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Aritmetičke funkcije



Aritmetičke funkcije I

Oznake.

▸ N ∶= {0,1,2,3, . . .};
▸ Nn ∶= {(a1, a2, . . . , an) ∣ (∀i = 1, . . . , n) ai ∈ N}, za n ⩾ 1;
▸ specijalno, N0 = {()};
▸ N1 je prirodno identifikovan sa N.

Definicija. n-arna parcijalna aritmetička funkcija, f ∶ Nn ⇀ N, je bilo koja
funkcija f ∶Df → N gde Df ⊆ Nn; Df je domen funkcije f .

Specijalno, ako je Df = Nn, onda je f totalna.

Komentar. Ako je f data nekim aritmetičkim izrazom (npr. x − y ili x
y
), Df je

najveći podskup od odgovarajućeg Nn za koji je izraz definisan.

Komentar. Totalna 0-arna funkcija je samo broj.



Aritmetičke funkcije II

Oznake. Neka je f n-arna funkcija i a⃗ ∈ Nn.

▸ f(a⃗) ↑ znači a⃗ ∉Df ;

▸ f(a⃗) ↓ znači a⃗ ∈Df ;

▸ f(a⃗) ↓= b znači a⃗ ∈Df i f(a⃗) = b.

λ-notacija. Ako je f aritmetički izraz i x⃗ = (x1, . . . , xn), (λx⃗) f je oznaka za
n-arnu funkciju x⃗↦ f(x⃗).

Primer. Posmatrajmo izraz x + 2y.

▸ x + 2y (ili čak (λ)x + 2y) označava broj (konstantu) x + 2y;

▸ (λxy)x + 2y označava binarnu funkciju (x, y) ↦ x + 2y;

▸ (λyx)x + 2y označava binarnu funkciju (y, x) ↦ x + 2y;

▸ (λx)x + 2y označava unarnu funkciju x↦ x + 2y (y je parametar);

▸ (λxyz)x + 2y označava ternarnu funkciju (x, y, z) ↦ x + 2y.



Definicija kompozicijom

Definicija. Neka su g1, . . . , gm n-arne i h m-arna funkcija. Definišemo njihovu
kompoziciju da bude n-arna funkcija f data sa:

f(x⃗) ∶= h(g1(x⃗), g2(x⃗), . . . , gm(x⃗)).

Pišemo f = h(g1, g2, . . . , gm).

Komentar. Primetimo:

x⃗ ∈Df ⇐⇒ x⃗ ∈
m

⋂
i=1

Dgi ∧ (g1(x⃗), g2(x⃗), . . . , gm(x⃗)) ∈Dh.

Specijalno, kompozicija totalnih funkcija je totalna.



Definicija primitivnom rekurzijom

Definicija. Neka su g n-arna i h (n + 2)-arna funkcija. Neka je f (n + 1)-arna
funkcija koja zadovoljava:

▸ f(0, x⃗) ∶= g(x⃗);
▸ f(y + 1, x⃗) ∶= h(y, f(y, x⃗), x⃗).

Za f kažemo da je dobijena primitivnom rekurzijom od g i h; pišemo
f = rec(g, h).

Komentar. Primetimo (0, x⃗) ∈Df ⇐⇒ x⃗ ∈Dg, i
(y + 1, x⃗) ∈Df ⇐⇒ (y, x) ∈Df ∧ (y, f(y, x⃗), x⃗) ∈Dh.
Indukcijom lako vidimo da (y, x⃗) ∈Df povlači (z, x⃗) ∈Df za sve z < y. Takođe,
funkcija dobijena primitivnom rekurzijom od totalnih funkcija je totalna.



Definicija minimizacijom

Definicija. Neka je g (n + 1)-arna funkcija. Definišemo n-arnu funkciju f sa:

f(x⃗) ∶=min{y ∣ (∀z < y) g(z, x⃗) ↓ ∧ g(y, x⃗) ↓= 0}.

Za f kažemo da je dobijena minimizacijom od g; pišemo
f(x⃗) = (µy)(g(y, x⃗) = 0).

Komentar. Primetimo:

x⃗ ∈Df ⇐⇒ (∃y)((∀z ⩽ y) (z, x⃗) ∈Dg ∧ g(y, x⃗) = 0).

Čak i ako je funkcija g totalna, f ne mora biti.

Primer. Neka je f(x) ∶= (µy)x + y = 0, tada je f(0) = 0, ali f(n) ↑ za sve
n > 0.

Primer. Neka je g(y, x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − y x ⩾ y

↑ x < y
i f(x) = (µy)(g(y, x) = 0). Tada je

f = idN.



Karakteristična funkcija

Definicija. Neka je S ⊆ Nn. Karakteristična funkcija skupa S je totalna n-arna
funkcija χS ∶ Nn → N data sa:

χS(x⃗) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 x⃗ ∈ S

0 x⃗ ∉ S
.



Primitivno rekurzivne funkcije i relacije



Osnovne aritmetičke funkcije

Definicija. Osnovne aritmetičke funkcije su:

▸ konstanta 0 = (λ)0;
▸ sledbenik S ∶= (λx)x + 1;

▸ projekcije πn
i = (λx1x2 . . . xn)xi, za sve 1 ⩽ i ⩽ n.

Komentar. Sve osnovne funkcije su totalne.



Primitivno rekurzivne funkcije

Definicija. Klasa primitivno rekurzivnih funkcija je najmanja klasa koja sadrži
osnovne funkcije i zatvorena je za kompoziciju i primitivnu rekurziju.
Alternativno, primitivno rekurzivne funkcije možemo da definišemo rekurentno
na sledeći način:

▸ osnovne funkcije su primitivno rekurzivne;

▸ ako su n-arne g1, . . . , gm i m-arna h primitivno rekurzivne, onda je i
h(g1, . . . , gm) primitivno rekurzivna;

▸ ako su n-arna g i (n + 2)-arna h primitivno rekurzivne, onda je i rec(g, h)
primitivno rekurzivna;

▸ primitivno rekurzivne funkcije dobijaju se primenom prethodnih pravila
konačno mnogo puta.

1. Tvrđenje. Primitivno rekurzivne funkcije su totalne.



Primeri primitivno rekurzivnih funkcija I

a. Konstanta k = (λ)k je primitivno rekurzivna jer k = S(S(. . . S
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k komada

(0) . . . )).

b. Unarna konstantna funkcija Ck = (λx)k je primitivno rekurzivna jer
Ck = rec(k, π2

2).
● C0 označavamo i sa Z.

c. n-arna konstantna funkcija Cn
k ∶= (λx1 . . . xn)k je primitivno rekurzivna

jer Cn
k = Ck(πn

1 ).

d. Ako je f primitivno rekurzivna n-arna funkcija i
σ ∶ {1, . . . , n} → {1, . . . ,m}, onda je i (λx1 . . . xm) f(xσ(1), . . . , xσ(n))
primitivno rekurzivna jer je jednaka f(πm

σ(1), . . . , π
m
σ(n)).



Primeri primitivno rekurzivnih funkcija II

e. Sabiranje (λyx) y + x je primitivno rekurzivno jer:
▸ 0 + x = x = π1

1(x) i
▸ (y + 1) + x = S(y, x) = S(π3

2(y, y + x, x)),
pa je (λyx) y + x = rec(π1

1 , S(π3
2)).

f. Množenje (λyx) yx je primitivno rekurzivno jer:
▸ 0 ⋅ x = 0 = Z(x) i
▸ (y + 1)x = yx + x = ((λyx)y + x)(π3

2(y, yx, x), π3
3(y, yx, x)),

pa je (λyx) yx = rec(Z, ((λyx) y + x)(π3
2 , π

3
3)).

g. Prethodnik P (y) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 y = 0

y − 1 y > 0
je primitvno rekurzivna jer:

▸ P (0) = 0 i
▸ P (y + 1) = y = π2

1(y,P (y)),
pa je P = rec(0, π2

1).

2. Zadatak. Dokazati da se sabiranje ne može definisati koristeći samo osnovne
funkcije i kompoziciju.



Primeri primitivno rekurzivnih funkcija III

h. Stepenovanje (λyx)xy je primitivno rekurzivna.

NB. 00 ∶= 1.

i. Odsečeni minus (λxy)x � y ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x − y x ⩾ y

0 x < y
je primitivno rekurzivna.

j. (λxy) min(x, y) i (λxy) max(x, y) su primitivno rekurzivne.

k. Signum (λx) sgn(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 x = 0

1 x > 0
i obratni signum

(λx) sgn(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 x = 0

0 x > 0
su primitivno rekurzivne.

l. Apsolutna razlika (λxy) ∣x − y∣ je primitivno rekurzivna.

m. Faktorijel (λx)x! je primitivno rekurzivna.

NB. 0! ∶= 1.

3. Zadatak. Dokazati h–m.



Primeri primitivno rekurzivnih funkcija IV

n. Funkcije:

kol(x, y) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 y = 0

količnik pri deljenju x sa y y > 0
i

ost(x, y) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 y = 0

ostatak pri deljenju x sa y y > 0

su primitivno rekurzivne.

