Osnovi programiranja
Beleske sa vezbi
Skolska 2005/2006 godine

(drugi semestar)

Smer Racunarstvo 1 informatika
Matematicki fakultet, Beograd

Jelena Tomasevié

May 17, 2006

Sadrza]j

Programski jezik C
1.1 Sortiranje

Programski jezik C

2.1 Rekurzija e
2.2 Zivotni vek i oblast vazenja promenjivih, staticke promenljive
2.3 PokazivaCi
2.4 Pokazivaé¢i i argumenti funkcija oL Lo
2.5 Zadaciza vezbu e

Programski jezik C
3.1 Pokazivaciinizovi (polja) o
3.2 Zadacizavezrbuo e e

Programski jezik C

4.1 Strukture e

4.1.1 Operator typedef
4.2 Radsadatotekama
4.3 Zadaciza vezbu e e e e e

Programski jezik C

5.1 Argumenti komandne linije Lo oL
5.2 Alokacija memorije
5.3 Niz pokazivaca e
5.4 Matrice oL e
5.5 Zadaciza vezbu e

Programski jezik C

6.1 Pokazivaci na funkcije L L
6.2 Matrice - uvezbavanje L oL
6.3 Dinamickiniz L
6.4 Zadaciza vezbu e e e

Programski jezik C

T QSOTE . . o e
7.2 Sortiranje — genericka funkcija oo o oo
7.3 gSort funkcija iz standardne biblioteke
7.4 Genericko sortiranje reCi oL L
7.5 Zadaci za vezbu: Lo e

15
15
17
20
22
23

25
25
30

33
33
35
41
47

49
49
52
53
55
57

59
59
59
64
67

SADRZAJ

8 Programski jezik C

81 Liste
8.1.1 Dvosturko povezana kruzna lista
82 Zadacizavezbu.

9 Programski jezik C

9.1 Stek . ..o
9.2 Drveta e e e

9.2.1 Binarno pretrazivackodrvo 0oL
9.3 Zadacizavezbu

10 Programski jezik C

10.1 Grafovi e

11 Programski jezik C
11.1 Zadaci sa prethodnih ispita i kolokvijuma iz Osnova Programiranja

1

Programski jezik C

1.1 Sortiranje

Niz moze biti sortiran ili uredjen u opadajuéem, rastuéem, neopadajué¢em i nerastu¢em poretku.
Dato je nekoliko algoritama za sortiranje niza koji se unosi sa ulaza u nerastué¢em poretku odnosno
tako da vazi da je niz[0] >= niz[1] >= ... niz[n]. Jednostavnom modifikacijom svakim od
ovih algoritama niz se moze sortirati i u opadajué¢em, rastu¢em ili neopadajuéem poretku.

Primer 1 Selection sort
U prvom prolazu se razmengjuju vrednosti a[0] sa onim élanovima ostatka niza koji su vedi od njega.
Na taj nacin ée se posle prvog prolaza kroz niz a[0] postaviti na najveéi element niza.

#include<stdio.h>
#define MAXDUZ 100

int main()

{
/* Niz od maksimalno MAXDUZ elemenatax/
int a[MAXDUZ];

/* Dimenzija niza, pomocna i brojacke promenljive */
int n,pom,i,j;

printf("Unsite dimenziju niza\n");
scanf ("%d",&n) ;

if (n>MAXDUZ)

{
printf ("Nedozvoljena vrednost za n\n");
exit(1);

}

/* Unos clanova niza */
for(i=0; i<n; i++)

{

1Zasnovano na primerima sa sajta http://www.matf.bg.ac.yu/~milena

6 Jelena Tomasevié

printf("Unesite %d. clan niza\n",i+1);
scanf ("%d",&al[i]);
}

/*Sortiranjex*/
for(i=0; i<n-1; i++)
for(j=i+1; j<m; j++)

if(alil<aljl)
{
pom=alil;
alil=aljl;
aljl=pom;
}

/* Ispis niza */

printf("Sortirani niz:\n");

for(i=0; i<n; i++)
printf("%d\t",alil);

putchar (°\n’);
return O;

3

Primer 2 Selection sort 2

Modifikacija prethodnog resenja radi dobijanja na efikasnosti. Ne vrse se zamene svaki put veé
samo jednom, kada se pronade odgovarajuéi element u nizu sa kojim treba izvrsiti zamenu tako da
u nizu bude postavljen trenutno najveci element na odgovarajuce mesto.

#include<stdio.h>
#define MAXDUZ 100

int main()

{

/* Niz od maksimalno MAXDUZ elemenatax/
int a[MAXDUZ];

/* Dimenzija niza, indeks najveceg elementa
u i-tom prolazu,pomocna i brojacke promenljive */
int n,ind,pom,1i, j;

printf("Unsite dimenziju niza\n");
scanf ("%d",&n) ;

if (n>MAXDUZ)

{
printf ("Nedozvoljena vrednost za n\n");
exit(1);

}

/* Unos clanova niza */

1.1 Sortiranje 7

for(i=0; i<n; i++)

{
printf ("Unesite %d. clan niza\n",i+1);
scanf ("%d",&alil);

}

/*Sortiranje - bez stalnih zamena vec se
pronalazi indeks trenutno najveceg clana nizax/
for(i=0; i<mn-1; i++)
{
for(ind=i,j=i+1; j<n; j++)
if (alind]<aljl)
ind=j;

/* Vrsi se zamena onda kada na i-tom mestu
nije najveci element. Tada se na i-to mesto
postavlja najveci element koji se nalazio na
mestu ind. */

if(i != ind)

{

pom=a[ind];
alind]l=alil;
ali]l=pom;

}

}
/* Ispis niza */
printf("Sortirani niz:\n");
for(i=0; i<n; i++)

printf ("%d\t",ali]);

return 0;

3

Primer 3 bbsort1

Algoritam sortiranja buble sort poredi dva susedna elementa niza i ako su pogresno rasporedeni
zamenjuje tm mesta. Posle poredenja svih susednih parova najmangi od njih ée isplivati na kraj
niza. Zbog toga se ovaj metod naziva metod mehuriéa. Da bi se najmangi broj nesortiranog dela
niza doveo na svoje mesto treba ponoviti postupak.

#include<stdio.h>
#define MAXDUZ 100

int main()

{
/* Dimenzija niza, pomocna promenljiva
i brojacke promenljive */
int n,pom,i,j;

/* Niz od maksimalno MAXDUZ elemenatax/
int a[MAXDUZ];

printf("Unsite dimenziju niza\n");

8 Jelena Tomasevié

scanf ("%d",&n) ;

if (n>MAXDUZ)

{
printf ("Nedozvoljena vrednost za n\n");
exit(1);

}

/* Unos clanova niza */

for(i=0; i<n; i++)

{
printf("Unesite %d. clan niza\n",i+1);
scanf ("%d",&al[i]);

}

/*Sortiranje */
for(i=n-1; i>0; i--)
for(j=0; j<i; j++)

if(aljl<alj+11)
{
pom=aljl;
aljl=alj+1];
alj+1]=pom;
}

/* Ispis niza */

printf("Sortirani niz:\n");

for(i=0; i<n; i++)
printf("%d\t",ali]);

/* Stampa prazan red */
putchar(°\n’);

/*Regularan zavrsetak rada programa */
return O;

}

Primer 4 bbsort2
Unapredjujemo prethodni algoritam kako bismo obezbedli da se ne vrse provere onda kada je niz
veé sortiran nego da se u tom slucaju prekine rad.

#include<stdio.h>
#define MAXDUZ 100

int main()
{
/* Dimenzija niza, pomocna promenljiva
i brojacke promenljive */
int n,pom,i,j;

/* Niz od maksimalno MAXDUZ elemenatax*/
int a[MAXDUZ];

1.1 Sortiranje 9

/* Promenljiva koja govori da 1li je izvrsena
zamena u i-tom prolazu kroz niz pa ako nije
sortiranje je zavrseno jer su svaka dva

susedna elementa niza u odgovarajucem poretku */
int zam;

printf("Unsite dimenziju niza\n");
scanf ("%d",&n) ;

if (n>MAXDUZ)

{
printf ("Nedozvoljena vrednost za n\n");
exit(1);

}

/* Unos clanova niza */

for(i=0; i<m; i++)

{
printf ("Unesite %d. clan niza\n",i+1);
scanf ("%d",&alil);

}

/*Sortiranje */
for(zam=1,i=n-1; zam && i>0; i--)
for(zam=0,j=0; j<i; j++)

if(aljl<alj+11)
{
/* Zamena odgovarajucih clanova niza */
pom=aljl;
aljl=alj+1];
alj+1]=pom;

/* Posto je u i-tom prolazu
izvrsena bar ova zamena zam
se postavlja na 1 sto
nastavlja sortiranje */
zam=1;

3

/* Ispis niza */
printf("Sortirani niz:\n");
for(i=0; i<n; i++)

printf ("%d\t",alil);

return 0O;

Primer 5 isort
Insert sort, u svakom trenutku je pocetak miza sortiran a sortiranje se vrsi tako Sto se jedan po
jedan element niza sa kraja ubacuje na odgovarajuce mesto.

10

Jelena Tomasevié

#include<stdio.h>
#define MAXDUZ 100

int main()

{

}

/* Dimenzija niza, pomocna
i brojacke promenljive */
int n,pom,i,j;

/* Niz od maksimalno MAXDUZ elemenatax*/
int a[MAXDUZ];

printf("Unsite dimenziju niza\n");
scanf ("%d",&n) ;

if (n>MAXDUZ)
{

printf ("Nedozvoljena vrednost za n!\n");

exit(1);
}

/* Unos clanova niza */
for(i=0; i<n; i++)

{
printf ("Unesite %d. clan niza\n",i+1);
scanf ("%d",&alil);

}

/*Sortiranje*/

for(i=1; i<m; i++)
for(j=i; (j>0) && (aljl>alj-11); j--)
{
pom=a[j];
aljl=alj-11;
alj-1]=pom;
}

/* Ispis niza */
printf("Sortirani niz:\n");
for(i=0; i<n; i++)
printf("%d\t",alil);
putchar(°\n’);

return O;

Primer 6 Binarno pretrazivanje

#include<stdio.h>
#define MAXDUZ 100

1.1 Sortiranje

11

int main()

{

/* Dimenzija niza,pomocna i brojacke
promenljive */
int n,pom,i,j;

/* Niz od maksimalno MAXDUZ elemenatax/
int a[MAXDUZ];

/* Elemet koji se trazi i pozicija
na kojoj se nalazi- ukoliko je u nizux/
int x,pozicija;

/* Pomocne promenljive za pretragu */
int donji, gornji, srednji;

printf("Unsite dimenziju niza\n");
scanf ("%d",&n) ;

/* Unos clanova niza */
for(i=0; i<n; i++)

{
printf ("Unesite %d. clan niza\n",i+1);
scanf ("%d",&al[i]);

}

/*Sortiranjex*/

for(i=0; i<n-1; i++)
for(j=i+1; j<m; j++)

if(afil>aljl)
{
pom=alil;
alil=aljl;
aljl=pom;
}

/* Unos elementa binarne pretrage */
printf("Unesite element koji se trazi\n");
scanf ("%d",&x) ;

donji = 0;
gornji = n-1;
pozicija = -1;

while(donji<=gornji)
{
srednji = (donji + gornji)/2;
if(alsrednji] == x)
{
pozicija = srednji;
break;
}

else

12 Jelena Tomasevié

if (alsrednji] < x)
donji = srednji + 1;
else
gornji = srednji -1;

/* Ispis rezultata */

if (pozicija == -1)
printf ("Trazeni broj se ne nalazi u nizu!\n");
else

printf ("Broj %d se nalazi na %d poziciji
sortiranog niza! \n",x,pozicija+l);

putchar(°\n’);

return O;

3

Primer 7 Sabiranje dva wvelika broja, njihovo poredenje, unos i ispis, mnoZenje velikog broja
cifrom.

#include<stdio.h>
#define MAXDUZ 1000

int unos_broja(int cifre[], int maxduz)

{
int brcifara=0;
char c;

c=getchar();
while (brcifara < maxduz && c >= 0’ && c <= ’9’)
{

cifre[brcifara++]=c-’0’;

c=getchar();

return brcifara;

}
void obrni(int cifre[],int brcifara)
{

int i,pom;

for (i=0; i<brcifara/2; i++)

{
pom=cifre[i];
cifre[i]l=cifre[brcifara-i-1];
cifre[brcifara-i-1]=pom;

}

1.1 Sortiranje

13

void ispisi(int cifre[],int brcifara)
{ int i;
putchar(°\n’);
for (i=brcifara-1; i>=0; i--)
printf("%d",cifre[il);
/* ili
putchar(cifre[i]+°07);
*/
putchar(’\n’);
}

int jednaki(int cifrel[],int cifre2[],
int brcifaral, int brcifara2)

{
int i;
if (brcifaral != brcifara2) return O;
for (i=0; i<brcifaral; i++)
if (cifrel[i] != cifre2[i]) return 0;
return 1;
}

int veci(int cifrel[], int brcifaral,
int cifre2[], int brcifara2)
{
int i;
if (brcifaral>brcifara2) return 1;
if (brcifaral<brcifara2) return O;

for (i=brcifaral-1; i>=0; i--)

{
if (cifrel[il<cifre2[i]) return O;
if (cifreil[i]l>cifre2[i]) return 1;

return 0;

int saberi(int cifrel[], int brcifarail,
int cifre2[], int brcifara2,
int cifrel])

int brcifara=0;
int i,pom,pamtim=0;

for(i=0; i<brcifaral || i<brcifara2;
{
pom =((i < brcifaral)? cifrell[i]
+((i < brcifara2)? cifre2[i]
+ pamtim;

i++)

:0)
: 0)

14 Jelena TomaSevié
cifre[i] = pom%10;
pamtim = pom/10;

}

if (pamtim)

{
cifre[i]=pamtim;
brcifara=i+1;

}

else brcifara=i;

return brcifara;

}

int pomnozic(int c,int cifre[],

{

int brcifara, int pcifre[])

int pbrcifara=0;

int i,pamtim=0;

for (i=0; i<brcifara; i++)

{
pcifre[i]l=(cifre[i]*c+pamtim)’10;
pamtim=(cifre[i]*c+pamtim)/10;

}

pbrcifara=brcifara;

if (pamtim)

{

pcifre[pbrcifaral=pamtim;

pbrcifara++;

}

return pbrcifara;

int main()

{

int d1,d2,d;

int broj1[MAXDUZ], broj2[MAXDUZ], zbir[MAXDUZ];

d1l=unos_broja(broj1,MAXDUZ) ;
d2=unos_broja(broj2,MAXDUZ) ;

obrni(broj1,d1);

obrni(broj2,d2);
d=saberi(brojl,dl,broj2,d2,zbir);
ispisi(zbir,d);

return O;

}

2

Programski jezik C

2.1 Rekurzija

C funkcije se mogu rekurzivno koristiti, Sto znac¢i da funkcija moze pozvati samu sebe direktno ili
indirektno.

Primer 8 Stampanje celog broja.

#include<stdio.h>
void printb(long int n)
{
if (n<0)
{
putchar(’-’);
n=-n;
}
if (n/10)
printb(n/10);
putchar(n % 10 + ’0°);
}

int main()

{

long int b=-1234;
printb(b);
putchar (’\n’);
return O;

3

Kad funkcija rekurzivno pozove sebe, svakim pozivom pojavijuje se novi skup svih automatskih
promenljivih, koji je nezavisan od prethodonog skupa. Prva funkcija printb kao argument dobija
broj -12345, ona prenosi 1234 u drugu printb funkciju, koja dalje prenosi 123 u trecéu, i tako redom
do poslednje koja prima 1 kao argument. Ta funkcija Stampa 1 i zavrsava sa radom tako da se
vraca na prethodni nivo, na kome se stampa dva i tako redom.

Primer 9 Racunanje sume prvih n prirodnih brojeva.

1Zasnovano na primerima sa sajta http://www.matf.bg.ac.yu/~milena

16 Jelena Tomasevié

#include<stdio.h>
int suma(int n)

{
if (n!=0)
return(n + suma(n-1));
else return n;
}
main()
{
int S,n;

printf ("Unesite n\n");
scanf ("%d",&n) ;
S=suma(n) ;

printf ("S=%d4",S);
putchar(’\n’);

}

Primer 10 Racunanje faktorijela prirodnog broja.

#include<stdio.h>
unsigned long fakt(int n)

{
if(n!=0)
return(nxfakt(n-1));
else return 1;
}
main()
{
int n;

unsigned long f;
printf ("Unesite n\n");
scanf ("%d4d",&n) ;
f=fakt(n);

printf ("f=%d4",f);
putchar (’\n’);

}

Primer 11 Fibonacijevi brojevi.

#include<stdio.h>
int fibr(int n)

{

if ((n==1) | | (n==2))

return 1;

else return(fibr(n-1)+fibr(n-2));
}
int main()
{
int Fn,n;

printf ("Unesite n\n");

2.2 Zivotni vek i oblast vazenja promenjivih, staticke promenljive 17

scanf ("%d",&n) ;
Fn=fibr(n);

printf ("F[%d]=%d",n,Fn);
putchar (’\n’);

return O;

}

Primer 12 [terativna i rekurzivna varijanta racunanja sume niza.

int suma_niza_iterativno(int a[], int n)

{
int suma = 0;
int i;
for (i = 0; i<n; i++)
suma+=ali];
return suma;
}
int suma_niza(int al[], int n)
{
if (n == 1)
return al[0];
else
return suma_niza(a, n-1)+al[n-1];
}

Primer 13 Stepenovanje prirodnog broja

int stepenuj (int n, int k)

{
if (k == 0)
return 1;
else
return n*stepenuj(n, k-1);
}

2.2 Zivotni vek i oblast vazenja promenjivih, staticke promenljive
Primer 14 Demonstracija zivotnog veka i oblasti vazenja promenjivih (scope).

#include <stdio.h>

/* Globalna promenjiva */
int a = 0;

/* Uvecava se globalna promenjiva a */
void increase()

{

at++;

printf("increase::a = %d\n", a);

}

/* Umanjuje se lokalna promenjiva a. Globalna promenjiva zadrzava svoju vrednost. */

18 Jelena Tomasevié

void decrease()

{
/* 0vo a je nezavisna promenjiva u odnosu na globalno a */
int a = 0;
a—-;
printf("decrease::a = %d\n", a);
X
void nonstatic_var()
{
/* Nestaticke promenjive ne cuvaju vrednosti kroz pozive funkcije */
int s=0;
sS++;
printf ("nonstatic::s=d\n",s);
X
void static_var()
{
/* Staticke promenjive cuvaju vrednosti kroz pozive funkcije.
Inicijalizacija se odvija samo u okviru prvog poziva. */
static int s=0;
s++;
printf ("static::s=%d\n",s);
3
main()
{

/* Promenjive lokalne za funkciju main */
int i;
int x = 3;

printf("main::x = %d\n", x);

for (i = 0; i<3; i++)

{

/* Promenjiva u okviru bloka je nezavisna od spoljne promenjive.
Ovde se koristi promenjiva x lokalna za blok petlje koja ima
vrednost 5, dok originalno x i dalje ima vrednost 3%/

int x = 5;

printf("for::x = %d\n", x);

b

/* U ovom bloku x ima vrednost 3 */
printf("main::x = %d\n", x);

increase();
decrease();

/* Globalna promenjiva a */
printf("main::a = %d\n", a);

2.2 Zivotni vek i oblast vazenja promenjivih, staticke promenljive

19

/* Demonstracija nestatickih promenjivih */
for (i = 0; i<3; i++)
nonstatic_var();

/* Demonstracija statickih promenjivih */
for (i = 0; i<3; i++)
static_var();

Izlaz iz programa:
main::x = 3
for::x =5
for::x =5
5

for::x
main::x = 3
increase::a =1
decrease::a
main::a = 1
nonstatic::s=1
nonstatic::s=1
nonstatic::s=1
static::s=1
static::s=2
s=3

static::
Primer 15 llustracija statickih promenljivih.

#include <stdio.h>

void f£()

{
static int a;
at+;
printf ("%d\n",a);

}
main()
{
int i;
for (i=0; i<=10; i++)
£0O;
}

/* Izlaz iz programa 1 2 3 456 7 8 9 10 11%/

Primer 16 Illustruje vidljivost imena

#include <stdio.h>

int i=10;

20

Jelena Tomasevié

void main() {

{
int i=3;
{
int i=1;
printf ("%d\n", i);
}
printf ("%d\n",1);
}

printf ("%d\n",1i);

2.3 Pokazivaci
Pokazivac je promenljiva koja sadrzi adresu promenljive.
int x=1, y=1, z[10];

int *ip; /* ip je pokazivac na int,
odnosno *ip je tipa intx*/

ip = &x; /* ip sada pokazuje na x */

y=*ip; /* y je sada 1 */

ip = 0; / x je sada 0 */

ip+=10; / x je sada 10%/

++*ip; /* x je sada 11x%/

(*ip) ++; /* x je sada 12,
zagrada neophodna zbog prioriteta
operatorax/

ip = &z[0]; /* ip sada pokazuje na z[0]*/
Primer 17 llustracija rada sa pokazivackim promenljivim.

#include <stdio.h>
main() {
int x = 3;

/* Adresu promenjive x zapamticemo u novoj promeljivoj.
Nova promenljiva je tipa pokazivaca na int (int*) */
int* px;

printf ("Adresa promenljive x je : %p\n", &x);

printf ("Vrednost promenljive x je : %d\n", x);

px = &x;
printf ("Vrednost promenljive px je (tj. px) : %p\n", px);

printf ("Vrednost promenljive na koju ukazuje px (tj. *px) je :

/* Menjamo vrednost promenljive na koju ukazuje px */
*px = 6;

%d\n", *px);

2.3 Pokazivaci 21

printf ("Vrednost promenljive na koju ukazuje px (tj. *px) je : %d\n", *px);

/* Posto px sadrzi adresu promenljive x, ona ukazuje na x tako da je
posredno promenjena i vrednost promenljive x */
printf ("Vrednost promenljive x je : %d\n", x);

3

Izlaz (u konkretnom slucaju):

Adresa promenljive x je : 0012FF88

Vrednost promenljive x je : 3

Vrednost promenljive px je (tj. px) : O0012FF88

Vrednost promenljive na koju ukazuje px (tj. *px) je : 3
Vrednost promenljive na koju ukazuje px (tj. *px) je : 6
Vrednost promenljive x je : 6

Pored pokazivaca na osnovne tipove, postoji i pokaziva¢ na prazan tip (void).
void *pp;

Njemu moze da se dodeli da pokazuje na int, ili na char ili na proizvoljan tip ali je to neophodno
eksplicitno naglasiti svaki put kada zelimo da koristimo ono na $ta on pokazuje.

Primer 18 Upotreba pokazivaca na prazan tip.

#include<stdio.h>

main()

{

void *pp;
int x=2;
char c=’a’;

pPp = &x;

*(int *)pp = 17; /* x postaje 17x/
printf("\n adresa od x je %p", &x);
printf("\n%d i %p",*(int*)pp, (int * Jpp);

pp = &c;
printf("\n adresa od c je %p", &c);

printf ("\n%c i %p",*(char*)pp, (char *)pp);
}

/%

adresa od x je 0012FF78
17 i 0012FF78

adresa od c je 0012FF74
a i 0012FF74

*/

Posebna konstanta koja se koristi da se oznac¢i da pokaziva¢ ne pokazuje na neko mesto u
memoriji je NULL.

22 Jelena Tomasevié

2.4 Pokazivaci i argumenti funkcija

C prosleduje argumente u funkcije pomoc¢u vrednosti. To znaéci da slede¢a funkcija neée uraditi
ono §to zelimo:

{

int temp;
temp = Xx;
X=y;
y=temp;

by

Zbog prenosa parametara preko vrednosti swap ne moze da utice na argumente a i b u funkciji
koja je pozvala swap. Ova swap funkcija samo zamenjuje kopije od a i b.
Da bi se dobio zeljeni efekat, potrebno je da se proslede pokazivaci:

/* Zameni *px i *py */
void swap (int *px, int *py)

{

int temp;
temp =*px;
*pxX = *py;
*py = temp;
}

a poziv funkcije swap izlgeda sada ovako
swap (&a, &b);
Primer 19 Demonstracija vise povratnih vrednosti funkcije koristeé¢i prenos preko pokazivaca.

/* Funkcija istovremeno vraca dve vrednosti - kolicnik i ostatak
dva data broja.
Ovo se postize tako sto se funkciji predaju vrednosti dva broja (x i y) koji se dele
i adrese dve promenljive na koje ce se smestiti rezultati */
void div_and_mod(int x, int y, int* div, int* mod) {
printf ("Kolicnik postavljam na adresu : %p\n", div);
printf ("Ostatak postavljam na adresu : %p\n", mod);
*div = x / y;
*mod = x % y;

}

main() {
int div, mod;
printf ("Adresa promenljive div je %p\n", &div);
printf ("Adresa promenljive mod je %p\n", &mod);

/* Pozivamo funkciju tako sto joj saljemo vrednosti dva broja (56 i 2)
i adrese promenljvih div i mod na koje ce se postaviti rezultati */
div_and_mod(5, 2, &div, &mod);

printf ("Vrednost promenljive div je %d\n", div);
printf ("Vrednost promenljive mod je %d\n", mod) ;

2.5 Zadaci za vezbu 23

Izlaz u konkretnom slucaju:

Adresa promenljive div je 0012FF88
Adresa promenljive mod je 0012FF84
Kolicnik postavljam na adresu : 0012FF88
Ostatak postavljam na adresu : 0012FF84
Vrednost promenljive div je 2

Vrednost promenljive mod je 1

2.5 Zadaci za vezbu

Zadatak 1 Napisati program koji (a) iterativno (b) rekurzivno racuna n-ti Fibonacijev broj, pri
cemu se broj n zadaje sa standardnog ulaza. Uporediti brzine izvrsavanja ova dva programa za
n=>5, n=55 1 n=95.

