
1

FILIP MARIĆ PREDRAG JANIČIĆ

UVOD U PROGRAMIRANJE
Osnove programiranja kroz programski jezik C++

Beograd
2026.

2

Sadržaj

Predgovor 9

1 Uvod 11
1.1 Osnovni elementi jezika i prvi programi 12

1.1.1 Osnovna struktura programa 12
1.1.1.1 Komentari . 13

1.1.2 Promenljive, tipovi, ispisivanje i učitavanje podataka 14
1.1.3 Izračunavanje . 19

1.1.3.1 Osnovne aritmetičke operacije i izrazi 19
1.1.3.2 Bibliotečke matematičke funkcije 20
1.1.3.3 Imenovane konstante 21

Zadatak: Rastojanje tačaka . 21
1.1.4 Grananje . 23

1.1.4.1 Relacijski operatori 23
1.1.4.2 Logički operatori 23
1.1.4.3 Naredba if . 24
1.1.4.4 Uslovni izraz . 25

1.1.5 Petlje . 25
1.1.5.1 Petlja while . 25
1.1.5.2 Petlja for . 25
1.1.5.3 Petlja do-while 27

1.1.6 Definisanje funkcija . 27
1.1.7 Strukture podataka . 29
1.1.8 Upravljanje izuzecima i greškama 33

2 Promenljive i tipovi 35
2.1 Promenljive, konstante i deklaracije 35
2.2 Osnovni tipovi podataka . 37

2.2.1 Celobrojni tipovi . 37
2.2.2 Realni tipovi . 39

3

4 SADRŽAJ

2.2.3 Logički tip . 41
2.2.4 Karakterski tip . 41
2.2.5 Niske . 42

2.3 Dodele vrednosti promenljivoj . 43
2.3.1 Operator dodele . 44
2.3.2 Razmena vrednosti promenljivih 45

Zadatak: Cena hleba . 46

3 Izrazi i izračunavanje 47
3.1 Aritmetički operatori i zapis matematičkih formula 47

3.1.1 Složeni operatori dodele . 49
3.1.2 Inkrementiranje i dekrementiranje 49

3.2 Zapis matematičkih formula . 50
3.3 Sekvencijalni programi . 51

3.3.1 Sekvencijalno izračunavanje vrednosti 51
3.3.2 Celobrojno deljenje i ostatak 51
3.3.3 Pozicioni zapis (brojevi, vreme, uglovi) 52

3.3.3.1 Izračunavanje zbira cifara petocifrenog broja 53
3.3.3.2 Razmenjivanje cifre jedinica i stotina 53
3.3.3.3 Izračunavanje vremena između dva trenutka 54
3.3.3.4 Izračunavanje ugla između kazaljki na satu 55

4 Grananje 57
4.1 Relacijski i logički operatori i istinitosna vrednost izraza 57

4.1.1 Logički tip podataka . 57
4.1.2 Relacijski i logički operatori 57
4.1.3 Poređenje i poredak . 60

4.1.3.1 Relacija jednakosti 60
4.1.3.2 Relacije poretka . 61

4.2 Naredba if-else . 64
4.2.1 Konstrukcija else-if . 66

4.3 Operator uslova . 67
4.4 Naredba switch . 68
4.5 Primeri . 69

4.5.1 Broj dana u mesecu (grananje na osnovu vrednosti promenljive) . 69
4.5.2 Agregatno stanje vode (grananje na osnovu pripadnosti intervalu) 72
4.5.3 Uspeh učenika . 73
4.5.4 Kvadrant kom pripada tačka (hijerarhija ugnežđenih uslova) . . . 73
4.5.5 Poređenje datuma (leksikografsko poređenje torki iste dužine) . . 74
4.5.6 Vrsta trougla na osnovu stranica 75

SADRŽAJ 5

5 Petlje 77
5.1 Petlja while . 77
5.2 Petlja for . 78
5.3 Petlja do-while . 81
5.4 Naredbe break i continue . 82
5.5 Osnovni iterativni algoritmi . 84

5.5.1 Sabiranje, prebrojavanje, množenje 84
5.5.2 Minimum i maksimum . 88
5.5.3 Linearna pretraga . 92
5.5.4 Sortiranost niza . 96
5.5.5 Filtriranje, preslikavanje . 97
5.5.6 Pozicioni zapis . 98
5.5.7 Leksikografsko poređenje . 99

5.6 Ugnežđene petlje . 100
5.6.1 Elementarni algoritmi sortiranja 101

5.6.1.1 Algoritam selection sort 102
5.6.1.2 Algoritam bubble sort 103
5.6.1.3 Algoritam insertion sort 104

5.6.2 Zadaci . 105

6 Funkcije 107
6.1 Modularnost i razlaganje problema na potprobleme 107
6.2 Primeri korišćenja funkcije . 108
6.3 Parametri funkcije . 111
6.4 Povratna vrednost funkcije . 112
6.5 Prenos argumenata . 113

6.5.1 Prenos argumenata po vrednosti 114
6.5.2 Prenos argumenata po referenci 116
6.5.3 Prenos argumenata po adresi 118

6.6 Konverzije tipova argumenata funkcije 120
6.7 Anonimne funkcije . 120
6.8 Složeni tipovi i funkcije . 122
6.9 Rekurzivne funkcije - osnovni pregled 125
6.10 Doseg, životni vek i organizacija memorije dodeljene programu 126

6.10.1 Doseg identifikatora . 126
6.10.2 Životni vek objekata . 128
6.10.3 Organizacija memorije dodeljene programu 129
6.10.4 Segment koda . 130
6.10.5 Segment podataka . 130
6.10.6 Stek segment . 131
6.10.7 Implementacija rekurzije . 132

6 SADRŽAJ

6.11 Deklaracija i definicija funkcije . 133
6.11.1 Uzajamna rekurzija . 133
6.11.2 Razdvojena kompilacija i povezivanje 136

7 Strukture podataka 141
7.1 Korisnički definisani tipovi: nabrojivi tip, strukture, klase 141

7.1.1 Nabrojivi tipovi (enum) . 141
7.1.2 Strukture . 143
7.1.3 Klase . 148
7.1.4 Parovi i torke (tipovi pair<T1, T2> i tuple<T1, ..., Tn>) . 151
7.1.5 Imenovanje tipova – typedef 153

7.2 Strukture podataka sa sekvencijalnim pristupom 154
7.2.1 Statički alocirani nizovi . 155

7.2.1.1 Nizovi i funkcije . 159
7.2.2 VLA . 161
7.2.3 Tip vector<T> . 161
7.2.4 Pokazivači i iteratori . 165
7.2.5 Tipovi list<T> . 167

7.3 Višedimenzioni nizovi i kolekcije . 168
7.4 Rad sa matricama . 171
7.5 Strukture podataka sa asocijativnim pristupom 174

7.5.1 Skupovi . 174
7.5.2 Multiskupovi . 176
7.5.3 Mape . 176

7.6 Specijalizovane strukture podataka . 180
7.6.1 Stek . 180

7.6.1.1 Primer upotrebe steka: izrazi u postfiksnoj notaciji . . 180
7.6.2 Red . 182

7.6.2.1 Primer upotrebe reda: poslednjih 𝑘 učitanih linija teksta 182
7.6.3 Red sa dva kraja . 183

7.6.3.1 Primer upotrebe reda sa dva kraja: istorija veb-pregledača184
7.6.4 Red sa prioritetom . 185

7.6.4.1 Primer upotrebe reda sa prioritetom: zbir najvećih 𝑘
brojeva . 186

8 Pregled standardne biblioteke 189
8.1 Korišćenje bibliotečke implementacije algoritama 190
8.2 Pregled bibliotečkih funkcija za rad sa sekvencijalnim kolekcijama 190

8.2.1 Sortiranje . 190
8.2.2 Linearna pretraga . 194
8.2.3 Binarna pretraga . 195

SADRŽAJ 7

8.2.4 Kopiranje, preslikavanje, filtriranje 196
8.2.5 Brisanje elemenata . 198

8.3 Rad sa karakterima . 199
8.4 Rad sa niskama . 199
8.5 Datoteke/tokovi . 201

8.5.1 Ulazni tok za učitavanje iz tekstualne datoteke (ifstream) . . . 202
8.5.2 Izlazni tok za upis u tekstualnu datoteku (ofstream) 204
8.5.3 Baferovanje . 205
8.5.4 Odnos sa C bibliotekom za ulaz/izlaz 206
8.5.5 Tokovi za čitanje iz niske (istringstream) i upis u nisku

(ostringstream) . 206
8.5.6 Argumenti komandne linije programa 207

9 Principi pisanja programa i dokumentacije 211
9.1 Timski rad i konvencije . 211
9.2 Vizuelni elementi programa . 212

9.2.1 Broj karaktera u redu . 212
9.2.2 Broj naredbi u redu, zagrade i razmaci 213
9.2.3 Nazubljivanje teksta programa 214

9.3 Imenovanje promenljivih i funkcija . 215
9.4 Pisanje izraza . 216
9.5 Korišćenje idioma . 218
9.6 Korišćenje konstanti . 219
9.7 Pisanje komentara . 221
9.8 Modularnost . 223

9.8.1 Modularnost i podela na funkcije 223
9.8.2 Modularnost i podela na datoteke 224

9.9 Upravljanje izuzecima i greškama . 224

10 Razvoj programa 229
10.1 Razvojno okruženje . 229
10.2 Pregled procesa debagovanja . 231
10.3 Testiranje . 232

11 Projektni zadaci 235
11.1 Prelazi između slika . 235
11.2 Transformacija slika . 238
11.3 ASCII kamera . 243
11.4 Mastermajnd . 245

8 SADRŽAJ

12 Dodatak 249
12.0.1 Statistike . 249
12.0.2 Menjanje redosleda elemenata niza 250

Predgovor

Materijal koji je pred vama pisan je kao udžbenik za predmet „Uvod u programiranje“ sa
prve godine smera Informatika na Matematičkom fakultetu u Beogradu.
Ovo je radna verzija materijala i u narednom periodu sigurno će se menjati i doterivati. Svi
komentari i sugestije biće veoma dobrodošli. Na dosadašnjim komentarima zahvalni smo
kolegi Mladenu Nikoliću i studentima Branku Basariću i Andrijani Milovanović.
decembar 2024
Autori
Filip Marić
Predrag Janičić

9

10 SADRŽAJ

1. Uvod

Jezik C++ (izgovara se obično “ce-plus-plus”) je viši programski jezik opšte namene, ko-
ga je inicijalno kreirao danski informatičar Bjarne Stroustrup (engl. Bjarne Stroustrup).
Prve verzije su objavljene 1985. godine i jezik je predstavljao proširenje programskog je-
zika C. Vremenom je jezik obogaćen mnogim novim svojstvima. Iako je prvobitno bio
namenjen za sistemsko programiranje i programiranje uređaja sa ugrađenim računarom
(engl. embedded systems), domen primene se vremenom proširio, te se C++ danas kori-
sti za programiranje video-igara, servera, baza podataka i skoro svih velikih računarskih
sistema.

Izvorni program, program na jeziku C++ se prevodi na mašinski, izvršivi kôd kako bi
mogao da se izvršava na računaru. Postoji veliki broj prevodioca, tj. kompilatora koji ovo
rade: GNUC++ compiler (g++), LLVM/Clang,Microsoft visual C++, Intel C++Compiler,
itd.

Jezik C++ se vremenom razvijao i menjao i nove verzije jezika su uvodile i preporučivale
sasvim drugačije stilove od originalne verzije jezika. Iako se, zbog kompatibilnosti una-
zad, C++ i dalje u velikoj meri može tumačiti kao nadskup programskog jezika C i većina
C programa se može prevoditi pomoću prevodioca za C++, stil programiranja u savreme-
nom jeziku C++ je veoma drugačiji nego što je to slučaj kada se programira u “čistom”
jeziku C. Danas je C++ jako veliki jezik koji omogućava brojne stilove programiranja
i kombinuje više različitih programskih paradigmi (proceduralnu, imperativnu, objektno-
orijentisanu, funkcionalnu, itd.) Cilj ovog udžbženika nije detaljno upoznavanje sa ovim
programskim jezikom, već izučavanje osnovnih principa programiranja na jednom širo-
ko rasprostranjenom, savremenom jeziku koji ima bogatu standardnu biblioteku. Stoga
će mnogi važni aspekti jezika biti potpuno izostavljeni (na primer, pokazivači i dinamič-
ka alokacija memorije, definisanje klasa i slično). Podskup jezika koji će biti obrađivan
čini osnovni fragment jezika zajednički sa programskim jezikom C (bez pokazivača), sa
dodatkom standardne biblioteka algoritama i kolekcija (koja u programskom jeziku C ne
postoji).

11

12 GLAVA 1. UVOD

1.1 Osnovni elementi jezika i prvi programi
U nastavku ćemo prikazati nekoliko jednostavnih programa kroz koje ćemo ilustrovati
neke osnovne koncepte i jezičke konstrukcije, dovoljne za rešavanje mnogih jednostavnih
zadataka korišćenjem programiranja. U narednim poglavljima, jezik C++ će biti prezento-
van postupno, koncept po koncept, često iz opšte perspektive programiranja i programskih
jezika.
Preporučujemo da se, radi boljeg razumevanja, svaki navedeni program prekuca, prevede
i pokrene.

1.1.1 Osnovna struktura programa
Opišimo za početak jednostavan program koji na ekran ispisuje poruku Zdravo svete!.

#include <iostream>
using namespace std;

int main() {
// na ekran ispisujemo pozdravnu poruku
cout << "Zdravo svete!" << endl;
return 0;

}

Jezik C++ pravi razliku izmeđumalih i velikih slova i bitno je da li je nešto napisanomalim
ili velikim slovom.
Svaki program mora da sadrži funkciju main tj. u kodu je potrebno da postoji deo oblika

int main() {
// ovde se navode naredbe našeg programa
return 0; // ovim se signalizira da je program uspešno izvršen

}

Linija int main() započinje definiciju funkcije main. O funkcijama će biti više reči
kasnije, za sada recimo samo da je funkcija main glavna funkcija i izvršavanje svakog
C++ programa počinje izvršavanjem naredbi navedenih u okviru ove funkcije. Deo funk-
cije između vitičastih zagrada naziva se telo funkcije. Telo funkcije sadrži naredbe koje
se izvršavaju kada se pozove ta funkcija. Kada korisnik pokrene program, tada operativni
sistem pozove funkciju main tog programa i krene se sa izvršavanjem naredbi navedenih
u njenom telu. Poslednja naredba u funkciji main je najčešće return 0; kojom naš pro-
gram operativnom sistemu vraća vrednost 0 i time javlja da je njegovo izvršavanje uspešno
završeno. Ako je došlo do neke greške prilikom izvršavanja programa, funkcija može da
vrati neku vrednost različitu od 0.

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 13

Centralni deo programa čini sledeći programski kôd:

// na ekran ispisujemo pozdravnu poruku
cout << "Zdravo svete!" << endl;

Linija cout << "Zdravo svete!" << endl; predstavlja naredbu kojom se na ekran
ispisuje pozdravna poruka Zdravo svete (bez dvostrukih navodnika), nakon čega se pre-
lazi u novi red. Objekat cout (od engleskog “console output”) predstavlja standardni izlaz,
što je najčešće ekran, i u njega se “uliva” prvo tekst Zdravo svete, a zatim i prelazak u
novi red koji se označava sa endl (od engleskog “end line”). Ovo “ulivanje” je predstavlje-
no simbolima << (tekst “teče” i uliva se na cout, pa se cout naziva i standardni izlazni
tok).
Linija // na ekran ispisujemo pozdravnu poruku je komentar i on služi da ono-
me ko čita ovaj program objasni šta se postiže nekim kodom, u ovom slučaju – narednom
linijom. Komentari se prilikom prevođenja ignorišu i ne utiču na izvršavanje programa.
U prvoj liniji programa, pretprocesorskom direktivom #include <iostream> omoguća-
vamo rad sa ulazno-izlaznim tokovima. Na sličan način može se omogućiti korišćenje
drugih delova takozvane standardne biblioteke. Za svaki takav deo postoji odgovarajuće
zaglavlje, kao što je iostream zaglavlje za rad sa ulazno-izlaznim tokovima Navođenje
direktive #include <iostream> omogućava da u našem programu možemo neki tekst
da ispišemo na ekran, da neke vrednosti učitamo sa tastature i slično. U ovom programu
koristili smo cout i endl koji koristimo kada želimo da pređemo u novi red. Da nismo
naveli red #include <iostream>, dobili bismo poruku o tome da prevodilac našeg pro-
grama ne razume šta je cout i endl. Pošto će svaki program koji budemo pisali ispisivati
nešto na ekran, svaki će koristiti direktivu #include <iostream>.
Instrukcija using namespace std; omogućava da se svi elementi standardne biblioteke
koriste bez prefiksa std::. Na primer, izlazni tok se označava sa cout, te umesto da
svuda pišemo da je on deo standardne biblioteke std, tj. da pišemo std::cout možemo
pisati samo cout. Da ne postoji red using namespace std;, tada bi centralni deo našeg
programa morao da bude napisan u narednom obliku.

// na ekran ispisujemo pozdravnu poruku
std::cout << "Zdravo svete!" << std::endl;

1.1.1.1 Komentari
Već je rečeno da u kodu možemo pisati komentare – tekst kojim se objašnjava šta se u
nekom delu programa radi i koji je namenjen onome ko bude čitao program (ili onome
ko je taj program pisao, ako nekada kasnije bude potrebe da ga doradi ili prepravi). Ko-
mentare računar ignoriše prilikom prevođenja programa. U jeziku C++ komentar počinje
navođenjem oznake // i prostire se do kraja tog reda (ovakve komentare često nazivamo

14 GLAVA 1. UVOD

linijskim komentarima). Komentar može i da se proteže kroz nekoliko susednih redova (to
je, takozvani višelinijski komentar) i on počinju oznakom /*, a završava se oznakom */.
U daljem tekstu će se komentari navoditi mnogo više nego što je to uobičajena praksa, a
kako bi pomogli u razumevanju priloženih programa.

1.1.2 Promenljive, tipovi, ispisivanje i učitavanje podataka
Ispis na standardni izlaz (to je najčešće ekran računara tj. takozvana konzola) vrši se nared-
bom oblika cout << "...";, pri čemu se tekst koji se ispisuje navodi između dvostrukih
navodnika. U jednom programu moguće je navesti i više ovakvih naredbi. Na primer,

#include <iostream>
using namespace std;

int main() {
cout << "Programiranje";
cout << "Algoritmi";
cout << "Strukture podataka";
return 0;

}

Iako tekst programa ne mora biti složen ovako uredno (naredbe su uvučene, poravnate jed-
na ispod druge), to je veoma poželjno zbog čitljivosti programa. Kada se program pokrene,
iako su naredbe složene jedna ispod druge, navedene rečenice se ispisuju jedna do druge.

ProgramiranjeAlgoritmiStrukture podataka

Isti efekat bi se postigao navođenjem jedne naredbe oblika:

cout << "Programiranje" << "Algoritmi" << "Strukture podataka";

ili malo drugačije složeno

cout << "Programiranje"
<< "Algoritmi"
<< "Strukture podataka";

Ako se želi da se nakon ispisa teksta pređe u novi red, onda je potrebno nakon niske pod
dvostrukim navodnicima ispisati i znak za prelaz u novi red endl. Na primer, funkcija

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 15

int main() {
cout << "Programiranje" << endl;
cout << "Algoritmi" << endl;
cout << "Strukture podataka" << endl;
return 0;

}

ispisuje imena predmeta jedan ispod drugog:

Programiranje
Algoritmi
Strukture podataka

Tekst može da unese i korisnik programa. Razmotrimo naredni program.

#include <iostream>
using namespace std;

int main() {
cout << "Kako se zovete?" << endl;
string ime;
cin >> ime;
cout << "Dobar dan, Vi se zovete " << ime << endl;
return 0;

}

Naredbom cout << "Kako se zovete?" << endl; na ekran se ispisuje tekst Kako
se zovete?, što je veoma slično prvom programu koji smo analizirali. Nakon toga želi-
mo da korisnik unese svoje ime. Tekst koji korisnik unese moramo negde da upamtimo
da bismo ga kasnije ispisali. Da bismo upamtili razne vrednosti (u ovom primeru to je
tekst koji je korisnik uneo, a u narednim primerima će to biti razni brojevi sa kojima će-
mo vršiti različita izračunavanja) koristimo promenljive. U navedenom primeru, koristimo
promenljivu koja se zove ime i u nju smeštamo tekst koji je uneo korisnik. Možemo da za-
mislimo da svakoj promenljivoj odgovara kutijica ili kućica u kojoj se čuva njena vrednost.
U svakom trenutku postojeća vrednost može biti promenjena, tj. izbačena iz kutijice i u
kutijicu može biti upisana neka nova vrednost. Zato se promenljive i zovu tako. Jezik C++
spada u grupu takozvanih statički tipiziranih jezika, što znači da se za svaku promenljivu
unapred zadaje njen tip, tj. vrsta vrednosti koje se u njoj mogu čuvati. U nekim promenlji-
vim može da se čuva tekst, u drugima celi brojevi, u trećim realni brojevi i slično. Prilikom
prvog uvođenja neke promenljive u naš program, pored njenog imena obavezno je navesti
njen tip i to čini deklaraciju promenljive. U prethodnom primeru, deklaracija je bila linija

16 GLAVA 1. UVOD

string ime; Njom smo deklarisali promenljivu pod nazivom ime i rekli da će ona biti
tipa string, tj. da će se u njoj čuvati tekst.
Naredbom cin >> ime učitava se tekst (jedna niska karaktera) koji je uneo korisnik.
Objekat cin (od engleskog “console input”) označava standardni ulaz i on najčešće odgo-
vara tastaturi. Očekujemo da korisnik unese svoje ime (mada može da unese šta god želi –
naš program to neće primetiti). Podaci opet teku, ali ovog puta teku sa ulaza tj. sa tastature
u promenljivu ime (što je naglašeno simbolima >>). Zato se cin naziva i standardni ulazni
tok.
Na kraju, naredbom count << "Zdravo, Vi se zovete " << ime << endl,
na standardni izlaz ispisuje se prvo tekst Zdravo, Vi se zovete, zatim sadržaj
promenljive ime (to je tekst koji je korisnik uneo) i na kraju se prelazi u novi red.
Učitavanjem teksta naredbom oblika cin >> tekst; učitava se samo jedna reč tj. tekst
do prvog razmaka. Na primer, ako kao odgovor na cin >> ime; u prethodnom programu
neko otkuca Petar Petrovic, promenljiva ime će sadržati samo tekst Petar. Čitava
liniju teksta može se uneti korišćenjem funkcije getline. Na primer:

string ime_i_prezime;
getline(cin, ime_i_prezime);

U ovom slučaju, korisnik može da unese celo ime i prezime i ono će biti smešteno u pro-
menljivu koja je nazvana ime_i_prezime.
U prethodnom primeru videli smo kako može da se koristi tekstualni tip podataka string.
U prvim programima ćemo koristiti i sledeće osnovne tipove podataka (a kasnije ćemo
upoznati i mnoge druge).

tip opis primer

string tekst (niska karaktera) "Zdravo"
int ceo broj 1234

double realan broj 3.141
bool logička vrednost true ili false

Tipove koji čuvaju neku vrstu brojeva zovemo brojevni tipovi. Treba imati na umu da
brojevne promenljive ne mogu da čuvaju proizvoljno male i proizvoljno velike brojeve. Na
primer, u promenljivoj tipa int najčešće semogu čuvati celobrojne vrednosti od okominus
dve milijarde pa sve do oko dve milijarde. Slično važi za podatke tipa double – i ovaj tip
ima ograničeni raspon i preciznost tj. broj decimala. Skup mogućih vrednosti sasvim je
dovoljan za početne zadatke, te na početku nećemo obraćati previše pažnje na ograničenja
opsega.
Prvobitna dodela vrednosti promenljivoj naziva se inicijalizacija. Inicijalizacija može biti
navedena u okviru same deklaracije i takvu deklaraciju zovemo deklaracija sa inicijaliza-

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 17

cijom. Prilikom dodele moguće je promenljivim dodeljivati vrednost nekih izraza ili neke
konkretne vrednosti tj. konstante . Na primer:

string ime = "Bjarne Stroustrup";

Pre nego što se promenljiva tipa string inicijalizuje, njena vrednost je prazan tekst (tekst
""). Međutim, pre nego što je brojevna promenljiva inicijalizovana, njena vrednost je nešto
što je zatečeno u njenom prostoru od ranije i nije nužno nula. U narednom kodu, u opštem
slučaju, ne možemo znati vrednost promenljive x između njene deklaracije i inicijalizacije:

int x;
...
x = 1;

Imena promenljivih treba da budu u skladu sa njihovim značenjem (poželjno je izbegavati
kratka, neinformativna imena poput a, b, x, y, osim ako iz konteksta programa nije potpuno
jasno šta bi te promenljive mogle da označavaju). Imena promenljivih ne smeju da sadrže
razmake i moraju biti sastavljena samo od slova, cifara i donje crte tj. podvlake (karaktera
_), ali ne mogu počinjati cifrom.
Prikažimo još neke primere deklaracija i inicijalizacija. Na primer, narednom deklaracijom
se u program uvode dve promenljive pod nazivima x i y i kaže se da će one čuvati celobrojne
vrednosti.

int x, y;

Primetimo da smo u prethodnom primeru jednom deklaracijom uveli dve promenljive, što
je kraće nego da smo pisali posebno dve deklaracije:

int x;
int y;

Naravno, i celobrojne promenljive mogu biti inicijalizovane u okviru deklaracije:

int x = 1, y = 2;
int a = 3, b, c = 4;

U prethodnom primeru deklarisano je pet promenljivih, a inicijalizovane su četiri.
Kada su u pitanju realne vrednosti, one se navode sa decimalnom tačkom (u skladu sa
pravopisom engleskog jezika), a ne sa zapetom (što bi bilo u skladu sa pravopisom srpskog
jezika):

18 GLAVA 1. UVOD

double pi = 3.14159265;

Naredba ispisa koju smo ranije videli može biti upotrebljena i za ispis brojevnih, pa i
logičkih vrednosti. Na primer, narednim naredbama

cout << 123 << endl;
int x = 5;
cout << x << endl;
cout << 12.345 << endl;
double pi = 3.14159265;
cout << pi << endl;

ispisuje se

123
5
12.345
3.14159265

Prilikom ispisa moguće je kombinovati tekst i brojevne vrednosti. Na primer,

double pi = 3.1415926;
cout << "Vrednost broja pi je " << pi << endl;

Čest zahtev je da se realne vrednosti ispišu zaokružene na zadati broj decimala. Za to je
moguće na početku programa navesti direktivu #include <iomanip>, a zatim koristiti
sledeći oblik naredbe ispisa:

double x = 123.4567;
cout << fixed << showpoint << setprecision(2) << x << endl;

Navođenjem ključne reči fixed postiže se da se nikada ne koristi tzv. naučni oblik zapisa
(npr. 3, 5 ⋅ 109) koji je pregledniji za jako male i jako velike brojeve. Korišćenjem
ključne reči showpoint postiže se da se decimale navode i kada su jednake nuli. Pomoću
setprecision podešava se željeni broj decimala - ukoliko je ovaj metod pozvan sa
argumentom n - zadati broj biće zaokružen na n značajnih cifara. Da bi se koristio metod
setprecision, potrebno je uključiti i zaglavlje <iomanip>. Na primer,
cout << setprecision(3) << 3.14159 daje izlaz 3.14, a cout << setprecision(4)
<< 3.14159 daje izlaz 3.142.
Pored teksta, sa standardnog ulaza možemo učitavati i brojeve. Razmotrimo naredni pro-
gram.

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 19

cout << "Koliko imate godina?" << endl;
int brGodina;
cin >> brGodina;
cout << "Zdravo, Vi imate " << brGodina << " godina." << endl;

Nakon učitavanja jednog celog broja sa tastature, korisniku se ispisuje odgovarajući tekst.
Ukoliko je potrebno uneti više vrednosti sa tastature (na primer, dan i mesec rođenja),
onda se u jednoj naredbi može nadovezati učitavanje svih potrebnih vrednosti. Pritom je
te vrednosti moguće uneti u jednoj liniji razdvojene razmakom ili u dve zasebne linije.

cout << "Kad ste rodjeni?" << endl;
int dan, mesec;
cin >> dan >> mesec;
cout << "Zdravo, Vi ste rodjeni " << dan << ". " << mesec << "." << endl;

1.1.3 Izračunavanje
1.1.3.1 Osnovne aritmetičke operacije i izrazi

Nijedan od programa koje smo do sada sreli nije bio naročito interesantan. Mogli smo da
učitamo podatke i da ih ispišemo u neizmenjenom obliku.
Računar je mašina koja obrađuje podatke, tj. koja primenjujući računske operacije na
osnovu ulaznih podataka dobija izlazne. U računaru je, na najnižem nivou, sve zapisano
pomoću brojeva i sve operacije se svode na osnovne operacije nad brojevima. Računar ili
kompjuter (engl. computer) je sprava koja računa tj. sprava koja je napravljena tako da
može veoma brzo i efikasno da izvodi operacije nad brojevima. Računanje se naziva i arit-
metika (od grčke reči ἀριθμός tj. aritmos koja znači broj, brojanje, računanje), a računske
operacije se nazivaju i aritmetičke operacije.

• Osnovna aritmetička operacija je sabiranje. Zbir brojeva 3 i 5 se u matematici pred-
stavlja kao 3 + 5. U programskom jeziku C++ koristi se identičan zapis: 3 + 5.
Sabiranje je primenljivo i na cele i na realne brojeve. Na primer, kôd koji učitava i
sabira dva cela broja može biti napisan na sledeći način.

int x, y;
cin >> x >> y;
cout << x + y << endl;

• Pored sabiranja možemo razmatrati i oduzimanje. Razlika brojeva 8 i 2 se u mate-
matici predstavlja kao 8−2, a u programskom jeziku C++ koristi se identičan zapis:
8 - 2. Oduzimanje je primenljivo i na cele i na realne brojeve.

20 GLAVA 1. UVOD

• Još jedna od osnovnih operacija je množenje. Proizvod brojeva 4 i 6 se u matematici
predstavlja kao 4 ⋅ 6. U programskom jeziku C++ množenje se označava pomoću
operatora * i proizvod brojeva 4 i 6 se zapisuje kao 4 * 6.

• U programskom jeziku C++, naravno, možemo i da delimo, da izračunavamo osta-
tak pri deljenju i ceo deo količnika. Deljenje realnih brojeva se vrši pomoću opera-
tora / i količnik brojeva 7, 2 i 6, 4 se zapisuje kao 7.2 / 6.4. Deljenjem dva cela
broja dobija se njihov celobrojni količnik, dok se ostatak pri deljenju dva cela broja
dobija operatorom %. Na primer, vrednost izraza 14 / 4 jednaka je 3, a izraza 14
% 4 jednaka je 2. Ako želimo da odredimo realni količnik dva cela broja, mora-
mo ih predstaviti u realnom obliku (na primer, umesto 14/4 pišemo 14.0/4.0).
Moguće je primeniti i eksplicitnu konverziju celih u realne vrednosti navođenjem
(double) ispred naziva promenljive (npr. umesto x / y pišemo (double) x /
(double) y). Naglasimo da je dovoljno da bilo deljenik bilo delilac budu realni
da bi se primenilo realno deljenje. O dubljim vezama između realnog i celobrojnog
tipa biće više reči u kasnijim poglavljima.

Slično kao i u matematici, od konstantnih vrednosti i promenljivih, primenom operatora i
zagrada grade se izrazi. Prioritet operatora je usklađen sa uobičajenim prioritetom u mate-
matici, pa je prioritet operatora *, / i % viši od prioriteta operatora + i -, dok svi navedeni
operatori imaju levu asocijativnost (računske operacije se izvode s leva na desno). Prioritet
i asocijativnost se mogu promeniti navođenjem zagrada.
U prvim programima ćemo se truditi da prilikom izvođenja operacija ne mešamo podat-
ke različitog tipa. Ipak, naglasimo da ako je u izrazu jedan broj realan, a drugi ceo, pre
izvođenja operacija se taj ceo broj pretvara u realan i operacija se izvršava nad realnim
brojevima.
Više puta u prethodnom tekstu pominjali smo tip realnih brojeva. Međutim, vrednosti tog
tipa čine samo konačan podskup skupa realnih brojeva: nije moguće zapisati proizvoljno
male, proizvoljno velike brojeve, iracionalne brojeve, itd. Obično se realni brojevi čuvaju
u zapisu koji zovemo zapis u pokretnom zarezu, te je preciznije, na primer, tip double
zvati tip brojeva u pokretnom zarezu, a ne tip realnih brojeva. Isto važi i za druge tipove
koji mogu da čuvaju (neke) realne vrednosti. Ipak, u svakodnevnom govoru, često se može
čuti i termin tip realnih brojeva, iako nije precizan. Analogno važi za cele brojeve, jer u
računaru nije moguće pohraniti bilo koji ceo broj. Zato bi bilo preciznije govoriti tip celih
brojeva fiksne širine, umesto uobičajenog tip celih brojeva.

1.1.3.2 Bibliotečke matematičke funkcije
U mnogim konkretnim primenama, pored osnovnih aritmetičkih operacija primenjuju se
i neke naprednije matematičke funkcije i neke značajne matematičke konstante (npr. 𝜋).
Da bismo ih koristili u jeziku C++, potrebno je na početku programa uključiti zaglavlje
<cmath> direktivom #include <cmath>. Funkcije koje će biti potrebne u narednim
zadacima su:

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 21

• pow(x, y) – izračunava stepen 𝑥𝑦, pri čemu se može primeniti i za izračunavanje
korena (ne samo kvadratnih) znajući da je 𝑛√𝑥 = 𝑥 1

𝑛 ;
• sqrt(x) - izračunava kvadratni koren

√𝑥;
• abs(x) - izračunava apsolutnu vrednost |𝑥|;
• sin(x), cos(x), tan(x), cot(x) – izračunavaju sinus, kosinus, tangens i kotan-
gens ugla zadatog u radijanima

Detaljniji spisak matematičkih funkcija biće prikazan u narednim pogavljima.

1.1.3.3 Imenovane konstante
Vrednosti koje su nam potrebne u programu, a koje se neće menjati tokom izvršavanja
programa možemo definisati u vidu imenovanih konstanti, koje se definišu kao obične pro-
menljive, uz navođenje ključne reči const pre tipa podatka, uz obaveznu inicijalizaciju
vrednosti na neku konstantnu vrednost. Na primer:

const double PI = 3.14159265;

Imenovanim konstantama nije moguće promeniti vrednost u programu.

Zadatak: Rastojanje tačaka
Napiši program koji izračunava i ispisuje rastojanje između tačaka zadatih svojim koordi-
natama.
Opis ulaza
Sa standardnog ulaza unose se četiri realna broja, svaki u posebnom redu. Prva dva broja
𝐴𝑥 i 𝐴𝑦 predstavljaju koordinate tačke 𝐴 = (𝐴𝑥, 𝐴𝑦), dok druga dva broja 𝐵𝑥 i 𝐵𝑦
predstavljaju koordinate tačke 𝐵 = (𝐵𝑥, 𝐵𝑦).
Opis izlaza
Na standardni izlaz ispisati jedan realan broj koji predstavlja rastojanje između tačaka 𝐴 i
𝐵.
Primer
Ulaz

0
0
1
1

Izlaz

1.41421

Rešenje
Posmatrajmo tačku 𝐶 koja ima koordinate (𝐵𝑥, 𝐴𝑦). Trougao 𝐴𝐵𝐶 je pravougli tro-
ugao sa pravim uglom kod temena 𝐶 . Traženo rastojanje između tačaka 𝐴 i 𝐵 jedna-
ko je dužini hipotenuze tog trougla i može se izračunati primenom Pitagorine teoreme
koja tvrdi da je kvadrat nad hipotenuzom jednak zbiru kvadrata nad obe katete. Pošto

22 GLAVA 1. UVOD

Slika 1.1: Rastojanje tačaka

su katete našeg trougla duži 𝐴𝐶 i 𝐵𝐶 , važi da je |𝐴𝐵|2 = |𝐴𝐶|2 + |𝐵𝐶|2, pa je
|𝐴𝐵| = √|𝐴𝐶|2 + |𝐵𝐶|2. Pošto tačke 𝐴 i 𝐶 imaju istu 𝑦-koordinatu, dužina duži 𝐴𝐶
jednaka je |𝐵𝑥 − 𝐴𝑥|. Zaista, pošto je duž 𝐴𝐶 paralelna osi 𝑥, njena dužina jednaka je
dužini intervala koji predstavlja njenu projekciju na tu osu. To je interval [𝐴𝑥, 𝐵𝑥] ako je
𝐴𝑥 ≤ 𝐵𝑥 i njegova dužina je 𝐵𝑥 − 𝐴𝑥, tj. interval [𝐵𝑥, 𝐴𝑥] ako je 𝐵𝑥 ≤ 𝐴𝑥 i njegova
dužina je 𝐴𝑥 − 𝐵𝑥. U oba slučaja, dužina je jednaka |𝐵𝑥 − 𝐴𝑥|. Slično, dužina duži 𝐵𝐶
jednaka je |𝐵𝑦 −𝐴𝑦|. Zato je |𝐴𝐵| = √|𝐵𝑥 − 𝐴𝑥|2 + |𝐵𝑦 − 𝐴𝑦|2. Pošto se vrednosti
|𝐵𝑥 − 𝐴𝑥| i |𝐵𝑦 − 𝐴𝑦| kvadriraju, nije neophodno koristiti apsolutnu vrednost i važi da
je |𝐴𝐵| = √(𝐵𝑥 − 𝐴𝑥)2 + (𝐵𝑦 − 𝐴𝑦)2.

Podsetimo se, u jeziku C++ se kvadratni koren može izračunati bibliotečkom funkcijom
sqrt deklarisanom u zaglavlju <cmath>.

#include <iostream>
#include <cmath>

using namespace std;

int main() {
double ax, ay, bx, by;
cin >> ax >> ay >> bx >> by;
double dx = bx - ax, dy = by - ay;
double d = sqrt(dx*dx + dy*dy);
cout << d << endl;
return 0;

}

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 23

1.1.4 Grananje
1.1.4.1 Relacijski operatori

Često je potrebno utvrditi da li su neke dve vrednosti međusobno jednake ili za neke dve
vrednosti utvrditi koja je od njih veća. Za poređenje vrednosti promenljivih ili izraza ko-
riste se relacijski operatori.

• Osnovni relacijski operator je operator provere jednakosti ==. Na primer, ako želi-
mo da ispitamo da li promenljive b i b imaju istu vrednost, to se može postići relacij-
skim izrazom a == b. Vrednost ovog izraza je true ako su vrednosti promenljivih
jednake, a false inače. Vrednost ovog izraza je tipa bool i najčešće se koristi prili-
kom grananja (o kome će uskoro biti reči), ali se, takođe, vrednost relacijskog izraza
može i dodeliti promenljivoj tipa bool. Dešava se da se prilikom pisanja koda na-
pravi greška i umesto operatora provere jednakosti == iskoristi operator dodele =.
Napomenimo još i to da poređenje dva realna broja može proizvesti ponašanje koje
je drugačije od očekivanog zbog nepreciznosti zapisa realnih vrednosti.

• Pored provere jednakosti, možemo vršiti proveru da li su dve vrednosti različite.
To se postiže operatorom !=. Uslov da promenljive a i b imaju različitu vrednost
zapisuje se kao a != b.

• Za poređenje da li je jedna vrednost manja, manja ili jednaka, veća, veća ili jednaka
od druge vrednosti koriste se redom relacijski operatori <, <=, >, >=.

Očekivano, relacijski operatori su nižeg prioriteta u odnosu na aritmetičke operatore, pa bi
se u izrazu 2+3 == 6-1 najpre izračunale vrednosti 2+3 i 6-1, a tek onda bi se proveravala
jednakost ove dve izračunate vrednosti. Operatori <, <=, >, >= su višeg prioriteta od
operatora == i !=. Svi relacijski operatori su levo asocijativni.

1.1.4.2 Logički operatori
Za zapis složenih uslova koriste se logički operatori. Logički operatori primenjuju se na
operande koji su tipa bool i daju rezultat tipa bool. Oni su nižeg prioriteta u odnosu na
relacione i aritmetičke operatore.

• Operator logičke konjunkcije && koristi se za utvrđivanje da li istovremeno važi
neki skup uslova. Na primer, vrednost izraza 2 < 3 && 2 > 1 je true, a vrednost
izraza 2 < 3 && 2 < 1 je false.

• Operatorom logičke disjunkcije ||. utvrđuje se da li je tačan bar jedan od datih
uslova. Na primer, izraz 2 < 3 || 2 < 1 ima vrednost true, a izraz 2 > 3 ||
2 < 1 vrednost false.

• Operator ! daje logičku negaciju. Na primer, izraz !(1 < 3) ima vrednost false,
koja je suprotna od vrednosti true izraza 1 < 3.

24 GLAVA 1. UVOD

Operacije logičke konjunkcije i disjunkcije definisane su sledećim tablicama.

Operator logičke konjunkcije višeg je prioriteta od operatora logičke disjunkcije. Dakle, u
izrazu a || b && c bi se prvo izračunala vrednost izraza b && c, a onda bi se izvršila
operacija logičke disjunkcije promenljive a i vrednosti prethodnog izraza. Oba binarna
logička operatora su levo asocijativna.
I za operator konjunkcije i za operator disjunkcije karakteristično je lenjo izračunavanje
– iako su pomenuti operatori binarni, vrednost drugog operanda se ne računa ukoliko je
vrednost kompletnog izraza već određena vrednošću prvog operanda. Dakle, prilikom iz-
računavanja vrednosti izraza A && B, ukoliko je vrednost izraza A jednaka false, nema
potrebe i ne izračunava se vrednost izraza B. Slično, prilikom izračunavanja vrednosti iz-
raza A || B, ukoliko je vrednost izraza A jednaka true, ne izračunava se vrednost izraza
B.

1.1.4.3 Naredba if
Za mnoge programe tok izvršavanja nije uvek isti već zavisi od ispunjenosti određenih
uslova. Za takve programe kažemo da imaju razgranatu strukturu i da se u njima vrši gra-
nanje. Cilj grananja jeste da se na osnovu ispunjenosti (ili neispunjenosti) nekog uslova
odredi koju narednu naredbu treba izvršiti. Većina programskih jezika, pa i jezik C++,
raspolaže naredbom grananja. Osnovni oblik naredbe grananja u jeziku C++ je:

if (uslov)
naredba1

else
naredba2

U navedenom primeru, ako je ispunjen uslov uslov biće izvršena prva naredba, a ako
uslov nije ispunjen biće izvršena druga naredba. Na primer, ispisivanje da li je dati broj
paran ili neparan može imati sledeći oblik:

if (broj % 2 == 0)
cout << "paran" << endl;

else
cout << "neparan" << endl;

Stavka else nije obavezan deo naredbe grananja. Dakle, ako bismo hteli da ispišemo da je
broj paran ako jeste paran, a ako nije da ne ispisujemo ništa, to bismo mogli da postignemo
narednom naredbom:

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 25

if (broj % 2 == 0)
cout << "paran" << endl;

Umesto pojedinačnih naredbi, u obe grane se može javiti i blok naredbi naveden u vitiča-
stim zagradama.

1.1.4.4 Uslovni izraz
Umesto naredbe grananja nekada je pogodnije iskoristiti uslovni izraz (izraz grananja).
Uslovni izraz, odnosno operator ?:, ima sledeću formu:

uslov ? rezultat_tacno : rezultat_netacno

Ovaj operator je ternarni, odnosno ima tri argumenta: prvi je uslov čiju ispunjenost prove-
ravamo, drugi argument je vrednost izraza ako je uslov ispunjen, dok se trećim argumen-
tom zadaje vrednost izraza ako uslov nije ispunjen. Na primer, ispisivanje parnosti zadatog
broja moglo bi da se realizuje i korišćenjem izraza grananja:

cout << (broj % 2 == 0 ? "paran" : "neparan") << endl;

Operator grananja je desno asocijativan i nižeg prioriteta u odnosu na skoro sve ostale
operatore (viši prioritet ima jedino od operatora dodele).

1.1.5 Petlje
Petlje se koriste kada neke naredbe treba da se izvrše veći broj puta. U jeziku C++ postoje
tri vrste petlji: while, for i do-while.

1.1.5.1 Petlja while
Osnovni oblik petlje while je:

while (uslov)
telo

U petlji while ispituje se vrednost logičkog izraza uslov i dok god je on tačan, izvršavaju
se naredbe zadate unutar tela petlje i izvršavanje vraća na početak (na proveru uslova).
Svako izvršavanje tela petlje nazivaćemo jednom iteracijom. Ako se telo petlje sastoji od
više naredbi, one moraju biti navedene unutar vitičastih zagrada.

1.1.5.2 Petlja for
Opšti oblik petlje for je:

26 GLAVA 1. UVOD

for (inicijalizacija; uslov; korak)
telo

Petlja for najčešće se koristi tako što se promenljivoj (koja se često naziva brojačka pro-
menljiva) redom dodeljuju vrednosti od najmanje do najveće i za svaku od tih vrednosti
se izvršavaju naredbe u okviru tela petlje (ako ih je više, moraju se navesti u vitičastim
zagradama). Obično se u delu inicijalizacija postavlja početna vrednost brojačke
promenljive (najčešće se na tom mestu i deklariše brojačka promenljiva), u delu uslov
se zadaje uslov petlje koji se proverava u svakoj iteraciji i prvi put kada nije ispunjen
izvršavanje petlje se prekida, dok se u delu korak menja vrednost brojačke promenljive.
Na primer, ukoliko želimo da ispišemo sve brojeve iz intervala [a, b] to možemo da
uradimo narednom petljom:

for (int i = a; i <= b; i++)
cout << i << endl;

Svaka petlja for može se jednostavno izraziti pomoću petlje while. Inicijalizaciju je po-
trebno izvršiti neposredno pre petlje while, uslov petlje ostaje isti, dok se korak petlje
dodaje kao poslednja naredba u telu petlje while. Dakle, prethodno ispisivanje brojeva iz
intervala [a, b] mogli smo da realizujemo i na sledeći način:

int i = a;
while (i <= b) {

cout << i << endl;
i++;

}

Korišćenjem petlje formožemo lako ostvariti ponavljanje istih naredbi određeni broj puta.
Na primer, naredni program izračunava i ispisuje površine n pravougaonika čije se dužine
stranica unose, pri čemu se broj n učitava na samom početku programa.

#include <iostream>
using namespace std;

int main() {
cout << "Unesi broj pravougaonika: ";
int n;
cin >> n;
for (int i = 0; i < n; i++) {

cout << "Unesi duzine stranica pravougaonika: ";

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 27

int a, b;
cin >> a >> b;
cout << "Povrsina pravougaonika je: " << a * b << endl;

}
return 0;

}

1.1.5.3 Petlja do-while
Pored petlje while, postoji i petlja do-while, koja joj nalikuje ali se uslov petlje ispituje
na kraju tela petlje. Dakle, u ovoj petlji uvek se telo izvršava barem jednom, bez obzira na
to da li je uslov ispunjen ili ne (jer se on ispituje na kraju tela petlje). Na primer, naredni
blok koda:

int i = a;
do {

cout << i << endl;
i++;

} while (i <= b);

ispravno ispisuje brojeva iz intervala [a, b] ako je a≤ b, ali ako je a> b rešenje zasnovano
na for i while petlji ne bi ispisivalo nijedan broj (što bismo i očekivali), dok bi navedni
blok koda ispisivao broj a.

1.1.6 Definisanje funkcija
Pored bibliotečkih funkcija koje su nam na raspolaganju, programski jezici, pa i jezik C++
programeru daju mogućnost da definiše funkcije, što doprinosi izbegavanju ponovljenih de-
lova programa, dekompoziciji problema na manje potprobleme i boljoj organizaciji koda.
Funkcije možemo zamisliti slično kao u matematici. One obično za nekoliko ulaznih para-
metara izračunavaju jednu rezultujuću vrednost. Na primer, naredna funkcija izračunava
obim pravougonika datih stranica.

#include <iostream>
using namespace std;

// funkcija izračunava obim pravougaonika na osnovu poznatih
// dužina stranica a i b
double obim(double a, double b) {

// formula za obim pravougaonika
return 2*a + 2*b;

}

28 GLAVA 1. UVOD

int main() {
// ucitavamo duzine stranica pravougaonika
double a, b;
cin >> a >> b;
// izracunavamo obim pomocu definisane funkcije
double O = obim(a, b);
// ispisujemo izracunati obim
cout << O << endl;

}

U prethodnom kodu data je definicija funkcije obim. Prva linija double obim(double
a, double b) se naziva deklaracija funkcije i u njoj se kaže da se funkcija zove obim,
da prima dve ulazne vrednosti (dva parametra) koji su realni brojevi i nazivaju se a i b i
da vraća rezultat koji je takođe realan broj. U telu funkcije (ono je ograničeno vitičastim
zagradama) se opisuje kako se rezultat izračunava na osnovu ulaznih vrednosti. Kada je
konačni rezultat izračunat, on se vraća na mesto poziva funkcije (u našem primeru to je
funkcija main) ključnom rečju return. Ispravno definisane funkcije se mogu pozivati iz
drugih funkcija. U prethodnom primeru poziv je izvršen u sklopu deklaracije double O
= obim(a, b). U pozivu se navode argumenti kojima se inicijalizuju parametri funkcije.
U ovom slučaju to su vrednosti promenljivih a i b koje su učitane sa tastature. Argumenti
mogu biti i konstantne vrednosti (parametri moraju biti promenljive). Na primer, dopušten
je poziv obim(5.0, 7.0).
Radi čitljivosti koda, poželjno je da ime funkcije oslikava ono šta ona radi.
Unutar funkcije možemo deklarisati i koristiti i promenljive u kojima čuvamo međurezul-
tate. Na primer, možemo definisati funkciju za izračunavanje površine jednakostraničnog
trougla date dužine stranice.

double povrsinaJednakostranicnogTrougla(double a)
{

// izracunavamo visinu trougla
double h = a * sqrt(3) / 2.0;
// izracunavamo površinu na osnovu duzine stranice i visine
double P = a * h / 2.0;
// vracamo konacan rezultat
return P;

}

Ovom funkcijom je realizovano izračunavanje površine jednakostraničnog trougla i kada
nam god to zatreba u programu (a u nekom matematičkom zadatku to može biti potrebno
više puta), možemo pozvati funkciju i dobiti željeni rezultat.

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 29

Funkcije ne moraju da vrate neku vrednost. Takve funkcije se nekada nazivaju procedure i
jedini zadatak im je da proizvedu neki propratni efekat (na primer, da nešto ispišu na ekran).
Kao povratni tip podataka navodi se void. Na primer, možemo definisati proceduru koja
oko datog teksta ispisuje ukrasne linije, a onda je pozvati nekoliko puta u programu.

#include <iostream>
using namespace std;

void ukrasiTekst(string tekst) {
cout << "---------------------------------------" << endl;
cout << tekst << endl;
cout << "---------------------------------------" << endl;

}

int main() {
ukrasiTekst("Dobar dan!");
ukrasiTekst("Zdravo, svima!");
ukrasiTekst("Dovidjenja!");

}

1.1.7 Strukture podataka
Računari skladište i obrađuju velike količine podataka. Veća količina podataka se čuva u
obliku različitih kolekcija ili struktura podataka.
Jedna od osnovnih kolekcija je statički niz. Umesto korišćenja velikog broja pojedinačnih
promenljivih, više podataka istog tipa možemo čuvati u jednom nizu. Na primer, podatke
o ocenama nekog studenta možemo učitati na sledeći način.

int ocene[5];
for (int i = 0; i < 5; i++)

cin >> ocene[i];

Deklaracija int ocene[5]; obezbeđuje da se u memoriji odvoji prostor za smeštanje 5
podataka tipa int. Njima se pristupa kao ocene[0], ocene[1], ocene[2], ocene[3]
i ocene[4] (indeksi kreću od 0). Kada se podaci jednom upišu u memoriju, mogu se više
puta obrađivati. Na primer, možemo izračunati prosečnu ocenu (tako što izračunamo zbir
ocena i podelimo ga sa 5).

30 GLAVA 1. UVOD

int zbir_ocena = 0;
for (int i = 0; i < 5; i++)

zbir_ocena = zbir_ocena + ocene[i];
double prosek = zbir_ocena / 5.0;
cout << prosek << endl;

Niz možemo inicijalizovati tj. popuniti podacima prilikom deklaracije (tada ne moramo
navoditi broj elemenata).

int ocene[] = {3, 5, 2, 5, 1};

Broj elemenata statičkog niza je određen tokom pisanja programa i niz se ne može pro-
širivati tokom rada programa. Ako broj ocena ne znamo unapred, umesto statičkog niza
možemo koristiti vektor tj. strukturu vector. U narednom programu se dekalariše vektor
koji je u početku prazan, a zatim se učitava 5 ocena i jedna po jedna se dodaje u vektor
(pozivom push_back).

vector<int> ocene;
for (int i = 0; i < 5; i++) {

int ocena;
cin >> ocena;
ocene.push_back(ocena);

}

U okviru deklaracije vektor može inicijalizovan:

vector<int> ocene = {3, 5, 2, 5, 1};

Kada je vektor popunjen, elementi se (koristeći indeksni pristup) obrađuju na potpuno isti
način kao i elementi statičkog niza (na primer, deo programa koji računa prosečnu ocenu
bi se mogao upotrebiti u neizmenjenom obliku).
Elementima niza i vektora se pristupa na osnovu numeričkih indeksa (pozicija tj. rednih
brojeva). U nekim situacijama poželjno je podacima pristupati na osnovu tzv. ključeva. Na
primer, želimo da upamtimo ocene iz različitih predmeta tako da svakoj oceni možemo
pristupiti na osnovu naziva predmeta. Za to jemoguće koristiti preslikavanja (ona se nekada
nazivaju i mape, rečnici ili asocijativni nizovi). U narednom primeru ključevi su nazivi
predmeta, a ocene su vrednosti koje su pridružene tim ključevima.

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 31

map<string, int> ocene;

// upisujemo podatke u mapu
ocene["programiranje"] = 9;
ocene["analiza 1"] = 7;
ocene["algebra"] = 8;

// citamo podatke iz mape
cout << ocena["algebra"] << endl;

I preslikavanje možemo inicijalizovati tokom njegove deklaracije:

map<string, int> ocene =
{{"programiranje", 9}, {"analiza1", 7}, {"algebra", 8}};

Ako pokušamo da pristupimo podatku na osnovu ključa ne postoji u mapi, onda on se
automatski dodaje u mapu. Proveru da li ključ postoji u mapi možemo izvršiti na sledeći
način:

string predmet;
cout << "Unesi naziv predmeta: " << endl;
getline(cin, predmet);
if (ocene.find(predmet) != ocene.end())

cout << ocene[predmet] << endl;
else

cout << "Ne postoji ocena iz tog predmeta" << endl;

Pozivom find se traži ključ predmet u mapi ocene i ako se tokom te pretrage dođe do
kraja mape, a ključ se ne nađe, to znači da ključ ne postoji u mapi (kraj mape ocene se
dobija pozivom ocene.end()).
Sve elemente mape ocene možemo obrađivati na sledeći način:

for (auto [predmet, ocena] : ocene)
cout << predmet << ": " << ocena << endl;

Prethodnim kodom se ispisuju svi elementi mape (predmeti i ocene iz tih predmeta). Ključ-
nom rečju auto kompilatoru se nalaže da samostalno odredi tipove promenljivih predmet
i ocena.
Nekada želimo da povežemo više podataka koji su logički povezani u jednu celinu, da
bismo olakšali rad sa tim podacima. Na primer, ako razmatramo podatke o studentima, za

32 GLAVA 1. UVOD

svakog studenta možemo pamtiti ime, prezime i prosečnu ocenu. Umesto da ove podatke
držimo u zasebnim promenljivim, što bi moglo biti nepraktično i lakše vodilo ka greška-
ma, možemo definisati novi tip podataka koji obuhvata sva tri podatka i omogućava lakše
upravljanje njima kao jednom celinom:

struct student {
string ime;
string prezime;
double prosek;

};

Koristeći strukture, podaci se grupišu na način koji bolje odražava njihovu prirodnu pove-
zanost. Na ovaj način možemo lako definisati promenljive koje predstavljaju studente, sa
svim njihovim relevantnim podacima na jednom mestu, u jednoj promenljivoj strukturog
tipa. Na primer:1

student petar;
pera.ime = "Petar";
pera.prezime = "Petrovic";
pera.prosek = 7.52;

Strukture omogućavaju jednostavnu i intuitivnu inicijalizaciju podataka, koristeći vitičaste
zagrade:

student petar = {"Petar", "Petrovic", 7.52};

Jedna od prednosti korišćenja struktura je i mogućnost lakog definisanja niza ovih objekata,
što olakšava rad sa većim brojem podataka. Na primer, možemo definisati niz studenata i
odmah ih inicijalizovati:

student studenti[] = {
{"Ana", "Anic", 9.83},
{"Petar", "Petrovic", 7.52}

};

Ako ne bismo koristili strukture, morali bismo da podatke čuvamo u tri odvojena niza (u
jednom bismo čuvali imena, u drugom prezimena i u trećem prosečne ocene).

1U jeziku C, za razliku od jezika C++, u deklaraciji promenljive potrebno je navoditi ključnu reč struct,
na primer: struct student petar.

1.1. OSNOVNI ELEMENTI JEZIKA I PRVI PROGRAMI 33

Organizacija podataka korišćenjem struktura čini naš kôd čitljivijim, jednostavnijim za
održavanje i manje sklonim greškama, naročito kada radimo sa velikim brojem podataka
koji su logički povezani.

1.1.8 Upravljanje izuzecima i greškama
U jeziku C++ postoji mehanizam za upravljanje greškama - mehanizam izuzetaka (eng.
exceptions). Programer izdaje posebnu naredbu (obično se naziva ‘throw’) koja se aktivira
u slučaju greške, kojom se prekida kôd koji se trenutno izvršava i tok programa preusme-
rava se na poseban deo koda koji se bavi obradom grešaka (obično se naziva ‘try-catch’).
Time se postiže da su normalan tok programa i obrada grešaka fizički razdvojeni u samom
kodu, što pojednostavljuje programiranje i čini programe čitljivijim i lakšim za održava-
nje. Mehanizam izuzetaka koristi se i u implementaciji funkcija iz standardne biblioteke.
Korisnik tih funkcija ne mora da mislio načinu aktiviranja izuzetka (i o naredbi ‘throw’),
nego samo o detektovanju i upravljanju izuzetkom (naredbe ‘try-catch’). Naredni primer
ilustruje kako bi mogao da se obradi izuzetak koji se aktivira pri pokušaju kreiranja vek-
tora koji je prevelik.

#include <iostream>
#include <vector>

using namespace std;

int main() {
try {
vector<int> large_vector(1000000000);

} catch (const bad_alloc& e) {
cerr << "Neuspesna inicijalizacija vektora: " << e.what() << endl;

}
return 0;

}

Ne aktivira izuzetak nužno svaka greška u fazi izvršavanja. Na primer, kao aktivira se
izuzetak pri pokušaju kreiranja prevelikog vektora, ali se ne aktivira izuzetak pri pokuša-
ju pristupa nepostojećem elementu vektora, već dolazi do greške (obično ‘segmentation
fault’).
Više reči o upravljanju greškama i obradi izuzetaka biće u poglavlju {9.9}

34 GLAVA 1. UVOD

2. Promenljive i tipovi

U ovom poglavlju ćemo detaljnije proučiti sledeće elemente programskog jezika C++:

• Promenljive i konstante, koje su osnovni oblici podataka kojima se operiše u progra-
mu.

• Tipovi, koji određuju vrstu podataka, način reprezentacije i skup vrednosti koje
promenljive, konstante i izrazi mogu imati, kao i skup operacija koje se sa nad tim
podacima mogu primeniti.

• Deklaracije, koje uvode spisak promenljivih koje će se koristiti, određuju kog su tipa
i, eventualno, koje su im početne vrednosti.

2.1 Promenljive, konstante i deklaracije
Promenljive su osnovni objekti koji se koriste u programima. Svakoj promenljivoj je pri-
družen neki prostor u memoriji (možemo ga zamišljati kao kutijicu ili kao kućicu) i u
svakom trenutku svog postojanja ima vrednost kojoj se može pristupiti — koja se može
pročitati i koristiti, ali i koja se (ukoliko nije traženo drugačije) može menjati. Primetimo
da je ovo sasvim različito od promenljivih u matematici koje označavaju neke veličine i
koje se ne menjaju tokom vremena1.
Imena promenljivih (ali i funkcija, struktura, itd.) zadaju su identifikatorima. U prethod-
nim programima korišćene su promenljive čija su imena a, i, x1, x2, obim itd. Generalno,
identifikator može da sadrži slova i cifre, kao i simbol _ (koji je pogodan za duga imena),
ali identifikator ne može počinjati cifrom. Dodatno, ključne reči jezika (na primer, if,
for, while) ne mogu se koristiti kao identifikatori. U identifikatorima, velika i mala slo-
va se razlikuju. Na primer, promenljive sa imenima a i A se tretiraju kao dve različite
promenljive.

1Postoje funkcionalni programski jezici, na primer, Haskell, koji u cilju lakšeg rezonovanja o ispravnosti
programa teže da zadrže tesne veze sa matematikom i ne dopuštaju mogućnost izmene vrednosti promenljive.

35

36 GLAVA 2. PROMENLJIVE I TIPOVI

Imena promenljivih i imena funkcija, u principu, treba da oslikavaju njihovo značenje i
ulogu u programu, ali za promenljive kao što su indeksi u petljama se obično koriste kratka,
jednoslovna imena (na primer i). Ako ime promenljive sadrži više reči, onda se, radi bolje
čitljivosti, te reči razdvajaju simbolom _ (na primer, broj_studenata) ili početnim ve-
likim slovima (na primer, brojStudenata) — ovo drugo je takozvana kamilja notacija
(CamelCase). Postoje različite konvencije za imenovanje promenljivih. Iako je dozvolje-
no, ne preporučuje se korišćenje identifikatora koji počinju simbolom _, jer se oni obično
koriste za sistemske funkcije i promenljive.
Kao što je rečeno, jezik C++ je statički tipiziran jezik, što znači da je svakoj promenljivoj
(ali i konstanti i izrazu) pridružen jedinstven tip i tip promenljive ne može da se prome-
ni tokom izvršavanja programa. Na osnovu tipa promenljive, kompilator, između ostalog,
određuje i količinu memorije potrebnu za smeštanje te promenljive.
Sve promenljive moraju biti deklarisane pre korišćenja. Deklaracija sadrži tip i listu od
jedne ili više promenljivih tog tipa, razdvojenih zarezima.

int broj; // deklaracija jedne promenljive
int a, b; // deklaracija dve promenljive

U opštem slučaju nije propisano koju vrednost ima promenljiva neposredno nakon što
je deklarisana. Prilikom deklaracije može se izvršiti početna inicijalizacija. Moguće je
kombinovati deklaracije sa i bez inicijalizacije.

int vrednost = 5; // deklaracija sa inicijalizacijom
int a = 3, b, c = 5; // deklaracije sa inicijalizacijom i bez inicijalizacije

Izraz kojim se promenljiva inicijalizuje zvaćemo inicijalizator.
Kvalifikator const može biti dodeljen deklaraciji promenljive da bi naznačio i obezbedio
da se njena vrednost neće menjati, na primer:

// ovu promenljivu nije moguce menjati
const double GRAVITY = 9.81;

Vrednost tipa const T (gde je T bilo koji tip, na primer — int) može biti dodeljena
promenljivoj tipa T, ali promenljivoj tipa const T ne može biti dodeljena vrednost (osim
prilikom inicijalizacije) — pokušaj menjanja vrednosti konstantne promenljive (kao i sva-
kog drugog konstantnog sadržaja) dovodi do greške prilikom prevođenja programa.
Deklaracije promenljivih mogu se navoditi na različitim mestima u programu. Ukoliko je
promenljiva deklarisana u nekoj funkciji (na primer, u funkciji main), onda kažemo da
je ona lokalna za tu funkciju i druge funkcije ne mogu da je koriste. Različite funkcije
mogu imati lokalne promenljive istog imena. Promenljive deklarisane van svih funkcija

2.2. OSNOVNI TIPOVI PODATAKA 37

su globalne i mogu se koristiti u više funkcija. Vidljivost tj. oblast važenja identifikatora (i
njima uvedenih promenljivih) određena je pravilima dosega identifikatora o čemu će više
reči biti u poglavlju 6.10.1. Rane verzije programskog jezika C su zahtevale da se sve lokal-
ne promenljive deklarišu na početku tela funkcije. Međutim, u jeziku C++ je uobičajeno
i poželjno da se deklaracije navode neposredno pre prve upotrebe promenljive (dakle, prvi
put kada nam zatreba) i to u što užem dosegu (na primer, ako se neka promenljiva koristi
samo u telu neke petlje ograđenom vitičastim zagradama, najbolje je uvesti je unutar te
petlje tj. unutar tih vitičastih zagrada).
Konstante (kaže se nekada i literali) su fiksne vrednosti kao, na primer, 0, 2, 2007, 3.5,
1.4e2, 'a' ili "zdravo". Ista vrednost se ponekad može predstaviti različitim konstan-
tama. Za razliku od promenljivih, konstante se ne deklarišu. Međutim, pravilima jezika
je za svaku konstantu jednoznačno određen njen tip. To je važno, jer od tipova konstanti
zavisi koje operacije je moguće primeniti nad njima, a zavisi i vrednost složenog izraza u
kojem figuriše konstanta (na primer, vrednost izraza 5 / 2 je 2, a vrednost izraza 5.0 /
2 je 2.5).

