamo za vezbu.

3° Pretpostavimo A € B'i C ¢ D. Neka je (z,y) € (Au B) x (C u D) proizvoljan par. Kako je A ¢ B,
AuB=B,pazeB. Kakoje CcD,CuD=D,payeD. Dakle, (z,y) e BxD, pai(z,y) e (AxC)u(BxD),
Sto zavrSava slucaj 3°.

4° Sluéaj B < A i D c C razmatramo analogno kao 3°. Detalje ostavljamo za vezbu.

Zavr§ili smo dokaz i drugog smera.
Zadatak 3.31. Ispitati odnos izmedu skupova:
e (AnB)x(CnD)i(AxC)n(BxD);

e (ANB)x(C~D)i(AxC)~N(BxD);

e (AAB)x(C AD)i(AxC) A (BxD).

4 Relacije

Definicija 4.1. Binarna relacija izmedu skupova A i B je bilo koji podskup p € A x B.

Ax B

A

Ako par (a,b) pripada relaciji p, (a,b) € p, obi¢aj je da to zapisujemo sa a p b i ¢itamo ,,a je u relaciji p sa b".
Sa druge strane, ako (a,b) ¢ p, obi¢aj je da piSemo a ¢ b i ¢itamo ,,a nije u relaciji p sa b".

Ako je A= B, tj. ako je p< A x A, kazemo da je p binarna relacija na skupu A.

U slucaju da su skupovi A i B kona¢ni, relaciju p izmedu skupova A i B moZemo da predstavimo matricom
relacije, tj. tablicom Cije su vrste oznacene elementima skupa A, a kolone elementima skupa B, i u polju
indeksiranim sa a € A 1 b € B upiSemo istinitosnu vrednost (7T ili N) iskaza a p b. Takode, p moZzemo da
skiciramo grafom relacije. Naime, ako je element a € A u relaciji p sa elementom b € B, a p b, crtamo to kao

strelicu @ — b, dok u slu¢aju a ¢ b, ne crtamo nista.
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Primer 4.2. Neka su A = {a1,a9,a3,a4} i B ={by,ba,b3}. Primer relacije p izmedu A i B je relacija:

p ={(a1,b1),(a1,b3), (az,b1), (as,b1), (as,b2)}.

Cinjenicu da npr. (a1,b1) € p zapisujemo sa a; p by, a da npr. (a1,bs) ¢ p zapisujemo sa aj ¢ bo. Matrica i graf

prethodne relacije su:

b1 by b3
ap | T N T
as | T N N
a3 | N N N
ag | T T N

Primer 4.3. Neka je A = {1,2,3,4} i p relacija na A definisana sa z p y akko |x — y| < 1. Lako vidimo 1 p 1
(er [1-1]=0<1),1p2 (Jer |1-2|<1),1¢g3 (er|1-3|£1),1¢4,2p1,2p2,2p3,2¢4,3¢1,3p2,3p3,
3p4,4¢1,4¢ 2, 4p 314 p4. Matrica relacije je zapisana ispod levo. Relaciju mozemo da skiciramo kao u

prethodnom primeru (slika u sredini):

P
=223 3=
Z NN S
I = O
i e =

ali mozemo da skiciramo kao i graf na slici desno.

4.1 Podrelacija i skupovne operacije sa relacijama

Neka su p,0 ¢ A x B dve relacije izmedu A i B. S obzirom da su p i o pre svega skupovi, moZemo govoriti
o tome da li je p € 0, moZzemo govoriti o preseku p N o, uniji p U o, razlici p \ 0, simetri¢noj razlici p A ¢ i
komplementu p€. Iako to nije obavezno, kada govorimo o prethodnim stvarima uwvek éemo podrazumevati da su
p i 0 obe izmedu A i B (ne¢emo posmatrati p izmedu Ay i By, a 0 izmedu nekog As i Bs).

Do kraja ovog odeljka pretpostavljamo da su p i o dve relacije izmedu A i B.

Definicija 4.4. Ako je p € 0 kaZemo da je p grublja od o, odnosno da je o finija od p. (Dakle, @ je najgrublja
relacija izmedu A i B, a Ax B je najfinija relacija izmedu A i B.) To znaci da a p b povladi a o b, tj. ako postoji

strelica a > b, onda postoji i strelica a = b (slika desno).

AxB

P o
B
o ::

A A B A B

Sto se tite preseka, p N o su zajednicki parovi, tj. strelice, relacija p i o:
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AxB
p pno
D)=
o
A B A B

. s . pno .. . . . p,. o
Na slici desno smo naznacili da strelica a — b postoji ako i samo ako postoje obe strelice a - b i a — b.

A

Unija p u o su svi parovi, tj. strelice, relacije p i relacije o:

A

Na grafu to znadi da strelica a 2 postoji ako i samo ako postoje bar jedna od strelica a BbiaSh:

P puoc
o [ d ) -
o
B A B A B

(Cinjenicu sa neka strelica ne postoji naglasili smo prekrizenom tackastom strelicom.)

pNoO
=
A B

Simetri¢na razlika p A ¢ su svi parovi, tj. strelice, koji su u ta¢no jedno od relacija p i o:

X0

Q

Razlika p \ 0 su svi parovi, tj. strelice, koje jesu p, ali nisu o:

AxB

A A B

AxB

Na grafu to znaci:

Kona¢no, komplement relacije p, p¢, su svi parovi, tj. strelice, skupa A x B koji nisu u relaciji p (dakle,

komplement ra¢unamo relativno u odnosu na A x B):

AxB
P
X
=
A B A
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Primer 4.5. Komplement relacije p:

p= {(alvb1)7 (a17b3)7 (a27b1)v (a’47b1)7 (a4vb2)}

izmedu A = {a1,a2,a3,a4} 1 B = {b1,bs,b3} dobijamo uzimajuéi sve strelice koje nisu p, i samo njih:

Skupovno zapisano: p¢ = {(a1,bs), (az,b2), (a2,bs), (as,b1), (as,b2), (as,bs), (as,b3)}.

Sve osobine relacije C i operacija Nn,uU, N, A i ¢ koje vaZe generalno za skupove, vaze i za relacije.

