
Uvodu u informatiku – Proces razvoja
softvera

Danijela Simić
RS

1. februar 2026.



Sadržaj i

1. Uvod

2. Životni ciklus razvoja softvera

3. Standardi i kontrola kvaliteta

4. Planiranje

5. Metodologije razvoja softvera

6. Eksploatacija

1



Sadržaj ii

7. Alati i tehnike korišćeni u razvoju softvera

2



Uvod



Životni ciklus razvoja softvera



Razvoj softvera i životni ciklus

• Razvoj softvera nije samo pisanje programa.

• U širem smislu obuhvata procese pre i posle kodiranja.

• Taj širi okvir zove se životni ciklus razvoja softvera.

3



Razvoj softvera i životni ciklus

• Razvoj softvera nije samo pisanje programa.

• U širem smislu obuhvata procese pre i posle kodiranja.

• Taj širi okvir zove se životni ciklus razvoja softvera.

3



Razvoj softvera i životni ciklus

• Razvoj softvera nije samo pisanje programa.

• U širem smislu obuhvata procese pre i posle kodiranja.

• Taj širi okvir zove se životni ciklus razvoja softvera.

3



Faze životnog ciklusa

• Planiranje

• Realizacija

• Eksploatacija

Koja faza je najbliža naručiocu, a koja krajnjim korisnicima?

4



Faze životnog ciklusa

• Planiranje

• Realizacija

• Eksploatacija

Koja faza je najbliža naručiocu, a koja krajnjim korisnicima?

4



Faze životnog ciklusa

• Planiranje

• Realizacija

• Eksploatacija

Koja faza je najbliža naručiocu, a koja krajnjim korisnicima?

4



Faze životnog ciklusa

• Planiranje

• Realizacija

• Eksploatacija

Koja faza je najbliža naručiocu, a koja krajnjim korisnicima?

4



Faze životnog ciklusa

• Planiranje

• Realizacija

• Eksploatacija

Koja faza je najbliža naručiocu, a koja krajnjim korisnicima?

4



Životni ciklus razvoja softvera

Planiranje



Planiranje

• Prikupljanje i analiza zahteva od naručioca.

• Razrešavanje nepotpunih, višesmislenih ili kontradiktornih
zahteva.

• Kreiranje precizne specifikacije problema i dizajna rešenja.

• Analiza i specifikovanje problema

• Modelovanje rešenja

• Dizajn softverskog rešenja

5



Planiranje

• Prikupljanje i analiza zahteva od naručioca.

• Razrešavanje nepotpunih, višesmislenih ili kontradiktornih
zahteva.

• Kreiranje precizne specifikacije problema i dizajna rešenja.

• Analiza i specifikovanje problema

• Modelovanje rešenja

• Dizajn softverskog rešenja

5



Planiranje

• Prikupljanje i analiza zahteva od naručioca.

• Razrešavanje nepotpunih, višesmislenih ili kontradiktornih
zahteva.

• Kreiranje precizne specifikacije problema i dizajna rešenja.

• Analiza i specifikovanje problema

• Modelovanje rešenja

• Dizajn softverskog rešenja

5



Planiranje

• Prikupljanje i analiza zahteva od naručioca.

• Razrešavanje nepotpunih, višesmislenih ili kontradiktornih
zahteva.

• Kreiranje precizne specifikacije problema i dizajna rešenja.

• Analiza i specifikovanje problema

• Modelovanje rešenja

• Dizajn softverskog rešenja

5



Planiranje

• Prikupljanje i analiza zahteva od naručioca.

• Razrešavanje nepotpunih, višesmislenih ili kontradiktornih
zahteva.

• Kreiranje precizne specifikacije problema i dizajna rešenja.

• Analiza i specifikovanje problema

• Modelovanje rešenja

• Dizajn softverskog rešenja

5



Planiranje

• Prikupljanje i analiza zahteva od naručioca.

• Razrešavanje nepotpunih, višesmislenih ili kontradiktornih
zahteva.

• Kreiranje precizne specifikacije problema i dizajna rešenja.

• Analiza i specifikovanje problema

• Modelovanje rešenja

• Dizajn softverskog rešenja

5



Planiranje

• Prikupljanje i analiza zahteva od naručioca.

• Razrešavanje nepotpunih, višesmislenih ili kontradiktornih
zahteva.

• Kreiranje precizne specifikacije problema i dizajna rešenja.

• Analiza i specifikovanje problema

• Modelovanje rešenja

• Dizajn softverskog rešenja

5



Životni ciklus razvoja softvera

Realizacija



Realizacija

• Implementiranje dizajniranog rešenja u konkretnom jeziku.

• Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

• Priprema dokumentacije za naručioca.

• Implementiranje (kodiranje)

• Evaluacija (analiza ispravnosti i analiza efikasnosti)

• Izrada dokumentacije (korisnička i tehnička)

6



Realizacija

• Implementiranje dizajniranog rešenja u konkretnom jeziku.

• Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

• Priprema dokumentacije za naručioca.

• Implementiranje (kodiranje)

• Evaluacija (analiza ispravnosti i analiza efikasnosti)

• Izrada dokumentacije (korisnička i tehnička)

6



Realizacija

• Implementiranje dizajniranog rešenja u konkretnom jeziku.

• Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

• Priprema dokumentacije za naručioca.

• Implementiranje (kodiranje)

• Evaluacija (analiza ispravnosti i analiza efikasnosti)

• Izrada dokumentacije (korisnička i tehnička)

6



Realizacija

• Implementiranje dizajniranog rešenja u konkretnom jeziku.

• Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

• Priprema dokumentacije za naručioca.

• Implementiranje (kodiranje)

• Evaluacija (analiza ispravnosti i analiza efikasnosti)

• Izrada dokumentacije (korisnička i tehnička)

6



Realizacija

• Implementiranje dizajniranog rešenja u konkretnom jeziku.

• Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

• Priprema dokumentacije za naručioca.

• Implementiranje (kodiranje)

• Evaluacija (analiza ispravnosti i analiza efikasnosti)

• Izrada dokumentacije (korisnička i tehnička)

6



Realizacija

• Implementiranje dizajniranog rešenja u konkretnom jeziku.

• Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

• Priprema dokumentacije za naručioca.

• Implementiranje (kodiranje)

• Evaluacija (analiza ispravnosti i analiza efikasnosti)

• Izrada dokumentacije (korisnička i tehnička)

6



Realizacija

• Implementiranje dizajniranog rešenja u konkretnom jeziku.

• Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

• Priprema dokumentacije za naručioca.

• Implementiranje (kodiranje)

• Evaluacija (analiza ispravnosti i analiza efikasnosti)

• Izrada dokumentacije (korisnička i tehnička)

6



Životni ciklus razvoja softvera

Eksploatacija



Eksploatacija

• Počinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

• Puštanje u rad: instaliranje, podešavanja, testiranje u realnom
okruženju.

• Obuka korisnika i održavanje: ispravke grešaka i manje dopune.

U održavanje se obično uloži više od tri četvrtine ukupnog
rada.

• Obuka i tehnička podrška

• Puštanje u rad

• Održavanje

7



Eksploatacija

• Počinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

• Puštanje u rad: instaliranje, podešavanja, testiranje u realnom
okruženju.

• Obuka korisnika i održavanje: ispravke grešaka i manje dopune.

U održavanje se obično uloži više od tri četvrtine ukupnog
rada.

• Obuka i tehnička podrška

• Puštanje u rad

• Održavanje

7



Eksploatacija

• Počinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

• Puštanje u rad: instaliranje, podešavanja, testiranje u realnom
okruženju.

• Obuka korisnika i održavanje: ispravke grešaka i manje dopune.

U održavanje se obično uloži više od tri četvrtine ukupnog
rada.

• Obuka i tehnička podrška

• Puštanje u rad

• Održavanje

7



Eksploatacija

• Počinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

• Puštanje u rad: instaliranje, podešavanja, testiranje u realnom
okruženju.

• Obuka korisnika i održavanje: ispravke grešaka i manje dopune.

U održavanje se obično uloži više od tri četvrtine ukupnog
rada.

• Obuka i tehnička podrška

• Puštanje u rad

• Održavanje

7



Eksploatacija

• Počinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

• Puštanje u rad: instaliranje, podešavanja, testiranje u realnom
okruženju.

• Obuka korisnika i održavanje: ispravke grešaka i manje dopune.

U održavanje se obično uloži više od tri četvrtine ukupnog
rada.

• Obuka i tehnička podrška

• Puštanje u rad

• Održavanje

7



Eksploatacija

• Počinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

• Puštanje u rad: instaliranje, podešavanja, testiranje u realnom
okruženju.

• Obuka korisnika i održavanje: ispravke grešaka i manje dopune.

U održavanje se obično uloži više od tri četvrtine ukupnog
rada.

• Obuka i tehnička podrška

• Puštanje u rad

• Održavanje

7



Eksploatacija

• Počinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

• Puštanje u rad: instaliranje, podešavanja, testiranje u realnom
okruženju.

• Obuka korisnika i održavanje: ispravke grešaka i manje dopune.

U održavanje se obično uloži više od tri četvrtine ukupnog
rada.

• Obuka i tehnička podrška

• Puštanje u rad

• Održavanje

7



Eksploatacija

• Počinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

• Puštanje u rad: instaliranje, podešavanja, testiranje u realnom
okruženju.

• Obuka korisnika i održavanje: ispravke grešaka i manje dopune.

U održavanje se obično uloži više od tri četvrtine ukupnog
rada.

• Obuka i tehnička podrška

• Puštanje u rad

• Održavanje

7



Standardi i kontrola kvaliteta



Standardi životnog ciklusa

• Postoje međunarodni standardi koji opisuju životni ciklus
softvera: ISO/IEC 12207 i ISO/IEC 15504.

• Kroz precizno opisane postupke: izbor, implementacija,
nadgledanje razvoja.

• Kvalitet se često ocenjuje prema nivou usklađenosti sa
standardima.

8



Standardi životnog ciklusa

• Postoje međunarodni standardi koji opisuju životni ciklus
softvera: ISO/IEC 12207 i ISO/IEC 15504.

• Kroz precizno opisane postupke: izbor, implementacija,
nadgledanje razvoja.

• Kvalitet se često ocenjuje prema nivou usklađenosti sa
standardima.

8



Standardi životnog ciklusa

• Postoje međunarodni standardi koji opisuju životni ciklus
softvera: ISO/IEC 12207 i ISO/IEC 15504.

• Kroz precizno opisane postupke: izbor, implementacija,
nadgledanje razvoja.

• Kvalitet se često ocenjuje prema nivou usklađenosti sa
standardima.

8



Kontrola kvaliteta (SQA)

• Pokriva kompletan proces razvoja i sve faze i podfaze.

• Treba da osigura nezavisnu potvrdu da su proizvodi,
aktivnosti i procesi u skladu sa planovima i standardima.

• Proces kontrole kvaliteta je takođe opisan standardom
ISO/IEC 15504.

9



Kontrola kvaliteta (SQA)

• Pokriva kompletan proces razvoja i sve faze i podfaze.

• Treba da osigura nezavisnu potvrdu da su proizvodi,
aktivnosti i procesi u skladu sa planovima i standardima.

• Proces kontrole kvaliteta je takođe opisan standardom
ISO/IEC 15504.

9



Kontrola kvaliteta (SQA)

• Pokriva kompletan proces razvoja i sve faze i podfaze.

