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Aritmeticke funkcije



Aritmeticke funkcije |

Oznake.
» N:={0,1,2,3,... };
» N":={(a1,a2,...,an) | (Vi=1,...,n) a; €N}, zan>1,
» specijalno, N° = {()};

» N! je prirodno identifikovan sa N.

Definicija. n-arna parcijalna aritmeticka funkcija, f : N — N, je bilo koja
funkcija f: Dy — N gde Dy ¢ N™; Dy je domen funkcije f.
Specijalno, ako je Dy =N", onda je f totalna.

Komentar. Ako je f data nekim aritmeti¢kim izrazom (npr. = —y ili %), Dy je

najve¢i podskup od odgovarajuéeg N" za koji je izraz definisan.

Komentar. Totalna 0-arna funkcija je samo broj.



Aritmeticke funkcije I

Oznake. Neka je f n-arna funkcija i d € N".
> f(@)t zna& a¢ Dy;
> f(@)) zna& de Dy;
» f(@)l=b znaci deDyi f(a)=b.

A-notacija. Ako je f aritmeticki izraz i & = (z1,...,2n), (AZ) f je oznaka za

n-arnu funkciju Z — f(Z).

Primer. Posmatrajmo izraz z + 2y.
> z+2y (ili éak (A\)z+2y) oznacava broj (konstantu) x + 2y;

> (Azy)x +2y oznaava binarnu funkciju (z,y) — z + 2y;

v

(Ayz)x +2y oznacava binarnu funkciju (y,x) — x + 2y;

v

(Ax)z +2y oznaava unarnu funkciju z — x + 2y (y je parametar);

v

(Azyz) xz +2y oznacava ternarnu funkciju (z,y, z) — = + 2y.



Definicija kompozicijom

Definicija. Neka su g1,...,gm n-arne i h m-arna funkcija. DefiniSemo njihovu
kompoziciju da bude n-arna funkcija f data sa:

(@) = h(g1(2),92(%), ..., gm(Z)).
Pisemo f = h(g1, g2,

ey Gm).
Komentar. Primetimo:

m

ZeDy <= Ze(1Dy A (91(2),92(%),...,9m(2)) € Dn
i=1

Specijalno, kompozicija totalnih funkcija je totalna.




Definicija primitivnom rekurzijom

Definicija. Neka su g n-arna i h (n +2)-arna funkcija. Neka je f (n+1)-arna

funkcija koja zadovoljava:

> £(0,2) = g(2);

> fly+1,2) = h(y, f(y, %), 2).
Za f kazemo da je dobijena primitivnom rekurzijom od g i h; pisemo
f = xec(g, h).

Komentar. Primetimo (0,Z) € Dy <= Z € Dy, i

(y+1,8) € Dy <> (y,2) € Dy A (y, f(y,7),) € Di.

Indukcijom lako vidimo da (y,Z) € Dy povlaéi (z,2) € Dy za sve z < y. Takode,
funkcija dobijena primitivnom rekurzijom od totalnih funkcija je totalna.



Definicija minimizacijom

Definicija. Neka je g (n+ 1)-arna funkcija. Definisemo n-arnu funkciju f sa:

[(@) =min{y | (Vz<y) g(z,2) | A g(y,Z) |=0}.

Za f kazemo da je dobijena minimizacijom od g; pisemo

f(@) = (ny)(9(y, ) = 0).
Komentar. Primetimo:

FeDy = (3y)((Y2<y) (2:7) e Dy A gly,7) =0).
Cak i ako je funkcija ¢ totalna, f ne mora biti.

Primer. Neka je f(z):= (uy)z+y =0, tada je f(0) =0, ali f(n) 1 za sve
n>0.
-y

T2y
i f(z) = (ky)(g(y,z) = 0). Tada je

z
Primer. Neka je g(y,z) =
<y

f =idy.



Karakteristi€na funkcija

Definicija. Neka je S ¢ N". Karakteristicna funkcija skupa S je totalna n-arna
funkcija xs : N* — N data sa:

. 1 ZeS
xs (%) = .
0 z¢S




Primitivno rekurzivne funkcije i relacije



Osnovne aritmeticke funkcije

Definicija. Osnovne aritmeticke funkcije su:
> konstanta 0 = (\)0;

> sledbenik S := (Az)x +1;

> projekcije mi' = (Ax1z2...Tn) xs, za sve 1 <i < n.

Komentar. Sve osnovne funkcije su totalne.




Primitivno rekurzivne funkcije

Definicija. Klasa primitivno rekurzivnih funkcija je najmanja klasa koja sadrzi
osnovne funkcije i zatvorena je za kompoziciju i primitivnu rekurziju.
Alternativno, primitivno rekurzivne funkcije mozemo da definisemo rekurentno
na sledeci nacin:

> osnovne funkcije su primitivno rekurzivne;

> ako su m-arne gi,...,gm i m-arna h primitivno rekurzivne, onda je i

h(g1,...,gm) primitivno rekurzivna;

> ako su m-arna g i (n +2)-arna h primitivno rekurzivne, onda je i rec(g, h)

primitivno rekurzivna;

> primitivno rekurzivne funkcije dobijaju se primenom prethodnih pravila
konaéno mnogo puta.

1. Tvrdenje. Primitivno rekurzivne funkcije su totalne.



Primeri primitivno rekurzivnih funkcija |

a. Konstanta k = (A) k je primitivno rekurzivna jer k= S(S(...S(0)...)).
[ —
k komada

b. Unarna konstantna funkcija Cx = (Az) k je primitivno rekurzivna jer
Cy, = rec(k,m3).
e C oznacdavamo i sa Z.

c. m-arna konstantna funkcija C} := (Az1 ...z, )k je primitivno rekurzivna
jer Cy = Cr(m?).

d. Ako je f primitivno rekurzivna n-arna funkcija i
o:{l,...,n} > {1,...,m},onda jei (Az1...2m) f(Toq1),--->To(n))
primitivno rekurzivna jer je jednaka f(7J 1y, Tg(n))-



Primeri primitivno rekurzivnih funkcija Il

e. Sabiranje (Ayz)y + x je primitivno rekurzivno jer:
> 0+z=x=ni(z)i
* (y+ 1) +a=S(y,x) = S(n3(y,y + z,2)),
pa je (\yx)y + = = rec(ri, S(73)).
f. Mnozenje (Ayx) yx je primitivno rekurzivno jer:
> 0-x=0=Z(z)i
> (y+ Dz =yz+z=(Qyz)y+2)(73(y,yz, ), 73y, yz, 7)),
pa je (Aye) yo = rec(Z, (\ya) y + 2)(wd, 7).

g. Prethodnik P(y) := Y je primitvno rekurzivna jer:
y-1 y>0

> P(0)=0i
> P(y+1) =y =n3(y, P(y)),

pa je P =rec(0,73).

2. Zadatak. Dokazati da se sabiranje ne moze definisati koriste¢i samo osnovne
funkcije i kompoziciju.



Primeri primitivno rekurzivnih funkcija IlI

h. Stepenovanje (Ayx)z¥ je primitivno rekurzivna.
NB. 0°:=1.
. . T-Yy T2Y - .
i. Odseceni minus (Azy)z vy := je primitivno rekurzivna.
0 T<y

j. (Azy) min(z,y) i (Azy) max(z,y) su primitivno rekurzivne.

, 0 z=0. o
k. Signum (A\z)sgn(z) := i obratni signum
1 >0
1 =0
(Az)sgn(x) := su primitivno rekurzivne.
z>0

|. Apsolutna razlika (Azy) |z — y| je primitivno rekurzivna.
m. Faktorijel (Az) z! je primitivno rekurzivna.

NB. 0!:=1.

3. Zadatak. Dokazati h-m.



Primeri primitivno rekurzivnih funkcija IV

n. Funkcije:

y=0 .
kol(z,y) := i
koliénik pri deljenju x say vy >0
=0
ost(z,y) = !
ostatak pri deljenju zsay y>0
su primitivno rekurzivne.