4.2 Inverzna relacija

Definicija 4.6. Neka je p € A x B. Inverzna relacija relacije p ili inverz relacije p je relacija p™' ¢ B x A

definisana sa:
971 = {(bva) | (aa b) € p}a

tj. data sa b p~! a akko a p b, odnosno dobijena obrtanjem svih strelica na grafu:
ﬂ H
A B A B

p={(a1,b1), (a1,b3), (az,b1), (as,b1), (as,b2)}

Primer 4.7. Inverz relacije p:

izmedu A = {a1,as,a3,a4} 1 B = {b1,bs,b3} dobijamo obrtanjem svih strelica na grafu relacije p:

Skupovno zapisano: p~! = {(by,a1), (b1,a2), (b1,a4), (b2, as), (b3, a1)}.

Tvrdenje 4.8. Neka su p,0 ¢ A x B. Tada vazi:

(i) (e =p; (v) (pho)t=ptNoh

)
(ii) pco povladi p~tcot; . N |
(vi) (p2o) " =p" L0
(iii) (pno)t=ptnol;

ss c\-1 _ -1 c
(iv) (pUo) = pt U0 (vii) (p9) =(p7")
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Dokaz. Dokazi svih delova su pravolinijski po definicijama. Npr. da bismo dokazali poslednji deo, (p¢)™' =

(p™1)¢, mozemo da razmotrimo sledec¢u sliku:

po definiciji po definiciji po definiciji
inverza komplementa inverza
(p*)™ l p° l P l
X
< < <
A B A B A B

MYAOMIORY

po definiciji po definiciji
inverza komplementa
Na slici smo razlic¢ite relacije predstavili strelicama razli¢itih boja. Prva ekvivalencija dobija se samo obr-
tanjem strelica po definiciji inverza. Druga ekvivalencija sledi po definiciji komplementa, tj. leva strelica postoji
akko desna ne postoji. Treca ekvivalencija ponovo vazi po definiciji inverza, a Cetvrta po definiciji komple-
menta. Dakle, izmedu b i a postoji crna strelica akko postoji narandzasta strelica, pa su ove dve relacije ((p¢)~!
predstavljena crnom i (p~1)¢ predstavljena narandzastom strelicom) jednake.
Formalno dokaz moZemo da zapiSemo na sledec¢i na¢in: Neka su a € A i be B. Imamo:
b(p)ta <= aph po definiciji inverza
<~ =-apb po definiciji komplementa
< -bplta po definiciji inverza
<~ b(p1)°a po definiciji komplementa.
Prema tome, relacije (p¢)™! i (p7!)¢ sadrze iste parove, pa su jednake. O

4.3 Kompozicija relacija

Definicija 4.9. Neka su p € Ax B i 0 € B x C relacije. Kompozicija relacija p i o je relacija copc Ax C7
definisana sa:

acopc <= (FIbeB)apbidboeg,

za a € AiceC. Na grafu to mozemo predstaviti na slede¢i nacin:
oop
—
A c
B

. . oop . . P .., © .
Dakle, imamo strelicu a — ¢ akko imamo strelice a — b i b — ¢ za neki element b € B.

Primer 4.10. Neka su A = {a1,a2,a3}, B = {b1,bo,b3,b4} 1 C ={c1,co,c3,¢4}, irvelacije pc AxBioc Bx(C

date grafovima na slici levo:

7Obratite paznju na redosled zapisa: zapisujemo relacije s desna na levo!
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Komporziciju o o p dobijamo nastavljajuéi strelice polazeéi od elemenata iz A i zavrSavajuéi u C. Npr. kako
) o . oop P o . oop . .. ..
a; — by — ¢ imamo a; — c¢1, kako a3 — b3 — ¢y imamo a; — ¢3, itd. Dobijamo graf na slici desno.

Skupovno zapisano kompozicija relacija p i 0 je 0o p = {(a1,c1), (a1,¢2), (a1,ca),(az,¢1), (as,c1), (as,c2)}-

Tvrdenje 4.11. Nekasu pS Ax B, 0 BxC i 7¢<C x D relacije. Tada:

() (gop) ™ =p oo (i) 7o (g0p) = (ro0)op.
Dokaz. (i) Najpre primetimo da su obe strane jednakosti definisane relacije iz C' u A. Razmotrimo najpre
inkluziju (<) na grafu:
po definiciji kompozicije

po definiciji inverza strelica levo se razlaze
obrnemo strelicu kroz B

(cop)™ cop

A C
po definiciji inverza B po definiciji kompozicije B
obrnemo strelice nadovezemo strelice

Dakle, ako imamo (o o p)~!-strelicu ¢ - a, onda imamo i p~! o o~ !-strelicu ¢ — a, pa mozemo da zaklju¢imo
(cop)tcp ool Nije tesko videti da prethodna slika ¢itana zdesna na levo dokazuje i obratnu inkluziju.
Sada moZemo zapisati i formalan dokaz: Neka su a € A i ¢ € C proizvoljni elementi. Tada:
c(oop)ta <= aocopc po definiciji inverza
< apbiboc,zanekobe B po definiciji kompozicije
~— bplaico b zanekobeB po definiciji inverza

— cplootla po definiciji kompozicije

Prema tome, (cop)™t=ptoot.
(ii) Opet najpre primetimo da su obe relacije 7o(cop) i (To0)op iz A u D, pa ima smisla da ih uporedujemo.

Razmotrimo inkluziju (<) na grafu:

D D D
razlaZzemo strelicu tamno plavu strelicu
kroz C razlazemo kroz B
1 Q J J k
O £l £l £l
A c A Py c
B B B
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Q|
D)
3
£ o £
T AP c T A c
nadovezemo narandZastu nadovezemo strelice
i svetlo plavu strelicu
B B

Dakle, ako imamo 7 o (0 o p)-strelicu a — d, onda imamo i (7 o 0) o p-strelicu a - d, pa 7o (0op) S (T00)op.
Postupajuéi unazad, prethodno razmatranje nam daje i obratnu inkluziju. ZapiSimo sada i formalno dokaz:
Neka su a € A i d € D proizvoljni. Imamo:
aTto(0op)d <= aocopc i ctd zanekoceC
< apbibocicrd zanekebeB,ceC
< apbibrtood, zanckobe B
< a(ro0)opd.
Svi koraci u prethodnom nizu su po definiciji kompozicije. Prema tome, 7o (0o p)=(700)o0p. O

Komentar 4.12. Ako pc AxB, 0 < BxCiT < CxD, prema prthodnom tvrdenju (asocijativnosti kompozicije)
moZemo da piSemo 7o oo p. Iz dokaza vidimo da a 7o oo p d znaci da postoje be BiceC takodaa pb, boc
ic 7 d, $to krace mozemo da zapiSemo i sa a p b 0 ¢ 7 d. Analogno vaZi i ako imamo definisanu kompoziciju

viSe od tri relacije.

