Osnovi programiranja
Beleske sa vezbi

Skolska 2005/2006 godine

Smer Racunarstvo 1 informatika
Matematicki fakultet, Beograd

Jelena Tomasevié

May 17, 2006

Sadrza]

1 Programski jezik C
1.1 Grafovi e

SADRZAJ

Programski jezik C

1.1 Grafovi

Graf G=(V,E) sastoji se od skupa V ¢vorova i skupa E grana. Grane predstavljaju relacije izmedu
¢vorova i odgovara paru ¢vorova. Graf moze biti usmeren (orijentisan), ako su mu grane uredeni
parovi i neusmeren (neorjentisan) ako su grane neuredeni parovi.

Uobicajena su dva nacina predstavljanja grafova. To su matrica povezanosti grafa i lista
povezanosti.

Matrica povezanosti je kvadratna matrica dimenzije n, pri ¢emu je n broj ¢vorova u grafu, takva
da je element na preseku i-te vrste i j-te kolone jednak jedinici ukoliko postoji grana u grafu od
i-tog do j-tog ¢vora, inace je nula.

Umesto da se i sve nepostojeée grane eksplicitno predstavljaju u matrici povezanosti, mogu se
formirati povezane liste od jedinica iz i-te vrste za i=1,2,...,n. To je lista povezanosti. Svakom
¢voru se pridruzuje povezana lista, koja sadrzi sve grane susedne tom ¢voru. Graf je predstavljen
vektorom lista. Svaki elemenat vektora sadrzi ime (indeks) ¢vora i pokaziva¢ na njegovu listu
cvorova.

Prvi problem na koji se nailazi pri konstrukciji bilo kog algoritma za obradu grafa je kako pre-
gledati ulaz. Postoje dva osnovna algoritma za obilazak grafa: pretraga u dubinu (DFS, skraéenica
od depth-first-search) i pretraga u Sirinu (BFS, skrac¢enica od breadth-first-search).

Kod DFS algoritma, obilazak zapocinje iz proizvoljnog zadatog ¢vora r koji se naziva koren
pretrage u dubinu. Koren se oznacava kao poseéen. Zatim se bira proizvoljan neoznacen ¢vor ri,
sussedan sa r, pa se iz ¢vora rl rekurzivno startuje pretraga u dubinu. Iz nekog nivoa rekurzije
izlazi se kad se naide na ¢vor v kome su svi susedi ve¢ oznaceni.

Primer 1 Primer reprezentovanja grafa preko matrice povezanosti. U programu se unosi neori-
jentisan graf i DFS algoritmom se utvrdjuju cvrovi koji su dostizZni iz cvora 0.

#include <stdlib.h>
#include <stdio.h>

int** alociraj_matricu(int n)
{ int **matrica;
int i;
matrica=malloc(n*sizeof (int*));

1Zasnovano na materijalu Algoritmi, Miodrag Zivkovié i http://www.matf.bg.ac.yu/~filip

6 Jelena Tomasevié

for (i=0; i<n; i++)
matricalil=calloc(n,sizeof (int));
return matrica;

}

void oslobodi_matricu(int** matrica, int n)
{ int 1i;
for (i=0; i<n; i++)
free(matricalil);
free(matrica) ;

}

int* alociraj_niz(int n)

{ int* niz;
niz=calloc(n,sizeof (int));
return niz;

3

void oslobodi_niz(int* niz)
{ free(niz);

}

void unesi_graf (int** graf, int n)
{ int i,j;
for (i=0; i<mn; i++)
for (j=i; j<m; j++)
{ printf("Da 1li su element %d i %d povezani : ",i,j);
do
{ scanf("%d",&graf[i] [j1);
graf [j] [i]l=graf [i] [j];
} while (graf[il([j]1!=0 && graf([i][j]1!=1);

¥

void ispisi_graf (int** graf, int n)
{ int 1i,3j;
for (i=0; i<n; i++)
{ for (j=0; j<n; j++)
printf("%d",graf[i][j1);
printf ("\n");

/* Broj cvorova grafa (dimenzija matrice) */
int n;

/* Matrica povezanosti */

int **xgraf;

/* Pomocni vektor koji govori o tome koji su cvorovi posecivani

1.1 Grafovi 7

tokom DFS obilaska */
int *posecen;

/* Rekurzivna implementacija DFS algoritma */
void poseti(int i)
{ int j;

posecen[i]=1;

printf ("Posecujem cvor %d\n",i);

for (j=0; j<mn; j++)

if (graf[i][j] && !posecen[jl)
poseti(j);

main()

{ int i, j;
printf ("Unesi broj cvorova : ");
scanf ("%d",&n) ;

graf=alociraj_matricu(n);
unesi_graf (graf,n);
ispisi_graf (graf,n);

posecen=alociraj_niz(n);
poseti(0);

oslobodi_niz(posecen);
oslobodi_matricu(graf,n);

}

Primer 2 Primer predstavijanja grafa preko niza listi suseda svakog od ¢vorova grafa U programu
se unosi graf i DFS algoritmom se utvrdjuje koji su ¢vorovi dostizni iz cvora 0.