2.2 Osnovni tipovi podataka
Kao i u većini drugih programskih jezika, u jeziku C++ podacima (tj. izrazima kojima
se podaci predstavljaju) su pridruženi u tipovi. Jedan tip karakteriše: vrsta podataka koje
opisuje, način interne binarne reprezentacije tih podataka u memoriji računara (jer se svi
podaci zapisuju binarno) i skup operacija koje se mogu primeniti nad podacima tog tipa.
Standard jezika C++ ne propisuje jednoznačno način inerne reprezentacije, čak ni za
osnovne tipove podataka, čime se ostavlja sloboda da se neki tipovi različito predstave na
različitim sistemima tj. platformama.2 Na primer, broj bitova za predstavljanje nekog tipa
može biti manji na nekom namenskom, ugrađenom računaru koji ima manje memorije,
nego na klasičnom računaru opšte namene. Takođe, između računara sa 32-bitnom arhitek-
turom i 64-bitnom arhitekturom često postoje razlike u predstavljanju podataka. Ovo je
veoma važno imati na umu kada se pišu programi za koje želimo da budu prenosivi između
različitih sistema. Ipak, ova knjiga predstavlja uvod u programiranje za početnike, tako da
ćemo se, jednostavnosti radi ograničiti na tipične reprezentacije na klasičnim PC računari-
ma i na mnogim mestima nećemo analizirati probleme do kojih može doći usled razlika u
predstavljanju tipova podataka na različitim platformama. Detaljima reprezentacije tipova
podataka ćemo se vratiti ponovo u narednim tomovima ove knjige.
U nastavku će biti opisani osnovni tipovi podataka.

2.2.1 Celobrojni tipovi
Osnovni celobrojni tip podataka u jeziku C++ je tip int (od engleskog integer, ceo broj).
On se najčešće predstavlja pomoću 4 bajta (tj. 32 bita), na način koji omogućava pred-

2Pod sistemom podrazumevamo hardver računara, operativni sistem i prevodilac koji se koristi.

38 GLAVA 2. PROMENLJIVE I TIPOVI

stavljanje i nenegativnih i negativnih vrednosti. Precizni opseg vrednosti koje se mogu
reprezentovati raznim tipovima dati su u tabeli @tbl:raspon, međutim, za početak je do-
voljno steći osećaj da tip int najčešće dopušta reprezentovanje (svih) vrednosti u intervalu
od oko minus dve do oko plus dve milijarde.
Konačan opseg tipova treba uvek imati u vidu jer iz ovog razloga neke matematičke ope-
racije neće dati očekivane vrednosti tj. vrednosti koje su rezultat za brojeve koji nisu
ograničeni. Tada kažemo da dolazi do prekoračenja. Na primer, ako promenljiva x ima tip
unsigned char i vrednost 255, i ako bude uvećana za 3, njena vrednost neće biti 258
nego 2. Slično, ako je tip int predstavljen sa 32 bita, naredni program štampa negativan
rezultat.

int a = 2000000000, b = 2000000000;
cout << "Zbir brojeva " << a << " i " << b << " je " << a + b << endl;

U nekim programima znamo da će brojevi sa kojima baratamo biti mali, u nekim da će biti
veliki, pa programski jezik C++ daje programeru mogućnost da preciznije označi (kvalifi-
kuje) celobrojni tip koji želi da upotrebi za smeštanje nekog podatka. Tipu int mogu biti
pridruženi kvalifikatori short, long i long long. Ime tipa short int može se kraće
zapisati sa short, ime tipa long intmože se kraće zapisati long, a ime tipa long long
int može se kraće zapisati sa long long. Veličine ovih tipova nisu precizno određene
standardnom. Tip short obično zauzima 2 bajta (tj. 16 bita), što daje opseg vrednosti od
oko minus 30 hiljada, do oko plus 30 hiljada, tip long može da se poklapa sa tipom int,
dok tip long long obično zauzima 8 bajtova (tj. 64 bita), što daje opseg reda veličine
milijardu milijardi (od oko −1018, do oko 1018).
Bilo kom celobrojnom tipu može biti pridružen kvalifikator signed ili unsigned. Kvali-
fikator signed se obično podrazumeva, pa ne utiče na promenu reprezentacije i opsega
tipa. Sa druge srane, kvalifikator unsigned označava da se broj tretira kao neoznačen,
tj. da se pomoću tog tipa predstavljaju samo nenegativni brojevi. Time se mogu predstavi-
ti dvostruko veće pozitivne vrednosti (na primer, unsigned int ima opseg od 0 do oko
4 milijarde), što u nekim situacijama može biti korisno. Međutim, osnovna motivacija
za korišćenje neoznačenih tipova će nam češće biti da se čitaocu naglasi da se za neki
podatak očekuje da je nenegativan ceo broj. Na primer, broj elemenata vektora dobijen
metodom size je neoznačenog tipa. Sa druge strane, treba biti obazriv prilikom upotrebe
ovakvih tipova, jer neke česte programerske tehnike mogu dovesti do grešaka (na primer,
nije moguće koristiti -1 kao specijalnu vrednost koja označava neuspeh a uslov da li je
vrednost promenljive nenegativan uvek uspeva, pa se ovakve promenljive ne mogu koristiti
za kretanje kroz nizove i vektore unazad i slično).

2.2. OSNOVNI TIPOVI PODATAKA 39

Tabela 2.1: Najčešći opseg celobrojnih tipova {#tbl:raspon}

označeni (signed) neoznačeni (unsigned)

karakteri 1B = 8b 1B = 8b
(char) [-27, 27-1] = [0, 28-1] =

[-128, 127] [0, 255]
kratki 2B = 16b 2B = 16b
(short int) [-32K, 32K-1] = [0, 64K-1] =

[-215, 215-1] = [0, 216-1] =
[-32768, 32767] [0, 65535]

dugi 4B = 32b 4B = 32b
(long int) [-2G, 2G-1] = [0, 4G-1] =

[-231, 231-1] = [0, 232-1] =
[-2147483648, 2147483647] [0, 4294967295]

veoma dugi 8 B = 64b 8 B = 64b
(long long int) [-263, 263-1] = [0, 264-1] =
od C99 [-9.2⋅1018, 9.2⋅1018] [0, 1.84⋅1019]

Postoje i tipovi za koje je standardom precizno definisan broj bitova (i on je isti na svim
sistemima). To su, na primer, tipovi int8_t, int16_t, int32_t, int64_t, kao i neo-
značeni tipvi uint8_t, uint16_t, uint32_t, uint64_t.
Sasvim očekivano, celobrojne dekadne konstante kao što su 123 ili 45678 su tipa int. Ako
su vrednosti prevelike da bi se mogle predstaviti tipom int, konstante su nekog tipa koji
ima širi opseg (na primer, long long). Standard definiše precizna pravila koja određuju
tip svake konstante (ali ih nećemo ovde navoditi). Programer može posebnim sufiksima da
precizira tip konstante (na primer, vrednost 5ull je tipa unsigned long long).
Osim u dekadnom, celobrojne konstante mogu biti zapisane i u oktalnom i u heksadekad-
nom sistemu. Zapis konstante u oktalnom sistemu počinje cifrom 0, a zapis konstante u
heksadekadnom sistemu počinje simbolima 0x ili 0X. Na primer, broj 31 se može u pro-
gramu zapisati na sledeće načine: 31 (dekadni zapis), 037 (oktalni zapis), 0x1f ili 0X1F
(heksadekadni zapis).
Negativne konstante ne postoje, ali se efekat može postići izrazima gde se ispred konstante
navodi unarni operator - (vrednost predstavljena izrazom -123 u programu je minus sto
dvadeset i tri, ali izraz nije konstanta već je sačinjen od unarnog operatora primenjenog na
konstantu). Slično, može se navesti i operator plus, ali to nema efekta (npr. +123 je isto
kao i 123).

2.2.2 Realni tipovi
Realne brojeve ili, preciznije, brojeve u pokretnom zarezu opisuju tipovi float, double
i long double. Tip float opisuje brojeve u pokretnom zarezu osnovne tačnosti, tip

40 GLAVA 2. PROMENLJIVE I TIPOVI

double opisuje brojeve u pokretnom zarezu dvostruke tačnosti, a tip long double bro-
jeve u pokretnom zarezu proširene tačnosti. Broj bitova i način reprezentacije ovih tipova
nije precizno definisan standardnom. Uobičajeno je da se u savremenim računarima najče-
šće zapisuju u skladu sa standardnom IEEE754. Tip float obično zauzima 4 bajta (tj. 32
bita), što daje preciznost od oko 7 značajnih cifara. Tip double obično zauzima 8 bajtova
(tj. 64 bita), što daje preciznost od oko 15 značajnih cifara. Tip long double često se
poklapa sa tipom double, dok na nekim sistemima zauzima 10 bajtova (tj. 80 bitova), što
daje preziznost od oko 21 značajne cifre. Na primer, broj 12, 34 se sasvim precizno može
zapisati pomoću tipa float, dok broj 12345, 6789 ima 10 značajanih cifara i precizno se
može zapisati tek pomoću tipa double (pokušaj zapisa u obliku tipa float bi dovelo do
zaokrugljivanja i gubitka preciznosti na poslednjim decimalama). Raspon realnih tipova
je značajno veći od celobrojnih (pregled je dat u tabeli @tbl:float_raspon), međutim, zbog
ograničenog broja značajnih cifara, velike vrednosti se zaokrugljuju i zapisuju se prilično
neprecizno. Na primer, broj 123456789 se u okviru tipa float ne može zapisati preci-
zno i umesto njega se zapisuje vrednost 1, 23457 ⋅ 108, koja se dosta razlikuje od polazne
vrednosti. Dakle, iako su šireg raspona, realni tipovi ne mogu zapisati sve vrednosti koje
se mogu zapisati u okviru celobrojnih tipova.

Tabela 2.2: Najčešći opseg realnih tipova {#tbl:float_raspon}

Tip Veličina Raspon Preciznost

float 4B = 32b ±1.17549e-38 do ±3.40282e+38 oko 7 značajnih cifara
double 8B = 64b ±2.22507e-308 do

±1.79769e+308
oko 15 značajnih cifara

Zbog načina zapisa ne mogu se sve dekadne vrednosti precizno zapisati pomoću ovih za-
pisa i jako je važno da programer razume da kada se koriste ovi tipove nije nužno da će
vrednosti biti tačno zapisane. Na primer, vrednost 1

10 se zapisuje kao decimalni broj 0,1,
međutim, ta se vrednost ne može tačno zapisati (korišćenjem uobičajenih konvencija, kao
što je standard IEEE754) ni u jednom od nabrojanih tipova. Zato, na primer, veoma jed-
nostavna provera da li je 0.1 + 0.2 == 0.3 daje vrednost netačno. U programiranju sa
realnim brojevima treba zato biti veoma pažljiv i izbegavati bilo kakve provere koje se
oslanjaju na preciznost zapisa. Na primer, ne treba nikada proverati da li su dva broja u
pokretnom zarezu jednaka, već samo da li im je vrednost dovoljno bliska.
Standard IEEE754 uključuje i mogućnost zapisa specijalnih vrednosti kao što su+∞,−∞
i 𝑁𝑎𝑁 . Na primer, vrednost izraza 1.0/0.0 je +∞, za razliku od celobrojnog izraza 1/0
čije izračunavanje obično dovodi do greške u fazi izvršavanja programa (engl. division by
zero error). Vrednost izraza 0.0/0.0 je 𝑁𝑎𝑁 , tj. not-a-number i ta specijalna vrednost se
koristi da označi matematički nedefinisane vrednosti (npr. ∞ − ∞ ili koren ili logaritam
negativnog broja). Specijalne vrednosti dalje mogu da učestvuju u izrazima. Na primer, ako
se na izraz čija je vrednost +∞ doda neka konstantna vrednost, dobija se opet vrednost

2.2. OSNOVNI TIPOVI PODATAKA 41

+∞, ali vrednost izraza 1.0/ + ∞ jednaka je 0.0. S druge strane, svi izrazi u kojima
učestvuje vrednost 𝑁𝑎𝑁 ponovo imaju vrednost 𝑁𝑎𝑁 . Vrednost ∞ tipa double se u
programu može zapisati izrazom numeric_limits<double>::infinity() (za čije je
korišćenje potrebno uključiti zaglavlje <limits>).
Najveći broj funkcija iz standardne biblioteke (pre svega matematičke funkcije definisane
u zaglavlju <cmath>) koriste tip podataka double. Tip float se u programima koristi
uglavnom zbog uštede memorije ili vremena na računarima na kojima je izvođenje ope-
racija u dvostrukoj tačnosti veoma skupo (u današnje vreme, međutim, većina računara
podržava efikasnu manipulaciju brojevima zapisanim u dvostrukoj tačnosti).
Konstante realnih brojeva ili, preciznije, konstantni brojevi u pokretnom zarezu sadrže
decimalnu tačku (na primer, 123.4) ili eksponent (5e-2, što označava vrednost 5 ⋅ 10−2)
ili i jedno i drugo. Vrednosti ispred i iza decimalne tačke mogu biti izostavljene (ali ne
istovremeno). Na primer, ispravne konstante su i .4 ili 5. (ali ne i .). Brojevi su označeni
i konstante mogu počinjati znakom - ili znakom + (koji ne proizvodi nikakav efekat). Tip
svih ovih konstanti je double, osim ako na kraju zapisa ne doda neki od sufiksa (na primer,
konstanta 12.3f je tipa float, a 12.3l tipa long double).

2.2.3 Logički tip
Za predstavljanje logičkih (istinitosnih) vrednosti koristi se tip bool koji ima samo dve
vrednosti (true označava tačno, a false netačno). Podaci ovog tipa se najčešće koriste
u uslovima grananja i petlji, i dobijaju se i kombinuju primenom relacijskih i logičkih
operatora, pa će više reči o ovome biti u poglavlju 4.

2.2.4 Karakterski tip
Osnovna namena tipa char je za predstavljanje kodova karaktera (najčešće u tabeli ASCII).
Podaci tog tipa zauzimaju 1 bajt (tj. 8 bita). Pošto se u njemu beleže numeričke vrednosti
(mali brojevi iz intervala od -128 do 127 ili od 0 do 255 u zavisnosti od toga da li se koristi
označena ili neoznačena varijanta ovog tipa), moguće je ovaj tip koristiti i za predstavljanje
malih brojevnih vrednosti (u cilju uštede memorije), međutim, u ovoj knjizi to nećemo
raditi.
Direktno specifikovanje karaktera korišćenjem numeričkih kodova nije preporučljivo.
Umesto toga, preporučuje se korišćenje karakterskih konstanti. Karakterske konstante u
programskom jeziku C++ se navode između '' navodnika. Vrednost date konstante je
numerička vrednost datog karaktera u korišćenoj karakterskoj tabeli (na primer, ASCII).
Na primer, u ASCII kodiranju, karakterska konstanta '0' predstavlja vrednost 48 (koja
nema veze sa numeričkom vrednošću 0), 'A' je karakterska konstanta čija je vrednost u
ASCII tabeli 65, 'a' je karakterska konstanta čija je vrednost u ASCII tabeli 97.
Tipom char predstavljaju se pojedinačni karakteri (i konstante tog tipa se navode između
jednostrukih apostrofa ''), a tipom string niske karaktera (i konstante tog tipa se navode
između dvostrukih navodnika "").

42 GLAVA 2. PROMENLJIVE I TIPOVI

Specijalni karakteri se mogu navesti korišćenjem specijalnih sekvenci karaktera koje po-
činju karakterom \ (engl. escape sequences). Na primer, karakter '\n' označava prelazak
u novi red, a '\t' tabulator. Karakterska konstanta '\0' predstavlja karakter čija je vred-
nost nula. Ovaj karakter ima specijalnu ulogu u programskom jeziku C jer se koristi za
označavanje kraja niske karaktera.
Pošto se karakterske konstante identifikuju sa njihovim numeričkim vrednostima, one mo-
gu ravnopravno da učestvuju u aritmetičkim izrazima (o izrazima će više biti rečeno u
nastavku ove glave). Na primer, na ASCII sistemima (tj. na sistemima na kojima se kori-
sti ASCII tabela karaktera), izraz '0' <= c && c <= '9' proverava da li karakterska
promenljiva c sadrži ASCII kôd neke cifre, dok se izrazom c - '0' dobija numerička
vrednost cifre čiji je ASCII kôd sadržan u promenljivoj c. Ipak, za rad sa pojedinačnim
karakterima preporučuju se bibliotečke funkcije iz zaglavlja <cctype> (koje su opisane
u poglavlju 8).

2.2.5 Niske
Niske se u jeziku C++ predstavljaju tipom string. Za njegovo korišćenje potrebno je
direktivom #include uključiti zaglavlje <string>. Za razliku od do sada pomenutih ti-
pova koji su elementarni (engl. plain old datatype, POD), niske su složen tip koji sadrži niz
karaktera kojima je zapisan predstavljen tekst. Svaka niska je objekat klase string. Sto-
ga su kreiranje niski i operacije nad njima donekle sporije nego nad osnovnim brojevnim
tipovima.
Konstantne niske se navode između navodnika "..." i mogu se dodeljivati promenljivim
tipa string.

string pozdrav = "Dobar dan!";

Moguće je koristiti samo karaktere ASCII tabele. Podrška za ostale karaktere iz Unicode
tabele je dostupna u standardnoj biblioteci (na primer, postoji tip wstring), ali je nećemo
obrađivati u ovom udžbeniku.
Dužina niske (tj. broj karaktera) se može pročitati metodom length ili metodom size
(obe daju isti rezultat).

cout << pozdrav.size() << endl; // ispisuje 10

Niske je moguće nadovezivati operatorom +. Prilikom nadovezivanja prvi operand mora
biti objekat tipa string, a ostali mogu biti bilo objekti tog tipa, bilo konstantne niske.

string ime = "Petar";
string prezime = "Petrovic";
string ime_i_prezime = ime + " " + prezime;

2.3. DODELE VREDNOSTI PROMENLJIVOJ 43

cout << ime_i_prezime << endl; // ispisuje Petar Petrovic

Slično kao kod nizova i vektora, pojedinačnim karakterima niske možemo pristupiti kor-
šćenjem indeksnog pristupa (operator []). Pozicije se broje od nule. Na primer, izraz
ime[0] ima vrednost P, dok izraz ime[5] ima nedefinisanu vrednost i može dovesti do
prekida rada programa (jer niska ima 5 karaktera i dozvoljene pozicije su od 0 do 4).
Postoji veliki broj bibliotečkih metoda i funkcija za rad sa niskama. Na primer, metoda
substr gradi novu nisku dobijenu izdvajanjem dela niske. Na primer, ime.substr(1,
2) vraća nisku et – prvi parametar 1, predstavlja poziciju početka, a drugi 2 broj karaktera
koji se izdvajaju. Ako se drugi argument izostavi izdvajaju se karakteri do kraja niske. Na
primer, vrednost izraza ime.substr(1) je etar.
Detaljniji pregled bibliotečke podrške za rad sa niskama dat je poglavlju 8.
Jezik C++ nasleđuje mogućnost predstavljanja niski i pomoću nizova karaktera kojima je
na kraju upisan specijalni karakter čiji je ASCII kod 0 (engl. null-terminated strings). Na
primer,

char[] ime = "Petar";

Za rad sa takvim niskama na raspolaganju imamo funkcije iz zaglavlja <cstring> (na
primer, funkcije strcmp, strcpy i slično). Međutim, taj način je potpuno neprimeren
savremenom jeziku C++, podložan je greškama i u ovoj knjizi ga nećemo objašnjavati.
Sa druge strane, ovakvi detalji interne reprezentacije podataka važni su za implementaci-
ju visoko optimizovanih programa i programskih biblioteka (na primer, u implementaciji
tipa string koriste se niske terminisane nulom), pa ćemo se njima posvetiti u narednim
tomovima.

2.3 Dodele vrednosti promenljivoj
Inicijalna vrednost se promenljivoj može zadati u sklopu deklaracije.

int x = 42; // deklaracija sa inicijalizacijom

Deklarisane promenljive koje nisu inicijalizovane imaju obično3 nedefinisanu vrednost i ne
bi ih trebalo koristiti pre nego što im se ne dodeli početna vrednost.
Imperativno (kao i objektno-orijentisano) programiranje, što je dominantni stil progra-
miranja u ovoj knjizi, omogućava da se vrednost promenljive menja tokom izvršavanja
programa. Ova, možda naizgled jednostavna opaska, zapravo je ključna karakteristika im-
perativnog stila programiranja i skoro svi netrivijalni programi se intenzivno zasnivaju na
njoj.

3Postoje situacije u kojima standard garantuje inicijalnu vrednost promenljivih. Na primer, globalne promen-
ljive, koje su deklarisane van svih funkcija imaju garantovano inicijalnu vrednost 0.

44 GLAVA 2. PROMENLJIVE I TIPOVI

2.3.1 Operator dodele
Ubilo kom trenutku izvršavanja programa promenljivoj (koja nije označena kvalifikatorom
const) možemo izmeniti vrednost korišćenjem operatora dodele (operatora =). Na primer,

x = 43; // menjamo vrednost promenljive x

Pored vrednosti promenljivih, dodelom najčešće menjamo elemente nizova, vektora, niski
i sličnih kolekcija (na primer, ako je a niz celih brojeva, naredbom a[0] = 42; se na
početno mesto tog niza upisuje vrednost 42).4

Sa desne strane operatora dodele može se naći proizvoljni izraz, međutim, tip tog izraza
mora ili biti jednak tipu leve strane ili mora biti takav da je moguća implicitna konverzija
u taj tip. Na primer, dodela

int x = 3.8;

je moguća jer postoji implicitna konverzija tipa double (što je tip konstantne vrednosti
3.8) u tip int, pri čemu se tom konverzijom dobija celobrojna vrednost 3.
U izrazu sa desne strane može učestvovati i stara vrednost promenljive kojoj se dodeljuje
vrednost. Na primer,

x = x + 2; // vrednost promenljive se uvecava za 2

Ovo znači da se promenljivoj x dodeljuje vrednost izraza x + 2, tj. da se izračunava vred-
nost koja je za 2 veća od trenutne vrednosti promenljive x i da se vrednost tog izraza smešta
u promenljivu x. Na taj način se, zapravo vrednost promenljive x uvećava za 2. Operator
dodele, znači, ne označava jednakost dve vrednosti (za to se koristi operator poređenja
jednakosti ==, o čemu će biti više reči u poglavlju 4.1).
Dodele semogu “ulančavati”. Na primer, naredna naredba postavlja vrednosti promenljivih
x i y na nulu.

int x, y;
x = y = 0;

Naime, operator dodele = ima desnu asocijativnost, pa je navedeni izraz ekvivalentan izrazu
x = (y = 0) i promenljivoj x se dodeljuje vrednost izraza y = 0. Taj izraz ima vrednost
0. Naime, tip izraza dobijenog primenom operatora dodele je tip leve strane, a vrednost
izraza dodele je vrednost koja će biti dodeljena levoj strani (što nije uvek vrednost koju

4Standard definiše pojam izmenjive L-vrednosti (engl. l-value) i jedino se te vrednosti mogu naći sa leve
strane operatora dodele.

2.3. DODELE VREDNOSTI PROMENLJIVOJ 45

ima desna strana). Promena vrednosti promenljive na levoj strani je propratni (sporedni,
bočni) efekat (engl. side effect) do kojeg dolazi prilikom izračunavanja vrednosti izraza.
Stavljanjem simbola ; na kraj izraza dodele (kao i na kraj bilo kog drugog izraza) dobija
se naredba dodele (na primer, x = 1 je izraz dodele, a x = 1; naredba dodele). Prilikom
njenog izvršavanja izračunava se vrednost izraza dodele, relalizuje se propratni efekat, a
izračunata vrednost se zanemaruje.

2.3.2 Razmena vrednosti promenljivih
Često je potrebno razmeniti vrednosti dve promenljive.
Naredbe

a = b;
b = a;

ne bi dovele do željenog efekta, jer bi se promenljivoj b dodelila stara vrednost promenlji-
ve a. Da bismo postigli željeni efekat, potrebno koristiti pomoćnu promenljivu istog tipa.
Pretpostavimo da je potrebno razmeniti vrednosti promenljivih a i b (i da je raspoloživa
pomoćna promenljiva t).

t = a;
a = b;
b = t;

Navedni algoritam za razmenu dve vrednosti može se uopštiti tako da vrši cikličnu zamenu
vrednosti više promenljivih. Na primer, na sledeći način može se izvršiti ciklična zamena
vrednosti tri promenljive a, b, c (uz korišćenje pomoćna promenljive t):

t = a;
a = b;
b = c;
c = t;

Napomenimo i da je u jeziku C++ korisnicima na raspolaganju funkcija swap (deklarisana
u zaglavlju <algorithm>) kojom se razmenjuju vrednosti dve promenljive.

swap(a, b);

46 GLAVA 2. PROMENLJIVE I TIPOVI

Zadatak: Cena hleba
Hleb je prvo poskupeo 10%, pa je zatim pojeftinio 10%. Ako je poznata početna cena
hleba, napiši program koji određuje cenu nakon tih promena.
Opis ulaza
Sa standardnog ulaza se učitava početna cena hleba (realan broj zaokružen na dve decima-
le).
Opis izlaza
Na standardni izlaz ispisati krajnju cenu hleba (realan broj zaokružen na dve decimale).
Primer
Ulaz

35.50

Izlaz

35.15

Rešenje
Jedno rešenje bilo bi da se uvedu tri promenljive (jedna za početnu cenu, jedna za cenu
posle poskupljenja i jedna za cenu posle pojeftinjenja).

double pocetna_cena;
cin >> pocetna_cena;
double cena_posle_poskupljenja = 1.1 * pocetna_cena;
double cena_posle_pojeftinjenja = 0.9 * cena_posle_poskupljenja;
cout << fixed << showpoint << setprecision(2)

<< cena_posle_pojeftinjenja << endl;

Zadatak možemo da rešimo i korišćenjem samo jedne promenljive za cenu, menjajući
vrednost te promenljive tokom izvršavanja programa. Ovaj stil programiranja je karakte-
rističan za imperativno programiranje.

double cena;
cin >> cena;
cena = 1.1 * cena;
cena = 0.9 * cena;
cout << fixed << showpoint << setprecision(2) << cena << endl;

3. Izrazi i izračunavanje

Jedan od osnovnih gradivnih elemenata svakog programa jesu izrazi, kojima se opisuju
izračunavanja. To su često aritmetička izračunavanja nad različitim tipovima brojeva, ali
u izračunavanjima i izrazima mogu učestvovati i drugi tipovi (videli smo već, na primer,
da se i niske mogu sabirati tj. nadovezivati). U ovom poglavlju ćemo detaljnije proučiti
sledeće elemente programskog jezika C++:

• Operatori, odgovaraju operacijama koje su definisane nad podacima određene vrste.

• Izrazi, koji kombinuju promenljive i konstante, korišćenjem operatora, dajući nove
vrednosti.

3.1 Aritmetički operatori i zapis matematičkih formula
Nad operandima brojevnih tipova mogu se primeniti sledeći aritmetički operatori:

• + binarni operator sabiranja;
• - binarni operator oduzimanja;
• * binarni operator množenja;
• / binarni operator (celobrojnog) deljenja;
• % binarni operator ostatka pri deljenju;
• - unarni operator promene znaka;
• + unarni operator.

Operator % moguće je primeniti isključivo nad operandima celobrojnog tipa.
Operator deljenja označava različite operacije u zavisnosti od tipa svojih operanada.1 Kada
se operator deljenja primenjuje na dve celobrojne vrednosti primenjuje se celobrojno de-

1Na hardveru su operacije nad celim brojevima i brojevima u pokretnom zarezu implementirane nezavisno i
u izvršivom programu koristi se jedna od njih, izabrana u fazi prevođenja u zavisnosti od tipova operanada. Infor-
macije o tipovima iz izvornog programa su na ovaj, ali i na druge slične načine, upotrebljene tokom prevođenja
i one se ne čuvaju u izvršivom programu.

47

48 GLAVA 3. IZRAZI I IZRAČUNAVANJE

ljenje (tj. rezultat je celi deo količnika). Na primer, izraz 9/5 ima vrednost 1. Precizirajmo
ovo.
Broj 𝑞 se naziva celobrojni količnik a broj 𝑟 ostatak pri deljenju prirodnih brojeva 𝑎 i 𝑏
(𝑏 ≠ 0) ako je 𝑎 = 𝑏 ⋅ 𝑞 + 𝑟 i ako je 0 ≤ 𝑟 < 𝑏.
Celobrojni količnik brojeva 𝑎 i 𝑏 obeležava se često sa 𝑎 div 𝑏 ili sa ⌊𝑎

𝑏 ⌋ (⌊…⌋ označava
zaokruživanje naniže odnosno najveći ceo broj koji je manji ili jednak datom broju), dok se
ostatak često označava sa 𝑎mod 𝑏. Važi da je 𝑎 div 𝑏 = ⌊𝑎

𝑏 ⌋, tj. da je 𝑞 = 𝑎 div 𝑏 najveći
ceo broj 𝑞 takav da je 𝑞 ⋅ 𝑏 ≤ 𝑎, što opravdava i korišćenje oznake ⌊𝑎

𝑏 ⌋ za celobrojni
količnik brojeva 𝑎 i 𝑏.
Ostatak pri deljelju negativnog broja može biti negativan. Naime, u jeziku C++, vrednost
izraza (-9) / 5 je -1, a (-9) % 5 je -4. Pošto različiti programski jezici na različite
načine definišu celobrojno deljenje negativnih vrednosti, ovu operaciju je poželjno izbega-
vati (kada je to moguće).
Kada je bar jedan operand operatora / realan, primenjuje se deljenje realnih brojeva (pre-
ciznije, deljenje brojeva u pokretnom zarezu). Na primer, izraz 9.0/5.0 ima vrednost
1.8 (jer se koristi deljenje brojeva u pokretnom zarezu). U slučaju da je jedan od opera-
nada ceo broj, a drugi broj u pokretnom zarezu, vrši se implicitna konverzija celobrojnog
operanda u broj u pokretnom zarezu i primenjuje se deljenje brojeva u pokretnom zarezu.
Po uzoru na uobičajene matematičke konvencije, operatori *, / i % međusobno imaju isti
prioritet, viši od prioriteta binarnih operatora + i - koji, takođe, međusobno imaju isti
prioritet.
Kada se u istom izrazu izostave zagrade, a isti operator se primeni više puta, potrebno je
precizirati kojim redosledom se vrši izračunavanje. Na primer, da li je vrednost izraza 1 -
2 - 3 jednaka (1 - 2) - 3 tj. -4 ili 1 - (2 - 3) tj. 2. Svi navedeni binarni operatori
imaju levu asocijativnost, što znači da se izračunavanje operatora istog prioriteta uvek vrši
sleva nadesno i prethodni izraz ima vrednost -4. Zanemarivanje ovog detalja može biti
nekada izvor grešaka. Na primer,

x1 = (-b + sqrt(b*b - 4*a*c)) / 2*a;

ne daje ispravno rešenje kvadratne jednačine (kada je diskriminantna pozitivna), jer se
umesto deljenja sa 2*a kao što razmaci sugerišu2, izračunavanje zapravo vrši sleva nadesno,
pa se brojilac deli sa 2, pa zatim množi sa a.
Prefiksni unarni operatori + i - imaju desnu asocijativnost i viši prioritet od svih binarnih
operatora.

2Razmaci umesto zagrada, ali i neka druga implicitna pravila, u matematici sugerišu grupisanje operanada i
redosled primene operacija. Na primer, podrazumeva se da je vrednost izraza 2𝑥 / 2𝑥 jednaka 1, što znači da
se operacije ne izvršavaju sleva nadesno. U programiranju se razmaci zanemaruju i grupisanje se jedino može
postići eksplicitnim korišćenjem zagrada.

3.1. ARITMETIČKI OPERATORI I ZAPIS MATEMATIČKIH FORMULA 49

3.1.1 Složeni operatori dodele
Pošto se uvećanje vrednosti promenljive za neku vrednost često javlja u programima, uve-
deni su posebni operatori složene dodele. Dodela x = x + 2; se može kraće zapisati i
kao x += 2;. Slično, naredba x = x * (y+1); ima isto dejstvo kao i x *= y+1;. Za
većinu binarnih operatora postoje složeni operatori dodele (na primer, +=, *=, /=, %=).
Ovi operatori imaju niži prioritet od svih ostalih operatora i desnu asocijativnost.
Kao i u slučaju operatora dodele, izrazi u kojima učestvuju ovi operatori imaju vrednost,
ali se te vrednosti obično zanemaruju a osnovni razlog primene ovih operatora je njihov
propratni efekat (izmena vrednosti promenljive na levoj strani).
Izračunavanje vrednosti izraza izraz1 op= izraz2 obično ima isto dejstvo kao i izraču-
navanje vrednosti izraza izraz1 = izraz1 op izraz2, gde je op jedan od nabrojanih
operatora, međutim, postoje i slučajevi kada dva navedena izraza imaju različite vredno-
sti3, pa treba biti obazriv prilikom upotrebe ovih operatora.

3.1.2 Inkrementiranje i dekrementiranje
Najčešće promene vrednosti promenljivih su uvećanje ili umanjenje za 1. Zato se uvo-
de posebni operatori inkrementirnja odnosno dekrementiranja. Inkrementiranje generalno
znači postepeno uvećavanje ili uvećavanje za neku konkretnu vrednost. U programiranju
se pod inkrementiranjem obično podrazumeva uvećavanje za 1, a pod dekrementiranjem
umanjivanje za 1. Operator inkrementiranja (uvećavanja za 1) zapisuje se sa ++, a operator
dekrementiranja (umanjivanja za 1) zapisuje se sa --:

• ++ (prefiksno i postfiksno) inkrementiranje
• -- (prefiksno i postfiksno) dekrementiranje.

Oba operatora mogu se primeniti nad celim brojevima i brojevima u pokretnom zarezu.
Obično se inkrementiraju promenljive ili elementi nizova. Tako, na primer, izraz 5++ nije
ispravan.
Oba operatora su unarna (imaju po jedan operand) i mogu se upotrebiti u prefiksnom (na
primer, ++x) ili postfiksnom obliku (na primer, x++). Razlika između ova dva oblika je
u tome što ++x uvećava vrednost promenljive x pre nego što je ona upotrebljena u širem
izrazu, a x++ je uvećava nakon što je upotrebljena. Preciznije, vrednost izraza x++ je stara
vrednost promenljive x, a vrednost izraza ++x je nova vrednost promenljive x, pri čemu
se u oba slučaja, prilikom izračunavanja vrednosti izraza, kao propratni efekat, uvećava
vrednost promenljive x. Na primer, ako promenljiva x ima vrednost 5, onda

y = x++;

3To se najčešće dešava u situacijama kada izračunavanje izraza izraz1 proizvodi neki propratni efekat. Na
primer, prilikom izračunavanja vrednosti izraza a[i++] += 5, promenljiva i se uvećava jednom, a prilikom
izračunavanja vrednosti izraza a[i++] = a[i++] + 5 dva puta

50 GLAVA 3. IZRAZI I IZRAČUNAVANJE

dodeljuje promenljivoj y vrednost 5, a

y = ++x;

dodeljuje promenljivoj y vrednost 6. Promenljiva x u oba slučaja dobija vrednost 6.
Ukoliko ne postoji širi kontekst, tj. ako inkrementiranje čini čitavu naredbu, vrednost izraza
se i ne koristi i onda nema razlike između naredbe x++; i ++x;.
Primetimo da semantika operatora inkrementiranjamože biti veoma komplikovana4 i stoga
se ne savetuje korišćenje složenijih izraza sa ovim operatorima (na primer, izraze poput x++
+ ++x treba izbegavati u programima). U jednostavnim izrazima i situacijama upotreba
operatora inkrementiranja i dekrementiranja je, naravno, legitimna a često i poželjna (jer
omogućava elegantan zapis). Na primer, u složenim izrazima, veoma česta je upotreba
postfiksne varijante u sklopu upisa elementa na naredu slobodnu poziciju u nizu a[i++] =
x (vrednost x se upisuje na slobodnu poziciju i, nakon čega se ta slobodna pozicija uvećava
za 1 tj. pomera na naredno mesto u nizu), a prefiksne varijante u sklopu uklanjanja iz niza
poslednjeg upisanog elementa x = a[--i] (prvo se slobodna pozicija umanjuje za 1, a
onda se promenljivoj x dodeljuje element koji je bio postavljen na tu poziciju – ona je bila
popunjena, a nakon ove dodele se smatra slobodnom).

3.2 Zapis matematičkih formula
U mnogim oblastima nauke i tehnike vrše se intenzivna izračunavanja u kojima se prime-
nom matematičkih formula rezultati dobijaju na osnovu vrednosti ulaznih podataka.
Na primer, na osnovu koordinata temena (𝑥1, 𝑦1) i (𝑥2, 𝑦2) nekog pravougaonika čije
su ivice paralelne koordinatnim osama možemo odrediti dužinu njegovih stranica (𝑎 =
|𝑥1 −𝑥2|, 𝑏 = |𝑦1 −𝑦2|), a zatim i dužinu dijagonale 𝑑 =

√
𝑎2 + 𝑏2, obim𝑂 = 2(𝑎+𝑏)

i površinu 𝑃 = 𝑎 ⋅ 𝑏.

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

int main() {
int x1, x2, y1, y2, a, b;
cin >> x1 >> y1 >> x2 >> y2;
a = abs(x2 - x1);
b = abs(y2 - y1);

4Precizan trenutak realizovanja propratnog efekta je u standardu formalizovan kroz pojam sekvencione tačke
(engl. sequence point).

3.3. SEKVENCIJALNI PROGRAMI 51

double dijagonala = sqrt(a*a + b*b);
int obim = 2*(a + b);
int povrsina = a*b;
cout << fixed << showpoint << setprecision(2)

<< dijagonala << endl
<< obim << endl
<< povrsina << endl;

return 0;
}

3.3 Sekvencijalni programi
Sekvencijalni programi tj. sekvencijalne funkcije sastoje se od niza naredbi koje se izvr-
šavaju jedna za drugom. Naredbe se izvršavaju istim redom bez obzira na podatke koji se
obrađuju. U kodu nema ni grananja ni petlji.
U ovoj glavi prikazaćemo primere nekih jednostavnih sekvencijalnih programa.

3.3.1 Sekvencijalno izračunavanje vrednosti
U mnogim izračunavanjima, na primer, u zadacima iz matematike i fizike, potrebno je
izračunati neke međurezultate na putu do konačnog rešenja. Takva izračunavanja možemo
da opišemo sekvencijalnim programima.
Razmotrimo problem izračunavanja visine H pravilnog tetratedra zadate stranice a. Naj-
pre se može, korišćenjem Pitagorine teoreme, izračunati visina h trougla koji je osnova
tetraedra. Zatim se može primeniti Pitagoritana teorema na trougao čije su katete a i dve
trećine visine h:

h = sqrt(a*a - (a/2)*(a/2));
x = (2*h)/3;
H = sqrt(a*a - x*x);

3.3.2 Celobrojno deljenje i ostatak
Date su dve promenljive a i b takve da je a > b. Zadatak je u prvu smestiti vrednost a
div b a u drugu a mod b. Naivni pokušaj da se to uradi na sledeći način

a = a / b;
b = a % b

52 GLAVA 3. IZRAZI I IZRAČUNAVANJE

nije ispravan, jer se prilikom izračunavanja ostatka koristi već izmenjena vrednost promen-
ljive a. Neophodno je upotrebiti pomoćnu promenljivu, na primer:

tmp = a;
a = a / b;
b = tmp % b;

3.3.3 Pozicioni zapis (brojevi, vreme, uglovi)
U pozicionom zapisu brojeva, doprinos cifre ukupnoj vrednosti broja ne zavisi samo od
vrednosti cifre, već i od njene pozicije u zapisu. Zapis 𝑐𝑛𝑐𝑛−1...𝑐0 u pozicionom sistemu
sa osnovom 𝑏 (to nekad obeležavamo sa (𝑐𝑛𝑐𝑛−1...𝑐0)𝑏) odgovara broju

𝑐𝑛 ⋅ 𝑏𝑛 + 𝑐𝑛−1 ⋅ 𝑏𝑛−1 + … + 𝑐1 ⋅ 𝑏 + 𝑐0,
pri čemu za svaku cifru 𝑐𝑖 važi 0 ≤ 𝑐𝑖 < 𝑏.
Na primer, broj 1234 u osnovi 10 jednak je 1 ⋅ 103 + 2 ⋅ 102 + 3 ⋅ 10 + 4.
Najčešće korišćeni brojevni sistem jeste dekadni sistem, odnosno sistem sa osnovom 10.
Broj 𝑥 se u dekadnom sistemu može predstaviti u obliku 𝑥 = 𝑐𝑛 ⋅ 10𝑛 + 𝑐𝑛−1 ⋅ 10𝑛−1 +
… + 𝑐1 ⋅ 10 + 𝑐0, gde je 𝑐0 cifra jedinica, 𝑐1 cifra desetica, 𝑐2 cifra stotina itd. i za svaku
od njih važi 0 ≤ 𝑐𝑖 ≤ 9.
Za zapis vremena i uglova koristi se pozicioni zapis u osnovi 60 (sat tj. ugao ima 60 minuta,
dok jedan minut ima 60 sekundi).
Vrednost broja se može odrediti i pomoću Hornerove šeme

(… ((𝑐𝑛 ⋅ 𝑏 + 𝑐𝑛−1) ⋅ 𝑏 + 𝑐𝑛−2) ⋅ 𝑏 + … + 𝑐1) ⋅ 𝑏 + 𝑐0.
Na primer broj 1234 u osnovi 10 jednak je ((1 ⋅ 10 + 2) ⋅ 10 + 3) ⋅ 10 + 4.
Poslednja cifra u dekadnom zapisu brojamože se odrediti operacijom izračunavanja ostatka
pri deljenju sa 10. Na primer, poslednja cifra broja 1234 je 4, što je upravo ostatak pri
deljenju tog broja sa 10. Slično, poslednja cifra zapisa broja u osnovi 𝑏 može se odrediti
operacijom izračunavanja ostatka pri deljenju broja sa 𝑏. Dokažimo ovo. Broj𝑥, čije su cifre
redom 𝑐𝑛𝑐𝑛−1 … 𝑐1𝑐0, predstavlja se u obliku 𝑥 = 𝑐𝑛 ⋅ 𝑏𝑛 +𝑐𝑛−1𝑏𝑛−1 +…+𝑐1 ⋅ 𝑏 +𝑐0.
Pošto su svi sabirci osim poslednjeg deljivi sa b, tj. broj se može napisati u obliku 𝑥 =
(𝑐𝑛 ⋅ 𝑏𝑛−1 + 𝑐𝑛−1 ⋅ 𝑏𝑛−2 + … + 𝑐1) ⋅ 𝑏 + 𝑐0 i pošto je 0 ≤ 𝑐0 < 𝑏, na osnovu definicije
celobrojnog količnika i ostatka važi da je 𝑥mod 𝑏 jednako 𝑐0.
Opštije, cifru 𝑐𝑘 uz koeficijent 𝑏𝑘 u zapisu broja 𝑥 možemo odrediti kao

(𝑥 div 𝑏𝑘)mod 𝑏.
Dokažimo i ovo. Dokažimo da važi da je 𝑥 div 𝑏𝑘 = 𝑐𝑛 ⋅ 𝑏𝑛−𝑘 + 𝑐𝑛−1 ⋅ 𝑏𝑛−𝑘−1 + … +
𝑐𝑘+1 ⋅ 𝑏 + 𝑐𝑘. Zaista, važi da je 𝑥 = (𝑐𝑛 ⋅ 𝑏𝑛−𝑘 + 𝑐𝑛−1 ⋅ 𝑏𝑛−𝑘−1 + … + 𝑐𝑘+1 ⋅ 𝑏 + 𝑐𝑘) ⋅

3.3. SEKVENCIJALNI PROGRAMI 53

𝑏𝑘 + 𝑐𝑘−1𝑏𝑘−1 + … + 𝑐1𝑏 + 𝑐0. Pošto za svaku cifru 𝑐𝑖 važi 0 ≤ 𝑐𝑖 ≤ 𝑏 − 1, važi da je
𝑐𝑘−1𝑏𝑘−1 +…+𝑐1𝑏+𝑐0 ≤ (𝑏−1) ⋅ (𝑏𝑘−1 +…+𝑏+1) = 𝑏𝑘 −1. Zato je 𝑥mod 𝑏𝑘 =
𝑐𝑘−1𝑏𝑘−1+…+𝑐1𝑏+𝑐0, dok je 𝑥 div 𝑏𝑘 = 𝑐𝑛 ⋅𝑏𝑛−𝑘+𝑐𝑛−1 ⋅𝑏𝑛−𝑘−1+…+𝑐𝑘+1 ⋅𝑏+𝑐𝑘.
Zato se do cifre 𝑐𝑘 može doći određivanjem ostatka pri deljenju ovog broja sa 𝑏 (svi sabirci
osim poslednjeg su deljivi sa 𝑏, dok je 0 ≤ 𝑐𝑘 < 𝑏).

3.3.3.1 Izračunavanje zbira cifara petocifrenog broja
Na osnovu gore navedenih zapažanja, veoma jednostavno se može napisati program koji
izračunava zbir svih cifara unetog petocifrenog broja.

// polazni broj i njegovo ucitavanje
int broj;
cin >> broj;

// izracunavanje zbira cifara
int cifraJedinica = (broj / 1) % 10;
int cifraDesetica = (broj / 10) % 10;
int cifraStotina = (broj / 100) % 10;
int cifraHiljada = (broj / 1000) % 10;
int cifraDesetinaHiljada = (broj / 10000) % 10;
int zbirCifara = cifraJedinica + cifraDesetica +

cifraStotina + cifraHiljada +
cifraDesetinaHiljada;

// prikaz rezultata
cout << zbirCifara << endl;

3.3.3.2 Razmenjivanje cifre jedinica i stotina
Naredni program prvo izdvaja, a zatim i razmenjuje cifre jedinica i stotina datog broja (ako
je broj manji od 100, njegova cifra stotina je 0).

// ucitavamo broj
int broj;
cin >> broj;

// odredjujemo cifru jedinica i cifru stotina
int c0 = (broj / 1) % 10;
int c2 = (broj / 100) % 10;

// uklanjamo cifre i dodajemo ih u razmenjenom poretku

54 GLAVA 3. IZRAZI I IZRAČUNAVANJE

int broj_r = broj - c0 - c2 * 100 +
c2 + c0 * 100;

// ispisujemo rezultat
cout << broj_r << endl;

3.3.3.3 Izračunavanje vremena između dva trenutka
Na sličan način možemo organizovati i računanje u osnovi 60, što je veoma pogodno za
rešavanje problema sa vremenom i uglovima. Na primer, ako su sat, minut i sekund po-
četka i kraja vožnje autobusom (pretpostavljamo da je vožnja počela i završila se u istom
danu), naredni program određuje koliko sati, minuta i sekundi je trajala ta vožnja. Najjed-
nostavnije rešenje je ako se prvo sati, minuti i sekundi pretvore u sekunde, izrše željene
aritmetičke operacije i zatim dobijeni rezultat prevede nazad u sate, minute i sekunde.

// pocetak i kraj voznje
int hPocetak, mPocetak, sPocetak;
cin >> hPocetak >> mPocetak >> sPocetak;
int hKraj, mKraj, sKraj;
cin >> hKraj >> mKraj >> sKraj;

// trajanje voznje
// prevodimo pocetak u sekunde (protekle od ponoci)
int SPocetak = hPocetak*60*60 + mPocetak*60 + sPocetak;
// prevodimo kraj u sekunde (protekle od ponoci)
int SKraj = hKraj*60*60 + mKraj*60 + sKraj;
// trajanje voznje u sekundama
int STrajanje = SKraj - SPocetak;
// prevodimo sekunde u sate, minute i sekunde
int sTrajanje = STrajanje % 60;
int mTrajanje = (STrajanje / 60) % 60;
int hTrajanje = STrajanje / (60*60);

cout << hTrajanje << ":" << mTrajanje << ":" << sTrajanje << endl;

Po sličnom principu možemo vršiti izračunavanja i u sistemu sa mešovitim brojevnim
osnovama. Na primer, vreme na UNIX sistemima se ponekad izražava brojem milisekun-
di proteklih od nekog fiksnog datuma (obično je to 1. januar 1970. godine). Narednim
funkcijama se na osnovu broja proteklih dana, sati, minuta, sekundi i milisekundi od tog
trenutka izračunava broj proteklih milisekundi i obratno.

3.3. SEKVENCIJALNI PROGRAMI 55

struct Vreme {
int dan, sat, min, sek, mili;

};

// prevodi dane, sate, minute, sekunde i milisekunde u milisekunde
int uMilisekunde(Vreme v) {

// Hornerova sema
return (((v.dan*24 + v.sat)*60 + v.min)*60 + v.sek)*1000 + v.mili;

}

// prevodi milisekunde u dane, sate, minute, sekunde i milisekunde
Vreme odMilisekundi(int ms) {

Vreme v;
v.mili = (ms / 1) % 1000;
v.sek = (ms / 1000) % 60;
v.min = (ms / (1000*60)) % 60;
v.sat = (ms / (1000*60*60)) % 24;
v.dan = (ms / (1000*60*60*24));
return v;

}

3.3.3.4 Izračunavanje ugla između kazaljki na satu
Računanje u osnovi 60 se može koristiti i za računanje sa uglovima. Na primer, narednim
programom izračunavamo ugao između kazaljki na satu (izražen brojem ugaonih stepeni i
ugaonih minuta).
Neka je dati vremenski trenutak opisan parametrima sat i minut.
Ugao koji minutna kazaljka zaklapa u odnosu na početni položaj od nula minuta (takozvani
ugaoni otklon minutne kazaljke) jednak je minut ⋅ 6∘. Zaista, na svaki minut vremena
minutna kazaljka se pomera za 360∘

60 = 6∘.
Ugao u ugaonim minutima koji satna kazaljka zauzima u odnosu na položaj 12h (ugaoni
otklon satne kazaljke) jednak je sat ⋅ 30∘ + minut ⋅ 0,5∘. Zaista na svaki sat kazaljka se
pomeri za 360∘

12 = 30∘. Na svaki minut vremena satna kazaljka se pomeri dodatno za
30∘
60 = 0,5∘. Zaista, ona se za jedan minut vremena pomeri 12 puta manje nego minutna
kazaljka, za koju smo ustanovili da se za minut vremena pomeri za 6∘.
Da bismo izbegli računanje sa realnim brojevima, možemo ove uglove izraziti u ugaonim
minutima. Minutna kazaljka se u svakom minutu pomeri za 6∘ = 6∘ ⋅ 60′

1∘ = 360′. Satna
kazaljka se u svakom satu pomeri za 30 ⋅ 60′ = 1800′ i u svakom minutu dodatno za
0,5∘ = 30′.
Da bi se izračunao (neorijentisani) ugao između kazaljki izražen u minutima potrebno
je odrediti apsolutnu vrednost razlike u ugaonim minutima. Na kraju je dobijeni rezultat

56 GLAVA 3. IZRAZI I IZRAČUNAVANJE

potrebno prevesti u stepene i minute.

// ucitavamo vreme
int sat, minut;
cin >> sat >> minut;

// sat svodimo na interval [0, 12)
sat %= 12;

// ugao u minutima koji satna kazalja zauzima sa polozajem 12h
int ugaoSatne = sat * 30 * 60 + minut * 30;
// ugao u minutima koji minutna kazaljka zauzima sa polozajem 12h
int ugaoMinutne = minut * 360;
// ugao izmedju satne i minutne kazaljki u minutima
int ugaoIzmedju = abs(ugaoSatne - ugaoMinutne);
// ugao izmedju kazaljki u stepenima i minutima
int ugaoIzmedjuStepeni = ugaoIzmedju / 60;
int ugaoIzmedjuMinuti = ugaoIzmedju % 60;

// ispis rezultata
cout << ugaoIzmedjuStepeni << ":" << ugaoIzmedjuMinuti << endl;

4. Grananje

Naredbe grananja (ili naredbe uslova), na osnovu vrednosti nekog izraza, određuju nared-
bu (ili grupu naredbi) koja će biti izvršena. Uslovi se izražavaju korišćenjem relacijskih i
logičkih operatora.

4.1 Relacijski i logički operatori i istinitosna vrednost izraza
4.1.1 Logički tip podataka

Tip bool je tip za predstavljanje istinitosnih (logičkih) vrednosti i ima sledeće moguće
vrednosti: true koja označava tačno i false koja označava netačno. Dodatno, svaki bro-
jevni izraz ima istinitosnu vrednost: netačno ako je jednak 0, i tačno inače — možemo
smatrati da se na taj način vrši konverzija brojevnih tipova u tip bool. Konverzija tipa
bool u tip int se vrši tako što se vrednost true tumači kao broj 1, a false kao 0.

4.1.2 Relacijski i logički operatori
Nad celim brojevima i brojevima u pokretnom zarezu mogu se koristiti sledeći binarni
relacijski operatori:

• == jednako;
• != različito.
• > veće;
• >= veće ili jednako;
• < manje;
• <= manje ili jednako.

Relacijski operatori poretka <, <=, > i >= imaju isti prioritet i to viši od operatora jed-
nakosti == i različitosti != i svi imaju levu asocijativnost. Rezultat relacionog operatora
primenjenog nad dva broja je tipa bool, tj. može imati vrednosti false ili true. Na
primer, izraz 3 > 5 ima vrednost false.

57

58 GLAVA 4. GRANANJE

Konverzije između brojevnih tipova i tipa bool, omogućavaju i neka neobična i početnici-
ma neočekivana ponašanja, koja mogu ponekad dovesti do grešaka. Na primer, u matema-
tici se pripadnost promenljive 𝑥 intervalu (0, 5) može zapisati kao 3 < 𝑥 < 5. Međutim,
ako x ima, na primer vrednost 2 onda u programu ovakav izraz ima vrednost true (što je
različito od možda očekivane vrednosti false, jer 2 nije između 3 i 5). Naime, izraz se
izračunava sleva nadesno — podizraz 3 < x ima vrednost false, koji se (u daljoj kombi-
naciji sa operatorom <) konvertuje u vrednost 0, a zatim izraz 0 < 5 daje vrednost true.
Ovo je opasna greška jer u ovakvim situacijama kompilator ne prijavljuje grešku, a u fazi
izvršavanja se dobija rezultat neočekivan za početnike koji su navikli na uobičajenu ma-
tematičku notaciju. Imajući u vidu ponašanje relacionih operatora, proveru da li je neka
vrednost između dve zadate neophodno je vršiti uz primenu logičkog operatora && izrazom
3 < x && x < 5.
Kao i umatematici, binarni relacijski operatori imaju niži prioritet od binarnih aritmetičkih
operatora (na primer, u izrazu 3 + 5*6 < 7*2 prvo se izračunavaju vrednosti 3 + 5*6
i 7*2, pa se tek onda porede). U izračunavanju vrednosti izraza 3 + 5*6 prioritet ima
operacija *.
Logički operatori primenjuju se nad vrednostima tipa bool i imaju tip rezultata bool.
Postoje sledeći logički operatori:

• ! logička negacija — ¬;
• && logička konjunkcija — ∧;
• || logička disjunkcija — ∨.

Operator && ima viši prioritet u odnosu na operator ||, a oba su levo asocijativna. Binarni
logički operatori imaju niži prioritet u odnosu na binarne aritmetičke i relacijske operatore.
Operator !, kao unarni operator, ima viši prioritet u odnosu na bilo koji binarni operator i
desno je asocijativan. Na primer,

• vrednost izraza !(2 > 3) jednaka je true;
• izrazom 3 < x && x < 5 proverava se da li je vrednost promenljive x između 3 i
5;

• izraz a > b || b > c && b > d ekvivalentan je izrazu (a>b) || ((b>c) &&
(b>d));

• izrazom g % 4 == 0 && g % 100 != 0 || g % 400 == 0 proverava se da li
je godina g prestupna.

Implicitne konverzije brojevnih tipova u tip bool omoguđavaju i da se logički operatori
primene i na brojevne vrednosti (kao što je već rečeno, jedino se vrednost 0 konvertuje u
false, dok se sve ostale brojevne vrednosti konvertuju u true). Na primer:

• vrednost izraza 5 && 4.3 jednaka je true;
• vrednost izraza 10.2 || 0 jednaka je true;
• vrednost izraza 0 && true jednaka je false;

4.1. RELACIJSKI I LOGIČKI OPERATORI I ISTINITOSNA VREDNOST IZRAZA 59

• vrednost izraza !0 jednaka je true;
• vrednost izraza !1 jednaka je false;
• vrednost izraza !9.2 jednaka je false.

Pošto programski jezik C u svojim ranijim verzijama nije uopšte posedovao tip bool,
korišćenje brojevnih vrednosti za predstavljanje istinitosnih se svojevremeno raširilo kao
programerska praksa. Ipak, takvi programi su manje razumljivi i podložni greškama, pa
savremeniji programski jezici proizišli iz jezika C (na primer, Java i C#) ukidaju moguć-
nost implicitne konverzije između brojevnog i logičkog tipa. Zato ćemo i mi izbegavati
upotrebu takvih konverzija (iako ih jezik C++, po uzoru na jezik C, dopušta).
Kao i u matematici, logički operatori imaju manji prioritet u odnosu na relacijske. Na
primer, u izrazu 3 < 4 && 2 > x, prvo se izračunavaju vrednosti podizraza 3 < 4 i 2
> x i zatim se tako dobijene logičke vrednosti kombinuju operatorom &&.
U izračunavanju vrednosti logičkih izraza koristi se strategija lenjog izračunavanja
(engl. lazy evaluation). Osnovna karakteristika ove strategije je da se izračunavanje
vrednosti operanada vrši s leva nadesno, što prestaje čim je moguće izračunati vrednost
celog izraza na osnovu vrednosti do sada izračunatih operanada (računa se samo ono što
je neophodno). Na primer, prilikom izračunavanja vrednosti izraza

2 < 1 && f(0)

biće izračunato da je vrednost podizraza 2 < 1 jednaka false, pa je sigurno i vrednost
čitavog izraza (zbog svojstva logičkog ∧ tj. &&) jednaka false. Zato nema potrebe izra-
čunavati vrednost podizraza f(0), pa funkcija f uopšte neće biti pozvana. S druge strane,
tokom izračunavanja vrednosti izraza

f(0) && 2 < 1

funkcija f će biti pozvana (jer se vrednost logičkih izraza izračunava sleva nadesno). U
izrazima u kojima se javlja operator &&, ukoliko je vrednost prvog operanda jednaka true,
onda se izračunava i vrednost drugog operanda.
U izrazu u kojem se javlja logičko ∨ tj. operator ||, ukoliko je vrednost prvog operan-
da jednaka true, onda se ne izračunava vrednost drugog operanda, jer se unapred može
zaključiti da je vrednost celog izraza true. Ukoliko je vrednost prvog operanda jednaka
false, onda se izračunava i vrednost drugog operanda. Na primer, u izračunavanju izraza

1 < 2 || f(0)

se ne poziva funkcija f, a poziva se u izračunavanju izraza

60 GLAVA 4. GRANANJE

2 < 1 || f(0)

Lenjo izračunavanje je vid optimizacije programa (jer se štedi vreme tako što se izbegavaju
nepotrebna izračunavanja). Međutim, oslanjanje na lenjo izračunavanje može nekada da
doprinese elegantnom pisanju programa. Na primer, razmotrimo kôd u kome se određuje
pozicija prvog neparnog elementa datog niza ili vektora (čija je dužina n).

i = 0;
while (i < n && a[i] % 2 == 0)
i++;

Ako je uslov i < n ispunjen, indeks i se sigurno nalazi u granicama niza (jer je ujedno i
pozitivan) i bezbedno se ispituje da li je element na poziciji i paran. Međutim, ako uslov
i < n nije ispunjen, petlja se odmah prekida, jer se stiglo do kraja niza. Usled lenjog
izračunavanja operatora &&, tada se uslov a[i] % 2 == 0 ne proverava. U tom trenutku
proveru tog uslova ne bismo ni smeli da vršimo, jer je i van granica niza, tako da nas le-
njo izračunavanje u ovom slučaju štiti od nedefinisanog ponašanja programa i potencijalne
greške.

4.1.3 Poređenje i poredak
U mnogim problemima potrebno je uporediti dva objekta. U nekim situacijama potrebno
je proveriti da li su dva objekta jednaka, a u nekim da li je jedan manji (ili veći) od drugog.
Za poređenje vrednosti osnovnih, brojevnih tipova na raspolaganju su operatori ==, !=, <,
>, <=, >= sa odgovarajućim, uobičajenim matematičkim značenjem. Poređenje vrednosti
složenih tipova svodi se na poređenje vrednosti osnovnih tipova.

4.1.3.1 Relacija jednakosti
Relacija jednakosti je relacija ekvivalencije: ona je refleksivna, simetrična i tranzitivna.
Relacioni operator jednakosti (==), nad raspoloživim tipovima (na primer, int, double,
string) zadovoljava ove uslove.1 Ovaj operator može se koristiti za proveru jednakosti
dve vrednosti osnovnih tipova, a za korisnički definisane tipove u jeziku C++ može da se
definiše (za razliku od jezika C).

