
Osnovi programiranja
Beleške sa vežbi

Smer Računarstvo i informatika

Matematički fakultet, Beograd

Jelena Tomašević

April 9, 2006

2

Sadržaj

1 Programski jezik C 5
1.1 Pokazivači na funkcije . 5
1.2 Matrice - uvežbavanje . 5
1.3 Dinamički niz . 10
1.4 Zadaci za vežbu . 13

4 SADRŽAJ

1

Programski jezik C

1

1.1 Pokazivači na funkcije

Primer 1 Program demonstrira upotrebu pokazivača na funkcije.

#include <stdio.h>

int kvadrat(int n) { return n*n; }

int kub(int n) { return n*n*n; }

int parni_broj(int n) { return 2*n; }

/* Funkcija izracunava sumu od 1 do n f(i),
gde je f data funkcija */

int sumiraj(int (*f) (int), int n) {
int i, suma=0;
for (i=1; i<=n; i++)

suma += (*f)(i);

return suma;
}

main() {
printf("Suma kvadrata brojeva od jedan do 3 je %d\n", sumiraj(kvadrat,3));
printf("Suma kubova brojeva od jedan do 3 je %d\n", sumiraj(kub,3));
printf("Suma prvih pet parnih brojeva je %d\n", sumiraj(parni_broj,5));
} /*Izlaz: Suma kvadrata brojeva od jedan do 3 je 14 Suma kubova
brojeva od jedan do 3 je 36 Suma prvih pet parnih brojeva je 30 */

1.2 Matrice - uvežbavanje

Primer 2 Program ilustruje rad sa kvadratnim matricama i relacijama. Elementi i je u relaciji
sa elementom j ako je m[i][j] = 1, a nisu u relaciji ako je m[i][j] = 0.

1Zasnovano na primerima sa sajtova http://www.matf.bg.ac.yu/∼milena, http://www.matf.bg.ac.yu/∼filip

6 Jelena Tomašević

#include <stdlib.h>
#include <stdio.h>

/* Dinamicka matrica je odredjena adresom
pocetka niza pokazivaca i dimenzijama tj.
int** a;
int m,n;

*/

/* Alokacija kvadratne matrice nxn */
int** alociraj(int n)
{

int** m;
int i;
m=malloc(n*sizeof(int*));
if (m == NULL)
{

printf("Greska prilikom alokacije memorije!\n");
exit(1);

}

for (i=0; i<n; i++)
{

m[i]=malloc(n*sizeof(int));
if (m[i] == NULL)
{
int k;
printf("Greska prilikom alokacije memorije!\n");
for(k=0;k<i;k++)

free(m[k]);
exit(1);
}

}

return m;
}

/* Dealokacija matrice dimenzije nxn */
void obrisi(int** m, int n)
{

int i;
for (i=0; i<n; i++)

free(m[i]);
free(m);

}

/* Ispis matrice /
void ispisi_matricu(int** m, int n)
{

int i, j;
for (i=0; i<n; i++)
{

1.2 Matrice - uvežbavanje 7

for (j=0; j<n; j++)
printf("%d ",m[i][j]);

printf("\n");
}

}

/* Provera da li je relacija predstavljena matricom refleksivna */
int refleksivna(int** m, int n)
{

int i;
for (i=0; i<n; i++)

if (m[i][i]==0)
return 0;

return 1;
}

/* Provera da li je relacija predstavljena matricom simetricna */
int simetricna(int** m, int n)
{

int i,j;
for (i=0; i<n; i++)

for (j=i+1; j<n; j++)
if (m[i][j]!=m[j][i])

return 0;
return 1;

}

/* Provera da li je relacija predstavljena matricom tranzitivna*/
int tranzitivna(int** m, int n)
{

int i,j,k;

for (i=0; i<n; i++)
for (j=0; j<n; j++)

for (k=0; k<n; k++)
if ((m[i][j]==1)

&& (m[j][k]==1)
&& (m[i][k]!=1))

return 0;
return 1;

