
Osnovi programiranja
Beleške sa vežbi

Školska 2005/2006 godine

Smer Računarstvo i informatika

Matematički fakultet, Beograd

Jelena Tomašević

May 17, 2006

2

Sadržaj

1 Programski jezik C 5
1.1 Grafovi . 5

4 SADRŽAJ

1

Programski jezik C

1

1.1 Grafovi

Graf G=(V,E) sastoji se od skupa V čvorova i skupa E grana. Grane predstavljaju relacije izme�u
čvorova i odgovara paru čvorova. Graf može biti usmeren (orijentisan), ako su mu grane ure�eni
parovi i neusmeren (neorjentisan) ako su grane neure�eni parovi.

Uobičajena su dva načina predstavljanja grafova. To su matrica povezanosti grafa i lista
povezanosti.

Matrica povezanosti je kvadratna matrica dimenzije n, pri čemu je n broj čvorova u grafu, takva
da je element na preseku i-te vrste i j-te kolone jednak jedinici ukoliko postoji grana u grafu od
i-tog do j-tog čvora, inače je nula.

Umesto da se i sve nepostojeće grane eksplicitno predstavljaju u matrici povezanosti, mogu se
formirati povezane liste od jedinica iz i-te vrste za i=1,2,...,n. To je lista povezanosti. Svakom
čvoru se pridružuje povezana lista, koja sadrži sve grane susedne tom čvoru. Graf je predstavljen
vektorom lista. Svaki elemenat vektora sadrži ime (indeks) čvora i pokazivač na njegovu listu
čvorova.

Prvi problem na koji se nailazi pri konstrukciji bilo kog algoritma za obradu grafa je kako pre-
gledati ulaz. Postoje dva osnovna algoritma za obilazak grafa: pretraga u dubinu (DFS, skraćenica
od depth-first-search) i pretraga u širinu (BFS, skraćenica od breadth-first-search).

Kod DFS algoritma, obilazak započinje iz proizvoljnog zadatog čvora r koji se naziva koren
pretrage u dubinu. Koren se označava kao posećen. Zatim se bira proizvoljan neoznačen čvor r1,
sussedan sa r, pa se iz čvora r1 rekurzivno startuje pretraga u dubinu. Iz nekog nivoa rekurzije
izlazi se kad se nai�e na čvor v kome su svi susedi već označeni.

Primer 1 Primer reprezentovanja grafa preko matrice povezanosti. U programu se unosi neori-
jentisan graf i DFS algoritmom se utvrdjuju čvrovi koji su dostǐzni iz cvora 0.

#include <stdlib.h>
#include <stdio.h>

int** alociraj_matricu(int n)
{ int **matrica;

int i;
matrica=malloc(n*sizeof(int*));

1Zasnovano na materijalu Algoritmi, Miodrag Živković i http://www.matf.bg.ac.yu/∼filip

6 Jelena Tomašević

for (i=0; i<n; i++)
matrica[i]=calloc(n,sizeof(int));

return matrica;
}

void oslobodi_matricu(int** matrica, int n)
{ int i;

for (i=0; i<n; i++)
free(matrica[i]);

free(matrica);
}

int* alociraj_niz(int n)
{ int* niz;

niz=calloc(n,sizeof(int));
return niz;

}

void oslobodi_niz(int* niz)
{ free(niz);
}

void unesi_graf(int** graf, int n)
{ int i,j;

for (i=0; i<n; i++)
for (j=i; j<n; j++)
{ printf("Da li su element %d i %d povezani : ",i,j);

do
{ scanf("%d",&graf[i][j]);

graf[j][i]=graf[i][j];
} while (graf[i][j]!=0 && graf[i][j]!=1);

}
}

void ispisi_graf(int** graf, int n)
{ int i,j;

for (i=0; i<n; i++)
{ for (j=0; j<n; j++)

printf("%d",graf[i][j]);
printf("\n");

}
}

/* Broj cvorova grafa (dimenzija matrice) */
int n;
/* Matrica povezanosti */
int **graf;

/* Pomocni vektor koji govori o tome koji su cvorovi posecivani

1.1 Grafovi 7

tokom DFS obilaska */
int *posecen;

/* Rekurzivna implementacija DFS algoritma */
void poseti(int i)
{ int j;

posecen[i]=1;
printf("Posecujem cvor %d\n",i);
for (j=0; j<n; j++)

if (graf[i][j] && !posecen[j])
poseti(j);

}

main()
{ int i, j;

printf("Unesi broj cvorova : ");
scanf("%d",&n);

graf=alociraj_matricu(n);
unesi_graf(graf,n);
ispisi_graf(graf,n);

posecen=alociraj_niz(n);
poseti(0);

oslobodi_niz(posecen);
oslobodi_matricu(graf,n);

}

Primer 2 Primer predstavljanja grafa preko niza listi suseda svakog od čvorova grafa U programu
se unosi graf i DFS algoritmom se utvrdjuje koji su čvorovi dostǐzni iz cvora 0.

