Osnovi programiranja
Beleske sa vezbi

Smer Racunarstvo 1 informatika
Matematicki fakultet, Beograd

Jelena Tomasevié

December 25, 2005

Sadrza]

1.1 Ugnjezdena petlja L e
1.2 Bit-operatori

SADRZAJ

1.1 Ugnjezdena petlja
Primer 1 llustracija dve ugnjeZdene petlje.

#include<stdio.h>
int main()
{

int i,j;

for(i=1; i<=3; i++)
{
for(j=1; j<=3; j++)
printf("%d * %d = %d\t", i, j, i*j);
printf("\n");

}
}
Izlaz:
1 *x1=1 1 x2=2 1 *x3=23
2 x 1 =2 2 x 2 =4 2 x 3 =6
3x1=3 3%x2=26 3%x3=9

Primer 2 Program koji ispisuje tablicu mnoZenja
#include<stdio.h>

main()

{
int n, m; /* Dimenzije tablice */
int i, j; /* Brojaci */

scanf ("%d", &n);
scanf ("%d", &m);

/* Petlja po redovima... */
for(i = 0; i < mn; i++) {

1Zasnovano na primerima sa sajtova http://www.matf.bg.ac.yu/~filip, http://www.matf.bg.ac.yu/~milena,
http://www.matf.bg.ac.yu/~jelenagr.

6 Jelena Tomasevié

/* unutrasnja petlja */
for(j = 0; j < m; j++)
printf("%d * %d = %d\t", i, j, i*j);
/* na kraju prelazimo u sledeci red */
printf("\n");
}
}

Primer 3 Program koji ispisuje prvih n prostih brojeva

#include<stdio.h>

main()
{

int i, n, br, delilac, ostatak;

printf ("Unesite koliko prostih brojeva zelite da dobijete: \n");
scanf ("%d", &n);

/* Inicijalizujemo brojac i - koliko smo prostih brojeva nasli do sad */
i=20;

/* Pocetni broj za koji proveravamo da 1li je prost */
br = 2;

/* Trazimo i-ti prost broj */
while(i < n) {
/* Ako je u pitanju 2 ili 3 prost je */
if (br <= 3)
p=1;
else if (br % 2 == 0)
/* ako je broj paran i veci od 2 onda nije prost */
p=0;
else {
/* Ispitujemo samo neparne pa delioci mogu biti samo neparni
brojevi */
delilac
ostatak

3;
1;

while(ostatak '= 0 && delilac * delilac <= n) {
ostatak = n % delilac;
delilac++;

}
p = (ostatak != 0);

}
/* Ako je broj prost... */
if (P {

/* stampamo ga... */

printf("Broj %d je prost.\n", n);
/* i uvecavamo broj pronadjenih prostih brojeva. */
it+:

)

1.2 Bit-operatori 7

/* U svakom slucaju prelazimo na proveru da 1li je sledeci broj prost */
br++;

}

by

1.2 Bit-operatori
!INe mesati sa logickim operatorimal!!

& bitsko AND

| bitsko OR

" bitsko ekskluzivno OR
<< levo pomeranje

>> desno pomeranje

” jedinicni komplement

Primer 4 Demonstracija bitskih operatora

#tinclude <stdio.h>

main()

{ printf("%o %o\n",255,15);
printf("255 & 15 = %d\n", 255 & 15);
printf("255 | 15 = d\n", 255 | 15);
printf("255 ~ 15 = Yd\n", 255 ~ 15);
printf("2 << 2 = Yd\n", 2 << 2);
printf("16 >> 2 %d\n", 16 >> 2);

3

Izlaz iz programa je:
377 17

255 & 15 = 15

255 | 15 = 255

255 © 15 = 240
2«2 =38

16 >> 2 =4

Primer 5 print_bits - stampa bitove u zapisu datog celog broja .

#include <stdio.h>

/* Funkcija stampa bitove datog celog broja x.
Vrednost bita na poziciji i je O ako i samo ako se pri konjunkciji broja x sa maskom
000..010....000 - sve O osim 1 na poziciji i, dobija O.
Funkcija krece od pozicije najvece tezine kreirajuci masku pomeranjem jedinice u levo
za duzina(x) - 1 mesto, i zatim pomerajuci ovu masku za jedno mesto u levo u svakoj
sledecoj iteraciji sve dok maska ne postane O.