4. Zadatak. Dokazati n.




Primitivno rekurzivne relacije

Definicija. n-arna relacija (predikat) je bilo koji podskup R ¢ N™; njen
komplement je relacija R° =N" \ R.

Relacija R je primitivno rekurzivna ako je x g primitivno rekurzivna funkcija.

5. Zadatak. Ako su R i S primitivno rekurzivne relacije, onda sui R°, Rn S,
RuS i R\ S primitivno rekurzivne.

6. Zadatak. Sledece relacije su primitivno rekurzivne:

a. {(z,y)z=y}i{(z,y)z =y}
b. {(z,y):z<y}i{(z,y)z<yh
c {(@,y)z|yh

d. {z:z je prost broj}.



Ograniceni operatori |

7. Tvrdenje. Neka je f (n + 1)-arna primitivno rekurzivna funkcija. Tada su:

a. (Ayf) Zt<y f(tvi)'

b. (AyZ) i<y f(L,2);

NB. Y, o—=0i[l;co—:=1;
c. (Ayz)((pt <y) f(t,2) = 0), gde:
. min{t <y: f(¢,Z) =0} skup levo # &;
((ut <y) f(t,2) =0) =={ o ;
y inace

su primitivno rekurzivne funkcije.

Dokaz. Na tabli. &

Za funkcije u prethodnom tvrdenju kazemo da su dobijene ograni¢enom

sumom, ogranicenim proizvodom, odnosno ograni¢enom minimizacijom.



Ograniceni operatori Il

8. Posledica. Neka je R (n + 1)-arna primitivno rekurzivna relacija. Tada su:
a. {(y,2): (3t <y) R(t,2)};
b. {(y,2):(Vt <y) R(t, 2)};

c. (Ayz)((ut <y) R(t,2)), gde:

~ min{t <y: R(¢,Z)} skup levo # @;
(ut <y) R(t,2) = { ;
Y

inace
primitivno rekurzivne relacije, odnosno funkcija.
Dokaz. Na tabli. &

)




Definicija po slu¢ajevima

9. Tvrdenje. Funkcija (Azyz) C(z,y;z) data sa:

x z=0
C(x,y;2) =={

y z>0

je primitivno rekurzivna.

Dokaz. Na tabli. &

10. Posledica. Neka su g, h n-arne primitivno rekurzivne funkcije i R n-arna
primitivno rekurzivna relacija, onda je funkcija f data sa:

o) {g(f) ()
hz) -R(z)

primitivno rekurzivna.

Dokaz. Na tabli. &



11. Zadatak.

a. Neka je f binarna primitivno rekurzivna funkcija. Dokazati da je i

(Az) ¥,y f(t,x) primitivno rekurzivna.

b. Neka je (pn) niz prostih brojeva. Dokazati da je funkcija (An) pn

primitivno rekurzivna.

c. Neka su g1, ..., gr n-arne primitivno rekurzivne funkcije i R1,..., Ri-1

n-arni primitivno rekurzivni predikati. Dokazati da je funcija data sa:

g1(2)
g2(2)
g3(2)

gr-1(Z)

g (%)

primitivno rekurzivna.

Ri(Z)
-R1(Z) A R2(Z)
-R (f) A —\RQ(Q?') A R3 (f)

-R: (f) A —uRz(i’) A =R3 (:ﬁ) Ao ANRpq (Lf’)
-R (i:‘) N —uRz(ﬁ'Z) A -Rg3 (f) Ao A=Rp_q (fﬁ)



Kodiranje



Kodiranje parova

12. Tvrdenje. Neka je v(z,y) =22y +1) - 1.
a. v je primitivno rekurzivna bijekcija v : N? > N.
b. y1(t) := 7% oy (t) i y2(t) := w3 o y~*(t) su primitivno rekurzivne funkcije
Y1,7v2 : N - N.
¢ y(m(t),72(t) =t. n(v(z,y)) =z i v2(y(z,y)) =y.
Dokaz. Na tabli. &

Definicija. Broj vy(z,y) je Gedelov kod/kod/indeks para (z,y).
Funkcija « je (Gedelovo) kodiranje parova.

Funkcije 1 i 72 su funkcije dekodiranja.



Primena kodiranja

13. Zadatak. Neka je (F,) Fibonacijev niz: Fy:=0, F1:=1, Frio:= Fpi + Fy

za n € N. Dokazati da je f(n) := F,, primitivno rekurzivna.

Komentar. Funkcija f(n) se ne moze definisati ,obiénom" primitivnom
rekurzijom jer sledeéi ¢lan ne zavisi samo prethodne vrednosti, nego od

prethodne dve vrednosti.

Ideja. Uocimo funkciju g(n) :=v(f(n), f(n+1)). Slede¢i €lan niza g(n) zavisi
samo od prethodnog, pa se moze definisati primitivnom rekurzijom.

Skica resenja. Definisimo funkciju g(n) primitivnom rekurzijom sa:

g(0) = ~(0,1);
g(n+1) Y(72(g(n)), y1(g(n)) +2(g(n)) ).

Lako vidimo da je g(n) primitivno rekurzivna. Kako je f(n) =~v1(g(n)), i

funkcija f je primitivno rekurzivna. #



Teorema o simultanoj rekurziji

14. Teorema. Neka su g1, g2 m-arne primitivno rekurzivne funkcije i h1, ho

(n + 3)-arne primitivno rekurzivne funkcije. Definisimo (n + 1)-arne funkcije

f1, fa sa:

f1(0,%)
f2(0,2)
fi(y+1,2)
f2(y+1,%)

g1(2);
92(2);
ha(y, f1(y, @), f2(y, 2), 2);
h2(y, f1(y, ), f2(y, %), Z).

Funkcije f1 i f2 su dobro definisane i primitivno rekurzivne.

Dokaz. Na tabli. &

15. Zadatak. Dokazati da je (An) F,, primitivno rekurzivna koristeci prethodnu

teoremu.



Kodiranje n-torki

Definicija. Definisemo funkcije " : N - N, n > 1, rekurentno sa: v' = idy i:
n+1

Y (@,y) = (@), v )
Definisimo funkcije 7" : N > N, 1 <i<n, sa:

Yi :W?O(’Yn)_l-
NB. v’ =7, 77 =71 i 73 = .

16. Lema.

a. Funkcije v™ su primitivno rekurzivne bijekcije.

b. Funkcije 7" su primitivno rekurzivne.

e A (@) (@), (@) =t i v (Y (21,22, .. a0)) =wizal<ikn
Dokaz. Na tabli. &




Uniformno dekodiranje

Definicija. Neka je 6 : N> > N data sa:

M) 1<i<n
0(n,i,t) = 7o .
0 inace
17. Teorema. Funkcija § je primitivno rekurzivna.

Skica dokaza. Funkcija f(k,t) =v1(71(...71(t)...)) je primitivno rekurzivna:

—_——
k

f(O,t) = 1
f(k+17t) = 71(f(k7t))'

Sada je i § primitivno rekurzivna jer:
0 i=0vi>n
8(nyiyt) ={ f(n=1,1) i=1
Y2 (f(n=it)) 1<i<n

=] 5




Kodiranje konacnih nizova |

Komentar. Koordinate konacnih nizova nadalje ¢emo indeksirati pocevsi od 0.

Definicija. Definisemo funkciju I : | J N" — N sa (vrednost I'((zo, ..., Zn-1))

n=0
obelezavamo sa "zo,...,Zn-1"):

r
= 0

r bl

Loy 3 Ln—-1

vy(n-1, ¥"(z0,...,Tn-1) )+ 1, zan> 1.

Broj "Z" se zove (Gedelov) kod/indeks niza .
NB. Nema smisla pricati o tome da li je " primitivno rekurzivna, s obzirom da

nije ni aritmeticka.

18. Tvrdenje. Funkcija T je bijekcija.
Dokaz. Na tabli.



Kodiranje konacnih nizova Il

Definicija. Definisemo unarnu funkciju £(¢) i binarnu funkciju (¢); sa:
> £(t) := duzina niza &iji je Gedelov kod t;

. () i-ta koordinata niza Ciji je Gedelov kod ¢t 0 < < £(¢)
' inace .