Primer 4.13. Neka p1,p2 € AxBioc BxC. Ispitajmo u kom su odnosu relacije co(p1nps) i (copy)n(ocops),
koje su obe izmedu A i C.

Pretpostavimo najpre da imamo a oo (p; Np2) ¢ i razmotrimo graf:

razlazemo strelicu po definiciji
kroz B preseka
oo (p1np2) J J
% %
A c
B

copi)n(oop;

Ve

nadovezemo strelice

po definiciji

dva puta B preseka B

Prema tome, ako imamo o o (p; N pg)-strelicu a - ¢, onda imamo i (0o p;) N (0 o pg)-strelicu a — ¢, pa vazi

oo(pinps) € (oopy)n(oopsy). Formalno, dokaz ove inkluzije zapisujemo sa: Neka su a € A i ¢ € C proizvoljne.

Imamo:
aoco(pinpy)c = apnpab i boc zanekobeB po def. kompozicije
= ap1biapybiboc zanekobe B po def. preseka
= a0op;cCciacopyc po def. kompozicije
= a(oopy)n(cops)c po def. preseka.

Dakle, u opstem slucaju vazi oo (p1npz) S (0opy)n(oops).
Po definiciji kompozicije, prva implikacija se moze obrnuti. Takode, po definiciji preseka, druga i Cetvrta

implikacija se mogu obrnuti. Medutim, trec¢a implikacija ne moze. Pogledajmo graf:

52



obe strehce se

@@@ frh

razlazu kroz B,
medutim ne obavezno

kroz isti element

Sada vidimo da ne moramo obavezno da predemo na presek p; N ps.

Poslednja sli¢ica nam sugeriSe i kontraprimer za obratnu inkluziju. Naime, uzmimo ba§ A = {a}, B = {b1,b2},
C ={c}, p1 = {(a,b1)}, p2 = {(a,b2)} 1 0 ={(b1,¢),(b2,¢)}. Tada je pyNps =@, pajeico(pnps)=ea. Sa
druge strane, cop; = {(a,c)} i 0opy ={(a,c)}, paje (cop1)n(cops)={(a,c)}. Dakle, imamo primer u kome
vazi:

oo (p1np2) ¢ (0opi)n(oops).
Zadatak 4.14. Neka p1,p2 € Ax Bioc BxC. Dokazati:
(i) p1 € p2 povladi cop; S 0o po;
(i) oo (prup2)=(oepr)u(oops);
(ili) oo (p1~p2)2(0op1)(00p2).
(iv) Primerom pokazati da u (i) ne mora da vazi obratna implikacija.

(v) Primerom pokazati da u (iii) ne mora da vaZi obratna inkluzija.

4.4 Osobine binarnih relacija na skupu S

Definicija 4.15. Neka je p binarna relacija na skupu S. Isticemo nekoliko osobina koje relacija p moze (i ne

mora) da ima:

(R) (VxeS)zpux; (refleksivnost)
(I) (VxeS) agx; (irefeksivnost)
(S) (Vz,yeS)(xpy—ypa) (simetri¢nost)
(a) (Vo,yeS)(zpy—-yd ) (asimetri¢nost)
(A) (Vo,yeS)(zpyrypz—>z=y); (antisimetri¢nost)
(T) (Va,y,zeS)(@zpyrypz—>zp2). (tranzitivnost)

Na grafu relacije p uslov refleksivnosti kaze da oko svakog elementa postoji petlja, dok uslov irefleksivnosti
ide u drugu krajnost: ni oko jednog elementa nema petlje. Uslov simetri¢nosti kaze da ako imamo strelicu
r — gy, moramo da imamo i strelicu y — x:

—

e T
2 o e v Yy
ako * Y, onda mora bitii “x—".

Uslov simetri¢nosti odnosi se i na potencijalno jednake x = y, ali ne daje nikakvu informaciju (kaze samo da ako
imamo petlju u z, onda imamo petlju u z, $to je uvek ta¢na implikacija).

Uslov asimetric¢nosti kaze da ako imamo sterlicu z - y, onda nemamo strelicu y — x:

T oy -
ako < Y, onda mora biti T
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I uslov asimetri¢nosti odnosi se na potencijalno jednake x i y. U tom slucaju uslov asimetri¢nosti kaze da je
ta¢na implikacija: ako postoji petlja u x, onda ne postoji petlja u z, $to je ta¢no akko ni u jednom z nemamo
petlju. Dakle, asimetri¢nost specijlno podrazumeva irefleksivnost.

Uslov antisimetri¢nosti kaze da ako imamo obe strelice x - y i y - z, onda x i y moraju da budu jednaki.
Drugim re¢ima ako z # y, nemamo sledeéu situaciju:

—
x Yy
Y~

Primetimo da asimetrinost povla¢i antisimetri¢nost. Oba uslova zabranjuju obe strelice izmedu razli¢itih el-
emenata. Jedina razlika je Sto asimetri¢nost zabranjuje petlje, dok antisimetri¢nost dozvoljava da oko nekih
elemenata postoji petlja.

Uslov tranzitivnosti kaze da ako postoje strelice z — y i y — z, mora da postoji i strelica x — z:

z/Ny/‘NZ
e

ako ¢ Y # . onda mora biti i

T uslov tranzitivnosti odnosi se i na x, y, z od kojih su neki potencijalno jednaki. Ako je x =y ili y = z, implikacija
u uslovu tranzitivnosti o¢iglendo je zadovoljena. Isticemo slucaj x #+ y i © = z. U ovom slucaju tranzitivnost

kaze da ako imamo obe strelice izmedu dva razli¢ita elementa x i y, moramo da imamo i obe petlje u z i y:

NS L. Gel 2D

ako Y onda mora biti i

Primer 4.16. Na skupu {1,2, 3,4} uoc¢imo relacije skicirane sa:

s 50 G 3D =32
() 1) N ()

I—H{D 1<—® (j

(J

Ispitajmo koje osobine imaju ove relacije.