Zadatak 2 Napisati program u kome se koriscenjem rekurzivne funkcije izracunava NZD brojeva
T1y.
z=0

_ Y,
nzd(z,y) = { nzd(y%x,z), z!=0

Zadatak 3 Broj je Armstrongov ako je jednak sumi n-tih stepena svojih cifara. Ispitati da i je
broj koji se unosi sa standardnog ulaza Armstrongov.

Zadatak 4 Napisati program u C-u koji prikazuje sve proste brojeve u datom intervalu kojima je
zbir cifara sloZen broj. Interval se zadaje uditavanjem gornje i donje granice (dva prirodna broja).
Brojeve prikazati u opadajuéem poretku.

Zadatak 5 (a) Napisati funkciju int palindrom(int broj) koja proverava da li je broj palindrom i
vraca vrednost 1 ako jeste, 0 ako nije. Na primer, brojevi 1, 44, 121, 112211, 12321 i 5665 jesu
palindromi, a brojevi 123, 67, 8908 nisu.

(b) Napisati program koji proverava da li je uneti broj palindrom.

Zadatak 6 Za dati broj moze se formirati niz tako da je svaki sledeéi ¢lan niza dobijen kao suma
cifara prethodnog ¢lana niza. Broj je srecan ako se dati niz zavrsava sa jedinicom. Napisati
program koji za uneti broj odreduje da li je srecan.

Zadatak 7 Sa ulaza se unosi broj u osnovi deset i osnova <= 10. Odstampati vrednost datog
broja uw datoj osnovi.

Zadatak 8 Sa ulaza se unosi osnova <= 10 i broj. Proveriti da li je taj broj ispravan broj za datu
osnovu © ako jeste izracunati njegovu vrednost u osnovi 10.

Zadatak 9 Broj je Nivenov ako je deljiv sumom svojih cifara.

1. Napsati funkciju koja racuna sumu cifara broja a. Na primer, za broj 121 funkcija treba da
vrati 4.

2. Napisati funkciju koja proverava da li je broj Nivenov i vraca 1 ako jeste a 0 ako nije.
3. Napisati program koji za uneto n ispisuje prvih n Nivenovih brojeva.

4. Napisati program koji za uneto n ispisuje sve Nivenove brojeve manje od n.

24 Jelena Tomasevié

Zadatak 10 Napisati program koji izracunava vrednost polinoma u tacki x:
1. Napisati funkciju koja racuna k-ti stepen prirodnog broja n.

2. Napisati program koji za uneti niz koeficijenata ali] i uneti broj x racuna vrednost polinoma
ap * 2" + a1 2" L4+ L+ arxz+ao

3

Programski jezik C

3.

U

1 Pokazivaéi i nizovi (polja)

C-u postoji cvrsta veza izmedu pokazivaca i nizova. Bilo koja operacija koja se moZe ostvariti

dopisivanjem indeksa niza moZe se uraditi i sa pokazivacima.

Deklaracija
int a[10];
definise niz a velicine 10 koji predstavlja blok od 10 uzastopnih objekata nazvanih a[0], a[1],

Notacija ali] odgovara i-tom elementu niza.

Ako je pa pokaziva¢ na ceo broj

int *pa;

tada iskaz pa = &al0];

podesava da pa pokazZe na nulti element niza a, odnosno pa sadrzi adresu od a[0].

Ako pa pokazuje na odredeni element polja, onda po definiciji pa+1 pokazuje na sledeéi element,

pa+i pokazuje na i-ti element posle pa. Stoga, ako pa pokazuje na al0] tada

*(pa+1)

se odnost na sadrzaj od a[1].

pa+i je adresa od alil, a

* (pa+i)

je sadrzaj od a[il.

Ovo sve vazi bez obzira na tip ili velicinu elemenata u polju a.

Iskaz pa=&a[0] se moZe napisati kao pa=a jer je tme niza sinonim za lokaciju pocetnog

elementa.

Primer 20 Veza izmedu pokazivaca © nizova.

#include <stdio.h>

void print_array(int* pa, int n);

main()

{

int all] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int num_of_elements = sizeof(a)/sizeof (int);
int* pa;

IPreuzeto sa sajta http://www.matf.bg.ac.yu/~milena

., al9].

26 Jelena Tomasevié

/* Niz je isto sto i adresa prvog elementa */

printf("Niz a : %p\n", a);

printf ("Adresa prvog elementa niza a (&a[0]) : %p\n", &a[0]);
/* Niz a : 0012FF5C

Adresa prvog elementa niza a (&a[0]) : 0012FF5C */

/* Moguce je dodeliti niz pokazivacu odgovarajuceg tipa */
pa = a;

printf ("Pokazivac pa ukazuje na adresu : %p\n", pa);
/* Pokazivac pa ukazuje na adresu : O0012FF5C */

/* Nizu nije moguce dodeliti pokazivacku promenljivu
(nizove mozemo smatrati KONSTANTNIM pokazivacima na prvi element) */
/* a = pa; */

/* Pokazivace je dalje moguce indeksirati kao nizove */
printf ("pal0] = %d\n", pal0]);
printf("pal[b] = %d\n", pal5]);
/* pal0] =1
pals] = 6 */

/* Medjutim, sizeof(pa) je samo velicina pokazivaca, a ne niza */
printf ("sizeof(a) = %d\n", sizeof(a));
printf ("sizeof (pa) = %d\n", sizeof(pa));
/* sizeof(a) = 40
sizeof(pa) = 4 */

/* Pozivamo funkciju za stampanje niza i saljemo joj niz */
print_array(a, num_of_elements) ;
/¥1 23456789 10 %/

/* Pozivamo funkciju za stampanje niza

i saljemo joj pokazivac na pocetak niza */
print_array(pa, num_of_elements);
/123456789 10 */
X

/* Prosledjivanje niza u funkciju
void print_array(int pal[l, int n);
je ekvivalentno prosledjivanju
pokazivaca u funkciju
void print_array(int* pa, int n);
Izmedju ovih konstrukcija nema nikakve razlike.
*/
void print_array(int* pa, int n)
{
int i;
for (i = 0; i<m; i++)
printf("%d ", palil);
putchar (’\n’);

3.1 Pokazivaci i nizovi (polja) 27

Prilikom deklaracije treba praviti razliku izmedu niza znakova i pokazivaca:

char poruka[]="danas je lep dan!";
char *pporuka = "danas je lep dan!";

poruka je niz znakova koji sadrzi dati tekst. Pojedine znake mogucée je promeniti ali se poruka
uvek odnosi na isto mesto u memoriji.
pporuka je pokazivac, koji je inicijalizovan da pokazuje na konstantnu nisku, on moZe biti preusmeren
da pokazuje na mesto drugo, ali rezultat nece biti definisan ako pokusate da modifikujete sadrzaj
niske (jer je to konstantna niska).

Ako deklarisemo

char *pporukal = "danas je lep dan!";
char *pporuka2 = "danas je lep dan!";
char *pporuka3 = "danas pada kisa";

tada ée pokazivaci pporukal i pporuka?2 pokazivati na isto mesto u memoriji, a pporukal na neko
drugo mesto u memoriji.

Ako uporedimo (pporukal==pporuka3) uporedice se vrednosti pokazivaca. Ako uporedimo (pporukal
< pporuka?2) uporedice se vrednosti pokazivaca. Ako dodelimo pporukal=pporukad tada ée pporukal
dobiti vrednost pokazivaca pporukasd i pokazivace na isto mesto u memoriji. Nece se izvrsiti kopi-
ranje sadrzaja memorijel!!

Primer 21 Vezba pokazivacke aritmetike.
#include <stdio.h>
/* Funkcija pronalazi x u nizu niz
date dimenzije,
bez koriscenja indeksiranja.

Funkcija vraca pokazivac na
poziciju pronadjenog elementa. */

int* nadjiint(int* niz, int n, int x)

{

while (n-- >= 0 && *niz!'=x)

niz++;
return (n>=0)7 niz: NULL;

}
main()
{

int al[J]={1,2,3,4,5,6,7,8%};

int* poz=nadjiint(a,sizeof(a)/sizeof (int),4);

if (poz!=NULL)

printf ("Element pronadjen na poziciji %d\n",poz-a);

}
Primer 22

int strlen(char *s)

{

28 Jelena Tomasevié
int n;
for(n=0; #*s != ’\0’; s++) n++;
return n;

}

Primer 23

/* Funkcija kopira string t u string s */
void copy(char* s, char* t)

{

while (ks++=xt++)

}

/* 0vo je bio skraceni zapis za sledeci kod
while(xt != ’\0’)
{
*s=%t;
s++;
t++;
b
xs = "\0’;

*/

Primer 24
/* Vrsi leksikografsko poredjenje dva stringa.
Vraca :
0 - ukoliko su stringovi jednaki
<0 - ukoliko je s leksikografski ispred t
>0 - ukoliko je s leksikografski iza t
*x/ int string_comparel(char *s, char *t) {
/* Petlja tece sve dok ne naidjemo
na prvi razliciti karakter */
for (; *s == *t; s++, t++)
if (¥s == °\0’) /* Naisli smo na kraj
oba stringa, a
nismo nasli razliku */
return O;

/* *s i *t su prvi karakteri u kojima
se niske razlikuju.
Na osnovu njihovog odnosa,
odredjuje se odnos stringova */

return *s - *t;

3

/* Mozemo koristiti i sintaksu kao kod nizova */
int string_compare2(char *s, char *t) {
int i;

3.1 Pokazivaci i nizovi (polja) 29

for (i = 0; s[i] == t[i]; i++)
if (s[i] == ’\0’)
return 0;
return s[i] - t[il;

}

Primer 25 Pronalazi prou poziciju karaktera ¢ w stringu s, © vraca pokazivaé na nju, odnosno
NULL ukoliko s ne sadrzi c.

char* string_char(char *s, char c)

{
int i;
for (; *s; s++)
if (s == ¢)
return s;
/* Nije nadjeno */
return NULL;
}

Primer 26 Pronalazi poslednju poziciju karaktera c u stringu s, © vraca pokazivaé na nju, odnosno
NULL ukoliko s ne sadrzi c.

char* string_last_char(char *s, char c)

{
char *t = s;
/* Pronalazimo kraj stringa s */
while (kxt++)
/* Krecemo od kraja i trazimo c unazad */
for (t——; t >= s; t--)
if (¥t == c)
return t;
/* Nije nadjeno */
return NULL;
by
Primer 27

/* Verzija funkcije strstr implementirane
bez koriscenja indeksiranja */

#include <stdio.h>

/* proverava da li se niska t nalazi unutar niske s*/
int sadrzi_string(char s[], char t[])

{
int i;
for (i = 0; s[il; i++)
{
int j, k;

for (j=0, k=0; s[i+jl==t[k]; j++, k++)
if (t[k+1]1=="\0’)

30 Jelena Tomasevié

return i;

3

return -1;

/* proverava da 1li se niska t nalazi unutar niske s*/
char* sadrzi_string_pok(char* s, char* t)

{
while(*s)
{
char *i, *j;
for (i = s, j = t; *i == *j; i++,j++)
if (x(j+1)=="\07)
return s;
s++;
}
return NULL;
}

/* Cita liniju sa stadnardnog ulaza i
vraca njenu duzinu */
int getline(char* line, int max)

{
char *s=line;
int c;
while (max-->0 && (c=getchar())!=’\n’ && c!=EQF)
*s++ = C;
if (c==’\n’)
*s++ = C;
*s = \0’;
return s - line;
¥
main()
{
char rec[]="zdravo";
char 1inija[100];
while (getline(linija, 100))
if (sadrzi_string_pok(linija, rec))
printf("%s",linija);
3

3.2 Zadaci za vezbu

Zadatak 11 Koristeéi pokazivace mapisati funkciju koja nadovezuje string t na kraj stringa s.
(Pretpostavlja se da u s ima dovoljno prostora.)

3.2 Zadaci za vezbu 31

Zadatak 12 januar 2006. (I grupa) Napisati funkciju koja za celobrojni niz dimenzije n, prover-
ava da li medu elementima niza postoje neka dva koja su jednaka.

Zadatak 13 januar 2006.(II grupa) Napisati funkciju koja za dve niske koje se prenose kao
parametrs utvrduje da li su anagrami ili ne. Dve niske su anagrami ako se sastoje od istog broja istih
karaktera. Na primer, niske ”anagram” i “ramgana” jesu anagrami, dok “anagram” i “angrm”
NniSU.

Zadatak 14 januar 2006.(II grupa) Napisati funkciju koja u datom celobrojnom nizu A duZine
n pronalazi (ako postoji) takav par indeksa (i,3) da je zbir élanova niza sa indeksima od i do j
jednak zadatom broju m.

Zadatak 15 Napisati funkciju koja vraca prou poziciju w niski s1 na kojoj se pojavijuje znak iz s2
ili -1 ako s1 ne sadrzi ni jedan znak iz s2. Ako je sl pera a s2 navip onda funkcija treba da vrati
poziciju 0. Ako je s1 zeleno a s2 nana onda funkcija treba da vrati poziciju 4.

Zadatak 16 (a) Napisati funkciju koja ispituje da li je jedna reé prefiks druge reci.
(b) Napisati program koji za svaku liniju teksta koja se unosi sa standardnog ulaza a koja nije duza
od 100 karaktera proverava da li je neka re¢ njen prefiks i stampa odgovarajucéu poruku.

Zadatak 17 (a) Napisati funkciju koja ispituje da li je jedna re¢ sufiks druge reci.
(b) Napisati program koji za svaku liniju teksta koja se unosi sa standardnog ulaza a koja nije duza
od 100 karaktera proverava da li je neka re¢ njen sufiks i Stampa odgovarajucéu poruku.

Zadatak 18 Ucitava se linija po linija teksta. Odstampati svaku od tih linija tako da ima veliko
slovo na pocetku recenice i sva mala unutar recenice(., 2, !).

32

Jelena Tomasevié

4

Programski jezik C

4.1 Strukture

Informacije kojima se opisuje realni svet retko se predstavijaju u elementarnoj formi u vidu celih,
realnih, znakovnih konstanti itd. Mnogo ¢escée imamo posla sa sloZenim objektima koji se sastoje od
elemenata raznih tipova. Na primer jednu osobu karakterisu ime, prezime, datum i mesto rodenja.
Struktura predstavlja skup podataka kojim se opisuju neka bitna svojstva objekta. Komponente
koje obrazuju strukturu nazivaju se elementi strukture.
Sintaksa strukture:

struct ime_strukture
{

tip ime_elemental;
tip ime_elementa2;

3

Primer 28 Primer jednostavne strukture.

struct licnost

{

char ime[31];
char adresal41];
unsigned starost;

};
Sada moZemo deklarisati dve osobe na sledeéi nacin:
struct licnost osobal, osoba2;

Deklaraciju osobel i osobe2 mogli smo da zapisemo i na sledeéi nacin

struct licnost

{

char ime[31];

1Zasnovano na primerima sa sajta http://www.matf.bg.ac.yu/~£ilip i http://www.matf.bg.ac.yu/~milena

34 Jelena Tomasevié

char adresal41];
unsigned starost;
} osobal, osoba?2;

Ukoliko nemamo potrebu da se licnost koristi dalje w programu mogu se napraviti dve osobe bez
davangja tmena strukturi:

struct

{

char ime[31];
char adresal41];
unsigned starost;
} osobal, osoba2;

Kada imamo promenljivu strukturnog tipa tada elementima date strukture pristupamo uz pomoc

70

operatora .

Primer 29
osobal.starost=20;
osoba2.starost=21;

if (osobal.starost == osoba2.starost)
printf (" Osobe su iste starosti");

Dozvoljeno je praviti nizove struktura. Npr. niz od 20 elemenata koji sadrzi licnosti:
struct licnost nizLicnosti[20];
Tada da bi procitali starost neke liénosti u nizu piSemo:
nizLicnosti[5].starost

Moze se definisati pokazivac na strukturu.

struct licnost *posoba;

20

Tada se pristupanje elementima strukture moZe vrsiti upotrebom operatora ’.” na standardni nacin:

(*posoba) . ime
(*posoba) .adresa
(*posoba) .starost

ili koriséenjem specijalnog operatora'— >’ na sledeéi nacin:

posoba->ime
posoba->adresa
posoba->starost

Primer 30 Elementi strukture mogu da budu i druge strukture.

struct datum

{

unsigned dan;
unsigned mesec;
unsigned godina;

};

4.1 Strukture 35

struct licnost

{
char ime[30];
struct datum datumrodjenja;

};
Sada se danu, mesecu i godini datuma rodjenja pristupa na sledeéi nacin:

osoba.datumrodjenja.dan = 10;
osoba.datumrodjenja.mesec = 5;
osoba.datumrodjenja.godina = 1986;

4.1.1 Operator typedef

Operator typedef omogucéava nam da definisemo nasa imena za neki od osnovih ili izvedenih tipova.
Na primer, moZemo da uradimo sledecée:

typedef double RealanBroj;

Nakon ovoga mozZemo u tekstu deklarista promenljivu x kao RealanBroj, ona ce zapravo biti tipa
double.

RealanBroj x; /* Umesto: double x;*/

1li, ako Zelimo da skratimo pisanje za neoznacene duge brojeve tj za unsigned long int to mozZemo
da uradimo na sledeéi nacin

typedef unsigned long int VelikiBroj;

Sada u kodu mozZemo da koristimo VelikiBroj kao tip.
Operator typedef je narocito pogodan da bi se izbeglo ponavljalnje reci struct pri deklarisanju
strukturnih promenljivih.

typedef struct _licnost licnost;
Sada deklaracija moZe da bude:

licnost osobal, osoba2;
/* umesto: struct _licnost osobal, osoba2; */

Kao skracen zapis za

struct _tacka {
float x;
float y;

typedef struct _tacka tacka;
moZe se koristiti:

typedef struct _tacka

{
float x;
float y;
} tacka;

Primer 31 Struktura artikal.

36 Jelena Tomasevié

typedef struct _artikal

{
long bar_kod;
char ime[MAX_IME];
float pdv;

} artikal;

Primer 32 Program ilustruje osnovne geometrijske algoritme kao i rad sa strukturama.

#include <stdio.h>
/* Zbog funkcije sqrt. */
#include <math.h>
/* Upozorenje : pod linux-om je potrebno program prevoditi sa
gcc —-1lm primer.c
kada god se koristi <math.h>
*/

/* Tacke su predstavljene sa dve koordinate. Strukturom gradimo novi tip podataka. */
typedef struct _tacka

{
float x;
float y;
} tacka;

typedef struct _vektor
{
float x, y;

} vektor;

/* Koordinatni pocetak */
tacka kp={0.0,0.0};

/* Niz tacaka */
tacka niz[100];

/* Pokazivac na strukturu tacke */
tacka *pt;

void IspisiTacku(tacka A)

{

printf (" (%f,%)\n",A.x,A.y);
}
void IspisiVektor(vektor v)
{

printf (" (%f,%)\n",v.x,v.y);
}

float duzina(vektor v)
{
return sqrt(v.x*v.x+v.y*v.y);

}

4.1 Strukture 37

vektor NapraviVektor(tacka *pA, tacka *pB)

{
vektor ab;
ab.x=pB->x - pA->x;
ab.y=pB->y - pA->y;
return ab;
3
float rastojanje(tacka A, tacka B)
{
float dx=B.x - A.x;
float dy=B.y - A.y;
return sqrt(dx*dx+dy*dy) ;
}

/* Izracunava povrsinu trougla Heronovim obrascem.

Argumenti funkcije su tri tacke koje predstavljaju temena trougla */
float PovrsinaTrougla(tacka A, tacka B, tacka C)
{

float a=rastojanje(B,C);

float b=rastojanje(A,C);

float c=rastojanje(A,B);

/* Poluobim. */
float s=(a+b+c)/2.0;

return sqrt(s*(s-a)*(s-b)*(s-c));

/* Izracunava povsinu konveksnog poligona. Argumenti funkcije su niz tacaka
koje predstavljaju temena poligona kao i njihov broj */

float PovrsinaKonveksnogPoligona(tacka poligon[], int br_temena)

{

int 1i;
float povrsina=0.0;

/* Poligon delimo na trouglove i posebno izracunavamo povrsinu svakoga od njih */
for (i=1; i<br_temena-1; i++)
povrsina+=PovrsinaTrougla(poligon[0], poligon[i], poligon[i+1]);

return povrsina;

/* Izracunava obim poligona. Argumenti funkcije su niz tacaka
koje predstavljaju temena poligona kao i njihov broj */
float Obim(tacka poligon[], int br_temena)
{
int i;
float 0=0;

38 Jelena Tomasevié

/* Dodajemo duzine stranica koje spajaju susedna temena */
for (i=0; i<br_temena-1; i++)
o+=rastojanje(poligon[i], poligon[i+1]);

/* Dodajemo duzinu stranice koja spaja prvo i poslednje teme */
o+=rastojanje(poligon[0], poligon[br_temena-1]);

return o;
X
main()
{
tacka poligon[]={{0.0,0.0%},
{0.0,1.0%},
{1.0,1.0%},
{1.0,0.03}};
printf ("Obim poligona je %f\n",Obim(poligon,4));
printf ("Povrsina poligona je %f\n",
PovrsinaKonveksnogPoligona(poligon,4)) ;
by

Primer 33 Program koji ucitava niz studenata i sortira ih po njihovim ocenama.

#include <stdio.h>
#include <ctype.h>

#define MAX_IME 20

typedef struct _student

{
char ime[MAX_IME];
char prezime[MAX_IME];
int ocena;

} student;

/* Funkcija ucitava rec i vraca njenu duzinu ili
-1 ukoliko smo dosli do znaka EOF*/
int getword(char word[],int max)

{

int c, i=0;

while (isspace(c=getchar()))

)

while(!isspace(c) && c!=EOF && i<max-1)

{

word [i++]=c;

c = getchar();
}
word[i]="\0";

if (c==EOF) return -1;
else return i;

4.1 Strukture 39

3

/* Funkcija ucitava niz studenata, vraca duzinu
niza koji ucita */

int UcitajPodatke(student studenti[], int max)

{

int i=0;

while(i<max && getword(studenti[i].ime, MAX_IME)>0)

{

if (getword(studentili] .prezime, MAX_IME) < 0)

break;

scanf ("%d",&studenti[i] .ocena);

i++;

}

return i;

3

void IspisiPodatke(student studenti[], int br_studenata)
{

int i;

printf ("IME PREZIME OCENA\n") ;

for (i=0; i<br_studenata; i++)
printf ("%-20s %-20s %5d\n",studentil[i].
ime, studentili].prezime, studentil[i].ocena);

}

/* Sortiranje studenata po ocenama */
void SelectionSort(student studentil[], int br_studenata)

{
int 1,j;
for (i=0; i<br_studenata-1; i++)
for (j=i; j<br_studenata; j++)
if (studentil[i].ocena<studenti[j].ocena)
{ student tmp=studentili];
studenti[i]=studentilj];
studenti[j]l=tmp;
}
}
main()
{

student studenti[100];
int br_studenata = UcitajPodatke(studenti,100);

SelectionSort(studenti, br_studenata);
IspisiPodatke(studenti, br_studenata);

return O;

}

40 Jelena Tomasevié

Primer 34 Sa standardnog ulaza se ucitava niz od n (n<100) tacaka u ravni takvih da nikoje tri
tacke nisu kolinearne. Tacke se zadaju parom svojih koordinata (celi brojevi). Ispitati da li taj niz
tacaka odredjuje konveksni mnogougao i rezultat ispisati na standardni izlaz.

#include<stdio.h>

typedef struct tacka
{

int x;

int y;

} TACKA;

/* F-ja ispituje da 1i se tacke T3 i T4 nalaze sa iste strane prave
odredjene tackama T1 i T2.x*/
int SalsteStranePrave(TACKA T1,TACKA T2, TACKA T3, TACKA T4)

{
int t3 = (T3.y - T1.y)*(T2.x - Tl.x) - (T2.y - Ti.y) * (T3.x - T1.x);
int t4 = (T4.y - T1.y)*(T2.x - Tl.x) - (T2.y - Ti.y) * (T4.x - T1.x);
return (t3 * t4 > 0);

}

main()

{
TACKA mnogougao[100];
int j,1i;
int n;

int konveksan = 1;

do
{

printf("Unesite broj temena mnogougla:\n");

scanf ("%d",&n) ;

if (n<3)

printf ("Greska! Suvise malo tacaka! Pokusajte ponovo!\n");

}
while(n<3);

printf ("Unesite koordinate temena mnogougla takve da nikoja tri
temena nisu kolinearna!\n");

for(i=0;i<n;i++)

scanf ("%d %d", &mnogougaol[i].x, &mnogougaol[i].y);

/* Da bi mnogougao bio konveksan potrebno (i dovoljno) je da kada se
povuce prava kroz bilo koja dva susedna temena mnogougla sva ostala
temena budu sa iste strane te prave.x*/
for(i=0;konveksan&&i<n-1;i++)
{
for(j=0;konveksan&&j<i-1;j++)
konveksan=konveksan && SalsteStranePrave (mnogougaol[i],
mnogougao [i+1] ,mnogougao [j] ,mnogougao [j+1]);
for(j=i+2;konveksan&&j<n-1;j++)
konveksan=konveksan && SaIlsteStranePrave (mnogougaol[i],

4.2 Rad sa datotekama 41

mnogougao [i+1] ,mnogougao [j] ,mnogougao [j+1]);
if (i'=0&&i!'=n-1&&i+1'=0&&i+1!=n-1)
konveksan=konveksan && SaIsteStranePrave(mnogougaol[i],
mnogougao [i+1] ,mnogougao [0] ,mnogougao [n-1]);
}
for(j=1;konveksan&&j<n-2; j++)
konveksan=konveksan && SaIlsteStranePrave(mnogougao[0],
mnogougao [n-1] ,mnogougao [j] ,mnogougao[j+1]) ;

if (konveksan)

printf ("Uneti mnogougao jeste konveksan!\n");
else

printf ("Uneti mnogougao nije konveksan!\n");

4.2 Rad sa datotekama

»”

Primer 35 Program demonstrira otvaranje datoteka ("r” - read i "w” - write mod) i osnovne
tehnike rada sa datotekama U datoteku se upisuje prvih 10 prirodnih brojeva, a zatim se iz iste
datoteke citaju brojevi dok se ne stigne do kraja i ispisuju se na standardni izlaz.