19. Tvrdenje. Funkcije (At) £(t) i (Ati) (t); su dobro definisane i primitivno

rekurzivne funkcije.

Dokaz. Na tabli. &

Komentar. Naglasimo:
a. (M)i=0zasveiceN;
z; 0<i<n
b. (rwo,...,a:n,f)i: . 3
0 inace

c. ako z >0, onda x = "(z)o,. .., (%)e(z)-1 -



Kodiranje konacnih nizova Il

Definicija. Definisemo binarnu funkciju konkatenacije/nadovezivanja s"t sa:

57t := kod niza dobijenog nadovezivanjem niza sa kodom ¢ na niz sa kodom s.

Preciznije:
07t = ¢
s0 = s
st = r(s)o,...,(S)g(s)_l,(t)(),...,(t)g(t)_11, za S,t>0.




Kodiranje konacnih nizova IV

20. Tvrdenje. Funkcija (Ast) s”t je primitivno rekurzivna.

Dokaz. Funkcija s * x :=s""x" je primitivno rekurzivna jer:

{’y(O, z)+1
s*x =

s=0
~(U(s), v(pa(s=1),2) )+1 s>0

Primitivnom rekurzijom definisemo funkciju f(s,t,7) sa

f(s,t,0) = s

Sada je st = f(s,t,0(t)).

F(s,t,0) # (1)




Teorema o potpunoj rekurziji |

Definicija. Neka je f totalna (n + 1)-arna funkcija. Istorija funkcije f je
funkcija f:N""' - N definisana sa:

f(yv'f:) = rf(0a£)7f(17§7)7 .- .,f(y,i)’.
Dokaz.

21. Lema. f je primitivno rekurzivna <— fje primitivno rekurzivna.
Na tabli. & .




Teorema o potpunoj rekurziji Il

Definicija. Neka su g n-arna i h (n + 2)-arna funkcija. Neka je f (n+ 1)-arna

funkcija koja zadovoljava:
> £(0,2) = g(2);
> f(y+ 13£) = h(ya f(y)j),i)

Za f kazemo da je dobijena potpunom rekurzijom od g i h.

22. Teorema. Ako su g i h primitivno rekurzivne, onda je i f primitivno

rekurzivna.

Dokaz. Dovoljno je da dokazemo da je f primitivno rekurzivna:

£(0,2)
fly+1,2)

"9(2)7;
fy,2) " "hy, f(y,%),2)".

Dakle, f je definisana primitivnom rekurzijom. £



Problem duple rekurzije: Akermanova funkcija



Akermanova funkcija |

Definicija. Definisemo binarnu funkciju A(n,x) sa:
» A(0,z) =z +1;
> A(n+1,0):= A(n,1);
» A(n+1,z+1) = A(n,A(n+1,2)).
Funkciju (Az) A(n,x) oznaCavamo sa A,.
Komentar. Funkcija A je dobro definisana totalna funkcija; zovemo je
Akermanova funkcija.

Kazemo da je A dobijena duplom rekurzijom.

23. Teorema. A nije primitivno rekurzivna.



Akermanova funkcija Il

24. Zadatak. Dokazati:
a. An(z)>n+ux;
b. An(x) < An(z +1);
c. Ap(z)<An(y)zaz<y;
d. Ap(x) < Ans1(z);
e. Ap(z) < Ap(z) zZan<m;
f. Apsi(z) 2 An(z+1);
g Ania(®) > An(Aner (2));
h. An(z) 2nx+2zan>1;

i. Ansi(z) > An(2z) zan > 1.

u]
@
I
ul
i




Akermanova funkcija Il

Definicija. Oznacimo sa O,, familiju svih primitivno rekurzivnih funkcija f za
koje vazi (ako je k arnost od f):

(Vi eN*) (&) < An (2 7).
(Ovde X Z obelezava zbir koordinata niza Z; ¥ Z = 0 za prazan niz.)

25. Lema.
a. 0n €O zan<m;
b. 0,8,m € 0y;
c. ako f=h(g1,..-,91) i hyg1,...,q1€ Op gde n>1, onda f € Opnq2;
d. ako f =rec(g,h) ig,heO, gde n>1, onda f € Opnia.

Dokaz. Na tabli. &



Akermanova funkcija IV

26. Posledica. Za svaku primitivno rekurzivnu funkciju f postoji n tako da
fe€0,. O

Dokaz teoreme 23. Pps, A je primitivno rekurzivna. Tada je i
f(z):= A(x,x) + 1 primitivno rekurzivna, pa postoji n tako da f € O, tj.

f(z) < An(z) za sve z. Specijalno, za z = n, imamo:
A(n,n)+1=f(n) < An(n) = A(n,n).
Kontradikcija. O

27. Zadatak. Da li postoji binarna funkcija v takva da za svaku unarnu

primitivnu rekurzivnu funkciju f postoji broj ny takav da:
(Vo eN) f(z) = v(ns,2)?

Da li postoji takva primitivno rekurzivna funkcija.



Parcijalno rekurzivne funkcije i rekurzivne relacije



Klinijeva jednakost

Definicija. Za f(Z) i g(&) pisemo:

f(@) = g(2)

ako Dy =Dy, i f(Z)=g(Z) za sve & € Dy.
Primer. Primetimo:
> wi(f(x),x) = f(x), ali

» 13(f(x),z) ~ z ne mora da vazi.




Parcijalno rekurzivne funkcije i relacije

Definicija. Klasa parcijalno rekurzivnih funkcija je najmanja klasa koa sadrzi
osnovne funkcije i zatvorena je za kompoziciju, primitivnu rekurziju i

minimizaciju.
Definicija. Funkcija je rekurzivna ako je parcijalno rekurzivna i totalna.
Definicija. Relacija R je rekurzivna ako je xr rekurzivna.

28. Zadatak. Dokazati da je Akermanova funkcija rekurzivna.



Registarske masine



Registarska masina (RM)

Definicija. Registarska masina (RM) je slede¢i teorijski model racunara:

> RM se sastoji od beskonaéno mnogo registara R1, Rz, .... Svaki registar
R; sadrzi proizvoljno veliki prirodan broj (takode oznacen sa R;).
> Stanje u registrima se menja izvrSavanjem RM-programa.

> RM-program je konacan numerisani niz RM-komandi:

1. N; — Komanda 1
2. N> — Komanda 2

n. N, — Komandan

> Imamo dve vrste RM-komandi:
> R, - povecaj stanje u registru R; za 1 i idi na I-tu komandu;
> R;,l,m — ako je R; >0 smanji stanje u registru R; za 1 i idi na [-tu
komandu; inace, idi na m-tu komandu.
> RM zapocinje rad pozivom komande Ni. RM se zaustavlja pozivom

nepostojece komande (N,, za neko m > n).
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Primer. Pozivom programa:

1. R},2
RM poveca stanje u registru R; za 1 i zaustavi se.

Primer. Pozivom programa:

1. Rf,1
RM u svakom koraku povecava stanje u registru R; za 1i

ne zaustavlja se.
Primer. Pozivom programa:

1. R;,1,2
RM ,isprazni” registar R; i zaustavi se.
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Primer. Pozivom programa:

1. R;,2,3
2. RI,1

RM ,prenese’ stanje registra R; u R; i zaustavi se.

Primer. Pozivom programa:

1. R;,2,4
2. R:,3
3. Rj,1

RM ,prenese” stanje registra R; u R; i u Ry i zaustavi se.

u]
@
I
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RM-izracunljive funkcije

Definicija. Neka je M RM-program i n > 0. Definisemo parcijalnu n-arnu
funkciju fy(v?) :N" -~ N sa:

> Ge ij(v?) : <= M se zaustavlja za ulaz:
Ri=a1,Re=a2,...,Rn=an, i Rpy=0zam>n;
> zade Df(n):
M
fj(v?)(d) := stanje u R; nakon zaustavljanja M;

> naravno, za G ¢ Df(n), fy(v?)(a) 1.
M

Definicija. Parcijalna n-arna funkcija f : N" — N je RM-izracunljiva ako postoji
RM M takva da je f ~ j(v?).