Relacija p nije refleksivna (jer nema petlje oko 1 i 2), a nije ni irefleksivna (jer ima petlje oko 3 i 4). Relacija
nije simetri¢na jer imamo 1 — 4, ali nemamo 4 — 1. Relacija nije ni asimetri¢na ni antisimetri¢na jer imamo
1-212-111l#2; relacija nije asimetri¢na jer nije ni irefleksivna. Kona¢no p nije ni tranzitivna jer imamo
2—>111-4, ali nemamo 2 — 4.

Relacija o nije refleksivna (nema petlju oko 1) ni irefleksivna (ima sve ostale petlje). Relacija nije simetri¢na
jer npr. 2 - 1 ali nije 1 - 2. Relacija nije asimetri¢na niti antisimetri¢na jer imamo 3 - 4 i 4 - 3. Konac¢no
relacija jeste tranzitivna. Nije teSko izra¢unati da je oo 0 = 0, §to znaci da o jeste trazitivna.

Relacija 7 jeste refleksivna i simetri¢na, ali ne zadovoljava ostale osobine.
Definicija 4.17. Dijagonala skupa S je relacija na S data sa Ag = {(z,z) |z € S}.

Primetimo da je Ag samo druga oznaka za relaciju jednakosti na S.

Sada mozemo da damo i sledece, skupovne karakterizacije gore uvedenih osobina. Najpre, o¢igledno relacija
p na S je refleksivna akko Ag € p, a p je irefleksivna akko Agnp = @.

Kako je y p x akko = p~! v, uslov simetri¢nosti ekvivalentan je sa p € p~!. Ovo je ekvivalentno i sa p = p~*
jer pcp ! povlaciiptc(pt)t=p.

Kako je y ¢ x akko 2 ¢! y akko  (p~1)¢ y, uslov asimetri¢nosti ekvivalentan je sa p € (p1)¢, tj. sa pnp~! =

Sad lako vidimo i da je uslov antisimetri¢nosti ekvivalentan sa pnp~! ¢ Ag.

Kona¢no, razmotrimo i tranzitivnost. Iskaz (Va,y,z € S)(z p y Ay p z = = p z) ekvivalentan je sa:
(Vz,ze 8)((FyeS)(xpyrypz)>xpz) Kako je (Jye S)(z p yAy p z) ekvivalentno sa x pop z, uslov

tranzitivnosti ekvivalentan je sa pop C p.
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4.5 Ekvivalencije

Zadatak 4.18. Na skupu {a, b, c} konstruisati relaciju p koja je:
(i) refleksivna i simetri¢na, ali nije tranzitivna;
(ii) refleksivna i tranzitivna, ali nije simetri¢na,
(iii) simetri¢na i tranzitivna, ali nije refleksivna.
Definicija 4.19. Relacija ~ na skupu S je ekvivalencija ako je refleksivna, simetri¢na i tranzitivna.

Prvi primer ekvivalencije na bilo kom skupu je jednakost na tom skupu. Izborom simbola ~ naglasavamo da

ekvivalencije imaju iste osnovne osobine kao i jednakost.

Primer 4.20. Neka je m € N. Na skupu Z definiSemo relaciju =,, sa x =, y akko m |  —y, tj. akko (3k «
Z) x -y =mk.

Relacija =, je refleksivna jer za sve x € Z vaZzi x —x = m-0. Ako je x =, ¥, tj. x —y = mk za neko celo k,
tada je y—x =m(-k) i -k € Z, pa y =, x, §to znadi da je =, simetri¢na. Akojex =, yiy=n 2, tj. c—y=mki
y— 2z =ml za neke cele k i, sabiranjem jei x —z=m(k+1) i k+1€Z, pa je x =, z, $to dokazuje tranzitivnost.

Zam=0,x =9y akko x —y =0-k za neko k € Z, akko x = y, pa je relacija = relacija jednakosti na skupu Z.
Zam=1,x =,y akko x—y=1-k za neko k € Z, §to je tacno za proizvoljne brojeve x i y. Dakle, =1 je relacija
7 x 7.

Zanimljivi slucajevi su kada je m > 2.

Definicija 4.21. Neka je ~ ekvivalencija na skupu S i a € S. Klasa elementa a je skup u oznaci [a],, ili samo

[a] ako je ekvivalencija ~ jasna iz konteksta, definisan sa:
[a]={zeS|xw~a}.

Zbog simetri¢nosti direktno imamo i [a] ={z €S |a~ z}.
Tvrdenje 4.22 (Osnovne osobine klasa). Neka je » ekvivalencija na S i a,be S. Tada:
(i) a € [a]; specijalno, [a] # @;
(ii) a~b akko [a] = [b];
(iii) a # b akko [a] n[b] = @.

Dokaz. (i) Uslov a € [a] ekvivalentan je sa a ~ a, §to jeste ta¢no jer je ~ refleksivna.

(ii) (=) Pretpostavimo a ~ b. Dokazimo najpre [a] € [b]. Ako z € [a], tada x ~ a, pa kako a »~ b, po
tranzitivnosti  ~ b, tj. x € [b]; dakle, [a] ¢ [b]. Ovime smo dokazali da a ~ b povladi [a] ¢ [b]. Kako a ~ b zbog
simetri¢nosti povladi i b » a, prema prethodnom imamo i [b] € [a]. Dakle, vazi [a] = [b].

(<) Pretpostavimo [a] = [b]. Kako a € [a] prema (i), vaZi i a € [b], $to znadi a ~ b.

(iii) (=) Dokazimo kontrapoziciju. Pretpostavimo [a] n[b] # @ i neka je z € [a] n[b]. Tada a~z i x ~ b, pa
i a ~ b zbog tranzitivnosti, $to znac¢i da ne vazi a # b.