*/

void print_bits(int x)

{

8 Jelena Tomasevié

/* Broj bitova tipa unsigned */
int wl = sizeof(int)*8;

unsigned mask;
for (mask = 1<<wl-1; mask; mask >>= 1)

putchar(x&mask 7 ’1° : ’0’);

putchar (’\n’);

}

main()

{
print_bits(127);
print_bits(128);
print_bits(0x00FFOOFF) ;
print_bits (OxFFFFFFFF) ;

}

Izlaz iz programa:

00000000000000000000000001111111
00000000000000000000000010000000
00000000111111110000000011111111
11111111111111111111111111111111

Primer 6 Program proverava da li se na k-tom mestu nalazi 1.

#include <stdio.h>
main(){
int n,k;
printf("Unesite broj i poziciju tog broja
koju zelite da proverite:\n");
scanf ("%d %d",&n,&k) ;
if ((n&(1 << (k-1)))!=0)
printf("Bit je 1\n");
else
printf("Bit je O\n");
return 0O;

}

Primer 7 Program postavlja na k-to mesto 1

#include <stdio.h>
void print_bits(int x);

main(){
int n,k;
printf ("Unesite broj i poziciju tog broja koju zelite da proverite:\n");
scanf ("/d %d",&n,&k);
printf ("Binarno, une\v seni broj je\n");
print_bits(n);

1.2 Bit-operatori 9

printf ("Novi broj je %d\n",(n |(1<<k)));
printf ("Binarno, novi broj je\n");
print_bits((n |(1<<k)));

return 0;

Izrazom a>>b vrsi se pomeranje sadrzaja operanda a predstavljenog u binarnom obliku za b
mesta u desno. Popunjavanje upraznjenih mesta na levoj strani zavisi od tipa podataka i vrste
racunara. Ako se pomeranje primenjuje nad operandom tipa unsigned popunjavanje je nulama
Ako se radi o oznatenom operandu popunjavanje je jedinicama kada je u krajnjem levom bitu
jedinica, a nulama kada je u krajnjem levom bitu nula.

Primer 8 Funkcija koja broji bitove postavljene na 1 u broju

int bitcount(unsigned x)

{
int b;
for(b=0; x!=0; x>>=1)
if (x & 01) b++;
return b;

}

Primer 9 sum_of bits - izracunava sumu bitova datog neoznacenog broja.

#include <stdio.h>

/* Pomocna funkcija - stampa bitove neoznacenog broja */
void print_bits(unsigned x)

{
int wl = sizeof (unsigned)*8;
unsigned mask;
for (mask = 1<<wl-1; mask; mask >>= 1)

putchar(x&mask 7 ’1° : ’0°);

putchar(’\n’);

}

/%

int sum_of_bits(unsigned x)

{
int wl = sizeof (unsigned)*8;
int br = 0;

unsigned mask;
for (mask = 1<<wl-1; mask; mask>>=1)
if (x&mask)
br++;

return br;

10

Jelena Tomasevié

*/

/* Efikasnija verzija */
int sum_of_bits(unsigned x)

{
int br;
for (br = 0; x; x>>=1)
if (x&1)
br++;
return br;
}
main()
{
printf("Binarni zapis broja 127 je\n");
print_bits(127);
printf("Suma bitova broja 127 je %d\n",sum_of_bits(127));
printf ("Binarni zapis broja 128 je\n");
print_bits(128);
printf ("Suma bitova broja 128 je %d\n",sum_of_bits(128));
printf("Binarni zapis broja 0xOOFFOOFF je\n");
print_bits (0x00FFOOFF) ;
printf ("Suma bitova broja 0xOOFFOOFF je %d\n",sum_of_bits(0xO0FFOOFF));
printf ("Binarni zapis broja OxFFFFFFFF je\n");
print_bits (OxFFFFFFFF) ;
printf ("Suma bitova broja OxFFFFFFFF je %d\n",sum_of_bits(OxFFFFFFFF));
}