#include <stdio.h>

/* Zbog funkcije exit */
#include <stdlib.h>

main()

{
int i;
int br;

/* Otvaramo datoteku sa imenom podaci.txt za pisanje */
FILEx f = fopen("podaci.txt", "w");

/* Ukoliko otvaranje nije uspelo, fopen vraca NULL. U tom slucaju,
prijavljujemo gresku i zavrsavamo program */
if (f == NULL)
{
printf ("Greska prilikom otvaranja datoteke podaci.txt za pisanje\n");
exit(1);
X

/* Upisujemo u datoteku prvih 10 prirodnih brojeva (svaki u posebnom redu) */
for (i = 0; i<10; i++)
fprintf (£, "%d\n", i);

/* Zatvaramo datoteku */
fclose(f);

/* Otvaramo datoteku sa imenom podaci.txt za citanje */
f = fopen("podaci.txt", "r");

42 Jelena Tomasevié

/* Ukoliko otvaranje nije uspelo, fopen vraca NULL. U tom slucaju,
prijavljujemo gresku i zavrsavamo program */
if (f == NULL)
{
printf ("Greska prilikom otvaranja datoteke podaci.txt za citanje\n");
exit(1);
b

/* Citamo brojeve iz datoteke dok ne stignemo do kraja i ispisujemo ih
na standardni izlaz */

/* Pokusavamo da procitamo broj */
while(fscanf (f, "%d", &br) == 1)
/* Ispisujemo procitani broj */
printf ("Procitano : %d\n", br);

/* Zatvaramo datoteku */
fclose(f);

}
»

Primer 36 Program demonstrira ”a” - append mod datoteka - nadovezivanje.

#include <stdio.h>

main()
{
FILEx datoteka;
/* Otvaramo datoteku za nadovezivanje i proveravamo da 1li je doslo do greske */
if ((datoteka=fopen("dat.txt","a"))==NULL)
{
fprintf (stderr,"Greska : nisam uspeo da otvorim dat.txt\n");
return 1;
}
/* Upisujemo sadrzaj u datoteku */
fprintf (datoteka,"Zdravo svima\n");
/* Zatvaramo datoteku */
fclose(datoteka);
}

Primer 37 Program ilustruje rad sa datotekama. Program kopira datoteku ulaz.txt uw datoteku
1zlaz.txt. Uz svaku liniju se zapisuje © njen broj.

#include <stdio.h>
#define MAX_LINE 256

/* Funkcija getline iz K&R jednostavno realizovana preko funkcije fgets */

4.2 Rad sa datotekama 43

int getline(char s[], int lim)

{

main()

charx ¢ = fgets(s, lim, stdin);
return c==NULL ? 0 : strlen(s);

char line[MAX_LINE];
FILE *in, *out;
int line_num;

if ((in = fopen("ulaz.txt","r")) == NULL)

{
fprintf (stderr, "Neuspesno otvaranje datoteke %s\n", "ulaz.txt");
return 1;

}

if ((out = fopen("izlaz.txt","w")) == NULL)

{
fprintf (stderr, "Neuspesno otvaranje datoteke %s\n","izlaz.txt");
return 1;

}

/* Prepisivanje karakter po karakter je moguce ostvariti preko:
int c;
while ((c=fgetc(in)) !'= EOF)
putc(c,out);
*/

line_num = 1;

/* Citamo liniju po liniju sa ulazax/

while (fgets(line, MAX_LINE, in) != NULL)

{
/* Ispisujemo broj linije i sadrzaj linije na izlaz */
fprintf (out, "%-3d :\t", line_num++);
fputs(line, out);

}

/* Zatvaramo datoteke */
fclose(in);
fclose(out);

Primer 38 (Clitanje niza struktura iz tektsualne datoteke - artikli prodavnice.

Datoteka cije se ime unosi sa standardnog ulaza sadrzi podatke o proizvodima koji se prodaju
u okviru odredjene prodavnice. Svaki proizvod se odlikuje sledecim podacima : bar-kod - petocifreni
pozitivan broj ime - niska karaktera cena - realan broj zaokruzen na dve decimale pdv - stopa poreza
- realan broj zaokruzen na dve decimale Pretpostavijamo da su podaci u datoteci korektno zadati.

Pretpostavljamo da se u prodavnici ne prodaje vise od 1000 razlicitih artikala. Na standardni
1zlaz ispisati podatke o svim proizvodima koji se prodaju.

44

Jelena Tomasevié

#include <stdio.h>

/* Maksimalna duzina imena proizvoda */
#define MAX_IME 30

/* Struktura za cuvanje podataka o jednom artiklu */
typedef struct _artikal

{
int bar_kod;
char ime[MAX_IME];
float cena;
float pdv;
} artikal;

/* Maksimalni broj artikala */
#define MAX_ARTIKALA 1000

/* Niz struktura u kome se cuvaju podaci o artiklima */
artikal artikli[MAX_ARTIKALA];

/* Broj trenutno ucitanih artikala */
int br_artikala = O;

/* Ucitava podatke o jednom artiklu iz date datoteke.
Vraca da 1i su podaci uspesno procitani */
int ucitaj_artikal (FILEx f, artikal* a)

{
/* Citamo podatke */
if ((fscanf (f, "%d", &(a->bar_kod))==1)
&& (fscanf(f, "%s", a->ime)==1)
&& (fscanf(f, "%f", &(a->cena))==1)
&& (fscanf(f, "%f", &(a->pdv))==1))
/* Prijavljujemo uspeh */
return 1;
else
/* Prijavljujemo neuspeh. */
return O;
}

/* Izracunava ukupnu cenu datog artikla */
float cena(artikal a)
{

return a.cenax(l+a.pdv);

3

/* Ispisuje podatke o svim artiklima */
void ispisi_artikle()
{
int 1i;
for (i = 0; i<br_artikala; i++)
printf("%-5d %-10s %.2f %.2f = %.2f\n",
artikli[i] .bar_kod, artiklili].ime,

4.2 Rad sa datotekama

45

artikli[i].cena, artiklil[i].pdv, cena(artikli[i]));

main()

FILE* f;

/* Ucitavamo ime datoteke */
char ime_datoteke[256];

printf("U kojoj datoteci se nalaze podaci o proizvodima:

scanf ("%s", ime_datoteke);

/* Otvaramo datoteku i proveravamo da li smo uspeli */

if ((f = fopen(ime_datoteke, "r")) == NULL)

{

printf("Greska : datoteka %s ne moze biti otvorena\n",
ime_datoteke);

3

/* Ucitavamo artikle */
while (ucitaj_artikal(f, &artikli[br_artikalal))
br_artikala++;

/* Ispisujemo podatke o svim artiklima */
ispisi_artikle();

/* Zatvaramo datoteku */
fclose(f);
}

Primer 39 Program ilustruje c¢itanje etiketa iz neke HTML datoteke.

#include <stdio.h>
#include <ctype.h>

/* Maksimalna duzina etikete */
#define MAX_TAG 100

#define OTVORENA 1
#tdefine ZATVORENA 2
#define GRESKA O

/* Funkcija ucitava sledecu etiketu
i smesta njen naziv u niz s duzine max.
Vraca OTVORENA za otvorenu etiketu,
ZATVORENA za zatvorenu etiketu,
odnosno GRESKA inace */
int gettag(FILE *f, char s[], int max)
{ int c, i;
int zatvorenost=0TVORENA;

")

46

Jelena Tomasevié

}

/* Preskacemo sve do znaka ’<’ */
while ((c=fgetc(f))!=EQOF && c!=’<’)
/* Nismo naisli na etiketu */
if (c==EOF)

return GRESKA;

/* Proveravamo da li je etiketa zatvorena */
if ((c=fgetc(£))=="/7)
zatvorenost=ZATVORENA;
else
ungetc(c,f);

/* Citamo etiketu dok nailaze slova
i smestamo ih u nisku */
for (i=0; isalpha(c=fgetc(f))
&% i<max-1; s[i++] = ¢)
/* Vracamo poslednji karakter na ulaz
jer je to bio neki karakter koji nije
slovox/
ungetc(c,f);

s[il="\0’;

/* Preskacemo atribute do znaka > */
while ((c=fgetc(f))!=EQF && c!=’>’)

)

/* Greska ukoliko nismo naisli na ’>’ */
return c==’>’ 7 zatvorenost : GRESKA;

main()

{

char tag[MAX_TAGI;
int zatvorenost;

FILEx f;

/* Ucitavamo ime datoteke */
char ime_datoteke[256];

printf("Unesite naziv html dokumenta iz kog se vrsi citanje etiketa: ");

scanf ("%s", ime_datoteke);

/* Otvaramo datoteku i proveravamo da li smo uspeli */
if ((f = fopen(ime_datoteke, "r")) == NULL)

{

printf("Greska : datoteka %s ne moze biti otvorena\n",
ime_datoteke);

}

4.3 Zadaci za vezbu 47

while ((zatvorenost = gettag(f,tag,MAX_TAG))>0)
{
if (zatvorenost==0TVORENA)

printf ("Otvoreno : %s\n",tag);

else

printf ("Zatvoreno : %s\n",tag);

3

fclose(f);
}

4.3 Zadaci za vezbu

Zadatak 19 Datoteka cije se ime unosi na ulazu sadrzi podatke o studentima (ime, prezime, broj
indeksa). Podaci su korektno zadati. Nema vise od 1000 studenata. Prvo formirati niz struktura
u memoriji, a onda th ispisiati.

Zadatak 20 Definisemo strukturu VREME na sledeéi nacin:

typedef struct{
int sat, min, sek;
} VREME;

Sastaviti funkciju sa prototipom void plus(VREME *t) koja povedava za jednu sekundu vreme
predstavljano strukturom t.

Zadatak 21 Prvi kolokvigum za II tok 2004.godine - rad na racunaru Napisati program
koji generise HTML fajl Boje.html koji sadrzi tabelu boja. Tabela treba da ima 8 kolona pri éemu
celije neparnih kolona treba da sadrze heksadekadnu vrednost boje i to u formatu ROGOBO a celije
odgovarajuée parne kolone treba da budu obojene tom bojom.

48

Jelena Tomasevié

5

Programski jezik C

5.1 Argumenti komandne linije
Primer 40 llustracija rada sa argumentima komandne linije.
/* Program pozivati sa npr.:
./a.out
./a.out prvi
./a.out prvi drugi treci
./a.out -a -bc ime.txt
*/
#include <stdio.h>
/* Imena ovih promenljivih mogu biti proizvoljna. Npr.

main (int br_argumenata, char* argumentil[]);

ipak, uobicajeno je da se koriste sledeca imena:

*/
main(int argc, char* argv[])
{

int i;

printf ("argc = %d\n", argc);

for (i = 0; i<argc; i++)

printf ("argv[/d] = %s\n", i, argv[il);

}

Primer 41 Program ispisuje opcije navedene u komandnoj liniji. K&R resenje.

IPreuzeto sa sajta http://www.matf.bg.ac.yu/~milena

50 Jelena Tomasevié

/* Opcije se navode koriscenjem znaka -, pri cemu je moguce da iza jednog -
sledi i nekoliko opcija.
Npr. za -abc -d -fg su prisutne opcije abc d f g */
/* Resnje se intenzivno zasniva na pokazivackoj aritmetici i prioritetu operatora */

#include <stdio.h>

int main(int argc, char* argv[])

{
char c;
/* Dok jos ima argumenata i dok je karakter na poziciji O upravo crtica */
while(--argc>0 && (x++argv) [0]=="-")
/* Dok god ne dodjemo do kraja tekuceg stringa */
while (c=x++argv[0])
printf ("Prisutna opcija : %c\n",c);
3
Izlaz:

Prisutna opcija :
Prisutna opcija :
Prisutna opcija :
Prisutna opcija :
Prisutna opcija :
Prisutna opcija :

o H Qo o o

Primer 42 Program ispisuje opcije navedene u komandnoj liniji - jednostavnija verzija.

#include <stdio.h>

main(int argc, char* argv[])

{
/* Za svaki argument komande linije, pocevsi od argv[1]
(preskacemo ime programa) */
int i;
for (i = 1; i < argc; i++)
{
/* Ukoliko i-ti argument pocinje crticom */
if (argv[il[0] == ’-’)
{ /* Ispisujemo sva njegova slova pocevsi od pozicije 1 x/
int j;
for (j = 1; argv[i][j] != °\0’; j++)
printf ("Prisutna je opcija : %c\n", argv([il[j1);
}
/* Ukoliko ne pocinje crticom, prekidamo */
else
break;
}
}

Primer 43 Napisati program koji sa standardnog ulaza ucitava pozitivan ceo broj, a na standardni
izlaz ispisuje vrednost tog broja sa razmenjenim vrednostima bitova na poziciji i, j. Pozicije i, j

5.1 Argumenti komandne linije 51

se ucitavaju kao parametri komandne linije. Smatrati da krajnji desni bit binarne reprezentacije je
0-ti bit. Pri resavanju nije dozvoljeno koristiti pomocéni niz niti aritmeticke operatore +,-,/ ,%,%.

#include <stdio.h>
unsigned Trampa(unsigned n, int i, int j);

main(int argc, char x*argv)

{
unsigned x; /*broj sa standardnog ulaza ciji se bitovi razmenjujux*/
int i,j; /#*pozicije bitova za trampux/
/*ocitavanje parametara komandne linije i broja sa standarnog ulazax/
sscanf (argv[1], "%d", &i);
sscanf (argv[2], "/%d", &]j);
scanf ("%u", &x);
printf ("\nNakon trampe vrednost unetog broja je %u\n", Trampa(x,i,j));
}
unsigned Trampa(unsigned n, int i, int j)
{
//ako se bit na poziciji i razlikuje od bita na poziciji j, treba ih invertovati
if (((@>>1)&1) = ((@>>j)H&1)) n"= (1<<i) | (1<<j);
return n;
}

Primer 44 Iz datoteke cije se ime zadaje kao argrument komandne linije, ucitati cele brojeve
sve dok se ne ucita nula, i njihov zbir ispisati u datoteku cije se ime takode zadaje kao argument
komandne linije.

#include<stdio.h>
main(int argc, char* argv[])
{
int n, S=0;
FILEx ulaz, *izlaz;
/* Ukoliko su imena datoteka navedena kao argumenti...*/
if (arge>=3)

{
/* ...otvaramo datoteku i proveravamo da li smo uspeli */
if ((ulaz = fopen(argv[1], "r")) == NULL)
printf("Greska : datoteka %s ne moze biti otvorena\n", argv[1]);
if ((izlaz = fopen(argv([2], "w")) == NULL)
printf ("Greska : datoteka %s ne moze biti otvorena\n", argv[2]);

}
else
{

char ime_datoteke_ulaz[256], ime_datoteke_izlaz[256];
/* Ucitavamo ime datoteke */
printf ("U kojoj datoteci se nalaze brojevi: ");
scanf ("%s", ime_datoteke_ulaz);
/* Otvaramo datoteku i proveravamo da li smo uspeli */
if ((ulaz = fopen(ime_datoteke_ulaz, "r")) == NULL)
printf ("Greska : datoteka %s ne moze biti otvorena\n", ime_datoteke_ulaz);

52 Jelena Tomasevié

printf("U kojoj datoteci treba ispisati rezultat: ");
scanf ("%s", ime_datoteke_izlaz);
/* Otvaramo datoteku i proveravamo da 1li smo uspeli */
if ((izlaz = fopen(ime_datoteke_izlaz, "w")) == NULL)
printf ("Greska : datoteka %s ne moze biti otvorena\n", ime_datoteke_izlaz);

}

fscanf (ulaz, "%d", &n);
while(n!=0)
{
S+=n;
fscanf (ulaz, "%d", &n);
}
fprintf (izlaz,"Suma brojeva ucitanih iz datoteke je %d.", S);
return O;

5.2 Alokacija memorije

void* malloc(size_t n) vraca pokazivac na n bajtova neinicijalizovane memorije ili NULL ukoliko
zahtev ne moZe da se ispuni.

Za njeno koriséenje neophodno je ukljuciti zaglavlje stdlib.h. Oslobadanje memorije - funkcija
free.

Ne sme se koristiti nesto sto je vec¢ oslobodeno, ne sme se dva puta oslobadati ista memorija.

Primer 45
#include <stdio.h>
#include <stdlib.h>

main()
{

int n;
int 1i;
int *a;

printf ("Unesi broj clanova niza : ");
scanf (Il%dll s &Il) ;

/* Kao da ste mogli da uradite
int al[n];
*/

a = (int*)malloc(n*sizeof (int));

/* Kad god se vrsi alokacija memorije mora se proveriti da 1li je ona

uspesno izvrsena!!! */
if (a == NULL)
{
printf ("Nema slobodne memorije\n");
exit(1);
}

/* 0d ovog trenutka a koristim kao obican niz */

5.3 Niz pokazivaca

53

for (i = 0; i<n; i++)
scanf ("%d",&al[il);

/* Stampamo niz u obrnutom redosledu */
for(i = n-1; i>=0; i--)
printf("%d",alil);

/* Oslobadjamo memorijux*/
free(a);

}

Primer 46 Demonstracija funkcije calloc - funkcija inicijalizuje sadrzaj memorije na 0.

#include <stdio.h>
#include <stdlib.h>

main()
{

int *m, *c, i, n;

printf ("Unesi broj clanova niza : ");
scanf ("%d", &n);

/* Niz m NE MORA garantovano da ima sve nule */

m = malloc(n*sizeof (int));

if (m == NULL) {
printf ("Greska prilikom alokacije memorije!\n");
exit(1);
}

/* Niz c¢ MORA garantovano da ima sve nule */

¢ = calloc(n, sizeof(int));

if (¢ == NULL) {
printf ("Greska prilikom alokacije memorije!\n");
free(m);
exit(1);
}

for (i = 0; i<n; i++)

printf ("m[%d] = %d\n", i, m[il);

for (i = 0; i<n; i++)
printf("c[%d]l = %d\n", i, c[il);

free(m);
free(c);

}
5.3 Niz pokazivaca
Primer 47

#include <stdio.h>
#include <stdlib.h>

54

Jelena Tomasevié

main()

{

/* Niz od tri elemenata tipa int*/
int nizil[3];

/* Niz od tri elemenata tipa int*, dakle
niz od tri pokazivaca na intx/
int* nizip[3];

/* Alociramo memoriju za prvi element niza*/
nizip[0] = (int*) malloc(sizeof (int));
if (nizip[0] == NULL)
{
printf ("Nema slobodne memorije\n");
exit(1);
}
/* Upisujemo u prvi element niza broj 5%/
*nizip[0] = 5;
printf ("%d", *nizip[0]);

/* Alociramo memoriju za drugi element niza.
Drugi element niza pokazuje na niz od dva
elementax/
nizip[1] = (int*) malloc(2*sizeof (int));
if (nizip[1] == NULL) {
printf ("Nema slobodne memorije\n");
free(nizip[0]);
exit(1);

X

/* Pristupamo prvom elementu na koji pokazuje
pokazivac nizip[1]*/
*(nizip[1]) = 1;

/* Pristupamo sledecem elementu u nizu na koji pokazuje
nizip[1].

*/

*(nizip[1] + 1) = 2;

printf ("%d", nizip[1][1]);

/* Alociramo memoriju za treci element niza nizip. */
nizip[2] = (int*) malloc(sizeof (int));
if (nizip[2] == NULL) {
printf ("Nema slobodne memorije\n");
free(nizip[0]);
free(nizip[1]);
exit(1);
}

*(nizip[2]) = 2;

5.4 Matrice

printf("%d", *(nizip[2]));

free(nizip[0]);
free(nizip[1]);
free(nizip[2]);
}

Primer 48

#include <stdio.h>
#include <stdlib.h>
main()

{

/* Niz karakterax/
char nizc[5];

/* Niz karaktera od cetiri elementa
()A?,)n7’)a7’)\O))*/

char nizcc[]="Ana";

printf ("%s", nizcc);

/* Niz od tri pokazivaca. Prvi pokazuje na
nisku karaktera Kruska, drugi na nisku karaktera
Sljiva a treci na Ananas. */

char* nizcp[]={"Kruska", "Sljiva", "Ananas"};

printf("%s", nizcpl0]);
printf("%s", nizcpl1l);
printf ("%s", nizcpl[2]);
}

5.4 Matrice

Primer 49 Staticka alokacija prostora za matricu.

#include <stdio.h>

main()

{

int al[3]1[3] = {{0, 1, 2}, {10, 11, 12}, {20, 21, 22}};
int i, j;

/* Alternativni unos elemenata matrice
for(i=0; i<3; i++)
for(j=0; j<3; j++)

{

printf("al%d] [%d] =", i, j);

scanf ("%d", &alil[j1);

}
*/

al1][1] = afo]l[0] + a[2][2];
/* al[1]1[1] = 0 + 22 = 22 */

56 Jelena Tomasevié

printf("%d\n", al1][1]); /* 22 */

/* Stampanje elemenata matricex*/
for(i=0; i<3; i++)
{
for(j=0; j<3; j++)
printf ("%d\t", alil[j1);
printf ("\n");
}

Nama je potrebno da imamo vecu fleksibilnost, tj da se dimenzije matrice mogu uneti kao
parametri naseg programa. Zbog toga je neophodno koristiti dinamicku alokaciju memorije.

Primer 50 Implementacija matrice preko niza.

#include <stdlib.h>
#include <stdio.h>

/* Makro pristupa clanu na poziciji i, j matrice koja ima
m vrsta i n kolona */
#define a(i,j) al(i)*n+(j)]

main()

{
/* Dimenzije matrice */
int m, n;

/* Matrica */
int *a;

int 1i,j;

/* Suma elemenata matrice */
int s=0;

/* Unos i alokacija */
printf ("Unesi broj vrsta matrice : ");
scanf ("%d",&m) ;

printf("Unesi broj kolona matrice : ");
scanf ("%d",&n) ;

a=malloc(m*n*sizeof (int));

if (a == NULL) {
printf ("Greska prilikom alokacije memorije!\n");
exit(1);
}

for (i=0; i<m; i++)
for (j=0; j<m; j++)
{

5.5 Zadaci za vezbu 57

printf("Unesi element na poziciji (%d,%d) : ",i,j);
scanf ("%d",&a(i,j));
}

/* Racunamo sumu elemenata matrice */
for (i=0; i<m; i++)
for (j=0; j<nm; j++)
s+=a(i,j);

/* Ispis unete matrice */
printf("Uneli ste matricu : \n");
for (i=0; i<m; i++)
{ for (j=0; j<m; j++)
printf("%d ",a(i,j));
printf ("\n");
}

printf("Suma elemenata matrice je %d\n", s);

/* 0Oslobadjamo memoriju */
free(a);

5.5 Zadaci za vezbu

Zadatak 22 Napisati program koji omoguéava unos dimenzije kvadratne matrice i unos elemenata
matrice sa standardnog ulaza.

1. Napisati funkciju koja racuna zbir elemenata matrice dimenzija n X m.

2. Napisati funkciju koja racuna proizvod elemenata ispod glavne dijagonale matrice dimenzija
n xmn.

Program treba da odstampa zbir elemenata matrice i proizvod elemenata ispod glavne dijagonale.

58

Jelena Tomasevié

6

Programski jezik C

6.1 Pokazivaci na funkcije

Primer 51 Program demonstrira upotrebu pokazivaca na funkcije.

#include <stdio.h>

int kvadrat(int n) { return n*n; }
int kub(int n) { return n*n*n; }

int parni_broj(int n) { return 2*n; }

/* Funkcija izracunava sumu od 1 do n f(i),
gde je f data funkcija */
int sumiraj(int (*f) (int), int n) {
int i, suma=0;
for (i=1; i<=n; i++)
suma += (xf)(i);

return suma;

}

main() {

printf ("Suma kvadrata brojeva od jedan do 3 je %d\n", sumiraj(kvadrat,3));
printf ("Suma kubova brojeva od jedan do 3 je %d\n", sumiraj(kub,3));
printf ("Suma prvih pet parnih brojeva je %d\n", sumiraj(parni_broj,5));

} /*Izlaz: Suma kvadrata brojeva od jedan do 3 je 14 Suma kubova

brojeva od jedan do 3 je 36 Suma prvih pet parnih brojeva je 30 */

6.2 Matrice - uvezbavanje

Primer 52 Program ilustruje rad sa kvadratnim matricama i relacijama. Elementi ¢ je u relaciji
sa elementom j ako je mfiffj] = 1, a nisu u relaciji ako je mfiJfj] = 0.