4. Zadatak. Dokazati n.



Primitivno rekurzivne relacije

Definicija. n-arna relacija (predikat) je bilo koji podskup R ⊆ Nn; njen
komplement je relacija Rc = Nn ∖R.
Relacija R je primitivno rekurzivna ako je χR primitivno rekurzivna funkcija.

5. Zadatak. Ako su R i S primitivno rekurzivne relacije, onda su i Rc, R ∩ S,
R ∪ S i R ∖ S primitivno rekurzivne.

6. Zadatak. Sledeće relacije su primitivno rekurzivne:

a. {(x, y)∶x = y} i {(x, y)∶x ≠ y};

b. {(x, y)∶x ⩽ y} i {(x, y)∶x < y};

c. {(x, y)∶x ∣ y};

d. {x∶x je prost broj}.



Ograničeni operatori I

7. Tvrđenje. Neka je f (n + 1)-arna primitivno rekurzivna funkcija. Tada su:

a. (λyx⃗) ∑t<y f(t, x⃗);

b. (λyx⃗) ∏t<y f(t, x⃗);

NB. ∑t<0 − ∶= 0 i ∏t<0 − ∶= 1;

c. (λyx⃗)((µt < y) f(t, x⃗) = 0), gde:

((µt < y) f(t, x⃗) = 0) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

min{t < y∶ f(t, x⃗) = 0} skup levo ≠ ∅;

y inače
;

su primitivno rekurzivne funkcije.

Dokaz. Na tabli. ♣

Za funkcije u prethodnom tvrđenju kažemo da su dobijene ograničenom
sumom, ograničenim proizvodom, odnosno ograničenom minimizacijom.



Ograničeni operatori II

8. Posledica. Neka je R (n + 1)-arna primitivno rekurzivna relacija. Tada su:

a. {(y, x⃗)∶ (∃t < y)R(t, x⃗)};

b. {(y, x⃗)∶ (∀t < y)R(t, x⃗)};

c. (λyx⃗)((µt < y)R(t, x⃗)), gde:

(µt < y)R(t, x⃗) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

min{t < y∶R(t, x⃗)} skup levo ≠ ∅;

y inače
;

primitivno rekurzivne relacije, odnosno funkcija.

Dokaz. Na tabli. ♣



Definicija po slučajevima

9. Tvrđenje. Funkcija (λxyz)C(x, y; z) data sa:

C(x, y; z) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x z = 0

y z > 0

je primitivno rekurzivna.

Dokaz. Na tabli. ♣

10. Posledica. Neka su g, h n-arne primitivno rekurzivne funkcije i R n-arna
primitivno rekurzivna relacija, onda je funkcija f data sa:

f(x⃗) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g(x⃗) R(x⃗)

h(x⃗) ¬R(x⃗)

primitivno rekurzivna.

Dokaz. Na tabli. ♣



11. Zadatak.

a. Neka je f binarna primitivno rekurzivna funkcija. Dokazati da je i
(λx) ∑t<x f(t, x) primitivno rekurzivna.

b. Neka je (pn) niz prostih brojeva. Dokazati da je funkcija (λn)pn
primitivno rekurzivna.

c. Neka su g1, . . . , gk n-arne primitivno rekurzivne funkcije i R1, . . . ,Rk−1

n-arni primitivno rekurzivni predikati. Dokazati da je funcija data sa:

f(x⃗) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(x⃗) R1(x⃗)

g2(x⃗) ¬R1(x⃗) ∧R2(x⃗)

g3(x⃗) ¬R1(x⃗) ∧ ¬R2(x⃗) ∧R3(x⃗)

⋮

gk−1(x⃗) ¬R1(x⃗) ∧ ¬R2(x⃗) ∧ ¬R3(x⃗) ∧ ⋅ ⋅ ⋅ ∧Rk−1(x⃗)

gk(x⃗) ¬R1(x⃗) ∧ ¬R2(x⃗) ∧ ¬R3(x⃗) ∧ ⋅ ⋅ ⋅ ∧ ¬Rk−1(x⃗)

primitivno rekurzivna.



Kodiranje



Kodiranje parova

12. Tvrđenje. Neka je γ(x, y) ∶= 2x(2y + 1) − 1.

a. γ je primitivno rekurzivna bijekcija γ ∶ N2 → N.

b. γ1(t) ∶= π2
1 ○ γ−1(t) i γ2(t) ∶= π2

2 ○ γ−1(t) su primitivno rekurzivne funkcije
γ1, γ2 ∶ N→ N.

c. γ(γ1(t), γ2(t)) = t, γ1(γ(x, y)) = x i γ2(γ(x, y)) = y.

Dokaz. Na tabli. ♣

Definicija. Broj γ(x, y) je Gedelov kod/kod/indeks para (x, y).
Funkcija γ je (Gedelovo) kodiranje parova.
Funkcije γ1 i γ2 su funkcije dekodiranja.



Primena kodiranja

13. Zadatak. Neka je (Fn) Fibonačijev niz: F0 ∶= 0, F1 ∶= 1, Fn+2 ∶= Fn+1 + Fn

za n ∈ N. Dokazati da je f(n) ∶= Fn primitivno rekurzivna.

Komentar. Funkcija f(n) se ne može definisati „običnom" primitivnom
rekurzijom jer sledeći član ne zavisi samo prethodne vrednosti, nego od
prethodne dve vrednosti.

Ideja. Uočimo funkciju g(n) ∶= γ(f(n), f(n + 1)). Sledeći član niza g(n) zavisi
samo od prethodnog, pa se može definisati primitivnom rekurzijom.

Skica rešenja. Definišimo funkciju g(n) primitivnom rekurzijom sa:

g(0) = γ(0,1);

g(n + 1) = γ( γ2(g(n)), γ1(g(n)) + γ2(g(n)) ).

Lako vidimo da je g(n) primitivno rekurzivna. Kako je f(n) = γ1(g(n)), i
funkcija f je primitivno rekurzivna. ♣



Teorema o simultanoj rekurziji

14. Teorema. Neka su g1, g2 n-arne primitivno rekurzivne funkcije i h1, h2

(n + 3)-arne primitivno rekurzivne funkcije. Definišimo (n + 1)-arne funkcije
f1, f2 sa:

f1(0, x⃗) = g1(x⃗);

f2(0, x⃗) = g2(x⃗);

f1(y + 1, x⃗) = h1(y, f1(y, x⃗), f2(y, x⃗), x⃗);

f2(y + 1, x⃗) = h2(y, f1(y, x⃗), f2(y, x⃗), x⃗).

Funkcije f1 i f2 su dobro definisane i primitivno rekurzivne.

Dokaz. Na tabli. ♣

15. Zadatak. Dokazati da je (λn)Fn primitivno rekurzivna koristeći prethodnu
teoremu.



Kodiranje n-torki

Definicija. Definišemo funkcije γn ∶ Nn → N, n ⩾ 1, rekurentno sa: γ1 = idN i:

γn+1(x⃗, y) = γ( γn(x⃗), y ).

Definišimo funkcije γn
i ∶ N→ N, 1 ⩽ i ⩽ n, sa:

γn
i ∶= πn

i ○ (γn)−1.

NB. γ2 = γ, γ2
1 = γ1 i γ2

2 = γ2.

16. Lema.

a. Funkcije γn su primitivno rekurzivne bijekcije.

b. Funkcije γn
i su primitivno rekurzivne.

c. γn(γn
1 (t), γn

2 (t), . . . , γn
n(t)) = t, i γn

i (γn(x1, x2, . . . , xn)) = xi za 1 ⩽ i ⩽ n.

Dokaz. Na tabli. ♣



Uniformno dekodiranje

Definicija. Neka je δ ∶ N3 → N data sa:

δ(n, i, t) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

γn
i (t) 1 ⩽ i ⩽ n

0 inače
.

17. Teorema. Funkcija δ je primitivno rekurzivna.

Skica dokaza. Funkcija f(k, t) = γ1(γ1(. . . γ1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

(t) . . . )) je primitivno rekurzivna:

f(0, t) = t;

f(k + 1, t) = γ1(f(k, t)).

Sada je i δ primitivno rekurzivna jer:

δ(n, i, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 i = 0 ∨ i > n

f(n � 1, t) i = 1

γ2(f(n � i, t)) 1 < i ⩽ n



Kodiranje konačnih nizova I

Komentar. Koordinate konačnih nizova nadalje ćemo indeksirati počevši od 0.

Definicija. Definišemo funkciju Γ ∶
∞

⋃
n=0

Nn → N sa (vrednost Γ((x0, . . . , xn−1))

obeležavamo sa ⌜x0, . . . , xn−1⌝):

⌜⌝ ∶= 0;

⌜x0, . . . , xn−1⌝ ∶= γ( n − 1, γn(x0, . . . , xn−1) ) + 1, za n ⩾ 1.

Broj ⌜x⃗⌝ se zove (Gedelov) kod/indeks niza x⃗.

NB. Nema smisla pričati o tome da li je Γ primitivno rekurzivna, s obzirom da
nije ni aritmetička.

18. Tvrđenje. Funkcija Γ je bijekcija.

Dokaz. Na tabli. ♣



Kodiranje konačnih nizova II

Definicija. Definišemo unarnu funkciju ℓ(t) i binarnu funkciju (t)i sa:

▸ ℓ(t) ∶= dužina niza čiji je Gedelov kod t;

▸ (t)i ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i-ta koordinata niza čiji je Gedelov kod t 0 ⩽ i < ℓ(t)

0 inače
.