Primeri RM-izracunljivih funkcija

29. Lema. Osnovne funkcije su RM-izracunljive.

Dokaz. 0 racuna npr. sledeéi program:

1. R1,1,2
S raCuna sledeci program:
1. R7,2
m1 racuna npr. slede¢i program:
1. RS, 2
', i > 1, raCuna sledeéi program:
. Ri,1,2
2. R7,3,4
1,2

HH‘[:I




Zatvorenost za kompozi

30. Lema. RM-izracunljive funkcije su zatvorene za kompoziciju.

N >m,n).

Dokaz. Neka G; rauna n-arne g;, i = 1,...,m, i neka H ra€una m-arnu h.
Neka je N broj takav da programi G; i H ne govore o registrima R;, i > N (i

Kompoziciju f = h(g1,...,gn) racuna program opisan sa:




Zatvorenost za kompoziciju Il

Kopiraj R1,...,Rn u RNy, ..., Rnyn koristeéi Ry

zai=1,...,m nadovezemo sledece blokove

v
Obrisi Ry,...RN-1, | kopiraj RN+1,-.., RN+n U R1,..., Ry, koriste¢i Ry

!

Pozovi program §;

l

Prebaci R; u RNin+i

v

Obri§i Rl, 000 RN_l, i kopiraj RN+n+1, ceey RN+n+m u Rl, ceey Rm kOI’iSteéi RN

!

Pozovi program H



Zatvorenost za primitivnu rekurziju |

31. Lema. RM-izracunljive funkcije su zatvorene za primitivnu rekurziju.

Dokaz. Neka G racuna n-arnu g i 3 racuna (n +2)-arnu h. Neka je N broj
takav da programi G i H ne govore o registrima R;, i > N (i N >m,n +2).

Funkciju f =rec(g,h) rauna program opisan sa:




Zatvorenost za primitivnu rekurziju |l

Kopiraj Ri,Ra,...,Rn+1 u Ry+1, Rny2, ..., RNin+1; postavi Ryini2 =0

l

Obl’igi Rl, ey RN_l i kopiraj RN+2, ey RN+n+1 u Rl, ey Rn

!

Pozovi program §

>|| k. Ryv+1,s,t|| t > STOP

S
N
Kopiraj Rl u Rz, RN+n+2 u Rl, RN+2,. o .,RN+n+1 u Rs,. oo ,Rn+2, i
obri§i Rn+3, 000 ,RN_l

!

Pozovi program 3

I R;r\f+n+27 k |
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32. Lema. RM-izracunljive funkcije su zatvorene za minimizaciju.
Dokaz. Neka G racuna (n + 1)-arnu g. Neka je N broj takav da program G ne
govori o registrima R;, i > N (i N >n+1).

Funkciju f(Z) = (uy)(f(y,Z) = 0) rauna program opisan sa:




Zatvorenost za minimizaciju Il

Kopiraj Ri,...,Rn u Rn+1,..., RNin; postavi Ryin+1 =0

l

— Kopiraj RN+n+1, RN+1y-- s RNtn U R, Ra..., Rns1

obrisi Rn+2, coog RNn-1
Pozovi program §

— E

N2

Kopiraj Ry+n+1 U R1

l

STOP




Parcijalno rekurzivne funkcije su RM-izraéunljive

U prethodnom nizu lema dokazali smo:

33. Teorema. Parcijalno rekurzivne funkcije su RM-izracunljive

Prirodno pitanje. Da li vazi obratno?




Tjuringove masine



Tjuringova masina |

Definicija. Tjuringova masina je teorijski model racunara koji se sastoji od:

> trake sa beskonacno mnogo sekvencijalno poredanih polja, pri cemu svako

polje ima taéno dva susedna polja;
> glave koja se u svakom trenutku nalazi iznad tacno jednog polja ciji
sadrzaj moze da cita i da menja, i u svakom trenutku moze da se nalazi u
tacno jednom stanju.
Svako polje trake moze da sadrzi jedan od dva simbola: 0 (polje je prazno) i 1
(polje je puno). Pretpostavljamo da su sva polja, osim konaéno mnogo njih,

prazna.



Tjuringova masina Il

Oznacimo sa @ konacan skup stanja u kojima masina moze da bude.

Akcija TM u svakom koraku zavisi od stanja u kome se masina nalazi i stanja u
polju koji glava ¢ita. Rad masine opisan je (parcijalnom) funkcijom
T7:Qx{0,1} > Q x{0,1,L, D}, pri €emu 7(q,5s) = (¢',s") ima sledece
znacenje: Ako je masina u stanju ¢ i €ita simbol s u polju, onda:

> ako je s' =0 ili s’ = 1 masina u dato polje upisuje s’;
» ako je s’ = L glava se pomera jedno polje ulevo;
» ako je s’ = D glava se pomera jedno polje udesno.

U svakom slu€aju masina ulazi u stanje ¢’. Ako 7(g, s) 1, masina se zaustavlja.

Masina pocinje sa radom u stanju qo € Q.



Primeri Tjuringovih masina |

Primer. Masina koja nalazi prvi par 00 desno i staje iznad prve nule:

Primer. Masina koja nalazi pocetak treceg bloka jedinica desno i zaustavlja se

(ili upada u beskonaénu petlju ako treéi blok jedinica ne postoji):

0 1
qQ | D @l
q1 | @20 @D
q2 | 2D g3l
g3 | @40 q3D
qa | gaD g5l
g | 1 1

u]
@
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Primeri Tjuringovih masina |l

Primer. Pretpostavimo da su na traci zapisana tri bloka jedinica razdvojeni sa
po jednom nulom, i da se masina nalazi na pocetku prvog bloka. Zelimo da
dodamo jednu jedinicu na kraj drugog bloka i da transliramo treéi za jedno

mesto udesno, i da se vratimo na pocetak prvog bloka.

0 1
q | @D qoD
@1 | g1 @D
q2 q3D
q3 q40
qsa | gD
g | gl qsD
g6 | g7l qeL
g7 | sl g7L
gs | @oD gsL
g | 1 1



Tjuring-izracunljive funkcije |

Definicija. Neka je M Tjuringova masina i n > 0. Definisemo parcijalnu n-arnu
funkciju f(") N" — N na sledeéi nacin:

> Ge Df(n) : <= M se zaustavlja za ulaz:
M

..001...101...10...01...100...
—— Y~ —
ay+1 ag+1 an+1

pri Cemu se na pocetku izracunavanja glava nalazi na pocetku prvog bloka

jedinica, i stanje na traci na kraju izraCunavanja je oblika:

..001...100...
——
b+1

pri Cemu se glava nalazi na pocetku ovog bloka.

> Ako su ispunjeni uslovi iz prethodne tacke, f(")(a) :=b; u suporotnom,

f(n)



Tjuring-izraunljive funkcije I

Definicija. Parcijalna funkcija f: N — N je Tjuring izraunljiva ako postoji
masina M takva da je f ~ fj(v?)'

Primer. Osnovna funkcija (\) 0 je Tjuring izraunljiva:

0

qo | q11

1

Primer. Osnovna funkcija (Az) = + 1 je Tjuring izracunljiva

0 1

q | 11 qoL




Tjuring-izracunljive funkcije Il

Primer. Osnovna funkcija (Az1z223) 22 je Tjuring izra€unljiva:

0 1
qo | 2D  q11
q | gD q0
q2 | 3D q2D
g3 | 5L qal
g4 | 3D qs0
g5 | 5L geL
g5 | gqvD  geL

u]
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Simulacija registarske masine |

34. Teorema. RM-izraCunljive funkcije su Tjuring-izracunljive.

Dokaz. Neka je f n-arna RM-izra€unljiva funkcija, i neka je M program za
registarsku masinu koji je izraCunava. Neka je N > n broj takav da M ne govori
od registrima R,,, m > N. Tjuringova masina koja racuna funkciju f opisana je
na slede¢i nacin:
1. Postavljanje trake da predstavlja stanje u registrima R1,..., Rn:
> Masina prode prvih n blokova jedinica, i doda jos N —n jedinica

razmaknutih sa po jednom nulom:

...001...101...10...01...10 1 0 1 0...0 1 00...
—— — — [

N—— ~ —~
R1+1  Ra+1 Rp+1 Rpi1+l Rpgo+l Ry+1

> Masina se vrati na pocetak prvog bloka i zapocinje simulaciju prve naredbe.