}

/* Pronalazi najmanju simetricnu relaciju koja sadrzi relaciju a
*/
void simetricno_zatvorenje(int** a, int n)
{

int i,j;
for (i=0; i<n; i++)

for (j=0; j<n; j++)
{

if (a[i][j]==1 && a[j][i]==0)

8 Jelena Tomašević

a[j][i]=1;
if (a[i][j]==0 && a[j][i]==1)

a[i][j]=1;
}

}

main() {
int **m;
int n;
int i,j;

printf("Unesi dimenziju matrice : ");
scanf("%d",&n);
m=alociraj(n);

for (i=0; i<n; i++)
for (j=0; j<n; j++)

scanf("%d",&m[i][j]);

printf("Uneli ste matricu : \n");

ispisi_matricu(m,n);

if (refleksivna(m,n))
printf("Relacija je refleksivna\n");

if (simetricna(m,n))
printf("Relacija je simetricna\n");

if (tranzitivna(m,n))
printf("Relacija je tranzitivna\n");

simetricno_zatvorenje(m,n);

ispisi_matricu(m,n);

obrisi(m,n);
}

Primer 3 Izračunati vrednost determinante matrice preko Laplasovog razvoja.

#include <stdio.h>
#include <stdlib.h>

/* Funkcija alocira matricu dimenzije nxn */
int** allocate(int n)
{

int **m;
int i;
m=(int**)malloc(n*sizeof(int*));
if (m == NULL) {

printf("Greska prilikom alokacije memorije!\n");
exit(1);

}

1.2 Matrice - uvežbavanje 9

for (i=0; i<n; i++)
{
m[i]=malloc(n*sizeof(int));
if (m[i] == NULL)
{
int k;
for(k=0;k<i;k++)

free(m[k]);
printf("Greska prilikom alokacije memorije!\n");
exit(1);
}

}

return m;
}

/* Funkcija vrsi dealociranje date matrice dimenzije n */ void
deallocate(int** m, int n)
{

int i;
for (i=0; i<n; i++)

free(m[i]);
free(m);

}

/* Funkcija ucitava datu alociranu matricu sa standardnog ulaza */
void ucitaj_matricu(int** matrica, int n)
{

int i,j;
for (i=0; i<n; i++)

for (j=0; j<n; j++)
scanf("%d",&matrica[i][j]);

}

/* Rekurzivna funkcija koja vrsi Laplasov razvoj */
int determinanta(int** matrica, int n)
{

int i;
int** podmatrica;
int det=0,znak;

/* Izlaz iz rekurzije je matrica 1x1 */
if (n==1)
return matrica[0][0];

/* Podmatrica ce da sadrzi minore polazne matrice */
podmatrica=allocate(n-1);
znak=1;
for (i=0; i<n; i++)
{
int vrsta,kolona;
for (kolona=0; kolona<i; kolona++)

10 Jelena Tomašević

for(vrsta=1; vrsta<n; vrsta++)
podmatrica[vrsta-1][kolona] = matrica[vrsta][kolona];

for (kolona=i+1; kolona<n; kolona++)
for(vrsta=1; vrsta<n; vrsta++)

podmatrica[vrsta-1][kolona-1] = matrica[vrsta][kolona];

det+= znak*matrica[0][i]*determinanta(podmatrica,n-1);
znak*=-1;
}
deallocate(podmatrica,n-1);
return det;

}

main()
{

int **matrica;
int n;

scanf("%d", &n);
matrica = allocate(n);
ucitaj_matricu(matrica, n);
printf("Determinanta je : %d\n",determinanta(matrica,n));
deallocate(matrica, n);

}

1.3 Dinamički niz

Primer 4 Ilustracija dinamičkog niza.

/* Program za svaku rec unetu sa standardnog
ulaza ispisuje broj pojavljivanja.
Verzija sa dinamickim nizom i realokacijom.

