1

FILIP MARIC PREDRAG JANICIC

UVOD U PROGRAMIRANJE

Osnove programiranja kroz programski jezik C++

Beograd
2026.

Sadrzaj

Predgovor
1 Uvod

1.1 Osnovni elementi jezika i prvi programi
1.1.1 Osnovna struktura programa
1.1.1.1 Komentari

1.1.2 Promenljive, tipovi, ispisivanje i ucitavanje podataka

1.1.3 IzraCunavanje
1.1.3.1 Osnovne aritmeticke operacijeiizrazi

1.1.3.2 BiblioteCke matematicke funkcije

1.1.3.3 Imenovane konstante

Zadatak: Rastojanjetacaka oL

1.1.4 Grananje o i e e e e
1.1.4.1 Relacijskioperatori

1.1.42 Logickioperatori

1.143 Naredbaif

1.144 Uslovniizraz

1.1.5 Petlie. o
1.1.5.1 Petljawhile.

1.1.52 Petljafor

1.1.5.3 Petljado-while

1.1.6 Definisanje funkcija

1.1.7 Strukture podataka

1.1.8 Upravljanje izuzecimaigreskama

2 Promenljive i tipovi

2.1
2.2

Promenljive, konstante i deklaracije
Osnovni tipovi podataka L.
2.2.1 Celobrojni tipovi
222 Realnitipovi

11
12
12
13
14
19
19

21
21
23
23
23
24
25
25
25
25
27
27
29
33

SADRZAJ

223 LogiCkitip 41

224 Karakterskitip 41

225 Niske 42

2.3 Dodele vrednosti promenljivoj 43
2.3.1 Operatordodele 44

2.3.2 Razmena vrednosti promenljiviho 45
Zadatak: Cenahleba L L L 46
Izrazi i izracunavanje 47
3.1 Aritmeticki operatori i zapis matematickih formula 47
3.1.1 SloZeni operatoridodele 49

3.1.2 Inkrementiranje i dekrementiranje 49

3.2 Zapis matematickihformula00 50
3.3 Sekvencijalni programi oL 51
3.3.1 Sekvencijalno izraunavanje vrednosti 51

3.3.2 Celobrojno deljenjeiostatak 51

3.3.3 Pozicioni zapis (brojevi, vreme, uglovi) 52
3.3.3.1 IzraCunavanje zbira cifara petocifrenog broja 53

3.3.3.2 Razmenjivanje cifre jedinicaistotina 53

3.3.3.3 IzraCunavanje vremena izmedu dva trenutka 54

3.3.3.4 IzraCunavanje ugla izmedu kazaljkinasatu 55

Grananje 57
4.1 Relacijski i logicki operatori i istinitosna vrednost izraza 57
4.1.1 Logickitippodataka Lo 57

4.1.2 Relacijskiilogicki operatori 57

4.1.3 Poredenjeiporedak 60
4.13.1 Relacija jednakosti 60

4132 Relacijeporetka 61

42 Naredbaif-else 64
4.2.1 Konstrukcijaelse-if oL 66

43 Operatoruslova L L 67
44 Naredbaswitch 68
45 Primeri 69
4.5.1 Broj dana u mesecu (grananje na osnovu vrednosti promenljive) . 69

4.5.2 Agregatno stanje vode (grananje na osnovu pripadnosti intervalu) 72

453 Uspehuenika L 73

4.5.4 Kvadrant kom pripada tacka (hijerarhija ugnezdenih uslova) . . . 73

4.5.5 Poredenje datuma (leksikografsko poredenje torki iste duzine) . . 74

4.5.6 Vrstatrougla na osnovu stranica 75

SADRZAJ

5 Petlje
5.1 Petljawhile
52 Petllafor
5.3 Petljado-while e

54
5.5

5.6

Naredbe breakicontinue
Osnovni iterativni algoritmi
5.5.1 Sabiranje, prebrojavanje, mnoZenje
5.5.2 Minimumimaksimum Lo
5.5.3 Linearnapretragao
5.5.4 Sortiranostnizao
5.5.5 Filtriranje, preslikavanje
5.5.6 Pozicionizapiso
5.5.7 Leksikografsko poredenje
Ugnezdene petlje Lo
5.6.1 Elementarni algoritmi sortiranja

5.6.1.1 Algoritam selection sort

5.6.1.2 Algoritam bubble sort

5.6.1.3 Algoritam insertion sort
562 Zadaci

6 Funkcije

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9
6.10

Modularnost i razlaganje problema na potprobleme
Primeri kori§¢enja funkcijeo oo
Parametri funkeije
Povratna vrednost funkcijeo
Prenosargumenata
6.5.1 Prenos argumenatapovrednosti
6.5.2 Prenos argumenata poreferenci
6.5.3 Prenos argumenatapoadresi
Konverzije tipova argumenata funkcije
Anonimne funkeije oL
Slozeni tipoviifunkeije oo
Rekurzivne funkcije - osnovni pregled L.
Doseg, Zivotni vek i organizacija memorije dodeljene programu
6.10.1 Dosegidentifikatora,
6.10.2 Zivotni vek objekata
6.10.3 Organizacija memorije dodeljene programu
6.10.4 Segmentkoda L.
6.10.5 Segmentpodataka L.
6.10.6 Steksegment
6.10.7 Implementacija rekurzije

77
77
78
81
82
84
84
88
92
96
97
98
99
100
101
102
103
104
105

6 SADRZAJ

6.11 Deklaracija i definicija funkcije 133

6.11.1 Uzajamnarekurzija 133

6.11.2 Razdvojena kompilacija i povezivanje 136

7 Strukture podataka 141

7.1 Korisnicki definisani tipovi: nabrojivi tip, strukture, klase 141

7.1.1 Nabrojivi tipovi (enum) 141

7.1.2 Strukture 143

713 Klase. 148

7.1.4 Parovi i torke (tipovi pair<T1, T2>ituple<T1l, ..., Tn>). 151

7.1.5 Imenovanje tipova — typedef 153

7.2 Strukture podataka sa sekvencijalnim pristupom 154

7.2.1 Staticki alocirani nizovi oL 155

7.2.1.1 Nizoviifunkcije. L. 159

722 VLA . . 161

723 Tipvector<T> 161

7.24 PokazivaCiiiteratori 165

7.2.5 Tipovi1ist<T> 167

7.3 ViSedimenzioni nizoviikolekcijeo oL 168

74 Radsamatricama L 171

7.5 Strukture podataka sa asocijativnim pristupom 174

7.5.1 Skupovi ... 174

7.52 Multiskupovi 176

753 Mape.o 176

7.6 Specijalizovane strukture podatakao 180

7.6.1 Stek . ..o 180

7.6.1.1 Primer upotrebe steka: izrazi u postfiksnoj notaciji 180

7.62 Red 182

7.6.2.1 Primer upotrebe reda: poslednjih & ucitanih linija teksta 182

7.63 Redsadvakraja 183

7.6.3.1 Primer upotrebe reda sa dva kraja: istorija veb-pregledaca 184

7.6.4 Redsaprioritetom 185
7.6.4.1 Primer upotrebe reda sa prioritetom: zbir najveéih k

brojeva 186

8 Pregled standardne biblioteke 189

8.1 Koriscenje bibliotecke implementacije algoritama 190

8.2 Pregled biblioteckih funkcija za rad sa sekvencijalnim kolekcijama 190

8.2.1 Sortiranje 190

8.2.2 Linearnapretraga 194

8.2.3 Binarnapretraga 195

SADRZAJ 7

9

10

11

8.2.4 Kopiranje, preslikavanje, filtriranje 196
8.2.5 Brisanjeelemenata oL 198
8.3 Radsakarakterima L L. 199
84 Radsaniskama L Lo 199
8.5 Datoteke/tokovi Lo 201
8.5.1 Ulazni tok za ucitavanje iz tekstualne datoteke (ifstream) . . . 202
8.5.2 Izlazni tok za upis u tekstualnu datoteku (ofstream) 204
85.3 Baferovanje 205
8.5.4 Odnos sa C bibliotekom za ulaz/izlaz 206

8.5.5 Tokovi za Citanje iz niske (istringstream) i upis u nisku
(ostringstream) 206
8.5.6 Argumenti komandne linije programa 207
Principi pisanja programa i dokumentacije 211
9.1 Timskiradikonvencije 211
9.2 Vizuelni elementi programao 212
9.2.1 Brojkarakterauredu oL 212
9.2.2 Broj naredbi u redu, zagrade i razmaci 213
9.2.3 Nazubljivanje teksta programa 214
9.3 Imenovanje promenljivihifunkcija oL 215
9.4 Pisanjeizraza. e e e e e e e e e e 216
9.5 Kori§€enjeidioma 218
9.6 Koris€enje konstanti oL oL 219
9.7 Pisanjekomentara Lo 221
9.8 Modularnost 223
9.8.1 Modularnost i podela na funkcije 223
9.8.2 Modularnost i podela na datoteke 224
9.9 Upravljanje izuzecimaigreSkama 224
Razvoj programa 229
10.1 Razvojno okruzZenje 229
10.2 Pregled procesa debagovanja 231
103 Testiranje Lo 232
Projektni zadaci 235
11.1 Prelaziizmeduslika 235
11.2 Transformacijaslika 238
113 ASCll kamera 243

11.4 Mastermajnd L e 245

SADRZAJ

8
12 Dodatak 249
12.0.1 Statistike 249
250

12.0.2 Menjanje redosleda elemenataniza

Predgovor

Materijal koji je pred vama pisan je kao udzbenik za predmet ,,Uvod u programiranje® sa
prve godine smera Informatika na Matemati¢kom fakultetu u Beogradu.

Ovo je radna verzija materijala i u narednom periodu sigurno ¢e se menjati i doterivati. Svi
komentari i sugestije bi¢e veoma dobrodosli. Na dosadasnjim komentarima zahvalni smo
kolegi Mladenu Nikoli¢u i studentima Branku Basaricu i Andrijani Milovanovié.
decembar 2024

Autori

Filip Mari¢

Predrag Janici¢

10

SADRZAJ

CI . Uvod

Jezik C++ (izgovara se obicno “ce-plus-plus”) je visi programski jezik opSte namene, ko-
ga je inicijalno kreirao danski informati¢ar Bjarne Stroustrup (engl. Bjarne Stroustrup).
Prve verzije su objavljene 1985. godine i jezik je predstavljao proSirenje programskog je-
zika C. Vremenom je jezik obogacen mnogim novim svojstvima. Iako je prvobitno bio
namenjen za sistemsko programiranje i programiranje uredaja sa ugradenim racunarom
(engl. embedded systems), domen primene se vremenom prosirio, te se C++ danas kori-
sti za programiranje video-igara, servera, baza podataka i skoro svih velikih racunarskih
sistema.

Izvorni program, program na jeziku C++ se prevodi na masinski, izvrSivi kod kako bi
mogao da se izvrSava na racunaru. Postoji veliki broj prevodioca, tj. kompilatora koji ovo
rade: GNU C++ compiler (g++), LLVM/Clang, Microsoft visual C++, Intel C++ Compiler,
itd.

Jezik C++ se vremenom razvijao i menjao i nove verzije jezika su uvodile i preporucivale
sasvim drugacije stilove od originalne verzije jezika. lako se, zbog kompatibilnosti una-
zad, C++ i dalje u velikoj meri moZe tumaciti kao nadskup programskog jezika C i veéina
C programa se moZze prevoditi pomocu prevodioca za C++, stil programiranja u savreme-
nom jeziku C++ je veoma drugaciji nego Sto je to slucaj kada se programira u “Cistom”
jeziku C. Danas je C++ jako veliki jezik koji omogucava brojne stilove programiranja
i kombinuje vise razli¢itih programskih paradigmi (proceduralnu, imperativnu, objektno-
orijentisanu, funkcionalnu, itd.) Cilj ovog udzbZenika nije detaljno upoznavanje sa ovim
programskim jezikom, ve¢ izuCavanje osnovnih principa programiranja na jednom S§iro-
ko rasprostranjenom, savremenom jeziku koji ima bogatu standardnu biblioteku. Stoga
¢e mnogi vazni aspekti jezika biti potpuno izostavljeni (na primer, pokazivaci i dinamic-
ka alokacija memorije, definisanje klasa i sli¢no). Podskup jezika koji ¢e biti obradivan
¢ini osnovni fragment jezika zajednicki sa programskim jezikom C (bez pokazivaca), sa
dodatkom standardne biblioteka algoritama i kolekcija (koja u programskom jeziku C ne
postoji).

11

1.1

1.1.1

12 GLAVA 1. UVOD

Osnovni elementi jezika i prvi programi

U nastavku ¢emo prikazati nekoliko jednostavnih programa kroz koje ¢emo ilustrovati
neke osnovne koncepte i jezicke konstrukcije, dovoljne za reSavanje mnogih jednostavnih
zadataka koriS¢enjem programiranja. U narednim poglavljima, jezik C++ Ce biti prezento-
van postupno, koncept po koncept, Cesto iz opste perspektive programiranja i programskih
jezika.

Preporucujemo da se, radi boljeg razumevanja, svaki navedeni program prekuca, prevede
1 pokrene.

Osnovna struktura programa
Opisimo za pocetak jednostavan program koji na ekran ispisuje poruku Zdravo svete!.

#include <iostream>
using namespace std;

int main() {
// na ekran ispisujemo pozdravnu poruku
cout << "Zdravo svete!" << endl;
return O;

}

Jezik C++ pravi razliku izmedu malih i velikih slova i bitno je dali je neSto napisano malim
ili velikim slovom.
Svaki program mora da sadrZi funkciju main tj. u kodu je potrebno da postoji deo oblika

int main() {
// ovde se navode naredbe naseg programa
return 0; // ovim se signalizira da je program uspesno tzurSen

Linija int main() zapocinje definiciju funkcije main. O funkcijama ¢e biti vise reci
kasnije, za sada recimo samo da je funkcija main glavna funkcija i izvrSavanje svakog
C++ programa pocinje izvrSavanjem naredbi navedenih u okviru ove funkcije. Deo funk-
cije izmedu vitiCastih zagrada naziva se telo funkcije. Telo funkcije sadrZi naredbe koje
se izvrSavaju kada se pozove ta funkcija. Kada korisnik pokrene program, tada operativni
sistem pozove funkciju main tog programa i krene se sa izvrSavanjem naredbi navedenih
u njenom telu. Poslednja naredba u funkciji main je najée$¢e return 0; kojom na$ pro-
gram operativnom sistemu vraca vrednost 0 i time javlja da je njegovo izvrSavanje uspesno
zavrSeno. Ako je doslo do neke greske prilikom izvrSavanja programa, funkcija moZe da
vrati neku vrednost razli¢itu od 0.

1.1.1.1

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 13

Centralni deo programa Cini sledeéi programski kod:

cout << "Zdravo svete!" << endl;

Linija cout << "Zdravo svete!" << endl; predstavlja naredbu kojom se na ekran
ispisuje pozdravna poruka Zdravo svete (bez dvostrukih navodnika), nakon Cega se pre-
lazi u novi red. Objekat cout (od engleskog “console output”) predstavlja standardni izlaz,
Sto je najCeSce ekran, i u njega se “uliva” prvo tekst Zdravo svete, a zatim i prelazak u
novi red koji se oznacava sa endl (od engleskog “end line”). Ovo “ulivanje” je predstavlje-
no simbolima << (tekst “te¢e” i uliva se na cout, pa se cout naziva i standardni izlazni
tok).

Linija // na ekran ispisujemo pozdravnu poruku je komentar i on sluZi da ono-
me ko Cita ovaj program objasni Sta se postiZze nekim kodom, u ovom sluc¢aju — narednom
linijom. Komentari se prilikom prevodenja ignorisu i ne uticu na izvr§avanje programa.

U prvoj liniji programa, pretprocesorskom direktivom #include <iostream> omoguca-
vamo rad sa ulazno-izlaznim tokovima. Na sliCan nafin moZe se omoguditi koriSéenje
drugih delova takozvane standardne biblioteke. Za svaki takav deo postoji odgovarajuée
zaglavije, kao §to je iostream zaglavlje za rad sa ulazno-izlaznim tokovima Navodenje
direktive #include <iostream> omogucava da u naSem programu mozZemo neki tekst
da ispiSemo na ekran, da neke vrednosti ucitamo sa tastature i slicno. U ovom programu
koristili smo cout i endl koji koristimo kada Zelimo da predemo u novi red. Da nismo
naveli red #include <iostream>, dobili bismo poruku o tome da prevodilac naseg pro-
grama ne razume Sta je cout i endl. Posto ¢e svaki program koji budemo pisali ispisivati
nesto na ekran, svaki Ce koristiti direktivu #include <iostream>.

Instrukcijausing namespace std; omogucéava da se svi elementi standardne biblioteke
koriste bez prefiksa std::. Na primer, izlazni tok se oznaCava sa cout, te umesto da
svuda piSemo da je on deo standardne biblioteke std, tj. da piSemo std: : cout mozemo
pisati samo cout. Da ne postoji red using namespace std;, tada bi centralni deo naSeg
programa morao da bude napisan u narednom obliku.

std::cout << "Zdravo svete!" << std::endl;

Komentari

Vec je receno da u kodu moZemo pisati komentare — tekst kojim se objaSnjava Sta se u
nekom delu programa radi i koji je namenjen onome ko bude ¢itao program (ili onome
ko je taj program pisao, ako nekada kasnije bude potrebe da ga doradi ili prepravi). Ko-
mentare racunar ignori$e prilikom prevodenja programa. U jeziku C++ komentar pocinje
navodenjem oznake // i prostire se do kraja tog reda (ovakve komentare ¢esto nazivamo

1.1.2

14 GLAVA 1. UVOD

linijskim komentarima). Komentar moZe i da se proteZe kroz nekoliko susednih redova (to
je, takozvani viselinijski komentar) 1 on pocinju oznakom /*, a zavrSava se oznakom */.
U daljem tekstu ¢e se komentari navoditi mnogo vise nego §to je to uobiCajena praksa, a
kako bi pomogli u razumevanju priloZzenih programa.

Promenljive, tipovi, ispisivanje i ucitavanje podataka

Ispis na standardni izlaz (to je naj¢eSce ekran racunara tj. takozvana konzola) vrsi se nared-
bom oblika cout << "...";, priemu se tekst koji se ispisuje navodi izmedu dvostrukih
navodnika. U jednom programu moguce je navesti i viSe ovakvih naredbi. Na primer,

#include <iostream>
using namespace std;

int main() {
cout << "Programiranje";
cout << "Algoritmi";
cout << "Strukture podataka";
return O;

Tako tekst programa ne mora biti sloZen ovako uredno (naredbe su uvucene, poravnate jed-
na ispod druge), to je veoma poZeljno zbog Citljivosti programa. Kada se program pokrene,
iako su naredbe sloZene jedna ispod druge, navedene recenice se ispisuju jedna do druge.

ProgramiranjeAlgoritmiStrukture podataka
Isti efekat bi se postigao navodenjem jedne naredbe oblika:

cout << "Programiranje" << "Algoritmi" << "Strukture podataka";

ili malo drugacije sloZeno

cout << "Programiranje"
<< "Algoritmi"
<< "Strukture podataka';

Ako se Zeli da se nakon ispisa teksta prede u novi red, onda je potrebno nakon niske pod
dvostrukim navodnicima ispisati i znak za prelaz u novi red endl. Na primer, funkcija

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 15

int main() {
cout << "Programiranje" << endl;
cout << "Algoritmi" << endl;
cout << "Strukture podataka" << endl;
return O;

}

ispisuje imena predmeta jedan ispod drugog:

Programiranje
Algoritmi
Strukture podataka

Tekst moZe da unese i korisnik programa. Razmotrimo naredni program.

#include <iostream>
using namespace std;

int main() {
cout << "Kako se zovete?" << endl;
string ime;
cin >> ime;
cout << "Dobar dan, Vi se zovete " << ime << endl;
return 0;

Naredbom cout << "Kako se zovete?" << endl; na ekran se ispisuje tekst Kako
se zovete?, §to je veoma slino prvom programu koji smo analizirali. Nakon toga Zeli-
mo da korisnik unese svoje ime. Tekst koji korisnik unese moramo negde da upamtimo
da bismo ga kasnije ispisali. Da bismo upamtili razne vrednosti (u ovom primeru to je
tekst koji je korisnik uneo, a u narednim primerima ¢e to biti razni brojevi sa kojima ée-
mo vrS§iti razli¢ita izratunavanja) koristimo promenljive. U navedenom primeru, koristimo
promenljivu koja se zove ime i u nju smeStamo tekst koji je uneo korisnik. MoZemo da za-
mislimo da svakoj promenljivoj odgovara kutijica ili kucica u kojoj se ¢uva njena vrednost.
U svakom trenutku postojeca vrednost moZe biti promenjena, tj. izbacena iz kutijice i u
kutijicu moZe biti upisana neka nova vrednost. Zato se promenljive i zovu tako. Jezik C++
spada u grupu takozvanih staticki tipiziranih jezika, $to znaci da se za svaku promenljivu
unapred zadaje njen fip, tj. vrsta vrednosti koje se u njoj mogu cuvati. U nekim promenlji-
vim mozZe da se ¢uva tekst, u drugima celi brojevi, u tre¢im realni brojevi i slicno. Prilikom
prvog uvodenja neke promenljive u na$ program, pored njenog imena obavezno je navesti
njen tip i to ¢ini deklaraciju promenljive. U prethodnom primeru, deklaracija je bila linija

16 GLAVA 1. UVOD

string ime; Njom smo deklarisali promenljivu pod nazivom ime i rekli da ¢e ona biti
tipa string, tj. da ¢e se u njoj Cuvati tekst.

Naredbom cin >> ime ucitava se tekst (jedna niska karaktera) koji je uneo korisnik.
Objekat cin (od engleskog “console input”) oznacava standardni ulaz i on najcesée odgo-
vara tastaturi. Ocekujemo da korisnik unese svoje ime (mada moZe da unese Sta god Zeli —
na$ program to nece primetiti). Podaci opet teku, ali ovog puta teku sa ulaza tj. sa tastature
u promenljivu ime (Sto je naglaseno simbolima >>). Zato se cin naziva i standardni ulazni
tok.

Na kraju, naredbom count << "Zdravo, Vi se zovete " << ime << endl,
na standardni izlaz ispisuje se prvo tekst Zdravo, Vi se zovete, zatim sadrzaj
promenljive ime (to je tekst koji je korisnik uneo) i na kraju se prelazi u novi red.
Ucitavanjem teksta naredbom oblika cin >> tekst; ucitava se samo jedna re¢ tj. tekst
do prvog razmaka. Na primer, ako kao odgovor na cin >> ime; u prethodnom programu
neko otkuca Petar Petrovic, promenljiva ime ée sadrZati samo tekst Petar. Citava
liniju teksta moZe se uneti koriS¢enjem funkcije getline. Na primer:

string ime_i_prezime;
getline(cin, ime_i_prezime);

U ovom slucaju, korisnik moZe da unese celo ime i prezime i ono Ce biti smeSteno u pro-
menljivu koja je nazvana ime_i_prezime.

U prethodnom primeru videli smo kako moZe da se koristi tekstualni tip podataka string.
U prvim programima ¢éemo Koristiti i sledece osnovne tipove podataka (a kasnije éemo
upoznati i mnoge druge).

tip opis primer
string tekst (niska karaktera) "Zdravo"
int ceo broj 1234
double realan broj 3.141
bool logicka vrednost trueili false

Tipove koji ¢uvaju neku vrstu brojeva zovemo brojevni tipovi. Treba imati na umu da
brojevne promenljive ne mogu da cuvaju proizvoljno male i proizvoljno velike brojeve. Na
primer, u promenljivoj tipa int najce$ée se mogu Cuvati celobrojne vrednosti od oko minus
dve milijarde pa sve do oko dve milijarde. Sli¢no vaZi za podatke tipa double - i ovaj tip
ima ograniceni raspon i preciznost tj. broj decimala. Skup mogucih vrednosti sasvim je
dovoljan za pocetne zadatke, te na pocetku neCemo obracati previse pazZnje na ograni¢enja
opsega.

Prvobitna dodela vrednosti promenljivoj naziva se inicijalizacija. Inicijalizacija moZe biti
navedena u okviru same deklaracije i takvu deklaraciju zovemo deklaracija sa inicijaliza-

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 17

cijom. Prilikom dodele moguce je promenljivim dodeljivati vrednost nekih izraza ili neke
konkretne vrednosti tj. konstante . Na primer:

string ime = "Bjarne Stroustrup";

Pre nego Sto se promenljiva tipa string inicijalizuje, njena vrednost je prazan tekst (tekst
""). Medutim, pre nego $to je brojevna promenljiva inicijalizovana, njena vrednost je nesto
Sto je zateCeno u njenom prostoru od ranije i nije nuzno nula. U narednom kodu, u opStem
sluc¢aju, ne mozemo znati vrednost promenljive x izmedu njene deklaracije i inicijalizacije:

int x;

x =1;

Imena promenljivih treba da budu u skladu sa njihovim znac¢enjem (poZeljno je izbegavati
kratka, neinformativna imena poput a, b, x, y, osim ako iz konteksta programa nije potpuno
jasno Sta bi te promenljive mogle da oznacavaju). Imena promenljivih ne smeju da sadrze
razmake i moraju biti sastavljena samo od slova, cifara i donje crte tj. podvlake (karaktera
_), ali ne mogu pocinjati cifrom.

PrikaZimo jo$ neke primere deklaracija i inicijalizacija. Na primer, narednom deklaracijom
se u program uvode dve promenljive pod nazivima x i y i kaZe se da ¢e one Cuvati celobrojne
vrednosti.

int x, y;

Primetimo da smo u prethodnom primeru jednom deklaracijom uveli dve promenljive, $to
je krace nego da smo pisali posebno dve deklaracije:

int x;
int y;

Naravno, i celobrojne promenljive mogu biti inicijalizovane u okviru deklaracije:

int x =

1, y = 2;
3, b, ¢c = 4;

int a

U prethodnom primeru deklarisano je pet promenljivih, a inicijalizovane su Cetiri.

Kada su u pitanju realne vrednosti, one se navode sa decimalnom tackom (u skladu sa
pravopisom engleskog jezika), a ne sa zapetom (Sto bi bilo u skladu sa pravopisom srpskog
jezika):

18 GLAVA 1. UVOD

double pi = 3.14159265;

Naredba ispisa koju smo ranije videli moZe biti upotrebljena i za ispis brojevnih, pa i
logickih vrednosti. Na primer, narednim naredbama

cout << 123 << endl;
int x = 5;

cout << x << endl;

cout << 12.345 << endl;
double pi = 3.14159265;
cout << pi << endl;

ispisuje se

123

5

12.345
3.14159265

Prilikom ispisa moguce je kombinovati tekst i brojevne vrednosti. Na primer,

double pi = 3.1415926;
cout << "Vrednost broja pi je " << pi << endl;

Cest zahtev je da se realne vrednosti ispi§u zaokruZene na zadati broj decimala. Za to je
moguce na pocetku programa navesti direktivu #include <iomanip>, a zatim koristiti
slededi oblik naredbe ispisa:

double x = 123.4567;
cout << fixed << showpoint << setprecision(2) << x << endl;

Navodenjem kljucne reci fixed postiZe se da se nikada ne koristi tzv. nau¢ni oblik zapisa
(npr. 3,5 - 10%) koji je pregledniji za jako male i jako velike brojeve. Kori¢enjem
klju¢ne reci showpoint postiZe se da se decimale navode i kada su jednake nuli. Pomocu
setprecision podeSava se Zeljeni broj decimala - ukoliko je ovaj metod pozvan sa
argumentom n - zadati broj bi¢e zaokruZen na n znacajnih cifara. Da bi se koristio metod
setprecision, potrebno je ukljuciti i zaglavlje <iomanip>. Na primer,

cout << setprecision(3) << 3.14159dajeizlaz3.14,acout << setprecision(4)
<< 3.14159 daje izlaz 3.142.

Pored teksta, sa standardnog ulaza moZemo ucitavati i brojeve. Razmotrimo naredni pro-
gram.

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 19

cout << "Koliko imate godina?" << endl;

int brGodina;

cin >> brGodina;

cout << "Zdravo, Vi imate " << brGodina << " godina." << endl;

Nakon ucitavanja jednog celog broja sa tastature, korisniku se ispisuje odgovarajuci tekst.
Ukoliko je potrebno uneti viSe vrednosti sa tastature (na primer, dan i mesec rodenja),
onda se u jednoj naredbi moZe nadovezati ucitavanje svih potrebnih vrednosti. Pritom je
te vrednosti moguce uneti u jednoj liniji razdvojene razmakom ili u dve zasebne linije.

cout << "Kad ste rodjeni?" << endl;

int dan, mesec;

cin >> dan >> mesec;

cout << "Zdravo, Vi ste rodjeni " << dan << ". " << mesec << "."|<< endl;

1.1.3 Izracunavanje

1.1.3.1 Osnovne aritmeticke operacije i izrazi
Nijedan od programa koje smo do sada sreli nije bio narocito interesantan. Mogli smo da
ucitamo podatke i da ih ispiSemo u neizmenjenom obliku.
Racunar je maSina koja obraduje podatke, tj. koja primenjujuéi raCunske operacije na
osnovu ulaznih podataka dobija izlazne. U racunaru je, na najniZzem nivou, sve zapisano
pomodcu brojeva i sve operacije se svode na osnovne operacije nad brojevima. Racunar ili
kompjuter (engl. computer) je sprava koja racuna tj. sprava koja je napravljena tako da
moze veoma brzo i efikasno da izvodi operacije nad brojevima. Racunanje se naziva i arit-
metika (od gréke rei aptBudg tj. aritmos koja znaci broj, brojanje, ra¢unanje), a racunske
operacije se nazivaju i aritmeticke operacije.

 Osnovna aritmeti¢ka operacija je sabiranje. Zbir brojeva 3 i 5 se u matematici pred-
stavlja kao 3 + 5. U programskom jeziku C++ koristi se identian zapis: 3 + 5.
Sabiranje je primenljivo i na cele i na realne brojeve. Na primer, kod koji ucitava i
sabira dva cela broja moZe biti napisan na sledeéi nacin.

int x, y;
cin >> x >> y;
cout << x + y << endl;

« Pored sabiranja moZemo razmatrati i oduzimanje. Razlika brojeva 8 i 2 se u mate-
matici predstavlja kao 8 — 2, a u programskom jeziku C++ koristi se identican zapis:
8 - 2. Oduzimanje je primenljivo i na cele i na realne brojeve.

1.1.3.2

20 GLAVA 1. UVOD

« Jo§ jedna od osnovnih operacija je mnoZenje. Proizvod brojeva 4 i 6 se u matematici
predstavlja kao 4 - 6. U programskom jeziku C++ mnoZenje se oznacava pomocéu
operatora * i proizvod brojeva 4 i 6 se zapisuje kao 4 * 6.

o U programskom jeziku C++, naravno, moZemo i da delimo, da izra¢unavamo osta-
tak pri deljenju i ceo deo koli¢nika. Deljenje realnih brojeva se vrs$i pomocu opera-
tora / i koli¢nik brojeva 7,21 6, 4 se zapisuje kao 7.2 / 6.4. Deljenjem dva cela
broja dobija se njihov celobrojni koli¢nik, dok se ostatak pri deljenju dva cela broja
dobija operatorom %. Na primer, vrednost izraza 14 / 4 jednaka je 3, a izraza 14
% 4 jednaka je 2. Ako Zelimo da odredimo realni koli¢nik dva cela broja, mora-
mo ih predstaviti u realnom obliku (na primer, umesto 14/4 piSemo 14.0/4.0).
Moguce je primeniti i eksplicitnu konverziju celih u realne vrednosti navodenjem
(double) ispred naziva promenljive (npr. umesto x / y piSemo (double) x /
(double) y). Naglasimo da je dovoljno da bilo deljenik bilo delilac budu realni
da bi se primenilo realno deljenje. O dubljim vezama izmedu realnog i celobrojnog
tipa bice viSe reci u kasnijim poglavljima.

Sli¢no kao i u matematici, od konstantnih vrednosti i promenljivih, primenom operatora i
zagrada grade se izrazi. Prioritet operatora je uskladen sa uobi¢ajenim prioritetom u mate-
matici, pa je prioritet operatora *, / i % visi od prioriteta operatora + i —, dok svi navedeni
operatori imaju levu asocijativnost (racunske operacije se izvode s leva na desno). Prioritet
1 asocijativnost se mogu promeniti navodenjem zagrada.

U prvim programima ¢emo se truditi da prilikom izvodenja operacija ne meSamo podat-
ke razlicitog tipa. Ipak, naglasimo da ako je u izrazu jedan broj realan, a drugi ceo, pre
izvodenja operacija se taj ceo broj pretvara u realan i operacija se izvrSava nad realnim
brojevima.

Vise puta u prethodnom tekstu pominjali smo tip realnih brojeva. Medutim, vrednosti tog
tipa ¢ine samo konacan podskup skupa realnih brojeva: nije moguce zapisati proizvoljno
male, proizvoljno velike brojeve, iracionalne brojeve, itd. Obi¢no se realni brojevi Cuvaju
u zapisu koji zovemo zapis u pokretnom zarezu, te je preciznije, na primer, tip double
zvati tip brojeva u pokretnom zarezu, a ne tip realnih brojeva. Isto vazi i za druge tipove
koji mogu da ¢uvaju (neke) realne vrednosti. Ipak, u svakodnevnom govoru, ¢esto se moze
cuti 1 termin tip realnih brojeva, iako nije precizan. Analogno vaZi za cele brojeve, jer u
racunaru nije mogucée pohraniti bilo koji ceo broj. Zato bi bilo preciznije govoriti fip celih
brojeva fiksne sirine, umesto uobicajenog tip celih brojeva.

Bibliotecke matematicke funkcije

U mnogim konkretnim primenama, pored osnovnih aritmetickih operacija primenjuju se
i neke naprednije matematicke funkcije i neke znacajne matematicke konstante (npr.).
Da bismo ih koristili u jeziku C++, potrebno je na pocetku programa ukljuciti zaglavlje
<cmath> direktivom #include <cmath>. Funkcije koje ¢e biti potrebne u narednim
zadacima su:

1.1.3.3

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 21

o pow(x, y) - izraCunava stepen z¥, pri ¢emu se moZe primeniti i za izracunavanje
korena (ne samo kvadratnih) znaju¢i da je /z = x%;

o sqrt(x) - izraunava kvadratni koren \/5;

« abs(x) - izratunava apsolutnu vrednost |x|;

e sin(x), cos(x), tan(x), cot(x) - izracunavaju sinus, kosinus, tangens i kotan-
gens ugla zadatog u radijanima

Detaljniji spisak matematickih funkcija bie prikazan u narednim pogavljima.

Imenovane konstante

Vrednosti koje su nam potrebne u programu, a koje se neCe menjati tokom izvrSavanja
programa moZemo definisati u vidu imenovanih konstanti, koje se definiSu kao obi¢ne pro-
menljive, uz navodenje kljucne reci const pre tipa podatka, uz obaveznu inicijalizaciju
vrednosti na neku konstantnu vrednost. Na primer:

const double PI = 3.14159265;

Imenovanim konstantama nije moguée promeniti vrednost u programu.

Zadatak: Rastojanje tacaka

Napisi program koji izraCunava i ispisuje rastojanje izmedu tacaka zadatih svojim koordi-
natama.

Opis ulaza

Sa standardnog ulaza unose se Cetiri realna broja, svaki u posebnom redu. Prva dva broja
A, i A, predstavljaju koordinate tacke A = (A,, A,), dok druga dva broja B, i B,
predstavljaju koordinate tatke B = (B, By).

Opis izlaza

Na standardni izlaz ispisati jedan realan broj koji predstavlja rastojanje izmedu tacaka A i

B.

Primer

Ulaz IZlaz

0 1.41421
0

1

1

ReSenje

Posmatrajmo tacku C' koja ima koordinate (B,, A,). Trougao ABC' je pravougli tro-
ugao sa pravim uglom kod temena C'. TraZeno rastojanje izmedu tataka A i B jedna-
ko je duZini hipotenuze tog trougla i moZe se izracunati primenom Pitagorine teoreme
koja tvrdi da je kvadrat nad hipotenuzom jednak zbiru kvadrata nad obe katete. Posto

22 GLAVA 1. UVOD

B(Bg, By)

Slika 1.1: Rastojanje tacaka

su katete naSeg trougla duzi AC' i BC, vazi da je |AB|? = |AC|* + |BC|?, pa je
|AB| = /|AC|? + | BC|?. Posto tatke A i C' imaju istu y-koordinatu, duZina duzi AC
jednaka je | B, — A,,|. Zaista, posto je duz AC paralelna osi x, njena duZina jednaka je
duZini intervala koji predstavlja njenu projekciju na tu osu. To je interval [A,, B,] ako je
A, < B, injegova duZina je B, — A, j. interval [B,,, A,] ako je B, < A, injegova
duzina je A, — B,. U oba slucaja, duZina je jednaka |B, — A_|. Sli¢no, duZina duzi BC
jednaka je | B, — A, |. Zato je |AB| = \/|BI — A, > +|B, — A,|?. Posto se vrednosti
|B, — A,|i|B, — A,| kvadriraju, nije neophodno koristiti apsolutnu vrednost i vazi da

je |AB| = \/(Bx — A2+ (B, — A2

Podsetimo se, u jeziku C++ se kvadratni koren moZe izracunati biblioteckom funkcijom
sqrt deklarisanom u zaglavlju <cmath>.

#include <iostream>
#include <cmath>

using namespace std;

int main() {
double ax, ay, bx, by;
cin >> ax >> ay >> bx >> by;
double dx = bx - ax, dy = by - ay;
double d = sqrt(dx*dx + dyxdy) ;
cout << d << endl;
return 0;

1.1.4
1.1.4.1

1.1.4.2

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 23

Grananje

Relacijski operatori

Cesto je potrebno utvrditi da li su neke dve vrednosti medusobno jednake ili za neke dve
vrednosti utvrditi koja je od njih veéa. Za poredenje vrednosti promenljivih ili izraza ko-
riste se relacijski operatori.

« Osnovni relacijski operator je operator provere jednakosti ==. Na primer, ako Zeli-
mo da ispitamo da li promenljive b i b imaju istu vrednost, to se moZe postiéi relacij-
skim izrazom a == b. Vrednost ovog izraza je true ako su vrednosti promenljivih
jednake, a false inace. Vrednost ovog izraza je tipa bool i naj¢esce se koristi prili-
kom grananja (o kome ¢e uskoro biti reci), ali se, takode, vrednost relacijskog izraza
moZe i dodeliti promenljivoj tipa bool. DeSava se da se prilikom pisanja koda na-
pravi greSka i umesto operatora provere jednakosti == iskoristi operator dodele =.
Napomenimo jos i to da poredenje dva realna broja moZe proizvesti ponasanje koje
je drugacije od ocekivanog zbog nepreciznosti zapisa realnih vrednosti.

 Pored provere jednakosti, moZemo vrsiti proveru da li su dve vrednosti razliCite.
To se postiZze operatorom !=. Uslov da promenljive a i b imaju razli¢itu vrednost
zapisuje se kaoa != b.

o Zaporedenje dali je jedna vrednost manja, manja ili jednaka, veca, veéa ili jednaka
od druge vrednosti koriste se redom relacijski operatori <, <=, >, >=.

Ocekivano, relacijski operatori su niZeg prioriteta u odnosu na aritmeticke operatore, pa bi
se uizrazu 2+3 == 6-1 najpre izracunale vrednosti 2+316-1, a tek onda bi se proveravala
jednakost ove dve izracunate vrednosti. Operatori <, <=, >, >=su viSeg prioriteta od
operatora == i !=. Svi relacijski operatori su levo asocijativni.

Logicki operatori

Za zapis sloZenih uslova koriste se logicki operatori. Logicki operatori primenjuju se na
operande koji su tipa bool i daju rezultat tipa bool. Oni su niZeg prioriteta u odnosu na
relacione i aritmeti¢ke operatore.

 Operator logicke konjunkcije && koristi se za utvrdivanje da li istovremeno vaZzi
neki skup uslova. Na primer, vrednost izraza2 < 3 && 2 > 1 je true, a vrednost
izraza2 < 3 && 2 < 1 je false.

 Operatorom logicke disjunkcije | |. utvrduje se da li je tacan bar jedan od datih
uslova. Na primer, izraz 2 < 3 || 2 < 1 ima vrednost true, aizraz2 > 3 ||
2 < 1 vrednost false.

» Operator ! daje logi¢ku negaciju. Na primer, izraz ! (1 < 3) ima vrednost false,
koja je suprotna od vrednosti true izraza 1 < 3.

1.1.4.3

24 GLAVA 1. UVOD

Operacije logicke konjunkcije i disjunkcije definisane su slede¢im tablicama.

&& false true | false true !
false false false false false true false true
true false true true true true true false

Operator logicke konjunkcije viSeg je prioriteta od operatora logic¢ke disjunkcije. Dakle, u
izrazua || b && c bi se prvo izraCunala vrednost izraza b && c, a onda bi se izvrSila
operacija logicke disjunkcije promenljive a i vrednosti prethodnog izraza. Oba binarna
logi¢ka operatora su levo asocijativna.

I za operator konjunkcije i za operator disjunkcije karakteristicno je lenjo izracunavanje
- iako su pomenuti operatori binarni, vrednost drugog operanda se ne racuna ukoliko je
vrednost kompletnog izraza ve¢ odredena vrednoscu prvog operanda. Dakle, prilikom iz-
racunavanja vrednosti izraza A && B, ukoliko je vrednost izraza A jednaka false, nema
potrebe i ne izracunava se vrednost izraza B. Sli¢no, prilikom izracunavanja vrednosti iz-
raza A || B, ukoliko je vrednost izraza A jednaka true, ne izracunava se vrednost izraza
B.

Naredba if

Za mnoge programe tok izvrSavanja nije uvek isti ve¢ zavisi od ispunjenosti odredenih
uslova. Za takve programe kaZemo da imaju razgranatu strukturu i da se u njima vrsi gra-
nanje. Cilj grananja jeste da se na osnovu ispunjenosti (ili neispunjenosti) nekog uslova
odredi koju narednu naredbu treba izvrSiti. Veéina programskih jezika, pa i jezik C++,
raspolaze naredbom grananja. Osnovni oblik naredbe grananja u jeziku C++ je:

if (uslov)
naredbal

else
naredba?2

U navedenom primeru, ako je ispunjen uslov uslov bie izvrSena prva naredba, a ako
uslov nije ispunjen bice izvrSena druga naredba. Na primer, ispisivanje da li je dati broj
paran ili neparan moZe imati slede¢i oblik:

if (broj % 2 == 0)

cout << "paran" << endl;
else

cout << "neparan" << endl;

Stavka else nije obavezan deo naredbe grananja. Dakle, ako bismo hteli da ispiSemo da je
broj paran ako jeste paran, a ako nije da ne ispisujemo nista, to bismo mogli da postignemo
narednom naredbom:

1.1.4.4

1.1.5

1.1.5.1

1.1.5.2

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 25

if (broj % 2 == 0)
cout << "paran" << endl;

Umesto pojedinacnih naredbi, u obe grane se moZe javiti i blok naredbi naveden u viti¢a-
stim zagradama.

Uslovni izraz
Umesto naredbe grananja nekada je pogodnije iskoristiti uslovni izraz (izraz grananja).
Uslovni izraz, odnosno operator 7 :, ima sledecu formu:

uslov 7 rezultat_tacno : rezultat_netacno

Ovaj operator je ternarni, odnosno ima tri argumenta: prvi je uslov ¢iju ispunjenost prove-
ravamo, drugi argument je vrednost izraza ako je uslov ispunjen, dok se tre¢im argumen-
tom zadaje vrednost izraza ako uslov nije ispunjen. Na primer, ispisivanje parnosti zadatog
broja moglo bi da se realizuje i kori§¢enjem izraza grananja:

cout << (broj % 2 == 0 ? "paran" : "neparan") << endl;

Operator grananja je desno asocijativan i niZeg prioriteta u odnosu na skoro sve ostale
operatore (vi$i prioritet ima jedino od operatora dodele).

Petlje
Petlje se koriste kada neke naredbe treba da se izvrSe veci broj puta. U jeziku C++ postoje
tri vrste petlji: while, for i do-while.

Petlja while
Osnovni oblik petlje while je:

while (uslov)
telo

U petlji while ispituje se vrednost logi¢kog izraza uslov i dok god je on tacan, izvrSavaju
se naredbe zadate unutar tela petlje i izvrSavanje vraca na pocetak (na proveru uslova).
Svako izvrSavanje tela petlje nazivaéemo jednom iteracijom. Ako se telo petlje sastoji od
viSe naredbi, one moraju biti navedene unutar viticastih zagrada.

Petlja for
Opsti oblik petlje for je:

26 GLAVA 1. UVOD

for (inicijalizacija; uslov; korak)
telo

Petlja for najcesce se koristi tako §to se promenljivoj (koja se Cesto naziva brojacka pro-
menljiva) redom dodeljuju vrednosti od najmanje do najvece i za svaku od tih vrednosti
se izvrSavaju naredbe u okviru tela petlje (ako ih je viSe, moraju se navesti u viticastim
zagradama). Obi¢no se u delu inicijalizacija postavlja pocetna vrednost brojacke
promenljive (najcesée se na tom mestu i deklariSe brojacka promenljiva), u delu uslov
se zadaje uslov petlje koji se proverava u svakoj iteraciji i prvi put kada nije ispunjen
izvrSavanje petlje se prekida, dok se u delu korak menja vrednost brojacke promenljive.
Na primer, ukoliko Zelimo da ispiSemo sve brojeve iz intervala [a, b] to moZemo da
uradimo narednom petljom:

for (int i = a; i <= b; i++)
cout << i << endl;

Svaka petlja for moZe se jednostavno izraziti pomocu petlje while. Inicijalizaciju je po-
trebno izvrSiti neposredno pre petlje while, uslov petlje ostaje isti, dok se korak petlje
dodaje kao poslednja naredba u telu petlje while. Dakle, prethodno ispisivanje brojeva iz
intervala [a, b] mogli smo da realizujemo i na slede¢i nacin:

int i = a;

while (i <= b) {
cout << i << endl;
i++:

El

Koris¢enjem petlje £ or moZemo lako ostvariti ponavljanje istih naredbi odredeni broj puta.
Na primer, naredni program izracunava i ispisuje povrsine n pravougaonika ¢ije se duZine
stranica unose, pri ¢emu se broj n ucitava na samom pocetku programa.

#include <iostream>
using namespace std;

int main() {
cout << "Unesi broj pravougaonika: ";
int n;
cin >> n;
for (int i = 0; i < n; i++) {
cout << "Unesi duzine stranica pravougaonika: ";

1.1.5.3

1.1.6

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 27

int a, b;

cin >> a >> b;

cout << "Povrsina pravougaonika je: " << a * b << endl;
}
return O;

Petlja do-while
Pored petlje while, postoji i petlja do-while, koja joj nalikuje ali se uslov petlje ispituje
na kraju tela petlje. Dakle, u ovoj petlji uvek se telo izvr§ava barem jednom, bez obzira na

to da li je uslov ispunjen ili ne (jer se on ispituje na kraju tela petlje). Na primer, naredni
blok koda:

int i1 = a;

do {
cout << i << endl;
it++;

} while (i <= b);

ispravno ispisuje brojeva iz intervala | a, b] ako je a < b, ali ako je a > b reSenje zasnovano
na for i while petlji ne bi ispisivalo nijedan broj ($to bismo i ocekivali), dok bi navedni
blok koda ispisivao broj a.

Definisanje funkcija

Pored biblioteckih funkcija koje su nam na raspolaganju, programski jezici, pai jezik C++
programeru daju moguénost da definise funkcije, $to doprinosi izbegavanju ponovljenih de-
lova programa, dekompoziciji problema na manje potprobleme i boljoj organizaciji koda.
Funkcije moZemo zamisliti sli¢no kao u matematici. One obi¢no za nekoliko ulaznih para-
metara izraunavaju jednu rezultujucu vrednost. Na primer, naredna funkcija izracunava
obim pravougonika datih stranica.

#include <iostream>
using namespace std;

// funkctija izracdunava obim pravougaonika na osnovu poznatih
// duZina stranica a % b
double obim(double a, double b) {

// formula za obim pravougaonika

return 2%a + 2x%b;

28 GLAVA 1. UVOD

int main() {
// ucitavamo duzine stranica pravougaonika
double a, b;
cin >> a >> b;
// tzracunavamo obim pomocu definisane funkcije
double 0O = obim(a, b);
// ispisujemo izracunati obim
cout << 0 << endl;

U prethodnom kodu data je definicija funkcije obim. Prva linija double obim(double
a, double b) se naziva deklaracija funkcije i u njoj se kaze da se funkcija zove obim,
da prima dve ulazne vrednosti (dva parametra) koji su realni brojevi i nazivaju se ai b i
da vraca rezultat koji je takode realan broj. U telu funkcije (ono je ograniceno viticastim
zagradama) se opisuje kako se rezultat izraCunava na osnovu ulaznih vrednosti. Kada je
konacni rezultat izracunat, on se vra¢a na mesto poziva funkcije (u naSem primeru to je
funkcija main) kljuénom re¢ju return. Ispravno definisane funkcije se mogu pozivati iz
drugih funkcija. U prethodnom primeru poziv je izvren u sklopu deklaracije double 0
= obim(a, b). U pozivu se navode argumenti kojima se inicijalizuju parametri funkcije.
U ovom slucaju to su vrednosti promenljivih a i b koje su u€itane sa tastature. Argumenti
mogu biti i konstantne vrednosti (parametri moraju biti promenljive). Na primer, dopusten
je poziv obim(5.0, 7.0).

Radi ¢itljivosti koda, poZeljno je da ime funkcije oslikava ono Sta ona radi.

Unutar funkcije mozemo deklarisati i koristiti i promenljive u kojima ¢uvamo medurezul-
tate. Na primer, moZemo definisati funkciju za izraCunavanje povrSine jednakostrani¢nog
trougla date duZine stranice.

double povrsinaJednakostranicnogTrougla(double a)
{
// tzracunavamo visinu trougla
double h = a * sqrt(3) / 2.0;
// tzracunavamo pouriinu na osnovu duzine stranice t visine
double P = a * h / 2.0;
// vracamo konacan rezultat
return P;

Ovom funkcijom je realizovano izracunavanje povrsine jednakostrani¢nog trougla i kada
nam god to zatreba u programu (a u nekom matemati¢kom zadatku to moZe biti potrebno
viSe puta), moZemo pozvati funkciju i dobiti Zeljeni rezultat.

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 29

Funkcije ne moraju da vrate neku vrednost. Takve funkcije se nekada nazivaju procedure i
jedini zadatak im je da proizvedu neki propratni efekat (na primer, da nesto ispiSu na ekran).
Kao povratni tip podataka navodi se void. Na primer, moZemo definisati proceduru koja
oko datog teksta ispisuje ukrasne linije, a onda je pozvati nekoliko puta u programu.

#include <iostream>
using namespace std;

void ukrasiTekst(string tekst) {

cout << "-—7rr———-—— " << endl;
cout << tekst << endl;
cout << M-mmmmoooom " << endl;

int main() {
ukrasiTekst ("Dobar dan!");
ukrasiTekst ("Zdravo, svima!");
ukrasiTekst ("Dovidjenja!");

1.1.7 Strukture podataka

Racunari skladiste i obraduju velike koli¢ine podataka. Veca koli¢ina podataka se ¢uva u
obliku razli¢itih kolekcija ili struktura podataka.

Jedna od osnovnih kolekcija je staticki niz. Umesto koriS¢enja velikog broja pojedina¢nih
promenljivih, viSe podataka istog tipa moZemo cuvati u jednom nizu. Na primer, podatke
0 ocenama nekog studenta moZemo ucitati na sledec¢i nacin.

int ocene[5];
for (int i = 0; i < 5; i++)
cin >> ocenelil;

Deklaracija int ocene[5] ; obezbeduje da se u memoriji odvoji prostor za smeStanje 5
podataka tipa int. Njima se pristupa kao ocene [0], ocene[1], ocene[2], ocene[3]
iocene [4] (indeksi krecu od 0). Kada se podaci jednom upiSu u memoriju, mogu se vise
puta obradivati. Na primer, moZemo izracunati prosecnu ocenu (tako §to izra¢unamo zbir
ocena i podelimo ga sa 5).

30 GLAVA 1. UVOD

int zbir_ocena = O;
for (dint i = 0; i < 5; i++)
zbir_ocena = zbir_ocena + ocenel[il];
double prosek = zbir_ocena / 5.0;
cout << prosek << endl;

Niz moZemo inicijalizovati tj. popuniti podacima prilikom deklaracije (tada ne moramo
navoditi broj elemenata).

int ocenel[] = {3, 5, 2, 5, 1};

Broj elemenata statickog niza je odreden tokom pisanja programa i niz se ne moze pro-
Sirivati tokom rada programa. Ako broj ocena ne znamo unapred, umesto statickog niza
moZemo koristiti vektor tj. strukturu vector. U narednom programu se dekalariSe vektor
koji je u poCetku prazan, a zatim se ucitava 5 ocena i jedna po jedna se dodaje u vektor
(pozivom push_back).

vector<int> ocene;

for (int i = 0; i < 5; i++) {
int ocena;
cin >> ocena;
ocene.push_back(ocena) ;

U okviru deklaracije vektor moZe inicijalizovan:

vector<int> ocene = {3, 5, 2, 5, 1};

Kada je vektor popunjen, elementi se (koriste¢i indeksni pristup) obraduju na potpuno isti
nacin kao i elementi statickog niza (na primer, deo programa koji ratuna prosec¢nu ocenu
bi se mogao upotrebiti u neizmenjenom obliku).

Elementima niza i vektora se pristupa na osnovu numerickih indeksa (pozicija tj. rednih
brojeva). U nekim situacijama poZeljno je podacima pristupati na osnovu tzv. kljuceva. Na
primer, Zelimo da upamtimo ocene iz razli¢itih predmeta tako da svakoj oceni moZemo
pristupiti na osnovu naziva predmeta. Za to je moguce koristiti preslikavanja (ona se nekada
nazivaju i mape, recnici ili asocijativni nizovi). U narednom primeru kljucevi su nazivi
predmeta, a ocene su vrednosti koje su pridruZene tim kljucevima.

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 31

map<string, int> ocene;

// upisujemo podatke u mapu
ocene ["programiranje"] = 9;
ocene["analiza 1"] = 7;
ocene["algebra"] = 8;

// citamo podatke iz mape
cout << ocenal'"algebra"] << endl;

I preslikavanje mozemo inicijalizovati tokom njegove deklaracije:

map<string, int> ocene =
{{"programiranje", 9}, {"analizal", 7}, {"algebra", 8}};

Ako pokusamo da pristupimo podatku na osnovu kljuca ne postoji u mapi, onda on se
automatski dodaje u mapu. Proveru da li klju¢ postoji u mapi mozZemo izvrsiti na sledeci
nacin:

string predmet;
cout << "Unesi naziv predmeta: " << endl;
getline(cin, predmet);
if (ocene.find(predmet) '= ocene.end())
cout << ocene[predmet] << endl;
else
cout << "Ne postoji ocena iz tog predmeta" << endl;

Pozivom find se traZi klju¢ predmet u mapi ocene i ako se tokom te pretrage dode do
kraja mape, a kljuc se ne nade, to znaci da klju¢ ne postoji u mapi (kraj mape ocene se
dobija pozivom ocene.end ().

Sve elemente mape ocene moZemo obradivati na sledeci nacin:

for (auto [predmet, ocenal : ocene)
cout << predmet << ": " << ocena << endl;

Prethodnim kodom se ispisuju svi elementi mape (predmeti i ocene iz tih predmeta). Kljuc-
nom recju auto kompilatoru se nalaze da samostalno odredi tipove promenljivih predmet
iocena.

Nekada Zelimo da poveZemo viSe podataka koji su logicki povezani u jednu celinu, da
bismo olaksali rad sa tim podacima. Na primer, ako razmatramo podatke o studentima, za

32 GLAVA 1. UVOD

svakog studenta moZemo pamtiti ime, prezime i prose¢nu ocenu. Umesto da ove podatke
drzimo u zasebnim promenljivim, §to bi moglo biti neprakti¢no i lakSe vodilo ka greska-
ma, moZemo definisati novi tip podataka koji obuhvata sva tri podatka i omoguéava lakse
upravljanje njima kao jednom celinom:

struct student {
string ime;
string prezime;
double prosek;
g

Koriste¢i strukture, podaci se grupiSu na nacin koji bolje odrazava njihovu prirodnu pove-
zanost. Na ovaj na¢in moZemo lako definisati promenljive koje predstavljaju studente, sa
svim njihovim relevantnim podacima na jednom mestu, u jednoj promenljivoj strukturog
tipa. Na primer:'

student petar;

pera.ime = "Petar";
pera.prezime = "Petrovic";
pera.prosek = 7.52;

Strukture omogucéavaju jednostavnu i intuitivnu inicijalizaciju podataka, koriste¢i viti¢aste
zagrade:

student petar = {"Petar", "Petrovic", 7.52};

Jedna od prednosti koriSéenja struktura je i mogucnost lakog definisanja niza ovih objekata,
$to olakSava rad sa ve¢im brojem podataka. Na primer, moZemo definisati niz studenata i
odmabh ih inicijalizovati:

student studentil] = {
{"Ana", "Anic", 9.83},
{"Petar", "Petrovic", 7.52}
g

Ako ne bismo koristili strukture, morali bismo da podatke cuvamo u tri odvojena niza (u
jednom bismo Cuvali imena, u drugom prezimena i u treCem prosecne ocene).

1U jeziku C, za razliku od jezika C++, u deklaraciji promenljive potrebno je navoditi kljuénu re¢ struct,
na primer: struct student petar.

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 33

Organizacija podataka koriS¢enjem struktura ¢ini nas kod citljivijim, jednostavnijim za
odrZavanje i manje sklonim greskama, narocito kada radimo sa velikim brojem podataka
koji su logicki povezani.

1.1.8 Upravljanje izuzecima i greSkama

U jeziku C++ postoji mehanizam za upravljanje greskama - mehanizam izuzetaka (eng.
exceptions). Programer izdaje posebnu naredbu (obi¢no se naziva ‘throw’) koja se aktivira
u slucaju greske, kojom se prekida kod koji se trenutno izvrSava i tok programa preusme-
rava se na poseban deo koda koji se bavi obradom greSaka (obi¢no se naziva ‘try-catch’).
Time se postiZe da su normalan tok programa i obrada gresaka fizicki razdvojeni u samom
kodu, $to pojednostavljuje programiranje i ¢ini programe Citljivijim i lakSim za odrzava-
nje. Mehanizam izuzetaka koristi se i u implementaciji funkcija iz standardne biblioteke.
Korisnik tih funkcija ne mora da mislio nacinu aktiviranja izuzetka (i o naredbi ‘throw’),
nego samo o detektovanju i upravljanju izuzetkom (naredbe ‘try-catch’). Naredni primer
ilustruje kako bi mogao da se obradi izuzetak koji se aktivira pri pokusaju kreiranja vek-
tora koji je prevelik.

#include <iostream>
#include <vector>

using namespace std;

int main() {
try {
vector<int> large_vector (1000000000) ;
} catch (const bad_alloc& e) {
cerr << "Neuspesna inicijalizacija vektora: " << e.what() <<|endl;
}

return O;

}

Ne aktivira izuzetak nuzno svaka greska u fazi izvrSavanja. Na primer, kao aktivira se
izuzetak pri pokuSaju kreiranja prevelikog vektora, ali se ne aktivira izuzetak pri pokuSa-
ju pristupa nepostojecem elementu vektora, ve¢ dolazi do greske (obi¢no ‘segmentation
fault’).

Vise reci o upravljanju greSkama i obradi izuzetaka bi¢e u poglavlju {9.9}

34

GLAVA 1. UVOD

2.1

(2. Promenljive i tipovi

U ovom poglavlju ¢emo detaljnije prouciti sledece elemente programskog jezika C++:

» Promenljive i konstante, koje su osnovni oblici podataka kojima se operiSe u progra-
mu.

« Tipovi, koji odreduju vrstu podataka, nacin reprezentacije i skup vrednosti koje
promenljive, konstante i izrazi mogu imati, kao i skup operacija koje se sa nad tim
podacima mogu primeniti.

 Deklaracije, koje uvode spisak promenljivih koje ¢e se koristiti, odreduju kog su tipa
i, eventualno, koje su im pocetne vrednosti.

Promenljive, konstante i deklaracije

Promenljive su osnovni objekti koji se koriste u programima. Svakoj promenljivoj je pri-
druZen neki prostor u memoriji (moZemo ga zamiSljati kao kutijicu ili kao kuéicu) i u
svakom trenutku svog postojanja ima vrednost kojoj se moZe pristupiti — koja se moze
procitati i koristiti, ali 1 koja se (ukoliko nije traZzeno drugacije) moZe menjati. Primetimo
da je ovo sasvim razli¢ito od promenljivih u matematici koje oznacavaju neke velicine i
koje se ne menjaju tokom vremena'.

Imena promenljivih (ali i funkcija, struktura, itd.) zadaju su identifikatorima. U prethod-
nim programima kori§¢ene su promenljive ¢ija su imena a, i, x1, x2, obim itd. Generalno,
identifikator moze da sadrzi slova i cifre, kao i simbol _ (koji je pogodan za duga imena),
ali identifikator ne moze pocinjati cifrom. Dodatno, klju¢ne reci jezika (na primer, if,
for, while) ne mogu se koristiti kao identifikatori. U identifikatorima, velika i mala slo-
va se razlikuju. Na primer, promenljive sa imenima a i A se tretiraju kao dve razlicite
promenljive.

Postoje funkcionalni programski jezici, na primer, Haskell, koji u cilju lakSeg rezonovanja o ispravnosti
programa teZe da zadrZe tesne veze sa matematikom i ne dopustaju moguénost izmene vrednosti promenljive.

35

36 GLAVA 2. PROMENLJIVE I TIPOVI

Imena promenljivih i imena funkcija, u principu, treba da oslikavaju njihovo znacenje i
ulogu u programu, ali za promenljive kao $to su indeksi u petljama se obi¢no koriste kratka,
jednoslovna imena (na primer i). Ako ime promenljive sadrZi viSe reci, onda se, radi bolje
Citljivosti, te reci razdvajaju simbolom _ (na primer, broj_studenata) ili pofetnim ve-
likim slovima (na primer, brojStudenata) — ovo drugo je takozvana kamilja notacija
(CamelCase). Postoje razlicite konvencije za imenovanje promenljivih. Iako je dozvolje-
no, ne preporucuje se koris¢enje identifikatora koji pocinju simbolom _, jer se oni obi¢no
koriste za sistemske funkcije i promenljive.

Kao $to je receno, jezik C++ je staticki tipiziran jezik, Sto znaci da je svakoj promenljivoj
(ali 1 konstanti i izrazu) pridruZen jedinstven tip i tip promenljive ne moZe da se prome-
ni tokom izvrSavanja programa. Na osnovu tipa promenljive, kompilator, izmedu ostalog,
odreduje 1 koli¢inu memorije potrebnu za smeStanje te promenljive.

Sve promenljive moraju biti deklarisane pre koriS¢enja. Deklaracija sadrzi tip i listu od
jedne ili viSe promenljivih tog tipa, razdvojenih zarezima.

int broj;
int a, b;

U opstem slucaju nije propisano koju vrednost ima promenljiva neposredno nakon §to
je deklarisana. Prilikom deklaracije moZe se izvrSiti pocetna inicijalizacija. Moguce je
kombinovati deklaracije sa i bez inicijalizacije.

int vrednost = 5;
int a = 3, b, ¢c = 5;

Izraz kojim se promenljiva inicijalizuje zvaéemo inicijalizator.
Kvalifikator const moZe biti dodeljen deklaraciji promenljive da bi naznacio i obezbedio
da se njena vrednost ne¢e menjati, na primer:

const double GRAVITY = 9.81;

Vrednost tipa const T (gde je T bilo koji tip, na primer — int) moZe biti dodeljena
promenljivoj tipa T, ali promenljivoj tipa const T ne mozZe biti dodeljena vrednost (osim
prilikom inicijalizacije) — poku$aj menjanja vrednosti konstantne promenljive (kao i sva-
kog drugog konstantnog sadrzaja) dovodi do greske prilikom prevodenja programa.