Simulacija registarske masine |l

2. Ako je k-ta naredba R} ,I:
> Masina prode prvih i blokova jedinica, doda jedinicu na i-ti blok, i translira
preostalih N -7 blokova za po jedno mesto udesno.
> Masina se vrati na pocetak prvog bloka i zapocinje simulaciju I-te naredbe.
3. Ako je k-ta naredba R;,l,m:

> Masina prode prvih i blokova jedinica, i proveri da li je i-ti blok samo jedna
jedinica. Ako nije:
> Masina obriSe poslednju jedinicu iz i-tog bloka i translira preostalih N —14
blokova za po jedno mesto ulevo.
> Masina se vrati na pocetak prvog bloka i zapoc€inje simulaciju I-te naredbe.

Ako jeste:
> Masina se vrati na pocetak prvog bloka i zapoé&inje simulaciju m-te naredbe.
4. Ako k-ta naredba ne postoji:

> Masina prode prvi blok jedinici, pobrise preostale blokove jedinica, vrati se
na pocetak prvog bloka i zaustavi se. O



Sta za sada znamo?

Za sada smo dokazali:

{parcijlano izracunljive funkcije}

[al

{RM-izracunljive funkcije}

{Tjuring-izraCunljive funkcije}.
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Pretpostavimo da su qo, q1, ..., g stanja Tjuringove masine, gde je ¢y
zaustavno stanje, 5to znadi da 7(gn,0) i 7(gn, 1) nisu definisani. Mozemo da
pretpostavimo da je masina u svim ostalim stanjima potpuno definisana, tj. ako
7(¢s, €) nije definisano stanje, mozemo da ga dodefinisemo da 7(g;,€) = (gn, €).
Na taj nacin, g» je jedino zaustavno stanje. Ovakva masina je u standardnom
obliku, i primetimo da za svaku masinu mozemo da pretpostavimo da je u

standardnom obliku (do na ocigledne modifikacije masine).



Kodiranje Tjuringove masine Il

Sada masinu mozemo da poistovetimo da nizom duzine 4n:

interpretira kao:

(k’o,ao,mo,bo,. .,ki,ai,mi,bi,...,kn_l,an_l,mn_l,bn_l),
gde ki,mi € {0, 1,.. .,n} i ai,bi € {0, 1,2,3}, i gde se (ki,ai,mi,bi)

T(qiyo) = (qkivai) i T(qi7 1) = (q’mmbl)
gde smo oznacili 2=Li3=D.
Kod nase masine je sada kod dodeljenog niza:

r hl
ko,ao,mo,bo,. . .,ki,ai,mi,bi,. . .,kn_l,an_l,mn_l,bn_l
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rekurzivan.

35. Lema. Predikat TM (e) : <> e je kod Tjuringove masine” je primitivno

Dokaz. T'M (e) je konjunkcija slede¢ih stvari:
> e>0iost((e),4)=0;

> (Vi<kol(£(e),4))((e)ai <kol(£(e),4) A (e)ai+2 < kol(£(e),4))
> (Vi<kol(£(e),4))((e)air1 3 A (€)aiss < 3).




Vangovo kodiranje trake

Pretpostavimo da je u nekom trenutku traka u slede¢em stanju:

...00ley...en €nt1

oo, em100. ..
slede¢a dva broja:

Tada je ovo stanje trake, zajedno sa polozajem glave, jedinstveno odredeno sa

levo=(ley...en)2 i desni= (lem...en41)2.




Pracenje izvrsavanja

Pretpostavimo da je e kod Tjuringove masine M. Zelimo da ispratimo

izraunavanje funkcije fj(v?) = e(").

Uocimo sledece funkcije:

stanjen (e, k,a) stanje masine u k-tom koraku izraGunavanja

za ulaz (7' (a),..., v (a))

leviy (e, k,a) levi broj u k-tom koraku izracunavanja

za ulaz ('Yin(a)a s 772(0’))

desnin (e, k,a) desni broj u k-tom koraku izracunavanja

za ulaz (v7'(a), ..., 1 (a))
(U trenutku kada se zavrsi izracunavanje, ako se zavrsi, funkcije postaju

konstante.)

36. Lema. Prethodne funkcije su primitivno rekurzivne.

Dokaz. Na tabli. &



Nekoliko napomena

> Masina se zaustavlja ako i samo ako postoji k tako da je
stanjen (e, k,a) = kol(£(e),4).

> U tom slucaju glava je u korektnom polozaju ako je za to k:

levin(e,k,a) =0 i desnin(e,k,a) = oblika 2™ -1
> Predikat A(z) : <>z je oblika 2™ — 1 je primitivno rekurzivan; zaista,
A(z) oz >0Az+1 =2k 2>

> U tom slucaju rezultat izraunavanja je:

(um < desnin(e, k,a)) desnin(e,k,a) +1=2

m+1




Klinijev predikat

Definicija. Oznacimo sa Ty, (e, a,y) predikat koji kaze:
> ¢ je kod TM;
> y je kod izracunavanja koje se korektno zavrsilo masine sa kodom e za
n-ulaz sa kodom a, tj. y je kod niza oblika:

y = "stanje,(e,0,a),leviy (e, 0,a),desnin(e,0,a),. ..

..., stanjen (e, h,a),levin (e, h,a),desnin (e, h,a)’,

koji zadovoljava dodatne uslove da se izraGunavanje zavrsilo i da je masina

u korektnom stanju za izlaz.

37. Lema. T, je primitivno rekurzivan predikat.

Dokaz. Na tabli. #



Klinijeva funkcija izlaza

Definicija. Neka je U(y) funkcija koja vraéa rezultat izraCunavanja za slucaj da
je Tn(e,a,y).

38. Lema. U je primitivno rekurzivna.
Dokaz.

Na tabli. &




Teorema enumeracije

39. Teorema. Oznaéimo sa ®,, parcijalnu rekurzivnu funkciju:

(e a) 2 U((py) Tule,a,y)).

a. Za svaku Tjuring-izracunljivu n-arnu funkciju f postoji e tako da:

f(ala“'va'ﬂ) = (I)n(e7’yn(a17"~aan))'

b. Svaka Tjuring izraCunljiva funkcija je parcijalno rekurzivna.

40. Zadatak. Dokazati da za svaku parcijalnu rekurzivnu n-arnu funkciju f

postoji beskonaéno mnogo e tako da f(a1,...,an) =~ ®n(e,v"(a1,...,an)).

Definicija. Funkciju ®,(e,v"(a1,...,an)) oznaéavamo sa '™ (a1,...,an).

Umesto ¢ (a1, ..., an) krace pisemo e (a1,...,an).



Klinijeva Smn-teorema

41. Teorema. Za sve m,n > 1 postoji (m + 1)-arna primitivno rekurzivna
funkcija S, takva da za sve e, 1,

Ty Yly -+ - Yn VAZI:

Dokaz.

S:Ln(evwla"'axm)'(yla"wy'ﬂ) z6'(ml)'‘'73:7715:'/17"'ay'ﬂ)'
Na tabli. #




Klinijeva teorema rekurzije |

42. Teorema. Postoji primitivno rekurzivna unarna funkcija F,, takva da

za sve e, I, |Z| = n.

Fn(e) - =e-(Z,Fu(e)),
Dokaz. Uocimo funkciju G(z,y,Z) = z- (Z, S5 (y,y)); ona je parcijalno
rekurzivna, i neka je g neki njen kod:

g (zvyw%) = G(Z>y7j)
Stavimo Fy(e) = Sp(Sns1(9,€), Sne1(g,€)).