*/

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Rec je opisana imenom i brojem
pojavljivanja */

typedef struct _rec
{

char ime[80];
int br_pojavljivanja;

} rec;

/* Dinamicki niz reci je opisan pokazivacem na
pocetak, tekucim brojem upisanih elemenata i
tekucim brojem alociranih elemenata */

rec* niz_reci;
int duzina=0;

1.3 Dinamički niz 11

int alocirano=0;

/* Realokacija se vrsi sa datim korakom */
#define KORAK 10

/* Funkcija ucitava rec i vraca njenu duzinu ili
-1 ukoliko smo dosli do znaka EOF*/

int getword(char word[],int max)
{

int c, i=0;

while (isspace(c=getchar()))
;

while(!isspace(c) && c!=EOF && i<max-1)
{

word[i++]=c;
c = getchar();

}

word[i]=’\0’;

if (c==EOF) return -1;
else return i;

}

main()
{
char procitana_rec[80];
int i;
while(getword(procitana_rec,80)!=-1)
{
/* Proveravamo da li rec vec postoji u nizu */

for (i=0; i<duzina; i++)
/* Ako bi smo uporedili
procitana_rec == niz_reci[i].ime
bili bi uporedjeni pokazivaci a ne
odgovarajuci sadrzaji!!!
Zato koristimo strcmp. */
if (strcmp(procitana_rec,

niz_reci[i].ime)==0)
{
niz_reci[i].br_pojavljivanja++;
break;
}

/* Ukoliko rec ne postoji u nizu */
if (i==duzina) {

rec nova_rec;
/* Ako bi smo dodelili

nova_rec.ime = procitana_rec

12 Jelena Tomašević

izvrsila bi se dodela pokazivaca
a ne kopiranje niske procitana_rec
u nova_rec.ime.
Zato koristimo strcpy!!! */

strcpy(nova_rec.ime,procitana_rec);
nova_rec.br_pojavljivanja=1;

/* Ukoliko je niz "kompletno popunjen"
vrsimo realokaciju */

if (duzina==alocirano)
{
alocirano+=KORAK;

/* Sledeca linija zamenjuje blok
koji sledi i moze se
koristiti alternativno. Blok je
ostavljen samo da bi
demonstrirao korisnu tehniku */

/*
niz_reci=realloc(niz_reci,

(alocirano)*sizeof(rec)); */

{
/* alociramo novi niz, veci

nego sto je bio prethodni */
rec* novi_niz=(rec *)malloc(alocirano*sizeof(rec));

/* Kopiramo elemente starog niza u novi */
for (i=0; i<duzina; i++)

novi_niz[i]=niz_reci[i];
/* Uklanjamo stari niz */
free(niz_reci);
/* Stari niz postaje novi */
niz_reci=novi_niz;
}

if (niz_reci==NULL)
{
printf("Greska prilikom

alokacije memorije");
exit(1);
}
}
/* Upisujemo rec u niz */
niz_reci[duzina]=nova_rec;
duzina++;

} }

/* Ispisujemo elemente niza */ for(i=0; i<duzina; i++)
printf("%s - %d\n",niz_reci[i].ime,

niz_reci[i].br_pojavljivanja);

1.4 Zadaci za vežbu 13

free(niz_reci); }

1.4 Zadaci za vežbu

Zadatak 1 Ispisati na izlaz sumu celih brojeva koji se unose kao argumenti komandne linije.

Zadatak 2 Napisati funkciju koja omogućava računanje proizvoda dve kvadratne matrice dimenz-
ija n×n. Napisati program koji omogućava unošenje dve kvadratne matrice i štampanje proizvoda
te dve matrice.

Zadatak 3 Jun, 2004. Napisati funkciju koja računa multiplikativnu otpornost datog pozitivnog
broja. Multiplikativna otpornost se računa na sledeći način n0 = n, nk je jednak proizvodu cifara
broja nk−1, k = 1, 2..., multiplikativna otpornost je najmanje k za koje je nk jednocifren broj.
Napisati program koji iz datoteke čije se ime zadaje na ulazu čita brojeve, gde su brojevi zapisani
po jedan u svakom redu i u drugu datoteku čije se ime zadaje tako�e na ulazu upisuje red po red
date brojeve i njihovu multiplikativnu otpornost.