Deklaracije promenljivih mogu se navoditi na razli¢itim mestima u programu. Ukoliko je
promenljiva deklarisana u nekoj funkciji (na primer, u funkciji main), onda kaZemo da
je ona lokalna za tu funkciju i druge funkcije ne mogu da je koriste. Razli¢ite funkcije
mogu imati lokalne promenljive istog imena. Promenljive deklarisane van svih funkcija

2.2

2.2.1

2.2. OSNOVNI TIPOVI PODATAKA 37

su globalne i mogu se koristiti u vise funkcija. Vidljivost tj. oblast vaZenja identifikatora (i
njima uvedenih promenljivih) odredena je pravilima dosega identifikatora o Cemu Ce viSe
reci biti u poglavlju 6.10.1. Rane verzije programskog jezika C su zahtevale da se sve lokal-
ne promenljive deklariSu na pocetku tela funkcije. Medutim, u jeziku C++ je uobicajeno
i poZeljno da se deklaracije navode neposredno pre prve upotrebe promenljive (dakle, prvi
put kada nam zatreba) i to u $to uZem dosegu (na primer, ako se neka promenljiva koristi
samo u telu neke petlje ogradenom vitiCastim zagradama, najbolje je uvesti je unutar te
petlje tj. unutar tih vitiastih zagrada).

Konstante (kaze se nekada i literali) su fiksne vrednosti kao, na primer, O, 2, 2007, 3.5,
1.4e2, 'a' ili "zdravo". Ista vrednost se ponekad moZe predstaviti razli¢itim konstan-
tama. Za razliku od promenljivih, konstante se ne deklariSu. Medutim, pravilima jezika
je za svaku konstantu jednoznac¢no odreden njen tip. To je vaZzno, jer od tipova konstanti
zavisi koje operacije je moguce primeniti nad njima, a zavisi i vrednost sloZenog izraza u
kojem figuriSe konstanta (na primer, vrednost izraza 5 / 2 je 2, a vrednost izraza 5.0 /
2 je 2.5).

Osnovni tipovi podataka

Kao i u vedini drugih programskih jezika, u jeziku C++ podacima (tj. izrazima kojima
se podaci predstavljaju) su pridruZeni u fipovi. Jedan tip karakteriSe: vrsta podataka koje
opisuje, nacin interne binarne reprezentacije tih podataka u memoriji raunara (jer se svi
podaci zapisuju binarno) i skup operacija koje se mogu primeniti nad podacima tog tipa.
Standard jezika C++ ne propisuje jednoznacno nacin inerne reprezentacije, Cak ni za
osnovne tipove podataka, ¢ime se ostavlja sloboda da se neki tipovi razlicito predstave na
razli¢itim sistemima tj. platformama.? Na primer, broj bitova za predstavljanje nekog tipa
moze biti manji na nekom namenskom, ugradenom racunaru koji ima manje memorije,
nego na klasicnom racunaru op$te namene. Takode, izmedu racunara sa 32-bitnom arhitek-
turom i 64-bitnom arhitekturom cesto postoje razlike u predstavljanju podataka. Ovo je
veoma vazno imati na umu kada se piSu programi za koje Zelimo da budu prenosivi izmedu
razlicitih sistema. Ipak, ova knjiga predstavlja uvod u programiranje za pocetnike, tako da
¢emo se, jednostavnosti radi ograni€iti na tipi¢ne reprezentacije na klasi¢nim PC racunari-
ma i na mnogim mestima ne¢emo analizirati probleme do kojih moZe do¢i usled razlika u
predstavljanju tipova podataka na razli¢itim platformama. Detaljima reprezentacije tipova
podataka éemo se vratiti ponovo u narednim tomovima ove knjige.

U nastavku Ce biti opisani osnovni tipovi podataka.

Celobrojni tipovi

Osnovni celobrojni tip podataka u jeziku C++ je tip int (od engleskog integer, ceo broj).
On se najcesce predstavlja pomocu 4 bajta (tj. 32 bita), na nacin koji omogucava pred-

2Pod sistemom podrazumevamo hardver radunara, operativni sistem i prevodilac koji se koristi.

38 GLAVA 2. PROMENLJIVE I TIPOVI

stavljanje i nenegativnih i negativnih vrednosti. Precizni opseg vrednosti koje se mogu
reprezentovati raznim tipovima dati su u tabeli @tbl:raspon, medutim, za pocetak je do-
voljno steéi osecaj da tip int najcesce dopusta reprezentovanje (svih) vrednosti u intervalu
od oko minus dve do oko plus dve milijarde.

Konacan opseg tipova treba uvek imati u vidu jer iz ovog razloga neke matematicke ope-
racije neCe dati ocekivane vrednosti tj. vrednosti koje su rezultat za brojeve koji nisu
ograniceni. Tada kaZzemo da dolazi do prekoracenja. Na primer, ako promenljiva x ima tip
unsigned char i vrednost 255, i ako bude uvecana za 3, njena vrednost nece biti 258
nego 2. Sli¢no, ako je tip int predstavljen sa 32 bita, naredni program Stampa negativan
rezultat.

int a = 2000000000, b = 2000000000;
cout << "Zbir brojeva " << a << " i " <K< b << " je " << a+ b|<< endl;

U nekim programima znamo da ¢e brojevi sa kojima baratamo biti mali, u nekim da ¢e biti
veliki, pa programski jezik C++ daje programeru moguénost da preciznije oznaci (kvalifi-
kuje) celobrojni tip koji Zeli da upotrebi za smeStanje nekog podatka. Tipu int mogu biti
pridruzeni kvalifikatori short, long i long long. Ime tipa short int moZe se krace
zapisati sa short, ime tipa long int moze se krace zapisati long, a ime tipa long long
int moze se krade zapisati sa long long. VeliCine ovih tipova nisu precizno odredene
standardnom. Tip short obi¢no zauzima 2 bajta (tj. 16 bita), Sto daje opseg vrednosti od
oko minus 30 hiljada, do oko plus 30 hiljada, tip 1long moZe da se poklapa sa tipom int,
dok tip long long obicno zauzima 8 bajtova (tj. 64 bita), Sto daje opseg reda veli¢ine
milijardu milijardi (od oko —10'®, do oko 10'®).

Bilo kom celobrojnom tipu moze biti pridruZen kvalifikator signed ili unsigned. Kvali-
fikator signed se obi¢no podrazumeva, pa ne uti¢e na promenu reprezentacije i opsega
tipa. Sa druge srane, kvalifikator unsigned oznacava da se broj tretira kao neoznacen,
tj. da se pomocu tog tipa predstavljaju samo nenegativni brojevi. Time se mogu predstavi-
ti dvostruko veée pozitivne vrednosti (na primer, unsigned int ima opseg od 0 do oko
4 milijarde), §to u nekim situacijama moZe biti korisno. Medutim, osnovna motivacija
za koriS¢enje neoznacenih tipova ¢e nam ceSce biti da se Citaocu naglasi da se za neki
podatak oc¢ekuje da je nenegativan ceo broj. Na primer, broj elemenata vektora dobijen
metodom size je neoznalenog tipa. Sa druge strane, treba biti obazriv prilikom upotrebe
ovakvih tipova, jer neke Ceste programerske tehnike mogu dovesti do greSaka (na primer,
nije moguée koristiti -1 kao specijalnu vrednost koja oznacava neuspeh a uslov da li je
vrednost promenljive nenegativan uvek uspeva, pa se ovakve promenljive ne mogu koristiti
za kretanje kroz nizove i vektore unazad i sli¢no).

2.2.2

2.2. OSNOVNI TIPOVI PODATAKA

oznaceni (signed)

neoznaceni (unsigned)

karakteri 1B =8b 1B =8b
(char) [-27,27-1] = [0, 28-1] =
[-128, 127] [0, 255]
kratki 2B = 16b 2B = 16b
(short int) [-32K, 32K-1] = [0, 64K-1] =
[_215, 215_1] — [0, 216_1] —
[-32768, 32767] [0, 65535]
dugi 4B = 32b 4B = 32b
(long int) [-2G, 2G-1] = [0,4G-1] =
[-231, 231-1] = [0, 232-1] =

[-2147483648, 2147483647]

[0, 4294967295]

veomadugi8 B=64b8 B =64b
(long long int) [-263,263.1] = [0, 264-1]1 =
od C99 [-9.2:10'%,9.2:10%%] [0, 1.84-109]

39

Postoje i tipovi za koje je standardom precizno definisan broj bitova (i on je isti na svim
sistemima). To su, na primer, tipovi int8_t, int16_t, int32_t, int64_t, kao i neo-
znaceni tipvi uint8_t, uint16_t, uint32_t, uint64_t.

Sasvim ocekivano, celobrojne dekadne konstante kao $to su 123 ili 45678 su tipa int. Ako
su vrednosti prevelike da bi se mogle predstaviti tipom int, konstante su nekog tipa koji
ima §iri opseg (na primer, long long). Standard definiSe precizna pravila koja odreduju
tip svake konstante (ali ih neéemo ovde navoditi). Programer moZe posebnim sufiksima da
precizira tip konstante (na primer, vrednost 5ull je tipa unsigned long long).

Osim u dekadnom, celobrojne konstante mogu biti zapisane i u oktalnom i u heksadekad-
nom sistemu. Zapis konstante u oktalnom sistemu pocinje cifrom 0, a zapis konstante u
heksadekadnom sistemu pocinje simbolima 0x ili OX. Na primer, broj 31 se moZe u pro-
gramu zapisati na sledece nacine: 31 (dekadni zapis), 037 (oktalni zapis), Ox1f ili OX1F
(heksadekadni zapis).

Negativne konstante ne postoje, ali se efekat moZe postici izrazima gde se ispred konstante
navodi unarni operator - (vrednost predstavljena izrazom -123 u programu je minus sto
dvadeset i tri, ali izraz nije konstanta ve¢ je sacinjen od unarnog operatora primenjenog na
konstantu). Sli¢no, moZe se navesti i operator plus, ali to nema efekta (npr. +123 je isto
kaoi 123).

Realni tipovi

Realne brojeve ili, preciznije, brojeve u pokretnom zarezu opisuju tipovi £loat, double
i long double. Tip float opisuje brojeve u pokretnom zarezu osnovne tachosti, tip

40 GLAVA 2. PROMENLJIVE I TIPOVI

double opisuje brojeve u pokretnom zarezu dvostruke tacnosti, a tip long double bro-
jeve u pokretnom zarezu prosirene tacnosti. Broj bitova i nain reprezentacije ovih tipova
nije precizno definisan standardnom. Uobicajeno je da se u savremenim racunarima najce-
$¢e zapisuju u skladu sa standardnom IEEE754. Tip £1oat obi¢no zauzima 4 bajta (tj. 32
bita), Sto daje preciznost od oko 7 znacajnih cifara. Tip double obi¢no zauzima 8 bajtova
(tj. 64 bita), Sto daje preciznost od oko 15 znacajnih cifara. Tip long double Cesto se
poklapa sa tipom double, dok na nekim sistemima zauzima 10 bajtova (tj. 80 bitova), $to
daje preziznost od oko 21 znacajne cifre. Na primer, broj 12, 34 se sasvim precizno moZe
zapisati pomocu tipa float, dok broj 12345, 6789 ima 10 znacajanih cifara i precizno se
moZe zapisati tek pomocu tipa double (pokusaj zapisa u obliku tipa float bi dovelo do
zaokrugljivanja i gubitka preciznosti na poslednjim decimalama). Raspon realnih tipova
je znacajno veci od celobrojnih (pregled je dat u tabeli @tbl:float_raspon), medutim, zbog
ograni¢enog broja znacajnih cifara, velike vrednosti se zaokrugljuju i zapisuju se prilino
neprecizno. Na primer, broj 123456789 se u okviru tipa float ne moZe zapisati preci-
zno i umesto njega se zapisuje vrednost 1, 23457 - 108, koja se dosta razlikuje od polazne
vrednosti. Dakle, iako su §ireg raspona, realni tipovi ne mogu zapisati sve vrednosti koje
se mogu zapisati u okviru celobrojnih tipova.

Tabela 2.2: Najces¢i opseg realnih tipova {#tbl:float_raspon}

Tip Veli¢ina ~ Raspon Preciznost
float 4B=32b *1.17549e-38 do £3.40282e+38 oko 7 znacajnih cifara
double 8B=64b +2.22507e-308 do oko 15 znacajnih cifara

+1.79769e+308

Zbog nacina zapisa ne mogu se sve dekadne vrednosti precizno zapisati pomocu ovih za-
pisa i jako je vazno da programer razume da kada se koriste ovi tipove nije nuzno da ée
vrednosti biti tacno zapisane. Na primer, vrednost % se zapisuje kao decimalni broj 0,1,
medutim, ta se vrednost ne moZe tacno zapisati (koriS¢enjem uobicajenih konvencija, kao
Sto je standard IEEE754) ni u jednom od nabrojanih tipova. Zato, na primer, veoma jed-
nostavna proveradali je 0.1 + 0.2 == 0.3 daje vrednost netacno. U programiranju sa
realnim brojevima treba zato biti veoma paZljiv i izbegavati bilo kakve provere koje se
oslanjaju na preciznost zapisa. Na primer, ne treba nikada proverati da li su dva broja u
pokretnom zarezu jednaka, ve¢ samo da li im je vrednost dovoljno bliska.

Standard IEEE754 ukljucuje i moguénost zapisa specijalnih vrednosti kao §to su 00, —00
i NaN. Na primer, vrednost izraza 1.0/0.0 je +00, za razliku od celobrojnog izraza 1,/0
¢ije izracunavanje obi¢no dovodi do gresSke u fazi izvrSavanja programa (engl. division by
zero error). Vrednost izraza 0.0/0.0 je NaN, tj. not-a-number i ta specijalna vrednost se
koristi da oznac¢i matematicki nedefinisane vrednosti (npr. oo — oo ili koren ili logaritam
negativnog broja). Specijalne vrednosti dalje mogu da u€estvuju u izrazima. Na primer, ako
se na izraz C¢ija je vrednost +o0o doda neka konstantna vrednost, dobija se opet vrednost

2.2.3

2.24

2.2. OSNOVNI TIPOVI PODATAKA 41

+00, ali vrednost izraza 1.0/ + oo jednaka je 0.0. S druge strane, svi izrazi u kojima
ucestvuje vrednost NaN ponovo imaju vrednost NaN. Vrednost oo tipa double se u
programu moze zapisati izrazom numeric_limits<double>::infinity() (za Cije je
koriSéenje potrebno ukljuciti zaglavlje <1imits>).

Najveci broj funkcija iz standardne biblioteke (pre svega matematicke funkcije definisane
u zaglavlju <cmath>) koriste tip podataka double. Tip float se u programima koristi
uglavnom zbog uStede memorije ili vremena na racunarima na kojima je izvodenje ope-
racija u dvostrukoj tanosti veoma skupo (u danasnje vreme, medutim, vecina racunara
podrZava efikasnu manipulaciju brojevima zapisanim u dvostrukoj tacnosti).

Konstante realnih brojeva ili, preciznije, konstantni brojevi u pokretnom zarezu sadrze
decimalnu ta¢ku (na primer, 123. 4) ili eksponent (5e-2, §to ozna¢ava vrednost 5 - 10~2)
ili i jedno i drugo. Vrednosti ispred i iza decimalne tacke mogu biti izostavljene (ali ne
istovremeno). Na primer, ispravne konstante sui .4 ili 5. (alinei .). Brojevi su oznaceni
i konstante mogu pocinjati znakom - ili znakom + (koji ne proizvodi nikakav efekat). Tip
svih ovih konstanti je double, osim ako na kraju zapisa ne doda neki od sufiksa (na primer,
konstanta 12. 3f je tipa float, a 12.31 tipa long double).

Logicki tip

Za predstavljanje logickih (istinitosnih) vrednosti koristi se tip bool koji ima samo dve
vrednosti (true oznacava tacno, a false netacno). Podaci ovog tipa se najcesée koriste
u uslovima grananja i petlji, i dobijaju se i kombinuju primenom relacijskih i logi¢kih
operatora, pa ¢e viSe re¢i o ovome biti u poglavlju 4.

Karakterski tip

Osnovna namena tipa char je za predstavljanje kodova karaktera (najcesée u tabeli ASCII).
Podaci tog tipa zauzimaju 1 bajt (tj. 8 bita). PoSto se u njemu beleZe numericke vrednosti
(mali brojevi iz intervala od -128 do 127 ili od 0 do 255 u zavisnosti od toga da li se koristi
oznacena ili neoznacena varijanta ovog tipa), moguce je ovaj tip koristiti i za predstavljanje
malih brojevnih vrednosti (u cilju uStede memorije), medutim, u ovoj knjizi to ne¢emo
raditi.

Direktno specifikovanje karaktera koris¢enjem numerickih kodova nije preporucljivo.
Umesto toga, preporucuje se koriSéenje karakterskih konstanti. Karakterske konstante u
programskom jeziku C++ se navode izmedu '' navodnika. Vrednost date konstante je
numericka vrednost datog karaktera u koriS¢enoj karakterskoj tabeli (na primer, ASCII).
Na primer, u ASCII kodiranju, karakterska konstanta '0' predstavlja vrednost 48 (koja
nema veze sa numerickom vrednos¢u 0), 'A' je karakterska konstanta ¢ija je vrednost u
ASCII tabeli 65, 'a' je karakterska konstanta ¢ija je vrednost u ASCII tabeli 97.

Tipom char predstavljaju se pojedinacni karakteri (i konstante tog tipa se navode izmedu
jednostrukih apostrofa ' '), a tipom string niske karaktera (i konstante tog tipa se navode
izmedu dvostrukih navodnika "").

2.2.5

42 GLAVA 2. PROMENLJIVE I TIPOVI

Specijalni karakteri se mogu navesti koris¢enjem specijalnih sekvenci karaktera koje po-
¢inju karakterom \ (engl. escape sequences). Na primer, karakter ' \n' oznacava prelazak
unovired,a '\t' tabulator. Karakterska konstanta '\0' predstavlja karakter cija je vred-
nost nula. Ovaj karakter ima specijalnu ulogu u programskom jeziku C jer se koristi za
oznacavanje kraja niske karaktera.

Posto se karakterske konstante identifikuju sa njihovim numerickim vrednostima, one mo-
gu ravnopravno da ucestvuju u aritmeti¢kim izrazima (o izrazima ¢e vise biti receno u
nastavku ove glave). Na primer, na ASCII sistemima (tj. na sistemima na kojima se kori-
sti ASCII tabela karaktera), izraz '0' <= c && c <= '9' proverava da li karakterska
promenljiva c sadrZi ASCII kod neke cifre, dok se izrazom ¢ - '0O' dobija numericka
vrednost cifre ¢iji je ASCII kdd sadrZan u promenljivoj c. Ipak, za rad sa pojedinacnim
karakterima preporucuju se biblioteCke funkcije iz zaglavlja <cctype> (koje su opisane
u poglavlju 8).

Niske

Niske se u jeziku C++ predstavljaju tipom string. Za njegovo koriSéenje potrebno je
direktivom #include ukljuciti zaglavlje <string>. Za razliku od do sada pomenutih ti-
pova koji su elementarni (engl. plain old datatype, POD), niske su sloZen tip koji sadrZi niz
karaktera kojima je zapisan predstavljen tekst. Svaka niska je objekat klase string. Sto-
ga su kreiranje niski i operacije nad njima donekle sporije nego nad osnovnim brojevnim
tipovima.

Konstantne niske se navode izmedu navodnika ". . . " i mogu se dodeljivati promenljivim
tipa string.

string pozdrav = "Dobar dan!";

Moguce je koristiti samo karaktere ASCII tabele. Podrska za ostale karaktere iz Unicode
tabele je dostupna u standardnoj biblioteci (na primer, postoji tip wstring), ali je ne¢emo
obradivati u ovom udZbeniku.

DuzZina niske (tj. broj karaktera) se moZe procitati metodom length ili metodom size
(obe daju isti rezultat).

cout << pozdrav.size() << endl;

Niske je moguée nadovezivati operatorom +. Prilikom nadovezivanja prvi operand mora
biti objekat tipa string, a ostali mogu biti bilo objekti tog tipa, bilo konstantne niske.

string ime = "Petar";
string prezime = "Petrovic";
string ime_i_prezime = ime + " " + prezime;

2.3

2.3. DODELE VREDNOSTI PROMENLJIVOJ 43

cout << ime_i_prezime << endl;

Sli¢no kao kod nizova i vektora, pojedina¢nim karakterima niske moZemo pristupiti kor-
S¢enjem indeksnog pristupa (operator []). Pozicije se broje od nule. Na primer, izraz
ime [0] ima vrednost P, dok izraz ime [5] ima nedefinisanu vrednost i mozZe dovesti do
prekida rada programa (jer niska ima 5 karaktera i dozvoljene pozicije su od 0 do 4).
Postoji veliki broj bibliote¢kih metoda i funkcija za rad sa niskama. Na primer, metoda
substr gradi novu nisku dobijenu izdvajanjem dela niske. Na primer, ime.substr(1,
2) vraca nisku et — prvi parametar 1, predstavlja poziciju pocetka, a drugi 2 broj karaktera
koji se izdvajaju. Ako se drugi argument izostavi izdvajaju se karakteri do kraja niske. Na
primer, vrednost izraza ime.substr(1) je etar.

Detaljniji pregled bibliotecke podrske za rad sa niskama dat je poglavlju 8.

Jezik C++ nasleduje moguénost predstavljanja niski 1 pomocu nizova karaktera kojima je
na kraju upisan specijalni karakter ¢iji je ASCII kod O (engl. null-terminated strings). Na
primer,

char[] ime = "Petar";

Za rad sa takvim niskama na raspolaganju imamo funkcije iz zaglavlja <cstring> (na
primer, funkcije strcmp, strcpy i sli¢éno). Medutim, taj nacin je potpuno neprimeren
savremenom jeziku C++, podloZan je greSkama i u ovoj knjizi ga neemo objaSnjavati.
Sa druge strane, ovakvi detalji interne reprezentacije podataka vazni su za implementaci-
ju visoko optimizovanih programa i programskih biblioteka (na primer, u implementaciji
tipa string koriste se niske terminisane nulom), pa ¢emo se njima posvetiti u narednim
tomovima.

Dodele vrednosti promenljivoj

Inicijalna vrednost se promenljivoj moZe zadati u sklopu deklaracije.

int x = 42;

Deklarisane promenljive koje nisu inicijalizovane imaju obi¢no® nedefinisanu vrednost i ne
bi ih trebalo koristiti pre nego §to im se ne dodeli pocetna vrednost.

Imperativno (kao i objektno-orijentisano) programiranje, Sto je dominantni stil progra-
miranja u ovoj knjizi, omogucava da se vrednost promenljive menja tokom izvrSavanja
programa. Ova, mozda naizgled jednostavna opaska, zapravo je klju¢na karakteristika im-
perativnog stila programiranja i skoro svi netrivijalni programi se intenzivno zasnivaju na
njoj.

3Postoje situacije u kojima standard garantuje inicijalnu vrednost promenljivih. Na primer, globalne promen-
ljive, koje su deklarisane van svih funkcija imaju garantovano inicijalnu vrednost 0.

2.3.1

44 GLAVA 2. PROMENLJIVE I TIPOVI

Operator dodele

U bilo kom trenutku izvr§avanja programa promenljivoj (koja nije oznacena kvalifikatorom
const) moZemo izmeniti vrednost koriSéenjem operatora dodele (operatora =). Na primer,

x = 43;

Pored vrednosti promenljivih, dodelom najcesée menjamo elemente nizova, vektora, niski
i slicnih kolekcija (na primer, ako je a niz celih brojeva, naredbom a[0] = 42; se na
pocetno mesto tog niza upisuje vrednost 42).*

Sa desne strane operatora dodele moZe se naci proizvoljni izraz, medutim, tip tog izraza
mora ili biti jednak tipu leve strane ili mora biti takav da je moguéa implicitna konverzija
u taj tip. Na primer, dodela

int x = 3.8;

je moguca jer postoji implicitna konverzija tipa double (Sto je tip konstantne vrednosti
3.8) utip int, pri ¢emu se tom konverzijom dobija celobrojna vrednost 3.

U izrazu sa desne strane moZe ucestvovati i stara vrednost promenljive kojoj se dodeljuje
vrednost. Na primer,

X =x + 2;

Ovo znaci da se promenljivoj x dodeljuje vrednost izraza x + 2, tj. da se izraCunava vred-
nost koja je za 2 veca od trenutne vrednosti promenljive x i da se vrednost tog izraza smeSta
u promenljivu x. Na taj nacin se, zapravo vrednost promenljive x uvecava za 2. Operator
dodele, znaci, ne oznacava jednakost dve vrednosti (za to se koristi operator poredenja
jednakosti ==, o ¢emu Ce biti vise reci u poglavlju 4.1).

Dodele se mogu “ulancavati”. Na primer, naredna naredba postavlja vrednosti promenljivih
x 1y na nulu.

int x, y;
x=y=0;

Naime, operator dodele = ima desnu asocijativnost, pa je navedeni izraz ekvivalentan izrazu
x = (y = 0) ipromenljivoj x se dodeljuje vrednost izrazay = 0. Taj izraz ima vrednost
0. Naime, tip izraza dobijenog primenom operatora dodele je tip leve strane, a vrednost
izraza dodele je vrednost koja ¢e biti dodeljena levoj strani (Sto nije uvek vrednost koju

4Standard definiSe pojam izmenjive L-vrednosti (engl. I-value) i jedino se te vrednosti mogu naéi sa leve
strane operatora dodele.

2.3.2

2.3. DODELE VREDNOSTI PROMENLJIVOJ 45

ima desna strana). Promena vrednosti promenljive na levoj strani je propratni (sporedni,
bocni) efekat (engl. side effect) do kojeg dolazi prilikom izra¢unavanja vrednosti izraza.
Stavljanjem simbola ; na kraj izraza dodele (kao i na kraj bilo kog drugog izraza) dobija
se naredba dodele (na primer, x = 1 jeizraz dodele,ax = 1; naredba dodele). Prilikom
njenog izvrSavanja izracunava se vrednost izraza dodele, relalizuje se propratni efekat, a
izraCunata vrednost se zanemaruje.

Razmena vrednosti promenljivih

Cesto je potrebno razmeniti vrednosti dve promenljive.

Naredbe
a = b;
b = a;

ne bi dovele do Zeljenog efekta, jer bi se promenljivoj b dodelila stara vrednost promenlji-
ve a. Da bismo postigli Zeljeni efekat, potrebno koristiti pomo¢nu promenljivu istog tipa.
Pretpostavimo da je potrebno razmeniti vrednosti promenljivih a i b (i da je raspoloZiva
pomocna promenljiva t).

t = a;
a = b;
b =t;

Navedni algoritam za razmenu dve vrednosti moZe se uopstiti tako da vrsi cikliénu zamenu
vrednosti viSe promenljivih. Na primer, na slede¢i nacin moZe se izvrSiti ciklina zamena
vrednosti tri promenljive a, b, ¢ (uz kori$¢enje pomocna promenljive t):

O T @ o
o
¢ o o P

Napomenimo i da je u jeziku C++ korisnicima na raspolaganju funkcija swap (deklarisana
u zaglavlju <algorithm>) kojom se razmenjuju vrednosti dve promenljive.

swap(a, b);

46 GLAVA 2. PROMENLJIVE I TIPOVI

Zadatak: Cena hleba

Hleb je prvo poskupeo 10%, pa je zatim pojeftinio 10%. Ako je poznata podetna cena
hleba, napisi program koji odreduje cenu nakon tih promena.

Opis ulaza

Sa standardnog ulaza se ucitava pocetna cena hleba (realan broj zaokruZen na dve decima-
le).

Opis izlaza

Na standardni izlaz ispisati krajnju cenu hleba (realan broj zaokruzen na dve decimale).
Primer

Ulaz Izlaz

35.50 35.15

Resenje
Jedno resSenje bilo bi da se uvedu tri promenljive (jedna za pocetnu cenu, jedna za cenu
posle poskupljenja i jedna za cenu posle pojeftinjenja).

double pocetna_cena;
cin >> pocetna_cena;
double cena_posle_poskupljenja = 1.1 * pocetna_cena;
double cena_posle_pojeftinjenja = 0.9 * cena_posle_poskupljenja;
cout << fixed << showpoint << setprecision(2)
<< cena_posle_pojeftinjenja << endl;

Zadatak moZemo da reSimo i kori§¢enjem samo jedne promenljive za cenu, menjajuci
vrednost te promenljive tokom izvrSavanja programa. Ovaj stil programiranja je karakte-
ristiCan za imperativno programiranje.

double cena;

cin >> cena;

cena = 1.1 * cena;

cena = 0.9 * cena;

cout << fixed << showpoint << setprecision(2) << cena << endl;

3.1

(3. Izrazi i izracunavanje

Jedan od osnovnih gradivnih elemenata svakog programa jesu izrazi, kojima se opisuju
izracunavanja. To su Cesto aritmeticka izra¢unavanja nad razli¢itim tipovima brojeva, ali
u izracunavanjima i izrazima mogu ucestvovati i drugi tipovi (videli smo ve¢, na primer,
da se i niske mogu sabirati tj. nadovezivati). U ovom poglavlju ¢emo detaljnije prouciti
sledece elemente programskog jezika C++:

« Operatori, odgovaraju operacijama koje su definisane nad podacima odredene vrste.

o Izrazi, koji kombinuju promenljive i konstante, koriS¢enjem operatora, dajuci nove
vrednosti.

Aritmeticki operatori i zapis matematickih formula

Nad operandima brojevnih tipova mogu se primeniti sledeci aritmetic¢ki operatori:

« + binarni operator sabiranja;

- binarni operator oduzimanja;

« * binarni operator mnozenja;

« / binarni operator (celobrojnog) deljenja;
% binarni operator ostatka pri deljenju;

e - unarni operator promene znaka;

e +unarni operator.

Operator % moguce je primeniti iskljuc¢ivo nad operandima celobrojnog tipa.
Operator deljenja ozna¢ava razli¢ite operacije u zavisnosti od tipa svojih operanada.' Kada
se operator deljenja primenjuje na dve celobrojne vrednosti primenjuje se celobrojno de-

Na hardveru su operacije nad celim brojevima i brojevima u pokretnom zarezu implementirane nezavisno i
u izvr§ivom programu koristi se jedna od njih, izabrana u fazi prevodenja u zavisnosti od tipova operanada. Infor-
macije o tipovima iz izvornog programa su na ovaj, ali i na druge sli¢ne nacine, upotrebljene tokom prevodenja
i one se ne ¢uvaju u izvrSivom programu.

47

48 GLAVA 3. IZRAZI I IZRACUNAVANJE

ljenje (tj. rezultat je celi deo koli¢nika). Na primer, izraz 9/5 ima vrednost 1. Precizirajmo
ovo.

Broj ¢ se naziva celobrojni kolicnik a broj r ostatak pri deljenju prirodnih brojeva a i b
(b#0)akojea=b-g+riakoje0 <r <b.

Celobrojni koli¢nik brojeva a i b obelezava se Cesto sa adivb ilisa | %] (|...] oznacava
zaokruZivanje naniZe odnosno najveci ceo broj koji je manji ili jednak datom broju), dok se
ostatak Cesto oznaCava sa a mod b. Vazi da je adivd = L%J tj. da je ¢ = a div b najveéi
ceo broj g takav da je ¢ - b < a, $to opravdava i kori§cenje oznake L%J za celobrojni
koli¢nik brojeva a i b.

Ostatak pri deljelju negativnog broja moZe biti negativan. Naime, u jeziku C++, vrednost
izraza (-9) / 5je -1,a (-9) % 5 je —4. Posto razliciti programski jezici na razliite
nacine definiSu celobrojno deljenje negativnih vrednosti, ovu operaciju je poZeljno izbega-
vati (kada je to moguce).

Kada je bar jedan operand operatora / realan, primenjuje se deljenje realnih brojeva (pre-
ciznije, deljenje brojeva u pokretnom zarezu). Na primer, izraz 9.0/5.0 ima vrednost
1.8 (jer se koristi deljenje brojeva u pokretnom zarezu). U slucaju da je jedan od opera-
nada ceo broj, a drugi broj u pokretnom zarezu, vrsi se implicitna konverzija celobrojnog
operanda u broj u pokretnom zarezu i primenjuje se deljenje brojeva u pokretnom zarezu.
Po uzoru na uobicajene matematicke konvencije, operatori *, / i % medusobno imaju isti
prioritet, visi od prioriteta binarnih operatora + i - koji, takode, medusobno imaju isti
prioritet.

Kada se u istom izrazu izostave zagrade, a isti operator se primeni viSe puta, potrebno je
precizirati kojim redosledom se vrsi izracunavanje. Na primer, da li je vrednost izraza 1 -
2 - 3jednaka (1 - 2) - 3.-4ili1 - (2 - 3) j. 2. Svinavedeni binarni operatori
imaju levu asocijativnost, $to znaci da se izraCunavanje operatora istog prioriteta uvek vrsi
sleva nadesno i prethodni izraz ima vrednost —4. Zanemarivanje ovog detalja moZe biti
nekada izvor greSaka. Na primer,

x1 = (-b + sqrt(b*b - 4xaxc)) / 2xa;

ne daje ispravno reSenje kvadratne jednacine (kada je diskriminantna pozitivna), jer se
umesto deljenja sa 2*a kao §to razmaci sugerisu’, izracunavanje zapravo vrsi sleva nadesno,
pa se brojilac deli sa 2, pa zatim mnoZi sa a.

Prefiksni unarni operatori + i - imaju desnu asocijativnost i visi prioritet od svih binarnih
operatora.

2Razmaci umesto zagrada, ali i neka druga implicitna pravila, u matematici sugeriSu grupisanje operanada i
redosled primene operacija. Na primer, podrazumeva se da je vrednost izraza 2z / 2 jednaka 1, $to znaci da
se operacije ne izvrSavaju sleva nadesno. U programiranju se razmaci zanemaruju i grupisanje se jedino moze
posti¢i eksplicitnim kori§¢enjem zagrada.

3.1.1

3.1.2

3.1. ARITMETICKI OPERATORI 1 ZAPIS MATEMATICKIH FORMULA 49

SloZeni operatori dodele

Posto se uvecanje vrednosti promenljive za neku vrednost ¢esto javlja u programima, uve-
deni su posebni operatori sloZzene dodele. Dodela x = x + 2; se moze krade zapisati i
kao x += 2;. Sli¢no, naredba x = x * (y+1); ima isto dejstvo kaoi x *= y+1;.Za
vecinu binarnih operatora postoje sloZeni operatori dodele (na primer, +=, *x=, /=, %=).
Ovi operatori imaju niZi prioritet od svih ostalih operatora i desnu asocijativnost.

Kao i u slucaju operatora dodele, izrazi u kojima ucestvuju ovi operatori imaju vrednost,
ali se te vrednosti obi¢no zanemaruju a osnovni razlog primene ovih operatora je njihov
propratni efekat (izmena vrednosti promenljive na levoj strani).

IzraCunavanje vrednosti izraza izraz1l op= izraz2 obi¢no ima isto dejstvo kao i izracu-
navanje vrednosti izraza izrazl = izrazl op izraz?2, gde je op jedan od nabrojanih
operatora, medutim, postoje i slucajevi kada dva navedena izraza imaju razliite vredno-
sti®, pa treba biti obazriv prilikom upotrebe ovih operatora.

Inkrementiranje i dekrementiranje

Najcesée promene vrednosti promenljivih su uvecanje ili umanjenje za 1. Zato se uvo-
de posebni operatori inkrementirnja odnosno dekrementiranja. Inkrementiranje generalno
znaci postepeno uvecavanje ili uveavanje za neku konkretnu vrednost. U programiranju
se pod inkrementiranjem obi¢no podrazumeva uvecavanje za 1, a pod dekrementiranjem
umanjivanje za 1. Operator inkrementiranja (uvecavanja za 1) zapisuje se sa ++, a operator
dekrementiranja (umanjivanja za 1) zapisuje se sa —-:

o ++ (prefiksno i postfiksno) inkrementiranje
o —— (prefiksno i postfiksno) dekrementiranje.

Oba operatora mogu se primeniti nad celim brojevima i brojevima u pokretnom zarezu.
Obicno se inkrementiraju promenljive ili elementi nizova. Tako, na primer, izraz 5++ nije
ispravan.

Oba operatora su unarna (imaju po jedan operand) i mogu se upotrebiti u prefiksnom (na
primer, ++x) ili postfiksnom obliku (na primer, x++). Razlika izmedu ova dva oblika je
u tome Sto ++x uvecava vrednost promenljive x pre nego Sto je ona upotrebljena u Sirem
izrazu, a x++ je uvecava nakon $to je upotrebljena. Preciznije, vrednost izraza x++ je stara
vrednost promenljive x, a vrednost izraza ++x je nova vrednost promenljive x, pri cemu
se u oba slucaja, prilikom izracunavanja vrednosti izraza, kao propratni efekat, uvecava
vrednost promenljive x. Na primer, ako promenljiva x ima vrednost 5, onda

y = Xt+;

3To se najéeée deSava u situacijama kada izradunavanje izraza izraz1 proizvodi neki propratni efekat. Na
primer, prilikom izraCunavanja vrednosti izraza a[i++] += 5, promenljiva i se uvecava jednom, a prilikom
izraCunavanja vrednosti izraza a[i++] = a[i++] + 5dvaputa

3.2

50 GLAVA 3. IZRAZI I IZRACUNAVANJE

dodeljuje promenljivoj y vrednost 5, a

y = ++x;

dodeljuje promenljivoj y vrednost 6. Promenljiva x u oba slu¢aja dobija vrednost 6.
Ukoliko ne postoji Siri kontekst, tj. ako inkrementiranje ¢ini ¢itavu naredbu, vrednost izraza
se 1 ne Koristi i onda nema razlike izmedu naredbe x++; 1 ++x;.

Primetimo da semantika operatora inkrementiranja moze biti veoma komplikovana® i stoga
se ne savetuje koriS¢enje sloZenijih izraza sa ovim operatorima (na primer, izraze poput x++
+ ++x treba izbegavati u programima). U jednostavnim izrazima i situacijama upotreba
operatora inkrementiranja i dekrementiranja je, naravno, legitimna a ¢esto i poZeljna (jer
omogucava elegantan zapis). Na primer, u sloZenim izrazima, veoma cesta je upotreba
postfiksne varijante u sklopu upisa elementa na naredu slobodnu poziciju u nizu a [i++] =
x (vrednost x se upisuje na slobodnu poziciju i, nakon ¢ega se ta slobodna pozicija uvecava
za 1 tj. pomera na naredno mesto u nizu), a prefiksne varijante u sklopu uklanjanja iz niza
poslednjeg upisanog elementa x = a[--i] (prvo se slobodna pozicija umanjuje za 1, a
onda se promenljivoj x dodeljuje element koji je bio postavljen na tu poziciju — ona je bila
popunjena, a nakon ove dodele se smatra slobodnom).

Zapis matematickih formula

U mnogim oblastima nauke i tehnike vrSe se intenzivna izracunavanja u kojima se prime-
nom matematickih formula rezultati dobijaju na osnovu vrednosti ulaznih podataka.

Na primer, na osnovu koordinata temena (x,y;) i (25, y,) nekog pravougaonika ¢ije
su ivice paralelne koordinatnim osama moZemo odrediti duZinu njegovih stranica (@ =
|z; — 25|, b = |y; —Ys|), azatim i duZinu dijagonale d = v/a? + b2, obim O = 2(a+b)
ipovrS§inu P =a - b.

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

int main() {
int x1, x2, y1, y2, a, b;
cin >> x1 >> y1 >> x2 >> y2;
a = abs(x2 - x1);
b = abs(y2 - y1);

“4Precizan trenutak realizovanja propratnog efekta je u standardu formalizovan kroz pojam sekvencione tacke
(engl. sequence point).

3.3. SEKVENCIJALNI PROGRAMI 51

double dijagonala = sqrt(a*a + b*b);

int obim = 2*x(a + b);

int povrsina = ax*b;

cout << fixed << showpoint << setprecision(2)
<< dijagonala << endl
<< obim << endl
<< povrsina << endl;

return O;

3.3 Sekvencijalni programi

Sekvencijalni programi tj. sekvencijalne funkcije sastoje se od niza naredbi koje se izvr-
Savaju jedna za drugom. Naredbe se izvrSavaju istim redom bez obzira na podatke koji se
obraduju. U kodu nema ni grananja ni petlji.

U ovoj glavi prikaza¢emo primere nekih jednostavnih sekvencijalnih programa.

3.3.1 Sekvencijalno izracunavanje vrednosti

U mnogim izraCunavanjima, na primer, u zadacima iz matematike i fizike, potrebno je
izracunati neke medurezultate na putu do konacnog resenja. Takva izracunavanja moZemo
da opiSemo sekvencijalnim programima.

Razmotrimo problem izracunavanja visine H pravilnog tetratedra zadate stranice a. Naj-
pre se moze, koriS¢enjem Pitagorine teoreme, izraCunati visina h trougla koji je osnova
tetraedra. Zatim se moze primeniti Pitagoritana teorema na trougao Cije su katete a i dve
trecine visine h:

h = sqrt(a*a - (a/2)*(a/2));
x = (2%h)/3;
H = sqrt(a*a - x*x);

3.3.2 Celobrojno deljenje i ostatak

Date su dve promenljive a i b takve da je a > b. Zadatak je u prvu smestiti vrednost a
div baudrugua mod b. Naivni pokuSaj da se to uradi na slede¢i nacin

a=a/ b;
b=a¥%b

3.3.3

52 GLAVA 3. IZRAZI I IZRACUNAVANJE

nije ispravan, jer se prilikom izra¢unavanja ostatka koristi ve¢ izmenjena vrednost promen-
ljive a. Neophodno je upotrebiti pomoénu promenljivu, na primer:

tmp = a;
a=a/b;
b = tmp % b;

Pozicioni zapis (brojevi, vreme, uglovi)

U pozicionom zapisu brojeva, doprinos cifre ukupnoj vrednosti broja ne zavisi samo od
vrednosti cifre, ve¢ i od njene pozicije u zapisu. Zapis c,,c,,_1...Co U pozicionom sistemu
sa osnovom b (to nekad obelezavamo sa (c,,¢,,_;...¢y);) odgovara broju

Cp b4y g b g b+,

pri ¢emu za svaku cifru ¢; vazi 0 < ¢; < b.

Na primer, broj 1234 u osnovi 10 jednak je 1-10% 4 2-10% 4+ 3-10 + 4.

Najcesce koriS¢eni brojevni sistem jeste dekadni sistem, odnosno sistem sa osnovom 10.
Broj « se u dekadnom sistemu moZe predstaviti u obliku z = ¢,, - 10" +¢,,_; - 10771 +
o+ ¢y - 10+ ¢, gde je ¢ cifra jedinica, ¢, cifra desetica, ¢, cifra stotina itd. i za svaku
odnjihvazi 0 < ¢; < 9.

Za zapis vremena i uglova koristi se pozicioni zapis u osnovi 60 (sat tj. ugao ima 60 minuta,
dok jedan minut ima 60 sekundi).

Vrednost broja se moZe odrediti i pomocu Hornerove Seme

(., b+cpq) - btc, o) b+..4+c¢) b+cy.

Na primer broj 1234 u osnovi 10 jednak je ((1-1042)-10+ 3) - 10 + 4.

Poslednja cifra u dekadnom zapisu broja moZe se odrediti operacijom izracunavanja ostatka
pri deljenju sa 10. Na primer, poslednja cifra broja 1234 je 4, $to je upravo ostatak pri
deljenju tog broja sa 10. Sli¢no, poslednja cifra zapisa broja u osnovi b moze se odrediti
operacijom izraGunavanja ostatka pri deljenju broja sa b. DokazZimo ovo. Broj z, ¢ije su cifre
redom ¢,,¢,,_; ... ¢,Cy, predstavljase uoblikux = ¢,, - b" +c, _b" L+ ...+ ¢y -b+cp.
Posto su svi sabirci osim poslednjeg deljivi sa b, tj. broj se moze napisati u obliku x =
(Cp D" 4, 10" 24+ +0c;) b+cyiposto je0 < ¢y < b, naosnovu definicije
celobrojnog koli¢nika i ostatka vazi da je x mod b jednako c.

Opstije, cifru ¢;, uz koeficijent b* u zapisu broja moZemo odrediti kao

(z divb*) mod b.

DokaZimo i ovo. DokaZimo da vazi da je z divb* = ¢, - b" % ¢, | - 0" F 1 4 .+
Cr b+ cp. Zaista, vazidaje x = (c, - b F 4, 1 P+ L cpyy b tep)

3.3. SEKVENCIJALNI PROGRAMI

b + e b8+ .+ ¢ b + ¢ Posto za svaku cifru ¢; vazi 0 < ¢; < b — 1, vazi da je
Cp 1"+t ebtcg < (b—1)-(B* 1+ ... +b+1) = b* —1. Zato je x mod b* =
Cp1 VP epbtcg, dok jez divd® = ¢, b F e, bR 4Lt bty
Zato se do cifre ¢;, moZe doc¢i odredivanjem ostatka pri deljenju ovog broja sa b (svi sabirci

osim poslednjeg su deljivi sa b, dok je 0 < ¢;, < b).

3.3.3.1 Izracunavanje zbira cifara petocifrenog broja

Na osnovu gore navedenih zapaZanja, veoma jednostavno se moZe napisati program koji

izraCunava zbir svih cifara unetog petocifrenog broja.

// polazni broj i njegovo ucitavanje

int broj;
cin >> broj;

// tzracunavanje zbira cifara

int cifraJedinica = (broj
int cifraDesetica = (broj
int cifraStotina = (broj
int cifraHiljada = (broj
int cifraDesetinaHiljada = (broj

NN N N

/

1) % 10;
10) % 10;
100) % 10;
1000) % 10;
10000) % 10;

int zbirCifara = cifraJedinica + cifraDesetica +
cifraStotina + cifraHiljada +
cifraDesetinaHiljada;

// prikaz rezultata
cout << zbirCifara << endl;

3.3.3.2 Razmenjivanje cifre jedinica i stotina

Naredni program prvo izdvaja, a zatim i razmenjuje cifre jedinica i stotina datog broja (ako

je broj manji od 100, njegova cifra stotina je 0).

// ucitavamo broj
int broj;
cin >> broj;

// odredjujemo cifru jedinica t cifru stotina

int c0 = (broj / 1) % 10;
int c2 = (broj / 100) % 10;

// uklanjamo cifre ¢ dodajemo th u razmenjenom poretku

54 GLAVA 3. IZRAZI I IZRACUNAVANJE

int broj_r = broj - cO - c2 * 100 +
c2 + cO * 100;

// ispisujemo rezultat
cout << broj_r << endl;

Izracunavanje vremena izmedu dva trenutka

Na sli¢an nacin moZemo organizovati i racunanje u osnovi 60, §to je veoma pogodno za
reSavanje problema sa vremenom i uglovima. Na primer, ako su sat, minut i sekund po-
Cetka i kraja voZnje autobusom (pretpostavljamo da je voZnja pocela i zavrsSila se u istom
danu), naredni program odreduje koliko sati, minuta i sekundi je trajala ta voZnja. Najjed-
nostavnije resenje je ako se prvo sati, minuti i sekundi pretvore u sekunde, izrSe Zeljene
aritmeticke operacije i zatim dobijeni rezultat prevede nazad u sate, minute i sekunde.

// pocetak % kraj wvoznje

int hPocetak, mPocetak, sPocetak;

cin >> hPocetak >> mPocetak >> sPocetak;
int hKraj, mKraj, sKraj;

cin >> hKraj >> mKraj >> sKraj;

// trajanje voznje

// prevodimo pocetak u sekunde (protekle od ponoci)
int SPocetak = hPocetak*60*x60 + mPocetak*60 + sPocetak;
// prevodimo kraj u sekunde (protekle od ponoct)
int SKraj = hKraj*60*60 + mKraj*60 + sKraj;

// trajanje voznje u sekundama

int STrajanje = SKraj - SPocetak;

// prevodimo sekunde u sate, minute ¢ sekunde

int sTrajanje = STrajanje 7 60;

int mTrajanje = (STrajanje / 60) % 60;

int hTrajanje = STrajanje / (60%60);

cout << hTrajanje << ":" << mTrajanje << ":" << sTrajanje << endl;

Po sli¢nom principu moZemo vrSiti izraCunavanja i u sistemu sa meSovitim brojevnim
osnovama. Na primer, vreme na UNIX sistemima se ponekad izrazava brojem milisekun-
di proteklih od nekog fiksnog datuma (obi¢no je to 1. januar 1970. godine). Narednim
funkcijama se na osnovu broja proteklih dana, sati, minuta, sekundi i milisekundi od tog
trenutka izracunava broj proteklih milisekundi i obratno.

3.3. SEKVENCIJALNI PROGRAMI 55

struct Vreme {
int dan, sat, min, sek, mili;

};

// prevodi dane, sate, minute, sekunde i milisekunde u milisekunde
int uMilisekunde (Vreme v) {

// Hormerova sema

return (((v.dan*24 + v.sat)*60 + v.min)*60 + v.sek)*1000 + v.mili;

}

// prevodt milisekunde u dane, sate, minute, sekunde % milisekunde
Vreme odMilisekundi(int ms) {
Vreme v;

v.mili = (ms / 1) % 1000;

v.sek = (ms / 1000) % 60;

v.min = (ms / (1000%60)) % 60;
v.sat = (ms / (1000%60%*60)) % 24;
v.dan = (ms / (1000%60%60%24)) ;
return v;

3.3.3.4 Izracunavanje ugla izmedu kazaljki na satu
Racunanje u osnovi 60 se mozZe koristiti i za racunanje sa uglovima. Na primer, narednim
programom izraCunavamo ugao izmedu kazaljki na satu (izraZen brojem ugaonih stepeni i
ugaonih minuta).
Neka je dati vremenski trenutak opisan parametrima sat i minut.
Ugao koji minutna kazaljka zaklapa u odnosu na pocetni polozaj od nula minuta (takozvani
ugaoni otklon minutne kazaljke) jednak je minut - 6°. Zaista, na svaki minut vremena
minutna kazaljka se pomera za % =6".
Ugao u ugaonim minutima koji satna kazaljka zauzima u odnosu na polozaj 12h (ugaoni
otklon satne kazaljke) jednak je sar - 30° + minut - 0,5°. Zaista na svaki sat kazaljka se

pomeri za % = 30°. Na svaki minut vremena satna kazaljka se pomeri dodatno za

% = 0,5°. Zaista, ona se za jedan minut vremena pomeri 12 puta manje nego minutna
kazaljka, za koju smo ustanovili da se za minut vremena pomeri za 6°.

Da bismo izbegli racunanje sa realnim brojevima, moZemo ove uglove izraziti u ugaonim
minutima. Minutna kazaljka se u svakom minutu pomeri za 6° = 6° - 61—0: = 360’. Satna
kazaljka se u svakom satu pomeri za 30 - 60° = 1800’ i u svakom minutu dodatno za
0,5° = 30".

Da bi se izracunao (neorijentisani) ugao izmedu kazaljki izraZzen u minutima potrebno
je odrediti apsolutnu vrednost razlike u ugaonim minutima. Na kraju je dobijeni rezultat

56 GLAVA 3. IZRAZI I IZRACUNAVANIJE

potrebno prevesti u stepene i minute.

// ucitavamo vreme
int sat, minut;
cin >> sat >> minut;

// sat svodimo ma interval [0, 12)
sat %= 12;

// ugao u minutima koji satna kazalja zauzima sa polozajem 12h
int ugaoSatne = sat * 30 * 60 + minut * 30;

// ugao u minutima koji minutna kazaljka zauzima sa polozajem 12k
int ugaoMinutne = minut * 360;

// ugao izmedju satne i minutne kazaljki u minutima

int ugaoIzmedju = abs(ugaoSatne - ugaoMinutne) ;

// ugao tzmedju kazaljki u stepenima t minutima

int ugaoIlzmedjuStepeni = ugaoIlzmedju / 60;

int ugaoIlzmedjuMinuti = ugaolzmedju 7 60;

// ispis rezultata
cout << ugaolzmedjuStepeni << ":" << ugaoIlzmedjuMinuti << endl;

4.1
4.1.1

4.1.2

(4. Grananje

Naredbe grananja (ili naredbe uslova), na osnovu vrednosti nekog izraza, odreduju nared-
bu (ili grupu naredbi) koja Ce biti izvrSena. Uslovi se izrazavaju koris¢enjem relacijskih i
logi¢kih operatora.

Relacijski i logicki operatori i istinitosna vrednost izraza

Logicki tip podataka

Tip bool je tip za predstavljanje istinitosnih (logi¢kih) vrednosti i ima slede¢e moguce
vrednosti: true koja oznacava tacno i false koja oznadava netacno. Dodatno, svaki bro-
jevni izraz ima istinitosnu vrednost: netacno ako je jednak 0, i facno inae — mozemo
smatrati da se na taj nacin vr$i konverzija brojevnih tipova u tip bool. Konverzija tipa
bool u tip int se vrsi tako §to se vrednost true tumaci kao broj 1, a false kao 0.

Relacijski i logicki operatori
Nad celim brojevima i brojevima u pokretnom zarezu mogu se koristiti slede¢i binarni
relacijski operatori:

» == jednako;
 !=razlicito.

o >vele;

« >=vece ili jednako;
e < manje;

» <=manje ili jednako.

Relacijski operatori poretka <, <=, > i >= imaju isti prioritet i to viSi od operatora jed-
nakosti == i razliitosti != i svi imaju levu asocijativnost. Rezultat relacionog operatora
primenjenog nad dva broja je tipa bool, tj. moZe imati vrednosti false ili true. Na
primer, izraz 3 > 5 ima vrednost false.

57

58 GLAVA 4. GRANANJE

Konverzije izmedu brojevnih tipova i tipa bool, omoguéavaju i neka neobi¢na i pocetnici-
ma neocekivana ponasanja, koja mogu ponekad dovesti do greSaka. Na primer, u matema-
tici se pripadnost promenljive x intervalu (0, 5) moZe zapisati kao 3 < x < 5. Medutim,
ako x ima, na primer vrednost 2 onda u programu ovakav izraz ima vrednost true (5to je
razli¢ito od mozda ocekivane vrednosti false, jer 2 nije izmedu 3 i 5). Naime, izraz se
izraCunava sleva nadesno — podizraz 3 < x ima vrednost false, koji se (u daljoj kombi-
naciji sa operatorom <) konvertuje u vrednost 0, a zatim izraz 0 < 5 daje vrednost true.
Ovo je opasna greska jer u ovakvim situacijama kompilator ne prijavljuje gresku, a u fazi
izvrSavanja se dobija rezultat neoCekivan za pocetnike koji su navikli na uobicajenu ma-
tematicku notaciju. Imajuéi u vidu ponasanje relacionih operatora, proveru da li je neka
vrednost izmedu dve zadate neophodno je vr$iti uz primenu logickog operatora && izrazom
3 <x && x < b.

Kao i u matematici, binarni relacijski operatori imaju niZi prioritet od binarnih aritmetic¢kih
operatora (na primer, u izrazu 3 + 5%6 < 7%2 prvo se izraCunavaju vrednosti 3 + 5%6
1 7x2, pa se tek onda porede). U izraCunavanju vrednosti izraza 3 + 5%6 prioritet ima
operacija *.

Logicki operatori primenjuju se nad vrednostima tipa bool i imaju tip rezultata bool.
Postoje slede¢i logicki operatori:

o ! logic¢ka negacija — —;
 && logicka konjunkcija — A;
o | | logicka disjunkcija — V.

Operator && ima visi prioritet u odnosu na operator | |, a oba su levo asocijativna. Binarni
logicki operatori imaju niZi prioritet u odnosu na binarne aritmeticke i relacijske operatore.
Operator !, kao unarni operator, ima visi prioritet u odnosu na bilo koji binarni operator i
desno je asocijativan. Na primer,

o vrednost izraza ! (2 > 3) jednaka je true;

e izrazom 3 < x && x < 5 proverava se da li je vrednost promenljive x izmedu 3 i
5;

e izraza > b || b > ¢ & b > dekvivalentan je izrazu (a>b) || ((b>c) &&
(b>d));

e izrazomg % 4 == 0 && g % 100 !'= 0 || g % 400 == O proveravase da li
je godina g prestupna.

Implicitne konverzije brojevnih tipova u tip bool omogudavaju i da se logicki operatori
primene i na brojevne vrednosti (kao $to je veé receno, jedino se vrednost O konvertuje u
false, dok se sve ostale brojevne vrednosti konvertuju u true). Na primer:

o vrednost izraza 5 && 4.3 jednaka je true;
« vrednost izraza 10.2 || O jednaka je true;
o vrednost izraza 0 && true jednaka je false;

4.1. RELACIJSKI I LOGICKI OPERATORI 1 ISTINITOSNA VREDNOST IZRAZA 59

o vrednost izraza !0 jednaka je true;
« vrednost izraza !1 jednaka je false;
« vrednost izraza !9.2 jednaka je false.

Posto programski jezik C u svojim ranijim verzijama nije uopste posedovao tip bool,
kori$éenje brojevnih vrednosti za predstavljanje istinitosnih se svojevremeno rasirilo kao
programerska praksa. Ipak, takvi programi su manje razumljivi i podloZni greskama, pa
savremeniji programski jezici proizisli iz jezika C (na primer, Java i C#) ukidaju moguc-
nost implicitne konverzije izmedu brojevnog i logickog tipa. Zato ¢emo i mi izbegavati
upotrebu takvih konverzija (iako ih jezik C++, po uzoru na jezik C, dopusta).

Kao i u matematici, logicki operatori imaju manji prioritet u odnosu na relacijske. Na
primer, u izrazu 3 < 4 && 2 > x, prvo se izraCunavaju vrednosti podizraza 3 < 412
> x i zatim se tako dobijene logicke vrednosti kombinuju operatorom &&.

U izraCunavanju vrednosti logi¢kih izraza koristi se strategija lenjog izracunavanja
(engl. lazy evaluation). Osnovna karakteristika ove strategije je da se izraCunavanje
vrednosti operanada vrsi s leva nadesno, §to prestaje ¢im je mogude izracunati vrednost
celog izraza na osnovu vrednosti do sada izraCunatih operanada (racuna se samo ono §to
je neophodno). Na primer, prilikom izracunavanja vrednosti izraza

2 <1 && £(0)

bice izracunato da je vrednost podizraza 2 < 1 jednaka false, pa je sigurno i vrednost
citavog izraza (zbog svojstva logickog A tj. &&) jednaka false. Zato nema potrebe izra-
Cunavati vrednost podizraza £ (0), pa funkcija £ uopste nece biti pozvana. S druge strane,
tokom izracunavanja vrednosti izraza

£(0) & 2 < 1

funkcija £ ée biti pozvana (jer se vrednost logickih izraza izracunava sleva nadesno). U
izrazima u kojima se javlja operator &&, ukoliko je vrednost prvog operanda jednaka true,
onda se izraCunava i vrednost drugog operanda.

U izrazu u kojem se javlja logicko V tj. operator | |, ukoliko je vrednost prvog operan-
da jednaka true, onda se ne izraCunava vrednost drugog operanda, jer se unapred moze
zakljuciti da je vrednost celog izraza true. Ukoliko je vrednost prvog operanda jednaka
false, onda se izracunava i vrednost drugog operanda. Na primer, u izraCunavanju izraza

1 <2 || £C0)

se ne poziva funkcija f, a poziva se u izracunavanju izraza

4.1.3

4.1.3.1

60 GLAVA 4. GRANANJE

2 <1 || £C0)

Lenjo izracunavanje je vid optimizacije programa (jer se Stedi vreme tako Sto se izbegavaju
nepotrebna izracunavanja). Medutim, oslanjanje na lenjo izracunavanje moZe nekada da
doprinese elegantnom pisanju programa. Na primer, razmotrimo kod u kome se odreduje
pozicija prvog neparnog elementa datog niza ili vektora (¢ija je duZina n).

i=0;
while (i < n && al[i] % 2 == 0)
i+

’

Ako je uslov i < nispunjen, indeks i se sigurno nalazi u granicama niza (jer je ujedno i
pozitivan) i bezbedno se ispituje da li je element na poziciji i paran. Medutim, ako uslov
i < n nije ispunjen, petlja se odmah prekida, jer se stiglo do kraja niza. Usled lenjog
izracunavanja operatora &&, tada se usloval[i] % 2 == 0 ne proverava. U tom trenutku
proveru tog uslova ne bismo ni smeli da vr§imo, jer je i van granica niza, tako da nas le-
njo izracunavanje u ovom slucaju §titi od nedefinisanog ponasanja programa i potencijalne
greske.

Poredenje i poredak

U mnogim problemima potrebno je uporediti dva objekta. U nekim situacijama potrebno
je proveriti da li su dva objekta jednaka, a u nekim da li je jedan manji (ili veéi) od drugog.
Za poredenje vrednosti osnovnih, brojevnih tipova na raspolaganju su operatori ==, !=, <,
>, <=, >= sa odgovarajuéim, uobicajenim matematickim znacenjem. Poredenje vrednosti
sloZenih tipova svodi se na poredenje vrednosti osnovnih tipova.

Relacija jednakosti

Relacija jednakosti je relacija ekvivalencije: ona je refleksivna, simetri¢na i tranzitivna.
Relacioni operator jednakosti (==), nad raspoloZivim tipovima (na primer, int, double,
string) zadovoljava ove uslove.! Ovaj operator moze se koristiti za proveru jednakosti
dve vrednosti osnovnih tipova, a za korisnicki definisane tipove u jeziku C++ moze da se
definiSe (za razliku od jezika C).

1Za brojeve u pokretnom zarezu (ako se sledi standard IEEE 754, §to standard jezika C++ ne propisuje), ovo
vazi samo za skup vrednosti bez pozitivne i negativne vrednosti “not-a-number” (Nan). Naime, izraz NaN==NaN
nije tacan. Dodatno, treba naglasiti da se svojstva relacije ekvivalencije odnose samo na vrednosti koje pri-
padaju istim tipovima. Na primer, nakon naredbe float x = 0.1;, promenljiva x ima (na nekom sistemu)
vrednost 0.100000001490116119384765625, a nakon naredbe double x = 0.1;, promenljiva x ima (na
istom tom sistemu) vrednost 0.1000000000000000055511151231257827021181583404541015625. Tre-
ba, dakle, imati na umu i da su rezultati operacija (¢ak i jednostavnih dodela) nad brojevima u pokretnom zarezu
Cesto dobijeni zaokruZivanjem. Zbog toga, vrednosti dva izraza mogu biti razlicite i kada su vrednosti odgovara-
jucih izraza nad realnim brojevima jednake. Drugim recima, treba uvek imati na umu da su matematicka pravila
za brojeve u pokretnom zarezu drugacija od matematickih pravila koja vaZe za realne brojeve.

4.1.3.2

4.1. RELACIJSKI I LOGICKI OPERATORI 1 ISTINITOSNA VREDNOST IZRAZA 61

Za dve vrednosti tipa neke strukture, provera jednakosti svodi se na proveru jednakosti svih
¢lanova pojedinacno ili moZda na neki drugi nacin. Na primer, dva razlomka nisu jednaka
samo ako su im i imenilac i brojilac jednaki, nego i u nekim drugim slu¢ajevima. Ako je
struktura razlomak zadata na sledeci nacin

struct razlomak {
int brojilac;
int imenilac;

};

onda se jednakost dva razlomka (definisanih vrednosti) moze ispitati narednom funkcijom:

int jednaki_razlomci(razlomak a, razlomak b)

{

return a.imenilac * b.brojilac == b.imenilac * a.brojilac;

}

Primetimo da u prethodnoj funkciji postoji opasnost od nastanka prekoracenja, pa je treba
koristiti veoma obazrivo.

Relacije poretka

Relacija poretka je relacija koja je refleksivna, antisimetri¢na i tranzitivna. Takva je, na
primer, relacija < nad skupom prirodnih brojeva. Sli¢no, relacioni operatori <= i >= nad
osnovnim, tipovima odreduju relacije poretka. Relacija strogog poretka je relacija koja je
antirefleksivna, antisimetri¢na i tranzitivna. Takva je, na primer, relacija < nad skupom
prirodnih brojeva. Sli¢no, relacioni operatori < i > nad osnovnim, brojevnim tipovima
odreduju relacije strogog poretka.” Vrednosti osnovnih, brojevnih tipova mogu, medutim,
da se porede i na neki drugi nacin - na primer, ako je potrebno pronaci broj koji je najblizi
zadatoj vrednosti, cele brojeve je potrebno porediti prema odnosu njihovih rastojanja od
te zadate vrednosti (vaZi da je a bliZe x od b, ako je |a — x| < |b — z|). Takode, za druge
tipove potrebno je implementirati funkcije koje vrSe poredenje a one se obi¢no zasnivaju
na poredenju za jednostavnije tipove. Funkcije za poredenje dve vrednosti obi¢no vraca-
ju vrednost manju od nule ako je prvi argument manji, nulu ako su argumenti jednaki i
vrednost vecu od nule ako je drugi argument manji. Na primer, naredna funkcija poredi
dvoslovne oznake drZava po standardu ISO 3166°. Ona vrac¢a vrednost —1 ako je prvi kod
manji, 0 ako su zadati kodovi jednaki i 1 ako je drugi kod manji:

2 Ako se sledi standard IEEE 754 za brojeve u pokretnom zarezu, ovo vaZi samo za skup vrednosti bez pozitivne
i negativne vrednosti “not-a-number” (NaN).