19. Tvrđenje. Funkcije (λt) ℓ(t) i (λti) (t)i su dobro definisane i primitivno
rekurzivne funkcije.

Dokaz. Na tabli. ♣

Komentar. Naglasimo:

a. (⌜⌝)i = 0 za sve i ∈ N;

b. (⌜x0, . . . , xn−1⌝)i =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xi 0 ⩽ i < n

0 inače
;

c. ako x > 0, onda x = ⌜(x)0, . . . , (x)ℓ(x)−1⌝.



Kodiranje konačnih nizova III

Definicija. Definišemo binarnu funkciju konkatenacije/nadovezivanja s⌢t sa:
s⌢t ∶= kod niza dobijenog nadovezivanjem niza sa kodom t na niz sa kodom s.
Preciznije:

0⌢t ∶= t;

s⌢0 ∶= s;

s⌢t ∶= ⌜(s)0, . . . , (s)ℓ(s)−1, (t)0, . . . , (t)ℓ(t)−1⌝, za s, t > 0.



Kodiranje konačnih nizova IV

20. Tvrđenje. Funkcija (λst) s⌢t je primitivno rekurzivna.

Dokaz. Funkcija s ∗ x ∶= s⌢⌜x⌝ je primitivno rekurzivna jer:

s ∗ x =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ(0, x) + 1 s = 0

γ( ℓ(s), γ(γ2(s � 1), x) ) + 1 s > 0
.

Primitivnom rekurzijom definišemo funkciju f(s, t, i) sa:

f(s, t,0) = s;

f(s, t, i + 1) = f(s, t, i) ∗ (t)i.

Sada je s⌢t = f(s, t, ℓ(t)).



Teorema o potpunoj rekurziji I

Definicija. Neka je f totalna (n + 1)-arna funkcija. Istorija funkcije f je
funkcija f̃ ∶ Nn+1 → N definisana sa:

f̃(y, x⃗) ∶= ⌜f(0, x⃗), f(1, x⃗), . . . , f(y, x⃗)⌝.

21. Lema. f je primitivno rekurzivna ⇐⇒ f̃ je primitivno rekurzivna.

Dokaz. Na tabli. ♣ .



Teorema o potpunoj rekurziji II

Definicija. Neka su g n-arna i h (n + 2)-arna funkcija. Neka je f (n + 1)-arna
funkcija koja zadovoljava:

▸ f(0, x⃗) ∶= g(x⃗);
▸ f(y + 1, x⃗) ∶= h(y, f̃(y, x⃗), x⃗).

Za f kažemo da je dobijena potpunom rekurzijom od g i h.

22. Teorema. Ako su g i h primitivno rekurzivne, onda je i f primitivno
rekurzivna.

Dokaz. Dovoljno je da dokažemo da je f̃ primitivno rekurzivna:

f̃(0, x⃗) = ⌜g(x⃗)⌝;

f̃(y + 1, x⃗) = f̃(y, x⃗) ⌢ ⌜h(y, f̃(y, x⃗), x⃗)⌝.

Dakle, f̃ je definisana primitivnom rekurzijom.



Problem duple rekurzije: Akermanova funkcija



Akermanova funkcija I

Definicija. Definišemo binarnu funkciju A(n,x) sa:

▸ A(0, x) ∶= x + 1;

▸ A(n + 1,0) ∶= A(n,1);
▸ A(n + 1, x + 1) ∶= A(n,A(n + 1, x)).

Funkciju (λx)A(n,x) označavamo sa An.

Komentar. Funkcija A je dobro definisana totalna funkcija; zovemo je
Akermanova funkcija.
Kažemo da je A dobijena duplom rekurzijom.

23. Teorema. A nije primitivno rekurzivna.



Akermanova funkcija II

24. Zadatak. Dokazati:

a. An(x) > n + x;

b. An(x) < An(x + 1);

c. An(x) < An(y) za x < y;

d. An(x) < An+1(x);

e. An(x) < Am(x) za n <m;

f. An+1(x) ⩾ An(x + 1);

g. An+2(x) ⩾ An(An+1(x));

h. An(x) ⩾ nx + 2 za n ⩾ 1;

i. An+1(x) > An(2x) za n ⩾ 1.



Akermanova funkcija III

Definicija. Označimo sa On familiju svih primitivno rekurzivnih funkcija f za
koje važi (ako je k arnost od f):

(∀x⃗ ∈ Nk) f(x⃗) < An(Σ x⃗).

(Ovde Σ x⃗ obeležava zbir koordinata niza x⃗; Σ x⃗ = 0 za prazan niz.)

25. Lema.

a. On ⊆ Om za n <m;

b. 0, S, πl
i ∈ O1;

c. ako f = h(g1, . . . , gl) i h, g1, . . . , gl ∈ On gde n > l, onda f ∈ On+2;

d. ako f = rec(g, h) i g, h ∈ On gde n ⩾ 1, onda f ∈ On+2.

Dokaz. Na tabli. ♣



Akermanova funkcija IV

26. Posledica. Za svaku primitivno rekurzivnu funkciju f postoji n tako da
f ∈ On.

Dokaz teoreme 23. Pps, A je primitivno rekurzivna. Tada je i
f(x) ∶= A(x,x) + 1 primitivno rekurzivna, pa postoji n tako da f ∈ On, tj.
f(x) < An(x) za sve x. Specijalno, za x = n, imamo:

A(n,n) + 1 = f(n) < An(n) = A(n,n).

Kontradikcija.

27. Zadatak. Da li postoji binarna funkcija v takva da za svaku unarnu
primitivnu rekurzivnu funkciju f postoji broj nf takav da:

(∀x ∈ N) f(x) = v(nf , x)?

Da li postoji takva primitivno rekurzivna funkcija.



Parcijalno rekurzivne funkcije i rekurzivne relacije



Klinijeva jednakost

Definicija. Za f(x⃗) i g(x⃗) pišemo:

f(x⃗) ≃ g(x⃗)

ako Df =Dg, i f(x⃗) = g(x⃗) za sve x⃗ ∈Df .

Primer. Primetimo:

▸ π2
1(f(x), x) ≃ f(x), ali

▸ π2
2(f(x), x) ≃ x ne mora da važi.



Parcijalno rekurzivne funkcije i relacije

Definicija. Klasa parcijalno rekurzivnih funkcija je najmanja klasa koa sadrži
osnovne funkcije i zatvorena je za kompoziciju, primitivnu rekurziju i
minimizaciju.

Definicija. Funkcija je rekurzivna ako je parcijalno rekurzivna i totalna.

Definicija. Relacija R je rekurzivna ako je χR rekurzivna.

28. Zadatak. Dokazati da je Akermanova funkcija rekurzivna.



Registarske mašine



Registarska mašina (RM)

Definicija. Registarska mašina (RM) je sledeći teorijski model računara:

▸ RM se sastoji od beskonačno mnogo registara R1,R2, . . . . Svaki registar
Ri sadrži proizvoljno veliki prirodan broj (takođe označen sa Ri).

▸ Stanje u registrima se menja izvršavanjem RM-programa.

▸ RM-program je konačan numerisani niz RM-komandi:

1. N1 – Komanda 1
2. N2 – Komanda 2
⋮

n. Nn – Komanda n

▸ Imamo dve vrste RM-komandi:
▸ R+i , l – povećaj stanje u registru Ri za 1 i idi na l-tu komandu;
▸ R−i , l,m – ako je Ri > 0 smanji stanje u registru Ri za 1 i idi na l-tu

komandu; inače, idi na m-tu komandu.

▸ RM započinje rad pozivom komande N1. RM se zaustavlja pozivom
nepostojeće komande (Nm za neko m > n).



Primeri RM-programa I

Primer. Pozivom programa:
1. R+i ,2

RM poveća stanje u registru Ri za 1 i zaustavi se.

Primer. Pozivom programa:
1. R+i ,1

RM u svakom koraku povećava stanje u registru Ri za 1 i ne zaustavlja se.

Primer. Pozivom programa:
1. R−i ,1,2

RM „isprazni” registar Ri i zaustavi se.



Primeri RM-programa II

Primer. Pozivom programa:

1. R−i ,2,3

2. R+j ,1

RM „prenese” stanje registra Ri u Rj i zaustavi se.

Primer. Pozivom programa:

1. R−i ,2,4

2. R+j ,3

3. R+k,1

RM „prenese” stanje registra Ri u Rj i u Rk i zaustavi se.



RM-izračunljive funkcije

Definicija. Neka je M RM-program i n ⩾ 0. Definišemo parcijalnu n-arnu
funkciju f

(n)
M

∶ Nn ⇀ N sa:

▸ a⃗ ∈D
f
(n)
M

∶ ⇐⇒ M se zaustavlja za ulaz:

R1 = a1,R2 = a2, . . . ,Rn = an, i Rm = 0 za m > n;

▸ za a⃗ ∈D
f
(n)
M

:

f
(n)
M
(a⃗) ∶= stanje u R1 nakon zaustavljanja M;

▸ naravno, za a⃗ ∉D
f
(n)
M

, f (n)
M
(a⃗) ↑.