1Zasnovano na primerima sa sajtova http://www.matf.bg.ac.yu/~milena, http://wuw.matf.bg.ac.yu/~filip

60

Jelena Tomasevié

#include <stdlib.h>
#include <stdio.h>

/%

*/

/%

Dinamicka matrica je odredjena adresom
pocetka niza pokazivaca i dimenzijama tj.
int** a;

int m,n;

Alokacija kvadratne matrice nxn */

int** alociraj(int n)

{

}

int** m;

int i;

m=malloc(n*sizeof (intx*));
if (m == NULL)

{
printf ("Greska prilikom alokacije memorije!\n");
exit(1);
}
for (i=0; i<n; i++)
{
m[i]l=malloc(n*sizeof (int));
if (m[i] == NULL)
{
int k;
printf ("Greska prilikom alokacije memorije!\n");
for (k=0;k<i;k++)
free(m[k]);
exit(1);
}
}
return m;

/* Dealokacija matrice dimenzije nxn */
void obrisi(int** m, int n)

{

3

int i;

for (i=0; i<n; i++)
free(m[i]);

free(m);

/* Ispis matrice /
void ispisi_matricu(int** m, int n)

{

int i, j;
for (i=0; i<n; i++)

{

6.2 Matrice - uvezbavanje 61

for (j=0; j<n; j++)
printf("%d ",m[i] [j1);
printf ("\n");

}

/* Provera da li je relacija predstavljena matricom refleksivna */
int refleksivna(int** m, int n)

{
int i;
for (i=0; i<n; i++)
if (m[i][i1==0)
return O;
return 1;
}

/* Provera da li je relacija predstavljena matricom simetricna */
int simetricna(int** m, int n)

{

int 1i,j;

for (i=0; i<n; i++)

for (j=i+1; j<n; j++)
if (m[il[j1!'=m[j1[iD)
return O;

return 1;

}

/* Provera da 1i je relacija predstavljena matricom tranzitivna*/
int tranzitivna(int** m, int n)

{
int i,j,k;
for (i=0; i<n; i++)
for (j=0; j<m; j++)
for (k=0; k<n; k++)
if ((m[i]l[j]1==1)
&& (m[j][k]l==1)
& (m[i] [k]!'=1))
return O;
return 1;
}

/* Pronalazi najmanju simetricnu relaciju koja sadrzi relaciju a
*/
void simetricno_zatvorenje(int*x a, int n)
{
int 1,j;
for (i=0; i<n; i++)
for (j=0; j<n; j++)
{
if (alil[jl==1 && aljl[i]l==0)

62

Jelena Tomasevié

aljl[il=1;
if (alil[j1==0 && al[j][il==1)
alil[j1=1;

}

main() {
int **m;
int n;
int 1i,];

printf("Unesi dimenziju matrice : ");
scanf ("%d",&n) ;
m=alociraj(n);

for (i=0; i<n; i++)
for (j=0; j<n; j++)
scanf ("%d",&m[i] [j1);

printf ("Uneli ste matricu : \n");
ispisi_matricu(m,n);
if (refleksivna(m,n))

printf ("Relacija je refleksivna\n");
if (simetricna(m,n))

printf("Relacija je simetricna\n");
if (tranzitivna(m,n))

printf("Relacija je tranzitivna\n");
simetricno_zatvorenje(m,n) ;

ispisi_matricu(m,n);

obrisi(m,n);

}

Primer 53 Izracunati vrednost determinante matrice preko Laplasovog razvoja.

#include <stdio.h>
#include <stdlib.h>

/* Funkcija alocira matricu dimenzije nxn */
int** allocate(int n)
{
int **m;
int i;
m=(int**)malloc(n*sizeof (int*));
if (m == NULL) {
printf ("Greska prilikom alokacije memorije'\n");
exit(1);

6.2 Matrice - uvezbavanje

63

for (i=0; i<n; i++)
{
m[i]=malloc(n*sizeof (int));
if (m[i] == NULL)
{
int k;
for (k=0;k<i;k++)
free(m[k]);
printf ("Greska prilikom alokacije memorije!\n");
exit(1);
}
}

return m;

}

/* Funkcija vrsi dealociranje date matrice dimenzije n */ void
deallocate(int** m, int n)

{
int i;
for (i=0; i<n; i++)
free(m[i]);
free(m);
}

/* Funkcija ucitava datu alociranu matricu sa standardnog ulaza */
void ucitaj_matricu(int** matrica, int n)

{
int 1i,j;
for (i=0; i<mn; i++)
for (j=0; j<n; j++)
scanf ("%d",&matricalil [j1);
}

/* Rekurzivna funkcija koja vrsi Laplasov razvoj */
int determinanta(int** matrica, int n)
{

int i;

int** podmatrica;

int det=0,znak;

/* Izlaz iz rekurzije je matrica 1x1 */
if (n==1)
return matrica[0] [0];

/* Podmatrica ce da sadrzi minore polazne matrice */
podmatrica=allocate(n-1);

znak=1;
for (i=0; i<n; i++)
{

int vrsta,kolona;
for (kolona=0; kolona<i; kolona++)

64 Jelena Tomasevié

for(vrsta=1; vrsta<n; vrsta++)
podmatricalvrsta-1] [kolona] = matricalvrsta] [kolona];
for (kolona=i+1; kolona<n; kolona++)
for(vrsta=1; vrsta<n; vrsta++)
podmatricalvrsta-1] [kolona-1] = matricalvrstal [kolona];

det+= znak*matrica[0] [i]*determinanta(podmatrica,n-1);
znak*=-1;

}

deallocate(podmatrica,n-1);

return det;

}

main()

{
int **matrica;
int n;
scanf ("%d", &n);
matrica = allocate(n);
ucitaj_matricu(matrica, n);
printf ("Determinanta je : %d\n",determinanta(matrica,n));
deallocate(matrica, n);

}

6.3 Dinamicki niz
Primer 54 llustracija dinamickog niza.

/* Program za svaku rec unetu sa standardnog
ulaza ispisuje broj pojavljivanja.
Verzija sa dinamickim nizom i realokacijom.

*/

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Rec je opisana imenom i brojem
pojavljivanja */
typedef struct _rec

{

char ime[80];

int br_pojavljivanja;
} rec;

/* Dinamicki niz reci je opisan pokazivacem na
pocetak, tekucim brojem upisanih elemenata i
tekucim brojem alociranih elemenata */

recx niz_reci;

int duzina=0;

6.3 Dinamicki niz

65

int alocirano=0;

/* Realokacija se vrsi sa datim korakom */
#define KORAK 10

/* Funkcija ucitava rec i vraca njenu duzinu ili
-1 ukoliko smo dosli do znaka EQF*/
int getword(char word[],int max)

{
int ¢, i=0;
while (isspace(c=getchar()))
while(!isspace(c) && c!'=EOF && i<max-1)
{
word [i++]=c;
c = getchar();
¥
word[1]="\0";
if (c==EOF) return -1;
else return i;
}
main()
{
char procitana_rec[80];
int 1i;
while(getword(procitana_rec,80) !=-1)
{

/* Proveravamo da li rec vec postoji u nizu */

for (i=0; i<duzina; i++)

/* Ako bi smo uporedili
procitana_rec == niz_reci[i].ime
bili bi uporedjeni pokazivaci a ne
odgovarajuci sadrzaji!!!

Zato koristimo strcmp. */

if (strcmp(procitana_rec,

niz_reci[i].ime)==0)

{

niz_reci[i] .br_pojavljivanja++;
break;

}

/* Ukoliko rec ne postoji u nizu */
if (i==duzina) {
rec nova_rec;
/* Ako bi smo dodelili
nova_rec.ime = procitana_rec

66 Jelena Tomasevic
izvrsila bi se dodela pokazivaca

a ne kopiranje niske procitana_rec

u nova_rec.ime.

Zato koristimo strcpy!!! */
strcpy(nova_rec.ime,procitana_rec);
nova_rec.br_pojavljivanja=1;

/* Ukoliko je niz "kompletno popunjen"
vrsimo realokaciju */

if (duzina==alocirano)

{

alocirano+=KORAK;

/* Sledeca linija zamenjuje blok

koji sledi i moze se

koristiti alternativno. Blok je

ostavljen samo da bi

demonstrirao korisnu tehniku */

/*

niz_reci=realloc(niz_reci,
(alocirano)*sizeof (rec)); */

{

/* alociramo novi niz, veci

nego sto je bio prethodni */
rec* novi_niz=(rec *)malloc(alocirano*sizeof (rec));
/* Kopiramo elemente starog niza u novi */
for (i=0; i<duzina; i++)

novi_niz[il=niz_recili];
/* Uklanjamo stari niz */
free(niz_reci);
/* Stari niz postaje novi */
niz_reci=novi_niz;
¥
if (niz_reci==NULL)
{
printf ("Greska prilikom
alokacije memorije");
exit(1);
}
}
/* Upisujemo rec u niz */
niz_reci[duzinal=nova_rec;
duzina++;
T}

/* Ispisujemo elemente niza */ for(i=0; i<duzina; i++)

printf("%s - %d\n",niz_recili].ime,
niz_reci[i] .br_pojavljivanja);

6.4 Zadaci za vezbu 67

free(niz_reci); }

6.4 Zadaci za vezbu
Zadatak 23 Ispisati na izlaz sumu celih brojeva koji se unose kao argumenti komandne linije.

Zadatak 24 Napisati funkciju koja omoguéava racunanje proizvoda dve kvadratne matrice dimen-
zija n Xn. Napisati program koji omogucava unosenje dve kvadratne matrice i Stampange proizvoda
te dve matrice.

Zadatak 25 Jun, 2004. Napisati funkciju koja racuna multiplikativnu otpornost datog pozitivnog
broja. Multiplikativna otpornost se rac¢una na sledeéi nacin ng = n, nyg je jednak proizvodu cifara
broja ni_1, k = 1,2..., multiplikativna otpornost je najmanje k za koje je ny jednocifren broj.
Napisati program koji iz datoteke cije se ime zadaje na ulazu Gita brojeve, gde su brojevi zapisani
po jedan u svakom redu i uw drugu datoteku cije se ime zadaje takode na ulazu upisuje red po red
date brojeve i njihovu multiplikativnu otpornost.

68

Jelena Tomasevié

7

Programski jezik C

7.1 (qsort
Primer 55 Implementacija funkcije gsort.

#include <stdio.h>
#include <string.h>

void printarray(int v[], int left, int right)
{
int i;
for (i=left; i<=right; i++)
printf("%d ",v[il);
putchar(’\n’);

}
void swap(int v[], int i, int j)
{
int tmp=v[i];
v[il=v[jl;
v[jl=tmp;
}

/* gsort: sortira v[left]...v[right] u rastucem poretku */
void gsort(int v[], int left, int right)
{

int i, last;

/* ne radi nista ako niz sadrzi */
/* manje od dva elementa */
if (left >= right)
return;
/* prebaci element particioniranja (pivot)*/
/* u v[left] */

IPreuzeto sa sajta http://www.matf.bg.ac.yu/~milena

70

Jelena Tomasevié

}

swap(v, left, (left + right)/2);
last = left;

/* partition */
for (i = left + 1; i <= right; i++)
if (v[i] < v[left])
swap(v, ++last, i);

/* restore partition elem */
swap(v, left, last);

/* Sortiraj preostala dva dela niza */
gsort(v, left, last-1);
gsort(v, last+l, right);

main()

{

int array[]={8, 3, 2, 6, 5, 7, 4, 9, 1};
int n=sizeof (array)/sizeof (int) ;

printarray(array, 0, n-1);
gsort(array, 0, n-1);
printarray(array, 0, n-1);

7.2 Sortiranje — genericka funkcija

Sortiranje niza celih brojeva (jedan od algoritama)

for(i=0; i<n-1; i++)

for(j=i+1; j<n; j++)
if(alil<aljl)
{
int pom=alil;
alil=aljl;
aljl=pom;
}

Sortiranje iz programa mozemo da izdvojimo u funkciju:

void sort_int(int al[], int n)

{

for(i=0; i<n-1; i++)

for(j=i+1; j<m; j++)
if(alil<aljD
{
int pom=alil;
alil=aljl;
aljl=pom;
}

7.2 Sortiranje — genericka funkcija

71

Sortiranje niza realnih brojeva:

void sort_float(float al[], int n)

{

for(i=0; i<n-1; i++)
for(j=i+1l; j<n; j++)

if(alil<aljl)
{
float pom=alil;
alil=aljl;
al[jl=pom;
}

Razlike:

o prui argument funkcije;
e pomocéna promenljiva;
e poredenje.

Sortiranje studenata po oceni ukoliko je data struktura student:

typedef struct _student {

3

char ime[MAX_IME];
char prezime[MAX_IME];
int ocena;

student;

void sort_po_oceni(student al[], int n)

{

for(i=0; i<n-1; i++)

for(j=i+1l; j<n; j++)
if(a[i] .ocena < a[j].ocena)
{
student pom=alil;
alil=aljl;
aljl=pom;
}

Sortiranje studenta po prezimenu:

void sort_po_prezimenu(student a[], int n)

{

for(i=0; i<n-1; i++)

for(j=i+1; j<m; j++)
if (strcmp(ali] .prezime, al[j].prezime)<0)
{
student pom=ali];
alil=aljl;
al[jl=pom;
}

72 Jelena Tomasevié

Sortiranje studenta po imenu:

void sort_po_imenu(student a[], int n)

{
for(i=0; i<n-1; i++)
for(j=i+1l; j<n; j++)

if (stremp(ali] .ime, al[j].ime)<0)
{
student pom=ali];
alil=aljl;
aljl=pom;
}

}

Kako da napravimo jednu funkciju koja sortira studente bez obzira na kriterijum?
Prvo moramo da izdvojimo funkciju poredenja:

int poredi_po_oceni(student stl, student st2)

{

return stl.ocena - st2.ocena;

}

int poredi_po_prezimenu(student stl, student st2)
{

return strcmp(stl.prezime, s2.prezime);

}

int poredi_po_imenu(student stl, student st2)
{

return strcmp(stl.ime, st2.ime);

3

Funkcija poredenja vraca 0 ukoliko su elementi jednaki, broj manji od nule ukoliko je prvi manji
od drugog i broj veéi od nule ukolikoje prvi veci od drugog.

void sort_po_imenu(student a[], int n)

{

for(i=0; i<n-1; i++)

for(j=i+1; j<mn; j++)

/*if (poredi_po_prezimenu(ali], al[j])<0)*/
/*if (poredi_po_oceni(alil, al[j])<0)*/
if (poredi_po_imenu(alil, al[j]1)<0)
{
student pom=al[il;
alil=alj];
aljl=pom;
}

Sada mozemo da dodamo jo$ jedan argument funkciji sortiranja i tako da dobijemo jednu
Sfunkciju umesto tri:

void sort_studente(student al[l], int n,
int (*f) (student, student))

7.2 Sortiranje — genericka funkcija 73

{
for(i=0; i<n-1; i++)
for(j=i+1l; j<n; j++)

if ((x£) (alil, aljl)<0)
{
student pom=alil;
alil=aljl;
aljl=pom;
}

Sta dalje? Kako da dobijemo jednu funkciju sortiranja bez obzira na tip elemenata niza?
Teba da resimo sledece stvari:

e razmena mesta elemenata ne sme da zavisi od tipa elemenata koji se razmenjuju.

e potpis funkcije poredenja ne sme da zavisi od tipa elemenata koji se porede kako bi on bio
jedinstven.

e prui argument funkcije ne sme da zavisi od tipa elemenata niza.

Da bi smo razmenili dva elementa potrebna nam je pomocéna promenljiva u kojoj privremeno
cuvamo neku vrednost. Ako ne znamo tip elementa onda me moZemo da napravimo pomoénu
promenljivu. Ali zato mozemo da koristeéi funkciju malloc odvojimo neko mesto u memoriji za
smestanje elementa koji nam u datoj situaciji treba. Koliko je to mesto? Nekada 4 bajta, npr
za int, a nekada dosta vece, npr za studenta. Kako funkcija sortiranja zna koliko mesta treba da
odvoji? Znace tako sto éemo joj tu velicinu proslediti kao argument. Sada, dakle umesto pomoéne
promenljive, imamo blok u memoriji, a umesto naredbe dodele koristicemo funkciju memcpy koja
kopira deo memorije sa jednog mesta na drugo mesto.

Dakle, razmenu éemo da radimo na sledeéi nacin:

void* tmp = malloc(size);

memcpy (tmp, adresa_itog, size);

memcpy (adresa_itog, adresa_jtog, size);
memcpy (adresa_jtog, tmp, size);
free(tmp);

Potpis funkcije poredenja ne sme da zavisi od tipa elemenata koji se porede. To se moZe postici
koristeéi pokazivac na tip void.
Na primer, poredenje dva cela broja:

int poredi_br(void* a, void* b) {
int br_a = *(int*)a;
int br_b = *(int*)b;

return br_a-br_b;

Na primer, poredenje dva realna broja:

int poredi_br(void* a, void* b) {
float br_a = *(float*)a;
float br_b = *(float*)b;

if (br_a > br_b) return 1;
else if (br_a < br_b) return -1;
else return O;

74

Jelena Tomasevié

Na primer, poredenje dva studenta po oceni

int poredi_br(void* a, void* b) {
student studentl = *(studnet*)a;
student student?2 *(studnet*)b;

return studentl.ocena-student2.ocena;

Sada funkcija poredenja ima uvek potpis

int poredi(void* a, void* b)

1 moZe se kao parametar proslediti nasoj funkciji sortiranja.

Primer 56 /* Genericka funkcija sortiranja -
nezavisna od tipa elemenata niza
koji se sortira */

#include <stdlib.h>

void sort(void* a, int n, int size,
int (*poredi) (voidx*, voidx))
{
int i, j;
for (i = 0; i<n-1; i++)
for (j = i+1; j<m; j++)

{
void* adresa_itog = (char*)ati*size;
void* adresa_jtog = (char*)atj*size;
if (poredi(adresa_itog, adresa_jtog)<O0)
{
void* tmp = malloc(size);
memcpy (tmp, adresa_itog, size);
memcpy (adresa_itog, adresa_jtog, size);
memcpy (adresa_jtog, tmp, size);
free(tmp);
}
}

int poredi_br(void* a, void* b) {
int br_a = *(int*)a;
int br_b = *x(int*)b;

return br_a-br_b;

3

int poredi_float(void* a, void* b) {
float br_a = *x(float*)a;
float br_b = *(float*)b;

7.3 qSort funkcija iz standardne biblioteke

if (br_a > br_b) return 1;
else if (br_a < br_b) return -1;
else return O;

}
main() {
int all = {8, 2, 1, 9, 3, 7, 6, 4, 5};
float b[] = {0.3, 2, 5, 5.8, 8}
int n = sizeof(a)/sizeof(int);
int nf = sizeof(b)/sizeof (float);
int i;
sort(a, n, sizeof(int), &poredi_br);
for (i = 0; i < n; i++)
printf("%d ", alil);
putchar(’\n’);
sort(b, nf, sizeof(float), &poredi_float);
for (i = 0; i < n; i++)
printf("%f ", blil);
putchar (’\n’);
}

7.3 qSort funkcija iz standardne biblioteke

Primer 57 qSort-Upotreba.

/* Ilustracija upotrebe funkcije gsort iz stdlib.h
Sortira se niz celih brojeva.

*/

#include <stdlib.h>
#include <stdio.h>

/* const znaci da ono na sta pokazuje a (odnosno b)
nece biti menjano u funkciji */
int poredi(const void* a, const void* b)
{
return *((int*)a)-*((int*)b);

}

int poredi_float(const void* a, const void* b)

{

float br_a
float br_b

(float)a;
(float)b;

if (br_a > br_b) return 1;
else if (br_a < br_b) return -1;
else return 0O;

76 Jelena Tomasevié

main()
{
int i;
int niz[]={3,8,7,1,2,3,5,6,9%};
float nizf[]={3.0,8.7,7.8,1.9,2.1,3.3,6.6,9.9};

int n=sizeof(niz)/sizeof (int);
gsort((void*)niz, n, sizeof(int),&poredi);
for(i=0; i<n; i++)

printf ("%d",niz[i]);

n=sizeof (nizf)/sizeof (float);
gsort((void*)nizf, n, sizeof(float),&poredi_float);
for(i=0; i<n; i++)

printf ("%f",nizf [i]);

}

Primer 58 Binarno pretraZivanje - koriséenje ugradene bsearch funkcije.

/* Funkcija ilustruje koriscenje ugradjene funkcije bsearch */
#include <stdlib.h>

int poredi(const void* a, const void *b)

{
return *(intx*)a-*(int*)b;
}
main()
{

int x=-1;
int niz[]={1,2,3,4,5,6,7,8,9,10,11,12};

int* elem=(int*)bsearch((void*)&x, (void*)niz,
sizeof (niz)/sizeof (int) ,sizeof (int) ,&poredi) ;

if (elem==NULL)
printf ("Element nije pronadjen\n");
else
printf ("Element postoji
na poziciji %d\n",elem-niz);

7.4 Genericko sortiranje reci

Primer 59 Sortiranje reci. Ako se sortira miz stringova, onda svaki element je sam po sebi
pokazivac tipa char *, te funkcija poredenja tada prima podatke tipa char ** koji se konvertuju u
svoj tip i derefenciraju radi dobijanja podataka tipa char *.

7.5 Zadaci za vezbu: 77

/* Ilustracija upotrebe funkcije gsort iz stdlib.h
Sortira se niz reci i to ili leksikografski
ili po duzini

*/

#include <stdlib.h>
#include <string.h>
#tinclude <stdio.h>

int poredi(const void* a, const void* b)

{

*(char **x)a;
*(char **) b;
return strcmp(sl, s2);

char *s1

char *s2

/* Prethodno je ekvivalentno sa:
return strcmp(*(char**)a,*(char**)b); */

3

int poredi_po_duzini(const void* a, const void* b)

{

char *s1 *(char **) a;

char *s2 = *(char **) b;

return strlen(sl) - strlen(s2);

/* Prethodno je ekvivalentno sa:

return strlen(*(char**)b)-strlen(*(char*x*x)a); */

3

main()
{
int i;
char* nizreci[]= {"Jabuka","Kruska","Sljiva","Dinja","Lubenica"};

gsort ((void*)nizreci,5,
sizeof (char*) ,&poredi_po_duzini);

for (i=0; i<5; i++)
printf ("%s\n",nizrecilil);

gsort ((void*)nizreci,5,
sizeof (char*) ,&poredi) ;

for (i=0; i<5; i++)
printf ("%s\n",nizreci[i]);

7.5 Zadaci za vezbu:

Zadatak 26 Napisati program koji sa standardnog ulaza ucitava 2 stringa, s i t (duzine j=20),
sortira nizove njihovih karaktera (biblioteckom qsort funkcijom) i ispituje i stampa da li su s i t

78 Jelena Tomasevié

anagrami (npr. vrata, vatra).

Zadatak 27 Napisati program koji sa standardnog ulaza ucitava prvo ceo broj n (nj=10) a zatim
niz S od n stringova (maksimalna duzina stringa je 20), sortira niz S (biblioteckom funkcijom gsort)
1 proverava da li u njemu ima identicnih stringova.

Zadatak 28 Napisati program u kome se prvo inicijalizuje staticki niz struktura osoba sa clanovima
ime 1 prezime(uredjen u rastucem poretku prezimena) sa j=10 elemenata, a zalim se ucitava jedan
karakter i pronalazi(sa bsearch) i stampa jedna struktura iz niza osoba cije prezime pocinje tim
kakrakterom(ako takva postoji).

8

Programski jezik C

8.1 Liste

Primer 60 Ubacivanje na pocetak jednostruko povezane liste - verzija sa **. Ispis i oslobadanje
liste realizovani iterativno.

#include <stdio.h>
#include <stdlib.h>

typedef struct cvor

{

int br;

struct cvor* sl;
} CVOR;

/* Pomocna funkcija koja kreira cvor liste sa datim sadrzajem.
Funkcija kreira cvor i postavlja mu sadrzaj na dati broj.
Polje sl ostaje nedefinisano.

Funkcija vraca pokazivac na kreirani cvor. */

CVOR* napravi_cvor(int br)
{
CVOR* novi = (CVOR*)malloc(sizeof (CVOR));
if (novi == NULL)
{
fprintf (stderr, "Greska prilikom alokacije memorije\n");
exit(1);
}
novi->br = br;
return novi;

}

/* Zbog prenosa po vrednosti, sledeca funkcija ne radi ispravno */

/*

1Zasnovano na primerima sa sajta http://www.matf.bg.ac.yu/~£ilip

80 Jelena Tomasevié

void ubaci_na_pocetak(CVOR* 1, int br)

{
CVOR* novi = napravi_cvor(br);
novi->sl = 1;
1 = novi; /* Ovde se menja lokalna kopija pokazivaca 1, a
ne 1 iz funkcije pozivaoca (main) */
3
*/

/* Ubacuje dati broj na pocetak liste.
Pokazivac na pocetak liste se prenosi preko pokazivaca, umesto po
vrednosti, kako bi mogla da mu se izmeni vrednost. */

void ubaci_na_pocetak(CVOR** pl, int br)

{
CVOR* novi = napravi_cvor(br);
novi->sl = *pl;
*pl = novi;

}

/* Ispisivanje liste : iterativna verzija */
void ispisi_listu(CVOR* 1)

{
CVOR* t;
for (t = 1; t != NULL; t=t->sl)
printf("%d ", t->br);
3

/* Sledeca funkcija je neispravna */

/*
void oslobodi_listu(CVOR* 1)
{
CVOR* t;
for (t = 1; t!=NULL; t = t->sl)
free(t);
/* Ovde se unistava sadrzaj cvora na koji ukazuje t.
Korak petlje t = t->sl nece moci da se izvrsi */
X
*/

/* Oslobadjanje liste : iterativna verzija */
void oslobodi_listu(CVOR* 1)

{
while (1)
{
CVOR* tmp = 1->s1;
free(1l);
1 = tmp;

8.1 Liste 81

main()
{
CVOR* 1 = NULL;
int i;
for (i = 0; i<10; i++)
ubaci_na_pocetak(&l, i);

ispisi_listu(l);
putchar(’\n’);

oslobodi_listu(l);
}

Primer 61 Ubacivanje na pocetak jednostruko povezane liste - verzija sa eksplicitnim vracanjem
novog pocetka liste. Ispis i oslobadanje liste su realizovani rekurzivno.