(<) Pretpostavimo [a] n [b] = @. Kako [a],[b] #+ @ prema (i), to povladi [a] # [b], odakle a # b prema
(ii). O

Prema (i) i (ii), « € [a] akko = ~ a akko [z] = [a], i ¢ [a] akko = # a akko [z] n[a] = @. Dakle, svi elementi
u klasi su u relaciji samo sa elementima te klase i ni sa jednim viSe, i imaju tu istu klasu. Klase ekvivalencije
dele skup S na medusobno disjunktne (presek je prazan) neprazne delove. Ovakva podela skupa S naziva se

particija skupa S.
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Primer 4.23. Vratimo se na primer 4.20 i neka je m > 2. Izra¢unajmo klase relacije =,,,. Za a € Z imamo:
xela] <= zxz=ha
< x-a=mkzaneko keZ

< z=a+mkzanekokeZ
pa je [a] = {a+mk | k € Z}. Nije tesko videti da imamo m razli¢itih klasa. Naime, klasa [a] odredena je

ostatkom pro deljenju broja a sa m. Zaista, ako je a =mgq+r, 0<r <m, tada a € [r], pa je [a] = [r]. Sa druge
strane, za 0 < 71 < ro < m, jasno je da m 4 r1 —ro, pa 11 F, o, $to znadi da [r1] # [re]. Dakle, imamo m

razli¢itih klasa i one su odredene ostacima pri deljenju sa m: [0],[1],...,[m -1].

Definicija 4.24. Skup svih klasa ekvivalencije » na skupu S zove se kolicnicki skup i oznacava se sa S/x:
S/~ ={la]|aeS}.

U prethodnom primeru Z/-, = {[0],[1],...,[m -1]}.

Definicija 4.25. Transverzala ili skup predstavnika ekvivalencije » na skupu .S je bilo koji podskup T € S koji

sadrzi po tac¢no jedan element iz svake klase.
Npr. u gornjem primeru skup {0,1,...,m — 1} je jedna prirodna transverzala ekvivalencije =,,.

Primer 4.26. Na skupu R x R definiS8emo relaciju » sa:

($1,y1)m($2,y2) — Y1 =Y2.

Nije tesko videti da je ~ ekvivalencija. Izra¢unajmo klasu tacke (a,b):
(z,y) €[(a,0)] = (z,y)~(a,b)

— y=b

tj. [(a,b)] = {(x,b) | z € R}. Prethodni skup je prava kroz (a,b)

paralelna sa z-osom:

(a,b)
[(a,b)]

Prema tome koli¢nicki skup, (R x R)/s, je skup svih pravih paralelnih sa z-osom. Da bismo uoéili neku
transverzalu treba sa svake od tih pravih da izaberemo po jednu tacku. Npr. y-osa je jedna transverzala.
Ili bilo koja prava koja nije paralelna sa z-osomo. Ili graf funkcije y = x3. Svi ovi skupovi seku prave paralelne

sa z-osom u po jednoj tacki.

Primer 4.27. Na skupu R x R definiS§emo relaciju ~ sa:
(z1,01) » (2,52) = @i+yl=23+y5

Ponovo lako vidimo da je » ekvivalencija, i ra¢unamo klasu tacke (a,b):

(z,y) e[(a,0)] = (2,9)~(a,b)

: _ 2, .2 _ 2 12 o
22 e ) tj. [(a,b)] = {(z,y) | * +y* = a® + b* € R}. Ako sa r oznacimo
— y*=a’+

rastojanje (a,b) od koordinatnog pocetka, po Pitagorinoj teoremi je a® + b* = 72, pa je prethodni skup zapravo
skup tacaka (z,y) za koje je #2 + y* = 72, i prepoznajemo da je u pitanju kruznica sa centrom u koordinatnom

pocetku polupre¢nika r, tj. koja prolazi kroz (a,b):
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(a,b)

[(a,0)]

Prema tome koli¢ni¢ki skup je skup svih kruZznica sa centrom u koordinatnom pocetku (uklju¢ujuéi i jedan
degenerisan slu¢aj, [(0,0)] = {(0,0)}, $to moZemo da razumemo kao kruZnicu sa centrom u koordinatnom
pocetku polupre¢nika 0). Sa svake takve kruznice treba da odaberemo po jednu tacku da bismo odredili jednu

transverzalu, i jedan prirodan nacin je da uzmemo bilo koju polupravu sa temenom u koordinatnom pocetku.

Primer 4.28. Na skupu R data je relacija ~ sa:
xry < x-yel.

Ova relacija takode jeste ekvivalencija, a klasa broja a je:
zela] <= zw~a
— 2x-ack
<= «x=a+kzanekokeZ
tj. [a] ={a+k |k eZ} =a+7Z. Dakle, klasa elementa a je skup Z transliran za a:

2 3 [0]=2
-

-3 -2 -1 0

¥

Primetimo da svaka klasa ima jedinstvenog predstavnika u intervalu [0,1). Zaista, za klasu [a] to je a - |a] €

[0,1). Prema tome jedna prirodna transverzala je interval [0, 1).

Primer 4.29. Na skupu R data je relacija ~ sa:
vy <— x-yeQ.

I ova relacija jeste ekvivalencija, a klasa broja a je, sliéno kao u prethodnom primeru, skup Q transliran za a:
[a] = a+Q. Do sada smo imali prirodne na¢ine da odaberemo transverzale, medutim u ovom sluc¢aju, ako se malo
udubimo, videéemo da to nije tako. I zaista, moZe se pokazati da ne postoji prirodan nacin da konstruisemo

transverzalu.

S obzirom da ne postoji na¢in da konstruiSemo prethodnu transverzalu, prirodno je pitanje da li ona postoji.

Odgovor daje aksioma izbora.
Aksioma 4.30 (Aksioma izbora). Svaka ekvivalencija ima transverzalu.

Specijalne transverzale relacije iz primera 4.29 nazivaju se Vitalijevi skupovi, i ve¢ kod njih vidimo prve

¢udne posledice aksiome izbora. Pogledajte odeljak 4.7*.

4.6 Uredenja

Definicija 4.31. Relacija < na skupu S je (parcijalno) uredenje (poredak) ako je refleksivna, antisimetri¢na i

tranzitivna.