• Treba da osigura nezavisnu potvrdu da su proizvodi,
aktivnosti i procesi u skladu sa planovima i standardima.

• Proces kontrole kvaliteta je takođe opisan standardom
ISO/IEC 15504.

9



Karikatura: faze i problemi

10



Planiranje



Planiranje: ko šta radi

• Poslovna analiza: precizna postavka i specifikovanje zahteva.

• Modelovanje i dizajn: razrada projekta definisanog
zahtevima.

• Koriste se dijagramske tehnike i alati za dijagrame: CASE
alati.

• Planiranjem strateški rukovodi arhitekta sistema (EA).

• Zadatak EA: opšti, apstraktan plan procesa koji treba
softverski podržati.

11



Planiranje: ko šta radi

• Poslovna analiza: precizna postavka i specifikovanje zahteva.

• Modelovanje i dizajn: razrada projekta definisanog
zahtevima.

• Koriste se dijagramske tehnike i alati za dijagrame: CASE
alati.

• Planiranjem strateški rukovodi arhitekta sistema (EA).

• Zadatak EA: opšti, apstraktan plan procesa koji treba
softverski podržati.

11



Planiranje: ko šta radi

• Poslovna analiza: precizna postavka i specifikovanje zahteva.

• Modelovanje i dizajn: razrada projekta definisanog
zahtevima.

• Koriste se dijagramske tehnike i alati za dijagrame: CASE
alati.

• Planiranjem strateški rukovodi arhitekta sistema (EA).

• Zadatak EA: opšti, apstraktan plan procesa koji treba
softverski podržati.

11



Planiranje: ko šta radi

• Poslovna analiza: precizna postavka i specifikovanje zahteva.

• Modelovanje i dizajn: razrada projekta definisanog
zahtevima.

• Koriste se dijagramske tehnike i alati za dijagrame: CASE
alati.

• Planiranjem strateški rukovodi arhitekta sistema (EA).

• Zadatak EA: opšti, apstraktan plan procesa koji treba
softverski podržati.

11



Planiranje: ko šta radi

• Poslovna analiza: precizna postavka i specifikovanje zahteva.

• Modelovanje i dizajn: razrada projekta definisanog
zahtevima.

• Koriste se dijagramske tehnike i alati za dijagrame: CASE
alati.

• Planiranjem strateški rukovodi arhitekta sistema (EA).

• Zadatak EA: opšti, apstraktan plan procesa koji treba
softverski podržati.

11



Planiranje: ko šta radi

• Poslovna analiza: precizna postavka i specifikovanje zahteva.

• Modelovanje i dizajn: razrada projekta definisanog
zahtevima.

• Koriste se dijagramske tehnike i alati za dijagrame: CASE
alati.

• Planiranjem strateški rukovodi arhitekta sistema (EA).

• Zadatak EA: opšti, apstraktan plan procesa koji treba
softverski podržati.

11



Planiranje: uloge i izlazi

• BA (poslovni analitičar): zahtevi → specifikacija problema.

• SA (arhitekta rešenja): specifikacija → modeli rešenja.

• EA (arhitekta sistema): „velika slika“ procesa u sistemu.

12



Planiranje: uloge i izlazi

• BA (poslovni analitičar): zahtevi → specifikacija problema.

• SA (arhitekta rešenja): specifikacija → modeli rešenja.

• EA (arhitekta sistema): „velika slika“ procesa u sistemu.

12



Planiranje: uloge i izlazi

• BA (poslovni analitičar): zahtevi → specifikacija problema.

• SA (arhitekta rešenja): specifikacija → modeli rešenja.

• EA (arhitekta sistema): „velika slika“ procesa u sistemu.

12



Planiranje: uloge i izlazi

• BA (poslovni analitičar): zahtevi → specifikacija problema.

• SA (arhitekta rešenja): specifikacija → modeli rešenja.

• EA (arhitekta sistema): „velika slika“ procesa u sistemu.

12



Planiranje: uloge i izlazi

• BA (poslovni analitičar): zahtevi → specifikacija problema.

• SA (arhitekta rešenja): specifikacija → modeli rešenja.

• EA (arhitekta sistema): „velika slika“ procesa u sistemu.

12



Planiranje

Analiza i specifikovanje problema



Analiza i specifikovanje: poslovni analitičar (BA)

• Analizu obično sprovodi poslovni analitičar (BA).

• BA ne mora biti informatičar, ali mora poznavati relevantne
procese.

• U praksi: intenzivna komunikacija sa naručiocima / korisnicima
/ predstavnicima.

13



Analiza i specifikovanje: poslovni analitičar (BA)

• Analizu obično sprovodi poslovni analitičar (BA).

• BA ne mora biti informatičar, ali mora poznavati relevantne
procese.

• U praksi: intenzivna komunikacija sa naručiocima / korisnicima
/ predstavnicima.

13



Analiza i specifikovanje: poslovni analitičar (BA)

• Analizu obično sprovodi poslovni analitičar (BA).

• BA ne mora biti informatičar, ali mora poznavati relevantne
procese.

• U praksi: intenzivna komunikacija sa naručiocima / korisnicima
/ predstavnicima.

13



Analiza i specifikovanje: poslovni analitičar (BA)

• Analizu obično sprovodi poslovni analitičar (BA).

• BA ne mora biti informatičar, ali mora poznavati relevantne
procese.

• U praksi: intenzivna komunikacija sa naručiocima / korisnicima
/ predstavnicima.

13



Analiza i specifikovanje: poslovni analitičar (BA)

• Analizu obično sprovodi poslovni analitičar (BA).

• BA ne mora biti informatičar, ali mora poznavati relevantne
procese.

• U praksi: intenzivna komunikacija sa naručiocima / korisnicima
/ predstavnicima.

13



Šta BA radi u komunikaciji sa naručiocima

• Analiza postojećih rešenja i mogućnosti unapređenja novim
softverom.

• Zahtevi su često neprecizni ili kontradiktorni.

• Zadatak BA: da zahteve precizira i uobliči u saradnji sa
naručiocima.

• Rezultat: opšta specifikacija problema (procesi +
funkcionalnosti + potrebna efikasnost i druga svojstva).

14



Šta BA radi u komunikaciji sa naručiocima

• Analiza postojećih rešenja i mogućnosti unapređenja novim
softverom.

• Zahtevi su često neprecizni ili kontradiktorni.

• Zadatak BA: da zahteve precizira i uobliči u saradnji sa
naručiocima.

• Rezultat: opšta specifikacija problema (procesi +
funkcionalnosti + potrebna efikasnost i druga svojstva).

14



Šta BA radi u komunikaciji sa naručiocima

• Analiza postojećih rešenja i mogućnosti unapređenja novim
softverom.

• Zahtevi su često neprecizni ili kontradiktorni.

• Zadatak BA: da zahteve precizira i uobliči u saradnji sa
naručiocima.

• Rezultat: opšta specifikacija problema (procesi +
funkcionalnosti + potrebna efikasnost i druga svojstva).

14



Šta BA radi u komunikaciji sa naručiocima

• Analiza postojećih rešenja i mogućnosti unapređenja novim
softverom.

• Zahtevi su često neprecizni ili kontradiktorni.

• Zadatak BA: da zahteve precizira i uobliči u saradnji sa
naručiocima.

• Rezultat: opšta specifikacija problema (procesi +
funkcionalnosti + potrebna efikasnost i druga svojstva).

14



Šta BA radi u komunikaciji sa naručiocima

• Analiza postojećih rešenja i mogućnosti unapređenja novim
softverom.

• Zahtevi su često neprecizni ili kontradiktorni.

• Zadatak BA: da zahteve precizira i uobliči u saradnji sa
naručiocima.

• Rezultat: opšta specifikacija problema (procesi +
funkcionalnosti + potrebna efikasnost i druga svojstva).

14



Poslovna analiza: procene u planiranju

• Procena obima posla (npr. u čovek-mesecima) i jasna
granica: šta ulazi/šta ne.

• Identifikacija rizika i definisanje reakcija ako stvari krenu
drugačije.

• Procena resursa (ljudskih i materijalnih).

• Procena cene realizacije (i delova projekta).

• Plan rada po fazama koji se poštuje.

15



Poslovna analiza: procene u planiranju

• Procena obima posla (npr. u čovek-mesecima) i jasna
granica: šta ulazi/šta ne.

• Identifikacija rizika i definisanje reakcija ako stvari krenu
drugačije.

• Procena resursa (ljudskih i materijalnih).

• Procena cene realizacije (i delova projekta).

• Plan rada po fazama koji se poštuje.

15



Poslovna analiza: procene u planiranju

• Procena obima posla (npr. u čovek-mesecima) i jasna
granica: šta ulazi/šta ne.

• Identifikacija rizika i definisanje reakcija ako stvari krenu
drugačije.

• Procena resursa (ljudskih i materijalnih).

• Procena cene realizacije (i delova projekta).

• Plan rada po fazama koji se poštuje.

15



Poslovna analiza: procene u planiranju

• Procena obima posla (npr. u čovek-mesecima) i jasna
granica: šta ulazi/šta ne.

• Identifikacija rizika i definisanje reakcija ako stvari krenu
drugačije.

• Procena resursa (ljudskih i materijalnih).

• Procena cene realizacije (i delova projekta).

• Plan rada po fazama koji se poštuje.

15



Poslovna analiza: procene u planiranju

• Procena obima posla (npr. u čovek-mesecima) i jasna
granica: šta ulazi/šta ne.

• Identifikacija rizika i definisanje reakcija ako stvari krenu
drugačije.

• Procena resursa (ljudskih i materijalnih).

• Procena cene realizacije (i delova projekta).

• Plan rada po fazama koji se poštuje.

15



Planiranje

Modelovanje rešenja



Modelovanje rešenja: arhitekta rešenja (SA)

• Modelovanje obično sprovodi arhitekta rešenja (SA).

• SA razume specifikaciju zahteva i izrađuje modele problema.

• SA bira adekvatna softverska rešenja: jezik, baza, biblioteke,
strukture podataka, algoritamska rešenja, itd.

16



Modelovanje rešenja: arhitekta rešenja (SA)

• Modelovanje obično sprovodi arhitekta rešenja (SA).

• SA razume specifikaciju zahteva i izrađuje modele problema.

• SA bira adekvatna softverska rešenja: jezik, baza, biblioteke,
strukture podataka, algoritamska rešenja, itd.

16



Modelovanje rešenja: arhitekta rešenja (SA)

• Modelovanje obično sprovodi arhitekta rešenja (SA).

• SA razume specifikaciju zahteva i izrađuje modele problema.

• SA bira adekvatna softverska rešenja: jezik, baza, biblioteke,
strukture podataka, algoritamska rešenja, itd.

16



Šta može biti model rešenja

• Matematički model (optimizacioni model, sistemski graf,
formalna specifikacija).

• Simulacija, heuristički opis, pseudokod, vizuelna skica.

• U nekim domenima: domen-specifični jezici.

• Model treba da bude dovoljno precizan za dizajn, ali i dovoljno
apstraktan za fleksibilnost tehnologija.

17



Šta može biti model rešenja

• Matematički model (optimizacioni model, sistemski graf,
formalna specifikacija).

• Simulacija, heuristički opis, pseudokod, vizuelna skica.

• U nekim domenima: domen-specifični jezici.

• Model treba da bude dovoljno precizan za dizajn, ali i dovoljno
apstraktan za fleksibilnost tehnologija.