#include <stdio.h>
#include <stdlib.h>

typedef struct cvor

{

int br;

struct cvor* sl;
} CVOR;

/* Pomocna funkcija koja kreira cvor liste sa datim sadrzajem.
Funkcija kreira cvor i postavlja mu sadrzaj na dati broj.
Polje sl ostaje nedefinisano.

Funkcija vraca pokazivac na kreirani cvor. */

CVOR* napravi_cvor(int br)
{
CVOR* novi = (CVOR*)malloc(sizeof (CVOR));
if (novi == NULL)
{
fprintf (stderr, "Greska prilikom alokacije memorije\n");
exit(1);
}
novi->br = br;
return novi;

3

/* Ubacuje dati broj na pocetak date liste.
Funkcija pozivaocu eksplicitno vraca pocetak rezultujuce liste.*/
CVOR* ubaci_na_pocetak(CVOR* 1, int br)
{
CVOR* novi =
novi->sl = 1;
return novi;

napravi_cvor (br) ;

82

Jelena Tomasevié

/* Ispisivanje liste : rekurzivna verzija */
void ispisi_listu(CVOR* 1)

{
if (1 !'= NULL)
{
printf("%d ", 1->br);
ispisi_listu(1l->sl);
}
}

/* Ispisivanje liste unatrag : rekurzivna verzija */

/* Prethodna funkcija se lako modifikuje tako da ispisuje listu unazad */

void ispisi_listu_unazad(CVOR* 1)

{
if (1 '= NULL)
{
ispisi_listu_unazad(1l->sl);
printf("%d ", 1->br);
}
}

/* Oslobadjanje liste : rekurzivna verzija */
void oslobodi_listu(CVOR* 1)
{
if (1 !'= NULL)
{
oslobodi_listu(l->sl);
/* Prvo se oslobadja poslednji element liste */
/* printf("Oslobadjam %d\n", 1->br); */
free(l);

¥

main()

{
CVOR* 1 = NULL;
int i;
for (i = 0; i<10; i++)
1 = ubaci_na_pocetak(l, i);

ispisi_listu(l);
putchar(’\n’);

ispisi_listu_unazad(l);
putchar (’\n’);

oslobodi_listu(l);

Primer 62 Ubacivanje na kraj jednostruko povezane liste - verzija sa

verzija

* ¥k

- iterativna 1 rekurzivna

8.1 Liste

83

#include <stdio.h>
#include <stdlib.h>

typedef struct cvor

{

int br;

struct cvor* sl;
} CVOR;

/* Pomocna funkcija koja kreira cvor liste sa datim sadrzajem.
Funkcija kreira cvor i postavlja mu sadrzaj na dati broj.
Polje sl ostaje nedefinisano.

Funkcija vraca pokazivac na kreirani cvor. */

CVOR* napravi_cvor(int br)
{
CVOR* novi = (CVOR*)malloc(sizeof (CVOR));
if (novi == NULL)
{
fprintf (stderr, "Greska prilikom alokacije memorije\n");
exit(1);
}
novi->br = br;
return novi;

}

/* Ubacuje dati broj na pocetak liste.
Pokazivac na pocetak liste se prenosi preko pokazivaca, umesto po
vrednosti, kako bi mogla da mu se izmeni vrednost.
Iterativna verzija funkcije */

/* Ubacivanje na kraj liste je neefikasna operacija */

void ubaci_na_kraj(CVOR** pl, int br)

{
CVOR* novi = napravi_cvor(br);
novi->sl = 0;
if (#pl == NULL)
*pl = novi;
else
{
/* Pronalazimo poslednji element liste - t*/
CVOR* t;
for (t=+pl; t->sl!=NULL; t=t->sl)
t->sl1 = novi;
}
}

/* Rekurzivna varijanta prethodne funkcije */
void ubaci_na_kraj_rekurzivno(CVOR** pl, int br)

{

84 Jelena Tomasevié

if (*pl == NULL)

{
CVOR* novi = napravi_cvor(br);
*pl = novi;

}

else

ubaci_na_kraj_rekurzivno(&((xpl)->sl) ,br);

3

/* Ispisivanje liste : iterativna verzija */
void ispisi_listu(CVOR* 1)

{
CVOR* t;
for (t = 1; t != NULL; t=t->sl)
printf("%d ", t->br);
3

/* Iterativna verzija funkcije koja oslobadja listu */
void oslobodi_listu(CVOR* 1)
{
while (1)
{
CVOR* tmp = 1->s1;
free(l);
1 = tmp;

3

main()
{
CVOR* 1 = NULL;
int i;
for (i = 0; i<b; i++)
ubaci_na_kraj(&l, i);
for (; i<10; i++)
ubaci_na_kraj_rekurzivno (&1, 1i);

ispisi_listu(l);
putchar(’\n’);

oslobodi_listu(l);
}

Primer 63 Ubacivanje na kraj jednostruko povezane liste - verzija sa eksplicitnim vraéanjem nove
liste - iterativna i rekurzivna verzija.

#include <stdio.h>
#include <stdlib.h>

typedef struct cvor

{

int br;

8.1 Liste 85

struct cvor* sl;
} CVOR;

/* Pomocna funkcija koja kreira cvor liste sa datim sadrzajem.
Funkcija kreira cvor i postavlja mu sadrzaj na dati broj.
Polje sl ostaje nedefinisano.

Funkcija vraca pokazivac na kreirani cvor. */

CVOR* napravi_cvor(int br)
{
CVOR* novi = (CVOR*)malloc(sizeof (CVOR));
if (novi == NULL)
{
fprintf (stderr, "Greska prilikom alokacije memorije\n");
exit(1);
}
novi->br = br;
return novi,;

3

/* Funkcija vraca pocetak rezultujuce liste */
CVOR* ubaci_na_kraj(CVOR* 1, int br)
{

CVOR* novi = napravi_cvor(br);

novi->sl = NULL;

if (1 == NULL)
return novi;
else
{
CVOR* t;
for (t = 1; t->s1!=NULL; t=t->sl)

t->sl = novi;

/* Pocetak se nije promenio */
return 1;

3

/* Rekurzivna varijanta prethodne funkcije.
I ova funkcija vraca pokazivac na pocetak rezultujuce liste */
CVOR* ubaci_na_kraj_rekurzivno(CVOR* 1, int br)

{
if (1 == NULL)
{
CVOR* novi = napravi_cvor(br);
return novi;
}

1->s1 = ubaci_na_kraj_rekurzivno(1—>sl, br) ;
return 1;

86 Jelena Tomasevié

}

/* Ispisivanje liste : iterativna verzija */
void ispisi_listu(CVOR* 1)

{
CVOR* t;
for (¢t = 1; t !'= NULL; t=t->sl)
printf("%d ", t->br);
}

/* Iterativna verzija funkcije koja oslobadja listu */
void oslobodi_listu(CVOR* 1)
{
while (1)
{
CVOR* tmp = 1->s1;
free(l);
1 = tmp;

}

main()
{
CVOR* 1 = NULL;
int i;
for (i = 0; i<5; i++)
1 = ubaci_na_kraj(l, i);
for (; i<10; i++)
1 = ubaci_na_kraj_rekurzivno(l, i);

ispisi_listu(l);
putchar (°\n’);

oslobodi_listu(l);
}

Primer 64 Ubacivanje na odgovarajuée mesto sortirane jednostruko povezane liste - verzija sa **

- iterativna ¢ rekurzivna verzija

#include <stdio.h>
#include <stdlib.h>

typedef struct cvor

{

int br;

struct cvor* sl;
} CVOR;

/* Pomocna funkcija koja kreira cvor liste sa datim sadrzajem.
Funkcija kreira cvor i postavlja mu sadrzaj na dati broj.
Polje sl ostaje nedefinisano.

Funkcija vraca pokazivac na kreirani cvor. */

8.1 Liste 87

CVOR* napravi_cvor(int br)
{
CVOR* novi = (CVOR*)malloc(sizeof (CVOR));
if (novi == NULL)
{
fprintf (stderr, "Greska prilikom alokacije memorije\n");
exit(1);
X
novi->br = br;
return novi;
¥
/* Kljucna ideja u realizaciji ove funkcije je pronalazenje poslednjeg
elementa liste ciji je kljuc manji od datog elementa br.
*/
void ubaci_sortirano(CVOR** pl, int br)
{

CVOR* novi = napravi_cvor(br);

/* U sledeca dva slucaja ne postoji cvor ciji je kljuc manji
od datog broja (br)
- Prvi je slucaj prazne liste
- Drugi je slucaj kada je br manji od prvog elementa

U oba slucaja ubacujemo na pocetak liste.

*/
if (%pl == NULL || br < (*pl)->br)
{
novi->sl = *pl;
*pl = novi;
return;
X

/* Krecemo od pocetka i idemo dalje sve dok t nije poslednji
manji element liste ili eventualno bas poslednji */

CVOR* t;

for (t = *pl; t->sl!=NULL && t->sl->br < br; t=t->sl)

novi->sl = t->sl;

t->sl = novi;

}

/* Rekurzivna verzija prethodne funkcije */
void ubaci_sortirano_rekurzivno(CVOR** pl, int br)
{
if (xpl == NULL || br < (xpl)->br)
{
CVOR* novi = napravi_cvor(br);
novi->sl = *pl;
*pl = novi;
return;

88 Jelena Tomasevié

ubaci_sortirano(&((*pl)->sl), br);

3

/* Ispisivanje liste : iterativna verzija */
void ispisi_listu(CVOR* 1)

{
CVOR* t;
for (t = 1; t != NULL; t=t->sl)
printf("%d ", t->br);
}

/* Iterativna verzija funkcije koja oslobadja listu */
void oslobodi_listu(CVOR* 1)

{
while (1)
{
CVOR* tmp = 1->s1;
free(l);
1 = tmp;
}
}
main()
{
CVOR* 1 = NULL;
CVOR* k = NULL;
int i;

ubaci_sortirano(&l, 5);
ubaci_sortirano(&l, 8);
ubaci_sortirano(&l, 7);
ubaci_sortirano (&1, 6);
ubaci_sortirano(&l, 4);

ubaci_sortirano_rekurzivno(&k, 5);
ubaci_sortirano_rekurzivno(&k, 8);
ubaci_sortirano_rekurzivno (&k, 7);
ubaci_sortirano_rekurzivno(&k, 6);
ubaci_sortirano_rekurzivno (&k, 4);

ispisi_listu(l);
putchar (’\n’);

ispisi_listu(k);
putchar(’\n’);

oslobodi_listu(l);

8.1 Liste 89

8.1.1 Dvosturko povezana kruzna lista

Primer 65 Napisati funkciju koja omoguéava umetanje cvora u dvostruko povezanu kruznu listu
kao i izbacivanje cora iz dvostruko povezane kruzne liste. Omogudéiti © Stampanje podataka koje
cuva lista.

/* Program implementira deciju razbrajalicu eci-peci-pec i sluzi
da ilustruje rad sa dvostruko povezanim kruznim listama */

#include <stdlib.h>
#include <stdio.h>

/* Dvostruko povezana lista */
typedef struct _cvor

{

int broj;

struct _cvor* prethodni, *sledeci;
} cvor;

/* Umetanje u dvostruko povezanu listu */
cvor* ubaci(int br, cvor* lista)

{

cvor* novi=(cvor*)malloc(sizeof (cvor));

if (novi==NULL)

{ printf("Greska prilikom alokacije memorije \n");

exit(1);

}

novi->broj=br;

if (lista==NULL)

{
novi->sledeci=novi;
novi->prethodni=novi;
return novi;

}

else

{
novi->prethodni=lista;
novi->sledeci=lista->sledeci;
lista->sledeci->prethodni=novi;
lista->sledeci=novi;
return novi;

}

}

/* Ispis liste */
void ispisi(cvor* lista)
{
if (lista!=NULL)
{ cvor* tekuci=lista;
do
{ printf("%d\n",tekuci->broj);
tekuci=tekuci->sledeci;

90

Jelena Tomasevié

3

} while (tekuci'!'=lista);

/* Izbacivanje datog cvora iz liste */
cvor* izbaci(cvor* lista)

{
if (lista!=NULL)
{ cvor*x sledeci=lista->sledeci;
if (lista==lista->sledeci)
{ printf("Pobednik %d\n",lista->broj);
free(lista);
return NULL;
}
printf("Ispada %d\n",lista->broj);
lista—->sledeci->prethodni=lista->prethodni;
lista->prethodni->sledeci=lista->sledeci;
free(lista);
return sledeci;
}
else return NULL;
}
main()
{

/* Umecemo petoro dece u listu */
cvor* lista = NULL;
lista=ubaci(1l,lista);
lista=ubaci(2,lista);
lista=ubaci(3,lista);
lista=ubaci(4,lista);
lista=ubaci(5,lista);
lista=lista->sledeci;

int smer = 0;

/* Dok ima dece u listi */
while(lista!=NULL)

{ int i;

/* brojimo 13 slogova u krug i
u svakom brojanju menjamo smer obilaskax/
for (i=1; i<=13; i++)
lista = 1l-smer 7 lista->sledeci : lista->prethodni;

lista=izbaci(lista);
smer = smer 7?7 0 : 1;
}

ispisi(lista);

8.2 Zadaci za vezbu 91

8.2 Zadaci za vezbu

Zadatak 29 Brojeve sa ulaza smestati u listu sve dok se ne unese nula, a zatim dobijenu listu
ispisati na izlaz.

1. Zadatak realizovati dodavanjem elemenata liste na pocetak liste.
2. Zadatak realizovati tako da listu koja se formira bude sortirana.

8. Zadatak realizovati dodavanjem elemenata liste na kraj liste a listu ispisati unazad.

Zadatak 30 Jun, 2004. Igrupa Data je datotka brojevi.txt koja sadrZi cele brojeve, po jedan
u svakom redu.

1. Napisati funkciju koja iz zadate datoteke ucitava brojeve i smesta ih u listu.

2. Napisati funkciju koja u jednom prolazu kroz zadatu listu celih brojeva pronalazi mazimalan
strogo rastuci podniz.

3. Koristedi funkcije pod a) i b) napisati program koji u datoteku Rezultat.txt upisuje nadeni
strogo rastuci podniz.

Zadatak 31 Grupa od n plesaca (na cijim kostimima su u smeru kazaljke na satu redom brojevi od
1 do n) izvodi svoju plesnu tacku tako Sto formiraju krug iz kog najpre izlazi k-ti plesac¢ (odbrojava
se pocev od plesaca oznacenog brojem 1 w smeru kretanja kazaljke na satu). Preostali plesaci
obrazuju mangi krug iz kog opet izlazi k-ti plesaé (odbrojava se pocev od sledeéeg suseda prethodno
izbacenog, opet u smeru kazaljke na satu). Izlasci iz kruga se nastavljaju sve dok svi plesaci ne
budu iskljuceni. Celi brojevin, k (k < n) se uditavaju sa standardnog ulaza. Napisati program koji
¢e na standardni izlaz ispisati redne brojeve plesaca u redosledu napustanja kruga.
PRIMER: zan =05, k=3 redosled izlaska je 3 1 5 2 4.

92

Jelena Tomasevié

9

Programski jezik C

9.1 Stek

Primer 66 Provera uparenosti HITML etiketa - stek se implementira preko liste.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>

/* Maksimalna duzina etikete */
#define MAX_TAG 100

#define OPEN 1
#tdefine CLOSED 2
#define ERROR O

/* Funkcija ucitava sledecu etiketu i smesta njen naziv u niz s duzine max.
Vraca OPEN za otvorenu etiketu, CLOSED za zatvorenu etiketu,
odnosno ERROR inace */
int gettag(char s[], int max)
{ int c, 1ij;
int type=0PEN;

/* Preskacemo sve do znaka ’<’ */
while ((c=getchar())!=EQOF && c!=’<’)
/* Nismo naisli na etiketu */
if (c==EQOF)

return ERROR;

/* Proveravamo da li je etiketa zatvorena */
if ((c=getchar())=="/)
type = CLOSED;

1Zasnovano na primerima sa sajta http://www.matf.bg.ac.yu/~£ilip

94

Jelena Tomasevié

}

else
ungetc(c,stdin);

/* Citamo etiketu dok nailaze slova i smestamo ih u niskux/
for (i=0; isalpha(c=getchar()) && i<max-1; s[i++] = c)

’

s[i1="\0";

/* Preskacemo atribute do znaka > */
while (c!=EOF && c!=’>")
¢ = getchar();

/* Greska ukoliko nismo naisli na ’>’ */
return c==’>’ 7 type : ERROR;

/***/

/* Stek ce biti implementiran koriscenjem liste */
typedef struct node

{
char string[MAX_TAG];
struct node* next;

} NODE;

/* Funkcija postavlja dati string na stek */
void push(NODE#* pstack, char* s)

{

NODE* tmp = (NODEx*)malloc(sizeof (NODE));

if (tmp == NULL)

{
fprintf (stderr, "Greska prilikom alokacije memorije\n");
exit(1);

}

strcpy (tmp->string, s);

tmp->next = *pstack;

*pstack = tmp;

/* Funkcija cita podatak sa vrha steka */
char* peek(NODE* stack)

{

}

/* Stek ne sme da bude prazan */
assert(stack != NULL);

return stack->string;

/* Funkcija uklanja podatak sa vrha steka */
void pop(NODE** pstack)

{

/* Ukoliko je stek prazan ne radimo nista */
if (*pstack == NULL)

9.1 Stek 95

return;

NODE#* tmp = (*pstack)->next;
free(*pstack);
*pstack = tmp;

}

/* Funkcija proverava da 1i je dati stek prazan */
int empty(NODE* stack)
{
return stack == NULL;
¥

/* 3k 3k 3k 5k 3k 5k >k 5k >k 3k 5k 3k 5k 5k 5k >k 5k >k 3k 3k 5k 5k >k 3k >k 5k 5k 3k 5k 5k 5k >k 5k >k 5k 5k 5k 5k %k 5k >k 3k >k 5k 5k >k 5k >k 3k >k %k 5k %k 5k >k >k >k %k >k >k 5k %k >k %k >k *k k >k k */

main()

{
char tag[MAX_TAG];
NODE* stack = NULL;

int type;
while ((type = gettag(tag,MAX_TAG)) '= ERROR)
{
if (type == OPEN)
{
/* Svaku otvorenu etiketu stavljamo na stek */
push(&stack, tag);
printf ("Postavio <Ys> na stek\n", peek(stack));
}
else
{
/* Za zatvorene etikete proveravamo da 1li je stek prazan
odnosno da 1i se na vrhu steka nalazi odgovarajuca otvorena etiketa */
if (!empty(stack) && strcmp(peek(stack), tag) == 0)
{
printf ("Skidam <%s> sa steka\n", peek(stack));
/* Uklanjamo etiketu sa steka */
pop (&stack) ;
}
else
{
/* Prijavljujemo gresku */
printf ("Neodgovarajuce : </%s>\n",tag);
exit(1);
}
}

}

/* Proveravamo da li je stack ispraznjen */
if (lempty(stack))
fprintf (stderr, "Nisu sve etikete zatvorene\n");

96 Jelena Tomasevié

9.2 Drveta

9.2.1 Binarno pretrazivacko drvo

Primer 67 Binarno pretraZivacko drvo - drvo sadrzi cele brojeve. Ubacivanje realizovano preko
*H

#include <stdlib.h>
#include <stdio.h>

/* Struktura jednog cvora drveta */
typedef struct _cvor

{
/* Podatak */
int broj;
/* Pokazivac na levo i desno podstablo */
struct _cvor *1, *d;
} cvor;

/* Pomocna funkcija koja kreira novi cvor na osnovu datog broja */
cvor* napravi_cvor(int b)

{
cvor* novi = (cvor*)malloc(sizeof (cvor));
if (novi == NULL)
{
fprintf (stderr, "Greska prilikom alokacije memorije");
exit(1);
}
/* Postavljamo brojnu vrednost */
novi->broj = b;
/* Novi cvor se kreira kao list */
novi->1 = NULL;
novi->d = NULL;
return novi;
}

/* Rekurzivna funkcija koja ubacuje dati broj u dato drvo */
void ubaci_u_drvo(cvor** pdrvo, int b)
{
/* Ukoliko je drvo prazno kreira se novi cvor */
if (xpdrvo == NULL)
{
*pdrvo = napravi_cvor(b);
return;

/* Ukoliko je broj koji se ubacuje manji od broja u korenu,
rekurzivno ga ubacujemo u levo podstablo.
Ukoliko je broj koji se ubacuje veci od broja u korenu,
rekurzivno ga ubacujemo u desno podstablo.

*/

9.2 Drveta 97

if (b < (*pdrvo)->broj)
ubaci_u_drvo (& ((*pdrvo)->1), b);

else if (b > (*pdrvo)->broj)
ubaci_u_drvo(&((*pdrvo)->d), b);

/* Rekurzivna funkcija koja proverava da li dati broj postoji u drvetu */
int pronadji(cvor* drvo, int b)

{
/* U praznom drvetu ne postoji broj */
if (drvo == NULL)
return O;
/* Ukoliko je jednak vrednosti u korenu, onda postoji */
if (drvo->broj == b)
return 1;

/* Ukoliko je broj koji trazimo manji od vrednosti u korenu,
trazimo ga samo u levom podstablu, a inace ga trazimo
samo u desnom podstablu */

if (b < drvo->broj)

return pronadji(drvo->1, b);
else
return pronadji(drvo->d, b);
}

/* Rekurzivna funkcija koja ispisuje drvo u inorder redosledu */
void ispisi_drvo(cvor* drvo)

{
if (drvo != NULL)
{
ispisi_drvo(drvo->1);
printf("%d ", drvo->broj);
ispisi_drvo(drvo->d);
}
}

/* Rekurzivna funkcija koja uklanja drvo. Obilazak mora biti postorder. */
void obrisi_drvo(cvor* drvo)

{
if (drvo !'= NULL)
{
obrisi_drvo(drvo->1);
obrisi_drvo(drvo->d);
free(drvo);
}
}

main()

98

Jelena Tomasevié

}

cvor* drvo = NULL;

ubaci_u_drvo(&drvo, 1);
ubaci_u_drvo(&drvo, 8);
ubaci_u_drvo(&drvo, 3);
ubaci_u_drvo(&drvo, 5);
ubaci_u_drvo(&drvo, 7);
ubaci_u_drvo(&drvo, 6);
ubaci_u_drvo(&drvo, 9);

if (pronadji(drvo, 3))

printf ("Pronadjeno 3\n");
if (pronadji(drvo, 2))

printf ("Pronadjeno 2\n");
if (pronadji(drvo, 7))

printf ("Pronadjeno 7\n");

ispisi_drvo(drvo);
putchar (’\n’);

obrisi_drvo(drvo);

Primer 68 Binarno pretraZivacko drvo - drvo sadrzi cele brojeve. Ubacivanje realizovano preko
eksplicitnog vraéanja korena rezultujuceg drveta.

#include <stdlib.h>
#include <stdio.h>

typedef struct _cvor

{

int broj;

struct _cvor *1, *d;
} cvor;

cvor* napravi_cvor(int b)

{

3

cvor* novi = (cvor*)malloc(sizeof (cvor));

if (novi == NULL)

{
fprintf (stderr, "Greska prilikom alokacije memorije");
exit(1);

}

novi->broj = b;

novi->1 = NULL;

novi->d = NULL;

return novi;

cvor* ubaci_u_drvo(cvor* drvo, int b)

{

if (drvo == NULL)
return napravi_cvor(b);

9.2 Drveta

if (b < drvo->broj)

drvo->1 = ubaci_u_drvo(drvo->1, b);
else

drvo->d = ubaci_u_drvo(drvo->d, b);

return drvo;

3

/* Funkcija proverava da li dati broj postoji u drvetu */
int pronadji(cvor* drvo, int b)
{
if (drvo == NULL)
return O;

if (drvo->broj == b)
return 1;

if (b < drvo->broj)

return pronadji(drvo->1, b);
else

return pronadji(drvo->d, b);

3

void ispisi_drvo(cvor* drvo)
{
if (drvo != NULL)
{
ispisi_drvo(drvo->1);
printf("%d ", drvo->broj);
ispisi_drvo(drvo->d);

void obrisi_drvo(cvor* drvo)

{
if (drvo !'= NULL)
{
obrisi_drvo(drvo->1);
obrisi_drvo(drvo->d);
free(drvo) ;
}
}
main()
{

cvor* drvo = NULL;

drvo = ubaci_u_drvo(drvo, 1);
drvo = ubaci_u_drvo(drvo, 8);
drvo = ubaci_u_drvo(drvo, 5);
drvo = ubaci_u_drvo(drvo, 3);

100

Jelena Tomasevié

}

drvo = ubaci_u_drvo(drvo, 7);
drvo ubaci_u_drvo(drvo, 6);
drvo = ubaci_u_drvo(drvo, 9);

if (pronadji(drvo, 3))

printf ("Pronadjeno 3\n");
if (pronadji(drvo, 2))

printf ("Pronadjeno 2\n");
if (promnadji(drvo, 7))

printf ("Pronadjeno 7\n");

ispisi_drvo(drvo);
putchar (’\n’);

obrisi_drvo(drvo);

Primer 69 Rekurzivne funkcije za rad sa celobrojnim stablima (ne obavezno pretrazivackim):

broj-

cvorova, broj_listova, suma_cvorova, dubina, najveci_cvor, ...