3Svrha standarda ISO 3166 je definisanje medunarodno priznatih dvoslovnih kodova za drZave ili neke njihove
delove. Kodovi su sacinjeni od po dva slova engleskog alfabeta. Koriste se za oznaku nacionalnih internet domena,
od strane poStanski organizacija, i dr. Dvoslovna oznaka za Srbiju je ,rs, za Portugaliju ,,pt, za Rusiju
Hru®, itd.

62 GLAVA 4. GRANANJE

int porediKodoveDrzava(string a, string b)
{
if (a[0] < b[0])
return -1;
if (a[0] > b[0])
return 1;
if (al1] < p[1])
return -1;
if (a1l > bl1])
return 1;
return O;

Parovi karaktera se, dakle, mogu porediti tako Sto se najpre porede prvi karakteri u paro-

vima, a zatim, ako je potrebno, drugi karakteri. Slicno se mogu porediti i datumi opisani
narednom strukturom:

struct datum {
unsigned dan;
unsigned mesec;
unsigned godina;

};

Prvo se porede godine — ako su godine razlicite, redosled dva datuma moZe se odrediti na
osnovu njihovog odnosa. Ako su godine jednake, onda se prelazi na poredenje meseci. Na
kraju, ako su i meseci jednaki, prelazi se na poredenje dana. Naredna funkcija implemen-
tira ovaj algoritam i vraéa —1 ako je prvi datum pre drugog, 1 ako je drugi datum pre
prvog i 0 ako su jednaki.

int porediDatume(datum dl, const datum d2)
{
if (dl.godina < d2.godina)
return -1;
if (dl1.godina > d2.godina)
return 1;
if (dl.mesec < d2.mesec)
return -1;
if (d1.mesec > d2.mesec)
return 1;
if (dl1.dan < d2.dan)

4.1. RELACIJSKI I LOGICKI OPERATORI 1 ISTINITOSNA VREDNOST IZRAZA 63

return -1;

if (dl.dan > d2.dan)
return 1;

return O;

Moze se napisati i jedinstven logicki izraz kojim se proverava da li je prvi datum ispred
drugog:

bool datumPre(datum dl, datum d2)

{
return
dl.godina < d2.godina ||
(d1.godina == d2.godina && dl.mesec < d2.mesec) ||
(dl.godina == d2.godina && dl.mesec == d2.mesec &&
dl.dan < d2.dan);
}

Generalno, torke sa fiksnim jednakim brojem elemenata mogu se porediti tako $to se naj-
pre porede njihovi prvi elementi, zatim, ako je potrebno, njihovi drugi elementi i tako dalje,
sve dok se ne naide na neki razlicit par elemenata, na osnovu kojeg se odreduje poredak.
Dakle, relacija poredenja pojedinacnih elemenata moZe se proSiriti na relaciju poredenja
n-torki elemenata tj. ako je na skupu X (na primer, na skupu karaktera) definisana rela-
cija poretka <, onda se moZe definisati i relacija poretka <! na skupu X (na primer,
na niskama karaktera duZine n). Stavise, relacija poretka nad pojedinaénim elementima
skupa X moze se progiriti i na skup X* = U::; X™, tj. moZe se proSiriti i na skup svih
torki svih duzina. Poredenje se ponovo vrsi redom i ¢im se naide na prvu poziciju na kojoj
se u dve torke nalazi razlicit element, na osnovu njega odreduje se poredak torki. Kada
su torke razlicite duZine, tada se moZe desiti da se dode do kraja jedne od njih. Ako se
istovremeno doslo i do kraja druge, tada su torke jednake, a ako nije, tada je kraa torka
prefiks one duZe. Tada se smatra da je kraca torka manja (ide pre one duzZe torke). Ova-
ko definisana relacija poretka naziva se leksikografski poredak (jer se Koristi i u poretku
odrednica u leksikonima i re¢nicima). Za niske (potencijalno razli¢itih duZina) moZe se
definisati leksikografski poredak koji je zasnovan na poredenju karaktera. Kada se ope-
ratori <, >, <=1 >= primene na tip string vrsi se upravo ovakav nacin poredenja. Pored
ovoga definisana je i metoda compare koja poredi niske. Poziv strl.compare (str2)
vraca negativnu vrednost ako niska str1 leksikografski prethodni niski str2, pozitivhu
vrednost ako niska str2 leksikografski prethodni niski str2, a nulu ako su niske jednake.
Niske mogu da se porede i na neki drugi nacin, na primer, samo po duZini:

4.2

64 GLAVA 4. GRANANJE

int porediNiske(string a, string b)
{

return a.length() - b.length();
}

Dva razlomka (¢iji su imenioci pozitivni) mogu da se porede sledeCom funkcijom (pod
pretpostavkom da smo sigurni da prilikom mnoZenja nece do¢i do prekoracenja), koja vraca
negativan rezultat ako je prvi razlomak manji od drugog, pozitivan rezultat ako je prvi
razlomak veéi od drugog, a nulu ako su razlomci jednaki:

int porediRazlomke(razlomak a, razlomak b)

{

return a.brojilac * b.imenilac - b.brojilac * a.imenilac;

}

Naredba if-else

Naredba uslova if ima sledeci opsti oblik:

if (izraz)
naredbal

else
naredba?2

Deo naredbe else je opcioni, tj. moZe da postoji samo if grana.

Naredba naredbal i naredba naredba? su ili pojedinacne naredbe (kada se zavrSavaju
simbolom ;) ili blokovi naredbi zapisani izmedu vitiCastih zagrada (iza kojih se ne piSe
simbol ;). Viticaste zagrade je moguce staviti i oko pojedinacnih naredbi, ali to nije ne-
ophodno. U praksi se dogada da programeri naknadno poZele da u postojecu naredbu if
dodaju nove naredbe koje ¢e se uslovno izvrsiti. Ako se zagrade ne navedu, do¢i ¢e ili do
sintaksicke greske ili do semenati¢ke greske tj. dobice se program koji ili ne moZe da se
prevede ili se prevodi, ali ne radi na ocekivani nacin. Na primer, posto u narednom kodu
nisu navedene zagrade, bez ozbira na to kako je kod poravnat®, tj. kako su naredbe uvu-
Cene, naredbal e se izvrSiti samo ako je uslov ispunjen, dok ¢e se naredba?2 izvrsiti i
kada uslov jeste i kada nije ispunjen.

“Interesantno, neki programski jezici, poput jezika Python koriste poravnavanje naredbi da bi odredili koje
se naredbe izvrSavaju uslovno u sklopu naredbe grananja tj. koje se naredbe ponavljaju u sklopu petlji.

4.2. NAREDBA IF-ELSE 65

if (izraz)
naredbal;
naredba?2;

Posto vitiaste zagrade nisu navedene, prethodni kdd ¢e se zapravo tumaciti kao:

if (izraz)
naredbal;
naredba?2;

Da se ovakve greske ne bi dogadale, nekada se savetuje da se i u slucaju petlji sa jednom
naredbom u telu, za svaki slu¢aj navode vitiaste zagrade.

Izraz izraz predstavlja logicki uslov i naj¢eSce je u pitanju izraz tipa bool (ali, usled
implicitne konverzije, moZe biti i izraz brojevnog tipa, Sto nije preporucljivo). Na primer,
nakon koda

int a = 5, b = 3;
if (a > b)
maksimum = a;
else
maksimum = b;

promenljiva maksimum ¢e imati vrednost 5 (jer je uslova > b ispunjen).

Kako se ispituje istinitosna vrednost izraza koji je naveden kao uslov, ponekad je moguée
taj uslov zapisati krace. Na primer, if (n != 0) jeekvivalentnosaif (n),Stosmanjuje
Citljivost programa i stvara prostor za greSke (ali se moZe Cesto sresti, usled nasledene
tradicije iz ranih verzija programskog jezika C koje nisu imale poseban tip bool).
Dodela ¢ini izraz ¢ija se vrednost moZe konvertovati u istinitosnu vrednost, pa je naredni
kod sintaksicki ispravan, ali je verovatno semanticki pogresan (tj. ne opisuje ono Sto je bila
namera programera):

a = 3;
if (a = 0)

cout << "a je nula" << endl;
else

cout << "a nije nula" << endl;

Naime, efekat navedenog koda je da postavlja vrednost promenljive a na nulu (a ne da
ispita da li je a jednako 0), a zatim ispisuje tekst a nije nula, jer je vrednost izraza
a = 0 nula, $to se smatra netacnim. Nehotino meSanje operatora == operatorom = u

66 GLAVA 4. GRANANJE

naredbi if je Cesta greska. Medutim, operator == koji ispituje da li su neke dve vrednosti
jednake i operator dodele = razliiti su operatori i imaju potpuno drugacije znacenje. Na
srecu, vecina kompilatora daje upozorenje ako se operator dodele = koristi u okviru nekog
logickog uslova.

Naredbe koje se izvrSavaju uslovno mogu da sadrZe nove naredbe uslova, tj. moZe biti
vi§e ugneZdenih if naredbi. U takvim situacijama moZe biti nejasno na koju naredbu if
se odnosi navedeni else (ta pojava se naziva if-else viseznacnost). Ukoliko vitiCastim
zagradama nije obezbedeno drugacije, else se odnosi na poslednji prethodeéi neuparen if.
Ukoliko se Zeli drugacije ponasanje, neophodno je navesti vitiCaste zagrade. U narednom
primeru, else se odnosi na drugo, a ne na prvo if (iako nazubljivanje sugeriSe drugacije):

if (izrazl)
if (izraz2)
naredbal
else
naredba?2

U narednom primeru, else se odnosi na prvo a ne na drugo if :

if (izrazl) {
if (izraz2)
naredbal
} else
naredba?2

Da bi se izbegle viSeznaCnosti ovog tipa i smanjila moguénost nastajanja greske usled toga
$to su programer i kompilator shvatili program na razlicite nacine, preporucuje se da se
prilikom ugneZdavanja naredbi if-else uvek koriste zagrade (¢ak i kada se u telu nalazi
samo jedna naredba).

4.2.1 Konstrukcija else-if

Za visestruke odluke Cesto se koristi konstrukcija sledeceg oblika:

if (izrazl)
naredbal

else if (izraz2)
naredba?2

else if (izraz3)
naredba3

else

4.3

4.3. OPERATOR USLOVA 67

naredba4d

U ovako konstruisanoj naredbi, uslovi se ispituju jedan za drugim. Kada je jedan uslov
ispunjen, onda se izvrSava naredba koja mu je pridruZena i time se zavrSava izvrSavanje Ci-
tave naredbe. Naredba naredba4 u gore navedenom primeru se izvr§ava ako nije ispunjen
nijedan od uslova izraz1l, izraz2, izraz3. Naredni primer ilustruje ovaj tip uslovnog
grananja.

if (a > 0)

cout << "A je veci od nule" << endl;
else if (a < 0)

cout << "A je manji od nule" << endl;
else

cout << "A je nula" << endl;

Operator uslova

Naredna naredba

if (a > b)
maksimum

aj;
else
maksimum = b;

odreduje i smeSta u promenljivu maksimum vecu od vrednosti a i b. Naredba ovakvog
oblika se moZe zapisati krace koriS§¢enjem ternarnog operatora uslova 7 :, na slede¢i nacin:

maksimum = a > b 7 a : b;

Naravno, maksimum dva broja u jeziku C++ uvek je bolje odredivati kori$¢enjem biblio-
teCke funkcije max (potrebno je ukljuciti zaglavlje <algorithm>).
Ternarni operator uslova 7 : se koristi u slede¢em opStem obliku:

izrazl 7 izraz2 : izraz3

Prioritet ovog operatora je niZi u odnosu na skoro sve binarne operatore (izuzetak su, na
primer, operatori dodel).

Izraz izraz1 se izracunava prvi. Ako on ima vrednost razli¢itu od nule (tj. ako ima istini-
tosnu vrednost tacno), onda se izracunava vrednost izraza izraz?2 i to je vrednost Citavog
uslovnog izraza. U suprotnom se izracunava vrednost izraz3 i to je vrednost Citavog uslov-
nog izraza. Na primer, vrednost izraza

4.4

68 GLAVA 4. GRANANJE
x <07 -x:Xx

je apsolutna vrednost broja x.

I ternarni uslovni operator se izracunava lenjo. Naime, ako je vrednost izraza izraz1 tacno,
tada se izraz izraz3 uopste ne izracunava, a ako je netacno, tada se izraz izraz2 uopste
ne izracunava.

Naredba switch

Naredba switch se koristi za viSestruko odlucivanje i ima sledeci opsti oblik:

switch (izraz) {
case konstantan_izrazl: naredbel
case konstantan_izraz2: naredbe2

default: naredbe_n

Naredbe koje treba izvr$iti oznacene su slucajevima (engl. case) za razli¢ite moguce pojedi-
nacne vrednosti zadatog izraza izraz. Svakom slucaju pridruZen je konstantni celobrojni
izraz. Ukoliko zadati izraz izraz ima vrednost konstantnog izraza navedenog u nekom
slu¢aju, onda se izvrSavanje nastavlja od prve naredbe pridruZene tom slucaju, pa se nasta-
vlja i sa izvrSavanjem naredbi koje odgovaraju slede¢im slucajevima iako izraz nije imao
njihovu vrednost, sve dok se ne naide na kraj ili naredbu break. Na slucaj default se
prelazi ako vrednost izraza izraz nije navedena ni uz jedan slucaj. Slucaj default je
opcioni i ukoliko nije naveden, a nijedan postojeci slucaj nije ispunjen, onda se ne izvrSa-
va nijedna naredba u okviru bloka switch. Slucajevi mogu biti navedeni u proizvoljnom
poretku (ukljucujuéi i slucaj default), ali razliiti poreci mogu da daju razli¢ito pona-
Sanje programa. lako to standard ne zahteva, slucaj default se gotovo uvek navodi kao
poslednji slucaj. I ukoliko slu¢aj default nije naveden kao poslednji, ako vrednost izraza
izraz nije navedena ni uz jedan drugi slucaj, prelazi se na izvrSavanje naredbi od naredbe
pridruZene slucaju default.

U okviru naredbe switch Cesto se koristi naredba break. Kada se naide na naredbu
break, napusta se naredba switch. Najcesce se naredbe priduZene svakom slucaju zavrsa-
vaju naredbom break (€ak i nakon poslednje navedenog slucaja, Sto je najce$ée default).
Time se ne menja ponaSanje programa, ali se obezbeduje da poredak slucajeva ne utice na
izvr§avanje programa, te je takav kdd jednostavniji za odrZavanje.

Izostavljanje naredbe break, tj. previdanje Cinjenice da se, ukoliko nema naredbi break,
nastavlja sa izvrSavanjem naredbi narednih slucajeva, ¢esto dovodi do greSaka u progra-
mu, pa je zato ta moguénost zabranjena u nekim savremenijim programskim jezicima (na

4.5

4.5.1

4.5. PRIMERI 69

primer, u jeziku C#). S druge strane, izostavljanje naredbe break moze biti pogodno (i
opravdano) za pokrivanje vise razlicitih slu¢ajeva jednom naredbom (ili blokom naredbi).
U narednom primeru proverava se da li je uneti broj deljiv sa tri, kori§¢enjem naredbe
switch.

#include <iostream>
using namespace std;

int main() {
int n;

cin >> n;

switch (n % 3) {

case 1:
case 2
cout << "Uneti broj nije deljiv sa 3";
break;
default: cout << "Uneti broj je deljiv sa 3";
X
return O;

}

U navedenom primeru, bilo da je vrednost izraza n % 3 jednaka 1 ili 2, bice ispisan
tekst Uneti broj nije deljiv sa 3, a inae e biti ispisan tekst Uneti broj je
deljiv sa 3. Da nije navedena naredba break, onda bi u slu¢aju da je vrednost izraza
n % 3 jednaka 1 (ili 2), nakon teksta Uneti broj nije deljiv sa 3, bio ispisan i
tekst Uneti broj je deljiv sa 3 (jer bi bilo nastavljeno izvrSavanje svih naredbi za
sve naredne slucajeve).

Primeri

PrikaZimo u nastavku nekoliko tipi¢nih scenarija upotrebe grananja. Naredni spisak pri-
mera nije ni na koji nacin iscrpan, ve¢ samo pokazuje neke tipove problema koji se cesto
mogu sresti. Programer uvek treba da paZljivom analizom problema osmisli strukturu uslo-
va koje je potrebno ispitati da bi se pokrili svi mogu¢i slucajevi i da bi problem bio ispravno
resen.

Broj dana u mesecu (grananje na osnovu vrednosti promenljive)

Veoma Cesta i jednostavna situacija je kada se grananje vrsi na osnovu razli¢itih pojedi-
nacnih vrednosti neke promenljive.

70 GLAVA 4. GRANANJE

Na primer, u narednom programu odreduje se broj dana u mesecu na osnovu rednog broja
meseca (od 1 do 12) i godine. Posto broj dana u februaru zavisi od toga da li je godina
prestupna, pogodno je definisati pomoénu funkciju kojom se kori$¢enjem logickog izraza
ispituje da li je godina prestupna (podsetimo se, godina je prestupna ako je deljiva sa 4, a
nije deljiva sa sto ili ako je deljiva sa 400).

// provera da li je data godina prestupna
bool prestupna(int godina) {

// godina je prestupna ako je deljiva sa 4 t nije deljiva sa 100,

// tli ako je deljiva sa 400

return (godina 7 4 == 0 && godina % 100 != 0) || (godina % 400 == 0);
}

Grananje je sada moguce realizovati uz koriSéenje konstrukcije else-if.

int main() {
// ucttavamo mesec © godinu
int mesec, godina;
cin >> mesec >> godina;

// odredjujemo broj dana u tom mesecu

int brojDana = 0;

// januar, mart, maj, jul, avgust, oktobar, decembar

if (mesec == || mesec == 3 || mesec == || mesec == ||

mesec == || mesec == 10 || mesec == 12)

brojDana = 31;

// april, jun, septembar, movembar

else if (mesec == || mesec == || mesec == || mesec == 11)
brojDana = 30;

// februar

else if (mesec == 2)
brojDana = prestupna(godina) 7 29 : 28;

// ispisujemo rezultat
cout << brojDana << endl;

return O;

Naravno, moguce je upotrebiti i naredbu switch-case.

4.5. PRIMERI 71

int main() {
// ucitavamo mesec i godinu
int mesec, godina;
cin >> mesec >> godina;

// odredjujemo broj dana u tom mesecu
int brojDana = 0;
switch(mesec) {
// januar, mart, maj, jul, avgust, oktobar, decembar
case 1: case 3: case 5: case 7: case 8: case 10: case 12:
brojDana = 31;
break;
// april, jun, septembar, novembar
case 4: case 6: case 9: case 11:
brojDana = 30;
break;
// februar
case 2:
brojDana = prestupna(godina) 7 29 : 28;
break;

}

// ispisujemo rezultat
cout << brojDana << endl;
return 0;

Ovakvi zadaci se mogu reSavati i bez grananja, tako $to se svi elementi smeste u niz (ili
mapu).

int main() {
// uctitavamo mesec i godinu
int mesec, godina;
cin >> mesec >> godina;

// broj dana u svakom mesecu
int brojDanaUMesecul] =

{o, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

// citamo broj dana

4.5.2

72 GLAVA 4. GRANANJE

int brojDana = brojDanaUMesecu[mesec];
// posebno obradjujemo februar prestupnih godina
if (mesec == 2 && prestupna(godina))

brojDana++;

// tspisujemo rezultat
cout << brojDana << endl;

return O;

Agregatno stanje vode (grananje na osnovu pripadnosti intervalu)

Jo§ jedan tipa¢n oblik upotrebe konstrukcije else-if je provera kojem od nekoliko na-
dovezanih intervala brojevne prave pripada data vrednost. Na primer, moZemo na osnovu
temperature vode odredivati njeno agregatno stanje (smatramo da je ona u ¢vrstom stanju
zakljucno sa O stepeni, tecnom stanju do 100 stepeni (bez vrednosti 100) i gasovitom sta-
nju pocevsi od 100 stepeni). Jedan nacin je da se pripadnost svakom od intervala ispita
nezavisno.

int t; // Temperatura
cin >> t;

if (t <= 0)

cout << "cvrsto" << endl;
if (t > 0 && t < 100)

cout << "tecno" << endl;
if (¢t >= 100)

cout << "gasovito" << endl;

Bolje resenje dobija se ako se uslovi nadovezu, kori§¢enjem konstrukcije else-if.

int t; // Temperatura
cin >> t;

if (¢t <= 0)

cout << "cvrsto" << endl;
else if (t < 100)

cout << "tecno" << endl;
else

4.5. PRIMERI 73

cout << "gasovito" << endl;

4.5.3 Uspeh ucenika

Na sli¢an nacin je, na primer, moguée odrediti ocenu na osnovu broja poena na ispitu ili
uspeh ucenika na osnovu zakljuéne ocene.

double prosek; // prosek ocena ucenika
cin >> prosek;
if (prosek >= 4.5)

cout << "odlican" << endl;
else if (prosek >= 3.5)

cout << "vrlodobar" << endl;
else if (prosek >= 2.5)

cout << "dobar" << endl;
else if (prosek >= 2)

cout << "dovoljan" << endl;
else

cout << '"nedovoljan" << endl;

4.5.4 Kvadrant kom pripada tacka (hijerarhija ugneZdenih uslova)

U nekim slucajevima je grananje hijerarhijsko. Slucajevi se klasifikuju prvo na osnovu
nekog polaznog kriterijuma, onda se svaka klasa na osnovu nekog drugog kriterijuma da-
lje deli na potklase i tako sve dok se ne dode do slu¢aja koji moze direktno da se resi.
Na primer, moZemo na osnovu koordinata tacke u ravni odredivati kom kvadratnu, odno-
sno kojoj koordinatnoj osi tacka pripada. Prvo je moguée vrsiti klasifikaciju na osnovu
vrednosti jedne koordinate, pa zatim na osnovu druge.

int x, y;
cin >> x >> y;
if (x > 0) {
if (y > 0) {
cout << "1. kvadrant" << endl;
} else if (y < 0) {
cout << "4. kvadrant" << endl;
} else {
cout << "pozitivni deo x ose" << endl;
¥
} else if (x < 0) {

4.5.5

74 GLAVA 4. GRANANJE

if (y > 0) {

cout << "2. kvadrant" << endl;
} else if (y < 0) {

cout << "3. kvadrant" << endl;

} else {
cout << "negativni deo x ose" << endl;
}
} else {
if (y > 0) {

cout << "pozitivni deo y ose" << endl;
} else if (y < 0) {

cout << "negativni deo y ose" << endl;
} else {

cout << "koordinatni pocetak" << endl;

Poredenje datuma (leksikografsko poredenje torki iste duZine)

Grananje se koristi i u leksikografskom poredenju torki iste duzine. Tipi€an primer je
poredenje datuma. Svaki datum se moZe predstaviti trojkom brojeva (dan, mesec, godina).
Kada se porede dva datuma, prvo se porede godine, pa ako je godina u nekom datumu
manja, onda je i taj datum manji (raniji). Ako su godine jednake onda se porede meseci,
pa ako su jednaki i meseci, tek onda se porede i dani. Na primer, ako je poznat datum
rodenja osobe i danasnji datum, mozemo utvrditi da li je osoba punoletna. Ceo ovaj sloZeni
uslov se moze izraziti jednim velikim logickim izrazom.

int d1, ml, gl; // datum rodjenja
int d2, m2, g2; // datum u kom se ispituje punoletstvo
cin >> d1 >> ml1 >> gl
>> d2 >> m2 >> g2;
if ((g2 > gl + 18) ||
(g2 == g1 + 18 && m2 > m1) ||
(g2 == g1 + 18 && m2 == ml && d2 >= d1))
cout << "DA" << endl;
else
cout << "NE" << endl;

Do reSenja je moguce doci i pomocu vise ugnezdenih naredbi if.

4.5.6

4.5. PRIMERI 75

bool punoletan;
if (g2 > gl 18)
punoletan = true;
else if (g2 < gl + 18)
punoletan false;
else { // g1 == g2
if (m2 > ml)
punoletan = true;
else if (m2 < mi1)
punoletan = false;
else { // ml == m2
if (d2 >= di1)
punoletan = true;
else
punoletan = false;
// punoletan = d2 >= di;

+

A

}
}

Vrsta trougla na osnovu stranica

Na kraju, naglasimo, da smo u prethodnom tekstu prikazali samo nekoliko tipi¢nih pri-
mera, a da je Cesto potrebno osmisliti strukturu grananja ne prate¢i neki Sablon, nego
pazljivom analizom zahteva zadatka. Na primer, u narednom primeru se odreduje vrsta
trougla (jednakostranicni, jednakokraki, raznostrani¢ni) na osnovu poznatih duZina njego-
vih stranica. Prvo se proverava da li date duZine zadovoljavaju nejednakost trougla, a zatim,
redom, da li je trougao jednakostranicni (za to je dovoljno da ima dva para jednakih stra-
nica), zatim da li je jednakokraki (za to je dovoljno da ima jedan par jednakih stranica).
Ako nijedan od tih uslova nije ispunjen, trougao je raznostrani¢an. Obratimo pazZnju na to
da zahvaljujuéi konstrukciji else if, prilikom ispitivanja da li je trougao jednakokraki
ve¢ znamo da ne postoje dva para jednakih stranica, pa je dovoljno ispitati da li postoji
bar jedan par jednakih stranica (ako postoji bar jedan, poSto ne postoje dva, tada postoji
ta¢no jedan par). Sli¢no, uslov da su svi parovi stranica razliCiti ne treba proveravati, jer
ako uslov da ne postoji bar jedan par jednakih stranica, taj uslov automatski vazi.

if (a+b>cé&& a+c>b&& b+ c>a){
if (a ==b && b == c /* &4 a == ¢ */)
cout << "jednakostranicni" << endl;
else if (a==Db || b==c || a == ¢)
cout << "jednakokraki" << endl;

76

else
cout << "raznostranicni" << endl;
} else
cout << "trougao ne postoji" << endl;

GLAVA 4. GRANANJE

5.1

(5. Petlje

Petlje (ciklusi ili repetitivne naredbe) uzrokuju da se odredena naredba (ili grupa naredbi)
izvrSava vise puta (sve dok je neki logicki uslov ispunjen).

Petlja while

Petlja while ima sledeci opsti oblik:

while (<izraz>)
<naredba>

U petlji while ispituje se vrednost izraza izraz i ako ona ima istinitosnu vrednost facno
(tj. vrednost razlicita od nule ako je izraz brojevnog tipa), izvr$ava se naredba (Sto je
ili pojedinacna naredba ili blok naredbi). Zatim se uslov izraz iznova proverava i sve se
ponavlja dok mu istinosna vrednost ne postane netacno (tj. vrednost nula ako je izraz
brojevnog tipa). Tada se izlazi iz petlje i nastavlja sa izvrSavanjem prve sledee naredbe
u programu. Dakle, ako u telu petlje nema prekida (naredbi break ili return), moZemo
biti sigurni da nakon zavrSetka petlje njen uslov nece biti ispunjen.

Ukoliko iza while sledi samo jedna naredba, onda, kao i obli¢no, nema potrebe za viti¢a-
stim zagradama. Na primer (naredni kod ispisuje brojeve od 0 do 9.):

int i = 0;
while (i < 10)
cout << i++ << endl;

Sledeca petlja while se izvrSava beskonac¢no:

77

5.2

78 GLAVA 5. PETLJE

while (true)
cout << "Zdravo" << endl;

Uslov tela petlje se proverava pre prvog izvrSavanja tela (kazemo da je ovo petlja sa pro-
verom ulaska na pocetku), pa, ako uslovi nije ispunjen, moguce je da se telo ni jednom ne
1ZVrsi.

Petlja for

Petlja for ima sledeci opsti oblik:

for (<izrazl>; <izraz2>; <izraz3>)
<naredba>

Komponente <izrazl>, <izraz2> i <izraz3> su izrazi. Obi¢no su <izrazl> i
<izraz3> izrazi dodele ili inkrementiranja, a <izraz2> je relacijski izraz. Izraz
<izrazl> se obi¢no naziva inicijalizacija 1 Koristi se za postavljanje pocetnih vrednosti
promenljivih, izraz <izraz2> je uslov izlaska iz petlje, a <izraz3> je korak i njime se
menjaju vrednosti relevantnih promenljivih. Naredba <naredba> naziva se felo petlje.
Inicijalizacija (izraz <izraz1>) se izraCunava samo jednom, na pocetku izvrSavanja petlje.
Cesto se u njoj deklariSe tzv. brojactka promenljiva koja je lokalna za tu petlju (vrednost
joj se moZe koristiti samo u sklopu petlje, ukljucujuéi i njeno telo). Petlja se izvrSava sve
dok uslov (izraz <izraz2>) ima istinitosnu vrednost tacno, a korak (izraz <izraz3>) iz-
racunava se na kraju svakog prolaska kroz petlju. Redosled izvrSavanja je, dakle, oblika:
inicijalizacija, uslov, telo, korak, uslov, telo, korak, ..., uslov, telo, korak, uslov, pri cemu
je uslov ispunjen svaki, osim poslednji put. Dakle, gore navedena opSta forma petlje for
ekvivalentna je konstrukciji koja koristi petlju while:

<izrazl>;

while (<izraz2>) {
<naredba>
<izraz3>;

}

Petlja for se obicno koristi kada je potrebno izvrsiti jednostavno pocetno dodeljivanje
vrednosti promenljivim i jednostavno ih menjati sve dok je ispunjen zadati uslov (pri cemu
su i pocetno dodeljivanje i uslov i izmene lako vidljivi u definiciji petlje). To ilustruje
sledeca tipi¢na forma petlje for:

5.2. PETLJA FOR 79

for (dnt i = 0; i < n; i++)
cout << i << endl;

Naredba u telu petlje se ponavlja n puta, pri ¢emu promenljiva i redom uzima vrednosti
od 0 do n-1 (ona se naziva brojacka promenljiva). U narednoj petlji se telo takode ponavlja
n puta, pri ¢emu promenljiva i uzima vrednost od 1 do n.

for (int i = 1; i <= n; i++)
cout << i << endl;

Umesto da se vrednost brojacke promenljive uvecava za 1, Cest je slucaj da se uveca i za
neku drugu vrednost, ¢ime se dobija nabrajanje elemenata nekog aritmetickog niza. Na
primer, naredni program ispisuje vrednosti 5, 10, 15, ..., 100.

for (int i = 5; i <= 100; i += 5)
cout << i << endl;

Kori$éenjem petlje for moguée je nabrojati i elemente geometrijskog niza. Na primer,
naredni program ispisuje stepene broja 2, krenuvsi od 1, pa sve do 1024. To se postize
tako $to se u svakom koraku tekuca vrednost brojacke promenljive mnozi sa 2.

for (dnt i = 1; i <= 1024; i *= 2)
cout << i << endl;

Cesto je potrebno da se nabroje i ravnomerno razmaknute tatke unutar nekog intervala. Na
primer, za potrebe crtanja grafika funkcije Zelimo da izraCunamo njenu vrednost u n > 2
ravnomerno razmaknutih tataka intervala [a, b]. Prva tacka je a, razmak izmedu dve tacke

jed= Z:‘i, pa petlja moZe imati slede¢i oblik

double d = (b - a) / (m - 1);
for (double x = a; x <= b; x += d)

Medutim, usled problema sa ta¢nos¢u zapisa realnih brojeva, moZe se desiti da se ova-
kvom petljom nabroji tacka viSe ili tacka manje od onoga Sto je ocekivano (jer bi, na
primer, moglo da se desi da vrednost x malko premasi b onda kada oc¢ekujemo da one
budu jednake). Stoga je uvek bolje koristiti celobrojne brojacke promenljive, kao Sto je
ilustrovano u narednom kodu.

80 GLAVA 5. PETLJE

double d = (b - a) / (n - 1);
double x = a;
for (int i = 0; i < n; i++) {

x += d;

Bilo koji od izraza <izraz1>, <izraz2>, <izraz3> u petlji f or moze biti izostavljen, ali
simboli ; i tada moraju biti navedeni. Ukoliko je izostavljen izraz <izraz2>, smatra se da
je njegova istinitosna vrednost tacno. Na primer, sledeca petlja for se izvr§ava beskonacno
(ako u bloku naredbi koji ovde nije naveden nema neke naredbe koja prekida izvrSavanje,
na primer, break ili return):

for (;;)
<naredba>

Ovo se Cesto koristi tako $to se uslov petlje proveri negde u sklopu njenog tela i ako nije
ispunjen, naredbom break se prekine izvrSavanje petlje (o ¢emu e biti vise reci u sekciji

while (true)
<naredba>

Ako je potrebno da neki od izraza <izrazl1>, <izraz2>, <izraz3> objedini viSe izraza,
moZe se Koristiti operator , .

for (int i =0, j = 10; i < j; i++, j—-)
cout << "i = " << i << ", j =" << j << endl;

3

Prethodni kod ispisuje

i=0,j=10
i=1,3j=9
i=2, j=28
i=3,3]=7
i=4, j=6

IStarije verzije izvesnog kompilatora za programski jezik C su while (1) prepoznavale kao beskonatnu
petlju i izdavale upozorenje korisniku, dok za for (; ;) to nisu radile. Da bi izbegli upozorenje, programeri su
krenuli da koriste necitljiviji oblik for (; ;) i ta praksa je ostala i do danas.

5.3

5.3. PETLJA DO-WHILE 81

U okviru inicijalizacije petlje for nije moguce istovremeno deklarisati dve promenljive
razli¢itog tipa.
Slede¢i program, koji ispisuje tablicu mnoZenja, ilustruje dvostruku petlju for:

int i, j, n=3;
for(i = 1; i <= n; i++) {
for(j = 1; j <= mn; j++)
cout << i << " ok M K< J <M =" K< ik o<y
cout << endl;

}
1x1=1 1 x2=2 1 *3=23
2x1 =2 2 x 2 =4 2*%x3=6
3*x1=3 3*x2=6 3*x3=09

Jo§ jedan oblik petlje for u jeziku C++ je petlja kojim se nabrajaju redom svi elementi
neke kolekcije (na primer, vektora). Narednom petljom se nabrajaju svi elementi vektora
temperature. Promenljiva t ovaj put nije brojcka promenljiva, jer ne sadrZi indekse
elemenata vektora, ve¢ je promenljiva koja ¢e sadrZati elemente vektora (u svakoj iteraciji
petlje po jedan, redom, od prvog do poslednjeg).

vector<double> temperature;
for (double t : temperature)
cout << t << endl;

Petlja do-while

Petlja do-while ima sledeéi opsti oblik:

do {
naredbe
} while(izraz)

Telo (blok naredbi naredbe) naveden izmedu viticastih zagrada se izvrSava i onda se izra-
Cunava uslov (izraz izraz). Ako je on tacan, telo se izvrSava ponovo i to se nastavlja sve
dok izraz izraz ne bude imao istinitosnu vrednost netacno.

Za razliku od petlje while, naredbe u bloku ove petlje se uvek izvrSavaju barem jednom.
Kazemo da je ovo petlja sa proverom uslova na kraju.

Na primer, naredni kod ucitava ocenu sve dok se ne unese ispravno (tj. dok se ne unese
vrednost izmedu 11 5).

5.4

82 GLAVA 5. PETLJE

int ocena;
do {
cout << "Unesite ocenu: ";
cin >> ocena;
} while (ocena < 1 || ocena > 5);

Kori$¢enjem petlje do-while umesto while je osigurano da ¢e se prvo ucitati ocena, pa
tek onda proveravati njena ispravnost.

Naredbe break i continue

U nekim situacijama pogodno je napustiti petlju ne zbog toga Sto nije ispunjen uslov petlje,
ve¢ iz nekog drugog razloga. To je moguce posti¢i naredbom break kojom se izlazi iz
tekuce petlje (ili naredbe switch)?> Na primer, naredna petlja prolazi kroz elemente niza
i obraduje ih, ali se prekida ako se naide na neki negativni element:

for (i = 0; i < mn; i++) {
if (ali]l < 0)
break;

Koris¢enjem naredbe break se naruSava strukturiranost koda i to moZe da oteZa njegovu
analizu (na primer, analizu ispravnosti ili analizu sloZenosti). Na primer, ne mozemo vi-
Se da tvrdimo da nakon petlje uslov petlje nece viSe biti ispunjen. U nekim situacijama,
koriS¢enje naredbe break moZe da dovede do kraceg koda, ali kod koji koristi naredbu
break uvek se moZe napisati i bez nje. U datom primeru, odgovarajuéi alternativni kod
je, na primer:

for(i = 0; i < n && al[i] >= 0; i++)

Cesta upotreba naredbe break je u petljama u kojima se uslov ne proverava ni na po&etku,
ni na kraju, ve¢ u sredini. Tada se koristi neki zapis beskonacne petlje (na primer, while
(true), auslov se proverava u sredini, naredbom if). Na primer, naredni program ucitava
brojeve sve dok se ne unese 0 i obraduje ih (pri ¢emu se uneta nula ne obraduje).

2Naredbom break ne izlazi se iz bloka naredbe if.

5.4. NAREDBE BREAK I CONTINUE 83

while (true) {
int x;
cin >> x;
if (x == 0) break;
// obrada elementa

Naredbom continue se prelazi na sledecu iteraciju u petlji. Na primer,

for(i = 0; 1 < n; i++) {
if (i % 10 == 0)
continue; // preskoci brojeve deljive sa 10

Sli¢no kao za naredbu break, koriS¢enjem naredbe continue se narusava strukturiranost
koda, ali se moZe dobiti krac¢i kdd. Kdd koji koristi naredbu continue uvek se moze
napisati i bez nje. U datom primeru, odgovarajuci alternativni kod je, na primer:

for (i = 0; i < mn; it++)
if (i % 10 '= 0) { // samo brojevi koji nisu deljivi sa 10

}

U slucaju ugneZdenih petlji, naredbe break i continue imaju dejstvo samo na unutrasnju
petlju. Tako, na primer, fragment

for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {

if (i + j > 2) break;
cout << i << " "< i< "oy

ispisuje

00 01 02 10 11 20

5.5

84 GLAVA 5. PETLJE

Osnovni iterativni algoritmi

Jedan od osnovnih mehanizama programiranja i osnovnih tehnika konstrukcije algoritma
je iteracija, koja podrazumeva izracunavanje rezultata postupnom izmenom vrednosti neke
promenljive. Vrednost promenljive se na pocetku izracunavanja inicijalizuje, a zatim se
postupno menja, kroz niz koraka, sve dok se ne dostigne Zeljeni rezultat. PoSto se koraci
istog oblika ponavljaju viSe puta, za implementaciju iterativnih postupaka se po pravilu
koriste petlje, pa se termin iteracija Cesto identifikuje sa upotrebom petlji.

U nastavku ¢e biti prikazano nekoliko tipi¢nih algoritama ovog tipa. Obradivaéemo konac-
ne serije’ elemenata, oblika z, ..., x,_;, koje se sasastoje od elemenata x;, koji mogu
biti u€itavani sa standardnog ulaza, iz nekog niza ili vektora, racunati po nekom pravilu i
slicno. Vecina osnovnih algoritama za obradu serija je veoma jednostavna, medutim, nji-
hovim kombinovanjem dobijaju se sloZeniji algoritmi kojima se moZe reSiti veliki broj
prakti¢nih problema.

Kada su elementi smesteni u niz, vektor ili neku drugu sli¢nu kolekciju, tada se umesto
ru¢ne implementacije ovih algoritama mogu upotrebiti i bibliotecke funkcije. Naime, stan-
dardne biblioteke savremenih programskih jezika obi¢no nude korisnicima funkcije koji-
ma se implementiraju ovi algoritmi. Ipak, mi éemo iz metodickih razloga sve ove algoritme
implementirati samostalno (a njihove bibliotecke implementacije éemo prikazati u pogla-
vlju 8 posvecenom pregledu standardne biblioteke).

Sabiranje, prebrojavanje, mnoZenje

Sabiranje elemenata neke serije brojeva se moze vrsiti tako Sto se zbir inicijalizuje na nulu,
a zatim se u svakom koraku zbir uvecava za tekuci element serije. Na primer, program
koji izra¢unava obim trougla ucitavajuci duZine njegovih stranica jednu po jednu se moze
napisati i na slede¢i nacin.

int obim = O;

int stranica;

cin >> stranica;

obim = obim + stranica;
cin >> stranica;

obim = obim + stranica;
cin >> stranica;

obim = obim + stranica;
cout << obim << endl;

Ako izvrS§imo prethodni program korak-po-korak, moZemo primetiti da u prvom koraku
promenljiva obim ima vrednost duZine prve stranice, u drugom zbira duZina prve i druge

3Umesto serije moZemo reci i sekvence, ali namerno ne koristimo termin niz ili lista, jer se ti termini koriste
za specifi¢ne strukture podataka.

5.5. OSNOVNI ITERATIVNI ALGORITMI 85

stranice, a da u tre¢em zbira duZina sve tri stranice.

Umesto naredbe obim = obim + stranica, moZemo upotrebiti i operator += koji slu-
7Zi za uveéavanje vrednosti promenljive tj. ovu naredbu moZemo zapisati i kao obim +=
stranica.

Ponavljanje naredbi se, naravno, moZe ostvariti i uz pomo¢ petlji. PoSto unapred znamo
potreban broj koraka, uobic¢ajeno je da se upotrebi petlja for.

int obim = O;

for (dnt i = 0; i < 3; i++) {
int stranica;
cin >> stranica;
obim += stranica;

+

cout << obim << endl;

Napokon, ovaj program moZemo veoma jednostavno uopstiti tako da radi i za mnogouglo-
ve.

int n;

cin >> n;

int obim = 0;

for (dnt i = 0; i < n; i++) {
int stranica;
cin >> stranica;
obim += stranica;

}

cout << obim << endl;

KazZemo da smo u ovom programu upotrebili algoritam sabiranja serije. Zasniva se na tome
da se promenljiva koja treba da sadrzi konacan rezultat inicijalizuje na nulu, a zatim da se
u svakom koraku petlje azurira i nova vrednost joj se izraCuna sabiranjem njene trenutne
vrednosti i tekuceg elementa serije koja se obraduje. Primetimo da i pre petlje i nakon
svakog izvrSavanja tela petlje i nakon petlje, promenljiva obim sadrZi ta¢no zbir svih do tada
ucitanih elemenata serije tj. svih do tada ucitanih duZina stranica mnogougla (svojstvo koje
vazi pre petlje, tokom petlje i nakom petlje naziva se invarijanta petlje i obi¢no garantuje
korektnost algoritma).

Elementi koji se sabiraju ne moraju da se ucitavaju sa standardnog ulaza, ve¢ mogu biti
odredeni 1 na neki drugi nacin. Na primer, pod pretpostavkom da vektor cene sadrZi cene
svih kupljenih proizvoda, naredni program izracunava njihovu ukupnu cenu.

86 GLAVA 5. PETLJE

vector<double> cene{153.99, 49.00, 213.50};
double ukupno = 0.0;
for (double cena : cene)
ukupno += cena;
cout << ukupno << endl;

Na nacin veoma sli¢an sabiranju moZemo da prebrojimo elemente neke serije (u pitanju je,
dakle, algoritam prebrojavanja serije). Broj elemenata inicijalizujemo na nulu, a zatim su u
svakom koraku petlje taj broj uveéava za 1. Na primer, naredni program ucitava brojeve
sve dok se ne ucita vrednost O i odreduje broj tako ucitanih elemenata.

int broj = 0;

int x;

cin >> x;

while (x '= 0) {
broj = broj + 1;
cin >> x;

}

cout << broj << endl;

Uvecanje brojaca je moguce izvrSiti i operatorom ++, ¢iji je efekat da se vrednost promen-
ljive uveéa za 1, tj. umesto naredbe broj = broj + 1;, moguce je krace pisati broj++;

ili ++broj;.

Izracunavanje zbira ¢esto omogucava i izraCunavanje proseka tj. aritmeti¢ke sredine. Pro-
gram moze da ucitava ocene sve dok se ne unese broj koji ne predstavlja ispravnu ocenu
(nije izmedu 1 i 5) i da se tada na ekran ispiSe prosek svih ucitanih ocena. PoSto broj ocena
nije unapred poznat, ponovo koristimo petlju while i istovremeno izracunavamo i zbir i
broj ucitanih ocena. Jednostavnosti radi, pretpostavicemo da ¢e uvek biti uneta bar jedna
ocena (u suprotnom, izratunavanje proseka nema smisla i prosek nije definisan).

int broj = 0;

int zbir = 0;

int ocena;

cin >> ocena;

while (1 <= ocena && ocena <= 5) {
broj++;
zbir += ocena;
cin >> ocena;

5.5. OSNOVNI ITERATIVNI ALGORITMI 87

}
cout << (double)zbir / (double)broj << endl;

Primetimo da smo i zbir i broj smestali u celobrojne promnenljive, §to znaci da bi se pri-
menom operatora / na njih izvrsilo njihovo celobrojno, a ne deljenje brojeva u pokretnom
zarezu. Zato je neophodno izvrsiti eksplicitnu konverziju tipa i bar jedan od operanda
konvertovati u realni tip (ovde je upotrebljen tip double). Oba operanda su konvertovana
samo radi simetrije (to nije neophodno raditi).

Primetimo da smo u prethodnom programu ocene ucitavali na dva mesta u programu: jed-
nom pre petlje i jednom na kraju petlje. Kada je u pitanju ovako kratka i jednostavna
naredba, njeno ponavljanje ne predstavlja problem, medutim, da je u pitanju bio neki kom-
plikovaniji fragment koda, bilo bi poZeljno izbeéi ponavljanje. Jedan nacin da se to uradi
je da se uslov ne proverava na pocetku, ve¢ na sredini petlje.

int broj 0;
int zbir = 0;
while (true) {
int ocena;
cin >> ocena;
if (ocena < 1 || ocena > 5)
break;
broj++;
zbir += ocena;
+
cout << (double)zbir / (double)broj << endl;

Algoritam mnoZenja serije brojeva se ostvaruje na veoma sli¢an nacin sabiranju. Proizvod
se mora inicijalizovati na 1 (ne na 0) i zatim u svakom koraku mnoziti teku¢im elementom
serije. Na primer, narednim programom ucitavamo duZine jedne po jedne od tri stranice
kvadra i izraCunavamo zapreminu tog kvadra.

int zapremina = 1;

for (int i = 0; i < 3; i++) {
int stranica;
cin >> stranica;
zapremina *= stranica;

}

cout << zapremina << endl;

Primetimo veliku sli¢nost algoritma izracunavanja zbira i algoritma izracunavanja proizvo-
da. Razlika je to §to se u inicijalizaciji zbir inicijalizuje na nulu, a proizvod na jedinicu i to

5.5.2

88 GLAVA 5. PETLJE

Sto se tokom aZuriranja zbira koristi sabiranje tj. operator +, a tokom aZuriranja proizvoda
koristi mnoZenje tj. operator *. Naime, za operaciju sabiranja neutralni element je broj 0
(jer za svako x vazi x + 0 = 0 + x = x), dok je za operaciju mnoZenja neutralni element
broj 1 (jer za svako x vazi x -1 = 1-x = x). Ako serija nije prazna, umesto inicijalizacije
na neutralni element, moguce je inicijalizovati rezultat na prvi element serije, no obi¢no je
reSenje sa neutralnim elementom elegantnije (kada je operacija takva da neutral postoji).
Ni u algoritmu mnozZenja, serija brojeva koja se obraduje, naravno, ne mora da se ucitava sa
standardnog ulaza. Na primer, vrednost stepena " se moZe izracunati tako $to se pocetna
vrednost 1 pomnoZi n puta brojem x (u pitanju je proizvod konstantne, n-toclane serije
T,T,...,T).

int n;

cin >> n;

double x;

cin >> x;

double stepen = 1;

for (dint i = 0; i < n; i++)
stepen *= X;

cout << stepen << endl;

Sli¢no se moZe izratunati i vrednost n!, kao proizvod 1-2- ... (n — 1) - n. U tom slucaju
se vrednosti brojacke promenljive koriste kao elementi serije koja se mnozi.

int n;

cin >> n;

int faktorijel = 1;

for (dnt i = 1; i <= n; i++)
faktorijel *= ij;

cout << faktorijel << endl;

Posto proizvod ¢esto moZe da bude veliki i kada su brojevi koji se mnoZe relativno mali, u
ovakvim situacijama treba voditi ratuna o tome da ve¢ za male vrednosti n rezultat moze
biti netacan usled prekoracenja dozvoljenog opsega vrednosti promenljive u kojoj se ¢uva
proizvod.

Minimum i maksimum

Razmotrimo sada algoritam za odredivanja mimimuma ili maksimuma serije brojeva (tj. naj-
manjeg ili najveceg broja u seriji). Jedan nacin da se to uradi je koriSéenje bibliotecke
funkcije min tj. max za odredivanje minimuma tj. maksimuma. Na primer, min({a, b,
c}) odreduje najmanji od brojeva a, b c¢. Da bismo mogli da resavano i srodne proble-

5.5. OSNOVNI ITERATIVNI ALGORITMI 89

me, izuéicemo kako se implementira algoritam za odredivanje minimuma ili maksimuma
proizvoljne serije brojeva.
Minimum 3 broja se moZe odrediti ugneZdenim naredbama if.

int minimum;
if (a <=Db) {
if (a <= ¢)
minimum = a;

else
minimum = c;
} else {
if (b <= ¢)
minimum = b;
else

minimum = c;

Ovo resenje je komplikovano i tesko se uopstava na viSe brojeva. Stoga je poZeljno koristiti
iterativni algoritam, koji ¢emo u nastavku izvesti. Ako upotrebimo bibliotecku funkciju
min za odredivanje minimuma dva broja, onda minimum cetiri broja moZemo odrediti
njenom uzastopnom primenom.

int minimum = min(min(min(a, b), c), d);

Prisetimo se da smo i zbir viSe brojeva racunali tako §to smo iterativno primenjivali ope-
raciju sabiranja dva broja. Tako je zbira + b + ¢ + drafunatkao ((a + b) + c) +
d,tj. kao zbir (zbir(zbir(a, b), c), d).Ovonam ukazuje natodaiminimum vise
brojeva moZemo izracunati na sli¢an nacin na koji smo racunali zbir — minimum moZemo
inicijalizovati na prvi element i onda u svakom narednom koraku aZurirati na manju od
vrednosti dosadasnjeg minimuma i vrednosti tekuceg elementa.

int minimum = a;

minimum = min(minimum, b);
minimum = min(minimum, c);
minimum = min(minimum, d);
cout << minimum << endl;

Ako se elementi nalaze u nizu ili se ucitavaju sa ulaza, onda moZemo da upotrebimo i petlje,
Sto, naravno, omogucava da se isti postupak primeni i na serije koje su proizvoljne duZine.

90 GLAVA 5. PETLJE

vector<int> niz{a, b, c, d};

int minimum = niz[0];

for (int i = 1; i < niz.size(); i++)
minimum = min(minimum, niz([i]);

cout << minimum << endl;

Minimum se aZurira samo ako je vrednost trenutnog elementa koji se obraduje manja od
dotadasnjeg maksimuma. Tako se upotreba funkcije min moZe zameniti grananjem.

vector<int> niz{a, b, c, d};
int minimum = niz[0];
for (int i = 1; i < niz.size(); i++)
if (niz[i] < minimum)
minimum = niz[i];
cout << minimum << endl;

Primetimo da se prvi element obraduje drugacije od ostalih. Kod algoritama sabiranja i
mnoZenja rezultujucu promenljivu smo inicijalizovali na neutralni element odgovarajuce
operacije i tako smo postigli da je rezultat definisan i u slucaju da je serija prazna, kao i
da se svi elementi serije obraduju na isti nacin. Pitanje je da li neSto sli¢no moZemo da
uradimo i za minimum tj. maksimum. Potrebno je da pronademo vrednost x tako da za
bilo koji broj a vazi da je min(x, a) = min(a, x) = a, tj. broj koji je veéi ili jed-
nak od bilo kog drugog broja. To mozZe da bude plus beskonacno (+00), ali tu vrednost
ne mozemo da zapiSemo kao podatak celobrojnog tipa (tipovi brojeva u pokretnom za-
rezu dopustaju beskonacnu vrednost, numeric_limits<double>::infinity(), koja
je definisana u zaglavlju <1imits>). Umesto toga, moZemo upotrebiti najveci broj ko-
ji se moZe zapisati u opsegu tipa int. Taj broj se moZe u jeziku C++ dobiti izrazom
numeric_limits<int>::max() definisanim u zaglavlju <1imits> (a u jeziku C izra-
zom INT_MAX definisanim u zaglavlju <climits>).

vector<int> niz;
int minimum = numeric_limits<int>::max();
for (int a : niz)
if (a < minimum)
minimum = a;
cout << minimum << endl;

Neutralni element za operaciju maksimuma je —oo, koju za tipove brojeva u pokretnom
zarezu mozemo zapisati kao -numeric_limits<double>::infinity().Kod celobroj-
nih tipova ta vrednost se ne moze zapisati, ali umesto nje moZemo upotrebiti najmanji

5.5. OSNOVNI ITERATIVNI ALGORITMI 91

mogudi ceo broj, koji daje izraz numeric_limits<int>::min(). Sa druge strane, ako
znamo da medu brojevima ¢iji ¢emo maksimum racunati nece biti biti negativnih, onda
za pocetnu vrednost moZemo uzeti nulu.

Nekada nas ne zanima vrednost maksimuma (ili minimuma), ve¢ pozicija na kojoj se taj
maksimum (ili minimum) nalazi. Da bismo to odredili, potrebno je da uz tekuéu vrednost
maksimuma (ili minimuma) pamtimo i teku¢u vrednost njegove pozicije. Na primer, ako
znamo vrednost dobijenog dZeparca tokom svih 5 dana u nekoj nedelji, moZemo odrediti
dan u kom je dobijen najveci dZeparac.

int maksDzeparac = numereric_limits<int>::min();
int maksDan;
for (int dan = 1; dan <= 5; dan++) {
int dzeparac;
cin >> dzeparac;
if (dzeparac > maksDzeparac) {
maksDzeparac = dzeparac;
maksDan = dan;

}

cout << maksDan << endl;

Nekada nas ne zanima samo najveca, ve¢ nekoliko najvecih vrednosti. Kada je broj vred-
nosti koje trazimo veliki, potrebno je koristiti neke malo komplikovanije algoritme. Me-
dutim, dve najvece vrednosti mozemo odrediti jednostavnom modifikacijom algoritma za
odredivanje maksimuma (ili minimuma). Pritom je bitno precizirati §ta se deSava kada su
dozvoljene ponovljene vrednosti. Na primer, da li su dve najvece vrednosti u nizu 83 94
94 vrednosti 94 i 94 ili vrednosti 83 i 94. Pretpostavimo da ocekujemo prvi odgovor (ako
bi ovo bili poeni studenata, traZili bismo poene dva najbolja studenta).

OdrZavamo dve promenljive: maks1 ¢uva najvecu, a maks?2 drugu po veli¢ini od vrednosti
koje su do tog trenutka obradene. Obe promenljive se mogu inicijalizovati na vrednost —oo
(tj. najmanju celobrojnu vrednost). Obradujemo jedan po jedan element niza.

 Ako je trenutni element vedi ili jednak od dosadasnje najveée vrednosti maks1, tada
je on najveca vrednost, dok je dotadaSnja najveca vrednost maks1 sada druga po
veli¢ini.

U suprotnom, element ne moZe biti najve¢i, ali moZe biti drugi po veli¢ini. Zato ga
poredimo sa vredno$¢u maks2, pa aZuriramo tu vrednost, ako je tekuci element niza
veci od nje.

5.5.3

92 GLAVA 5. PETLJE

int maksl, maks2;
maksl = maks2 = numeric_limits<int>::min();
for (int a : niz) {
if (a >= maksl) {
maks2 = maksl;
maksl = a;
} else if (a > maks2) {
maks2 = a;

Linearna pretraga

Pretragom moZemo proveriti da li u seriji postoji element koji zadovoljava neki uslov (na
primer, da li medu brojevima postoji neki broj koji je paran ili da li medu rec¢ima postoji
neka koja pocinje samoglasnikom). Veoma sli¢ni problemi tome su da se proveri da li
svi elementi liste zadovoljavaju neki uslov (na primer, da li su svi brojevi pozitivni), da li
postoji neki element koji ne zadovoljava uslov ili da li nijedan od elemenata ne zadovoljava
uslov. Moguce je odredivati i na kojoj se poziciji nalazi prvi element koji zadovoljava uslov,
poslednji element koji zadovoljava uslov i sli¢no.

Ako nemamo nikakve dodatne pretpostavke o redosledu elemenata serije (na primer, ne
znamo da li su elementi zadati u nekom sortiranom redosledu), tada primenjujemo algo-
ritam linearne pretrage, koji podrazumeva da seriju analiziramo redom, jedan po jedan
element.

Provera da li postoji element neke serije koji zadovoljava dati uslov zahteva izracunava-
nje logicke disjunkcije. Na primer, da bismo proverili da li je neki od tri filma u internet
bazi filmova ocenjen kao “izvanredan” (ima ocenu vecu od 9,00), treba da izraCunamo
disjunkciju tri uslova.

double ocenal = 9.18;
double ocena?2 10.00;
double ocena3 9.56;
if (ocenal > 9.00 || ocena2 > 9.00 || ocena3 > 9.00)
cout << "Barem jedan od tri filma je izvanredan" << endl;

PozZeljno je uopstiti ovo reSenje na seriju sa proizvoljnim brojem elemenata. Na primer,
pretpostavimo da je dat niz ocene koji sadrzZi ocene filmova i da u petlji Zelimo da ob-
radujemo elemente ovog niza. Primetimo sli¢nost sa svim prethodnim operacijama (sabi-
ranjem, mnoZenjem, minimumom/maksimumom): ponovo imamo binarnu, asocijativnu

5.5. OSNOVNI ITERATIVNI ALGORITMI 93

operaciju (ovaj put je to disjunkcija) koja se primenjuje na seriju elemenata. Ponovo mo-
Zemo krenuti od neutralne vrednosti, a zatim iterativno obradivati jedan po jedan element.
Rezultat je ovaj put tipa bool.

bool postoji_izvanredan = false;
postoji_izvanredan = postoji_izvanredan || ocenal > 9.00;
postoji_izvanredan = postoji_izvanredan || ocena2 > 9.00;
postoji_izvanredan = postoji_izvanredan || ocena3 > 9.00;
if (postoji_izvanredan)

cout << "Barem jedan od tri filma je izvanredan" << endl;

Uopstenje je sada neposredno.

bool postoji_izvanredan = false;
for (double ocena : ocemne)
postoji_izvanredan = postoji_izvanredan || prosek > 9.00;

U svakom koraku petlje vaZi da promenljiva postoji_izvanredan ima vrednost false
ako 1 samo ako nijedan do tog trenutka obraden film nije bio izvanredan. Promenljiva,
dakle, zapocinje sa vrednos$¢u false i ta vrednost se menja samo ako se pojavi neki film
koji je izvanredan. Stoga se isti algoritam moZe implementirati i malo jednostavnije.

// do sada nismo nasli nt jednog koji je izvanredan
bool postoji_izvanredan = false;
for (double ocena : ocene)
// nasli smo film koji je tizvanredan
if (ocena > 9.00)
postoji_izvanredan = true;

Cim se pronade jedan film koji je izvanredan, nema potrebe proveravati dalje, ve¢ se petlja
moze odmah prekinuti (ovo odgovara lenjom izracunavanju operatora | |).

bool postoji_izvanredan = false;
for (double ocena : ocene)
if (ocena > 9.00) {
postoji_izvanredan = true;
break;

94 GLAVA 5. PETLJE

Provera da 1i svi elementi zadovoljavaju dato svojstvo je dualna. Rezultat se inicijalizuje
na vrednost true, Sto je neutral za konjunkciju (za sada nije pronaden element koji ne
zadovoljava uslov), a zatim se menja na ‘false kada se (ako se) naide na element koji ne
zadovoljava traZeno svojstvo. Na primer, provera da li su svi dati filmovi izvanredni moZe
se uraditi na sledec¢i nacin.

// do sada nismo nasli nijedan koji nije tzvanredan
bool svi_izvanredni = true;
for (double ocena : ocene)
// nasli smo jedan koji nije izvanredan
if (ocena <= 9.00) {
svi_izvanredni = false;
break;

Na slican nacin moZemo odrediti prvu i poslednju poziciju na kojoj se javlja element koji
zadovoljava dato svojstvo. Ako su elementi smeSteni u vektor (ili niz), tada za odrediva-
nje poslednje pozicije obradu elemenata moZemo vrSiti zdesna nalevo. Medutim, ako se
elementi ucitavaju i ne Zelimo da ih sve istovremeno pamtimo, tada moramo da ih obra-
dujemo redom, sleva nadesno. Na primer, naredni kod odreduje poziciju prve i poslednje
ucitane nule (brojanje pozicija krece od 0).

int pozicijaPrveNule = -1;

int pozicijaPoslednjeNule = -1;

for (dint i = 0; i < n; i++) {
int x;

cin >> x; // ucitavamo novi element serije
if (x == 0) {
if (pozicijaPrveNule == -1) {
// ovo je prva ucéitana nula
pozicijaPrveNule = i;
}
// ovo je poslednja do sada ucitana nula
pozicijaPoslednjeNule = i;

5.5. OSNOVNI ITERATIVNI ALGORITMI 95

}

cout << pozicijaPrveNule << " " << pozicijaPoslednjeNule << endlj;

Mnogi algoritmi su zasnovani na algoritmu linearne pretrage. Na primer, provera da li je
prirodan broj n prost se moze svesti na ispitivanje da li je deljiv nekim brojem iz intervala
[2,n—1].

int n;

cin >> n;

bool prost = true;

if (n == 1) prost = false; // 1 nije ni prost ni sloZen

// proveravamo sve moguie delioce iz intervala [2, n-1]
for (int d = 2; d < n; d++)
if (@ % d == 0)
prost = false;
cout << (prost ? "prost" : "slozen") << endl;

Delioci broja uvek se javljaju u paru: za svaki delilac d koji je veéi ili jednak od vrednosti
v/, postoji delilac n/d koji je manji ili jednak od vrednosti y/n. Zato, ako broj nema
delilaca koji su manji ili jednaki od /7, ne moZe biti ni delilaca koji su veéi ili jednaki
od y/n. Zato je umesto provere svih brojeva iz intervala [2, n — 1], dovoljno proveriti sve

kandidate iz intervala [2, \/n], §to je mnogo manje brojeva i program je zna¢ajno efikasniji.

O efikasnosti programa i ovim vrstama optimizacije bi¢e mnogo vise re¢i u drugom tomu
ove knjige.

int n;

cin >> n;

bool prost = true;

if (n == 1) prost = false; // 1 nije ni prost ni sloZen

// proveravamo sve mogudelioce %z intervala [2, sqrt(n)]
for (int d = 2; d * d <= n; d++)
if (m % d==0)
prost = false;
// ako mema delilaca u intervalu [2, sqrt(n)] nema ni uw [sqrt(n))
cout << (prost ? "prost" : "slozen") << endl;

Linearnu pretragu moZemo upotrebiti, na primer, i da proverimo da li su dve niske jednake.

Podaci tipa string se mogu porediti operatorom == (i to je preporuceni nacin njihovog
poredenja), medutim, ilustracije radi i sami bismo mogli da implementiramo funkciju koja
proverava da li su dve niske jednake, tako §to prvo proverava da li su niske iste duZine, a
zatim, ako jesu, da li postoji neka pozicija na kojima im se nalazi razliciti karakter:

n-1]

96 GLAVA 5. PETLJE

bool jednakeNiske(string a, string b)
{
if (a.length() != b.length())
return false;

for (size_t i = 0; i1 < a.length(); i++) {
if (ali] !'= blil)
return false;

return true;

Napomenimo da ¢emo u poglavlju o funkcijama 6 videti i efikasniji nacin da se dugacke
niske proslede funkcijama (to nam nije u trenutnom fokusu).