1Za brojeve u pokretnom zarezu (ako se sledi standard IEEE 754, što standard jezika C++ ne propisuje), ovo
važi samo za skup vrednosti bez pozitivne i negativne vrednosti “not-a-number” (Nan). Naime, izraz NaN==NaN
nije tačan. Dodatno, treba naglasiti da se svojstva relacije ekvivalencije odnose samo na vrednosti koje pri-
padaju istim tipovima. Na primer, nakon naredbe float x = 0.1;, promenljiva x ima (na nekom sistemu)
vrednost 0.100000001490116119384765625, a nakon naredbe double x = 0.1;, promenljiva x ima (na
istom tom sistemu) vrednost 0.1000000000000000055511151231257827021181583404541015625. Tre-
ba, dakle, imati na umu i da su rezultati operacija (čak i jednostavnih dodela) nad brojevima u pokretnom zarezu
često dobijeni zaokruživanjem. Zbog toga, vrednosti dva izraza mogu biti različite i kada su vrednosti odgovara-
jućih izraza nad realnim brojevima jednake. Drugim rečima, treba uvek imati na umu da su matematička pravila
za brojeve u pokretnom zarezu drugačija od matematičkih pravila koja važe za realne brojeve.

4.1. RELACIJSKI I LOGIČKI OPERATORI I ISTINITOSNA VREDNOST IZRAZA 61

Za dve vrednosti tipa neke strukture, provera jednakosti svodi se na proveru jednakosti svih
članova pojedinačno ili možda na neki drugi način. Na primer, dva razlomka nisu jednaka
samo ako su im i imenilac i brojilac jednaki, nego i u nekim drugim slučajevima. Ako je
struktura razlomak zadata na sledeći način

struct razlomak {
int brojilac;
int imenilac;

};

onda se jednakost dva razlomka (definisanih vrednosti) može ispitati narednom funkcijom:

int jednaki_razlomci(razlomak a, razlomak b)
{

return a.imenilac * b.brojilac == b.imenilac * a.brojilac;
}

Primetimo da u prethodnoj funkciji postoji opasnost od nastanka prekoračenja, pa je treba
koristiti veoma obazrivo.

4.1.3.2 Relacije poretka
Relacija poretka je relacija koja je refleksivna, antisimetrična i tranzitivna. Takva je, na
primer, relacija ≤ nad skupom prirodnih brojeva. Slično, relacioni operatori <= i >= nad
osnovnim, tipovima određuju relacije poretka. Relacija strogog poretka je relacija koja je
antirefleksivna, antisimetrična i tranzitivna. Takva je, na primer, relacija < nad skupom
prirodnih brojeva. Slično, relacioni operatori < i > nad osnovnim, brojevnim tipovima
određuju relacije strogog poretka.2 Vrednosti osnovnih, brojevnih tipova mogu, međutim,
da se porede i na neki drugi način – na primer, ako je potrebno pronaći broj koji je najbliži
zadatoj vrednosti, cele brojeve je potrebno porediti prema odnosu njihovih rastojanja od
te zadate vrednosti (važi da je 𝑎 bliže 𝑥 od 𝑏, ako je |𝑎 − 𝑥| < |𝑏 − 𝑥|). Takođe, za druge
tipove potrebno je implementirati funkcije koje vrše poređenje a one se obično zasnivaju
na poređenju za jednostavnije tipove. Funkcije za poređenje dve vrednosti obično vraća-
ju vrednost manju od nule ako je prvi argument manji, nulu ako su argumenti jednaki i
vrednost veću od nule ako je drugi argument manji. Na primer, naredna funkcija poredi
dvoslovne oznake država po standardu ISO 31663. Ona vraća vrednost −1 ako je prvi kôd
manji, 0 ako su zadati kodovi jednaki i 1 ako je drugi kôd manji:

2Ako se sledi standard IEEE 754 za brojeve u pokretnom zarezu, ovo važi samo za skup vrednosti bez pozitivne
i negativne vrednosti “not-a-number” (NaN).

3Svrha standarda ISO 3166 je definisanje međunarodno priznatih dvoslovnih kodova za države ili neke njihove
delove. Kodovi su sačinjeni od po dva slova engleskog alfabeta. Koriste se za oznaku nacionalnih internet domena,
od strane poštanski organizacija, i dr. Dvoslovna oznaka za Srbiju je „rs, za Portugaliju ,,pt, za Rusiju
„ru“, itd.

62 GLAVA 4. GRANANJE

int porediKodoveDrzava(string a, string b)
{

if (a[0] < b[0])
return -1;

if (a[0] > b[0])
return 1;

if (a[1] < b[1])
return -1;

if (a[1] > b[1])
return 1;

return 0;
}

Parovi karaktera se, dakle, mogu porediti tako što se najpre porede prvi karakteri u paro-
vima, a zatim, ako je potrebno, drugi karakteri. Slično se mogu porediti i datumi opisani
narednom strukturom:

struct datum {
unsigned dan;
unsigned mesec;
unsigned godina;

};

Prvo se porede godine – ako su godine različite, redosled dva datuma može se odrediti na
osnovu njihovog odnosa. Ako su godine jednake, onda se prelazi na poređenje meseci. Na
kraju, ako su i meseci jednaki, prelazi se na poređenje dana. Naredna funkcija implemen-
tira ovaj algoritam i vraća −1 ako je prvi datum pre drugog, 1 ako je drugi datum pre
prvog i 0 ako su jednaki.

int porediDatume(datum d1, const datum d2)
{

if (d1.godina < d2.godina)
return -1;

if (d1.godina > d2.godina)
return 1;

if (d1.mesec < d2.mesec)
return -1;

if (d1.mesec > d2.mesec)
return 1;

if (d1.dan < d2.dan)

4.1. RELACIJSKI I LOGIČKI OPERATORI I ISTINITOSNA VREDNOST IZRAZA 63

return -1;
if (d1.dan > d2.dan)

return 1;
return 0;

Može se napisati i jedinstven logički izraz kojim se proverava da li je prvi datum ispred
drugog:

bool datumPre(datum d1, datum d2)
{

return
d1.godina < d2.godina ||
(d1.godina == d2.godina && d1.mesec < d2.mesec) ||
(d1.godina == d2.godina && d1.mesec == d2.mesec &&
d1.dan < d2.dan);

}

Generalno, torke sa fiksnim jednakim brojem elemenata mogu se porediti tako što se naj-
pre porede njihovi prvi elementi, zatim, ako je potrebno, njihovi drugi elementi i tako dalje,
sve dok se ne naiđe na neki različit par elemenata, na osnovu kojeg se određuje poredak.
Dakle, relacija poređenja pojedinačnih elemenata može se proširiti na relaciju poređenja
𝑛-torki elemenata tj. ako je na skupu 𝑋 (na primer, na skupu karaktera) definisana rela-
cija poretka ≺, onda se može definisati i relacija poretka ≺𝑙 na skupu 𝑋𝑛 (na primer,
na niskama karaktera dužine 𝑛). Štaviše, relacija poretka nad pojedinačnim elementima
skupa 𝑋 može se proširiti i na skup 𝑋∗ = ⋃+∞

𝑛=0 𝑋𝑛, tj. može se proširiti i na skup svih
torki svih dužina. Poređenje se ponovo vrši redom i čim se naiđe na prvu poziciju na kojoj
se u dve torke nalazi različit element, na osnovu njega određuje se poredak torki. Kada
su torke različite dužine, tada se može desiti da se dođe do kraja jedne od njih. Ako se
istovremeno došlo i do kraja druge, tada su torke jednake, a ako nije, tada je kraća torka
prefiks one duže. Tada se smatra da je kraća torka manja (ide pre one duže torke). Ova-
ko definisana relacija poretka naziva se leksikografski poredak (jer se koristi i u poretku
odrednica u leksikonima i rečnicima). Za niske (potencijalno različitih dužina) može se
definisati leksikografski poredak koji je zasnovan na poređenju karaktera. Kada se ope-
ratori <, >, <= i >= primene na tip string vrši se upravo ovakav način poređenja. Pored
ovoga definisana je i metoda compare koja poredi niske. Poziv str1.compare(str2)
vraća negativnu vrednost ako niska str1 leksikografski prethodni niski str2, pozitivnu
vrednost ako niska str2 leksikografski prethodni niski str2, a nulu ako su niske jednake.
Niske mogu da se porede i na neki drugi način, na primer, samo po dužini:

64 GLAVA 4. GRANANJE

int porediNiske(string a, string b)
{

return a.length() - b.length();
}

Dva razlomka (čiji su imenioci pozitivni) mogu da se porede sledećom funkcijom (pod
pretpostavkomda smo sigurni da prilikommnoženja neće doći do prekoračenja), koja vraća
negativan rezultat ako je prvi razlomak manji od drugog, pozitivan rezultat ako je prvi
razlomak veći od drugog, a nulu ako su razlomci jednaki:

int porediRazlomke(razlomak a, razlomak b)
{

return a.brojilac * b.imenilac - b.brojilac * a.imenilac;
}

4.2 Naredba if-else
Naredba uslova if ima sledeći opšti oblik:

if (izraz)
naredba1

else
naredba2

Deo naredbe else je opcioni, tj. može da postoji samo if grana.
Naredba naredba1 i naredba naredba2 su ili pojedinačne naredbe (kada se završavaju
simbolom ;) ili blokovi naredbi zapisani između vitičastih zagrada (iza kojih se ne piše
simbol ;). Vitičaste zagrade je moguće staviti i oko pojedinačnih naredbi, ali to nije ne-
ophodno. U praksi se događa da programeri naknadno požele da u postojeću naredbu if
dodaju nove naredbe koje će se uslovno izvršiti. Ako se zagrade ne navedu, doći će ili do
sintaksičke greške ili do semenatičke greške tj. dobiće se program koji ili ne može da se
prevede ili se prevodi, ali ne radi na očekivani način. Na primer, pošto u narednom kodu
nisu navedene zagrade, bez ozbira na to kako je kôd poravnat4, tj. kako su naredbe uvu-
čene, naredba1 će se izvršiti samo ako je uslov ispunjen, dok će se naredba2 izvršiti i
kada uslov jeste i kada nije ispunjen.

4Interesantno, neki programski jezici, poput jezika Python koriste poravnavanje naredbi da bi odredili koje
se naredbe izvršavaju uslovno u sklopu naredbe grananja tj. koje se naredbe ponavljaju u sklopu petlji.

4.2. NAREDBA IF-ELSE 65

if (izraz)
naredba1;
naredba2;

Pošto vitičaste zagrade nisu navedene, prethodni kôd će se zapravo tumačiti kao:

if (izraz)
naredba1;

naredba2;

Da se ovakve greške ne bi događale, nekada se savetuje da se i u slučaju petlji sa jednom
naredbom u telu, za svaki slučaj navode vitičaste zagrade.
Izraz izraz predstavlja logički uslov i najčešće je u pitanju izraz tipa bool (ali, usled
implicitne konverzije, može biti i izraz brojevnog tipa, što nije preporučljivo). Na primer,
nakon koda

int a = 5, b = 3;
if (a > b)

maksimum = a;
else

maksimum = b;

promenljiva maksimum će imati vrednost 5 (jer je uslov a > b ispunjen).
Kako se ispituje istinitosna vrednost izraza koji je naveden kao uslov, ponekad je moguće
taj uslov zapisati kraće. Na primer, if (n != 0) je ekvivalentno sa if (n), što smanjuje
čitljivost programa i stvara prostor za greške (ali se može često sresti, usled nasleđene
tradicije iz ranih verzija programskog jezika C koje nisu imale poseban tip bool).
Dodela čini izraz čija se vrednost može konvertovati u istinitosnu vrednost, pa je naredni
kôd sintaksički ispravan, ali je verovatno semantički pogrešan (tj. ne opisuje ono što je bila
namera programera):

a = 3;
if (a = 0)

cout << "a je nula" << endl;
else

cout << "a nije nula" << endl;

Naime, efekat navedenog koda je da postavlja vrednost promenljive a na nulu (a ne da
ispita da li je a jednako 0), a zatim ispisuje tekst a nije nula, jer je vrednost izraza
a = 0 nula, što se smatra netačnim. Nehotično mešanje operatora == operatorom = u

66 GLAVA 4. GRANANJE

naredbi if je česta greška. Međutim, operator == koji ispituje da li su neke dve vrednosti
jednake i operator dodele = različiti su operatori i imaju potpuno drugačije značenje. Na
sreću, većina kompilatora daje upozorenje ako se operator dodele = koristi u okviru nekog
logičkog uslova.
Naredbe koje se izvršavaju uslovno mogu da sadrže nove naredbe uslova, tj. može biti
više ugnežđenih if naredbi. U takvim situacijama može biti nejasno na koju naredbu if
se odnosi navedeni else (ta pojava se naziva if-else višeznačnost). Ukoliko vitičastim
zagradama nije obezbeđeno drugačije, else se odnosi na poslednji prethodeći neuparen if.
Ukoliko se želi drugačije ponašanje, neophodno je navesti vitičaste zagrade. U narednom
primeru, else se odnosi na drugo, a ne na prvo if (iako nazubljivanje sugeriše drugačije):

if (izraz1)
if (izraz2)
naredba1

else
naredba2

U narednom primeru, else se odnosi na prvo a ne na drugo if :

if (izraz1) {
if (izraz2)
naredba1

} else
naredba2

Da bi se izbegle višeznačnosti ovog tipa i smanjila mogućnost nastajanja greške usled toga
što su programer i kompilator shvatili program na različite načine, preporučuje se da se
prilikom ugnežđavanja naredbi if-else uvek koriste zagrade (čak i kada se u telu nalazi
samo jedna naredba).

4.2.1 Konstrukcija else-if
Za višestruke odluke često se koristi konstrukcija sledećeg oblika:

if (izraz1)
naredba1

else if (izraz2)
naredba2

else if (izraz3)
naredba3

else

4.3. OPERATOR USLOVA 67

naredba4

U ovako konstruisanoj naredbi, uslovi se ispituju jedan za drugim. Kada je jedan uslov
ispunjen, onda se izvršava naredba koja mu je pridružena i time se završava izvršavanje či-
tave naredbe. Naredba naredba4 u gore navedenom primeru se izvršava ako nije ispunjen
nijedan od uslova izraz1, izraz2, izraz3. Naredni primer ilustruje ovaj tip uslovnog
grananja.

if (a > 0)
cout << "A je veci od nule" << endl;

else if (a < 0)
cout << "A je manji od nule" << endl;

else /* if (a == 0) */
cout << "A je nula" << endl;

4.3 Operator uslova
Naredna naredba

if (a > b)
maksimum = a;

else
maksimum = b;

određuje i smešta u promenljivu maksimum veću od vrednosti a i b. Naredba ovakvog
oblika se može zapisati kraće korišćenjem ternarnog operatora uslova ?:, na sledeći način:

maksimum = a > b ? a : b;

Naravno, maksimum dva broja u jeziku C++ uvek je bolje određivati korišćenjem biblio-
tečke funkcije max (potrebno je uključiti zaglavlje <algorithm>).
Ternarni operator uslova ?: se koristi u sledećem opštem obliku:

izraz1 ? izraz2 : izraz3

Prioritet ovog operatora je niži u odnosu na skoro sve binarne operatore (izuzetak su, na
primer, operatori dodel).
Izraz izraz1 se izračunava prvi. Ako on ima vrednost različitu od nule (tj. ako ima istini-
tosnu vrednost tačno), onda se izračunava vrednost izraza izraz2 i to je vrednost čitavog
uslovnog izraza. U suprotnom se izračunava vrednost izraz3 i to je vrednost čitavog uslov-
nog izraza. Na primer, vrednost izraza

68 GLAVA 4. GRANANJE

x < 0 ? -x : x

je apsolutna vrednost broja x.
I ternarni uslovni operator se izračunava lenjo. Naime, ako je vrednost izraza izraz1 tačno,
tada se izraz izraz3 uopšte ne izračunava, a ako je netačno, tada se izraz izraz2 uopšte
ne izračunava.

4.4 Naredba switch
Naredba switch se koristi za višestruko odlučivanje i ima sledeći opšti oblik:

switch (izraz) {
case konstantan_izraz1: naredbe1
case konstantan_izraz2: naredbe2
...
default: naredbe_n

}

Naredbe koje treba izvršiti označene su slučajevima (engl. case) za različite moguće pojedi-
načne vrednosti zadatog izraza izraz. Svakom slučaju pridružen je konstantni celobrojni
izraz. Ukoliko zadati izraz izraz ima vrednost konstantnog izraza navedenog u nekom
slučaju, onda se izvršavanje nastavlja od prve naredbe pridružene tom slučaju, pa se nasta-
vlja i sa izvršavanjem naredbi koje odgovaraju sledećim slučajevima iako izraz nije imao
njihovu vrednost, sve dok se ne naiđe na kraj ili naredbu break. Na slučaj default se
prelazi ako vrednost izraza izraz nije navedena ni uz jedan slučaj. Slučaj default je
opcioni i ukoliko nije naveden, a nijedan postojeći slučaj nije ispunjen, onda se ne izvrša-
va nijedna naredba u okviru bloka switch. Slučajevi mogu biti navedeni u proizvoljnom
poretku (uključujući i slučaj default), ali različiti poreci mogu da daju različito pona-
šanje programa. Iako to standard ne zahteva, slučaj default se gotovo uvek navodi kao
poslednji slučaj. I ukoliko slučaj default nije naveden kao poslednji, ako vrednost izraza
izraz nije navedena ni uz jedan drugi slučaj, prelazi se na izvršavanje naredbi od naredbe
pridružene slučaju default.
U okviru naredbe switch često se koristi naredba break. Kada se naiđe na naredbu
break, napušta se naredba switch. Najčešće se naredbe pridužene svakom slučaju završa-
vaju naredbom break (čak i nakon poslednje navedenog slučaja, što je najčešće default).
Time se ne menja ponašanje programa, ali se obezbeđuje da poredak slučajeva ne utiče na
izvršavanje programa, te je takav kôd jednostavniji za održavanje.
Izostavljanje naredbe break, tj. previđanje činjenice da se, ukoliko nema naredbi break,
nastavlja sa izvršavanjem naredbi narednih slučajeva, često dovodi do grešaka u progra-
mu, pa je zato ta mogućnost zabranjena u nekim savremenijim programskim jezicima (na

4.5. PRIMERI 69

primer, u jeziku C#). S druge strane, izostavljanje naredbe break može biti pogodno (i
opravdano) za pokrivanje više različitih slučajeva jednom naredbom (ili blokom naredbi).
U narednom primeru proverava se da li je uneti broj deljiv sa tri, korišćenjem naredbe
switch.

#include <iostream>
using namespace std;

int main() {
int n;
cin >> n;

switch (n % 3) {
case 1:
case 2:

cout << "Uneti broj nije deljiv sa 3";
break;

default: cout << "Uneti broj je deljiv sa 3";
}
return 0;

}

U navedenom primeru, bilo da je vrednost izraza n % 3 jednaka 1 ili 2, biće ispisan
tekst Uneti broj nije deljiv sa 3, a inače će biti ispisan tekst Uneti broj je
deljiv sa 3. Da nije navedena naredba break, onda bi u slučaju da je vrednost izraza
n % 3 jednaka 1 (ili 2), nakon teksta Uneti broj nije deljiv sa 3, bio ispisan i
tekst Uneti broj je deljiv sa 3 (jer bi bilo nastavljeno izvršavanje svih naredbi za
sve naredne slučajeve).

4.5 Primeri
Prikažimo u nastavku nekoliko tipičnih scenarija upotrebe grananja. Naredni spisak pri-
mera nije ni na koji način iscrpan, već samo pokazuje neke tipove problema koji se često
mogu sresti. Programer uvek treba da pažljivom analizom problema osmisli strukturu uslo-
va koje je potrebno ispitati da bi se pokrili svi mogući slučajevi i da bi problem bio ispravno
rešen.

4.5.1 Broj dana u mesecu (grananje na osnovu vrednosti promenljive)
Veoma česta i jednostavna situacija je kada se grananje vrši na osnovu različitih pojedi-
načnih vrednosti neke promenljive.

70 GLAVA 4. GRANANJE

Na primer, u narednom programu određuje se broj dana u mesecu na osnovu rednog broja
meseca (od 1 do 12) i godine. Pošto broj dana u februaru zavisi od toga da li je godina
prestupna, pogodno je definisati pomoćnu funkciju kojom se korišćenjem logičkog izraza
ispituje da li je godina prestupna (podsetimo se, godina je prestupna ako je deljiva sa 4, a
nije deljiva sa sto ili ako je deljiva sa 400).

// provera da li je data godina prestupna
bool prestupna(int godina) {
// godina je prestupna ako je deljiva sa 4 i nije deljiva sa 100,
// ili ako je deljiva sa 400
return (godina % 4 == 0 && godina % 100 != 0) || (godina % 400 == 0);

}

Grananje je sada moguće realizovati uz korišćenje konstrukcije else-if.

int main() {
// ucitavamo mesec i godinu
int mesec, godina;
cin >> mesec >> godina;

// odredjujemo broj dana u tom mesecu
int brojDana = 0;
// januar, mart, maj, jul, avgust, oktobar, decembar
if (mesec == 1 || mesec == 3 || mesec == 5 || mesec == 7 ||

mesec == 8 || mesec == 10 || mesec == 12)
brojDana = 31;

// april, jun, septembar, novembar
else if (mesec == 4 || mesec == 6 || mesec == 9 || mesec == 11)
brojDana = 30;

// februar
else if (mesec == 2)
brojDana = prestupna(godina) ? 29 : 28;

// ispisujemo rezultat
cout << brojDana << endl;

return 0;
}

Naravno, moguće je upotrebiti i naredbu switch-case.

4.5. PRIMERI 71

int main() {
// ucitavamo mesec i godinu
int mesec, godina;
cin >> mesec >> godina;

// odredjujemo broj dana u tom mesecu
int brojDana = 0;
switch(mesec) {
// januar, mart, maj, jul, avgust, oktobar, decembar

case 1: case 3: case 5: case 7: case 8: case 10: case 12:
brojDana = 31;
break;
// april, jun, septembar, novembar

case 4: case 6: case 9: case 11:
brojDana = 30;
break;
// februar

case 2:
brojDana = prestupna(godina) ? 29 : 28;
break;

}

// ispisujemo rezultat
cout << brojDana << endl;
return 0;

}

Ovakvi zadaci se mogu rešavati i bez grananja, tako što se svi elementi smeste u niz (ili
mapu).

int main() {
// ucitavamo mesec i godinu
int mesec, godina;
cin >> mesec >> godina;

// broj dana u svakom mesecu
int brojDanaUMesecu[] =
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

// citamo broj dana

72 GLAVA 4. GRANANJE

int brojDana = brojDanaUMesecu[mesec];
// posebno obradjujemo februar prestupnih godina
if (mesec == 2 && prestupna(godina))
brojDana++;

// ispisujemo rezultat
cout << brojDana << endl;

return 0;
}

4.5.2 Agregatno stanje vode (grananje na osnovu pripadnosti intervalu)
Još jedan tipačn oblik upotrebe konstrukcije else-if je provera kojem od nekoliko na-
dovezanih intervala brojevne prave pripada data vrednost. Na primer, možemo na osnovu
temperature vode određivati njeno agregatno stanje (smatramo da je ona u čvrstom stanju
zaključno sa 0 stepeni, tečnom stanju do 100 stepeni (bez vrednosti 100) i gasovitom sta-
nju počevši od 100 stepeni). Jedan način je da se pripadnost svakom od intervala ispita
nezavisno.

int t; // Temperatura
cin >> t;

if (t <= 0)
cout << "cvrsto" << endl;

if (t > 0 && t < 100)
cout << "tecno" << endl;

if (t >= 100)
cout << "gasovito" << endl;

Bolje rešenje dobija se ako se uslovi nadovežu, korišćenjem konstrukcije else-if.

int t; // Temperatura
cin >> t;

if (t <= 0)
cout << "cvrsto" << endl;

else if (t < 100)
cout << "tecno" << endl;

else

4.5. PRIMERI 73

cout << "gasovito" << endl;

4.5.3 Uspeh učenika
Na sličan način je, na primer, moguće odrediti ocenu na osnovu broja poena na ispitu ili
uspeh učenika na osnovu zaključne ocene.

double prosek; // prosek ocena ucenika
cin >> prosek;
if (prosek >= 4.5)

cout << "odlican" << endl;
else if (prosek >= 3.5)

cout << "vrlodobar" << endl;
else if (prosek >= 2.5)

cout << "dobar" << endl;
else if (prosek >= 2)

cout << "dovoljan" << endl;
else

cout << "nedovoljan" << endl;

4.5.4 Kvadrant kom pripada tačka (hijerarhija ugnežđenih uslova)
U nekim slučajevima je grananje hijerarhijsko. Slučajevi se klasifikuju prvo na osnovu
nekog polaznog kriterijuma, onda se svaka klasa na osnovu nekog drugog kriterijuma da-
lje deli na potklase i tako sve dok se ne dođe do slučaja koji može direktno da se reši.
Na primer, možemo na osnovu koordinata tačke u ravni određivati kom kvadratnu, odno-
sno kojoj koordinatnoj osi tačka pripada. Prvo je moguće vršiti klasifikaciju na osnovu
vrednosti jedne koordinate, pa zatim na osnovu druge.

int x, y;
cin >> x >> y;
if (x > 0) {

if (y > 0) {
cout << "1. kvadrant" << endl;

} else if (y < 0) {
cout << "4. kvadrant" << endl;

} else {
cout << "pozitivni deo x ose" << endl;

}
} else if (x < 0) {

74 GLAVA 4. GRANANJE

if (y > 0) {
cout << "2. kvadrant" << endl;

} else if (y < 0) {
cout << "3. kvadrant" << endl;

} else {
cout << "negativni deo x ose" << endl;

}
} else {

if (y > 0) {
cout << "pozitivni deo y ose" << endl;

} else if (y < 0) {
cout << "negativni deo y ose" << endl;

} else {
cout << "koordinatni pocetak" << endl;

}
}

4.5.5 Poređenje datuma (leksikografsko poređenje torki iste dužine)
Grananje se koristi i u leksikografskom poređenju torki iste dužine. Tipičan primer je
poređenje datuma. Svaki datum se može predstaviti trojkom brojeva (dan, mesec, godina).
Kada se porede dva datuma, prvo se porede godine, pa ako je godina u nekom datumu
manja, onda je i taj datum manji (raniji). Ako su godine jednake onda se porede meseci,
pa ako su jednaki i meseci, tek onda se porede i dani. Na primer, ako je poznat datum
rođenja osobe i današnji datum, možemo utvrditi da li je osoba punoletna. Ceo ovaj složeni
uslov se može izraziti jednim velikim logičkim izrazom.

int d1, m1, g1; // datum rodjenja
int d2, m2, g2; // datum u kom se ispituje punoletstvo
cin >> d1 >> m1 >> g1

>> d2 >> m2 >> g2;
if ((g2 > g1 + 18) ||

(g2 == g1 + 18 && m2 > m1) ||
(g2 == g1 + 18 && m2 == m1 && d2 >= d1))

cout << "DA" << endl;
else
cout << "NE" << endl;

Do rešenja je moguće doći i pomoću više ugnežđenih naredbi if.

4.5. PRIMERI 75

bool punoletan;
if (g2 > g1 + 18)

punoletan = true;
else if (g2 < g1 + 18)

punoletan = false;
else { // g1 == g2

if (m2 > m1)
punoletan = true;

else if (m2 < m1)
punoletan = false;

else { // m1 == m2
if (d2 >= d1)
punoletan = true;

else
punoletan = false;

// punoletan = d2 >= d1;
}

}

4.5.6 Vrsta trougla na osnovu stranica
Na kraju, naglasimo, da smo u prethodnom tekstu prikazali samo nekoliko tipičnih pri-
mera, a da je često potrebno osmisliti strukturu grananja ne prateći neki šablon, nego
pažljivom analizom zahteva zadatka. Na primer, u narednom primeru se određuje vrsta
trougla (jednakostranični, jednakokraki, raznostranični) na osnovu poznatih dužina njego-
vih stranica. Prvo se proverava da li date dužine zadovoljavaju nejednakost trougla, a zatim,
redom, da li je trougao jednakostranični (za to je dovoljno da ima dva para jednakih stra-
nica), zatim da li je jednakokraki (za to je dovoljno da ima jedan par jednakih stranica).
Ako nijedan od tih uslova nije ispunjen, trougao je raznostraničan. Obratimo pažnju na to
da zahvaljujući konstrukciji else if, prilikom ispitivanja da li je trougao jednakokraki
već znamo da ne postoje dva para jednakih stranica, pa je dovoljno ispitati da li postoji
bar jedan par jednakih stranica (ako postoji bar jedan, pošto ne postoje dva, tada postoji
tačno jedan par). Slično, uslov da su svi parovi stranica različiti ne treba proveravati, jer
ako uslov da ne postoji bar jedan par jednakih stranica, taj uslov automatski važi.

if (a + b > c && a + c > b && b + c > a) {
if (a == b && b == c /* && a == c */)
cout << "jednakostranicni" << endl;

else if (a == b || b == c || a == c)
cout << "jednakokraki" << endl;

76 GLAVA 4. GRANANJE

else
cout << "raznostranicni" << endl;

} else
cout << "trougao ne postoji" << endl;

5. Petlje

Petlje (ciklusi ili repetitivne naredbe) uzrokuju da se određena naredba (ili grupa naredbi)
izvršava više puta (sve dok je neki logički uslov ispunjen).

5.1 Petlja while
Petlja while ima sledeći opšti oblik:

while (<izraz>)
<naredba>

U petlji while ispituje se vrednost izraza izraz i ako ona ima istinitosnu vrednost tačno
(tj. vrednost različita od nule ako je izraz brojevnog tipa), izvršava se naredba (što je
ili pojedinačna naredba ili blok naredbi). Zatim se uslov izraz iznova proverava i sve se
ponavlja dok mu istinosna vrednost ne postane netačno (tj. vrednost nula ako je izraz
brojevnog tipa). Tada se izlazi iz petlje i nastavlja sa izvršavanjem prve sledeće naredbe
u programu. Dakle, ako u telu petlje nema prekida (naredbi break ili return), možemo
biti sigurni da nakon završetka petlje njen uslov neće biti ispunjen.
Ukoliko iza while sledi samo jedna naredba, onda, kao i oblično, nema potrebe za vitiča-
stim zagradama. Na primer (naredni kôd ispisuje brojeve od 0 do 9.):

int i = 0;
while (i < 10)

cout << i++ << endl;

Sledeća petlja while se izvršava beskonačno:

77

78 GLAVA 5. PETLJE

while (true)
cout << "Zdravo" << endl;

Uslov tela petlje se proverava pre prvog izvršavanja tela (kažemo da je ovo petlja sa pro-
verom ulaska na početku), pa, ako uslovi nije ispunjen, moguće je da se telo ni jednom ne
izvrši.

5.2 Petlja for
Petlja for ima sledeći opšti oblik:

for (<izraz1>; <izraz2>; <izraz3>)
<naredba>

Komponente <izraz1>, <izraz2> i <izraz3> su izrazi. Obično su <izraz1> i
<izraz3> izrazi dodele ili inkrementiranja, a <izraz2> je relacijski izraz. Izraz
<izraz1> se obično naziva inicijalizacija i koristi se za postavljanje početnih vrednosti
promenljivih, izraz <izraz2> je uslov izlaska iz petlje, a <izraz3> je korak i njime se
menjaju vrednosti relevantnih promenljivih. Naredba <naredba> naziva se telo petlje.
Inicijalizacija (izraz <izraz1>) se izračunava samo jednom, na početku izvršavanja petlje.
Često se u njoj deklariše tzv. brojačka promenljiva koja je lokalna za tu petlju (vrednost
joj se može koristiti samo u sklopu petlje, uključujući i njeno telo). Petlja se izvršava sve
dok uslov (izraz <izraz2>) ima istinitosnu vrednost tačno, a korak (izraz <izraz3>) iz-
računava se na kraju svakog prolaska kroz petlju. Redosled izvršavanja je, dakle, oblika:
inicijalizacija, uslov, telo, korak, uslov, telo, korak, …, uslov, telo, korak, uslov, pri čemu
je uslov ispunjen svaki, osim poslednji put. Dakle, gore navedena opšta forma petlje for
ekvivalentna je konstrukciji koja koristi petlju while:

<izraz1>;
while (<izraz2>) {
<naredba>
<izraz3>;

}

Petlja for se obično koristi kada je potrebno izvršiti jednostavno početno dodeljivanje
vrednosti promenljivim i jednostavno ih menjati sve dok je ispunjen zadati uslov (pri čemu
su i početno dodeljivanje i uslov i izmene lako vidljivi u definiciji petlje). To ilustruje
sledeća tipična forma petlje for:

5.2. PETLJA FOR 79

for (int i = 0; i < n; i++)
cout << i << endl;

Naredba u telu petlje se ponavlja n puta, pri čemu promenljiva i redom uzima vrednosti
od 0 do n-1 (ona se naziva brojačka promenljiva). U narednoj petlji se telo takođe ponavlja
n puta, pri čemu promenljiva i uzima vrednost od 1 do n.

for (int i = 1; i <= n; i++)
cout << i << endl;

Umesto da se vrednost brojačke promenljive uvećava za 1, čest je slučaj da se uveća i za
neku drugu vrednost, čime se dobija nabrajanje elemenata nekog aritmetičkog niza. Na
primer, naredni program ispisuje vrednosti 5, 10, 15, … , 100.

for (int i = 5; i <= 100; i += 5)
cout << i << endl;

Korišćenjem petlje for moguće je nabrojati i elemente geometrijskog niza. Na primer,
naredni program ispisuje stepene broja 2, krenuvši od 1, pa sve do 1024. To se postiže
tako što se u svakom koraku tekuća vrednost brojačke promenljive množi sa 2.

for (int i = 1; i <= 1024; i *= 2)
cout << i << endl;

Često je potrebno da se nabroje i ravnomerno razmaknute tačke unutar nekog intervala. Na
primer, za potrebe crtanja grafika funkcije želimo da izračunamo njenu vrednost u 𝑛 ≥ 2
ravnomerno razmaknutih tačaka intervala [𝑎, 𝑏]. Prva tačka je 𝑎, razmak između dve tačke
je 𝑑 = 𝑏−𝑎

𝑛−1 , pa petlja može imati sledeći oblik

double d = (b - a) / (n - 1);
for (double x = a; x <= b; x += d)

...

Međutim, usled problema sa tačnošću zapisa realnih brojeva, može se desiti da se ova-
kvom petljom nabroji tačka više ili tačka manje od onoga što je očekivano (jer bi, na
primer, moglo da se desi da vrednost x malko premaši b onda kada očekujemo da one
budu jednake). Stoga je uvek bolje koristiti celobrojne brojačke promenljive, kao što je
ilustrovano u narednom kodu.

80 GLAVA 5. PETLJE

double d = (b - a) / (n - 1);
double x = a;
for (int i = 0; i < n; i++) {

...
x += d;

}

Bilo koji od izraza <izraz1>, <izraz2>, <izraz3> u petlji formože biti izostavljen, ali
simboli ; i tada moraju biti navedeni. Ukoliko je izostavljen izraz <izraz2>, smatra se da
je njegova istinitosna vrednost tačno. Na primer, sledeća petlja for se izvršava beskonačno
(ako u bloku naredbi koji ovde nije naveden nema neke naredbe koja prekida izvršavanje,
na primer, break ili return):

for (;;)
<naredba>

Ovo se često koristi tako što se uslov petlje proveri negde u sklopu njenog tela i ako nije
ispunjen, naredbom break se prekine izvršavanje petlje (o čemu će biti više reči u sekciji
5.4). Čitljiviji oblik kojim se postiže isti efekat je upotreba naredbe while (true).1

while (true)
<naredba>

Ako je potrebno da neki od izraza <izraz1>, <izraz2>, <izraz3> objedini više izraza,
može se koristiti operator ,.

for (int i = 0, j = 10; i < j; i++, j--)
cout << "i = " << i << ", j = " << j << endl;

Prethodni kôd ispisuje

i = 0, j = 10
i = 1, j = 9
i = 2, j = 8
i = 3, j = 7
i = 4, j = 6
1Starije verzije izvesnog kompilatora za programski jezik C su while (1) prepoznavale kao beskonačnu

petlju i izdavale upozorenje korisniku, dok za for(;;) to nisu radile. Da bi izbegli upozorenje, programeri su
krenuli da koriste nečitljiviji oblik for(;;) i ta praksa je ostala i do danas.

5.3. PETLJA DO-WHILE 81

U okviru inicijalizacije petlje for nije moguće istovremeno deklarisati dve promenljive
različitog tipa.
Sledeći program, koji ispisuje tablicu množenja, ilustruje dvostruku petlju for:

int i, j, n=3;
for(i = 1; i <= n; i++) {

for(j = 1; j <= n; j++)
cout << i << " * " << j << " = " << i*j << " ";

cout << endl;
}

1 * 1 = 1 1 * 2 = 2 1 * 3 = 3
2 * 1 = 2 2 * 2 = 4 2 * 3 = 6
3 * 1 = 3 3 * 2 = 6 3 * 3 = 9

Još jedan oblik petlje for u jeziku C++ je petlja kojim se nabrajaju redom svi elementi
neke kolekcije (na primer, vektora). Narednom petljom se nabrajaju svi elementi vektora
temperature. Promenljiva t ovaj put nije brojčka promenljiva, jer ne sadrži indekse
elemenata vektora, već je promenljiva koja će sadržati elemente vektora (u svakoj iteraciji
petlje po jedan, redom, od prvog do poslednjeg).

vector<double> temperature;
for (double t : temperature)

cout << t << endl;

5.3 Petlja do-while
Petlja do-while ima sledeći opšti oblik:

do {
naredbe

} while(izraz)

Telo (blok naredbi naredbe) naveden između vitičastih zagrada se izvršava i onda se izra-
čunava uslov (izraz izraz). Ako je on tačan, telo se izvršava ponovo i to se nastavlja sve
dok izraz izraz ne bude imao istinitosnu vrednost netačno.
Za razliku od petlje while, naredbe u bloku ove petlje se uvek izvršavaju barem jednom.
Kažemo da je ovo petlja sa proverom uslova na kraju.
Na primer, naredni kôd učitava ocenu sve dok se ne unese ispravno (tj. dok se ne unese
vrednost između 1 i 5).

82 GLAVA 5. PETLJE

int ocena;
do {

cout << "Unesite ocenu: ";
cin >> ocena;

} while (ocena < 1 || ocena > 5);

Korišćenjem petlje do-while umesto while je osigurano da će se prvo učitati ocena, pa
tek onda proveravati njena ispravnost.

5.4 Naredbe break i continue
U nekim situacijama pogodno je napustiti petlju ne zbog toga što nije ispunjen uslov petlje,
već iz nekog drugog razloga. To je moguće postići naredbom break kojom se izlazi iz
tekuće petlje (ili naredbe switch)2 Na primer, naredna petlja prolazi kroz elemente niza
i obrađuje ih, ali se prekida ako se naiđe na neki negativni element:

for (i = 0; i < n; i++) {
if (a[i] < 0)

break;
...

}

Korišćenjem naredbe break se narušava strukturiranost koda i to može da oteža njegovu
analizu (na primer, analizu ispravnosti ili analizu složenosti). Na primer, ne možemo vi-
še da tvrdimo da nakon petlje uslov petlje neće više biti ispunjen. U nekim situacijama,
korišćenje naredbe break može da dovede do kraćeg koda, ali kôd koji koristi naredbu
break uvek se može napisati i bez nje. U datom primeru, odgovarajući alternativni kôd
je, na primer:

for(i = 0; i < n && a[i] >= 0; i++)
...

Česta upotreba naredbe break je u petljama u kojima se uslov ne proverava ni na početku,
ni na kraju, već u sredini. Tada se koristi neki zapis beskonačne petlje (na primer, while
(true), a uslov se proverava u sredini, naredbom if). Na primer, naredni program učitava
brojeve sve dok se ne unese 0 i obrađuje ih (pri čemu se uneta nula ne obrađuje).

2Naredbom break ne izlazi se iz bloka naredbe if.

5.4. NAREDBE BREAK I CONTINUE 83

while (true) {
int x;
cin >> x;
if (x == 0) break;
// obrada elementa x
...

}

Naredbom continue se prelazi na sledeću iteraciju u petlji. Na primer,

for(i = 0; i < n; i++) {
if (i % 10 == 0)

continue; // preskoci brojeve deljive sa 10
...

}

Slično kao za naredbu break, korišćenjem naredbe continue se narušava strukturiranost
koda, ali se može dobiti kraći kôd. Kôd koji koristi naredbu continue uvek se može
napisati i bez nje. U datom primeru, odgovarajući alternativni kôd je, na primer:

for (i = 0; i < n; i++)
if (i % 10 != 0) { // samo brojevi koji nisu deljivi sa 10
...

}

U slučaju ugnežđenih petlji, naredbe break i continue imaju dejstvo samo na unutrašnju
petlju. Tako, na primer, fragment

for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {

if (i + j > 2) break;
cout << i << " " << i << " ";

}
}

ispisuje

0 0 0 1 0 2 1 0 1 1 2 0

84 GLAVA 5. PETLJE

5.5 Osnovni iterativni algoritmi
Jedan od osnovnih mehanizama programiranja i osnovnih tehnika konstrukcije algoritma
je iteracija, koja podrazumeva izračunavanje rezultata postupnom izmenom vrednosti neke
promenljive. Vrednost promenljive se na početku izračunavanja inicijalizuje, a zatim se
postupno menja, kroz niz koraka, sve dok se ne dostigne željeni rezultat. Pošto se koraci
istog oblika ponavljaju više puta, za implementaciju iterativnih postupaka se po pravilu
koriste petlje, pa se termin iteracija često identifikuje sa upotrebom petlji.
U nastavku će biti prikazano nekoliko tipičnih algoritama ovog tipa. Obrađivaćemo konač-
ne serije3 elemenata, oblika 𝑥0, … , 𝑥𝑛−1, koje se sasastoje od elemenata 𝑥𝑖, koji mogu
biti učitavani sa standardnog ulaza, iz nekog niza ili vektora, računati po nekom pravilu i
slično. Većina osnovnih algoritama za obradu serija je veoma jednostavna, međutim, nji-
hovim kombinovanjem dobijaju se složeniji algoritmi kojima se može rešiti veliki broj
praktičnih problema.
Kada su elementi smešteni u niz, vektor ili neku drugu sličnu kolekciju, tada se umesto
ručne implementacije ovih algoritama mogu upotrebiti i bibliotečke funkcije. Naime, stan-
dardne biblioteke savremenih programskih jezika obično nude korisnicima funkcije koji-
ma se implementiraju ovi algoritmi. Ipak, mi ćemo iz metodičkih razloga sve ove algoritme
implementirati samostalno (a njihove bibliotečke implementacije ćemo prikazati u pogla-
vlju 8 posvećenom pregledu standardne biblioteke).

5.5.1 Sabiranje, prebrojavanje, množenje
Sabiranje elemenata neke serije brojeva se može vršiti tako što se zbir inicijalizuje na nulu,
a zatim se u svakom koraku zbir uvećava za tekući element serije. Na primer, program
koji izračunava obim trougla učitavajući dužine njegovih stranica jednu po jednu se može
napisati i na sledeći način.

int obim = 0;
int stranica;
cin >> stranica;
obim = obim + stranica;
cin >> stranica;
obim = obim + stranica;
cin >> stranica;
obim = obim + stranica;
cout << obim << endl;

Ako izvršimo prethodni program korak-po-korak, možemo primetiti da u prvom koraku
promenljiva obim ima vrednost dužine prve stranice, u drugom zbira dužina prve i druge

3Umesto serije možemo reći i sekvence, ali namerno ne koristimo termin niz ili lista, jer se ti termini koriste
za specifične strukture podataka.

5.5. OSNOVNI ITERATIVNI ALGORITMI 85

stranice, a da u trećem zbira dužina sve tri stranice.
Umesto naredbe obim = obim + stranica, možemo upotrebiti i operator += koji slu-
ži za uvećavanje vrednosti promenljive tj. ovu naredbu možemo zapisati i kao obim +=
stranica.
Ponavljanje naredbi se, naravno, može ostvariti i uz pomoć petlji. Pošto unapred znamo
potreban broj koraka, uobičajeno je da se upotrebi petlja for.

int obim = 0;
for (int i = 0; i < 3; i++) {

int stranica;
cin >> stranica;
obim += stranica;

}
cout << obim << endl;

Napokon, ovaj program možemo veoma jednostavno uopštiti tako da radi i za mnogouglo-
ve.

int n;
cin >> n;
int obim = 0;
for (int i = 0; i < n; i++) {

int stranica;
cin >> stranica;
obim += stranica;

}
cout << obim << endl;

Kažemo da smo u ovom programu upotrebili algoritam sabiranja serije. Zasniva se na tome
da se promenljiva koja treba da sadrži konačan rezultat inicijalizuje na nulu, a zatim da se
u svakom koraku petlje ažurira i nova vrednost joj se izračuna sabiranjem njene trenutne
vrednosti i tekućeg elementa serije koja se obrađuje. Primetimo da i pre petlje i nakon
svakog izvršavanja tela petlje i nakon petlje, promenljiva obim sadrži tačno zbir svih do tada
učitanih elemenata serije tj. svih do tada učitanih dužina stranica mnogougla (svojstvo koje
važi pre petlje, tokom petlje i nakom petlje naziva se invarijanta petlje i obično garantuje
korektnost algoritma).
Elementi koji se sabiraju ne moraju da se učitavaju sa standardnog ulaza, već mogu biti
određeni i na neki drugi način. Na primer, pod pretpostavkom da vektor cene sadrži cene
svih kupljenih proizvoda, naredni program izračunava njihovu ukupnu cenu.

86 GLAVA 5. PETLJE

vector<double> cene{153.99, 49.00, 213.50};
double ukupno = 0.0;
for (double cena : cene)

ukupno += cena;
cout << ukupno << endl;

Na način veoma sličan sabiranju možemo da prebrojimo elemente neke serije (u pitanju je,
dakle, algoritam prebrojavanja serije). Broj elemenata inicijalizujemo na nulu, a zatim su u
svakom koraku petlje taj broj uvećava za 1. Na primer, naredni program učitava brojeve
sve dok se ne učita vrednost 0 i određuje broj tako učitanih elemenata.

int broj = 0;
int x;
cin >> x;
while (x != 0) {

broj = broj + 1;
cin >> x;

}
cout << broj << endl;

Uvećanje brojača je moguće izvršiti i operatorom ++, čiji je efekat da se vrednost promen-
ljive uveća za 1, tj. umesto naredbe broj = broj + 1;, moguće je kraće pisati broj++;
ili ++broj;.
Izračunavanje zbira često omogućava i izračunavanje proseka tj. aritmetičke sredine. Pro-
gram može da učitava ocene sve dok se ne unese broj koji ne predstavlja ispravnu ocenu
(nije između 1 i 5) i da se tada na ekran ispiše prosek svih učitanih ocena. Pošto broj ocena
nije unapred poznat, ponovo koristimo petlju while i istovremeno izračunavamo i zbir i
broj učitanih ocena. Jednostavnosti radi, pretpostavićemo da će uvek biti uneta bar jedna
ocena (u suprotnom, izračunavanje proseka nema smisla i prosek nije definisan).

int broj = 0;
int zbir = 0;
int ocena;
cin >> ocena;
while (1 <= ocena && ocena <= 5) {

broj++;
zbir += ocena;
cin >> ocena;

5.5. OSNOVNI ITERATIVNI ALGORITMI 87

}
cout << (double)zbir / (double)broj << endl;

Primetimo da smo i zbir i broj smeštali u celobrojne promnenljive, što znači da bi se pri-
menom operatora / na njih izvršilo njihovo celobrojno, a ne deljenje brojeva u pokretnom
zarezu. Zato je neophodno izvršiti eksplicitnu konverziju tipa i bar jedan od operanda
konvertovati u realni tip (ovde je upotrebljen tip double). Oba operanda su konvertovana
samo radi simetrije (to nije neophodno raditi).
Primetimo da smo u prethodnom programu ocene učitavali na dva mesta u programu: jed-
nom pre petlje i jednom na kraju petlje. Kada je u pitanju ovako kratka i jednostavna
naredba, njeno ponavljanje ne predstavlja problem, međutim, da je u pitanju bio neki kom-
plikovaniji fragment koda, bilo bi poželjno izbeći ponavljanje. Jedan način da se to uradi
je da se uslov ne proverava na početku, već na sredini petlje.

int broj = 0;
int zbir = 0;
while (true) {

int ocena;
cin >> ocena;
if (ocena < 1 || ocena > 5)

break;
broj++;
zbir += ocena;

}
cout << (double)zbir / (double)broj << endl;

Algoritam množenja serije brojeva se ostvaruje na veoma sličan način sabiranju. Proizvod
se mora inicijalizovati na 1 (ne na 0) i zatim u svakom koraku množiti tekućim elementom
serije. Na primer, narednim programom učitavamo dužine jedne po jedne od tri stranice
kvadra i izračunavamo zapreminu tog kvadra.

int zapremina = 1;
for (int i = 0; i < 3; i++) {

int stranica;
cin >> stranica;
zapremina *= stranica;

}
cout << zapremina << endl;

Primetimo veliku sličnost algoritma izračunavanja zbira i algoritma izračunavanja proizvo-
da. Razlika je to što se u inicijalizaciji zbir inicijalizuje na nulu, a proizvod na jedinicu i to

88 GLAVA 5. PETLJE

što se tokom ažuriranja zbira koristi sabiranje tj. operator +, a tokom ažuriranja proizvoda
koristi množenje tj. operator *. Naime, za operaciju sabiranja neutralni element je broj 0
(jer za svako 𝑥 važi 𝑥 + 0 = 0 + 𝑥 = 𝑥), dok je za operaciju množenja neutralni element
broj 1 (jer za svako 𝑥 važi 𝑥⋅1 = 1 ⋅𝑥 = 𝑥). Ako serija nije prazna, umesto inicijalizacije
na neutralni element, moguće je inicijalizovati rezultat na prvi element serije, no obično je
rešenje sa neutralnim elementom elegantnije (kada je operacija takva da neutral postoji).
Ni u algoritmu množenja, serija brojeva koja se obrađuje, naravno, ne mora da se učitava sa
standardnog ulaza. Na primer, vrednost stepena 𝑥𝑛 se može izračunati tako što se početna
vrednost 1 pomnoži 𝑛 puta brojem 𝑥 (u pitanju je proizvod konstantne, 𝑛-točlane serije
𝑥, 𝑥, … , 𝑥).

int n;
cin >> n;
double x;
cin >> x;
double stepen = 1;
for (int i = 0; i < n; i++)

stepen *= x;
cout << stepen << endl;

Slično se može izračunati i vrednost 𝑛!, kao proizvod 1 ⋅ 2 ⋅ … ⋅ (𝑛 − 1) ⋅ 𝑛. U tom slučaju
se vrednosti brojačke promenljive koriste kao elementi serije koja se množi.

int n;
cin >> n;
int faktorijel = 1;
for (int i = 1; i <= n; i++)

faktorijel *= i;
cout << faktorijel << endl;

Pošto proizvod često može da bude veliki i kada su brojevi koji se množe relativno mali, u
ovakvim situacijama treba voditi računa o tome da već za male vrednosti 𝑛 rezultat može
biti netačan usled prekoračenja dozvoljenog opsega vrednosti promenljive u kojoj se čuva
proizvod.

5.5.2 Minimum i maksimum
Razmotrimo sada algoritam za određivanja mimimuma ili maksimuma serije brojeva (tj. naj-
manjeg ili najvećeg broja u seriji). Jedan način da se to uradi je korišćenje bibliotečke
funkcije min tj. max za određivanje minimuma tj. maksimuma. Na primer, min({a, b,
c}) određuje najmanji od brojeva a, b c. Da bismo mogli da rešavano i srodne proble-

5.5. OSNOVNI ITERATIVNI ALGORITMI 89

me, izučićemo kako se implementira algoritam za određivanje minimuma ili maksimuma
proizvoljne serije brojeva.
Minimum 3 broja se može odrediti ugnežđenim naredbama if.

int minimum;
if (a <= b) {

if (a <= c)
minimum = a;

else
minimum = c;

} else {
if (b <= c)

minimum = b;
else

minimum = c;
}

Ovo rešenje je komplikovano i teško se uopštava na više brojeva. Stoga je poželjno koristiti
iterativni algoritam, koji ćemo u nastavku izvesti. Ako upotrebimo bibliotečku funkciju
min za određivanje minimuma dva broja, onda minimum četiri broja možemo odrediti
njenom uzastopnom primenom.

int minimum = min(min(min(a, b), c), d);

Prisetimo se da smo i zbir više brojeva računali tako što smo iterativno primenjivali ope-
raciju sabiranja dva broja. Tako je zbir a + b + c + d računat kao ((a + b) + c) +
d, tj. kao zbir(zbir(zbir(a, b), c), d). Ovo nam ukazuje na to da i minimum više
brojeva možemo izračunati na sličan način na koji smo računali zbir – minimum možemo
inicijalizovati na prvi element i onda u svakom narednom koraku ažurirati na manju od
vrednosti dosadašnjeg minimuma i vrednosti tekućeg elementa.

int minimum = a;
minimum = min(minimum, b);
minimum = min(minimum, c);
minimum = min(minimum, d);
cout << minimum << endl;

Ako se elementi nalaze u nizu ili se učitavaju sa ulaza, onda možemo da upotrebimo i petlje,
što, naravno, omogućava da se isti postupak primeni i na serije koje su proizvoljne dužine.

90 GLAVA 5. PETLJE

vector<int> niz{a, b, c, d};
int minimum = niz[0];
for (int i = 1; i < niz.size(); i++)

minimum = min(minimum, niz[i]);
cout << minimum << endl;

Minimum se ažurira samo ako je vrednost trenutnog elementa koji se obrađuje manja od
dotadašnjeg maksimuma. Tako se upotreba funkcije min može zameniti grananjem.

vector<int> niz{a, b, c, d};
int minimum = niz[0];
for (int i = 1; i < niz.size(); i++)

if (niz[i] < minimum)
minimum = niz[i];

cout << minimum << endl;

Primetimo da se prvi element obrađuje drugačije od ostalih. Kod algoritama sabiranja i
množenja rezultujuću promenljivu smo inicijalizovali na neutralni element odgovarajuće
operacije i tako smo postigli da je rezultat definisan i u slučaju da je serija prazna, kao i
da se svi elementi serije obrađuju na isti način. Pitanje je da li nešto slično možemo da
uradimo i za minimum tj. maksimum. Potrebno je da pronađemo vrednost x tako da za
bilo koji broj a važi da je min(x, a) = min(a, x) = a, tj. broj koji je veći ili jed-
nak od bilo kog drugog broja. To može da bude plus beskonačno (+∞), ali tu vrednost
ne možemo da zapišemo kao podatak celobrojnog tipa (tipovi brojeva u pokretnom za-
rezu dopuštaju beskonačnu vrednost, numeric_limits<double>::infinity(), koja
je definisana u zaglavlju <limits>). Umesto toga, možemo upotrebiti najveći broj ko-
ji se može zapisati u opsegu tipa int. Taj broj se može u jeziku C++ dobiti izrazom
numeric_limits<int>::max() definisanim u zaglavlju <limits> (a u jeziku C izra-
zom INT_MAX definisanim u zaglavlju <climits>).

vector<int> niz;
int minimum = numeric_limits<int>::max();
for (int a : niz)

if (a < minimum)
minimum = a;

cout << minimum << endl;

Neutralni element za operaciju maksimuma je −∞, koju za tipove brojeva u pokretnom
zarezumožemo zapisati kao -numeric_limits<double>::infinity(). Kod celobroj-
nih tipova ta vrednost se ne može zapisati, ali umesto nje možemo upotrebiti najmanji

5.5. OSNOVNI ITERATIVNI ALGORITMI 91

mogući ceo broj, koji daje izraz numeric_limits<int>::min(). Sa druge strane, ako
znamo da među brojevima čiji ćemo maksimum računati neće biti biti negativnih, onda
za početnu vrednost možemo uzeti nulu.
Nekada nas ne zanima vrednost maksimuma (ili minimuma), već pozicija na kojoj se taj
maksimum (ili minimum) nalazi. Da bismo to odredili, potrebno je da uz tekuću vrednost
maksimuma (ili minimuma) pamtimo i tekuću vrednost njegove pozicije. Na primer, ako
znamo vrednost dobijenog džeparca tokom svih 5 dana u nekoj nedelji, možemo odrediti
dan u kom je dobijen najveći džeparac.

int maksDzeparac = numereric_limits<int>::min();
int maksDan;
for (int dan = 1; dan <= 5; dan++) {

int dzeparac;
cin >> dzeparac;
if (dzeparac > maksDzeparac) {

maksDzeparac = dzeparac;
maksDan = dan;

}
}
cout << maksDan << endl;

Nekada nas ne zanima samo najveća, već nekoliko najvećih vrednosti. Kada je broj vred-
nosti koje tražimo veliki, potrebno je koristiti neke malo komplikovanije algoritme. Me-
đutim, dve najveće vrednosti možemo odrediti jednostavnom modifikacijom algoritma za
određivanje maksimuma (ili minimuma). Pritom je bitno precizirati šta se dešava kada su
dozvoljene ponovljene vrednosti. Na primer, da li su dve najveće vrednosti u nizu 83 94
94 vrednosti 94 i 94 ili vrednosti 83 i 94. Pretpostavimo da očekujemo prvi odgovor (ako
bi ovo bili poeni studenata, tražili bismo poene dva najbolja studenta).
Održavamo dve promenljive: maks1 čuva najveću, a maks2 drugu po veličini od vrednosti
koje su do tog trenutka obrađene. Obe promenljive se mogu inicijalizovati na vrednost−∞
(tj. najmanju celobrojnu vrednost). Obrađujemo jedan po jedan element niza.

• Ako je trenutni element veći ili jednak od dosadašnje najveće vrednosti maks1, tada
je on najveća vrednost, dok je dotadašnja najveća vrednost maks1 sada druga po
veličini.

• U suprotnom, element ne može biti najveći, ali može biti drugi po veličini. Zato ga
poredimo sa vrednošću maks2, pa ažuriramo tu vrednost, ako je tekući element niza
veći od nje.

92 GLAVA 5. PETLJE

int maks1, maks2;
maks1 = maks2 = numeric_limits<int>::min();
for (int a : niz) {

if (a >= maks1) {
maks2 = maks1;
maks1 = a;

} else if (a > maks2) {
maks2 = a;

}
}

5.5.3 Linearna pretraga
Pretragom možemo proveriti da li u seriji postoji element koji zadovoljava neki uslov (na
primer, da li među brojevima postoji neki broj koji je paran ili da li među rečima postoji
neka koja počinje samoglasnikom). Veoma slični problemi tome su da se proveri da li
svi elementi liste zadovoljavaju neki uslov (na primer, da li su svi brojevi pozitivni), da li
postoji neki element koji ne zadovoljava uslov ili da li nijedan od elemenata ne zadovoljava
uslov. Moguće je određivati i na kojoj se poziciji nalazi prvi element koji zadovoljava uslov,
poslednji element koji zadovoljava uslov i slično.
Ako nemamo nikakve dodatne pretpostavke o redosledu elemenata serije (na primer, ne
znamo da li su elementi zadati u nekom sortiranom redosledu), tada primenjujemo algo-
ritam linearne pretrage, koji podrazumeva da seriju analiziramo redom, jedan po jedan
element.
Provera da li postoji element neke serije koji zadovoljava dati uslov zahteva izračunava-
nje logičke disjunkcije. Na primer, da bismo proverili da li je neki od tri filma u internet
bazi filmova ocenjen kao “izvanredan” (ima ocenu veću od 9,00), treba da izračunamo
disjunkciju tri uslova.

double ocena1 = 9.18;
double ocena2 = 10.00;
double ocena3 = 9.56;
if (ocena1 > 9.00 || ocena2 > 9.00 || ocena3 > 9.00)

cout << "Barem jedan od tri filma je izvanredan" << endl;

Poželjno je uopštiti ovo rešenje na seriju sa proizvoljnim brojem elemenata. Na primer,
pretpostavimo da je dat niz ocene koji sadrži ocene filmova i da u petlji želimo da ob-
rađujemo elemente ovog niza. Primetimo sličnost sa svim prethodnim operacijama (sabi-
ranjem, množenjem, minimumom/maksimumom): ponovo imamo binarnu, asocijativnu

5.5. OSNOVNI ITERATIVNI ALGORITMI 93

operaciju (ovaj put je to disjunkcija) koja se primenjuje na seriju elemenata. Ponovo mo-
žemo krenuti od neutralne vrednosti, a zatim iterativno obrađivati jedan po jedan element.
Rezultat je ovaj put tipa bool.

bool postoji_izvanredan = false;
postoji_izvanredan = postoji_izvanredan || ocena1 > 9.00;
postoji_izvanredan = postoji_izvanredan || ocena2 > 9.00;
postoji_izvanredan = postoji_izvanredan || ocena3 > 9.00;
if (postoji_izvanredan)

cout << "Barem jedan od tri filma je izvanredan" << endl;

Uopštenje je sada neposredno.

bool postoji_izvanredan = false;
for (double ocena : ocene)

postoji_izvanredan = postoji_izvanredan || prosek > 9.00;
...

U svakom koraku petlje važi da promenljiva postoji_izvanredan ima vrednost false
ako i samo ako nijedan do tog trenutka obrađen film nije bio izvanredan. Promenljiva,
dakle, započinje sa vrednošću false i ta vrednost se menja samo ako se pojavi neki film
koji je izvanredan. Stoga se isti algoritam može implementirati i malo jednostavnije.

// do sada nismo nasli ni jednog koji je izvanredan
bool postoji_izvanredan = false;
for (double ocena : ocene)

// nasli smo film koji je izvanredan
if (ocena > 9.00)

postoji_izvanredan = true;
...

Čim se pronađe jedan film koji je izvanredan, nema potrebe proveravati dalje, već se petlja
može odmah prekinuti (ovo odgovara lenjom izračunavanju operatora ||).

bool postoji_izvanredan = false;
for (double ocena : ocene)

if (ocena > 9.00) {
postoji_izvanredan = true;
break;

94 GLAVA 5. PETLJE

}
...

Provera da li svi elementi zadovoljavaju dato svojstvo je dualna. Rezultat se inicijalizuje
na vrednost true, što je neutral za konjunkciju (za sada nije pronađen element koji ne
zadovoljava uslov), a zatim se menja na ‘false kada se (ako se) naiđe na element koji ne
zadovoljava traženo svojstvo. Na primer, provera da li su svi dati filmovi izvanredni može
se uraditi na sledeći način.

// do sada nismo nasli nijedan koji nije izvanredan
bool svi_izvanredni = true;
for (double ocena : ocene)

// nasli smo jedan koji nije izvanredan
if (ocena <= 9.00) {

svi_izvanredni = false;
break;

}
...