Primer 10 get_bits, set_bits, invert_bits - izdvajanje, postavljanje i invertovanje pojedinacnih bitova

#include <stdio.h>

/* Pomocna funkcija - stampa bitove neoznacenog broja */
void print_bits(unsigned x)

{

int wl = sizeof (unsigned)*8;
unsigned mask;
for (mask = 1<<wl-1; mask; mask >>= 1)

putchar(x&mask 7 ’1’ : °0’);

putchar (’\n’);

/* Funkcija vraca n bitova broja x koji pocinju na poziciji p */
unsigned get_bits(unsigned x, int p, int n)

{

/* Gradimo masku koja ima poslednjih n jedinica
0000000...00011111
tako sto sve jedinice "0 pomerimo u levo za n mesta

1.2 Bit-operatori

11

1111111...1100000
a zatim komplementiramo
*/

unsigned last_n_1 = “(70 << n);

/* x pomerimo u desno za odgovarajuci broj mesta, a zatim
konjunkcijom sa konstruisanom maskom obrisemo pocetne cifre */

return (x > p+l-n) & last_n_1;

}

/* Funkcija vraca modifikovano x tako sto mu je izmenjeno n bitova
pocevsi od pozicije p i na ta mesta je upisano poslednjih n bitova
broja y */

unsigned set_bits(unsigned x, int p, int n, unsigned y)

{
/* Maska 000000...000111111 - poslednjih n jedinica */
unsigned last_n_1 = (70 << n);
/* Maska 1111100..000111111 - n nula pocevsi od pozicije p */
unsigned middle_n_0 = "(last_n_1 << p+l-n);
/* Brisemo n bitova pocevsi od pozicije p */
X = X & middle_n_O;
/* Izdvajamo poslednjih n bitova broja y i pomeramo ih na poziciju p */
y = (y & last_n_1) << p+l-n;
/* Upisujemo bitove broja y u broj x i vracamo rezultat */
return x | y;

}

/* Invertuje n bitova broja x pocevsi od pozicije p */
unsigned invert_bits(unsigned x, int p, int n)

{
/* Maska 000000111...1100000 - n jedinica pocevsi od pozicije p */
unsigned middle_n_1 = (70 << n) << p+1-n;
/* Invertujemo koristeci ekskluzivnu disjunkciju */
return x ~ middle_n_1;
}
main()
{

unsigned x = OxOAAOAFAOQ;
print_bits(x);

print_bits(get_bits(x, 15, 8));
print_bits(set_bits(x, 15, 8, OxFF));
print_bits(invert_bits(x, 15, 8));

12

Jelena Tomasevié

Izlaz iz programa:

00001010101000001010111110100000
00000000000000000000000010101111
00001010101000001111111110100000
00001010101000000101000010100000

Primer 11 right_rotate_bits, mirror_bits - rotiranje i simetrija bitova.

#include <stdio.h>

/* Pomocna funkcija - stampa bitove neoznacenog broja */

void print_bits(unsigned x)

{

int wl = sizeof (unsigned)*8;

unsigned mask;

for (mask = 1<<wl-1; mask; mask >>= 1)
putchar(x&mask 7 ’1° : °0’);

putchar(’\n’);

/* Funkcija vrsi rotaciju neoznacenog broja x za n pozicija u desno */

unsigned right_rotate(unsigned x, int n)

{
int i;
int wl = sizeof (unsigned)*8;
/* Postupak se ponavlja n puta */
for (i = 0; i < n; i++)
{
/* Poslednji bit broja x */
unsigned last_bit = x & 1;
/* x pomeramo za jedno mesto u desno */
x >>= 1;
/* Zapamceni poslednji bit stavljamo na pocetak broja x*/
x |= last_bit<<wl-1;
¥
return Xx;
}

/* Funkcija obrce binarni zapis neoznacenog broja x tako sto bitove cita unatrag */

unsigned mirror (unsigned x)
{
int i;
int wl = sizeof (unsigned)*8;

1.2 Bit-operatori 13

/* Rezultat inicijalizujemo na poslednji bit broja x */
unsigned y = x & 1;