Definicija. Parcijalna n-arna funkcija f ∶ Nn ⇀ N je RM-izračunljiva ako postoji
RM M takva da je f ≃ f (n)

M
.



Primeri RM-izračunljivih funkcija

29. Lema. Osnovne funkcije su RM-izračunljive.

Dokaz. 0 računa npr. sledeći program:

1. R−1 ,1,2

S računa sledeći program:
1. R+1 ,2

πn
1 računa npr. sledeći program:

1. R+2 ,2

πn
i , i > 1, računa sledeći program:

1. R−1 ,1,2

2. R−i ,3,4

3. R+1 ,2



Zatvorenost za kompoziciju I

30. Lema. RM-izračunljive funkcije su zatvorene za kompoziciju.

Dokaz. Neka Gi računa n-arne gi, i = 1, . . . ,m, i neka H računa m-arnu h.
Neka je N broj takav da programi Gi i H ne govore o registrima Ri, i ⩾ N (i
N >m,n).

Kompoziciju f = h(g1, . . . , gn) računa program opisan sa:



Zatvorenost za kompoziciju II

Kopiraj R1, . . . ,Rn u RN+1, . . . ,RN+n koristeći RN

Obriši R1, . . .RN−1, i kopiraj RN+1, . . . ,RN+n u R1, . . . ,Rn koristeći RN

za i = 1, . . . ,m nadovežemo sledeće blokove

Pozovi program Gi

Prebaci Ri u RN+n+i

Obriši R1, . . .RN−1, i kopiraj RN+n+1, . . . ,RN+n+m u R1, . . . ,Rm koristeći RN

Pozovi program H



Zatvorenost za primitivnu rekurziju I

31. Lema. RM-izračunljive funkcije su zatvorene za primitivnu rekurziju.

Dokaz. Neka G računa n-arnu g i H računa (n + 2)-arnu h. Neka je N broj
takav da programi G i H ne govore o registrima Ri, i ⩾ N (i N >m,n + 2).

Funkciju f = rec(g, h) računa program opisan sa:



Zatvorenost za primitivnu rekurziju II

Kopiraj R1,R2, . . . ,Rn+1 u RN+1,RN+2, . . . ,RN+n+1; postavi RN+n+2 = 0

Obriši R1, . . . ,RN−1 i kopiraj RN+2, . . . ,RN+n+1 u R1, . . . ,Rn

Pozovi program G

k. R−N+1, s, t STOP

Kopiraj R1 u R2, RN+n+2 u R1, RN+2, . . . ,RN+n+1 u R3, . . . ,Rn+2, i
obriši Rn+3, . . . ,RN−1

Pozovi program H

R+N+n+2, k

t

s



Zatvorenost za minimizaciju I

32. Lema. RM-izračunljive funkcije su zatvorene za minimizaciju.

Dokaz. Neka G računa (n + 1)-arnu g. Neka je N broj takav da program G ne
govori o registrima Ri, i ⩾ N (i N > n + 1).

Funkciju f(x⃗) = (µy)(f(y, x⃗) = 0) računa program opisan sa:



Zatvorenost za minimizaciju II

Kopiraj R1, . . . ,Rn u RN+1, . . . ,RN+n; postavi RN+n+1 = 0

Kopiraj RN+n+1,RN+1, . . . ,RN+n u R1,R2 . . . ,Rn+1

obriši Rn+2, . . . ,RN−1

Pozovi program G

R−1 , s, t

s. R+N+n+1 Kopiraj RN+n+1 u R1

STOP

t



Parcijalno rekurzivne funkcije su RM-izračunljive

U prethodnom nizu lema dokazali smo:

33. Teorema. Parcijalno rekurzivne funkcije su RM-izračunljive.

Prirodno pitanje. Da li važi obratno?



Tjuringove mašine



Tjuringova mašina I

Definicija. Tjuringova mašina je teorijski model računara koji se sastoji od:

▸ trake sa beskonačno mnogo sekvencijalno poređanih polja, pri čemu svako
polje ima tačno dva susedna polja;

▸ glave koja se u svakom trenutku nalazi iznad tačno jednog polja čiji
sadržaj može da čita i da menja, i u svakom trenutku može da se nalazi u
tačno jednom stanju.

Svako polje trake može da sadrži jedan od dva simbola: 0 (polje je prazno) i 1
(polje je puno). Pretpostavljamo da su sva polja, osim konačno mnogo njih,
prazna.



Tjuringova mašina II

Označimo sa Q konačan skup stanja u kojima mašina može da bude.

Akcija TM u svakom koraku zavisi od stanja u kome se mašina nalazi i stanja u
polju koji glava čita. Rad mašine opisan je (parcijalnom) funkcijom
τ ∶ Q × {0,1} → Q × {0,1, L,D}, pri čemu τ(q, s) = (q′, s′) ima sledeće
značenje: Ako je mašina u stanju q i čita simbol s u polju, onda:

▸ ako je s′ = 0 ili s′ = 1 mašina u dato polje upisuje s′;

▸ ako je s′ = L glava se pomera jedno polje ulevo;

▸ ako je s′ =D glava se pomera jedno polje udesno.

U svakom slučaju mašina ulazi u stanje q′. Ako τ(q, s) ↑, mašina se zaustavlja.

Mašina počinje sa radom u stanju q0 ∈ Q.



Primeri Tjuringovih mašina I

Primer. Mašina koja nalazi prvi par 00 desno i staje iznad prve nule:

0 1

q0 q1D q0D

q1 q2L q0D

q2 ↑ ↑

Primer. Mašina koja nalazi početak trećeg bloka jedinica desno i zaustavlja se
(ili upada u beskonačnu petlju ako treći blok jedinica ne postoji):

0 1

q0 q0D q11

q1 q20 q1D

q2 q2D q31

q3 q40 q3D

q4 q4D q51

q5 ↑ ↑



Primeri Tjuringovih mašina II

Primer. Pretpostavimo da su na traci zapisana tri bloka jedinica razdvojeni sa
po jednom nulom, i da se mašina nalazi na početku prvog bloka. Želimo da
dodamo jednu jedinicu na kraj drugog bloka i da transliramo treći za jedno
mesto udesno, i da se vratimo na početak prvog bloka.

0 1

q0 q1D q0D

q1 q21 q1D

q2 q3D

q3 q40

q4 q5D

q5 q61 q5D

q6 q7L q6L

q7 q8L q7L

q8 q9D q8L

q9 ↑ ↑



Tjuring-izračunljive funkcije I

Definicija. Neka je M Tjuringova mašina i n ⩾ 0. Definišemo parcijalnu n-arnu
funkciju f

(n)
M

∶ Nn → N na sledeći način:

▸ a⃗ ∈D
f
(n)
M

∶ ⇐⇒ M se zaustavlja za ulaz:

. . .00 1 . . .1
²
a1+1

0 1 . . .1
²
a2+1

0 . . .0 1 . . .1
²
an+1

00 . . .

pri čemu se na početku izračunavanja glava nalazi na početku prvog bloka
jedinica, i stanje na traci na kraju izračunavanja je oblika:

. . .00 1 . . .1
²
b+1

00 . . .

pri čemu se glava nalazi na početku ovog bloka.

▸ Ako su ispunjeni uslovi iz prethodne tačke, f (n)
M
(a⃗) ∶= b; u suporotnom,

f
(n)
M
↑.



Tjuring-izračunljive funkcije II

Definicija. Parcijalna funkcija f ∶ Nn ⇀ N je Tjuring izračunljiva ako postoji
mašina M takva da je f ≃ f (n)

M
.

Primer. Osnovna funkcija (λ) 0 je Tjuring izračunljiva:

0 1

q0 q11

Primer. Osnovna funkcija (λx) x + 1 je Tjuring izračunljiva:

0 1

q0 q11 q0L



Tjuring-izračunljive funkcije III

Primer. Osnovna funkcija (λx1x2x3) x2 je Tjuring izračunljiva:

0 1

q0 q2D q11

q1 q0D q10

q2 q3D q2D

q3 q5L q41

q4 q3D q40

q5 q5L q6L

q5 q7D q6L



Simulacija registarske mašine I

34. Teorema. RM-izračunljive funkcije su Tjuring-izračunljive.

Dokaz. Neka je f n-arna RM-izračunljiva funkcija, i neka je M program za
registarsku mašinu koji je izračunava. Neka je N ⩾ n broj takav da M ne govori
od registrima Rm, m > N . Tjuringova mašina koja računa funkciju f opisana je
na sledeći način:

1. Postavljanje trake da predstavlja stanje u registrima R1, . . . ,RN :
▸ Mašina prođe prvih n blokova jedinica, i doda još N − n jedinica

razmaknutih sa po jednom nulom:

. . .001 . . .1´¹¹¹¹¸¹¹¹¹¶
R1+1

01 . . .1´¹¹¹¹¸¹¹¹¹¶
R2+1

0 . . .01 . . .1´¹¹¹¹¸¹¹¹¹¶
Rn+1

0 1®
Rn+1+1

0 1®
Rn+2+1

0 . . .0 1®
RN+1

00 . . .

▸ Mašina se vrati na početak prvog bloka i započinje simulaciju prve naredbe.