17



Šta može biti model rešenja

• Matematički model (optimizacioni model, sistemski graf,
formalna specifikacija).

• Simulacija, heuristički opis, pseudokod, vizuelna skica.

• U nekim domenima: domen-specifični jezici.

• Model treba da bude dovoljno precizan za dizajn, ali i dovoljno
apstraktan za fleksibilnost tehnologija.

17



Šta može biti model rešenja

• Matematički model (optimizacioni model, sistemski graf,
formalna specifikacija).

• Simulacija, heuristički opis, pseudokod, vizuelna skica.

• U nekim domenima: domen-specifični jezici.

• Model treba da bude dovoljno precizan za dizajn, ali i dovoljno
apstraktan za fleksibilnost tehnologija.

17



Šta može biti model rešenja

• Matematički model (optimizacioni model, sistemski graf,
formalna specifikacija).

• Simulacija, heuristički opis, pseudokod, vizuelna skica.

• U nekim domenima: domen-specifični jezici.

• Model treba da bude dovoljno precizan za dizajn, ali i dovoljno
apstraktan za fleksibilnost tehnologija.

17



Cilj modelovanja i odnos prema dizajnu

• Cilj: razlaganje složenog problema na jasne logičke celine.

• Modelovanje pomaže komunikaciji u timu i proceni troškova,
složenosti i rizika.

• Modelovanje: razumevanje ključnih komponenti; dizajn: kako
će se tehnički realizovati na konkretnoj platformi.

18



Cilj modelovanja i odnos prema dizajnu

• Cilj: razlaganje složenog problema na jasne logičke celine.

• Modelovanje pomaže komunikaciji u timu i proceni troškova,
složenosti i rizika.

• Modelovanje: razumevanje ključnih komponenti; dizajn: kako
će se tehnički realizovati na konkretnoj platformi.

18



Cilj modelovanja i odnos prema dizajnu

• Cilj: razlaganje složenog problema na jasne logičke celine.

• Modelovanje pomaže komunikaciji u timu i proceni troškova,
složenosti i rizika.

• Modelovanje: razumevanje ključnih komponenti; dizajn: kako
će se tehnički realizovati na konkretnoj platformi.

18



Primer: elektronska narudžbina hrane

• Model: relacija između korisnika, restorana i narudžbina.

• Tok narudžbine kao automat sa stanjima: kreirana →
potvrđena → u pripremi → u dostavi → isporučena.

19



Primer: elektronska narudžbina hrane

• Model: relacija između korisnika, restorana i narudžbina.

• Tok narudžbine kao automat sa stanjima: kreirana →
potvrđena → u pripremi → u dostavi → isporučena.

19



Planiranje

Dizajn softverskog rešenja



Dizajn: arhitekta softvera i arhitektura

• U dizajnu, arhitekta softvera precizira rešenje.

• Opisuje arhitekturu softvera.

Celokupna struktura softvera i način na koji ta struktura obez-
beđuje integritet sistema i željeni ishod projekta (ispravan sof-
tver, performanse, rokovi, troškovi). Uključuje komponente,
njihove odnose i interakcije, kao i principe/smernice za dizajn
i evoluciju.

20



Dizajn: arhitekta softvera i arhitektura

• U dizajnu, arhitekta softvera precizira rešenje.

• Opisuje arhitekturu softvera.

Celokupna struktura softvera i način na koji ta struktura obez-
beđuje integritet sistema i željeni ishod projekta (ispravan sof-
tver, performanse, rokovi, troškovi). Uključuje komponente,
njihove odnose i interakcije, kao i principe/smernice za dizajn
i evoluciju.

20



Dizajn: arhitekta softvera i arhitektura

• U dizajnu, arhitekta softvera precizira rešenje.

• Opisuje arhitekturu softvera.

Celokupna struktura softvera i način na koji ta struktura obez-
beđuje integritet sistema i željeni ishod projekta (ispravan sof-
tver, performanse, rokovi, troškovi). Uključuje komponente,
njihove odnose i interakcije, kao i principe/smernice za dizajn
i evoluciju.

20



Dizajn: arhitekta softvera i arhitektura

• U dizajnu, arhitekta softvera precizira rešenje.

• Opisuje arhitekturu softvera.

Celokupna struktura softvera i način na koji ta struktura obez-
beđuje integritet sistema i željeni ishod projekta (ispravan sof-
tver, performanse, rokovi, troškovi). Uključuje komponente,
njihove odnose i interakcije, kao i principe/smernice za dizajn
i evoluciju.

20



Šta dizajn radi (u odnosu na prethodne faze)

• Razrađuje pojmove ranije opisane nezavisno od tehnologija.

• Daje opšti plan kako sistem da bude izgrađen na konkretnoj
hardverskoj i softverskoj platformi.

• Često koristi unapred ponuđene obrasce: design patterns.

21



Šta dizajn radi (u odnosu na prethodne faze)

• Razrađuje pojmove ranije opisane nezavisno od tehnologija.

• Daje opšti plan kako sistem da bude izgrađen na konkretnoj
hardverskoj i softverskoj platformi.

• Često koristi unapred ponuđene obrasce: design patterns.

21



Šta dizajn radi (u odnosu na prethodne faze)

• Razrađuje pojmove ranije opisane nezavisno od tehnologija.

• Daje opšti plan kako sistem da bude izgrađen na konkretnoj
hardverskoj i softverskoj platformi.

• Često koristi unapred ponuđene obrasce: design patterns.

21



Kako se dizajn zapisuje: jednostavni vs kompleksni sistemi

• Jednostavniji slučajevi: neformalni tekst ili dijagram protoka
podataka.

• Dijagram protoka podataka prikazuje tok podataka i
funkcionalne transformacije, ali ne opisuje implementaciju.

• Kompleksniji slučajevi: standardizovane grafičke notacije
(grafički jezici), npr. UML.

22



Kako se dizajn zapisuje: jednostavni vs kompleksni sistemi

• Jednostavniji slučajevi: neformalni tekst ili dijagram protoka
podataka.

• Dijagram protoka podataka prikazuje tok podataka i
funkcionalne transformacije, ali ne opisuje implementaciju.

• Kompleksniji slučajevi: standardizovane grafičke notacije
(grafički jezici), npr. UML.

22



Kako se dizajn zapisuje: jednostavni vs kompleksni sistemi

• Jednostavniji slučajevi: neformalni tekst ili dijagram protoka
podataka.

• Dijagram protoka podataka prikazuje tok podataka i
funkcionalne transformacije, ali ne opisuje implementaciju.

• Kompleksniji slučajevi: standardizovane grafičke notacije
(grafički jezici), npr. UML.

22



Tema 1: Apstrahovanje (abstraction)

• Proces generalizacije: odbacivanje nebitnih informacija.

• Zadržavaju se samo informacije bitne za softver.

• Primer: boja očiju studenta nije relevantna u IS fakulteta →
odbacuje se.

23



Tema 1: Apstrahovanje (abstraction)

• Proces generalizacije: odbacivanje nebitnih informacija.

• Zadržavaju se samo informacije bitne za softver.

• Primer: boja očiju studenta nije relevantna u IS fakulteta →
odbacuje se.

23



Tema 1: Apstrahovanje (abstraction)

• Proces generalizacije: odbacivanje nebitnih informacija.

• Zadržavaju se samo informacije bitne za softver.

• Primer: boja očiju studenta nije relevantna u IS fakulteta →
odbacuje se.

23



Tema 2: Profinjavanje (refinement)

• Razvoj odozgo-naniže: nerazrađeni koraci se postepeno
preciziraju.

• Svaki zadatak se razlaže na sitnije zadatke.

• Krajnji rezultat: precizan opis u obliku programskog koda.

24



Tema 2: Profinjavanje (refinement)

• Razvoj odozgo-naniže: nerazrađeni koraci se postepeno
preciziraju.

• Svaki zadatak se razlaže na sitnije zadatke.

• Krajnji rezultat: precizan opis u obliku programskog koda.

24



Tema 2: Profinjavanje (refinement)

• Razvoj odozgo-naniže: nerazrađeni koraci se postepeno
preciziraju.

• Svaki zadatak se razlaže na sitnije zadatke.

• Krajnji rezultat: precizan opis u obliku programskog koda.

24



Profinjavanje: primer razlaganja

• Jedan zadatak razlaže se na podzadatke / pomoćne funkcije.

obradi_podatke_iz_datoteke()
-> otvori_datoteku()
-> procitaj_podatke()
-> obradi_podatke()
-> zatvori_datoteku()

• Apstrahovanje i profinjavanje su suprotni procesi.

25



Profinjavanje: primer razlaganja

• Jedan zadatak razlaže se na podzadatke / pomoćne funkcije.

obradi_podatke_iz_datoteke()
-> otvori_datoteku()
-> procitaj_podatke()
-> obradi_podatke()
-> zatvori_datoteku()

• Apstrahovanje i profinjavanje su suprotni procesi.

25



Profinjavanje: primer razlaganja

• Jedan zadatak razlaže se na podzadatke / pomoćne funkcije.

obradi_podatke_iz_datoteke()
-> otvori_datoteku()
-> procitaj_podatke()
-> obradi_podatke()
-> zatvori_datoteku()

• Apstrahovanje i profinjavanje su suprotni procesi.

25



Tema 3: Dekompozicija (decomposition)

• Cilj: razlaganje sistema na komponente koje je lakše razumeti,
realizovati i održavati.

• Proizvod dekompozicije nije implementacija, već opis
arhitekture.

• Pristupi zavise od paradigme (OO, funkcionalna, ...).

26



Tema 3: Dekompozicija (decomposition)

• Cilj: razlaganje sistema na komponente koje je lakše razumeti,
realizovati i održavati.

• Proizvod dekompozicije nije implementacija, već opis
arhitekture.

• Pristupi zavise od paradigme (OO, funkcionalna, ...).

26



Tema 3: Dekompozicija (decomposition)

• Cilj: razlaganje sistema na komponente koje je lakše razumeti,
realizovati i održavati.

• Proizvod dekompozicije nije implementacija, već opis
arhitekture.

• Pristupi zavise od paradigme (OO, funkcionalna, ...).

26



Tema 4: Modularnost (modularity)

• Softver se deli na komponente: moduli.

• Svaki modul ima precizno definisanu funkcionalnost.

• Poželjno: malo međuzavisnosti, da moduli mogu da se koriste i
u drugim programima.

27



Tema 4: Modularnost (modularity)

• Softver se deli na komponente: moduli.

• Svaki modul ima precizno definisanu funkcionalnost.

• Poželjno: malo međuzavisnosti, da moduli mogu da se koriste i
u drugim programima.

27



Tema 4: Modularnost (modularity)

• Softver se deli na komponente: moduli.

• Svaki modul ima precizno definisanu funkcionalnost.

• Poželjno: malo međuzavisnosti, da moduli mogu da se koriste i
u drugim programima.

27



Planiranje

Objedinjeni jezik za modelovanje: UML
dijagrami



UML: objedinjeni jezik za modelovanje

UML (Unified Modeling Language) je vizuelna tehnika i stan-
dardizovani jezik za modelovanje softvera: opisuje zahteve,
akcije i fizičku distribuciju rešenja.

• UML je pre svega grafički jezik.

• Može se koristiti i u tekstualnom obliku (samo neki elementi
po standardu).