Klinijeva teorema rekurzije |l

Imamo:

F.(e)-z

12

Sn(Snii(g:€), Snii(g,€)) - 2

= S’l:’ll+1 (g,€)- (S'rlw—l(ga e),z)

g+ (€, Sns1(g,€), &)

G(e, Snin(g,¢), &)

e (&, 9 (Sne1(9,€), Sni1(9g:€))
e (z,Fn(e)). O

12

12

12

12

43. Posledica. Za svako n > 1 i svaku (n + 1)-arnu parcijalnu rekurzivnu
funkciju f postoji e tako da:

e -7~ f(Z,e).




Klinijeva teorema o fiksnoj tacki

44. Teorema. Za svako n > 1 i svaku unarnu rekurzivnu funkciju F' postoji e
tako da (™ = (™)

=Pr(e)
Dokaz. Neka je G(Z,¢e) ~ F(e) - Z; G je parcijalno rekurzivna jer
G(Z,e) ~ gag,"()e)(:r) ~®,(F(e),y"(Z)). Po teoremi rekurzije postoji e tako da

e %~ G(i,e). Dakle, e-i =~ F(e)-Z, tj. o™ —gp%."()e) O




Primene |

45. Teorema. Postoji primitivno rekurzivna (m + 1)-arna funkcija K" takva da:

K:Ln(gla"‘)gwwh)'i:h'(gl"%a"')gm'{é)a
gde |Z| = n.

Dokaz. Uocimo parcijalno rekurzivnu funkciju:

E(glw"agmvh»f) gh'(gl 'fz

ey Gm - T).
Neka je e kod funkcije E: e-(g1,.-.,9m,h, %) ~ E(g1,...,Gm,h, T).
Po Smn-teoremi vazi:

S:Ln+1(e7glv"'7gmvh).f:e'(gla

ey Gmy Ny T).
Dakle, K™(7,2) = S7* (e, 7, z) je zeljena funkcija




Primene Il

46. Teorema. Postoji primitivno rekurzivna binarna funkcija R, takva da:

Ru(g,h) - (y,7) = {”

akoy =0
h(y_17Rn(gah)(y_17§7)7i') ak°y>07
gde |Z| = n.

Dokaz. Uocimo parcijalno rekurzivnu funkciju:

gz
E(g,hw,:ﬁ,Z)ﬁ{

akoy=0

ho(y-1,2-(y-1,2),) akoy>0

Neka je e njen kod: e- (g, h,y,%,2) ~ E(g,h,y,Z, 2).
Po Smn-teoremi vazi:

S721+2(evgvh) ' (y,ifz,z) ze- (g7h7y7jvz)'
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Po teoremi rekurzije imamo:

Fn+1(5721+2(6797 h)) : (ya i) = S’?L+2(e7g7 h) : (ya{ia Fn+1(‘s’721+2(6797 h)))
Oznaéimo R, (g,h) = Fni1(S2,2(e,g,h)). Sada je:

1R

E(gvh7y75é7 Rn(gvh’))
{g-i

akoy =0
h- (y_lan(gvh)(y_laj)vi)

akoy>0'




47. Teorema. Postoji primitivno rekurzivna unarna funkcija M, takva da:

gde |Z| = n.

Mn(9)-Z = (uy)(g- (y,2) = 0),

Dokaz. Uocimo parcijalnu rekurzivnu fuknkciju:

E(g,%) ~ (py)(g- (y,2) =0).
Neka je e njen kod: e-(g,%) ~ E(g, ).
Po Smn-teoremi imamo:

Sn(e,9)-2=e-(g,2).
Dakle, M, (z) = S.(e, z) je Zeljena funkcija.




48. Teorema. Akermanova funkcija je rekurzivna.
Dokaz. Setimo se: A(0,z):=x+1, A(n+1,0):= A(n,1), i
An+1,x+1):=A(n,A(n+1,z)).
Uocimo parcijalnu rekurzivnu funkciju:

z+1 akon =0
E(n,z,z)~{z-(n-1,1) akon>0iz=0-

z-(n-1,z-(n,z-1)) akon,z>0
Po teoremi rekurzije postoji a tako da: a- (n,z) ~ E(n, z,a), tj:

z+1 akon =0
a-(n,x)=<4a-(n-1,1) akon>0iz=0.

a-(n-1,a-(n,x-1)) akon,x>0

Sada je jasno A = cp((f). O



Rekurzivni skupovi / odlucivost



Problem odlucivosti

Definicija. Neka je P € N". Problem ,,Z € P" je odluciv ako je P rekurzivan, tj.

ako je xp rekurzivna funkcija (tj. ako postoji Tjuringova masina koja korektno
vra¢a odgovor na pitanje ,Da li Z € P?").




Halting problem

Definicija. Halting problem je dat podskupom:
H={(e,;a) | (3y) T1(e,a,9)}-

Dakle, halting problem je problem da li se Tjuringova masina sa kodom e
korektno zaustavlja za ulaz a (ili da li je vrednost e - a definisana, tj. da li
(e,a) € Dg,).

49. Teorema. Halting problem je neodluciv.

Dokaz. Pretpostavimo suprotno, xs¢ je rekurzivna. Neka je f parcijalna
rekurzivna funkcija takva da Dy = {0} (npr. f(z) ~ (uy) = +y =0). Tada je
f(xsc(e,a)) parcijalno rekurzivna funkcija, i po teoremi rekurzije postoji eg

tako da eg-a =~ f(xsc(eo,a)). Odatle, za svako a:
eo-al < xx(en,a)=0 < ey-at.

Kontradikcija. |



Standardan problem

Definicija. Standardan problem je dat podskupom:
K={z|Jy) Ti(z,z,y)} ={z |z -z |}

50. Teorema. Standardan problem je neodluciv.

Dokaz. Pretpostavimo suprotno, x« je rekurzivna. Neka je f parcijalna
rekurzivna funkcija takva da Dy = {0}. Tada je f(xx(z)) parcijalno rekurzivna
funkcija, i neka je e njen kod: e-x ~ f(xx(z)). Tada:

eel< xx(e)=0 < e-e?.

Kontradikcija. EH



Svodenje odlucivosti

Definicija. Neka je P cN" i Q c N™. Problem P se svodi na problem Q,

P < @, ako postoje n-arne rekurzivne funkcije fi,..., fm takve da:
ZeP < (fi(Z),...,fm(T)) Q.

Primer. X <, H:
zeX = z-z] = (z,z)c X,

pa funkcije f1 = fo = 7] svedoce svodenje.

51. Teorema. Ako P <, @ i @ je odluciv, onda je i P odluciv.
Dokaz. xp = xo(f1,---,fm)- O

1z K < H i K je neodluéiv sledi da je H neodluciv.

(Ovaj dokaz neodluéivosti halting problema ne koristi teoremu rekurzije.)



Karakterizacija rekurzivnosti

52. Teorema. Neka je P c N beskonacan skup. Slede¢i iskazi su ekvivalentni:

(1) P je rekurzivan (odluciv);
(2) postoji rastuéa rekurzivna funkcija f takva da je P = Im(f);

(3) postoji neopadajuca rekurzivna funkcija f takva da je P = Im(f).
Dokaz. Na tabli. &

53. Teorema. Neka je P c N. Slede¢i iskazi su ekvivalentni:

(1) P je rekurzivan;
(2) P =@ ili postoji neopadajuca rekurzivna funkcija f takva da je P = Im(f).

Dokaz. Na tabli. &



Rajsova teorema |

Definicija. Skup P c N je indeksni ako:
eePApe=ps = € ¢P.

54. Teorema. Ako je P rekurzivan, indeksni skup, onda je P =@ ili P =N.
Dokaz. Pretpostavimo P je indeksni, P+ @ i P # N. Ako je P indeksni skup,

onda je i P¢ indeksni skup, pa, bez umanjenja opstosti, mozemo da
pretpostavimo da indeksi prazne funkcije pripadaju P°. Neka e € P. Uo¢imo
funkciju:

e-y akozx-z|
F(z,y) =~ _
1 inace

Funkcija F' je parcijalno rekurzivna:
F(z,y) = ®1(e,y) +0- 21z, 2);

neka je f njen kod: f-(z,y) ~ F(x,y).