#include <stdlib.h>
#include <stdio.h>

/* Cvor liste suseda */
typedef struct _cvor_liste
{ int broj; /* Indeks suseda */

struct _cvor_liste* sledeci;
} cvor_liste;

/* Ubacivanje na pocetak liste */
cvor_liste* ubaci_u_listu(cvor_liste* lista, int broj)
{ cvor_liste* novi=malloc(sizeof(cvor_liste));

novi->broj=broj;
novi->sledeci=lista;
return novi;

}

/* Brisanje liste */

8 Jelena Tomašević

void obrisi_listu(cvor_liste* lista)
{ if (lista)

{ obrisi_listu(lista->sledeci);
free(lista);

}
}

/* Ispis liste */
void ispisi_listu(cvor_liste* lista)
{ if (lista)

{ printf("%d ",lista->broj);
ispisi_listu(lista->sledeci);

}
}

/* Graf predstavlja niz pokazivaca na pocetke listi suseda */
#define MAX_BROJ_CVOROVA 100
cvor_liste* graf[MAX_BROJ_CVOROVA];
int broj_cvorova;

/* Rekurzivna implementacija DFS algoritma */
int posecen[MAX_BROJ_CVOROVA];
void poseti(int i)
{ cvor_liste* sused;

printf("Posecujem cvor %d\n",i);
posecen[i]=1;
for(sused=graf[i]; sused!=NULL; sused=sused->sledeci)

if (!posecen[sused->broj])
poseti(sused->broj);

}

main()
{ int i;

printf("Unesi broj cvorova grafa : ");
scanf("%d",&broj_cvorova);
for (i=0; i<broj_cvorova; i++)
{ int br_suseda,j;

graf[i]=NULL;

printf("Koliko cvor %d ima suseda : ",i);
scanf("%d",&br_suseda);
for (j=0; j<br_suseda; j++)
{ int sused;

do
{

printf("Unesi broj %d.-tog suseda cvora %d : ",j,i);
scanf("%d",&sused);

} while (sused<1 && sused>broj_cvorova);
graf[i]=ubaci_u_listu(graf[i],sused-1);

1.1 Grafovi 9

}
}

for (i=0; i<broj_cvorova; i++)
{ printf("%d - ",i);

ispisi_listu(graf[i]);
printf("\n");

}

poseti(0);
}

Primer 3 MINESWEEPER - primer jednostavne igrice. Program demonstrira rad sa matricama,
slučajnim brojevima i rekurzivnu implementaciju DFS algoritma za obilazak grafova.

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

/* Dimenzija table */
int n;

/* Tabla koja sadrzi 0 i 1 u zavisnosti od toga da li na polju postoji bomba */
int** bombe;

/* Tabla koja opisuje tekuce stanje igre. Moze da sadrzi sledece vrednosti :
ZATVORENO - opisuje polje koje jos nije bilo otvarano
PRAZNO - polje na kome ne postoji ni jedna bomba
broj od 1-8 - polje koje je otvoreno i na kome pise koliko bombi postoji u okolini
ZASTAVICA - polje koje je korisnik oznacio zastavicom

*/
#define PRAZNO (-1)
#define ZATVORENO 0
#define ZASTAVICA 9

int** stanje;

/* Ukupan broj bombi */
int broj_bombi;

/* Ukupan broj postavljenih zastavica */
int broj_zastavica = 0;

/* Pomocne funkcije za rad sa matricama */
int** alociraj(int n)
{ int i;

int** m=malloc(n*sizeof(int*));
for (i=0; i<n; i++)

m[i]=calloc(n,sizeof(int));
return m;

}

10 Jelena Tomašević

void obrisi(int** m, int n)
{ int i;

for (i=0; i<n; i++)
free(m[i]);

free(m);
}

/* Funkcija postavlja bombe */
void postavi_bombe()
{ broj_bombi=(n*n)/6;

int kolona;
int vrsta;
int i;

/* Inicijalizujemo generator slucajnih brojeva */
srand(time(NULL));

for (i=0; i<broj_bombi; i++)
{ /* Racunamo slucajni polozaj bombe */

kolona=rand()%n;
vrsta=rand()%n;

/* Ukoliko bomba vec postoji tu, opet idemo u istu iteraciju */
if (bombe[vrsta][kolona]==1)
{ i--;

continue;
}

/* Postavljamo bombu */
bombe[vrsta][kolona]=1;

}
}

/* Funkcija ispisuje tablu sa bombama */
void ispisi_bombe()
{ int i,j;

for (i=0; i<n; i++)
{ for (j=0; j<n; j++)

printf("%d",bombe[i][j]);
printf("\n");

}
}

/* Funkcija ispisuje tekuce stanje */
void ispisi_stanje()
{ int i,j;