Na sličan način možemo odrediti prvu i poslednju poziciju na kojoj se javlja element koji
zadovoljava dato svojstvo. Ako su elementi smešteni u vektor (ili niz), tada za određiva-
nje poslednje pozicije obradu elemenata možemo vršiti zdesna nalevo. Međutim, ako se
elementi učitavaju i ne želimo da ih sve istovremeno pamtimo, tada moramo da ih obra-
đujemo redom, sleva nadesno. Na primer, naredni kôd određuje poziciju prve i poslednje
učitane nule (brojanje pozicija kreće od 0).

int pozicijaPrveNule = -1;
int pozicijaPoslednjeNule = -1;
for (int i = 0; i < n; i++) {

int x;
cin >> x; // ucitavamo novi element serije
if (x == 0) {

if (pozicijaPrveNule == -1) {
// ovo je prva učitana nula
pozicijaPrveNule = i;

}
// ovo je poslednja do sada učitana nula
pozicijaPoslednjeNule = i;

}

5.5. OSNOVNI ITERATIVNI ALGORITMI 95

}
cout << pozicijaPrveNule << " " << pozicijaPoslednjeNule << endl;

Mnogi algoritmi su zasnovani na algoritmu linearne pretrage. Na primer, provera da li je
prirodan broj 𝑛 prost se može svesti na ispitivanje da li je deljiv nekim brojem iz intervala
[2, 𝑛 − 1].

int n;
cin >> n;
bool prost = true;
if (n == 1) prost = false; // 1 nije ni prost ni složen
// proveravamo sve moguće delioce iz intervala [2, n-1]
for (int d = 2; d < n; d++)

if (n % d == 0)
prost = false;

cout << (prost ? "prost" : "slozen") << endl;

Delioci broja uvek se javljaju u paru: za svaki delilac 𝑑 koji je veći ili jednak od vrednosti√𝑛, postoji delilac 𝑛/𝑑 koji je manji ili jednak od vrednosti
√𝑛. Zato, ako broj nema

delilaca koji su manji ili jednaki od
√𝑛, ne može biti ni delilaca koji su veći ili jednaki

od
√𝑛. Zato je umesto provere svih brojeva iz intervala [2, 𝑛 − 1], dovoljno proveriti sve

kandidate iz intervala [2, √𝑛], što je mnogomanje brojeva i program je značajno efikasniji.
O efikasnosti programa i ovim vrstama optimizacije biće mnogo više reči u drugom tomu
ove knjige.

int n;
cin >> n;
bool prost = true;
if (n == 1) prost = false; // 1 nije ni prost ni složen
// proveravamo sve mogudelioce iz intervala [2, sqrt(n)]
for (int d = 2; d * d <= n; d++)

if (n % d == 0)
prost = false;

// ako nema delilaca u intervalu [2, sqrt(n)] nema ni u [sqrt(n), n-1]
cout << (prost ? "prost" : "slozen") << endl;

Linearnu pretragu možemo upotrebiti, na primer, i da proverimo da li su dve niske jednake.
Podaci tipa string se mogu porediti operatorom == (i to je preporučeni način njihovog
poređenja), međutim, ilustracije radi i sami bismo mogli da implementiramo funkciju koja
proverava da li su dve niske jednake, tako što prvo proverava da li su niske iste dužine, a
zatim, ako jesu, da li postoji neka pozicija na kojima im se nalazi različiti karakter:

96 GLAVA 5. PETLJE

bool jednakeNiske(string a, string b)
{

if (a.length() != b.length())
return false;

for (size_t i = 0; i < a.length(); i++) {
if (a[i] != b[i])

return false;
}

return true;
}

Napomenimo da ćemo u poglavlju o funkcijama 6 videti i efikasniji način da se dugačke
niske proslede funkcijama (to nam nije u trenutnom fokusu).

5.5.4 Sortiranost niza
Ako je zadata relacija poretka (ili strogog poretka), onda se može proveriti da li je niz
uređen (ili sortiran) u skladu sa tom relacijom. Na primer, naredna funkcija proverava da
li je vektor tipa int uređen u skladu sa relacijom <=. Naravno, uslov !(a[i] <= a[i
+ 1]) može da se zameni jednostavnijim a[i] > a[i + 1], ali je ovde naveden jer je
iskazan u terminima zadate relacije <=.

bool sortiran(const vector<int>& a)
{
size_t i;
for (i = 0; i < a.size() - 1; i++)

if (!(a[i] <= a[i + 1]))
return false;

return true;
}

Navedena funkcija vraća true ako i samo ako je niz a uređen u skladu sa relacijom <= i
tada kažemo da je on uređen ili sortiran neopadajuće. Slično, ako je niz uređen u skladu
sa relacijom < kažemo da je uređen rastuće, ako je niz uređen u skladu sa relacijom >=
kažemo da je uređen nerastuće, i ako je niz uređen u skladu sa relacijom > kažemo da je
uređen opadajuće.
Niz nekog brojevnog tipa, dakle, može biti uređen na različite načine. Niz tipa int može,
na primer, biti uređen i neopadajuće po zbiru svojih cifara. Sledeća funkcija proverava da
li je niz uređen na takav način (podrazumeva se da funkcija int zbir_cifara(int)
vraća zbir cifara svog parametra):

5.5. OSNOVNI ITERATIVNI ALGORITMI 97

bool sortiran(const vector<int>& a)
{

size_t i;
for (i = 0; i < a.size() - 1; i++)

if (!(zbir_cifara(a[i]) <= zbir_cifara(a[i + 1])))
return false;

return true;
}

5.5.5 Filtriranje, preslikavanje
Sličan problem linearnoj pretrazi je filtriranje serije tj. određivanje svih elemenata koji
zadovoljavaju neki dati uslov. Takvi elementi serije čine novu seriju koja se dalje mo-
že obrađivati (na primer, možemo prebrojati takve elemente, odrediti njihov zbir, prosek,
smestiti ih u neki niz ili vektor i slično). Na primer, lako možemo odrediti koliko elemenata
niza je deljivo brojem 3.

int broj = 0;
for (int x : niz)

if (x % 3 == 0)
broj++;

cout << broj << endl;

Ako je potrebno sačuvati elemente, onda upotreba vektora može biti pogodnija nego upo-
treba niza, jer je vektor proširiv, tj. možemo mu efikasno dodavati jedan po jedan element.

vector<int> niz;
...

vector<int> deljivi_sa_3;
for (int x : niz)

if (x % 3 == 0)
deljivi_sa_3.push_back(x);

cout << "Brojevi deljivi sa 3 su: " << endl;
for (int x : deljivi_sa_3)

cout << x << endl;

Ako bismo elemente čuvali u nizu, taj niz bi morao da bude deklarisan tako da može da
sačuva potencijalno sve elemente polazne serije tj. dužina mu mora biti jednaka (ili veća)

98 GLAVA 5. PETLJE

od dužine polazne serije. Potrebna nam je i promenljiva koja će čuvati broj izdvojenih
elemenata.

int niz[10];
...

int deljivi_sa_3[10];
int broj_deljivih_sa_3 = 0;
for (int i = 0; i < 10; i++)

if (niz[i] % 3 == 0)
deljivi_sa_3[broj_deljivih_sa_3++] = niz[i];

cout << "Brojevi deljivi sa 3 su: " << endl;
for (int i = 0; i < broj_deljivih_sa_3; i++)

cout << deljivi_sa_3[i] << endl;

Primećujemo da je rešenje sa korišćenjem vektora dosta jednostavnije.
Preslikavanje serije podrazumeva primenu neke funkcije na svaki element serije. Na primer,
naredni kôd ispisuje vrednost kvadratnog korena za svaki od 𝑛 učitanih elemenata.

for (int i = 0; i < n; i++) {
double x;
cin >> x;
cout << x << " " << sqrt(x) << endl;

}

5.5.6 Pozicioni zapis
Razmotrimo sada neke osnovne algoritme za rad sa pozicionim zapisom brojeva. Pretpo-
stavićemo da se radi o dekadnim brojevima (da je osnova zapisa 𝑏 = 10), mada se isti
algoritmi mogu primeniti i na druge brojevne osnove.
Jedan od prvih zadataka je da odredimo cifre pomoću kojih je broj zapisan. Određivanje
prve cifre sleva zahteva da znamo broj cifara broja, što ne znamo. Međutim, određivanje
prve cifre zdesna se može jednostavno uraditi određivanjem ostatka pri deljenju sa 10.
Ta se cifra može ukloniti iz broja celobrojnim deljenjem sa 10 i na taj način se problem
svodi na manji, koji se dalje rešava po istom principu. Dakle, ponavljanjem ovih operacija
(čitanja poslednje cifre, određivanjem ostatka pri deljenju sa 10 i uklanjanja poslednje cifre,
celobrojnim deljenjem sa 10), dobijamo jednu po jednu cifru broja, zdesna nalevo.

5.5. OSNOVNI ITERATIVNI ALGORITMI 99

do {
int cifra = n % 10;
n = n / 10;
cout << cifra << endl;

} while (n > 0);

Razmotrimo sada obratni problem u kom želimo da na osnovu poznatih cifara odredimo
vrednost broja. Pretpostavimo prvo da su cifre broja date u nizu, sleva nadesno (od cifre
najveće ka ciframa manje težine). Potrebno je, dakle, u svakom koraku iterativnog postup-
ka na postojeći broj zdesna dopisati cifru. To se može uraditi množenjem tekuće vrednosti
broja sa 10 i sabiranjem sa vrednošću tekuće cifre. Ovaj algoritam je poznat pod nazivom
Hornerova shema.

int broj = 0;
for (int cifra : cifre)

broj = 10 * broj + cifra;

Zadatak se može rešiti i ako su cifre u nizu date zdesna nalevo, od cifara najmanje, ka
ciframa najveće težine. Tada je u svakom koraku iterativnog postupka potrebno dopisati
cifru na levu stranu tekućeg broja, što možemo uraditi samo ako znamo stepen broja 10,
koji odgovara težini cifre koja se dodaje. Zato u algoritmu pored vrednosti broja koji se
gradi, čuvamo i tekuću vrednost cifre (jedinice, desetice itd.) i u svakom koraku tu vrednost
množimo sa 10.

int broj = 0;
int stepen10 = 1;
for (int cifra : cifre) {

broj = cifra * stepen10 + broj;
stepen10 *= 10;

}

5.5.7 Leksikografsko poređenje
Za niske (potencijalno različitih dužina) definisan je leksikografski poredak koji je zasno-
van na poređenju karaktera. Pored operatora <, >, <= i >=, za leksikografsko poređenje je
definisana i metoda compare tipa string. Leksikografsko poređenje se, ilustracije radi,
može implementirati i samostalno.

100 GLAVA 5. PETLJE

int porediNiske(const string& a, const string& b)
{
size_t minDuzina = min(a.length(), b.length());
for (size_t i = 0; i < minDuzina; ++i) {

if (a[i] < b[i])
return -1;

else if (a[i] > b[i])
return 1;

}
if (a.length() < b.length())

return -1;
else if (a.length() > b.length())

return 1;

return 0;
}

U navedenoj funkciji, niske se porede karakter po karakter do kraja kraće niske. Ako na
jednoj poziciji postoji razlika, konstatuje se da li je manja prva ili druga niska. Ako se
došlo do kraja kraće niske i nije pronađena razlika ni na jednoj poziciji, onda se proverava
koja je niska od dve kraća i ta se smatra manjom.

5.6 Ugnežđene petlje
Telo petlje može biti bilo koja naredba, pa i druga petlja. Takve petlje nazivamo višestruke
petlje ili ugnežđene (jer se jedna petlja “ugnezdila” u drugu). Dubina ugnežđavanja može
biti i veća od 2. Na primer, naredni program ispisuje sve vremenske trenutke u jednom
danu.

for (int sat = 0; sat < 24; sat++)
for (int minut = 0; minut < 60; minut++)

for (int sekund = 0; sekund < 60; sekund++)
cout << sat << ":" << minut << ":" << sekund << endl;

Primetimo da se unutrašnja petlja (sekunde) menja najbrže, zatim srednja (minute), dok
se spoljašnja petlja (sati) menja najsporije (što je upravo željeno ponašanje).
U svakom novom koraku spoljašnje petlje, unutrašnja petlja se izvršava iznova, što može
dovesti do zaista velikog broja koraka izvršavanja tela unutrašnje petlje (pogotovo kada je
dubina ugnežđavanja velika).

5.6. UGNEŽĐENE PETLJE 101

Ugnežđene petlje se često koriste kod algoritama grube sile, gde je potrebno nabrojati sve
moguće parove ili trojke elemenata. Na primer, naredna petlja nabraja sve parove eleme-
nata sa različitih pozicija datog vektora.

vector<int> a;
...
for (int i = 0; i < a.size(); i++)

for (int j = i+1; j < a.size(); j++)
cout << a[i] << " " << a[j] << endl;

Redom se nabrajaju a[0] a[1], a[0] a[2] itd. sve do a[n-2] a[n-1].
Sličan efekat se može postići i na sledeći način

vector<int> a;
...
for (int i = 1; i < a.size(); i++)

for (int j = 0; j < i; j++)
cout << a[i] << " " << a[j] << endl;

Redom se nabrajaju a[1] a[0], a[2] a[0], a[2] a[1], itd. sve do a[n-1] a[n-2].

5.6.1 Elementarni algoritmi sortiranja
Česta ilustracija ugnežđenih petlji su algoritmi sortiranja. Sortiranje je obično najbolje
vršiti primenom bibliotečke funkcije. U jeziku C++, to je funkcija sort. Funkcija sort
se može primeniti da se sortira i deo niza, pa joj je na neki način potrebno proslediti koji se
deo niza sortira. Ako želimo da se sortira ceo niz a, reći ćemo da se sortira deo od početka
niza begin(a), do kraja niza end(a). U poglavlju 7.2.4 o pokazivačima i iteratorima
opisaćemo kog tipa su begin(a) i end(a) i proučićemo načine da se ograniči samo deo
niza ili vektora koji se obrađuje.

vector<int> a{5, 3, 4, 2, 1};
// sortiramo vektor od pocetka do kraja
sort(begin(a), end(a));

Slično se može uraditi i ako se sortira niz:

int a[] = {5, 3, 4, 2, 1};
sort(begin(a), end(a));

Sortiranje celog niza je moguće uraditi i na sledeći način:

102 GLAVA 5. PETLJE

int a[] = {5, 3, 4, 2, 1};
sort(a, a+5); // od pocetka niza a, pa narednih 5 elemenata

Zbog raspoloživosti bibliotečkih funkcija, algoritmi prikazani u nastavku nemaju značaj-
nu praktičnu primenu, pogotovo zato što su veoma neefikasni i što postoje mnogo bolji
algoritmi od njih. Vremenska složenost svih ovih algoritama je kvadratna što znači da broj
koraka koje algoritam izvršava kvadratno zavisi od broja elemenata niza koji se sortira (za
sortiranje duplo dužeg niza potrebno je četiri puta više vremena). Zbog toga oni ne mo-
gu da efikasno sortiraju nizove duže od nekoliko desetina hiljada elemenata. Ipak, oni se
smatraju opštom programerskom kulturom i dobra programerska vežba je da se na osnovu
njihovog opisa samostalno napravi implementacija.

5.6.1.1 Algoritam selection sort
Algoritam selection sort se ukratko može opisati na sledeći način: ako niz ima više od
jednog elementa, zameni početni element sa najmanjim elementom niza i zatim analogno
sortiraj ostatak niza (elemente iza početnog). U svakoj iteraciji se na svoju poziciju dovodi
sledeći po veličini element niza, tj. u 𝑖-toj iteraciji se 𝑖-ti po veličini element dovodi na
poziciju 𝑖. Ovo se može realizovati tako što se pronađe pozicija 𝑚 najmanjeg elementa od
pozicije 𝑖 do kraja niza i zatim se razmene element na poziciji 𝑖 i element na poziciji 𝑚.
Algoritam se zaustavlja kada se pretposlednji po veličini element dovede na pretposlednju
poziciju u nizu.

Primer 5.6.1. Prikažimo rad algoritma na primeru sortiranja niza 5 3 4 2 1.
• .5 3 4 2 1, 𝑖 = 0, 𝑚 = 4, razmena elemenata 5 i 1.
• 1 .3 4 2 5, 𝑖 = 1, 𝑚 = 3, razmena elemenata 3 i 2.
• 1 2 .4 3 5, 𝑖 = 2, 𝑚 = 3, razmena elemenata 4 i 3.
• 1 2 3 .4 5, 𝑖 = 3, 𝑚 = 3, razmena elemenata 4 i 4.
• 1 2 3 4 .5, 𝑖 = 4

Prikažimo jednu moguću implementaciju ovog algoritma.

vector<int> a{5, 3, 4, 2, 1};
int n = a.size();
for (int i = 0; i < n-1; i++) {

// pozicija minimuma u segmentu [i, n)
int m = i;
for (int j = i+1; j < n; j++)

if (a[j] < a[m])
m = j;

// razmena elementa na poziciji i i poziciji m
swap(a[i], a[m]);

5.6. UGNEŽĐENE PETLJE 103

}

Moguća je i naredna implementacija.

vector<int> a{5, 3, 4, 2, 1};
int n = a.size();
for (int i = 0; i < n-1; i++)

for (int j = i+1; j < n; j++)
if (a[i] > a[j])

swap(a[i], a[j]);

Ova implementacija je malo jednostavnija, jer se ne traži pozicija minimuma, već se mi-
nimum dovodi na mesto i tako što se tekući element menja sa onim na poziciji i kada god
je manji od njega. Ovim se može dobiti mnogo veći broj razmena nego kada se koristi prva
implementacija (druga implementacija može vršiti razmenu u svakom koraku unutrašnje
petlje, a prva garantovano vrši samo jednu razmenu u svakom koraku spoljašnje petlje).

5.6.1.2 Algoritam bubble sort
Algoritam Bubble sort u svakom prolazu kroz niz poredi uzastopne elemente i razmenjuje
im mesta ukoliko su u pogrešnom poretku. Prolasci kroz niz ponavljaju se sve dok se ne
napravi prolaz u kojem nije bilo razmena, što znači da je niz sortiran.

Primer 5.6.2. Prikažimo rad algoritma na primeru sortiranja niza (6 1 4 3 9):
Prvi prolaz:

• (.6 1 4 3 9) → (1 6 4 3 9), razmena jer je 6 > 1
• (1 .6 4 3 9) → (1 4 6 3 9), razmena jer je 6 > 4
• (1 4 .6 3 9) → (1 4 3 6 9), razmena jer je 6 > 3
• (1 4 3 .6 9) → (1 4 3 6 9)

Drugi prolaz:

• (1 4 3 6 9) → (1 4 3 6 9)
• (1 4 3 6 9) → (1 3 4 6 9), razmena jer je 4 > 3
• (1 3 4 6 9) → (1 3 4 6 9)
• (1 3 4 6 9) → (1 3 4 6 9)

Treći prolaz:

• (1 3 4 6 9) → (1 3 4 6 9)
• (1 3 4 6 9) → (1 3 4 6 9)
• (1 3 4 6 9) → (1 3 4 6 9)

104 GLAVA 5. PETLJE

• (1 3 4 6 9) → (1 3 4 6 9)

Primetimo da je niz bio sortiran već nakon drugog prolaza, međutim, da bi se to utvrdilo,
potrebno je bilo napraviti još jedan prolaz.

Naredna funkcija primenom algoritma bubble sort sortira vektor a.

vector<int> a{5, 3, 4, 2, 1};
int n = a.size();
bool bilo_razmena, i;
do {

bilo_razmena = false;
for (i = 0; i < n - 1; i++)

if (a[i] > a[i + 1]) {
swap(a[i], a[i+1]);
bilo_razmena = true;

}
} while (bilo_razmena);

}

Nakon 𝑘-te iteracije spoljašnje petlje, 𝑘-ti najveći element na svojoj finalnoj, ispravnoj
poziciji. Bubble sort je na osnovu ovog svojstva i dobio ime (jer veliki elementi kao
mehurići “isplivavaju” ka kraju niza). Zbog toga u unutrašnjoj petlji (for) nije potrebno
uvek ići do pozicije 𝑛 − 1, već po jedan manje u svakoj iteraciji. Štaviše, unutrašnja petlja
može se izvršavati samo do pozicije poslednje razmene u prethodnoj iteraciji. Postoje i
mnoge druge varijante ovog algoritma ali sve imaju lošu vremensku složenost. Najgori
slučaj nastupa kada je niz sortiran u obratnom redosledu.
Algoritam bubble sort smatra se veoma lošim algoritmom i ne treba ga koristiti u praksi.

5.6.1.3 Algoritam insertion sort
Algoritam Insertion sort sortira niz tako što jedan po jedan element niza umeće na odgo-
varajuće mesto u do tada sortirani deo niza.

Primer 5.6.3. Prikažimo rad algoritma na primeru sortiranja niza

• 5 3 4 1 2
• 5. 3 4 1 2
• 3 5. 4 1 2
• 3 4 5. 1 2
• 1 3 4 5. 2
• 1 2 3 4 5.

Podebljanim slovima prikazani su elementi umetnuti na svoju poziciju.

5.6. UGNEŽĐENE PETLJE 105

Algoritam insertion sortmože se opisati na sledeći način: ako niz ima više od jednog
elementa, sortiraj sve elemente ispred poslednjeg, a zatim umetni poslednji u taj sortirani
podniz. U nastavku je data jedna moguća implementacija (u unutrašnjoj petlji se element
menja sa svojim prethodnikom sve dok je prethodnik veći od njega).

vector<int> a{5, 3, 4, 2, 1};
int i, n = a.size();
for (i = 1; i < n; i++) {

for(int j = i; j > 0 && a[j] < a[j-1]; j--)
swap(a[j], a[j-1]);

}

Efikasnija verzija može se dobiti ukoliko se ne koriste razmene, već se zapamti element
koji treba da se umetne, zatim se pronađe pozicija na koju treba da se umetne, svi elementi
od te pozicije pomere se za jedno mesto udesno i na kraju se zapamćeni element upiše na
svoje mesto:

vector<int> a{5, 3, 4, 2, 1};
int i, n = a.size();
for (i = 1; i < n; i++) {

int j, tmp = a[i];
for (j = i; j > 0 && a[j-1] > tmp; j--)

a[j] = a[j-1];
a[j] = tmp;

}

I algoritam insertion sort kvadratnu vremensku složenost, a najgori slučaj nastupa
kada je niz sortiran u obratnom redosledu. Iako je algoritam insertion sort neefika-
san prilikom sortiranja dugačkih nizova, često je kod kratkih nizova (nizova sa nekoliko
desetina elemenata) brži od naprednijih algoritama.

5.6.2 Zadaci

106 GLAVA 5. PETLJE

6. Funkcije

6.1 Modularnost i razlaganje problema na potprobleme
Svaki C++ program sačinjen je od funkcija. Funkcija main mora da postoji i, pojednosta-
vljeno rečeno, izvršavanje programa uvek počinje izvršavanjem ove funkcije. Iz funkcije
main (ali i drugih) pozivaju se druge funkcije, bilo bibliotečke (na primer, sqrt kojom
se izračunava kvadratni koren), bilo korisnički definisane.
Veliki program veoma je teško napisati ili razumeti ako nije podeljen na celine tj. module.
Podela programa na celine (na primer, datoteke i funkcije) neophodna je za razumevanje
programa i nametnula se veoma rano u istoriji programiranja. Svi savremeni programski
jezici su dizajnirani tako da je podela na manje celine ne samo moguća, već tipičan način
podele često određuje sam stil programiranja (na primer, u objektno orijentisanim jezicima
neki podaci i metode za njihovu obradu se grupišu u klase). Podela programa na celine utiče
na više njegovih osobina:

• Kraći kôd: ukoliko se isti kôd ne ponavlja na više mesta u programu, već je izdvojen
u zasebnu celinu, program će biti jednostavaniji i koncizniji tj. kraći.

• Lakše održavanje:
Ukoliko je u delu koda koji je izdvojen u funkciju otkrivena greška, treba je ispraviti
na samo jednom mestu (a ne na više što bi bio slučaj da taj deo nije izdvojen u
funkciju).

• Čitljivost i razumljivost: podela programa na celine popravlja njegovu čitljivost i
razumljivost i omogućava i onome ko piše i onome ko čita program da se usredsredi
na ključna pitanja jedne celine, zanemarujući u tom trenutku i iz te perspektive funk-
cionalnosti podržane drugim celinama. Pored dobre podele na funkcije, na čitljivost
utiče i dobro imenovanje funkcija (tako da je jasno šta koja radi).

• Šira upotrebljivost: ukoliko je kôd kvalitetno podeljen na celine, pojedine celine
tj. funkcije biće moguće upotrebiti u nekom drugom kontekstu u programu. Ako
je neko izračunavanje skriveno u jednoj celini, ona može da se koristi i ako se ne

107

108 GLAVA 6. FUNKCIJE

zna kako tačno je ona implementirana, već je dovoljno znati šta radi, tj. kakav je
rezultat njenog rada za zadate argumente. Dodatno, pojedine funkcije mogu da se
koriste i u drugim programima.
Na primer, proveravanje da li neki trinaestocifreni kôd predstavlja mogući JMBG
(jedinstveni matični broj građana) može se izdvojiti u zasebnu funkciju koja je onda
upotrebljiva u različitim programima. Srodne funkcija mogu da se grupišu u biblio-
teke (koje mogu da se koriste u drugim programima).

• Lakša podela zadataka članovima tima: ukoliko je program osmišljen tako da je
sačinjen od logičnih celine, lakše ga je razvijati u timu – pojedinačni članovi tima
rade na zasebnih funkcijama.

Za većinu jezika, celine na koje se deli kôd su obično funkcije. Program se nikada ne deli
na funkcije i onda u datoteke tek onda kada je kompletno završen. Naprotiv, podela kôda
u funkcije vrši se još u ranim fazama pisanja programa i predstavlja jedan od najvažnijih
aspekata dizajna programa. Za pisanje funkcija postoje mnoge smernice (koje nisu stroga
pravila), poput:

• Jedna funkcija u programu, u principu, treba da obavlja samo jedan zadatak.
• Tekst jedne funkcije ne treba da bude previše dug i poželjno je da staje na jedan ili
dva ekrana (tj. da ima manje od pedesetak redova), radi dobre preglednosti. Duge
funkcije poželjno je podeliti na manje funkcije.

• Ukoliko funkcija ima više od, na primer, 10 lokalnih promenljivih, verovatno je
funkciju poželjno podeliti na nekoliko manjih. Slično važi i za broj parametara funk-
cije.

Ukoliko je brzina izvršavanja kritična, kompilatoru se može naložiti da inlajnuje kratke
funkcije (da prilikom kompilacije umetne kôd kratkih funkcija na pozicije gde su pozva-
ne)1.

6.2 Primeri korišćenja funkcije
Ilustrujmo prednosti definisanja i korišćenja pomoćnih funkcija kroz nekoliko primera.

Primer 6.2.1. Napišimo program koji izračunava da li dva uneta broja imaju isti zbir cifara
i to prvo bez, a onda uz korišćenje funkcija.

#include <iostream>
using namespace std;

int main() {
int a, b;

1Inlajnovanje u nekim situacijama kompilatori primenjuju i bez eksplicitnog zahteva programera.

6.2. PRIMERI KORIŠĆENJA FUNKCIJE 109

cin >> a >> b;

// izracunavamo zbir cifara broja a
int zbir_cifara_a = 0;
do {

int cifra = a % 10;
zbir_cifara_a += cifra;
a /= 10;

} while (a > 0);

// izracunavamo zbir cifara broja b
int zbir_cifara_b = 0;
do {

int cifra = b % 10;
zbir_cifara_b += cifra;
b /= 10;

} while (b > 0);

if (zbir_cifara_a == zbir_cifara_b)
cout << "da" << endl;

else
cout << "ne" << endl;

}

Primećujemo da se u prethodnom programu kôd koji izračunava zbir cifara broja nepotrebno
ponavlja dva puta. Mnogo bolje rešenje se dobija ako se taj kôd izdvoji u zasebnu funkciju,
koja se onda dva puta koristi: jednom da se izračuna zbir cifara broja a, a drugi put da se
izračuna zbir cifara broja b.

#include <iostream>
using namespace std;

int zbir_cifara(int n) {
int zbir = 0;
do {

int cifra = n % 10;
zbir += cifra;
n /= 10;

} while (n > 0);
return zbir;

}

110 GLAVA 6. FUNKCIJE

int main() {
int a, b;
cin >> a >> b;
if (zbir_cifara(a) == zbir_cifara(b))

cout << "da" << endl;
else

cout << "ne" << endl;
}

Primer 6.2.2. Razmotrimo još jedan primer u kome korišćenje funkcija značajno skraćuje
program. Zadatak je da se prirodan broj n (manji od 3000) zapiše pomoću rimskih cifara.
Na primer, broj 1283 se rimski zapisuje kao MCCLXXXIII. Zašto je to tako? Zato što se cifra
jedinica 3 zapisuje kao III, cifra desetica 8 se zapisuje kao LXXX, cifra stotina 2 se zapisuje
kao CC, dok se cifra hiljada 1 zapisuje kao M. Dakle, treba odrediti dekadne cifre i svaku
od njih pojedinačno prevesti u rimski zapis. Rešenje se može značajno pojednostaviti ako
se primeti da su pravila za određivanja rimskog zapisa na osnovu vrednosti cifre jedinica,
destica i stotina praktično ista, jedino se razlikuju simboli (slova) pomoću kojih se zapis gradi.
Na primer, ciframa jedinica 1 do 9 odgovaraju redom rimski zapisi I, II, III, IV, V, VI,
VII, VIII i IX, dok ciframa desetica od 1 do 9 odgovaraju redom rimski zapisi X, XX, XXX,
XL, L, LX, LXX, LXXX i XC. Dakle, u oba slučaja se koriste 3 simbola (simbol čija je vrednost
1, simbol čija je vrednost 5 i simbol čija je vrednost 10 i to su u prvom slučaju I, V i X, a u
drugom slučaju X, L i C) i pravila povezivanja ovih simbola potpuno su ista (za cifru od 1
do 3 simbol vrednosti 1 se ponovi 3 puta, za cifru 4 se nadovezu simbol vrednosti 1 i simbol
vrednosti 5 itd.). Ista pravila važe i za cifre stotina (tada se koriste simboli C, D i M). Zato je
poželjno definisati funkciju koja dobija vrednost cifre (od 1 do 9) i tri simbola i na osnovu
toga gradi odgovarajuću nisku.
Pošto se niska gradi tako što se neki simboli ponavljaju, potrebno je pronaći način da se
izgradi niska dobijena ponavljanjem datog karaktera c dati broj puta k. U jeziku C++ za to
se može upotrebiti poziv funkcije (konstruktora) string(k, c) (ova funkcija i druge slične
mogu se pronaći pregledom dokumentacije jezika).

// zapis jedne rimske cifre - simbol1, simbol5 i simbol10 odredjuju
// da li se radi i cifri jedinica, desetica ili stotina
string rimska_cifra(int c, char simbol1, char simbol5, char simbol10) {

if (c < 4) // npr. "", "I", "II", "III"
return string(c, simbol1);

else if (c == 4) // npr. "IV"
return string(1, simbol1) + string(1, simbol5);

else if (c < 9) // npr. "V", "VI", "VII", "VIII"

6.3. PARAMETRI FUNKCIJE 111

return string(1, simbol5) + string(c-5, simbol1);
else // npr. "IX"

return string(1, simbol1) + string(1, simbol10);
}

// prevodi dati broj u rimski zapis
string arapski_u_rimski(int n) {

string rezultat = "";
// cifra jedinica
rezultat = rimska_cifra(n % 10, 'I', 'V', 'X');
n /= 10; // uklanjamo cifru jedinica
// cifra desetica
rezultat = rimska_cifra(n % 10, 'X', 'L', 'C') + rezultat;
n /= 10; // uklanjamo cifru desetica
// cifra stotina
rezultat = rimska_cifra(n % 10, 'C', 'D', 'M') + rezultat;
n /= 10; // uklanjamo cifru stotina
// dodajemo hiljade na pocetak rezultata i vracamo ga
return string(n, 'M') + rezultat;

}

6.3 Parametri funkcije
Funkcija može imati parametre koje obrađuje i oni se navode u okviru definicije funkci-
je, iza imena funkcije i između zagrada. Termini parametar funkcije i argument funkcije
se ponekad koriste kao sinonimi. Ipak, pravilno je termin parametar funkcije koristiti za
promenljivu koja čini deklaraciju funkcije, a termin argument funkcije za izraz naveden
u pozivu funkcije na mestu parametra funkcije. Ponekad se argumenti funkcija naziva-
ju i stvarni argumenti, a parametri funkcija formalni argumenti. U primeru 6.2.1, n je
parametar funkcije int zbir_cifara(int n), a a i b su njeni argumenti u pozivima
zbir_cifara(a) i zbir_cifara(b).
Pre imena svakog parametra funkcije (u početnom delu koji deklariše funkciju) neophodno
je navesti njegov tip. Kao i imena promenljivih, imena parametara treba da oslikavaju
njihovo značenje i ulogu u programu. Ukoliko funkcija nema parametara, onda se između
zagrada navodi ključna reč void. Alternativno, u tom slučaju se između zagrada ne mora
navesti ništa.
Parametri funkcije mogu se u telu funkcije koristiti kao lokalne promenljive te funkcije a
koje imaju početnu vrednost određenu vrednostima argumenata u pozivu funkcije.
Promenljive koje su deklarisane kao parametri funkcije lokalne su za tu funkciju i njih ne
mogu da koriste druge funkcije. Štaviše, bilo koja druga funkcija može da koristi isto ime

112 GLAVA 6. FUNKCIJE

za neki svoj parametar ili za neku svoju lokalnu promenljivu.
Kvalifikatorom constmogu, kao i sve promenljive, biti označeni parametri funkcije čime
se obezbeđuje da neki parametar ili sadržaj na koji ukazuje neki parametar neće biti menjan
u funkciji.
Funkcija mainmože biti bez parametara ili može imati dva parametra unapred određenog
tipa (videti poglavlje 8.5.6).
Prilikom poziva funkcije, vrši se prenos argumenata, što će biti opisano u poglavlju 6.5.

6.4 Povratna vrednost funkcije
Funkcija može da vraća rezultat i tip rezultata se zapisuje na samom početku definicije
funkcije (pre njenog imena). Na primer, tip povratne vrednosti funkcije zbir_cifara
je int. Funkcija rezultat vraća naredbom return r; gde je r izraz zadatog tipa ili tipa
koji se može konvertovati u taj tip. Naredba return r; ne samo da vraća vrednost r
kao rezultat rada funkcije, nego i prekida njeno izvršavanje. Na primer, algoritam linearne
pretrage se često može implementirati u posebnoj funkciji. Naredna funkcija proverava
da li je dati broj prost, prekidajući pretragu i vraćajući rezultat false čim naiđe na neki
delilac broja.

bool prost(unsigned n) {
if (n <= 1) return false;
if (n == 2) return true;
for (int d = 3; d*d <= n; d += 2)

if (n % d == 0)
return false;

return true;
}

Ako funkcija ne treba da vraća rezultat, onda se kao tip povratne vrednosti navodi specijalan
tip void i tada naredba return nema argumenata (tj. navodi se return;). Štaviše, u tom
slučaju nije neophodno navoditi naredbu return iza poslednje naredbe u funkciji (return
se koristi jedino kada želimo da ranije prekinemo tok izvršavanja funkcije). S druge strane,
ako funkcija koja treba da vrati vrednost ne sadrži naredbu return, kompilator može da
prijavi upozorenje, a u fazi izvršavanja rezultat poziva te funkcije biće neka nedefinisana
vrednost.
Funkcija koja je pozvala neku drugu funkciju može da ignoriše, tj. da ne koristi vrednost
koju je ova vratila. Naime, svaki poziv funkcije je izraz, a vrednost bilo kog izračunatog
izraza se može ignorisati nakon njegovog izračunavanja (što ima smisla kada nam je jedini
cilj ostvarivanje propratnog efekta izračunavanja tog izraza).
Kvalifikator constmože se primeniti i na tip povratne vrednosti funkcije. To nema mnogo
smisla (osim u kombinaciji sa pokazivačima čime se ova knjiga ne bavi) i retko se koristi.

6.5. PRENOS ARGUMENATA 113

Iako je sintaksički ispravno i drugačije, funkcija main uvek treba da ima int kao tip po-
vratne vrednosti (jer okruženje iz kojeg je program pozvan uvek kao povratnu vrednost
očekuje tip int).

6.5 Prenos argumenata
Telo svake funkcije sadrži neke naredbe kojima se obrađuju neki podaci i dobijaju neki
rezultati. Obično je funkciji potrebno na neki način preneti podatke koje treba da obradi.
Takođe, nakon što završi obradu dobijenih podataka, funkcija obično treba da dobijene
rezultate nekako vrati pozivaocu. U slučaju jednostavnih funkcija, kakve smo do sada sre-
tali, za prenos podataka u funkciju koriste se argumenti funkcije, a rezultat rada funkcije
vraća se u vidu povratne vrednosti. Međutim, postoje scenariji u kojima su potrebna kom-
plikovanija rešenja. Na primer, u nekim situacijama funkcija kao rezultat treba da vrati
više podataka (a povratna vrednost funkcije je uvek jedinstvena vrednost). Jedan način
da se to uradi je da se više podataka upakuje u neku celinu (na primer, da se napravi tor-
ka elemenata, ili da se definiše poseban strukturni tip). Drugi načine je da se parametri
funkcije upotrebe i za vraćanje vrednosti pozivaocu (a ne samo za primanje vrednosti). U
programiranju su uobičajene tri vrste parametara funkcija:

• ulazni parametri (služe samo da se funkciji predaju podaci koje treba da obradi);
• izlazni parametri (služe da funkcija vrati vrednost);
• ulazno-izlazni parametri (služe da funkcija primi podatke koje treba da obradi, zatim
da modifikuje i tako modifikovane vrati pozivaocu).

Dok neki programski jezici imaju mehanizme kojima se razlikuju sve ove tri vrste para-
metara, u jeziku C++ ne postoje čisti izlazni parametri, već se za vraćanje vrednosti preko
parametara koriste ulazno-izlazni parametri.

• Ulazni parametri (tj. parametri koji služe da se funkciji predaju podaci koje treba da
obradi), zadaju se tako što se prilikom poziva funkcije napravi kopija argumenata (u
memorijskom prostoru namenjenom izvršavanju te funkcije) i funkcija nakon toga
pristupa kopijama podataka. Funkcija može i da menja te kopije, ali će originalni
podaci ostati nepromenjeni. U jeziku C++, ulazni parametri realizuju se kroz prenos
argumenta u funkciju koji zovemo:

– prenos po vrednosti (eng. pass by value)

• Ulazno-izlazni parametri (tj. parametri koji služe da funkcija primi podatke koje
treba da obradi, zatim da modifikuje i tako modifikovane vrati pozivaocu), zadaju
se tako što se ne pravi kopija, već funkcija dobija mogućnost da pristupa i modifi-
kuje originalne podatke tj. argumente koje je dobila. Ovo se ostvaruje tako što se
funkciji omogući pristup memorijskoj lokaciji na kojoj se nalaze originalni podaci.

114 GLAVA 6. FUNKCIJE

Ako je to adresa neke promenljive iz funkcije pozivaoca, kada pozvana funkcija
upiše neke podatke na tu adresu, biće izmenjena odgovarajuća promenljiva unutar
funkcije pozivaoca (čime je pozvana funkcija vratila nekakav rezultat svog rada). U
jeziku C++, ulazno-izlazni parametri realizuju se kroz dve vrste prenosa argumenta
u funkciju koje zovemo:

– prenos po referenci (eng. pass by reference)
– prenos po adresi, tj. prenos po pokazivaču (eng. pass by address, pass by poin-

ter)

Vrste prenosa argumenta biće detaljnije objašnjene u nastavku.

6.5.1 Prenos argumenata po vrednosti
Za ulazne parametre najčešće se koristi prenos po vrednosti. Prilikom prenosa po vrednosti,
vrednost koja se koristi kao argument funkcije kopira se kada počne izvršavanje funkcije
(u memorijski prostor namenjen izvršavanju te funkcije) i onda funkcija radi samo sa tom
kopijom, ne menjajući original.
Razmotrimo, kao primer, funkciju zbir_cifara je u primeru 6.2.1 deklarisana sa int
zbir_cifara(int n) i pozvana sa zbir_cifara(a), gde je a promenljiva učitana u
funkciji main. Ta promenljiva će nakon izvršenja funkcije zbir_cifara ostati nepro-
menjena, ma kako da je funkcija zbir_cifara definisana, tj. i ako menja vrednost svog
parametra n. Naime, kada počne izvršavanje funkcije zbir_cifara, vrednost promenlji-
ve a biće iskopirana u lokalnu promenljivu n koja je navedena kao parametar funkcije i
funkcija će koristiti samo tu kopiju u svom radu. U ovom konkretnom primeru, funkcija
zbir_cifara zaista menja vrednost promenljive n (deli je sa 10, sve dok joj vrednost ne
postane 0), ali promenljiva a ostaje nepromenjena (pošto je n samo kopija promenljive
a).
Naglasimo da imena promenljivih u ovom slučaju nisu relevantna: čak i da se promenljiva u
funkciji zbir_cifara takođe zvala a i da je onamenjana, u programu bi zapravo postojale
dve različite promenljive a (jedna u funkciji main i njena kopija u funkciji zbir_cifara).
Dakle, moguće je i da se ime parametra funkcije poklapa sa imenom promenljive koja je
prosleđena kao stvarni argument, na primer:

#include <iostream>
using namespace std;

void f(int a) {
a = 3;
cout << "f: a = " << a << endl;

}

6.5. PRENOS ARGUMENATA 115

int main() {
int a = 5;
f(a);
cout << "main: a = " << a << endl;

}

I u ovom slučaju radi se o dve različite promenljive (promenljiva u pozvanoj funkciji je
kopija promenljive iz funkcije u kojoj se poziv nalazi).

f: a = 3
main: a = 5

U pozivu funkcije, argument koji se prenosi po vrednosti može biti promenljiva, ali i bilo
koji izraz istog tipa (ili izraz čija vrednost može da se konvertuje u taj tip). Na primer, funk-
cija zbir_cifara iz primera iz poglavlja može biti pozvana sa zbir_cifara(12345),
ali i sa zbir_cifara(12345+67890).
Prenos argumenata po vrednosti ilustruje i funkcija swap kojoj je zadatak da razmeni vred-
nosti dve promenljive. Njena naredna definicija je, usled prenosa po vrednosti, pogrešna,
tj. ne razmenjuje vrednosti svojih argumenata.

#include <iostream>
using namespace std;

void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

int main() {
int x = 3, y = 5;
swap(x, y);
cout << "x = " << x << " y = " << y << endl;

}

U funkciji swap promenljive a i b razmenjuju vrednosti, no ako je funkcija pozvana iz neke
druge funkcije sa swap(x, y), onda će vrednosti promenljivih x i y ostati nepromenjene
nakon ovog poziva, te navedeni program daje naredni ispis.

x = 3, y = 5

Na isti način kao i osnovni tipovi (npr. int, double, bool) po vrednosti se prenose i
objekti (npr. string, vector) i strukture. Naglasimo da podaci ovih tipova mogu biti

116 GLAVA 6. FUNKCIJE

veliki i njihovo kopiranje zahteva dodatno vreme i zahteva dodatne memorijske resurse.
Stoga se, u cilju optimizacije, čak i kada se ovi tipovi podataka koriste kao ulazni para-
metri funkcije ne savetuje njihov prenos po vrednosti (već najčešće prenos po konstantnoj
referenci, o čemu će biti više reči u nastavku).

6.5.2 Prenos argumenata po referenci
U prethodnom poglavlju ilustrovano je da ako je neka promenljiva kao argument preneta
po vrednosti u neku funkciju, onda će njena vrednost biti prekopirana, ta kopija će biti
korišćena u funkciji, možda i promenjena, ali originalna promenljiva ostaće neizmenjena.
Ukoliko je unutar funkcije potrebno promeniti neku promenljivu koja joj je poslata kao
argument, onda se ona prenosi po referenci a taj se parametar označava simbolom &. U
ovoj vrsti prenosa, funkciji se prosleđuje referenca na originalnu promenljivu. Argument
koji se prenosi po referenci mora da bude promenljiva (ili, eventualno, konstanta ukoli-
ko odgovarajući parametar ima kvalifikator const). Referenca se može smatrati drugim
imenom za originalni argument i sve promene nad referencom odražavaju se na original-
nu promenljivu. Štaviše, promenljiva koja kao parametar figuriše u funkciji i nema svoj
memorijski prostor (u fazi izvršavanja) već koristi prostor promenljive koja je argument.
Dakle, u pozadini ovog prenosa se, zapravo, funkciji ne prenosi vrednost originalne pro-
menljive, već samo njena adresa. O detaljima realizacije tog prenosa stara se kompilator i
programer ne mora da razmišlja o njima.
Razmotrimo ponovo funkciju swap i implementirajmo je tako da ona zaista razmenjuje
vrednosti promenljivih za koje je poznata. Poziv funkcije ne mora da se promeni, ali njen
prototip mora – njeni agumenti će sada biti reference:

#include <iostream>
using namespace std;

void swap(int &a, int &b) {
int temp = a;
a = b;
b = temp;

}

int main() {
int x = 3, y = 5;
swap(x, y);
cout << "x = " << x << " y = " << y << endl;

}

Funkcija swap preko svojih parametara (koji su reference) ima pristup promenljivim x i y,
te navedeni program daje naredni ispis.

6.5. PRENOS ARGUMENATA 117

x = 5, y = 3

Naglasimo da standardna biblioteka jezika C++ već sadrži funkciju swap koja razmenjuje
vrednosti promenljivih (da bi se koristila potrebno je uključiti zaglavlje <algorithm>),
pa je nema potrebe definisati u programu.
Prenos po referenci može se koristiti i da bi se definisale funkcije koje mogu da vrate više
vrednosti (što je situacija koja je objašnjena ranije). Na primer, naredna funkcija ugao zadat
u sekundama prevodi u stepene, minute i sekunde.

// ugao od S sekundi prevodi u stepene, minute i sekunde
void od_sekundi(int S, int& stepeni, int& minuti, int& sekundi) {

sekundi = S % 60;
minuti = (S / 60) % 60;
stepeni = S / 3600;

}

Naravno, više vrednosti se može vratiti i definisanjem zasebne strukture.

struct Ugao {
int stepeni, minuti, sekundi;

};

Ugao od_sekundi(int S) {
Ugao rezultat;
rezultat.sekundi = S % 60;
rezultat.minuti = (S / 60) % 60;
rezultat.stepeni = S / 3600;
return rezultat;

}

Alternativa je i da se vrati torka.

tuple<int, int, int> od_sekundi(int S) {
int sekundi = S % 60;
int minuti = (S / 60) % 60;
int stepeni = S / 3600;
return make_tuple(stepeni, minuti, sekundi);

}

Kao što je rečeno, kada se vrši prenos argumenta po referenci, ne vrši se njegovo kopiranje,
već se pristupa direktno originalnom argumentu. Ukoliko je argument objekat ili struktu-
ra koji zauzima veliki broj bajtova (na primer, string ili vector), to donosi značajnu

118 GLAVA 6. FUNKCIJE

prostornu i vremensku efikasnost jer nema kopiranja (što je slučaj u prenosu po vrednosti).
Zato prenos po referenci može biti koristan i kada nije potrebno izmeniti neki argument
funkcije. Ali, ukoliko se neki parametar funkcije ne menja u njoj, tada je poželjno to
obezbediti i naglasiti i samom deklaracijom, navođenjem reči const ispred deklaracije
tog parametra. U pozivu funkcije, argument koji se prenosi po referenci mora da bude
promenljiva ili, ako tip odgovarajućeg parametra nosi kvalifikator const, konstanta. Na
primer, funkcija koja izračunava broj razmaka u tekstu bi trebalo da bude definisana na
sledeći način.

int broj_razmaka(const string& tekst) {
int broj = 0;
for (char c : tekst)

if (c == ' ')
broj++;

return broj;
}

U slučaju da je tekst dugačak, ovim se dobija značajna ušteda u odnosu na prenos po
vrednosti, naročito ako se ova funkcija često poziva u nekom programu.

6.5.3 Prenos argumenata po adresi
Prenos argumenta po adresi (tj. prenos po pokazivaču) sličan je prenosu po referenci, s
tim što se u ovom slučaju funkciji dostavlja adresa neke promeljive tj. pokazivač na nju,
pa će odgovarajući parametar da bude pokazivačkog tipa. Pokazivač je promenljiva koja
(u fazi izvršavanja) ima svoj memorijski prostor i može da u njemu čuva adresu neke dru-
ge promenljive. Raspolaganje pokazivačem na neku promenljivu omogućava funkciji da
pristupa toj promenljivoj, pa i da je menja ukoliko je to potrebno. Efekat će biti praktično
isti kao u slučaju korišćenja prenosa po referenci, ali će postupak prenosa adrese biti ek-
splicitan: u pozivu funkcije, programer mora da navede da u funkciju kao argument šalje
adresu neke promenljive (navođenjem simbola &), a ne njenu vrednost.
Funkcija swap, može biti implementirana i korišćenjem prenosa po adresi, ali će to za-
htevati ne samo izmenu početne definicije funkcije, nego i načina na koji se ona poziva.
Parametri funkcije biće pokazivačkog tipa (na primer, int*), argumenti će biti adrese
promenljivih (koje se dobijaju primenom operatora referenciranja, &), a za pristup pro-
menljivim na koje ukazuju pokazivači primenjuje se operator dereferenciranja *.

#include <iostream>
using namespace std;

void swap(int *a, int *b) {

6.5. PRENOS ARGUMENATA 119

int temp = *a;
*a = *b;
*b = temp;

}

int main() {
int x = 3, y = 5;
swap(&x, &y);
cout << "x = " << x << " y = " << y << endl;

}

Funkcija swap preko svojih parametara (koji su pokazivači) ima pristup promenljivim x i
y, te navedeni program daje naredni ispis.

x = 5, y = 3

Zvezdice u deklaraciji označavaju pokazivački tip int * (pokazivač na promenljivu koja
je tipa int), dok zvezdice u kodu označavaju derereferenciranje tj. pristup promenljivoj na
koju ukazuje pokazivač (na primer, int temp = *a; uzrokuje da celobrojna promenljiva
temp dobije vrednost promenljive na koju ukazuje pokazivač a, dok *a = *b uzrokuje da
promenljiva na koju ukazuje pokazivač a dobije vrednost one promenljive na koju ukazuje
pokazivač b).
Slično kao kod prenosa po referenci, prenos po adresi zahteva kopiranje samo pokazivača
što je obično dalekomanje nego kopiranje promenljivih koje su argumenti. Ponovo kao kod
prenosa po referenci, ukoliko se u funkciji ne menja vrednost na koju ukazje parametar koji
je pokazivač, poželjno je to naglasiti i samom deklaracijom, navođenjem reči const ispred
deklaracije tog parametra. U pozivu funkcije, argument koji se prenosi po adresi mora da
bude samo adresa promenljive (pa, dakle, kao argument po adresi ne može biti preneta
konstanta ili neki izraz).
Efekat prenosa po adresi je, dakle, isti kao u slučaju prenosa po referenci, ali je sintaksa
napisanog programa znatno komplikovanija (zbog eksplicitnog referenciranja i dereferen-
ciranja). Prenos po adresi (tj. preko pokazivača) tipičan je za programski jezik C, koji ne
poseduje mehanizam prenosa po referenci.2 U jeziku C++ se pokazivači koriste u tehni-
kama programiranja koje prevazilaze domet ove knjige (na primer, u radu sa dinamički
alociranommemorijom i implementaciji dinamičkih struktura podataka), tako da se njima
baviti tek u njenim narednim tomovima.

2Pošto se prenos argumenta po adresi svodi na prenos adrese promenljive po vrednosti, može se smatrati da
je prenos po adresi vrsta prenosa po vrednosti. Zbog toga se često insistira da je jeziku C postoji samo prenos
argumenata po vrednosti.

120 GLAVA 6. FUNKCIJE

6.6 Konverzije tipova argumenata funkcije
Prilikom poziva funkcije, ukoliko je poznata njena deklaracija, vrši se implicitna konverzija
tipova argumenata u tipove parametara (ako se oni razlikuju). Slično, prilikom vraćanja
vrednosti funkcije (putem return naredbe) vrši se konverzija vrednosti koja se vraća u tip
povratne vrednosti funkcije.

6.7 Anonimne funkcije
U jeziku C++ moguće je definisanje tzv. anonimnih tj. lambda funkcija3. Te funkcije
nemaju svoje ime (mada se mogu dodeliti promenljivoj i na taj način imenovati). Te funk-
cije obično se koriste za samo jedan kontekst, tj. za izračunavanja potrebna samo u okviru
nekog šireg izračunavanja (često se kao parametri prosleđuju funkcijama standardne bi-
blioteke, kao što je prikazano u poglavlju 8). Korišćenje anonimnih funkcija često omo-
gućava pojednostavljivanje i skraćivanje koda, kao i smanjivanje broja identifikatora (što
dalje vodi ka čistijem i bolje organizovanom kodu). Na primer, promenljiva kvadrat je
funkcijskog tipa i izračunava kvadrat datog celog broja.

void main() {
auto kvadrat = [](int x) {

return x * x;
};
cout << kvadrat(3) << endl;

}

Tip povratne vrednosti lambda-funkcije kvadrat nije eksplicitno naveden (što je često
slučaj prilikom definisanja lambdi), već je ključnom rečju auto kompilatoru rečeno da ga
sam odredi. Umesto tipa povratne vrednosti i imena funkcije, definicija lambda-funkcije
počinje spiskom uhvaćenih promenljivih (engl. captured variables) navedenim u sklopu
uglastih zagrada, koji je u ovom primeru prazan ([]). Nakon toga sledi spisak parameta-
ra funkcije i telo funkcije, koji se ni po čemu ne razlikuju od običnih funkcija. Tačka-
zapeta na kraju dolazi od deklaracije sa inicijalizacijom (završetak deklaracije promenlji-
ve je uvek tačka-zapeta). Moguće je i eksplicitno navesti tip povratne vrednosti lambda-
funkcije.

int main() {
...
auto kvadrat = [](int x) -> int {

3Naziv lambda dolazi od grčkog slova 𝜆 koje je Alonzo Čerč koristio u svojoj definiciji pojma funkci-
je i izračunavanja – tzv. 𝜆-račun. Ovaj formalizam predstavlja teorijsku osnovu savremenog funkcionalnog
programiranja.

6.7. ANONIMNE FUNKCIJE 121

return x * x;
};
...

}

Promenljiva kvadrat (koja je zapravo funkcija) je lokalna u funkciji main i ne može se
koristiti van nje.
Lambda-funkcija može pristupati samo onim lokalnim promenljivim okolne funkcije ko-
je su eksplicitno navede u spisku uhvaćenih promenljivih. U narednom primeru, lambda-
funkcija veci_od_praga proverava da li je data vrednost x veća od datog praga i mora da
ima pristup promenljivoj prag. Lambda-funkciju veci_od_praga prosleđujemo biblio-
tečkoj funkciji count_if (ova i njoj slične funkcije su opisane u poglavlju 8), koja broji
elemente date kolekcije (u ovom primeru vektora) za koje data funkcija vraća vrednost
true.

int main() {
vector<int> a = {3, 7, 1, 4, 2, 5, 9};
int prag;
cin >> prag;
auto veci_od_praga = [prag](int x) { return x > prag; }
cout << count_if(begin(a), end(a), veci_od_praga) << endl;

}

Lambda je u prethodnom primeru upotrebljena samo da bi se prosledila kao para-
metar funkcije count_if. Da bi se to uradilo, nije neophodno uvoditi promenljivu
veci_od_praga.

int main() {
vector<int> a = {3, 7, 1, 4, 2, 5, 9};
int prag;
cin >> prag;
cout << count_if(begin(a), end(a),

[prag](int x) { return x > prag; })
<< endl;

}

Prethodni stil programiranja koji se zasniva na korišćenju bibliotečkih funkcija koje kao
argumente primaju funkcije inspirisan je funkcionalnom paradigmom i tipičan je za sa-
vremeni C++ (o čemu govori i glava 7). Naravno, ista funkcionalnost može se postići i bez
korišćenja lambda-funkcija i biblioteke i u ovom konkretnom primeru dobija se rešenje
koje nije lošije od prethodnog.

122 GLAVA 6. FUNKCIJE

int main() {
vector<int> a = {3, 7, 1, 4, 2, 5, 9};
int prag;
cin >> prag;
int broj_vecih_od_praga = 0;
for (int x : a)

if (x > prag)
broj_vecih_od_praga++;

cout << broj_vecih_od_praga << endl;
}

Za razliku od navedenog primera, naprednije funkcije (poput funkcija sortiranja ili efikasne
pretrage sortiranog niza) je teže samostalno implementirati i u tim situacijama je poželjno
poznavati i koristiti lambda-funkcije.
Ako je potrebno da se iz anonimne funkcije promeni vrednost neke okolne lokalne pro-
menljive, ona se u grupi uhvaćenih promenljivih navodi uz simbol &, koji označava prenos
po referenci. Na primer, grupa [x, &y] označava da lambda ima pristup promenljivoj x
po vrednosti (može da je čita, ali ne i da je menja), a promenljivoj y po referenci (može
da je i čita i menja).
Grupa [=] označava da lambda ima pristup po vrednosti svim okolnim promenljivim, a
[&] da lambda ima pristup po referenci svim okolnim promenljivim.

6.8 Složeni tipovi i funkcije
Parametri funkcija mogu biti i strukture, drugi korisnički definisani tipovi, kao i složeni
tipovi poput pair, vector, map, itd. Funkcije mogu takve tipove imati i kao tip povratne
vrednosti. Prenos argumenta se i u ovom slučaju vrši kao i za osnovne tipove.
Funkcija kreiraj_razlomak od dva cela broja kreira i vraća objekat tipa razlomak:

struct razlomak {
int brojilac, imenilac;

};

razlomak kreiraj_razlomak(int brojilac, int imenilac) {
razlomak rezultat;
rezultat.brojilac = brojilac;
rezultat.imenilac = imenilac;
return rezultat;

}

6.8. SLOŽENI TIPOVI I FUNKCIJE 123

Navedni primer pokazuje i da ne postoji konflikt između imena parametara i istoimenih
članova strukture. Naime, imena članova strukture su uvek vezana za ime promenljive (u
ovom primeru rezultat).
Sledeći primer ilustruje funkcije sa parametrima i povratnim vrednostima koji su tipa
strukture:

razlomak saberi_razlomke(const razlomak& a, const razlomak& b) {
razlomak c;
c.brojilac = a.brojilac*b.imenilac + a.imenilac*b.brojilac;
c.imenilac = a.imenilac*b.imenilac;
return c;

}

Primećujemo da smo, efikasnosti radi, ulazne parametre umesto po vrednosti, preneli po
konstantnoj referenci.
Prenos (statičkih) nizova u funkciju je veoma specifičan. Naime, pošto nizovi po pravilu
zauzimaju veću količinu memorije od primitivnih tipova podataka, još od programskog
jezika C odlučeno je da se prilikom prenos nizova u funkciju oni ne kopiraju, već da se
funkciji samo prenese adresa početka niza. Pokazivač na početak niza se ne koristi ekspli-
citno (već je zadat imenom niza) ali prenos nizova suštinski jeste prenos po adresi, tj. preko
pokazivača. Razmotrimo naredni primer.

#include <iostream>
using namespace std;

// za dati broj n > 0, u niz stepeni upisuje vrednosti [2^0, 2^1, ..., 2^{n-1}]
void stepeni_dvojke(int stepeni[], int n) {

stepeni[0] = 1;
for (int i = 1; i < n; i++)

stepeni[i] = 2 * stepeni[i-1];
}

int main() {
const int N = 20;
int stepeni[N];
stepeni_dvojke(stepeni, N);
for (int i = 0; i < N; i++)

cout << stepeni[i] << " ";
cout << endl;

}

124 GLAVA 6. FUNKCIJE

Iako se u deklaraciji ne koristi ni simbol & koji bi ukazao na prenos po referenci, ni simbol
* koji bi ukazao na prenos po adresi, u funkciju stiže adresa početka niza definisanog u
funkciji main, ne pravi se kopija niza i funkcija stepenDvojke sve vreme radi sa ori-
ginalnim nizom, što znači da će stepene dvojke upisati u originalni niz, što znači da će
prethodni program ispravno ispisati sve stepene dvojke od 20 do 219. Ovaj način definisa-
nja funkcija koje vraćaju niz vrednosti je veoma tipičan za jezik C: funkciji se prosledi
niz (unapred alociran u pozivaocu) i broj elemenata, a funkcija onda popunjava sadržaj
tog niza.
Alternativa korišćenju nizova je upotreba vektora, pri čemu vektor (kao i bilo koji drugi
tip) može biti vraćen kao povratna vrednost.

#include <iostream>
#include <vector>
using namespace std;

// za dati broj n > 0 vraća niz stepena [2^0, 2^1, ..., 2^{n-1}]
vector<int> stepeni_dvojke(int n) {

vector<int> stepeni(n);
stepeni[0] = 1;
for (int i = 1; i < n; i++)

stepeni[i] = 2 * stepeni[i-1];
return stepeni;

}

int main() {
const int N = 20;
vector<int> stepeni = stepeni_dvojke(N);
for (int i = 0; i < N; i++)

cout << stepeni[i] << " ";
cout << endl;

}

Ovaj program je sporiji, jer zahteva da se unutar funkcije stepeni_dvojke izvrši rezer-
visanje memorijskog prostora za vector, što je sporije nego rezervisanje memorijskog
prostora za statički niz, kao u prvoj verziji programa (videti poglavlje 7.2.3). Ipak, razlika
u brzini nije uvek toliko značajna da bi opravdala korišćenje statičkih nizova. Prednosti
vektora su to što njihova broj elemenata ne mora biti poznat prilikom pisanja tj. prevođenja
programa i dobija se program koji je mnogo fleksibilniji i u kom je mogućnost nastajanja
grešaka manja. Naglasimo da je jedino kreiranje vektora sporije nego kreiranje statičkog
niza – jednom kada se vektor kreira tj. kada se odvoji potrebna memorija, dalje operacije
nad vektorom se izvršavaju praktično istom brzinom kao nad nizom.

6.9. REKURZIVNE FUNKCIJE - OSNOVNI PREGLED 125

U ranijim verzijama jezika C++, vraćanje objekata (pa i vektora) iz funkcije je zahtevalo
kopiranje tih objekata (vektor stepeni koji je kreiran u funkciji stepeni_dvojke bi se
kopirao u vektor stepeni u funkciji main), nakon čega bi se vektor stepeni alociran
u funkciji stepeni_dvojke oslobađao. Međutim, u novim verzijama jezika garantuje se
da do kopiranja neće doći već će vektor koji se vraća iz funkcije biti praktično preuzet
u funkciju main. O ovom i sličnim mehanizmama kopiranja više reči će biti u narednim
tomovoma ove knjige.

6.9 Rekurzivne funkcije - osnovni pregled
Funkcija može da poziva druge funkcije. Funkcija može da pozove i samu sebe (u tom
slučaju argumenti funkcije obično se razlikuju od argumenata u pozivu). Da bi se izvršava-
nje funkcije završavalo, potrebno je da postoji slučaj u kojem se ne vrši rekurzivni poziv.
Naredna rekurzivna funkcija izračunava vrednost 𝑥𝑛, na osnovu poznatih matematičkih
veza:

𝑥𝑛 = {1, 𝑛 = 0
𝑥 ⋅ 𝑥𝑛−1, 𝑛 > 0

double stepen(double x, unsigned n) {
if (n == 0)

return 1.0;
else

return x*stepen(x, n-1);
}

Za vrednosti argumenta 𝑛 veće od nule vrši se rekurzivni poziv, a za vrednost 0 – vrednost
funkcije izračunava se neposredno. Na primer, 𝑠𝑡𝑒𝑝𝑒𝑛(2, 3) = 2 ⋅ 𝑠𝑡𝑒𝑝𝑒𝑛(2, 2) = 4 ⋅
𝑠𝑡𝑒𝑝𝑒𝑛(2, 1) = 8 ⋅ 𝑠𝑡𝑒𝑝𝑒𝑛(2, 0) = 8 ⋅ 1 = 8.
Funkcije koje pozivaju same sebe zovemo rekurzivne funkcije. Korišćenjem rekurzije može
se napisati i efikasnija funkcija za stepenovanje.

double stepen(double x, unsigned n) {
if (n == 0)

return 1.0;
else if (n % 2 == 0)

return stepen(x*x, n / 2);
else

return x*stepen(x, n-1);

126 GLAVA 6. FUNKCIJE

}

Na primer, 𝑠𝑡𝑒𝑝𝑒𝑛(2, 12) = 𝑠𝑡𝑒𝑝𝑒𝑛(4, 6) = 𝑠𝑡𝑒𝑝𝑒𝑛(16, 3) = 16 ⋅ 𝑠𝑡𝑒𝑝𝑒𝑛(16, 2) =
16 ⋅ 𝑠𝑡𝑒𝑝𝑒𝑛(256, 1) = 16 ⋅ 256 ⋅ 𝑠𝑡𝑒𝑝𝑒𝑛(256, 0) = 16 ⋅ 256 ⋅ 1 = 4096. Ovaj algoritam
bilo bi teže implementirati bez korišćenja rekurzije.
Rekurzija je veoma važna tehnika konstrukcije algoritama i programiranja i o njoj će mno-
go više reči biti u drugom tomu ove knjige.