Rajsova teorema I

Po Smn-teoremi je: Si(f,z) -y~ f-(z,y) = F(z,y). Primetimo:

reK — z-z|<— S{(f,z)eP.
Dokaz druge implikacije je:

» ako z-x |, onda Si(f,z) -y=~e-y, pa ec P povladi Si(f,x) € P;

» ako x-x 1, onda Si(f,x) je kod prazne funkcije, pa Si(f,z) € P°.
Dakle, X <, P, pa je P neodluciv (nije rekurzivan).




Primer

Dokazati da P = {e | . je totalna} nije rekurzivan.

| nacin. Ocigledno P + @, P # N i P je indeksni; po Rajsovoj teoremi P nije

rekurzivan.
Il nacin. Dokaza¢emo X <, P. Uo&imo parcijalno rekurzivnu funkciju:

0 akoac-x¢.

1 akoac-xT,

neka je f njen kod. Po Smn-teoremi: Si(f,z)-y=f-(z,y) ~ F(z,y).
> Ako z-x |, S1(f,) je kod Z(y), pa Si(f,x) e P.
» Ako z-z 1 S1(f,z) je kod prazne funkcije, pa Si(f,x) € PC.
Dakle, z € X <= z-x | <= Si(f,z)eP.



Rekurzivno nabrojivi skupovi / parcijalna odlucivost



Rekurzivno nabrojivi skupovi |

Definicija. Skup P ¢ N je rekurzivno nabrojiv (parcijalno odluciv) ako je P = @
ili ako postoji unarna primitivno rekurzivna funkcija f takva da Im(f) = P.
U drugom slucaju vazi P = {f(0), f(1), f(2),...}, i odatle naziv nabrojiv skup.

55. Teorema. Neka P c N. Slede¢i iskazi su ekvivalentni:

1) P je rekurzivno nabrojiv;

2) P =@ ili postoji k-arna primitivno rekurzivna funkcija f t.d. Im(f) = P;
) postoji unarna parcijalno rekurzivna funkcija f t.d. Im(f) = P;
) postoji k-arna parcijalno rekurzivna funkcija f t.d. Im(f) = P;

) postoji unarna parcijalno rekurzivna funkcija f t.d. Dy = P;

) postoji rekurzivan skup R ¢ N**! t.d. P(z) < 37 R(x,7);

3

4

5

6) postoji rekurzivan skup Rc N? t.d. P(z) < 3yR(z,y);

7

8) postoji primitivno rekurzivan skup R < N? t.d. P(z) < 3y R(z,y);
9

(
(
(
(
(
(
(
(
(

) postoji primitivno rekurzivan skup R ¢ N¥™! t.d. P(z) < 35 R(z,7).

Dokaz. Na tabli. &



Rekurzivno nabrojivi skupovi I

Definicija. Skup P < N* je rekurzivno nabrojiv ako postoji parcijalno rekurzivna
funkcija f takva da je Dy = P.

Definicija. W * := D g i E® = Im(p™). Za n =1 pisemo W. i E..

Dakle, rekurzivno nabrojivi skupovi su taéno skupovi oblika wim.

56. Teorema. Sledeéi iskazi su ekvivalentni za P c N*:
1) P je rekurzivno nabrojiv;

2) postoji rekurzivan skup R € N**! t.d. P(z) <= 3y R(%,y);

(

(

(3) postoji rekurzivan skup R c N**' t.d. P(Z) <— 37 R(Z,7);

(4) postoji primitivno rekurzivan skup R ¢ N**! t.d. P(Z) <= 3y R(Z,y);
(

5) postoji primitivno rekurzivan skup R ¢ N**' t.d. P(z) <= 37 R(Z,7).



Primeri

Primer. H i K su rekurzivno nabrojivi.

Primer. P = {e| ¢. je totalna} nije rekurzivno nabrojiv.

nabrojiv.

57. Teorema. Ako P <, Q i Q je rekurzivno nabrojiv, onda je i P rekurzivno

Primer. Q = {e| pe ~ Z} nije rekurzivno nabrojiv.




Postova teorema

nabrojivi.

58. Teorema. Skup P c N* je rekurzivan ako i samo ako su i P i P° rekurzivno
Dokaz. Na tabli. &

Primer. 3¢ i X° nisu rekurzivno nabrojivi.

Primer. P = {e| W, je kona€an} nije rekurzivno nabrojiv.




Rajs-Sapirova teorema

Definicija. Neka su f i g parcijalno rekurzivne k-arne funkcije. Sa f cg
oznaCavamo da je Dy € D, i za svako T € Dy vazi f(Z) = g(Z).

Funkcija f je konacna ako je Dy konacan.

59. Teorema. Neka je F neka familija parcijalno rekurzivnih k-arnih funkcija i

Iy = {e| o™ € F}. Pretpostavimo da je Iy rekurzivno nabrojiv. Tada vazi:

fe€F <= postoji konaéna funkcija fo € F tako da fo c f.
Dokaz. Na tabli.

Komentar. Obrat Rajs-Sapirove teoreme ne vazi.

Komentar. Rajsova teorema je specijalan slu¢aj Rajs-Sapirove teoreme.



m-svodenje



m-svodenje

Definicija. Neka A cN* i Bc N'. Skup A se svodi na B ako postoje

rekurzivne k-arne funkcije Fp, ..., Fj_; tako da:

TeA < (Fo(Z),...,F1-1(Z)) € B.
Za skupove A c N* i B c N pisemo A <, B ako se A svodi na B.
Komentar. <,, je refleksivna i tranzitivna (preduredenje).
Definicija. A i B su m-ekvivalentni, A =,, B, ako A <, Bi B <, A.
Komentar. =,, je relacija ekvivalencije.

Komentar. Za A c N* imamo A =,, {7*(Z) | Z ¢ A} c N, pa su relacije <, i
=,, potpuno odredene na podskupovima od N.

Od sada posmatramo samo podskupove od N.



m-stepeni

Definicija. m-stepen skupa A, u oznaci d,,(A), je =m-klasa skupa A.
Komentar. Relacija <, odreduje parcijalno uredjenje medu stepenima.

60. Tvrdenje.
a. A<, B akko A° <, B“.
b. dm (@) ={@} i dn(N) = {N}.
c. Stepeni dp (@) i dim(N) su minimalni u uredjenju <y,.

d. Za svaki A+ @, N, dn(2),dm(N) <m dm (A).

61. Tvrdenje. Neka je A + @, N rekurzivan skup.
a. dm(A) je familija svih rekurzivnih skupova razlicitih od @ i N.
b. dmn(A) je najmanji stepen razliéit od d,, (@) i dm(N).



m-kompletnost

Definicija. Neka je F familija podskupova od N. Element A € F je m-potpun u
F ako za svaki X € F vazi X < A (A je <m-najvedi u F).

62. Teorema. X je m-potpun za rekurzivno nabrojive skupove.

63. Tvrdenje. Neka A,BcNinekaje Ax B={2z|ze A} u{2z+1|ze B}.

Tada A * B je supremum od A i B u smislu preduredenja <.

64. Tvrdenje. Neka je A # @, N rekurzivno nabrojiv i neka je R + @, N
rekurzivan skup. Tada je R infimum od A i A°.



Produktivni i kreativni skupovi |

Definicija.
a. Skup P c N je produktivan ako postoji parcijalno rekurzivna funkcija f,

produktivna funkcija za P, takva da:
(Ve)(Wec P — f(e) e P\We,).

b. Skup C ¢ N je kreativan ako je rekurzivno nabrojiv i C¢ je produktivan, tj.

postoji parcijalno rekurzivna funkcija f, kreativna funkcija za C, takva da:

(V&) (WenC =0 — f(e) | A f(e) ¢ CUW.).

Primer.
a. K¢ je produktivan sa produktivhom funkcijom f(z) = z.

b. X je kreativan.



Produktivni i kreativni skupovi Il

Tvrdenje. Kreativni skupovi nisu rekurzivni.

65. Teorema.

a.

b.