Osnovni primeri uredenja su < na R ili € na familijama skupova. Primetimo da za uredenja koristimo oznaku
d koja bi trebalo da nas podseca na osnovne primere. Ako a <4 b, element a doZivljavamo kao manji (ili jednak)
od b, a b vedi (ili jednak) od a. Treba da naglasimo jednu bitnu razliku izmedu proizvoljnog uredenja i primera

< na R. Naime, < na R ima i dodatnu osobinu linearnosti:
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(L) (Vz,yeS)(xdyvy<dx) (linearnost)

koja kaze da za svaka dva elementa moZemo da uporedimo koji je manji, a koji veéi. Ovo u opStem slucaju ne
vaZzi, i npr. € u op$tem sludaju nema ovu osobinu. Npr. na skupu P({a,b,c}), skupove {a} i {b}, ili {a} i {b,c},
ili {a,b} i {a,c} ne mozemo da uporedimo sa c. Kad smo kod ovog primera, naglasimo i da uredenja mozemo

da skiciramo na sledeéi naéin:

{a,b,c}

RN

{a,b} {a,c} {b,c}

X X

fa} {6} A{c}

NI

Na prethodnom dijagramu crtamo manje skupove ispod veéih i crticom naglasavamo koji skup je neposredno

iznad nekog drugog. Kad god je moguce, ovako éemo skicirati i druga uredenja. Na prethodnom dijagramu lako
uocavamo i odgovarajuée parove neuporediivh elemenata.

Ako uredenje < zadovoljava i uslov linearnosti, kazemo da je < linearno uredenje.

Definicija 4.32. Relacija < na skupu S je strogo (parcijalno) uredenje (poredak) ako je irefleksivna, asimetri¢na

i tranzitivna (ekvalentno samo irefleksivna i tranzitivna, ekvivalentno samo asimetri¢na i tranzitivna).

Osnovni primeri strogog uredenja su < na R ili ¢ na familijama skupova. Strogo uredenje je linearno ako

zadovoljava odgovarajuéi uslov linearnosti:
(L) (V,yeS)(xdyvaer=yvydx) (linearnost)

Svako uredenje ima prirodno pridruzeno strogo uredenje, i obratno. PridruZivanje je dato na sledeéi nacin:

uredenje «—> strogo uredenje
dato « — oy <= xdYyAxT*y
rdy 1= zdyvr=y <— dato <«

PridruZeno (strogo) uredenje ima o¢ekivane osobine. Npr. ako imamo uredenje 9 i pridruZeno strogo uredenje

<,akoadbibd ¢, onda a< ¢, itd.

Primer 4.33. Relacija deljivosti | na N definisana sa a | b akko b = ak za neko k € N je uredenje. Refleksivnost,
a | a, vazi jer a = a-1. Tranzitivnost vazi jer a | b1 b | c povlaci b = ak i ¢ = bl za neke k,l € N, pa ¢ = a(kl) i
kl € N povlace a | ¢. Kona¢no, za antisimetri¢nost pretpostavimo a |bib|a, tj. b=ak i a = bl za neke k,l € N.
Tada je b =b(kl), tj. b(1-kl) =0. Ako je b=0, onda jeia=bl=0,1ivaZi a =b, a ako je 1 -kl =0, tada je kl =1,
paje k=1=1jer k,l € N; opet a =0bl =D.

Primetimo da u smislu relacije deljivosti a | b znaci da je a manji a b veéi element. Primetimo dve osobine.

Za svako a vazi 1|a jer a=1-a,kaoial0 jer 0=a-0. Dijagram ovog uredenja predstavljamo na sledeé¢i nacin:
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|
8 12
/N
4 6 9 10 15 14
N AT
2 3 5 7 1

Naglasimo da je 0 na vrhu, veéa od svih drugih elemenata.

Definicija 4.34. Neka je 9 uredenje na S, AcSiaces.
Element a je najmangi element skupa A ako a € Ai (VYo e A) a<x.”
Element a je minimalni element skupa A ako a€ Ai (Ve A) z 4 a.”

Dualno definineSemo pojmove najveceg i maksimalnog elementa.

Primer 4.35. Vratimo se na primer 4.33. Skup A = N ima najmanji element 1 jer 1| a za sve a € N, kao i
najveéi element 0 jer a | 0 za sve a € N. Nijedan drugi element a # 1 nije najmanji jer ne deli 1, i nijedan drugi
element a # 0 nije najveci jer ga ne deli 0. Takode, jedino ,ispod" 1 ne postoje drugi elementi, $to znadi da je 1
i jedini minimalni element, kao i jedino ,jznad" 0 ne postoje drugi elementi, $to znaci da je 0 jedini maksimalni
element.

Neka je sada B =N~ {1}:

16
8 12
4 6 9 10 15 14

Skup B nema viSe najmanji element jer bilo koji @ # 1 ne deli sve preostale elemente u B, npr. a + a + 1.
Medutim skup B ima beskona¢no mnogo minimalnih elemenata: to su prosti brojevi. Jedino ispod njih nema
drugih ,crvenih" elemenata.

Skup C = N\ {0} nema najveéi element, ali nema ni maksimalne elemente. Zaista, za a # 0 vaZi a | 2a i

a # 2a, pa a nije veéi od 2a, $to znaci da a nije najvedi, i od a je strogo veéi 2a, §to zna¢i da a nije maksimalan.
Tvrdenje 4.36. Neka je 9 uredenjena Si AcS.
(i) Najmanji element skupa A, ako postoji, jedinstven je.

(ii) Najmanji element skupa A, ako postoji, je jedini minimalni element skupa A.

8Najmanji element u skupu je onaj koji je manji (ili jednak) od svih u tom skupu.
9Minimalni element u skupu je onaj od kojeg nijedan element iz tog skupa nije strogo manji.
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(iii) Ako je A lanac'’, minimalni element skupa A, ako postoji, je i najmanji element skupa A.
Analogno vaZzi i ako termine najmanji/minimalni zamenimo sa najveéi/maksimalni.

Dokaz. (i) Pretpostavimo da su a,b € A najmanji elementi. Tada je a 4b jer je a najmanji, pa je manji i od b, i
b < a jer je b najmanji, pa je manji i od a. Zbog asimetri¢nosti a = b. Dakle, ako postoji, najmanji element je
jedinstven.