6.10 Doseg, životni vek i organizacija memorije dodeljene programu
U prisustvu više funkcija, postavlja se prirodno pitanje gde je poželjno deklarisati pro-
menljive (unutar funkcija, van funkcija, na početku tela funkcija, unutar tela funkcija i
slično), koliko dugo te promenljive zauzimaju memorijski prostor i kako su raspoređene
po memoriji dodeljenoj našem programu.

6.10.1 Doseg identifikatora
Jedna od karakteristika dobrih programa je da se promenljive većinom deklarišu u funkci-
jama (ili čak nekim užim blokovima) čime je njihova upotreba ograničena na te funkcije
(ili blokove). Ovim se smanjuje zavisnost između funkcija i ponašanje funkcije određeno
je samo njenim ulaznim parametrima, a ne nekim globalnim stanjem programa. Time se
omogućava i da se analiza rada programa zasniva na analizi pojedinačnih funkcija, neza-
visnoj od konteksta celog programa. Ipak, u nekim slučajevima prihvatljivo je da funkcije
međusobno komuniciraju korišćenjem zajedničkih promenljivih.
Doseg identifikatora ili vidljivost identifikatora (engl. scope of identifiers) predstavlja deo
teksta programa u kojem je određeni identifikator vidljiv, tj. u kojem ga je moguće ko-
ristiti i u kojem taj identifikator identifikuje određeni objekat (na primer, promenljivu ili
funkciju). Doseg je zadat načinom i mestom u izvornom kodu u kojem je identifikator
uveden. Svaki identifikator ima neki doseg. Jezik C++ spada u grupu jezika sa statičkim
pravilima dosega što znači da se doseg svakog identifikatora može jednoznačno utvrditi
analizom izvornog koda (bez obzira na moguće tokove izvršavanja programa). U jeziku
C++ postoji nekoliko vrsta dosega od kojih su najznačajne:

• doseg datoteke (engl. file scope) koji podrazumeva da ime važi od tačke uvođenja do
kraja datoteke;

• doseg bloka (engl. block scope) koji podrazumeva da ime važi od tačke uvođenja do
kraja bloka u kojem je uvedeno;

Identifikatori koji imaju doseg datoteke najčešće se nazivaju globalni, dok se identifikatori
koji imaju doseg bloka nazivaju lokalni. Na osnovu diskusije sa početka ovog poglavlja,
jasno je da je poželjno koristiti identifikatore promenljivih lokalnog dosega kada god je to
moguće.

6.10. DOSEG, ŽIVOTNIVEK IORGANIZACIJAMEMORIJEDODELJENEPROGRAMU127

Lokalne promenljive su promenljive deklarisane unutar funkcija i njih smo već koristili u
funkcijama koje smo do sada prikazali. Globalne promenljive se mogu koristiti kako bi
se izbegao prenos parametara u funkciju. Zamislimo, na primer, da u nekoj veb-aplikaciji
sadržaj treba da se prikazuje samo ulogovanim korisnicima. Svaka funkcija proverava da
li je korisnik ulogovan i ako nije - prikazuje mu informaciju da treba da se uloguje, a u
suprotnom mu prikazuje odgovarajući sadržaj. To znači da svaka funkcija treba da prima
parametar kroz koji dobija informaciju o tome da li je korisnik ulogovan. Jednostavnije
rešenje može biti da se ta informacija čuva u globalnoj promenljivoj.

bool ulogovan = false;

void ulogujKorisnika(const string& korisnickoIme, const string& lozinka) {
if (proveriLogovanje(korisnickoIme, lozinka))

ulogovan = true;
}

void prvaStrana() {
if (!ulogovan) {

cout << "Morate biti ulogovani" << endl;
return;

}
// prikaz sadrzaja prve strane
...

}

Moguće je i da globalna i lokalna promenljiva imaju isto ime. Naime, moguće je da po-
stoji više identifikatora istog imena. Ako su njihovi dosezi jedan u okviru drugog, tada
identifikator u užoj oblasti dosega sakriva identifikator u široj oblasti dosega. Na primer, u
narednom programu, promenljiva i u petlji sakriva lokalnu promenljivu i inicijalizovanu
na vrednost 7, a koja sakriva globalnu promenljivu i inicijalizovanu na vrednost 10.

int i = 10;

void f() {
int i = 7;
for (int i = 0; i < 4; i++)

cout << i << " ";
cout << endl;
cout << i << endl;

}

128 GLAVA 6. FUNKCIJE

int main() {
f();
cout << i << endl;

}

0 1 2 3
7
10

Ovim je omogućeno da prilikom uvođenja novih imena programer ne mora da brine da li
je takvo ime već upotrebljeno u širem kontekstu.
Naglasimo da korišćenje globalnih promenljivih može ponekad pojednostaviti program
(jer funkcije imaju manje parametara), ali dobijeni program može biti po mnogim kriteri-
jumima lošiji. Naime, ako se ustanovi neki problem koji nastaje usled pogrešne vrednosti
te promenljive, grešku treba tražiti među svim funkcijama programa, jer sve one mogu da
pristupe i promene vrednost globalne promenljive. Za razliku od toga, ako se ustanovi pro-
blem usled pogrešne vrednosti lokalne promenljive, tada je dovoljno proveriti samo kôd
unutar funkcije u kojoj je definisana ta lokalna promenljiva. Dodatno, funkcija koja ne
koristi globalne promenljive znatno je šire upotrebljiva: ne samo za globalne promenljive,
već za bilo koje argumente koji su joj prosleđeni.
Jezik C++ podržava i korišćenje objektno-orijentisanog programiranja u kom se omogu-
ćava i doseg nivoa klase, koji će biti ukratko opisan u glavi 7.

6.10.2 Životni vek objekata
Lokalna promenljiva vezana je za jedan poziv funkcije – za nju se rezerviše memorijski
prostor kada je funkcija pozvana i oslobođa se čim se izvršavanje funkcije završi. Sa druge
strane, globalne promenljive se koriste iz različitih funkcija i memorijski prostor za njih
treba da bude rezervisan tokom čitavog izvršavanja programa (jer se ne može unapred
predvideti kada će biti pozvana neka funkcija koja će koristiti tu globalnu promenljivu).
Životni vek (engl. storage duration) promenljive je period izvršavanja programa u kojem je
za tu promenljivu rezervisan deo memorije i kada se ta promenljiva može koristiti. Postoje
sledeće vrste životnog veka:

• statički (engl. static) životni vek koji znači da je objekat dostupan tokom celog izvr-
šavanja programa;

• automatski (engl. automatic) životni vek koji najčešće imaju promenljive koje se
automatski stvaraju i uklanjaju prilikom pozivanja funkcija;

• dinamički (engl. dynamic) životni vek koji imaju promenljive koje se alociraju i
dealociraju na eksplicitan zahtev programera.

6.10. DOSEG, ŽIVOTNIVEK IORGANIZACIJAMEMORIJEDODELJENEPROGRAMU129

Životni vek nekog objekta određuje se na osnovu pozicije u kodu i načina na kojoj je obje-
kat uveden. Po pravilu, lokalne promenljive po pravilu imaju automatski životni vek, a
globalne statički. Ipak, moguće je definisati i promenljive koje imaju lokalni doseg (mogu
se koristiti samo unutar jedne funkcije), a statički životni vek (memorija za njih je odvo-
jena i vrednost im se čuva tokom celog izvršavanja programa). To se postiže korišćenjem
ključne reči static u sklopu deklaracije lokalne promenljive. Takve, lokalne statičke pro-
menljive su vezane za neku funkciju, ali čuvaju vrednost tokom različitih poziva te funkcije.
Razmotrimo sledeći primer.

void f() {
static int brojPoziva = 0;
brojPoziva++;
cout << "Broj poziva funkcje f() je " << brojPoziva << endl;

}

int main() {
f(); f(); f();

}

Statičkom lokalnom promenljivom postignuto je prebrojavanje poziva funkcije f. U trenut-
ku prvog poziva ona je inicijalizovana na 0, a u svakom pozivu njena vrednost se uvećava
za jedan i ispisuje.
Promenljive koje imaju dinamički životni vek se koriste za implementaciju tzv. dinamič-
kih struktura podataka i o njima će biti mnogo više reči u narednim tomovima ove knjige.
Većina struktura podataka (na primer, vector, string, map) koriste dinamičku alokaciju
memorije, međutim, to je skriveno od programera i programer ne mora da bude upoznat
sa detaljima dinamičke alokacije da bi mogao da koristi ove dinamičke strukture podataka
(za razliku od programskog jezika C, čija biblioteka ne sadrži implementacije ovih struk-
tura podataka i programiranje bez eksplicitnog korišćenja dinamičke alokacije memorije
je praktično nezamislivo).

6.10.3 Organizacija memorije dodeljene programu
Različit životni vek promenljivih realizuje se u fazi izvršavanja i veoma je važno pitanje
kako se to tehnički realizuje. Ključna ideja je to da se promenljive različitog životnog veka
smeste u različite delove memorije dodeljene programu. Iako direktan uticaj na ovo nema
programer koji piše program, već kompilator i operativni sistem, razumevanje ovog me-
hanizma može ponekad pomoći programeru da dublje razume ponašanje programa i lakše
uoči i otkloni neke greške.
Način organizovanja i korišćenja memorije u fazi izvršavanja programa može se razliko-
vati od jednog do drugog operativnog sistema. Tekst u nastavku odnosi se, ako to nije

130 GLAVA 6. FUNKCIJE

drugačije naglašeno, na širok spektar platformi, pa su, zbog toga, načinjena i neka pojed-
nostavljivanja.
Kada se izvršivi program učita u radnu memoriju računara, biva mu dodeljena određena
memorija i započinje njegovo izvršavanje. Dodeljena memorija organizovana je u nekoliko
delova:

• segment koda (engl. code segment, text segment);

• segment podataka (engl. data segment);

• stek segment (engl. stack segment);

• hip segment (engl. heap segment).

U nastavku će biti opisana prva tri, dok će o hip segmentu biti više reči u narednim tomo-
vima ove knjige, u delu posvećenom dinamičkoj alokaciji memorije.
Kao što smo najavili, podela memorije na segmente je u određenoj vezi sa životnim vekom
promenljivih (o kome je bilo reči u poglavlju 6.10.2):

• promenljive statičkog životnog veka obično se čuvaju u segmentu podataka,

• promenljive automatskog životnog veka obično se čuvaju u stek segmentu,

• promenljive dinamičkog životnog veka obično se čuvaju u hip segmentu.

6.10.4 Segment koda
Fon Nojmanova arhitektura računara predviđa da se u memoriji čuvaju podaci i programi.
Dok su ostala tri segmenta predviđena za čuvanje podataka, u segmentu koda se nalazi sâm
izvršivi kôd programa — njegov mašinski kôd koji uključuje mašinski kôd svih funkcija
programa (uključujući kôd svih korišćenih funkcija koje su povezane statički). Na nekim
operativnim sistemima, ukoliko je pokrenuto više instanci istog programa, onda sve te
instance dele isti prostor za izvršivi kôd, tj. u memoriji postoji samo jedan primerak koda.
U tom slučaju, za svaku instancu se, naravno, zasebno čuva informacija o tome do koje
naredbe je stiglo izvršavanje.

6.10.5 Segment podataka
U segmentu podataka čuvaju se određene vrste promenljivih koje su zajedničke za ceo
program (one koje imaju statički životni vek, najčešće globalne promenljive), kao i kon-
stantni podaci (najčešće konstantne niske). Ukoliko se istovremeno izvršava više instanci
istog programa, svaka instanca ima svoj zaseban segment podataka. Na primer, u programu

6.10. DOSEG, ŽIVOTNIVEK IORGANIZACIJAMEMORIJEDODELJENEPROGRAMU131

#include <iostream>
using namespace std;

int a;

int main() {
int b;
static double c;
cout << "Zdravo" << endl;
return 0;

}

u segmentu podataka će se nalaziti promenljive a i c, kao i konstantna niska "Zdravo"
(bez navodnika). Promenljiva b je lokalna automatska i ona će se čuvati u segmentu ste-
ka. Ukoliko se ista konstantna niska javlja na više mesta u programu, standard jezika ne
definiše da li će za nju postojati jedna ili više kopija u segmentu podataka.

6.10.6 Stek segment
U stek segmentu (koji se naziva i stek poziva (engl. call stack) ili programski stek) čuvaju se
svi podaci koji karakterišu izvršavanje funkcija. Podaci koji odgovaraju jednoj funkciji
(ili, preciznije, jednoj instance jedne funkcije — jer, na primer, rekurzivna funkcija može
da poziva samu sebe i da tako u jednom trenutku bude aktivno više njenih instanci) orga-
nizovani su u takozvani stek okvir (engl. stack frame). Stek okvir jedne instance funkcije
obično, između ostalog, sadrži:

• argumente funkcije;
• lokalne promenljive (promenljive deklarisane unutar funkcije);
• međurezultate izračunavanja;
• adresu povratka (koja ukazuje na to odakle treba nastaviti izvršavanje programa
nakon povratka iz funkcije);

• adresu stek okvira funkcije pozivaoca.

Stek poziva je struktura tipa LIFO (“last in - first out”)4. To znači da se stek okvir može
dodati samo na vrh steka i da se sa steka može ukloniti samo okvir koji je na vrhu. Stek
okvir za instancu funkcije kreira se onda kada funkcija treba da se izvrši i taj stek okvir se
oslobađa (preciznije, smatra se nepostojećim) onda kada se završi izvršavanje funkcije.
Kako izvršavanje programa počinje izvršavanjem funkcije main, prvi stek okvir se kreira
za ovu funkciju. Ako funkcija main poziva neku funkciju f, na vrhu steka, iznad stek
okvira funkcije main, kreira se novi stek okvir za ovu funkciju. Ukoliko funkcija f poziva

4Ime stek (engl. stack) je zajedničko ime za strukture podataka koje su okarakterisane ovim načinom pristupa.

132 GLAVA 6. FUNKCIJE

neku treću funkciju, onda će za nju biti kreiran stek okvir na novom vrhu steka. Kada se
završi izvršavanje funkcije f, onda se vrh steka vraća na prethodno stanje i prostor koji je
zauzimao stek okvir za f se smatra slobodnim (iako on neće biti zaista obrisan).
Veličina stek segmenta obično je ograničena. Zbog toga je poželjno izbegavati smeštanje
jako velikih podataka na segment steka. Na primer, sasvim je moguće da u prvom progra-
mu u nastavku, niz a neće biti uspešno alociran i doći će do greške prilikom izvršavanja
programa, dok će u drugom programu niz biti smešten u segment podataka i sve će teći
očekivano. Predefinisana veličina steka prevodioca može se promeniti zadavanjem odgo-
varajuće opcije.

int main() {
int a[1000000];
...

}

int a[1000000];
int main() {

...
}

Opisana organizacija steka omogućava jednostavan mehanizam međusobnog pozivanja
funkcija, kao i rekurzivnih poziva.

6.10.7 Implementacija rekurzije
Navedeno je da je rekurzija situacija u kojoj jedna funkcija poziva sebe samu direktno ili
indirektno. Razmotrimo, kao primer, funkciju koja rekurzivno izračunava faktorijel:5

#include <iostream>
using namespace std;

int faktorijel(int n) {
if (n <= 0)

return 1;
else

return n*faktorijel(n-1);
}

int main() {

5Vrednost faktorijela se, naravno, može izračunati i iterativno, bez korišćenja rekurzije.

6.11. DEKLARACIJA I DEFINICIJA FUNKCIJE 133

int n;
cout << "Unesi prirodan broj: " << endl;
cin >> n;
cout << n << "! = " << faktorijel(n) << endl;
return 0;

}

Ukoliko je funkcija faktorijel pozvana za argument 5, onda će na steku poziva da se
formira šest stek okvira (za vrednosti argumenta 5, 4, 3, 2, 1, 0), za šest nezavisnih instanci
funkcije. U svakom stek okviru je drugačija vrednost argumenta n. No, iako u jednom
trenutku ima šest aktivnih instanci funkcije faktorijel, postoji i koristi se samo jedan
primerak izvršivog koda ove funkcije (u segmentu kôda), a svaki stek okvir pamti za svoju
instancu dokle je stiglo izvršavanje funkcije, tj. koja je naredba tekuća u segmentu kôda.

6.11 Deklaracija i definicija funkcije
Da bi kompilator ispravno mogao da proveri ispravnost poziva funkcije (da li je naveden
dobar broj argumenata i da li su argumenti i povratna vrednost odgovarajućeg tipa), on mo-
ra da ima neke informacije o funkciji u trenutku obrade njenog poziva. Mnogi savremeni
programski jezici imaju kompilatore koji više puta čitaju tekst programa koji prevode
(kažemo da su višeprolazni) i u prvom čitanju mogu da prikupe informacije o svim funkci-
jama, pa da u drugom čitanju obrade sve pozive funkcija. To znači da redosled definisanja
funkcija može biti proizvoljan. Međutim, kompilator za programski jezik C++ (kao i za
njegovog prethodnika, jezik C) samo jednom čita tekst programa. To znači da se u tekstu
programa pre svakog poziva funkcije moraju naći informacije o toj funkciji koje su po-
trebne za proveru ispravnosti poziva i prevođenje njenog poziva u mašinski kod. U većini
slučajeva u kojima pišemo kratke programe i to u sklopu jedne datoteke, kôd možemo
organizovati tako da se prvo navede definicija funkcije, a zatim da se u narednim funkci-
jama ranije definisana funkcija poziva (tako je urađeno u svim dosadašnjim primerima).
Međutim, to rešenje nije uvek moguće.

6.11.1 Uzajamna rekurzija
Kada postoji više funkcija u programu i kada postoje njihove međuzavisnosti, može biti
veoma teško ili nemoguće poređati njihove definicije na način koji omogućava prevođenje
(sa proverom tipova argumenata). Na primer, moguće je zamisliti situaciju u kojoj je do-
pušteno da funkcija A koristi i poziva funkciju B, a da funkcija B koristi i poziva funkciju
A (kažemo da su funkcije A i B uzajamno rekurzivne). U tom slučaju, ni redosled definisa-
nja A, pa B, ni redosled definisanja B, pa A nisu ispravni, jer se u oba slučaja unutar prve
funkcije poziva druga funkcija koja nije još definisana.
Razmotrimo, kao primer, program koji obrađuje spisak datoteka na disku. Na disku su
podaci smešteni u datotekama, koje se grupišu u direktorijume. Direktorijumi mogu da

134 GLAVA 6. FUNKCIJE

sadrže datoteke, ali i druge direktorijume. Stoga je pogodno uvesti pojam stavke koja
će istovremeno predstavljati i datoteke i direktorijume. Možemo definisati tip podataka
Stavka:6

const int DATOTEKA = 1;
const int DIREKTORIJUM = 2;

struct Stavka {
int tip;
string ime;
vector<Stavka> sadrzaj;

};

Prirodno je onda definisati zasebne funkcije koje obrađuju datoteke i direktorijume, ali
potrebno je definisati i funkciju koja obrađuje stavku tako što analizira njen tip i na osnovu
toga poziva odgovarajuću funkciju za obradu. Pretpostavimo da će se obrada datoteka vršiti
samo tako što će se ispisati ime datoteke, a da će se kod direktorijuma dodatno obrađivati
sve stavke koje taj direktorijum sadrži. Definišimo ove funkcije na sledeći način.

void obradiDatoteku(const Stavka& datoteka) {
cout << "Datoteka: " << datoteka.ime << endl;

}

void obradiDirektorijum(const Stavka& direktorijum) {
cout << "Direktorijum: " << direktorijum.ime << endl;
for (Stavka stavka : direktorijum.sadrzaj)

obradiStavku(stavka);
}

void obradiStavku(const Stavka& stavka) {
if (stavka.tip == DATOTEKA)

obradiDatoteku(stavka);
else if (stavka.tip == DIREKTORIJUM)

obradiDirektorijum(stavka);
}

Međutim, prethodni program nije ispravan, jer se u funkciji za obradu direktoriju-
ma poziva funkcija obradiStavku koja još nije definisana. Pomeranje definicije

6Vrednosti tipova ‘DATOTEKA‘ i ‘DIREKTORIJUM‘, umesto kao nezavisne vrednosti ‘int‘, bolje je uvesti
kao nabrojivi tip, korišćenjem ključne reči ‘enum‘ o čemu će biti reči u daljem tekstu.

6.11. DEKLARACIJA I DEFINICIJA FUNKCIJE 135

funkcije obradiStavku na početak ne bi pomoglo, jer se u njoj poziva funkcija
obradiDirektorijum.
Da bi se ova situacija mogla razrešiti, potrebno je primetiti da prevodiocu nije potrebno
da poznaje celokupnu definiciju funkcije da bi mogao da proveri ispravnost njenog pozi-
vanja. Dovoljno je da zna njeno ime, broj i tipove parametara i tip povratne vrednosti. To
je sve sadržano u deklaraciji funkcije (kažemo i prototip funkcije ili potpis funkcije). U
prethodnom kodu je moguće prvo navesti deklaracije svih funkcija, nakon čega njihove
definicije mogu biti navedene u proizvoljnom redosledu (dovoljno bi bilo i dodati samo
prototip funkcije obradiStavku, jer se samo ona poziva pre nego što je definisana).

void obradiDatoteku(const Stavka& datoteka);
void obradiDirektorijum(const Stavka& direktorijum);
void obradiStavku(const Stavka& stavka);

void obradiDatoteku(const Stavka& datoteka) {
cout << "Datoteka: " << datoteka.ime << endl;

}

void obradiDirektorijum(const Stavka& direktorijum) {
cout << "Direktorijum: " << direktorijum.ime << endl;
for (Stavka stavka : direktorijum.sadrzaj)

obradiStavku(stavka);
}

void obradiStavku(const Stavka& stavka) {
if (stavka.tip == DATOTEKA)

obradiDatoteku(stavka);
else if (stavka.tip == DIREKTORIJUM)

obradiDirektorijum(stavka);
}

Deklaracija funkcije ima sledeći opšti oblik:

tip ime_funkcije(niz_deklaracija_parametara);

Definicija funkcije ima sledeći opšti oblik:

tip ime_funkcije(niz_deklaracija_parametara) {
naredbe

}

Definicija funkcija mora da bude u skladu sa navedenim prototipom, tj. moraju da se po-
dudaraju tipovi povratne vrednosti i tipovi parametara. Deklaracija ukazuje prevodiocu

136 GLAVA 6. FUNKCIJE

da će u programu biti korišćena funkcija sa određenim tipom povratne vrednosti i parame-
trima određenog tipa. Zahvaljujući tome, kada prevodilac (na primer, u okviru funkcije
main), naiđe na poziv funkcije, može da proveri da li je njen poziv ispravan (čak iako je
definicija funkcije nepoznata u trenutku te provere). Pošto prototip služi samo za prove-
ravanje tipova u pozivima, nije neophodno navoditi imena parametara, već je dovoljno
navesti njihove tipove (mada dobro odabrana imena parametara često oslikavaju njihovu
namenu i doprinose čitljivosti). U navedenom primeru, dakle, prototip je mogao da bude
i

void obradiStavku(const Stavka&);

Deklaracija ili definicija funkcije moraju biti navedeni u kodu pre prvog poziva te funkcije.
Postojanje dve iste deklaracije iste funkcije u okviru jednog programa je dozvoljeno, pa
i postojanje dve deklaracije funkcije istog imena, a različitih lista parametara. Postojanje
dve definicije funkcije istog imena i sa istom listom parametara u jednom programu dovodi
do greške tokom prevođenja ili povezivanja.

6.11.2 Razdvojena kompilacija i povezivanje
Još jedna prednost navođenja deklaracija funkcije je odvojena kompilacija programa koji
su podeljeni u više datoteka. Lako je zamisliti scenario u kom želimo da neku grupu funk-
cija koristimo u više programa. Jedna mogućnost je da definicije tih funkcija izdvojimo
u zasebnu datoteku koju onda uključujemo (direktivnom #include) u svaki program u
kome je ona potrebna. Na primer, možemo napraviti datoteku cifre.cpp koja će sadr-
žati definiciju funkcije koja izračunava zbir cifara (uz neke druge funkcije koje rade sa
ciframa broja).

int zbirCifara(int n) {
int zbir = 0;
do {

cifra = n % 10;
zbir += cifra;
n /= 10;

} while (n > 0);
return zbir;

}

Tada program koji koristi ovu funkciju može izgledati ovako (pretpostavljamo da će dato-
teka cifre.cpp biti smeštena u isti direktorijum kao i datoteka u kojoj je sačuvan naredni
program).

6.11. DEKLARACIJA I DEFINICIJA FUNKCIJE 137

#include <iostream>
#include "cifre.cpp"

int main() {
int a;
cin >> a;
cout << zbir_cifara(a) << endl;

}

Direktiva #include prouzrokuje da se linija #include "cifre.cpp" zameni celokup-
nim sadržajem datoteke cifre.cpp tj. da kompilator prevodi tekst u kom su navedene
prvo definicija funkcije zbir_cifara, a zatim funkcije main. Ovo rešenje će funkcio-
nisati, ali, problemi nastaju u slučaju programa koji na ovaj način koriste ogroman broj
funkcija. Prilikom izmene bilo glavnog programa, bilo jedne od mnogih funkcija koje su
ovako uključene u program, kompilator mora da prevodi celokupan tekst programa u kom
se nalaze definicije svih funkcija iznova. To je neefikasno i kompilacija takvih programa
bi trajala nedopustivo dugo (to ne znači da bi se programi sporo izvršavali, nego bi njiho-
va kompilacija bila dugotrajna). Zbog toga je uveden mehanizam odvojene kompilacije i
povezivanja.
Datoteka koja sadrži glavni program (recimo da se ona zove test_zbir_cifara.cpp)
treba da sadrži prototip funkcije zbir_cifara i to pre funkcije main. Ovo se obično rea-
lizuje tako što se uz datoteku cifre.cpp koja sadrži definicije funkcija za rad sa ciframa
broja kreira i datoteka zaglavlja cifre.hpp (ili cifre.h) koja sadrži samo deklaracije
tih funkcija. Ta datoteka bi sadržala naredni kod:

int zbir_cifara(int n);

Ta datoteka onda se uključuje i u datoteku cifre.cpp i u datoteku test_zbir_cifara.cpp.
Ta datoteka se uključuje u datoteku cifre.cpp da bi se obezbedilo da je ova deklaracija
u skladu sa definicijom funkcije zbir_cifara (a i jer neka druga funkcija u cifre.cpp
možda koristi funkciju zbir_cifara, a definisana je pre nje). Datoteka cifre.hpp
se uključuje u datoteku test_zbir_cifara.cpp. da bi prevodilac mogao da proveri i
prevede poziv funkcije zbir_cifara unutar funkcije main.
Sadržaj datoteke cifre.cpp.

#include "cifre.hpp"

int zbir_cifara(int n) {
int zbir = 0;
do {

138 GLAVA 6. FUNKCIJE

cifra = n % 10;
zbir += cifra;
n /= 10;

} while (n > 0);
return zbir;

}

Sadržaj datoteke test_zbir_cifara.cpp.

#include <iostream>
#include "cifre.hpp"
using namespace std;

int main() {
int a;
cin >> a;
cout << zbir_cifara(a) << endl;
return 0;

}

Datoteke zaglavlja se ne prevode direktno, već samo posredno (uključivanjem u *.cpp da-
toteke). Sada se i datoteka cifre.cpp i datoteka test_zbir_cifara.cppmogu isprav-
no prevesti, ali nijedna od njih nije sama za sebe dovoljna da bi se dobio izvršivi program.
Izvršivi program možemo dobiti ako obe datoteke prevedemo zajedno:

g++ test_zbir_cifara.cpp cifre.cpp -o test_zbir_cifara

Ovim, međutim, nismo rešili polazni problem jer se uvek, istovremeno prevode obe dato-
teke iako je možda bilo izmena samo u jednoj od njih. Bolje rešenje je da se prvo prevede
samo biblioteka cifre.cpp, zatim datoteka test_zbir_cifara.cpp i da se nakon toga
dobijene objektne datoteke povežu. Prevođenje ovih datoteka treba da bude samo do nivoa
objektnih datoteka (to su datoteke koje sadrža mašinski kôd funkcija koje su definisane
u cpp datotekama od kojih su nastale, ali nisu još spremne za izvršavanje, jer tek treba
da se povežu sa drugim objektnim datotekama), što se može postići tako što se prilikom
prevođenja navede opcija -c. Time se dobijaju objektne datoteke koje imaju ekstenziju
*.o. Kada se one navedu prilikom pozivanja kompilatora vrši se njihovo povezivanje i
dobija se izvršivi program:

g++ -c cifre.cpp
g++ -c test_zbir_cifara.cpp
g++ cifre.o test_zbir_cifara.o -o test_zbir_cifara

6.11. DEKLARACIJA I DEFINICIJA FUNKCIJE 139

Kada se sadržaj neke od cpp datoteka promeni, dovoljno je samo nju ponovo prevesti i
ponovo povezati program.
Opisani mehanizam pokazuje da nije ni potrebno ni poželjno
*.cpp datoteke uključivati u druge *.cpp datoteke.
Opisani proces razdvojenog kompiliranja i povezivanja obično se automatizuje, korišće-
njem pomoćnih alatki. Jedna od njih je program make. Ako se koriste integrisana okruže-
nja za izgradnju programa, tada se obično kreiraju projekti u kojima se navode cpp i hpp
datoteke od kojih se program gradi, a okruženje automatski određuje postupak kojim se
od njih odvojenom kompilacijom i povezivanjem dobija izvršivi program.
I prototipovi funkcija iz standardne biblioteke dati su u datotekama zaglavlja. One obič-
no nemaju nikakvu ekstenziju, a navode se unutar zagrada oblika <...> poput datoteka
<algorithm>, <vector>, <string> itd. Dakle, da bi se funkcije iz standardne bibliote-
ke mogle ispravno koristiti, dovoljno je samo uključiti odgovarajuće zaglavlje. Međutim,
neki prevodioci (uključujući gcc/g++) poznaju prototipove funkcija standardne biblio-
teke, čak i kada zaglavlje nije uključeno. Tako, ako se u gcc/g++-u ne uključi potrebno
zaglavlje, ponekad se dobija upozorenje, ali ne i greška jer su prototipovi standardnih
funkcija unapred poznati. Ipak, ovakav kôd treba izbegavati i zaglavlja bi uvek trebalo ek-
splicitno uključiti (tj. pre svakog poziva funkcije trebalo bi osigurati da kompilator poznaje
njen prototip).
Mnogo više reči o programima koji se sastoje iz većeg broja datoteka i odvojenoj kompi-
laciji biće u narednim tomovima ove knjige.

140 GLAVA 6. FUNKCIJE

7. Strukture podataka

7.1 Korisnički definisani tipovi: nabrojivi tip, strukture, klase
Postoji svega nekoliko ugrađenih osnovnih tipova (na primer, int, char, double). Već
nizovi, vektori, niske predstavljaju složene tipove podataka. U jeziku C++ korisnik može
definisati nove tipove i to na nekoliko načina. Mogu se koristiti i nabrojivi tipovi, sa konač-
nim skupom vrednosti. Podaci se mogu organizovati u strukture (tj. slogove), pogodne za
specifične potrebe. Na taj način se povezane vrednosti (ne nužno istog tipa) tretiraju kao
jedna celina i, za razliku od nizova gde se pristup pojedinačnim vrednostima vrši na osno-
vu brojevnog indeksa, pristup pojedinačnim vrednostima vrši se na osnovu imena polja
strukture. Moguće je definisati i klase, koje pored podataka sadrže i funkcije koje obrađu-
ju te podatke (tzv. metode). Pored definisanja novih tipova, već definisanim tipovima se
može pridružiti i novo ime.

7.1.1 Nabrojivi tipovi (enum)
U nekim slučajevima korisno je definisati tip podataka koji ima mali skup dopuštenih
vrednosti. Ovakvi tipovi se nazivaju nabrojivi tipovi. U jeziku C++ nabrojivi tipove se
definišu korišćenjem ključne reči enum. Na primer:

enum znak_karte {
KARO,
PIK,
HERC,
TREF

};

Nakon navedene definicije, u programu se mogu koristiti imena KARO, PIK, HERC, TREF,
umesto nekih konkretnih konstantnih brojeva, što popravlja čitljivost programa. Pri tome,
obično nije važno koje su konkretne vrednosti pridružene imenima KARO, PIK, HERC, TREF,

141

142 GLAVA 7. STRUKTURE PODATAKA

već je dovoljno znati da su one sigurno međusobno različite i celobrojne. U navedenom
primeru, KARO ima vrednost 0, PIK vrednost 1, HERC vrednost 2 i TREF vrednost 3.Moguće
je i eksplicitno navođenje celobrojnih vrednosti. Na primer:

enum znak_karte {
KARO = 1,
PIK = 2,
HERC = 4,
TREF = 8

};

Moguće je navesti i vrednosti samo za neka imena, dok se narednim automatski dodeljuju
vrednosti uvećane za 1.

enum mesec {
JAN = 1, FEB, MAR, APR, MAJ, JUN,
JUL, AVG, SEP, OKT, NOV, DEC

}

ili

enum karta {
AS = 1, DVA, TRI, CETIRI, PET,
SEST, SEDAM, OSAM, DEVET, DESET,
ZANDAR = 12, KRALJICA, KRALJ

}

Vrednosti nabrojivih tipova nisu promenljive i njima se ne može menjati vrednost. S druge
strane, promenljiva može imati tip koji je nabrojiv tip i koristiti se na uobičajene načine.
Sličan efekat - uvođenja imena sa pridruženim celobrojnim vrednostima - može se postići
i pretprocesorskom direktivom #define, ali tada ta imena ne čine jedan tip (kao kada
se koristi enum) i lakše je napraviti grešku. (Direktiva #define karakteristična je za pro-
gramski jezik C i ovoj knjizi koristićemo je u veoma malom obimu.) Grupisanje u tip je
pogodno zbog provera koje se vrše u fazi prevođenja.
Slično kao i kod struktura i unija, uz definiciju tipa moguće je odmah deklarisati i pro-
menljive. Promenljive se mogu i naknadno definisati. Na primer,

znak_karte znak;

Nabrojivi tipovi se često koriste da zamene konkretne brojeve u programu, na primer, po-
vratne vrednosti funkcija. Mnogo je bolje, u smislu čitljivosti programa, ukoliko funkcije

7.1. KORISNIČKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 143

vraćaju (različite) vrednosti koje su opisane nabrojivim tipom (i imenima koja odgovaraju
pojedinim povratnim vrednostim) nego konkretne brojeve. Tako, na primer, tip povratne
vrednosti neke funkcije može da bude nabrojiv tip definisan na sledeći način:

enum return_type {
OK,
FileError,
MemoryError,
TimeOut

};

7.1.2 Strukture
Osnovni tipovi jezika C++ često nisu dovoljni za pogodno opisivanje svih podataka u pro-
gramu. Ukoliko je neki podatak složene prirode tj. sastoji se od više delova, ti njegovi
pojedinačni delovi mogu se čuvati nezavisno (u zasebnim promenljivim), ali to često vo-
di programima koji su nejasni i teški za održavanje. Umesto toga, pogodnije je koristiti
strukture. Za razliku od nizova, vektora, listi koji objedinjuju jednu ili više promenljivih
istog tipa, struktura objedinjuje jednu ili više promenljivih, ne nužno istih tipova. Defini-
sanjem strukture uvodi se novi tip podataka i nakon toga mogu da se koriste promenljive
tog novog tipa, na isti način kao i za druge tipove. Termin struktura se nekada koristi i za
tip podataka i za konkretne instance tj. objekte tog tipa.
Korišćenje struktura biće ilustrovano na primeru razlomaka. U jeziku C++ ne postoji tip
koji opisuje razlomke, ali može se definisati struktura koja opisuje razlomke. Razlomak
može da bude opisan parom koji čine brojilac i imenilac, na primer, celobrojnog tipa.
Brojilac (svakog) razlomka zvaće se brojilac, a imenilac (svakog) razlomka zvaće se
imenilac. Struktura razlomak može se definisati na sledeći način:

struct razlomak {
int brojilac;
int imenilac;

};

Ključna reč struct započinje definiciju strukture. Nakon nje, navodi se ime strukture, a
zatim, između vitičastih zagrada, opis njenih članova (ili polja, atributa). Imena članova
strukture se ne mogu koristiti kao samostalne promenljive, one postoje samo kao deo slo-
ženijeg objekta. Prethodnom definicijom strukture uveden je samo novi tip pod imenom
struct razlomak, ali ne i promenljive tog tipa.
Strukture mogu sadržati promenljive proizvoljnog tipa. Na primer, moguće je definisati
strukturu koja sadrži i niz.

144 GLAVA 7. STRUKTURE PODATAKA

struct student {
string ime;
float prosek;

};

Strukture mogu sadržati i nabrojive tipove.

struct karta {
unsigned char broj;
znak_karte znak;

} mala_dvojka = {2, TREF};

Definicija strukture uvodi novi tip i nakon nje se ovaj tip može koristiti kao i bilo koji
drugi. Definicija strukture se obično navodi van svih funkcija. Ukoliko je navedena u okviru
funkcije, onda se može koristiti samo u okviru te funkcije.

razlomak a, b, c;

Definicijom strukture je opisano da se razlomci sastoje od brojioca i imenioca, dok se
navedenom deklaracijom uvode tri konkretna razlomka koja se nazivaju a, b i c.
Moguća je i deklaracija sa inicijalizacijom, pri čemu se inicijalne vrednosti za članove
strukture navode između vitičastih zagrada:

razlomak a = {1, 2};

Redosled navođenja inicijalizatora odgovara redosledu navođenja članova strukture. Dakle,
navedenom deklaracijom je uveden razlomak a čiji je brojilac 1, a imenilac 2.
Definisanje strukture i deklarisanje i inicijalizacija promenljivih može se (isto važi i za
nabrojive tipove) uraditi istovremeno (otuda i neuobičajeni simbol ; nakon zatvorene vi-
tičaste zagrade prilikom definisanja strukture):

struct razlomak {
int brojilac;
int imenilac;

} a = {1, 2}, b, c;

Članu strukture se pristupa preko imena promenljive (čiji je tip struktura) iza kojeg se
navodi tačka a onda ime člana, na primer:

7.1. KORISNIČKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 145

a.imenilac

Na primer, vrednost promenljive a tipa razlomak može biti ispisana na sledeći način:

cout << a.brojilac << "/" << a.imenilac << endl;

Naglasimo da je operator ., iako binaran, operator najvišeg prioriteta (istog nivoa kaomale
zagrade i unarni postfiksni operatori).
Ne postoji konflikt između imena polja strukture i istoimenih promenljivih, pa je naredni
kôd korektan.

int brojilac = 5, imenilac = 3;
a.brojilac = brojilac; a.imenilac = imenilac;

Strukture mogu biti ugnežđene, tj. članovi struktura mogu biti druge strukture. Na primer:

struct dvojni_razlomak {
razlomak gore;
razlomak dole;

};

Od ranije prikazanih operacija, nad promenljivim tipa strukture dozvoljene su operacije
dodele a nisu dozvoljeni aritmetički i relacijski operatori.
Operator sizeof se može primeniti i na ime tipa i na promenljive tog tipa i u oba slučaja
dobija se broj bajtova koje taj tip ili promenljiva zauzimaju u memoriji. Ovaj operator
može se primeniti i na složene tipove, pa i na strukture. Napomenimo da tada broj mo-
že nekada biti i veći od zbira veličina pojedinačnih polja, jer se zbog uslova poravnanja
(engl. alignment), o kojem će više biti reči u narednim tomovima ove knjige, ponekad
između dva uzastopna polja strukture ostavlja prazan prostor.
Često postoji povezana skupina složenih podataka. Umesto da se oni čuvaju u nezavisnim
nizovima (što bi vodilo programima teškim za održavanje) bolje je koristiti nizove struk-
tura. Na primer, ako je potrebno imati podatke o imenima i broju dana meseci u godini,
moguće je te podatke čuvati u nizu sa brojevima dana i u (nezavisnom) nizu imena meseci.
Bolje je, međutim, opisati strukturu mesec koja sadrži broj dana i ime:

struct opis_meseca {
string ime;
int broj_dana;

};

146 GLAVA 7. STRUKTURE PODATAKA

i koristiti niz ovakvih struktura:

opis_meseca meseci[13];

(deklarisan je niz dužine 13 da bi se meseci mogli referisati po svojim rednim brojevima,
pri čemu se početni element niza ne koristi).
Moguća je i deklaracija sa inicijalizacijom (u kojoj nije neophodno navođenje broja ele-
menata niza)1:

struct opis_meseca meseci[] = {
{ "",0 },
{ "januar",31 },
{ "februar",28 },
{ "mart",31 },
...
{ "decembar",31 }

};

U navednoj inicijalizaciji unutrašnje vitičaste zagrade je moguće izostaviti:

struct opis_meseca meseci[] = {
"",0,
"januar",31,
"februar",28,
"mart",31,
...
"decembar",31

};

Nakon navedene deklaracije, ime prvogmeseca u godini semože dobiti sa meseci[1].ime,
njegov broj dana sa meseci[1].broj_dana itd.
Broj elemenata ovako inicijalizovanog niza može se izračunati na sledeći način:

sizeof(meseci)/sizeof(opis_meseca)

Strukture mogu da sadrže i funkcije, koje se onda nazivaju metode (to su funkcije članice
struktura ili klasa, koje služe za rad sa podacima koje se čuvaju u strukturi ili klasi). Na
primer, struktura za predstavljanje razlomka može sadržati i metodu za ispis razlomka.

1U ovom primeru se zanemaruje činjenica da februar može imati i 29 dana.

7.1. KORISNIČKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 147

struct Razlomak {
int brojilac;
int imenilac;

void ispisiSe() {
cout << brojilac << "/" << imenilac << endl;

}
};

Kada definišemo konkretan razlomak, možemo pozvati metodu za ispis (kažemo da na taj
način šaljemo poruku razlomku da se ispiše).

Razlomak a = {1, 2};
a.ispisiSe();

Posebna je metoda koja se zove isto kao i struktura i koja služi da inicijalizuje polja struktu-
re. Nju nazivamo konstruktor. Pored postavljanja vrednosti polja, u konstruktoru možemo,
na primer, izvršiti skraćivanje razlomka (za to možemo upotrebiti funkciju gcd iz zaglavlja
<numeric>, koja izračunava najveći zajednički delilac dva data broja).

struct Razlomak {
int brojilac;
int imenilac;

Razlomak(int b, int i) {
int nzd = gcd(brojilac, imenilac);
brojilac = b / nzd;
imenilac = i / nzd;

}

void ispisiSe() {
cout << brojilac << "/" << imenilac << endl;

}
}

Tada se sturktura može kreirati i inicijalizovati pozivom konstruktora, na sledeći način.

Razlomak a(2, 4);
a.ispisiSe();

148 GLAVA 7. STRUKTURE PODATAKA

Ovaj program ispisuje tekst 1/2.
Posebna vrsta metoda su operatori. Na primer, možemo definisati operatore < i ==, kojima
poredimo vrednosti razlomaka. Operatori se definišu slično kao i obične metode, jedino im
ime mora biti operatorXYZ, gde je XYZ simbol operatora (npr. operator+, operator*,
operator<, operator==). Poređenje realizujemo svođenjem na zajednički imenilac,
pronalaženjem njihovog NZS (bibliotečkom funkcijom lcm iz zaglavlja <numeric>), pret-
postavljajući da pri tom neće doći do prekoračenja.

struct Razlomak {
...

// provera da li je ovaj razlomak jednak drugom
bool operator==(const Razlomak& drugi) {

// nzs dva imenioca
int nzs = lcm(imenilac, drugi.imenilac);
// poredimo brojioce prosirenih razlomaka
return brojilac*(nzs/imenilac) == drugi.brojilac*(nzs/drugi.imenilac);

}

// provera da li je ovaj razlomak manji od drugog
bool operator<(const Razlomak& drugi) {

// nzs dva imenioca
int nzs = lcm(imenilac, drugi.imenilac);
// poredimo brojioce prosirenih razlomaka
return brojilac*(nzs/imenilac) < drugi.brojilac*(nzs/drugi.imenilac);

}
};

int main() {
Razlomak a(3, 4), b(6, 8);
if (a == b) cout << "Jednaki su" << endl;
else cout << "Nisu jednak" << endl;

}

7.1.3 Klase
Struktura ima svojstvo da se svim poljima i svim metodama svake njene instance (promen-
ljiva tipa strukture), ukoliko nije drugačije rečeno (korišćenjem ključe reči private), mo-
že pristupati iz bilo kojeg dela programa. To može da olakša korišćenje struktura ali može
da omogući neželjene upotrebe instanci strukture te time omogućava loš dizajn programa.
Dizajn programa može biti kvalitetniji ako se interna reprezentacija podataka koji čine

7.1. KORISNIČKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 149

neki tip može sakriti od korisnika tog tipa. Na primer, nije potrebno da korisnik strukture
Tacka zna da li je tačka interno predstavljena pomoću Dekartovih ili polarnih koordinata.
To omogućava da se u nekom trenutku interna reprezentacija podataka i algoritmi za rad
sa njima promene (na primer, optimizuju), bez uticaja na kôd u kojem se tip podataka
koristi. Ograničen pristup podacima može i da čuva neka njihova svojstsva. Na primer,
ako korisnik ne može da menja polja razlomka nakon što je razlomak konstruisan, tada
bismo bili sigurni da su brojilac i imenilac uvek skraćeni (jer se u konstruktoru skraćuju)
i tada bi se poređenje dva razlomka moglo izvršiti jednostavnim poređenjem brojilaca i
imenilaca. Dodatno, može biti pogodno da su neka polja i neke metode dostupni korisniku
definisanog tipa, a neka polja i neke metode nisu. Takve mogućnosti (i još mnoge druge)
pružaju klase. Uobličavanje podataka i metoda koji ih obrađuju u vidu klasa jedna je od
centralnih ideja objektno-orijentisanih jezika kao što je C++. U ovoj knjizi, međutim, neće
biti prezentovana ni korišćena mnoga svojstva objektno-orijentisanog programiranja (kao
što su nasleđivanje, polimorfizam, apstrakcija), već će se koristiti (i to u ograničenoj meri)
samo enkapsulacija – upravo opisano svojstvo objedinjavanja podataka i metoda koji ih
obrađuju u celine, a kojima pristup može biti ograničen na različitim nivoima. Dodatno,
u ovoj knjizi nećemo se baviti ni definisanjem destruktora, operatora dodele ni drugim
sličnim konceptima objektno-orijentisanog programiranja.
U jeziku C++ identifikatori mogu imati i doseg nivoa klase, koji predstavlja kompromis
između globalnih i lokalnih promenljivih. Metode koje pripadaju klasi mogu da pristupe
svim promenljivim koje su deo te klase.Moguće je definisanje više objekata (instanci klase)
i svaki od njih ima svoju zasebnu kopiju tih promenljivih, a koristi iste funkcije za rad njima.
Za razliku od struktura u kojima je, ukoliko nije traženo drugačije (korišćenjem ključe
reči private), pristup svim poljima i svim metodama je javan, u klasama je pristup svim
poljima i svim metodama privatan, ukoliko nije traženo drugačije (korišćenjem ključe reči
public).
Atributi i metode navedeni u sekciji private su privatni i može im se pristupiti samo iz
koda koji se nalazi unutar klase, dok su oni navedeni u sekciji public javni i može im se
pristupiti iz bilo kog dela koda. Na primer, klasa razlomak može sakriti pristup brojiocu
i imeniocu, kao i metodi za skraćivanje razlomka koja će biti pozivana svaki put kada se
razlomak konstruiše.

class Razlomak {
private:

int brojilac, imenilac;

void Skrati() {
int nzd = gcd(brojilac, imenilac);
brojilac /= nzd;
imenilac /= nzd;

}

150 GLAVA 7. STRUKTURE PODATAKA

public:
Razlomak(int b, int i) {

brojilac = b;
imenilac = i;
Skrati();

}
void IspisiSe() {

cout << b << "/" << i;
}

bool operator==(const Razlomak& drugi) {
return brojilac == drugi.brojilac && imenilac == drugi.imenilac;

}
};

Za navedeni kôd, moguće je u programu deklarisati instancu klase Razlomak, tj. promen-
ljivu tipa Razlomak, na sledeći način (korišćenjem konstruktora, analogno strukturama):

Razlomak r(3,4);

Nad promenljivom r može se onda koristiti metod IspisiSe jer je javan:

r.IspisiSe();

ali ne i metod Skrati (sem u okviru metoda koji čine klasu Razlomak). U okviru klasa
mogu se definisati i operatori, što omogućava davanje specifičnog značenja operatorima
kada se primeni na instance klase. U navedenom primeru, definisan je operator ==, čime
je omogućeno da se dve instance tipa Razlomak porede na elegantan način: r1 == r2,
kao da se radi o osnovnim tipovima (za koje je ovaj operator predefinisan).
Primetimo da se u prethodnom tekstu govori o metodama a ne o funkcijama. Ovi pojmovi
su, zapravo, vrlo bliski - i metode i funkcije vrše nekakva izračunavanja i nekakve obrade
podataka. Razlika je u tome što se metoda definiše u okviru neke klase i može da primenju-
je samo na instancama te klase (što znači da se ime metoda navodi se iza imena instance
i simbola tačke) pri čemu može da ima i dodatne parametre. S druge strane, funkcije se
definišu van klasa i ne primenjuju se neposredno na instance klase, mada naravno mogu
da imaju i takve parametre. Postoji očigledna sintaksička razlika u pozivanju metoda i
funkcija. Na primer, metoda IspisiSe koristi se tako što se primenjuje neposredno na
objekat r:

7.1. KORISNIČKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 151

r.IspisiSe();

dok bi se neka funkcija f koja kao parametar ima razlomak pozivala na sledeći način:

f(r);

Većina složenih tipova koje smo do sada koristili (na primer string i vector) su defini-
sani kao klase. Zato su funkcije koje smo koristili (na primer, size()) zapravo metode
vezane za ove klase, te ih koristimo u obliku a.size() a ne u obliku size(a).

7.1.4 Parovi i torke (tipovi pair<T1, T2> i tuple<T1, ..., Tn>)
Često je potrebno da u programu upamtimo uređen par ili neku malo širu 𝑛-torku eleme-
nata (kraće se kaže samo “torku”, engl. tuple), ne obavezno istog tipa. Jedan način da se
to uradi je da se definiše novi tip strukture isključivo za trenutne potrebe. Sa druge strane,
jezik C++ daje bibliotečku podršku za parove i torke i nekada je jednostavnije iskoristiti
je, pogotovo što bibliotečki parovi i torke imaju definisane i neke korisne operacije (poput
poređenja).
Par se realizuje tipom pair<T1, T2>, gde je T1 tip prvog, a T2 tip drugog elementa
uređenog para (na primer, pair<string, int> označava uređen par u kome je prvi ele-
ment tipa string, a drugi tipa int). Da bi se parovi mogli koristiti, potrebno je uključiti
zaglavlje <utility>, ili neko drugo zaglavlje koje uključuje i ovo zaglavlje (na primer,
zaglavlje <map>, koje nudi podršku za mape, o čemu će više reči biti u poglavlju 7.5).
Inicijalizacija se može izvršiti na isti način kao i kod inicijalizacije strukture. Par se može
izgraditi od pojedinačnih elemenata funkcijom make_pair. Kada je par definisan, poje-
dinačnim podacima možemo pristupiti korišćenjem polja first i second. Na primer,

pair<string, double> student = {"Petar Petrovic", 9.38};
cout << student.first << " " << student.second << endl;

Izdvajanje pojedinačnih elemenata para se može vršiti korišćenjem polja first i second,
ali postoje i drugi načini da se to uradi.

pair<string, double> student = {"Petar Petrovic", 9.38};
string ime = student.first;
double prosek = student.second;

Drugi način je da se upotrebi funkcija tie, raspoloživa u zaglavlju <tuple>.

152 GLAVA 7. STRUKTURE PODATAKA

pair<string, double> student = {"Petar Petrovic", 9.38};
string ime;
double prosek;
tie(ime, prosek) = student;

Još elegantniji način, podržan od verzije C++17, je sledeći:

pair<string, double> student = {"Petar Petrovic", 9.38};
auto [ime, prosek] = student;

Parovi se mogu dodeljivati jedan drugom (ako su istog tipa), ali i porediti. Poređenje jedna-
kosti se vrši operatorom ==, a različitosti operatorom !=. Dva para su jednaka ako i samo
ako su sve odgovarajuće komponente jednake. Definisan je i poredak parova, korišćenjem
operatora <, >, <= i >=. Parovi se porede leksikografski (prvo se, podrazumevanom rela-
cijom, porede prvi elementi, pa ako su oni jednaki, porede se drugi elementi).
Torke su predstavljene tipom tuple<T1, ..., Tn>, za čije je korišćenje potrebno uklju-
čiti zaglavlje <tuple>. Inicijalizacija se može vršiti na isti način kao i kod parova. Poje-
dinačnim elementima torke se može pristupiti korišćenjem funkcija get<i>. Na primer

tuple<int, int, int> datum = {2024, 3, 29};
int godina = get<0>(datum);

Izdvajanje svih polja možemo uraditi funkcijom tie.

int dan, mesec, godina;
tie(dan, mesec, godina) = datum;

Od verzije C++17 može se koristiti i udobnija sintaksa.

auto [dan, mesec, godina] = datum;

I torke podržavaju poređenje jednakosti i leksikografsko poređenje.

tuple<int, int, int> datum1 = {2024, 3, 29};
tuple<int, int, int> datum2 = {2024, 4, 17};
if (datum1 < datum2)

cout << "prvi datum je raniji" << endl;
else if (datum2 < datum1)

cout << "drugi datum je raniji" << endl;

7.1. KORISNIČKI DEFINISANI TIPOVI: NABROJIVI TIP, STRUKTURE, KLASE 153

else
cout << "datumi su jednak" << endl;

7.1.5 Imenovanje tipova – typedef
Moguće je kreirati nova imena postojećih tipova koristeći ključnu reč typedef. Na primer,
deklaracija

typedef tuple<int, int, int> Datum;

uvodi ime Datum kao sinonim za tip tuple<int, int, int>. Ime tipa Datum se onda
može koristiti u deklaracijama, eksplicitnim konverzijama i slično, na isti način kao što se
koristi ime tuple<int, int, int>:

Datum prviMaj = {2024, 5, 1};

Novo ime tipa se navodi kao poslednje, na poziciji na kojoj se u deklaracijama obično
navodi ime promenljive, a ne neposredno nakon ključne reči typedef. Obično se novou-
vedena imena tipova pišu velikim početnim slovima da bi se istakla.
Deklaracijom typedef se ne kreira novi tip već se samo uvodi novo ime za potojeći tip.
Staro ime za taj tip se može koristiti i dalje.
Deklaracija typedef se može koristiti za imenovanje prilično naprednih tipova (na primer,
tip pokazivača na funkcije, o kojima će više reči biti u narednim tomovima ove knjige) i u
tim situacijama se novo ime tipa ne navodi na kraju, već je sastavni deo deklaracije.

typedef int (*PFI)(char *, char *);

Postoje dva osnovna razloga za korišćenje ključne reči typedef i imenovanje tipova. Prvi
je skraćivanje koda i popravljanje čitljivosti programa, naročito u slučaju dugačkih imena
tipova (na primer, imenovani tip Datum je mnogo čitljiviji nego tip tuple<int, int,
int>). Drugi razlog je parametrizovanje tipova u programu da bi se dobilo na njegovoj
prenosivosti i lakoj izmeni. Naime, ukoliko se typedef koristi za uvođenje novih imena za
tipove koji su mašinski zavisni, u slučaju da se program prenosi na drugu mašinu, potrebno
je promeniti samo typedef deklaracije. Na primer, u zavisnosti od konkretnog računara,
za imenovanje pogodnog celobrojnog tipa može se koristiti typedef short CeoBroj,
typedef int CeoBroj ili typedef long CeoBroj i u nastavku se onda može koristiti
samo tip CeoBroj.

154 GLAVA 7. STRUKTURE PODATAKA

7.2 Strukture podataka sa sekvencijalnim pristupom
U mnogim programima potrebno u memoriji čuvati neku seriju elemenata, čiji se ele-
menti učitavaju ili izračunavaju, a zatim i obrađuju redom, jedan za drugim, korišćenjem
petlji. Jezik C++ nam na raspolaganje stavlja različite oblike sekvencijencijalnih kolekcija
podataka tj. sekvencijalnih kontejnera (engl. sequential container) koji nam pružaju ovu
mogućnost.
Strukture podataka sa sekvencijalnim pristupom su šablonske strukture (eng. templates) te
mogu da čuvaju elemente proizvoljnog tipa T.
U nastavku ćemo proučiti:

• statički alocirane nizove,
• tip vector<T> (vektore),
• tip list<T> (liste),

Pored nabrojanih struktura, koriste se i dinamički alocirani nizovi koji će detaljno biti
opisani u narednim tomovima ove knjige.

Slika 7.1: Poređenje sekvencijalnih struktura podataka

Table: Poređenje sekvencijalnih struktura podataka {#tbl:sekvencijalne}
Ove kolekcije se razlikuju po nekim svojim svojstvima (pre svega po tome da li zahtevaju
da broj elemenata koji se mogu smestiti u kolekciju bude unapred poznat, ali i po brzini i
efikasnosti nekih operacija). U tabeli @tbl:sekvencijalne rezimirane su neke karakteristike
različitih sekvencijalnih kolekcija podataka koje su ukratko opisane u nastavku:

• Kod nekih kolekcija veličina (maksimalni broj elemenata koji mogu biti smešteni u
kolekciju) mora biti poznata u fazi pisanja tj. prevođenja programa, a kod nekih ne.

• Neke kolekcije mogu tokom rada programa menjati veličinu (dodavanjem ili ukla-
njanjem elemenata).

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 155

• Kada su kolekcije definisane kao lokalne promenljive, elementi nekih kolekcija
se čuvaju u stek segmentu memorije (gde se memorija zauzima i oslobađa brže,
ali je ima manje), a nekih delom u stek stek segmentu a delom u hip segmentu
(gde se memorija zauzima i oslobađa sporije, ali je ima više). Malo preciznije, za
kolekcije čija se veličina može menjati u fazi izvršavanja, u stek segmentu čuvaju se
informacije o toj kolekciji koje je opisuju (na primer, koliko elemenata je alocira-
no i koliko elemenata se koristi) a sami elementi kolekcije se čuvaju u hip segmentu.

• Neke kolekcije dopuštaju efikasan indeksni pristup elementu (efikasan pristup ele-
mentu na datoj poziciji), a neke ne (elementu se može pristupiti samo ako se redom
obilaze svi elementi od početka kolekcije, pa do traženog).

• Neke kolekcije dopuštaju nabrajanje elemenata u oba smera (od prvog ka poslednjem
i od poslednjeg ka prvom), a neke samo od prvog ka poslednjem (udesno).

• Neke kolekcije dopuštaju efikasno dodavanje elemenata u kolekciju (neke na pro-
izvoljno mesto, neke samo na kraj, a neke na kraj, ali samo dok u kolekciji ima
dovoljno prostora za smeštanje tog novog elementa).

• Neke kolekcije se mogu dodeljivati novim promenljivim (pri čemu se dodelom ko-
pira celokupan sadržaj kolekcije), a neke ne.

• Neke kolekcije se prenose u funkciju po vrednosti (pravi se kopija čitave kolekcije),
osim ako programer eksplicitno ne zahteva da se prenos vrši po referenci ili preko
pokazivača, a neke (nizovi) se prenose u funkciju tako što se funkciji dostavi samo
adresa početka kolekcije (pokazivač na njen početak).

7.2.1 Statički alocirani nizovi
Najjednostavniji oblik niza u jeziku C++ je statički alociran niz, nasleđen iz programskog
jezika C. Statički alocirani niz koristimo kada unapred (u trenutku pisanja i u fazi kompi-
lacije programa) znamo tačan broj potrebnih elemenata niza ili makar gornju granicu tog
broja (na primer, znamo da se neće koristiti više od 100 elemenata). Pristup elementima
ovakvih nizova je veoma brz, ali se ne oni ne mogu proširivati, porediti, dodeljivati jedan
drugom i slično.
Razmotrimo problem učitavanja 10 brojeva i njihovog ispisa u obratnom redosledu. Jasno
je da je potrebno upamtiti sve elemente istovremeno u memoriji da bismo mogli da ih
ispišemo unazad. Za to možemo upotrebiti 10 pojedinačnih promenljivih, ali mnogo bolje
od toga je upotrebiti niz. Pošto znamo da će biti učitano tačno 10 elemenata, definisaćemo
statički niz dužine 10.

#include <iostream>
using namespace std;

int main() {

156 GLAVA 7. STRUKTURE PODATAKA

int brojevi[10];
for (int i = 0; i < 10; i++)
cin >> brojevi[i];

for (int i = 9; i >= 0; i--)
cout << brojevi[i] << " ";

return 0;
}

Nizovi u programskom jeziku C++ deklarišu se u obliku:

tip ime_niza[dimenzija];

Broj elemenata niza zadat je vrednošću dimenzija. Na primer, deklaracija

int a[10];

uvodi niz a od 10 celih brojeva. Prvi element niza ima indeks 0, pa su elementi niza:

a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9]

Indeksi elemenata niza obično su nenegativni celi brojevi (mada je u nekim prilikama kada
se nizovi koriste u kombinaciji sa pokazivačima dopušteno koristiti i negativne indekse, o
čemu će biti reči u narednim tomovima ove knjige).
Veličinamemorijskog prostora potrebnog za niz određuje se u fazi prevođenja programa, pa
broj elemenata niza (koji se navodi u deklaraciji) mora biti konstantan izraz. U narednom
primeru, deklaracija niza a je ispravna, dok su deklaracije nizova b i c neispravne:

int x;
char a[100+10];
int b[];
float c[x];

Prilikom deklaracije može se izvršiti i inicijalizacija:

int a[5] = { 1, 2, 3, 4, 5 };

Nakon ove deklaracije, sadržaj niza a jednak je:

1 2 3 4 5

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 157

Ako se koristi inicijalizacija, moguće je navesti veću dimenziju od broja navedenih ele-
menata (kada se početni elementi deklarisanog niza inicijalizuju zadatim vrednostima, a
preostali elementi podrazumevanim vrednostima – ako postoje za odgovarajući tipa). Na
primer, narednom deklaracijom uvodi se statički niz od 100 elemenata od kojih je prvi
jednak nuli (a preostali elementi nisu inicijalizovani, mada će ih neki kompilatori inicija-
lizovati na vrednost nula).

int a[100] = {0};

Svi elementi globalnih brojevnih nizova inicijalizuju se na nulu.
Navođenje dimenzije manje od broja elemenata inicijalizatora je neispravno i ne prolazi
kompilaciju. Dimenziju niza jemoguće izostaviti samo ako je prilikom deklaracije izvršena
i inicijalizacija niza i tada se dimenzija određuje na osnovu broja elemenata u inicijalizatoru.
Na primer, nakon deklaracije

int b[] = { 1, 2, 3 };

niz b ima tri elementa i njegov sadržaj jednak je:

1 2 3

Broj elemenata niza se ne čuva u okviru niza te se ne može jednostavno pročitati iz samog
niza, ali se može dobiti korišćenjem operatora sizeof. Kada se operator sizeof primeni
na ime niza, rezultat je veličina niza u bajtovima. Broj elemenata može se izračunati na
sledeći način:

sizeof(ime niza)/sizeof(tip elementa niza)

Kada se pristupa elementu niza, indeks može da bude proizvoljan izraz celobrojne vredno-
sti, na primer:

a[i+1]
a[bk*v + k];

U fazi prevođenja (pa ni u fazi izvršavanja2) ne vrši se nikakva provera da li je indeks u
granicama niza i moguće je bez ikakve prijave greške ili upozorenja od strane prevodioca
pristupati i lokaciji koji se nalazi van opsega deklarisanog niza (na primer, moguće je kori-
stiti element a[13], pa čak element a[-1] u prethodnom primeru). Ovo najčešće dovodi

2U fazi izvršavanja, operativni sistem obično proverava da li se pokušava upis van memorije koja je dodeljena
programu i ako je to slučaj, obično nasilno prekida izvršavanje programa (na primer, uz poruku segmentation
fault).