Sortiranost niza

Ako je zadata relacija poretka (ili strogog poretka), onda se moZe proveriti da li je niz
ureden (ili sortiran) u skladu sa tom relacijom. Na primer, naredna funkcija proverava da
li je vektor tipa int ureden u skladu sa relacijom <=. Naravno, uslov ! (a[i] <= a[i
+ 1]1) moZe da se zameni jednostavnijim a[i] > a[i + 1], ali je ovde naveden jer je
iskazan u terminima zadate relacije <=.

bool sortiran(const vector<int>& a)
{
size_t 1i;
for (i = 0; i < a.size() - 1; i++)
if (!'(al[i] <= al[i + 1]1))
return false;
return true;

}

Navedena funkcija vraca true ako i samo ako je niz a ureden u skladu sa relacijom <= i
tada kaZemo da je on ureden ili sortiran neopadajuce. Sli¢no, ako je niz ureden u skladu
sa relacijom < kaZemo da je ureden rastuce, ako je niz ureden u skladu sa relacijom >=
kazemo da je ureden nerastuce, i ako je niz ureden u skladu sa relacijom > kaZzemo da je
ureden opadajuce.

Niz nekog brojevnog tipa, dakle, moZe biti ureden na razli¢ite nacine. Niz tipa int moZe,
na primer, biti ureden i neopadajuce po zbiru svojih cifara. Sledeca funkcija proverava da
li je niz ureden na takav nacin (podrazumeva se da funkcija int zbir_cifara(int)
vraca zbir cifara svog parametra):

5.5. OSNOVNI ITERATIVNI ALGORITMI 97

bool sortiran(const vector<int>& a)
{
size_t 1i;
for (i = 0; i < a.size() - 1; i++)
if (!(zbir_cifara(alil) <= zbir_cifara(ali + 11)))
return false;
return true;

}

5.5.5 Filtriranje, preslikavanje

Sli¢an problem linearnoj pretrazi je filtriranje serije tj. odredivanje svih elemenata koji
zadovoljavaju neki dati uslov. Takvi elementi serije ¢ine novu seriju koja se dalje mo-
7Ze obradivati (na primer, moZemo prebrojati takve elemente, odrediti njihov zbir, prosek,
smestiti ih u neki niz ili vektor i sli¢no). Na primer, lako moZemo odrediti koliko elemenata
niza je deljivo brojem 3.

int broj 0;
for (int x : niz)
if (x % 3 ==0)
broj++;
cout << broj << endl;

Ako je potrebno sacuvati elemente, onda upotreba vektora moze biti pogodnija nego upo-
treba niza, jer je vektor proSiriv, tj. moZemo mu efikasno dodavati jedan po jedan element.

vector<int> niz;

vector<int> deljivi_sa_3;
for (int x : niz)
if (x % 3 == 0)
deljivi_sa_3.push_back(x);

cout << "Brojevi deljivi sa 3 su: " << endl;
for (int x : deljivi_sa_3)
cout << x << endl;

Ako bismo elemente cuvali u nizu, taj niz bi morao da bude deklarisan tako da moze da
sacuva potencijalno sve elemente polazne serije tj. duZina mu mora biti jednaka (ili veca)

98 GLAVA 5. PETLJE

od duzine polazne serije. Potrebna nam je i promenljiva koja ¢e Cuvati broj izdvojenih
elemenata.

int niz[10];

int deljivi_sa_3[10];
int broj_deljivih_sa_3 = O;
for (int i = 0; i < 10; i++)
if (niz[i] % 3 == 0)
deljivi_sa_3[broj_deljivih_sa_3++] = niz[i];

cout << "Brojevi deljivi sa 3 su: " << endl;
for (int 1 = 0; i < broj_deljivih_sa_3; i++)
cout << deljivi_sa_3[i] << endl;

Primecujemo da je reSenje sa koriS¢enjem vektora dosta jednostavnije.
Preslikavange serije podrazumeva primenu neke funkcije na svaki element serije. Na primer,
naredni kod ispisuje vrednost kvadratnog korena za svaki od n ucitanih elemenata.

for (dnt i = 0; i < n; i++) {
double x;
cin >> x;
cout << x << " " << sqrt(x) << endl;

5.5.6 Pozicioni zapis

Razmotrimo sada neke osnovne algoritme za rad sa pozicionim zapisom brojeva. Pretpo-
stavicemo da se radi o dekadnim brojevima (da je osnova zapisa b = 10), mada se isti
algoritmi mogu primeniti i na druge brojevne osnove.

Jedan od prvih zadataka je da odredimo cifre pomocu kojih je broj zapisan. Odredivanje
prve cifre sleva zahteva da znamo broj cifara broja, §to ne znamo. Medutim, odredivanje
prve cifre zdesna se moZe jednostavno uraditi odredivanjem ostatka pri deljenju sa 10.
Ta se cifra moZe ukloniti iz broja celobrojnim deljenjem sa 10 i na taj nacin se problem
svodi na manji, koji se dalje reSava po istom principu. Dakle, ponavljanjem ovih operacija
(Citanja poslednje cifre, odredivanjem ostatka pri deljenju sa 10 i uklanjanja poslednje cifre,
celobrojnim deljenjem sa 10), dobijamo jednu po jednu cifru broja, zdesna nalevo.

5.5. OSNOVNI ITERATIVNI ALGORITMI 99

do {
int cifra =n 7 10;
n=n/ 10;

cout << cifra << endl;
} while (n > 0);

Razmotrimo sada obratni problem u kom Zelimo da na osnovu poznatih cifara odredimo
vrednost broja. Pretpostavimo prvo da su cifre broja date u nizu, sleva nadesno (od cifre
najvece ka ciframa manje teZine). Potrebno je, dakle, u svakom koraku iterativnog postup-
ka na postojeci broj zdesna dopisati cifru. To se moZe uraditi mnoZenjem tekuée vrednosti
broja sa 10 i sabiranjem sa vredno$¢u tekuce cifre. Ovaj algoritam je poznat pod nazivom
Hornerova shema.

int broj = 0;
for (int cifra : cifre)
broj = 10 * broj + cifra;

Zadatak se mozZe reSiti i ako su cifre u nizu date zdesna nalevo, od cifara najmanje, ka
ciframa najvece teZine. Tada je u svakom koraku iterativnog postupka potrebno dopisati
cifru na levu stranu tekuéeg broja, Sto mozZemo uraditi samo ako znamo stepen broja 10,
koji odgovara teZini cifre koja se dodaje. Zato u algoritmu pored vrednosti broja koji se
gradi, Cuvamo i tekucéu vrednost cifre (jedinice, desetice itd.) i u svakom koraku tu vrednost
mnoZimo sa 10.

int broj = 0;

int stepenlO = 1;

for (int cifra : cifre) {
broj = cifra * stepenlO + broj;
stepenl0 *= 10;

Leksikografsko poredenje

Za niske (potencijalno razli¢itih duZina) definisan je leksikografski poredak koji je zasno-
van na poredenju karaktera. Pored operatora <, >, <= i >=, za leksikografsko poredenje je
definisana i metoda compare tipa string. Leksikografsko poredenje se, ilustracije radi,
moZe implementirati i samostalno.

5.6

100 GLAVA 5. PETLJE

int porediNiske(const string& a, const string& b)
{
size_t minDuzina = min(a.length(), b.length());
for (size_t i = 0; i < minDuzina; ++i) {
if (ali]l < b[il)
return -1;
else if (al[il > b[il)
return 1;
}
if (a.length() < b.length())
return -1;
else if (a.length() > b.length())
return 1;

return O;

U navedenoj funkciji, niske se porede karakter po karakter do kraja krace niske. Ako na
jednoj poziciji postoji razlika, konstatuje se da li je manja prva ili druga niska. Ako se
doslo do kraja krace niske i nije pronadena razlika ni na jednoj poziciji, onda se proverava
koja je niska od dve kraca i ta se smatra manjom.

UgneZdene petlje

Telo petlje mozZe biti bilo koja naredba, pa i druga petlja. Takve petlje nazivamo visestruke
petlje ili ugneZdene (jer se jedna petlja “ugnezdila” u drugu). Dubina ugneZdavanja moze
biti i veca od 2. Na primer, naredni program ispisuje sve vremenske trenutke u jednom
danu.

for (int sat = 0; sat < 24; sat++)
for (int minut = O; minut < 60; minut++)
for (int sekund = 0; sekund < 60; sekund++)
cout << sat << ":" << minut << ":" << sekund << endl;

Primetimo da se unutrasnja petlja (sekunde) menja najbrze, zatim srednja (minute), dok
se spoljasnja petlja (sati) menja najsporije (Sto je upravo Zeljeno ponasanje).

U svakom novom koraku spoljasnje petlje, unutrasnja petlja se izvrSava iznova, §to moze
dovesti do zaista velikog broja koraka izvr§avanja tela unutraSnje petlje (pogotovo kada je
dubina ugnezdavanja velika).

5.6. UGNEZPENE PETLJE 101

Ugnezdene petlje se Cesto koriste kod algoritama grube sile, gde je potrebno nabrojati sve
moguce parove ili trojke elemenata. Na primer, naredna petlja nabraja sve parove eleme-
nata sa razli¢itih pozicija datog vektora.

vector<int> a;

for (int i = 0; i < a.size(); i++)
for (int j = i+1l; j < a.size(); j++)
cout << af[i] << " " << a[j] << endl;

Redom se nabrajaju a[0] a[1],a[0] a[2] itd.sve do a[n-2] a[n-1].
Sli¢an efekat se moZe postici i na sledeci nacin

vector<int> a;

for (int i = 1; i < a.size(); i++)
for (int j = 0; j < i; j++)
cout << a[i] << " " << a[j] << endl;

Redom se nabrajaju a[1] a[0],a[2] a[0],al2] a[1],itd. svedo a[n-1] a[n-2].

5.6.1 Elementarni algoritmi sortiranja

Cesta ilustracija ugnezdenih petlji su algoritmi sortiranja. Sortiranje je obi¢no najbolje
vrsiti primenom bibliotecke funkcije. U jeziku C++, to je funkcija sort. Funkcija sort
se mozZe primeniti da se sortira i deo niza, pa joj je na neki nacin potrebno proslediti koji se
deo niza sortira. Ako Zelimo da se sortira ceo niz a, re¢i ¢emo da se sortira deo od pocetka
niza begin(a), do kraja niza end(a). U poglavlju 7.2.4 o pokazivacima i iteratorima
opisaéemo kog tipa su begin(a) i end(a) i proudi¢emo nacine da se ogranici samo deo
niza ili vektora koji se obraduje.

vector<int> a{5, 3, 4, 2, 1};
// sortiramo wvektor od pocetka do kraja
sort (begin(a), end(a));
Sli¢no se moZe uraditi i ako se sortira niz:
int all = {5, 3, 4, 2, 1};

sort (begin(a), end(a));

Sortiranje celog niza je moguce uraditi i na slede¢i nacin:

5.6.1.1

102 GLAVA 5. PETLJE

int all = {5, 3, 4, 2, 1};
sort(a, a+b); // od pocetka niza a, pa narednih 5 elemenata

Zbog raspoloZivosti biblioteckih funkcija, algoritmi prikazani u nastavku nemaju znacaj-
nu prakti¢nu primenu, pogotovo zato $to su veoma neefikasni i §to postoje mnogo bolji
algoritmi od njih. Vremenska sloZenost svih ovih algoritama je kvadratna §to znaci da broj
koraka koje algoritam izvrSava kvadratno zavisi od broja elemenata niza koji se sortira (za
sortiranje duplo duzZeg niza potrebno je Cetiri puta viSe vremena). Zbog toga oni ne mo-
gu da efikasno sortiraju nizove duZe od nekoliko desetina hiljada elemenata. Ipak, oni se
smatraju opStom programerskom kulturom i dobra programerska veZba je da se na osnovu
njihovog opisa samostalno napravi implementacija.

Algoritam selection sort

Algoritam selection sort se ukratko moZe opisati na slede¢i nacin: ako niz ima vise od
jednog elementa, zameni pocetni element sa najmanjim elementom niza i zatim analogno
sortiraj ostatak niza (elemente iza pocetnog). U svakoj iteraciji se na svoju poziciju dovodi
slede¢i po veliCini element niza, tj. u ¢-toj iteraciji se i-ti po veli¢ini element dovodi na
poziciju 7. Ovo se moZe realizovati tako $to se pronade pozicija m najmanjeg elementa od
pozicije ¢ do kraja niza i zatim se razmene element na poziciji ¢ i element na poziciji m.
Algoritam se zaustavlja kada se pretposlednji po veli¢ini element dovede na pretposlednju
poziciju u nizu.

Primer 5.6.1. PrikaZimo rad algoritma na primeru sortiranja niza 534 2 1.

e . 53421,1=0,m =4, razmena elemenata 5 i I.
¢« 1.3425,7=1, m = 3, razmena elemenata 3 i 2.
e 12.435,1=2 m = 3, razmena elemenata 4 i 3.
e 123 .45,1 =3, m = 3, razmena elemenata 4 i 4.
e« 12345 i=4

PrikaZimo jednu mogucu implementaciju ovog algoritma.

vector<int> a{5, 3, 4, 2, 1};
int n = a.size();
for (dnt i = 0; i < n-1; i++) {
// pozicija mintimuma u segmentu [, n)
int m = i;
for (int j = i+l; j < m; j++)
if (aljl < a[ml)
m=j;
// razmena elementa na poziciji © t poziciji m
swap(al[i], a[m]);

5.6. UGNEZPENE PETLJE 103

Moguéa je i naredna implementacija.

vector<int> a{5, 3, 4, 2, 1};
int n = a.size();
for (int i = 0; i < n-1; i++)
for (int j = i+l; j < n; j++)
if (alil > aljl)
swap(alil, aljl);

Ova implementacija je malo jednostavnija, jer se ne traZzi pozicija minimuma, ve¢ se mi-
nimum dovodi na mesto i tako $to se tekuci element menja sa onim na poziciji i kada god
je manji od njega. Ovim se moZe dobiti mnogo veéi broj razmena nego kada se koristi prva
implementacija (druga implementacija moZe vrsiti razmenu u svakom koraku unutrasnje
petlje, a prva garantovano vr$i samo jednu razmenu u svakom koraku spoljasnje petlje).

Algoritam bubble sort

Algoritam Bubble sort u svakom prolazu kroz niz poredi uzastopne elemente i razmenjuje
im mesta ukoliko su u pogresnom poretku. Prolasci kroz niz ponavljaju se sve dok se ne
napravi prolaz u kojem nije bilo razmena, $to znaci da je niz sortiran.

Primer 5.6.2. PrikaZimo rad algoritma na primeru sortiranja niza (6 1 4 3 9):
Prvi prolaz:

e (61439)— (16439), razmena jer je6 > 1
e (1.6439)—(14639), razmena jer je6 > 4
e (14.639)— (14369), razmena jer je6 > 3
e (143.69)—(14369)

Drugi prolaz:

e (14369)—(14369)
e (14369)— (13469), razmena jer jed > 3
e (13469)—(13469)
e (13469)—(13469)

Treéi prolaz:

«(13469)—(13469)
«(13469)—(13469)
«(13469)—(13469)

5.6.1.3

104 GLAVA 5. PETLJE

e (13469)—(13469)

Primetimo da je niz bio sortiran ve¢ nakon drugog prolaza, medutim, da bi se to utvrdilo,
potrebno je bilo napraviti jos jedan prolaz.

Naredna funkcija primenom algoritma bubble sort sortira vektor a.

vector<int> a{5, 3, 4, 2, 1};
int n = a.size();
bool bilo_razmena, i;
do {
bilo_razmena = false;
for (1 =0; i <n - 1; i++)
if (ali] > al[i + 11) {
swap(alil, ali+1]);
bilo_razmena = true;
+
} while (bilo_razmena) ;

}

Nakon k-te iteracije spoljasnje petlje, k-ti najveci element na svojoj finalnoj, ispravnoj
poziciji. Bubble sort je na osnovu ovog svojstva i dobio ime (jer veliki elementi kao
mehuriéi “isplivavaju” ka kraju niza). Zbog toga u unutra$njoj petlji (for) nije potrebno
uvek iéi do pozicije n — 1, veé po jedan manje u svakoj iteraciji. Stavise, unutrasnja petlja
moZe se izvrSavati samo do pozicije poslednje razmene u prethodnoj iteraciji. Postoje i
mnoge druge varijante ovog algoritma ali sve imaju loSu vremensku sloZenost. Najgori
sluc¢aj nastupa kada je niz sortiran u obratnom redosledu.

Algoritam bubble sort smatra se veoma loSim algoritmom i ne treba ga koristiti u praksi.

Algoritam insertion sort
Algoritam Insertion sort sortira niz tako $to jedan po jedan element niza umece na odgo-
varajuée mesto u do tada sortirani deo niza.

Primer 5.6.3. PrikaZimo rad algoritma na primeru sortiranja niza

e 53412
e 53412
« 35412
e 345.12
e 1345.2
e 12345.

Podebljanim slovima prikazani su elementi umetnuti na svoju poziciju.

5.6.2

5.6. UGNEZPENE PETLJE 105

Algoritam insertion sort moZe se opisati na sledeci nacin: ako niz ima vise od jednog
elementa, sortiraj sve elemente ispred poslednjeg, a zatim umetni poslednji u taj sortirani
podniz. U nastavku je data jedna moguca implementacija (u unutrasnjoj petlji se element
menja sa svojim prethodnikom sve dok je prethodnik veéi od njega).

vector<int> a{5, 3, 4, 2, 1};
int i, n = a.size();
for (i = 1; i < n; i++) {
for(int j = i; j > 0 && aljl < alj-11; j—)
swap(aljl, alj-11);

Efikasnija verzija moze se dobiti ukoliko se ne koriste razmene, ve¢ se zapamti element
koji treba da se umetne, zatim se pronade pozicija na koju treba da se umetne, svi elementi
od te pozicije pomere se za jedno mesto udesno i na kraju se zapamceni element upise na
svoje mesto:

vector<int> a{5, 3, 4, 2, 1};
int i, n = a.size();
for (i = 1; i < n; i++) {
int j, tmp = alil;
for (j = i; j > 0 && al[j-1] > tmp; j—-)
aljl = alj-11;
aljl = tmp;

I algoritam insertion sort kvadratnu vremensku sloZenost, a najgori slucaj nastupa
kada je niz sortiran u obratnom redosledu. Iako je algoritam insertion sort neefika-
san prilikom sortiranja dugackih nizova, cesto je kod kratkih nizova (nizova sa nekoliko
desetina elemenata) brZi od naprednijih algoritama.

Zadaci

106 GLAVA 5. PETLJE

6.1

C6. Funkcije

Modularnost i razlaganje problema na potprobleme

Svaki C++ program sacinjen je od funkcija. Funkcija main mora da postoji i, pojednosta-
vljeno receno, izvrSavanje programa uvek pocinje izvrSavanjem ove funkcije. Iz funkcije
main (ali i drugih) pozivaju se druge funkcije, bilo bibliotecke (na primer, sqrt kojom
se izraCunava kvadratni koren), bilo korisnicki definisane.

Veliki program veoma je teSko napisati ili razumeti ako nije podeljen na celine tj. module.
Podela programa na celine (na primer, datoteke i funkcije) neophodna je za razumevanje
programa i nametnula se veoma rano u istoriji programiranja. Svi savremeni programski
jezici su dizajnirani tako da je podela na manje celine ne samo moguca, ve¢ tipi¢an nacin
podele Cesto odreduje sam stil programiranja (na primer, u objektno orijentisanim jezicima
neki podaci i metode za njihovu obradu se grupisu u klase). Podela programa na celine utice
na viSe njegovih osobina:

« Kraci kdd: ukoliko se isti kdd ne ponavlja na vi§e mesta u programu, vec je izdvojen
u zasebnu celinu, program ¢e biti jednostavaniji i koncizniji tj. kraci.

« LakSe odrZavanje:
Ukoliko je u delu koda koji je izdvojen u funkciju otkrivena greska, treba je ispraviti
na samo jednom mestu (a ne na vise $to bi bio slucaj da taj deo nije izdvojen u
funkciju).

« Citljivost i razumljivost: podela programa na celine popravlja njegovu &itljivost i
razumljivost i omoguéava i onome ko pise i onome ko ¢ita program da se usredsredi
na kljucna pitanja jedne celine, zanemarujuci u tom trenutku i iz te perspektive funk-
cionalnosti podrZane drugim celinama. Pored dobre podele na funkcije, na Citljivost
utice i dobro imenovanje funkcija (tako da je jasno Sta koja radi).

« Sira upotrebljivost: ukoliko je kod kvalitetno podeljen na celine, pojedine celine
tj. funkcije bi¢e moguée upotrebiti u nekom drugom kontekstu u programu. Ako
je neko izracunavanje skriveno u jednoj celini, ona moZe da se koristi i ako se ne

107

6.2

108 GLAVA 6. FUNKCIJE

zna kako ta¢no je ona implementirana, ve¢ je dovoljno znati Sta radi, tj. kakav je
rezultat njenog rada za zadate argumente. Dodatno, pojedine funkcije mogu da se
koriste i u drugim programima.

Na primer, proveravanje da li neki trinaestocifreni kod predstavlja moguéi IMBG
(jedinstveni mati¢ni broj gradana) moZe se izdvojiti u zasebnu funkciju koja je onda
upotrebljiva u razli¢itim programima. Srodne funkcija mogu da se grupisu u biblio-
teke (koje mogu da se koriste u drugim programima).

« LakSa podela zadataka ¢lanovima tima: ukoliko je program osmisljen tako da je
sacinjen od logi¢nih celine, lakSe ga je razvijati u timu — pojedinacni ¢lanovi tima
rade na zasebnih funkcijama.

Za vecinu jezika, celine na koje se deli kdd su obi¢no funkcije. Program se nikada ne deli
na funkcije i onda u datoteke tek onda kada je kompletno zavrSen. Naprotiv, podela koda
u funkcije vrsi se jo$ u ranim fazama pisanja programa i predstavlja jedan od najvaznijih
aspekata dizajna programa. Za pisanje funkcija postoje mnoge smernice (koje nisu stroga
pravila), poput:

« Jedna funkcija u programu, u principu, treba da obavlja samo jedan zadatak.

o Tekst jedne funkcije ne treba da bude previse dug i poZeljno je da staje na jedan ili
dva ekrana (tj. da ima manje od pedesetak redova), radi dobre preglednosti. Duge
funkcije poZeljno je podeliti na manje funkcije.

» Ukoliko funkcija ima viSe od, na primer, 10 lokalnih promenljivih, verovatno je
funkciju poZeljno podeliti na nekoliko manjih. Sli¢no vaZzi i za broj parametara funk-
cije.

Ukoliko je brzina izvrSavanja kriticna, kompilatoru se moZe naloZiti da inlajnuje kratke
funkcije (da prilikom kompilacije umetne kdd kratkih funkcija na pozicije gde su pozva-
ne)!.

Primeri kori§éenja funkcije

Mustrujmo prednosti definisanja i kori§¢enja pomocnih funkcija kroz nekoliko primera.
Primer 6.2.1. Napisimo program koji izracunava da li dva uneta broja imaju isti zbir cifara

i to prvo bez, a onda uz koriséenje funkcija.

#include <iostream>
using namespace std;

int main() {
int a, b;

!Inlajnovanje u nekim situacijama kompilatori primenjuju i bez eksplicitnog zahteva programera.

6.2. PRIMERI KORISCENJA FUNKCIJE 109

}

cin >> a >> b;

// tzracunavamo zbir cifara broja a
wnt zbir_cifara_a = 0;
do {
int cifra = a % 10;
zbir_cifara_a += cifra;
a /= 10;
} while (a > 0);

// tzracunavamo zbir cifara broja b
int zbir_cifara_b = 0;
do {
int cifra = b 7 10;
zbir_cifara_b += cifra;
b /= 10;
} while (b > 0);

if (zbir_cifara_a == zbir_cifara_b)
cout << "da" << endl;
else

cout << "me" << endl;

Primecujemo da se u prethodnom programu kéd koji izracunava zbir cifara broja nepotrebno
ponavlja dva puta. Mnogo bolje reSenje se dobija ako se taj kod izdvoji u zasebnu funkciju,
koja se onda dva puta koristi: jednom da se izracuna zbir cifara broja o, a drugi put da se
izracuna zbir cifara broja b.

#include <iostream>
using namespace std;

int zbir_cifara(int n) {

}

int zbir = 0;
do {
int cifra = n 7 10;
zbir += cifra;
n /= 10;
} while (n > 0);
return zbir;

110 GLAVA 6. FUNKCIJE

int main() {
int a, b;
cin >> a >> b;
if (zbir_cifara(a) == zbir_cifara(b))
cout << "da'" << endl;
else
cout << "me" << endl;

Primer 6.2.2. Razmotrimo jos jedan primer u kome koris¢enje funkcija znacajno skracuje
program. Zadatak je da se prirodan broj n (manji od 3000) zapise pomocu rimskih cifara.
Na primer, broj 1283 se rimski zapisuje kao MCCLXXXIII. Zasto je to tako? Zato Sto se cifra
Jedinica 3 zapisuje kao II1, cifra desetica 8 se zapisuje kao LXXX, cifra stotina 2 se zapisuje
kao CC, dok se cifra hiljada 1 zapisuje kao M. Dakle, treba odrediti dekadne cifre i svaku
od njih pojedinacno prevesti u rimski zapis. Resenje se moZe znacajno pojednostaviti ako
se primeti da su pravila za odredivanja rimskog zapisa na osnovu vrednosti cifre jedinica,
destica i stotina prakticno ista, jedino se razlikuju simboli (slova) pomocu kojih se zapis gradi.
Na primer, ciframa jedinica 1 do 9 odgovaraju redom rimski zapisi I, II, I1I, IV, V, VI,
VII, VIIIi IX, dok ciframa desetica od I do 9 odgovaraju redom rimski zapisi X, XX, XXX,
XL, L, LX, LXX, LXXXi XC. Dakle, u oba slucaja se koriste 3 simbola (simbol cija je vrednost
1, simbol cija je vrednost 5 i simbol cija je vrednost 10 i to su u prvom slucaju I, Vi X, a u
drugom slucaju X, L i C) i pravila povezivanja ovih simbola potpuno su ista (za cifru od 1
do 3 simbol vrednosti 1 se ponovi 3 puta, za cifru 4 se nadovezu simbol vrednosti 1 i simbol
vrednosti 5 itd.). Ista pravila vaZe i za cifre stotina (tada se koriste simboli C, Di M). Zato je
pozelino definisati funkciju koja dobija vrednost cifre (od 1 do 9) i tri simbola i na osnovu
toga gradi odgovarajucu nisku.

Posto se niska gradi tako sto se neki simboli ponavijaju, potrebno je pronaci nacin da se
izgradi niska dobijena ponavljanjem datog karaktera c dati broj puta k. U jeziku C++ za to
se moze upotrebiti poziv funkcije (konstruktora) string (k, c) (ova funkcija i druge slicne
mogu se pronadi pregledom dokumentacije jezika).

// zapis jedne rimske cifre — simboll, simbolb5 ¢ simboll0 odredjuju
// da li se radt % cifri jedinica, desetica ili stotina
string rimska_cifra(int c, char simboll, char simbols5, char simbol10) {
if (¢ < 4) // mpr. "", "I", “II", “ITT"
return string(c, simboll);
else if (¢ == 4) // npr. "IV"
return string(1, simboll) + string(l, simbols);
else if (¢ < 9) // npr. "V", "VI", "VII", "VIII"

6.3

6.3. PARAMETRI FUNKCIJE 111

return string (1, simbol5) + string(c-5, simboll);
else // npr. "IX"
return string(1, simboll) + string(l, simboll0);

}

// prevodt dati broj u rimski zapis
string arapski_u_rimski(int n) {
string rezultat = "";
// cifra jedinica
rezultat = rimska_cifra(n 7 10, 'I', 'V', 'X');
n /= 10; // uklanjamo cifru jedinica
// cifra desetica
rezultat = rimska_cifra(n J 10, 'X', 'L', 'C') + rezultat;
n /= 10; // uklanjamo cifru desetica
// cifra stotina
rezultat = rimska_cifra(n 7 10, 'C', 'D', 'M') + rezultat;
n /= 10; // uklanjamo cifru stotina
// dodajemo hiljade na pocetak rezultata © vracamo ga
return string(n, 'M') + rezultat;

Parametri funkcije

Funkcija moZe imati parametre koje obraduje i oni se navode u okviru definicije funkci-
je, iza imena funkcije i izmedu zagrada. Termini parametar funkcije i argument funkcije
se ponekad koriste kao sinonimi. Ipak, pravilno je termin parametar funkcije koristiti za
promenljivu koja ¢ini deklaraciju funkcije, a termin argument funkcije za izraz naveden
u pozivu funkcije na mestu parametra funkcije. Ponekad se argumenti funkcija naziva-
ju i stvarni argumenti, a parametri funkcija formalni argumenti. U primeru 6.2.1, n je
parametar funkcije int zbir_cifara(int n), a a i b su njeni argumenti u pozivima
zbir_cifara(a) i zbir_cifara(b).

Pre imena svakog parametra funkcije (u pocetnom delu koji deklarise funkciju) neophodno
je navesti njegov tip. Kao i imena promenljivih, imena parametara treba da oslikavaju
njihovo znacenje i ulogu u programu. Ukoliko funkcija nema parametara, onda se izmedu
zagrada navodi kljuéna re¢ void. Alternativno, u tom slucaju se izmedu zagrada ne mora
navesti nista.

Parametri funkcije mogu se u telu funkcije koristiti kao lokalne promenljive te funkcije a
koje imaju pocetnu vrednost odredenu vrednostima argumenata u pozivu funkcije.
Promenljive koje su deklarisane kao parametri funkcije lokalne su za tu funkciju i njih ne
mogu da koriste druge funkcije. Stavise, bilo koja druga funkcija moZe da koristi isto ime

6.4

112 GLAVA 6. FUNKCIJE

za neki svoj parametar ili za neku svoju lokalnu promenljivu.

Kvalifikatorom const mogu, kao i sve promenljive, biti oznaceni parametri funkcije ¢ime
se obezbeduje da neki parametar ili sadrZaj na koji ukazuje neki parametar nece biti menjan
u funkciji.

Funkcija main mozZe biti bez parametara ili moZe imati dva parametra unapred odredenog
tipa (videti poglavlje 8.5.6).

Prilikom poziva funkcije, vr$i se prenos argumenata, $to Ce biti opisano u poglavlju 6.5.

Povratna vrednost funkcije

Funkcija moZe da vraca rezultat i tip rezultata se zapisuje na samom pocetku definicije
funkcije (pre njenog imena). Na primer, tip povratne vrednosti funkcije zbir_cifara
je int. Funkcija rezultat vraca naredbom return r; gde je r izraz zadatog tipa ili tipa
koji se mozZe konvertovati u taj tip. Naredba return r; ne samo da vraca vrednost r
kao rezultat rada funkcije, nego i prekida njeno izvrSavanje. Na primer, algoritam linearne
pretrage se Cesto moZe implementirati u posebnoj funkciji. Naredna funkcija proverava
da li je dati broj prost, prekidajuéi pretragu i vracajuci rezultat false ¢im naide na neki
delilac broja.

bool prost(unsigned n) {
if (n <= 1) return false;
if (n == 2) return true;
for (int d = 3; d*d <= n; d += 2)
if m % d == 0)
return false;
return true;

Ako funkcija ne treba da vraca rezultat, onda se kao tip povratne vrednosti navodi specijalan
tip void i tada naredba return nema argumenata (tj. navodi se return;). Stavise, u tom
slu¢aju nije neophodno navoditi naredbu return iza poslednje naredbe u funkciji (return
se koristi jedino kada Zelimo da ranije prekinemo tok izvrSavanja funkcije). S druge strane,
ako funkcija koja treba da vrati vrednost ne sadrZi naredbu return, kompilator moZe da
prijavi upozorenje, a u fazi izvrSavanja rezultat poziva te funkcije bi¢e neka nedefinisana
vrednost.

Funkcija koja je pozvala neku drugu funkciju moZe da ignoriSe, tj. da ne koristi vrednost
koju je ova vratila. Naime, svaki poziv funkcije je izraz, a vrednost bilo kog izracunatog
izraza se moZe ignorisati nakon njegovog izracunavanja (§to ima smisla kada nam je jedini
cilj ostvarivanje propratnog efekta izraCunavanja tog izraza).

Kvalifikator const moZe se primeniti i na tip povratne vrednosti funkcije. To nema mnogo
smisla (osim u kombinaciji sa pokaziva¢ima ¢ime se ova knjiga ne bavi) i retko se koristi.

6.5

6.5. PRENOS ARGUMENATA 113

Iako je sintaksicki ispravno i drugacije, funkcija main uvek treba da ima int kao tip po-
vratne vrednosti (jer okruZenje iz kojeg je program pozvan uvek kao povratnu vrednost
ocekuje tip int).

Prenos argumenata

Telo svake funkcije sadrZi neke naredbe kojima se obraduju neki podaci i dobijaju neki
rezultati. Obi¢no je funkciji potrebno na neki nacin preneti podatke koje treba da obradi.
Takode, nakon $to zavrsi obradu dobijenih podataka, funkcija obi¢no treba da dobijene
rezultate nekako vrati pozivaocu. U slucaju jednostavnih funkcija, kakve smo do sada sre-
tali, za prenos podataka u funkciju koriste se argumenti funkcije, a rezultat rada funkcije
vraca se u vidu povratne vrednosti. Medutim, postoje scenariji u kojima su potrebna kom-
plikovanija reSenja. Na primer, u nekim situacijama funkcija kao rezultat treba da vrati
vise podataka (a povratna vrednost funkcije je uvek jedinstvena vrednost). Jedan nacin
da se to uradi je da se viSe podataka upakuje u neku celinu (na primer, da se napravi tor-
ka elemenata, ili da se definiSe poseban strukturni tip). Drugi nacine je da se parametri
funkcije upotrebe i za vracanje vrednosti pozivaocu (a ne samo za primanje vrednosti). U
programiranju su uobicajene tri vrste parametara funkcija:

o ulazni parametri (sluZze samo da se funkciji predaju podaci koje treba da obradi);

o izlazni parametri (sluZe da funkcija vrati vrednost);

o ulazno-izlazni parametri (sluZe da funkcija primi podatke koje treba da obradi, zatim
da modifikuje i tako modifikovane vrati pozivaocu).

Dok neki programski jezici imaju mehanizme kojima se razlikuju sve ove tri vrste para-
metara, u jeziku C++ ne postoje Cisti izlazni parametri, ve¢ se za vracanje vrednosti preko
parametara koriste ulazno-izlazni parametri.

« Ulazni parametri (tj. parametri koji sluZe da se funkciji predaju podaci koje treba da
obradi), zadaju se tako $to se prilikom poziva funkcije napravi kopija argumenata (u
memorijskom prostoru namenjenom izvrSavanju te funkcije) i funkcija nakon toga
pristupa kopijama podataka. Funkcija moZe i da menja te kopije, ali ¢e originalni
podaci ostati nepromenjeni. U jeziku C++, ulazni parametri realizuju se kroz prenos
argumenta u funkciju koji zovemo:

- prenos po vrednosti (eng. pass by value)

» Ulazno-izlazni parametri (tj. parametri koji sluze da funkcija primi podatke koje
treba da obradi, zatim da modifikuje i tako modifikovane vrati pozivaocu), zadaju
se tako Sto se ne pravi kopija, ve¢ funkcija dobija moguénost da pristupa i modifi-
kuje originalne podatke tj. argumente koje je dobila. Ovo se ostvaruje tako $to se
funkciji omoguéi pristup memorijskoj lokaciji na kojoj se nalaze originalni podaci.

6.5.1

114 GLAVA 6. FUNKCIJE

Ako je to adresa neke promenljive iz funkcije pozivaoca, kada pozvana funkcija
upise neke podatke na tu adresu, bi¢e izmenjena odgovarajuca promenljiva unutar
funkcije pozivaoca (¢ime je pozvana funkcija vratila nekakav rezultat svog rada). U
jeziku C++, ulazno-izlazni parametri realizuju se kroz dve vrste prenosa argumenta
u funkciju koje zovemo:

- prenos po referenci (eng. pass by reference)
- prenos po adresi, tj. prenos po pokazivacu (eng. pass by address, pass by poin-
ter)

Vrste prenosa argumenta bice detaljnije objaSnjene u nastavku.

Prenos argumenata po vrednosti

Za ulazne parametre najceSce se koristi prenos po vrednosti. Prilikom prenosa po vrednosti,
vrednost koja se koristi kao argument funkcije kopira se kada po¢ne izvrSavanje funkcije
(u memorijski prostor namenjen izvrSavanju te funkcije) i onda funkcija radi samo sa tom
kopijom, ne menjajuéi original.

Razmotrimo, kao primer, funkciju zbir_cifara je u primeru 6.2.1 deklarisana sa int
zbir_cifara(int n) i pozvana sa zbir_cifara(a), gde je a promenljiva ucitana u
funkciji main. Ta promenljiva ¢e nakon izvrSenja funkcije zbir_cifara ostati nepro-
menjena, ma kako da je funkcija zbir_cifara definisana, tj. i ako menja vrednost svog
parametra n. Naime, kada pocne izvrSavanje funkcije zbir_cifara, vrednost promenlji-
ve a bice iskopirana u lokalnu promenljivu n koja je navedena kao parametar funkcije i
funkcija ¢e koristiti samo tu kopiju u svom radu. U ovom konkretnom primeru, funkcija
zbir_cifara zaista menja vrednost promenljive n (deli je sa 10, sve dok joj vrednost ne
postane 0), ali promenljiva a ostaje nepromenjena (posto je n samo kopija promenljive
a).

Naglasimo da imena promenljivih u ovom sluc¢aju nisu relevantna: ¢ak i da se promenljiva u
funkciji zbir_cifara takode zvala a ida je ona menjana, u programu bi zapravo postojale
dve razlicite promenljive a (jedna u funkciji main i njena kopija u funkciji zbir_cifara).
Dakle, mogudée je i da se ime parametra funkcije poklapa sa imenom promenljive koja je
prosledena kao stvarni argument, na primer:

#include <iostream>
using namespace std;

void f(int a) {
a = 3;
cout << "f: a = " << a << endl;

6.5. PRENOS ARGUMENATA 115

int main() {
int a = 5;
f(a);
cout << "main: a = " << a << endl;

}

I u ovom slucaju radi se o dve razli¢ite promenljive (promenljiva u pozvanoj funkciji je
kopija promenljive iz funkcije u kojoj se poziv nalazi).

f: a=3
main: a = 5

U pozivu funkcije, argument koji se prenosi po vrednosti moZe biti promenljiva, ali i bilo
koji izraz istog tipa (ili izraz ¢ija vrednost moZe da se konvertuje u taj tip). Na primer, funk-
cija zbir_cifara iz primera iz poglavlja moZe biti pozvana sa zbir_cifara(12345),
aliisazbir_cifara(12345+67890).

Prenos argumenata po vrednosti ilustruje i funkcija swap kojoj je zadatak da razmeni vred-
nosti dve promenljive. Njena naredna definicija je, usled prenosa po vrednosti, pogresna,
tj. ne razmenjuje vrednosti svojih argumenata.

#include <iostream>
using namespace std;

void swap(int a, int b) {
int temp = a;
a = b;
b temp;

int main() {
int x = 3, y = 5;
swap(x, y);
cout << "x = " <K x K< "y =" <KL y << endl;

U funkciji swap promenljive a i b razmenjuju vrednosti, no ako je funkcija pozvana iz neke
druge funkcije sa swap(x, y),onda ¢e vrednosti promenljivih x i y ostati nepromenjene
nakon ovog poziva, te navedeni program daje naredni ispis.

x=3,y=5

Na isti na¢in kao i osnovni tipovi (npr. int, double, bool) po vrednosti se prenose i
objekti (npr. string, vector) i strukture. Naglasimo da podaci ovih tipova mogu biti

6.5.2

116 GLAVA 6. FUNKCIJE

veliki i njihovo kopiranje zahteva dodatno vreme i zahteva dodatne memorijske resurse.
Stoga se, u cilju optimizacije, ¢ak i kada se ovi tipovi podataka koriste kao ulazni para-
metri funkcije ne savetuje njihov prenos po vrednosti (ve¢ najcesée prenos po konstantnoj
referenci, o ¢emu Ce biti viSe reci u nastavku).

Prenos argumenata po referenci

U prethodnom poglavlju ilustrovano je da ako je neka promenljiva kao argument preneta
po vrednosti u neku funkciju, onda ¢e njena vrednost biti prekopirana, ta kopija ¢e biti
kori§éena u funkciji, moZda i promenjena, ali originalna promenljiva ostade neizmenjena.
Ukoliko je unutar funkcije potrebno promeniti neku promenljivu koja joj je poslata kao
argument, onda se ona prenosi po referenci a taj se parametar oznacava simbolom &. U
ovoj vrsti prenosa, funkciji se prosleduje referenca na originalnu promenljivu. Argument
koji se prenosi po referenci mora da bude promenljiva (ili, eventualno, konstanta ukoli-
ko odgovarajuéi parametar ima kvalifikator const). Referenca se mozZe smatrati drugim
imenom za originalni argument i sve promene nad referencom odraZavaju se na original-
nu promenljivu. Stavise, promenljiva koja kao parametar figuride u funkciji i nema svoj
memorijski prostor (u fazi izvrSavanja) ve¢ koristi prostor promenljive koja je argument.
Dakle, u pozadini ovog prenosa se, zapravo, funkciji ne prenosi vrednost originalne pro-
menljive, ve¢ samo njena adresa. O detaljima realizacije tog prenosa stara se kompilator i
programer ne mora da razmiSlja o njima.

Razmotrimo ponovo funkciju swap i implementirajmo je tako da ona zaista razmenjuje
vrednosti promenljivih za koje je poznata. Poziv funkcije ne mora da se promeni, ali njen
prototip mora — njeni agumenti ¢e sada biti reference:

#include <iostream>
using namespace std;

void swap(int &a, int &b) {
int temp = a;
a = b;
b = temp;

}

int main() {
int x = 3, y = 5;
swap(x, y);
cout << "x = " << x << "y =" <KLy << endl;

Funkcija swap preko svojih parametara (koji su reference) ima pristup promenljivim x i y,
te navedeni program daje naredni ispis.

6.5. PRENOS ARGUMENATA 117

x=5,y=23

Naglasimo da standardna biblioteka jezika C++ ve¢ sadrZi funkciju swap koja razmenjuje
vrednosti promenljivih (da bi se koristila potrebno je ukljuciti zaglavlje <algorithm>),
pa je nema potrebe definisati u programu.

Prenos po referenci moZze se koristiti i da bi se definisale funkcije koje mogu da vrate vise
vrednosti ($to je situacija koja je objasnjena ranije). Na primer, naredna funkcija ugao zadat
u sekundama prevodi u stepene, minute i sekunde.

// ugao od S sekundt prevodi u stepene, minute % sekunde

void od_sekundi(int S, int& stepeni, int& minuti, int& sekundi) {
sekundi = S 7 60;
minuti = (8 / 60) % 60;
stepeni = S / 3600;

Naravno, viSe vrednosti se moZe vratiti i definisanjem zasebne strukture.

struct Ugao {
int stepeni, minuti, sekundi;

};

Ugao od_sekundi(int S) {
Ugao rezultat;

rezultat.sekundi = S % 60;
rezultat.minuti = (S / 60) % 60;
rezultat.stepeni = S / 3600;

return rezultat;

Alternativa je i da se vrati torka.

tuple<int, int, int> od_sekundi(int S) {
int sekundi = S % 60;
int minuti = (S / 60) % 60;
int stepeni = S / 3600;
return make_tuple(stepeni, minuti, sekundi);

Kao $to je receno, kada se vrsi prenos argumenta po referenci, ne vrsi se njegovo kopiranje,
ve¢ se pristupa direktno originalnom argumentu. Ukoliko je argument objekat ili struktu-
ra koji zauzima veliki broj bajtova (na primer, string ili vector), to donosi znacajnu

6.5.3

118 GLAVA 6. FUNKCIJE

prostornu i vremensku efikasnost jer nema kopiranja ($to je slucaj u prenosu po vrednosti).
Zato prenos po referenci moze biti koristan i kada nije potrebno izmeniti neki argument
funkcije. Ali, ukoliko se neki parametar funkcije ne menja u njoj, tada je poZeljno to
obezbediti i naglasiti i samom deklaracijom, navodenjem reci const ispred deklaracije
tog parametra. U pozivu funkcije, argument koji se prenosi po referenci mora da bude
promenljiva ili, ako tip odgovarajuceg parametra nosi kvalifikator const, konstanta. Na
primer, funkcija koja izraCunava broj razmaka u tekstu bi trebalo da bude definisana na
slede¢i nacin.

int broj_razmaka(const string& tekst) {
int broj = 0;
for (char c : tekst)
if (c=="'")
broj++;
return broj;

U slucaju da je tekst dugacak, ovim se dobija znacajna uSteda u odnosu na prenos po
vrednosti, narocito ako se ova funkcija Cesto poziva u nekom programu.

Prenos argumenata po adresi

Prenos argumenta po adresi (tj. prenos po pokazivacu) sli¢an je prenosu po referenci, s
tim Sto se u ovom slucaju funkciji dostavlja adresa neke promeljive tj. pokazivac na nju,
pa ¢e odgovarajuci parametar da bude pokazivackog tipa. Pokaziva¢ je promenljiva koja
(u fazi izvrSavanja) ima svoj memorijski prostor i moZe da u njemu ¢uva adresu neke dru-
ge promenljive. Raspolaganje pokazivacem na neku promenljivu omogucava funkciji da
pristupa toj promenljivoj, pa i da je menja ukoliko je to potrebno. Efekat ¢e biti prakticno
isti kao u slucaju kori$¢enja prenosa po referenci, ali ée postupak prenosa adrese biti ek-
splicitan: u pozivu funkcije, programer mora da navede da u funkciju kao argument $alje
adresu neke promenljive (navodenjem simbola &), a ne njenu vrednost.

Funkcija swap, moZe biti implementirana i koriS€enjem prenosa po adresi, ali e to za-
htevati ne samo izmenu pocetne definicije funkcije, nego i nacina na koji se ona poziva.
Parametri funkcije bi¢e pokazivackog tipa (na primer, int*), argumenti e biti adrese
promenljivih (koje se dobijaju primenom operatora referenciranja, &), a za pristup pro-
menljivim na koje ukazuju pokazivaci primenjuje se operator dereferenciranja *.

#include <iostream>
using namespace std;

void swap(int *a, int *b) {

6.5. PRENOS ARGUMENATA 119

int temp = *a;

*a = *b;
*b = temp;
b
int main() {
int x = 3, y = 5;
swap (&x, &y);
cout << "x = " <K x K< "y =" <K y << endl;

Funkcija swap preko svojih parametara (koji su pokazivaci) ima pristup promenljivim x i
y, te navedeni program daje naredni ispis.

Zvezdice u deklaraciji oznacavaju pokazivacki tip int * (pokaziva¢ na promenljivu koja
je tipa int), dok zvezdice u kodu oznacavaju derereferenciranje tj. pristup promenljivoj na
koju ukazuje pokazivac (na primer, int temp = *a; uzrokuje da celobrojna promenljiva
temp dobije vrednost promenljive na koju ukazuje pokazivac a, dok *a = *b uzrokuje da
promenljiva na koju ukazuje pokaziva¢ a dobije vrednost one promenljive na koju ukazuje
pokazivac b).

Sli¢no kao kod prenosa po referenci, prenos po adresi zahteva kopiranje samo pokazivaca
Sto je obi¢no daleko manje nego kopiranje promenljivih koje su argumenti. Ponovo kao kod
prenosa po referenci, ukoliko se u funkciji ne menja vrednost na koju ukazje parametar koji
je pokazivac, poZeljno je to naglasiti i samom deklaracijom, navodenjem reci const ispred
deklaracije tog parametra. U pozivu funkcije, argument koji se prenosi po adresi mora da
bude samo adresa promenljive (pa, dakle, kao argument po adresi ne moze biti preneta
konstanta ili neki izraz).

Efekat prenosa po adresi je, dakle, isti kao u slu¢aju prenosa po referenci, ali je sintaksa
napisanog programa znatno komplikovanija (zbog eksplicitnog referenciranja i dereferen-
ciranja). Prenos po adresi (tj. preko pokazivaca) tipi¢an je za programski jezik C, koji ne
poseduje mehanizam prenosa po referenci.” U jeziku C++ se pokazivaci koriste u tehni-
kama programiranja koje prevazilaze domet ove knjige (na primer, u radu sa dinamicki
alociranom memorijom i implementaciji dinamickih struktura podataka), tako da se njima
baviti tek u njenim narednim tomovima.

ZPojto se prenos argumenta po adresi svodi na prenos adrese promenljive po vrednosti, moZe se smatrati da
je prenos po adresi vrsta prenosa po vrednosti. Zbog toga se Cesto insistira da je jeziku C postoji samo prenos
argumenata po vrednosti.

6.6

6.7

120 GLAVA 6. FUNKCIJE

Konverzije tipova argumenata funkcije

Prilikom poziva funkcije, ukoliko je poznata njena deklaracija, vrsi se implicitna konverzija
tipova argumenata u tipove parametara (ako se oni razlikuju). Sli¢no, prilikom vracanja
vrednosti funkcije (putem return naredbe) vrsi se konverzija vrednosti koja se vraéa u tip
povratne vrednosti funkcije.

Anonimne funkcije

U jeziku C++ moguée je definisanje tzv. anonimnih tj. lambda funkcija®. Te funkcije
nemaju svoje ime (mada se mogu dodeliti promenljivoj i na taj na¢in imenovati). Te funk-
cije obic¢no se koriste za samo jedan kontekst, tj. za izratunavanja potrebna samo u okviru
nekog Sireg izracunavanja (Cesto se kao parametri prosleduju funkcijama standardne bi-
blioteke, kao Sto je prikazano u poglavlju 8). Kori§éenje anonimnih funkcija cesto omo-
gucava pojednostavljivanje i skrac¢ivanje koda, kao i smanjivanje broja identifikatora (Sto
dalje vodi ka cistijem i bolje organizovanom kodu). Na primer, promenljiva kvadrat je
funkcijskog tipa i izraCunava kvadrat datog celog broja.

void main() {
auto kvadrat = [](int x) {
return x * X;
e

cout << kvadrat(3) << endl;

Tip povratne vrednosti lambda-funkcije kvadrat nije eksplicitno naveden (5to je Cesto
slucaj prilikom definisanja lambdi), ve¢ je klju¢nom recju auto kompilatoru receno da ga
sam odredi. Umesto tipa povratne vrednosti i imena funkcije, definicija lambda-funkcije
pocinje spiskom uhvacenih promenljivih (engl. captured variables) navedenim u sklopu
uglastih zagrada, koji je u ovom primeru prazan ([]). Nakon toga sledi spisak parameta-
ra funkcije i telo funkcije, koji se ni po ¢emu ne razlikuju od obi¢nih funkcija. Tacka-
zapeta na kraju dolazi od deklaracije sa inicijalizacijom (zavrSetak deklaracije promenlji-
ve je uvek tacka-zapeta). Moguce je i eksplicitno navesti tip povratne vrednosti lambda-
funkcije.

int main() {

auto kvadrat = [](int x) -> int {

3Naziv lambda dolazi od grekog slova A koje je Alonzo Cer¢ koristio u svojoj definiciji pojma funkci-
je i izraCunavanja - tzv. A-raun. Ovaj formalizam predstavlja teorijsku osnovu savremenog funkcionalnog
programiranja.

6.7. ANONIMNE FUNKCIJE 121

return x * X;

};
}

Promenljiva kvadrat (koja je zapravo funkcija) je lokalna u funkciji main i ne moze se
koristiti van nje.

Lambda-funkcija moZe pristupati samo onim lokalnim promenljivim okolne funkcije ko-
je su eksplicitno navede u spisku uhvaéenih promenljivih. U narednom primeru, lambda-
funkcija veci_od_praga proverava da li je data vrednost x veca od datog praga i mora da
ima pristup promenljivoj prag. Lambda-funkciju veci_od_praga prosledujemo biblio-
teckoj funkciji count_if (ova i njoj sli€ne funkcije su opisane u poglavlju 8), koja broji
elemente date kolekcije (u ovom primeru vektora) za koje data funkcija vraca vrednost
true.

int main() {
vector<int> a = {3, 7, 1, 4, 2, 5, 9};
int prag;
cin >> prag;
auto veci_od_praga = [prag] (int x) { return x > prag; 7
cout << count_if(begin(a), end(a), veci_od_praga) << endl;

Lambda je u prethodnom primeru upotrebljena samo da bi se prosledila kao para-
metar funkcije count_if. Da bi se to uradilo, nije neophodno uvoditi promenljivu
veci_od_praga.

int main() {
vector<int> a = {3, 7, 1, 4, 2, 5, 9};
int prag;
cin >> prag;
cout << count_if(begin(a), end(a),
[prag] (int x) { return x > prag; 1})
<< endl;

Prethodni stil programiranja koji se zasniva na kori$¢enju biblioteckih funkcija koje kao
argumente primaju funkcije inspirisan je funkcionalnom paradigmom i tipican je za sa-
vremeni C++ (o Cemu govori i glava 7). Naravno, ista funkcionalnost mozZe se postici i bez
koriS¢enja lambda-funkcija i biblioteke i u ovom konkretnom primeru dobija se reSenje
koje nije loSije od prethodnog.

6.8

122 GLAVA 6. FUNKCIJE

int main() {
vector<int> a = {3, 7, 1, 4, 2, 5, 93};
int prag;
cin >> prag;
int broj_vecih_od_praga = 0;
for (int x : a)
if (x > prag)
broj_vecih_od_praga++;
cout << broj_vecih_od_praga << endl;

Zarazliku od navedenog primera, naprednije funkcije (poput funkcija sortiranja ili efikasne
pretrage sortiranog niza) je teZe samostalno implementirati i u tim situacijama je poZeljno
poznavati i koristiti lambda-funkcije.

Ako je potrebno da se iz anonimne funkcije promeni vrednost neke okolne lokalne pro-
menljive, ona se u grupi uhvacenih promenljivih navodi uz simbol &, koji oznacava prenos
po referenci. Na primer, grupa [x, &y] oznacava da lambda ima pristup promenljivoj x
po vrednosti (mozZe da je Cita, ali ne i da je menja), a promenljivoj y po referenci (moze
da je i ¢ita i menja).

Grupa [=] oznacava da lambda ima pristup po vrednosti svim okolnim promenljivim, a
[&] dalambda ima pristup po referenci svim okolnim promenljivim.

SloZeni tipovi i funkcije

Parametri funkcija mogu biti i strukture, drugi korisnicki definisani tipovi, kao i sloZeni
tipovi poput pair, vector, map, itd. Funkcije mogu takve tipove imati i kao tip povratne
vrednosti. Prenos argumenta se i u ovom slucaju vrsi kao i za osnovne tipove.

Funkcija kreiraj_razlomak od dva cela broja kreira i vraca objekat tipa razlomak:

struct razlomak {
int brojilac, imenilac;

};

razlomak kreiraj_razlomak(int brojilac, int imenilac) {
razlomak rezultat;
rezultat.brojilac = brojilac;
rezultat.imenilac = imenilac;
return rezultat;

6.8. SLOZENI TIPOVI I FUNKCIJE 123

Navedni primer pokazuje i da ne postoji konflikt izmedu imena parametara i istoimenih
¢lanova strukture. Naime, imena ¢lanova strukture su uvek vezana za ime promenljive (u
ovom primeru rezultat).

Sledeéi primer ilustruje funkcije sa parametrima i povratnim vrednostima koji su tipa
strukture:

razlomak saberi_razlomke(const razlomak& a, const razlomak& b) {
razlomak c;
c.brojilac = a.brojilac*b.imenilac + a.imenilac*b.brojilac;
c.imenilac a.imenilac*b.imenilac;

return c;

Primecujemo da smo, efikasnosti radi, ulazne parametre umesto po vrednosti, preneli po
konstantnoj referenci.

Prenos (statickih) nizova u funkciju je veoma specifi¢an. Naime, posto nizovi po pravilu
zauzimaju vecu koli¢inu memorije od primitivnih tipova podataka, jo§ od programskog
jezika C odluceno je da se prilikom prenos nizova u funkciju oni ne kopiraju, ve¢ da se
funkciji samo prenese adresa pocetka niza. Pokaziva¢ na pocetak niza se ne koristi ekspli-
citno (ve¢ je zadat imenom niza) ali prenos nizova sustinski jeste prenos po adresi, tj. preko
pokazivaca. Razmotrimo naredni primer.

#include <iostream>
using namespace std;

// za dati broj n > 0, u niz stepent upisuje vrednostsi [270, 271}
void stepeni_dvojke(int stepenil], int n) {
stepeni[0] = 1;
for (int i = 1; i < n; i++)
stepenili] = 2 * stepenili-1];

int main() {
const int N = 20;
int stepeni[N];
stepeni_dvojke(stepeni, N);
for (int i = 0; i < N; i++)
cout << stepenil[i] << " ';
cout << endl;

L]

2{n-1}]

124 GLAVA 6. FUNKCIJE

Iako se u deklaraciji ne koristi ni simbol & koji bi ukazao na prenos po referenci, ni simbol
* koji bi ukazao na prenos po adresi, u funkciju stize adresa pocetka niza definisanog u
funkciji main, ne pravi se kopija niza i funkcija stepenDvojke sve vreme radi sa ori-
ginalnim nizom, S§to znaci da ¢e stepene dvojke upisati u originalni niz, §to znaci da Ce
prethodni program ispravno ispisati sve stepene dvojke od 2° do 2'?. Ovaj nacin definisa-
nja funkcija koje vracaju niz vrednosti je veoma tipi¢an za jezik C: funkciji se prosledi
niz (unapred alociran u pozivaocu) i broj elemenata, a funkcija onda popunjava sadrzaj
tog niza.

Alternativa kori$¢enju nizova je upotreba vektora, pri ¢emu vektor (kao i bilo koji drugi
tip) mozZe biti vracen kao povratna vrednost.

#include <iostream>
#include <vector>
using namespace std;

// za dati broj n > 0 vraéa niz stepena [270, 271, ..., 27{n-1}]
vector<int> stepeni_dvojke(int n) {
vector<int> stepeni(n) ;
stepeni[0] = 1;
for (dnt i = 1; i < n; i++)
stepeni[i] = 2 * stepenil[i-1];
return stepeni;

}

int main() {
const int N = 20;
vector<int> stepeni = stepeni_dvojke(N);
for (dnt i = 0; i < N; i++)
cout << stepeni[i] << " ";
cout << endl;

Ovaj program je sporiji, jer zahteva da se unutar funkcije stepeni_dvojke izvrsi rezer-
visanje memorijskog prostora za vector, $to je sporije nego rezervisanje memorijskog
prostora za staticki niz, kao u prvoj verziji programa (videti poglavlje 7.2.3). Ipak, razlika
u brzini nije uvek toliko znacajna da bi opravdala kori§¢enje statickih nizova. Prednosti
vektora su to $to njihova broj elemenata ne mora biti poznat prilikom pisanja tj. prevodenja
programa i dobija se program koji je mnogo fleksibilniji i u kom je mogucnost nastajanja
greSaka manja. Naglasimo da je jedino kreiranje vektora sporije nego kreiranje statickog
niza - jednom kada se vektor kreira tj. kada se odvoji potrebna memorija, dalje operacije
nad vektorom se izvrSavaju prakti¢no istom brzinom kao nad nizom.

6.9

6.9. REKURZIVNE FUNKCIJE - OSNOVNI PREGLED 125

U ranijim verzijama jezika C++, vracanje objekata (pa i vektora) iz funkcije je zahtevalo
kopiranje tih objekata (vektor stepeni koji je kreiran u funkciji stepeni_dvojke bi se
kopirao u vektor stepeni u funkciji main), nakon ¢ega bi se vektor stepeni alociran
u funkciji stepeni_dvo jke oslobadao. Medutim, u novim verzijama jezika garantuje se
da do kopiranja nece doci ve¢ e vektor koji se vraca iz funkcije biti prakticno preuzet
u funkciju main. O ovom i slicnim mehanizmama kopiranja viSe reci ¢e biti u narednim
tomovoma ove knjige.

Rekurzivne funkcije - osnovni pregled

Funkcija moze da poziva druge funkcije. Funkcija moZe da pozove i samu sebe (u tom
slucaju argumenti funkcije obicno se razlikuju od argumenata u pozivu). Da bi se izvrSava-
nje funkcije zavrSavalo, potrebno je da postoji slucaj u kojem se ne vrsi rekurzivni poziv.
Naredna rekurzivna funkcija izracunava vrednost 2", na osnovu poznatih matematic¢kih

veza:
o 1, n=0
-2l >0

double stepen(double x, unsigned n) {
if (n == 0)
return 1.0;
else
return x*stepen(x, n-1);

Za vrednosti argumenta 7, vece od nule vr$i se rekurzivni poziv, a za vrednost 0 — vrednost
funkcije izracunava se neposredno. Na primer, stepen(2,3) = 2 - stepen(2,2) = 4 -
stepen(2,1) = 8 - stepen(2,0) =8 -1 =38.
Funkcije koje pozivaju same sebe zovemo rekurzivne funkcije. KoriS¢enjem rekurzije moze
se napisati i efikasnija funkcija za stepenovanje.

double stepen(double x, unsigned n) {
if (n == 0)
return 1.0;
else if (n % 2 == 0)
return stepen(x*x, n / 2);
else
return x*stepen(x, n-1);

126 GLAVA 6. FUNKCIJE

}

Na primer, stepen(2,12) = stepen(4,6) = stepen(16,3) = 16 - stepen(16,2) =
16 - stepen(256, 1) = 16 - 256 - stepen(256,0) = 16-256 - 1 = 4096. Ovaj algoritam
bilo bi teZe implementirati bez koriS§¢enja rekurzije.

Rekurzija je veoma vaZna tehnika konstrukcije algoritama i programiranja i o njoj ¢e mno-
go vise reci biti u drugom tomu ove knjige.

6.10 Doseg, Zivotni vek i organizacija memorije dodeljene programu

U prisustvu vise funkcija, postavlja se prirodno pitanje gde je poZeljno deklarisati pro-
menljive (unutar funkcija, van funkcija, na pocetku tela funkcija, unutar tela funkcija i
sli¢no), koliko dugo te promenljive zauzimaju memorijski prostor i kako su rasporedene
po memoriji dodeljenoj naSem programu.

6.10.1 Doseg identifikatora

Jedna od karakteristika dobrih programa je da se promenljive ve¢inom deklarisu u funkci-
jama (ili ¢ak nekim uZim blokovima) ¢ime je njihova upotreba ograni¢ena na te funkcije
(ili blokove). Ovim se smanjuje zavisnost izmedu funkcija i ponaSanje funkcije odredeno
je samo njenim ulaznim parametrima, a ne nekim globalnim stanjem programa. Time se
omogucava i da se analiza rada programa zasniva na analizi pojedinac¢nih funkcija, neza-
visnoj od konteksta celog programa. Ipak, u nekim slucajevima prihvatljivo je da funkcije
medusobno komuniciraju kori§¢enjem zajednickih promenljivih.

Doseg identifikatora ili vidljivost identifikatora (engl. scope of identifiers) predstavlja deo
teksta programa u kojem je odredeni identifikator vidljiv, tj. u kojem ga je moguée ko-
ristiti i u kojem taj identifikator identifikuje odredeni objekat (na primer, promenljivu ili
funkciju). Doseg je zadat nacinom i mestom u izvornom kodu u kojem je identifikator
uveden. Svaki identifikator ima neki doseg. Jezik C++ spada u grupu jezika sa statickim
pravilima dosega §to znaci da se doseg svakog identifikatora moZe jednoznacno utvrditi
analizom izvornog koda (bez obzira na moguce tokove izvrSavanja programa). U jeziku
C++ postoji nekoliko vrsta dosega od kojih su najznacajne:

« doseg datoteke (engl. file scope) koji podrazumeva da ime vazi od tacke uvodenja do
kraja datoteke;

« doseg bloka (engl. block scope) koji podrazumeva da ime vazi od tacke uvodenja do
kraja bloka u kojem je uvedeno;

Identifikatori koji imaju doseg datoteke najcesée se nazivaju globalni, dok se identifikatori
koji imaju doseg bloka nazivaju lokalni. Na osnovu diskusije sa pocetka ovog poglavlja,
jasno je da je pozeljno koristiti identifikatore promenljivih lokalnog dosega kada god je to
moguce.