Simulacija registarske mašine II

2. Ako je k-ta naredba R+i , l:
▸ Mašina prođe prvih i blokova jedinica, doda jedinicu na i-ti blok, i translira

preostalih N − i blokova za po jedno mesto udesno.
▸ Mašina se vrati na početak prvog bloka i započinje simulaciju l-te naredbe.

3. Ako je k-ta naredba R−i , l,m:
▸ Mašina prođe prvih i blokova jedinica, i proveri da li je i-ti blok samo jedna

jedinica. Ako nije:
▸ Mašina obriše poslednju jedinicu iz i-tog bloka i translira preostalih N − i

blokova za po jedno mesto ulevo.
▸ Mašina se vrati na početak prvog bloka i započinje simulaciju l-te naredbe.

Ako jeste:
▸ Mašina se vrati na početak prvog bloka i započinje simulaciju m-te naredbe.

4. Ako k-ta naredba ne postoji:
▸ Mašina prođe prvi blok jedinici, pobriše preostale blokove jedinica, vrati se

na početak prvog bloka i zaustavi se.



Šta za sada znamo?

Za sada smo dokazali:

{parcijlano izračunljive funkcije} ⊆ {RM-izračunljive funkcije}

⊆ {Tjuring-izračunljive funkcije}.



Kodiranje Tjuringove mašine I

Pretpostavimo da su q0, q1, . . . , qn stanja Tjuringove mašine, gde je qn

zaustavno stanje, što znači da τ(qn,0) i τ(qn,1) nisu definisani. Možemo da
pretpostavimo da je mašina u svim ostalim stanjima potpuno definisana, tj. ako
τ(qi, e) nije definisano stanje, možemo da ga dodefinišemo da τ(qi, e) = (qn, e).
Na taj način, qn je jedino zaustavno stanje. Ovakva mašina je u standardnom
obliku, i primetimo da za svaku mašinu možemo da pretpostavimo da je u
standardnom obliku (do na očigledne modifikacije mašine).



Kodiranje Tjuringove mašine II

Sada mašinu možemo da poistovetimo da nizom dužine 4n:

(k0, a0,m0, b0, . . . , ki, ai,mi, bi, . . . , kn−1, an−1,mn−1, bn−1),

gde ki,mi ∈ {0,1, . . . , n} i ai, bi ∈ {0,1,2,3}, i gde se (ki, ai,mi, bi)
interpretira kao:

τ(qi,0) = (qki , ai) i τ(qi,1) = (qmi , bi),

gde smo označili 2 = L i 3 =D.

Kod naše mašine je sada kod dodeljenog niza:

⌜k0, a0,m0, b0, . . . , ki, ai,mi, bi, . . . , kn−1, an−1,mn−1, bn−1⌝.



Kodiranje Tjuringove mašine III

35. Lema. Predikat TM(e) ∶ ⇔ „e je kod Tjuringove mašine” je primitivno
rekurzivan.

Dokaz. TM(e) je konjunkcija sledećih stvari:

▸ e > 0 i ost(ℓ(e),4) = 0;
▸ (∀i < kol(ℓ(e),4))((e)4i ⩽ kol(ℓ(e),4) ∧ (e)4i+2 ⩽ kol(ℓ(e),4));
▸ (∀i < kol(ℓ(e),4))((e)4i+1 ⩽ 3 ∧ (e)4i+3 ⩽ 3).



Vangovo kodiranje trake

Pretpostavimo da je u nekom trenutku traka u sledećem stanju:

. . .001e1 . . . en
↓
en+1 . . . , em100 . . .

Tada je ovo stanje trake, zajedno sa položajem glave, jedinstveno određeno sa
sledeća dva broja:

levo = (1e1 . . . en)2 i desni = (1em . . . en+1)2.



Praćenje izvršavanja

Pretpostavimo da je e kod Tjuringove mašine M. Želimo da ispratimo
izračunavanje funkcije f

(n)
M
= f (n)e .

Uočimo sledeće funkcije:

stanjen(e, k, a) = stanje mašine u k-tom koraku izračunavanja

za ulaz (γn
1 (a), . . . , γn

n(a))

levin(e, k, a) = levi broj u k-tom koraku izračunavanja

za ulaz (γn
1 (a), . . . , γn

n(a))

desnin(e, k, a) = desni broj u k-tom koraku izračunavanja

za ulaz (γn
1 (a), . . . , γn

n(a))

(U trenutku kada se završi izračunavanje, ako se završi, funkcije postaju
konstante.)
36. Lema. Prethodne funkcije su primitivno rekurzivne.

Dokaz. Na tabli. ♣



Nekoliko napomena

▸ Mašina se zaustavlja ako i samo ako postoji k tako da je
stanjen(e, k, a) = kol(ℓ(e),4).

▸ U tom slučaju glava je u korektnom položaju ako je za to k:

levin(e, k, a) = 0 i desnin(e, k, a) = oblika 2m+1 − 1.

▸ Predikat A(x) ∶ ⇔x je oblika 2m+1 − 1 je primitivno rekurzivan; zaista,
A(x)⇔x > 0 ∧ x + 1 = 2(µl<x) 2l>x.

▸ U tom slučaju rezultat izračunavanja je:

(µm < desnin(e, k, a)) desnin(e, k, a) + 1 = 2m+1.



Klinijev predikat

Definicija. Označimo sa Tn(e, a, y) predikat koji kaže:

▸ e je kod TM;

▸ y je kod izračunavanja koje se korektno završilo mašine sa kodom e za
n-ulaz sa kodom a, tj. y je kod niza oblika:

y = ⌜stanjen(e,0, a), levin(e,0, a), desnin(e,0, a), . . .

. . . , stanjen(e, h, a), levin(e, h, a), desnin(e, h, a)⌝,

koji zadovoljava dodatne uslove da se izračunavanje završilo i da je mašina
u korektnom stanju za izlaz.

37. Lema. Tn je primitivno rekurzivan predikat.

Dokaz. Na tabli. ♣



Klinijeva funkcija izlaza

Definicija. Neka je U(y) funkcija koja vraća rezultat izračunavanja za slučaj da
je Tn(e, a, y).

38. Lema. U je primitivno rekurzivna.

Dokaz. Na tabli. ♣



Teorema enumeracije

39. Teorema. Označimo sa Φn parcijalnu rekurzivnu funkciju:

Φn(e, a) ≃ U((µy) Tn(e, a, y)).

a. Za svaku Tjuring-izračunljivu n-arnu funkciju f postoji e tako da:

f(a1, . . . , an) ≃ Φn(e, γn(a1, . . . , an)).

b. Svaka Tjuring izračunljiva funkcija je parcijalno rekurzivna.

40. Zadatak. Dokazati da za svaku parcijalnu rekurzivnu n-arnu funkciju f

postoji beskonačno mnogo e tako da f(a1, . . . , an) ≃ Φn(e, γn(a1, . . . , an)).

Definicija. Funkciju Φn(e, γn(a1, . . . , an)) označavamo sa φ
(n)
e (a1, . . . , an).

Umesto φ
(n)
e (a1, . . . , an) kraće pišemo e ⋅ (a1, . . . , an).



Klinijeva Smn-teorema

41. Teorema. Za sve m,n ⩾ 1 postoji (m + 1)-arna primitivno rekurzivna
funkcija Sm

n takva da za sve e, x1, . . . , xm, y1, . . . , yn važi:

Sm
n (e, x1, . . . , xm) ⋅ (y1, . . . , yn) ≃ e ⋅ (x1, . . . , xm, y1, . . . , yn).

Dokaz. Na tabli. ♣



Klinijeva teorema rekurzije I

42. Teorema. Postoji primitivno rekurzivna unarna funkcija Fn takva da:

Fn(e) ⋅ x⃗ ≃ e ⋅ (x⃗, Fn(e)),

za sve e, x⃗, ∣x⃗∣ = n.

Dokaz. Uočimo funkciju G(z, y, x⃗) ≃ z ⋅ (x⃗, S1
n(y, y)); ona je parcijalno

rekurzivna, i neka je g neki njen kod:

g ⋅ (z, y, x⃗) ≃ G(z, y, x⃗).

Stavimo Fn(e) = S1
n(S1

n+1(g, e), S1
n+1(g, e)).



Klinijeva teorema rekurzije II

Imamo:

Fn(e) ⋅ x⃗ ≃ S1
n(S1

n+1(g, e), S1
n+1(g, e)) ⋅ x⃗

≃ S1
n+1(g, e) ⋅ (S1

n+1(g, e), x⃗)

≃ g ⋅ (e, S1
n+1(g, e), x⃗)

≃ G(e, S1
n+1(g, e), x⃗)

≃ e ⋅ (x⃗, S1
n(S1

n+1(g, e), S1
n+1(g, e))

≃ e ⋅ (x⃗, Fn(e)).

43. Posledica. Za svako n ⩾ 1 i svaku (n + 1)-arnu parcijalnu rekurzivnu
funkciju f postoji e tako da:

e ⋅ x⃗ ≃ f(x⃗, e).



Klinijeva teorema o fiksnoj tački

44. Teorema. Za svako n ⩾ 1 i svaku unarnu rekurzivnu funkciju F postoji e
tako da φ

(n)
e = φ(n)

F (e)
.