158 GLAVA 7. STRUKTURE PODATAKA

do fatalnih grešaka prilikom izvršavanja programa. S druge strane, ovakva (jednostavna)
politika upravljanja nizovima omogućava veću efikasnost.
Iteracija kroz elemente niza može se vršiti pomoću indeksa, ali i pomoću skraćenog oblika
petlje for (tzv. oblika foreach).

int a[] = {1, 2, 3};
int n = 3;

for (int i = 0; i < n; i++)
cout << a[i] << endl;

for (int x : a)
cout << x << endl;

Nizovi imaju ograničenja koja neke druge kolekcije nemaju. Statički alociran niz ne može
se proširivati niti sužavati tokom rada programa tj. sve vreme rada programa zauzima isti
memorijski prostor, dovoljan za smeštanje navedenog broja elementa. Pojedinačni elementi
nizova se mogu menjati (na primer, korišćenjem naredbe dodele) ali nizovi (kao celine)
nisu izmenljive vrednosti i nije immoguće dodeljivati vrednosti niti ih menjati. To ilustruje
sledeći primer:

int a[3] = {5, 3, 7};
int b[3];
b = a; // Neispravno - nizovi se ne mogu dodeljivati.
a++; // Neispravno - nizovi se ne mogu menjati.

Sadržaj dva niza se ne može porediti operatorima ==, !=, >, <, <=, >=. Upotreba ovih ope-
ratora nad imenima nizova je zapravo dopuštena, ali tada se ne poredi sadržaj nizova, već
memorijske adrese na kojima počinju ti nizovi, što obično nije ono što programer očekuje
i potencijalni je uzrok grešaka.
Sa druge strane, statički nizovi kreiraju se brže od ostalih kolekcija. Memorija za elemen-
te statički alociranih nizova rezerviše se na programskom steku (za lokalne nizove3) ili u
segmentu podataka (za globalne nizove), dok se za druge kolekcije memorija rezerviše
delom u segmentu podataka a delom na tzv. hipu, što zahteva utrošak određenog vreme-
na prilikom alokacije memorije tj. i pre nego što korišćenje kolekcije započne. Često je
ova razlika u brzini zanemarljiva, međutim, ima situacija kada može značajno doprineti
ukupnoj efikasnosti programa (na primer, kada se niz alocira u funkciji koja se jako često
poziva). Programski stek je često veoma mala količina memorije (tek nekoliko megabajta
na današnjim računarima), pa nije moguće kreirati velike lokalne statički alocirane nizove.

3Ako nisu obeleženi kvalifikatorom static.

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 159

7.2.1.1 Nizovi i funkcije
Kada se kao argument funkcije navede ime niza, u funkciju se, u fazi izvršavanja, prenosi
samo adresa početka niza, a ne kopira se sadržaj niza niti se prenosi informacija o broju
elemenata niza (koja je u fazi kompilacije pridružena imenu niza). Pošto funkcija koja
je pozvana dobija informaciju o adresi početka originalnog niza, ona može da neposredno
menja njegove elemente (i takve izmene će biti sačuvane nakon izvršenja funkcije). Iako se
opisani mehanizammože smatrati prenosom po vrednosti (ali ne niza, nego adresa početka
niza), on je po duhu sličan prenosu po referenci. Ovakvo ponašanje doprinosi efikasnosti,
ali može biti uzrok nekih grešaka.
Funkcija koja kao parametar ima niz može biti deklarisana na neki od narednih načina:

tip ime_funkcije(tip ime_niza[dimenzija]);
tip ime_funkcije(tip ime_niza[]);

S obzirom na to da se u funkciju prenosi samo adresa početka niza, a ne i dimenzija niza,
prvi oblik deklaracije nema puno smisla te se retko koristi. Iako se u deklaraciji funkcije
koristi sintaksa koja podseća na nizove, tip podataka parametra funkcije zapravo nije niz,
već adresa prvog elementa niza (ovaj mehanizam biće podrobnije objašnjen u narednim
tomovima ove knjige). Pošto funkcija nije primila niz (sa pridruženom informacijom o
broju elemenata), operator sizeof neće dati veličinu celog niza, već samo veličinu me-
morijske adrese. U funkciji, dakle, ne možemo znati veličinu niza koji je argument (osim
ako je ne prosledimo pored niza), ne možemo za iteraciju koristiti petlju foreach i slično.
Naredni primer ilustruje činjenicu da se u funkciju ne prenosi ceo niz, već samo adresa
njegovog početka.

#include <iostream>
using namespace std;

void f(int a[]) {
cout << "f: " << sizeof(a) << endl;

}

int main() {
int a[] = {1, 2, 3, 4, 5};
cout << "main: " << sizeof(a) << endl;
f(a);
return 0;

}

Prilikom pokretanja programa na mašini na kom int zauzima 4 bajta program ispisuje:

160 GLAVA 7. STRUKTURE PODATAKA

main: 20
f: 4

Ovo ukazuje na to da niz u funkciji main zauzima 20 bajtova (5 podataka veličine 4 bajta),
dok niz koji je parametar funkcije f zauzima 4 bajta (koliko zauzima jedna memorijska
adresa).
Prilikom prenosa niza (tj. adrese njegovog početka) u funkciju, pored imena niza, pro-
gramer može da eksplicitno prosledi i broj elemenata niza kao dodatni argument (da bi
pozvana funkcija imala tu informaciju).
Povratni tip funkcije nemože da bude niz. Funkcija nemože da kreira niz koji bi bio vraćen
kao rezultat, ali funkcija rezultate svog rada može da upisuje u niz koji joj je prosleđen kao
argument.
U narednom programu, funkcija ucitaj_broj ne uspeva da učita i promeni vrednost bro-
ja x, dok funkcija ucitaj_niz ispravno unosi i menja elemente niza y (jer joj je poznata
adresa početka niza y).

#include <iostream>
using namespace std;

void ucitaj_broj(int a) {
cout << "Unesi broj: ";
cin >> a;

}

void ucitaj_niz(int a[], int n) {
int i;
cout << "Unesi niz: ";
for (i = 0; i < n; i++)

cin >> a[i];
}

int main() {
int x = 0;
int y[3] = {0, 0, 0};
ucitaj_broj(x);
ucitaj_niz(y, 3);
cout << "x = " << x << endl;
cout << "y = " << y[0] << " " << y[1] << " " << y[2] << endl;

}

Kada se pokrene, program daje sledeći rezultat.

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 161

Unesi broj: 5
Unesi niz: 1 2 3
x = 0
y = 1, 2, 3

Uprkos nedostacima i ponašanju koje se, u jeziku C++, razlikuje od drugih tipova, statički
alocirani nizovi se veoma često koriste jer imajumnogo dužu tradiciju korišćenja (dolaze iz
programskog jezika C, u kojem su praktično osnovna kolekcija podataka). Stoga je veoma
važno dobro izučiti korišćenje statički alociranih nizova i sve njihove specifičnosti.

7.2.2 VLA
Neki kompilatori podržavaju oblik nizova koji se naziva VLA (engl. variable length array),
gde se kao dimenzija niza navodi promenljiva čija je vrednost poznata tek u fazi izvršavanja
programa.

int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++)

cin >> a[i];
...

VLA nikada nisu bili deo standarda jezika C++ (jedno vreme bili su deo standarda jezika
C, pa su nakon toga izbačeni) i stoga ih nikako nije preporučljivo koristiti.

7.2.3 Tip vector<T>
Jedna od osnovnih karakteristika statički alociranih nizova je to da im je veličina fiksirana
i ne menja se tokom izvršavanja programa. Jednom kada se ove kolekcije kreiraju, one se
ne mogu proširivati novim elementima niti sužavati. To je značajno ograničenje u mnogim
realnim aplikacijama u kojima u trenutku pisanja i prevođenja programa nemamo tačne
informacije o tome koliko elemenata će biti potrebno smestiti tokom izvršavanja programa.
Zbog toga je poželjno koristiti kolekcije čija se veličina može menjati tokom izvršavanja
programa tj. koje se mogu dinamički realocirati.
Osnovna sekvencijalna kolekcija koja ovo podržava je vector<T>, gde je T tip poda-
taka koji se čuva. Dakle, vektor je parametrizovan tipom elemenata koje čuva, tako da
može da se koristi vector<int>, vector<double>, vector<string> ali na primer, i
vector<vector<int>>.
Osnovni oblik deklaracije uvodi prazan vektor. Na primer,

162 GLAVA 7. STRUKTURE PODATAKA

vector<int> a; // prazan vektor

Može se zadati početni broj elemenata vektora. On ne mora biti konstantan (tj. ne mora biti
poznat u fazi kompilacije) već može postati poznat u toku izvršavanja programa. Ukoliko
u toku izvršavanja programa, a pre deklaracije vektora potreban broj elemenata postaje
poznat, onda je vektor najbolje deklarisati uz navođenje dimenzije u sklopu deklaracije,
jer se na taj način odmah odvaja potrebna količina memorije. Na primer,

int n;
cin >> n;
vector<double> a(n); // vektor od n elemenata

Naravno, da bi ovo uspelo, potrebno je da broj n ne bude toliko veliki da smeštanje n ele-
menata prevaziće količinu raspoložive memorije računara na kom se program izvršava4. U
suprotnom, proizvodi se izuzetak (u fazi izvršavanja). Ako alokacija uspe, veličina vektora
je n, ali vrednost elemenata nije unapred poznata (možemo smatrati da je nasumična).
Kao drugi argument deklaracije niza moguće je navesti početnu vrednost svih elemenata.

int n;
cin >> n;
vector<double> a(n, 1.0); // vektor od n elemenata postavljenih na vrednost 1.0

Inicijalizacija se može vršiti na isti način kao i kod nizova.

vector<int> brojevi = {1, 2, 3};

Nakon deklaracije u kojoj naveden broj elemenata, vektor se koristi na potpuno isti način
kao i niz – elementu na poziciji i pristupa se sa a[i], pri čemu se pozicije broje od 0.
Ukoliko indeks i nije unutar granica vektora, u fazi izvršavanja dolazi do nedefinisanog
ponašanja, pa i prekida rada programa. Elementu vektora može se pristupiti i primenom
metode at, na primer a.at(i). Ako se elementima pristupa korišćenjem ove metode, u
fazi izvršavanja proverava se da li je indeks i unutar granica vektora i, ukoliko nije, aktivira
se izuzetak.
Vektori se često koriste na sledeći način:

4Ako je vektor deklarisan kao lokalna promenljiva, opšte informacije o vektoru čuvaju se na programskom
steku, a sami elementi vektora na hipu.

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 163

int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++)

cin >> a[i];
...

U navedenom kodu, prvo se učitava dimenzija (ona je, dakle, poznata na početku izvrša-
vanja programa, ali ne i u fazi prevođenja), zatim se vektor deklariše tako da ima odgova-
rajući broj elemenata, nakon čega se učitavaju pojedinačni elementi.
Dimenzija (broj elemenata) vektora a može se odrediti izrazom a.size().

vector<int> a = {1, 2, 3, 4};
for (int i = 0; i < a.size(); i++)

// obradjuje se a[i]

Iteraciju kroz sve elemente vektora možemo vršiti i takozvanom petljom for-each (ili
foreach).

vector<int> a = {1, 2, 3, 4};
for (int x : a)

...

Proširivanje vektora a dodavanjem elementa x na njegov kraj moguće je pozivom metode
a.push_back(x) (time se uvećava broj elemenata za 1). Uklanjanje elementa sa kraja
(tj. uklanjanje poslednjeg elementa) vrši se pozivommetode a.pop_back() (što, naravno,
ima smisla samo kada vektor nije prazan, a u suprotnom je ponašanje nedefinisano i izvrša-
vanje programa obično biva prekinuto). Čitanje poslednjeg elementa nepraznog vektora se
vrši izrazom a.back(). Sve ove operacije su veoma efikasne. Dualno, postoje operacije
push_front i pop_front koje dodaju, odnosno uklanjaju element sa početka, ali one su
veoma neefikasne i treba ih izbegavati (osim kod veoma kratkih vektora). Čitanje prvog
elementa nepraznog vektora vrši se izrazom a.front() (ili, naravno, a[0]).
Ako ne znamo unapred broj elemenata vektora, možemo ih učitavati i ubacivati u vek-
tor jedan po jedan. U narednom programu, deklarišemo vektor koji je inicijalno prazan,
učitavamo n brojeva i u vektor smeštamo samo parne.

int n;
cin >> n;
vector<int> parni;
for (int i = 0; i < n; i++) {

164 GLAVA 7. STRUKTURE PODATAKA

int x;
cin >> x;
if (x % 2 == 0)

parni.push_back(x);
}

Ako se u vektoru čuvaju uređeni parovi ili n-torke, tada se umesto metode push_back,
može koristiti metoda emplace_back, kojoj se samo redom navode elementi para tj. torke
(nije potrebno posebno pozivati funkciju za kreiranje para tj. torke, čime se dobija malo
efikasniji kôd).
Vektor funkcioniše tako što se u startu rezerviše (alocira) određena količina memorije (ko-
ja može biti i veća od trenutnog broja popunjenih elemenata). Kada se sva ta memorija
popuni, tada se vrši realokacija, koja podrazumeva da se alocira nova količina memorije
(često duplo veća od prethodne) i da se prepišu elementi na novu memorijsku lokaciju. Ovo
može biti sporo, međutim, zahvaljujući tome što količina memorije raste geometrijskom
progresijom, realokacije su sve ređe i ređe i većina poziva metode push_back funkcioniše
veoma brzo (jer samo upisuju element u već rezervisanu memoriju).
Eksplicitna promena dimenzije vektora se može sprovesti i nezavisno od inicijalizacije,
metodom resize—nakon poziva a.resize(n) vektor a ima dimenziju n (pod uslovom
da postoji dovoljno memorije). Ako se vektor proširuje, tada vrednost novih elemenata nije
unapred definisana. Vrednost se može navesti kao drugi parametar metode resize (na
primer, a.resize(100, 17) uzrokuje da vektor sadrži 100 elemenata jednakih 17).
Vektori se u funkcije prenose po vrednosti (osim ako se eksplicitno ne navede da se prenose
po referenci), što znači da se u funkciju prenosi kopija vektora koji je naveden kao argument
u pozivu. Ako želimo da funkcija modifikuje sadržaj vektora, neophodno ga je preneti
po referenci (navođenjem simbola &). Tada se u funkciju šalje samo memorijska adresa
tog vektora i sve operacije se sprovode nad originalnim vektorom (ne vrši se kopiranje).
Kopiranjem se nepotrebno troši memorija i vreme, pa ima smisla vektore proslediti po
referenci i funkcijama koje samo analiziraju njihov sadržaj i ne menjaju ih. Tada se obično
navodi ključna reč const čime se obezbeđuje da se vektor ne može promeniti u funkciji
iako je prenet po referenci. Na primer,

int zbir(const vector<int>& a) {
int z = 0;
for (int x : a)

z += a;
return z;

}

Funkcija može da vrati vektor kao svoju rezultujuću vrednost. Zahvaljujući optimizacijama
koje savremene verzije jezika C++ garantuju, ne vrši se nikakvo kopiranje sadržaja, pa se
ovim ne umanjuju performanse programa.

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 165

7.2.4 Pokazivači i iteratori
Jedan način da se u strukturama podataka sa sekvencijalnim pristupom izdvoji neki kon-
kretan element je upotreba indeksa tj. pozicije tog elementa unutar kolekcije. Međutim,
videćemo uskoro da neke kolekcije nemaju sekvencijali pristup tj. da ne postoji priro-
dan redosled elemenata unutar kolekcije. Takođe, kod nekih sekvencijalnih kolekcija (pre
svega lista o kojima će više reči biti u poglavlju 7.2.5) pristup na osnovu indeksa je ve-
oma neefikasan, jer elementi ne zauzimaju susedne memorijske lokacije i da bi se našao
element na poziciji n, potrebno je obići redom sve elemente od prvog do tog traženog.
Stoga se pored indeksa za pristup elementima nizova i drugih kolekcija koriste pokazivači
i iteratori. Veza između pokazivača i nizova je napredna tema, jako važna za programski
jezik C i sistemsko programiranje i pokazivači će detaljno biti obrađeni u narednim tomo-
vima ove knjige. U nastavku ćemo prikazati samo osnove korišćenja pokazivača i iteratora,
u meri koja je dovoljna za korišćenje bibliotečkih kolekcija i funkcija.
Pokazivači su promenljive koje sadrže memorijske adrese. Razmotrimo, kao jedan primer,
iteraciju kroz niz korišćenjem pokazivača.

int a[] = {1, 2, 3, 4};
int n = 4;
for (int* p = a; p < a + n; p++)

cout << *p << endl;

Pošto niz a sadrži elemente tipa int, pokazivač p koji pokazuje na njegove elemente biće
tipa int*. Pokazivač p se inicijalizuje tako da sadrži adresu prvog elementa niza (dodelom
p=a). Nakon toga se kao uslov petlje proverava da li je pokazivač p stigao do adrese a+n,
što je adresa koja je za n elemenata niza pomerena od početka niza, tj. adresa koja se nalazi
tačno iza poslednjeg elementa niza — kada p stigne do te adrese, obrađeni su svi elementi
niza i petlja može da se prekine.
U svakom koraku petlje ispisuje se element na adresi na koju pokazuje pokazivač p (do
tog elementa se dolazi tzv. dereferenciranjem pokazivača tj. izrazom *p) i zatim se po-
kazivač uvećava, čime se sa adrese jednog, pomera na adresu narednog elementa niza. O
pokazivačima će mnogo više reči biti u narednim tomovima ove knjige.
Primetimo da smo u prethodnom primeru sabiranjem pokazivača a (adresa početka niza
se može smatrati nekim vidom pokazivača) i broja n dobili novi pokazivač, koji je udaljen
od polaznog za n elemenata niza (a ne za n bajtova). Slično, oduzimanjem dva pokazivača
koji ukazuju na neka dva elementa niza, dobija se broj elemenata niza koji se nalaze između
njih. To je takozvana pokazivačka aritmetika.
Umesto pokazivača koji se koriste u radu sa nizovima, u radu sa bibliotečkim kolekcijama
koriste se iteratori. To su posebni objekti koji se koriste na skoro isti način kao pokazivači
(u svakom trenutku pokazuju na jedan element kolekcije).
Tip iteratora je određen tipom kolekcije na čije elemente taj iterator pokazuje. Na pri-
mer, tip vector<int>::iterator označava iterator koji ukazuje na elemente vektora

166 GLAVA 7. STRUKTURE PODATAKA

Slika 7.2: Iteratori begin i end

tipa vector<int>, dok tip vector<int>::const_iterator ukazuje na elemente tipa
vector<int>, koji se ne mogu menjati jer je iterator konstantan. Videćemo da se, za-
hvaljujući ključnoj reči auto, u programima često može izbeći navođenje konkretnog tipa
iteratora i zaključivanje o njegovom tipu prepustiti kompilatoru.
Neke od najčešće korišćenih funkcija deklarisanih u zaglavlju <iterator> su:

• begin, end – vraćaju iteratore koji ograničavaju opseg date kolekcije (na primer,
vector i slično). Mnoge kolekcije podržavaju ove dve metode. Funkcija begin
vraća iterator koji ukazuje na prvi element, a end vraća iterator koji ukazuje nepo-
sredno iza poslednjeg elementa (na primer begin(v) vraća iterator koji ukazuje na
početak vektora v).

• distance – vraća rastojanje (broj elemenata) u opsegu ograničenom sa dva iteratora
koja se prosleđuju kao argumenti funkcije (prvi iterator pokazuje na početak tj. na
prvi element opsega, a drugi neposredno iza kraja tj. poslednjeg elementa opsega).
Na primer, ako je it iterator koji ukazuje na neki element unutar vektora v, tada se
njegov indeks može odrediti pomoću distance(begin(v), it);

• next (prev) – vraća iterator koji pokazuje na element date kolekcije koji je ispred
(iza) prosleđenog iteratora, na datom rastojanju; ako se kao drugi argument ne pro-
sledi rastojanje, podrazumevano se traži iterator na naredni tj. prethodni element
kolekcije. Na primer, next(begin(v)) je iterator koji ukazuje na drugi element
vektora v (ako takav postoji), dok je prev(end(a), 2) iterator koji ukazuje na
pretposlednji element niza a (ako takav postoji).

• Nad pokazivačima i nad iteratorima se mogu primenjivati i aritmetičke operacije:
it + n odgovara iteratoru koji se dobija kada se iterator it pomeri unapred n puta
(isto kao i next(it, n)). Razlika dva iteratora određuje broj elemenata između
njih (uključujući prvi i ne uključujući poslednji (isto kao i funkcija distance). Za
pokazivače i nizove važi slično: ako niz a ima n elemenata tada se njegov opseg može
zadati pokazivačima a i a+n.

Iteracija kroz vektor se može izvršiti korišćenjem iteratora, na sledeći način.

7.2. STRUKTURE PODATAKA SA SEKVENCIJALNIM PRISTUPOM 167

vector<int> a = {1, 2, 3, 4};
for (auto it = a.begin(); it != a.end(); it++)

cout << *it << endl;

7.2.5 Tipovi list<T>
Vektori dopuštaju efikasno dodavanje elemenata na kraj i brisanje elemenata sa kraja, ali
za rešavanje nekih zadataka su nam potrebne sekvencijalne kolekcije koje omogućava-
ju efikasno dodavanje elemenata na proizvoljnu poziciju i efikasno brisanje elemenata sa
proizvoljne pozicije. U takvim zadacima umesto vektora, efikasnije je da koristimo liste.
Lista je predstavljena tipom list<T>, gde je T tip elemenata liste. Za razliku od nizova
i vektora gde je indeksni pristup osnovni mehanizam pristupa elementima (i on je veoma
efikasan), elementima liste se obično pristupa preko iteratora. Iteratore obično koristimo
da bismo izveli sledeće operacije nad listom.

• Kada je poznat iterator koji ukazuje na neki element liste, tom elementu pristupamo
dereferenciranjem iteratora.

list<int> lista = {1, 2, 3, 4};
auto it = next(lista.begin(), 3); // 3 elementa desno od pocetnog
cout << *it << endl;

• Prolazak kroz sve elemente liste vršimo ili petljom foreach ili korišćenjem itera-
tora.

list<int> lista = {1, 2, 3, 4};

for (int x : lista)
cout << x << endl;

for (auto it = lista.begin(); it != lista.end(); it++)
cout << *it << endl;

• Metoda erase briše element na koji ukazuje dati iterator. Nakon brisanja taj iterator
se pomera na sledeći element, dok ostali iteratori više nisu validni (ne bi ih trebalo
koristiti nakon izmene liste).

168 GLAVA 7. STRUKTURE PODATAKA

list<int> lista = {1, 2, 3, 4};
auto it = lista.begin();
lista.erase(it);
// sadrzaj liste je {2, 3, 4}, a it sada ukazuje na 2

• Metoda insert dodaje element pre elementa na koji ukazuje iterator. Nakon ume-
tanja, iterator se pomera na umetnuti element, dok ostali iteratori više nisu validni
(ne bi ih trebalo koristiti nakon izmene liste).

list<int> lista = {1, 2, 3, 4};
auto it = lista.begin();
lista.insert(it, 0);
// sadrzaj liste je {0, 1, 2, 3, 4}, a it sada ukazuje na 0

Naglasimo da se ne preporučuje izmena liste tokom iteracije kroz nju petljom foreach
(isto kao i kod svih ostalih kolekcija), jer prilikom izmena iterator koji se (implicitno)
koristi za iteraciju postaje neispravan.

7.3 Višedimenzioni nizovi i kolekcije
Često je umesto jednodimenzionalnih kolekcija potrebno koristiti dvodimenzionalne (na
primer, matrice), pa i višedimenzionalne. Ponovo postoji izbor između korišćenja statički
alociranih višedimenzionih nizova i korišćenja bibliotečkih kolekcija (na primer vector),
koje se mogu ugnežđavati (na primer, možemo napraviti vektor čiji su elementi vektori i
na taj način dobiti višedimenzionalnu kolekciju).
Višedimenzioni nizovi se deklarišu na sledeći opšti način:

tip ime_niza[dimenzija_1]...[dimenzija_2];

Dvodimenzioni nizovi (matrice) tumače se kao jednodimenzioni nizovi čiji su elementi
nizovi. Zato se elementima dvodimenzionog niza pristupa sa:

ime_niza[vrsta][kolona]

a ne sa ime_niza[vrsta, kolona].
Elementi se umemoriji smeštaju po vrstama pa se, kada se elementima pristupa u redosledu
po kojem su smešteni u memoriji, najbrže menja poslednji indeks. Ovde se podrazumeva
konvencija iz matematike za zapis matrica po kojoj se prvi indeks odnosi na vrste, a drugi
na kolone, kao u sledećem primeru:

7.3. VIŠEDIMENZIONI NIZOVI I KOLEKCIJE 169

⎛⎜⎜⎜
⎝

𝑎0,0 𝑎0,1 𝑎0,2 … 𝑎0,𝑛−1
𝑎1,0 𝑎1,1 𝑎1,2 … 𝑎1,𝑛−1
… … … … …

𝑎𝑚−1,0 𝑎𝑚,1 𝑎𝑚−1,2 … 𝑎𝑚−1,𝑛−1

⎞⎟⎟⎟
⎠

Elementi navedene matrice bili bi u memoriji poređani redom 𝑎0,0, 𝑎0,1, 𝑎0,2, …, 𝑎0,𝑛−1,
𝑎1,0, 𝑎1,1, 𝑎1,2, …, 𝑎1,𝑛−1, …, tj. a[0][0], a[0][1], a[0][2], …, a[0][n-1],
a[1][0], a[1][1], a[1][2], …, a[1][n-1],…
Niz se može inicijalizovati navođenjem liste inicijalizatora u vitičastim zagradama; pošto
su elementi opet nizovi, svaki od njih se opet navodi u okviru vitičastih zagrada (mada je
unutrašnje vitičaste zagrade moguće i izostaviti). Razmotrimo, kao primer, jedan dvodi-
menzioni niz:

int a[2][3] = {
{1, 2, 3},
{4, 5, 6}

};

Kao i u slučaju jednodimenzionih nizova, ako je naveden inicijalizator, vrednost prvog
indeksa moguće je i izostaviti (jer se on u fazi kompilacije može odrediti na osnovu broja
inicijalizatora):

int a[][3] = {
{1, 2, 3},
{4, 5, 6}

};

U memoriji su elementi dvodimenzionog niza poređani na sledeći način: a[0][0],
a[0][1], a[0][2], a[1][0], a[1][1], a[1][2], tj. vrednosti elemenata niza poređa-
ne su na sledeći način: 1, 2, 3, 4, 5, 6. U ovom primeru, element a[v][k] je 𝑖-ti po redu,
pri čemu je 𝑖 jednako 3*v+k. Pozicija elementa višedimenzionog niza može se slično
izračunati i slučaju nizova sa tri i više dimenzija5.
Razmotrimo, kao dodatni primer, dvodimenzioni niz koji sadrži broj dana za svaki mesec,
pri čemu su u prvoj vrsti vrednosti za obične, a u drugoj vrsti za prestupne godine:

int broj_dana[][13] = {
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

5Nekada programeri ovu tehniku izračunavanja pozicija eksplicitno koriste da matricu smeste u jednodimen-
zioni niz, ali, pošto jezik dopušta korišćenje višedimenzionih nizova, za ovim nema potrebe.

170 GLAVA 7. STRUKTURE PODATAKA

};

Za skladištenje brojeva koristi se tip int (kako su u pitanju mali prirodni brojevi, ako je
potrebno štedeti memoriju, umesto tipa intmože da se koristi tip char), a u nultu kolonu
su upisane nule da bi se podaci za mesec m nalazili upravo u koloni m (tj. da bi se mesecima
pristupalo korišćenjem indeksa 1-12, umesto sa indeksa 0-11). Niz broj_dana je moguće
koristiti da bi se, na primer, promenljiva bd postavila na broj dana za mesec mesec i godinu
godina:

bool prestupna = (godina % 4 == 0 && godina % 100 != 0) ||
godina % 400 == 0;

int bd = broj_dana[prestupna][mesec];

Vrednost true tipa bool se može konvertovati u 1, a vrednost false u 0, pa se vrednost
prestupna može koristiti kao indeks pri pristupanju nizu.
Umesto statički alociranih višedimenzionalnih nizova možemo koristiti vektor-vektora. Na
primer, matricu možemo definisati na sledeći način.

vector<vector<int>> A = {{1, 2}, {3, 4}};

Matricu dimenzije 𝑚 × 𝑛 popunjenu nulama možemo definisati na sledeći način.

int m, n;
cin >> m >> n;
vector<vector<int>> A(m, vector<int>(n, 0));

Vektor A se konstruiše tako da ima m elemenata, pri čemu se svaki od njih postavlja na
vrednost vector<int>(n, 0), što je vektor koji sadrži n elemenata koji se postavljaju
na 0. Alternativno, realokaciju svakog pojedinačnog vektora vrste možemo napraviti i u
petlji.

int m, n;
cin >> m >> n;
vector<vector<int>> A;
A.resize(m);
for (int i = 0; i < m; i++)

A[i].resize(n, 0);

Naglasili smo već da je alokacija memorije za vektor sporija nego alokacija memorije za
statički niz. U slučaju višedimenzionalnih nizova se vrši alokacija velikog broja vektora,

7.4. RAD SA MATRICAMA 171

pa kreiranje vektora-vektora može biti znatno sporije nego kreiranje višedimenzionalnog
niza. Sa druge strane, za razliku od nizova kod kojih sve vrste imaju jednak broj elemenata,
pomoću vektora-vektora mogu se napraviti strukture podataka u kojima svaka vrsta ima
različit broj elemenata (na primer, za svakog učenika možemo imati različit broj ocena).

7.4 Rad sa matricama
Ilustrujmo upotrebu višedimenzionalnih nizova, tako što ćemo učitati kvadratnu matricu
(dimenzije najviše 10) i proveriti da li je ona magični kvadrat. Matrica dimenzije𝑛×𝑛 čini
magični kvadrat ako su njeni brojevi od 0 do 𝑛2 i jednaki su zbirovi elemenata svake vrste,
svake kolone i obe dijagonale. Zbir svih brojeva od 0 do 𝑛2 jednak je 𝑛2(𝑛2 + 1)/2, pa
zbir elemenata svake vrste, svake kolone i obe dijagonale treba da bude jednak (𝑛2(𝑛2 +
1)/2)/𝑛 = 𝑛(𝑛2 + 1)/2.

const int MAXN = 10;

// provera da li je kvadrat magican
// funkcija prima matricu, dimenziju kvadrata i njegov karakteristicni zbir
bool jeMagicanKvadrat(int kvadrat[MAXN][MAXN], int n, int zbir) {

// proveravamo zbirove svih vrsta
for (int vrsta = 0; vrsta < n; vrsta++) {

int zbirVrste = 0;
for (int kolona = 0; kolona < n; kolona++)

zbirVrste += kvadrat[vrsta][kolona];
// nasli smo vrstu koja nema trazeni zbir, pa kvadrat nije magican
if (zbirVrste != zbir)

return false;
}

// proveravamo zbirove svih kolona
for (int kolona = 0; kolona < n; kolona++) {

int zbirKolone = 0;
for (int vrsta = 0; vrsta < n; vrsta++)

zbirKolone += kvadrat[vrsta][kolona];
// nasli smo kolonu koja nema trazeni zbir, pa kvadrat nije magican
if (zbirKolone != zbir)

return false;
}

// proveravamo zbir glavne dijagonale

172 GLAVA 7. STRUKTURE PODATAKA

int zbirDijagonale = 0;
for (int i = 0; i < n; i++)

zbirDijagonale += kvadrat[i][i];
// ako zbir glavne dijagonale nije odgovarajuci, kvadrat nije magican
if (zbirDijagonale != zbir)

return false;

// proveravamo zbir sporedne dijagonale
zbirDijagonale = 0;
for (int i = 0; i < n; i++)

zbirDijagonale += kvadrat[i][n-1-i];
// ako zbir sporedne dijagonale nije odgovarajuci, kvadrat nije magican
if (zbirDijagonale != zbir)

return false;

// zbirovih svih vrsta, kolona i obe dijagonale su ispravni
return true;

}

int main() {
int kvadrat[MAXN][MAXN];
int n;
cin >> n;
for (int v = 0; v < n; v++)

for (int k = 0; k < n; k++)
cin >> kvadrat[v][k];

// karakteristicni zbir
int zbir = n*(n*n + 1) / 2;
if (jeMagicanKvadrat(kvadrat, n, zbir))

cout << "Kvadrat je magicni" << endl;
else

cout << "Kvadrat nije magicni" << endl;
}

Matrice (tj. dvodimenzioni nizovi) koriste se u mnogim oblastima računarastva: u obradi
slika (za rasterski zapis slika), u računarskoj grafici (za opis transformacija), u rešavanju
linearnih jednačina, itd. Kao što je rečeno ranije, matrice se obično predstavljaju kao statič-
ki dvodimenzioni nizovi ili kao vektori vektora. U nastavku su prikazane implementacije
funkcija za sabiranje, množenje i štampanje matrica reprezentovanih kao vektori vektora.

7.4. RAD SA MATRICAMA 173

#include <iostream>
#include <vector>
using namespace std;

vector<vector<int>> saberiMatrice(const vector<vector<int>>& A, const vector<vector<int>>& B)
{

int vrste = A.size(), kolone = A[0].size();
vector<vector<int>> C(vrste, vector<int>(kolone));
for(int i = 0; i < vrste; i++)

for(int j = 0; j < kolone; j++)
C[i][j] = A[i][j] + B[i][j];

return C;
}

vector<vector<int>> pomnoziMatrice(const vector<vector<int>>& A, const vector<vector<int>>& B)
{

int Avrste = A.size(), Akolone = A[0].size();
int Bvrste = B.size(), Bkolone = B[0].size();
vector<vector<int>> C(Avrste, vector<int>(Bkolone, 0));
if (Akolone != Bvrste) {

cout << "Matrice ne mogu biti pomnozene" << endl;
} else {

for(int i = 0; i < Avrste; i++)
for(int j = 0; j < Bkolone; j++) {

for(int k = 0; k < Akolone; k++)
C[i][j] += A[i][k] * B[k][j];

}
}
return C;

}

void odstampajMatricu(const vector<vector<int>>& A)
{

int vrste = A.size(), kolone = A[0].size();
for(int i = 0; i < vrste; i++) {

for(int j = 0; j < kolone; j++)
cout << A[i][j] << " ";

cout << endl;
}

}

174 GLAVA 7. STRUKTURE PODATAKA

int main()
{

int vrste, kolone;
vector<vector<int>> A = { { 1, 2, 3}, { 4, 5, 3} };
vector<vector<int>> B = { { 2, 3, 4}, { 5, 2, 1} };
vector<vector<int>> C = { { 1, -1}, { 0, 1}, { 1, 0} };

cout << "Zbir matrica A i B:" << endl;
odstampajMatricu(saberiMatrice(A,B));

cout << "Proizvod matrica A i C:" << endl;
odstampajMatricu(pomnoziMatrice(A,C));
return 0;

}

7.5 Strukture podataka sa asocijativnim pristupom
U strukturama podataka sa sekvencijalnim pristupom, elementi su poređani u niz, te može
da ih identifikuje redni broj u tom nizu. Taj redni broj, dakle, omogućava jednostavan
pristup i brzo pronalaženje elementa strukture.
U strukturama sa asocijativnim pristupom, efikasan pristup elementu omogućava ključ.
Ključevi određuju uređenje elemenata u strukturi i omogućavaju brzo pronalaženje ele-
menata.
Kao strukture podataka sa sekvencijalnim pristupom, i strukture podataka sa asocijativnim
pristupom su šablonske strukture (eng. templates), te mogu da čuvaju elemente proizvolj-
nog tipa T.

7.5.1 Skupovi
Često postoji potreba da održavamo skup elemenata (bez duplikata), u koji efikasno mo-
žemo da dodajemo elemente, iz koga efikasno možemo da izbacujemo elemente i za koji
efikasno možemo da proveravamo da li je neka zadata vrednost element skupa. Savremeni
programski jezici u svojim bibliotekama pružaju strukture podataka koje nude baš ove
operacije.
U jeziku C++, skup je opisan klasom set<T>, gde je T tip elemenata skupa (za korišćenje
ove klase potrebno je uključiti zaglavlje <set>. Elementi strukture podataka sa asocijativ-
nim pristupom su interno organizovani u odnosu na vrednosti ključa – ključevi određuju
uređenje elemenata u strukturi i omogućavaju brzo pronalaženje elemenata. U slučaju sku-
pa, ključ za element skupa je sam taj element.

7.5. STRUKTURE PODATAKA SA ASOCIJATIVNIM PRISTUPOM 175

Skupovi podržavaju sledeće osnovne operacije (za pregled svih operacija upućujemo čita-
oca na dokumentaciju):

• insert - umeće novi element u skup (ako je element već u skupu, operacija nema
efekta).

• erase - uklanja dati element iz skupa (ako element ne postoji u skupu, skup se ne
menja).

• find - proverava da li skup sadrži dati element i vraća iterator na njega ako sadrži,
a vrednost end inače. Tako se provera pripadnosti elementa e skupu smože izvršiti
sa if (s.find(e) != s.end()) ...

• size - vraća broj elemenata skupa.

Moguća je i iteracija kroz elemente skupa korišćenjem petlje oblika for (T element
: skup), pri čemu se elementi kolekcije nabrajaju u sortiranom redosledu. Na primer,
naredni program učitava brojeve i ispisuje ih u uređenom redosledu, bez duplikata.

int n;
cin >> n;
set<int> A;
for (int i = 0; i < n; i++) {

int x;
cin >> x;
A.insert(x);

}
cout << "Broj razlicitih: " << A.size() << endl;
for (int x : A)

cout << x << endl;

Uređeni skupovi (kolekcija set) podržavaju i metode

• lower_bound(x) - pronalazi najmanji element skupa koji je veći ili jednak od
date vrednosti x i vraća iterator koji ukazuje na njega (ili end, ako takav element ne
postoji),

• upper_bound(x) - pronalazi najmanji element skupa koji je strogo veći od date
vrednosti x i vraća iterator koji ukazuje na njega (ili end, ako takav element ne
postoji).

U uređenim skupovima se lako mogu naći minimalni i maksimalni element (korišćenjem
iteratora dobijenih metodama begin i end).
Ako u uređen skup sadrži podatke nekog od elementarnih tipova (brojeve, niske, …), ta-
da se koristi njihov podrazumevani poredak. Da bi se definisao skup elemenata nekog tipa

176 GLAVA 7. STRUKTURE PODATAKA

nad kojim nije definisan podrazumevani poredak, potrebno je posebno definisati (i zadati u
okviru deklaracije) poredak koji želimo da se koristi. I za tip podataka za koji postoji pod-
razumevani poredak, može se deklarisati skup koji koristi neki drugi poredak. Na primer,
skup u kom su elementi tipa T uređeni nerastuće (pri čemu na tipu podataka postoji podra-
zumevani neopadajući poredak) može se definisati deklaracijom set<T, greater<T>>,
(pri čemu je za upotrebu greater potrebno uključiti zaglavlje <functional>).

7.5.2 Multiskupovi
Skupovi, kao i u matematici, ne mogu da sadrže duplikate. Kada se element koji već postoji
u skupu ubaci u taj skup metodom insert, skup se ne menja. Jedno uopštenje skupova
daju multiskupovi u kojima je dopušteno ponavljanje elemenata. Multiskupovi su podržani
bibliotečkom strukturom multiset<T>, koja se koristi na potpuno isti način kao i set<T>
(za njeno korišćenje je takođe dovoljno uključiti zaglavlje <set>).

7.5.3 Mape
Programski jezik C++ pruža podršku za mape (u drugim se jezicima oni nazivaju i rečnici
ili asocijativni nizovi) – kolekcije podataka u kojima se ključevima nekog tipa pridružu-
ju vrednosti nekog (ne obavezno istog) tipa. Na primer, imenima meseci (podacima tipa
string) možemo dodeliti broj dana (podatke tipa int). Rečnici se predstavljaju objekti-
ma tipa map<TipKljuca, TipVrednosti>, definisanom u zaglavlju <map>. Na primer,

map<string, int> brojDana =
{

{"januar", 31},
{"februar", 28},
{"mart", 31},
...

};

Primetimo da smo inicijalizaciju mape izvršili tako što smo naveli listu parova oblika
{kljuc, vrednost}. Inicijalizaciju nije neophodno izvršiti odmah tokom kreiranja, već
je vrednosti moguće dodavati (a i čitati) korišćenjem indeksnog pristupa (pomoću zagrada
[]).

map<string, int> brojDana;
brojDana["januar"] = 31;
brojDana["februar"] = 28;
brojDana["mart"] = 31;
...

7.5. STRUKTURE PODATAKA SA ASOCIJATIVNIM PRISTUPOM 177

Mapu, dakle, možemo shvatiti i kao niz tj. vektor u kome indeksi nisu obavezno iz nekog
celobrojnog intervala oblika [0, 𝑛), već mogu biti proizvoljnog tipa.
Ako se korišćenjem operatora indeksnog pristupa [...] pokuša pristup ključu koji ne
postoji, on se ubacuje u mapu (i pridružuje mu se podrazumevana vrednost tipa vrednosti
mape). Metodom at se može pročitati vrednost pridružena ključu, bez ubacivanja nove
vrednosti ako ključ ne postoji (ako ključ ne postoji, dolazi do izuzetka).
Pretragu ključa možemo ostvariti metodom find koja vraća iterator na pronađeni element,
ako element postoji, a iterator iza kraja mape (koji dobijamo metodom ili funkcijom end),
inače. Na primer,

string mesec; cin >> mesec;
auto it = brojDana.find(mesec);
if (it != end(brojDana))

cout << "Broj dana: " + *it << endl;
else

cout << "Mesec nije korektno unet" << endl;

Sve elemente rečnika moguće je ispisati korišćenjem petlje for. Na primer,

for (const std::pair<string, int>& p: brojDana) {
string mesec = p.first; int brojDana = p.second;
cout << mesec << ": " << brojDana << endl;

}

ili kraće:

for (const auto& p : brojDana) {
string mesec = p.first; int brojDana = p.second;
cout << mesec << ": " << brojDana << endl;

}

U prethodnoj petlji promenljiva p je referenca koja se tokom petlje pomera tako da ukazuje
na jedan po jedan uređen par elemenata mape (svaki element je par koji sadrži ključ i
vrednost). Ključnom rečju const se naznačava da se tokom prolaska kroz elemente mape
oni neće menjati.
Još lepši oblik je kada se tokom iteracije odmah par razdvoji na ključ i vrednost.

for (const auto& [mesec, broj] : brojDana)
cout << mesec << ": " << broj << endl;

Alternativno, možemo eksplicitno koristiti iteratore

178 GLAVA 7. STRUKTURE PODATAKA

for (auto it = brojDana.begin(); it != brojDana.end(); it++)
cout << it->first << ": " << it->second << endl;

Iteracija kod (sortirane, uređene) mape se uvek vrši u sortiranom redosledu ključeva.
Ključevi mape mogu biti samo nekog tipa čije vrednosti se mogu porediti relacijskim ope-
ratorima. Niske, koje ćemo najčešće koristiti kao ključeve, zadovoljavaju taj uslov. Ako
su ključevi mape neke korisnički definisane strukture ili objekti klasa, tada je potrebno da
se u tim strukturama ili klasama definiše operator <, koji poredi dva objekta.
Ilustrujmo upotrebu mapa na primeru programa koji učitava spisak mejl adresa i određuje
onu koja se najčešće pojavljuje u spisku (ako ima više takvih, ispisuje bilo koju od njih).
Osnovni zadatak je da se prebroji koliko puta se u spisku smo postoji svaka od adresa
i njega možemo rešiti tako što svakom ključu mape (mejl adresi) pridružimo njen broj
pojavljivanja.

#include <iostream>
#include <string>
#include <map>
using namespace std;

int main() {
// svakoj ucitanoj adresi dodeljujemo njen broj pojavljivanja
map<string, int> brojPojavljivanja;
// ukupan broj adresa koje ucitavamo
int brojAdresa;
cin >> brojAdresa;
for (int i = 0; i < brojAdresa; i++) {

string adresa;
cin >> adresa;
// povecavamo broj pojavljivanja upravo ucitane adrese
brojPojavljivanja[adresa]++;

}

// maksimalni broj pojavljivanja neke adrese
int maksPojavljivanja = 0;
// adresa koja se pojavljuje najveći broj puta
string maksAdresa;
// obradjujemo sve adrese koje su u mapi
for (const auto& [adresa, broj] : brojPojavljivanja)

// azuriramo maksimum
if (broj > maksPojavljivanja) {

7.5. STRUKTURE PODATAKA SA ASOCIJATIVNIM PRISTUPOM 179

maksPojavljivanja = broj;
maksAdresa = adresa;

}
// ispisujemo adresu koja se najvise pojavljuje
cout << maksAdresa << endl;

}

Naglasimo da naredba brojPojavljivanja[adresa]++ povećava broj pojavljivanja
adrese u mapi, ako ona postoji, a ako ne postoji, onda je prvo ubacuje i pridružuje joj
vrednost 0 i odmah zatim tu vrednost uvećava na 1.
Sličan zadatak bi bio da se odredi slovo koje se najčešće pojavljuje u reči. Brojanje poja-
vljivanja bismo mogli da ostvarimo na sledeći način.

string s;
cin >> s;
map<char, int> brojPojavljivanja;
for (char c : s)

brojPojavljivanja[c]++;

Ako, na primer, znamo da se niska s sastoji samo od malih slova engleske abecede, ume-
sto u mapi, brojeve pojavljivanja svakog slova možemo pamtiti u statički alociranom nizu
koji ima 26 elemenata (broj pojavljivanja slova a na poziciji 0, slova b na poziciji 1, itd.).
Poziciju datog slova možemo lako odrediti tako što od njegovog koda oduzmemo kôd ka-
raktera a (obično se radi o kodovima u tabeli ASCII). U jeziku C++ (isto kao u jeziku C)
karakteri su interno reprezentovani pomoću svojih kodova, pa se odgovarajuća pozicija u
nizu može dobiti oduzimanjem karakterske konstante 'a', a karakter se može dobiti od
pozicije dodavanjem te konstante.

string s;
cin >> s;
// broj pojavljivanja svakog karaktera
int brojPojavljivanja[26];
for (char c : s)

brojPojavljivanja[c - 'a']++;
// pozicija karaktera koji se najcesce pojavljuje
int maks = 0;
for (int i = 0; i < 26; i++)

if (brojPojavljivanja[i] > brojPojavljivanja[maks])
maks = i;

180 GLAVA 7. STRUKTURE PODATAKA

// na osnovu pozicije odredjujemo karakter koji se pojavljuje najcesce
cout << 'a' + maks << endl;

Dakle, ako se u programu opisuje preslikavanje jednog skupa u drugi, i ako je domen
preslikavanja mali skup, umesto mape se može koristiti i niz (ovakva rešenja su tipična za
programski jezik C u kome mape ne postoje, mogu se koristiti i u jeziku C++, mada često
ne donose neke značajne prednosti u odnosu na korišćenje mapa).

7.6 Specijalizovane strukture podataka
7.6.1 Stek

Stek (engl. stack) je kolekcija podataka sa pristupom po principu LIFO (engl. last-in-first
out) - element se može dodati samo na vrh steka i može se skinuti samo sa vrha steka. Kao
stek ponaša se, na primer, štap na koji su naređani kompakt diskovi. Ako sa štapa može da
se uklanja samo po jedan disk, da bi bio skinut disk koji je na dnu, potrebno je pre njega
skinuti sve druge diskove.
U jeziku C++, stek se realizuje klasom stack<T> gde T predstavlja tip elemenata na steku.
Za njeno korišćenjem potrebno je uključiti zaglavlje <stack>. Podržane su sledećemetode
(sve su veoma efikasne):

• push - postavlja dati element na vrh steka
• pop - skida element sa vrha steka (pod pretpostavkom da stek nije prazan). Ova me-
toda je tipa void i ne vraća uklonjeni element. Poziv funkcije pop u trenutku kada
je stek prazan dovodi do nedefinisanog ponašanja (obično do nasilnog prekida pro-
grama) i zadatak programera je da osigura da se to neće dešavati tokom izvršavanja
programa.

• top - očitava element na vrhu steka (pod pretpostavkom da stek nije prazan)
• empty - proverava da li je stek prazan
• size - vraća broj elemenata na steku.

Stek u jeziku C++ je zapravo samo adapter, omotač oko neke kolekcije podataka (obično
vektora) koji korisnika primorava da poštuje pravila pristupa steku i sprečava da napravi
operaciju koja nad stekom nije dopuštena (poput pristupa nekom elementu ispod vrha).
Zaista, za implementaciju steka, ako se drugačije ne naglasi koristi se običan vektor. Time
što se opredeli za strukturu stack<T> umesto vector<T>, programer ima garanciju da
će pristup elementima biti ograničen, čime se eliminišu mnoge moguće greške u kodu.

7.6.1.1 Primer upotrebe steka: izrazi u postfiksnoj notaciji
Kao primer upotrebe steka razmotrimo izračunavanje vrednosti izraza zapisanih u post-
fiksnoj notaciji. U postfiksnoj notaciji, binarni operatori se ne zapisuju između operana-
da, nego iza njih. Na primer, izraz 3 ⋅ ((1 + 2) ⋅ 3 + 5) se zapisuje na sledeći način:
(3 (((1 2 +) 3 ⋅) 5 +) ⋅) Interesantno je da zagrade u postfiksnom zapisu uopšte ne

7.6. SPECIJALIZOVANE STRUKTURE PODATAKA 181

moraju da se pišu i nema opasnosti od višesmislenog tumačenja zapisa. Dakle, navedeni
izraz može se napisati i na sledeći način: 3 1 2 + 3 ⋅ 5 + ⋅ (u ASCII sintaksi 3 1 2
+ 3 * 5 + *).
Vrednost navedenog izraza može se jednostavno izračunati čitanjem sleva nadesno i ko-
rišćenjem steka. Ako je pročitan broj, on se stavlja na stek. Inače (ako je pročitan znak
operacije), onda se dva broja skidaju sa steka, na njih se primenjuje pročitana operacija i
rezultat se stavlja na stek. Nakon čitanja čitavog izraza (ako je ispravno zapisan), na steku
će biti samo jedan element i to broj koji je vrednost izraza.
Sledeći program čita aritmetički izraz (zapisan u postfiksnom zapisu). Jedine dozvoljene
operacije su + i *. Cifre i znakovi operacija su razdvojeni razmacima. Program čita jednu
po jednu nisku, sve dok ih ima tj. dok ne dođe do kraja ulaza. Pretpostavićemo da je svaka
niska ili ispravno zapisan prirodni broj ili simbol operacije. Kada se naiđe na broj, on se
postavlja na stek (nisku sastavljenu od cifara možemo konvertovati u broj korišćenjem
bibliotečke funkcije stoi, opisane u poglavlju 8). Kada se naiđe na znak operacije, sa
steka se čitaju dve vrednosti i zamenju se rezultatom primene pročitane operacije. Ukoliko
je zadati izraz ispravno zapisan (što ćemo pretpostaviti), na kraju izvršavanja programa
vrednost izraza se nalazi na dnu steka i ona se ispisuje.

#include <iostream>
#include <stack>
#include <string>
using namespace std;

int main() {
stack<int> operandi;
// citamo jednu po jednu nisku do kraja ulaza
string s;
while (cin >> s) {

if (s[0] == '+') {
// operator +
// dve vrednosti na vrhu steka menjamo njihovim zbirom
int op1 = operandi.top(); operandi.pop();
int op2 = operandi.top(); operandi.pop();
operandi.push(op1 + op2);

} else if (s[0] == '*') {
// operator *
// dve vrednosti na vrhu steka menjamo njihovim proizvodom
int op1 = operandi.top(); operandi.pop();
int op2 = operandi.top(); operandi.pop();
operandi.push(op1 * op2);

182 GLAVA 7. STRUKTURE PODATAKA

} else {
// broj
// postavljamo vrednost na stek
operandi.push(stoi(s));

}
}
// ako je izraz ispravan, njegova konacna vrednost se nalazi
// na vrhu steka
cout << operandi.top() << endl;

}

Na primer, ako se unesu sledeći podaci (koji se čitaju kao niske):

3 1 2 + 3 * 5 + *

nakon prekida unosa, program će ispisati vrednost 42. a Primetimo da se prilikom skidanja
vrednosti sa steka ona mora prvo pročitati (metodom top), pa tek zatim skinuti sa steka
(metodom pop).

7.6.2 Red
Red je kolekcija podataka sa pristupom po principu FIFO (engl. first-in-first out) – element
se uvek uzima sa početka, a dodaje na kraj reda.
U jeziku C++, red se realizuje klasom queue<T> gde T predstavlja tip elemenata na ste-
ku. Za njeno korišćenjem potrebno je uključiti zaglavlje <stack>. Podržane su sledeće
metode:

• push - postavlja dati element na kraj reda
• pop - skida element sa početka reda (pod pretpostavkom da red nije prazan). Nagla-
simo da je ova metoda tipa void i da ne vraća uklonjeni element.

• front - očitava element na početku reda (pod pretpostavkom da red nije prazan)
• empty - proverava da li je red prazan
• size - vraća broj elemenata u redu

Red u jeziku C++ je zapravo samo adapter oko neke kolekcije podataka (obično reda sa
dva kraja) koji korisnika primorava da poštuje pravila pristupa redu i sprečava da napravi
operaciju koja nad redom nije dopuštena (poput pristupa nekom elementu koji nije na
početku).

7.6.2.1 Primer upotrebe reda: poslednjih 𝑘 učitanih linija teksta
Ilustrujmo upotrebu reda na primeru programa koji štampa poslednjih 𝑘 učitanih linija
teksta. Ako je broj 𝑘 dosta manji od ukupnog broja linija (što često može biti slučaj), tada
bi rešenje koje bi učitalo sve linije u jedan vektor nepotrebno trošilo previše memorije.

7.6. SPECIJALIZOVANE STRUKTURE PODATAKA 183

Umesto toga možemo u strukturi podataka čuvati samo poslednjih 𝑘 učitanih linija (ili
manje, dok se još ne učita prvih 𝑘 linija). Kada se učita nova linija, ona se dodaje na kraj
reda. Ako je tada u redu 𝑘 + 1 linija, uklanja se prva linija iz reda.

#include <iostream>
#include <string>
#include <queue>

int main() {
// broj linija koje treba ispisati
int k;
cin >> k;
// red u kome cuvamo poslednjih k linija
queue<string> poslednjiKLinija;
// citamo sve linije do kraja ulaza
string linija;
while (getline(cin, linija)) {

// osiguravamo da u redu nema nikad vise od k linija
if (poslednjiKLinija.size() == k)

poslednjiKLinija.pop();
// ubacujemo procitanu liniju u red
poslednjiKLinija.push(linija);

}

// ispisujemo rezultat
while (!poslednjiKLinija.empty()) {

cout << poslednjiKLinija.front() << endl;
poslednjiKLinija.pop();

}
}

7.6.3 Red sa dva kraja
Jedno uopštenje strukture red je red sa dva kraja koji dopušta da se elementi i dodaju i
uzimaju sa oba kraja reda (ta struktura podataka zapravo kombinuje i funkcionalnost steka
i funkcionalnost reda).
U jeziku C++, red sa dva kraja raspoloživ je kao struktura deque<T>. Za njeno korišće-
nje potrebno je uključiti zaglavlje <deque>. Podržane su sledeće operacije (sve su veoma
efikasne).

• push_front - dodavanje elementa na početak

184 GLAVA 7. STRUKTURE PODATAKA

• push_back - dodavanje elementa na kraj
• front - čitanje elementa sa početka (pod pretpostavkom da red nije prazan)
• back - čitanje elementa sa kraja (pod pretpostavkom da red nije prazan)
• pop_front - uklanjanje elementa sa početka (pod pretpostavkom da red nije pra-
zan). Ova metoda je tipa void i da ne vraća uklonjeni element.

• pop_back - uklanjanje elementa sa kraja (pod pretpostavkom da red nije prazan).
Naglasimo da je ova metoda tipa void i da ne vraća uklonjeni element.

• empty - provera da li je red prazan
• size - broj elemenata u redu

Interesantno, zahvaljujući specifičnom načinu implementacije, ova struktura podataka po-
država i operator indeksnog pristupa kojim se element na datoj poziciji može pročitati ili
izmeniti veoma efikasno.

7.6.3.1 Primer upotrebe reda sa dva kraja: istorija veb-pregledača
Kao primer upotrebe strukture deque navešćemo program koji simulira rad istorije veb-
pregledača. Pretpostavimo da se u njoj pamte adrese 𝑘 prethodno posećenih veb-sajtova.
Kada korisnik poseti novi veb-sajt, on se dodaje na kraj istorije. Ako u istoriji nema mesta
za dodavanje novog sajta, prva dodata adresa (ona na početku reda) se briše. Ako korisnik
pritisne dugme back, on se vraća na prethodno posećeni veb-sajt, koji se nalazi na kraju
istorije. Pretpostavićemo da se sa standardnog ulaza prvo učitava broj n, a zatim linije
sve do kraja ulaza (tj. dok se program ne prekine). Ako je sadržaj linije niska back, na
standardni izlaz se ispisuje poslednja adresa iz reda (ili -, ako je red prazan). Ako nije,
smatraćemo da je u pitanju nova adresa i ona se dodaje na kraj reda.

#include <iostream>
#include <string>
#include <deque>
using namespace std;

int main() {
// citamo duzinu istorije (sa ws osiguravamo da ce biti procitan
// i prelazak u novi red)
int k;
cin >> k >> ws;
// red sa dva kraja u kom cuvamo istoriju posecenih sajtova
deque<string> istorija;
// citamo liniju po liniju do kraja standardnog ulaza
string linija;
while (getline(cin, linija)) {

if (linija == "back") {

7.6. SPECIJALIZOVANE STRUKTURE PODATAKA 185

// treba se vratiti na prethodno posecen sajt
// skidamo trenutni sajt iz istorije (ako postoji)
if (!istorija.empty())
istorija.pop_back();

// prijavljujemo prethodni sajt (ako postoji)
if (!istorija.empty()) {
cout << istorija.back() << endl;

} else {
cout << "-" << endl;

}
} else {
// ispisujemo adresu sajta na koji prelazimo
cout << linija << endl;
// osiguravamo da u istoriji ne moze nikada biti vise od k adresa
if (istorija.size() == k)
istorija.pop_front();

// dodajemo trenutnu adresu na kraj istorije
istorija.push_back(linija);

}
}

}

Ako bismo umesto reda sa dva kraja (deque) koristili vektor, program bi nastavio da funk-
cioniše, ali bi bio sporiji, zato što uklanjanje prvog elementa vektora podrazumeva da se
svi ostali elementi pomeraju za jednu poziciju ulevo i veoma je neefikasna operacija.

7.6.4 Red sa prioritetom
Red sa prioritetom je vrsta reda u kome elementi imaju na neki način pridružen prioritet,
dodaju se u red jedan po jedan, a uvek se iz reda uklanja onaj element koji ima najveći pri-
oritet od svih elemenata u redu. Zbog načina implementacije, red sa prioritetom se nekada
naziva i hip (engl. heap), o čemu će više reči biti u narednim tomovim knjige.
U jeziku C++, red sa prioritetom se realizuje klasom priority_queue<T>, gde je T tip
elemenata u redu. Red sa prioritetom podržava sledeće metode:

• push - dodaje dati element u red
• pop - uklanja element sa najvećim prioritetom iz reda (pod pretpostavkom da red
nije prazan). Ova metoda je tipa void i da ne vraća uklonjeni element.

• top - očitava element sa najvećim prioritetom (pod pretpostavkom da red nije pra-
zan)

• empty - proverava da li je red prazan
• size - vraća broj elemenata u redu

186 GLAVA 7. STRUKTURE PODATAKA

Prilikom poređenja elemenata tipa T koristi se podrazumevani poredak. Veći elementi u
tom poretku imaju veći prioritet. Na primer, ako se u red ubacuju elementi 1, 3 i 2, element
3 ima najveći prioritet, pa bi on bio vraćen primenom metode top i uklonjen primenom
metode pop. Nekad nam je potrebno da rad u kojem manji elementi imaju veći prioritet.
Takav red može se najlakše deklarisati na sledeći način:

priority_queue<int, vector<int>, greater<int>> pq;

Navedenom deklaracijom zadato je:

• da će se u redu čuvati brojevi tipa int;
• da će se oni interno smeštati u kolekciju vector<int> (što je uslovljeno načinom
interne reprezentacije podataka, koja zahteva neki oblik sekvencijalne kolekcije,
tj. niza sa efikasnim indeksnim pristupom i mogućnošću proširivanja);

• da će se za poređenje koristiti struktura greater<int> definisana u zaglavlju
<numeric>, koja obrće podrazumevani poredak - vraća true ako i samo ako je
prvi argument koji se poredi veći od drugog.

Drugi i treći argument deklaracije mogu biti izostavljeni i tada se podrazumeva korišćenje
vektora i podrazumevani poredak nad elementima zadatog tipa. Nije moguće izostaviti
drugi, a navesti treći argument.

7.6.4.1 Primer upotrebe reda sa prioritetom: zbir najvećih 𝑘 brojeva
Ilustrujmo upotrebu reda sa prioritetom kroz program koji određuje zbir najvećih 𝑘 brojeva
učitanih sa ulaza. Najvećih 𝑘 do sada viđenih elemenata niza možemo čuvati u strukturi
podataka koja nam omogućava da pronađemo najmanji element u njoj i da ga eventualno
zamenimo onim koji je trenutno učitan (ako je trenutno učitani element veći od njega).
Pogodna struktura za to je red sa prioritetom. Na početku red popunjavamo sa 𝑘 prvih
učitanih elemenata, a zatim svaki naredni učitani element poredimo sa najmanjim u redu
i ako je veći od njega, najmanji izbacujemo, a učitani element ubacujemo.