• Postoji mnogo UML dijagrama; ovde prikazujemo samo neke.

28



UML: objedinjeni jezik za modelovanje

UML (Unified Modeling Language) je vizuelna tehnika i stan-
dardizovani jezik za modelovanje softvera: opisuje zahteve,
akcije i fizičku distribuciju rešenja.

• UML je pre svega grafički jezik.

• Može se koristiti i u tekstualnom obliku (samo neki elementi
po standardu).

• Postoji mnogo UML dijagrama; ovde prikazujemo samo neke.

28



UML: objedinjeni jezik za modelovanje

UML (Unified Modeling Language) je vizuelna tehnika i stan-
dardizovani jezik za modelovanje softvera: opisuje zahteve,
akcije i fizičku distribuciju rešenja.

• UML je pre svega grafički jezik.

• Može se koristiti i u tekstualnom obliku (samo neki elementi
po standardu).

• Postoji mnogo UML dijagrama; ovde prikazujemo samo neke.

28



UML: objedinjeni jezik za modelovanje

UML (Unified Modeling Language) je vizuelna tehnika i stan-
dardizovani jezik za modelovanje softvera: opisuje zahteve,
akcije i fizičku distribuciju rešenja.

• UML je pre svega grafički jezik.

• Može se koristiti i u tekstualnom obliku (samo neki elementi
po standardu).

• Postoji mnogo UML dijagrama; ovde prikazujemo samo neke.

28



Dve velike grupe UML dijagrama

• Strukturni dijagrami: prikazuju strukturu sistema i odnose
između komponenti (klase, objekti, komponente, raspored, ...).

• Dijagrami ponašanja: prikazuju kako se sistem ponaša tokom
izvršavanja (aktivnosti, stanja, sekvence, upotrebe, ...).

29



Dve velike grupe UML dijagrama

• Strukturni dijagrami: prikazuju strukturu sistema i odnose
između komponenti (klase, objekti, komponente, raspored, ...).

• Dijagrami ponašanja: prikazuju kako se sistem ponaša tokom
izvršavanja (aktivnosti, stanja, sekvence, upotrebe, ...).

29



Strukturni UML dijagrami

Strukturni dijagrami su statički prikaz: opisuju elemente (kla-
se, pakete, komponente, uređaje) i njihove odnose; ne sadrže
vremenski tok ni dinamičke promene stanja. Koriste se od ana-
lize do implementacije i isporuke.

30



Najčešći strukturni dijagram: dijagram klasa

• Prikazuje klase, njihove atribute i metode.

• Prikazuje odnose: nasleđivanje, asocijacija, kompozicija,
agregacija, zavisnost.

• Primer: sistem biblioteke (Knjiga, Član, Zaduženje).

31



Najčešći strukturni dijagram: dijagram klasa

• Prikazuje klase, njihove atribute i metode.

• Prikazuje odnose: nasleđivanje, asocijacija, kompozicija,
agregacija, zavisnost.

• Primer: sistem biblioteke (Knjiga, Član, Zaduženje).

31



Najčešći strukturni dijagram: dijagram klasa

• Prikazuje klase, njihove atribute i metode.

• Prikazuje odnose: nasleđivanje, asocijacija, kompozicija,
agregacija, zavisnost.

• Primer: sistem biblioteke (Knjiga, Član, Zaduženje).

31



Primer: UML dijagram klasa (biblioteka)

Biblioteka

- naziv: String
- adresa: String

+ dodajKnjigu(k: Knjiga):
void
+ ukloniKnjigu(k: Knjiga):
void

Knjiga

- isbn: String
- naslov: String
- autor: String

+ dostupna(): bool
+ rezerviši(): void

«service» Notifikator

+ pošaljiPodsetnik(c: Član):
void

Osoba

- ime: String
- email: String

+ prijaviSe(): bool

Član

- id: int
- status: Status

+ zaduži(k: Knjiga): bool
+ razduži(k: Knjiga): void

Zaduženje

- datumOd: Date
- datumDo: Date

+ produži(d: int): void

StavkaZaduženja

- redniBroj: int

+ vrati(): void

1

0..*
1 1..*

11
1 0..*koristi

32



Još strukturnih dijagrama

• Dijagrami objekata

• Dijagrami komponenti

• Dijagrami rasporeda

• Dijagram slučajeva upotrebe

• Dijagram slučajeva upotrebe prikazuje funkcionalnosti
sistema kroz interakcije između korisnika (aktera) i osnovnih
scenarija korišćenja.

• Na višem nivou: manji broj generalizovanih poslovnih scenarija
(glavne uloge grupa korisnika).

33



Još strukturnih dijagrama

• Dijagrami objekata

• Dijagrami komponenti

• Dijagrami rasporeda

• Dijagram slučajeva upotrebe

• Dijagram slučajeva upotrebe prikazuje funkcionalnosti
sistema kroz interakcije između korisnika (aktera) i osnovnih
scenarija korišćenja.

• Na višem nivou: manji broj generalizovanih poslovnih scenarija
(glavne uloge grupa korisnika).

33



Još strukturnih dijagrama

• Dijagrami objekata

• Dijagrami komponenti

• Dijagrami rasporeda

• Dijagram slučajeva upotrebe

• Dijagram slučajeva upotrebe prikazuje funkcionalnosti
sistema kroz interakcije između korisnika (aktera) i osnovnih
scenarija korišćenja.

• Na višem nivou: manji broj generalizovanih poslovnih scenarija
(glavne uloge grupa korisnika).

33



Još strukturnih dijagrama

• Dijagrami objekata

• Dijagrami komponenti

• Dijagrami rasporeda

• Dijagram slučajeva upotrebe

• Dijagram slučajeva upotrebe prikazuje funkcionalnosti
sistema kroz interakcije između korisnika (aktera) i osnovnih
scenarija korišćenja.

• Na višem nivou: manji broj generalizovanih poslovnih scenarija
(glavne uloge grupa korisnika).

33



Još strukturnih dijagrama

• Dijagrami objekata

• Dijagrami komponenti

• Dijagrami rasporeda

• Dijagram slučajeva upotrebe

• Dijagram slučajeva upotrebe prikazuje funkcionalnosti
sistema kroz interakcije između korisnika (aktera) i osnovnih
scenarija korišćenja.

• Na višem nivou: manji broj generalizovanih poslovnih scenarija
(glavne uloge grupa korisnika).

33



Još strukturnih dijagrama

• Dijagrami objekata

• Dijagrami komponenti

• Dijagrami rasporeda

• Dijagram slučajeva upotrebe

• Dijagram slučajeva upotrebe prikazuje funkcionalnosti
sistema kroz interakcije između korisnika (aktera) i osnovnih
scenarija korišćenja.

• Na višem nivou: manji broj generalizovanih poslovnih scenarija
(glavne uloge grupa korisnika).

33



Još strukturnih dijagrama

• Dijagrami objekata

• Dijagrami komponenti

• Dijagrami rasporeda

• Dijagram slučajeva upotrebe

• Dijagram slučajeva upotrebe prikazuje funkcionalnosti
sistema kroz interakcije između korisnika (aktera) i osnovnih
scenarija korišćenja.

• Na višem nivou: manji broj generalizovanih poslovnih scenarija
(glavne uloge grupa korisnika).

33



Dijagram sekvence: šta prikazuje

Dijagram sekvence prikazuje ponašanje sistema kroz vremen-
ski redosled događaja: kako objekti komuniciraju kroz vreme
tokom izvršavanja aktivnosti.

• Prikazuje: ko učestvuje, kojim redosledom se odvija, kako se
prenose odgovornosti.

34



Dijagram sekvence: šta prikazuje

Dijagram sekvence prikazuje ponašanje sistema kroz vremen-
ski redosled događaja: kako objekti komuniciraju kroz vreme
tokom izvršavanja aktivnosti.

• Prikazuje: ko učestvuje, kojim redosledom se odvija, kako se
prenose odgovornosti.

34



Primer: dijagram sekvence

Korisnik
Netflix

aplikacija
Servis za

autentifikaciju
Servis za

reprodukciju

Pokreni reprodukciju

prijava(email,
lozinka)

token

zahtevReprodukcije(videoId,
token)

Sesija
strima

kreiraj (sessionId)

Plan strima
(manifest)

dohvatiSegment(i)
(ponavljaj)

segment[i]

Zaustavi reprodukciju

zatvori(sessionId)

vr
em

e

35



Metodologije razvoja softvera



Metodologije razvoja softvera

• Postoji mnogo metodologija razvoja softvera (u teoriji i praksi).

• U praksi su često pomešane i teško je projekte striktno svrstati.

• U nastavku: nekoliko često korišćenih metodologija i ključne
ideje.

36



Metodologije razvoja softvera

• Postoji mnogo metodologija razvoja softvera (u teoriji i praksi).

• U praksi su često pomešane i teško je projekte striktno svrstati.

• U nastavku: nekoliko često korišćenih metodologija i ključne
ideje.

36



Metodologije razvoja softvera

• Postoji mnogo metodologija razvoja softvera (u teoriji i praksi).

• U praksi su često pomešane i teško je projekte striktno svrstati.

• U nastavku: nekoliko često korišćenih metodologija i ključne
ideje.

36



Metodologije razvoja softvera

Metodologija vodopada



Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

• zahtevi

• dizajn

• implementacija

• testiranje

• integracija

• održavanje

37



Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

• zahtevi

• dizajn

• implementacija

• testiranje

• integracija

• održavanje

37



Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

• zahtevi

• dizajn

• implementacija

• testiranje

• integracija

• održavanje

37



Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

• zahtevi

• dizajn

• implementacija

• testiranje

• integracija

• održavanje

37



Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

• zahtevi

• dizajn

• implementacija

• testiranje

• integracija

• održavanje

37



Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

• zahtevi

• dizajn

• implementacija

• testiranje

• integracija

• održavanje

37



Analiza i specifikovanje problema

Modelovanje rešenja

Dizajn softverskog rešenja

Implementacija

Analiza efikasnosti i ispravnosti

Izrada dokumentacije

Obuka i tehnička podrška

Puštanje u rad

Održavanje

38



• Kada je primenljiva: zahtevi su poznati unapred, stabilni, bez
rizičnih nepoznanica; arhitektura se može detaljno opisati; ima
vremena za etape.

• Prednosti: jasna struktura + neophodna detaljna
dokumentacija (često u velikim timovima).

• Kritike: krutost (nema menjanja faza), zahtevi se menjaju,
korisnici su često uključeni samo na početku i kraju, čekanja
između zavisnih zadataka.

• Danas se retko koristi; može biti korisna kod rigidnih sistema
(npr. medicinski uređaji, avijacija); postoje varijante (npr.
V-metodologija).

39



• Kada je primenljiva: zahtevi su poznati unapred, stabilni, bez
rizičnih nepoznanica; arhitektura se može detaljno opisati; ima
vremena za etape.

• Prednosti: jasna struktura + neophodna detaljna
dokumentacija (često u velikim timovima).

• Kritike: krutost (nema menjanja faza), zahtevi se menjaju,
korisnici su često uključeni samo na početku i kraju, čekanja
između zavisnih zadataka.

• Danas se retko koristi; može biti korisna kod rigidnih sistema
(npr. medicinski uređaji, avijacija); postoje varijante (npr.
V-metodologija).

39



• Kada je primenljiva: zahtevi su poznati unapred, stabilni, bez
rizičnih nepoznanica; arhitektura se može detaljno opisati; ima
vremena za etape.