/* Postupak se ponavlja wl-1 puta */
for (i = 1; i<wl; i++)
{
/* x se pomera u desno za jedno mesto */
x >>= 1;
/* rezultat se pomera u levo za jedno mesto */
y <<= 1;

/* Poslednji bit broja x upisujemo na poslednje mesto rezultata */
y l=x& 1;

b

return y;

3

main()

{
unsigned x = OxFAFOFAFO;
print_bits(x);
print_bits(mirror(x));
print_bits(right_rotate(x, 2));

Izlaz iz programa:

11111010111100001111101011110000
00001111010111110000111101011111
00111110101111000011111010111100

Zadaci za vezbu:
Zadatak 1 Napisati program koji ispituje da li dva niza imaju barem jedan zajednicki element.

Zadatak 2 Napisati operator dodeljivanja koji ¢e broju x tipa unsigned sacuvati n krajnjih desnih
bitova, a ostale postaviti na nulu.

x=x8&~ (70 << n); ili x&="("0 << n);

Zadatak 3 Napisati operator dodeljivanja koji ée u x ocistiti n bitova (postaviti nule) pocéev od
pozicije p.

x&="("(~0<<n)<<(p-1))

Zadatak 4 Napisati operator dodeljivanja kojim se invertuje x (prevodi jedan u nulu i nula u
jedan) pocev od pozicije p na duZini n.

x"=("(70<<n)<<(p-1));
Zadatak 5 Program koji sabira pozitivne brojeve niza cifara koji se zavrsava nulom.

#include<stdio.h>

main()

14 Jelena Tomasevié

{

int x, zbir;
printf ("Unesite niz cifara pri cemu je O oznaka za kraj\n");

/* Beskonacna while petlja. */

while(1) {
/* Citamo sledeci element... */
scanf ("%d", &x);
/* ako smo procitali O znaci da smo stigli do kraja... */
if(x == 0)
/* i izlazimo iz petlje */
break;
/* Ako je broj negativan preskacemo ga... */

else if(x < 0)

/* i idemo na sledeci */

continue;
/* inace, broj je pozitivan i dodajemo ga u zbir. */
else zbir = zbir + x;

}

printf ("Suma pozitivnih je %d\n", zbir);

3

Primer 12 Program koji racuna zbir 1 + x + % +...+ 2

#include<stdio.h>

main()

{
float f, suma; /* Faktor sume i suma */
float x; /* Promenljiva x iz izraza */
int i; /* Brojac u petljama */
int n; /* Broj sabiraka */

scanf ("%d", n);
scanf ("%d", x);

/* Pocetne inicijalizacije */
f=1;
suma = 1;

/* U jednom prolazu petlje dodajemo tekuci sabirak */
for(i = 1; i <=n; i++) {

f=fx*xx/ 1i;

suma = suma + f;

}
printf ("Suma prvih %d clanova je %f \n", n, suma);
}
Primer 13 Napisati program koji racuna sumu T — g—? + “5—? — (=D« %

1.2 Bit-operatori

#include<stdio.h>

main()

{
float f, suma, x;
int i, n;

scanf ("%d", &n);
scanf ("%f", &x);

/* Pocetne inicijalizacije */
suma = x;
f = x;

for(i = 1; i <= n; i++) {
f=-f*xxx*xx/ ((2%i+1)*2%i);
suma = suma * f;

}

printf ("Suma prvih J%d clanova je %f \n", n, suma);
}
Primer 14 (DOMA C”I) Napisati program koji racuna sumu 1 — 12—? + % — (D) Es
Primer 15 Program koji ra¢una sumu x — 3%, + 51—52, - 71—73, +... 4 (71)”$

#include<stdio.h>

main()
{
int i, n;
float x, f, suma;

scanf ("%d", &n);
scanf ("%Ef", &x);

/* Pocetne inicijalizacije */
f = x;
suma = x;

for(i = 1; i < n; i++) {
f=-f*xxx*x/1i;
suma = suma + f/(2%i+1);

}

printf ("Suma prvih %d clanoca je %f\n", n, suma);

3