#include <iostream>
#include <priority_queue>
using namespace std;

int main() {
int n, k;
cin >> n >> k;

// red sa prioritetom koji cuva k najvecih elemenata koristi se
// min-hip, koji omogucava brzo uklanjanje najmanjeg elementa

7.6. SPECIJALIZOVANE STRUKTURE PODATAKA 187

priority_queue<int, vector<int>, greater<int>> pq;

// ucitavamo prvih k elemenata i ubacujemo ih u red
for (int i = 0; i < k; i++) {

int x;
cin >> x;
pq.push(x);

}

// ucitavamo preostale elemente
for (int i = k; i < n; i++) {

int x;
cin >> x;
// ako je ucitani element veci od najmanjeg trenutno u redu
// izbacujemo taj najmanji i menjamo ga ucitanim
if (x > pq.top()) {

pq.pop();
pq.push(x);

}
}

// izbacujemo elemente iz reda racunajuci njihov zbir i ispisujemo ga
int zbir = 0;
while (!pq.empty()) {

zbir += pq.top();
pq.pop();

}
cout << zbir << endl;

}

188 GLAVA 7. STRUKTURE PODATAKA

8. Pregled standardne biblioteke

U većini savremenih programskih jezika, kroz dodatnu biblioteku raspoložive su imple-
mentacije mnogih često korišćenih algoritama. Iako su te biblioteke standardne, funkci-
je koje one obezbeđuju ne smatraju se delom samog jezika, nego njegovim svojevrsnim
dodatkom. Mnoge od ovih funkcija (ne i sve) mogu se jednostavno implementirati, pa
se programeri često odlučuju za samostalno programiranje algoritama umesto korišćenja
bibliotečkih verzija (naročito ako su u pitanju programeri naviknuti na programiranje u
imperativnim programskim jezicima kakvi su C ili Pascal). To se ne smatra greškom,
ali korišćenje bibliotečkih funkcija smatra se boljom navikom i boljom praksom iz ne-
koliko razloga. Kôd je kraći i lakše se razume, a u slučaju dobrog poznavanja biblioteke
- programiranje je jednostavnije i brže. Dodatno, implementacije bibliotečkih funkcija
sa sigurnošću se mogu smatrati ispravnim a često su i efikasnije nego neko pravilinijska
verzija.
Neke funkcije iz standardnih biblioteka često se koriste i gotovo je nužno poznavati ih (na
primer, funkcije za sortiranje). Neke se koriste ređe i u praksi je dovoljno znati da postoje
i kako pronaći njihova svojstva u dokumentaciji jezika. Iako u standardnim bibliotekama
postoji mnoštvo funkcija, njihovo memorisanje (sa više ili manje detalja) nije previše te-
ško. Naime, većina je napisana u istom duhu i deklaracije su intuitivne, kao i sama imena
funkcija, na primer, sort za sortiranje, copy za kopiranje i reverse za obrtanje niza.
Sve navedeno važi i za jezik C++. Veliki broj osnovnih algoritama implementiran je u vi-
du funkcija u okviru standardne biblioteke i mogu se koristiti ako se uključi zaglavlje
<algorithm>. Te funkcije su specifične za C++, ali slične postoje i za većinu drugih
savremenih jezika, kao što su Python, JavaScript, Haskell. Zbog toga poznavanje
standardne biblioteke jezika C++ prevazilazi okvire ovog jezika i može se smatrati opštim
programerskim znanjem. Kada su u pitanju bogate standardne biblioteke, među jezicima
koji se široko koriste, jezik C je jedan od izuzetaka. Naime, ovaj jezik je u skoro svakom
segmentu veoma sveden, pa tako i u svojoj standardnoj biblioteci. Ona, naravno, postoji,
ali sadrži samo mali broj implementiranih algoritama.
Korišćenje funkcija iz standardne biblioteke predstavlja dodatni i nešto drugačiji sloj u

189

190 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

odnosu na znanje koje je predočeno u prethodnim delovima. U nastavku ćemo prikazati
samo neke najznačajnije funkcije iz standardne biblioteke jezika C++, uz podsećanje da
je dobro poznavati i veći njen deo. Veoma je poželjno i da programer za većinu funkcija
razume kako one rade i da je u stanju da ih i sam implementira.

8.1 Korišćenje bibliotečke implementacije algoritama
Jedan od velikih izazova za početnike je pamćenje naziva i parametara velikog broja
funkcija iz respoloživih biblioteka. Savremeno programiranje podrazumeva korišćenje
jezika sa bogatim bibliotekama, ali uz obavezni pristup dokumentaciji u kojoj su sve
bibliotečke funkcije opisane i ilustrovane primerima upotrebe. Na primer, internet
pretraga bilo koje bibliotečke funkcije jezika C++ će nas uputiti (između ostalog)
na sajt cppreference.com koji sadrži veoma detaljnu i dobro organizovanu do-
kumentaciju biblioteke jezika C++. Forumi namenjeni programerima, poput foruma
stackoverflow.com, omogućavaju postavljanje pitanja na koje dobrovoljno odgovaraju
iskusniji programeri. Na tim forumima uvek se može potražiti rešenje nekog problema
tj. opis korišćenja neke bibliotečke funkcije ili kombinacije funkcija (veoma je verovatno
da je pitanje koje nas trenutno zanima neko već ranije postavio). Naravno, jako loše i
veoma opasno je samo iskopirati ponuđeno rešenje, bez njegovog potpunog razumevanja.
Pored dokumentacije i foruma, korišćenje bibliotečkih funkcija a i programiranje uopšte,
olakšavaju i savremena razvojna okruženja koja nude automatsko dopunjavanje naziva
funkcija, integrisanu dokumentaciju, pa čak i integrisana rešenja zasnovana na veštačkoj
inteligenciji koja pružaju predloge i opise koda. Sve su ovo važne olakšice, ali se dobar
programer postaje jedino ako se veoma pažljivo prouči celokupna biblioteka jezika, tako
da se potpuno razumeju sve funkcije i svi koncepti koji se koriste.

8.2 Pregled bibliotečkih funkcija za rad sa sekvencijalnim kolekcijama
8.2.1 Sortiranje

Sortiranje je jedan od fundamentalnih zadataka u računarstvu. Sortiranje podrazumeva
uređivanje niza u odnosu na neku relaciju poretka (na primer, uređivanje niza brojeva
po veličini — rastuće, opadajuće ili nerastuće, uređivanje niza niski leksikografski ili po
dužini, uređivanje niza struktura na osnovu vrednosti nekog polja i slično). Mnogi proble-
mi nad nizovima mogu se jednostavnije i efikasnije rešiti u slučaju da je niz sortiran (na
primer, sortirani nizovi se mogu efikasno pretraživati).
Većina programskih jezika, uključujući i programski jezik C++, u svojim bibliotekama
imaju funkcije za sortiranje nizova. U realnom programskom kodu uvek je preporuka vršiti
sortiranje korišćenjem tih funkcija, jer su one efikasno implementirane i detaljno testirane.
S druge strane, izučavanje algoritama sortiranja može pomoći u savladavanju nekih važnih
osnovnih algoritamskih tehnika i stoga je nezaobilazno u učenju programiranja, te su iz tog
razloga i prikazani neki algoritmi sortiranja u poglavlju 5.6.1.

8.2. PREGLEDBIBLIOTEČKIHFUNKCIJAZARADSA SEKVENCIJALNIMKOLEKCIJAMA191

Kao i većina bibliotečkih funkcija za obradu sekvencijalnih kolekcija, funkcija sortiranja
kao argumente prima dva iteratora ili dva pokazivača koja ograničavaju poluotvoreni seg-
ment niza koji se sortira. Ako su prosleđeni iteratori from i to, sortiraju se elementi iz
intervala [from, to). Ako želimo da sortiramo ceo vektor ili niz (što je najčešće slučaj),
onda prosleđujemo interatore begin i end, koji ukazuju na početak i na jednu poziciju
iza kraja podataka. Na primer, sortiranje vektora možemo ostvariti na sledeći način.

vector<int> a = {3, 8, 1, 4, 9, 2, 6, 5, 7};
// sortiramo niz
sort(a.begin(), a.end());
// ispisujemo sortirani niz: 1, 2, 3, 4, 5, 6, 7, 8, 9
for (int x : a)

cout << x << endl;

Umesto metoda begin i end možemo upotrebiti i funkcije tj. koristiti poziv
sort(begin(a), end(a)). Ovo je malo fleksibilnije, jer ispravno radi i za sta-
tički alocirane nizove.

int a[] = {3, 8, 1, 4, 9, 2, 6, 5, 7};
// sortiramo niz
sort(begin(a), end(a));
// ispisujemo sortirani niz: 1, 2, 3, 4, 5, 6, 7, 8, 9
for (int x : a)

cout << x << endl;

I niske (tipa string) se smatraju sekvencijalnim kolekcijama (koje sadrže karaktere) i
mogu se obrađivati na isti način kao i nizovi i vektori. Na primer, karakteri u niski se
mogu sortirati na sledeći način (koristi se poredak određen ASCII kodovima karaktera).

string s = "Zdravo svima!";
sort(begin(s), end(s));
cout << s << endl; // ispisuje !Zaadimorsvv

Kao što je rečeno, umesto dva iteratora, funkciji za sortiranje moguće je proslediti dva
pokazivača. Na primer, niz a dužine n može se sortirati i pozivom sort(a, a+n).
Može se sortirati i samo deo niza— tako što se prosleđuju iteratori koji ograničavaju željeni
deo niza (a koji nisu begin i end).
Prilikom sortiranja se koristi podrazumevani poredak elemenata sekvencijalne kolekcije
koja se sortira. Ako se sortiraju niske, to je leksikografski poredak (tj. leksikografsko pro-
širenje poretka < nad pojedinačnim karakterima). U narednom primeru, nakon sortiranja
dobija se niz ananas, banana, jabuka, sljiva, visnja:

192 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

vector<string> a = {"banana", "ananas", "jabuka", "visnja", "sljiva"};
sort(begin(a), end(a));

Redosled sortiranja može se promeniti zadavanjem funkcije poređenja (ona se navodi kao
treći argument funkcije sort). U pitanju je funkcija koja prima dva elementa, poredi ih i
vraća true ako prvi element treba da prethodi drugom u sortiranom nizu (a false inače).
Na primer, naredni program sortira niske po dužini.

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;

bool poredi_po_duzini(const string& a, const string& b) {
return a.length() < b.length();

}

int main() {
vector<string> a = {"audi", "folksvagen", "kia", "reno", "honda"};
sort(begin(a), end(a), poredi_po_duzini);
for (const string& s : a)

cout << s << endl;
return 0;

}

Prethodni program daje sledeći izlaz.

kia
audi
reno
honda
folksvagen

Umesto imenovane, moguće je upotrebiti i anonimnu funkciju funkciju poređenja.

sort(begin(a), end(a),
[](const string& a, const string& b) {

return a.length() < b.length();
});

8.2. PREGLEDBIBLIOTEČKIHFUNKCIJAZARADSA SEKVENCIJALNIMKOLEKCIJAMA193

ili

auto poredi = [](const string& a, const string& b) {
return a.length() < b.length();

});
sort(begin(a), end(a), poredi);

Prethodna funkcija poređenja ne nameće neki konkretan redosled niski iste dužine. Ako
želimo garanciju da će niske iste dužine biti sortirane, na primer leksikografski, možemo
funkciju poređenja definisati na sledeći način.

bool poredi(const string& a, const string& b) {
if (a.length() == b.length())

return a < b;
return a.length() < b.length();

}

Česta potreba je da se niz sortira nerastuće i tada se može koristiti objekat greater<T>
(definisan u zaglavlju functional) i njegova funkcija greater<T>() koja poredi ele-
mente tipa T i vraća true ako je prvi element veći od drugog. Na primer,

vector<int> a = {3, 9, 1, 8, 4, 2, 6, 5, 7};
sort(begin(a), end(a), greater<int>());
// ispisuje 9 8 7 6 5 4 3 2 1
for (int x : a)

cout << x << endl;

Prirodno je ponekad zahtevati da se elementi sortiraju po nekom kriterijumu, ali da se
poredak elemenata koji su jednaki po tom kriterijumu ne promeni u odnosu na originalno
stanje niza. Za sortiranje se kaže da je stabilno ako zadovoljava ovaj uslov. Funkcija sort
ne vrši stabilno sortiranje, ali funkcija stable_sort vrši. Na primer, naredni program vrši
sortiranje niski po dužini, pri čemu garantuje da se međusobni redosled niski iste dužine
neće promeniti u odnosu na originalno stanje niza.

vector<string> niske =
{"abc", "c", "ab", "ba", "cba", "a", "bca", "bc", "b"};

auto poredi_duzinu = [](const string& a, const string& b) {
return a.length() < b.length();

};
stable_sort(begin(niske), end(niske), poredi_duzinu);

Rezultat ovog sortiranja će biti c, a, b, ab, ba, bc, abc, cba, bca.

194 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

8.2.2 Linearna pretraga
Pretraživanje sekvencijalne kolekcije podrazumeva proveru da li niz sadrži datu vrednost.
Ako kolekcija nije sortirana, pretraživanje se može izvršiti funkcijom find. Ova funkcija
vraća iterator koji ukazuje na prvo pojavljivanje tražene vrednosti, a ako kolekcije ne sadr-
ži traženi element onda funkcija vraća iterator iza poslednjeg elementa kolekcije (koji se
dobija funkcijom end). Pozicija elementa u kolekciji se može izračunati izračunavanjem
rastojanja između iteratora na početak kolekcije i iteratora koji ukazuje na pronađeni ele-
ment.

vector<int> a = {3, 8, 4, 0, 1, 6, 2, 0, 5};
// trazimo vrednost 6 u nizu
auto it = find(begin(a), end(a), 6);
if (it != end(a))

cout << "Element je pronadjen na poziciji: "
<< distance(begin(a), it) << endl;

else
cout << "Element nije nadjen" << endl;

Poslednju poziciju traženog elementa možemo pronaći ako kolekciju pretražujemo una-
zad. Iterator koji ukazuje na poslednje pojavljivanje možemo dobiti pozivom auto it =
find(rbegin(a), rend(a), 0); koji koristi iteratore rbegin i rend.
Broj pojavljivanja elemenata se može dobiti funkcijom count.

vector<int> a = {3, 8, 4, 0, 1, 6, 2, 0, 5};
int broj_nula = count(begin(a), end(a), 0);
cout << "Broj nula u nizu je: " << broj_nula << endl;

Umesto neke konkretne vrednosti možemo tražiti i prvi element koji zadovoljava neko za-
dato svojstvo. Funkcija find_if pored iteratora koji ograničavaju elemente koji se pre-
tražuju prima i funkciju koja proverava da li trenutni element zadovoljava željeni uslov.
Na primer, pozicija i vrednost prvog negativnog elementa u nizu se može naći na sledeći
način.

bool negativan(int x) {
return x < 0;

}

int main() {
int a[] = {3, 8, 4, -1, -2, 7, -3, 5};
auto it = find_if(begin(a), end(a), negativan);
cout << distance(begin(a), it) << " " << *it << endl;

8.2. PREGLEDBIBLIOTEČKIHFUNKCIJAZARADSA SEKVENCIJALNIMKOLEKCIJAMA195

}

Ako je funkcija koja proverava uslov jednostavna, nekad je pogodnije upotrebiti anonimnu
funkciju:

...
auto it = find_if(begin(a), end(a), [](int x) { return x < 0; });

Funkcija find_if_not pronalazi prvi element koji ne zadovoljava dati uslov.
Funkcija count_if izračunava broj elemenata koji zadovoljavaju dati uslov, što je ilustro-
vano narednim kodom.

auto paran = [](int x) { return x % 2 == 0; };
int broj_parnih = count_if(begin(a), end(a), paran);
cout << broj_parnih << endl;

Funkcija all_of proverava da li svi elementi zadovoljavaju dati uslov, funkcija any_of
proverava da li postoji element koji zadovoljava dati uslov, dok funkcija none_of prove-
rava da li nijedan element ne zadovoljava dati uslov.

auto negativan = [](int x) { return x < 0; };
if (all_of(begin(a), end(a), negativan))

cout << "Svi su negativni" << endl;
if (any_of(begin(a), end(a), negativan))

cout << "Postoji negativan" << endl;
if (none_of(begin(a), end(a), negativan))

cout << "Nijedan nije negativan" << endl;

8.2.3 Binarna pretraga
Ako je niz sortiran, onda je neuporedivo efikasnije nego linearnu upotrebiti binarnu pretra-
gu koja nam je na raspolaganju kroz funkciju binary_search. Ona ne vraća iterator na
pronađeni element, već semo podatak tipa bool koji govori da li element postoji u nizu.

vector<int> a = {3, 8, 9, 12, 13, 18, 19, 27};
int x;
cin >> x;
if (binary_search(begin(a), end(a), x))

cout << "Element " << x << " postoji u nizu" << endl;
else

cout << "Element " << x << " ne postoji u nizu" << endl;

196 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

Funkcija lower_bound vrši binarnu pretragu sortiranog niza i vraća iterator koji ukazuje
na prvu poziciju na kojoj se nalazi element koji je jednak ili veći od date vrednosti. Ako
takav element ne postoji, (tj. ako su svi elementi manji od date vrednosti), onda funkcija
vraća iterator na poziciju iza kraja kolekcije, tj. iterator koji se dobija funkcijom end.
Funkcija upper_bound vraća iterator koji ukazuje na prvu poziciju na kojoj se nalazi
element koji je strogo veći od date vrednosti. Na primer,

vector<int> a = {1, 2, 2, 4, 4, 4, 7, 7, 9, 11, 11};
int x = 4;
auto l = lower_bound(begin(a), end(a), x);
auto d = upper_bound(begin(a), end(a), x);
cout << "Element " << x << " se javlja "

<< distance(l, d) << " puta" << endl

U navedenom kodu, iterator l ukazuje na prvo pojavljivanje elementa 4 u nizu (jer se
pronalazi prvi element koji je veći ili jednak 4), a iterator d na prvo pojavljivanje elementa
7 (jer se traži prvi element koji je strogo veći od 4). Razlika između njih je 3, što ukazuje
na to da se element 4 javlja tri puta u nizu.

8.2.4 Kopiranje, preslikavanje, filtriranje
Za kopiranje nekog sadržaja iz jednog niza ili vektora u drugi (ili sa jednog mesta u istom
vektoru na drugo mesto) može se koristiti funkcija copy. Na primer,

int a[] = {3, 8, 4, 2, 6, 9, 11, 17};
int b[8];
// kopiramo elemente niza a u niz b
copy(begin(a), end(a), begin(b));

Ili:

vector<int> a = {3, 8, 4, 2, 6, 9, 11, 17};
vector<int> b(8);
copy(begin(a), end(a), begin(b));

Naravno, kada se kopira celokupan sadržaj vektora, jednostavnije je upotrebiti dodelu nad
vektorima (a = b;). Potreba sa kopiranjem javlja se kada se kopira samo deo niza ili kada
se rezultat formira od elemenata više nizova.
Funkcija copy podrazumeva da u nizu ili u vektoru u koji smeštamo rezultat ima dovoljnog
prostora. U suprotnom dolazi do nedefinisanog ponašanja.

8.2. PREGLEDBIBLIOTEČKIHFUNKCIJAZARADSA SEKVENCIJALNIMKOLEKCIJAMA197

Moguće je da vektor u koji se kopira još uvek nema alociranumemoriju i damu se prilikom
kopiranja elementi dodaju na kraj (uz proširivanje niza kada je to potrebno). Tada se koristi
posebni iterator back_inserter.

vector<int> a = {3, 8, 4, 2, 6, 9, 11, 17};
vector<int> b;
copy(begin(a), end(a), back_inserter(b));

Funkcija copy_n prima iterator koji ukazuje na početak dela niza koji se kopira i broj
elemenata koji se kopiraju (umesto iteratora). Na primer, prvih k elemenata niza a se može
iskopirati u niz b pozivom funkcije copy_n(begin(a), k, begin(b)).
Za filtriranje se može koristiti funkcija copy_if koja kopira samo elemente koji zadovo-
ljavaju dati uslov.

vector<int> a = {3, 8, 4, 2, 6, 9, 11, 17};
vector<int> parni;
copy_if(begin(a), end(a), back_inserter(parni),

[](int x) { return x % 2 == 0; });

Preslikavanje se vrši funkcijom transform. Na primer, naredni kôd uvećava svaki element
niza a za 1 i smešta rezultat u novi niz b.

int a[] = {3, 8, 4, 2, 6, 7, 5, 9};
int b[8];
auto uvecaj_za_1 = [](int x) { return x + 1; };
transform(begin(a), end(a), begin(b), uvecaj_za_1);

Naredni kôd uvećav sva mala slova iz niske u velika slova.

string s = "dobar dan";
transform(begin(s), end(s), begin(s), ::toupper);

Prva dva iteratora određuju deo niske koja se transformiše (u pitanju je cela niska), treći
iterator određuje mesto na koje će se smeštati rezultat (ovde je u pitanju je ponovo niz s),
dok je četvrti parametar funkcija koja se primenjuje na svaki element (koristimo biblio-
tečku funkciju toupper iz zaglavlja <cctype>, nasleđenu iz jezika C, koja je opisana u
poglavlju 8.3).
Funkcija fill popunjava dati raspon kolekcije datom vrednošću. Na primer, poziv
fill(begin(a), end(a), -1) popunjava ceo niz vrednostima -1.

198 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

Funkcija replace menja jednu vrednost drugom. Na primer, poziv funkcije
replace(begin(a), end(a), -1, 0) menja u nizu a sve vrednosti -1 vredno-
stima 0. Funkcija replace_if menja sve vrednosti koje zadovoljavaju dati uslov datom
vrednošću. Na primer, naredni kod menja sve negativne vrednosti u nizu vrednošću 0.

int a[] = {1, -2, 3, -4, 5, -6};
auto negativan = [](int x) { return x < 0; };
replace_if(begin(a), end(a), negativan, 0);

8.2.5 Brisanje elemenata

Nekada je potrebno izbrisati iz kolekcije određenu vrednost ili vrednosti. Ova operacija je
malo neobična, jer u kolekciji ne mogu da ostanu “rupe” na mestima izbrisanih elemenata.
Stoga su funkcije koje uklanjaju elemente definisane tako da pomeraju preostale elemente
ka početku kolekcije. Funkcija remove briše sva pojavljivanja date vrednosti, a funkcija
remove_if briše sve elemente koji zadovoljavaju dati uslov. Obe funkcije vraćaju iterator
(ako su kao argumenti zadati iteratori, a pokazivač ako su kao argumenti zadati pokazivači
na elemente kolekcije) na prvu poziciju iza novog sadržaja kolekcije (novi kraj kolekcije).
Ako je u pitanju vektor, običaj je da se nakon pomeranja elemenata na početak metodom
erase izvrši skraćivanje vektora (njoj se može proslediti iterator koji je povratna vrednost
funkcije remove tj. remove_if).

vector<int> a = {1, 0, 2, 0, 3, 0, 4};
a.erase(

remove(begin(a), end(a), 0),
end(a)

);
// sadržaj vektora je {1, 2, 3, 4}

auto paran = [](int x) { return x % 2 == 0; };
a.erase(

remove_if(begin(a), end(a), paran),
end(a)

);
// sadržaj vektora je {1, 3}

Naglasimo da je brisanje neefikasna operacija i da je u slučaju čestog brisanja umesto
nizova i vektora bolje koristiti neke druge kolekcije (liste, skupove)

8.3. RAD SA KARAKTERIMA 199

8.3 Rad sa karakterima
U jeziku C++, funkcije za rad sa pojedinačnim karakterima su preuzete iz programskog
jezika C i za njihovo korišćenje se uključuje zaglavlje <cctype>. Navedimo osnovne funk-
cije ovog zaglavlja.

int isalpha(int c); int isdigit(int c);
int isalnum(int c); int isspace(int c);
int isupper(int c); int islower(int c);
int toupper(int c); int tolower(int c);

Ove funkcije služe za ispitivanje i konvertovanje karaktera. Sve ove funkcije imaju argu-
ment tipa int i vraćaju vrednost tipa int (koju tumačimo kao istinitosnu vrednost – tačno,
ako je ne-nula, i netačno, ako je jednaka nuli).

• Funkcija isalpha(c) vraća ne-nula vrednost ako je c slovo, nulu inače;
• Funkcija isupper(c) vraća ne-nula vrednost ako je c veliko slovo, nulu inače;
• Funkcija islower(c) vraća ne-nula vrednost ako je c malo slovo, nulu inače;
• Funkcija isdigit(c) vraća ne-nula vrednost ako je c cifra, nulu inače;
• Funkcija isalnum(c) vraća ne-nula vrednost ako je c slovo ili cifra, nulu inače;
• Funkcija isspace(c) vraća ne-nula vrednost ako je c belina (razmak, tabulator,
novi red, itd), nulu inače;

• Funkcija toupper(c) vraća karakter c konvertovan u veliko slovo ili, ukoliko je to
nemoguće — sâm karakter c;

• Funkcija tolower(c) vraća karakter c konvertovan u malo slovo ili, ukoliko je to
nemoguće — sâm karakter c;

8.4 Rad sa niskama
Niske su sekvencijalne kolekcije karaktera i sve funkcije koje rade se sekvencijalnim
kolekcijama rade i sa niskama. Uz to, klasa string ima nekoliko specifičnih, korisnih
operatora i metoda.

• Niske se obično inicijalizuju konstantnim niskama (koje su navedene između dvo-
strukih navodnika) ili se učitavaju. Moguće je konstruisati nisku određene dužine
koja je popunjena datim karakterom. Na primer, string(80, '-') gradi nisku
koja ima 80 crtica.

• Dve niske se mogu nadovezati operatorom +. Ovaj operator je moguće primeniti i
na nisku tipa string i pojedinačni karakter i rezultat je nova niska.

200 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

string s = "zdravo";
string t = s + '!';
cout << t << endl; // ispisuje zdravo!
string r = '!' + s;
cout << r << endl; // ispisuje !zdravo

Međutim, često umesto da gradimo novu nisku, želimo da postojećoj niski dodamo
neki karakter ili nisku na kraj (što je efikasnije od izgradnje nove niske ili dodavanja
teksta na početak niske). Za to koristimo operator +=.

string s = "zdravo";
s += '!';
cout << s << endl; // ispisuje: zdravo!
s += "svima";
cout << s << endl; // ispisuje: zdravo!svima

• Metoda substr izdvaja podnisku date niske. Prvi argument je obavezan i označava
poziciju na kojoj počinje podniska. Ako se ne navede drugi argument, tada se podni-
ska izdvaja do kraja zadate niske. Kao drugi argument, može se navesti i željeni broj
karaktera podniske. Ako je niska prekratka, izdvajaju se karakteri do kraja niske.

string s = "zdravo svima!";
cout << s.substr(7) << endl; // ispisuje: svima!
cout << s.substr(0, 6) << endl; // ispisuje: zdravo

• Metoda find pronalazi poziciju prvog pojavljivanja podniske unutar niske. Ako
podniska ne postoji, vraća se specijalna vrednost string::npos. Ne treba mešati
ovu metodu sa funkcijom find koja radi za sve sekvencijalne kolekcije i koja se
može upotrebiti za pronalaženje pojedinačnog karaktera.

string s = "zdravo_svima!";
cout << s.find("avo") << endl; // ispisuje 3
cout << distance(begin(s), find(begin(s), end(s), 'a')) << endl; // ispisuje 3

• Metoda find_first_of pronalazi prvi karakter koji pripada datom skupu karak-
tera (koji je zadat kao niska). Na primer, s.find_first_of("aeiuo") pronalazi
poziciju prvog samoglasnika niske s (ili string::npos ako niska ne sadrži samo-
glasnike).

8.5. DATOTEKE/TOKOVI 201

• Metoda replace gradi novu nisku koja se dobija time što se u postojećoj niski neka
podniska zameni datom niskom. Na primer,

string s = "zdravo svima!";
cout << s.replace(0, 6, "pozdrav") << endl; // ispisuje: pozdrav svima!

• Metode starts_with i ends_with proveravaju da li niska počinje odnosno da li
se niska završava datom niskom.

• Niske se mogu porede relacijskim operatorima <, <=,>, >= (koji odgovaraju leksi-
kografskim proširenjima relacija <, <=,>, >= nad karakterima). Metoda compare
takođe vrši leksikografsko poređenje i vraća pozitivnu vrednost ako je niska na ko-
joj je pozvana leksikografski veća od date niske, negativnu vrednost ako je manja
tj. nulu ako su niske jednake.

• Funkcije stoi, stol stoll, stof, stod i stold služe za konverziju niske u od-
govarajući celobrojni tip (redom int, long, long long, float, double i long
double). Na primer, izraz stoi("123") je tipa int i ima vrednost 123.

• Funkcija to_string prevodi datu brojevnu vrednost u nisku (tipa string). Funkci-
ja ispravno radi za različite brojevne tipove. Na primer, izraz to_string(123.45)
je tipa string i ima vrednost "123.45".

8.5 Datoteke/tokovi
U dosadašnjim programima sve podatke smo učitavali sa standardnog ulaza (korišćenjem
cin), što obično podrazumeva učitavanje sa tastature i ispisivali smo ih na standardni izlaz
(korišćenjem cout), što obično podrazumeva ispis na ekran. Međutim, u mnogim pro-
gramima potrebno je učitati podatke koji su trajno sačuvani ili rezultate rada programa
sačuvati na trajni način. Podaci se na disku smeštaju u datoteke. Datoteke mogu sadržati
tekst (zapisan pomoću niza čitljivih karaktera grupisanih u redove), ali i druge tipove po-
dataka (na primer slike, zvuk, video-zapise koji su zapisani na način koji nije lako čitljiv
čoveku). Ove prve zovemo tekstualne datoteke, a ove druge binarne datoteke. Jezik C++
podržava rad sa oba tipa datoteka.
Ulazno-izlazne operacije su generalno veoma spore i ako se intenzivno koriste u nekom
programumogu bitno uticati na njegovu efikasnost. Postoje načini da se rad ulazno-izlaznih
operacija ubrza u nekoj meri (ali u ovoj knjizi se nećemo baviti njima).
U nastavku ćemo se fokusirati na rad sa tekstualnim datotekama. Jednostavnosti radi, pod-
razumevaćemo da je sav tekst zapisan isključivo pomoću karaktera ASCII tablice (malih
i velikih slova engleske abecede, cifara i specijalnih znakova).
Učitavanje i ispis podataka u jeziku C++ ostvaruje se korišćenjem tokova (engl. stream).
Ulazni tokovi služe za učitavanje podataka u program, a izlazni tokovi za ispis podataka

202 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

iz programa. Ulazni tok cin predstavlja standardni ulaz programa, izlazni tok cout pred-
stavlja standardni izlaz programa, a izlazni tok cerr predstavlja standardni izlaz za greške.
Korišćenjem usluga operativnog sistema prilikom pokretanja programa moguće je izvršiti
redirekciju ovih tokova. Na primer, ako se program pokrene na sledeći način

./program < ulaz.txt > izlaz.txt 2> greske.txt

tada će svako čitanje sa standardnog ulaza (pomoću cin) biti zapravo čitanje iz datote-
ke ulaz.txt, svaki ispis na standardni izlaz (pomoću cout) biće zapravo upis u dato-
teku izlaz.txt, dok će svaki ispis poruke o grešci (pomoću cerr) završiti u datoteci
greske.txt.
Postoje načini da se koriste datoteke i bez redirekcije.

8.5.1 Ulazni tok za učitavanje iz tekstualne datoteke (ifstream)
Pored standardnog ulaznog toka, korisnik može kreirati i koristiti druge ulazne tokove da
bi učitao podatke (tekst) iz datoteka. Tip podataka kojim se predstavlja ulazni tok vezan
za datoteku je ifstream (za njegovo korišćenje je potrebno da budu uključena zaglavlja
<iostream> i <fstream>). Kreriranje ulaznog toka i njegovo povezivanje sa datotekom
se vrši pomoću konstruktora, čiji je parametar putanja do datoteke (putanja može biti bilo
apsolutna, bilo relativna, u odnosu na radni direktorijum programa, što je najčešće direk-
torijum u kom je izvršivi program smešten). Na primer, za čitanje podataka iz datoteke
ulaz.txt možemo kreirati sledeći tok:

ifstream ulaz("ulaz.txt");

Alternativno, možemo deklarisati tok, pa ga tek kasnije povezati sa datotekom korišćnjem
metode open.

ifstream ulaz;
ulaz.open("ulaz.txt");

Ako navedena putanja ne postoji ili ako korisnik nema pravo čitanja podataka iz navedene
datoteke, kreiranje toka neće uspeti. Kreiranje toka može biti neuspešno i iz drugih razloga,
te je poželjno proveriti da li je kreiranje prošlo uspešno. Tu proveru je moguće uraditi u
sledećem obliku:

if (!ulaz.is_open()) {
cerr << "Greska pri otvaranju datoteke" << endl;
return 1;

}

8.5. DATOTEKE/TOKOVI 203

Nakon uspešnog otvaranja toka, podaci se iz njegamogu učitavati na isti način kao u slučaju
toka cin. Na primer,

int x;
ulaz >> x; // ucitavamo jedan broj
string rec;
ulaz >> rec; // ucitavamo jednu rec (do prve beline)
string linija;
getline(ulaz, linija); // ucitavamo jednu liniju teksta

Na primer, naredni deo programa ispisuje celokupan sadržaj tekstualnog ulaznog toka ulaz
na standardni izlaz.

string linija;
while (getline(ulaz, linija)) {

cout << linija << endl;
}

Metodom ignore() preskače se čitanje jednog karaktera, dok se izrazom oblika ulaz >>
ws ili cin >> ws preskaču sve vodeće beline (std::ws je takozvanimanipulator toka; ws
dolazi odwhitespace). Ilustrujmo primenu ovakvog izraza. Neka je potrebno učitati sa ulaza
jedan ceo broj i jedan karakter, a na ulazu je zadato:

123
A

Ukoliko se učitavanje vrši na sledeći način:

int x;
char c;
cin >> x >> c;

karakter x neće dobiti vrednost A, već vrednost '\n' (koja označava kraj reda). Vrednost
'\n' biće preskočena i x će dobiti vrednost A ukoliko se koristi cin >> x >> ws >>
c;.
Datumi u formi 03/07/2024mogu da se učitavaju na sledeći način (koji ignoriše karaktere
'/'):

int dan, mesec, godina;
cin >> dan; cin.ignore(); cin >> mesec; cin.ignore(); cin >> godina;

204 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

Nakon svakog pokušaja čitanja iz ulaznog toka, moguće je proveriti da li je čitanje bilo
uspešno proverom stanja ulaznog toka. Metodom fail() proverava se da li je došlo do
greške prilikom čitanja, a metodom eof() da li je prilikom pokušaja čitanja dostignut kraj
datoteke.
Nakon učitavanja svih potrebnih podataka, tok treba zatvoriti. To se može uraditi ili ek-
splicitno, metodom close (što je poželjno) ili će se tok automatski zatvoriti prilikom
uklanjanja odgovarajuće promenljive (što se automatski dešava na kraju bloka u kom je
promenljiva definisana).

8.5.2 Izlazni tok za upis u tekstualnu datoteku (ofstream)
Upis u datoteku se vrši na sličan način kao i učitavanje. Umesto ulaznog toka ifstream,
koristi se izlazni tok ofstream, koji se sa datotekom u koju će se vršiti upis povezuje na
isti način kao i ifstream.

ofstream izlaz("izlaz.txt");

ili

ofstream izlaz;
izlaz.open("izlaz.txt");

Upis podataka u datoteku se zatim može vršiti primenom operatora >> (na isti način kao
što smo ispisivali podatke na tok cout).
Na kraju korišćenja toka, poželjno je zatvoriti ga metodom close().
Naredni program kopira sadržaj datoteke ulaz.txt u datoteku izlaz.txt, pretvarajući,
pri tom, sva mala slova u velika.

#include <fstream>
#include <iostream>
#include <string>
#include <algorithm> // zbog transform

using namespace std;

int main() {
// otvaramo ulaz.txt za citanje
ifstream inputFile("ulaz.txt");
if (!inputFile.is_open()) {

cerr << "Greska pri otvaranju datoteke ulaz.txt!" << endl;
return 1;

8.5. DATOTEKE/TOKOVI 205

}

// otvaramo izlaz.txt za pisanje
ofstream outputFile("izlaz.txt");
if (!outputFile.is_open()) {

cerr << "Greska pri otvaranju datoteke izlaz.txt!" << endl;
return 1;

}

// citamo liniju po liniju iz ulazne datoteke
string line;
while (getline(inputFile, line)) {

// pretvaramo mala u velika slova
transform(line.begin(), line.end(), line.begin(), ::toupper);

// upisujemo transformisanu liniju na izlaz
outputFile << line << endl;

}

// zatvaramo datoteke
inputFile.close();
outputFile.close();

cout << "Izlaz sacuvan u datoteku izlaz.txt!" << endl;
return 0;

}

8.5.3 Baferovanje
Da bi se smanjio broj pristupa disku ili SSD uređaju, tokovi koriste tehniku baferovanog
izlaza. To znači da se podaci koje treba upisati u tok privremeno smeštaju u glavnu me-
moriju računara u tzv. bafer (engl. buffer) tj. prihvatnik i odlaže se njihov stvarni upis u
datoteku (sve dok ih, po nekom kriterijumu, nema dovoljno da bi se pristupilo disku ili
SSD uređaju). Stvarni upis može se zahtevati metodom flush. Često se (u tekstualnim
datotekama) za prelazak u novi red koristi endl i tom prilikom se ova metoda poziva iza
scene, tj. sigurni smo da će posle svakog poziva ispisa koji uključuje endl podaci zaista
biti upisani na disk. Ovo je često poželjno ponašanje, ali nekada može usporiti ispis (na-
ročito u slučaju ispisa velikih količina podataka) i tada je umesto endl poželjno koristiti
samo oznaku prelaska u novi red '\n', koja ne uzrokuje pražnjenje bafera.
Prečesto pražnjenje bafera je jedan od mogućih razloga velikog usporenja rada programa.
Naročito su opasni programi koji naizmenično, u petlji vrše čitanje podataka sa standard-

206 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

nog ulaza i ispis na standardni izlaz. Naime, prilikom svakog čitanja sa standardnog ulaza,
vrši se pražnjenje bafera standardnog izlaza. Motivacija za to je sledeća. Često se u progra-
mima pre čitanja podataka sa standardnog ulaza korisniku prikazuje poruka koje podatke
treba da unese:

string ime;
cout << "Kako se zoves?";
cin >> ime;

Da bi se osiguralo da će korisnik videti poruku pre unosa podataka, sistem je izgrađen tako
da se pre svakog učitavanja sa cin poziva metoda flush za tok cout.

8.5.4 Odnos sa C bibliotekom za ulaz/izlaz
Jezik C++ zadržava kompatibilnost sa programskim jezikom C i podržava korišćenje
standardnog C zaglavlja <cstdio> u kojem su deklarisane mnoge funkcije za rad
sa datotekama (najpoznatije su printf, scanf, fopen, fclose, fscanf, fprintf,
getchar, fgetc itd.). Iako mešanje biblioteke <iostream> i <fstream> sa jedne
strane i <cstdio> sa druge strane nije preporučljivo, ono ne dovodi do greške. Međutim,
to ima svoju cenu, jer je prilikom svakog čitanja ili upisa podataka potrebno izvršiti
sinhronizaciju ovih biblioteka, što usporava program (ukoliko sistem nije specifično
instruiran).

8.5.5 Tokovi za čitanje iz niske (istringstream) i upis u nisku
(ostringstream)
istringstream i ostringstream su klase iz biblioteke <sstream> koje rade sa
niskama, za razliku od ifstream i ofstream, koje rade sa datotekama. Tok tipa
istringstream omogućava čitanje podataka iz niske kao da je u pitanju ulazni tok (na
primer, kao cin).

istringstream ulaz("123 456");
int a, b;
ulaz >> a >> b; // 123 i 456 iz niske

Slično, ostringstream omogućava upisivanje podataka u nisku, kao da je u pitanju iz-
lazni tok (na primer, kao cout). Nakon što se podaci upišu u tok, niska se može dobiti
metodom str.

int x = 123;
ostringstream oss;
oss << "Zdravo, " << "svete! " << x << '\n';

8.5. DATOTEKE/TOKOVI 207

string niska = oss.str(); // "Zdravo, svete! 123\n"

8.5.6 Argumenti komandne linije programa
Jedan način da se određeni podaci proslede programu je i da se navedu u komandnoj li-
niji prilikom njegovog pokretanja. Argumenti koji su tako navedeni prenose se programu
kao argumenti funkcije main. Prvi argument (koji se obično naziva argc, od engleskog
argument count) je broj argumenata komandne linije (uključujući i sam naziv programa)
navedenih prilikom pokretanja programa. Drugi argument (koji se obično naziva argv, od
engleskog argument vector) je niz niski karaktera koje sadrže argumente — svaka niska di-
rektno odgovara jednom argumentu. Iz istorijskih razloga tj. iz razloga kompatibilnosti sa
programskim jezikom C, te niske nisu predstavljene tipom string, već su predstavljene
nizovima karaktera tako da se na kraju svakog tako zadatog niza karaktera nalazi speci-
jalni karakter '\0', što je uobičajeni način predstavljanja niski u programskom jeziku C.
Nazivu programa odgovara niska argv[0]. Ako je argc tačno 1, to znači da ne postoje
dodatni argumenti nakon imena programa. Dakle, argv[0] je ime programa, argv[1] do
argv[argc-1] su tekstovi argumenata programa, a element argv[argc] sadrži vrednost
NULL.
Identifikatori argc i argv su proizvoljni i funkcija mainmože biti deklarisana i na sledeći
način:

int main (int br_argumenata, char* argumenti[]);

Naredni jednostavan program štampa broj argumenata i sadržaj vektora argumenata ko-
mandne linije:

#include <iostream>
using namespace std;

int main(int argc, char* argv[]) {
int i;
cout << "argc = " << argc << endl;
// nulti argument uvek je ime programa (na primer, a.out)
for (i = 0; i < argc; i++)

cout << "argv[" << i << "] = " << argv[i] << endl;
return 0;

}

Ukoliko se program prevede sa g++ -o echoargs echoargs.c i pozove sa
./echoargs -U zdravo svima "dobar dan", ispisaće:

208 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

argc = 5
argv[0] = ./echoargs
argv[1] = -U
argv[2] = zdravo
argv[3] = svima
argv[4] = dobar dan

Primetimo da ispis ispravno radi iako na tok cout nije prosleđena niska tipa string, već
niska argv[i], što je adresa početka niza karaktera na čijem se kraju nalazi specijalni
karakter '\0' (to je podatak tipa char*).
Niske kojima su zadati argumenti komandne linije ne bi trebalo menjati tokom rada pro-
grama.
Čest vid upotrebe argumenata komandne linije je da se programu navedu različite opcije.
Obično se opcije označavaju pojedinačnim karakterima i navode se iza karaktera - (ili iza
karaktera -- ili, na Windows sistemima, iza karaktera /). Pri tome, često je predviđeno
da se iza jednog simbola - može navesti više karaktera koji određuju opcije. Takav je na
primer, poziv:

./program -a -bcd 134 -ef zdravo

Naredni program ispisuje sve opcije pronađene u komandnoj liniji:

#include <iostream>
using namespace std;

int main(int argc, char* argv[]) {
// Za svaki argument komandne linije, pocevsi od argv[1]
// (preskace se ime programa)
for (int i = 1; i < argc; i++) {

// Ukoliko i-ti argument pocinje crticom
if (argv[i][0] == '-') {

// ispisuju se sva njegova slova od pozicije 1
int j;
for (j = 1; argv[i][j] != '\0'; j++)

cout << "Prisutna je opcija: << argv[i][j] << endl
}

}
return 0;

}

Pre upotrebe, niske karaktera na čijem se kraju nalazi '\0' možemo konvertovati u tip
string.

8.5. DATOTEKE/TOKOVI 209

#include <iostream>
#include <string>
using namespace std;

int main(int argc, char* argv[]) {
// Za svaki argument komandne linije, pocevsi od argv[1]
// (preskace se ime programa)
for (int i = 1; i < argc; i++) {

// pravimo podatak tipa string na osnovu i-tog argumenta
string arg = argv[i];
// proveravamo da li argument pocinje crticom
if (!arg.empty() && arg[0] == '-') {

// ispisuju se sva njegova slova od pozicije 1
for (size_t j = 1; j < arg.length(); j++)

cout << "Prisutna opcija: " << arg[j] << endl;
}

}
return 0;

}

210 GLAVA 8. PREGLED STANDARDNE BIBLIOTEKE

9. Principi pisanja programa i dokumentacije

Programi napisani na višem programskom jeziku sredstvo su komunikacije između čove-
ka i računara ali i između ljudi samih. Razumljivost, čitljivost programa, iako nebitna za
računar, od ogromne je važnosti za kvalitet i upotrebljivost programa. Naime, u održavanje
programa obično se uloži daleko više vremena i truda nego u njegovo pisanje, a održavanje
sistema često ne rade oni programeri koji su program napisali. Pored toga, razumljivost
programa omogućava lakšu analizu njegove ispravnosti i složenosti. Preporuke za pisanje
često nisu kruta pravila, već predstavljaju samo smernice i ideje kojima se treba rukovodi-
ti u pisanju programa, u aspektima formatiranja, nazubljivanja, imenovanja promenljivih
i funkcija, itd.
U daljem tekstu će, kao na jedan primer konvencija za pisanje programa, biti ukazivano
na preporuke iz teksta Linux Kernel Coding Style, Linusa Torvaldsa, autora operativnog
sistema Linux koji je napisan na jeziku C. Nekoliko saveta i preporuka u nastavku preuzeto
je iz znamenite knjigeThe Practice of Programming autora Brajana Kernigena i Roba Pajka.
Preporuke navedene u nastavku često se odnose na sve programske jezike, ali ponekad
samo na jezike C/C++. I sve ove savete i preporuke treba razmatrati sa rezervom, jer
postoje i mnoge druge grupe preporuka i konvencija.

9.1 Timski rad i konvencije
Za svaki obimniji projekat potrebno je usaglasiti konvencije za pisanje programa. Da bi
ih se lakše pridržavalo, potrebno je detaljno motivisati i obrazložiti pravila. Ima različitih
konvencija i one često izazivaju duge i zapaljive rasprave između programera. Mnogi će,
međutim, reći da nije najvažnije koja konvencija se koristi, nego koliko strogo se nje pri-
država. Strogo i konzistentno pridržavanje konvencije u okviru jednog projekta izuzetno
je važno za njegovu uspešnost. Jedan isti programer treba da bude spreman da u različitim
timovima i različitim projektima koristi različite konvencije.
Kako bi se olakšalo baratanje programom koji ima na stotine datoteka koje menja ve-
liki broj programera, u timskom radu obično se koriste sistemi za upravljanje verzijama
(eng.~version control system), kao što su git, SVN, CVS, Mercurial, Bazaar. I ovi sistemi

211

212 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

nameću dodatna pravila i omogućavaju dodatne konvencije koje tim treba da poštuje (na
primer, konvencija može da bude da u zajedničku verziju programa ne može da se stavi
datoteka sa kojom se čitav program ne kompilira uspešno).

9.2 Vizuelni elementi programa
Prva ideja o programu formira se na osnovu njegovog izgleda – njegovih vizuelnih eleme-
nata, kao što su broj linija u datoteci, broj karaktera u liniji, nazubljivanje, grupisanje linija
i slično. Vizuelni elementi programa i njegovo formatiranje često su od ključne važnosti
za njegovu čitljivost. Formatiranje, konkretno nazubljivanje, u nekim jezicima (na primer,
Python) čak utiče na značenje programa.
Formatiranje i vizuelni elementi programa treba da olakšaju razumevanje koda koji se čita,
ali i pronalaženje potrebnog dela koda ili datoteke sa nekim delom programa. Formatiranje
i vizuelni elementi programa treba da olakšaju i proces pisanja programa. U tome, pomoć
autoru programa mogu da pružaju alati u okviru kojih se piše program – specijalizovani
editori teksta ili editori koji su deo integrisanih razvojnih okruženja (engl. IDE, Integra-
ted Development Environment) koja povezuju editor, kompilator, debager i druge alatke
potrebne u razvoju softvera. Neke od namenskih alatki koji olakšavaju pisanje programa
su: ulepšivači” (engl. beautifier), poput programa indent, koji mogu da formatiraju već
kreirane datoteke sa programskim kodom; programi za proveru pravopisa, koji mogu da
otkriju jednostavne leksičke i sintaksičke greške u programu i da nude moguće ispravke;
“linteri”, programi koji vrše statičku analizu programa i koji mogu da ukažu na određene
stilske (ali i ozbiljnije) greške, itd.

9.2.1 Broj karaktera u redu
U modernim programskim jezicima dužina reda programa nije ograničena.1 Ipak, pre-
dugi redovi mogu da stvaraju probleme. Na primer, predugi redovi mogu da zahtevaju
horizontalno “skrolovanje” kako bi se video njihov kraj, što može da drastično oteža či-
tanje i razumevanje programa. Takođe, ukoliko se program štampa, dugi redovi mogu da
budu presečeni i da naruše formatiranje. Zbog ovih i ovakvih problema, preporučuje se
pridržavanje nekog ograničenja – obično 80 karaktera u redu. Konkretna preporuka za
80 karaktera u redu je istorijska i potiče od ograničenja na bušenim karticama, starim
ekranima i štampačima. Ipak, ona je i danas široko prihvaćena kao pogodna. Ukoliko red
programa ima više od 80 karaktera, to najčešće ukazuje na to da kôd treba reorganizovati
uvođenjem novih funkcija ili promenljivih. Broj 80 (ili bilo koji drugi) kao ograničenje za
broj karaktera u redu ne treba shvatati kruto, već kao načelnu preporuku koja može biti
narušena ako se tako postiže bolja čitljivost.

1Iako za većinu jezika standard ne propisuje maksimalnu dužinu reda, često je za konkretne kompilatore
dužina reda programa ograničena nekim velikim brojem, daleko većim od uobičajenih dužina redova.

9.2. VIZUELNI ELEMENTI PROGRAMA 213

9.2.2 Broj naredbi u redu, zagrade i razmaci
Red programa može da bude prazan ili da sadrži jednu ili više naredbi. Prazni redovi mogu
da izdvajaju blokove blisko povezanih naredbi (na primer, blok naredbi za koje se može
navesti komentar o tome šta je njihova svrha). Ako se prazni redovi koriste neoprezno,
mogu da naruše umesto da poprave čitljivost. Naime, ukoliko ima previše praznih linija,
smanjen je deo koda koji se može videti i sagledavati istovremeno na ekranu. Po jednoj
konvenciji, zagrade koje označavaju početak i kraj bloka navode se u zasebnim redovima
(u istoj koloni), a po drugoj, otvorena zagrada se navodi u nastavku naredbe, a zatvorena u
zasebnom redu ili u redu zajedno sa ključnom rečju while ili else. Torvalds preporučuje
ovu drugu konvenciju, uz izuzetak da se otvorena vitičasta zagrada na početku definicije
funkcije piše u zasebnom redu.
Naredni primer prikazuje deo koda napisan sa većim brojem praznih redova i prvom kon-
vencijom za zagrade:

for (int i = 0; i < n-1; i++)
{

int m = i;

for (int j = i+1; j < n; j++)
{

if (a[j] < a[m])
m = j;

}

swap(a[i], a[m]);
}

Isti deo koda može biti napisan sa manjim brojem praznih redova i drugom konvencijom za
zagrade. Ovaj primer prikazuje kompaktnije zapisan kôd koji je verovatno čitljiviji većini
iskusnih C/C++ programera:

for (int i = 0; i < n-1; i++) {
int m = i;
for (int j = i+1; j < n; j++) {

if (a[j] < a[m])
m = j;

}
swap(a[i], a[m]);

214 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

}

Jedan red može da sadrži i više od jedne naredbe. To je prihvatljivo samo (a tada može da
bude i preporučljivo) ako se radi o jednostavnim i na neki način povezanim inicijalizaci-
jama ili jednostavnim dodelama vrednosti članovima strukture, na primer:

...
int i = 10; double suma = 0;
tacka.x = 0; tacka.y = 0;

Ukoliko je u petlji ili u if bloku samo jedna naredba, onda nisu neophodne zagrade ko-
je označavaju početak i kraj bloka i mnogi programeri ih ne pišu. Međutim, iako nisu
neophodne one mogu olakšati razumevanje koda u kojem postoji višestruka if naredba.
Dodatno, ukoliko se u blok sa jednom naredbom i bez vitičastih zagrada u nekom trenutku
doda druga naredba lako može da se previdi da postaje neophodno navesti i zagrade.
Veličina blokova koda je takođe važna za preglednost, pa je jedna od preporuka da verti-
kalno rastojanje između otvorene vitičaste zagrade i zatvorene vitičaste zagrade koja joj
odgovara ne bude veće od jednog ekrana.
Obično se preporučuje navođenje razmaka oko ključnih reči i oko binarnih operatora, izu-
zev . i ->. Ne preporučuje se korišćenje razmaka kod poziva funkcija i unarnih operatora,
izuzev (eventualno) kod operatora sizeof i operatora kastovanja. Ne preporučuje se na-
vođenje nepotrebnih zagrada, posebno u okviru povratne vrednosti. Na primer:

if (uslov) {
*a = -b + c + sizeof (int) + f(x);
return -1;

}

9.2.3 Nazubljivanje teksta programa
Nazubljivanje teksta programa za većinu programskih jezika (uključujući jezike C/C++ i
Java) nebitno je kompilatoru, ali je skoro neophodno programeru. Nazubljivanje naglašava
strukturu programa i olakšava njegovo razumevanje. Red programa može biti uvučen u
odnosu na početnu kolonu za nekoliko blanko karaktera ili nekoliko tab karaktera. Tab
karakter može da se u okviru editora interpretira na različite načine (tj. kao različit broj
belina), te je preporučljivo u programu sve tab karaktere zameniti razmacima (za šta u
većini editora postoji mogućnost) i čuvati ga u tom obliku. Na taj način, svako će videti
program (na ekranu ili odštampan) na isti način.
Ne postoji kruto pravilo za broj karaktera za jedan nivo uvlačenja. Neki programeri koriste
4, a neki 2 – sa motivacijom da u redovima od 80 karaktera može da stane i kôd sa dubokim
nivoima. Torvalds, sa druge strane, preporučuje broj 8, jer omogućava bolju preglednost.

9.3. IMENOVANJE PROMENLJIVIH I FUNKCIJA 215

Za delove programa koji imaju više od tri nivoa nazubljivanja, on kaže da su ionako sporni
i zahtevaju prepravku.

9.3 Imenovanje promenljivih i funkcija
Imenovanje promenljivih i funkcija veoma je važno za razumljivost programa i sve je
važnije što je program duži. Pravila imenovanja mogu da olakšaju i izbor novih imena
tokom pisanja programa. Imena promenljivih i funkcija (pa i datoteka programa) treba da
sugerišu njihovu ulogu i tako olakšaju razumevanje programa.
Globalne promenljive, strukture i funkcije treba da imaju opisna imena, potencijalno sa-
činjena od više reči. U kamiljoj notaciji (popularnoj među Java i C++ programerima),
imena od više reči zapisuju se tako što svaka nova reč (sem eventualno prve) počinje veli-
kim slovom, na primer, brojKlijenata. U notaciji sa podvlakama (popularnoj među C
programerima), sve reči imena pišu se malim slovima a reči su razdvojene podvlakama, na
primer, broj_klijenata. Imena makroa i konstanti pišu se obično svim velikim slovima,
a imena globalnih promenljivih počinju velikim slovom.
Lokalne promenljive, a posebno promenljive koje se koriste kao brojači u petljama treba
da imaju kratka i jednostavna, a često najbolje, jednoslovna imena – jer se razumljivost
lakše postiže sažetošću. Imena za brojače u petljama su često i, j, k, za pokazivače p i q,
a za niske s i t. Preporuka je i da se lokalne promenljive deklarišu što kasnije u okviru
funkcije i u okviru bloka u kojem se koriste (a ne u okviru nekog šireg bloka).
Jedan, delimično šaljiv, savet za imenovanje (i globalnih i lokalnih) promenljivih kaže da
broj karaktera u imenu promenljive treba da zavisi od broja linija njenog dosega i to tako
da bude proporcionalan logaritmu broja linija njenog dosega.
Za promenljive i funkcije nije dobro koristiti generička imena kao rezultat,
izracunaj(...), uradi(...), već sugestivnija, kao što su, na primer, kamata,
izracunaj_kamatu(...), odstampaj_izvestaj_o_kamati(...).
Imena funkcija dobro je da budu bazirana na glagolima, na primer, bolje je
izracunaj_kamatu(...) nego kamata(...) i get_time(...) nego time(...).
Za funkcije koje vraćaju istinitosnu vrednost, ime treba da sugeriše u kom slučaju se vraća
vrednost tačno, na primer, bolje je ime is_prime(...) nego check_prime(...).
Mnoge promenljive označavaju neki broj entiteta (na primer, broj klijenata, broj studenata,
broj artikala) i za njih se može usvojiti konvencija po kojoj imena imaju isti prefiks ili sufiks
(na primer, br_studenata ili num_students).
I programeri kojima to nije maternji jezik, iako to nije zahtev projekta, često imenuju
promenljive i funkcije na osnovu reči engleskog jezika. To je posledica istorijskih razlo-
ga i dominacije engleskog jezika u programerskoj praksi, kao i samih ključnih reči skoro
svih programskih jezika (koje su na engleskom). Prihvatljivo je (ako nije zahtev projekta
drugačiji) imenovanje i na maternjem jeziku i na engleskom jeziku — jedino je nepri-
hvatljivo mešanje ta dva. Imenovanje na bazi engleskog i komentari na engleskom mogu
biti pogodni ukoliko postoji i najmanja mogućnost da se izvorni program koristi u drugim

216 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

zemljama, ili od strane drugih timova, ili da se učini javno dostupnim i slično. Naime, u
programiranju (kao i u mnogim drugim oblastima) engleski jezik je opšteprihvaćen u svim
delovima sveta i tako se može osigurati da program lakše razumeju svi.
Neki programeri smatraju da se kvalitet imenovanja promenljivih i funkcijamože “testirati”
na sledeći zanimljiv način: ako se kôd može pročitati preko telefona tako da ga sagovornik
na drugoj strani razume, onda je imenovanje dobro.

9.4 Pisanje izraza
Za dobrog programera neophodno je da poznaje sva pravila programskog jezika jer će
verovatno češće i više raditi na tuđem nego na svom kodu. S druge strane, programer u
svojim programima ne mora i ne treba da koristi sva sredstva izražavanja tog program-
skog jezika, već može i treba da ih koristi samo delom, oprezno i uvek sa ciljem pisanja
razumljivih programa. Ponekad programer ulaže veliku energiju u pisanje najkonciznijeg
mogućeg koda što može da bude protraćen trud, jer je obično važnije da kôd bude jasan,
a ne kratak. Sve ovo odnosi se na mnoge aspekte pisanja programa, uključujući pisanje
izraza.
Preporučuje se pisanje izraza u jednostavnom i intuitivno jasnom obliku. Na primer, ume-
sto:

!(c < '0') && !(c > '9')

bolje je:

'0' <= c && c <= '9'

Zagrade, čak i kada nisu neophodne, nekome ipak mogu da olakšaju čitljivost. Prethodni
primer može da se zapiše i na sledeći način:

('0' <= c) && (c <= '9')

Slično, naredbi

prestupna = g % 4 == 0 && g % 100 != 0 || g % 400 == 0;

ekvivalentna je naredba

prestupna = ((g % 4 == 0) && (g % 100 != 0)) || (g % 400 == 0);

9.4. PISANJE IZRAZA 217

koja se može smatrati znatno čitljivijom. Naravno, čitljivost je subjektivna, te su moguća
i razna međurešenja. Na primer, moguće je podrazumevati da programer jasno razlikuje
aritmetičke, relacijske i logičke operatore i da njihov prioritet razlikuje i bez navođenja
zagrada, a da se zagrade koriste da bi se naglasila razlika u prioritetu operatora iste vrste
(na primer, između logičkih operatora && i ||). Dodatno, ako ona označava godinu, bolje
ime za promenljivu g je godina, pa se time dolazi do naredbe:

prestupna = (godina % 4 == 0 && godina % 100 != 0) ||
(godina % 400 == 0);

Iako je opšta preporuka da se navodi razmak oko binarnih operatora, neke konvencije
preporučuju izostavljanje tih razmaka u dužim izrazima i to oko operatora višeg prioriteta
čime se zapisom sugeriše prioritet operatora, kao u sledećem primeru:

a*b + c*d

Suviše komplikovane izraze treba zameniti jednostavnijim i razumljivijim. Na primer,
umesto

x *= (c += a < b ? f("a") : f("b"));

možemo koristiti daleko čitljiviju narednu varijantu:

if (a < b)
c += f("a");

else
c += f("b");

x *= c;

Kernigen i Pajk navode i primer u kojem jemoguće i poželjno pojednostaviti komplikovana
izračunavanja. Ako je potrebno izdvojiti tri bita najmanje težine iz broja bitoff, umesto
izraza:

bitoff - ((bitoff >> 3) << 3)

bolje je koristiti (ekvivalentan) izraz:

bitoff & 0x7

218 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

Zbog komplikovanih, a u nekim situacijama i nedefinisanih, pravila poretka izračunavanja
i dejstva sporednih efekata (kao, na primer, kod operatora inkrementiranja i dekrementi-
ranja), dobro je pojednostaviti kôd kako bi njegovo izvršavanje bilo jednoznačno i jasno.
Na primer, umesto:

str[i++] = str[i++] = ' ';

bolje je:

str[i++] = ' ';
str[i++] = ' ';

Poučan je i sledeći čuveni primer: nakon dodele a[a[1]]=2;, element a[a[1]] nema
nužno vrednost 2 (ako je na početku vrednost a[1] bila jednaka 1, a vrednost a[2] razli-
čita od 2). Navedeni primer pokazuje da treba biti veoma oprezan sa korišćenjem indeksa
niza koji su i sami elementi niza ili neki komplikovani izrazi.

9.5 Korišćenje idioma
Idiomi su ustaljene jezičke konstrukcije koje predstavljaju celinu. Idiomi postoje u svim
jezicima, pa i u programskim. Tipičan idiom u jeziku C je sledeći oblik for-petlje:

for (i = 0; i < n; i++)
...

Kernigen i Pajk zagovaraju korišćenje idioma gde god je to moguće. Na primer, umesto
varijanti

i = 0;
while (i <= n-1)
a[i++] = 1.0;

for (i = 0; i < n;)
a[i++] = 1.0;

for (i = n; --i >= 0;)
a[i] = 1.0;

smatraju da je bolja varijanta:

9.6. KORIŠĆENJE KONSTANTI 219

for (i = 0; i < n; i++)
a[i] = 1.0;

jer je najčešća i najprepoznatljivija. Štaviše, Kernigen i Pajk predlažu, pomalo ekstremno,
da se bez dobrog razloga i ne koristi nijedna forma for-petlji osim navedene. Kao idiom
za beskonačnu petlju navode:

for (;;)
...

Glavni argument za korišćenje idioma je da se kôd brzo razume, a i da svaki drugi (“neidi-
omski”) konstrukt privlači dodatnu pažnju što je dobro, jer se bagovi češće kriju u njima.