• Prednosti: jasna struktura + neophodna detaljna
dokumentacija (često u velikim timovima).

• Kritike: krutost (nema menjanja faza), zahtevi se menjaju,
korisnici su često uključeni samo na početku i kraju, čekanja
između zavisnih zadataka.

• Danas se retko koristi; može biti korisna kod rigidnih sistema
(npr. medicinski uređaji, avijacija); postoje varijante (npr.
V-metodologija).

39



• Kada je primenljiva: zahtevi su poznati unapred, stabilni, bez
rizičnih nepoznanica; arhitektura se može detaljno opisati; ima
vremena za etape.

• Prednosti: jasna struktura + neophodna detaljna
dokumentacija (često u velikim timovima).

• Kritike: krutost (nema menjanja faza), zahtevi se menjaju,
korisnici su često uključeni samo na početku i kraju, čekanja
između zavisnih zadataka.

• Danas se retko koristi; može biti korisna kod rigidnih sistema
(npr. medicinski uređaji, avijacija); postoje varijante (npr.
V-metodologija).

39



Metodologije razvoja softvera

Metodologija iterativnog i inkrementalnog
razvoja



Iterativni i inkrementalni razvoj

• Razvoj se sprovodi u iteracijama.

• Sistem se gradi inkrementalno
(dodavanje modula).

• Moduli se mogu modifikovati u
budućim iteracijama.

• U jednom trenutku više faza
životnog ciklusa može biti u toku.

• Vraćanje unazad je moguće.

Inicijalno planiranje Planiranje Implementacija

Evaluacija Eksploatacija

40



Iterativni i inkrementalni razvoj

• Razvoj se sprovodi u iteracijama.

• Sistem se gradi inkrementalno
(dodavanje modula).

• Moduli se mogu modifikovati u
budućim iteracijama.

• U jednom trenutku više faza
životnog ciklusa može biti u toku.

• Vraćanje unazad je moguće.

Inicijalno planiranje Planiranje Implementacija

Evaluacija Eksploatacija

40



Iterativni i inkrementalni razvoj

• Razvoj se sprovodi u iteracijama.

• Sistem se gradi inkrementalno
(dodavanje modula).

• Moduli se mogu modifikovati u
budućim iteracijama.

• U jednom trenutku više faza
životnog ciklusa može biti u toku.

• Vraćanje unazad je moguće.

Inicijalno planiranje Planiranje Implementacija

Evaluacija Eksploatacija

40



Iterativni i inkrementalni razvoj

• Razvoj se sprovodi u iteracijama.

• Sistem se gradi inkrementalno
(dodavanje modula).

• Moduli se mogu modifikovati u
budućim iteracijama.

• U jednom trenutku više faza
životnog ciklusa može biti u toku.

• Vraćanje unazad je moguće.

Inicijalno planiranje Planiranje Implementacija

Evaluacija Eksploatacija

40



Iterativni i inkrementalni razvoj

• Razvoj se sprovodi u iteracijama.

• Sistem se gradi inkrementalno
(dodavanje modula).

• Moduli se mogu modifikovati u
budućim iteracijama.

• U jednom trenutku više faza
životnog ciklusa može biti u toku.

• Vraćanje unazad je moguće.

Inicijalno planiranje Planiranje Implementacija

Evaluacija Eksploatacija

40



Metodologije razvoja softvera

Metodologija rapidnog razvoja



Rapidni razvoj (RAD)

• Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

• Planiranje se preklapa sa implementacijom → lakše izmene
zahteva u hodu.

• Kreće se od preliminarnog modela podataka i algoritama.

• Prototipovi služe da se zahtevi definišu / preciziraju / potvrde.

• Dokumentacija je vrlo ograničena.

• Mogući problem: niz prototipova bez zadovoljavajuće finalne
aplikacije, često zbog fokusiranja na GUI umesto na
obradu/podatke.

• Pogodno: sopstvene potrebe ili ograničen broj korisnika.

41



Rapidni razvoj (RAD)

• Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

• Planiranje se preklapa sa implementacijom → lakše izmene
zahteva u hodu.

• Kreće se od preliminarnog modela podataka i algoritama.

• Prototipovi služe da se zahtevi definišu / preciziraju / potvrde.

• Dokumentacija je vrlo ograničena.

• Mogući problem: niz prototipova bez zadovoljavajuće finalne
aplikacije, često zbog fokusiranja na GUI umesto na
obradu/podatke.

• Pogodno: sopstvene potrebe ili ograničen broj korisnika.

41



Rapidni razvoj (RAD)

• Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

• Planiranje se preklapa sa implementacijom → lakše izmene
zahteva u hodu.

• Kreće se od preliminarnog modela podataka i algoritama.

• Prototipovi služe da se zahtevi definišu / preciziraju / potvrde.

• Dokumentacija je vrlo ograničena.

• Mogući problem: niz prototipova bez zadovoljavajuće finalne
aplikacije, često zbog fokusiranja na GUI umesto na
obradu/podatke.

• Pogodno: sopstvene potrebe ili ograničen broj korisnika.

41



Rapidni razvoj (RAD)

• Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

• Planiranje se preklapa sa implementacijom → lakše izmene
zahteva u hodu.

• Kreće se od preliminarnog modela podataka i algoritama.

• Prototipovi služe da se zahtevi definišu / preciziraju / potvrde.

• Dokumentacija je vrlo ograničena.

• Mogući problem: niz prototipova bez zadovoljavajuće finalne
aplikacije, često zbog fokusiranja na GUI umesto na
obradu/podatke.

• Pogodno: sopstvene potrebe ili ograničen broj korisnika.

41



Rapidni razvoj (RAD)

• Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

• Planiranje se preklapa sa implementacijom → lakše izmene
zahteva u hodu.

• Kreće se od preliminarnog modela podataka i algoritama.

• Prototipovi služe da se zahtevi definišu / preciziraju / potvrde.

• Dokumentacija je vrlo ograničena.

• Mogući problem: niz prototipova bez zadovoljavajuće finalne
aplikacije, često zbog fokusiranja na GUI umesto na
obradu/podatke.

• Pogodno: sopstvene potrebe ili ograničen broj korisnika.

41



Rapidni razvoj (RAD)

• Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

• Planiranje se preklapa sa implementacijom → lakše izmene
zahteva u hodu.

• Kreće se od preliminarnog modela podataka i algoritama.

• Prototipovi služe da se zahtevi definišu / preciziraju / potvrde.

• Dokumentacija je vrlo ograničena.

• Mogući problem: niz prototipova bez zadovoljavajuće finalne
aplikacije, često zbog fokusiranja na GUI umesto na
obradu/podatke.

• Pogodno: sopstvene potrebe ili ograničen broj korisnika.

41



Rapidni razvoj (RAD)

• Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

• Planiranje se preklapa sa implementacijom → lakše izmene
zahteva u hodu.

• Kreće se od preliminarnog modela podataka i algoritama.

• Prototipovi služe da se zahtevi definišu / preciziraju / potvrde.

• Dokumentacija je vrlo ograničena.

• Mogući problem: niz prototipova bez zadovoljavajuće finalne
aplikacije, često zbog fokusiranja na GUI umesto na
obradu/podatke.

• Pogodno: sopstvene potrebe ili ograničen broj korisnika.

41



Rapidni razvoj (RAD)

• Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

• Planiranje se preklapa sa implementacijom → lakše izmene
zahteva u hodu.

• Kreće se od preliminarnog modela podataka i algoritama.

• Prototipovi služe da se zahtevi definišu / preciziraju / potvrde.

• Dokumentacija je vrlo ograničena.

• Mogući problem: niz prototipova bez zadovoljavajuće finalne
aplikacije, često zbog fokusiranja na GUI umesto na
obradu/podatke.

• Pogodno: sopstvene potrebe ili ograničen broj korisnika.

41



Metodologije razvoja softvera

Spiralna metodologija



Spiralna metodologija

• Kombinuje analizu rizika sa
vodopadom i iterativnim razvojem.

• Spirala prolazi više puta kroz:
planiranje, implementaciju,
evaluaciju tekuće verzije, analizu
rizika.

• Faze se sprovode jedna za drugom
(ne paralelno).

• Prvi prototip je aproksimacija
finalnog proizvoda.

• Na kraju iteracije: evaluacija,
profinjavanje specifikacije i analiza
rizika (bagovi, cena, tempo,
efikasnost, bezbednost, ...).

• Ako rizik ne može biti eliminisan:
naručilac odlučuje da li se nastavlja.

Eksploatacija

Analiza rizika

Prototipovi

Pregled

Definisanje
ciljeva

Identifikovanje i
razrešavanje rizika

Planiranje
sledeće iteracije

Implementacija i
evaluacija

42



Spiralna metodologija

• Kombinuje analizu rizika sa
vodopadom i iterativnim razvojem.

• Spirala prolazi više puta kroz:
planiranje, implementaciju,
evaluaciju tekuće verzije, analizu
rizika.

• Faze se sprovode jedna za drugom
(ne paralelno).

• Prvi prototip je aproksimacija
finalnog proizvoda.

• Na kraju iteracije: evaluacija,
profinjavanje specifikacije i analiza
rizika (bagovi, cena, tempo,
efikasnost, bezbednost, ...).

• Ako rizik ne može biti eliminisan:
naručilac odlučuje da li se nastavlja.

Eksploatacija

Analiza rizika

Prototipovi

Pregled

Definisanje
ciljeva

Identifikovanje i
razrešavanje rizika

Planiranje
sledeće iteracije

Implementacija i
evaluacija

42



Spiralna metodologija

• Kombinuje analizu rizika sa
vodopadom i iterativnim razvojem.

• Spirala prolazi više puta kroz:
planiranje, implementaciju,
evaluaciju tekuće verzije, analizu
rizika.

• Faze se sprovode jedna za drugom
(ne paralelno).

• Prvi prototip je aproksimacija
finalnog proizvoda.

• Na kraju iteracije: evaluacija,
profinjavanje specifikacije i analiza
rizika (bagovi, cena, tempo,
efikasnost, bezbednost, ...).

• Ako rizik ne može biti eliminisan:
naručilac odlučuje da li se nastavlja.

Eksploatacija

Analiza rizika

Prototipovi

Pregled

Definisanje
ciljeva

Identifikovanje i
razrešavanje rizika

Planiranje
sledeće iteracije

Implementacija i
evaluacija

42



Spiralna metodologija

• Kombinuje analizu rizika sa
vodopadom i iterativnim razvojem.

• Spirala prolazi više puta kroz:
planiranje, implementaciju,
evaluaciju tekuće verzije, analizu
rizika.

• Faze se sprovode jedna za drugom
(ne paralelno).

• Prvi prototip je aproksimacija
finalnog proizvoda.

• Na kraju iteracije: evaluacija,
profinjavanje specifikacije i analiza
rizika (bagovi, cena, tempo,
efikasnost, bezbednost, ...).

• Ako rizik ne može biti eliminisan:
naručilac odlučuje da li se nastavlja.

Eksploatacija

Analiza rizika

Prototipovi

Pregled

Definisanje
ciljeva

Identifikovanje i
razrešavanje rizika

Planiranje
sledeće iteracije

Implementacija i
evaluacija

42



Spiralna metodologija

• Kombinuje analizu rizika sa
vodopadom i iterativnim razvojem.

• Spirala prolazi više puta kroz:
planiranje, implementaciju,
evaluaciju tekuće verzije, analizu
rizika.