#include <stdlib.h>
#include <stdio.h>

/* Cvor liste suseda */

typedef struct _cvor_liste

{ int broj; /* Indeks suseda */
struct _cvor_liste* sledeci;

} cvor_liste;

/* Ubacivanje na pocetak liste */
cvor_listex ubaci_u_listu(cvor_liste* lista, int broj)
{ cvor_liste*x novi=malloc(sizeof (cvor_liste));
novi->broj=broj;
novi->sledeci=lista;
return novi,;

/* Brisanje liste */

8 Jelena Tomasevié

void obrisi_listu(cvor_listex lista)
{ if (lista)
{ obrisi_listu(lista->sledeci);
free(lista);
}
}

/* Ispis liste */
void ispisi_listu(cvor_listex lista)
{ if (lista)
{ printf("%d ",lista->broj);
ispisi_listu(lista->sledeci);
}
}

/* Graf predstavlja niz pokazivaca na pocetke listi suseda */
#define MAX_BROJ_CVOROVA 100

cvor_listex graf [MAX_BROJ_CVOROVA];

int broj_cvorova;

/* Rekurzivna implementacija DFS algoritma */
int posecen[MAX_BROJ_CVOROVA];
void poseti(int i)
{ cvor_listex* sused;
printf ("Posecujem cvor %d\n",i);
posecen[i]=1;
for(sused=graf[i]; sused!=NULL; sused=sused->sledeci)
if (!posecen[sused->brojl)
poseti(sused->broj) ;

}
main()
{ int i;

printf ("Unesi broj cvorova grafa : ");
scanf ("%d",&broj_cvorova) ;

for (i=0; i<broj_cvorova; i++)

{ int br_suseda,j;

graf [1]=NULL;

printf("Koliko cvor %d ima suseda : ",i);
scanf ("%d",&br_suseda) ;
for (j=0; j<br_suseda; j++)
{ int sused;
do
{
printf ("Unesi broj %d.-tog suseda cvora %d : ",j,i);
scanf ("%d",&sused) ;
} while (sused<l && sused>broj_cvorova);
graf [i]=ubaci_u_listu(graf[i],sused-1);

1.1 Grafovi 9

3

for (i=0; i<broj_cvorova; i++)

{ printf("%d - ",i);
ispisi_listu(graf[il);
printf("\n");

}

poseti(0);
}

Primer 3 MINESWEEPER - primer jednostavne igrice. Program demonstrira rad sa matricama,
slucajnim brojevima i rekurzivnu implementaciju DFS algoritma za obilazak grafova.

#include <stdlib.h>
#tinclude <stdio.h>
#include <time.h>

/* Dimenzija table */
int n;

/* Tabla koja sadrzi 0 i 1 u zavisnosti od toga da 1li na polju postoji bomba */
int** bombe;

/* Tabla koja opisuje tekuce stanje igre. Moze da sadrzi sledece vrednosti
ZATVORENO - opisuje polje koje jos nije bilo otvarano
PRAZNO - polje na kome ne postoji ni jedna bomba
broj od 1-8 - polje koje je otvoreno i na kome pise koliko bombi postoji u okolini
ZASTAVICA - polje koje je korisnik oznacio zastavicom
*/
#define PRAZNO (-1)
#define ZATVORENO O
#define ZASTAVICA 9

int** stanje;

/* Ukupan broj bombi */
int broj_bombi;

/* Ukupan broj postavljenih zastavica */
int broj_zastavica = 0;

/* Pomocne funkcije za rad sa matricama */
int** alociraj(int n)
{ int i;
int** m=malloc(n*sizeof (int*));
for (i=0; i<n; i++)
m[i]l=calloc(n,sizeof (int));
return m;

10 Jelena Tomasevié

void obrisi(int** m, int n)
{ int i;
for (i=0; i<n; i++)
free(m[i]);

free(m);

3

/* Funkcija postavlja bombe */
void postavi_bombe()
{ broj_bombi=(n*n)/6;

int kolona;

int vrsta;

int i;

/* Inicijalizujemo generator slucajnih brojeva */
srand (time (NULL)) ;

for (i=0; i<broj_bombi; i++)

{ /* Racunamo slucajni polozaj bombe */
kolona=rand()%n;
vrsta=rand()%n;

/* Ukoliko bomba vec postoji tu, opet idemo u istu iteraciju */
if (bombe[vrsta]l [kolona]==1)
{ i--

continue;

}

/* Postavljamo bombu */
bombe [vrstal [kolona]=1;

/* Funkcija ispisuje tablu sa bombama */
void ispisi_bombe ()
{ int i,j;
for (i=0; i<n; i++)
{ for (j=0; j<m; j++)
printf("%d",bombe[i] [j1);
printf("\n");

}

/* Funkcija ispisuje tekuce stanje */
void ispisi_stanje()

{ int i,j;