Produktivan skup ima (totalno) rekurzivnu produktivnu funkciju.
Ako je P produktivan, onda P nije rekurzivno nabrojiv.

Ako je P produktivan, onda P sadrzi beskonacan rekurzivno nabrojiv

podskup.

. Ako je P produktivan i P <,, S, onda je i S produktivan.

(Majhil) P je produktivan ako i samo ako X° <, P.

Posledica. Skup je kreativan ako i samo ako je m-potpun za rekurzivno

nabrojive skupove.



Definicija. Skup P je prost ako je rekurzivno nabrojiv, P¢ je beskonaéan i P¢

ne sadrzi beskonacan rekurzivno nabrojiv podskup.

66. Tvrdenje. Prost skup nije rekurzivan i nije kreativan (nije m-potpun za

rekurzivno nabrojive skupove).

Komentar. Ako postoji prost skup P, za njega vazi
dm(R) <m dm(P) <m dm (X).

67. Teorema. Skup S = {(e,z) | z € We Az > 2e} je prost. Dakle, prosti

skupovi postoje.



Kolmogorovljevi slucajni brojevi

Definicija.

a. Funkcija k(z) := min{e: ¢.(0) = z} zove se Kolmogorovljeva funkcija.
b. x je Kolmogorovljev slu¢ajan broj ako x < k(x).

Komentar. k(x) je totalna funkcija.

68. Teorema. (Kolmogorov) Skup {z:z > k(x)} je prost




Aritmeticka hijerarhija



Aritmeticke klase |

Definicija. Za n > 0 definiemo klase X, i II,, aritmetickih relacija sa:
a. Yo i Iy su klase primitivno rekurzivnih relacija;

b. S(%) € Xp41 ako postoji S'(F,y) € IL,, tako da:

S(z) = 3y §'(Z,y);
c. S(Z) € 41 ako postoji S'(Z,y) € &, tako da:

S(z) <= Yy S'(z,y).
d. Klasu A, definisemo sa A,, := %, nII, za sve n > 0.




Aritmeticke klase Il

Primeri.
a. Yo =1IIp = Ag = primitivno rekurzivni skupovi;
b. 31 = rekurzivno nabrojivi skupovi;

c. II; = komplementi rekurzivno nabrojivih skupova;

d. A; = rekurzivni skupovi.




Aritmeticke klase |1l

69. Lema.
a. Zasvakon >0, SeX, — S°ell,.
b. Zasvakon >0, ako je Se€ ¥, (Sell,), ondajei SxNeX, (SxNell,).

c. Zasvakon> 1, ako S(y1,...,ym) € Bn(Il,) i ako su f1,..., frm :NF > N
(totalne) rekurzivne, onda i S(f1(Z),..., fm(Z)) € ¥n(Il,). Ako su

funkcije f; primitivno rekurzivne, onda prethodno vazi i za n = 0.
d. Za svako n >0, ¥, i II,, su zatvoreni za konacne preseke i unije.
e. Za svako n >0, X, i II,, su zatvoreni za ogranicene kvantifikacije.

f. Za svako n > 1, 3, je zatvorena za (neogranicenu) egzistencijalnu, a IL,

za (neograni¢enu) univerzalnu kvantifikaciju.



Aritmeticke klase 1V

70. Teorema. Za svako n > 1, ako S <

RiReX,(II,), ondaiSeX,(II,).
71. Teorema. Za svakon >0, X, Ull, € Ani1.
Yo 1 Yo
4 &
Ao

<&
>

(V)
<&

s
112




Klinijeva teorema o normalnoj formi

Definicija. Za n,k > 1 definisemo X,,-relacije E(M ¢ NF! sa:

EP(2,8) = (3y1)(Vy2) -+ (Y9n-1)(3) Tran-1 (2,77 (3,9), 1)
ako je n neparno i:

B (2,8) 1 <= (Fy1)(V92) - ya-1) (V) ~Tsir (2,77 (3,9), 1)
ako je n parno, gde & = (z1,...,25) 1 §= (Y1, Yn-1)-

72. Teorema. Neka je n > 1.

a. Za svaku Z,-relaciju S ¢ N* postoji broj e takvo da:
S(z) < E" (e, 7).
b. Za svaku IL,-relaciju S ¢ N* postoji broj e takvo da:

5(3) < -E" (e, 7).



Teorema o hijerarhiji

73. Teorema.
a. Zasvakon > 1, Er(Ll) eX, \IL,.
b. Sve inkluzije u aritmetickoj hijerarhiji su stroge.

74. Teorema. Za sve n,k > 1, E® je m-potpuna za X%, pa je ~B® je
m-potpuna za II,,.




Varijante Tjuringove masine



Tjuringove masine |

Nasa Tjuringova masina je bila opisana na slede¢i nacin:
> beskonaéna traka u oba smera;
> svako polje moze da sadrzi 0 (polje je prazno) ili 1 (polje je popunjeno);
> konacan skup stanja @, sa istaknutim pocetnim stanjem qo;

> rad je odreden parcijalnom funkcijom @ x{0,1} - Q x {0,1,L, D}.

Ekvivalentan koncept dobijamo ako trazimo:
> rad je odreden parcijalnom funkcijom @ x {0,1} - @ x {0,1} x {L, D};
ili:
> rad je odreden parcijalnom funkcijom @ x {0,1} - Q x {0,1} x {L, D, N},

gde N znaci ,,ne pomeraj se’.



Tjuringove masine |l

Opstiji koncept Tjuringove masine opisan je sa:

>

>

>

beskonaéna traka u oba smera;

alfabet ulaza ¥ je konacan skup koji ne sadrzi prazan znak b;
alfabet trake I je kona€an skup takavda bel i X cT;
konacan skup stanja, sa istaknutim pocetnim stanjem qo;

rad je odreden funkcijom Q@ xI' > Q xI' x {L, D} ili
QxI'->QxIx{L,D,N}.

| ovakav koncept je ekvivalentan polaznoj masini, i takode ako stavimo:

>

traka ima levi pocetak.



Tjuringove masine Il

Tjuringova masina sa viSe traka opisana je sa:
> k traka, od kojih svaka ima svoju glavu;

> alfabeti ulaza i trake, i stanja kao i ranije;
» rad je odreden funkcijom Q x I'* - Q x I'* x {L,D,N}"C

| ovakav koncept je ekvivalentan polaznoj masini.




Nedeterministicka Tjuringova masina

Nedeterministicka Tjuringova masina opisana je sa:
> traka, alfabeti, stanja;

»> rad je odreden binarnom relacijom izmedu Q xI' i Q@ xI' x {L, D}, tj.
funkcijom Q xI'» P(Q xI'x {L, D}).

Nedeterministicka Tjuringova masina ekvivalentna je Tjuringovoj masini.




Vremenska slozenost



Definicija. Neka su f,g: N — R*. Kazemo f = O(g) ako postoje no e Nic>0
takvi da f(n) < cg(n) za sve n > no.

Primer. Neka je f € N[n]. Tada je f = O(n") ako i samo ako deg(f) < k.




Vremenska slozenost

Definicija. Neka je M Tjuringova masina koja se zaustavlja za sve ulaze.
Vremenska slozenost masine M je funkcija tas : N > N, gde je tar(n)

maksimalan broj koraka koji M izvodi za ulaz duzine n.

75. Teorema. Neka je t takva da t(n) > n, i neka je M Tjuringova masina sa
vise traka takva da tas = O(t). Tada postoji masina N sa jednom trakom koja
simulira rad M takva da ty = O(t%).



Vremenska slozenost nedeterministicke masine

Definicija. Neka je M nedeterministicka Tjuringova masina koja se zaustavlja
bez obzira na izbor grane izracunavanja. Vremenska slozenost masine M je
funkcija ta : N —> N, gde je tar(n) maksimalan broj koraka koji M izvodi u bilo

kojoj grani za ulaz duzine n.

76. Teorema. Neka je ¢t takva da ¢(n) > n, i neka je M nedeterministicka
Tjuringova masina takva da ¢y = O(t). Tada postoji Tjuringova masina N
koja simulira rad M takva da ty = O(2").
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