• Faze se sprovode jedna za drugom
(ne paralelno).

• Prvi prototip je aproksimacija
finalnog proizvoda.

• Na kraju iteracije: evaluacija,
profinjavanje specifikacije i analiza
rizika (bagovi, cena, tempo,
efikasnost, bezbednost, ...).

• Ako rizik ne može biti eliminisan:
naručilac odlučuje da li se nastavlja.

Eksploatacija

Analiza rizika

Prototipovi

Pregled

Definisanje
ciljeva

Identifikovanje i
razrešavanje rizika

Planiranje
sledeće iteracije

Implementacija i
evaluacija

42



Spiralna metodologija

• Kombinuje analizu rizika sa
vodopadom i iterativnim razvojem.

• Spirala prolazi više puta kroz:
planiranje, implementaciju,
evaluaciju tekuće verzije, analizu
rizika.

• Faze se sprovode jedna za drugom
(ne paralelno).

• Prvi prototip je aproksimacija
finalnog proizvoda.

• Na kraju iteracije: evaluacija,
profinjavanje specifikacije i analiza
rizika (bagovi, cena, tempo,
efikasnost, bezbednost, ...).

• Ako rizik ne može biti eliminisan:
naručilac odlučuje da li se nastavlja.

Eksploatacija

Analiza rizika

Prototipovi

Pregled

Definisanje
ciljeva

Identifikovanje i
razrešavanje rizika

Planiranje
sledeće iteracije

Implementacija i
evaluacija

42



Metodologije razvoja softvera

Agilna metodologija razvoja



Agilna metodologija razvoja

Fokus na zadovoljstvo korisnika kroz ranu i inkrementalnu is-
poruku: iteracije sa minimalnim dodavanjem funkcionalnosti
u kratkim intervalima (obično 1–4 nedelje).

43



Agilna metodologija razvoja

Fokus na zadovoljstvo korisnika kroz ranu i inkrementalnu is-
poruku: iteracije sa minimalnim dodavanjem funkcionalnosti
u kratkim intervalima (obično 1–4 nedelje).

43



Agilna metodologija razvoja

• Cilj: minimizovanje rizika (bagovi, prekoračenje budžeta,
izmena zahteva).

• Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

• Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (često uživo) → manje pisanog traga i
dokumentacije.

• Nije primenljivo svuda: svet se menja, specifikacije često ne
mogu unapred potpuno; agilnost pomaže adaptaciji i može
smanjiti troškove promena.

• Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre praćenja
plana, ...).

• Iteracija = mali proizvod sa svim fazama (istovremeno);
završava se na vreme i uz saglasnost naručioca.

• Razlika u odnosu na RAD: posle nekih iteracija softver može
biti isporučen i bez kompletne funkcionalnosti.

• Varijante: Scrum i ekstremno programiranje.

44



Agilna metodologija razvoja

• Cilj: minimizovanje rizika (bagovi, prekoračenje budžeta,
izmena zahteva).

• Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

• Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (često uživo) → manje pisanog traga i
dokumentacije.

• Nije primenljivo svuda: svet se menja, specifikacije često ne
mogu unapred potpuno; agilnost pomaže adaptaciji i može
smanjiti troškove promena.

• Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre praćenja
plana, ...).

• Iteracija = mali proizvod sa svim fazama (istovremeno);
završava se na vreme i uz saglasnost naručioca.

• Razlika u odnosu na RAD: posle nekih iteracija softver može
biti isporučen i bez kompletne funkcionalnosti.

• Varijante: Scrum i ekstremno programiranje.

44



Agilna metodologija razvoja

• Cilj: minimizovanje rizika (bagovi, prekoračenje budžeta,
izmena zahteva).

• Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

• Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (često uživo) → manje pisanog traga i
dokumentacije.

• Nije primenljivo svuda: svet se menja, specifikacije često ne
mogu unapred potpuno; agilnost pomaže adaptaciji i može
smanjiti troškove promena.

• Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre praćenja
plana, ...).

• Iteracija = mali proizvod sa svim fazama (istovremeno);
završava se na vreme i uz saglasnost naručioca.

• Razlika u odnosu na RAD: posle nekih iteracija softver može
biti isporučen i bez kompletne funkcionalnosti.

• Varijante: Scrum i ekstremno programiranje.

44



Agilna metodologija razvoja

• Cilj: minimizovanje rizika (bagovi, prekoračenje budžeta,
izmena zahteva).

• Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

• Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (često uživo) → manje pisanog traga i
dokumentacije.

• Nije primenljivo svuda: svet se menja, specifikacije često ne
mogu unapred potpuno; agilnost pomaže adaptaciji i može
smanjiti troškove promena.

• Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre praćenja
plana, ...).

• Iteracija = mali proizvod sa svim fazama (istovremeno);
završava se na vreme i uz saglasnost naručioca.

• Razlika u odnosu na RAD: posle nekih iteracija softver može
biti isporučen i bez kompletne funkcionalnosti.

• Varijante: Scrum i ekstremno programiranje.

44



Agilna metodologija razvoja

• Cilj: minimizovanje rizika (bagovi, prekoračenje budžeta,
izmena zahteva).

• Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

• Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (često uživo) → manje pisanog traga i
dokumentacije.

• Nije primenljivo svuda: svet se menja, specifikacije često ne
mogu unapred potpuno; agilnost pomaže adaptaciji i može
smanjiti troškove promena.

• Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre praćenja
plana, ...).

• Iteracija = mali proizvod sa svim fazama (istovremeno);
završava se na vreme i uz saglasnost naručioca.

• Razlika u odnosu na RAD: posle nekih iteracija softver može
biti isporučen i bez kompletne funkcionalnosti.

• Varijante: Scrum i ekstremno programiranje.

44



Agilna metodologija razvoja

• Cilj: minimizovanje rizika (bagovi, prekoračenje budžeta,
izmena zahteva).

• Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

• Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (često uživo) → manje pisanog traga i
dokumentacije.

• Nije primenljivo svuda: svet se menja, specifikacije često ne
mogu unapred potpuno; agilnost pomaže adaptaciji i može
smanjiti troškove promena.

• Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre praćenja
plana, ...).

• Iteracija = mali proizvod sa svim fazama (istovremeno);
završava se na vreme i uz saglasnost naručioca.

• Razlika u odnosu na RAD: posle nekih iteracija softver može
biti isporučen i bez kompletne funkcionalnosti.

• Varijante: Scrum i ekstremno programiranje.

44



Agilna metodologija razvoja

• Cilj: minimizovanje rizika (bagovi, prekoračenje budžeta,
izmena zahteva).

• Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

• Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (često uživo) → manje pisanog traga i
dokumentacije.

• Nije primenljivo svuda: svet se menja, specifikacije često ne
mogu unapred potpuno; agilnost pomaže adaptaciji i može
smanjiti troškove promena.

• Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre praćenja
plana, ...).

• Iteracija = mali proizvod sa svim fazama (istovremeno);
završava se na vreme i uz saglasnost naručioca.

• Razlika u odnosu na RAD: posle nekih iteracija softver može
biti isporučen i bez kompletne funkcionalnosti.

• Varijante: Scrum i ekstremno programiranje.

44



Agilna metodologija razvoja

• Cilj: minimizovanje rizika (bagovi, prekoračenje budžeta,
izmena zahteva).

• Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

• Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (često uživo) → manje pisanog traga i
dokumentacije.

• Nije primenljivo svuda: svet se menja, specifikacije često ne
mogu unapred potpuno; agilnost pomaže adaptaciji i može
smanjiti troškove promena.

• Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre praćenja
plana, ...).

• Iteracija = mali proizvod sa svim fazama (istovremeno);
završava se na vreme i uz saglasnost naručioca.

• Razlika u odnosu na RAD: posle nekih iteracija softver može
biti isporučen i bez kompletne funkcionalnosti.

• Varijante: Scrum i ekstremno programiranje.

44



Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
tična iskustva koriste u upravljanju izazovima i rizicima.

• Razvoj se odvija kroz sprintove (obično do mesec dana ili
kraće).

• Proizvod se održava u stanju koje se potencijalno može
isporučiti.

• Na kraju svakog sprinta: sastanak aktera i tima radi pregleda
stanja i planiranja.

• Skram ima jednostavan skup pravila/zaduženja/sastanaka koji
se ne menja.

• Postoje sastanci na početku i kraju sprinta + dnevni skram
(15 min).

45



Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
tična iskustva koriste u upravljanju izazovima i rizicima.

• Razvoj se odvija kroz sprintove (obično do mesec dana ili
kraće).

• Proizvod se održava u stanju koje se potencijalno može
isporučiti.

• Na kraju svakog sprinta: sastanak aktera i tima radi pregleda
stanja i planiranja.

• Skram ima jednostavan skup pravila/zaduženja/sastanaka koji
se ne menja.

• Postoje sastanci na početku i kraju sprinta + dnevni skram
(15 min).

45



Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
tična iskustva koriste u upravljanju izazovima i rizicima.

• Razvoj se odvija kroz sprintove (obično do mesec dana ili
kraće).

• Proizvod se održava u stanju koje se potencijalno može
isporučiti.

• Na kraju svakog sprinta: sastanak aktera i tima radi pregleda
stanja i planiranja.

• Skram ima jednostavan skup pravila/zaduženja/sastanaka koji
se ne menja.

• Postoje sastanci na početku i kraju sprinta + dnevni skram
(15 min).

45



Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
tična iskustva koriste u upravljanju izazovima i rizicima.

• Razvoj se odvija kroz sprintove (obično do mesec dana ili
kraće).

• Proizvod se održava u stanju koje se potencijalno može
isporučiti.

• Na kraju svakog sprinta: sastanak aktera i tima radi pregleda
stanja i planiranja.

• Skram ima jednostavan skup pravila/zaduženja/sastanaka koji
se ne menja.

• Postoje sastanci na početku i kraju sprinta + dnevni skram
(15 min).

45



Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
tična iskustva koriste u upravljanju izazovima i rizicima.

• Razvoj se odvija kroz sprintove (obično do mesec dana ili
kraće).

• Proizvod se održava u stanju koje se potencijalno može
isporučiti.

• Na kraju svakog sprinta: sastanak aktera i tima radi pregleda
stanja i planiranja.

• Skram ima jednostavan skup pravila/zaduženja/sastanaka koji
se ne menja.

• Postoje sastanci na početku i kraju sprinta + dnevni skram
(15 min).

45



Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
tična iskustva koriste u upravljanju izazovima i rizicima.

• Razvoj se odvija kroz sprintove (obično do mesec dana ili
kraće).

• Proizvod se održava u stanju koje se potencijalno može
isporučiti.

• Na kraju svakog sprinta: sastanak aktera i tima radi pregleda
stanja i planiranja.

• Skram ima jednostavan skup pravila/zaduženja/sastanaka koji
se ne menja.

• Postoje sastanci na početku i kraju sprinta + dnevni skram
(15 min).

45



Uloge u Skram timu

• Skram razvoj se sastoji od jednog ili više Skram timova.

• Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram
master, razvojni tim.

• Vlasnik proizvoda (product owner): određuje šta se razvija
i kojim redosledom; kreira/redefiniše/procenjuje/prioritizuje
scrum backlog; definiše kriterijume prihvatanja i proverava ih
tokom sprinta.

• Skram master: olakšava komunikaciju, pomaže pridržavanje
vrednosti/principa, uklanja prepreke i štiti tim od ometanja;
nije tradicionalni menadžer.