Dokaz. Neka je G(x⃗, e) ≃ F (e) ⋅ x⃗; G je parcijalno rekurzivna jer
G(x⃗, e) ≃ φ(n)

F (e)
(x⃗) ≃ Φn(F (e), γn(x⃗)). Po teoremi rekurzije postoji e tako da

e ⋅ x⃗ ≃ G(x⃗, e). Dakle, e ⋅ x⃗ ≃ F (e) ⋅ x⃗, tj. φ(n)e = φ(n)
F (e)

.



Primene I

45. Teorema. Postoji primitivno rekurzivna (m+1)-arna funkcija Km
n takva da:

Km
n (g1, . . . , gm, h) ⋅ x⃗ ≃ h ⋅ (g1 ⋅ x⃗, . . . , gm ⋅ x⃗),

gde ∣x⃗∣ = n.

Dokaz. Uočimo parcijalno rekurzivnu funkciju:

E(g1, . . . , gm, h, x⃗) ≃ h ⋅ (g1 ⋅ x⃗, . . . , gm ⋅ x⃗).

Neka je e kod funkcije E: e ⋅ (g1, . . . , gm, h, x⃗) ≃ E(g1, . . . , gm, h, x⃗).
Po Smn-teoremi važi:

Sm+1
n (e, g1, . . . , gm, h) ⋅ x⃗ = e ⋅ (g1, . . . , gm, h, x⃗).

Dakle, Km
n (y⃗, z) = Sm+1

n (e, y⃗, z) je željena funkcija.



Primene II

46. Teorema. Postoji primitivno rekurzivna binarna funkcija Rn takva da:

Rn(g, h) ⋅ (y, x⃗) ≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g ⋅ x⃗ ako y = 0

h ⋅ (y − 1,Rn(g, h) ⋅ (y − 1, x⃗), x⃗) ako y > 0
,

gde ∣x⃗∣ = n.

Dokaz. Uočimo parcijalno rekurzivnu funkciju:

E(g, h, y, x⃗, z) ≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g ⋅ x⃗ ako y = 0

h ⋅ (y − 1, z ⋅ (y − 1, x⃗), x⃗) ako y > 0
.

Neka je e njen kod: e ⋅ (g, h, y, x⃗, z) ≃ E(g, h, y, x⃗, z).
Po Smn-teoremi važi:

S2
n+2(e, g, h) ⋅ (y, x⃗, z) ≃ e ⋅ (g, h, y, x⃗, z).



Primene III

Po teoremi rekurzije imamo:

Fn+1(S2
n+2(e, g, h)) ⋅ (y, x⃗) ≃ S2

n+2(e, g, h) ⋅ (y, x⃗, Fn+1(S2
n+2(e, g, h))).

Označimo Rn(g, h) = Fn+1(S2
n+2(e, g, h)). Sada je:

Rn(g, h) ⋅ (y, x⃗) ≃ E(g, h, y, x⃗,Rn(g, h))

≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g ⋅ x⃗ ako y = 0

h ⋅ (y − 1,Rn(g, h) ⋅ (y − 1, x⃗), x⃗) ako y > 0
.



Primene IV

47. Teorema. Postoji primitivno rekurzivna unarna funkcija Mn takva da:

Mn(g) ⋅ x⃗ ≃ (µy)(g ⋅ (y, x⃗) = 0),

gde ∣x⃗∣ = n.

Dokaz. Uočimo parcijalnu rekurzivnu fuknkciju:

E(g, x⃗) ≃ (µy)(g ⋅ (y, x⃗) = 0).

Neka je e njen kod: e ⋅ (g, x⃗) ≃ E(g, x⃗).
Po Smn-teoremi imamo:

S1
n(e, g) ⋅ x⃗ ≃ e ⋅ (g, x⃗).

Dakle, Mn(z) = S1
n(e, z) je željena funkcija.



Primene V

48. Teorema. Akermanova funkcija je rekurzivna.

Dokaz. Setimo se: A(0, x) ∶= x + 1, A(n + 1,0) ∶= A(n,1), i
A(n + 1, x + 1) ∶= A(n,A(n + 1, x)).
Uočimo parcijalnu rekurzivnu funkciju:

E(n,x, z) ≃

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x + 1 ako n = 0

z ⋅ (n − 1,1) ako n > 0 i x = 0

z ⋅ (n − 1, z ⋅ (n,x − 1)) ako n,x > 0

.

Po teoremi rekurzije postoji a tako da: a ⋅ (n,x) ≃ E(n, z, a), tj:

a ⋅ (n,x) ≃

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x + 1 ako n = 0

a ⋅ (n − 1,1) ako n > 0 i x = 0

a ⋅ (n − 1, a ⋅ (n,x − 1)) ako n,x > 0

.

Sada je jasno A = φ(2)a .



Rekurzivni skupovi / odlučivost



Problem odlučivosti

Definicija. Neka je P ⊆ Nn. Problem „x⃗ ∈ P ” je odlučiv ako je P rekurzivan, tj.
ako je χP rekurzivna funkcija (tj. ako postoji Tjuringova mašina koja korektno
vraća odgovor na pitanje „Da li x⃗ ∈ P?”).



Halting problem

Definicija. Halting problem je dat podskupom:

H = {(e, a) ∣ (∃y) T1(e, a, y)}.

Dakle, halting problem je problem da li se Tjuringova mašina sa kodom e

korektno zaustavlja za ulaz a (ili da li je vrednost e ⋅ a definisana, tj. da li
(e, a) ∈DΦ1).

49. Teorema. Halting problem je neodlučiv.

Dokaz. Pretpostavimo suprotno, χH je rekurzivna. Neka je f parcijalna
rekurzivna funkcija takva da Df = {0} (npr. f(x) ≃ (µy) x + y = 0). Tada je
f(χH(e, a)) parcijalno rekurzivna funkcija, i po teoremi rekurzije postoji e0
tako da e0 ⋅ a ≃ f(χH(e0, a)). Odatle, za svako a:

e0 ⋅ a ↓ ⇐⇒ χH(e0, a) = 0 ⇐⇒ e0 ⋅ a ↑ .

Kontradikcija.



Standardan problem

Definicija. Standardan problem je dat podskupom:

K = {x ∣ (∃y) T1(x,x, y)} = {x ∣ x ⋅ x ↓}.

50. Teorema. Standardan problem je neodlučiv.

Dokaz. Pretpostavimo suprotno, χK je rekurzivna. Neka je f parcijalna
rekurzivna funkcija takva da Df = {0}. Tada je f(χK(x)) parcijalno rekurzivna
funkcija, i neka je e njen kod: e ⋅ x ≃ f(χK(x)). Tada:

e ⋅ e ↓ ⇐⇒ χK(e) = 0 ⇐⇒ e ⋅ e ↑ .

Kontradikcija.



Svođenje odlučivosti

Definicija. Neka je P ⊆ Nn i Q ⊆ Nm. Problem P se svodi na problem Q,
P ⩽m Q, ako postoje n-arne rekurzivne funkcije f1, . . . , fm takve da:

x⃗ ∈ P ⇐⇒ (f1(x⃗), . . . , fm(x⃗)) ∈ Q.

Primer. K ⩽m H:

x ∈ K ⇐⇒ x ⋅ x ↓ ⇐⇒ (x,x) ∈H,

pa funkcije f1 = f2 = π1
1 svedoče svođenje.

51. Teorema. Ako P ⩽m Q i Q je odlučiv, onda je i P odlučiv.

Dokaz. χP = χQ(f1, . . . , fm).

Iz K ⩽m H i K je neodlučiv sledi da je H neodlučiv.
(Ovaj dokaz neodlučivosti halting problema ne koristi teoremu rekurzije.)



Karakterizacija rekurzivnosti

52. Teorema. Neka je P ⊆ N beskonačan skup. Sledeći iskazi su ekvivalentni:

(1) P je rekurzivan (odlučiv);

(2) postoji rastuća rekurzivna funkcija f takva da je P = Im(f);

(3) postoji neopadajuća rekurzivna funkcija f takva da je P = Im(f).

Dokaz. Na tabli. ♣

53. Teorema. Neka je P ⊆ N. Sledeći iskazi su ekvivalentni:

(1) P je rekurzivan;

(2) P = ∅ ili postoji neopadajuća rekurzivna funkcija f takva da je P = Im(f).

Dokaz. Na tabli. ♣



Rajsova teorema I

Definicija. Skup P ⊆ N je indeksni ako:

e ∈ P ∧ φe = φe′ Ô⇒ e′ ∈ P.

54. Teorema. Ako je P rekurzivan, indeksni skup, onda je P = ∅ ili P = N.

Dokaz. Pretpostavimo P je indeksni, P ≠ ∅ i P ≠ N. Ako je P indeksni skup,
onda je i P c indeksni skup, pa, bez umanjenja opštosti, možemo da
pretpostavimo da indeksi prazne funkcije pripadaju P c. Neka e ∈ P . Uočimo
funkciju:

F (x, y) ≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e ⋅ y ako x ⋅ x ↓

↑ inače

Funkcija F je parcijalno rekurzivna:

F (x, y) ≃ Φ1(e, y) + 0 ⋅Φ1(x,x);

neka je f njen kod: f ⋅ (x, y) ≃ F (x, y).