6.10. DOSEG, ZIVOTNI VEK I ORGANIZACIJA MEMORIJE DODELJENE PROGRAMU127

Lokalne promenljive su promenljive deklarisane unutar funkcija i njih smo ve¢ koristili u
funkcijama koje smo do sada prikazali. Globalne promenljive se mogu koristiti kako bi
se izbegao prenos parametara u funkciju. Zamislimo, na primer, da u nekoj veb-aplikaciji
sadrZaj treba da se prikazuje samo ulogovanim Kkorisnicima. Svaka funkcija proverava da
li je korisnik ulogovan i ako nije - prikazuje mu informaciju da treba da se uloguje, a u
suprotnom mu prikazuje odgovarajuci sadrZaj. To znaci da svaka funkcija treba da prima
parametar kroz koji dobija informaciju o tome da li je korisnik ulogovan. Jednostavnije
reSenje moze biti da se ta informacija Cuva u globalnoj promenljivoj.

bool ulogovan = false;

void ulogujKorisnika(const string& korisnickoIme, const string& lozinka) {
if (proverilogovanje(korisnickoIme, lozinka))
ulogovan = true;

void prvaStrana() {
if (lulogovan) {
cout << "Morate biti ulogovani" << endl;
return;

Moguce je i da globalna i lokalna promenljiva imaju isto ime. Naime, moguce je da po-
stoji viSe identifikatora istog imena. Ako su njihovi dosezi jedan u okviru drugog, tada
identifikator u uzoj oblasti dosega sakriva identifikator u $iroj oblasti dosega. Na primer, u
narednom programu, promenljiva i u petlji sakriva lokalnu promenljivu i inicijalizovanu
na vrednost 7, a koja sakriva globalnu promenljivu i inicijalizovanu na vrednost 10.

int i = 10;

void £() {
int 1 = 7;
for (int i = 0; i < 4; i++)
cout << i << " "y
cout << endl;
cout << i << endl;

6.10.2

128 GLAVA 6. FUNKCIJE

int main() {
£0O;

cout << i << endl;

0123
7
10

Ovim je omoguéeno da prilikom uvodenja novih imena programer ne mora da brine da li
je takvo ime ve¢ upotrebljeno u Sirem kontekstu.

Naglasimo da koriS¢enje globalnih promenljivih moZe ponekad pojednostaviti program
(jer funkcije imaju manje parametara), ali dobijeni program moZe biti po mnogim Kriteri-
jumima losiji. Naime, ako se ustanovi neki problem koji nastaje usled pogreSne vrednosti
te promenljive, greSku treba traZiti medu svim funkcijama programa, jer sve one mogu da
pristupe i promene vrednost globalne promenljive. Za razliku od toga, ako se ustanovi pro-
blem usled pogresne vrednosti lokalne promenljive, tada je dovoljno proveriti samo kod
unutar funkcije u kojoj je definisana ta lokalna promenljiva. Dodatno, funkcija koja ne
koristi globalne promenljive znatno je Sire upotrebljiva: ne samo za globalne promenljive,
vec za bilo koje argumente koji su joj prosledeni.

Jezik C++ podrzava i koriS€enje objektno-orijentisanog programiranja u kom se omogu-
¢ava i doseg nivoa klase, koji ¢e biti ukratko opisan u glavi 7.

Zivotni vek objekata

Lokalna promenljiva vezana je za jedan poziv funkcije — za nju se rezerviS§e memorijski
prostor kada je funkcija pozvana i osloboda se ¢im se izvrSavanje funkcije zavrsi. Sa druge
strane, globalne promenljive se koriste iz razli¢itih funkcija i memorijski prostor za njih
treba da bude rezervisan tokom c¢itavog izvrSavanja programa (jer se ne moZe unapred
predvideti kada e biti pozvana neka funkcija koja ¢e koristiti tu globalnu promenljivu).
Zivomi vek (engl. storage duration) promenljive je period izvr$avanja programa u kojem je
za tu promenljivu rezervisan deo memorije i kada se ta promenljiva moze koristiti. Postoje
sledece vrste Zivotnog veka:

« staticki (engl. static) Zivotni vek koji znaci da je objekat dostupan tokom celog izvr-
Savanja programa;

o automatski (engl. automatic) Zivotni vek koji najcesce imaju promenljive koje se
automatski stvaraju i uklanjaju prilikom pozivanja funkcija;

e dinamicki (engl. dynamic) Zivotni vek koji imaju promenljive koje se alociraju i
dealociraju na eksplicitan zahtev programera.

6.10.3

6.10. DOSEG, ZIVOTNI VEK I ORGANIZACIJA MEMORIJE DODELJENE PROGRAMU129

Zivotni vek nekog objekta odreduje se na osnovu pozicije u kodu i na¢ina na kojoj je obje-
kat uveden. Po pravilu, lokalne promenljive po pravilu imaju automatski Zivotni vek, a
globalne staticki. Ipak, moguce je definisati i promenljive koje imaju lokalni doseg (mogu
se koristiti samo unutar jedne funkcije), a staticki Zivotni vek (memorija za njih je odvo-
jena i vrednost im se ¢uva tokom celog izvrSavanja programa). To se postiZe koris¢enjem
klju¢ne reci static u sklopu deklaracije lokalne promenljive. Takve, lokalne staticke pro-
menljive su vezane za neku funkciju, ali Cuvaju vrednost tokom razli¢itih poziva te funkcije.
Razmotrimo sledeci primer.

void £() {
static int brojPoziva = 0;
brojPoziva++;
cout << "Broj poziva funkcje f() je " << brojPoziva << endl;

int main() {

£O; £0O; £0O;

Stati¢kom lokalnom promenljivom postignuto je prebrojavanje poziva funkcije f. U trenut-
ku prvog poziva ona je inicijalizovana na 0, a u svakom pozivu njena vrednost se uvecava
za jedan i ispisuje.

Promenljive koje imaju dinamicki Zivotni vek se koriste za implementaciju tzv. dinamic-
kih struktura podataka i o njima ¢e biti mnogo vise re¢i u narednim tomovima ove knjige.
Vedina struktura podataka (na primer, vector, string, map) koriste dinamicku alokaciju
memorije, medutim, to je skriveno od programera i programer ne mora da bude upoznat
sa detaljima dinamicke alokacije da bi mogao da koristi ove dinamicke strukture podataka
(za razliku od programskog jezika C, ¢ija biblioteka ne sadrZi implementacije ovih struk-
tura podataka i programiranje bez eksplicitnog koriS¢enja dinamicke alokacije memorije
je prakti¢no nezamislivo).

Organizacija memorije dodeljene programu

Razlicit Zivotni vek promenljivih realizuje se u fazi izvrSavanja i veoma je vazno pitanje
kako se to tehni¢ki realizuje. Kljucna ideja je to da se promenljive razli¢itog Zivotnog veka
smeste u razli¢ite delove memorije dodeljene programu. lako direktan uticaj na ovo nema
programer koji piSe program, ve¢ kompilator i operativni sistem, razumevanje ovog me-
hanizma mozZe ponekad pomo¢i programeru da dublje razume ponaSanje programa i lakSe
uodi i otkloni neke greske.

Nacin organizovanja i koriS¢enja memorije u fazi izvrSavanja programa moZe se razliko-
vati od jednog do drugog operativnog sistema. Tekst u nastavku odnosi se, ako to nije

6.10.4

6.10.5

130 GLAVA 6. FUNKCIJE

drugacije naglaseno, na Sirok spektar platformi, pa su, zbog toga, naCinjena i neka pojed-
nostavljivanja.

Kada se izvrSivi program ucita u radnu memoriju raunara, biva mu dodeljena odredena
memorija i zapocinje njegovo izvrsavanje. Dodeljena memorija organizovana je u nekoliko
delova:

segment koda (engl. code segment, text segment);
« segment podataka (engl. data segment);

o stek segment (engl. stack segment);

o hip segment (engl. heap segment).

U nastavku ¢e biti opisana prva tri, dok ¢e o hip segmentu biti viSe re¢i u narednim tomo-
vima ove knjige, u delu posve¢enom dinamickoj alokaciji memorije.

Kao $to smo najavili, podela memorije na segmente je u odredenoj vezi sa Zivotnim vekom
promenljivih (o kome je bilo reci u poglavlju 6.10.2):

» promenljive statiCkog Zivotnog veka obi¢no se cuvaju u segmentu podataka,
« promenljive automatskog Zivotnog veka obi¢no se cuvaju u stek segmentu,

« promenljive dinamickog Zivotnog veka obi¢no se ¢uvaju u hip segmentu.

Segment koda

Fon Nojmanova arhitektura racunara predvida da se u memoriji ¢uvaju podaci i programi.
Dok su ostala tri segmenta predvidena za ¢uvanje podataka, u segmentu koda se nalazi sim
izvrsivi kdd programa — njegov masinski kod koji ukljucuje masinski kdd svih funkcija
programa (ukljucujuéi kdd svih kori$¢enih funkcija koje su povezane staticki). Na nekim
operativnim sistemima, ukoliko je pokrenuto viSe instanci istog programa, onda sve te
instance dele isti prostor za izvrSivi kdd, tj. u memoriji postoji samo jedan primerak koda.
U tom slucaju, za svaku instancu se, naravno, zasebno ¢uva informacija o tome do koje
naredbe je stiglo izvrSavanje.

Segment podataka

U segmentu podataka Cuvaju se odredene vrste promenljivih koje su zajednicke za ceo
program (one koje imaju staticki Zivotni vek, naj¢esce globalne promenljive), kao i kon-
stantni podaci (naj¢e$ce konstantne niske). Ukoliko se istovremeno izvrSava vise instanci
istog programa, svaka instanca ima svoj zaseban segment podataka. Na primer, u programu

6.10.6

6.10. DOSEG, ZIVOTNI VEK I ORGANIZACIJA MEMORIJE DODELJENE PROGRAMU131

#include <iostream>
using namespace std;

int a;

int main() {
int b;
static double c;
cout << "Zdravo" << endl;
return O;

u segmentu podataka ¢e se nalaziti promenljive a i c, kao i konstantna niska "Zdravo"
(bez navodnika). Promenljiva b je lokalna automatska i ona ¢e se Cuvati u segmentu ste-
ka. Ukoliko se ista konstantna niska javlja na viSe mesta u programu, standard jezika ne
definiSe da li e za nju postojati jedna ili viSe kopija u segmentu podataka.

Stek segment

U stek segmentu (koji se naziva i stek poziva (engl. call stack) ili programski stek) Cuvaju se
svi podaci koji karakteriSu izvrSavanje funkcija. Podaci koji odgovaraju jednoj funkciji
(ili, preciznije, jednoj instance jedne funkcije — jer, na primer, rekurzivna funkcija moze
da poziva samu sebe i da tako u jednom trenutku bude aktivno vise njenih instanci) orga-
nizovani su u takozvani stek okvir (engl. stack frame). Stek okvir jedne instance funkcije
obicno, izmedu ostalog, sadrZi:

« argumente funkcije;

« lokalne promenljive (promenljive deklarisane unutar funkcije);

» medurezultate izraCunavanja;

« adresu povratka (koja ukazuje na to odakle treba nastaviti izvrSavanje programa
nakon povratka iz funkcije);

« adresu stek okvira funkcije pozivaoca.

Stek poziva je struktura tipa LIFO (“last in - first out”)*. To znaci da se stek okvir moZe
dodati samo na vrh steka i da se sa steka moZe ukloniti samo okvir koji je na vrhu. Stek
okvir za instancu funkcije kreira se onda kada funkcija treba da se izvrSi i taj stek okvir se
oslobada (preciznije, smatra se nepostojecim) onda kada se zavrsi izvrSavanje funkcije.

Kako izvrSavanje programa pocinje izvrSavanjem funkcije main, prvi stek okvir se kreira
za ovu funkciju. Ako funkcija main poziva neku funkciju £, na vrhu steka, iznad stek
okvira funkcije main, kreira se novi stek okvir za ovu funkciju. Ukoliko funkcija £ poziva

“Ime stek (engl. stack) je zajednicko ime za strukture podataka koje su okarakterisane ovim na¢inom pristupa.

6.10.7

132 GLAVA 6. FUNKCIJE

neku trecu funkciju, onda ¢e za nju biti kreiran stek okvir na novom vrhu steka. Kada se
zavr$i izvrSavanje funkcije £, onda se vrh steka vraca na prethodno stanje i prostor koji je
zauzimao stek okvir za f se smatra slobodnim (iako on neée biti zaista obrisan).

Velic¢ina stek segmenta obi¢no je ograni¢ena. Zbog toga je poZeljno izbegavati smeStanje
jako velikih podataka na segment steka. Na primer, sasvim je moguce da u prvom progra-
mu u nastavku, niz a nece biti uspesno alociran i do¢i ¢e do greSke prilikom izvrSavanja
programa, dok ée u drugom programu niz biti smeSten u segment podataka i sve ¢e teci
ocekivano. Predefinisana veli¢ina steka prevodioca moZe se promeniti zadavanjem odgo-
varajuce opcije.

int main() {
int a[1000000] ;

int a[1000000] ;
int main() {

Opisana organizacija steka omoguéava jednostavan mehanizam medusobnog pozivanja
funkcija, kao i rekurzivnih poziva.

Implementacija rekurzije

Navedeno je da je rekurzija situacija u kojoj jedna funkcija poziva sebe samu direktno ili
indirektno. Razmotrimo, kao primer, funkciju koja rekurzivno izracunava faktorijel:’

#include <iostream>
using namespace std;

int faktorijel(int n) {

if (n <= 0)
return 1;
else

return n*faktorijel(n-1);

}

int main() {

SVrednost faktorijela se, naravno, moze izradunati i iterativno, bez koridéenja rekurzije.

6.11

6.11.1

6.11. DEKLARACIJA I DEFINICIJA FUNKCIJE 133

int n;

cout << "Unesi prirodan broj: " << endl;

cin >> n;

cout << n << "I = " << faktorijel(n) << endl;
return O;

Ukoliko je funkcija faktorijel pozvana za argument 5, onda ¢e na steku poziva da se
formira Sest stek okvira (za vrednosti argumenta 5, 4, 3, 2, 1, 0), za Sest nezavisnih instanci
funkcije. U svakom stek okviru je drugacija vrednost argumenta n. No, iako u jednom
trenutku ima Sest aktivnih instanci funkcije faktorijel, postoji i koristi se samo jedan
primerak izvrSivog koda ove funkcije (u segmentu kdda), a svaki stek okvir pamti za svoju
instancu dokle je stiglo izvrSavanje funkcije, tj. koja je naredba tekuca u segmentu koda.

Deklaracija i definicija funkcije

Da bi kompilator ispravno mogao da proveri ispravnost poziva funkcije (da li je naveden
dobar broj argumenata i da li su argumenti i povratna vrednost odgovarajuéeg tipa), on mo-
ra da ima neke informacije o funkciji u trenutku obrade njenog poziva. Mnogi savremeni
programski jezici imaju kompilatore koji viSe puta Citaju tekst programa koji prevode
(kaZemo da su viseprolazni) i u prvom ¢itanju mogu da prikupe informacije o svim funkci-
jama, pa da u drugom citanju obrade sve pozive funkcija. To znaci da redosled definisanja
funkcija moze biti proizvoljan. Medutim, kompilator za programski jezik C++ (kao i za
njegovog prethodnika, jezik C) samo jednom Cita tekst programa. To znaci da se u tekstu
programa pre svakog poziva funkcije moraju naéi informacije o toj funkciji koje su po-
trebne za proveru ispravnosti poziva i prevodenje njenog poziva u masinski kod. U vecini
slu¢ajeva u kojima piSemo kratke programe i to u sklopu jedne datoteke, kdod moZemo
organizovati tako da se prvo navede definicija funkcije, a zatim da se u narednim funkci-
jama ranije definisana funkcija poziva (tako je uradeno u svim dosadaS$njim primerima).
Medutim, to reSenje nije uvek moguce.

Uzajamna rekurzija

Kada postoji vise funkcija u programu i kada postoje njihove meduzavisnosti, mozZe biti
veoma tesko ili nemoguce poredati njihove definicije na nacin koji omogucava prevodenje
(sa proverom tipova argumenata). Na primer, moguce je zamisliti situaciju u kojoj je do-
pusteno da funkcija A koristi i poziva funkciju B, a da funkcija B koristi i poziva funkciju
A (kaZemo da su funkcije A i B uzajamno rekurzivne). U tom slucaju, ni redosled definisa-
nja A, pa B, ni redosled definisanja B, pa A nisu ispravni, jer se u oba slu¢aja unutar prve
funkcije poziva druga funkcija koja nije jos definisana.

Razmotrimo, kao primer, program koji obraduje spisak datoteka na disku. Na disku su
podaci smeSteni u datotekama, koje se grupisu u direktorijume. Direktorijumi mogu da

134 GLAVA 6. FUNKCIJE

sadrZe datoteke, ali i druge direktorijume. Stoga je pogodno uvesti pojam stavke koja
¢e istovremeno predstavljati i datoteke i direktorijume. MoZemo definisati tip podataka
Stavka:®

const int DATOTEKA = 1;
const int DIREKTORIJUM = 2;

struct Stavka {
int tip;
string ime;
vector<Stavka> sadrzaj;

};

Prirodno je onda definisati zasebne funkcije koje obraduju datoteke i direktorijume, ali
potrebno je definisati i funkciju koja obraduje stavku tako $to analizira njen tip i na osnovu
toga poziva odgovarajucu funkciju za obradu. Pretpostavimo da ¢e se obrada datoteka vrSiti
samo tako Sto e se ispisati ime datoteke, a da ¢e se kod direktorijuma dodatno obradivati
sve stavke koje taj direktorijum sadrzi. DefiniSimo ove funkcije na slede¢i nacin.

void obradiDatoteku(const Stavka& datoteka) {

cout << "Datoteka: " << datoteka.ime << endl;
}
void obradiDirektorijum(const Stavka& direktorijum) {
cout << "Direktorijum: " << direktorijum.ime << endl;
for (Stavka stavka : direktorijum.sadrzaj)
obradiStavku(stavka) ;

void obradiStavku(const Stavka& stavka) {
if (stavka.tip == DATOTEKA)
obradiDatoteku(stavka) ;
else if (stavka.tip == DIREKTORIJUM)
obradiDirektorijum(stavka) ;

Medutim, prethodni program nije ispravan, jer se u funkciji za obradu direktoriju-
ma poziva funkcija obradiStavku koja jo§ nije definisana. Pomeranje definicije

%Vrednosti tipova ‘DATOTEKA® i ‘DIREKTORIJUM', umesto kao nezavisne vrednosti ‘int, bolje je uvesti
kao nabrojivi tip, koriS¢enjem klju¢ne reci ‘enum’ o ¢emu Ce biti reci u daljem tekstu.

6.11. DEKLARACIJA I DEFINICIJA FUNKCIJE 135

funkcije obradiStavku na pocetak ne bi pomoglo, jer se u njoj poziva funkcija
obradiDirektori jum.

Da bi se ova situacija mogla razresiti, potrebno je primetiti da prevodiocu nije potrebno
da poznaje celokupnu definiciju funkcije da bi mogao da proveri ispravnost njenog pozi-
vanja. Dovoljno je da zna njeno ime, broj i tipove parametara i tip povratne vrednosti. To
je sve sadrzano u deklaraciji funkcije (kaZemo i prototip funkcije ili potpis funkcije). U
prethodnom kodu je moguée prvo navesti deklaracije svih funkcija, nakon ¢ega njihove
definicije mogu biti navedene u proizvoljnom redosledu (dovoljno bi bilo i dodati samo
prototip funkcije obradiStavku, jer se samo ona poziva pre nego $to je definisana).

void obradiDatoteku(const Stavka& datoteka) ;
void obradiDirektorijum(const Stavka& direktorijum) ;

void obradiStavku(const Stavka& stavka) ;

void obradiDatoteku(const Stavka& datoteka) {

cout << "Datoteka: " << datoteka.ime << endl;
+
void obradiDirektorijum(const Stavka& direktorijum) {
cout << "Direktorijum: " << direktorijum.ime << endl;
for (Stavka stavka : direktorijum.sadrzaj)
obradiStavku(stavka) ;

void obradiStavku(const Stavka& stavka) {
if (stavka.tip == DATOTEKA)
obradiDatoteku(stavka) ;
else if (stavka.tip == DIREKTORIJUM)
obradiDirektorijum(stavka) ;

Deklaracija funkcije ima sledeéi opsti oblik:
tip ime_funkcije(niz_deklaracija_parametara);
Definicija funkcije ima sledeci opsti oblik:

tip ime_funkcije(niz_deklaracija_parametara) {
naredbe

}

Definicija funkcija mora da bude u skladu sa navedenim prototipom, tj. moraju da se po-
dudaraju tipovi povratne vrednosti i tipovi parametara. Deklaracija ukazuje prevodiocu

6.11.2

136 GLAVA 6. FUNKCIJE

da ¢e u programu biti kori$¢ena funkcija sa odredenim tipom povratne vrednosti i parame-
trima odredenog tipa. Zahvaljujuéi tome, kada prevodilac (na primer, u okviru funkcije
main), naide na poziv funkcije, moZe da proveri da li je njen poziv ispravan (Cak iako je
definicija funkcije nepoznata u trenutku te provere). Posto prototip sluzi samo za prove-
ravanje tipova u pozivima, nije neophodno navoditi imena parametara, ve¢ je dovoljno
navesti njihove tipove (mada dobro odabrana imena parametara Cesto oslikavaju njihovu
namenu i doprinose Citljivosti). U navedenom primeru, dakle, prototip je mogao da bude
i

void obradiStavku(const Stavka&);

Deklaracija ili definicija funkcije moraju biti navedeni u kodu pre prvog poziva te funkcije.
Postojanje dve iste deklaracije iste funkcije u okviru jednog programa je dozvoljeno, pa
1 postojanje dve deklaracije funkcije istog imena, a razlicitih lista parametara. Postojanje
dve definicije funkcije istog imena i sa istom listom parametara u jednom programu dovodi
do greske tokom prevodenja ili povezivanja.

Razdvojena kompilacija i povezivanje

Jo§ jedna prednost navodenja deklaracija funkcije je odvojena kompilacija programa koji
su podeljeni u vise datoteka. Lako je zamisliti scenario u kom Zelimo da neku grupu funk-
cija koristimo u viSe programa. Jedna mogucnost je da definicije tih funkcija izdvojimo
u zasebnu datoteku koju onda uklju¢ujemo (direktivnom #include) u svaki program u
kome je ona potrebna. Na primer, moZemo napraviti datoteku cifre.cpp koja ¢e sadr-
Zati definiciju funkcije koja izraCunava zbir cifara (uz neke druge funkcije koje rade sa
ciframa broja).

int zbirCifara(int n) {
int zbir = 0;
do {
cifra = n % 10;
zbir += cifra;
n /= 10;
} while (n > 0);
return zbir;

Tada program koji koristi ovu funkciju moze izgledati ovako (pretpostavljamo da ¢e dato-
teka cifre. cpp biti smeStena u isti direktorijum kao i datoteka u kojoj je sacuvan naredni
program).

6.11. DEKLARACIJA I DEFINICIJA FUNKCIJE 137

#include <iostream>
#include "cifre.cpp"

int main() {
int a;
cin >> a;
cout << zbir_cifara(a) << endl;

Direktiva #include prouzrokuje da se linija #include "cifre.cpp" zameni celokup-
nim sadrZajem datoteke cifre.cpp tj. da kompilator prevodi tekst u kom su navedene
prvo definicija funkcije zbir_cifara, a zatim funkcije main. Ovo reSenje ¢e funkcio-
nisati, ali, problemi nastaju u slu€aju programa koji na ovaj nac¢in koriste ogroman broj
funkcija. Prilikom izmene bilo glavnog programa, bilo jedne od mnogih funkcija koje su
ovako ukljucene u program, kompilator mora da prevodi celokupan tekst programa u kom
se nalaze definicije svih funkcija iznova. To je neefikasno i kompilacija takvih programa
bi trajala nedopustivo dugo (to ne znaci da bi se programi sporo izvrSavali, nego bi njiho-
va kompilacija bila dugotrajna). Zbog toga je uveden mehanizam odvojene kompilacije 1
povezivanja.

Datoteka koja sadrZi glavni program (recimo da se ona zove test_zbir_cifara.cpp)
treba da sadrZi prototip funkcije zbir_cifara i to pre funkcije main. Ovo se obi¢no rea-
lizuje tako $to se uz datoteku cifre. cpp koja sadrZi definicije funkcija za rad sa ciframa
broja kreira i datoteka zaglavlja cifre .hpp (ili cifre.h) koja sadrZi samo deklaracije
tih funkcija. Ta datoteka bi sadrzZala naredni kod:

int zbir_cifara(int n);

Ta datoteka onda se ukljucuje i u datoteku cifre. cppiudatoteku test_zbir_cifara.cpp.

Ta datoteka se ukljucuje u datoteku cifre.cpp da bi se obezbedilo da je ova deklaracija
u skladu sa definicijom funkcije zbir_cifara (ai jer neka druga funkcija u cifre.cpp
mozda koristi funkciju zbir_cifara, a definisana je pre nje). Datoteka cifre.hpp
se ukljucuje u datoteku test_zbir_cifara.cpp. da bi prevodilac mogao da proveri i
prevede poziv funkcije zbir_cifara unutar funkcije main.

Sadrzaj datoteke cifre. cpp.

#include "cifre.hpp"

int zbir_cifara(int n) {
int zbir = 0;
do {

138 GLAVA 6. FUNKCIJE

cifra = n % 10;
zbir += cifra;
n /= 10;
} while (n > 0);
return zbir;

SadrZaj datoteke test_zbir_cifara.cpp.

#include <iostream>
#include "cifre.hpp"
using namespace std;

int main() {
int a;
cin >> a;
cout << zbir_cifara(a) << endl;
return 0;

Datoteke zaglavlja se ne prevode direktno, ve¢ samo posredno (uklju¢ivanjem u * . cpp da-
toteke). Sada se i datoteka cifre. cpp i datoteka test_zbir_cifara.cpp mogu isprav-
no prevesti, ali nijedna od njih nije sama za sebe dovoljna da bi se dobio izvrSivi program.
IzvrSivi program moZemo dobiti ako obe datoteke prevedemo zajedno:

g++ test_zbir_cifara.cpp cifre.cpp -o test_zbir_cifara

Ovim, medutim, nismo re$ili polazni problem jer se uvek, istovremeno prevode obe dato-
teke iako je mozda bilo izmena samo u jednoj od njih. Bolje reSenje je da se prvo prevede
samo biblioteka cifre. cpp, zatim datoteka test_zbir_cifara.cpp i da se nakon toga
dobijene objektne datoteke povezu. Prevodenje ovih datoteka treba da bude samo do nivoa
objektnih datoteka (to su datoteke koje sadrza masinski kod funkcija koje su definisane
u cpp datotekama od kojih su nastale, ali nisu jo§ spremne za izvrSavanje, jer tek treba
da se povezu sa drugim objektnim datotekama), $to se moZe postiéi tako Sto se prilikom
prevodenja navede opcija —c. Time se dobijaju objektne datoteke koje imaju ekstenziju
*.0. Kada se one navedu prilikom pozivanja kompilatora vrsi se njihovo povezivanje i
dobija se izvrSivi program:

g++ —-c cifre.cpp
g++ -c test_zbir_cifara.cpp
g++ cifre.o test_zbir_cifara.o -o test_zbir_cifara

6.11. DEKLARACIJA I DEFINICIJA FUNKCIJE 139

Kada se sadrZaj neke od cpp datoteka promeni, dovoljno je samo nju ponovo prevesti i
ponovo povezati program.

Opisani mehanizam pokazuje da nije ni potrebno ni poZeljno

* . cpp datoteke ukljucivati u druge * . cpp datoteke.

Opisani proces razdvojenog kompiliranja i povezivanja obicno se automatizuje, korisée-
njem pomocnih alatki. Jedna od njih je program make. Ako se koriste integrisana okruZe-
nja za izgradnju programa, tada se obi¢no kreiraju projekti u kojima se navode cpp i hpp
datoteke od kojih se program gradi, a okruZenje automatski odreduje postupak kojim se
od njih odvojenom kompilacijom i povezivanjem dobija izvr§ivi program.

I prototipovi funkcija iz standardne biblioteke dati su u datotekama zaglavlja. One obic-
no nemaju nikakvu ekstenziju, a navode se unutar zagrada oblika <. . .> poput datoteka
<algorithm>, <vector>, <string> itd. Dakle, da bi se funkcije iz standardne bibliote-
ke mogle ispravno koristiti, dovoljno je samo ukljuciti odgovarajuce zaglavlje. Medutim,
neki prevodioci (ukljucujuéi gcc/g++) poznaju prototipove funkcija standardne biblio-
teke, Cak i kada zaglavlje nije ukljuceno. Tako, ako se u gcc/g++-u ne ukljuci potrebno
zaglavlje, ponekad se dobija upozorenje, ali ne i greSka jer su prototipovi standardnih
funkcija unapred poznati. Ipak, ovakav kod treba izbegavati i zaglavlja bi uvek trebalo ek-
splicitno ukljuciti (tj. pre svakog poziva funkcije trebalo bi osigurati da kompilator poznaje
njen prototip).

Mnogo vise reci o programima koji se sastoje iz veceg broja datoteka i odvojenoj kompi-
laciji bice u narednim tomovima ove knjige.

140 GLAVA 6. FUNKCIJE

7.1

7.1.1

C7. Strukture podataka

Korisnicki definisani tipovi: nabrojivi tip, strukture, klase

Postoji svega nekoliko ugradenih osnovnih tipova (na primer, int, char, double). Veé
nizovi, vektori, niske predstavljaju sloZene tipove podataka. U jeziku C++ korisnik moZe
definisati nove tipove i to na nekoliko na¢ina. Mogu se Kkoristiti i nabrojivi tipovi, sa konac-
nim skupom vrednosti. Podaci se mogu organizovati u strukture (tj. slogove), pogodne za
specifi¢ne potrebe. Na taj nacin se povezane vrednosti (ne nuzno istog tipa) tretiraju kao
jedna celina i, za razliku od nizova gde se pristup pojedinacnim vrednostima vrsi na osno-
vu brojevnog indeksa, pristup pojedinacnim vrednostima vrSi se na osnovu imena polja
strukture. Moguée je definisati i klase, koje pored podataka sadrze i funkcije koje obradu-
ju te podatke (tzv. metode). Pored definisanja novih tipova, ve¢ definisanim tipovima se
moze pridruZiti i novo ime.

Nabrojivi tipovi (enum)
U nekim slucajevima korisno je definisati tip podataka koji ima mali skup dopustenih

vrednosti. Ovakvi tipovi se nazivaju nabrojivi tipovi. U jeziku C++ nabrojivi tipove se
definiSu kori§¢enjem klju¢ne reci enum. Na primer:

enum znak_karte {
KARO,
PIK,
HERC,
TREF
Irg

Nakon navedene definicije, u programu se mogu koristiti imena KARO, PIK, HERC, TREF,
umesto nekih konkretnih konstantnih brojeva, Sto popravlja Citljivost programa. Pri tome,
obicno nije vazno koje su konkretne vrednosti pridruZene imenima KARO, PIK, HERC, TREF,

141

142 GLAVA 7. STRUKTURE PODATAKA

ve¢ je dovoljno znati da su one sigurno medusobno razliCite i celobrojne. U navedenom
primeru, KARO ima vrednost O, PIK vrednost 1, HERC vrednost 2 i TREF vrednost 3. Moguce
je 1 eksplicitno navodenje celobrojnih vrednosti. Na primer:

enum znak_karte {
KARO
PIK =
HERC
TREF
i

>

]

>

]
QO H N I

Moguce je navesti i vrednosti samo za neka imena, dok se narednim automatski dodeljuju
vrednosti uveéane za 1.

enum mesec {
JAN = 1, FEB, MAR, APR, MAJ, JUN,
JUL, AVG, SEP, OKT, NOV, DEC

}

ili

enum karta {
AS = 1, DVA, TRI, CETIRI, PET,
SEST, SEDAM, OSAM, DEVET, DESET,
ZANDAR = 12, KRALJICA, KRALJ

}

Vrednosti nabrojivih tipova nisu promenljive i njima se ne moze menjati vrednost. S druge
strane, promenljiva moZe imati tip koji je nabrojiv tip i koristiti se na uobic¢ajene nacine.
Slican efekat - uvodenja imena sa pridruzenim celobrojnim vrednostima - moZe se postii
1 pretprocesorskom direktivom #define, ali tada ta imena ne ¢ine jedan tip (kao kada
se koristi enum) i lakSe je napraviti greSku. (Direktiva #define karakteristi¢na je za pro-
gramski jezik C i ovoj knjizi koristi¢emo je u veoma malom obimu.) Grupisanje u tip je
pogodno zbog provera koje se vrse u fazi prevodenja.

Sli¢no kao i kod struktura i unija, uz definiciju tipa moguce je odmah deklarisati i pro-
menljive. Promenljive se mogu i naknadno definisati. Na primer,

znak_karte znak;

Nabrojivi tipovi se Cesto koriste da zamene konkretne brojeve u programu, na primer, po-
vratne vrednosti funkcija. Mnogo je bolje, u smislu citljivosti programa, ukoliko funkcije

7.1.2

7.1. KORISNICKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 143

vracaju (razlicite) vrednosti koje su opisane nabrojivim tipom (i imenima koja odgovaraju
pojedinim povratnim vrednostim) nego konkretne brojeve. Tako, na primer, tip povratne
vrednosti neke funkcije moZe da bude nabrojiv tip definisan na slede¢i nacin:

enum return_type {
0K,
FileError,
MemoryError,
TimeOut

Strukture

Osnovni tipovi jezika C++ Cesto nisu dovoljni za pogodno opisivanje svih podataka u pro-
gramu. Ukoliko je neki podatak sloZene prirode tj. sastoji se od viSe delova, ti njegovi
pojedinacni delovi mogu se Cuvati nezavisno (u zasebnim promenljivim), ali to ¢esto vo-
di programima koji su nejasni i teski za odrZavanje. Umesto toga, pogodnije je koristiti
strukture. Za razliku od nizova, vektora, listi koji objedinjuju jednu ili viSe promenljivih
istog tipa, struktura objedinjuje jednu ili viSe promenljivih, ne nuzno istih tipova. Defini-
sanjem strukture uvodi se novi tip podataka i nakon toga mogu da se koriste promenljive
tog novog tipa, na isti nacin kao i za druge tipove. Termin struktura se nekada koristi i za
tip podataka i za konkretne instance tj. objekte tog tipa.

Koris$éenje struktura bice ilustrovano na primeru razlomaka. U jeziku C++ ne postoji tip
koji opisuje razlomke, ali moZe se definisati struktura koja opisuje razlomke. Razlomak
moZe da bude opisan parom koji ¢ine brojilac i imenilac, na primer, celobrojnog tipa.
Brojilac (svakog) razlomka zvace se brojilac, a imenilac (svakog) razlomka zvace se
imenilac. Struktura razlomak moZe se definisati na slede¢i nacin:

struct razlomak {
int brojilac;
int imenilac;

};

Kljuéna re¢ struct zapo€inje definiciju strukture. Nakon nje, navodi se ime strukture, a
zatim, izmedu viticastih zagrada, opis njenih clanova (ili polja, atributa). Imena ¢lanova
strukture se ne mogu koristiti kao samostalne promenljive, one postoje samo kao deo slo-
Zenijeg objekta. Prethodnom definicijom strukture uveden je samo novi tip pod imenom
struct razlomak, ali ne i promenljive tog tipa.

Strukture mogu sadrZati promenljive proizvoljnog tipa. Na primer, moguce je definisati
strukturu koja sadrZi i niz.

144 GLAVA 7. STRUKTURE PODATAKA

struct student {
string ime;
float prosek;
Ig

Strukture mogu sadrZati i nabrojive tipove.

struct karta {
unsigned char broj;
znak_karte znak;

} mala_dvojka = {2, TREF};

Definicija strukture uvodi novi tip i nakon nje se ovaj tip moze koristiti kao i bilo koji
drugi. Definicija strukture se obi¢no navodi van svih funkcija. Ukoliko je navedena u okviru
funkcije, onda se moZe koristiti samo u okviru te funkcije.

razlomak a, b, c;

Definicijom strukture je opisano da se razlomci sastoje od brojioca i imenioca, dok se
navedenom deklaracijom uvode tri konkretna razlomka koja se nazivaju a, bi c.

Moguca je i deklaracija sa inicijalizacijom, pri ¢emu se inicijalne vrednosti za ¢lanove
strukture navode izmedu vitiCastih zagrada:

razlomak a = {1, 2};

Redosled navodenja inicijalizatora odgovara redosledu navodenja ¢lanova strukture. Dakle,
navedenom deklaracijom je uveden razlomak a ¢iji je brojilac 1, a imenilac 2.
Definisanje strukture i deklarisanje i inicijalizacija promenljivih moZe se (isto vazi i za
nabrojive tipove) uraditi istovremeno (otuda i neuobicajeni simbol ; nakon zatvorene vi-
tiCaste zagrade prilikom definisanja strukture):

struct razlomak {
int brojilac;
int imenilac;
}a=4{1, 2}, b, c;

Clanu strukture se pristupa preko imena promenljive (&iji je tip struktura) iza kojeg se
navodi tacka a onda ime ¢lana, na primer:

7.1. KORISNICKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 145

a.imenilac

Na primer, vrednost promenljive a tipa razlomak moZe biti ispisana na slede¢i nacin:

cout << a.brojilac << "/" << a.imenilac << endl;

Naglasimo da je operator ., iako binaran, operator najviSeg prioriteta (istog nivoa kao male
zagrade i unarni postfiksni operatori).

Ne postoji konflikt izmedu imena polja strukture i istoimenih promenljivih, pa je naredni
kod korektan.

int brojilac = 5, imenilac = 3;
a.brojilac = brojilac; a.imenilac = imenilac;

Strukture mogu biti ugneZdene, tj. ¢lanovi struktura mogu biti druge strukture. Na primer:

struct dvojni_razlomak {
razlomak gore;
razlomak dole;

};

Od ranije prikazanih operacija, nad promenljivim tipa strukture dozvoljene su operacije
dodele a nisu dozvoljeni aritmeticki i relacijski operatori.

Operator sizeof se moZe primeniti i na ime tipa i na promenljive tog tipa i u oba slucaja
dobija se broj bajtova koje taj tip ili promenljiva zauzimaju u memoriji. Ovaj operator
moZe se primeniti i na sloZene tipove, pa i na strukture. Napomenimo da tada broj mo-
Ze nekada biti i veci od zbira veli¢ina pojedinacnih polja, jer se zbog uslova poravnanja
(engl. alignment), o kojem e viSe biti re¢i u narednim tomovima ove knjige, ponekad
izmedu dva uzastopna polja strukture ostavlja prazan prostor.

Cesto postoji povezana skupina slozenih podataka. Umesto da se oni ¢uvaju u nezavisnim
nizovima (Sto bi vodilo programima teSkim za odrZavanje) bolje je koristiti nizove struk-
tura. Na primer, ako je potrebno imati podatke o imenima i broju dana meseci u godini,
moguce je te podatke Cuvati u nizu sa brojevima dana i u (nezavisnom) nizu imena meseci.
Bolje je, medutim, opisati strukturu mesec koja sadrZi broj dana i ime:

struct opis_meseca {
string ime;
int broj_dana;

};

146 GLAVA 7. STRUKTURE PODATAKA

1 koristiti niz ovakvih struktura:

opis_meseca mesecil[13];

(deklarisan je niz duzine 13 da bi se meseci mogli referisati po svojim rednim brojevima,
pri ¢emu se pocetni element niza ne koristi).

Moguca je i deklaracija sa inicijalizacijom (u kojoj nije neophodno navodenje broja ele-
menata niza)':

struct opis_meseca mesecil[] = {
{"",01},
{ "januar",31 },
{ "februar",28 },
{ "mart",31 },

{ "decembar",31 }
I

U navednoj inicijalizaciji unutrasnje vitiCaste zagrade je moguce izostaviti:

struct opis_meseca mesecil] = {
nn O
"januar",31,
"februar", 28,
"mart",31,

"decembar", 31

};

Nakon navedene deklaracije, ime prvog meseca u godini se moze dobiti sameseci[1] . ime,
njegov broj dana sa meseci[1] .broj_dana itd.
Broj elemenata ovako inicijalizovanog niza mozZe se izracunati na slede¢i nacin:

sizeof (meseci)/sizeof (opis_meseca)

Strukture mogu da sadrZe i funkcije, koje se onda nazivaju metode (to su funkcije ¢lanice
struktura ili klasa, koje sluZe za rad sa podacima koje se ¢uvaju u strukturi ili klasi). Na
primer, struktura za predstavljanje razlomka moZe sadrzati i metodu za ispis razlomka.

U ovom primeru se zanemaruje &injenica da februar moZe imati i 29 dana.

7.1. KORISNICKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 147

struct Razlomak {
int brojilac;
int imenilac;

void ispisiSe() {
cout << brojilac << "/" << imenilac << endl;
3
i

Kada definiSemo konkretan razlomak, moZemo pozvati metodu za ispis (kaZemo da na taj
nacin Saljemo poruku razlomku da se ispise).

Razlomak a = {1, 2};
a.ispisiSe();

Posebna je metoda koja se zove isto kao i struktura i koja sluZi da inicijalizuje polja struktu-
re. Nju nazivamo konstruktor. Pored postavljanja vrednosti polja, u konstruktoru mozemo,
na primer, izvrSiti skraéivanje razlomka (za to moZemo upotrebiti funkciju gcd iz zaglavlja
<numeric>, koja izracunava najveéi zajednicki delilac dva data broja).

struct Razlomak {
int brojilac;
int imenilac;

Razlomak(int b, int i) {
int nzd = gcd(brojilac, imenilac);
brojilac = b / nzd;
imenilac = i / nzd;

}

void ispisiSe() {
cout << brojilac << "/" << imenilac << endl;

}

Tada se sturktura moZe kreirati i inicijalizovati pozivom konstruktora, na slede¢i nadin.

Razlomak a(2, 4);
a.ispisiSe();

148 GLAVA 7. STRUKTURE PODATAKA

Ovaj program ispisuje tekst 1/2.

Posebna vrsta metoda su operatori. Na primer, mozemo definisati operatore < i ==, kojima
poredimo vrednosti razlomaka. Operatori se definiSu slicno kao i obi¢ne metode, jedino im
ime mora biti operatorXYZ, gde je XYZ simbol operatora (npr. operator+, operatorx,
operator<, operator==). Poredenje realizujemo svodenjem na zajednicki imenilac,
pronalaZenjem njihovog NZS (bibliote¢kom funkcijom 1cm iz zaglavlja <numeric>), pret-
postavljajuci da pri tom neée doci do prekoracenja.

struct Razlomak {

// provera da li je ovaj razlomak jednak drugom
bool operator==(const Razlomak& drugi) {
// nzs dva imentoca
int nzs = lcm(imenilac, drugi.imenilac);
// poredimo brojioce prosirenih razlomaka
return brojilac*(nzs/imenilac) == drugi.brojilac*(nzs/drugi.imenilac);

// provera da li je ovaj razlomak manji od drugog
bool operator<(const Razlomak& drugi) {
// nzs dva imenioca
int nzs = lcm(imenilac, drugi.imenilac);
// poredimo brojioce prosirenih razlomaka
return brojilac*(nzs/imenilac) < drugi.brojilac*(nzs/drugi.imenilac);

};

int main() {
Razlomak a(3, 4), b(6, 8);
if (a == b) cout << "Jednaki su" << endl;
else cout << "Nisu jednak" << endl;

7.1.3 Klase
Struktura ima svojstvo da se svim poljima i svim metodama svake njene instance (promen-
ljiva tipa strukture), ukoliko nije drugacije receno (koris¢enjem kljuce reci private), mo-
Ze pristupati iz bilo kojeg dela programa. To moZe da olaksa kori$¢enje struktura ali moze
da omogudi nezZeljene upotrebe instanci strukture te time omogucava lo§ dizajn programa.
Dizajn programa moZe biti kvalitetniji ako se interna reprezentacija podataka koji ¢ine

7.1. KORISNICKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 149

neki tip moZe sakriti od korisnika tog tipa. Na primer, nije potrebno da korisnik strukture
Tacka zna da li je tacka interno predstavljena pomoc¢u Dekartovih ili polarnih koordinata.
To omogucava da se u nekom trenutku interna reprezentacija podataka i algoritmi za rad
sa njima promene (na primer, optimizuju), bez uticaja na kod u kojem se tip podataka
koristi. Ogranicen pristup podacima moZe i da ¢uva neka njihova svojstsva. Na primer,
ako korisnik ne moZe da menja polja razlomka nakon Sto je razlomak konstruisan, tada
bismo bili sigurni da su brojilac i imenilac uvek skraceni (jer se u konstruktoru skracuju)
i tada bi se poredenje dva razlomka moglo izvrSiti jednostavnim poredenjem brojilaca i
imenilaca. Dodatno, moZe biti pogodno da su neka polja i neke metode dostupni korisniku
definisanog tipa, a neka polja i neke metode nisu. Takve moguénosti (i jo§ mnoge druge)
pruZaju klase. Uobli¢avanje podataka i metoda koji ih obraduju u vidu klasa jedna je od
centralnih ideja objektno-orijentisanih jezika kao $to je C++. U ovoj knjizi, medutim, nece
biti prezentovana ni koriS¢ena mnoga svojstva objektno-orijentisanog programiranja (kao
Sto su nasledivanje, polimorfizam, apstrakcija), ve¢ ¢e se koristiti (i to u ogranic¢enoj meri)
samo enkapsulacija — upravo opisano svojstvo objedinjavanja podataka i metoda koji ih
obraduju u celine, a kojima pristup moZe biti ograni¢en na razli¢itim nivoima. Dodatno,
u ovoj knjizi neemo se baviti ni definisanjem destruktora, operatora dodele ni drugim
sliénim konceptima objektno-orijentisanog programiranja.

U jeziku C++ identifikatori mogu imati i doseg nivoa klase, koji predstavlja kompromis
izmedu globalnih i lokalnih promenljivih. Metode koje pripadaju klasi mogu da pristupe
svim promenljivim koje su deo te klase. Moguce je definisanje viSe objekata (instanci klase)
isvaki od njih ima svoju zasebnu kopiju tih promenljivih, a koristi iste funkcije za rad njima.
Za razliku od struktura u kojima je, ukoliko nije traZeno drugacije (koris¢enjem kljuce
reCi private), pristup svim poljima i svim metodama je javan, u klasama je pristup svim
poljima i svim metodama privatan, ukoliko nije trazeno drugacije (koris¢enjem kljuce reci
public).

Atributi i metode navedeni u sekciji private su privatmi i moZe im se pristupiti samo iz
koda koji se nalazi unutar klase, dok su oni navedeni u sekciji public javni i moZe im se
pristupiti iz bilo kog dela koda. Na primer, klasa razlomak moZe sakriti pristup brojiocu
i imeniocu, kao 1 metodi za skracivanje razlomka koja ¢e biti pozivana svaki put kada se
razlomak konstruise.

class Razlomak {
private:
int brojilac, imenilac;

void Skrati() {
int nzd = gcd(brojilac, imenilac);
brojilac /= nzd;
imenilac /= nzd;

150 GLAVA 7. STRUKTURE PODATAKA

public:

Razlomak(int b, int i) {
brojilac = b;
imenilac = i;
Skrati();

¥

void IspisiSe() {
cout << b << "/" << i;

}

bool operator==(const Razlomak& drugi) {
return brojilac == drugi.brojilac && imenilac == drugi.imenilac;
b
};

Za navedeni kdd, moguce je u programu deklarisati instancu klase Razlomak, tj. promen-
ljivu tipa Razlomak, na sledeéi nacin (koriSéenjem konstruktora, analogno strukturama):

Razlomak r(3,4);

Nad promenljivom r moZe se onda koristiti metod IspisiSe jer je javan:

r.IspisiSe();

ali ne i metod Skrati (sem u okviru metoda koji ¢ine klasu Razlomak). U okviru klasa
mogu se definisati i operatori, Sto omoguéava davanje specifi¢nog znacenja operatorima
kada se primeni na instance klase. U navedenom primeru, definisan je operator ==, ¢ime
je omoguéeno da se dve instance tipa Razlomak porede na elegantan nacin: r1 == r2,
kao da se radi o osnovnim tipovima (za koje je ovaj operator predefinisan).

Primetimo da se u prethodnom tekstu govori o metodama a ne o funkcijama. Ovi pojmovi
su, zapravo, vrlo bliski - i metode i funkcije vrSe nekakva izraCunavanja i nekakve obrade
podataka. Razlika je u tome Sto se metoda definiSe u okviru neke klase i moZe da primenju-
je samo na instancama te klase (Sto znaci da se ime metoda navodi se iza imena instance
i simbola tacke) pri ¢emu moZe da ima i dodatne parametre. S druge strane, funkcije se
definiSu van klasa i ne primenjuju se neposredno na instance klase, mada naravno mogu
da imaju i takve parametre. Postoji ocigledna sintaksicka razlika u pozivanju metoda i
funkcija. Na primer, metoda IspisiSe koristi se tako §to se primenjuje neposredno na
objekat r:

7.1.4

7.1. KORISNICKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 151
r.IspisiSe();

dok bi se neka funkcija £ koja kao parametar ima razlomak pozivala na sledeéi nacin:

f(r);

Vedina sloZenih tipova koje smo do sada koristili (na primer string i vector) su defini-
sani kao klase. Zato su funkcije koje smo koristili (na primer, size()) zapravo metode
vezane za ove klase, te ih koristimo u obliku a.size () a ne u obliku size(a).

Parovi i torke (tipovi pair<T1, T2>i tuple<T1, ..., Tn>)

Cesto je potrebno da u programu upamtimo ureden par ili neku malo $iru n-torku eleme-
nata (krace se kaze samo “torku”, engl. tuple), ne obavezno istog tipa. Jedan nacin da se
to uradi je da se definiSe novi tip strukture isklju¢ivo za trenutne potrebe. Sa druge strane,
jezik C++ daje bibliotecku podrsku za parove i torke i nekada je jednostavnije iskoristiti
je, pogotovo sto bibliotecki parovi i torke imaju definisane i neke korisne operacije (poput
poredenja).

Par se realizuje tipom pair<T1, T2>, gde je T1 tip prvog, a T2 tip drugog elementa
uredenog para (na primer, pair<string, int> oznacava ureden par u kome je prvi ele-
ment tipa string, a drugi tipa int). Da bi se parovi mogli koristiti, potrebno je ukljuciti
zaglavlje <utility>, ili neko drugo zaglavlje koje ukljucuje i ovo zaglavlje (na primer,
zaglavlje <map>, koje nudi podrsku za mape, o ¢emu ¢e vise reci biti u poglavlju 7.5).
Inicijalizacija se moZe izvrS$iti na isti nacin kao i kod inicijalizacije strukture. Par se moZe
izgraditi od pojedinacnih elemenata funkcijom make_pair. Kada je par definisan, poje-
dina¢nim podacima moZemo pristupiti kori§¢enjem polja first i second. Na primer,

pair<string, double> student = {"Petar Petrovic", 9.38};
cout << student.first << " " << student.second << endl;

Izdvajanje pojedinacnih elemenata para se moZe vrSiti kori§¢enjem polja first i second,
ali postoje i drugi nacini da se to uradi.

pair<string, double> student = {"Petar Petrovic", 9.38};

string ime = student.first;
double prosek = student.second;

Drugi nacin je da se upotrebi funkcija tie, raspoloZiva u zaglavlju <tuple>.

152 GLAVA 7. STRUKTURE PODATAKA

pair<string, double> student = {"Petar Petrovic", 9.38%};
string ime;

double prosek;

tie(ime, prosek) = student;

Jos elegantniji nacin, podrzan od verzije C++17, je sledeéi:

pair<string, double> student = {"Petar Petrovic", 9.38%};
auto [ime, prosek] = student;

Parovi se mogu dodeljivati jedan drugom (ako su istog tipa), ali i porediti. Poredenje jedna-
kosti se vr$i operatorom ==, a razli¢itosti operatorom !=. Dva para su jednaka ako i samo
ako su sve odgovarajuée komponente jednake. Definisan je i poredak parova, koris¢enjem
operatora <, >, <=1 >=. Parovi se porede leksikografski (prvo se, podrazumevanom rela-
cijom, porede prvi elementi, pa ako su oni jednaki, porede se drugi elementi).

Torke su predstavljene tipom tuple<T1, ..., Tn>,za ije je koriS¢enje potrebno uklju-
Citi zaglavlje <tuple>. Inicijalizacija se moZe vrSiti na isti nacin kao i kod parova. Poje-
dina¢nim elementima torke se mozZe pristupiti koris¢enjem funkcija get<i>. Na primer

tuple<int, int, int> datum = {2024, 3, 29};
int godina = get<0>(datum) ;

Izdvajanje svih polja moZemo uraditi funkcijom tie.

int dan, mesec, godina;
tie(dan, mesec, godina) = datum;

Od verzije C++17 moze se koristiti i udobnija sintaksa.

auto [dan, mesec, godinal = datum;

I torke podrZavaju poredenje jednakosti i leksikografsko poredenje.

tuple<int, int, int> datuml = {2024, 3, 29};
tuple<int, int, int> datum2 = {2024, 4, 17};
if (datuml < datum2)

cout << "prvi datum je raniji" << endl;
else if (datum2 < datuml)

cout << "drugi datum je raniji" << endl;

7.1.5

7.1. KORISNICKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 153

else
cout << "datumi su jednak" << endl;

Imenovanje tipova — typedef

Moguce je kreirati nova imena postojecih tipova koristec¢i kljuénu re¢ typedef. Na primer,
deklaracija

typedef tuple<int, int, int> Datum;

uvodi ime Datum kao sinonim za tip tuple<int, int, int>.Ime tipa Datum se onda
moZe koristiti u deklaracijama, eksplicitnim konverzijama i slicno, na isti na¢in kao $to se
koristi ime tuple<int, int, int>:

Datum prviMaj = {2024, 5, 1};

Novo ime tipa se navodi kao poslednje, na poziciji na kojoj se u deklaracijama obi¢no
navodi ime promenljive, a ne neposredno nakon klju¢ne rec¢i typedef. Obi¢no se novou-
vedena imena tipova piSu velikim pocetnim slovima da bi se istakla.

Deklaracijom typedef se ne kreira novi tip ve¢ se samo uvodi novo ime za potojeci tip.
Staro ime za taj tip se moZe Koristiti i dalje.

Deklaracija typedef se moZe koristiti za imenovanje prili¢no naprednih tipova (na primer,
tip pokazivaca na funkcije, o kojima ée viSe reci biti u narednim tomovima ove knjige) i u
tim situacijama se novo ime tipa ne navodi na kraju, ve¢ je sastavni deo deklaracije.

typedef int (*PFI) (char *, char *);

Postoje dva osnovna razloga za koriSéenje kljucne reci typedef i imenovanje tipova. Prvi
je skradivanje koda i popravljanje Citljivosti programa, narocito u sluc¢aju dugackih imena
tipova (na primer, imenovani tip Datum je mnogo €itljiviji nego tip tuple<int, int,
int>). Drugi razlog je parametrizovanje tipova u programu da bi se dobilo na njegovoj
prenosivosti i lakoj izmeni. Naime, ukoliko se typedef koristi za uvodenje novih imena za
tipove koji su masSinski zavisni, u slu¢aju da se program prenosi na drugu masinu, potrebno
je promeniti samo typedef deklaracije. Na primer, u zavisnosti od konkretnog racunara,
za imenovanje pogodnog celobrojnog tipa moze se koristiti typedef short CeoBroj,
typedef int CeoBrojilitypedef long CeoBroj iunastavku se onda moZe koristiti
samo tip CeoBroj.

7.2

154 GLAVA 7. STRUKTURE PODATAKA

Strukture podataka sa sekvencijalnim pristupom

U mnogim programima potrebno u memoriji ¢uvati neku seriju elemenata, ¢iji se ele-
menti ucitavaju ili izraCunavaju, a zatim i obraduju redom, jedan za drugim, koris¢enjem
petlji. Jezik C++ nam na raspolaganje stavlja razliCite oblike sekvencijencijalnih kolekcija
podataka tj. sekvencijalnih kontejnera (engl. sequential container) koji nam pruZaju ovu
mogucénost.

Strukture podataka sa sekvencijalnim pristupom su Sablonske strukture (eng. templates) te
mogu da ¢uvaju elemente proizvoljnog tipa T.

U nastavku éemo prouciti:

« staticki alocirane nizove,
o tip vector<T> (vektore),
o tip 1ist<T> (liste),

Pored nabrojanih struktura, koriste se i dinamicki alocirani nizovi koji ¢e detaljno biti
opisani u narednim tomovima ove knjige.

Kolekcija T[] array<T> vector<T> Tist<T> qoirs'?:.‘rd;
veli¢ina poznata
u fazi kompilacije da da e ne ne
lfuﬁgﬂgna gg;;gﬁ ne ne da da da
memorijski segment stek stek hip hip hip
indeksni pristup da da da ne ne
iteracija oba smera oba smera oba smera oba smera udesno
s na kraj na kraj :
ubacivanje (dok ima mesta) | (dok ima mesta) na kraj da da
izbacivanje sa kraja sa kraja sa kraja da da
dodela ne da da da da
prenos adresa kopija kopija kopija kopija

Slika 7.1: Poredenje sekvencijalnih struktura podataka

Table: Poredenje sekvencijalnih struktura podataka {#tbl:sekvencijalne}

Ove kolekcije se razlikuju po nekim svojim svojstvima (pre svega po tome da li zahtevaju
da broj elemenata koji se mogu smestiti u kolekciju bude unapred poznat, ali i po brzini i
efikasnosti nekih operacija). U tabeli @tbl:sekvencijalne rezimirane su neke karakteristike
razlicitih sekvencijalnih kolekcija podataka koje su ukratko opisane u nastavku:

« Kod nekih kolekcija veli¢ina (maksimalni broj elemenata koji mogu biti smeSteni u
kolekciju) mora biti poznata u fazi pisanja tj. prevodenja programa, a kod nekih ne.

» Neke kolekcije mogu tokom rada programa menjati veli¢inu (dodavanjem ili ukla-
njanjem elemenata).

7.2.1

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 155

» Kada su kolekcije definisane kao lokalne promenljive, elementi nekih kolekcija
se Cuvaju u stek segmentu memorije (gde se memorija zauzima i oslobada brZe,
ali je ima manje), a nekih delom u stek stek segmentu a delom u hip segmentu
(gde se memorija zauzima i oslobada sporije, ali je ima viSe). Malo preciznije, za
kolekcije ¢ija se veli¢ina moZe menjati u fazi izvrSavanja, u stek segmentu cuvaju se
informacije o toj kolekciji koje je opisuju (na primer, koliko elemenata je alocira-
no i koliko elemenata se koristi) a sami elementi kolekcije se cuvaju u hip segmentu.

« Neke kolekcije dopustaju efikasan indeksni pristup elementu (efikasan pristup ele-
mentu na datoj poziciji), a neke ne (elementu se moZe pristupiti samo ako se redom
obilaze svi elementi od pocetka kolekcije, pa do traZzenog).

« Neke kolekcije dopustaju nabrajanje elemenata u oba smera (od prvog ka poslednjem
i od poslednjeg ka prvom), a neke samo od prvog ka poslednjem (udesno).

« Neke kolekcije dopustaju efikasno dodavanje elemenata u kolekciju (neke na pro-
izvoljno mesto, neke samo na kraj, a neke na kraj, ali samo dok u kolekciji ima
dovoljno prostora za smeStanje tog novog elementa).

 Neke kolekcije se mogu dodeljivati novim promenljivim (pri ¢emu se dodelom ko-
pira celokupan sadrzaj kolekcije), a neke ne.

 Neke kolekcije se prenose u funkciju po vrednosti (pravi se kopija Citave kolekcije),
osim ako programer eksplicitno ne zahteva da se prenos vr$i po referenci ili preko
pokazivaca, a neke (nizovi) se prenose u funkciju tako sto se funkciji dostavi samo
adresa pocetka kolekcije (pokazivaC na njen pocetak).

Staticki alocirani nizovi

Najjednostavniji oblik niza u jeziku C++ je staticki alociran niz, nasleden iz programskog
jezika C. Stati¢ki alocirani niz koristimo kada unapred (u trenutku pisanja i u fazi kompi-
lacije programa) znamo tac¢an broj potrebnih elemenata niza ili makar gornju granicu tog
broja (na primer, znamo da se nece koristiti viSe od 100 elemenata). Pristup elementima
ovakvih nizova je veoma brz, ali se ne oni ne mogu prosirivati, porediti, dodeljivati jedan
drugom i sli¢no.

Razmotrimo problem ucitavanja 10 brojeva i njihovog ispisa u obratnom redosledu. Jasno
je da je potrebno upamtiti sve elemente istovremeno u memoriji da bismo mogli da ih
ispiSemo unazad. Za to moZemo upotrebiti 10 pojedinacnih promenljivih, ali mnogo bolje
od toga je upotrebiti niz. Posto znamo da e biti ucitano tacno 10 elemenata, definisacemo
staticki niz duZine 10.

#include <iostream>
using namespace std;

int main() {

156 GLAVA 7. STRUKTURE PODATAKA

int brojevi[10];

for (int i = 0; i < 10; i++)
cin >> brojevilil;

for (int i = 9; i >= 0; i--)
cout << brojevil[i] << " '

return 0;

Nizovi u programskom jeziku C++ deklariSu se u obliku:
tip ime_niza[dimenzija]l;
Broj elemenata niza zadat je vredno$¢u dimenzija. Na primer, deklaracija

int al[10];

uvodi niz a od 10 celih brojeva. Prvi element niza ima indeks 0, pa su elementi niza:
alo], al1l, al2], al3], al4], al[5], al6], al7], al8], al[9]

Indeksi elemenata niza obi¢no su nenegativni celi brojevi (mada je u nekim prilikama kada
se nizovi koriste u kombinaciji sa pokaziva¢ima dopusteno koristiti i negativne indekse, o
¢emu Ce biti reci u narednim tomovima ove knjige).

Veli¢ina memorijskog prostora potrebnog za niz odreduje se u fazi prevodenja programa, pa
broj elemenata niza (koji se navodi u deklaraciji) mora biti konstantan izraz. U narednom
primeru, deklaracija niza a je ispravna, dok su deklaracije nizova b i ¢ neispravne:

int x;
char a[100+10];

int b[];
float c[x];

Prilikom deklaracije moZe se izvrSiti i inicijalizacija:

int af[b5] = { 1, 2, 3, 4, 5 };

Nakon ove deklaracije, sadrZaj niza a jednak je:

12345

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 157

Ako se koristi inicijalizacija, moguce je navesti vecu dimenziju od broja navedenih ele-
menata (kada se pocetni elementi deklarisanog niza inicijalizuju zadatim vrednostima, a
preostali elementi podrazumevanim vrednostima — ako postoje za odgovarajudi tipa). Na
primer, narednom deklaracijom uvodi se staticki niz od 100 elemenata od kojih je prvi
jednak nuli (a preostali elementi nisu inicijalizovani, mada ¢e ih neki kompilatori inicija-
lizovati na vrednost nula).

int a[100] = {0};

Svi elementi globalnih brojevnih nizova inicijalizuju se na nulu.

Navodenje dimenzije manje od broja elemenata inicijalizatora je neispravno i ne prolazi
kompilaciju. Dimenziju niza je moguce izostaviti samo ako je prilikom deklaracije izvrSena
iinicijalizacija niza i tada se dimenzija odreduje na osnovu broja elemenata u inicijalizatoru.
Na primer, nakon deklaracije

int b[] = { 1, 2, 3 };

niz b ima tri elementa i njegov sadrZaj jednak je:
123

Broj elemenata niza se ne ¢uva u okviru niza te se ne moze jednostavno procitati iz samog
niza, ali se moZe dobiti kori§éenjem operatora sizeof. Kada se operator sizeof primeni
na ime niza, rezultat je veli¢ina niza u bajtovima. Broj elemenata moZe se izraunati na
slede¢i nacin:

sizeof (ime niza)/sizeof (tip elementa niza)

Kada se pristupa elementu niza, indeks moZe da bude proizvoljan izraz celobrojne vredno-
sti, na primer:

ali+1]
a[bk*v + k] ;

U fazi prevodenja (pa ni u fazi izvrSavanja®) ne vrsi se nikakva provera da li je indeks u
granicama niza i moguce je bez ikakve prijave greSke ili upozorenja od strane prevodioca
pristupati i lokaciji koji se nalazi van opsega deklarisanog niza (na primer, moguce je kori-
stiti element a [13], pa ¢ak element a[-1] u prethodnom primeru). Ovo najcesée dovodi

2U fazi izvr$avanja, operativni sistem obi¢no proverava da li se pokuSava upis van memorije koja je dodeljena
programu i ako je to slucaj, obi¢no nasilno prekida izvrSavanje programa (na primer, uz poruku segmentation
fault).

158 GLAVA 7. STRUKTURE PODATAKA

do fatalnih greSaka prilikom izvrSavanja programa. S druge strane, ovakva (jednostavna)
politika upravljanja nizovima omogucava vecu efikasnost.