• Razvojni tim: samoorganizovan i multidisciplinaran (obično
5–9 članova); dizajnira/gradi/testira; pretvara stavke backloga
u potencijalno isporučive funkcionalnosti; radi uz redovnu
komunikaciju i zajedničku odgovornost.

46



Uloge u Skram timu

• Skram razvoj se sastoji od jednog ili više Skram timova.
• Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram

master, razvojni tim.

• Vlasnik proizvoda (product owner): određuje šta se razvija
i kojim redosledom; kreira/redefiniše/procenjuje/prioritizuje
scrum backlog; definiše kriterijume prihvatanja i proverava ih
tokom sprinta.

• Skram master: olakšava komunikaciju, pomaže pridržavanje
vrednosti/principa, uklanja prepreke i štiti tim od ometanja;
nije tradicionalni menadžer.

• Razvojni tim: samoorganizovan i multidisciplinaran (obično
5–9 članova); dizajnira/gradi/testira; pretvara stavke backloga
u potencijalno isporučive funkcionalnosti; radi uz redovnu
komunikaciju i zajedničku odgovornost.

46



Uloge u Skram timu

• Skram razvoj se sastoji od jednog ili više Skram timova.
• Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram

master, razvojni tim.

• Vlasnik proizvoda (product owner): određuje šta se razvija
i kojim redosledom; kreira/redefiniše/procenjuje/prioritizuje
scrum backlog; definiše kriterijume prihvatanja i proverava ih
tokom sprinta.

• Skram master: olakšava komunikaciju, pomaže pridržavanje
vrednosti/principa, uklanja prepreke i štiti tim od ometanja;
nije tradicionalni menadžer.

• Razvojni tim: samoorganizovan i multidisciplinaran (obično
5–9 članova); dizajnira/gradi/testira; pretvara stavke backloga
u potencijalno isporučive funkcionalnosti; radi uz redovnu
komunikaciju i zajedničku odgovornost.

46



Uloge u Skram timu

• Skram razvoj se sastoji od jednog ili više Skram timova.
• Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram

master, razvojni tim.

• Vlasnik proizvoda (product owner): određuje šta se razvija
i kojim redosledom; kreira/redefiniše/procenjuje/prioritizuje
scrum backlog; definiše kriterijume prihvatanja i proverava ih
tokom sprinta.

• Skram master: olakšava komunikaciju, pomaže pridržavanje
vrednosti/principa, uklanja prepreke i štiti tim od ometanja;
nije tradicionalni menadžer.

• Razvojni tim: samoorganizovan i multidisciplinaran (obično
5–9 članova); dizajnira/gradi/testira; pretvara stavke backloga
u potencijalno isporučive funkcionalnosti; radi uz redovnu
komunikaciju i zajedničku odgovornost.

46



Uloge u Skram timu

• Skram razvoj se sastoji od jednog ili više Skram timova.
• Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram

master, razvojni tim.

• Vlasnik proizvoda (product owner): određuje šta se razvija
i kojim redosledom; kreira/redefiniše/procenjuje/prioritizuje
scrum backlog; definiše kriterijume prihvatanja i proverava ih
tokom sprinta.

• Skram master: olakšava komunikaciju, pomaže pridržavanje
vrednosti/principa, uklanja prepreke i štiti tim od ometanja;
nije tradicionalni menadžer.

• Razvojni tim: samoorganizovan i multidisciplinaran (obično
5–9 članova); dizajnira/gradi/testira; pretvara stavke backloga
u potencijalno isporučive funkcionalnosti; radi uz redovnu
komunikaciju i zajedničku odgovornost.

46



Uloge u Skram timu

• Skram razvoj se sastoji od jednog ili više Skram timova.
• Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram

master, razvojni tim.

• Vlasnik proizvoda (product owner): određuje šta se razvija
i kojim redosledom; kreira/redefiniše/procenjuje/prioritizuje
scrum backlog; definiše kriterijume prihvatanja i proverava ih
tokom sprinta.

• Skram master: olakšava komunikaciju, pomaže pridržavanje
vrednosti/principa, uklanja prepreke i štiti tim od ometanja;
nije tradicionalni menadžer.

• Razvojni tim: samoorganizovan i multidisciplinaran (obično
5–9 članova); dizajnira/gradi/testira; pretvara stavke backloga
u potencijalno isporučive funkcionalnosti; radi uz redovnu
komunikaciju i zajedničku odgovornost. 46



Ekstremno programiranje (XP)

• Vid agilne metodologije: posebno su važni jednostavnost,
motivacija i kvalitetni odnosi u timu.

• Pair programming: jedan piše kôd, drugi traži greške i
nedostatke (ili rad u većim grupama).

• Kôd jednostavnog dizajna koji se temeljno testira i
unapređuje prema tekućim zahtevima.

• Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

• Svi članovi tima poznaju ceo projekat; kôd je konzistentan i
svako može da radi na svakom delu.

• Veoma mali koraci: prva iteracija može dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

• Zahtevi se menjaju → naručilac je konstantno uključen;
prikazuje se stalno funkcionalan (iako nekompletan) softver.

• Dokumentacija postoji, ali se izbegava preobimna
dokumentacija.

47



Ekstremno programiranje (XP)

• Vid agilne metodologije: posebno su važni jednostavnost,
motivacija i kvalitetni odnosi u timu.

• Pair programming: jedan piše kôd, drugi traži greške i
nedostatke (ili rad u većim grupama).

• Kôd jednostavnog dizajna koji se temeljno testira i
unapređuje prema tekućim zahtevima.

• Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

• Svi članovi tima poznaju ceo projekat; kôd je konzistentan i
svako može da radi na svakom delu.

• Veoma mali koraci: prva iteracija može dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

• Zahtevi se menjaju → naručilac je konstantno uključen;
prikazuje se stalno funkcionalan (iako nekompletan) softver.

• Dokumentacija postoji, ali se izbegava preobimna
dokumentacija.

47



Ekstremno programiranje (XP)

• Vid agilne metodologije: posebno su važni jednostavnost,
motivacija i kvalitetni odnosi u timu.

• Pair programming: jedan piše kôd, drugi traži greške i
nedostatke (ili rad u većim grupama).

• Kôd jednostavnog dizajna koji se temeljno testira i
unapređuje prema tekućim zahtevima.

• Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

• Svi članovi tima poznaju ceo projekat; kôd je konzistentan i
svako može da radi na svakom delu.

• Veoma mali koraci: prva iteracija može dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

• Zahtevi se menjaju → naručilac je konstantno uključen;
prikazuje se stalno funkcionalan (iako nekompletan) softver.

• Dokumentacija postoji, ali se izbegava preobimna
dokumentacija.

47



Ekstremno programiranje (XP)

• Vid agilne metodologije: posebno su važni jednostavnost,
motivacija i kvalitetni odnosi u timu.

• Pair programming: jedan piše kôd, drugi traži greške i
nedostatke (ili rad u većim grupama).

• Kôd jednostavnog dizajna koji se temeljno testira i
unapređuje prema tekućim zahtevima.

• Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

• Svi članovi tima poznaju ceo projekat; kôd je konzistentan i
svako može da radi na svakom delu.

• Veoma mali koraci: prva iteracija može dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

• Zahtevi se menjaju → naručilac je konstantno uključen;
prikazuje se stalno funkcionalan (iako nekompletan) softver.

• Dokumentacija postoji, ali se izbegava preobimna
dokumentacija.

47



Ekstremno programiranje (XP)

• Vid agilne metodologije: posebno su važni jednostavnost,
motivacija i kvalitetni odnosi u timu.

• Pair programming: jedan piše kôd, drugi traži greške i
nedostatke (ili rad u većim grupama).

• Kôd jednostavnog dizajna koji se temeljno testira i
unapređuje prema tekućim zahtevima.

• Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

• Svi članovi tima poznaju ceo projekat; kôd je konzistentan i
svako može da radi na svakom delu.

• Veoma mali koraci: prva iteracija može dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

• Zahtevi se menjaju → naručilac je konstantno uključen;
prikazuje se stalno funkcionalan (iako nekompletan) softver.

• Dokumentacija postoji, ali se izbegava preobimna
dokumentacija.

47



Ekstremno programiranje (XP)

• Vid agilne metodologije: posebno su važni jednostavnost,
motivacija i kvalitetni odnosi u timu.

• Pair programming: jedan piše kôd, drugi traži greške i
nedostatke (ili rad u većim grupama).

• Kôd jednostavnog dizajna koji se temeljno testira i
unapređuje prema tekućim zahtevima.

• Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

• Svi članovi tima poznaju ceo projekat; kôd je konzistentan i
svako može da radi na svakom delu.

• Veoma mali koraci: prva iteracija može dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

• Zahtevi se menjaju → naručilac je konstantno uključen;
prikazuje se stalno funkcionalan (iako nekompletan) softver.

• Dokumentacija postoji, ali se izbegava preobimna
dokumentacija.

47



Ekstremno programiranje (XP)

• Vid agilne metodologije: posebno su važni jednostavnost,
motivacija i kvalitetni odnosi u timu.

• Pair programming: jedan piše kôd, drugi traži greške i
nedostatke (ili rad u većim grupama).

• Kôd jednostavnog dizajna koji se temeljno testira i
unapređuje prema tekućim zahtevima.

• Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

• Svi članovi tima poznaju ceo projekat; kôd je konzistentan i
svako može da radi na svakom delu.

• Veoma mali koraci: prva iteracija može dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

• Zahtevi se menjaju → naručilac je konstantno uključen;
prikazuje se stalno funkcionalan (iako nekompletan) softver.

• Dokumentacija postoji, ali se izbegava preobimna
dokumentacija.

47



Ekstremno programiranje (XP)

• Vid agilne metodologije: posebno su važni jednostavnost,
motivacija i kvalitetni odnosi u timu.

• Pair programming: jedan piše kôd, drugi traži greške i
nedostatke (ili rad u većim grupama).

• Kôd jednostavnog dizajna koji se temeljno testira i
unapređuje prema tekućim zahtevima.

• Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

• Svi članovi tima poznaju ceo projekat; kôd je konzistentan i
svako može da radi na svakom delu.

• Veoma mali koraci: prva iteracija može dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

• Zahtevi se menjaju → naručilac je konstantno uključen;
prikazuje se stalno funkcionalan (iako nekompletan) softver.

• Dokumentacija postoji, ali se izbegava preobimna
dokumentacija.

47



Eksploatacija



Eksploatacija: uvođenje u rad (deployment) i CI/CD

• Eksploatacija: softver se uvodi u rad i održava u stabilnom,
bezbednom i predvidljivom režimu.

• Deployment: isporuka nove verzije u ciljno okruženje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

• Ključno: mogućnost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.

• Automatizovani cevovodi izgradnje i isporuke (CI/CD):

• Kontinuirana integracija (CI): automatizuje izgradnju i
testiranje svake promene koda.

• Kontinuirana isporuka/puštanje u rad (CD): bezbedno i
često objavljivanje novih verzija, uz manje rizika i kraće vreme
do korisničke vrednosti.

48



Eksploatacija: uvođenje u rad (deployment) i CI/CD

• Eksploatacija: softver se uvodi u rad i održava u stabilnom,
bezbednom i predvidljivom režimu.

• Deployment: isporuka nove verzije u ciljno okruženje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

• Ključno: mogućnost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.