/* Brisemo ekran pozivajuci komandu operativnog sistema */

1.1 Grafovi

11

system("clear");

for (i=0; i<n; i++)
{ for (j=0; j<n; j++)
{ if (stanjel[i] [j1==ZATVORENO)

printf(".");

else if (stanjel[i] [j]1==PRAZNO)
printf(" ");

else if (stanje[i] [j1==ZASTAVICA)
printf ("x");

else

printf ("%d",stanjel[i] [j1);
}
printf("\n");

3

/* Funkcija postavlja zastavicu na dato polje ili je uklanja
ukoliko vec postoji */
void postavi_zastavicu(int i, int j)
{ if (stanje([i] [j1==ZATVORENO)
{ stanje[i] [j1=ZASTAVICA;
broj_zastavicat+;
X
else if (stanje[i] [j1==ZASTAVICA)
{ stanje[i] [j1=ZATVORENO;
broj_zastavica—-;
3
3

/* Funkcija izracunava koliko bombi postoji u okolini date bombe */
int broj_bombi_u_okolini(int v, int k)
{ int i, j;
int br=0;
/* Prolazimo kroz sva okolna polja */
for (i=-1; i<=1; i++)
for(j=-1; j<=1; j++)
{ /* preskacemo centralno polje */
if (i==0 && j==0)

continue;

/* preskacemo polja "van table" x/

if (v+i<0 || k+j<0 || v+i>=n || k+j>=n)
continue;

if (bombe[v+i] [k+j]==1)
br++;

return br;

12

Jelena Tomasevié

/* Centralna funkcija koja vrsi otvaranje polja i pritom se otvaranje "siri"

i na polja koja su oko datog */

void otvori_polje(int v, int k)
{ /% Ukoliko smo "nagazili" bombu zavrsavamo program */
if (bombe[v] [k]==1)
{ printf("BO0O000O0O0COO0OOCM! ! ! ! \n");
ispisi_bombe();

exit(1);
}
else
{ /* Brojimo bombe u okolini */
int br=broj_bombi_u_okolini(v,k);
/* Azuriramo stanje ovog polja */
stanje [v] [k]=(br==0) 7PRAZNO:br;
/* Ukoliko u okolini nema bombi, rekurzivno otvaramo
sva polja u okolini koja su zatvorena */
if (br==0)
{ /% Petlje indeksiraju sva okolna polja */
int 1i,j;
for (i=-1; i<=1; i++)
for (j=-1; j<=1; j++)
{ /% Preskacemo centralno polje */
if (i==0 && j==0)
continue;
/* Preskacemo polja van table */
if (v+i<0 || v+i>=n || k+j<0 || k+j>=n)
continue;
/* Ukoliko je okolno polje zatvoreno, otvaramo ga */
if (stanje[v+i] [k+j]==ZATVORENO)
otvori_polje(v+i, k+j);
}
}
}

/* Funkcija utrdjuje da li je partija gotova

Partija je gotova u trenutku kada su sve bombe pokrivene zastavicama i

kada nijedno drugo polje nije pokriveno zastavicom

*/

int gotova_partija()
{ int i,j;
for (i=0; i<n; i++)
for (j=0; j<n; j++)

{ /* Ukoliko postoji nepokrivena bomba, partija nije zavrsena */

if (bombe[i] [jl1==1 && stanje[i] [j]!=ZASTAVICA)
return O;

1.1 Grafovi 13

}

/* Partija je zavrsena samo ukoliko je broj zastavica jednak broj bombi */
return broj_zastavica==broj_bombi;

}

main()

{

/* Unosimo dimenziju table */
printf ("Unesite dimenziju table : ");
scanf ("%d",&n) ;

/* Alociramo table */
bombe=alociraj(n);
stanje=alociraj(n);

/* Postavljamo bombe */
postavi_bombe () ;

/* Sve dok partija nije gotova */
while(!gotova_partija())
{ int v,k;

char akcija;

/* Ispisujemo tekuce stanje */
ispisi_stanje();

/* Sve dok korisnik ne unese o ili z trazimo od njega da upise odgovarajucu akciju */
do

{ printf("Unesi akciju (o - otvaranje polja, z - postavljanje zastavice) : ");
while(isspace(akcija = getchar()));

} while (akcijal!=’0’ &% akcija!=’z’);

/* Trazimo od korisnika da unese koordinate polja sve dok ih ne unese ispravno
Korisnicke koordinate krecu od 1, a interne od 0 */
do
{
printf ("Unesi koordinate polja : ");
scanf ("%4d",&v) ;
scanf ("%4d",&k) ;
} while(v<1l || v>n || k<1 || k>n);

/* Reagujemo na akciju */

switch(akcija)

{ case ’0’:
otvori_polje(v-1,k-1);
break;

case ’z’:
postavi_zastavicu(v-1,k-1);

14

Jelena Tomasevié

3

/* Konstatujemo pobedu */
ispisi_stanje();
obrisi(stanje, n);
obrisi(bombe, n);

printf ("Cestitam! Pobedili ste\n");