9.6 Korišćenje konstanti
Konstantne vrednosti, veličina nizova, pozicije karaktera u niskama, faktori za konverzije
i druge slične vrednosti koje se pojavljuju u programima često se zovu magični brojevi (jer
obično nije jasno odakle dolaze i na osnovu čega su dobijeni). Kernigen i Pajk kažu da
je, osim 0 i 1, svaki broj u programu kandidat da se može smatrati magičnim, te da treba
da ima ime koje mu je pridruženo. Na taj način, ukoliko je potrebno promeniti vrednost
magične konstante (na primer, maksimalna dužina imena ulice) – to je dovoljno uraditi na
jednom mestu u kodu. Na primer, u narednoj deklaraciji

char imeUlice[50];

pojavljuje se magična konstanta 50, te se u nastavku programa broj 50 verovatno pojavlju-
je u svakoj obradi imena ulica. Promena tog ograničenja zahtevala bi mnoge izmene koje
ne bi mogle da se sprovedu automatski (jer se broj 50 možda pojavljuje i u nekom dru-
gom kontekstu). Zato je bolja, na primer, varijanta kojom se magičnom broju pridružuje
simboličko ime pretprocesorskom direktivom #define:

#define MAKS_IME_ULICE 50
char imeUlice[MAKS_IME_ULICE];

U tom slučaju, pretprocesor zamenjuje sva pojavljivanja tog imena konkretnom vrednošću
pre procesa kompilacije, te kompilator (pa i debager) nema nikakvu informaciju o simbo-
ličkom imenu koje je pridruženo magičnoj konstantni niti o njenom tipu. Zbog toga se
preporučuje da se magične konstante uvode kao konstantne promenljive, ako upotreba to
dozvoljava:

220 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

const unsigned int MAKS_IME_ULICE = 50;

Naglasimo da neke upotrebe ne dozvoljavaju korišćenje konstantne promenljive umesto
konstantnog izraza— naime, konstantne promenljive ne smatraju se konstantnim izrazima,
te se, na primer, ne mogu koristiti za dimenzije nizova. Kao dimenzije nizova, mogu se,
pored konstanti, konstantnih izraza i simboličkih imena uvedenih direktivnom #define,
koristiti i nabrojive (enumerisane) konstante.
U jednom stilu pisanja funkcija, rezultati funkcije se vraćaju kroz listu argumenata, a
povratna vrednost ukazuju na to da li je funkcija uspešno obavila zadatak. Za povratne
vrednosti onda postoje dve česte konvencije: jedna je da se vraća istinitosna vrednost tač-
no (true, ako se koristi tip bool ili 1, ako je povratni tip ceo broj), ako je funkcija uspešno
obavila zadatak, a netačno (false ili 0) inače. Druga konvencija je da se vraća nešto de-
taljnija informacija, te da se vraća 0 ako je izvršavanje funkcije proteklo bez problema,
a nekakav celobrojni kôd greške inače. Kodovi greške nikako ne treba da budu magične
konstante, već mogu biti predstavljene simboličkim imenima ili, još bolje, enumerisanim
konstantama.
U većim programima, konstante od značaja za čitav program (ili veliki njegov deo) obično
se čuvaju u zasebnoj datoteci zaglavlja (koju koriste sve druge datoteke kojima su ove
konstante potrebne).
Konstante se u programima mogu koristiti i za kodove karaktera. To je loše ne samo zbog
narušene čitljivosti, već i zbog narušene prenosivosti – naime, nije na svim računarima
podrazumevana ASCII karakterska tabela. Dakle, umesto, na primer:

if (65 <= c && c <= 90)
...

bolje je pisati

if ('A' <= c && c <= 'Z')
...

a još bolje koristiti funkcije iz standardne biblioteke, kad god je to moguće:

if (isupper(c))
...

Slično, zarad bolje čitljivosti treba pisati NULL (za nultu vrednost pokazivača) i '\0' (za
završnu nulu u niskama) umesto konstante 0.
U programima ne treba koristiti kao konstante ni veličine tipova – zbog čitljivosti a i zbog
toga što se mogu razlikovati na različitim računarima. Zato, na primer, za dužinu tipa int

9.7. PISANJE KOMENTARA 221

nikada ne treba pisati 2 ili 4, već sizeof(int). Za promenljive i elemente niza, bolje je
pisati sizeof(a) i sizeof(b[0]) umesto sizeof(int) (ako su promenljiva a i niz b
tipa int), zbog mogućnosti da se promenljivoj ili nizu u nekoj verziji programa promeni
tip.

9.7 Pisanje komentara
Čak i ako se autor pridržavao mnogih preporuka za pisanje jasnog i kvalitetnog koda, uko-
liko kôd nije dobro komentarisan njegovo razumevanje može i samom autoru predstavljati
teškoću već nekoliko nedelja nakon pisanja. Komentari treba da olakšaju razumevanje ko-
da i predstavljaju njegov svojevrsni dodatak.
Postoje alati koji olakšavaju kreiranje dokumentacije na osnovu komentara u samom kodu
i delom je generišu automatski (na primer, Doxygen).

• Komentari ne treba da objašnjavaju ono što je očigledno: Komentari ne treba
da govore kako kôd radi, već šta radi (i zašto). Na primer, naredna dva komentara
su potpuno suvišna:

k += 1.0; /* k se uvecava za 1.0 */

return OK; /* vrati OK */

U prvom slučaju, komentar ima smisla ako objašnjava zašto se nešto radi, na primer:

k += 1.0; /* u ovom slucaju, kao bonus, kamatna stopa
uvecava se za 1.0 */

• Komentari treba da budu koncizni.Kako ne bi trošili preterano vreme, komentari
treba da budu što je moguće kraći i jasniji, da ne ponavljaju informacije koje su
već navedene drugde u komentarima ili su očigledne iz koda. Previše komentara ili
predugi komentari predstavljaju opasnost za čitljivost programa.

• Komentari treba da budu usklađeni sa kodom. Ako se promeni kôd programa,
a ne i prateći komentari, to može da uzrokuje mnoge probleme i nepotrebne izmene
u programu u budućnosti. Ukoliko se neki deo programa promeni, uvek je potrebno
proveriti da li je novo ponašanje u skladu sa komentarima (za taj ali i druge delove
programa). Usklađenost koda i komentara je lakše postići ako komentari ne govore
ono što je očigledno iz koda.

222 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

• Komentarima treba objasniti ulogu datoteka i globalnih objekata. Komentari-
ma treba, na jednom mestu, tamo gde su definisani, objasniti ulogu datoteka, global-
nih objekata kao što su funkcije, globalne promenljive i strukture. Funkcije treba
komentarisati pre same definicije, a Torvalds čak savetuje da se izbegavaju komen-
tari unutar tela funkcije. Čitava funkcija može da zaslužuje komentar (pre prvog
reda), ali ako pojedini njeni delovi zahtevaju komentarisanje, onda je moguće da
funkciju treba reorganizovati i/ili podeliti na nekoliko funkcija. Ni ovo pravilo nije
kruto i u specifičnim situacijama prihvatljivo je komentarisanje delikatnih delova
funkcije (“posebno pametnih ili ružnih”).

• Loš kôd ne treba komentarisati, već ga popraviti. Često kvalitetno komentari-
sanje kako i zašto neki loš kôd radi zahteva više truda nego pisanje tog dela koda
iznova tako da je očigledno kako i zašto on radi. Ipak, ukoliko je kôd veoma kompli-
kovan i teško je ili nemoguće ga pojednostaviti, potrebno je u komentaru objasniti
zašto je komplikovan, kako radi i zašto je izabrano takvo rešenje.

• Komentari treba da budu laki za održavanje: Treba izbegavati stil pisanja ko-
mentara u kojem i mala izmena komentara zahteva dodatni posao u formatiranju.
Na primer, promena narednog opisa funkcije zahteva izmene u tri reda komentara:

/**
* Funkcija area racuna povrsinu trougla *
***/

• Komentari mogu da uključuju standardne fraze. S vremenom se nametnulo ne-
koliko oznaka (“markera”) na bazi fraza koje se često pojavljuju u okviru komentara.
Njih je lako pronaći u kodu, a mnoga razvojna okruženja prepoznaju ih i prikazuju
u istaknutoj boji kako bi privukli pažnju programera kao svojevrsna lista stvari koje
treba obaviti. Najčešći markeri su:

– TODO marker: označava zadatke koje tek treba obaviti, koji kôd treba napisati.

– FIXME marker: označava deo koda koji radi ali treba ga popraviti, u smislu
opštijeg rešenja, lakšeg održavanja, ili bolje efikasnosti.

– BUG: označava deo koda koji je gotov i očekuje se da radi, ali je pronađen bag.

Uz navedene markere i prateći tekst, često se navodi i ime onoga ko je uneo komentar, kao
i datum unošenja komentara.

9.8. MODULARNOST 223

9.8 Modularnost
Veliki program je teško ili nemoguće razmatrati ako nije podeljen na celine. Podela pro-
grama na celine (na primer, datoteke i funkcije) neophodna je za razumevanje programa
i nametnula se veoma rano u istoriji programiranja. Svi savremeni programski jezici su
dizajnirani tako da je podela na manje celine ne samo moguća već tipičan način podele
određuje sam stil programiranja (na primer, u objektno orijentisanim jezicima neki poda-
ci i metode za njihovu obradu se grupišu u takozvane klase). Podela programa na module
treba da omogući:

• Razumljivost: podela programa na celine popravlja njegovu čitljivost i omogućava
onome ko piše i onome ko čita program da se usredsredi na ključna pitanja jednog
modula, zanemarujući u tom trenutku i iz te perspektive sporedne funkcionalnosti
podržane drugim modulima.

• Upotrebljivost: ukoliko je kôd kvalitetno podeljen na celine, pojedine celine biće
moguće upotrebiti u nekom drugom kontekstu. Na primer, proveravanje da li neki
trinaestocifreni kôd predstavlja mogući JMBG (jedinstveni matični broj građana)
može se izdvojiti u zasebnu funkciju koja je onda upotrebljiva u različitim progra-
mima.

Nikada se program ne deli na funkcije i onda u datoteke tek onda kada je kompletno
završen. Naprotiv, podela programa u dodatke i funkcije vrši se još od prvih faza pisanja
programa i predstavlja jedan od najvažnijih aspekata dizajna programa.

9.8.1 Modularnost i podela na funkcije
Za mnoge progamske jezike osnovni vid postizanja modularnosti je podela koda na funk-
cije. Kod objektno-orijentisanih jezika, pored podela na funkcije, važna je i organizacija
klasa u programu.
U principu, funkcije treba da obavljaju samo jedan zadatak i da budu kratke. Tekst jedne
funkcije treba da staje na jedan ili dva ekrana (tj. da ima manje od pedesetak redova), radi
dobre preglednosti. Duge funkcije poželjno je podeliti na manje funkcije, na primer, na one
koje obrađuju specijalne slučajeve. Ukoliko je brzina izvršavanja kritična, kompilatoru se
može naložiti da inlajnuje funkcije (da prilikom kompilacije umetne kôd kratkih funkcija
na pozicije gde su pozvane)2.
Da li funkcija ima razuman obim često govori broj lokalnih promenljivih: ako ih ima više
od, na primer, 10, verovatno je funkciju poželjno podeliti na nekoliko manjih. Slično važi
i za broj parametara funkcije.

2Inlajnovanje u nekim situacijama kompilatori primenjuju i bez eksplicitnog zahteva programera.

224 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

9.8.2 Modularnost i podela na datoteke
Veliki programi sastoje se od velikog broja datoteka koje bi trebalo da budu organizovane
na razuman način u direktorijume. Jednu datoteku treba da čine definicije funkcija koje su
međusobno povezane i predstavljaju nekakvu celinu.
Datoteke zaglavlja obično imaju sledeću strukturu:

• definicije tipova;
• definicije konstanti;
• deklaracije globalnih promenljivih;
• deklaracije funkcija.

a izvorne datoteke sledeću strukturu:

• uključivanje sistemskih datoteka zaglavlja;
• uključivanje lokalnih datoteka zaglavlja;
• definicije tipova;
• definicije konstanti;
• deklaracije/definicije globalnih promenljivih;
• definicije funkcija.

Program treba deliti na datoteke imajući u vidu delom suprotstavljene zahteve. Jedna da-
toteka ne treba da bude duža od nekoliko, na primer - dve ili tri, stotine linija. Ukoliko
logička struktura programa nameće dužu datoteku, onda vredi preispitati postojeću orga-
nizaciju podataka i funkcija. S druge strane, datoteke ne treba da budu prekratke i treba
da predstavljaju zaokružene celine. Preterana usitnjenost (u preveliki broj datoteka) može
da oteža upravljanje programom i njegovu razumljivost.
Integrisana razvojna okruženja i program make (videti prvi deo ove knjige, poglavlje 9.1,
“Od izvornog do izvršivog programa”) značajno olakšavaju rad sa programima koji su sa-
činjeni od više datoteka.

9.9 Upravljanje izuzecima i greškama
Svaka od funkcija koje čine program ima neki specifičan zadatak. Generalno se može oče-
kivati da će taj zadatak biti uspešno obavljen ali postoje mnogi scenariji gde to i nije tako.
Na primer,

• ako se tokom izvršavanja funkcije dogodi celobrojno deljenje nulom – doći će do
greške i prekida izvršavanja programa;

• ako je prekoračena predviđena veličina programskog steka – doći će do greške i
prekida izvršavanja programa;

• ako se pristupa oslobođenoj memoriji na hipu – može doći do greške i prekida izvr-
šavanja programa;

9.9. UPRAVLJANJE IZUZECIMA I GREŠKAMA 225

• ako se upisuje sadržaj u neki niz nakon njegove granice – može doći do greške i
prekida izvršavanja programa.

U nekim situacijama, još neugodnije, program se ne prekida, nego nastavlja sa radom
dajući pogrešne rezultate (to su najčešće mesta gde standard jezika ostavlja nedefinisano
ponašanje).
Neke od ovih grešaka moguće je i potrebno preduprediti. U tu svrhu funkcije umesto da
vraćaju samo rezultat svog rada, mogu da vraćaju (kroz povratnu vrednost, listu argumenata
ili na neki drugi način) i nekakvu informaciju o tome da li je zadatak obavljen uspešno
(često tu informaciju zovemo “status”). Određivanje, prenos i korišćenje takvih informacija
zovemo upravljanje greškama (eng. error handling).
Generalno, program može da obrađuje i situacije koje logički ne bi smele da se dogode.
Time se delovi programa štite od neispravnih ulaza i omogućava nastavak nejgovog izvrša-
vanja i u neočekivanim okolnostima. Ovaj pristup programiranju i upravljanju greškama
naziva se odbrambeno programiranje.
Ipak, nije neophodno, pa ni preporučeno da se pokušava da se sve moguće greške predu-
prede jer to vodi komplikovanom kodu teškom za razumevanje i održavanje. Naime, za
neke funkcije će se pretpostavljati da su neki preduslovi tačni i da je funkcija pozvana na
predviđeni način (na primer, u funkcijama koje vrše binarnu pretragu ne proverava se da
su elementi niza zaista sortirani – dužnost onoga ko poziva ovu funkciju je da obezbedi
da taj preduslov bude ispunjen). Svaki program ima svoju specifikaciju kojom se između
ostalog definiše dopušten skup ulaznih podataka. Zadatak programera je da obezbedi da
program ispravno radi u slučaju kada ulazni podaci zadovoljavaju tu specifikaciju. U sluča-
ju kada ti podaci ne zadovoljavaju specifikaciju, ponašanje programa je nedefinisano jer
se ne očekuje da će program biti korišćen sa tim neispravnim ulazima (ispravnost ulaznih
podataka je obaveza onoga ko poziva program). Isto važi i za svaku pojedinačnu funkciju.
Na primer, funkcija koja vrši binarnu pretragu niza u slučaju kada niz nije sortiran može
da vrati bilo koju vrednost. Obično se programi koji se pišu tako da ih programer koristi
samostalno ili programi koji obrađuju neke podatke koji su automatski generisani i koji su
sigurno ispravni mogu pisati tako da nije potrebno proveravati ispravnost tih ulaznih poda-
taka. Drugim rečima, u mnogim programima prihvatljivo je specifikacijom suziti prostor
dopuštenih ulaza i time ga pojednostaviti. S druge strane, programi koji se pišu za širi krug
korisnika i programi koji treba da budu robusni i dugotrajni imaju slabije pretpostavke o
ispravnosti ulaza i dužnost programera je da obezbedi proveru ispravnosti ulaza i prijavlji-
vanje odgovarajućih grešaka kada ulaz nije ispravan. U svakom slučaju programer mora
da ima jasno u vidu specifikaciju problema koji rešava i da svoje programe i funkcije tome
prilagodi.
U nekim situacijama, preduslovi programa se ne proveravaju na klasičan način, ali se na-
glašava da su oni podrazumevani naredbom assert(preduslov);. U režimu debagova-
nja, ukoliko preduslov nije ispunjen kada se dođe do ove naredbe, program će prekinuti
rad. To može da pomogne u otklanjanju greške, jer kada je program u realnoj upotrebi
(takozvana produkciona verzija, engl. release versions), situacija u kojoj preduslov nije

226 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

ispunjen apsolutno ne sme da se dogodi (na primer, u softveru koji upravlja avionom ne
sme da se dogodi da je trenutna brzina aviona negativan broj), i to mora da obezbedi i ga-
rantuje dizajn programa. U ovom kontekstu, naredba assert(preduslov); ima i drugu
svrhu: da eksplicitno daje informaciju o podrazumevanom uslovu. Slično kao što možemo
zahtevati (i obezbediti dizajnom programa) da se neka funkcija može pozvati samo pod ne-
kim uslovima, tako se može zahtevati (i obezbediti dizajnom programa) da se neki delovi
koda jedne funkcije izvršavaju samo pod nekim uslovima, koji sprečavaju neke greške. U
takvim situacijama nije potrebno (pa ni poželjno) proveravati da li dolazi do greške koja
bi trebalo da je onemogućena dizajnom. Na primer, ako se funkcija binarne pretrage u
programu poziva nakon poziva funkcije za sortiranje, niz će sigurno biti sortiran i ne bi
imalo nikakvog smisla da program vrši eksplicitnu proveru da li je niz zaista sortiran.
Za razliku od jezika C, jezik C++ ima mehanizam izuzetaka (eng. exceptions). Programer
izdaje posebnu naredbu (obično se naziva throw) koja se aktivira u slučaju greške, ko-
jom se prekida kôd koji se trenutno izvršava i tok programa preusmerava se na poseban
deo koda koji se bavi obradom grešaka (obično se naziva catch). Time se postiže da su
normalan tok programa i obrada grešaka fizički razdvojeni u samom kodu, što pojedno-
stavljuje programiranje i čini programe čitljivijim i lakšim za održavanje. Naredni kôd
ilustruje mehanizam izuzetaka. U funkciji deljenje izuzetkom ili greškom smatra se si-
tuacija kada je delilac (u celobrojnom deljenju) jednak nuli i tada se (u fazi izvršavanja)
generiše greška sa objašnjenjem “Deljenje nulom!”. Svaka funkcija koja koristi funkciju
deljenje (i posredstvom drugih funkcija) može da predvidi mogućnost grešaka i da ih
uhvati – konstrukcijom try { ... } catch() {...}.

#include <iostream>
using namespace std;

void deljenje(int a, int b) {
if (b == 0) {

throw runtime_error("Deljenje nulom!");
}
cout << a / b << endl;

}

int main() {
try {
deljenje(10, 0); // Ovo deljenje ce izbaciti izuzetak

} catch (const runtime_error& e) {
cout << "Greska: " << e.what() << endl;

}
try {

9.9. UPRAVLJANJE IZUZECIMA I GREŠKAMA 227

deljenje(10, 2); // Ovo deljenje nece izbaciti izuzetak
} catch (const runtime_error& e) {
cout << "Greska: " << e.what() << endl; // Catching and handling the exception

}
return 0;

}

U navedenom programu, poziv deljenje(10, 0) dovodi do izuzetka, a poziv
deljenje(10, 2) ne, pa će biti dobijen naredni izlaz.

Greska: Deljenje nulom!
5

228 GLAVA 9. PRINCIPI PISANJA PROGRAMA I DOKUMENTACIJE

10. Razvoj programa

10.1 Razvojno okruženje
Programski kôd može se pisati u bilo kojem editoru teksta, čak i u onim najjednostavni-
jim. Kada dođe do prevođenja, potpuno je nebitno u kakvom editoru je programski kôd
unet. S druge strane, međutim, neke funkcionalnosti editora mogu programeru olakšati
unos programa i čitav proces programiranja. Primer takve funkcionalnosti je naglašavanje
sintakse (eng. syntax highlighting) kojom se različitim bojama označavaju različite jezič-
ke klase u programu. I neki sasvim jednostavni editori podržavaju ovu funkcionalnost dok
najmoćniji editori mogu da pružaju i mnogo više. Postoje i alati koji pored moćnog edi-
tora objedinjuju i mnoge dodatne alatke koje čine proces razvoja softvera efikasnijim. Te
alate zovemo integrisana razvojna okruženja (eng. integrated development environment,
IDE). Razvojna okruženja su glavni alat za većinu programera. Osnovna svojstva svakog
razvojnog okruženja su: integrisani editor teksta, podrška za olakšano kreiranje izvršivih
programa i integrisani debager. Većina razvojnih okruženja ima dodatne, uobičajene funk-
cionalnosti integrisanih razvojnih okruženja.
U nastavku su nabrojana neka uobičajena svojstva razvojnih okruženja:

• udoban grafički korisnički interfejs: umesto kucanja instrukcija kojima se pokre-
ću kompilator i druge akcije, programer koristi lakšu komunikaciju zasnovanu na
prozorima, ikonicama i menijima i na upotrebi miša.

• moćan tekstualni editor: u razvojnom okruženju, editor teksta je alatka u kojoj pro-
gramer unosi i modifikuje tekst programa i koja može da ima mnoštvo dodatnih
svojstava:

– automatsko isticanje teksta: editor može poznavati sintaksička pravila za mno-
ge programske jezike te može automatski modifikovati izgled (ne i sadržaj)
teksta tako što će neke reči naglasiti – prikazati u specifičnoj boji, podeblja-
nim ili kurzivnim fontom. Ovakvo isticanje teksta programski kôd čini znatno
čitljivijim i u njemu se lakše otkrivaju sintaksičke greške.

229

230 GLAVA 10. RAZVOJ PROGRAMA

– automatsko formatiranje koda: editor je u stanju da modifikuje kôd programa
i održava ga tako da je formatiran u skladu sa nekim konkretnim pravilima i
preporukama (na primer, o nazubljivanju, o poziciji vitičastih zagrada, o raz-
macima oko operatora, itd).

– inteligentno upotpunjavanje koda: na osnovu znanja o konkretnom program-
skom jeziku i konkretnom programu koji se razvija, editor može biti u stanju
da predloži dopunu za jezičku konstrukciju čiji je unos započet. Na primer,
ako programer počne da unosi reč double, posle nekoliko slova biće mu pre-
dložen nastavak koji upotpunjuje ovu reč. Dodatno, ukoliko programer unese
ime neke promenljive x tipa, na primer, vector, kada otkuca x. biće mu
ponuđen spisak metoda koje se mogu primeniti na objekte tog tipa.

• podrška za refaktorisanje koda: refaktorisanje koda je proces unapređivanja njego-
vog kvaliteta (u smislu modularnosti, konciznosti, čitljivosti, lakoće održavanja), bez
menjanja njegove funkcionalnosti. Razvojna okruženja mogu automatski refaktori-
sati kôd u nekoj meri, u skladu sa nekim poznatim shemama. Na primer, kôd koji se
ponavlja na više mesta može automatski biti izdvojen u novu funkciju ili, suprotno,
kôd neke funkcije može biti inlajnovan na mesto njenog pozivanja.

• integrisan kompilator: razvojno okruženje može da uključuje kompilatore za poje-
dine jezike ili da koristi kompilatore koji su raspoloživi na računaru koji se koristi.
Kompilatoru se na udoban načun, kroz grafički korisnički interfejs, mogu zadavati
opcije (koje se inače zadaju kroz komandnu liniju).

• podrška za razvoj programa koji se sastoje od više (potencijalno mnogo) datoteka:
razvojno okruženje omogućava kreiranje projekata koji se sastoje iz više izvornih,
programskih datoteka ili i drugih vrsta datoteka i omogućava jednostavno dodavanje
ili brisanje delova projekta. Okruženje prati stanje datoteka koje čine projekat i, na
primer, kada se vrši kompiliranje, vrši kompiliranje samo onih jedinica koje su se
promenile od prethodnog kompiliranja

• integrisan debager: debager je alat koji olakšava detektovanje, lociranje i ispravlja-
nje grešaka (bagova, engl. bug) u drugom programu. On omogućava programeru da
kontrolisano izvršava program, tj. da ide korak po korak kroz izvršavanje programa,
zaustavi se na označenim mestima (eng. breakpoints), prati vrednosti promenljivih,
stanje programskog steka, sadržaj memorije i druge elemente programa.

• podrška za automatsko testiranje: razvojna okruženja omogućavaju automatsko iz-
vršavanje skupina testova kako bi se pojačalo uverenje o istravnosti koda pre inte-
grisanja u neku širu celinu. Programer može da zada skup testova, način pozivanja
programa i slično i, nakon izvršavanja testova, dobija pregled rezultata testova, na
primer, konzolnih izlaza za svaki test. Obično su omogućene raznovrsne obrade ta-
kvih rezultata, a kako bi se lako otkrili testovi koji nisu uspešno prošli.

10.2. PREGLED PROCESA DEBAGOVANJA 231

• integrisan profajler: profajliranje je dinamička analiza programa, tj. analiza progra-
ma tokom njegovog izvršavanja kojom se procenjuje vreme izvršavanja programa
i njegovih delova, broj pozivanja nekih funkcija, upotreba memorije, itd. Ovakve
analize omogućavaju fokusiranje programera na kritične delove koda i popravljanje
efikasnosti programa. Razvojna okruženja obično uključuju neki profajler koji se
sam sastoji od niza pojedinačnih alatki.

• veza sa sistemom za upravljanje verzijama: sistemi za upravljanje verzijama (sistemi
za kontrolu verzija, engl. version control systems) olakšavaju timski rad na projek-
tima koji se sastoje od mnoštva datoteka. Članovi tima redovno preuzimaju tekuću
zvaničnu verziju projekta, vrše izmene lokalno na svom računaru i, kada su izmene
gotove, šalju ih u zajedničku verziju kako bi mogli da ih preuzimi i svi drugi članovi
tima.

Postoji mnoštvo raspoloživih razvojnih okruženja za sve računarske platforme, uključujući
mnoštvo besplatnih.
Razvojna okruženja mogu biti lokalna ili dostupna putem interneta. U prvom slučaju, okru-
ženje se instalira na lokalni računar, zajedno sa pratećim alatkama i onda se može koristiti
i bez veze sa internetom. Okruženja dostupna putem interneta mogu da ne zahtevaju ni-
kakve promene na lokalnoj mašini, te na njoj ne zauzimaju prostor niti zahtevaju trud
za postavljanje sistema. Dodatna pogodnost ovakvih sistema je da mogu da se koriste na
različitim platformama.
Razvojna okruženja su osnovni i ključni alat u radu skoro svakog programera. Međutim,
početnicima u programiranju savetuje se da najpre ovladaju procesom pisanja programa u
svedenom okruženju, tj. da koriste jednostavan editor i kompiliranje iz komandne linije, a
kako bi razumeli komponente i faze u tom poslu.

10.2 Pregled procesa debagovanja
Pojednostavljeno rečeno, testiranje je proces proveravanja ispravnosti programa, sistema-
tičan pokušaj da se u programu (za koji se pretpostavlja da je ispravan) pronađe greška. S
druge strane, debagovanje se primenjuje kada se zna da program ima grešku. Debager je
alat za praćenje izvršavanja programa radi otkrivanja konkretne greške (baga, engl. bug).
To je program napravljen da olakša detektovanje, lociranje i ispravljanje grešaka u drugom
programu. On omogućava programeru da ide korak po korak kroz izvršavanje programa,
prati vrednosti promenljivih, stanje programskog steka, sadržaj memorije i druge elemente
programa.
Slika @fig:debager ilustruje rad debagera kdbg, koji nudi grafički korisnički interfejs za
rad sa debagerom gdb koji se često koristi za razvoj programa u GNU/Linux okruženju.
Uvidom u prikazane podatke, programer može da uoči traženu grešku u programu. Da bi
se program debagovao, potrebno je da bude preveden za debag režim izvršavanja. Za to se,

232 GLAVA 10. RAZVOJ PROGRAMA

Slika 10.1: Ilustracija rada debagera kdbg

u kompilatoru gcc koristi opcija -g. Ako je izvršivi program mojprogram dobijen na taj
način, može se debagovati navođenjem naredbe:
kdbg mojprogram
Debageri su danas uglavnom tesno integrisani sa okruženjima za razvoj programa (na pri-
mer, okruženje Visual Studio, ali i editor Visual Studio Code pružaju veoma udobnu po-
dršku za debagovanje C++ programa).

10.3 Testiranje
Testiranje je najznačajnija vrsta dinamičkog ispitivanja ispravnosti programa (ispitivanja
tokom njegovog rada). Testiranje može da obezbedi visok stepen pouzdanosti programa.
Neka tvrđenja o programu je moguće testirati, dok neka nije. Na primer, tvrđenje “pro-
gram ima prosečno vreme izvršavanja 0.5 sekundi” je (u principu) proverivo testovima,
pa čak i tvrđenje “prosečno vreme između dva pada programa je najmanje 8 sati sa ve-
rovatnoćom 95%”. Međutim, tvrđenje “prosečno vreme izvršavanja programa je dobro”
suviše je neodređeno da bi moglo da bude testirano. Primetimo da je, na primer, tvrđenje
“prosečno vreme između dva pada programa je najmanje 8 godina sa verovatnoćom 95%”
u principu proverivo testovima ali nije praktično izvodivo.
U idealnom slučaju, treba sprovesti iscrpno testiranje rada programa za sve moguće ula-
zne vrednosti i proveriti da li izlazne vrednosti zadovoljavaju specifikaciju. Međutim, ova-
kav iscrpan pristup testiranju skoro nikada nije praktično primenljiv. Na primer, iscrp-
no testiranje korektnosti programa koji sabira dva 32-bitna broja, zahtevalo bi ukupno

10.3. TESTIRANJE 233

232 ⋅ 232 = 264 različitih testova. Pod pretpostavkom da svaki test traje jednu nanose-
kundu, iscrpno testiranje bi zahtevalo približno 1.8 ⋅ 1010 sekundi što je oko 570 godina.
Dakle, testiranjem nije praktično moguće dokazati ispravnost netrivijalnih programa. S
druge strane, testiranjem je moguće dokazati da program nije ispravan tj. pronaći greške
u programima.
S obzirom na to da iscrpno testiranje nije praktično primenljivo, obično se koristi tehnika
testiranja tipičnih ulaza programa kao i specijalnih, karakterističnih ulaznih vrednosti za
koje postoji veća verovatnoća da dovedu do neke greške. U slučaju pomenutog programa za
sabiranje, tipični slučaj bi se odnosio na testiranje korektnosti sabiranja nekoliko slučajno
odabranih parova brojeva, dok bi za specijalne slučajeve mogli biti proglašeni slučajevi
kada je neki od sabiraka 0, 1, -1, najmanji negativan broj, najveći pozitivan broj i slično.
Postoje različite metode testiranja. Više reči o njima biće u sledećem tomu ove knjige.

234 GLAVA 10. RAZVOJ PROGRAMA

11. Projektni zadaci

11.1 Prelazi između slika
Obrada slika široko se koristi, kako od strane korisnika za lične potrebe, tako i za svrhe objavljivanja na internetu,
u štampanim izdanjima itd. Postoje mnogi programi (na primer, PhotoShop i gimp) koji nude mnoštvo mogućih
obrada slika, uključujući promenu dimenzije, zatamnjivanje, izoštravanje i slično. Standardna biblioteka jezika
C++ ne sadrži funkcije za rad sa slikama, te je za takve svrhe potrebno koristiti neku dodatnu bibliteku. Jedna
takva je popularna biblioteka OpenCV.
Mat je klasa definisana u okviru biblioteke OpenCV i ona sadrži informacije o formatu slike, o njenim dimenzija-
ma, kao i matricu piksela koji čine sliku. Nećemo ulaziti u detalje opisa ove klase, već ćemo ukratko opisati samo
one funkcije i metode koje su nam potrebne. Funkcija imread učitava sliku iz datoteke zadatog imena u objekat
slika tipa Mat (parametar IMREAD_COLOR nalaže da se slika internu čuva u vidu tri kanala - po jedan za crvenu,
zelenu i plavu boju, tj. RGB). Metodom empty proveravamo da li je slika uspešno učitana i ako nije - program
završava rad. Inače, slika se prikazuje primenom metode imshow (iz biblioteke OpenCV): njeni parametri su ime
i sama slika u obliku Mat objekta.
Više informacija o ovoj biblioteci, uključujući uputsva za njeno instaliranje može se naći na adresi
https://docs.opencv.org. Pod sistemom linux, biblioteka se može instalirati na sledeći način:

sudo apt update
sudo apt install libopencv-dev

Zadate tri slike prikazuje naizmenično sa prelaznim stanjima.

#include "opencv2/opencv.hpp"
#include <algorithm>
#include <vector>
#include <string>

int main() {
// spisak slika koje se prikazuju
std::vector<std::string> images
{"beograd1.jpg", "beograd2.jpg", "beograd3.jpg"};

// trenutna slika
int imageNum = 0;

// ucitavamo prvu sliku

235

236 GLAVA 11. PROJEKTNI ZADACI

cv::Mat prevImage, currImage;
prevImage = cv::imread(images[imageNum]);
if (prevImage.empty())

std::cerr << "Error reading: " << images[imageNum] << std::endl;

// ucitavamo drugu sliku
imageNum = (imageNum + 1) % images.size();
currImage = cv::imread(images[imageNum]);
if (currImage.empty())

std::cerr << "Error reading: " << images[imageNum] << std::endl;

// procenat prelaza izmedju tekuce dve slike
double percent = 0.0;

while (true) {
// matrica koja sadrži jedan po jedan frejm
cv::Mat image(prevImage.rows, prevImage.cols, CV_8UC3);

// frejm gradimo kombinovanjem dve slike
for (int row = 0; row < image.rows; row++) {

for (int col = 0; col < image.cols; col++) {
for (int color = 0; color < 3; color++) {

double p1 = prevImage.at<cv::Vec3b>(row, col)[color] / 255.0;
double p2 = currImage.at<cv::Vec3b>(row, col)[color] / 255.0;
double p = p1*(1 - percent) + p2*percent;
image.at<cv::Vec3b>(row, col)[color] = (int)(255 * p);

}
}

}

// prikazujemo trenutnu sliku
cv::imshow("Prelaz", image);

// uvecavamo procenat prelaza izmedju prve i druge slike
percent += 0.01;

// ako je procenat > 1, u potpunosti je prikazana druga slika
if (percent > 1) {

// nov prelaz krece od tekuce slika
prevImage = currImage;

// uctavamo novu sliku
imageNum = (imageNum + 1) % images.size();
currImage = cv::imread(images[imageNum]);
if (currImage.empty())

std::cerr << "Error reading: " << images[imageNum] << std::endl;

// krecemo prelaz iz pocetka
percent = 0.0;

}

11.1. PRELAZI IZMEĐU SLIKA 237

// prekidamo program kada se pritisne ESC
int key = cv::waitKey(15);
if (key == 27)

break;

}
return 0;

}

Program se može kompilirati na sledeći način:

g++ prelaz.cpp -o prelaz `pkg-config --cflags --libs opencv4`

a onda pozvati na sledeći način: prelaz. U tekućem direktorijumu treba da postoje slike čija imena su navedena
u okviru funkcije main.

238 GLAVA 11. PROJEKTNI ZADACI

11.2 Transformacija slika
Projekat koji sledi takođe koristi biblioteku OpenCV. U okviru ovog projekta, napravićemo jednostavnu aplikaciju
koja omogućava nekoliko obrada slika. Iako i sama biblioteka OpenCV pruža podršku za takve obrade, mi ćemo
je koristiti samo za svrhe učitavanja postojeće slike i snimanje slike koja je dobijena obradom.
Naš program počinje preprocesorskim direktivama - za uključivanje uobičajenog zaglavnja iostream, ali i dva
potrebna zaglavlja iz biblioteke OpenCV, iza kojih slede deklaracije, a onda i definicije funkcija za raznovrsne
obrade slika:

#include <iostream>
#include "opencv2/imgcodecs/imgcodecs.hpp"
#include <opencv2/highgui.hpp>

using namespace cv;
using namespace std;

void transpose(Mat& slika);
void rotate(Mat& slika, bool clockwise);
void flip(Mat& slika, bool horizontal);
void increaseComponent(Mat& slika, int color);
void pixelate(Mat& slika, int pixelSize);
void blur(Mat& slika);

void transpose(Mat& slika) {
// stara slika ima dimenzije (slika.rows,slika.cols)
// a nova (slika.cols,slika.rows)
Mat novaSlika(slika.cols, slika.rows, CV_8UC3);
for(int y = 0; y < slika.cols; y++) {

for(int x = 0; x < slika.rows; x++) {
novaSlika.at<Vec3b>(y, x) = slika.at<Vec3b>(x, y);

}
}
slika = novaSlika;

}

void rotate(Mat& slika, bool clockwise) {
// stara slika ima dimenzije (slika.rows,slika.cols)
// a nova (slika.cols,slika.rows)
Mat novaSlika(slika.cols, slika.rows, CV_8UC3);
for(int y = 0; y < slika.cols; y++) {

for(int x = 0; x < slika.rows; x++) {
novaSlika.at<Vec3b>(y, x) =

clockwise ?
slika.at<Vec3b>(slika.rows-x, y)
: slika.at<Vec3b>(x, slika.cols-y);

}
}
slika = novaSlika;

}

void flip(Mat& slika, bool horizontal) {

11.2. TRANSFORMACIJA SLIKA 239

// i stara i nova slika imaju dimenzije (slika.rows,slika.cols)
Mat novaSlika(slika.rows, slika.cols, CV_8UC3);
for(int y = 0; y < slika.rows; y++) {

for(int x = 0; x < slika.cols; x++) {
novaSlika.at<Vec3b>(y, x) =
horizontal ?

slika.at<Vec3b>(slika.rows-y, x)
: slika.at<Vec3b>(y, slika.cols-x);

}
}
slika = novaSlika;

}

void increaseComponent(Mat& slika, int color) {
// i stara i nova slika imaju dimenzije (slika.rows,slika.cols)
Mat novaSlika(slika.rows, slika.cols, CV_8UC3);
for(int y = 0; y < slika.rows; y++) {

for(int x = 0; x < slika.cols; x++) {
Vec3b pixelColor = slika.at<Vec3b>(y, x);
pixelColor[color] = (pixelColor[color] + 255)/2;
novaSlika.at<Vec3b>(y, x) = pixelColor;

}
}
slika = novaSlika;

}

void pixelate(Mat& slika, int pixelSize) {
// rezultujuca slika
Mat novaSlika(slika.rows, slika.cols, CV_8UC3);
// ukupan broj piksela stare slike koji su na
// prostoru jednog "piksela" nove slike
int n = pixelSize * pixelSize;

for (int y = 0; y * pixelSize <= slika.rows; y++)
for (int x = 0; x * pixelSize <= slika.cols; x++) {

// izracunavamo aritmeticku sredinu svih piksela stare slike
// koji se nalaze na povrsini jednog "piksela" nove slike
// zato su nam potrebni zbirovi
// (posebno za crvenu, zelenu i plavu komponentu)
int sumR = 0, sumG = 0, sumB = 0;
for (int i = 0; i < pixelSize; i++)

for (int j = 0; j < pixelSize; j++) {
Vec3b pixel = slika.at<Vec3b>(y*pixelSize + i, x*pixelSize + j);
sumR += pixel[0]; sumG += pixel[1]; sumB += pixel[2];

}
// ceo prostor novog "piksela" popunjavamo bojom koja
// odgovara proseku piksela stare slike
for (int i = 0; i < pixelSize && y*pixelSize + i < slika.rows; i++)

for (int j = 0; j < pixelSize && x*pixelSize + j < slika.cols; j++)
novaSlika.at<Vec3b>(y*pixelSize + i, x*pixelSize + j)

240 GLAVA 11. PROJEKTNI ZADACI

= Vec3b(sumR / n, sumG / n, sumB / n);
}

slika = novaSlika;
}

void blur(Mat& slika) {
// i stara i nova slika imaju dimenzije (slika.rows,slika.cols)
Mat novaSlika(slika.rows, slika.cols, CV_8UC3);
for(int y = 1; y < slika.rows-1; y++) {

for(int x = 1; x < slika.cols-1; x++) {
for(int c = 0; c < 3; c++) {

unsigned color = slika.at<Vec3b>(y, x)[c];
for(int i = -1; i < 2; i++) {

for(int j = -1; j < 2; j++) {
color += slika.at<Vec3b>(y+i, x+j)[c];

}
}
novaSlika.at<Vec3b>(y, x)[c] = color/10;

}
}

}
slika = novaSlika;

}

int main()
{
string imeSlike;
cout << "Unesite ime slike: ";
cin >> imeSlike;
// string imeSlike = samples::findFile("beograd2.jpg");;

Mat slika = imread(imeSlike, IMREAD_COLOR);
if(slika.empty()) {

cout << "Ne moze se ucitati slika: " << imeSlike << endl;
return -1;

}
imshow(imeSlike, slika);
int k;
while ((k = waitKey(0)) != 27) { // cekanje na pritisak tastera

// sve dok nije pritisnut taster 'esc'
switch(k) {

case 't': // transponovanje
transpose(slika);
break;

case 'r': // rotiranje u smeru kazaljke na satu
rotate(slika, true);
break;

case 'c': // rotiranje suprotno smeru kazaljke na satu
rotate(slika, false);
break;

11.2. TRANSFORMACIJA SLIKA 241

case 'h': // horizontalni flip
flip(slika, true);
break;

case 'v': // vertikalni flip
flip(slika, false);
break;

case 'p': // pikselizacija
pixelate(slika,8);
break;

case 'b': // blur
blur(slika);
break;

case '0':
case '1':
case '2': // pojacaj boju (B='0',G='1',R='2')
increaseComponent(slika, k - '0');
break;

case 's': // snimanje
imwrite("transformed_" + imeSlike, slika);
break;

default:
break;

}
imshow(imeSlike, slika);

}

return 0;
}

Glavninu funkcije main čini jednostavna petlja koja se izvršava sve dok korisnik ne pritisne taster e. Nekoliko
drugih slova pokreće specifične obrade koje su podržane zasebnim funkcijama. Taster koji je pritisnut čita se (bez
čekanja na pritisak na enter) primenom OpenCV funkcije waitKey(0) (parametar 0 govori da se na pritisak
tastera čeka bez vremenskog ograničenja). Nakon izabrane obrade, iznova se prikazuje slika, sada modifikovana.
Između navedenog početka programa i funkcije main treba da navedemo deklaracije i definicije funkcija koje
vrše obrade slike. Razmotrimo detaljnije funkciju transpose(Mat& slika). U okviru funkcije najpre se kre-
ira nova slika, širine kao visina zadate slike, a visine kao širina zadate slike, koja je zadata kao prvi parametar.
Argument CV_8UC3 govori da će se za svaki piksel koristiti tri podatka tipa unsigned char, po jedan za svaki
od kanala R, G, B). Pojedinačnom pikselu slike slika koji ima koordinate x i y može se pristupiti na sledeći
način: slika.at(x, y) (Vec3b predstavlja OpenCV tip vektora koji ima tri elementa od po jedan bajt). Naredbom
novaSlika.at<Vec3b>(y, x) = slika.at<Vec3b>(x, y); piksel zadate slike sa koordinatama x i y ko-
pira se u piksel nove slike sa koordinatama y i x čime se dobija transponovana matrica, pa time i transponovana
slika.
Program se može kompilirati na sledeći način:

g++ transformacija_slika.cpp -o ts `pkg-config --cflags --libs opencv4`

a onda pozvati na sledeći način: ts. Program će tražiti ime slike koju treba transformisati. Ako je to slika
StudentskiTrg.jpg i ako je primenjeno transponovanje, od polazne slike (levo) biće dobijena nova slika
(desno).

242 GLAVA 11. PROJEKTNI ZADACI

Slika 11.1: Ilustracija transformisanja slike

Slika 11.2: Ilustracija transformisanja slike

11.3. ASCII KAMERA 243

11.3 ASCII kamera
Program koji sledi takođe koristi biblioteku OpenCV, čita podatke sa kamere (ako postoji) i dobijenu sliku pri-
kazuje koristeći samo ASCII karaktere.

#include "opencv2/opencv.hpp"
#include <string>
#include <iostream>

int main() {
// slike ćemo čitati sa video-kamere
cv::VideoCapture camera(0);

// provera da li je otvaranje kamere uspelo
if (!camera.isOpened()) {
std::cerr << "Error: Could not open camera.\n";
return -1;

}

// matrica koja sadrži jedan po jedan frejm
cv::Mat frame;
while (true) {

// učitavamo frejm sa kamere
camera >> frame;

// provera da li je učitavanje uspelo
if (frame.empty()) {

std::cerr << "Error: Captured empty frame.\n";
break;

}

// bela boja
cv::Scalar white(255, 255, 255);
// crna boja
cv::Scalar black(0, 0, 0);

// smanjujemo rezoluciju frejma na 20% originalne velicine
cv::resize(frame, frame, cv::Size(), 0.2, 0.2);
// i prebacujemo frejm u crnobelo
cv::cvtColor(frame, frame, cv::COLOR_BGR2GRAY);

// karakteri različite osvetljenosti
std::string characters = " _.,`;:!abcW#@@@";

// frejm sa tekstom koji ćemo prikazivati
cv::Mat textFrame(800, 800, CV_8UC3, black);

// font koji se koristi
int fontFace = cv::FONT_HERSHEY_SIMPLEX;
// veličina fonta
double fontScale = 0.25;

244 GLAVA 11. PROJEKTNI ZADACI

// debljina linija prilikom iscrtavanja slova
int thickness = 1;

// merimo velicinu slova (u ovom fontu su sva slova iste velicine)
int baseline = 0;
cv::Size textSize = cv::getTextSize("A", fontFace,

fontScale, thickness, &baseline);

// analiziramo svaki piksel smanjene crno-bele slike
for (int row = 0; row < frame.rows; row++) {

for (int col = 0; col < frame.cols; col++) {
// osvetljenost piksela
int intensity = frame.at<uchar>(row, col);
// pozicija karaktera u nizu
// (linearna transformacija [0, 256) na [0, karakteri.length()))
int k = (intensity / 255.0) * (characters.length() - 1);
// konvertujemo karakter u string
std::string text(1, characters[k]);
// pozicija na kojoj ćemo prikazati karakter
// (koordinate donjeg levog ugla)
cv::Point position((frame.cols - col) * textSize.width,

(row+1) * textSize.height);
// ispisujemo karakter
cv::putText(textFrame, text, position, fontFace,

fontScale, white, thickness);
}

}

// prikazujemo ASCII sliku
cv::imshow("Camera", textFrame);

// prekidamo program kada se pritisne ESC
int key = cv::waitKey(30);
if (key == 27)

break;
else if (key == 's') {

// analiziramo svaki piksel smanjene crno-bele slike
for (int row = 0; row < frame.rows; row++) {

for (int col = 0; col < frame.cols; col++) {
// osvetljenost piksela
int intensity = frame.at<uchar>(row, col);
// pozicija karaktera u nizu
// (linearna transformacija [0, 256) na [0, karakteri.length()))
int k = (intensity / 255.0) * (characters.length() - 1);
// konvertujemo karakter u string
std::cout << characters[k];

}
std::cout << std::endl;

}
}

11.4. MASTERMAJND 245

}

// oslobađamo kameru
camera.release();
// zatvaramo sve prozore
cv::destroyAllWindows();

return 0;
}

11.4 Mastermajnd
U ovom projektu program pogađa broj koji je zamislio igrač, u skladu sa pravilima igre mastermajnd.

#include <iostream>
#include <vector>
#include <thread>

using namespace std;

typedef vector<unsigned> Varijacija;

bool postoje_iste_cifre(const Varijacija& varijacija)
{

for (int i = 0; i < varijacija.size(); i++)
for (int j = i + 1; j < varijacija.size(); j++)

if (varijacija[i] == varijacija[j])
return true;

return false;
}

void sledeca_varijacija(Varijacija& varijacija, int n)
{

int k = varijacija.size();
int i;
for (i = k-1; i >= 0 && varijacija[i] == n-1; i--)
varijacija[i] = 0;

if (i >= 0)
varijacija[i]++;

}

void sledeca_varijacija_bez_ponavljanja(Varijacija& varijacija, int n)
{

do {
sledeca_varijacija(varijacija, n);

} while (postoje_iste_cifre(varijacija));
}

void oceni_pokusaj(const Varijacija& resenje, const Varijacija& pokusaj,

246 GLAVA 11. PROJEKTNI ZADACI

int& pogodjenih_na_mestu, int& pogodjenih_ukupno) {
// assert(resenje.size() == pokusaj.size());
int k = resenje.size();

// brojimo koliko ima pogodjenih na pravom mestu
pogodjenih_na_mestu = 0;
for (int i = 0; i < k; i++)

if (resenje[i] == pokusaj[i])
pogodjenih_na_mestu++;

// brojimo koliko ima pogodjenih ukupno
pogodjenih_ukupno = 0;
for (int i = 0; i < k; i++)

for (int j = 0; j < k; j++)
if (resenje[i] == pokusaj[j])

pogodjenih_ukupno++;
}

// raniji pokusaj pogotka koji je korisnik ocenio
struct Pokusaj {
Varijacija varijacija;
int pogodjenih_na_mestu;
int pogodjenih_ukupno;

Pokusaj(const Varijacija& v, int na_mestu, int ukupno) {
varijacija = v;
pogodjenih_na_mestu = na_mestu;
pogodjenih_ukupno = ukupno;

}
};

// provera da li je trenutna varijacija u skladu sa svim prethodnim pokusajima
// tj. da li je moguce da je korisnik dao ocene koje je dao ako bi ona bila tacno resenje
bool zadovoljava_sve_prethodne_pokusaje(const Varijacija& varijacija,

const vector<Pokusaj>& prethodni_pokusaji) {
for (const Pokusaj& pokusaj : prethodni_pokusaji) {

int pogodjenih_na_mestu, pogudjenih_ukupno;
oceni_pokusaj(varijacija, pokusaj.varijacija, pogodjenih_na_mestu, pogudjenih_ukupno);
if (pogudjenih_ukupno != pokusaj.pogodjenih_ukupno ||

pogodjenih_na_mestu != pokusaj.pogodjenih_na_mestu)
return false;

}
return true;

}

void ispisi_varijaciju(const Varijacija& varijacija) {
this_thread::sleep_for(1ms);
for (int i = 0; i <= varijacija.size(); i++)

cout << "\b";
for (int x : varijacija)

cout << x;

11.4. MASTERMAJND 247

cout << " " << flush;
}

int main()
{

srand(time(nullptr));

cout << "Zamislite cetvorocifreni broj cije su cifre razlicite (dozvoljena je i vodeca nula), a ja cu pokusati da ga pogodim." << endl;
cout << "Ocenite svaki pokusaj koji cu napraviti (prvo unesite broj pogodaka na mestu, pa ukupan broj pogodaka)" << endl;

// racunar nasumicno odredjuje pocetnu varijaciju
Varijacija varijacija = {0, 1, 2, 3};
int broj_varijacija = rand() % 1000;
for (int i = 0; i < broj_varijacija; i++) {
sledeca_varijacija_bez_ponavljanja(varijacija, 10);
ispisi_varijaciju(varijacija);

}

// svi pokusaji koje je racunar do sada napravio (i ocene koje je dobio)
vector<Pokusaj> prethodni_pokusaji;

// racunar pokusava sve dok ne pogodi
while(true) {

// korisnik ocenjuje trenutnu varijaciju
int pogodjenih_na_mestu, pogodjenih_ukupno;
cin >> pogodjenih_na_mestu >> pogodjenih_ukupno;

// da li je racunar pogodio resenje
if (pogodjenih_na_mestu == varijacija.size() && pogodjenih_ukupno == varijacija.size()) {

cout << "Pogodak!" << endl;
break;

}

// nije jos - pamtimo prethodni pokusaj racunara i ocene korisnika za taj pokusaj
prethodni_pokusaji.push_back(Pokusaj(varijacija, pogodjenih_na_mestu, pogodjenih_ukupno));

// racunar trazi sledecu varijaciju koja je u skladu sa ocenama svih prethodnih pokusaja
do {

sledeca_varijacija_bez_ponavljanja(varijacija, 10);
ispisi_varijaciju(varijacija);

} while (!zadovoljava_sve_prethodne_pokusaje(varijacija, prethodni_pokusaji));
}

return 0;
}

248 GLAVA 11. PROJEKTNI ZADACI

12. Dodatak

12.0.1 Statistike
Bitne statistike serija elemenata su minimum, maksimum, zbir, prosek (aritmetička sredina), proizvod i slično. Za
serije elemenata koje su smeštene u neke sekvencijalne kolekcije, ove statistike se mogu izračunavati bibliotečkim
funkcijama.
Iterator koji ukazuje na minimalni element u seriji dobija se funkcijom min_element, a iterator koji ukazuje na
maksimalni element dobija se max_element.

vector<int> a = {3, 8, 4, 1, 9, 6, 2, 7, 5};
cout << "Najmanji element: "

<< *min_element(begin(a), end(a)) << endl;
cout << "Najveci element: "

<< *max_element(begin(a), end(a)) << endl;

Prilikom određivanja minimalnog i maksimalnog elementa koristi se podrazumevani poredak elemenata datog
tipa (elementi se porede relacijom kojoj odgovara operator <=). Na primer, ako se obrađuje sekvencijalna kolek-
cija (npr. vektor) niski elemenata tipa string, pronalazi se element koji je prvi tj. poslednji u leksikografskom
poretku (koje je proširenje relacije <= nad karakterima). Ako želimo da koristimo neki drugi poredak, možemo
kao treći argument navesti funkciju poređenja. Na primer, naredni kôd pronalazi najkraću nisku (i ispisuje nar).

vector<string> voce = {"jabuka", "pomorandza", "nar", "kajsija"};
auto poredi_duzinu = [](const string& a, const string& b) {

return a.length() < b.length();
};
cout << *min_element(begin(voce), end(voce), poredi_duzinu);

Ne postoji funkcija sum koja izračunava zbir elemenata niza. Za izračunavanje zbira može se koristiti funkcija
accumulate ili funkcija reduce (obe su deklarisane u zaglavlju <numeric>).

int a[] = {8, 3, 4, 5, 2, 6};
int zbir = accumulate(begin(a), end(a), 0);
cout << "Zbir elemenata niza je: " << zbir << endl;

ili

249

250 GLAVA 12. DODATAK

int a[] = {8, 3, 4, 5, 2, 6};
int zbir = reduce(begin(a), end(a));
cout << "Zbir elemenata niza je: " << zbir << endl;

Primetimo da funkcija accumulate ima i treći parametar koji određuje inicijalnu vrednost zbira, ali i tip rezul-
tata. Funkcija accumulate se uvek izračunava sleva nadesno, dok se reduce može izvršavati u proizvoljnom
redosledu, što omogućava i paralelizaciju (na primer, mogućnost da svako od 4 jezgra procesora izračunava zbir
jedne četvrtine elemenata niza).
Izračunavanje proseka se svodi na izračunavanje zbira i zatim deljenje brojem elemenata niza (primetimo da smo
zbir računali kao podatak tipa double, što je određeno pre svega inicijalnom vrednošću 0.0, a zatim i tipom
promenljive u kojoj pamtimo zbir).

vector<int> a = {8, 3, 4, 5, 2, 6};
double zbir = accumulate(begin(a), end(a), 0.0);
double prosek = zbir / a.size();

Proizvod elemenata serije se takođe može izračunati funkcijom accumulate.

double a[] = {8, 3, 4, 5, 2, 6};
double proizvod = accumulate(begin(a), end(a), 1.0, multiplies);

Inicijalna vrednost proizvoda je 1.0 (ovde se radi o podacima tipa double). Četvrti parametar je funkcija koja
se primenjuje na objedinjavanje tekućeg rezultata i tekućeg elementa kolekcije. Kada se taj argument ne navede
podrazumeva se funkcija plus koja sabira tekući zbir i tekući element kolekcije. Za množenje je upotrebljena
funkcija multiplies koja množi te dve vrednosti (ona je deklarisana u zaglavlju <functional>). Naravno, tu
funkciju je moguće i definisati samostalno (na primer, kao anonimnu funkciju), što ima smisla kada ne postoji
odgovarajuća bibliotečka funkcija.

double a[] = {8, 3, 4, 5, 2, 6};
double proizvod = accumulate(begin(a), end(a), 1.0,

[](double x, double y) { return x * y; });

12.0.2 Menjanje redosleda elemenata niza
Često je potrebno promeniti redosled elemenata neke kolekcije.
Obrtanje redosleda elemenata niza se vrši bilbiotečkom funkcijom reverse.

string s = "Ana voli milovana";
reverse(begin(s), end(s));
cout << s << endl; // ispisuje: anavolim ilov anA

Još jedna često korišćena transformacija kolekcije je rotacija koja se može ostvariti funkcijom rotate. Prvi i
treći parametar su iteratori koji ograničavaju deo kolekcije koji se rotira, a drugi parametar je iterator koji ukazuje
na element koji će postati početni nakon rotacije.

251

string s = "zdravo svima";
rotate(begin(s), next(begin(s), 3), end(s));
cout << s << endl; // ispisuje: avo svimazdr

Funkcija random_shuffle nasumično permutuje elemente kolekcije.

vector<int> a = {1, 2, 3, 4, 5};
random_shuffle(begin(a), end(a));

Nakon izvršavanja prethodnog koda niz a će sadržati elemente od 1 do 5, ali će njihov redosled biti izmenjen (na
primer, niz može da sadrži redom elemente 5, 2, 1, 4, 3).
Funkcija next_permutation pronalazi narednu permutaciju u leksikografskom redosledu. Funkcija vraća true
ako postoji naredna permutacija. Naredni program ispisuje sve permutacije elemenata od 1 do 5.

vector<int> a = {1, 2, 3, 4, 5};
do {

// ispisujemo elemente niza
for (int x : a)

cout << x;
cout << endl;

} while(next_permutation(begin(a), end(a));

	Predgovor
	Uvod
	Osnovni elementi jezika i prvi programi
	Osnovna struktura programa
	Komentari

	Promenljive, tipovi, ispisivanje i učitavanje podataka
	Izračunavanje
	Osnovne aritmetičke operacije i izrazi
	Bibliotečke matematičke funkcije
	Imenovane konstante

	Zadatak: Rastojanje tačaka
	Grananje
	Relacijski operatori
	Logički operatori
	Naredba if
	Uslovni izraz

	Petlje
	Petlja while
	Petlja for
	Petlja do-while

	Definisanje funkcija
	Strukture podataka
	Upravljanje izuzecima i greškama

	Promenljive i tipovi
	Promenljive, konstante i deklaracije
	Osnovni tipovi podataka
	Celobrojni tipovi
	Realni tipovi
	Logički tip
	Karakterski tip
	Niske

	Dodele vrednosti promenljivoj
	Operator dodele
	Razmena vrednosti promenljivih

	Zadatak: Cena hleba

	Izrazi i izračunavanje
	Aritmetički operatori i zapis matematičkih formula
	Složeni operatori dodele
	Inkrementiranje i dekrementiranje

	Zapis matematičkih formula
	Sekvencijalni programi
	Sekvencijalno izračunavanje vrednosti
	Celobrojno deljenje i ostatak
	Pozicioni zapis (brojevi, vreme, uglovi)
	Izračunavanje zbira cifara petocifrenog broja
	Razmenjivanje cifre jedinica i stotina
	Izračunavanje vremena između dva trenutka
	Izračunavanje ugla između kazaljki na satu

	Grananje
	Relacijski i logički operatori i istinitosna vrednost izraza
	Logički tip podataka
	Relacijski i logički operatori
	Poređenje i poredak
	Relacija jednakosti
	Relacije poretka

	Naredba if-else
	Konstrukcija else-if

	Operator uslova
	Naredba switch
	Primeri
	Broj dana u mesecu (grananje na osnovu vrednosti promenljive)
	Agregatno stanje vode (grananje na osnovu pripadnosti intervalu)
	Uspeh učenika
	Kvadrant kom pripada tačka (hijerarhija ugnežđenih uslova)
	Poređenje datuma (leksikografsko poređenje torki iste dužine)
	Vrsta trougla na osnovu stranica

	Petlje
	Petlja while
	Petlja for
	Petlja do-while
	Naredbe break i continue
	Osnovni iterativni algoritmi
	Sabiranje, prebrojavanje, množenje
	Minimum i maksimum
	Linearna pretraga
	Sortiranost niza
	Filtriranje, preslikavanje
	Pozicioni zapis
	Leksikografsko poređenje

	Ugnežđene petlje
	Elementarni algoritmi sortiranja
	Algoritam selection sort
	Algoritam bubble sort
	Algoritam insertion sort

	Zadaci

	Funkcije
	Modularnost i razlaganje problema na potprobleme
	Primeri korišćenja funkcije
	Parametri funkcije
	Povratna vrednost funkcije
	Prenos argumenata
	Prenos argumenata po vrednosti
	Prenos argumenata po referenci
	Prenos argumenata po adresi

	Konverzije tipova argumenata funkcije
	Anonimne funkcije
	Složeni tipovi i funkcije
	Rekurzivne funkcije - osnovni pregled
	Doseg, životni vek i organizacija memorije dodeljene programu
	Doseg identifikatora
	Životni vek objekata
	Organizacija memorije dodeljene programu
	Segment koda
	Segment podataka
	Stek segment
	Implementacija rekurzije

	Deklaracija i definicija funkcije
	Uzajamna rekurzija
	Razdvojena kompilacija i povezivanje

	Strukture podataka
	Korisnički definisani tipovi: nabrojivi tip, strukture, klase
	Nabrojivi tipovi (enum)
	Strukture
	Klase
	Parovi i torke (tipovi pair<T1, T2> i tuple<T1, ..., Tn>)
	Imenovanje tipova – typedef

	Strukture podataka sa sekvencijalnim pristupom
	Statički alocirani nizovi
	Nizovi i funkcije

	VLA
	Tip vector<T>
	Pokazivači i iteratori
	Tipovi list<T>

	Višedimenzioni nizovi i kolekcije
	Rad sa matricama
	Strukture podataka sa asocijativnim pristupom
	Skupovi
	Multiskupovi
	Mape

	Specijalizovane strukture podataka
	Stek
	Primer upotrebe steka: izrazi u postfiksnoj notaciji

	Red
	Primer upotrebe reda: poslednjih k učitanih linija teksta

	Red sa dva kraja
	Primer upotrebe reda sa dva kraja: istorija veb-pregledača

	Red sa prioritetom
	Primer upotrebe reda sa prioritetom: zbir najvećih k brojeva

	Pregled standardne biblioteke
	Korišćenje bibliotečke implementacije algoritama
	Pregled bibliotečkih funkcija za rad sa sekvencijalnim kolekcijama
	Sortiranje
	Linearna pretraga
	Binarna pretraga
	Kopiranje, preslikavanje, filtriranje
	Brisanje elemenata

	Rad sa karakterima
	Rad sa niskama
	Datoteke/tokovi
	Ulazni tok za učitavanje iz tekstualne datoteke (ifstream)
	Izlazni tok za upis u tekstualnu datoteku (ofstream)
	Baferovanje
	Odnos sa C bibliotekom za ulaz/izlaz
	Tokovi za čitanje iz niske (istringstream) i upis u nisku (ostringstream)
	Argumenti komandne linije programa

	Principi pisanja programa i dokumentacije
	Timski rad i konvencije
	Vizuelni elementi programa
	Broj karaktera u redu
	Broj naredbi u redu, zagrade i razmaci
	Nazubljivanje teksta programa

	Imenovanje promenljivih i funkcija
	Pisanje izraza
	Korišćenje idioma
	Korišćenje konstanti
	Pisanje komentara
	Modularnost
	Modularnost i podela na funkcije
	Modularnost i podela na datoteke

	Upravljanje izuzecima i greškama

	Razvoj programa
	Razvojno okruženje
	Pregled procesa debagovanja
	Testiranje

	Projektni zadaci
	Prelazi između slika
	Transformacija slika
	ASCII kamera
	Mastermajnd

	Dodatak
	Statistike
	Menjanje redosleda elemenata niza