#include <stdlib.h>
#include <stdio.h>

typedef struct _cvor

{

int broj;

struct _cvor *1, *d;
} cvor;

cvor* napravi_cvor(int b)

{

¥

cvor* novi = (cvor*)malloc(sizeof (cvor));

if (novi == NULL)

{
fprintf (stderr, "Greska prilikom alokacije memorije");
exit(1);

}

novi->broj = b;

novi->1 = NULL;

novi->d = NULL;

return novi;

void ubaci_u_drvo(cvor** drvo, int b)

{

if (xdrvo == NULL)

{
*drvo = napravi_cvor(b);
return;

}

if (b < (*drvo)->broj)
ubaci_u_drvo(&((*drvo)->1), b);

9.2 Drveta 101

else
ubaci_u_drvo(&((*drvo)->d), b);
}
void ispisi_drvo(cvor* drvo)
{
if (drvo != NULL)
{
ispisi_drvo(drvo->1);
printf("%d ", drvo->broj);
ispisi_drvo(drvo->d);
+
}

void obrisi_drvo(cvor* drvo)

{
if (drvo != NULL)
{
obrisi_drvo(drvo->1);
obrisi_drvo(drvo->d);
free(drvo);
}
}

/* Izracunava sumu svih elemenata u cvorovima drveta */
int suma_cvorova(cvor* drvo)

{
if (drvo == NULL)
return 0O;
return suma_cvorova(drvo->1) +
drvo->broj +
suma_cvorova(drvo->d) ;
}

/* Izracunava broj cvorova datog drveta */
int broj_cvorova(cvor* drvo)

{
if (drvo == NULL)
return O;
return broj_cvorova(drvo->1) +
1+
broj_cvorova(drvo->d) ;
}

/* Izracunava broj listova datog drveta */
int broj_listova(cvor* drvo)

{
if (drvo == NULL)
return O;

/* Cvor je list ukoliko nema ni jednog naslednika */

102

Jelena Tomasevié

if (drvo->1 == NULL && drvo->d == NULL)
return 1;

return broj_listova(drvo->1) +
broj_listova(drvo->d);

}

/* Izracunava sumu svih elemenata u listovima drveta */
int suma_listova(cvor* drvo)

{
if (drvo == NULL)
return O;
if (drvo->1 == NULL && drvo->d == NULL)
return drvo->broj;
return suma_listova(drvo->1) +
suma_listova(drvo->d);
}

/* Ispisuje sve elemente u listovima drveta */
void ispisi_listove(cvor* drvo)

{
if (drvo == NULL)
return;

ispisi_listove(drvo->1);

if (drvo->1 == NULL && drvo->d == NULL)
printf("%d ", drvo->broj);

ispisi_listove(drvo->d);

3

/* Izracunava vrednost najveceg cvora u proizvoljnom drvetu.

Vraca -1 ukoliko je drvo prazno */
int najveci_cvor(cvor* drvo)

{

if (drvo == NULL)
return -1;

else

{
int max_1 = najveci_cvor(drvo->1);
int max_d = najveci_cvor(drvo->d);

return max_l<max_d 7
(max_d<drvo->broj?drvo->broj:max_d)
(max_l<drvo->broj?drvo->broj:max_1) ;

9.2 Drveta 103

/* Izracunava dubinu (broj nivoa drveta) */
int dubina(cvor* drvo)
{
if (drvo == NULL)
return 0;
else
{
int dl
int dd

dubina(drvo->1);
dubina(drvo->d) ;

return dl<dd 7?7 dd + 1 : d1 + 1;

3

main()

{
cvor* drvo = NULL;
ubaci_u_drvo(&drvo, 1);
ubaci_u_drvo(&drvo, 8);
ubaci_u_drvo(&drvo, 5);
ubaci_u_drvo(&drvo, 3);
ubaci_u_drvo(&drvo, 7);
ubaci_u_drvo(&drvo, 6);
ubaci_u_drvo(&drvo, 9);

printf ("Suma cvorova : %d\n", suma_cvorova(drvo));
printf ("Broj cvorova : %d\n", broj_cvorova(drvo));
printf("Broj listova : %d\n", broj_listova(drvo));
printf ("Suma listova : %d\n", suma_listova(drvo));
printf ("Najveci cvor : %d\n", najveci_cvor(drvo));
printf ("Dubina : %d\n", dubina(drvo));
printf("Listovi : ");

ispisi_listove(drvo);

putchar (’\n’) ;

obrisi_drvo(drvo);

}

Primer 70 Program sa ulaza cita tekst i ispisuje broj pojaviljivanja svake od reci koje su se javljale
u tekstu. Verziga sa binarnim pretrazivackim drvetom.

#include <stdlib.h>
#include <stdio.h>

/* Cvor drveta sadrzi ime reci i broj njenih pojavljivanja */
typedef struct _cvor
{ char ime[80];
int br_pojavljivanja;
struct _cvorx* levo, *desno;
} cvor;

/* Funkcija ispisuje drvo u inorder redosledu */

104

Jelena Tomasevié

void ispisi_drvo(cvor* drvo)
if (drvo!=NULL)

{

{

ispisi_drvo(drvo->levo);
printf ("%s %d\n",drvo->ime,drvo->br_pojavljivanja);
ispisi_drvo(drvo->desno) ;

/* Funkcija uklanja binarno drvo iz memorije */
void obrisi_drvo(cvor* drvo)
if (drvo!=NULL)

{

3

{

obrisi_drvo(drvo->levo);
obrisi_drvo(drvo->desno) ;
free(drvo) ;

/* Funkcija ubacuje datu rec u dato drvo i vraca pokazivac na koren drveta */
cvor* ubaci(cvor* drvo, char rec[])

{

/%
if
{

}

Ukoliko je drvo prazno gradimo novi cvor */
(drvo==NULL)

cvor* novi_cvor=(cvor*)malloc(sizeof (cvor));

if (novi_cvor==NULL)

{ printf("Greska prilikom alokacije memorije\n");

exit(1);

}

strcpy(novi_cvor->ime, rec);
novi_cvor->br_pojavljivanja=1;

return novi_cvor;

int cmp = strcmp(rec, drvo->ime);

/*
if
{

/%

if
{

Ukoliko rec vec postoji u drvetu uvecavamo njen broj pojavljivanja */
(cmp==0)

drvo->br_pojavljivanja++;

return drvo;

Ukoliko je rec koju ubacujemo leksikografski ispred reci koja je u
korenu drveta, rec ubacujemo u levo podstablo */

(cmp<0)

drvo->levo=ubaci(drvo->levo, rec);

return drvo;

Ukoliko je rec koju ubacujemo leksikografski iza reci koja je u
korenu drveta, rec ubacujemo u desno podstablo */

(cmp>0)

drvo->desno=ubaci(drvo->desno, rec);

return drvo;

9.2 Drveta 105

3

/* Pomocna funkcija koja cita rec sa standardnog ulaza i vraca njenu
duzinu, odnosno -1 ukoliko se naidje na EOF */

int getword(char word[], int 1im)

{ int ¢, i=0;
while (!isalpha(c=getchar()) && c!=EQF)

>

if (c==EOF)
return -1;
do
{ word[i++]=c;
}while (i<lim-1 && isalpha(c=getchar()));

word[i]="\0";
return i;

3

main()

{
/* Drvo je na pocetku prazno */
cvor* drvo=NULL;
char procitana_rec[80];

/* Citamo rec po rec dok ne naidjemo na kraj datoteke i
ubacujemo ih u drvo */

while(getword(procitana_rec,80)!=-1)
drvo=ubaci(drvo,procitana_rec) ;

/* Ispisujemo drvo */
ispisi_drvo(drvo);

/* Uklanjamo ga iz memorije */
obrisi_drvo(drvo);

Primer 71 Program koji broji pojavljivanja svih etiketa u HTML datoteci - etikete se ispisuju
opadajuci po broju pojavljivanja

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

/* Struktura cvora drveta u kome se cuvaju etikete zajedno sa brojem
pojavljivanja. Drvo je pretrazivacko i sortirano je lekikografski po
etiketama */

typedef struct _node{

char tag[30];

106 Jelena Tomasevié

int num;
struct _node *1,*r;
} node;

/* Zbog sortiranja po broju cvorova, paralelno sa strukturom drveta,
odrzavamo niz pokazivaca na njegove cvorove */

node* nodes[100];

/* Dosadasnji broj cvorova drveta (razlicitih etiketa) */

int num_nodes = 0;

/* Funkcija kreira cvor koji sadrzi datu etiketu */
node* make_node(char *tag)

{
node*x new_node = (nodex) malloc(sizeof (node));
if (new_node == NULL)
{
fprintf (stderr,"Greska prilikom alokacije memorije\n");
exit(1);
}
strcpy(new_node->tag, tag);
new_node—->1=NULL;
new_node->r=NULL;
new_node->num = 1;
/* Dopisujemo cvor u niz postojecih cvorova */
nodes [num_nodes++] = new_node;
return new_node;
}

/* Funkcija umece datu etiketu u postojece drvo. Ukoliko etiketa postoji,
povecava se njen broj pojavljivanja */
void insert(node** ptree, char tagl[])
{
int cmp;
if (*ptree==NULL)
{
*ptree = make_node(tag) ;
return;

}
cmp = strcmp(tag, (*ptree)->tag);

if (cmp < 0)

insert (&((*ptree)->1), tag);
else if (cmp > 0)

insert (&((*ptree)->r), tag);
else

(*ptree)->num++;

9.2 Drveta 107

}

/* Funcija za ispis drveta */
void print(node* tree)

{
if (tree != NULL)
{
print (tree->1);
printf ("%-10s - %3d\n", tree->tag, tree->num);
print(tree->r);
}
3

/* Funkcija koja uklanja drvo */
void remove_tree(node* tree)

{
if (tree '= NULL)
{
remove_tree(tree->1);
remove_tree(tree->r);
free(tree);
}
}

/* Funkcija poredjenja za poziv ugradjene funkcije gsort. Porede se
dva cvora drveta na osnovu broja pojavljivanja etiketa */

int compare(const void* pa, const void* pb)

{
return (*((node**)pb))->num - (*((node**)pa))->num;

}

/* Funkcija ucitava etiketu iz date datoteke. Funkcija vraca
logicku vrednost koja indikuje da 1li je etiketa uspesno
procitana */

int get_tag(FILEx f, char tag[])

{

int c;
int i = 0;

/* Preskacemo sve do prvog znaka ’<’ ili kraja */
while ((c = fgetc(f)) != EOF && c != ’<?)

)

/* Nije bilo vise etiketa */
if (c == EOF)
return 0O;

/* Citamo prvi karakter etiketax/
c = fgetc(f);

/* Gutamo / kod zatvorenih etiketa */

108 Jelena Tomasevié

if (c == /)
c = fgetc(£f);

/* Ime etikete cine slova */
while(isalpha(c))
{
tagli++] = c;
c = fgetc(f);
}
tagl[i]l = °\0’;

/* Preskacemo sve do > ili do kraja */
while (c !'= ’>’ && c != EOF)
c = fgetc(f);

if (¢ == EOF)
return O;

return 1;

}

main(int argc, char*x argv[])

{
/* Tekuca procitana etiketa */
char tag[30];

/* Drvo koje je leksikografski sortirano zbog brze pretrage */
nodex tree = NULL;

/* Datoteka iz koje se cita */
FILE* f;
int i;

/* Proverava se korektnost argumenata komandne linije */
if (argc < 2)
{
printf ("Upotreba : ’%s ime_datoteke\n", argv([0]);
exit(1);
3

/* Otvara se datoteka */

f = fopen(argv[1], "r");

if (f == NULL)

{
fprintf(stderr, "Greska prilikom otvaranja %s\n", argv[1]);
return;

}

/* Kreiramo drvo na osnovu sadrzaja datoteke */
while(get_tag(f, tag) == 1)
insert (&tree, tag);

9.3 Zadaci za vezbu 109

/* Zatvaramo datoteku */
fclose(f);

/* Sortiramo cvorove niza na osnovu broja pojavljivanja etiketa */
gsort(nodes, num_nodes, sizeof(nodex*), &compare);

/* Ispisujemo sortirane cvorove */
for (i = 0; i<num_nodes; i++)
printf ("%-10s - %3d\n", nodes[i]->tag, nodes[i]->num);

/* Uklanjamo drvo */
remove_tree(tree);

9.3 Zadaci za vezbu

Zadatak 32 Septembar, 2005. Napisati program koji na standardni izlaz ispisuje naziv (BEZ
ATRIBUTA) najéesée koriséene etikete u datoteci ulaz.htm. Ako ima vise takvih, ispisati ma koju.
Koristiti uredeno binarno stablo. Pretpostaviti da je ulazna datoteka sintaksno korektna.

Zadatak 33 Drugi kolokvijum za II tok 200/.godine - rad na rac¢unaru Napisati program
koji iz tekstualne datoteke ¢iji je put dat u argumentu komandne linije ucitava razlic¢ite prirodne
brojeve i:

1. dodaje ih redom u uredjeno binarno stablo
2. u dobijenom drvetu izracunava duZinu najduieg puta od korena do nekog lista i

3. Stampa u rastuéem poretku (bez ponavljanja) sve brojeve koji su nalaze na putevima te duZine
od korena do listova.

110 Jelena Tomasevié

10

Programski jezik C

10.1 Grafovi

Graf G=(V,E) sastoji se od skupa V ¢vorova i skupa E grana. Grane predstavljaju relacije izmedu
évorova i odgovara paru cvorova. Graf moze biti usmeren (orijentisan), ako su mu grane uredeni
parovi i neusmeren (neorjentisan) ako su grane neuredeni parovi.

Uobicajena su dva nacina predstavijanja grafova. To su matrica povezanosti grafa i lista
povezanosti.

Matrica povezanosti je kvadratna matrica dimenzije n, pri cemu je n broj ¢vorova u grafu, takva
da je element na preseku i-te vrste i j-te kolone jednak jedinici ukoliko postoji grana u grafu od
i-tog do j-tog ¢vora, inace je nula.

Umesto da se i sve nepostojece grane eksplicitno predstavljaju uw matrici povezanosti, mogu se
formirati povezane liste od jedinica iz i-te vrste za i=1,2,...,n. To je lista povezanosti. Svakom
cvoru se pridruzuje povezana lista, koja sadrzi sve grane susedne tom cvoru. Graf je predstavijen
vektorom lista. Svaki elemenat vektora sadrzi ime (indeks) ¢vora i pokazivac na njegovu listu
cvorova.

Prvi problem na koji se nailazi pri konstrukciji bilo kog algoritma za obradu grafa je kako
pregledati ulaz. Postoje dva osnovna algoritma za obilazak grafa: pretraga u dubinu (DFS, skradenica
od depth-first-search) i pretraga u Sirinu (BFS, skracenica od breadth-first-search).

Kod DFS algoritma, obilazak zapocinge iz proizvoljnog zadatog ¢vora r koji se maziva koren
pretrage u dubinu. Koren se oznacava kao posecen. Zatim se bira proizvoljan neoznacen cvor ri,
sussedan sa r, pa se iz ¢vora rl rekurzivno startuje pretraga u dubinu. Iz nekog nivoa rekurzije
izlazi se kad se naide na ¢vor v kome su svi susedi veé¢ oznaceni.

Primer 72 Primer reprezentovanja grafa preko matrice povezanosti. U programu se unosi neori-
jentisan graf i DFS algoritmom se utvrdjuju cvrovi koji su dostizZni iz cvora 0.

#include <stdlib.h>
#include <stdio.h>

int** alociraj_matricu(int n)
{ int **matrica;
int i;
matrica=malloc(n*sizeof (int*));

1Zasnovano na materijalu Algoritmi, Miodrag Zivkovié i http://www.matf.bg.ac.yu/~filip

112 Jelena Tomasevié

for (i=0; i<n; i++)
matricalil=calloc(n,sizeof (int));
return matrica;

}

void oslobodi_matricu(int** matrica, int n)
{ int 1i;
for (i=0; i<n; i++)
free(matricalil);
free(matrica) ;

}

int* alociraj_niz(int n)

{ int* niz;
niz=calloc(n,sizeof (int));
return niz;

3

void oslobodi_niz(int* niz)
{ free(niz);

}

void unesi_graf (int** graf, int n)
{ int i,j;
for (i=0; i<mn; i++)
for (j=i; j<m; j++)
{ printf("Da 1li su element %d i %d povezani : ",i,j);
do
{ scanf("%d",&graf[i] [j1);
graf [j] [i]l=graf [i] [j];
} while (graf[il([j]1!=0 && graf([i][j]1!=1);

¥

void ispisi_graf (int** graf, int n)
{ int 1i,3j;
for (i=0; i<n; i++)
{ for (j=0; j<n; j++)
printf("%d",graf[i][j1);
printf ("\n");

/* Broj cvorova grafa (dimenzija matrice) */
int n;

/* Matrica povezanosti */

int **xgraf;

/* Pomocni vektor koji govori o tome koji su cvorovi posecivani

10.1 Grafovi 113

tokom DFS obilaska */
int *posecen;

/* Rekurzivna implementacija DFS algoritma */
void poseti(int i)
{ int j;

posecen[i]=1;

printf ("Posecujem cvor %d\n",i);

for (j=0; j<mn; j++)

if (graf[i][j] && !posecen[jl)
poseti(j);

main()

{ int i, j;
printf ("Unesi broj cvorova : ");
scanf ("%d",&n) ;

graf=alociraj_matricu(n);
unesi_graf (graf,n);
ispisi_graf (graf,n);

posecen=alociraj_niz(n);
poseti(0);

oslobodi_niz(posecen);
oslobodi_matricu(graf,n);

}

Primer 73 Primer predstavljanja grafa preko niza listi suseda svakog od ¢vorova grafa U programu
se unosi graf i DFS algoritmom se utvrdjuje koji su ¢vorovi dostizni iz cvora 0.

#include <stdlib.h>
#include <stdio.h>

/* Cvor liste suseda */

typedef struct _cvor_liste

{ int broj; /* Indeks suseda */
struct _cvor_liste* sledeci;

} cvor_liste;

/* Ubacivanje na pocetak liste */
cvor_listex ubaci_u_listu(cvor_liste* lista, int broj)
{ cvor_liste*x novi=malloc(sizeof (cvor_liste));
novi->broj=broj;
novi->sledeci=lista;
return novi,;

/* Brisanje liste */

114 Jelena Tomasevié

void obrisi_listu(cvor_listex lista)
{ if (lista)
{ obrisi_listu(lista->sledeci);
free(lista);
}
}

/* Ispis liste */
void ispisi_listu(cvor_listex lista)
{ if (lista)
{ printf("%d ",lista->broj);
ispisi_listu(lista->sledeci);
}
}

/* Graf predstavlja niz pokazivaca na pocetke listi suseda */
#define MAX_BROJ_CVOROVA 100

cvor_listex graf [MAX_BROJ_CVOROVA];

int broj_cvorova;

/* Rekurzivna implementacija DFS algoritma */
int posecen[MAX_BROJ_CVOROVA];
void poseti(int i)
{ cvor_listex* sused;
printf ("Posecujem cvor %d\n",i);
posecen[i]=1;
for(sused=graf[i]; sused!=NULL; sused=sused->sledeci)
if (!posecen[sused->brojl)
poseti(sused->broj) ;

}
main()
{ int i;

printf ("Unesi broj cvorova grafa : ");
scanf ("%d",&broj_cvorova) ;

for (i=0; i<broj_cvorova; i++)

{ int br_suseda,j;

graf [1]=NULL;

printf("Koliko cvor %d ima suseda : ",i);
scanf ("%d",&br_suseda) ;
for (j=0; j<br_suseda; j++)
{ int sused;
do
{
printf ("Unesi broj %d.-tog suseda cvora %d : ",j,i);
scanf ("%d",&sused) ;
} while (sused<l && sused>broj_cvorova);
graf [i]=ubaci_u_listu(graf[i],sused-1);

10.1 Grafovi 115

}

3

for (i=0; i<broj_cvorova; i++)

{ printf("%d - ",i);
ispisi_listu(graf[il);
printf("\n");

}

poseti(0);

Primer 74 MINESWEEPER - primer jednostavne igrice. Program demonstrira rad sa matri-
cama, slucajnim brojevima @ rekurzivnu implementaciju DFS algoritma za obilazak grafova.

#include <stdlib.h>
#tinclude <stdio.h>
#include <time.h>

/* Dimenzija table */

int

n;

/* Tabla koja sadrzi 0 i 1 u zavisnosti od toga da 1li na polju postoji bomba */
int** bombe;

/* Tabla koja opisuje tekuce stanje igre. Moze da sadrzi sledece vrednosti

*/

ZATVORENO - opisuje polje koje jos nije bilo otvarano

PRAZNO - polje na kome ne postoji ni jedna bomba

broj od 1-8 - polje koje je otvoreno i na kome pise koliko bombi postoji u okolini
ZASTAVICA - polje koje je korisnik oznacio zastavicom

#define PRAZNO (-1)
#define ZATVORENO O
#define ZASTAVICA 9

int** stanje;

/* Ukupan broj bombi */
int broj_bombi;

/* Ukupan broj postavljenih zastavica */
int broj_zastavica = 0;

/* Pomocne funkcije za rad sa matricama */
int** alociraj(int n)

{

int i;
int** m=malloc(n*sizeof (int*));
for (i=0; i<n; i++)

m[il=calloc(n,sizeof (int));

return m;

116 Jelena Tomasevié

void obrisi(int** m, int n)
{ int i;
for (i=0; i<n; i++)
free(m[i]);

free(m);

3

/* Funkcija postavlja bombe */
void postavi_bombe()
{ broj_bombi=(n*n)/6;

int kolona;

int vrsta;

int i;

/* Inicijalizujemo generator slucajnih brojeva */
srand (time (NULL)) ;

for (i=0; i<broj_bombi; i++)

{ /* Racunamo slucajni polozaj bombe */
kolona=rand()%n;
vrsta=rand()%n;

/* Ukoliko bomba vec postoji tu, opet idemo u istu iteraciju */
if (bombe[vrsta]l [kolona]==1)
{ i--

continue;

}

/* Postavljamo bombu */
bombe [vrstal [kolona]=1;

/* Funkcija ispisuje tablu sa bombama */
void ispisi_bombe ()
{ int i,j;
for (i=0; i<n; i++)
{ for (j=0; j<m; j++)
printf("%d",bombe[i] [j1);
printf("\n");

}

/* Funkcija ispisuje tekuce stanje */
void ispisi_stanje()

{ int i,j;

/* Brisemo ekran pozivajuci komandu operativnog sistema */

10.1 Grafovi 117

system("clear");

for (i=0; i<n; i++)
{ for (j=0; j<n; j++)
{ if (stanjel[i] [j1==ZATVORENO)

printf(".");

else if (stanjel[i] [j]1==PRAZNO)
printf(" ");

else if (stanje[i] [j1==ZASTAVICA)
printf ("x");

else
printf ("%d",stanjel[i] [j1);
}
printf("\n");

3

/* Funkcija postavlja zastavicu na dato polje ili je uklanja
ukoliko vec postoji */
void postavi_zastavicu(int i, int j)
{ if (stanje([i] [j1==ZATVORENO)
{ stanje[i] [j1=ZASTAVICA;
broj_zastavicat+;
X
else if (stanje[i] [j1==ZASTAVICA)
{ stanje[i] [j1=ZATVORENO;
broj_zastavica—-;
3
3

/* Funkcija izracunava koliko bombi postoji u okolini date bombe */
int broj_bombi_u_okolini(int v, int k)
{ int i, j;
int br=0;
/* Prolazimo kroz sva okolna polja */
for (i=-1; i<=1; i++)
for(j=-1; j<=1; j++)
{ /* preskacemo centralno polje */
if (i==0 && j==0)

continue;

/* preskacemo polja "van table" x/

if (v+i<0 || k+j<0 || v+i>=n || k+j>=n)
continue;

if (bombe[v+i] [k+j]==1)
br++;

return br;

118

Jelena Tomasevié

/* Centralna funkcija koja vrsi otvaranje polja i pritom se otvaranje "siri"

i na polja koja su oko datog */

void otvori_polje(int v, int k)
{ /% Ukoliko smo "nagazili" bombu zavrsavamo program */
if (bombe[v] [k]==1)
{ printf("BO0O000O0O0COO0OOCM! ! ! ! \n");
ispisi_bombe();

exit(1);
}
else
{ /* Brojimo bombe u okolini */
int br=broj_bombi_u_okolini(v,k);
/* Azuriramo stanje ovog polja */
stanje [v] [k]=(br==0) 7PRAZNO:br;
/* Ukoliko u okolini nema bombi, rekurzivno otvaramo
sva polja u okolini koja su zatvorena */
if (br==0)
{ /% Petlje indeksiraju sva okolna polja */
int 1i,j;
for (i=-1; i<=1; i++)
for (j=-1; j<=1; j++)
{ /% Preskacemo centralno polje */
if (i==0 && j==0)
continue;
/* Preskacemo polja van table */
if (v+i<0 || v+i>=n || k+j<0 || k+j>=n)
continue;
/* Ukoliko je okolno polje zatvoreno, otvaramo ga */
if (stanje[v+i] [k+j]==ZATVORENO)
otvori_polje(v+i, k+j);
}
}
}

/* Funkcija utrdjuje da li je partija gotova

Partija je gotova u trenutku kada su sve bombe pokrivene zastavicama i

kada nijedno drugo polje nije pokriveno zastavicom

*/

int gotova_partija()
{ int i,j;
for (i=0; i<n; i++)
for (j=0; j<n; j++)

{ /* Ukoliko postoji nepokrivena bomba, partija nije zavrsena */

if (bombe[i] [jl1==1 && stanje[i] [j]!=ZASTAVICA)
return O;

10.1 Grafovi 119

}

/* Partija je zavrsena samo ukoliko je broj zastavica jednak broj bombi */
return broj_zastavica==broj_bombi;

}

main()

{

/* Unosimo dimenziju table */
printf ("Unesite dimenziju table : ");
scanf ("%d",&n) ;

/* Alociramo table */
bombe=alociraj(n);
stanje=alociraj(n);

/* Postavljamo bombe */
postavi_bombe () ;

/* Sve dok partija nije gotova */
while(!gotova_partija())
{ int v,k;

char akcija;

/* Ispisujemo tekuce stanje */
ispisi_stanje();

/* Sve dok korisnik ne unese o ili z trazimo od njega da upise odgovarajucu akciju */
do

{ printf("Unesi akciju (o - otvaranje polja, z - postavljanje zastavice) : ");
while(isspace(akcija = getchar()));

} while (akcijal!=’0’ &% akcija!=’z’);

/* Trazimo od korisnika da unese koordinate polja sve dok ih ne unese ispravno
Korisnicke koordinate krecu od 1, a interne od 0 */
do
{
printf ("Unesi koordinate polja : ");
scanf ("%4d",&v) ;
scanf ("%4d",&k) ;
} while(v<1l || v>n || k<1 || k>n);

/* Reagujemo na akciju */

switch(akcija)

{ case ’0’:
otvori_polje(v-1,k-1);
break;

case ’z’:
postavi_zastavicu(v-1,k-1);

120 Jelena Tomasevié

3

/* Konstatujemo pobedu */
ispisi_stanje();
obrisi(stanje, n);
obrisi(bombe, n);

printf ("Cestitam! Pobedili ste\n");

11

Programski jezik C

11.1 Zadaci sa prethodnih ispita i kolokvijuma iz Osnova
Programiranja

Osnovi programiranja, februar 2006. - prva grupa
1. Ime datoteke zadaje se iz komandne linije. Napisati program koji ispisuje sadrZaj datoteke
na sledeéi nacin: redni broj prvog znaka u liniji, a zatim osam po osam znakova u redu, i to
heksadecimalno i "karakterski” kao u donjem primeru:

0 23 69 6E 63 6C 75 64 65 #include
8 20 3C 73 74 64 69 6F 73 <stdio.h
16 68 3E 0D OA 23 69 6E 63 > #incl

2. Definisemo strukturu VREME na sledeci nacin:

typedef struct{
int sat, min, sek;
} VREME;

(a) Napisati funkciju sa protipom VREME *napravi(int sat, int min, int sek) koja
dinamicki alocira memorijski prostor w koji ée smestiti strukturu VREME, inicijalizovanu
vrednostima koje se prenose kao parametri. Funkcija vraéa pokazivac na kreiranu strukturu.
(b) Sastaviti funkciju sa prototipom void plus(VREME *t) koja povelava za jednu sekundu
vreme predstavijano strukturom t.