/* Brisemo ekran pozivajuci komandu operativnog sistema */

1.1 Grafovi 11

system("clear");

for (i=0; i<n; i++)
{ for (j=0; j<n; j++)

{ if (stanje[i][j]==ZATVORENO)
printf(".");

else if (stanje[i][j]==PRAZNO)
printf(" ");

else if (stanje[i][j]==ZASTAVICA)
printf("*");

else
printf("%d",stanje[i][j]);

}
printf("\n");

}

}

/* Funkcija postavlja zastavicu na dato polje ili je uklanja
ukoliko vec postoji */

void postavi_zastavicu(int i, int j)
{ if (stanje[i][j]==ZATVORENO)

{ stanje[i][j]=ZASTAVICA;
broj_zastavica++;

}
else if (stanje[i][j]==ZASTAVICA)
{ stanje[i][j]=ZATVORENO;

broj_zastavica--;
}

}

/* Funkcija izracunava koliko bombi postoji u okolini date bombe */
int broj_bombi_u_okolini(int v, int k)
{ int i, j;

int br=0;
/* Prolazimo kroz sva okolna polja */
for (i=-1; i<=1; i++)

for(j=-1; j<=1; j++)
{ /* preskacemo centralno polje */

if (i==0 && j==0)
continue;

/* preskacemo polja "van table" */
if (v+i<0 || k+j<0 || v+i>=n || k+j>=n)

continue;
if (bombe[v+i][k+j]==1)

br++;
}

return br;

}

12 Jelena Tomašević

/* Centralna funkcija koja vrsi otvaranje polja i pritom se otvaranje "siri"
i na polja koja su oko datog */

void otvori_polje(int v, int k)
{ /* Ukoliko smo "nagazili" bombu zavrsavamo program */

if (bombe[v][k]==1)
{ printf("BOOOOOOOOOOOOOOOOM!!!!\n");

ispisi_bombe();
exit(1);

}
else
{ /* Brojimo bombe u okolini */

int br=broj_bombi_u_okolini(v,k);

/* Azuriramo stanje ovog polja */
stanje[v][k]=(br==0)?PRAZNO:br;

/* Ukoliko u okolini nema bombi, rekurzivno otvaramo
sva polja u okolini koja su zatvorena */

if (br==0)
{ /* Petlje indeksiraju sva okolna polja */

int i,j;
for (i=-1; i<=1; i++)

for (j=-1; j<=1; j++)
{ /* Preskacemo centralno polje */

if (i==0 && j==0)
continue;

/* Preskacemo polja van table */
if (v+i<0 || v+i>=n || k+j<0 || k+j>=n)

continue;
/* Ukoliko je okolno polje zatvoreno, otvaramo ga */
if (stanje[v+i][k+j]==ZATVORENO)

otvori_polje(v+i, k+j);
}

}
}

}

/* Funkcija utrdjuje da li je partija gotova
Partija je gotova u trenutku kada su sve bombe pokrivene zastavicama i
kada nijedno drugo polje nije pokriveno zastavicom

*/

int gotova_partija()
{ int i,j;

for (i=0; i<n; i++)
for (j=0; j<n; j++)
{ /* Ukoliko postoji nepokrivena bomba, partija nije zavrsena */

if (bombe[i][j]==1 && stanje[i][j]!=ZASTAVICA)
return 0;

1.1 Grafovi 13

}

/* Partija je zavrsena samo ukoliko je broj zastavica jednak broj bombi */
return broj_zastavica==broj_bombi;

}

main()
{

/* Unosimo dimenziju table */
printf("Unesite dimenziju table : ");
scanf("%d",&n);

/* Alociramo table */
bombe=alociraj(n);
stanje=alociraj(n);

/* Postavljamo bombe */
postavi_bombe();

/* Sve dok partija nije gotova */
while(!gotova_partija())
{ int v,k;

char akcija;

/* Ispisujemo tekuce stanje */
ispisi_stanje();

/* Sve dok korisnik ne unese o ili z trazimo od njega da upise odgovarajucu akciju */
do
{ printf("Unesi akciju (o - otvaranje polja, z - postavljanje zastavice) : ");

while(isspace(akcija = getchar()));
} while (akcija!=’o’ && akcija!=’z’);

/* Trazimo od korisnika da unese koordinate polja sve dok ih ne unese ispravno
Korisnicke koordinate krecu od 1, a interne od 0 */

do
{

printf("Unesi koordinate polja : ");
scanf("%d",&v);
scanf("%d",&k);

} while(v<1 || v>n || k<1 || k>n);

/* Reagujemo na akciju */
switch(akcija)
{ case ’o’:

otvori_polje(v-1,k-1);
break;

case ’z’:
postavi_zastavicu(v-1,k-1);

14 Jelena Tomašević

}
}

/* Konstatujemo pobedu */
ispisi_stanje();
obrisi(stanje, n);
obrisi(bombe, n);

printf ("Cestitam! Pobedili ste\n");

}