Iteracija kroz elemente niza mozZe se vr$iti pomocu indeksa, ali i pomocu skrac¢enog oblika
petlje for (tzv. oblika foreach).

int all = {1, 2, 3};
int n = 3;

for (int i = 0; i < n; i++)
cout << ali] << endl;

for (int x : a)
cout << x << endl;

Nizovi imaju ogranicenja koja neke druge kolekcije nemaju. Stati¢ki alociran niz ne moze
se proSirivati niti suZavati tokom rada programa tj. sve vreme rada programa zauzima isti
memorijski prostor, dovoljan za smeStanje navedenog broja elementa. Pojedinac¢ni elementi
nizova se mogu menjati (na primer, kori$§¢enjem naredbe dodele) ali nizovi (kao celine)
nisu izmenljive vrednosti i nije im moguce dodeljivati vrednosti niti ih menjati. To ilustruje
slede¢i primer:

int a[3] = {5, 3, 7};
int b[3];

b = a;

at+;

>

SadrZaj dva niza se ne moze porediti operatorima ==, !=, >, <, <=, >=. Upotreba ovih ope-
ratora nad imenima nizova je zapravo dopustena, ali tada se ne poredi sadrZaj nizova, veé
memorijske adrese na kojima pocinju ti nizovi, §to obi¢no nije ono §to programer ocekuje
i potencijalni je uzrok greSaka.

Sa druge strane, stati¢ki nizovi kreiraju se brZe od ostalih kolekcija. Memorija za elemen-
te stati¢ki alociranih nizova rezervise se na programskom steku (za lokalne nizove?) ili u
segmentu podataka (za globalne nizove), dok se za druge kolekcije memorija rezerviSe
delom u segmentu podataka a delom na tzv. hipu, §to zahteva utroSak odredenog vreme-
na prilikom alokacije memorije tj. i pre nego §to koridéenje kolekcije zapocne. Cesto je
ova razlika u brzini zanemarljiva, medutim, ima situacija kada mozZe znacajno doprineti
ukupnoj efikasnosti programa (na primer, kada se niz alocira u funkciji koja se jako cesto
poziva). Programski stek je Cesto veoma mala koli¢ina memorije (tek nekoliko megabajta
na danaSnjim racunarima), pa nije moguce kreirati velike lokalne staticki alocirane nizove.

3 Ako nisu obeleZeni kvalifikatorom static.

7.2.1.1

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 159

Nizovi i funkcije

Kada se kao argument funkcije navede ime niza, u funkciju se, u fazi izvr§avanja, prenosi
samo adresa pocetka niza, a ne kopira se sadrZaj niza niti se prenosi informacija o broju
elemenata niza (koja je u fazi kompilacije pridruZena imenu niza). Posto funkcija koja
je pozvana dobija informaciju o adresi pocetka originalnog niza, ona moze da neposredno
menja njegove elemente (i takve izmene ¢e biti saCuvane nakon izvrSenja funkcije). Iako se
opisani mehanizam moZze smatrati prenosom po vrednosti (ali ne niza, nego adresa pocetka
niza), on je po duhu sli¢an prenosu po referenci. Ovakvo ponasanje doprinosi efikasnosti,
ali moZe biti uzrok nekih greSaka.

Funkcija koja kao parametar ima niz mozZe biti deklarisana na neki od narednih nacina:

tip ime_funkcije(tip ime_niza[dimenzijal);
tip ime_funkcije(tip ime_nizal[]);

S obzirom na to da se u funkciju prenosi samo adresa pocetka niza, a ne i dimenzija niza,
prvi oblik deklaracije nema puno smisla te se retko koristi. lako se u deklaraciji funkcije
koristi sintaksa koja podseca na nizove, tip podataka parametra funkcije zapravo nije niz,
ve¢ adresa prvog elementa niza (ovaj mehanizam bi¢e podrobnije objasnjen u narednim
tomovima ove knjige). PoSto funkcija nije primila niz (sa pridruZzenom informacijom o
broju elemenata), operator sizeof nece dati veli¢inu celog niza, ve¢ samo veli¢inu me-
morijske adrese. U funkciji, dakle, ne moZemo znati veli¢inu niza koji je argument (osim
ako je ne prosledimo pored niza), ne mozemo za iteraciju koristiti petlju foreach i sli¢no.
Naredni primer ilustruje ¢injenicu da se u funkciju ne prenosi ceo niz, ve¢ samo adresa
njegovog pocetka.

#include <iostream>
using namespace std;

void f(int all) {
cout << "f: " << sizeof(a) << endl;

int main() {
int all = {1, 2, 3, 4, 5};
cout << "main: " << sizeof(a) << endl;
f(a);
return O;

}

Prilikom pokretanja programa na masini na kom int zauzima 4 bajta program ispisuje:

160 GLAVA 7. STRUKTURE PODATAKA

main: 20
f: 4

Ovo ukazuje na to da niz u funkciji main zauzima 20 bajtova (5 podataka veli¢ine 4 bajta),
dok niz koji je parametar funkcije £ zauzima 4 bajta (koliko zauzima jedna memorijska
adresa).

Prilikom prenosa niza (tj. adrese njegovog pocetka) u funkciju, pored imena niza, pro-
gramer moze da eksplicitno prosledi i broj elemenata niza kao dodatni argument (da bi
pozvana funkcija imala tu informaciju).

Povratni tip funkcije ne moZe da bude niz. Funkcija ne moZe da kreira niz koji bi bio vraden
kao rezultat, ali funkcija rezultate svog rada moZe da upisuje u niz koji joj je prosleden kao
argument.

U narednom programu, funkcija ucitaj_broj ne uspeva da ucita i promeni vrednost bro-
ja x, dok funkcija ucitaj_niz ispravno unosi i menja elemente niza y (jer joj je poznata
adresa pocetka niza y).

#include <iostream>
using namespace std;

void ucitaj_broj(int a) {
cout << "Unesi broj: ";
cin >> a;

}

void ucitaj_niz(int al[], int n) {
int i;
cout << "Unesi niz: ";
for (i = 0; i < n; i++)
cin >> alil;

}

int main() {
int x = 0;
int y[3] = {0, 0, 0};
ucitaj_broj(x);
ucitaj_niz(y, 3);
cout << "x = " << x << endl;
cout << "y = " << y[0] << " " << y[1] << " " << y[2] << endl;

Kada se pokrene, program daje sledeci rezultat.

7.2.2

7.2.3

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 161

Unesi broj: 5
Unesi niz: 1 2 3
x =0

y=1, 2,3

Uprkos nedostacima i ponasanju koje se, u jeziku C++, razlikuje od drugih tipova, staticki
alocirani nizovi se veoma ¢esto koriste jer imaju mnogo duzu tradiciju koriséenja (dolaze iz
programskog jezika C, u kojem su prakti¢no osnovna kolekcija podataka). Stoga je veoma
vazno dobro izuciti koriS¢enje staticki alociranih nizova i sve njihove specifi¢nosti.

VLA

Neki kompilatori podrZavaju oblik nizova koji se naziva VLA (engl. variable length array),
gde se kao dimenzija niza navodi promenljiva ¢ija je vrednost poznata tek u fazi izvrSavanja
programa.

int n;

cin >> n;

int aln];

for (dnt i = 0; i < n; i++)
cin >> alil;

VLA nikada nisu bili deo standarda jezika C++ (jedno vreme bili su deo standarda jezika
C, pa su nakon toga izbaCeni) i stoga ih nikako nije preporucljivo koristiti.

Tip vector<T>

Jedna od osnovnih karakteristika stati¢ki alociranih nizova je to da im je velicina fiksirana
i ne menja se tokom izvr$avanja programa. Jednom kada se ove kolekcije kreiraju, one se
ne mogu prosirivati novim elementima niti suZavati. To je znacajno ograni¢enje u mnogim
realnim aplikacijama u kojima u trenutku pisanja i prevodenja programa nemamo tacne
informacije o tome koliko elemenata ¢e biti potrebno smestiti tokom izvrSavanja programa.
Zbog toga je poZeljno koristiti kolekcije ¢ija se veli¢ina moZe menjati tokom izvrSavanja
programa tj. koje se mogu dinamicki realocirati.

Osnovna sekvencijalna kolekcija koja ovo podrzava je vector<T>, gde je T tip poda-
taka koji se ¢uva. Dakle, vektor je parametrizovan tipom elemenata koje ¢uva, tako da
moZe da se koristi vector<int>, vector<double>, vector<string> ali na primer, i
vector<vector<int>>.

Osnovni oblik deklaracije uvodi prazan vektor. Na primer,

162 GLAVA 7. STRUKTURE PODATAKA
vector<int> a;

MoZe se zadati pocetni broj elemenata vektora. On ne mora biti konstantan (tj. ne mora biti
poznat u fazi kompilacije) ve¢ mozZe postati poznat u toku izvrSavanja programa. Ukoliko
u toku izvrSavanja programa, a pre deklaracije vektora potreban broj elemenata postaje
poznat, onda je vektor najbolje deklarisati uz navodenje dimenzije u sklopu deklaracije,
jer se na taj naCin odmah odvaja potrebna koli¢ina memorije. Na primer,

int n;
cin >> n;
vector<double> a(n);

Naravno, da bi ovo uspelo, potrebno je da broj n ne bude toliko veliki da smeStanje n ele-
menata prevaziée koli¢inu raspoloZive memorije ra¢unara na kom se program izvriava*. U
suprotnom, proizvodi se izuzetak (u fazi izvrSavanja). Ako alokacija uspe, veli¢ina vektora
je n, ali vrednost elemenata nije unapred poznata (moZemo smatrati da je nasumicna).
Kao drugi argument deklaracije niza moguce je navesti pocetnu vrednost svih elemenata.

int n;
cin >> n;
vector<double> a(n, 1.0);

Inicijalizacija se moze vr$iti na isti nac¢in kao i kod nizova.

vector<int> brojevi = {1, 2, 3};

Nakon deklaracije u kojoj naveden broj elemenata, vektor se koristi na potpuno isti nac¢in
kao 1 niz - elementu na poziciji i pristupa se sa a[i], pri ¢emu se pozicije broje od O.
Ukoliko indeks i nije unutar granica vektora, u fazi izvrSavanja dolazi do nedefinisanog
ponasanja, pa i prekida rada programa. Elementu vektora moze se pristupiti i primenom
metode at, na primer a.at (i). Ako se elementima pristupa koris¢enjem ove metode, u
fazi izvrSavanja proverava se da li je indeks i unutar granica vektora i, ukoliko nije, aktivira
se izuzetak.

Vektori se Cesto koriste na slede¢i nacin:

4Ako je vektor deklarisan kao lokalna promenljiva, opste informacije o vektoru Guvaju se na programskom
steku, a sami elementi vektora na hipu.

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 163

int n;

cin >> n;

vector<int> a(n);

for (int i = 0; i < n; i++)
cin >> alil;

U navedenom kodu, prvo se ucitava dimenzija (ona je, dakle, poznata na pocetku izvrSa-
vanja programa, ali ne i u fazi prevodenja), zatim se vektor deklariSe tako da ima odgova-
rajuéi broj elemenata, nakon Cega se ucitavaju pojedinacni elementi.

Dimenzija (broj elemenata) vektora a moZe se odrediti izrazom a.size ().

vector<int> a = {1, 2, 3, 4};
for (int i = 0; i < a.size(); i++)

Iteraciju kroz sve elemente vektora moZemo vrsSiti i takozvanom petljom for-each (ili
foreach).

vector<int> a = {1, 2, 3, 4};
for (int x : a)

Prosirivanje vektora a dodavanjem elementa x na njegov kraj moguce je pozivom metode
a.push_back(x) (time se uvecava broj elemenata za 1). Uklanjanje elementa sa kraja
(tj. uklanjanje poslednjeg elementa) vrsi se pozivom metode a . pop_back () ($to, naravno,
ima smisla samo kada vektor nije prazan, a u suprotnom je ponasanje nedefinisano i izvr$a-
vanje programa obi¢no biva prekinuto). Citanje poslednjeg elementa nepraznog vektora se
vrsi izrazom a.back (). Sve ove operacije su veoma efikasne. Dualno, postoje operacije
push_front i pop_front koje dodaju, odnosno uklanjaju element sa pocetka, ali one su
veoma neefikasne i treba ih izbegavati (osim kod veoma kratkih vektora). Citanje prvog
elementa nepraznog vektora vrsi se izrazom a. front () (ili, naravno, a[0]).

Ako ne znamo unapred broj elemenata vektora, moZemo ih ucitavati i ubacivati u vek-
tor jedan po jedan. U narednom programu, deklariSemo vektor koji je inicijalno prazan,
ucitavamo n brojeva i u vektor smeStamo samo parne.

int n;

cin >> n;

vector<int> parni;

for (int i = 0; i < n; i++) {

164 GLAVA 7. STRUKTURE PODATAKA

int x;

cin >> x;

if (x % 2 == 0)
parni.push_back(x) ;

}

Ako se u vektoru ¢uvaju uredeni parovi ili n-torke, tada se umesto metode push_back,
moZe koristiti metoda emplace_back, kojoj se samo redom navode elementi para tj. torke
(nije potrebno posebno pozivati funkciju za kreiranje para tj. torke, ¢cime se dobija malo
efikasniji kod).

Vektor funkcioniSe tako $to se u startu rezervise (alocira) odredena koli¢ina memorije (ko-
ja moZe biti i veca od trenutnog broja popunjenih elemenata). Kada se sva ta memorija
popuni, tada se vrsi realokacija, koja podrazumeva da se alocira nova koli¢ina memorije
(Cesto duplo vecéa od prethodne) i da se prepiSu elementi na novu memorijsku lokaciju. Ovo
moze biti sporo, medutim, zahvaljujuéi tome $to koli¢ina memorije raste geometrijskom
progresijom, realokacije su sve rede i rede i vecina poziva metode push_back funkcioniSe
veoma brzo (jer samo upisuju element u ve¢ rezervisanu memoriju).

Eksplicitna promena dimenzije vektora se moZe sprovesti i nezavisno od inicijalizacije,
metodom resize — nakon poziva a.resize (n) vektor a ima dimenziju n (pod uslovom
da postoji dovoljno memorije). Ako se vektor prosiruje, tada vrednost novih elemenata nije
unapred definisana. Vrednost se moZe navesti kao drugi parametar metode resize (na
primer, a.resize (100, 17) uzrokuje da vektor sadrZzi 100 elemenata jednakih 17).
Vektori se u funkcije prenose po vrednosti (osim ako se eksplicitno ne navede da se prenose
po referenci), Sto znaci da se u funkciju prenosi kopija vektora koji je naveden kao argument
u pozivu. Ako Zelimo da funkcija modifikuje sadrzaj vektora, neophodno ga je preneti
po referenci (navodenjem simbola &). Tada se u funkciju Salje samo memorijska adresa
tog vektora i sve operacije se sprovode nad originalnim vektorom (ne vrsi se kopiranje).
Kopiranjem se nepotrebno troSi memorija i vreme, pa ima smisla vektore proslediti po
referenci i funkcijama koje samo analiziraju njihov sadrZaj i ne menjaju ih. Tada se obi¢no
navodi klju¢na re¢ const ¢ime se obezbeduje da se vektor ne moze promeniti u funkciji
iako je prenet po referenci. Na primer,

int zbir(const vector<int>& a) {
int z = 0;
for (int x : a)
z += a;
return z;

Funkcija moZe da vrati vektor kao svoju rezultujucu vrednost. Zahvaljujuéi optimizacijama
koje savremene verzije jezika C++ garantuju, ne vrsi se nikakvo kopiranje sadrZaja, pa se
ovim ne umanjuju performanse programa.

7.2.4

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 165

Pokazivadi i iteratori

Jedan nacin da se u strukturama podataka sa sekvencijalnim pristupom izdvoji neki kon-
kretan element je upotreba indeksa tj. pozicije tog elementa unutar kolekcije. Medutim,
vide¢emo uskoro da neke kolekcije nemaju sekvencijali pristup tj. da ne postoji priro-
dan redosled elemenata unutar kolekcije. Takode, kod nekih sekvencijalnih kolekcija (pre
svega lista o kojima ¢e viSe reci biti u poglavlju 7.2.5) pristup na osnovu indeksa je ve-
oma neefikasan, jer elementi ne zauzimaju susedne memorijske lokacije i da bi se naSao
element na poziciji n, potrebno je obiéi redom sve elemente od prvog do tog trazenog.
Stoga se pored indeksa za pristup elementima nizova i drugih kolekcija koriste pokazivaci
i iteratori. Veza izmedu pokazivaca i nizova je napredna tema, jako vazna za programski
jezik C i sistemsko programiranje i pokazivaci ¢e detaljno biti obradeni u narednim tomo-
vima ove knjige. U nastavku ¢emo prikazati samo osnove koriS§¢enja pokazivaca i iteratora,
u meri koja je dovoljna za koris¢enje biblioteckih kolekcija i funkcija.

Pokazivaci su promenljive koje sadrze memorijske adrese. Razmotrimo, kao jedan primer,
iteraciju kroz niz kori$¢enjem pokazivaca.

int all = {1, 2, 3, 4};

int n = 4;

for (int* p = a; p < a + n; pt++)
cout << *p << endl;

Posto niz a sadrZi elemente tipa int, pokaziva¢ p koji pokazuje na njegove elemente bice
tipa int*. Pokazivac p se inicijalizuje tako da sadrZi adresu prvog elementa niza (dodelom
p=a). Nakon toga se kao uslov petlje proverava da li je pokazivac p stigao do adrese a+n,
Sto je adresa koja je za n elemenata niza pomerena od pocetka niza, tj. adresa koja se nalazi
ta¢no iza poslednjeg elementa niza — kada p stigne do te adrese, obradeni su svi elementi
niza i petlja moZe da se prekine.

U svakom koraku petlje ispisuje se element na adresi na koju pokazuje pokazivac¢ p (do
tog elementa se dolazi tzv. dereferenciranjem pokazivaca tj. izrazom *p) i zatim se po-
kaziva¢ uvecava, ¢ime se sa adrese jednog, pomera na adresu narednog elementa niza. O
pokazivacima ¢e mnogo viSe reci biti u narednim tomovima ove knjige.

Primetimo da smo u prethodnom primeru sabiranjem pokazivaca a (adresa pocetka niza
se moze smatrati nekim vidom pokazivaca) i broja n dobili novi pokazivaé, koji je udaljen
od polaznog za n elemenata niza (a ne za n bajtova). Slicno, oduzimanjem dva pokazivaca
koji ukazuju na neka dva elementa niza, dobija se broj elemenata niza koji se nalaze izmedu
njih. To je takozvana pokazivacka aritmetika.

Umesto pokazivaca koji se koriste u radu sa nizovima, u radu sa biblioteckim kolekcijama
koriste se iteratori. To su posebni objekti koji se koriste na skoro isti nacin kao pokazivaci
(u svakom trenutku pokazuju na jedan element kolekcije).

Tip iteratora je odreden tipom kolekcije na Cije elemente taj iterator pokazuje. Na pri-
mer, tip vector<int>::iterator oznaCava iterator koji ukazuje na elemente vektora

166 GLAVA 7. STRUKTURE PODATAKA

LTI T]
i i

begin end

Slika 7.2: Iteratori begin i end

tipa vector<int>, dok tip vector<int>::const_iterator ukazuje na elemente tipa
vector<int>, koji se ne mogu menjati jer je iterator konstantan. Vide¢emo da se, za-
hvaljujuéi klju¢noj re¢i auto, u programima ¢esto moZe izbeéi navodenje konkretnog tipa
iteratora i zakljucivanje o njegovom tipu prepustiti kompilatoru.

Neke od najcesce koris¢enih funkcija deklarisanih u zaglavlju <iterator> su:

» begin, end - vracaju iteratore koji ogranicavaju opseg date kolekcije (na primer,
vector i slicno). Mnoge kolekcije podrzavaju ove dve metode. Funkcija begin
vraca iterator koji ukazuje na prvi element, a end vraca iterator koji ukazuje nepo-
sredno iza poslednjeg elementa (na primer begin (v) vraca iterator koji ukazuje na
pocetak vektora v).

» distance - vracarastojanje (broj elemenata) u opsegu ogranicenom sa dva iteratora
koja se prosleduju kao argumenti funkcije (prvi iterator pokazuje na pocetak tj. na
prvi element opsega, a drugi neposredno iza kraja tj. poslednjeg elementa opsega).
Na primer, ako je it iterator koji ukazuje na neki element unutar vektora v, tada se
njegov indeks moZe odrediti pomoc¢u distance(begin(v), it);

» next (prev) - vrada iterator koji pokazuje na element date kolekcije koji je ispred
(iza) prosledenog iteratora, na datom rastojanju; ako se kao drugi argument ne pro-
sledi rastojanje, podrazumevano se traZi iterator na naredni tj. prethodni element
kolekcije. Na primer, next (begin(v)) je iterator koji ukazuje na drugi element
vektora v (ako takav postoji), dok je prev(end(a), 2) iterator koji ukazuje na
pretposlednji element niza a (ako takav postoji).

« Nad pokazivaCima i nad iteratorima se mogu primenjivati i aritmeticke operacije:
it + nodgovara iteratoru koji se dobija kada se iterator it pomeri unapred n puta
(isto kao i next (it, n)). Razlika dva iteratora odreduje broj elemenata izmedu
njih (ukljucujuéi prvi i ne ukljucujudi poslednji (isto kao i funkcija distance). Za
pokazivace i nizove vaZzi sli¢no: ako niz a ima n elemenata tada se njegov opseg moze
zadati pokaziva¢ima a i a+n.

Iteracija kroz vektor se moZe izvrsiti koriS¢enjem iteratora, na slede¢i nacin.

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 167

vector<int> a = {1, 2, 3, 4};
for (auto it = a.begin(); it != a.end(); it++)
cout << *it << endl;

7.2.5 Tipovi 1ist<T>

Vektori dopustaju efikasno dodavanje elemenata na kraj i brisanje elemenata sa kraja, ali
za reSavanje nekih zadataka su nam potrebne sekvencijalne kolekcije koje omogucava-
ju efikasno dodavanje elemenata na proizvoljnu poziciju i efikasno brisanje elemenata sa
proizvoljne pozicije. U takvim zadacima umesto vektora, efikasnije je da koristimo liste.
Lista je predstavljena tipom 1ist<T>, gde je T tip elemenata liste. Za razliku od nizova
i vektora gde je indeksni pristup osnovni mehanizam pristupa elementima (i on je veoma
efikasan), elementima liste se obi¢no pristupa preko iteratora. Iteratore obi¢no koristimo
da bismo izveli sledeée operacije nad listom.

» Kada je poznat iterator koji ukazuje na neki element liste, tom elementu pristupamo
dereferenciranjem iteratora.

list<int> lista = {1, 2, 3, 4};
auto it = next(lista.begin(), 3); // 3 elementa desnmo od pogetnog
cout << *it << endl;

« Prolazak kroz sve elemente liste vr§imo ili petljom foreach ili koriS¢enjem itera-
tora.

list<int> lista = {1, 2, 3, 4};

for (int x : lista)
cout << x << endl;

for (auto it = lista.begin(); it != lista.end(); it++)
cout << *it << endl;

» Metoda erase briSe element na koji ukazuje dati iterator. Nakon brisanja taj iterator
se pomera na sledeci element, dok ostali iteratori viSe nisu validni (ne bi ih trebalo
koristiti nakon izmene liste).

7.3

168 GLAVA 7. STRUKTURE PODATAKA

list<int> lista = {1, 2, 3, 4};
auto it = lista.begin();
lista.erase(it);

o Metoda insert dodaje element pre elementa na koji ukazuje iterator. Nakon ume-
tanja, iterator se pomera na umetnuti element, dok ostali iteratori viSe nisu validni
(ne bi ih trebalo koristiti nakon izmene liste).

list<int> lista = {1, 2, 3, 4};
auto it = lista.begin();
lista.insert(it, 0);

Naglasimo da se ne preporucuje izmena liste tokom iteracije kroz nju petljom foreach
(isto kao 1 kod svih ostalih kolekcija), jer prilikom izmena iterator koji se (implicitno)
koristi za iteraciju postaje neispravan.

ViSedimenzioni nizovi i kolekcije

Cesto je umesto jednodimenzionalnih kolekcija potrebno koristiti dvodimenzionalne (na
primer, matrice), pa i viSedimenzionalne. Ponovo postoji izbor izmedu kori$éenja staticki
alociranih viSedimenzionih nizova i kori§¢enja biblioteckih kolekcija (na primer vector),
koje se mogu ugnezdavati (na primer, moZemo napraviti vektor ¢iji su elementi vektori i
na taj nacin dobiti viSedimenzionalnu kolekciju).

Visedimenzioni nizovi se deklariSu na sledeci opsti nacin:

tip ime_niza[dimenzija_1]...[dimenzija_2];

Dvodimenzioni nizovi (matrice) tumace se kao jednodimenzioni nizovi €iji su elementi
nizovi. Zato se elementima dvodimenzionog niza pristupa sa:

ime_nizal[vrsta] [kolona]

anesaime_niza[vrsta, kolona].

Elementi se u memoriji smestaju po vrstama pa se, kada se elementima pristupa u redosledu
po kojem su smeSteni u memoriji, najbrze menja poslednji indeks. Ovde se podrazumeva
konvencija iz matematike za zapis matrica po kojoj se prvi indeks odnosi na vrste, a drugi
na kolone, kao u slede¢em primeru:

7.3. VISEDIMENZIONI NIZOVI I KOLEKCIJE 169

Qo0 Qp,1 Qg2 agn—1
aio a1 a2 Qa1 n—1
Um—1,0 m1 Gp—12 - Gp1np-1

Elementi navedene matrice bili bi u memoriji poredani redom g, 05 Gg, 15 Q0,25 -+ G0 11>
ay 0 Q115 G195 - Qg 1, - 4. @l01[0], al0][1], al0] [2], ..., a[0] [n-1],
al1][0],al1]1[1],al1]1 (2], ...,al1] [n-1],...

Niz se moZe inicijalizovati navodenjem liste inicijalizatora u viti€astim zagradama; posto
su elementi opet nizovi, svaki od njih se opet navodi u okviru viti¢astih zagrada (mada je
unutrasnje vitiaste zagrade moguce i izostaviti). Razmotrimo, kao primer, jedan dvodi-
menzioni niz:

int a[2][3] = {
{1, 2, 3%,
{4, 5, 6}
};

Kao i u slu¢aju jednodimenzionih nizova, ako je naveden inicijalizator, vrednost prvog
indeksa moguce je i izostaviti (jer se on u fazi kompilacije moZe odrediti na osnovu broja
inicijalizatora):

int a[l[3] = {
{1, 2, 3},
{4, 5, 6}
};

U memoriji su elementi dvodimenzionog niza poredani na sledeéi nacin: a[0] [0],
al0][1], al0][2], al[1]1[0], a[1] [1], a[1] [2], tj. vrednosti elemenata niza poreda-
ne su na sledeci nacin: 1, 2, 3, 4, 5, 6. U ovom primeru, element a [v] [k] je ¢-ti po redu,
pri ¢emu je ¢ jednako 3*v+k. Pozicija elementa viSedimenzionog niza moze se slicno
izraunati i sluaju nizova sa tri i vise dimenzija>.

Razmotrimo, kao dodatni primer, dvodimenzioni niz koji sadrZi broj dana za svaki mesec,
pri ¢emu su u prvoj vrsti vrednosti za obicne, a u drugoj vrsti za prestupne godine:

int broj_danal][13] = {
{o, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

>Nekada programeri ovu tehniku izradunavanja pozicija eksplicitno koriste da matricu smeste u jednodimen-
zioni niz, ali, poSto jezik dopusta koriS¢enje viSedimenzionih nizova, za ovim nema potrebe.

170 GLAVA 7. STRUKTURE PODATAKA

};

Za skladistenje brojeva Koristi se tip int (kako su u pitanju mali prirodni brojevi, ako je
potrebno Stedeti memoriju, umesto tipa int moZe da se koristi tip char), a u nultu kolonu
su upisane nule da bi se podaci za mesec m nalazili upravo u koloni m (tj. da bi se mesecima
pristupalo kori$¢enjem indeksa 1-12, umesto sa indeksa 0-11). Niz broj_dana je moguce
koristiti da bi se, na primer, promenljiva bd postavila na broj dana za mesec mesec i godinu
godina:

bool prestupna = (godina 7 4 == 0 && godina 7 100 != 0) ||
godina 7 400 == 0;
int bd = broj_dana[prestupnal [mesec] ;

Vrednost true tipa bool se moze konvertovati u 1, a vrednost false u 0, pa se vrednost
prestupna moZe koristiti kao indeks pri pristupanju nizu.

Umesto staticki alociranih viSedimenzionalnih nizova moZemo koristiti vektor-vektora. Na
primer, matricu moZemo definisati na slede¢i nacin.

vector<vector<int>> A = {{1, 2}, {3, 4}};

Matricu dimenzije m X n popunjenu nulama moZemo definisati na slede¢i nacin.

int m, n;
cin >> m >> n;
vector<vector<int>> A(m, vector<int>(n, 0));

Vektor A se konstruiSe tako da ima m elemenata, pri ¢emu se svaki od njih postavlja na
vrednost vector<int>(n, 0), $to je vektor koji sadrZi n elemenata koji se postavljaju
na 0. Alternativno, realokaciju svakog pojedinacnog vektora vrste moZemo napraviti i u
petlji.

int m, n;

cin >> m >> n;

vector<vector<int>> A;

A.resize(m);

for (dnt i = 0; i < m; i++)
Ali] .resize(n, 0);

Naglasili smo ve¢ da je alokacija memorije za vektor sporija nego alokacija memorije za
stati¢ki niz. U slucaju viSedimenzionalnih nizova se vrsi alokacija velikog broja vektora,

7.4. RAD SA MATRICAMA 171

pa kreiranje vektora-vektora moZe biti znatno sporije nego kreiranje viSedimenzionalnog
niza. Sa druge strane, za razliku od nizova kod kojih sve vrste imaju jednak broj elemenata,
pomocu vektora-vektora mogu se napraviti strukture podataka u kojima svaka vrsta ima
razli¢it broj elemenata (na primer, za svakog ucenika moZemo imati razli¢it broj ocena).

Rad sa matricama

Mustrujmo upotrebu viSedimenzionalnih nizova, tako §to ¢emo ucitati kvadratnu matricu
(dimenzije najvise 10) i proveriti da li je ona magi¢ni kvadrat. Matrica dimenzije n X n Cini
magi¢ni kvadrat ako su njeni brojevi od 0 do n? i jednaki su zbirovi elemenata svake vrste,
svake kolone i obe dijagonale. Zbir svih brojeva od 0 do n? jednak je n?(n? + 1)/2, pa
zbir elemenata svake vrste, svake kolone i obe dijagonale treba da bude jednak (n?(n? +
1)/2)/n =n(n?+1)/2.

const int MAXN = 10;

// provera da li je kvadrat magican
// funkctija prima matricu, dimenziju kvadrata t njegov karakteristicni zbir
bool jeMagicanKvadrat(int kvadrat [MAXN] [MAXN], int n, int zbir) {
// proveravamo zbirove suth vrsta
for (int vrsta = 0; vrsta < n; vrstat++) {
int zbirVrste = 0;
for (int kolona = 0; kolona < n; kolona++)
zbirVrste += kvadrat[vrsta] [kolona];
// nasli smo vrstu koja mema trazeni zbir, pa kvadrat nije|magican
if (zbirVrste != zbir)
return false;

}

// proveravamo zbirove svuih kolona
for (int kolona = 0; kolona < n; kolona++) {
int zbirKolone = O;
for (int vrsta = 0; vrsta < n; vrsta++)
zbirKolone += kvadrat[vrstal [kolonal] ;
// nasli smo kolonu koja mema trazenti zbir, pa kvadrat nije magican
if (zbirKolone != zbir)
return false;

}

// proveravamo zbir glavne dijagonale

172 GLAVA 7. STRUKTURE PODATAKA

int zbirDijagonale = O;
for (dnt i = 0; i < n; i++)
zbirDijagonale += kvadrat[i] [i];
// ako zbir glavne dijagonale nije odgovarajuct, kvadrat nije|magican
if (zbirDijagonale != zbir)
return false;

// proveravamo zbir sporedne dijagonale
zbirDijagonale = O;
for (dnt i = 0; i < n; i++)
zbirDijagonale += kvadrat[i] [n-1-i];
// ako zbir sporedne dijagonale nije odgovarajuci, kvadrat nije magican
if (zbirDijagonale != zbir)
return false;

// zbirovih svth vrsta, kolona % obe dijagonale su ispravnt
return true;

}

int main() {
int kvadrat [MAXN] [MAXN];
int n;
cin >> n;
for (int v = 0; v < n; v++)
for (int k = 0; k < n; k++)
cin >> kvadrat[v] [k];
// karakteristicni zbir
int zbir = nx(axn + 1) / 2;
if (jeMagicanKvadrat(kvadrat, n, zbir))
cout << "Kvadrat je magicni" << endl;
else
cout << "Kvadrat nije magicni" << endl;

Matrice (tj. dvodimenzioni nizovi) koriste se u mnogim oblastima racunarastva: u obradi
slika (za rasterski zapis slika), u racunarskoj grafici (za opis transformacija), u reSavanju
linearnih jednacina, itd. Kao $to je re¢eno ranije, matrice se obicno predstavljaju kao stati¢-
ki dvodimenzioni nizovi ili kao vektori vektora. U nastavku su prikazane implementacije
funkcija za sabiranje, mnoZenje i Stampanje matrica reprezentovanih kao vektori vektora.

7.4. RAD SA MATRICAMA 173

#include <iostream>
#include <vector>
using namespace std;

vector<vector<int>> saberiMatrice(const vector<vector<int>>& A, d¢onst vector<vecto
{
int vrste = A.size(), kolone = A[0] .size();
vector<vector<int>> C(vrste, vector<int>(kolone)) ;
for(int i = 0; i < vrste; i++)
for(int j = 0; j < kolone; j++)
Cl[i][j] = A[i1[j] + B[il[j];
return C;

vector<vector<int>> pomnoziMatrice(const vector<vector<int>>& A, const vector<vect

{

int Avrste = A.size(), Akolone = A[0].size();
int Bvrste B.size(), Bkolone B[0] .size();
vector<vector<int>> C(Avrste, vector<int>(Bkolone, 0));
if (Akolone != Bvrste) {
cout << "Matrice ne mogu biti pomnozene" << endl;
} else {
for(int i = 0; i < Avrste; i++)
for(int j = 0; j < Bkolone; j++) {
for(int k = 0; k < Akolone; k++)
C[i]l [j] += A[il[kx] = B[k][j];

}

return C;

void odstampajMatricu(const vector<vector<int>>& A)
{
int vrste = A.size(), kolone = A[0].size();
for(int i 0; i < vrste; i++) {
for(int j = 0; j < kolone; j++)
cout << A[i][j] << " "3
cout << endl;

7.5

7.5.1

174 GLAVA 7. STRUKTURE PODATAKA

int main()

{
int vrste, kolone;
vector<vector<int>> A = { { 1, 2, 3}, { 4, 5, 3} };
vector<vector<int>> B = { { 2, 3, 4}, { 5, 2, 1} };
vector<vector<int>> C = { { 1, -1}, { 0, 1}, { 1, 0} };
cout << "Zbir matrica A i B:" << endl;
odstampajMatricu(saberiMatrice(A,B));
cout << "Proizvod matrica A i C:" << endl;
odstampajMatricu(pomnoziMatrice(A,C));
return O;

}

Strukture podataka sa asocijativnim pristupom

U strukturama podataka sa sekvencijalnim pristupom, elementi su poredani u niz, te moze
da ih identifikuje redni broj u tom nizu. Taj redni broj, dakle, omoguéava jednostavan
pristup i brzo pronalaZenje elementa strukture.

U strukturama sa asocijativnim pristupom, efikasan pristup elementu omogucava kljuc.
Kljucevi odreduju uredenje elemenata u strukturi i omogucavaju brzo pronalaZenje ele-
menata.

Kao strukture podataka sa sekvencijalnim pristupom, i strukture podataka sa asocijativnim
pristupom su Sablonske strukture (eng. templates), te mogu da ¢uvaju elemente proizvolj-
nog tipa T.

Skupovi

Cesto postoji potreba da odrzavamo skup elemenata (bez duplikata), u koji efikasno mo-
Zemo da dodajemo elemente, iz koga efikasno moZemo da izbacujemo elemente i za koji
efikasno moZemo da proveravamo da li je neka zadata vrednost element skupa. Savremeni
programski jezici u svojim bibliotekama pruzaju strukture podataka koje nude ba$ ove
operacije.

U jeziku C++, skup je opisan klasom set<T>, gde je T tip elemenata skupa (za kori$éenje
ove klase potrebno je ukljuciti zaglavlje <set>. Elementi strukture podataka sa asocijativ-
nim pristupom su interno organizovani u odnosu na vrednosti kljuca - kljucevi odreduju
uredenje elemenata u strukturi i omogucavaju brzo pronalaZenje elemenata. U slucaju sku-
pa, kljuc za element skupa je sam taj element.

7.5. STRUKTURE PODATAKA SA ASOCIJATIVNIM PRISTUPOM 175

Skupovi podrzavaju sledece osnovne operacije (za pregled svih operacija upuéujemo Cita-
oca na dokumentaciju):

» insert - umece novi element u skup (ako je element veé u skupu, operacija nema
efekta).

 erase - uklanja dati element iz skupa (ako element ne postoji u skupu, skup se ne
menja).

« find - proverava da li skup sadrZi dati element i vraca iterator na njega ako sadrzi,
a vrednost end inace. Tako se provera pripadnosti elementa e skupu s moZe izvrsiti
saif (s.find(e) != s.end())

 size - vraca broj elemenata skupa.

Moguéa je i iteracija kroz elemente skupa koris¢enjem petlje oblika for (T element
skup), pri ¢emu se elementi kolekcije nabrajaju u sortiranom redosledu. Na primer,
naredni program ucitava brojeve i ispisuje ih u uredenom redosledu, bez duplikata.

int n;

cin >> n;

set<int> A;

for (dnt i = 0; i < n; i++) {

int x;
cin >> x;
A.insert(x);
}
cout << "Broj razlicitih: " << A.size() << endl;

for (int x : A)
cout << x << endl;

Uredeni skupovi (kolekcija set) podrZzavaju i metode

o lower_bound(x) - pronalazi najmanji element skupa koji je veéi ili jednak od
date vrednosti x i vraca iterator koji ukazuje na njega (ili end, ako takav element ne
postoji),

» upper_bound(x) - pronalazi najmanji element skupa koji je strogo ve¢i od date
vrednosti x i vraa iterator koji ukazuje na njega (ili end, ako takav element ne
postoji).

U uredenim skupovima se lako mogu naéi minimalni i maksimalni element (koris¢enjem
iteratora dobijenih metodama begin i end).

Ako u ureden skup sadrzi podatke nekog od elementarnih tipova (brojeve, niske, ...), ta-
da se koristi njihov podrazumevani poredak. Da bi se definisao skup elemenata nekog tipa

7.5.2

176 GLAVA 7. STRUKTURE PODATAKA

nad kojim nije definisan podrazumevani poredak, potrebno je posebno definisati (i zadati u
okviru deklaracije) poredak koji Zelimo da se koristi. I za tip podataka za koji postoji pod-
razumevani poredak, moZe se deklarisati skup koji koristi neki drugi poredak. Na primer,
skup u kom su elementi tipa T uredeni nerastuce (pri ¢emu na tipu podataka postoji podra-
zumevani neopadajuéi poredak) moZe se definisati deklaracijom set<T, greater<T>>,
(pri ¢emu je za upotrebu greater potrebno ukljuciti zaglavlje <functional>).

Multiskupovi

Skupovi, kao i u matematici, ne mogu da sadrze duplikate. Kada se element koji ve¢ postoji
u skupu ubaci u taj skup metodom insert, skup se ne menja. Jedno uopStenje skupova
daju multiskupovi u kojima je dopusteno ponavljanje elemenata. Multiskupovi su podrZani
bibliote¢kom strukturom multiset<T>, koja se koristi na potpuno isti na¢in kao i set<T>
(za njeno koris¢enje je takode dovoljno ukljuciti zaglavlje <set>).

Mape

Programski jezik C++ pruZa podrsku za mape (u drugim se jezicima oni nazivaju i re¢nici
ili asocijativni nizovi) - kolekcije podataka u kojima se kljucevima nekog tipa pridruzu-
ju vrednosti nekog (ne obavezno istog) tipa. Na primer, imenima meseci (podacima tipa
string) moZemo dodeliti broj dana (podatke tipa int). Rec¢nici se predstavljaju objekti-
ma tipa map<TipKljuca, TipVrednosti>, definisanom u zaglavlju <map>. Na primer,

map<string, int> brojDana =

{
{"januar", 31},
{"februar", 287},
"mart", 31},
e

Primetimo da smo inicijalizaciju mape izvrSili tako $to smo naveli listu parova oblika
{kljuc, vrednost}. Inicijalizaciju nije neophodno izvrsiti odmah tokom kreiranja, veé
je vrednosti moguce dodavati (a i Citati) koriS¢enjem indeksnog pristupa (pomocu zagrada

th.

map<string, int> brojDana;
brojDana["januar"] = 31;
brojDana["februar"] = 28;
brojDana["mart"] = 31;

7.5. STRUKTURE PODATAKA SA ASOCIJATIVNIM PRISTUPOM 177

Mapu, dakle, moZemo shvatiti i kao niz tj. vektor u kome indeksi nisu obavezno iz nekog
celobrojnog intervala oblika [0, n), ve¢ mogu biti proizvoljnog tipa.

Ako se koriS¢enjem operatora indeksnog pristupa [...] pokuSa pristup kljucu koji ne
postoji, on se ubacuje u mapu (i pridruzuje mu se podrazumevana vrednost tipa vrednosti
mape). Metodom at se moZe procitati vrednost pridruZena kljucu, bez ubacivanja nove
vrednosti ako klju¢ ne postoji (ako klju€ ne postoji, dolazi do izuzetka).

Pretragu klju¢a moZemo ostvariti metodom £ ind koja vraéa iterator na pronadeni element,
ako element postoji, a iterator iza kraja mape (koji dobijamo metodom ili funkcijom end),
inaCe. Na primer,

string mesec; cin >> mesec;
auto it = brojDana.find(mesec) ;
if (it != end(brojDana))
cout << "Broj dana: " + *it << endl;
else
cout << "Mesec nije korektno unet" << endl;

Sve elemente re¢nika moguce je ispisati koriS¢enjem petlje for. Na primer,

for (const std::pair<string, int>%& p: brojDana) {
string mesec = p.first; int brojDana = p.second;
cout << mesec << ": " << brojDana << endl;

ili krace:

for (const auto& p : brojDana) {
string mesec = p.first; int brojDana = p.second;
cout << mesec << ": " << brojDana << endl;

U prethodnoj petlji promenljiva p je referenca koja se tokom petlje pomera tako da ukazuje
na jedan po jedan ureden par elemenata mape (svaki element je par koji sadrzi kljuc i
vrednost). Klju¢nom recju const se naznacava da se tokom prolaska kroz elemente mape
oni nece menjati.

Jos lepsi oblik je kada se tokom iteracije odmah par razdvoji na klju€ i vrednost.

for (const auto& [mesec, broj] : brojDana)
cout << mesec << ": " << broj << endl;

Alternativno, moZemo eksplicitno koristiti iteratore

178 GLAVA 7. STRUKTURE PODATAKA

for (auto it = brojDana.begin(); it != brojDana.end(); it++)
cout << it->first << ": " << it->second << endl;

Iteracija kod (sortirane, uredene) mape se uvek vrsi u sortiranom redosledu kljuceva.
Kljucevi mape mogu biti samo nekog tipa ¢ije vrednosti se mogu porediti relacijskim ope-
ratorima. Niske, koje ¢emo najcescée koristiti kao kljuceve, zadovoljavaju taj uslov. Ako
su kljucevi mape neke korisnicki definisane strukture ili objekti klasa, tada je potrebno da
se u tim strukturama ili klasama definiSe operator <, koji poredi dva objekta.

Tlustrujmo upotrebu mapa na primeru programa koji ucitava spisak mejl adresa i odreduje
onu koja se najcesce pojavljuje u spisku (ako ima viSe takvih, ispisuje bilo koju od njih).
Osnovni zadatak je da se prebroji koliko puta se u spisku smo postoji svaka od adresa
i njega moZemo reSiti tako Sto svakom klju¢u mape (mejl adresi) pridruZimo njen broj
pojavljivanja.

#include <iostream>
#include <string>
#include <map>
using namespace std;

int main() {
// svakoj ucitanoj adrest dodeljujemo njen broj pojavljivanja
map<string, int> brojPojavljivanja;
// ukupan broj adresa koje uctitavamo
int brojAdresa;
cin >> brojAdresa;
for (int i = 0; i < brojAdresa; i++) {
string adresa;
cin >> adresa;
// povecavamo broj pojavljivanja upravo ucitane adrese
brojPojavljivanjaladresa]++;

// maksimalni broj pojavljivanja neke adrese

int maksPojavljivanja = O;

// adresa koja se pojavljuje najveét broj puta

string maksAdresa;

// obradjujemo sve adrese koje su u mapt

for (const auto& [adresa, brojl : brojPojavljivanja)
// azuriramo maksimum
if (broj > maksPojavljivanja) {

7.5. STRUKTURE PODATAKA SA ASOCIJATIVNIM PRISTUPOM 179

maksPojavljivanja = broj;
maksAdresa = adresa;
b
// tispisujemo adresu koja se najvise pojavljuje
cout << maksAdresa << endl;

Naglasimo da naredba brojPojavljivanja[adresa]++ povecava broj pojavljivanja
adrese u mapi, ako ona postoji, a ako ne postoji, onda je prvo ubacuje i pridruzuje joj
vrednost 0 i odmah zatim tu vrednost uvecava na 1.

Slican zadatak bi bio da se odredi slovo koje se najcesce pojavljuje u reci. Brojanje poja-
vljivanja bismo mogli da ostvarimo na slede¢i nacin.

string s;

cin >> s;

map<char, int> brojPojavljivanja;

for (char c : s)
brojPojavljivanjalc]++;

Ako, na primer, znamo da se niska s sastoji samo od malih slova engleske abecede, ume-
sto u mapi, brojeve pojavljivanja svakog slova moZemo pamtiti u staticki alociranom nizu
koji ima 26 elemenata (broj pojavljivanja slova a na poziciji 0, slova b na poziciji 1, itd.).
Poziciju datog slova mozemo lako odrediti tako $to od njegovog koda oduzmemo kod ka-
raktera a (obicno se radi o kodovima u tabeli ASCII). U jeziku C++ (isto kao u jeziku C)
karakteri su interno reprezentovani pomocu svojih kodova, pa se odgovarajuca pozicija u
nizu moZe dobiti oduzimanjem karakterske konstante 'a', a karakter se moze dobiti od
pozicije dodavanjem te konstante.

string s;
cin >> s;
// broj pojavljivanja svakog karaktera
int brojPojavljivanja[26];
for (char c : s)
brojPojavljivanjalc - 'a']++;
// pozictja karaktera koji se majcesce pojavljuje
int maks = 0;
for (dnt i = 0; i < 26; i++)
if (brojPojavljivanjal[il > brojPojavljivanja[maks])
maks = i;

7.6
7.6.1

7.6.1.1

180 GLAVA 7. STRUKTURE PODATAKA

cout << 'a' + maks << endl;

Dakle, ako se u programu opisuje preslikavanje jednog skupa u drugi, i ako je domen
preslikavanja mali skup, umesto mape se mozZe koristiti i niz (ovakva reSenja su tipi¢na za
programski jezik C u kome mape ne postoje, mogu se koristiti i u jeziku C++, mada cesto
ne donose neke znacajne prednosti u odnosu na koris¢enje mapa).

Specijalizovane strukture podataka

Stek

Stek (engl. stack) je kolekcija podataka sa pristupom po principu LIFO (engl. last-in-first
out) - element se moze dodati samo na vrh steka i moZe se skinuti samo sa vrha steka. Kao
stek ponaSa se, na primer, Stap na koji su naredani kompakt diskovi. Ako sa Stapa moZe da
se uklanja samo po jedan disk, da bi bio skinut disk koji je na dnu, potrebno je pre njega
skinuti sve druge diskove.

U jeziku C++, stek se realizuje klasom stack<T> gde T predstavlja tip elemenata na steku.
Zanjeno koriS¢enjem potrebno je ukljuditi zaglavlje <stack>. PodrZane su sledece metode
(sve su veoma efikasne):

 push - postavlja dati element na vrh steka

« pop - skida element sa vrha steka (pod pretpostavkom da stek nije prazan). Ova me-
toda je tipa void i ne vraca uklonjeni element. Poziv funkcije pop u trenutku kada
je stek prazan dovodi do nedefinisanog ponasanja (obi¢no do nasilnog prekida pro-
grama) i zadatak programera je da osigura da se to nece deSavati tokom izvrSavanja
programa.

e top - ocitava element na vrhu steka (pod pretpostavkom da stek nije prazan)

o empty - proverava da li je stek prazan

e size - vraca broj elemenata na steku.

Stek u jeziku C++ je zapravo samo adapter, omotac oko neke kolekcije podataka (obi¢no
vektora) koji korisnika primorava da postuje pravila pristupa steku i sprecava da napravi
operaciju koja nad stekom nije dopustena (poput pristupa nekom elementu ispod vrha).
Zaista, za implementaciju steka, ako se drugacije ne naglasi koristi se obican vektor. Time
Sto se opredeli za strukturu stack<T> umesto vector<T>, programer ima garanciju da
e pristup elementima biti ogranic¢en, ¢ime se eliminiSu mnoge moguce greske u kodu.

Primer upotrebe steka: izrazi u postfiksnoj notaciji

Kao primer upotrebe steka razmotrimo izracunavanje vrednosti izraza zapisanih u post-
fiksnoj notaciji. U postfiksnoj notaciji, binarni operatori se ne zapisuju izmedu operana-
da, nego iza njih. Na primer, izraz 3 - ((1 4+ 2) - 3 4+ 5) se zapisuje na slede¢i nacin:
(3 (((12+4)3:-)5 +) -) Interesantno je da zagrade u postfiksnom zapisu uopste ne

7.6. SPECIJALIZOVANE STRUKTURE PODATAKA 181

moraju da se piSu i nema opasnosti od viSesmislenog tumacenja zapisa. Dakle, navedeni
izraz moZe se napisati i na slede¢inacin: 312 + 3 - 5 4 - (u ASClI sintaksi 3 1 2
+ 3 *x 5 + %),

Vrednost navedenog izraza moZe se jednostavno izraCunati Citanjem sleva nadesno i ko-
riS¢enjem steka. Ako je procitan broj, on se stavlja na stek. Inace (ako je procitan znak
operacije), onda se dva broja skidaju sa steka, na njih se primenjuje procitana operacija i
rezultat se stavlja na stek. Nakon ¢itanja Citavog izraza (ako je ispravno zapisan), na steku
¢e biti samo jedan element i to broj koji je vrednost izraza.

Sledeci program Cita aritmeticki izraz (zapisan u postfiksnom zapisu). Jedine dozvoljene
operacije su + i . Cifre i znakovi operacija su razdvojeni razmacima. Program cita jednu
po jednu nisku, sve dok ih ima tj. dok ne dode do kraja ulaza. Pretpostavicemo da je svaka
niska ili ispravno zapisan prirodni broj ili simbol operacije. Kada se naide na broj, on se
postavlja na stek (nisku sastavljenu od cifara moZemo konvertovati u broj koris¢enjem
bibliotecke funkcije stoi, opisane u poglavlju 8). Kada se naide na znak operacije, sa
steka se Citaju dve vrednosti i zamenju se rezultatom primene procitane operacije. Ukoliko
je zadati izraz ispravno zapisan (Sto ¢emo pretpostaviti), na kraju izvr§avanja programa
vrednost izraza se nalazi na dnu steka i ona se ispisuje.

#include <iostream>
#include <stack>
#include <string>
using namespace std;

int main() {
stack<int> operandi;
// citamo jednu po jednu nisku do kraja ulaza
string s;
while (cin >> s) {
if (s[0] == '+") {
// operator +
// dve wrednosti na vrhu steka menjamo njihovim zbirom
int opl = operandi.top(); operandi.pop();
int op2 = operandi.top(); operandi.pop();
operandi.push(opl + op2);
} else if (s[0] == 'x') {
// operator *
// dve wvrednosti na vrhu steka menjamo njthovim protzvogom
int opl = operandi.top(); operandi.pop();
int op2 = operandi.top(); operandi.pop();
operandi.push(opl * op2);

7.6.2

7.6.2.1

182 GLAVA 7. STRUKTURE PODATAKA

} else {

operandi.push(stoi(s));

}

cout << operandi.top() << endl;

}

Na primer, ako se unesu slede¢i podaci (koji se €itaju kao niske):
312+ 3 %5+ %

nakon prekida unosa, program ¢e ispisati vrednost 42. a Primetimo da se prilikom skidanja
vrednosti sa steka ona mora prvo procitati (metodom top), pa tek zatim skinuti sa steka
(metodom pop).

Red

Red je kolekcija podataka sa pristupom po principu FIFO (engl. first-in-first out) — element
se uvek uzima sa pocetka, a dodaje na kraj reda.

U jeziku C++, red se realizuje klasom queue<T> gde T predstavlja tip elemenata na ste-
ku. Za njeno koris¢enjem potrebno je ukljuciti zaglavlje <stack>. PodrZzane su sledece
metode:

 push - postavlja dati element na kraj reda

« pop - skida element sa pocetka reda (pod pretpostavkom da red nije prazan). Nagla-
simo da je ova metoda tipa void i da ne vrada uklonjeni element.

o front - ofitava element na pocetku reda (pod pretpostavkom da red nije prazan)

o empty - proverava da li je red prazan

e size - vraa broj elemenata u redu

Red u jeziku C++ je zapravo samo adapter oko neke kolekcije podataka (obi¢no reda sa
dva kraja) koji korisnika primorava da poStuje pravila pristupa redu i sprecava da napravi
operaciju koja nad redom nije dopustena (poput pristupa nekom elementu koji nije na
pocetku).

Primer upotrebe reda: poslednjih k ucitanih linija teksta

Tustrujmo upotrebu reda na primeru programa koji Stampa poslednjih & ucitanih linija
teksta. Ako je broj k dosta manji od ukupnog broja linija ($to ¢esto moze biti sluéaj), tada
bi reSenje koje bi ucitalo sve linije u jedan vektor nepotrebno troSilo previSe memorije.

7.6.3

7.6. SPECIJALIZOVANE STRUKTURE PODATAKA 183

Umesto toga moZemo u strukturi podataka Cuvati samo poslednjih & ucitanih linija (ili
manje, dok se jos ne udita prvih k linija). Kada se ucita nova linija, ona se dodaje na kraj
reda. Ako je tada u redu k£ + 1 linija, uklanja se prva linija iz reda.

#include <iostream>
#include <string>
#include <queue>

int main() {

// broj linija koje treba ispisati

int k;

cin >> k;

// red u kome cuvamo poslednjih k linija

queue<string> poslednjiKLinija;

// citamo sve linije do kraja ulaza

string linija;

while (getline(cin, linija)) {
// ostguravamo da u redu nema nikad vise od k lintja
if (poslednjiKLinija.size() == k)

poslednjiKLinija.pop(Q) ;

// ubacujemo procitanu liniju u red
poslednjiKLinija.push(linija);

}

// tspisujemo rezultat

while (!poslednjiKLinija.empty()) {
cout << poslednjiKLinija.front() << endl;
poslednjiKLinija.pop(Q) ;

Red sa dva kraja

Jedno uopstenje strukture red je red sa dva kraja koji dopusta da se elementi i dodaju i
uzimaju sa oba kraja reda (ta struktura podataka zapravo kombinuje i funkcionalnost steka
i funkcionalnost reda).

U jeziku C++, red sa dva kraja raspolozZiv je kao struktura deque<T>. Za njeno korisce-
nje potrebno je ukljuciti zaglavlje <deque>. PodrZane su sledece operacije (sve su veoma
efikasne).

o push_front - dodavanje elementa na pocetak

7.6.3.1

184 GLAVA 7. STRUKTURE PODATAKA

o push_back - dodavanje elementa na kraj

« front - Citanje elementa sa pocetka (pod pretpostavkom da red nije prazan)

» back - Citanje elementa sa kraja (pod pretpostavkom da red nije prazan)

» pop_£front - uklanjanje elementa sa pocetka (pod pretpostavkom da red nije pra-
zan). Ova metoda je tipa void i da ne vraca uklonjeni element.

» pop_back - uklanjanje elementa sa kraja (pod pretpostavkom da red nije prazan).
Naglasimo da je ova metoda tipa void i da ne vraca uklonjeni element.

» empty - provera da li je red prazan

o size - broj elemenata u redu

Interesantno, zahvaljujui specificnom nacinu implementacije, ova struktura podataka po-
drzava i operator indeksnog pristupa kojim se element na datoj poziciji moZe procitati ili
izmeniti veoma efikasno.

Primer upotrebe reda sa dva kraja: istorija veb-pregledaca

Kao primer upotrebe strukture deque naveSéemo program koji simulira rad istorije veb-
pregledaca. Pretpostavimo da se u njoj pamte adrese k prethodno poseéenih veb-sajtova.
Kada korisnik poseti novi veb-sajt, on se dodaje na kraj istorije. Ako u istoriji nema mesta
za dodavanje novog sajta, prva dodata adresa (ona na pocetku reda) se briSe. Ako korisnik
pritisne dugme back, on se vraca na prethodno poseceni veb-sajt, koji se nalazi na kraju
istorije. PretpostaviCemo da se sa standardnog ulaza prvo ucitava broj n, a zatim linije
sve do kraja ulaza (tj. dok se program ne prekine). Ako je sadrZaj linije niska back, na
standardni izlaz se ispisuje poslednja adresa iz reda (ili -, ako je red prazan). Ako nije,
smatraéemo da je u pitanju nova adresa i ona se dodaje na kraj reda.

#include <iostream>
#include <string>
#include <deque>
using namespace std;

int main() {
// citamo duzinu istorije (sa ws ostiguravamo da ce biti procitan
// t prelazak u novi red)
int k;
cin >> k >> ws;
// red sa dva kraja u kom cuvamo istoriju posecenih sajtova
deque<string> istorija;
// citamo liniju po liniju do kraja standardnog ulaza
string linija;
while (getline(cin, linija)) {
if (linija == "back") {

7.6. SPECIJALIZOVANE STRUKTURE PODATAKA 185

// treba se vratiti na prethodno posecen sajt
// skidamo trenutni sajt iz tistorije (ako postoji)
if (!istorija.empty())
istorija.pop_back() ;
// prijavljujemo prethodnt sajt (ako postojz)
if (!istorija.empty()) {
cout << istorija.back() << endl;
} else {
cout << "-" << endl;
+
} else {
// ispisujemo adresu sajta na koji prelazimo
cout << linija << endl;
// ostiguravamo da u tstortiji me moze nikada biti vise od k|adresa
if (istorija.size() == k)
istorija.pop_front();
// dodajemo trenutnu adresu na kraj tstortije
istorija.push_back(linija);

Ako bismo umesto reda sa dva kraja (deque) koristili vektor, program bi nastavio da funk-
cioniSe, ali bi bio sporiji, zato §to uklanjanje prvog elementa vektora podrazumeva da se
svi ostali elementi pomeraju za jednu poziciju ulevo i veoma je neefikasna operacija.

7.6.4 Red sa prioritetom

Red sa prioritetom je vrsta reda u kome elementi imaju na neki nacin pridruZen prioritet,
dodaju se u red jedan po jedan, a uvek se iz reda uklanja onaj element koji ima najveci pri-
oritet od svih elemenata u redu. Zbog nacina implementacije, red sa prioritetom se nekada
naziva i hip (engl. heap), o ¢emu Ce viSe reci biti u narednim tomovim knjige.

U jeziku C++, red sa prioritetom se realizuje klasom priority_queue<T>, gde je T tip
elemenata u redu. Red sa prioritetom podrZava sledece metode:

 push - dodaje dati element u red

 pop - uklanja element sa najve¢im prioritetom iz reda (pod pretpostavkom da red
nije prazan). Ova metoda je tipa void i da ne vraca uklonjeni element.

 top - ocitava element sa najveéim prioritetom (pod pretpostavkom da red nije pra-
zan)

o empty - proverava da li je red prazan

e size - vraca broj elemenata u redu

186 GLAVA 7. STRUKTURE PODATAKA

Prilikom poredenja elemenata tipa T koristi se podrazumevani poredak. Veci elementi u
tom poretku imaju veci prioritet. Na primer, ako se u red ubacuju elementi 1, 31 2, element
3 ima najveci prioritet, pa bi on bio vracen primenom metode top i uklonjen primenom
metode pop. Nekad nam je potrebno da rad u kojem manji elementi imaju veéi prioritet.
Takav red moZe se najlakSe deklarisati na sledeéi nacin:

priority_queue<int, vector<int>, greater<int>> pq;

Navedenom deklaracijom zadato je:

« da ¢e se u redu Cuvati brojevi tipa int;

« da ¢e se oni interno smestati u kolekciju vector<int> (Sto je uslovljeno nac¢inom
interne reprezentacije podataka, koja zahteva neki oblik sekvencijalne kolekcije,
tj. niza sa efikasnim indeksnim pristupom i moguc¢no$éu proSirivanja);

o da ¢e se za poredenje koristiti struktura greater<int> definisana u zaglavlju
<numeric>, koja obrée podrazumevani poredak - vraca true ako i samo ako je
prvi argument koji se poredi veéi od drugog.

Drugi i tre¢i argument deklaracije mogu biti izostavljeni i tada se podrazumeva koriS¢enje
vektora i podrazumevani poredak nad elementima zadatog tipa. Nije moguce izostaviti
drugi, a navesti tre¢i argument.

7.6.4.1 Primer upotrebe reda sa prioritetom: zbir najvecih k brojeva

Tlustrujmo upotrebu reda sa prioritetom kroz program koji odreduje zbir najveéih k brojeva
uCitanih sa ulaza. Najveéih k do sada videnih elemenata niza moZemo Cuvati u strukturi
podataka koja nam omogucava da pronademo najmanji element u njoj i da ga eventualno
zamenimo onim koji je trenutno ucitan (ako je trenutno ucitani element veci od njega).
Pogodna struktura za to je red sa prioritetom. Na pocetku red popunjavamo sa k prvih
ucitanih elemenata, a zatim svaki naredni ucitani element poredimo sa najmanjim u redu
1 ako je veci od njega, najmanji izbacujemo, a ucitani element ubacujemo.

#include <iostream>
#include <priority_queue>
using namespace std;

int main() {
int n, k;
cin >> n >> k;

// red sa prioritetom koji cuva k najvecth elemenata koristi se
// min-hip, koji omogucava brzo uklanjanje najmanjeg elementa

7.6. SPECIJALIZOVANE STRUKTURE PODATAKA 187

priority_queue<int, vector<int>, greater<int>> pq;

// ucttavamo prvih k elemenata ¢ ubacujemo th u red
for (int i = 0; i < k; i++) {

int x;

cin >> x;

pq.push(x);
}

// ucitavamo preostale elemente
for (int i = k; i < n; i++) {
int x;
cin >> x;
// ako je uctitani element vecti od najmanjeg trenutno u redy
// izbacujemo taj najmanji i menjamo ga ucitanim
if (x > pq.top()) {
pq-pop();
pq.-push(x);

3

// izbacujemo elemente iz reda rTacunajuct njihov zbir i ispisyjemo ga

int zbir = 0;

while (!pq.empty()) {
zbir += pq.top();
Pq.pop();

X

cout << zbir << endl;

188 GLAVA 7. STRUKTURE PODATAKA

C& Pregled standardne biblioteke

U vedini savremenih programskih jezika, kroz dodatnu biblioteku raspoloZive su imple-
mentacije mnogih ¢esto kori§€enih algoritama. Iako su te biblioteke standardne, funkci-
je koje one obezbeduju ne smatraju se delom samog jezika, nego njegovim svojevrsnim
dodatkom. Mnoge od ovih funkcija (ne i sve) mogu se jednostavno implementirati, pa
se programeri ¢esto odlucuju za samostalno programiranje algoritama umesto kori$éenja
biblioteckih verzija (narocito ako su u pitanju programeri naviknuti na programiranje u
imperativnim programskim jezicima kakvi su C ili Pascal). To se ne smatra greSkom,
ali koriscenje biblioteckih funkcija smatra se boljom navikom i boljom praksom iz ne-
koliko razloga. Kod je kraci i lakSe se razume, a u slucaju dobrog poznavanja biblioteke
- programiranje je jednostavnije i brZe. Dodatno, implementacije biblioteCkih funkcija
sa sigurno§¢u se mogu smatrati ispravnim a cesto su i efikasnije nego neko pravilinijska
verzija.