3. Napisati program koji za dato n < 15 ispisuje prvih n redova trougla od Stirlingovih brojeva
I vrste s(n,m), 1 < m < n. Stirlingovi brojevi I vrste zadaju se rekurentnom relacijom

—ns(n,m), m=1
s(n+1,m)=<¢ s(n,m—1)—ns(n,m), 1<m<n
s(n,m—1), m=n+1

pri éemu je s(1,1) = 1. Koristiti jedan jednodimenzionalni niz. Ispis treba da bude sledeieg
oblika:

122

Jelena Tomasevié

-6 11 -6 1
24 -50 35 -10 1

Napisati funkciju sa jednim argumentom n tipa int koja vraca razliku broja jedinica na
parnim i neparnim pozicijama u binarnom zapisu argumenta.

PRIMER: za n =19 = (10011)5 izlaz je 1.

Grupa od n plesaca (na cijim kostimima su u smeru kazaljke na satu redom brojevi od 1 do
n) izvodi svoju plesnu tacku tako §to formiraju krug iz kog nagpre izlazi k-ti plesac (odbro-
java se pocev od plesaca oznacenog brojem 1 u smeru kretanja kazaljke na satu). Preostali
plesaci obrazuju manji krug iz kog opet izlazi k-ti plesac (odbrojava se pocev od sledeieg
suseda prethodno izbacenog, opet u smeru kazaljke na satu). Izlasci iz kruga se nastavljaju
sve dok svi plesaci ne budu iskljuceni. Celi brojevin, k (k < n) se ucitavaju sa standardnog
ulaza. Napisati program koji ée na standardni izlaz ispisati redne brojeve plesaca u redosledu
napustanja kruga.

PRIMER: zan =5, k = 3 redosled izlaska je 3 15 2 4.

Osnovi programiranja, februar 2006. - druga grupa

. Imena dveju datoteka iste velicine zadaju se iz komandne linije. Napisati program koji

uporeduje sadrzaje datoteka. Ako je i-ti znak u prvoj datoteci a;, a i-ti znak u drugoj datoteci
b;, onda program izracunava znakove

2

. { a;, akoa; =b;, a a; nije kontrolni znak — sa ASCII kodom < 32

. ako a; = b;, a a; jeste kontrolni znak’.’, ako a; # b;

Znakove c; program ispisuje na standardni izlaz, po 16 znakova u jednom redu, pri cemu svaki
red pocinge rednim brojem prvog znaka u redu.

datoteka 1: datoteka 2: izlaz:
Imena dveju dato Imena dve datote 1 Imena dve..... t.
teka iste velici ke iste velici 17 e....... velici
ne zadaju se iz ne zadaju se iz 33 ne zadaju se iz

Definisemo strukturu VREME na sledeéi nacin:

typedef struct{
int sat, min, sek;
} VREME;

(a) Napisati funkciju sa protipom VREME *napravi(int sat, int min, int sek) koja
dinamicki alocira memorijski prostor u koji ée smestiti strukturu VREME, inicijalizovanu
vrednostima koje se prenose kao parametri. Funkcija vraéa pokazivac na kreiranu strukturu.
(b) Sastaviti funkciju sa prototipom void plus(VREME *t) koja povedava za jednu sekundu
vreme predstavljano strukturom t.

Napisati program koji za dato n < 15 ispisuje prvih n redova trougla od Stirlingovih brojeva
IT vrste S(n,m), 1 < m < n. Stirlingovi brojevi II vrste zadaju se rekurentnom relacijom
Sn,k)=8Sn—-1,k=1)+kS(n—1,k), 1 <k <n pri ¢emu je S(n,1) = S(n,n) =1 Koristiti
jedan jednodimenzionalni niz. Ispis treba da bude sledeceg oblika:

11.1 Zadaci sa prethodnih ispita i kolokvijuma iz Osnova Programiranja 123

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

4. Napisati funkciju sa jednim argumentom n tipa int koja vraca razliku broja jedinica na
16 vigih i 16 nizih pozicija (koeficijenti uz 20, 2%, ..., 2'5) u binarnom zapisu argumenta.
Pretpostaviti da je argument velicine 4 bajta (32 bita).

PRIMER: za n =7 x 2'6 4+ 3 = (1110000000000000011)5 4zlaz je 1.

5. Na osnovu miza a duZine n, koji sadrzi neku permutaciju brojeva 0,1,...,n — 1, moZe se
izracunati niz b iste duzine na sledeci nacin:

e b[0] je indeks broja O u a; O se brise iz a; duZina a postaje n — 1;
e b[1] je indeks broja 1 u a; 1 se brise iz a; duZina a postaje n — 2;
e b[2] je indeks broja 2 u a; 2 se brise iz a; duZina a postaje n — 3;

Napisati funkciju void tranperm(int n, int al[l, int b[]) koja za dati niz a (permutaciju)
izracunava niz b. Pri tome treba izbeéi pomeranja ¢lanova niza a.

PRIMER: zan =5, a={3,5,0,4,2,1} rezultat treba da bude b={2,4,3,0,1,0}

Zadatak 34 januar 2006.(I grupa) Napisali funkciju int triplemp(const char *s, const
char *t) za poredenje, prema dekadnoj vrednosti, dva heksadekadna tripleta s i t kojima su
predstavljene dve boje RGB modela (heksadekadni triplet je oblika #xxxxxx, gde je x - heksadekadna
cifra). Funkcija treba da vrati vrednost -1 ako je s < t, 0 ako jes = t i 1 ako je s > t. Na
primer, za s=#FFFFFF, t=#aa00ee, funkcija treba da vrati vrednost 1. (Za triplet #aa0Oee dekadna
vrednost je 10 % 165 + 10 * 16* + 14 % 16 + 14 = 11.141.358).)

Zadatak 35 januar 2006.(I grupa) Napisati program koji ¢ée iz datoteke seminarski.htm
prepisati nazive medusobno razlicitih etiketa (bez atributa) u binarno stablo pretrage, a na stan-
dardni izlaz ispisati ukupan broj listova drveta. Pretpostaviti da naziv etikete nije duzi od 30
karaktera.

Zadatak 36 januar 2006.(I grupa) Napisati funkciju koja za celobrojni niz dimenzije n, prover-
ava da li medu elementima niza postoje neka dva koja su jednaka.

Zadatak 37 januar 2006.(I grupa)

1. Napisati funkciju void propol (int n, double af], int m, double b[], int *k, double
c[]) ¢iji su argumenti a i b nizovi koeficijenata polinoma stepena n i m, redom. Funkcija
izracunava elemente niza ¢ koeficijenata polinoma koji se dobije mnoZenjem polinoma a i b,
i stepen k proizvoda.

2. Napisati program koji iz datoteke ulaz.txt uditava dva polinoma (stepen prvog polinoma, pa
njegovi koeficijenti, pocev od slobodnog clana; stepen drugog polinoma, pa njegovi koeficijenti),
izracunava njihov proizvod i na standardni izlaz stampa stepen i koeficijente proizvoda.

Zadatak 38 januar 2006.(I grupa) Neka je broj ny proizvod cifara datog broja n, broj ns
proizvod cifara broja ny,..., broj ng proizvod cifara broja ng_1, pri éemu je X majmangi prirodan
broj za koji je ny jednocifren. Napisati funkciju koja za dato n izracunava k. Na primer, vrednosti
ove funkcije od 10, 25, 39 su redom 1, 2, 3.

124 Jelena Tomasevié

Zadatak 39 januar 2006.(II grupa) Napisati funkciju koja u datom celobrojnom nizu A duZine
n pronalazi (ako postoji) takav par indeksa (i,3) da je zbir ¢lanova niza sa indeksima od i do j
jednak zadatom broju m.

Zadatak 40 januar 2006.(1I grupa) Napisati program koji ée iz datoteke Gije se ime unosi kao
argument komandne linije prepisati nazive medusobno razli¢itih zatvorenih etiketa u binarno stablo
pretrage, a na standardni izlaz ispisati dubinu stabla. Pretpostaviti da zatvorena etiketa pocinje sa
" < /7 i da naziv etikete nije duzi od 30 karaktera.

Zadatak 41 januar 2006.(II grupa) Napisati funkciju koja za dve niske koje se prenose kao
parametri utvrduje da li su anagrami ili ne. Dve niske su anagrami ako se sastoje od istog broja istih
karaktera. Na primer, niske “anagram” i “ramgana” jesu anagrami, dok “anagram” i “angrm”
NnisU.

Zadatak 42 januar 2006. (11 grupa)

1. Napisati funkciju void brojanje(int af], int brojac[], int N) &iji su argumenti a i brojac
celobrojni nizovi dimenzije N. Vrednosti elemenata niza a su izmedu 0 1 N - 1. Funkcija
izracunava elemente niza brojac tako da je brojac[i] jednak broju pojavljivanja broja i u
nizy a.

2. Kazemo da je celobrojni niz a dimenzije N permutacija ako sadrzi svako i: 0<=i<N. Sastawviti
funkciju int DaLiJePermutacija(int af], int N) koja vrada 1 ako je niz a permutacija,
a inace 0. (Koristiti funkciju brojanje)

Zadatak 43 januar 2006.(II grupa) Hemingovo rastojanje dva cela nenegativna broja jednako
je broju cifara u binarnom zapisu tih brojeva, koje su na istim pozicijama a razlikuju se. Na primer,
Hemingovo rastojanje brojeva 15 = (1111)g = (01111)y ¢ 27 = (11011)2 je 2. Napisati funkciju
koja izracunava Hemingovo rastojanje dva zadata cela nenegativna broja.

Zadatak 44 I kolokvijum, 18.januar 2006.(I grupa) Napisati program pomocu kojeg se za
dati broj n izracunava n-ti ¢lan niza F, =3* F,,_1 —2x F,_o+ Fy,_1 x F,,_o pri éemu je Fy =14
Fy = 1. U programu ne koristiti nizove.

Zadatak 45 I kolokvijum, 18.januar 2006.(I grupa)

1. Napisati funkciju unsigned izdvoj_n(unsigned x, unsigned n) za izracunavanje broja
koji se dobija od n krajnjih desnih bitova broja x. Na primer, ako je x = 54(00...00110110),
an =3, tada funkcija treba da vrati broj 6(00...00000110).)

2. Napisati program koji, za ucitane vrednosti x, n poziva funkciju izdvoj_ni na standardni izlaz
izdaje rezultat.

Zadatak 46 I kolokvijum, 18.januar 2006.(I grupa) Neka je dat niz X od N nenegationih
celih brojeva. Sastaviti funkciju koja ée iz niza X izbacivati sva pojavljivanja broja 0 i popunja-
vati ta mesta u nizu tako $to ce se preostali elementi niza pomerati ka pocetku miza. Odrediti
1 novu dimenziju N niza X. Npr. wlaz: N = 10, X = 0 22 11 2 0 17 33 4 0 999 — izlaz :
N=7, X=22 11 2 17 33 4 999.

Zadatak 47 I kolokvijum, 18.januar 2006.(I grupa) Napisati C program koji kreira i na
standardni izlaz izdaje opis HTML tabele sa tri kolone. Zaglavlja kolona su redom niske: n, kvadrat,
kub. U prvoj koloni se nalaze vrednosti od 1..15, a u drugoj i trecoj koloni su kvadrati i kubovi
tih vrednosti, redom.

Zadatak 48 I kolokvijum, 18.januar 2006.(I grupa) Danas je sreda, 18. januar 2006 godine.
Napisati funkciju koja za zadati datum (dan, redni broj meseca, godina, posle 1.1.1900.godine)
odreduje dan u nedelji. Na primer, za trojku (19,1,2006) funkcija treba da vrati broj 4.

11.1 Zadaci sa prethodnih ispita i kolokvijuma iz Osnova Programiranja 125

Zadatak 49 I kolokvijum, 18.januar 2006.(II grupa) Napisati program pomocu kojeg se za
dati broj n izracunava n-ti élan niza F,, = 2x F,,_1 % Fy,_o — 6% F,,_1 + F2_, pri éemu je Fy =2 i
Fy = 3. U programu ne koristiti nizove.

Zadatak 50 I kolokvijum, 18.januar 2006.(II grupa)

1. Napisati funkciju unsigned izbaci_n(unsigned x, unsigned n) za izracunavanje broja koji
se dobija brisanjem n krajnjih desnih bitova broja x. Na primer, ako je x = 54(00...00110110),
an =3, tada funkcija treba da vrati broj 48(00...00110000).)

2. Napisati program koji, za ucitane vrednosti x, n poziva funkciju izdvoj_ni na standardni izlaz
1zdaje rezultat.

Zadatak 51 I kolokvijum, 18.januar 2006. (I grupa) Neka je dat nizX od N nenegativnih celih
brojeva. Sastaviti funkciju koja ée iz niza X izbacivati sva pojavljivanja negativnih brojeva i popunja-
vati ta mesta u nizu tako sto ée se preostali elementi niza pomerati ka pocetku niza. Odrediti i novu
dimenziju N niza X. Npr. ulaz: N = 6, X = 0 -2 11 0 -333 — izlaz:N =4, X =0 11 0 O.

Zadatak 52 I kolokvijum, 18.januar 2006.(1I grupa)

1. Napisati funkciju int palindrom(int broj) koja proverava da li je broj palindrom i vraéa
vrednost 1 ako jeste, 0 ako nije. Na primer, brojevi 1, 44, 121, 112211, 12321, i 5665
jesu palindromi, a brojevi 123, 67, 8908 nisu.

2. Napisati program koji proverava da li je uneti broj palindrom.

Zadatak 53 I kolokvijum, 18.januar 2006.(II grupa) Napisati funkciju koja na standardni
1zlaz ispisuje sve linkove iz HTML dokumenta sadrzanog u datoj nisci s. Na primer, u delu niske s

funkcija treba da pronade

http://www.bg.ac.yu.

Zadatak 54 I kolokvijum, februar 2005.

1. Napisati funkciju koja ispituje da li dve niske (koje se prenose kao parametri funkcije) su
anagrami. Anagrami su niske koje se sastoje od istih karaktera. Npr. vetar, trave, verat su
anagrams.

2. Napisati program koji testira funkciju iz prvog dela.

Zadatak 55 I kolokvijum, februar 2005. Napisati program koji ucitava sa standardnog ulaza
dve niske sa ne vise od 80 karaktera u svakoj i prirodan broj k i ispisuje na standardni izlaz poruku
da li se prva niska dobila ciklicnim pomeranjem druge niske za k mesta. Na primer za k=3, niska
CDEAB”” se dobila ciklicnim pomeranjem niske "ABCDE”

Zadatak 56 I kolokvigum, februar 2005. Napisati program koje ée ucitati sa tastature broj
s(unsigned int) i brojeve m ¢ n(int), pri cemu je

0<=m<=n<sizeof (unsigned) *8 i formirati vrednost d (unsigned int) u kojoj je bit na poziciji i jed-
nak 1 akko jem <=i<=n(pozicije se broje od nule sdesna na levo).Program treba da na standardnom
1zlazu ispise broj koji se dobija od s postavljanjem na 0 svih bitova koji su v d jednaki 1.

Zadatak 57 Septembar, 2005. Napisati program koji na standardni izlaz ispisuje naziv (BEZ
ATRIBUTA) najéesée koriséene etikete u datoteci ulaz.htm. Ako ima vise takvih, ispisati ma koju.
Koristiti uredeno binarno stablo. Pretpostaviti da je ulazna datoteka sintaksno korektna.

126 Jelena Tomasevié

Zadatak 58 Septembar, 2005.

1. Napisati funkciju int poredi(char* p, char* d) koja vraca -1 ukoliko je p<d, 0 ukoliko
jep == d a 1 ako je p>d, pri ¢emu su p i d dva velika cela neoznacena broja zadata ni-
zom(niskom) svojih cifara.

2. Argumenti komandne linije su imena dve datoteke koje sadrze cele neoznacéene brojeve (po
jedan u svakoj liniji, sa maksimalno 1000 cifara) sortirane u rastué¢em poretku po numerickoj
vrednosti. Broj linija nije unapred poznat.

Napisati program koji upisuje sadrZaj ove dve datoteke u datoteku Spoj.txt tako da i ona bude
sortirana.

Zadatak 59 Septembar, 2005. Napisati program koji sa standardnog ulaza ucitava pozitivan
ceo broj, a na standardni izlaz ispisuje vrednost tog broja sa razmenjenim vrednostima bitova na
poziciji i, j. Pozicije i, j se ucitavaju kao parametri komandne linije. Smatrati da krajnji desni
bit binarne reprezentacije je 0-ti bit. Pri reSavanju nije dozvoljeno koristiti pomocéni niz niti arit-
meticke operatore +,-,/ ,%,%.

Zadatak 60 Septembar, 2005. Sa standardnog ulaza se ucitava niz odn (n<100) tacaka u ravni
takvih da nikoje tri tacke nisu kolinearne. Tacke se zadaju parom svojih koordinata (celi brojevi).
Ispitati da li taj niz tacaka odredjuje konveksni mnogougao i rezultat ispisati na standardni izlaz.

Zadatak 61 Jun, 2004. Datoteka Matrice.txt sadrzi dve celobrojne kvadratne matrice. U da-
toteci su prvo zapisane dimenzije matrica n i m (n > m) a zatim i elementi prvo jedne a zatim
1 druge matrice. Napisati program koji proverava da li se manja matrica sadrzi u vecoj. Matrica
se sadrzi u matrici vece dimenzije ukoliko postoji podmatrica vece matrice identicna manjoj ma-
trici tj. ako postoji blok veée matrice dimenzije m x m ¢iji su elementi jednaki elementima mange
matrice na odgovarajuéim pozicijama. npr. U matrici

W N =
w N =
W N =

se sadrzi matrica

11

2 2

a ne sadrzi matrica

11

33

Zadatak 62 Jun, 2004. Napisati funkciju koja racuna multiplikativnu otpornost datog pozitivnog
broja. Multiplikativna otpornost se racuna na sledeéi nac¢in n0 = n, nk je jednak proizvodu cifara
brojan k-1, k = 1, 2 . . . , multiplikativna otpornost je najmanje Xk za koje je nk jednocifren
broj. Napisati program koji iz datoteke cije se ime zadaje kao prvi argument komandne linije ¢ita

brojeve, gde su brojevi zapisani po jedan u svakom redu i u drugu datoteku ¢ije se ime zadaje kao
drugi argument komandne linije upisuje red po red date brojeve i njihovu multiplikativnu otpornost.

Zadatak 63 Jun, 2004. Napisati funkciju koja koja kao argumente prihvata dve niske i prover-
ava da li se prva od zadatih niski mozZe dobiti ciklicnim pomeranjem karaktera druge niske.

Zadatak 64 Jun, 2004. Igrupa Data je datotka brojevi.txt koja sadrZi cele brojeve, po jedan
u svakom redu.

11.1 Zadaci sa prethodnih ispita i kolokvijuma iz Osnova Programiranja 127

1. Napisati funkciju koja iz zadate datoteke ucitava brojeve i smesta ih u listu.

2. Napisati funkciju koja u jednom prolazu kroz zadatu listu celih brojeva pronalazi maximalan
strogo rastuéi podniz.

3. Koristedi funkcije pod a) i b) napisati program koji u datoteku Rezultat.txt upisuje nadeni
strogo rastuéi podniz.

Zadatak 65 Jun, 2004. IIgrupa Imena dve datoteke koje sadrie cele brojeve unose se kao
argumenti komandne linije.

1. Napisati funkciju koja iz datoteke u citava brojeve i smesta ih u rastude uredjenu listu (listu
éiji su elementi poredjani u rastuéem poretku,).

2. Napisati funkciju koja od brojeva dve rastuci uredjene liste formira treéu koja je takodje
rastuéi uredjena.

3. Koristedi funkcije pod a) i b) napisati program koji sortira brojeve (u rastuéem poretku) koji
se nalaze u datotekama ¢ija su imena argumenti komandne linije i upisuje th u datoteku
Rezultat.txt.

Zadatak 66 Prvi kolokvigjum za II tok 2004.godine - rad na racunaru Napisati program
koji generise HTML fajl Boje.html koji sadrzi tabelu boja. Tabela treba da ima 8 kolona pri éemu
celije neparnih kolona treba da sadrze heksadekadnu vrednost boje i to u formatu ROGOBO a celije
odgovarajuce parne kolone treba da budu obojene tom bojom.

Zadatak 67 Prvi kolokvijum za II tok 2004.godine - rad na racunaru Sa standardnog
ulaza se unose veliki, celi, neoznaceni brojevi sa najvise 100 cifara. Ovih brojeva ima manje od
100 ali ngihov broj nije unapred poznat. Napisati program koji sabira ovako unete brojeve i na
standardni izlaz ispisuje njihov zbir.

Napomena : Svaki broj se unosi u posebnom redu a potrebno je voditi racuna o korektnosti ulaznih
podataka.

Zadatak 68 Prvi kolokvijum za II tok 2004.godine - rad na papiru Sa standardnog ulaza
se unose dve niske koje predstavljaju elemente dva skupa. Skupovi nemaju vise od 20 elemenata.
Napisati program koji na standardni izlaz ispisuje niske koje predstavljaju:

1. presek,
2. uniju %
3. razliku

elemenata dva skupa.

Zadatak 69 Drugi kolokvijum za II tok 2004.godine - rad na racunaru Sa standardnog
ulaza se unosi ime datoteke ¢iji prvi red sadrzi dimenziju celobrojne kvadratne matricen (n > 100),
a ostali redovi elemente matrice (vrstu po vrstu). Formirati nizb dimenzije n &iji je prvi élan suma
elemenata glavne dijagonale, drugi suma elemenata na prvoj donjoj dijagonalinoj paraleli (nju éine
elementi odmah ispod glavne dijagonale), tredi element suma druge donje dijagonaline paralele, itd.
Ispisati niz na standardni izlaz. Sve greske stampati na standardni izlaz za greske.