(ii) Pretpostavimo da je a € A najmanji element. Za svako x € A tada vazi a < z, pa nije x < a, §to znaci da
a jeste minimalan. Da bismo videli da je jedini minimalan pretpostavimo da je b € A minimalan element. Tada
je a 4 b jer je a najmanji, pa je manji i od b, ali @ ¢ b jer je b minimalni pa nista, ni a, nije strogo manje od
njega. Prema tome a = b i zaklju¢ujemo da je a jedini minimalni u A.

(iii) Pretpostavimo da je A lanac i da je a € A minimalni element. Tada za sve z € A vaZi x 4 a, ali kako je

A lanac, x je uporediv sa a, pa mora biti a 4 x. Dakle, a je najmanji u A. O

Definicija 4.37. Ako postoji, najmanji element skupa A obelezavamo sa min(A), a najveéi element sa max(A)."!

Primer 4.38. Prethodno tvrdenje povlaci da ako skup A nema minimalne (maksimalne) elemente, ili ima bar
dva minimalna (maksimalna) elementa, onda A ne moze da ima najmanji (najveci) element. Ostaje otvoreno
pitanje da li je moguce da A ima jedinstveni minimalni (maksimalni) element, a da ipak nema najmanji (najveéi).
Odgovor je pozitivan. Npr. uo¢imo u primeru 4.33 skup A = {2" |n >0} u {3}:

0

/ 5 \

12
5 7 11 13

Skup A ima jedinstveni maksimalni element 3, ali on nije najvedi.

Tvrdenje 4.39. Neka je d uredenje na S'i A ¢ S je neprazan konacan podskup. Tada A ima minimalan element

(i sli¢no, ima i maksimalan element).

Dokaz. Dokaz mozemo izvesti indukcijom po broju elemenata n u skupu A. Ako je n =1, tj. A = {a}, a je
o¢igledno minimalan element u A. Pretpostavimo da A ima n+ 1 element i izaberimo proizvoljni element a € A.
Ako je a slu¢ajno minimalan, zavrsili smo posao. Pretpostavimo da a nije minimalan, pa postoji a’ € A takav
da @’ < a. Po indukcijskoj hipotezi skup A \ {a} ima minimalan element b, §to znadi da nijedan element u A
razli¢it od a nije strogo manji od b. Prema tome a’ 4 b, pa kako a’ < a, mora biti i @ 4 b. To znaéi da nijedan
element u A nije strogo manji od b (za elemente razli¢ite od a to vaZi po izboru b, a sad smo videli da vazi i za

a), pa je b minimalan u A. 0

Definicija 4.40. Neka je 9 uredenje na Si AcS.

Element a € S je donje ogranicenje za A ako (Vax € A) a 4 x. Skup svih donjih ogranicenja skupa A
obelezavamo sa A~.

Element a € S je infimum skupa A ako je najvec¢e donje ogranifenje, tj. a = max(A~).

Dualno definiSemo pojam gornjeg ogranicenja, skup A* i pojam supremuma.

108kup A je lanac ako su svaka dva njegova elementa uporediva.
11 Oznake min i max su skraéenice za minimum i maksimum, §to su sinonimi za najmanji i najveci element, i ne treba mesati ove
termine sa minimalan i maksimalan.
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Komentar 4.41. Po definiciji ako neko donje ograni¢enje od A pripada A, ono je najmanji element skupa
A. Takode, ako infimum skupa A postoji, mora biti jedinstven (jer je max(A~) jedinstven). Infimum skupa A
obelezavamo sa inf(A); supremum skupa A obeleZzavamo sa sup(A).

Dakle, po definiciji, inf(A) = max(A~) i sup(A) = min(A").

Zadatak 4.42. Neka je 9 uredenje na S1 AcS.

(i) Ako postoji min(A), onda je inf(A) = min(A4).

(ii) Ako postoji inf(A) iinf(A) € A, onda je min(A) =inf(A).
Analogno vazi i ako min /inf zamenimo sa max /sup.

Primer 4.43. Vratimo se na primer 4.33. Uo€imo A = {4,6}. Tada je A~ skup zajednickih delioca brojeva 4 i 6,
A ={1,2}, pa je inf(A) =max(A~) = 2. Naglasimo da je infimum od A najveéi medu donjim ograni¢eninjima,
tj. zajednickim deliocima, od A, pa je inf(A) zapravo NZD brojeva 4 i 6. Sli¢no, gornja ogranic¢enja skupa A su
zajednicki sadrzaoci brojeva 4 i 6, tj. A™ = {12n | n € N}, pa je sup(A4) = min(A) = 12, $to je NZS brojeva 4 i 6.

Primer 4.44. Na skupu {a,b,c,d, e, f,g} imamo tri uredenja data dijagramima:

NSNS
VANERVANRVAN
L X

d g

g9 g

1A

U sva tri slucaja, skup A = {¢,d,e} ima najveci element max(A) = ¢ i dva minimalna elementa d i e. Skup
A" ={a,b,c} i on ima najmanji element ¢, pa je sup(A) = min(A*) = ¢ = max(A).

Sto se tice donjih ogranicenja Ay =0, AL, ={f} 1AL, = {f,g}. Prema tome inf4(A) ne postoji jer je A
prazan, info(A) = max(AZ) = f, a infar(A) ponovo ne postoji jer AL, iako neprazan, nema najveci element

(ima dva maksimalna elementa).

Primer 4.45. U realnoj ravni definiSemo uredenje < sa:

(z1,91) 4 (22,92) <= x1<T2AY1 <Yo.