Neke funkcije iz standardnih biblioteka Cesto se koriste i gotovo je nuZno poznavati ih (na
primer, funkcije za sortiranje). Neke se koriste rede i u praksi je dovoljno znati da postoje
i kako pronadi njihova svojstva u dokumentaciji jezika. Iako u standardnim bibliotekama
postoji mnostvo funkcija, njihovo memorisanje (sa vise ili manje detalja) nije previse te-
Sko. Naime, vecina je napisana u istom duhu i deklaracije su intuitivne, kao i sama imena
funkcija, na primer, sort za sortiranje, copy za kopiranje i reverse za obrtanje niza.

Sve navedeno vazi i za jezik C++. Veliki broj osnovnih algoritama implementiran je u vi-
du funkcija u okviru standardne biblioteke i mogu se koristiti ako se ukljuci zaglavlje
<algorithm>. Te funkcije su specifine za C++, ali slicne postoje i za veéinu drugih
savremenih jezika, kao Sto su Python, JavaScript, Haskell. Zbog toga poznavanje
standardne biblioteke jezika C++ prevazilazi okvire ovog jezika i moZe se smatrati opStim
programerskim znanjem. Kada su u pitanju bogate standardne biblioteke, medu jezicima
koji se Siroko koriste, jezik C je jedan od izuzetaka. Naime, ovaj jezik je u skoro svakom
segmentu veoma sveden, pa tako i u svojoj standardnoj biblioteci. Ona, naravno, postoji,
ali sadrZi samo mali broj implementiranih algoritama.

Koris$éenje funkcija iz standardne biblioteke predstavlja dodatni i neSto drugaciji sloj u

189

190 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

odnosu na znanje koje je predoceno u prethodnim delovima. U nastavku ¢emo prikazati
samo neke najznacajnije funkcije iz standardne biblioteke jezika C++, uz podsecanje da
je dobro poznavati i ve¢i njen deo. Veoma je poZeljno i da programer za veéinu funkcija
razume kako one rade i da je u stanju da ih i sam implementira.

8.1 Koriscéenje bibliotecke implementacije algoritama

Jedan od velikih izazova za pocetnike je pamcenje naziva i parametara velikog broja
funkcija iz respoloZivih biblioteka. Savremeno programiranje podrazumeva Kkori$éenje
jezika sa bogatim bibliotekama, ali uz obavezni pristup dokumentaciji u kojoj su sve
bibliotecke funkcije opisane i ilustrovane primerima upotrebe. Na primer, internet
pretraga bilo koje biblioteCke funkcije jezika C++ ¢e nas uputiti (izmedu ostalog)
na sajt cppreference.com koji sadrzi veoma detaljnu i dobro organizovanu do-
kumentaciju biblioteke jezika C++. Forumi namenjeni programerima, poput foruma
stackoverflow.com, omogucavaju postavljanje pitanja na koje dobrovoljno odgovaraju
iskusniji programeri. Na tim forumima uvek se moZe potraziti reSenje nekog problema
tj. opis koriS¢enja neke bibliotecke funkcije ili kombinacije funkcija (veoma je verovatno
da je pitanje koje nas trenutno zanima neko veé ranije postavio). Naravno, jako loSe i
veoma opasno je samo iskopirati ponudeno reSenje, bez njegovog potpunog razumevanja.
Pored dokumentacije i foruma, kori$¢enje biblioteckih funkcija a i programiranje uopste,
olakSavaju i savremena razvojna okruZenja koja nude automatsko dopunjavanje naziva
funkcija, integrisanu dokumentaciju, pa ¢ak i integrisana reSenja zasnovana na vestackoj
inteligenciji koja pruZaju predloge i opise koda. Sve su ovo vaZne olakSice, ali se dobar
programer postaje jedino ako se veoma paZljivo prouci celokupna biblioteka jezika, tako
da se potpuno razumeju sve funkcije i svi koncepti koji se koriste.

8.2 Pregled biblioteckih funkcija za rad sa sekvencijalnim kolekcijama

8.2.1 Sortiranje

Sortiranje je jedan od fundamentalnih zadataka u raCunarstvu. Sortiranje podrazumeva
uredivanje niza u odnosu na neku relaciju poretka (na primer, uredivanje niza brojeva
po veli¢ini — rastuce, opadajuce ili nerastuce, uredivanje niza niski leksikografski ili po
duZini, uredivanje niza struktura na osnovu vrednosti nekog polja i slicno). Mnogi proble-
mi nad nizovima mogu se jednostavnije i efikasnije reSiti u slucaju da je niz sortiran (na
primer, sortirani nizovi se mogu efikasno pretraZivati).

Vecdina programskih jezika, ukljucujuéi i programski jezik C++, u svojim bibliotekama
imaju funkcije za sortiranje nizova. U realnom programskom kodu uvek je preporuka vrSiti
sortiranje koris¢enjem tih funkcija, jer su one efikasno implementirane i detaljno testirane.
S druge strane, izu¢avanje algoritama sortiranja mozZe pomo¢i u savladavanju nekih vaznih
osnovnih algoritamskih tehnika i stoga je nezaobilazno u u€enju programiranja, te su iz tog
razloga i prikazani neki algoritmi sortiranja u poglavlju 5.6.1.

8.2. PREGLED BIBLIOTECKIH FUNKCIJA ZA RAD SA SEKVENCIJALNIM KOLEKCIJAMA191

Kao i vecina biblioteckih funkcija za obradu sekvencijalnih kolekcija, funkcija sortiranja
kao argumente prima dva iteratora ili dva pokazivaca koja ogranicavaju poluotvoreni seg-
ment niza koji se sortira. Ako su prosledeni iteratori from i to, sortiraju se elementi iz
intervala [from, to).Ako Zelimo da sortiramo ceo vektor ili niz (§to je najéesée sluéaj),
onda prosledujemo interatore begin i end, koji ukazuju na pocetak i na jednu poziciju
iza kraja podataka. Na primer, sortiranje vektora moZemo ostvariti na slede¢i nacin.

vector<int> a = {3, 8, 1, 4, 9, 2, 6, 5, T};
// sortiramo niz
sort(a.begin(), a.end());
// tspisujemo sortirani niz: 1, 2, 3, 4, 5, 6, 7, 8, 9
for (int x : a)
cout << x << endl;

Umesto metoda begin i end moZemo upotrebiti i funkcije tj. Koristiti poziv
sort(begin(a), end(a)). Ovo je malo fleksibilnije, jer ispravno radi i za sta-
ti¢ki alocirane nizove.

int al] = {3, 8, 1, 4, 9, 2, 6, 5, 7};
// sortiramo niz
sort(begin(a), end(a));
// tspisujemo sortirani niz: 1, 2, 3, 4, 5, 6, 7, 8, 9
for (int x : a)
cout << x << endl;

I niske (tipa string) se smatraju sekvencijalnim kolekcijama (koje sadrZe karaktere) i
mogu se obradivati na isti nacin kao i nizovi i vektori. Na primer, karakteri u niski se
mogu sortirati na slede¢i nacin (koristi se poredak odreden ASCII kodovima karaktera).

string s = "Zdravo svima!";
sort (begin(s), end(s));
cout << s << endl; // ispisuje !Zaadimorsuvv

Kao $§to je receno, umesto dva iteratora, funkciji za sortiranje moguce je proslediti dva
pokazivaca. Na primer, niz a duZine n moZe se sortirati i pozivom sort (a, a+n).

MozZe se sortirati i samo deo niza — tako Sto se prosleduju iteratori koji ogranicavaju Zeljeni
deo niza (a koji nisu begin i end).

Prilikom sortiranja se koristi podrazumevani poredak elemenata sekvencijalne kolekcije
koja se sortira. Ako se sortiraju niske, to je leksikografski poredak (tj. leksikografsko pro-
Sirenje poretka < nad pojedinacnim karakterima). U narednom primeru, nakon sortiranja
dobija se niz ananas, banana, jabuka, sljiva, visnja:

192 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

vector<string> a = {"banana", "ananas", "jabuka", "visnja", "sljiva"};
sort (begin(a), end(a));

Redosled sortiranja moZe se promeniti zadavanjem funkcije poredenja (ona se navodi kao
tre¢i argument funkcije sort). U pitanju je funkcija koja prima dva elementa, poredi ih i
vraca true ako prvi element treba da prethodi drugom u sortiranom nizu (a false inace).
Na primer, naredni program sortira niske po duZini.

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;

bool poredi_po_duzini(const string& a, const string& b) {
return a.length() < b.length(Q);
}

int main() {
vector<string> a = {"audi", "folksvagen", "kia", "reno", "honda"};
sort (begin(a), end(a), poredi_po_duzini) ;
for (const string& s : a)
cout << s << endl;
return O;

Prethodni program daje sledeci izlaz.

kia

audi

reno

honda
folksvagen

Umesto imenovane, moguce je upotrebiti i anonimnu funkciju funkciju poredenja.

sort (begin(a), end(a),
[] (const string& a, const string& b) {
return a.length() < b.length(Q);
1);

8.2. PREGLED BIBLIOTECKIH FUNKCIJA ZA RAD SA SEKVENCIJALNIM KOLEKCIJAMA193
ili

auto poredi = [](const string& a, const string& b) {
return a.length() < b.length();
F) g
sort (begin(a), end(a), poredi);

Prethodna funkcija poredenja ne namece neki konkretan redosled niski iste duZine. Ako
Zelimo garanciju da ¢e niske iste duZine biti sortirane, na primer leksikografski, mozemo
funkciju poredenja definisati na slede¢i nacin.

bool poredi(const string& a, const string& b) {
if (a.length() == b.length())
return a < b;
return a.length() < b.length();
}

Cesta potreba je da se niz sortira nerastuce i tada se moZe koristiti objekat greater<T>
(definisan u zaglavlju functional) i njegova funkcija greater<T>() koja poredi ele-
mente tipa T i vra¢a true ako je prvi element veci od drugog. Na primer,

vector<int> a = {3, 9, 1, 8, 4, 2, 6, 5, 7};
sort(begin(a), end(a), greater<int>());
// ispisuje 9 8 76 5 4 32 1
for (int x : a)
cout << x << endl;

Prirodno je ponekad zahtevati da se elementi sortiraju po nekom kriterijumu, ali da se
poredak elemenata koji su jednaki po tom kriterijumu ne promeni u odnosu na originalno
stanje niza. Za sortiranje se kaze da je stabilno ako zadovoljava ovaj uslov. Funkcija sort
ne vr$i stabilno sortiranje, ali funkcija stable_sort vr§i. Na primer, naredni program vrsi
sortiranje niski po duZini, pri ¢emu garantuje da se medusobni redosled niski iste duZine
necée promeniti u odnosu na originalno stanje niza.

vector<string> niske =
{"abc", "c", "ab", "ba", "cba", "a", "bca", "bc", "b"};
auto poredi_duzinu = [](const string& a, const string& b) {
return a.length() < b.length();
s

stable_sort(begin(niske), end(niske), poredi_duzinu) ;

Rezultat ovog sortiranja e biti c, a, b, ab, ba, bc, abc, cba, bca.

822

194 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

Linearna pretraga

PretraZivanje sekvencijalne kolekcije podrazumeva proveru da li niz sadrZi datu vrednost.
Ako kolekcija nije sortirana, pretraZivanje se moZe izvrsiti funkcijom find. Ova funkcija
vraca iterator koji ukazuje na prvo pojavljivanje traZzene vrednosti, a ako kolekcije ne sadr-
71 traZeni element onda funkcija vraca iterator iza poslednjeg elementa kolekcije (koji se
dobija funkcijom end). Pozicija elementa u kolekciji se moZe izraunati izracunavanjem
rastojanja izmedu iteratora na pocetak kolekcije i iteratora koji ukazuje na pronadeni ele-
ment.

vector<int> a = {3, 8, 4, 0, 1, 6, 2, 0, 5};
// trazimo vrednost 6 u nizu
auto it = find(begin(a), end(a), 6);
if (it != end(a))
cout << "Element je pronadjen na poziciji: "
<< distance(begin(a), it) << endl;
else
cout << "Element nije nadjen" << endl;

Poslednju poziciju traZzenog elementa moZemo pronadi ako kolekciju pretrazujemo una-
zad. Iterator koji ukazuje na poslednje pojavljivanje moZemo dobiti pozivom auto it =
find(rbegin(a), rend(a), 0); koji koristi iteratore rbegin i rend.

Broj pojavljivanja elemenata se moZe dobiti funkcijom count.

vector<int> a = {3, 8, 4, 0, 1, 6, 2, 0, 5};
int broj_nula = count(begin(a), end(a), 0);
cout << "Broj nula u nizu je: " << broj_nula << endl;

Umesto neke konkretne vrednosti moZemo traZiti i prvi element koji zadovoljava neko za-
dato svojstvo. Funkcija find_if pored iteratora koji ogranicavaju elemente koji se pre-
trazuju prima i funkciju koja proverava da li trenutni element zadovoljava Zeljeni uslov.
Na primer, pozicija i vrednost prvog negativnog elementa u nizu se moze naci na sledeci
nacin.

bool negativan(int x) {
return x < 0;

}

int main() {
int al[] = {8, 8, 4, -1, -2, 7, -3, 5};
auto it = find_if (begin(a), end(a), negativan);
cout << distance(begin(a), it) << " " << *it << endl;

8.2. PREGLED BIBLIOTECKIH FUNKCIJA ZA RAD SA SEKVENCIJALNIM KOLEKCIJAMA195

}

Ako je funkcija koja proverava uslov jednostavna, nekad je pogodnije upotrebiti anonimnu
funkciju:

auto it = find_if (begin(a), end(a), [](int x) { return x < 0; 1})j

Funkcija find_if_not pronalazi prvi element koji ne zadovoljava dati uslov.
Funkcija count_if izracunava broj elemenata koji zadovoljavaju dati uslov, §to je ilustro-
vano narednim kodom.

auto paran = [](int x) { return x % 2 == 0; };
int broj_parnih = count_if(begin(a), end(a), paran);
cout << broj_parnih << endl;

Funkcija all_of proverava da li svi elementi zadovoljavaju dati uslov, funkcija any_of
proverava da li postoji element koji zadovoljava dati uslov, dok funkcija none_of prove-
rava da li nijedan element ne zadovoljava dati uslov.

auto negativan = [](int x) { return x < 0; };
if (all_of(begin(a), end(a), negativan))
cout << "Svi su negativni" << endl;
if (any_of (begin(a), end(a), negativan))
cout << "Postoji negativan" << endl;
if (none_of (begin(a), end(a), negativan))
cout << "Nijedan nije negativan" << endl;

8.2.3 Binarna pretraga
Ako je niz sortiran, onda je neuporedivo efikasnije nego linearnu upotrebiti binarnu pretra-
gu koja nam je na raspolaganju kroz funkciju binary_search. Ona ne vraca iterator na
pronadeni element, ve¢ semo podatak tipa bool koji govori da li element postoji u nizu.

vector<int> a = {3, 8, 9, 12, 13, 18, 19, 27};
int x;
cin >> x;
if (binary_search(begin(a), end(a), x))
cout << "Element " << x << " postoji u nizu" << endl;
else
cout << "Element " << x << " ne postoji u nizu" << endl;

8.2.4

196 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

Funkcija lower_bound vrSi binarnu pretragu sortiranog niza i vraca iterator koji ukazuje
na prvu poziciju na kojoj se nalazi element koji je jednak ili ve¢i od date vrednosti. Ako
takav element ne postoji, (tj. ako su svi elementi manji od date vrednosti), onda funkcija
vraca iterator na poziciju iza kraja kolekcije, tj. iterator koji se dobija funkcijom end.
Funkcija upper_bound vraéa iterator koji ukazuje na prvu poziciju na kojoj se nalazi
element koji je strogo veéi od date vrednosti. Na primer,

vector<int> a = {1, 2, 2, 4, 4, 4, 7, 7, 9, 11, 11};
int x = 4;
auto 1 = lower_bound(begin(a), end(a), x);
auto d = upper_bound(begin(a), end(a), x);
cout << "Element " << x << " se javlja "
<< distance(l, d) << " puta" << endl

U navedenom kodu, iterator 1 ukazuje na prvo pojavljivanje elementa 4 u nizu (jer se
pronalazi prvi element koji je veéi ili jednak 4), a iterator d na prvo pojavljivanje elementa
7 (jer se traZi prvi element koji je strogo veéi od 4). Razlika izmedu njih je 3, §to ukazuje
na to da se element 4 javlja tri puta u nizu.

Kopiranje, preslikavanje, filtriranje
Za kopiranje nekog sadrZaja iz jednog niza ili vektora u drugi (ili sa jednog mesta u istom
vektoru na drugo mesto) moZe se koristiti funkcija copy. Na primer,

int a[l = {3, 8, 4, 2, 6, 9, 11, 17};
int b[8];

// kopiramo elemente niza a u niz b
copy (begin(a), end(a), begin(b));

Ili:

vector<int> a = {3, 8, 4, 2, 6, 9, 11, 17};
vector<int> b(8);
copy (begin(a), end(a), begin(b));

Naravno, kada se kopira celokupan sadrZaj vektora, jednostavnije je upotrebiti dodelu nad
vektorima (a = b;). Potreba sa kopiranjem javlja se kada se kopira samo deo niza ili kada
se rezultat formira od elemenata vise nizova.

Funkcija copy podrazumeva da u nizu ili u vektoru u koji smestamo rezultat ima dovoljnog
prostora. U suprotnom dolazi do nedefinisanog ponaSanja.

8.2. PREGLED BIBLIOTECKIH FUNKCIJA ZA RAD SA SEKVENCIJALNIM KOLEKCIJAMA197

Moguce je da vektor u koji se kopira jos§ uvek nema alociranu memoriju i da mu se prilikom
kopiranja elementi dodaju na kraj (uz proSirivanje niza kada je to potrebno). Tada se koristi
posebni iterator back_inserter.

vector<int> a = {3, 8, 4, 2, 6, 9, 11, 17};
vector<int> b;
copy(begin(a), end(a), back_inserter(b));

Funkcija copy_n prima iterator koji ukazuje na pocetak dela niza koji se kopira i broj
elemenata koji se kopiraju (umesto iteratora). Na primer, prvih k elemenata niza a se moze
iskopirati u niz b pozivom funkcije copy_n(begin(a), k, begin(b)).

Za filtriranje se moze koristiti funkcija copy_if koja kopira samo elemente koji zadovo-
ljavaju dati uslov.

vector<int> a = {3, 8, 4, 2, 6, 9, 11, 17};

vector<int> parni;

copy_if (begin(a), end(a), back_inserter(parni),
[J(int x) { return x % 2 == 0; });

Preslikavanje se vrsi funkcijom transform. Na primer, naredni kdd uvecava svaki element
niza a za 1 i smeSta rezultat u novi niz b.

int al[] = {8, 8, 4, 2, 6, 7, 5, 9};

int b[8];

auto uvecaj_za_1 = [](int x) { return x + 1; };
transform(begin(a), end(a), begin(b), uvecaj_za_1);

Naredni kod uvecav sva mala slova iz niske u velika slova.

string s = "dobar dan";
transform(begin(s), end(s), begin(s), ::toupper);

Prva dva iteratora odreduju deo niske koja se transformise (u pitanju je cela niska), treci
iterator odreduje mesto na koje ¢e se smesStati rezultat (ovde je u pitanju je ponovo niz s),
dok je Cetvrti parametar funkcija koja se primenjuje na svaki element (koristimo biblio-
tecku funkciju toupper iz zaglavlja <cctype>, nasledenu iz jezika C, koja je opisana u
poglavlju 8.3).

Funkcija £i11l popunjava dati raspon kolekcije datom vrednoS¢u. Na primer, poziv
fill(begin(a), end(a), -1) popunjava ceo niz vrednostima -1.

198 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

Funkcija replace menja jednu vrednost drugom. Na primer, poziv funkcije
replace(begin(a), end(a), -1, 0) menja u nizu a sve vrednosti -1 vredno-
stima 0. Funkcija replace_if menja sve vrednosti koje zadovoljavaju dati uslov datom
vredno$éu. Na primer, naredni kod menja sve negativne vrednosti u nizu vrednoscu 0.

int all = {1, -2, 3, -4, 5, -6};
auto negativan = [](int x) { return x < 0; I};
replace_if(begin(a), end(a), negativan, 0);

8.2.5 Brisanje elemenata

Nekada je potrebno izbrisati iz kolekcije odredenu vrednost ili vrednosti. Ova operacija je
malo neobicna, jer u kolekciji ne mogu da ostanu “rupe” na mestima izbrisanih elemenata.
Stoga su funkcije koje uklanjaju elemente definisane tako da pomeraju preostale elemente
ka pocetku kolekcije. Funkcija remove briSe sva pojavljivanja date vrednosti, a funkcija
remove_if briSe sve elemente koji zadovoljavaju dati uslov. Obe funkcije vracaju iterator
(ako su kao argumenti zadati iteratori, a pokazivac ako su kao argumenti zadati pokazivaci
na elemente kolekcije) na prvu poziciju iza novog sadrzaja kolekcije (novi kraj kolekcije).
Ako je u pitanju vektor, obicaj je da se nakon pomeranja elemenata na pocetak metodom
erase izvrSi skradivanje vektora (njoj se moZe proslediti iterator koji je povratna vrednost
funkcije remove tj. remove_if).

vector<int> a = {1, 0, 2, 0, 3, 0, 4};

a.erase(
remove (begin(a), end(a), 0),
end(a)
)¢
// sadrZaj vektora je {1, 2, 3, 4}
auto paran = [](int x) { return x % 2 == 0; I};
a.erase(
remove_if (begin(a), end(a), paran),
end(a)
)

// sadrzaj vektora je {1, 3}

Naglasimo da je brisanje neefikasna operacija i da je u slucaju Cestog brisanja umesto
nizova i vektora bolje koristiti neke druge kolekcije (liste, skupove)

8.3

8.4

8.3. RAD SA KARAKTERIMA 199

Rad sa karakterima

U jeziku C++, funkcije za rad sa pojedinacnim karakterima su preuzete iz programskog
jezika C i za njihovo kori$¢enje se ukljucuje zaglavlje <cctype>. Navedimo osnovne funk-
cije ovog zaglavlja.

int isalpha(int c); int isdigit(int c);
int isalnum(int c); int isspace(int c);
int isupper(int c); int islower(int c);
int toupper(int c); int tolower(int c);

Ove funkcije sluZe za ispitivanje i konvertovanje karaktera. Sve ove funkcije imaju argu-
ment tipa int i vracaju vrednost tipa int (koju tumacimo kao istinitosnu vrednost - tacno,
ako je ne-nula, i netacno, ako je jednaka nuli).

 Funkcija isalpha(c) vraca ne-nula vrednost ako je c slovo, nulu inace;

« Funkcija isupper (c) vrada ne-nula vrednost ako je c veliko slovo, nulu inace;

 Funkcija islower (c) vraéa ne-nula vrednost ako je ¢ malo slovo, nulu inace;

» Funkcija isdigit (c) vraca ne-nula vrednost ako je c cifra, nulu inace;

 Funkcija isalnum(c) vraca ne-nula vrednost ako je c slovo ili cifra, nulu inace;

 Funkcija isspace(c) vraca ne-nula vrednost ako je c belina (razmak, tabulator,
novi red, itd), nulu inace;

« Funkcija toupper (c) vraca karakter ¢ konvertovan u veliko slovo ili, ukoliko je to
nemoguce — sam karakter c;

 Funkcija tolower (c) vraéa karakter ¢ konvertovan u malo slovo ili, ukoliko je to
nemogucée — sam karakter c;

Rad sa niskama

Niske su sekvencijalne kolekcije karaktera i sve funkcije koje rade se sekvencijalnim
kolekcijama rade i sa niskama. Uz to, klasa string ima nekoliko specifi¢nih, korisnih
operatora i metoda.

« Niske se obi¢no inicijalizuju konstantnim niskama (koje su navedene izmedu dvo-
strukih navodnika) ili se ucitavaju. Moguce je konstruisati nisku odredene duZine
koja je popunjena datim karakterom. Na primer, string(80, '-') gradi nisku
koja ima 80 crtica.

« Dve niske se mogu nadovezati operatorom +. Ovaj operator je moguce primeniti i
na nisku tipa string i pojedinacni karakter i rezultat je nova niska.

200 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

string s = "zdravo";
string t = s + '!';
cout << t << endl; // ispisuje zdravo!
string r = '!' + s;

cout << r << endl; // ispisuje !zdravo

Medutim, ¢esto umesto da gradimo novu nisku, Zelimo da postojecoj niski dodamo
neki karakter ili nisku na kraj (Sto je efikasnije od izgradnje nove niske ili dodavanja
teksta na pocetak niske). Za to koristimo operator +=.

string s = "zdravo";
s += |!1;
cout << s << endl; // ispisuje: zdravo!
s += "svima";

cout << s << endl; // ispisuje: zdravo!svima

o Metoda substr izdvaja podnisku date niske. Prvi argument je obavezan i oznacava
poziciju na kojoj pocinje podniska. Ako se ne navede drugi argument, tada se podni-
ska izdvaja do kraja zadate niske. Kao drugi argument, moZe se navesti i Zeljeni broj
karaktera podniske. Ako je niska prekratka, izdvajaju se karakteri do kraja niske.

string s = "zdravo svima!";
cout << s.substr(7) << endl; // ispisuje: svima!
cout << s.substr(0, 6) << endl; // ispisuje: zdravo

e Metoda find pronalazi poziciju prvog pojavljivanja podniske unutar niske. Ako
podniska ne postoji, vraca se specijalna vrednost string: :npos. Ne treba meSati
ovu metodu sa funkcijom find koja radi za sve sekvencijalne kolekcije i koja se
moZe upotrebiti za pronalaZenje pojedinacnog karaktera.

string s = "zdravo_svima!";
cout << s.find("avo") << endl; // ispisuje 3
cout << distance(begin(s), find(begin(s), end(s), 'a')) << endl; // isp

e Metoda find_first_of pronalazi prvi karakter koji pripada datom skupu karak-
tera (koji je zadat kao niska). Na primer, s.find_first_of ("aeiuo") pronalazi
poziciju prvog samoglasnika niske s (ili string: :npos ako niska ne sadrZi samo-
glasnike).

8.5

8.5. DATOTEKE/TOKOVI 201

o Metoda replace gradi novu nisku koja se dobija time Sto se u postojecoj niski neka
podniska zameni datom niskom. Na primer,

string s = "zdravo svima!";
cout << s.replace(0, 6, "pozdrav") << endl;

o Metode starts_with i ends_with proveravaju da li niska pocinje odnosno da li
se niska zavr§ava datom niskom.

 Niske se mogu porede relacijskim operatorima <, <=,>, >= (koji odgovaraju leksi-
kografskim proSirenjima relacija <, <=,>, >= nad karakterima). Metoda compare
takode vrsi leksikografsko poredenje i vraca pozitivnu vrednost ako je niska na ko-
joj je pozvana leksikografski veca od date niske, negativnu vrednost ako je manja
tj. nulu ako su niske jednake.

« Funkcije stoi, stol stoll, stof, stod i stold sluZe za konverziju niske u od-
govarajuci celobrojni tip (redom int, long, long long, float, double i long
double). Na primer, izraz stoi("123") je tipa int i ima vrednost 123.

 Funkcija to_string prevodi datu brojevnu vrednost u nisku (tipa string). Funkci-
jaispravno radi za razlicite brojevne tipove. Na primer, izraz to_string(123.45)
je tipa string i ima vrednost "123.45".

Datoteke/tokovi

U dosadasnjim programima sve podatke smo ucitavali sa standardnog ulaza (koris¢enjem
cin), §to obi¢no podrazumeva ucitavanje sa tastature i ispisivali smo ih na standardni izlaz
(koriSéenjem cout), Sto obi¢no podrazumeva ispis na ekran. Medutim, u mnogim pro-
gramima potrebno je ucitati podatke koji su trajno sacuvani ili rezultate rada programa
sacuvati na trajni naCin. Podaci se na disku smestaju u datoteke. Datoteke mogu sadrzati
tekst (zapisan pomocu niza Citljivih karaktera grupisanih u redove), ali i druge tipove po-
dataka (na primer slike, zvuk, video-zapise koji su zapisani na nacin koji nije lako citljiv
Coveku). Ove prve zovemo fekstualne datoteke, a ove druge binarne datoteke. Jezik C++
podrZava rad sa oba tipa datoteka.

Ulazno-izlazne operacije su generalno veoma spore i ako se intenzivno koriste u nekom
programu mogu bitno uticati na njegovu efikasnost. Postoje nacini da se rad ulazno-izlaznih
operacija ubrza u nekoj meri (ali u ovoj knjizi se neCemo baviti njima).

U nastavku ¢emo se fokusirati na rad sa tekstualnim datotekama. Jednostavnosti radi, pod-
razumevacemo da je sav tekst zapisan iskljucivo pomocu karaktera ASCII tablice (malih
i velikih slova engleske abecede, cifara i specijalnih znakova).

Ucitavanje i ispis podataka u jeziku C++ ostvaruje se koriS¢enjem tokova (engl. stream).
Ulazni tokovi sluZe za ulitavanje podataka u program, a izlazni tokovi za ispis podataka

8.5.1

202 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

iz programa. Ulazni tok cin predstavlja standardni ulaz programa, izlazni tok cout pred-
stavlja standardni izlaz programa, a izlazni tok cerr predstavlja standardni izlaz za greske.
Koris¢enjem usluga operativnog sistema prilikom pokretanja programa moguce je izvrsiti
redirekciju ovih tokova. Na primer, ako se program pokrene na sledeci nacin

./program < ulaz.txt > izlaz.txt 2> greske.txt

tada Ce svako Citanje sa standardnog ulaza (pomocu cin) biti zapravo Citanje iz datote-
ke ulaz.txt, svaki ispis na standardni izlaz (pomocéu cout) bie zapravo upis u dato-
teku izlaz.txt, dok ¢e svaki ispis poruke o greSci (pomocu cerr) zavrsiti u datoteci
greske.txt.

Postoje nacini da se koriste datoteke i bez redirekcije.

Ulazni tok za ucitavanje iz tekstualne datoteke (ifstream)

Pored standardnog ulaznog toka, korisnik moZe kreirati i koristiti druge ulazne tokove da
bi ucitao podatke (tekst) iz datoteka. Tip podataka kojim se predstavlja ulazni tok vezan
za datoteku je ifstream (za njegovo koriS€enje je potrebno da budu ukljucena zaglavlja
<iostream> i <fstream>). Kreriranje ulaznog toka i njegovo povezivanje sa datotekom
se vr$i pomocu konstruktora, ¢iji je parametar putanja do datoteke (putanja moze biti bilo
apsolutna, bilo relativna, u odnosu na radni direktorijum programa, $to je najcesée direk-
torijum u kom je izvrSivi program smesten). Na primer, za Citanje podataka iz datoteke

ulaz.txt moZemo Kreirati sledeci tok:

ifstream ulaz("ulaz.txt");

Alternativno, moZemo deklarisati tok, pa ga tek kasnije povezati sa datotekom kori$énjem
metode open.

ifstream ulaz;
ulaz.open("ulaz.txt");

Ako navedena putanja ne postoji ili ako korisnik nema pravo Citanja podataka iz navedene
datoteke, kreiranje toka nece uspeti. Kreiranje toka moZe biti neuspe$no i iz drugih razloga,
te je poZeljno proveriti da li je kreiranje proslo uspe$no. Tu proveru je moguce uraditi u
slede¢em obliku:

if (lulaz.is_open()) {
cerr << "Greska pri otvaranju datoteke" << endl;
return 1;

8.5. DATOTEKE/TOKOVI 203

Nakon uspesnog otvaranja toka, podaci se iz njega mogu ucitavati na isti nacin kao u slucaju
toka cin. Na primer,

int x;

ulaz >> x; // ucttavamo jedan broj

string rec;

ulaz >> rec; // ucitavamo jednu rec (do prve beline)
string linija;

getline(ulaz, linija); // ucitavamo jednu liniju teksta

Na primer, naredni deo programa ispisuje celokupan sadrZaj tekstualnog ulaznog toka ulaz
na standardni izlaz.

string linija;
while (getline(ulaz, linija)) {
cout << linija << endl;

}

Metodom ignore () preskace se Citanje jednog karaktera, dok se izrazom oblikaulaz >>
wsilicin >> ws preskacu sve vodece beline (std: :ws je takozvani manipulator toka; ws
dolazi od whitespace). Ilustrujmo primenu ovakvog izraza. Neka je potrebno ucitati sa ulaza
jedan ceo broj i jedan karakter, a na ulazu je zadato:

123
A

Ukoliko se ucitavanje vrsi na slede¢i nacin:

int x;
char c;
cin >> x >> c;

karakter x nece dobiti vrednost A, ve¢ vrednost '\n' (koja oznaCava kraj reda). Vrednost
"\n' bice preskocena i x ¢e dobiti vrednost A ukoliko se koristi cin >> x >> ws >>
c;.

Datumi u formi 03/07 /2024 mogu da se ucitavaju na sledeéi nacin (koji ignoriSe karaktere

l/l):

int dan, mesec, godina;
cin >> dan; cin.ignore(); cin >> mesec; cin.ignore(); cin >> godina;

8.5.2

204 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

Nakon svakog pokusaja Citanja iz ulaznog toka, moguce je proveriti da li je Citanje bilo
uspes$no proverom stanja ulaznog toka. Metodom fail () proverava se da li je doslo do
greSke prilikom citanja, a metodom eof () dali je prilikom pokuSaja ¢itanja dostignut kraj
datoteke.

Nakon ucitavanja svih potrebnih podataka, tok treba zatvoriti. To se moZe uraditi ili ek-
splicitno, metodom close (Sto je poZeljno) ili ¢e se tok automatski zatvoriti prilikom
uklanjanja odgovarajuée promenljive ($to se automatski deSava na kraju bloka u kom je
promenljiva definisana).

Izlazni tok za upis u tekstualnu datoteku (ofstream)

Upis u datoteku se vrsi na slian nacin kao i ucitavanje. Umesto ulaznog toka ifstream,
koristi se izlazni tok of stream, koji se sa datotekom u koju ¢e se vrSiti upis povezuje na
isti nacin kao i ifstream.

ofstream izlaz("izlaz.txt");

ili

ofstream izlaz;
izlaz.open("izlaz.txt");

Upis podataka u datoteku se zatim mozZe vrSiti primenom operatora >> (na isti naCin kao
$to smo ispisivali podatke na tok cout).

Na kraju kori$éenja toka, poZeljno je zatvoriti ga metodom close().

Naredni program kopira sadrzaj datoteke ulaz. txt u datoteku izlaz. txt, pretvarajudi,
pri tom, sva mala slova u velika.

#include <fstream>

#include <iostream>

#include <string>

#include <algorithm> // zbog transform

using namespace std;

int main() {
// otvaramo ulaz.tzt za citanje
ifstream inputFile("ulaz.txt");
if (!inputFile.is_open()) {
cerr << "Greska pri otvaranju datoteke ulaz.txt!" << endl;
return 1;

8.5. DATOTEKE/TOKOVI 205

// otvaramo izlaz.tzt za pisanje

ofstream outputFile("izlaz.txt");

if (!outputFile.is_open()) {
cerr << "Greska pri otvaranju datoteke izlaz.txt!" << endl;
return 1;

// citamo liniju po liniju %2z ulazne datoteke
string line;
while (getline(inputFile, line)) {
// pretvaramo mala u velika slova
transform(line.begin(), line.end(), line.begin(), ::toupper);

// upisujemo transformisanu lintiju na tzlaz
outputFile << line << endl;

// zatvaramo datoteke
inputFile.close();
outputFile.close();

cout << "Izlaz sacuvan u datoteku izlaz.txt!" << endl;
return O;

8.5.3 Baferovanje

Da bi se smanjio broj pristupa disku ili SSD uredaju, tokovi koriste tehniku baferovanog
izlaza. To znaci da se podaci koje treba upisati u tok privremeno smestaju u glavnu me-
moriju racunara u tzv. bafer (engl. buffer) tj. prihvatnik i odlaZe se njihov stvarni upis u
datoteku (sve dok ih, po nekom kriterijumu, nema dovoljno da bi se pristupilo disku ili
SSD uredaju). Stvarni upis moze se zahtevati metodom flush. Cesto se (u tekstualnim
datotekama) za prelazak u novi red koristi endl i tom prilikom se ova metoda poziva iza
scene, tj. sigurni smo da e posle svakog poziva ispisa koji ukljuuje endl podaci zaista
biti upisani na disk. Ovo je Cesto poZeljno ponasanje, ali nekada moZe usporiti ispis (na-
rocito u slu€aju ispisa velikih koli¢ina podataka) i tada je umesto endl poZeljno koristiti
samo oznaku prelaska u novi red '\n', koja ne uzrokuje praznjenje bafera.

Precesto praznjenje bafera je jedan od mogucih razloga velikog usporenja rada programa.
Narocito su opasni programi koji naizmeni¢no, u petlji vrse Citanje podataka sa standard-

8.5.4

8.5.5

206 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

nog ulaza i ispis na standardni izlaz. Naime, prilikom svakog Citanja sa standardnog ulaza,
vrii se praznjenje bafera standardnog izlaza. Motivacija za to je slede¢a. Cesto se u progra-
mima pre Citanja podataka sa standardnog ulaza korisniku prikazuje poruka koje podatke
treba da unese:

string ime;
cout << "Kako se zoves?";
cin >> ime;

Da bi se osiguralo da ¢e korisnik videti poruku pre unosa podataka, sistem je izgraden tako
da se pre svakog ucitavanja sa cin poziva metoda f1lush za tok cout.

Odnos sa C bibliotekom za ulaz/izlaz

Jezik C++ zadrZava kompatibilnost sa programskim jezikom C i podrZava koriS¢enje
standardnog C zaglavlja <cstdio> u kojem su deklarisane mnoge funkcije za rad
sa datotekama (najpoznatije su printf, scanf, fopen, fclose, fscanf, fprintf,
getchar, fgetc itd.). lako meSanje biblioteke <iostream> i <fstream> sa jedne
strane i <cstdio> sa druge strane nije preporucljivo, ono ne dovodi do greske. Medutim,
to ima svoju cenu, jer je prilikom svakog Citanja ili upisa podataka potrebno izvrsSiti
sinhronizaciju ovih biblioteka, Sto usporava program (ukoliko sistem nije specificno
instruiran).

Tokovi za citanje iz niske (istringstream) i upis u nisku
(ostringstream)

istringstream i ostringstream su klase iz biblioteke <sstream> koje rade sa
niskama, za razliku od ifstream i ofstream, koje rade sa datotekama. Tok tipa
istringstream omogucava Citanje podataka iz niske kao da je u pitanju ulazni tok (na
primer, kao cin).

istringstream ulaz("123 456");
int a, b;
ulaz >> a >> b;

Sli¢no, ostringstream omogucava upisivanje podataka u nisku, kao da je u pitanju iz-
lazni tok (na primer, kao cout). Nakon $to se podaci upiSu u tok, niska se moZe dobiti
metodom str.

int x = 123;
ostringstream oss;
oss << "Zdravo, " << "svete! " << x << '\n';

8.5.6

8.5. DATOTEKE/TOKOVI 207

string niska = oss.str(); // "Zdravo, svete! 123\n"

Argumenti komandne linije programa

Jedan nacin da se odredeni podaci proslede programu je i da se navedu u komandnoj li-
niji prilikom njegovog pokretanja. Argumenti koji su tako navedeni prenose se programu
kao argumenti funkcije main. Prvi argument (koji se obi¢no naziva argc, od engleskog
argument count) je broj argumenata komandne linije (ukljucujuéi i sam naziv programa)
navedenih prilikom pokretanja programa. Drugi argument (koji se obi¢no naziva argv, od
engleskog argument vector) je niz niski karaktera koje sadrZe argumente — svaka niska di-
rektno odgovara jednom argumentu. Iz istorijskih razloga tj. iz razloga kompatibilnosti sa
programskim jezikom C, te niske nisu predstavljene tipom string, ve¢ su predstavljene
nizovima karaktera tako da se na kraju svakog tako zadatog niza karaktera nalazi speci-
jalni karakter '\0', $to je uobiCajeni nacin predstavljanja niski u programskom jeziku C.
Nazivu programa odgovara niska argv [0]. Ako je argc tacno 1, to znaci da ne postoje
dodatni argumenti nakon imena programa. Dakle, argv [0] je ime programa, argv[1] do
argv[argc-1] su tekstovi argumenata programa, a element argv [argc] sadrZi vrednost
NULL.

Identifikatori argc i argv su proizvoljni i funkcija main moZe biti deklarisana i na sledeéi
nacin:

int main (int br_argumenata, char* argumentil[]);

Naredni jednostavan program Stampa broj argumenata i sadrZaj vektora argumenata ko-
mandne linije:

#include <iostream>
using namespace std;

int main(int argc, char* argv[]) {
int 1i;
cout << "argc = " << argc << endl;
// nulti arqument uvek je ime programa (na primer, a.out)
for (i = 0; i < argc; i++)
cout << "argv[" << i << "] = " << argv[i] << endl;
return O;

Ukoliko se program prevede sa g++ -o echoargs echoargs.c i pozove sa
./echoargs -U zdravo svima "dobar dan", ispisace:

208 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

argc = 5

argv[0] = ./echoargs
argv[1] = -U

argv[2] = zdravo
argv[3] = svima

argv[4] = dobar dan

Primetimo da ispis ispravno radi iako na tok cout nije prosledena niska tipa string, veé
niska argv[i], Sto je adresa pocetka niza karaktera na Cijem se kraju nalazi specijalni
karakter '\0' (to je podatak tipa charx).

Niske kojima su zadati argumenti komandne linije ne bi trebalo menjati tokom rada pro-
grama.

Cest vid upotrebe argumenata komandne linije je da se programu navedu razli¢ite opcije.
Obicno se opcije oznacavaju pojedina¢nim karakterima i navode se iza karaktera - (ili iza
karaktera -- ili, na Windows sistemima, iza karaktera /). Pri tome, Cesto je predvideno
da se iza jednog simbola - mozZe navesti viSe karaktera koji odreduju opcije. Takav je na
primer, poziv:

./program -a -bcd 134 -ef zdravo
Naredni program ispisuje sve opcije pronadene u komandnoj liniji:

#include <iostream>
using namespace std;

int main(int argc, char* argv[]) {
// Za svaki arqument komandne lintje, pocevsti od argu[1]
// (preskace se ime programa)
for (int i = 1; 1 < argc; i++) {
// Ukoliko i-tt argument pocinje crticom

if (argv[il[0] == '-') {
// ispisuju se sva njegova slova od pozicije 1
int j;
for (j = 1; argv[il [j] != '\O0'; j++)
cout << "Prisutna je opcija: << argv[i] [j] << endl
b
by
return O;

Pre upotrebe, niske karaktera na ¢ijem se kraju nalazi '\0' moZemo konvertovati u tip
string.

8.5. DATOTEKE/TOKOVI 209

#include <iostream>
#include <string>
using namespace std;

int main(int argc, char* argv[]) {
// Za svaki argument komandne linije, pocevst od argu/[1]
// (preskace se ime programa)
for (int i = 1; 1 < argc; i++) {
// pravimo podatak tipa string na osnovu t-tog argumenta
string arg = argvl[i];
// proveravamo da l%i argument pocinje crticom
if (larg.empty() && arg[0] == '-') {
// ispisuju se sva njegova slova od pozicije 1
for (size_t j = 1; j < arg.length(); j++)
cout << "Prisutna opcija: " << arg[j] << endl;

}

return O;

210 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

9.1

C9. Principi pisanja programa i dokumentacije

Programi napisani na viSem programskom jeziku sredstvo su komunikacije izmedu cove-
ka i racunara ali i izmedu ljudi samih. Razumljivost, Citljivost programa, iako nebitna za
racunar, od ogromne je vaznosti za kvalitet i upotrebljivost programa. Naime, u odrZavanje
programa obic¢no se uloZi daleko viSe vremena i truda nego u njegovo pisanje, a odrZzavanje
sistema Cesto ne rade oni programeri koji su program napisali. Pored toga, razumljivost
programa omogucava lakSu analizu njegove ispravnosti i sloZenosti. Preporuke za pisanje
Cesto nisu kruta pravila, ve¢ predstavljaju samo smernice i ideje kojima se treba rukovodi-
ti u pisanju programa, u aspektima formatiranja, nazubljivanja, imenovanja promenljivih
i funkcija, itd.

U daljem tekstu e, kao na jedan primer konvencija za pisanje programa, biti ukazivano
na preporuke iz teksta Linux Kernel Coding Style, Linusa Torvaldsa, autora operativnog
sistema Linux koji je napisan na jeziku C. Nekoliko saveta i preporuka u nastavku preuzeto
je iz znamenite knjige The Practice of Programming autora Brajana Kernigena i Roba Pajka.
Preporuke navedene u nastavku Cesto se odnose na sve programske jezike, ali ponekad
samo na jezike C/C++. I sve ove savete i preporuke treba razmatrati sa rezervom, jer
postoje i mnoge druge grupe preporuka i konvencija.

Timski rad i konvencije

Za svaki obimniji projekat potrebno je usaglasiti konvencije za pisanje programa. Da bi
ih se lakse pridrzavalo, potrebno je detaljno motivisati i obrazloziti pravila. Ima razli¢itih
konvencija i one Cesto izazivaju duge i zapaljive rasprave izmedu programera. Mnogi Ce,
medutim, reci da nije najvaZnije koja konvencija se koristi, nego koliko strogo se nje pri-
drzava. Strogo i konzistentno pridrZavanje konvencije u okviru jednog projekta izuzetno
je vazno za njegovu uspesnost. Jedan isti programer treba da bude spreman da u razli¢itim
timovima i razli¢itim projektima koristi razli¢ite konvencije.

Kako bi se olaksalo baratanje programom koji ima na stotine datoteka koje menja ve-
liki broj programera, u timskom radu obicno se koriste sistemi za upravljanje verzijama
(eng.~version control system), kao sto su git, SVN, CVS, Mercurial, Bazaar. I ovi sistemi

211

9.2

9.2.1

212 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

namecu dodatna pravila i omoguéavaju dodatne konvencije koje tim treba da postuje (na
primer, konvencija moZe da bude da u zajednicku verziju programa ne moZe da se stavi
datoteka sa kojom se Citav program ne kompilira uspesno).

Vizuelni elementi programa

Prva ideja o programu formira se na osnovu njegovog izgleda — njegovih vizuelnih eleme-
nata, kao §to su broj linija u datoteci, broj karaktera u liniji, nazubljivanje, grupisanje linija
i sli¢no. Vizuelni elementi programa i njegovo formatiranje ¢esto su od klju¢ne vaznosti
za njegovu Citljivost. Formatiranje, konkretno nazubljivanje, u nekim jezicima (na primer,
Python) ¢ak uti¢e na znacenje programa.

Formatiranje i vizuelni elementi programa treba da olakSaju razumevanje koda koji se Cita,
ali i pronalaZenje potrebnog dela koda ili datoteke sa nekim delom programa. Formatiranje
1 vizuelni elementi programa treba da olakSaju i proces pisanja programa. U tome, pomo¢
autoru programa mogu da pruZaju alati u okviru kojih se piSe program — specijalizovani
editori teksta ili editori koji su deo integrisanih razvojnih okruZenja (engl. IDE, Integra-
ted Development Environment) koja povezuju editor, kompilator, debager i druge alatke
potrebne u razvoju softvera. Neke od namenskih alatki koji olakSavaju pisanje programa
su: ulepSivaci” (engl. beautifier), poput programa indent, koji mogu da formatiraju ve¢
kreirane datoteke sa programskim kodom; programi za proveru pravopisa, koji mogu da
otkriju jednostavne leksicke i sintaksicke greske u programu i da nude moguce ispravke;
“linteri”, programi koji vrSe statiCku analizu programa i koji mogu da ukaZu na odredene
stilske (ali i ozbiljnije) greske, itd.

Broj karaktera u redu

U modernim programskim jezicima duZina reda programa nije ograni¢ena.! Ipak, pre-
dugi redovi mogu da stvaraju probleme. Na primer, predugi redovi mogu da zahtevaju
horizontalno “skrolovanje” kako bi se video njihov kraj, $to moze da drasti¢no oteza Ci-
tanje i razumevanje programa. Takode, ukoliko se program Stampa, dugi redovi mogu da
budu preseceni i da naruse formatiranje. Zbog ovih i ovakvih problema, preporucuje se
pridrZzavanje nekog ogranicenja — obicno 80 karaktera u redu. Konkretna preporuka za
80 karaktera u redu je istorijska i poti¢e od ogranicenja na buSenim karticama, starim
ekranima i Stampacima. Ipak, ona je i danas Siroko prihvacena kao pogodna. Ukoliko red
programa ima vise od 80 karaktera, to najces¢e ukazuje na to da kdd treba reorganizovati
uvodenjem novih funkcija ili promenljivih. Broj 80 (ili bilo koji drugi) kao ograni¢enje za
broj karaktera u redu ne treba shvatati kruto, ve¢ kao nacelnu preporuku koja moZe biti
narusena ako se tako postiZe bolja Citljivost.

Tako za veéinu jezika standard ne propisuje maksimalnu duZinu reda, Cesto je za konkretne kompilatore
duZina reda programa ogranicena nekim velikim brojem, daleko ve¢im od uobicajenih duZina redova.

9.2.2

9.2. VIZUELNI ELEMENTI PROGRAMA 213

Broj naredbi u redu, zagrade i razmaci

Red programa moZe da bude prazan ili da sadrZi jednu ili viSe naredbi. Prazni redovi mogu
da izdvajaju blokove blisko povezanih naredbi (na primer, blok naredbi za koje se moze
navesti komentar o tome $ta je njihova svrha). Ako se prazni redovi koriste neoprezno,
mogu da naruSe umesto da poprave Citljivost. Naime, ukoliko ima previSe praznih linija,
smanjen je deo koda koji se moZe videti i sagledavati istovremeno na ekranu. Po jednoj
konvenciji, zagrade koje oznacavaju pocetak i kraj bloka navode se u zasebnim redovima
(u istoj koloni), a po drugoj, otvorena zagrada se navodi u nastavku naredbe, a zatvorena u
zasebnom redu ili u redu zajedno sa klju¢nom re¢ju while ili else. Torvalds preporucuje
ovu drugu konvenciju, uz izuzetak da se otvorena vitiCasta zagrada na pocetku definicije
funkcije piSe u zasebnom redu.

Naredni primer prikazuje deo koda napisan sa ve¢im brojem praznih redova i prvom kon-
vencijom za zagrade:

for (int i = 0; i < n-1; i++)

{
int m = i;

for (int j = i+1; j < n; j++)

{

if (aljl < alml)
m=j;

}

swap(ali], alm]);

Isti deo koda moze biti napisan sa manjim brojem praznih redova i drugom konvencijom za
zagrade. Ovaj primer prikazuje kompaktnije zapisan kdd koji je verovatno Citljiviji vecini
iskusnih C/C++ programera:

for (dnt i = 0; i < n-1; i++) {
int m = i;
for (int j = i+l; j < m; j++) {
if (aljl < alml)
m=j;
}

swap(alil, alm]);

9.2.3

214 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

}

Jedan red moZe da sadrZi i viSe od jedne naredbe. To je prihvatljivo samo (a tada moZe da
bude i preporucljivo) ako se radi o jednostavnim i na neki nacin povezanim inicijalizaci-
jama ili jednostavnim dodelama vrednosti ¢lanovima strukture, na primer:

int i = 10; double suma = O;
tacka.x = 0; tacka.y = 0;

Ukoliko je u petlji ili u if bloku samo jedna naredba, onda nisu neophodne zagrade ko-
je oznacavaju pocetak i kraj bloka i mnogi programeri ih ne piSu. Medutim, iako nisu
neophodne one mogu olaksati razumevanje koda u kojem postoji visestruka if naredba.
Dodatno, ukoliko se u blok sa jednom naredbom i bez viticastih zagrada u nekom trenutku
doda druga naredba lako moZe da se previdi da postaje neophodno navesti i zagrade.
Velicina blokova koda je takode vaZzna za preglednost, pa je jedna od preporuka da verti-
kalno rastojanje izmedu otvorene vitiaste zagrade i zatvorene vitiaste zagrade koja joj
odgovara ne bude veée od jednog ekrana.

Obicno se preporucuje navodenje razmaka oko kljucnih reci i oko binarnih operatora, izu-
zev . i —>. Ne preporucuje se kori§éenje razmaka kod poziva funkcija i unarnih operatora,
izuzev (eventualno) kod operatora sizeof i operatora kastovanja. Ne preporucuje se na-
vodenje nepotrebnih zagrada, posebno u okviru povratne vrednosti. Na primer:

if (uslov) {
*a = -b + ¢ + sizeof (int) + f(x);
return -1;

Nazubljivanje teksta programa

Nazubljivanje teksta programa za veéinu programskih jezika (ukljucujuéi jezike C/C++ i
Java) nebitno je kompilatoru, ali je skoro neophodno programeru. Nazubljivanje naglaSava
strukturu programa i olakSava njegovo razumevanje. Red programa moZe biti uvucen u
odnosu na pocetnu kolonu za nekoliko blanko karaktera ili nekoliko tab karaktera. Tab
karakter moZe da se u okviru editora interpretira na razlicite nacine (tj. kao razliit broj
belina), te je preporucljivo u programu sve tab karaktere zameniti razmacima (za Sta u
vedini editora postoji moguénost) i Cuvati ga u tom obliku. Na taj nacin, svako ¢e videti
program (na ekranu ili odStampan) na isti nacin.

Ne postoji kruto pravilo za broj karaktera za jedan nivo uvlacenja. Neki programeri koriste
4, aneki 2 - sa motivacijom da u redovima od 80 karaktera moZe da stane i kdd sa dubokim
nivoima. Torvalds, sa druge strane, preporucuje broj 8, jer omogucéava bolju preglednost.

9.3

9.3. IMENOVANJE PROMENLJIVIH I FUNKCIJA 215

Za delove programa koji imaju vise od tri nivoa nazubljivanja, on kaZe da su ionako sporni
i zahtevaju prepravku.

Imenovanje promenljivih i funkcija

Imenovanje promenljivih i funkcija veoma je vaZzno za razumljivost programa i sve je
vaznije $to je program duZi. Pravila imenovanja mogu da olaksaju i izbor novih imena
tokom pisanja programa. Imena promenljivih i funkcija (pa i datoteka programa) treba da
sugeriSu njihovu ulogu i tako olakSaju razumevanje programa.

Globalne promenljive, strukture i funkcije treba da imaju opisna imena, potencijalno sa-
¢injena od viSe re€i. U kamiljoj notaciji (popularnoj medu Java i C++ programerima),
imena od vise reci zapisuju se tako $to svaka nova re¢ (sem eventualno prve) pocinje veli-
kim slovom, na primer, brojK1lijenata. U notaciji sa podvlakama (popularnoj medu C
programerima), sve reci imena piSu se malim slovima a reci su razdvojene podvlakama, na
primer, broj_k1ijenata. Imena makroa i konstanti piSu se obi¢no svim velikim slovima,
a imena globalnih promenljivih pocinju velikim slovom.

Lokalne promenljive, a posebno promenljive koje se koriste kao brojaci u petljama treba
da imaju kratka i jednostavna, a ¢esto najbolje, jednoslovna imena - jer se razumljivost
lakSe postiZe saZeto$¢u. Imena za brojace u petljama su Cesto 1, j, k, za pokazivace p i q,
a za niske s i t. Preporuka je i da se lokalne promenljive deklariSu $to kasnije u okviru
funkcije i u okviru bloka u kojem se koriste (a ne u okviru nekog Sireg bloka).

Jedan, delimi¢no Saljiv, savet za imenovanje (i globalnih i lokalnih) promenljivih kaZe da
broj karaktera u imenu promenljive treba da zavisi od broja linija njenog dosega i to tako
da bude proporcionalan logaritmu broja linija njenog dosega.

Za promenljive i funkcije nije dobro koristiti genericka imena kao rezultat,
izracunaj(...), uradi(...), ve¢ sugestivnija, kao §to su, na primer, kamata,
izracunaj_kamatu(...), odstampaj_izvestaj_o_kamati(...).

Imena funkcija dobro je da budu bazirana na glagolima, na primer, bolje je
izracunaj_kamatu(...) nego kamata(...) i get_time(...) nego time(...).
Za funkcije koje vracaju istinitosnu vrednost, ime treba da sugeriSe u kom slucaju se vraca
vrednost tacno, na primer, bolje je ime is_prime(...) nego check_prime(...).
Mnoge promenljive oznaCavaju neki broj entiteta (na primer, broj klijenata, broj studenata,
broj artikala) i za njih se moZe usvojiti konvencija po kojoj imena imaju isti prefiks ili sufiks
(na primer, br_studenata ili num_students).

I programeri kojima to nije maternji jezik, iako to nije zahtev projekta, ¢esto imenuju
promenljive i funkcije na osnovu reci engleskog jezika. To je posledica istorijskih razlo-
ga i dominacije engleskog jezika u programerskoj praksi, kao i samih klju¢nih reci skoro
svih programskih jezika (koje su na engleskom). Prihvatljivo je (ako nije zahtev projekta
drugadiji) imenovanje i na maternjem jeziku i na engleskom jeziku — jedino je nepri-
hvatljivo meSanje ta dva. Imenovanje na bazi engleskog i komentari na engleskom mogu
biti pogodni ukoliko postoji i najmanja moguénost da se izvorni program koristi u drugim

9.4

216 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

zemljama, ili od strane drugih timova, ili da se u¢ini javno dostupnim i sli¢no. Naime, u
programiranju (kao i u mnogim drugim oblastima) engleski jezik je opSteprihvacen u svim
delovima sveta i tako se moZe osigurati da program lakSe razumeju svi.

Neki programeri smatraju da se kvalitet imenovanja promenljivih i funkcija moZe “testirati”
na sledec¢i zanimljiv nacin: ako se kod moze procitati preko telefona tako da ga sagovornik
na drugoj strani razume, onda je imenovanje dobro.

Pisanje izraza

Za dobrog programera neophodno je da poznaje sva pravila programskog jezika jer Ce
verovatno Cesée i viSe raditi na tudem nego na svom kodu. S druge strane, programer u
svojim programima ne mora i ne treba da koristi sva sredstva izraZavanja tog program-
skog jezika, ve¢ mozZe i treba da ih koristi samo delom, oprezno i uvek sa ciljem pisanja
razumljivih programa. Ponekad programer ulaZe veliku energiju u pisanje najkonciznijeg
moguceg koda §to moZe da bude protraden trud, jer je obi¢no vaZnije da kdd bude jasan,
a ne kratak. Sve ovo odnosi se na mnoge aspekte pisanja programa, ukljucujuéi pisanje
izraza.

Preporucuje se pisanje izraza u jednostavnom i intuitivno jasnom obliku. Na primer, ume-
sto:

I(c < '0') && '(c > '9")

bolje je:

'0' <= ¢ && c <= '9'

Zagrade, ¢ak i kada nisu neophodne, nekome ipak mogu da olak$aju Citljivost. Prethodni
primer moZe da se zapiSe i na sledeéi nacin:

('0' <= ¢) && (c <= '9")

Sli¢no, naredbi

prestupna = g % 4 == 0 && g % 100 != 0 || g % 400 == 0;

ekvivalentna je naredba

prestupna = ((g % 4 == 0) && (g % 100 != 0)) || (g % 400 == 0);

9.4. PISANJE IZRAZA 217

koja se mozZe smatrati znatno Citljivijom. Naravno, Citljivost je subjektivna, te su moguéa
i razna medureSenja. Na primer, moguce je podrazumevati da programer jasno razlikuje
aritmeticke, relacijske i logicke operatore i da njihov prioritet razlikuje i bez navodenja
zagrada, a da se zagrade koriste da bi se naglasila razlika u prioritetu operatora iste vrste
(na primer, izmedu logickih operatora && i | |). Dodatno, ako ona oznacava godinu, bolje
ime za promenljivu g je godina, pa se time dolazi do naredbe:

prestupna = (godina 7 4 == 0 && godina 7 100 != 0) ||
(godina % 400 == 0);

Iako je opSta preporuka da se navodi razmak oko binarnih operatora, neke konvencije
preporucuju izostavljanje tih razmaka u duZim izrazima i to oko operatora viSeg prioriteta
¢ime se zapisom sugerise prioritet operatora, kao u slede¢em primeru:

a*xb + c*d

umesto

x x= (c += a <b ? f£f("a") : £("b"));

moZemo koristiti daleko ¢itljiviju narednu varijantu:

if (a < b)

c += f("a");
else

c += £("b");
X *= C;

Kernigen i Pajk navode i primer u kojem je moguce i poZeljno pojednostaviti komplikovana
izracunavanja. Ako je potrebno izdvojiti tri bita najmanje teZine iz broja bitoff, umesto
izraza:

bitoff - ((bitoff >> 3) << 3)

bolje je koristiti (ekvivalentan) izraz:

bitoff & 0x7

9.5

218 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

Zbog komplikovanih, a u nekim situacijama i nedefinisanih, pravila poretka izracunavanja
i dejstva sporednih efekata (kao, na primer, kod operatora inkrementiranja i dekrementi-
ranja), dobro je pojednostaviti kod kako bi njegovo izvrSavanje bilo jednoznacno i jasno.
Na primer, umesto:

stri++] = strl[i++] = ' ';

bolje je:

stri++] 10
str[i++] ;

Poucan je i slede¢i ¢uveni primer: nakon dodele a[a[1]]1=2;, element a[a[1]] nema
nuzno vrednost 2 (ako je na pocetku vrednost a[1] bila jednaka 1, a vrednost a [2] razli-
¢ita od 2). Navedeni primer pokazuje da treba biti veoma oprezan sa koris¢enjem indeksa
niza koji su i sami elementi niza ili neki komplikovani izrazi.

KoriSéenje idioma

Idiomi su ustaljene jezicke konstrukcije koje predstavljaju celinu. Idiomi postoje u svim
jezicima, pa i u programskim. Tipi¢an idiom u jeziku C je sledeci oblik for-petlje:

for (i = 0; i < n; i++)

Kernigen i Pajk zagovaraju kori$¢enje idioma gde god je to moguce. Na primer, umesto
varijanti

i=0;
while (i <= n-1)
ali++] = 1.0;

for (i = 0; i < n;)
ali++] = 1.0;

for (i = n; --i >= 0;)
ali] 1.0;

smatraju da je bolja varijanta:

9.6

9.6. KORISCENJE KONSTANTI 219

for (i

ali]

0; i < n; i++)
1.0;

jer je najéeséa i najprepoznatljivija. Stavise, Kernigen i Pajk predlazu, pomalo ekstremno,
da se bez dobrog razloga i ne koristi nijedna forma for-petlji osim navedene. Kao idiom
za beskonacnu petlju navode:

for (;;)

Glavni argument za koris¢enje idioma je da se kdd brzo razume, a i da svaki drugi (“neidi-
omski”) konstrukt privlaci dodatnu paZnju $to je dobro, jer se bagovi ¢eSce kriju u njima.

Koriséenje konstanti

Konstantne vrednosti, veli¢ina nizova, pozicije karaktera u niskama, faktori za konverzije
i druge sli¢ne vrednosti koje se pojavljuju u programima Cesto se zovu magicni brojevi (jer
obi¢no nije jasno odakle dolaze i na osnovu Cega su dobijeni). Kernigen i Pajk kazu da
je, osim 0 i 1, svaki broj u programu kandidat da se moZe smatrati magi¢nim, te da treba
da ima ime koje mu je pridruZeno. Na taj nacin, ukoliko je potrebno promeniti vrednost
magic¢ne konstante (na primer, maksimalna duzina imena ulice) - to je dovoljno uraditi na
jednom mestu u kodu. Na primer, u narednoj deklaraciji

char imeUlice[50];

pojavljuje se magic¢na konstanta 50, te se u nastavku programa broj 50 verovatno pojavlju-
je u svakoj obradi imena ulica. Promena tog ograni¢enja zahtevala bi mnoge izmene koje
ne bi mogle da se sprovedu automatski (jer se broj 50 moZda pojavljuje i u nekom dru-
gom kontekstu). Zato je bolja, na primer, varijanta kojom se magi¢nom broju pridruZuje
simboli¢ko ime pretprocesorskom direktivom #define:

#define MAKS IME_ULICE 50
char imeUlice[MAKS IME_ULICE];

U tom slucaju, pretprocesor zamenjuje sva pojavljivanja tog imena konkretnom vrednoséu
pre procesa kompilacije, te kompilator (pa i debager) nema nikakvu informaciju o simbo-
lickom imenu koje je pridruZeno magi¢noj konstantni niti o njenom tipu. Zbog toga se
preporucuje da se magicne konstante uvode kao konstantne promenljive, ako upotreba to
dozvoljava:

220 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

const unsigned int MAKS_IME_ULICE = 50;

Naglasimo da neke upotrebe ne dozvoljavaju koriSéenje konstantne promenljive umesto
konstantnog izraza — naime, konstantne promenljive ne smatraju se konstantnim izrazima,
te se, na primer, ne mogu koristiti za dimenzije nizova. Kao dimenzije nizova, mogu se,
pored konstanti, konstantnih izraza i simbolickih imena uvedenih direktivnom #define,
koristiti i nabrojive (enumerisane) konstante.