Rajsova teorema II

Po Smn-teoremi je: S1
1(f, x) ⋅ y ≃ f ⋅ (x, y) ≃ F (x, y). Primetimo:

x ∈ K ⇐⇒ x ⋅ x ↓ ⇐⇒ S1
1(f, x) ∈ P.

Dokaz druge implikacije je:

▸ ako x ⋅ x ↓, onda S1
1(f, x) ⋅ y ≃ e ⋅ y, pa e ∈ P povlači S1

1(f, x) ∈ P ;

▸ ako x ⋅ x ↑, onda S1
1(f, x) je kod prazne funkcije, pa S1

1(f, x) ∈ P c.

Dakle, K ⩽m P , pa je P neodlučiv (nije rekurzivan).



Primer

Dokazati da P = {e ∣ φe je totalna} nije rekurzivan.

I način. Očigledno P ≠ ∅, P ≠ N i P je indeksni; po Rajsovoj teoremi P nije
rekurzivan.

II način. Dokazaćemo K ⩽m P . Uočimo parcijalno rekurzivnu funkciju:

F (x, y) ≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ako x ⋅ x ↓

↑ ako x ⋅ x ↑
;

neka je f njen kod. Po Smn-teoremi: S1
1(f, x) ⋅ y ≃ f ⋅ (x, y) ≃ F (x, y).

▸ Ako x ⋅ x ↓, S1
1(f, x) je kod Z(y), pa S1

1(f, x) ∈ P .

▸ Ako x ⋅ x ↑ S1
1(f, x) je kod prazne funkcije, pa S1

1(f, x) ∈ P c.

Dakle, x ∈ K ⇐⇒ x ⋅ x ↓ ⇐⇒ S1
1(f, x) ∈ P .



Rekurzivno nabrojivi skupovi / parcijalna odlučivost



Rekurzivno nabrojivi skupovi I

Definicija. Skup P ⊆ N je rekurzivno nabrojiv (parcijalno odlučiv) ako je P = ∅
ili ako postoji unarna primitivno rekurzivna funkcija f takva da Im(f) = P .
U drugom slučaju važi P = {f(0), f(1), f(2), . . .}, i odatle naziv nabrojiv skup.

55. Teorema. Neka P ⊆ N. Sledeći iskazi su ekvivalentni:

(1) P je rekurzivno nabrojiv;

(2) P = ∅ ili postoji k-arna primitivno rekurzivna funkcija f t.d. Im(f) = P ;

(3) postoji unarna parcijalno rekurzivna funkcija f t.d. Im(f) = P ;

(4) postoji k-arna parcijalno rekurzivna funkcija f t.d. Im(f) = P ;

(5) postoji unarna parcijalno rekurzivna funkcija f t.d. Df = P ;

(6) postoji rekurzivan skup R ⊆ N2 t.d. P (x) ⇐⇒ ∃yR(x, y);

(7) postoji rekurzivan skup R ⊆ Nk+1 t.d. P (x) ⇐⇒ ∃ȳ R(x, ȳ);

(8) postoji primitivno rekurzivan skup R ⊆ N2 t.d. P (x) ⇐⇒ ∃yR(x, y);

(9) postoji primitivno rekurzivan skup R ⊆ Nk+1 t.d. P (x) ⇐⇒ ∃ȳ R(x, ȳ).

Dokaz. Na tabli. ♣



Rekurzivno nabrojivi skupovi II

Definicija. Skup P ⊆ Nk je rekurzivno nabrojiv ako postoji parcijalno rekurzivna
funkcija f takva da je Df = P .

Definicija. W
(k)
e ∶=D

φ
(k)
e

i E(k)e ∶= Im(φ(k)e ). Za n = 1 pišemo We i Ee.

Dakle, rekurzivno nabrojivi skupovi su tačno skupovi oblika W
(n)
e .

56. Teorema. Sledeći iskazi su ekvivalentni za P ⊆ Nk:

(1) P je rekurzivno nabrojiv;

(2) postoji rekurzivan skup R ⊆ Nk+1 t.d. P (x) ⇐⇒ ∃yR(x̄, y);

(3) postoji rekurzivan skup R ⊆ Nk+l t.d. P (x̄) ⇐⇒ ∃ȳ R(x̄, ȳ);

(4) postoji primitivno rekurzivan skup R ⊆ Nk+1 t.d. P (x̄) ⇐⇒ ∃yR(x̄, y);

(5) postoji primitivno rekurzivan skup R ⊆ Nk+l t.d. P (x̄) ⇐⇒ ∃ȳ R(x̄, ȳ).



Primeri

Primer. H i K su rekurzivno nabrojivi.

Primer. P = {e ∣ φe je totalna} nije rekurzivno nabrojiv.

57. Teorema. Ako P ⩽m Q i Q je rekurzivno nabrojiv, onda je i P rekurzivno
nabrojiv.

Primer. Q = {e ∣ φe ≃ Z} nije rekurzivno nabrojiv.



Postova teorema

58. Teorema. Skup P ⊆ Nk je rekurzivan ako i samo ako su i P i P c rekurzivno
nabrojivi.

Dokaz. Na tabli. ♣

Primer. Hc i Kc nisu rekurzivno nabrojivi.

Primer. P = {e ∣We je konačan} nije rekurzivno nabrojiv.



Rajs-Šapirova teorema

Definicija. Neka su f i g parcijalno rekurzivne k-arne funkcije. Sa f ⊆ g
označavamo da je Df ⊆Dg i za svako x̄ ∈Df važi f(x̄) = g(x̄).
Funkcija f je konačna ako je Df konačan.

59. Teorema. Neka je F neka familija parcijalno rekurzivnih k-arnih funkcija i
IF = {e ∣ φ(k)e ∈ F}. Pretpostavimo da je IF rekurzivno nabrojiv. Tada važi:

f ∈ F ⇐⇒ postoji konačna funkcija f0 ∈ F tako da f0 ⊆ f.

Dokaz. Na tabli. ♣

Komentar. Obrat Rajs-Šapirove teoreme ne važi.

Komentar. Rajsova teorema je specijalan slučaj Rajs-Šapirove teoreme.



m-svođenje



m-svođenje

Definicija. Neka A ⊆ Nk i B ⊆ Nl. Skup A se svodi na B ako postoje
rekurzivne k-arne funkcije F0, . . . , Fl−1 tako da:

x̄ ∈ A ⇐⇒ (F0(x̄), . . . , Fl−1(x̄)) ∈ B.

Za skupove A ⊆ Nk i B ⊆ Nl pišemo A ⩽m B ako se A svodi na B.

Komentar. ⩽m je refleksivna i tranzitivna (preduređenje).

Definicija. A i B su m-ekvivalentni, A ≡m B, ako A ⩽m B i B ⩽m A.

Komentar. ≡m je relacija ekvivalencije.

Komentar. Za A ⊆ Nk imamo A ≡m {γk(x̄) ∣ x̄ ∈ A} ⊆ N, pa su relacije ⩽m i
≡m potpuno određene na podskupovima od N.
Od sada posmatramo samo podskupove od N.



m-stepeni

Definicija. m-stepen skupa A, u oznaci dm(A), je ≡m-klasa skupa A.

Komentar. Relacija ⩽m određuje parcijalno uredjenje među stepenima.

60. Tvrđenje.

a. A ⩽m B akko Ac ⩽m Bc.

b. dm(∅) = {∅} i dm(N) = {N}.

c. Stepeni dm(∅) i dm(N) su minimalni u uredjenju ⩽m.

d. Za svaki A ≠ ∅,N, dm(∅), dm(N) <m dm(A).

61. Tvrđenje. Neka je A ≠ ∅,N rekurzivan skup.

a. dm(A) je familija svih rekurzivnih skupova različitih od ∅ i N.

b. dm(A) je najmanji stepen različit od dm(∅) i dm(N).



m-kompletnost

Definicija. Neka je F familija podskupova od N. Element A ∈ F je m-potpun u
F ako za svaki X ∈ F važi X ⩽m A (A je ⩽m-najveći u F).

62. Teorema. K je m-potpun za rekurzivno nabrojive skupove.

63. Tvrđenje. Neka A,B ⊆ N i neka je A ∗B = {2x ∣ x ∈ A} ∪ {2x + 1 ∣ x ∈ B}.
Tada A ∗B je supremum od A i B u smislu preduređenja ⩽m.

64. Tvrđenje. Neka je A ≠ ∅,N rekurzivno nabrojiv i neka je R ≠ ∅,N
rekurzivan skup. Tada je R infimum od A i Ac.



Produktivni i kreativni skupovi I

Definicija.

a. Skup P ⊆ N je produktivan ako postoji parcijalno rekurzivna funkcija f ,
produktivna funkcija za P , takva da:

(∀e)(We ⊆ P → f(e) ∈ P ∖We).

b. Skup C ⊆ N je kreativan ako je rekurzivno nabrojiv i Cc je produktivan, tj.
postoji parcijalno rekurzivna funkcija f , kreativna funkcija za C, takva da:

(∀e)(We ∩C = ∅ → f(e) ↓ ∧ f(e) ∉ C ∪We).

Primer.

a. Kc je produktivan sa produktivnom funkcijom f(x) = x.

b. K je kreativan.



Produktivni i kreativni skupovi II

Tvrđenje. Kreativni skupovi nisu rekurzivni.