(Nije tesko videti da je < zaista uredenje na R x R.) Odredimo znacajne tacke trouglova:

Y Y
A(-2,3)

F(2,2)

D(-2,1) <=

B(2,-2) IE(1,-2)

Sta na slici znadi da je tacka A manja od tatke B? To znadi da je A Jlevo-dole" u odnosu na B jer su joj
obe koordinate manje od koordinata tacke B. Dakle, skup manjih tac¢aka od A, A~, i skup veéih tacaka od A,
A” su (slika levo):
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A+

Pogledajmo sliku u sredini. Primetimo da od tacaka na stranici AB, i samo od njih, nijedna tacka trougla nije
storgo manja, kao i da od tacaka na stranicama AC' i BC, i samo od njih, nijedna tacka trougla nije strogo
veca. To znadi da su tacke duzi AB minimalni elementi trougla ABC u nasem uredenju, a da su tacke duzi AC
i BC maksimalni elementi trougla ABC. Prema tome trougao ABC nema ni najmanji ni najve¢i element jer
ima beskona¢no mnogo minimalnih i maksimalnih elemenata. Primetimo i da su tacke A i B dve tacke trougla
koje su ujedno i minimalne i maksimalne.

Da bismo srac¢unali infimum i supremum trougla ABC' treba da sra¢unamo ABC™ i ABC™*. Pogledjamo
sliku desno. Donje ogranic¢enje trougla ABC mora da bude levlje od njegove najlevlje tacke i ispod od njegove
najniZe tacke, pa vidimo da je ABC™ = {(z,y) | v < -2, y < -2}. Ovaj skup ima najvedi element i to je bas tacka
(-2,-2), pa je inf(ABC) = (-2,-2). Na sli¢an nacin vidimo da je sup(ABC) = (2, 3).

Sto se tice trougla DEF, sli¢no kao malopre vidimo da su njegovi minimalni elementi tacke stranice DFE, pa
najmanji element ne postoji. Sa druge strane, teme F’ jeste najvedi element trougla DEF, pa i jedini makismalni

i supremum trougla (slika levo):

E
DEF™

Infimum ra¢unamo sli¢no kao kod trougla ABC' i vidimo inf(DEF) = (-2,-2).

4.7* Vitalijev skup

Vratimo se na primer 4.29. Na R imamo definisanu ekvivalenciju » sa x ~ y akko x —y € Q. Po aksiomi
izbora ova relacija ima bar jednu transverzalu T. Mozemo da pretpostavimo da je T' ¢ [0,1). Zaista, izabranog
predstavnika svoje klase t € T' moZemo zameniti sa predstavnikom iste klase t — [t] € [0,1) (primetimo ¢ ~ ¢ — |¢]
jer t—(t—|t]) =[t] e Z<Q), pa zamenom T sa {t—|t] |t € T} moZemo pretpostaviti T < [0,1).

Zelimo da odgovorimo na sledece pitanje: Da li je moguce izra¢unati duzinu skupa 77

Necéemo ulaziti u zasnivanje pojma mere (konkretno duzine), naveS¢emo samo nekoliko prirodnih osobina
koje bi duzina trebalo da ima, a bi¢e nam dovoljni da zavr§imo ovaj primer. Oznaimo sa A\(S) duZinu skupa
S ¢ R; jasno je da A(S) € [0,+00]. Razne podskupove od R merimo na prirodan nacin. Uzimamo da je

svaka tacka duZzine nula. DuZina intervala (a,b) je A((a,b)) = b - a. Prirodno uzimamo da je duzina kona¢no
n n

mnogo disjunktnih skupova jednaka zbiru njihovih duzina: A(|J S;) = > A(S;) ako su S; medusobno disjunktni.
i=1 i=1

Takode, prirodno uzimamo da je duzina translatorno invarijantna, $to znaci da je duzina skupa a + S, koji je

dobijen translacijom skupa S za a, jednaka duZini skupa S: A(a+.S5) = A(S). Kona¢no, podskupovi nekog skupa

bi prirodno trebalo da su manje duzine: ako S < S” onda A(S) < A(S").
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Skre¢emo paznju na jos jednu ¢ cmjemcu Pretpostavnno da imamo medusobno disjunktne skupove 57, Sa, 53,

Kako smo veé naglasili duzina skupa U S; jednaka je Z)\(S ), pa je prirodno da je duZzina skupa S = U S;
i=1 i=1 =1
jednaka,

A(S) = lim AU Si) = lim STA(S)).
n—oo l=1 TL*?OO,Lzl

Sve prethodno vazi pod pretpostavkom da su odgovarajuée duzine definisane.

Vratimo se na transverzalu T ¢ [0,1) ekvivalencije ~. Dokaza¢emo da ne moZemo da izmerimo duZinu skupa
T. Pretpostavimo suprotno, A(T') = ¢; jasno € 20, kao i e < 1 jer T < [0,1).

Neka je Qn (-1,1) = {q1,¢2,43,... }."> Neka je T; = ¢; + T — skup T transliran za ¢;; za sve i je A\(T}) =
Mgi +T) = MT) = e. Primetimo da za razli¢ite ¢,j imamo T; nT; = @. Zaista, ako x € T; nT;, tada je
x=¢q +t' =qj+t" zaneke t',t" €T, pajet' —t" =q; —¢; € Q, odakle t' ~ ¢, pa kako je T transverzala mora

n o

biti ¢’ =t”, odakle je i ¢; = ¢j, paii=j. Prema tome, A(|JT;) = ne. Uo¢imo skup S = | JT;. Njegova duzina je
=1 i=1

A(S) = hm )\(US’)— hm ne, $to je 0 ako je e =01 oo ako je € > 0.

Prlmetlmo da je (() 1) € S. Zaista, ako x € (0,1), izaberimo t € T tako da x ~ t. Tada je z —t € Q. Kako je
jasnoix —te(-1,1), x -t jednak je nekom ¢;, pa je x = ¢; +t € T;, odakle, x € S. Ovo znaci da je A(S) > 1, $to
eliminiSe slucaj e = 0.

Sa druge strane, kako je T ¢ [0,1) i svaki g; € (-1,1), translat T; = ¢; + T sadrzan je u (-1,2). Prema tome
i cela unija S sadrZzana je u ovom intervalu, a to znaci da A(S) < 3. Ovo eliminiSe slucaj € > 0.

Dakle, ako pretpostavimo da mozemo da izmerimo duzinu od 7', dolazimo do kontradikcije, pa zaklju¢ujemo
da skup T ne moZe da ima definisanu duzinu.

Skup T zove se Vitalijev skup.

12Vide¢éemo da je skup Qn (-1,1) prebrojiv, $to znaéi da moZemo nabrojati njegove elemente.
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