U jednom stilu pisanja funkcija, rezultati funkcije se vracaju kroz listu argumenata, a
povratna vrednost ukazuju na to da li je funkcija uspe$no obavila zadatak. Za povratne
vrednosti onda postoje dve Ceste konvencije: jedna je da se vraca istinitosna vrednost fac-
no (true, ako se koristi tip bool ili 1, ako je povratni tip ceo broj), ako je funkcija uspesno
obavila zadatak, a netacno (false ili 0) inaCe. Druga konvencija je da se vraca nesto de-
taljnija informacija, te da se vraca 0 ako je izvrSavanje funkcije proteklo bez problema,
a nekakav celobrojni kdd greske inace. Kodovi greske nikako ne treba da budu magi¢ne
konstante, ve¢ mogu biti predstavljene simboli¢kim imenima ili, jo§ bolje, enumerisanim
konstantama.

U veéim programima, konstante od znacaja za ¢itav program (ili veliki njegov deo) obi¢no
se Cuvaju u zasebnoj datoteci zaglavlja (koju koriste sve druge datoteke kojima su ove
konstante potrebne).

Konstante se u programima mogu koristiti i za kodove karaktera. To je loSe ne samo zbog
narusene Citljivosti, ve¢ i zbog naruSene prenosivosti — naime, nije na svim racunarima
podrazumevana ASCII karakterska tabela. Dakle, umesto, na primer:

if (65 <= ¢ && c <= 90)

bolje je pisati

if ("A' <= c & c <= 'Z")

a jos bolje koristiti funkcije iz standardne biblioteke, kad god je to moguce:

if (isupper(c))

Sli¢no, zarad bolje Citljivosti treba pisati NULL (za nultu vrednost pokazivaca) i '\0' (za
zavrSnu nulu u niskama) umesto konstante 0.

U programima ne treba koristiti kao konstante ni veli¢ine tipova — zbog Citljivosti a i zbog
toga Sto se mogu razlikovati na razli¢itim ra¢unarima. Zato, na primer, za duZinu tipa int

9.7

9.7. PISANJE KOMENTARA 221

nikada ne treba pisati 2 ili 4, ve¢ sizeof (int). Za promenljive i elemente niza, bolje je
pisati sizeof (a) i sizeof (b[0]) umesto sizeof (int) (ako su promenljiva a i niz b
tipa int), zbog mogucnosti da se promenljivoj ili nizu u nekoj verziji programa promeni
tip.

Pisanje komentara

Cak i ako se autor pridrzavao mnogih preporuka za pisanje jasnog i kvalitetnog koda, uko-
liko kod nije dobro komentarisan njegovo razumevanje moZe i samom autoru predstavljati
teSkocu ve¢ nekoliko nedelja nakon pisanja. Komentari treba da olak3aju razumevanje ko-
da i predstavljaju njegov svojevrsni dodatak.

Postoje alati koji olakSavaju kreiranje dokumentacije na osnovu komentara u samom kodu
i delom je generiSu automatski (na primer, Doxygen).

« Komentari ne treba da objasnjavaju ono Sto je ocigledno: Komentari ne treba
da govore kako kod radi, ve¢ sta radi (i zasto). Na primer, naredna dva komentara
su potpuno suviSna:

k += 1.0;

return 0OK;

U prvom slucaju, komentar ima smisla ako objasnjava zasto se nesto radi, na primer:

k += 1.0;

» Komentari treba da budu koncizni. Kako ne bi trosili preterano vreme, komentari
treba da budu $to je moguée kradi i jasniji, da ne ponavljaju informacije koje su
ve¢ navedene drugde u komentarima ili su ocigledne iz koda. PreviSe komentara ili
predugi komentari predstavljaju opasnost za Citljivost programa.

« Komentari treba da budu uskladeni sa kodom. Ako se promeni kdd programa,
ane 1 prate¢i komentari, to moZe da uzrokuje mnoge probleme i nepotrebne izmene
u programu u buduénosti. Ukoliko se neki deo programa promeni, uvek je potrebno
proveriti da li je novo ponasanje u skladu sa komentarima (za taj ali i druge delove
programa). Uskladenost koda i komentara je lakSe posti¢i ako komentari ne govore
ono §to je ocigledno iz koda.

222

GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

« Komentarima treba objasniti ulogu datoteka i globalnih objekata. Komentari-

ma treba, na jednom mestu, tamo gde su definisani, objasniti ulogu datoteka, global-
nih objekata kao Sto su funkcije, globalne promenljive i strukture. Funkcije treba
komentarisati pre same definicije, a Torvalds cak savetuje da se izbegavaju komen-
tari unutar tela funkcije. Citava funkcija moZe da zasluZuje komentar (pre prvog
reda), ali ako pojedini njeni delovi zahtevaju komentarisanje, onda je moguée da
funkciju treba reorganizovati i/ili podeliti na nekoliko funkcija. Ni ovo pravilo nije
kruto i u specificnim situacijama prihvatljivo je komentarisanje delikatnih delova
funkcije (“posebno pametnih ili ruznih”).

Lo$ kod ne treba komentarisati, ve¢ ga popraviti. Cesto kvalitetno komentari-
sanje kako i zasto neki lo$ kdd radi zahteva viSe truda nego pisanje tog dela koda
iznova tako da je ocigledno kako i zaSto on radi. Ipak, ukoliko je kdd veoma kompli-
kovan i teSko je ili nemoguce ga pojednostaviti, potrebno je u komentaru objasniti
zasto je komplikovan, kako radi i zaSto je izabrano takvo reSenje.

Komentari treba da budu laki za odrZavanje: Treba izbegavati stil pisanja ko-
mentara u kojem i mala izmena komentara zahteva dodatni posao u formatiranju.
Na primer, promena narednog opisa funkcije zahteva izmene u tri reda komentara:

Komentari mogu da ukljucuju standardne fraze. S viemenom se nametnulo ne-
koliko oznaka (“markera”) na bazi fraza koje se ¢esto pojavljuju u okviru komentara.
Njih je lako pronaéi u kodu, a mnoga razvojna okruZenja prepoznaju ih i prikazuju
u istaknutoj boji kako bi privukli paZnju programera kao svojevrsna lista stvari koje

vvvvv

- TODO marker: oznacava zadatke koje tek treba obaviti, koji kod treba napisati.

- FIXME marker: oznacava deo koda koji radi ali treba ga popraviti, u smislu
opStijeg reSenja, lakSeg odrZavanja, ili bolje efikasnosti.

- BUG: oznacava deo koda koji je gotov i ocekuje se da radi, ali je pronaden bag.

Uz navedene markere i prateci tekst, Cesto se navodi i ime onoga ko je uneo komentar, kao
i datum unoSenja komentara.

9.8

9.8.1

9.8. MODULARNOST 223

Modularnost

Veliki program je tesko ili nemoguce razmatrati ako nije podeljen na celine. Podela pro-
grama na celine (na primer, datoteke i funkcije) neophodna je za razumevanje programa
i nametnula se veoma rano u istoriji programiranja. Svi savremeni programski jezici su
dizajnirani tako da je podela na manje celine ne samo moguca ve¢ tipi¢an nacin podele
odreduje sam stil programiranja (na primer, u objektno orijentisanim jezicima neki poda-
ci i metode za njihovu obradu se grupiSu u takozvane klase). Podela programa na module
treba da omogudi:

» Razumljivost: podela programa na celine popravlja njegovu Citljivost i omogucava
onome ko pise i onome ko ¢ita program da se usredsredi na kljucna pitanja jednog
modula, zanemarujuéi u tom trenutku i iz te perspektive sporedne funkcionalnosti
podrZane drugim modulima.

« Upotrebljivost: ukoliko je kod kvalitetno podeljen na celine, pojedine celine bice
moguce upotrebiti u nekom drugom kontekstu. Na primer, proveravanje da li neki
trinaestocifreni kod predstavlja moguéi JIMBG (jedinstveni mati¢ni broj gradana)
moZe se izdvojiti u zasebnu funkciju koja je onda upotrebljiva u razli¢itim progra-
mima.

Nikada se program ne deli na funkcije i onda u datoteke tek onda kada je kompletno
zavrSen. Naprotiv, podela programa u dodatke i funkcije vrsi se joS od prvih faza pisanja
programa i predstavlja jedan od najvaznijih aspekata dizajna programa.

Modularnost i podela na funkcije

Za mnoge progamske jezike osnovni vid postizanja modularnosti je podela koda na funk-
cije. Kod objektno-orijentisanih jezika, pored podela na funkcije, vazna je i organizacija
klasa u programu.

U principu, funkcije treba da obavljaju samo jedan zadatak i da budu kratke. Tekst jedne
funkcije treba da staje na jedan ili dva ekrana (tj. da ima manje od pedesetak redova), radi
dobre preglednosti. Duge funkcije poZeljno je podeliti na manje funkcije, na primer, na one
koje obraduju specijalne slucajeve. Ukoliko je brzina izvrSavanja kriti¢na, kompilatoru se
moze naloziti da inlajnuje funkcije (da prilikom kompilacije umetne kdd kratkih funkcija
na pozicije gde su pozvane)’.

Da li funkcija ima razuman obim ¢esto govori broj lokalnih promenljivih: ako ih ima viSe
od, na primer, 10, verovatno je funkciju poZeljno podeliti na nekoliko manjih. Sli¢no vazi
i za broj parametara funkcije.

ZInlajnovanje u nekim situacijama kompilatori primenjuju i bez eksplicitnog zahteva programera.

9.8.2

9.9

224 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

Modularnost i podela na datoteke

Veliki programi sastoje se od velikog broja datoteka koje bi trebalo da budu organizovane
na razuman nacin u direktorijume. Jednu datoteku treba da Cine definicije funkcija koje su
medusobno povezane i predstavljaju nekakvu celinu.

Datoteke zaglavlja obi¢no imaju sledecu strukturu:

« definicije tipova;

« definicije konstanti;

o deklaracije globalnih promenljivih;
« deklaracije funkcija.

a izvorne datoteke sledecu strukturu:

« ukljucivanje sistemskih datoteka zaglavlja;

« ukljucivanje lokalnih datoteka zaglavlja;

« definicije tipova;

« definicije konstanti;

« deklaracije/definicije globalnih promenljivih;
o definicije funkcija.

Program treba deliti na datoteke imajuéi u vidu delom suprotstavljene zahteve. Jedna da-
toteka ne treba da bude duZa od nekoliko, na primer - dve ili tri, stotine linija. Ukoliko
logicka struktura programa namecée duzu datoteku, onda vredi preispitati postojeu orga-
nizaciju podataka i funkcija. S druge strane, datoteke ne treba da budu prekratke i treba
da predstavljaju zaokruZene celine. Preterana usitnjenost (u preveliki broj datoteka) moze
da oteZa upravljanje programom i njegovu razumljivost.

Integrisana razvojna okruZenja i program make (videti prvi deo ove knjige, poglavlje 9.1,
“Od izvornog do izvrSivog programa”) znacajno olakSavaju rad sa programima koji su sa-
¢injeni od viSe datoteka.

Upravljanje izuzecima i greskama

Svaka od funkcija koje ¢ine program ima neki specifi¢an zadatak. Generalno se moZe oce-
kivati da Ce taj zadatak biti uspesno obavljen ali postoje mnogi scenariji gde to i nije tako.
Na primer,

« ako se tokom izvrSavanja funkcije dogodi celobrojno deljenje nulom — doéi ¢e do
greSke i prekida izvrSavanja programa;
« ako je prekoraCena predvidena veliina programskog steka — do¢i ¢e do greske i

prekida izvrSavanja programa;

« ako se pristupa oslobodenoj memoriji na hipu - moze do¢i do greske i prekida izvr-
Savanja programa;

9.9. UPRAVLJANJE IZUZECIMA I GRESKAMA 225

« ako se upisuje sadrZaj u neki niz nakon njegove granice - moze do¢i do greske i
prekida izvrSavanja programa.

U nekim situacijama, jo§ neugodnije, program se ne prekida, nego nastavlja sa radom
dajudi pogresne rezultate (to su najceSce mesta gde standard jezika ostavlja nedefinisano
ponasanje).

Neke od ovih gresaka moguée je i potrebno preduprediti. U tu svrhu funkcije umesto da
vracaju samo rezultat svog rada, mogu da vraéaju (kroz povratnu vrednost, listu argumenata
ili na neki drugi nacin) i nekakvu informaciju o tome da li je zadatak obavljen uspe$no
(Cesto tu informaciju zovemo “status”). Odredivanje, prenos i koriSéenje takvih informacija
zovemo upravljanje greskama (eng. error handling).

Generalno, program moZe da obraduje i situacije koje logicki ne bi smele da se dogode.
Time se delovi programa $tite od neispravnih ulaza i omoguéava nastavak nejgovog izvrsa-
vanja i u neo¢ekivanim okolnostima. Ovaj pristup programiranju i upravljanju greSkama
naziva se odbrambeno programiranje.

Ipak, nije neophodno, pa ni preporuceno da se pokuSava da se sve moguée greSke predu-
prede jer to vodi komplikovanom kodu teSkom za razumevanje i odrZavanje. Naime, za
neke funkcije Ce se pretpostavljati da su neki preduslovi tacni i da je funkcija pozvana na
predvideni nacin (na primer, u funkcijama koje vrSe binarnu pretragu ne proverava se da
su elementi niza zaista sortirani — duZnost onoga ko poziva ovu funkciju je da obezbedi
da taj preduslov bude ispunjen). Svaki program ima svoju specifikaciju kojom se izmedu
ostalog definiSe dopusten skup ulaznih podataka. Zadatak programera je da obezbedi da
program ispravno radi u slu¢aju kada ulazni podaci zadovoljavaju tu specifikaciju. U sluca-
ju kada ti podaci ne zadovoljavaju specifikaciju, ponasanje programa je nedefinisano jer
se ne ocekuje da ¢e program biti koriSc¢en sa tim neispravnim ulazima (ispravnost ulaznih
podataka je obaveza onoga ko poziva program). Isto vaZi i za svaku pojedinac¢nu funkciju.
Na primer, funkcija koja vrSi binarnu pretragu niza u slu¢aju kada niz nije sortiran moze
da vrati bilo koju vrednost. Obi¢no se programi koji se piSu tako da ih programer koristi
samostalno ili programi koji obraduju neke podatke koji su automatski generisani i koji su
sigurno ispravni mogu pisati tako da nije potrebno proveravati ispravnost tih ulaznih poda-
taka. Drugim re¢ima, u mnogim programima prihvatljivo je specifikacijom suziti prostor
dopustenih ulaza i time ga pojednostaviti. S druge strane, programi koji se piSu za §iri krug
korisnika i programi koji treba da budu robusni i dugotrajni imaju slabije pretpostavke o
ispravnosti ulaza i duznost programera je da obezbedi proveru ispravnosti ulaza i prijavlji-
vanje odgovarajuéih greSaka kada ulaz nije ispravan. U svakom sluc¢aju programer mora
da ima jasno u vidu specifikaciju problema koji reSava i da svoje programe i funkcije tome
prilagodi.

U nekim situacijama, preduslovi programa se ne proveravaju na klasi¢an nacin, ali se na-
glasava da su oni podrazumevani naredbom assert (preduslov) ;. U rezimu debagova-
nja, ukoliko preduslov nije ispunjen kada se dode do ove naredbe, program ¢e prekinuti
rad. To moZe da pomogne u otklanjanju greske, jer kada je program u realnoj upotrebi
(takozvana produkciona verzija, engl. release versions), situacija u kojoj preduslov nije

226 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

ispunjen apsolutno ne sme da se dogodi (na primer, u softveru koji upravlja avionom ne
sme da se dogodi da je trenutna brzina aviona negativan broj), i to mora da obezbedi i ga-
rantuje dizajn programa. U ovom kontekstu, naredba assert (preduslov) ; ima i drugu
svrhu: da eksplicitno daje informaciju o podrazumevanom uslovu. Sli¢no kao §to moZemo
zahtevati (i obezbediti dizajnom programa) da se neka funkcija moZe pozvati samo pod ne-
kim uslovima, tako se moZe zahtevati (i obezbediti dizajnom programa) da se neki delovi
koda jedne funkcije izvrSavaju samo pod nekim uslovima, koji sprecavaju neke greske. U
takvim situacijama nije potrebno (pa ni poZeljno) proveravati da li dolazi do greske koja
bi trebalo da je onemogucena dizajnom. Na primer, ako se funkcija binarne pretrage u
programu poziva nakon poziva funkcije za sortiranje, niz ¢e sigurno biti sortiran i ne bi
imalo nikakvog smisla da program vrsi eksplicitnu proveru da li je niz zaista sortiran.

Za razliku od jezika C, jezik C++ ima mehanizam izuzetaka (eng. exceptions). Programer
izdaje posebnu naredbu (obi¢no se naziva throw) koja se aktivira u slucaju greske, ko-
jom se prekida kod koji se trenutno izvrSava i tok programa preusmerava se na poseban
deo koda koji se bavi obradom greSaka (obicno se naziva catch). Time se postiZze da su
normalan tok programa i obrada greSaka fizicki razdvojeni u samom kodu, $to pojedno-
stavljuje programiranje i ¢ini programe Citljivijim i lakSim za odrZavanje. Naredni kdd
ilustruje mehanizam izuzetaka. U funkciji deljenje izuzetkom ili greSkom smatra se si-
tuacija kada je delilac (u celobrojnom deljenju) jednak nuli i tada se (u fazi izvrSavanja)
generiSe greSka sa objaSnjenjem “Deljenje nulom!”. Svaka funkcija koja koristi funkciju
deljenje (i posredstvom drugih funkcija) moZe da predvidi moguénost greSaka i da ih
uhvati - konstrukcijom try { ... } catch() {...}

#include <iostream>
using namespace std;

void deljenje(int a, int b) {
if (b == 0) {
throw runtime_error("Deljenje nulom!");
b
cout << a / b << endl;

}

int main() {
try {
deljenje(10, 0);
} catch (const runtime_error& e) {
cout << "Greska: " << e.what() << endl;
}
try {

9.9. UPRAVLJANJE IZUZECIMA I GRESKAMA 227

deljenje(10, 2); // Ovo deljenje nece izbaciti tzuzetak
} catch (const runtime_error& e) {

cout << "Greska: " << e.what() << endl; // Catching and handling the exceptior

}
return O;

}

U navedenom programu, poziv deljenje(10, 0) dovodi do izuzetka, a poziv
deljenje(10, 2) ne, pa ¢e biti dobijen naredni izlaz.

Greska: Deljenje nulom!
5

228 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

10.1

CI 0. Razvoj programa

Razvojno okruZenje

Programski kod moZe se pisati u bilo kojem editoru teksta, ¢ak i u onim najjednostavni-
jim. Kada dode do prevodenja, potpuno je nebitno u kakvom editoru je programski kod
unet. S druge strane, medutim, neke funkcionalnosti editora mogu programeru olaksati
unos programa i itav proces programiranja. Primer takve funkcionalnosti je naglasavanje
sintakse (eng. syntax highlighting) kojom se razli¢itim bojama oznacavaju razli¢ite jezic-
ke klase u programu. I neki sasvim jednostavni editori podrZavaju ovu funkcionalnost dok
najmoéniji editori mogu da pruzaju i mnogo vise. Postoje i alati koji pored mocnog edi-
tora objedinjuju i mnoge dodatne alatke koje Cine proces razvoja softvera efikasnijim. Te
alate zovemo integrisana razvojna okruZenja (eng. integrated development environment,
IDE). Razvojna okruZenja su glavni alat za ve¢inu programera. Osnovna svojstva svakog
razvojnog okruZenja su: integrisani editor teksta, podrSka za olakSano kreiranje izvrSivih
programa i integrisani debager. Vec¢ina razvojnih okruZenja ima dodatne, uobic¢ajene funk-
cionalnosti integrisanih razvojnih okruZenja.

U nastavku su nabrojana neka uobi¢ajena svojstva razvojnih okruZenja:

 udoban graficki korisnicki interfejs: umesto kucanja instrukcija kojima se pokre-
¢u kompilator i druge akcije, programer koristi lakS§u komunikaciju zasnovanu na
prozorima, ikonicama i menijima i na upotrebi misa.

« mocan tekstualni editor: u razvojnom okruZenju, editor teksta je alatka u kojoj pro-
gramer unosi i modifikuje tekst programa i koja moze da ima mnostvo dodatnih
svojstava:

- automatsko isticanje teksta: editor moZe poznavati sintaksicka pravila za mno-
ge programske jezike te moZe automatski modifikovati izgled (ne i sadrzaj)
teksta tako Sto ¢e neke reci naglasiti — prikazati u specifi¢noj boji, podeblja-
nim ili kurzivnim fontom. Ovakvo isticanje teksta programski kod ¢ini znatno
¢itljivijim i u njemu se lakse otkrivaju sintaksicke greske.

229

230

GLAVA 10. RAZVOJ PROGRAMA

- automatsko formatiranje koda: editor je u stanju da modifikuje kdd programa
i odrZava ga tako da je formatiran u skladu sa nekim konkretnim pravilima i
preporukama (na primer, o nazubljivanju, o poziciji viticastih zagrada, o raz-
macima oko operatora, itd).

- inteligentno upotpunjavanje koda: na osnovu znanja o konkretnom program-
skom jeziku i konkretnom programu koji se razvija, editor moZe biti u stanju
da predloZi dopunu za jezicku konstrukciju ¢iji je unos zapocet. Na primer,
ako programer poc¢ne da unosi re¢ double, posle nekoliko slova bi¢e mu pre-
dlozen nastavak koji upotpunjuje ovu re¢. Dodatno, ukoliko programer unese
ime neke promenljive x tipa, na primer, vector, kada otkuca x. bi¢e mu
ponuden spisak metoda koje se mogu primeniti na objekte tog tipa.

podrska za refaktorisanje koda: refaktorisanje koda je proces unapredivanja njego-
vog kvaliteta (u smislu modularnosti, konciznosti, ¢itljivosti, lakoée odrZzavanja), bez
menjanja njegove funkcionalnosti. Razvojna okruZenja mogu automatski refaktori-
sati kdd u nekoj meri, u skladu sa nekim poznatim shemama. Na primer, kod koji se
ponavlja na viSe mesta moZe automatski biti izdvojen u novu funkciju ili, suprotno,
kod neke funkcije moZe biti inlajnovan na mesto njenog pozivanja.

integrisan kompilator: razvojno okruZenje moZe da ukljucuje kompilatore za poje-
dine jezike ili da koristi kompilatore koji su raspoloZivi na racunaru koji se koristi.
Kompilatoru se na udoban nacun, kroz graficki korisnicki interfejs, mogu zadavati
opcije (koje se inace zadaju kroz komandnu liniju).

podrska za razvoj programa koji se sastoje od vise (potencijalno mnogo) datoteka:
razvojno okruZenje omogucava kreiranje projekata koji se sastoje iz viSe izvornih,
programskih datoteka ili i drugih vrsta datoteka i omogucava jednostavno dodavanje
ili brisanje delova projekta. OkruZenje prati stanje datoteka koje ¢ine projekat i, na
primer, kada se vrsi kompiliranje, vr$i kompiliranje samo onih jedinica koje su se
promenile od prethodnog kompiliranja

integrisan debager: debager je alat koji olakSava detektovanje, lociranje i ispravlja-
nje greSaka (bagova, engl. bug) u drugom programu. On omogucava programeru da
kontrolisano izvr§ava program, tj. da ide korak po korak kroz izvrSavanje programa,
zaustavi se na oznacenim mestima (eng. breakpoints), prati vrednosti promenljivih,
stanje programskog steka, sadrzaj memorije i druge elemente programa.

podrska za automatsko testiranje: razvojna okruZenja omogucavaju automatsko iz-
vr§avanje skupina testova kako bi se pojacalo uverenje o istravnosti koda pre inte-
grisanja u neku $iru celinu. Programer moze da zada skup testova, nacin pozivanja
programa i sli¢no i, nakon izvr§avanja testova, dobija pregled rezultata testova, na
primer, konzolnih izlaza za svaki test. Obi¢no su omogucéene raznovrsne obrade ta-
kvih rezultata, a kako bi se lako otkrili testovi koji nisu uspesno prosli.

10.2

10.2. PREGLED PROCESA DEBAGOVANJA 231

« integrisan profajler: profajliranje je dinamicka analiza programa, tj. analiza progra-
ma tokom njegovog izvrSavanja kojom se procenjuje vreme izvr$avanja programa
i njegovih delova, broj pozivanja nekih funkcija, upotreba memorije, itd. Ovakve
analize omogucavaju fokusiranje programera na kriti¢ne delove koda i popravljanje
efikasnosti programa. Razvojna okruZenja obi¢no ukljucuju neki profajler koji se
sam sastoji od niza pojedina¢nih alatki.

« veza sa sistemom za upravljanje verzijama: sistemi za upravljanje verzijama (sistemi
za kontrolu verzija, engl. version control systems) olakSavaju timski rad na projek-
tima koji se sastoje od mnostva datoteka. Clanovi tima redovno preuzimaju tekuéu
zvani¢nu verziju projekta, vrSe izmene lokalno na svom racunaru i, kada su izmene
gotove, Salju ih u zajednicku verziju kako bi mogli da ih preuzimi i svi drugi ¢lanovi
tima.

Postoji mnostvo raspolozivih razvojnih okruZenja za sve racunarske platforme, ukljucujuci
mnostvo besplatnih.

Razvojna okruZenja mogu biti lokalna ili dostupna putem interneta. U prvom slucaju, okru-
Zenje se instalira na lokalni racunar, zajedno sa prate¢im alatkama i onda se mozZe koristiti
i bez veze sa internetom. OkruZenja dostupna putem interneta mogu da ne zahtevaju ni-
kakve promene na lokalnoj masini, te na njoj ne zauzimaju prostor niti zahtevaju trud
za postavljanje sistema. Dodatna pogodnost ovakvih sistema je da mogu da se koriste na
razli¢itim platformama.

Razvojna okruZenja su osnovni i kljucni alat u radu skoro svakog programera. Medutim,
pocetnicima u programiranju savetuje se da najpre ovladaju procesom pisanja programa u
svedenom okruZenju, tj. da koriste jednostavan editor i kompiliranje iz komandne linije, a
kako bi razumeli komponente i faze u tom poslu.

Pregled procesa debagovanja

Pojednostavljeno receno, testiranje je proces proveravanja ispravnosti programa, sistema-
tiCan pokusSaj da se u programu (za koji se pretpostavlja da je ispravan) pronade greska. S
druge strane, debagovanje se primenjuje kada se zna da program ima greSku. Debager je
alat za pracenje izvrSavanja programa radi otkrivanja konkretne greske (baga, engl. bug).
To je program napravljen da olaksa detektovanje, lociranje i ispravljanje greSaka u drugom
programu. On omogucava programeru da ide korak po korak kroz izvrSavanje programa,
prati vrednosti promenljivih, stanje programskog steka, sadrzaj memorije i druge elemente
programa.

Slika @fig:debager ilustruje rad debagera kdbg, koji nudi grafi¢ki korisnicki interfejs za
rad sa debagerom gdb koji se Cesto koristi za razvoj programa u GNU/Linux okruZenju.
Uvidom u prikazane podatke, programer moZe da uoci traZzenu gresku u programu. Da bi
se program debagovao, potrebno je da bude preveden za debag reZim izvrSavanja. Za to se,

10.3

232 GLAVA 10. RAZVOJ PROGRAMA

L)

aaaaaaa

Slika 10.1: Tlustracija rada debagera kdbg

u kompilatoru gcc koristi opcija —g. Ako je izvrSivi program mo jprogram dobijen na taj
nacin, moZe se debagovati navodenjem naredbe:

kdbg mojprogram

Debageri su danas uglavnom tesno integrisani sa okruZenjima za razvoj programa (na pri-
mer, okruZenje Visual Studio, ali i editor Visual Studio Code pruZaju veoma udobnu po-
drsku za debagovanje C++ programa).

Testiranje

Testiranje je najznacajnija vrsta dinamickog ispitivanja ispravnosti programa (ispitivanja
tokom njegovog rada). Testiranje moze da obezbedi visok stepen pouzdanosti programa.
Neka tvrdenja o programu je moguce testirati, dok neka nije. Na primer, tvrdenje “pro-
gram ima prosecno vreme izvrSavanja 0.5 sekundi” je (u principu) proverivo testovima,
pa ¢ak i tvrdenje “prosecno vreme izmedu dva pada programa je najmanje 8 sati sa ve-
rovatno¢om 95%”. Medutim, tvrdenje “prosecno vreme izvrSavanja programa je dobro”
suviSe je neodredeno da bi moglo da bude testirano. Primetimo da je, na primer, tvrdenje
“prosecno vreme izmedu dva pada programa je najmanje 8 godina sa verovatno¢om 95%”
u principu proverivo testovima ali nije prakticno izvodivo.

U idealnom slucaju, treba sprovesti iscrpno testiranje rada programa za sve moguée ula-
zne vrednosti i proveriti da li izlazne vrednosti zadovoljavaju specifikaciju. Medutim, ova-
kav iscrpan pristup testiranju skoro nikada nije prakticno primenljiv. Na primer, iscrp-
no testiranje korektnosti programa koji sabira dva 32-bitna broja, zahtevalo bi ukupno

10.3. TESTIRANJE 233

232 . 232 — 264 razligitih testova. Pod pretpostavkom da svaki test traje jednu nanose-

kundu, iscrpno testiranje bi zahtevalo priblizno 1.8 - 101° sekundi $to je oko 570 godina.
Dakle, testiranjem nije prakticno moguce dokazati ispravnost netrivijalnih programa. S
druge strane, testiranjem je moguce dokazati da program nije ispravan tj. pronaci greske
u programima.

S obzirom na to da iscrpno testiranje nije prakti¢no primenljivo, obi¢no se koristi tehnika
testiranja tipi¢nih ulaza programa kao i specijalnih, karakteristicnih ulaznih vrednosti za
koje postoji veca verovatnoc¢a da dovedu do neke greske. U slucaju pomenutog programa za
sabiranje, tipi¢ni slucaj bi se odnosio na testiranje korektnosti sabiranja nekoliko slu¢ajno
odabranih parova brojeva, dok bi za specijalne slucajeve mogli biti proglaseni slucajevi
kada je neki od sabiraka 0, 1, -1, najmanji negativan broj, najveci pozitivan broj i sli¢no.
Postoje razli¢ite metode testiranja. Vise reci o njima bice u slede¢em tomu ove knjige.

234 GLAVA 10. RAZVOJ PROGRAMA

11.1

(1 1. Projektni zadaci

Prelazi izmedu slika

Obrada slika Siroko se koristi, kako od strane korisnika za line potrebe, tako i za svrhe objavljivanja na internetu,
u Stampanim izdanjima itd. Postoje mnogi programi (na primer, PhotoShop i gimp) koji nude mnostvo mogucih
obrada slika, ukljucujuci promenu dimenzije, zatamnjivanje, izoStravanje i sli¢no. Standardna biblioteka jezika
C++ ne sadrzi funkcije za rad sa slikama, te je za takve svrhe potrebno koristiti neku dodatnu bibliteku. Jedna
takva je popularna biblioteka OpenCV.

Mat je klasa definisana u okviru biblioteke OpenCV i ona sadrZi informacije o formatu slike, o njenim dimenzija-
ma, kao i matricu piksela koji ¢ine sliku. Ne¢emo ulaziti u detalje opisa ove klase, ve¢ ¢emo ukratko opisati samo
one funkcije i metode koje su nam potrebne. Funkcija imread ucitava sliku iz datoteke zadatog imena u objekat
slika tipa Mat (parametar IMREAD_COLOR nalaZe da se slika internu ¢uva u vidu tri kanala - po jedan za crvenu,
zelenu i plavu boju, tj. RGB). Metodom empty proveravamo da li je slika uspe$no ucitana i ako nije - program
zavrSava rad. Inace, slika se prikazuje primenom metode imshow (iz biblioteke OpenCV): njeni parametri su ime
i sama slika u obliku Mat objekta.

Vise informacija o ovoj biblioteci, ukljucujuéi uputsva za njeno instaliranje mozZe se naéi na adresi
https://docs.opencv.org. Pod sistemom linux, biblioteka se moZe instalirati na sledeci nacin:

sudo apt update
sudo apt install libopencv-dev

Zadate tri slike prikazuje naizmeni¢no sa prelaznim stanjima.

#include "opencv2/opencv.hpp"
#include <algorithm>
#include <vector>

#include <string>

int main() {
// spisak slika koje se prikazuju
std::vector<std::string> images
{"beogradl. jpg", "beograd2.jpg", "beograd3.jpg"l};

// trenutna slika
int imageNum = O;

// ucitavamo prvu sliku

235

236 GLAVA 11. PROJEKTNI ZADACI

cv::Mat prevIimage, currlImage;
previmage = cv::imread(images[imageNum]) ;
if (prevImage.empty())
std::cerr << "Error reading: " << images[imageNum] << std::endl;

// ucitavamo drugu sliku
imageNum = (imageNum + 1) 7, images.size();
currImage = cv::imread(images[imageNum]) ;
if (currImage.empty())
std::cerr << "Error reading: " << images[imageNum] << std::endl;

// procenat prelaza izmedju tekuce dve slike
double percent = 0.0;

while (true) {
// matrica koja sadrZi jedan po jedan frejm
cv::Mat image(prevImage.rows, prevImage.cols, CV_8UC3);

// frejm gradimo kombinovanjem dve slike
for (int row = 0; row < image.rows; row++) {
for (int col = 0; col < image.cols; col++) {
for (int color = 0; color < 3; color++) {
double pl = prevImage.at<cv::Vec3b>(row, col) [color] / 255.0;
double p2 = currImage.at<cv::Vec3b>(row, col) [color] / 255.0;
double p = pl*(1 - percent) + p2*percent;
image.at<cv::Vec3b>(row, col) [color] = (int) (255 * p);
}
}
}

// prikazujemo trenutnu sliku
cv::imshow("Prelaz", image);

// uvecavamo procenat prelaza izmedju prve t druge slike
percent += 0.01;

// ako je procemat > 1, u potpunosti je prikazana druga slika
if (percent > 1) {

// nov prelaz krece od tekuce slika

previmage = currlmage;

// uctavamo novu sliku
imageNum = (imageNum + 1) 7, images.size();
currImage = cv::imread(images[imageNum]) ;
if (currImage.empty())
std::cerr << "Error reading: " << images[imageNum] << std::endl;

// krecemo prelaz %z pocetka
percent = 0.0;

11.1. PRELAZI IZMEDU SLIKA 237

// prekidamo program kada se pritisne ESC
int key = cv::waitKey(15);
if (key == 27)

break;

}

return O;

}

Program se moZe kompilirati na slede¢i nacin:
g++ prelaz.cpp -o prelaz “pkg-config --cflags --1libs opencvé4”

a onda pozvati na slede¢i nacin: prelaz. U tekucem direktorijumu treba da postoje slike ¢ija imena su navedena
u okviru funkcije main.

2 Aav@RAQAQ@QLBo

L4

(x=1,v=399) ~ R:50 G:82 B:86

(x=9,v=127) ~ R243 G202 B:92

11.2

238

GLAVA 11. PROJEKTNI ZADACI

Transformacija slika

Projekat koji sledi takode koristi biblioteku OpenCV. U okviru ovog projekta, napravicemo jednostavnu aplikaciju
koja omoguéava nekoliko obrada slika. Iako i sama biblioteka OpenCV pruza podrsku za takve obrade, mi ¢emo
je koristiti samo za svrhe ucitavanja postojece slike i snimanje slike koja je dobijena obradom.

Nas program pocinje preprocesorskim direktivama - za ukljucivanje uobicajenog zaglavnja iostream, ali i dva
potrebna zaglavlja iz biblioteke OpenCV, iza kojih slede deklaracije, a onda i definicije funkcija za raznovrsne

obrade slika:

#include <iostream>
#include "opencv2/imgcodecs/imgcodecs.hpp"
#include <opencv2/highgui.hpp>

using namespace CV;
using namespace std;

void
void
void
void
void
void

void

transpose (Mat& slika) ;

rotate(Mat& slika, bool clockwise);
flip(Mat& slika, bool horizontal);
increaseComponent (Mat& slika, int color);
pixelate(Mat& slika, int pixelSize);

blur (Mat& slika);

transpose (Mat& slika) {

// stara slika ima dimenzije (slika.rows,slika.cols)
// a nova (slika.cols,slika.rows)

Mat novaSlika(slika.cols, slika.rows, CV_8UC3);
for(int y = 0; y < slika.cols; y++) {

for(int x = 0; x < slika.rows; x++) {
novaSlika.at<Vec3b>(y, x) = slika.at<Vec3b>(x, y);
¥
}

slika = novaSlika;

void rotate(Mat& slika, bool clockwise) {

// stara slika ima dimenzije (slika.rows,slika.cols)
// a nova (slika.cols,slika.rows)
Mat novaSlika(slika.cols, slika.rows, CV_8UC3);
for(int y = 0; y < slika.cols; y++) {

for(int x = 0; x < slika.rows; x++) {

novaSlika.at<Vec3b>(y, x) =
clockwise 7
slika.at<Vec3b>(slika.rows-x, y)
slika.at<Vec3b>(x, slika.cols-y);

I

¥

slika = novaSlika;

void flip(Mat& slika, bool horizontal) {

11.2. TRANSFORMACIJA SLIKA 239

// i stara i nova slika imaju dimenzije (slika.rows,slika.cols)
Mat novaSlika(slika.rows, slika.cols, CV_8UC3);
for(int y = 0; y < slika.rows; y++) {
for(int x = 0; x < slika.cols; x++) {
novaSlika.at<Vec3b>(y, x) =
horizontal 7
slika.at<Vec3b>(slika.rows-y, x)
slika.at<Vec3b>(y, slika.cols-x);
}
¥
slika = novaSlika;

}

void increaseComponent(Mat& slika, int color) {
// i stara i nova slika imaju dimenzije (slika.rows,slika.cols)
Mat novaSlika(slika.rows, slika.cols, CV_8UC3);
for(int y = 0; y < slika.rows; y++) {
for(int x = 0; x < slika.cols; x++) {
Vec3b pixelColor = slika.at<Vec3b>(y, x);
pixelColor[color] = (pixelColor[color] + 255)/2;
novaSlika.at<Vec3b>(y, x) = pixelColor;
}
¥
slika = novaSlika;

}

void pixelate(Mat& slika, int pixelSize) {
// rezultujuca slika
Mat novaSlika(slika.rows, slika.cols, CV_8UC3);
// ukupan broj piksela stare slike koji su na
// prostoru jednog "piksela" nove slike
int n = pixelSize * pixelSize;

for (int y = 0; y * pixelSize <= slika.rows; y++)
for (int x = 0; x * pixelSize <= slika.cols; x++) {
// izracunavamo aritmeticku sredinu svih piksela stare slike
// koji se nalaze na poursini jednog "piksela” nove slike
// zato su mam potrebni zbirovi
// (posebno za crvenu, zelenu i plavu komponentu)
int sumR = 0, sumG = O, sumB = 0;
for (int i = 0; i < pixelSize; i++)
for (int j = 0; j < pixelSize; j++) {
Vec3b pixel = slika.at<Vec3b>(y*pixelSize + i, x*pixelSize + j);
sumR += pixel[0]; sumG += pixel[1]; sumB += pixel[2];
}
// ceo prostor novog "piksela" popunjavamo bojom koja
// odgovara proseku piksela stare slike
for (int i = 0; i < pixelSize && y*pixelSize + i < slika.rows; i++)
for (int j = 0; j < pixelSize && x*pixelSize + j < slika.cols; j++)
novaSlika.at<Vec3b>(y*pixelSize + i, x*pixelSize + j)

240 GLAVA 11. PROJEKTNI ZADACI

= Vec3b(sumR / n, sumG / n, sumB / n);
¥

slika = novaSlika;

void blur (Mat& slika) {
// i stara i nova slika imaju dimenzije (slika.rows,slika.cols)
Mat novaSlika(slika.rows, slika.cols, CV_8UC3);
for(int y = 1; y < slika.rows-1; y++) {
for(int x = 1; x < slika.cols-1; x++) {
for(int ¢ = 0; ¢ < 3; c++) {
unsigned color = slika.at<Vec3b>(y, x)[c];
for(int i = -1; i < 2; i++) {
for(int j = -1; j < 2; j++) {
color += slika.at<Vec3b>(y+i, x+j) [c];
¥
}
novaSlika.at<Vec3b>(y, x)[c] = color/10;
}
¥
}

slika = novaSlika;

int main()
{
string imeSlike;
cout << "Unesite ime slike: ";
cin >> imeSlike;
// string imeSlike = samples::findFile("beograd2.jpg");;

Mat slika = imread(imeSlike, IMREAD_COLOR) ;
if (slika.empty()) {

cout << "Ne moze se ucitati slika: " << imeSlike << endl;
return -1;

¥

imshow(imeSlike, slika);

int k;

while ((k = waitKey(0)) != 27) { // cekanje na pritisak tastera
// sve dok nije pritisnut taster 'esc'
switch(k) {
case 't': // transponovanje
transpose(slika);
break;
case 'r': // rotiranje u smeru kazaljke na satu
rotate(slika, true);
break;
case 'c': // rotiranje suprotno smeru kazaljke na satu
rotate(slika, false);
break;

11.2. TRANSFORMACIJA SLIKA 241

case 'h': // horizontalni flip
flip(slika, true);
break;

case 'v': // wvertikalni flip
flip(slika, false);

break;

case 'p': // pikselizacija
pixelate(slika,8);
break;

case 'b': // blur
blur(slika);
break;

case '0':

case '1':

case '2': // pojacaj boju (B='0',G='1',R='2"')
increaseComponent (slika, k - '0');
break;

case 's': // snimanje
imwrite("transformed_" + imeSlike, slika);
break;

default:
break;

}
imshow(imeSlike, slika);
}
return O;
I

Glavninu funkcije main Cini jednostavna petlja koja se izvrSava sve dok korisnik ne pritisne taster e. Nekoliko
drugih slova pokrece specifiéne obrade koje su podrZane zasebnim funkcijama. Taster koji je pritisnut Cita se (bez
¢ekanja na pritisak na enter) primenom OpenCV funkcije waitKey (0) (parametar O govori da se na pritisak
tastera Ceka bez vremenskog ogranicenja). Nakon izabrane obrade, iznova se prikazuje slika, sada modifikovana.
Izmedu navedenog pocetka programa i funkcije main treba da navedemo deklaracije i definicije funkcija koje
vr$e obrade slike. Razmotrimo detaljnije funkciju transpose (Mat& slika). U okviru funkcije najpre se kre-
ira nova slika, Sirine kao visina zadate slike, a visine kao Sirina zadate slike, koja je zadata kao prvi parametar.
Argument CV_8UC3 govori da Ce se za svaki piksel koristiti tri podatka tipa unsigned char, po jedan za svaki
od kanala R, G, B). Pojedina¢nom pikselu slike slika koji ima koordinate x i y moZe se pristupiti na slede¢i
nacin: slika.at(x, y) (Vec3b predstavlja OpenCV tip vektora koji ima tri elementa od po jedan bajt). Naredbom
novaSlika.at<Vec3b>(y, x) = slika.at<Vec3b>(x, y); piksel zadate slike sa koordinatama x i y ko-
pira se u piksel nove slike sa koordinatama y i x ¢ime se dobija transponovana matrica, pa time i transponovana
slika.

Program se moZe kompilirati na slede¢i nacin:

g++ transformacija_slika.cpp -o ts “pkg-config --cflags --libs opencv4~
a onda pozvati na slede¢i nacin: ts. Program Ce traZiti ime slike koju treba transformisati. Ako je to slika

StudentskiTrg. jpg i ako je primenjeno transponovanje, od polazne slike (levo) bice dobijena nova slika
(desno).

242 GLAVA 11. PROJEKTNI ZADACI

Slika 11.1: Ilustracija transformisanja slike

Slika 11.2: Tlustracija transformisanja slike

11.3. ASCIl KAMERA 243

11.3 ASCII kamera

Program koji sledi takode koristi biblioteku OpenCV, ¢ita podatke sa kamere (ako postoji) i dobijenu sliku pri-
kazuje koriste¢i samo ASCII karaktere.

#include "opencv2/opencv.hpp"
#include <string>
#include <iostream>

int main() {
// slike éemo &itati sa video-kamere
cv::VideoCapture camera(0);

// provera da li je otvaranje kamere uspelo

if (!camera.isOpened()) {
std::cerr << "Error: Could not open camera.\n";
return -1;

}

// matrica koja sadrZi jedan po jedan frejm
cv::Mat frame;
while (true) {

// uéitavamo frejm sa kamere

camera >> frame;

// provera da li je uditavanje uspelo

if (frame.empty()) {
std::cerr << "Error: Captured empty frame.\n";
break;

}

// bela boja

cv::Scalar white(255, 255, 255);
// crna boja

cv::Scalar black(0, 0, 0);

// smanjujemo rezoluciju frejma na 20 originalne velicine
cv::resize(frame, frame, cv::Size(), 0.2, 0.2);

// © prebacujemo frejm u crnobelo

cv::cvtColor (frame, frame, cv::COLOR_BGR2GRAY) ;

// karakteri razlilite osvetljenosts

std::string characters = _., ;:labcW#0QQ";

// frejm sa tekstom koji éemo prikazivati
cv::Mat textFrame (800, 800, CV_8UC3, black);

// font koji se koristi

int fontFace = cv::FONT_HERSHEY_SIMPLEX;
// veliéina fonta

double fontScale = 0.25;

244

GLAVA 11. PROJEKTNI ZADACI

// debljina linija prilikom iscrtavanja slova
int thickness = 1;

// merimo velicinu slova (u ovom fontu su sva slova iste velicine)
int baseline = 0O;
cv::Size textSize = cv::getTextSize("A", fontFace,

fontScale, thickness, &baseline);

// analiziramo svaki piksel smanjene crno-bele slike
for (int row = 0; row < frame.rows; row++) {
for (int col = 0; col < frame.cols; col++) {
// osvetljenost piksela
int intensity = frame.at<uchar>(row, col);
// pozicija karaktera u nizu
// (linearna transformacija [0, 256) na [0, karakteri.length()))
int k = (intensity / 255.0) * (characters.length() - 1);
// konvertujemo karakter u string
std: :string text(l, characters[k]);
// pozicija na kojoj éemo prikazati karakter
// (koordinate donjeg levog ugla)
cv::Point position((frame.cols - col) * textSize.width,
(row+1) * textSize.height);
// ispisujemo karakter
cv::putText (textFrame, text, position, fontFace,
fontScale, white, thickness);
}
}

// prikazujemo ASCII sliku
v::imshow("Camera'", textFrame) ;

// prekidamo program kada se pritisne ESC
int key = cv::waitKey(30);
if (key == 27)
break;
else if (key == 's') {
// analiziramo svaki piksel smanjene crno-bele slike
for (int row = 0; row < frame.rows; row++) {
for (int col = 0; col < frame.cols; col++) {
// osvetljenost piksela
int intensity = frame.at<uchar>(row, col);
// pozicija karaktera u nizu
// (linearna transformacija [0, 256) na [0, karakteri.length()))
int k = (intensity / 255.0) * (characters.length() - 1);
// konvertujemo karakter u string
std::cout << characters[k];
}
std::cout << std::endl;
}
}

11.4. MASTERMAJND 245

¥

// oslobadamo kameru
camera.release();

// zatvaramo sve prozore

cv::destroyAllWindows () ;

return O;

11.4 Mastermajnd

U ovom projektu program pogada broj koji je zamislio igrac, u skladu sa pravilima igre mastermajnd.

#include <iostream>
#include <vector>
#include <thread>

using namespace std;
typedef vector<unsigned> Varijacija;

bool postoje_iste_cifre(const Varijacija& varijacija)
{
for (int i = 0; i < varijacija.size(); i++)
for (int j = i + 1; j < varijacija.size(); j++)
if (varijacijali] == varijacijaljl)
return true;
return false;

}
void sledeca_varijacija(Varijacija& varijacija, int n)
{
int k = varijacija.size();
int i;
for (i = k-1; i >= 0 &% varijacijali] == n-1; i--)
varijacijal[i] = 0;
if (i >= 0)
varijacijal[i]++;
}
void sledeca_varijacija_bez_ponavljanja(Varijacija& varijacija, int n)
{
do {

sledeca_varijacija(varijacija, n);
} while (postoje_iste_cifre(varijacija));

}

void oceni_pokusaj(const Varijacija& resenje, const Varijacija& pokusaj,

246 GLAVA 11. PROJEKTNI ZADACI

int& pogodjenih_na_mestu, int& pogodjenih_ukupno) {
// assert(resenje.size() == pokusaj.stze());
int k = resenje.size();

// brojimo koliko ima pogodjenih na pravom mestu
pogodjenih_na_mestu = O;
for (int i = 0; i < k; i++)
if (resenjel[i] == pokusajl[i])
pogodjenih_na_mestu++;

// brojimo koliko ima pogodjentih ukupno
pogodjenih_ukupno = 0O;
for (int i = 0; i < k; i++)
for (int j = 0; j < k; j++)
if (resenjel[i] == pokusajl[jl)
pogodjenih_ukupno++;

// raniji pokusaj pogotka koji je korisnik ocenio
struct Pokusaj {

Varijacija varijacija;

int pogodjenih_na_mestu;

int pogodjenih_ukupno;

Pokusaj(const Varijacija& v, int na_mestu, int ukupno) {
varijacija = v;
pogodjenih_na_mestu = na_mestu;
pogodjenih_ukupno = ukupno;
}
Irg

// provera da li je trenutna varijacija u skladu sa svim prethodnim pokusajima
// tj. da li je moguce da je korisnik dao ocene koje je dao ako bi ona bila tacng resenje
bool zadovoljava_sve_prethodne_pokusaje(const Varijacija& varijacija,
const vector<Pokusaj>& prethodni_pokusaji) {
for (const Pokusaj& pokusaj : prethodni_pokusaji) {
int pogodjenih_na_mestu, pogudjenih_ukupno;
oceni_pokusaj(varijacija, pokusaj.varijacija, pogodjenih_na_mestu, pogudjenih_ukupno) ;
if (pogudjenih_ukupno != pokusaj.pogodjenih_ukupno ||
pogodjenih_na_mestu != pokusaj.pogodjenih_na_mestu)
return false;
}
return true;

}

void ispisi_varijaciju(const Varijacija& varijacija) {
this_thread: :sleep_for(ims);
for (int i = 0; i <= varijacija.size(); i++)
cout << "\b";
for (int x : varijacija)
cout << x;

11.4. MASTERMAJND 247

cout << " " << flush;

}

int main()
{
srand (time (nullptr));

cout << "Zamislite cetvorocifreni broj cije su cifre razlicite (dozvoljena je |i vodeca nula), a ja
cout << "Ocenite svaki pokusaj koji cu napraviti (prvo unesite broj pogodaka na mestu, pa ukupan br

// racunar nasumicno odredjuje pocetnu varijactiju

Varijacija varijacija = {0, 1, 2, 3};

int broj_varijacija = rand() 7 1000;

for (int i = 0; i < broj_varijacija; i++) {
sledeca_varijacija_bez_ponavljanja(varijacija, 10);
ispisi_varijaciju(varijacija);

}

// svi pokusaji koje je racunar do sada napravio (i ocene koje je dobio)
vector<Pokusaj> prethodni_pokusaji;

// racunar pokusava sve dok ne pogodi
while(true) {
// korisnik ocenjuje trenutnu varijaciju
int pogodjenih_na_mestu, pogodjenih_ukupno;
cin >> pogodjenih_na_mestu >> pogodjenih_ukupno;

// da li je racunar pogodio resenje

if (pogodjenih_na_mestu == varijacija.size() && pogodjenih_ukupno == varijacija.size()) {
cout << "Pogodak!" << endl;
break;

}

// nije jos - pamtimo prethodni pokusaj racunara © ocene korisnika za taj pokusaj
prethodni_pokusaji.push_back(Pokusaj(varijacija, pogodjenih_na_mestu, pogodjenih_ukupno)) ;

// racunar trazi sledecu varijaciju koja je u skladu sa ocenama svih prethodnpih pokusaja
do {

sledeca_varijacija_bez_ponavljanja(varijacija, 10);

ispisi_varijaciju(varijacija);
} while (!zadovoljava_sve_prethodne_pokusaje(varijacija, prethodni_pokusaji)) ;

}

return O;

}

248 GLAVA 11. PROJEKTNI ZADACI

12.0.1

(1 2. Dodatak

Statistike

Bitne statistike serija elemenata su minimum, maksimum, zbir, prosek (aritmeticka sredina), proizvod i sli¢no. Za
serije elemenata koje su smestene u neke sekvencijalne kolekcije, ove statistike se mogu izraCunavati biblioteckim
funkcijama.

Iterator koji ukazuje na minimalni element u seriji dobija se funkcijom min_element, a iterator koji ukazuje na
maksimalni element dobija se max_element.

vector<int> a = {3, 8, 4, 1, 9, 6, 2, 7, 5};
cout << "Najmanji element: "

<< *min_element (begin(a), end(a)) << endl;
cout << "Najveci element: "

<< *max_element (begin(a), end(a)) << endl;

Prilikom odredivanja minimalnog i maksimalnog elementa koristi se podrazumevani poredak elemenata datog
tipa (elementi se porede relacijom kojoj odgovara operator <=). Na primer, ako se obraduje sekvencijalna kolek-
cija (npr. vektor) niski elemenata tipa string, pronalazi se element koji je prvi tj. poslednji u leksikografskom
poretku (koje je prosirenje relacije <= nad karakterima). Ako Zelimo da koristimo neki drugi poredak, moZemo
kao treci argument navesti funkciju poredenja. Na primer, naredni kod pronalazi najkracu nisku (i ispisuje nar).

vector<string> voce = {"jabuka", "pomorandza", "nar", "kajsija"l};

auto poredi_duzinu = [](const string& a, const string& b) {
return a.length() < b.length();

};

cout << *min_element (begin(voce), end(voce), poredi_duzinu);

Ne postoji funkcija sum koja izracunava zbir elemenata niza. Za izracunavanje zbira moZe se koristiti funkcija
accumulate ili funkcija reduce (obe su deklarisane u zaglavlju <numeric>).

int all = {8, 3, 4, 5, 2, 6};
int zbir = accumulate(begin(a), end(a), 0);
cout << "Zbir elemenata niza je: " << zbir << endl;

ili

249

12.0.2

250 GLAVA 12. DODATAK

int all] = {8, 3, 4, 5, 2, 6};
int zbir = reduce(begin(a), end(a));
cout << "Zbir elemenata niza je: " << zbir << endl;

Primetimo da funkcija accumulate ima i tre¢i parametar koji odreduje inicijalnu vrednost zbira, ali i tip rezul-
tata. Funkcija accumulate se uvek izracunava sleva nadesno, dok se reduce moZe izvrSavati u proizvoljnom
redosledu, $to omogucava i paralelizaciju (na primer, mogucénost da svako od 4 jezgra procesora izraCunava zbir
jedne Cetvrtine elemenata niza).

IzraCunavanje proseka se svodi na izraCunavanje zbira i zatim deljenje brojem elemenata niza (primetimo da smo
zbir racunali kao podatak tipa double, §to je odredeno pre svega inicijalnom vredno$éu 0.0, a zatim i tipom
promenljive u kojoj pamtimo zbir).

vector<int> a = {8, 3, 4, 5, 2, 6};
double zbir = accumulate(begin(a), end(a), 0.0);
double prosek = zbir / a.size();

Proizvod elemenata serije se takode moZe izracunati funkcijom accumulate.

double a[l = {8, 3, 4, 5, 2, 6};
double proizvod = accumulate(begin(a), end(a), 1.0, multiplies);

Inicijalna vrednost proizvoda je 1.0 (ovde se radi o podacima tipa double). Cetvrti parametar je funkcija koja
se primenjuje na objedinjavanje tekuceg rezultata i tekuceg elementa kolekcije. Kada se taj argument ne navede
podrazumeva se funkcija plus koja sabira tekudi zbir i tekuéi element kolekcije. Za mnoZenje je upotrebljena
funkcijamultiplies koja mnoZi te dve vrednosti (ona je deklarisana u zaglavlju <functional>). Naravno, tu
funkciju je moguce i definisati samostalno (na primer, kao anonimnu funkciju), $to ima smisla kada ne postoji
odgovarajuca bibliotecka funkcija.

double a[] = {8, 3, 4, 5, 2, 6};
double proizvod = accumulate(begin(a), end(a), 1.0,
[] (double x, double y) { return x * y; });

Menjanje redosleda elemenata niza

Cesto je potrebno promeniti redosled elemenata neke kolekcije.
Obrtanje redosleda elemenata niza se vrsi bilbioteCkom funkcijom reverse.

string s = "Ana voli milovana';
reverse(begin(s), end(s));
cout << s << endl; // ispisuje: anavolim ilov and

Jo§ jedna Cesto koriS¢ena transformacija kolekcije je rotacija koja se moZe ostvariti funkcijom rotate. Prvi i
treéi parametar su iteratori koji ogranicavaju deo kolekcije koji se rotira, a drugi parametar je iterator koji ukazuje
na element koji ¢e postati pocetni nakon rotacije.

251

string s = "zdravo svima';
rotate(begin(s), next(begin(s), 3), end(s));
cout << s << endl; // ispisuje: avo svimazdr

Funkcija random_shuff1le nasumic¢no permutuje elemente kolekcije.

vector<int> a = {1, 2, 3, 4, 5};
random_shuffle(begin(a), end(a));

Nakon izvrSavanja prethodnog koda niz a ¢e sadrZati elemente od 1 do 5, ali ¢e njihov redosled biti izmenjen (na
primer, niz moZe da sadrzi redom elemente 5, 2, 1, 4, 3).

Funkcijanext_permutation pronalazi narednu permutaciju u leksikografskom redosledu. Funkcija vraca true
ako postoji naredna permutacija. Naredni program ispisuje sve permutacije elemenata od 1 do 5.

vector<int> a = {1, 2, 3, 4, 5};
do {
// ispisujemo elemente niza
for (int x : a)
cout << x;
cout << endl;
} while(next_permutation(begin(a), end(a));

	Predgovor
	Uvod
	Osnovni elementi jezika i prvi programi
	Osnovna struktura programa
	Komentari

	Promenljive, tipovi, ispisivanje i učitavanje podataka
	Izračunavanje
	Osnovne aritmetičke operacije i izrazi
	Bibliotečke matematičke funkcije
	Imenovane konstante

	Zadatak: Rastojanje tačaka
	Grananje
	Relacijski operatori
	Logički operatori
	Naredba if
	Uslovni izraz

	Petlje
	Petlja while
	Petlja for
	Petlja do-while

	Definisanje funkcija
	Strukture podataka
	Upravljanje izuzecima i greškama

	Promenljive i tipovi
	Promenljive, konstante i deklaracije
	Osnovni tipovi podataka
	Celobrojni tipovi
	Realni tipovi
	Logički tip
	Karakterski tip
	Niske

	Dodele vrednosti promenljivoj
	Operator dodele
	Razmena vrednosti promenljivih

	Zadatak: Cena hleba

	Izrazi i izračunavanje
	Aritmetički operatori i zapis matematičkih formula
	Složeni operatori dodele
	Inkrementiranje i dekrementiranje

	Zapis matematičkih formula
	Sekvencijalni programi
	Sekvencijalno izračunavanje vrednosti
	Celobrojno deljenje i ostatak
	Pozicioni zapis (brojevi, vreme, uglovi)
	Izračunavanje zbira cifara petocifrenog broja
	Razmenjivanje cifre jedinica i stotina
	Izračunavanje vremena između dva trenutka
	Izračunavanje ugla između kazaljki na satu

	Grananje
	Relacijski i logički operatori i istinitosna vrednost izraza
	Logički tip podataka
	Relacijski i logički operatori
	Poređenje i poredak
	Relacija jednakosti
	Relacije poretka

	Naredba if-else
	Konstrukcija else-if

	Operator uslova
	Naredba switch
	Primeri
	Broj dana u mesecu (grananje na osnovu vrednosti promenljive)
	Agregatno stanje vode (grananje na osnovu pripadnosti intervalu)
	Uspeh učenika
	Kvadrant kom pripada tačka (hijerarhija ugnežđenih uslova)
	Poređenje datuma (leksikografsko poređenje torki iste dužine)
	Vrsta trougla na osnovu stranica

	Petlje
	Petlja while
	Petlja for
	Petlja do-while
	Naredbe break i continue
	Osnovni iterativni algoritmi
	Sabiranje, prebrojavanje, množenje
	Minimum i maksimum
	Linearna pretraga
	Sortiranost niza
	Filtriranje, preslikavanje
	Pozicioni zapis
	Leksikografsko poređenje

	Ugnežđene petlje
	Elementarni algoritmi sortiranja
	Algoritam selection sort
	Algoritam bubble sort
	Algoritam insertion sort

	Zadaci

	Funkcije
	Modularnost i razlaganje problema na potprobleme
	Primeri korišćenja funkcije
	Parametri funkcije
	Povratna vrednost funkcije
	Prenos argumenata
	Prenos argumenata po vrednosti
	Prenos argumenata po referenci
	Prenos argumenata po adresi

	Konverzije tipova argumenata funkcije
	Anonimne funkcije
	Složeni tipovi i funkcije
	Rekurzivne funkcije - osnovni pregled
	Doseg, životni vek i organizacija memorije dodeljene programu
	Doseg identifikatora
	Životni vek objekata
	Organizacija memorije dodeljene programu
	Segment koda
	Segment podataka
	Stek segment
	Implementacija rekurzije

	Deklaracija i definicija funkcije
	Uzajamna rekurzija
	Razdvojena kompilacija i povezivanje

	Strukture podataka
	Korisnički definisani tipovi: nabrojivi tip, strukture, klase
	Nabrojivi tipovi (enum)
	Strukture
	Klase
	Parovi i torke (tipovi pair<T1, T2> i tuple<T1, ..., Tn>)
	Imenovanje tipova – typedef

	Strukture podataka sa sekvencijalnim pristupom
	Statički alocirani nizovi
	Nizovi i funkcije

	VLA
	Tip vector<T>
	Pokazivači i iteratori
	Tipovi list<T>

	Višedimenzioni nizovi i kolekcije
	Rad sa matricama
	Strukture podataka sa asocijativnim pristupom
	Skupovi
	Multiskupovi
	Mape

	Specijalizovane strukture podataka
	Stek
	Primer upotrebe steka: izrazi u postfiksnoj notaciji

	Red
	Primer upotrebe reda: poslednjih k učitanih linija teksta

	Red sa dva kraja
	Primer upotrebe reda sa dva kraja: istorija veb-pregledača

	Red sa prioritetom
	Primer upotrebe reda sa prioritetom: zbir najvećih k brojeva

	Pregled standardne biblioteke
	Korišćenje bibliotečke implementacije algoritama
	Pregled bibliotečkih funkcija za rad sa sekvencijalnim kolekcijama
	Sortiranje
	Linearna pretraga
	Binarna pretraga
	Kopiranje, preslikavanje, filtriranje
	Brisanje elemenata

	Rad sa karakterima
	Rad sa niskama
	Datoteke/tokovi
	Ulazni tok za učitavanje iz tekstualne datoteke (ifstream)
	Izlazni tok za upis u tekstualnu datoteku (ofstream)
	Baferovanje
	Odnos sa C bibliotekom za ulaz/izlaz
	Tokovi za čitanje iz niske (istringstream) i upis u nisku (ostringstream)
	Argumenti komandne linije programa

	Principi pisanja programa i dokumentacije
	Timski rad i konvencije
	Vizuelni elementi programa
	Broj karaktera u redu
	Broj naredbi u redu, zagrade i razmaci
	Nazubljivanje teksta programa

	Imenovanje promenljivih i funkcija
	Pisanje izraza
	Korišćenje idioma
	Korišćenje konstanti
	Pisanje komentara
	Modularnost
	Modularnost i podela na funkcije
	Modularnost i podela na datoteke

	Upravljanje izuzecima i greškama

	Razvoj programa
	Razvojno okruženje
	Pregled procesa debagovanja
	Testiranje

	Projektni zadaci
	Prelazi između slika
	Transformacija slika
	ASCII kamera
	Mastermajnd

	Dodatak
	Statistike
	Menjanje redosleda elemenata niza