65. Teorema.

a. Produktivan skup ima (totalno) rekurzivnu produktivnu funkciju.

b. Ako je P produktivan, onda P nije rekurzivno nabrojiv.

c. Ako je P produktivan, onda P sadrži beskonačan rekurzivno nabrojiv
podskup.

d. Ako je P produktivan i P ⩽m S, onda je i S produktivan.

e. (Majhil) P je produktivan ako i samo ako Kc ⩽m P .

Posledica. Skup je kreativan ako i samo ako je m-potpun za rekurzivno
nabrojive skupove.



Prosti skupovi

Definicija. Skup P je prost ako je rekurzivno nabrojiv, P c je beskonačan i P c

ne sadrži beskonačan rekurzivno nabrojiv podskup.

66. Tvrđenje. Prost skup nije rekurzivan i nije kreativan (nije m-potpun za
rekurzivno nabrojive skupove).

Komentar. Ako postoji prost skup P , za njega važi
dm(R) <m dm(P ) <m dm(K).

67. Teorema. Skup S = {(e, x) ∣ x ∈We ∧ x > 2e} je prost. Dakle, prosti
skupovi postoje.



Kolmogorovljevi slučajni brojevi

Definicija.

a. Funkcija k(x) ∶=min{e∶φe(0) = x} zove se Kolmogorovljeva funkcija.

b. x je Kolmogorovljev slučajan broj ako x ⩽ k(x).

Komentar. k(x) je totalna funkcija.

68. Teorema. (Kolmogorov) Skup {x∶x > k(x)} je prost.



Aritmetička hijerarhija



Aritmetičke klase I

Definicija. Za n ⩾ 0 definišemo klase Σn i Πn aritmetičkih relacija sa:

a. Σ0 i Π0 su klase primitivno rekurzivnih relacija;

b. S(x⃗) ∈ Σn+1 ako postoji S′(x⃗, y) ∈ Πn tako da:

S(x⃗) ⇐⇒ ∃y S′(x⃗, y);

c. S(x⃗) ∈ Πn+1 ako postoji S′(x⃗, y) ∈ Σn tako da:

S(x⃗) ⇐⇒ ∀y S′(x⃗, y).

d. Klasu ∆n definišemo sa ∆n ∶= Σn ∩Πn za sve n ⩾ 0.



Aritmetičke klase II

Primeri.

a. Σ0 = Π0 =∆0 = primitivno rekurzivni skupovi;

b. Σ1 = rekurzivno nabrojivi skupovi;

c. Π1 = komplementi rekurzivno nabrojivih skupova;

d. ∆1 = rekurzivni skupovi.



Aritmetičke klase III

69. Lema.

a. Za svako n ⩾ 0, S ∈ Σn ⇐⇒ Sc ∈ Πn.

b. Za svako n ⩾ 0, ako je S ∈ Σn (S ∈ Πn), onda je i S ×N ∈ Σn (S ×N ∈ Πn).

c. Za svako n ⩾ 1, ako S(y1, . . . , ym) ∈ Σn(Πn) i ako su f1, . . . , fm ∶ Nk → N
(totalne) rekurzivne, onda i S(f1(x⃗), . . . , fm(x⃗)) ∈ Σn(Πn). Ako su
funkcije fi primitivno rekurzivne, onda prethodno važi i za n = 0.

d. Za svako n ⩾ 0, Σn i Πn su zatvoreni za konačne preseke i unije.

e. Za svako n ⩾ 0, Σn i Πn su zatvoreni za ograničene kvantifikacije.

f. Za svako n ⩾ 1, Σn je zatvorena za (neograničenu) egzistencijalnu, a Πn

za (neograničenu) univerzalnu kvantifikaciju.



Aritmetičke klase IV

70. Teorema. Za svako n ⩾ 1, ako S ⩽m R i R ∈ Σn(Πn), onda i S ∈ Σn(Πn).

71. Teorema. Za svako n ⩾ 0, Σn ∪Πn ⊆∆n+1.
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Σ0

Π0

∆1

Σ1

Π1

∆2

Σ2

Π2

∆3

. . .

. . .

=

=

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆



Klinijeva teorema o normalnoj formi

Definicija. Za n, k ⩾ 1 definišemo Σn-relacije E
(k)
n ⊆ Nk+1 sa:

E(k)n (z, x⃗) ∶ ⇐⇒ (∃y1)(∀y2) . . . (∀yn−1)(∃t) Tn+k−1(z, γn+k−1(x⃗, y⃗), t)

ako je n neparno i:

E(k)n (z, x⃗) ∶ ⇐⇒ (∃y1)(∀y2) . . . (∃yn−1)(∀t) ¬Tn+k−1(z, γn+k−1(x⃗, y⃗), t)

ako je n parno, gde x⃗ = (x1, . . . , xk) i y⃗ = (y1, . . . , yn−1).

72. Teorema. Neka je n ⩾ 1.

a. Za svaku Σn-relaciju S ⊆ Nk postoji broj e takvo da:

S(x⃗) ⇐⇒ E(k)n (e, x⃗).

b. Za svaku Πn-relaciju S ⊆ Nk postoji broj e takvo da:

S(x⃗) ⇐⇒ ¬E(k)n (e, x⃗).



Teorema o hijerarhiji

73. Teorema.

a. Za svako n ⩾ 1, E(1)n ∈ Σn ∖Πn.

b. Sve inkluzije u aritmetičkoj hijerarhiji su stroge.

74. Teorema. Za sve n, k ⩾ 1, E(k)n je m-potpuna za Σn, pa je ¬E(k)n je
m-potpuna za Πn.



Varijante Tjuringove mašine



Tjuringove mašine I

Naša Tjuringova mašina je bila opisana na sledeći način:

▸ beskonačna traka u oba smera;

▸ svako polje može da sadrži 0 (polje je prazno) ili 1 (polje je popunjeno);

▸ konačan skup stanja Q, sa istaknutim početnim stanjem q0;

▸ rad je određen parcijalnom funkcijom Q × {0,1} → Q × {0,1, L,D}.

Ekvivalentan koncept dobijamo ako tražimo:

▸ rad je određen parcijalnom funkcijom Q × {0,1} → Q × {0,1} × {L,D};

ili:

▸ rad je određen parcijalnom funkcijom Q × {0,1} → Q × {0,1} × {L,D,N},
gde N znači „ne pomeraj se”.



Tjuringove mašine II

Opštiji koncept Tjuringove mašine opisan je sa:

▸ beskonačna traka u oba smera;

▸ alfabet ulaza Σ je konačan skup koji ne sadrži prazan znak b;

▸ alfabet trake Γ je konačan skup takav da b ∈ Γ i Σ ⊆ Γ;

▸ konačan skup stanja, sa istaknutim početnim stanjem q0;

▸ rad je određen funkcijom Q × Γ→ Q × Γ × {L,D} ili
Q × Γ→ Q × Γ × {L,D,N}.

I ovakav koncept je ekvivalentan polaznoj mašini, i takođe ako stavimo:

▸ traka ima levi početak.



Tjuringove mašine III

Tjuringova mašina sa više traka opisana je sa:

▸ k traka, od kojih svaka ima svoju glavu;

▸ alfabeti ulaza i trake, i stanja kao i ranije;

▸ rad je određen funkcijom Q × Γk → Q × Γk × {L,D,N}k.

I ovakav koncept je ekvivalentan polaznoj mašini.



Nedeterministička Tjuringova mašina

Nedeterministička Tjuringova mašina opisana je sa:

▸ traka, alfabeti, stanja;

▸ rad je određen binarnom relacijom između Q × Γ i Q × Γ × {L,D}, tj.
funkcijom Q × Γ↦ P(Q × Γ × {L,D}).

Nedeterministička Tjuringova mašina ekvivalentna je Tjuringovoj mašini.



Vremenska složenost



Notacija O

Definicija. Neka su f, g ∶ N→ R+. Kažemo f = O(g) ako postoje n0 ∈ N i c > 0
takvi da f(n) ⩽ cg(n) za sve n ⩾ n0.

Primer. Neka je f ∈ N[n]. Tada je f = O(nk) ako i samo ako deg(f) ⩽ k.



Vremenska složenost

Definicija. Neka je M Tjuringova mašina koja se zaustavlja za sve ulaze.
Vremenska složenost mašine M je funkcija tM ∶ N→ N, gde je tM(n)
maksimalan broj koraka koji M izvodi za ulaz dužine n.

75. Teorema. Neka je t takva da t(n) ⩾ n, i neka je M Tjuringova mašina sa
više traka takva da tM = O(t). Tada postoji mašina N sa jednom trakom koja
simulira rad M takva da tN = O(t2).



Vremenska složenost nedeterminističke mašine

Definicija. Neka je M nedeterministička Tjuringova mašina koja se zaustavlja
bez obzira na izbor grane izračunavanja. Vremenska složenost mašine M je
funkcija tM ∶ N→ N, gde je tM(n) maksimalan broj koraka koji M izvodi u bilo
kojoj grani za ulaz dužine n.

76. Teorema. Neka je t takva da t(n) ⩾ n, i neka je M nedeterministička
Tjuringova mašina takva da tM = O(t). Tada postoji Tjuringova mašina N

koja simulira rad M takva da tN = O(2t).
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