Zadatak 70 Drugi kolokvijum za II tok 200/.godine - rad na raé¢unaru Napisati program
koji iz tekstualne datoteke ¢iji je put dat u argumentu komandne linije ucitava razlicite prirodne
brojeve 1i:

1. dodaje ih redom u uredjeno binarno stablo

128 Jelena Tomasevié

2. u dobiyjenom drvetu izracunava duZinu najduieg puta od korena do nekog lista i

3. Stampa u rastuéem poretku (bez ponaviljanja) sve brojeve koji su nalaze na putevima te duzine
od korena do listova.

Zadatak 71 Januar, 2002. Datoteka "izrazi.dat” sadrzi izraze koji se sastoje od celobrojnih
i realnih konstanti i operacija +,-,%*, / i zapisani su u inverznoj poljskoj notaciji (operandi pa
operacija). Na primer, izraz (1+2)/(3-4) zapisan je kao 1 2 + 3 4 - /, a izraz 21+7*6 kao
21 7 6 * +. Svakiizraz je u datoteci zapisan u novom redu i podrazumeva se da su izrazi sintaksno
ispravni. Napisati program koji izracunava i Stampa na ekran vrednosti svih izraza u datotect.
Resenje napisati modularno i obavezno ga komentarisati.

Zadatak 72 Januar, 2002. Program sa standardnog ulaza ucitava raspored 8 topova na sahovskoj
tabli. Raspored se sastoji od 8 linija sa po 8 brojeva u svakoj liniji. Svaka linija odgovara jednom
redu table, a svaki broj jednom polju. Broj ima vrednost 0 ako na datom polju nema topa t vrednost
1 ako na datom polju postoji top. Program treba da ispita da li je uneseni raspored validan (tj. da
li je svaki ucitani broj 1 ili 0 i da li ima ukupno 8 topova na tabli), kao i da odredi da li se u datom
rasporedu neka dva topa tuku (topovi se tuku ukoliko se nalaze u istom redu ili istoj koloni table).
Program treba da ispise na standardnom izlazu “raspored nije validan” ukoliko ulazni podaci nisu
dobri, a u suprotnom "ne tuku se” ukoliko je raspored takav da se nijedan par topova medusobno
ne tuce, odn. “tuku se” ukoliko ima topova koji se tuku

Zadatak 73 Januar, 2002. Sa standardnog ulaza se ucitava u jednoj liniji prirodan broj n, a
potom 1 linije teksta do markera kraja fajla. Napisati program koji Stampa n reci koje se najéesée
pojavljuju i to pocev od najfrekventije reci. Uz re¢ odstampati i broj pojava. Reé je po definiciji
ma koji niz karaktera koji ne sadrzi blanko, tabulator, znak za novi red. Sve poruke o greskama
ispisatt na standardnom izlazu za poruke o gresci.

Zadatak 74 Januar, 2002. Napisati program koji ¢ita ulaznu datoteku ulaz.htm i Stampa na
standardni izlaz samo linije koje imaju 70 karaktera van etiketa, pri cemu se tekst markiran u
obliku &entity; (npr. &1t; &) ili &#number; (npr. č) broji kao 1 karakter. Programi
da budu pisani ¢itko i izdasno komentarisani.

Zadatak 75 Februar, 2002. Neka se relacija nad nekim skupom elemenata opisuje kvadratnom
matricom na sledeci nacin: ako je u preseku i-te vrste i j-te kolone 1, to znaci da je i-ti element
u relaciji sa j-tim, ako je 0 to znaci da nije u relaciji. Sa standardnog ulaza zadaje se najpre
dimenzija ovakve matrice, pa zatim elementi matrice, jedan za drugim, po vrstama. Dimenzija
matrice nije ogranicena. mnapisati program koji, posto proveri korektnost ulaza, za ovako zadatu
relaciju ispituje njenu refleksivnost, simetricnost i tranzitivnost i odgovarajuée poruke Stampa na
ekran.

Zadatak 76 Februar, 2002. Datoteka prica.tat sadrzi niz reci (rec je niz karaktera koji ne sadrzi
blanko, tabulator ili znak za novi red). Sa standardnog ulaza uéitava se jedna re¢. Nijedna red,
nema vise od 20 karaktera. Napisati program koji broji © stampa na ekran koliko se puta data rec¢
pojavila u datoteci, ako se zna da su neke rec¢i pogresno unete. Smatramo da je neka reé¢ jednaka
ucitanoj 1 onda kada:

- je zamengeno jedno slovo nekim drugim slovom

- ili je izostavljeno jedno slovo u jednoj od te dve reci

Zadatak 77 Februar, 2002. Napisati program koji za dva data pravougaonika RO i R1 sa strani-
cama paralelnim koordinatnim osama izracunava i na standardni izlaz ispisuje povrsine njihovih
unija (RO R1), presjeka (RO R1) irazlike (RO \ R1). Pravougaonici se ucitavaju sa standard-
nog ulaza i zadati su koordinatama donjeg lijevog, odn. gornjeg desnog tjemena. Owve koordinate
su realni brojevi. Za cuvanje podataka koji odreduju neki pravougaonik deklarisati odgovarajucu
strukturu. Sve operacije nad pravougaonikom (ili pravougaonicima) izdvojiti u posebne funkcije.
Primjer: za pravougaonike zadate na sledeéi nacin:

11.1 Zadaci sa prethodnih ispita i kolokvijuma iz Osnova Programiranja 129

10 20 30 40
20 30 40 50

program treba da ispise:

Povrsina unije iznosi 700
Povrsina preseka iznosi 100
Povrsina razlike iznosi 300"

Zadatak 78 Februar, 2002. U datoteci tajna.tzt nalazi se rije¢ duzine ne veée od 20 karaktera.
Rije¢ se sastoji iskljuc¢ivo od malih slova. Napisati program za pogadanje rijec¢i. Program treba da
ucita rijec iz datoteke, a zatim da sa standardnog ulaza ¢ita jedno po jedno slovo koja daje korisnik
pogadajuéi da li ih rije¢ sadrzi. Po uditavanju svakog slova program treba da ispise ona slova u
rijeci koja su dotad pogodena. Na mijestima ostalih slova treba da budu karakteri *. Voditi racuna
0 mogucnosti da korisnik greskom unese nesto Sto nije slovo, takode i neko slovo koje je ranije veé
unosio. Program ne treba da pravi razliku izmedu malih i velikih slova, tj. ako korisnik unese neko
veliko slovo, program treba da ga tretira kao malo slovo. Kada sva slova budu pogodena, program
treba da ispise ukupan broj pokusaja. Primjer sesije za slucaj kada je rije¢ koja se pogada zdravo
bt mogao biti:

a
Kok kg kk
e
*ok kg kok
i
kk kg kk
o
*%kkq*0
r
*kra*xo
m
*kra*o
b
**kra*xo
d
*dra*o
v
*dravo
z
zdravo
Ukupan broj pokusaja: 10

Zadatak 79 Februar, 2002. Napisati program koji ucitava kvadratnu matricu sa standardnog
ulaza ¢igi su clanovi celi brojevi i proverava da li je matrica ortogonalna. Ne koristiti pomoéne
matrice! U prvoj liniji nalaze se dimenzija matrice, a zatim se u svakoj liniji nalaze vrste matrice.
Elementi unutar vrste su razdvojeni blanko znakovima. Dimenzija matrice nije unapred poznata.
Pretpostaviti da su sve linije sem prve u ispravnom formatu i u slucaju greske izdati poruku na
standardnom izlazu za poruke o gresci.

Zadatak 80 Februar, 2002. Parametri komandne linije su imena dve datoteke @ ceo broj n.
Napisati program koji poslednjih n linija prve datoteke upisuje u drugu datoteku. MoZe se pret-
postaviti da prva datoteka ne sadrzi linije duZe od 80 karaktera, ali broj linija u datoteci nije unapred
ogranicen. U slucaju greske izdati poruku na standardnom izlazu za poruke o gresci.

Programe komentarisati © programski kod pisati ¢itko.

130 Jelena Tomasevié

Zadatak 81 April, 2002. . Pruvi red standardne ulazne datoteke sadrzi 2 cela broja manja od 50
koji predstavijaju redom broj vrsta i broj kolona realne matrice A. Svaki sledeci red sadrzi po jednu
vrstu matrice. Napisati program koji :

1. nalazi sve elemente matrice A koji su jednaki zbiru svih svojih susednih elemenata i Stampa
ih u obliku (broj vrste, broj kolone, vrednost elementa)

2. nalazi i Stampa sve cetvorke oblika
(A(i,j), AGi+1,3), A(i,j+1),A(i+1,j+1)) u kojima su svi elementi medusobno ra-
Zlicit.

Zadatak 82 April, 2002. Parametri komandne linije su nazivi 2 datoteke. Prva datoteka sadrzi
niz reci ¢iji broj i ¢ija duZina nije ogranicena (mogu biti proizvoljno veliki brojevi) . Rec je bilo
kakav niz karaktera koji nije blanko, tabulator ili oznaka za kraj reda. Napisati program koji u drugu
datoteku prepisuje samo one reci iz prve datoteke koje su parne duZine i koje i poéinju i zavrSavaju
se slovom. (napomena: obavezno voditi racuna o tome da se duZina reéi ne moze ograniciti!)

Zadatak 83 April, 2002. Napisati program koji ispisuje kalendar za zadati mjesec i godinu XX
vijeka. Poznato je da je 1. januar 1901. bio utorak. Program prima dva argumenta u komandnoj
linigi: broj u intervalu [1, 12] koji predstavlja mjesec i broj u intervalu [1901, 2000] koji pred-
stavlja godinu (obavezno proveriti validnost ovih argumenata). Program treba da ispise kalendar
na standardni izlaz i to tako Sto ée u prvom redu biti ispisani mjesec (punim imenom) i godina,
u narednom redu dvoslovne skraéenice od imena dana, pocev od ponedeljka i sa po jednim blanko
znakom izmedu skracenica, a zatim u narednim redovima datumi, pri cemu se za svaki dan odvajaju
po 2 mjesta u kojima broj treba da je poravnat udesno, a izmedu dana se ostavlja po jedan blanko
znak. Tako npr, ako su argumenti koji su zadati u komandnoj liniji 1 1970, ispis treba da ima

sledeci oblik:

Januar 1970.
Po Ut Sr Ce Pe Su Ne
1 2 3 4
5 6 7 8 910 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Zadatak 84 April, 2002. Napisati program koji ucitava sa standardnog ulaza prvo jednu liniju
teksta a zatim jos jednu liniju sa karakterima koje treba izbaciti iz prve linije. Program treba da
1zbaci specificirane karaktere iz prve linije i ispiSe ono Sto preostane od iste. DuZina prve linije nije
unapred ogranicena, tj. za cuvanje te linije treba koristiti listu pri éemu ée po jedan karakter biti
smjesten u svaki element liste. Primgjer: ako je unos imao sledeci oblik:

Hello, world!
aeiou,

program treba da ispise:
H11l wrld!

Zadatak 85 April, 2002. . Sastaviti program koji ispisuje n < 19 redova Pascalovog trougla
koristeéi samo 1-dimenzionalni niz © ne koristiti rekurziju. Broj n se zadaje kao jedini sadrZaj
linije standardnog ulaza. IzveStaj o eventualnim greskama na ulazu ispisati i na standardnom
izlazu za poruke o gresci.

11.1 Zadaci sa prethodnih ispita i kolokvijuma iz Osnova Programiranja 131

Zadatak 86 April, 2002. Argumenti komandne linije su imena tri datoteke. Preve dve datoteke
u svakom redu sadrze do 80 cifara i u obe datoteke sadrzaj je sortiran strogo rastuée po numerickoj
vrednosti broja predstavljenog tim ciframa. Napisati program koji e spojiti te dve datoteke u trecu
¢iji ¢e sadrzaj takode biti sortiran strogo rastuce po numerickoj vrednosti brojeva koje sadrzi.

Zadatak 87 Jun, 2002. NekajeP = (pl, p2, . . . , pn) permutacija brojeval, 2,
Napisati PASCAL program koji za ucitan prirodan brojn < 50 i za uéitanu tablicu inverzije ispisuje
odgovarajuéu permutaciju. Pod tablicom inverzije permutacije P se podrazumeva niz

S = (s1, 82, . . . , sn) u kom je si jednako broju elemenata permutacije P koji (u P) stoje
levo od broja i, a veéi su od broja i.

Zadatak 88 Jun, 2002. Slika je opisana u kvadratnoj matrici tako da elementi koji odreduju
sliku popunjeni su cifrom 1, a ostali elementi su popunjeni cifrom 0. kao parametar komandne linije
zadaje se ime datoteke u ¢ijoj prvoj linigi se nalazi dimenzija matrice koaj opisuje sliku, a zatim u
svakoj liniyji nalaze se vrste matrice. Elementi unutar vrste su razdvojent blankom. mnapisati program
koji u svakoj liniji datoteke REPORT.DAT ispisuje poruke o simetricnosti matrice u odnosu na
horizontalnu osu, vertikalnu osu, glavnu dijagonalu, sporednu dijagonalu, centar.

Zadatak 89 Jun, 2002. Sprovedena je anketa o popularnosti televizijskih emisija. Broj emisija
za koje se glasalo nije veci od 50. Ispitanici su podeljeni u 4 kategorije: mskarci do 30 godina, Zene
do 30 godina, muskarci stariji od 30 godina, Zene starije od 30 godina. Svi su glasali za 8 emisije.
Svaka linija uw datoteci ¢ije se ime zadaje kao prvo u komandnoj liniji, sadrzi podatke o glasanju
jednog ispitanikai to slededim redom: pol ispitanika (m ili z), broj godina, pa zatim Sifre emisija
za koje je ta osoba glasala. Sifra emisije je niz od najvise 5 karaktera. Napisati program koji u
datoteku cije ime se zadaje kao drugo u komandnoj liniji, ispisuje Sifre emisija i odgovarajuéi broj
glasova poredane nerstuée po broju osvojenih glasova i to za svaku od kategorija posebno. Emisije
za koje se nije glasalo treba preskociti u ispisivanju.

Zadatak 90 Jun, 2002. . Sa standardnog ulaza unosi se najpre jedna linija teksta ¢ija duzZina
nije ogranicena, pa zatim jos jedna linija koja sadrzi samo karakter koji 1z prve linije treba izbacit.
napisati program koji treba da ispise rezultat odnosno $ta je preostalo od linije, pa zatim unosenjem
sledeéeg karaktera koji se Zeli izbaciti da ponovi postpak za novodobijenu liniju, i tako dalje po istom
principu sve dok se za karakter koji se Zeli izbaciti ne unese * ili dok od linije ne ostane nista. Posto
duzina linije nije ogranicena, za njeno cuvange treba koristiti povezanu listu kod koje svaki element
cuva po jedno slovo iz linije. Koristiti modularni pristup. Primer jedne sesije bi mogao biti:

programiranje
p
rogramiranje
e

rogramiranj

s

rogramiranj

a

rogrmirnj

*

Zadatak 91 Jun, 2002. Data je datoteka u kojoj se nalazi tekst ¢igi su naslovi obeleZeni etiketom
h. Maksimalna dubina naslova je n, gde se ceo broj n zadaje kao argument komandne linije. Svaka
etiketa naslova je zatvorena. (Npr. <h3>Zadaci za pismeni</h3>). Jedini komentari u tekstu
sadrze oznake broja strane i oblika su <!--xxxx--> gde je xxTT najvise céetvorocifreni neoznacen
broj. Tekst je kodiran bez ikakvih gresaka! Sastaviti program koji iz komandne linije uzima ime
gore opisane datoteke i kreira na izlazu datoteku u kojoj se nalazi sadrzaj ulaznog teksta. Sadriaj
se formira kao niz redova koji sadrze niske obeleZene h-etiketama i odgovarajuci broj strane. Npr.

132 Jelena Tomasevié

ulaz: izlaz:
<h3>Zadaci za pismeni</h3> 2.2.3. Zadaci za pismeni....... 228
<h4>Pitanja za usmeni</h4> 2.2.3.1. Pitanja za usmeni..... 235

gde su navedeni naslovi uzastopni. Sadrzaj ulazne datoteke se mora formirati pre nego $to se u nju
upise.

Zadatak 92 Jun, 2002. U tekstualnoj datoteci nalaze se podaci o prijemmnom ispitu ucenika
jedne osnovne skole tako Sto je u svakom redu navedeno: ime i prezime ucenika (niz znakova ne
duzi od 50 znakova), broj poena na osnovu uspeha (decimalan broj), broj poena na prijemnom ispitu
iz matematike (decimalan broj) i broj poena na prijemnom ispitu iz maternjeg jezika (decimalan
broj). Za ucenika koji osvoji manje od 10 poena ukupno na oba prijemna smatra se da nije poloZio
prijemni. Napisati program na C-u koji na osnovu podataka iz ove datoteke formira i prikazuje rang
listu ucenika. Rang lista sadrZi: redni broj, ime @ prezime ucenika, broj poena na osnovu uspeha,
broj poena na prijemnom ispitu iz maternjeg jezika, broj poena na prijemnom ispitu iz matematike
1 ukupan broj poena i sortirana je opadajuée po ukupnom broju poena. U rang listi se navode prvo
oni ucenici koji su poloZili prijemni a potom ucenici koji nisu poloZili prijemni. Izmedu ove dve
grupe staviti horizontalnu linijjy (———M————————————). Ime datoteke navodi se kao
argument komandne linije.

Zadatak 93 Jun, 2002. Napisati program u C-u koji sa standardnog ulaza ucitava cifre n i k, a
na standardnom izlazu prikazuje najmangi prirodan broj koji pocinje cifrom m i ima svojstvo da se
smanguje k puta kada se cifra n premesti sa pocetka na kraj. Primer: za n=3 i k=2 traZeni broj je
315789473684210526

Zadatak 94 Jun, 2002. Svaka linija datoteke ¢ije se ime prosleduje komandnom linijom sadrzi
po 6 celih brojeva: x1, y1, x2, y2, x3, y3 koj predstavljaju redom koordinate temena jednog
trougla. Linija u datoteci nema vise od 100. Napisati program koji uzimajucéi u obzir samo trouglove
koji su jednakostranicéni, ispituje da li se oni svi mogu "upisati” jedan u drugi (ako je jedan trougao
upisan u drugi njegova temena mogu i ne moraju pripadati stranicama ovog drugog). Odgovarajucu
poruku Stampati na ekran.

Zadatak 95 Jun, 2002. Data je datoteka u kojoj se nalazi tekst u kom se nazivi institucija koji
se satoje od slova engleske abecede i blanka obeleZavaju etiketom name @ atributom type.

Npr. <name type=’institution’>Palata pravde</name> maksimalna duzina naziva institucije
je n, gde se ceo broj n zadaje kao argument komandne linije. Jedini komentari u tekstu sadrze
oznake broja strane i oblika su <!'- -xxxx- -> gde je xxxxX Majvise ¢etvorocifreni neoznacen broj.
Tekst je kodiran bez ikakvih greski. Sastaviti program koji iz komandne linije uzima ime gore
opisane datoteke i kreira na izlazu datoteku index.dat u kojoj se nalazi indeks ulaza koji se formira
kao niz redova koji sadrze naziv institucije © broj prve stranice na kojoj se taj naziv pojavio. nazive
isntitucija koji se javljaju éesto (vise od m puta, gde se m zadaje kao argument komandne linije)
ne unostit u indeks. Program ne trab da pravi razliku izmedu malih i velikih slova.

Zadatak 96 Septembar, 2002. Svaki red datoteke ¢ije se ime zadaje komandnom linijom, sadrzi
po 8 cela broja: A, B, C (A i B nisu istovremeno jednaki nuli), koji predstavljaju koeficijente prave
u ravni Ax+By+C=0. Broj redova u datoteci nije veci od 100. Napisati program koji pronalazi i na
standardnom izlazu ispisuje sve parove paralelnih pravih, kao i sve trojke pravih koje se seku u
jednoj tacki. Nacin prikaza traZenih podataka je proizvoljan, ali treba voditi racuna o njihovoj
preglednosti.

Zadatak 97 Septembar, 2002. Grupa od n plesaca (na ¢ijim kostimima su redom brojevi od 1
do n) uveZbava svoju plesnu tacku tako Sto formiraju krug iz kog ée redom izlaziti plesaci na slededi
nacin:

11.1 Zadaci sa prethodnih ispita i kolokvijuma iz Osnova Programiranja 133

1. pocev od plesaca oznacenog brojem 1, a brojeéi udesno (ka plesa¢ima sa veéim rednim broje-
vima,), izlazi m-ti plesac

2. nakon iskljucenja, brojanje otpocinje od sledeceg plesaca i to u suprotnom smeru, tj. ako se
brojalo udesno, pocinje se od desnog suseda iskljucenog plesaca i broji se ulevo

3. izlasci iz kruga se nastavljaju sve dok svi plesaci ne budu iskljuceni

Celi brojevim, n se zadaju kao argumenti komandne linije. Napisati C program koji ispisuje redne
brojeve plesaca u redosledu napustanja kruga.

Zadatak 98 Septembar, 2002. N osoba obelezZenih brojevima 1, 2, . . . N stoji u krugu.
Pocev od osobe sa rednim brojem 1 broji se K osoba i K-ta osoba izlazi iz kruga, a potom se nastavlja
brojangje preostalih osoba na isti nacin, pocev od prve osobe koja je izasla. Ovo se nastavlja sve dok
u krugu ne ostane samo jedna osoba. Napisati program koji sa standardnog ulaza ucitava vrednosti
za N i K, a na standardnom izlazu prikazuje redosled izlaska ljudi iz kruga i redni broj osobe koja
poslednja ostaje. Primer: za N=4 i K=3 redosled izlazaka je 3, 2, 4 i na kraju ostaje 1.

Zadatak 99 Septembar, 2002. Parametar komandne linije je ime datoteke ¢iji svaki red (izuzev
prvog) je oblika ime_deteta:ime_roditelja. Pruvi red sadrzi samo ime jednog roditelja ¢ija su
sva deca navedena u narednim redovima u veé opisanom obliku. Nije obavezno da se sva deca istog
roditelja pojavijuju u uzastopnim redovima i nije unapred poznat ukupan broj roditelja. Jednos-
tavnosti radi, moZe se smatrati: da sve osobe imaju imena sastavljena od slova engleske abecede,
da su sva imena medusobno razlicita (ignorisuéi razliku malih i velikih slova), da svaki roditelj
nema vise od c¢etvoro dece i da redovi datoteke nemaju vise od 40 karaktera. Napisati program koji
za svaku osobu X formira datoteku (Ciji je naziv ime osobe) i koja u svakom redu sadrZi imena
nagblizih striceva, tetki, ujaka osobe X (misli se na rodenu bracu i sestre roditelja osobe X).

Zadatak 100 Septembar, 2002. Slika je opisana u kvadratnoj matrici tako da elementi koji
odreduju sliku popungjeni su cifrom 1, odnosno cifrom 0. Kao parametar komandne linije zadaje se
ime datoteke u cijoj prvoj liniji se nalazi dimenzija matrice koja opisuje sliku, a zatim se u svakoj
liniji nalaze vrste matrice. FElementi unutar vrste su razdvojeni blankom. Napisati C program
koji, ne koriste¢i pomoéne matrice, premesta podsliku (&ije koordinate gornjeg levog ugla, duzina i
Sirina se zadaju kao argumenti komandne linije) na novu poziciju éiji poloZaj gornjeg levog ugla se
zadaje sa standardnog ulaza. Original i kopija moraju ostati u okvirima polazne matrice. Poruke
o eventualnim greskama Stampati na standardni izlaz za poruke o gresci.

Zadatak 101 Septembar, 2002. Napisati program koji sa standardnog ulaza ucitava cifre pozi-
tivnog celog broja (kojih nema vise od 100, a na ulazu su jedna pored druge tj. izmedu cifara nema
praznih mesta) a na standardnom izlazu ispisuje najmanji pozitivan ceo broj zapisan istim ciframa.
Rezultat ne sme pocinjati cifrom nula.

Zadatak 102 Januar, 2002. Neka su u tekstualnoj datoteci LAVIRINT dati podaci o matrici-
lavirintu. Prvi red tekstualne datoteke sadrzi broj kolona (80) i broj vrsta (25) a u svakom sledeem
redu se nalaze podaci o jednoj vrsti matrice: karakier >Z° oznacava da odgovarajue polje matrice
predstavlja zid, a karakrer P’ oznacava prazan prostor. Napisati program koji na standardnom
1zlazu prikazuje lavirint ucitan iz datoteke ali tako da polja zida prikazuje karakterom ’X’ a prazna
polja blanko karakterom. Program potom ucitava koordinate dve pozicije uw lavirintu i utvrduje da
li postoji put kroz lavirint od jedne do druge pozicije (kretanje je mogue samo kroz prazna polja i
to u Cetirt pravea - gore, dole, levo i desno). Ako put postoji program ponovo prikazuje lavirint ali
tako da na pocetnoj poziciji umesto blanko karakrera stoji karakter A’, na krajnjoj karakter ‘B’ a
na svim ostalim poljima na putu karakrer O°. Ako put ne postoji dati odgovarajuu poruku.

134 Jelena Tomasevié

Zadatak 103 Nepoznati rok Sa standardnog ulaza se unosi ime datoteke ¢iji prvi red sadrzi
dimenziju celobrojne kvadratne matrice n (n >100), a ostali redovi elemente matrice (vrstu po
vrstu). Formirati niz b dimenzije n ¢iji je prvi clan suma elemenata glavne dijagonale, drugi suma
elemenata na prvoj donjoj dijagonalinoj paraleli (nju ¢ine elementi odmah ispod glavne dijagonale),
treéi element suma druge donje dijagonaline paralele, itd. Ispisati niz na standardni izlaz. Sve
greske stampati na standardni izlaz za greske.

Zadatak 104 Nepoznati rok Sa standardnog ulaza se unose veliki, celi, neoznaceni brojevi sa
najvise 100 cifara. Ovih brojeva ima manje od 100 ali njihov broj nije unapred poznat. Napisati
program koji sabira ovako unete brojeve i na standardni izlaz ispisuje njihov zbir. Napomena: Svaki
broj se unosi u posebnom redu a potrebno je voditi racuna o korektnosti ulaznih podataka.