• Automatizovani cevovodi izgradnje i isporuke (CI/CD):

• Kontinuirana integracija (CI): automatizuje izgradnju i
testiranje svake promene koda.

• Kontinuirana isporuka/puštanje u rad (CD): bezbedno i
često objavljivanje novih verzija, uz manje rizika i kraće vreme
do korisničke vrednosti.

48



Eksploatacija: uvođenje u rad (deployment) i CI/CD

• Eksploatacija: softver se uvodi u rad i održava u stabilnom,
bezbednom i predvidljivom režimu.

• Deployment: isporuka nove verzije u ciljno okruženje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

• Ključno: mogućnost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.

• Automatizovani cevovodi izgradnje i isporuke (CI/CD):

• Kontinuirana integracija (CI): automatizuje izgradnju i
testiranje svake promene koda.

• Kontinuirana isporuka/puštanje u rad (CD): bezbedno i
često objavljivanje novih verzija, uz manje rizika i kraće vreme
do korisničke vrednosti.

48



Eksploatacija: uvođenje u rad (deployment) i CI/CD

• Eksploatacija: softver se uvodi u rad i održava u stabilnom,
bezbednom i predvidljivom režimu.

• Deployment: isporuka nove verzije u ciljno okruženje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

• Ključno: mogućnost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.

• Automatizovani cevovodi izgradnje i isporuke (CI/CD):

• Kontinuirana integracija (CI): automatizuje izgradnju i
testiranje svake promene koda.

• Kontinuirana isporuka/puštanje u rad (CD): bezbedno i
često objavljivanje novih verzija, uz manje rizika i kraće vreme
do korisničke vrednosti.

48



Eksploatacija: uvođenje u rad (deployment) i CI/CD

• Eksploatacija: softver se uvodi u rad i održava u stabilnom,
bezbednom i predvidljivom režimu.

• Deployment: isporuka nove verzije u ciljno okruženje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

• Ključno: mogućnost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.

• Automatizovani cevovodi izgradnje i isporuke (CI/CD):
• Kontinuirana integracija (CI): automatizuje izgradnju i

testiranje svake promene koda.

• Kontinuirana isporuka/puštanje u rad (CD): bezbedno i
često objavljivanje novih verzija, uz manje rizika i kraće vreme
do korisničke vrednosti.

48



Eksploatacija: uvođenje u rad (deployment) i CI/CD

• Eksploatacija: softver se uvodi u rad i održava u stabilnom,
bezbednom i predvidljivom režimu.

• Deployment: isporuka nove verzije u ciljno okruženje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

• Ključno: mogućnost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.

• Automatizovani cevovodi izgradnje i isporuke (CI/CD):
• Kontinuirana integracija (CI): automatizuje izgradnju i

testiranje svake promene koda.
• Kontinuirana isporuka/puštanje u rad (CD): bezbedno i

često objavljivanje novih verzija, uz manje rizika i kraće vreme
do korisničke vrednosti.

48



Nakon puštanja: monitoring, oporavak i kraj životnog veka

• Post-deployment monitoring: prikupljanje podataka i
dnevnika rada (logs) radi ranog otkrivanja degradacije
performansi, regresija i incidenata.

• Pragovi, alarmi i jasno definisani ciljevi kvaliteta usluge.

• Strategije oporavka + kontrola pristupa + redovno ažuriranje
+ provera ranjivosti.

• Upravljanje krajem životnog veka (end-of-life): planirano
gašenje ili migracija sistema, komunikacija sa korisnicima,
arhiviranje i zaštita podataka, usklađenost sa propisima i
planiranje zamena (manji tehnički dug i operativni rizik).

49



Nakon puštanja: monitoring, oporavak i kraj životnog veka

• Post-deployment monitoring: prikupljanje podataka i
dnevnika rada (logs) radi ranog otkrivanja degradacije
performansi, regresija i incidenata.

• Pragovi, alarmi i jasno definisani ciljevi kvaliteta usluge.

• Strategije oporavka + kontrola pristupa + redovno ažuriranje
+ provera ranjivosti.

• Upravljanje krajem životnog veka (end-of-life): planirano
gašenje ili migracija sistema, komunikacija sa korisnicima,
arhiviranje i zaštita podataka, usklađenost sa propisima i
planiranje zamena (manji tehnički dug i operativni rizik).

49



Nakon puštanja: monitoring, oporavak i kraj životnog veka

• Post-deployment monitoring: prikupljanje podataka i
dnevnika rada (logs) radi ranog otkrivanja degradacije
performansi, regresija i incidenata.

• Pragovi, alarmi i jasno definisani ciljevi kvaliteta usluge.

• Strategije oporavka + kontrola pristupa + redovno ažuriranje
+ provera ranjivosti.

• Upravljanje krajem životnog veka (end-of-life): planirano
gašenje ili migracija sistema, komunikacija sa korisnicima,
arhiviranje i zaštita podataka, usklađenost sa propisima i
planiranje zamena (manji tehnički dug i operativni rizik).

49



Nakon puštanja: monitoring, oporavak i kraj životnog veka

• Post-deployment monitoring: prikupljanje podataka i
dnevnika rada (logs) radi ranog otkrivanja degradacije
performansi, regresija i incidenata.

• Pragovi, alarmi i jasno definisani ciljevi kvaliteta usluge.

• Strategije oporavka + kontrola pristupa + redovno ažuriranje
+ provera ranjivosti.

• Upravljanje krajem životnog veka (end-of-life): planirano
gašenje ili migracija sistema, komunikacija sa korisnicima,
arhiviranje i zaštita podataka, usklađenost sa propisima i
planiranje zamena (manji tehnički dug i operativni rizik).

49



Alati i tehnike korišćeni u razvoju
softvera



Alati i tehnike korišćeni u razvoju
softvera

Alati za upravljanje projektima



Upravljanje softverskim projektima: šta obuhvata

• Upravljanje projektima: planiranje, organizacija, praćenje i
kontrola procesa razvoja.

• Upravljanje:

• ljudima (timovi i pojedinci),
• procesima (metodologije, radni tokovi, standardi),
• problemima (zahtevi, ograničenja, rizici).

• Cilj: balans kvalitet – vreme – troškovi.

• Ključni pojmovi: metrike, procena obima/složenosti,
upravljanje rizicima, raspored aktivnosti, održavanje i
reinženjering postojećih rešenja.

50



Upravljanje softverskim projektima: šta obuhvata

• Upravljanje projektima: planiranje, organizacija, praćenje i
kontrola procesa razvoja.

• Upravljanje:

• ljudima (timovi i pojedinci),
• procesima (metodologije, radni tokovi, standardi),
• problemima (zahtevi, ograničenja, rizici).

• Cilj: balans kvalitet – vreme – troškovi.

• Ključni pojmovi: metrike, procena obima/složenosti,
upravljanje rizicima, raspored aktivnosti, održavanje i
reinženjering postojećih rešenja.

50



Upravljanje softverskim projektima: šta obuhvata

• Upravljanje projektima: planiranje, organizacija, praćenje i
kontrola procesa razvoja.

• Upravljanje:
• ljudima (timovi i pojedinci),

• procesima (metodologije, radni tokovi, standardi),
• problemima (zahtevi, ograničenja, rizici).

• Cilj: balans kvalitet – vreme – troškovi.

• Ključni pojmovi: metrike, procena obima/složenosti,
upravljanje rizicima, raspored aktivnosti, održavanje i
reinženjering postojećih rešenja.

50



Upravljanje softverskim projektima: šta obuhvata

• Upravljanje projektima: planiranje, organizacija, praćenje i
kontrola procesa razvoja.

• Upravljanje:
• ljudima (timovi i pojedinci),
• procesima (metodologije, radni tokovi, standardi),

• problemima (zahtevi, ograničenja, rizici).

• Cilj: balans kvalitet – vreme – troškovi.

• Ključni pojmovi: metrike, procena obima/složenosti,
upravljanje rizicima, raspored aktivnosti, održavanje i
reinženjering postojećih rešenja.

50



Upravljanje softverskim projektima: šta obuhvata

• Upravljanje projektima: planiranje, organizacija, praćenje i
kontrola procesa razvoja.

• Upravljanje:
• ljudima (timovi i pojedinci),
• procesima (metodologije, radni tokovi, standardi),
• problemima (zahtevi, ograničenja, rizici).

• Cilj: balans kvalitet – vreme – troškovi.

• Ključni pojmovi: metrike, procena obima/složenosti,
upravljanje rizicima, raspored aktivnosti, održavanje i
reinženjering postojećih rešenja.

50



Upravljanje softverskim projektima: šta obuhvata

• Upravljanje projektima: planiranje, organizacija, praćenje i
kontrola procesa razvoja.

• Upravljanje:
• ljudima (timovi i pojedinci),
• procesima (metodologije, radni tokovi, standardi),
• problemima (zahtevi, ograničenja, rizici).

• Cilj: balans kvalitet – vreme – troškovi.

• Ključni pojmovi: metrike, procena obima/složenosti,
upravljanje rizicima, raspored aktivnosti, održavanje i
reinženjering postojećih rešenja.

50



Upravljanje softverskim projektima: šta obuhvata

• Upravljanje projektima: planiranje, organizacija, praćenje i
kontrola procesa razvoja.

• Upravljanje:
• ljudima (timovi i pojedinci),
• procesima (metodologije, radni tokovi, standardi),
• problemima (zahtevi, ograničenja, rizici).

• Cilj: balans kvalitet – vreme – troškovi.

• Ključni pojmovi: metrike, procena obima/složenosti,
upravljanje rizicima, raspored aktivnosti, održavanje i
reinženjering postojećih rešenja.

50



Šta daju alati: praćenje, metrike, rizici, primeri

• Alati nisu samo „podsetnici“: podrška za odluke i evaluaciju
napretka.

• Osnovno: zadaci, rokovi, organizacija timskog rada.
• Metrike (primeri iz teksta):

• broj završenih zadataka po vremenu,
• pokrivenost testovima,
• broj otvorenih bagova.

• Na osnovu metrika: procene troškova/trajanja i praćenje
usklađenosti sa planom.

• Alati za rizike: identifikacija + rano uočavanje
trendova/indikatora problema → pravovremene akcije
(sprečiti/ublažiti).

• Primeri sa tržišta: Jira (izveštavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i
agilne procese).

51



Šta daju alati: praćenje, metrike, rizici, primeri

• Alati nisu samo „podsetnici“: podrška za odluke i evaluaciju
napretka.

• Osnovno: zadaci, rokovi, organizacija timskog rada.

• Metrike (primeri iz teksta):

• broj završenih zadataka po vremenu,
• pokrivenost testovima,
• broj otvorenih bagova.

• Na osnovu metrika: procene troškova/trajanja i praćenje
usklađenosti sa planom.

• Alati za rizike: identifikacija + rano uočavanje
trendova/indikatora problema → pravovremene akcije
(sprečiti/ublažiti).

• Primeri sa tržišta: Jira (izveštavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i
agilne procese).

51



Šta daju alati: praćenje, metrike, rizici, primeri

• Alati nisu samo „podsetnici“: podrška za odluke i evaluaciju
napretka.

• Osnovno: zadaci, rokovi, organizacija timskog rada.
• Metrike (primeri iz teksta):

• broj završenih zadataka po vremenu,
• pokrivenost testovima,
• broj otvorenih bagova.

• Na osnovu metrika: procene troškova/trajanja i praćenje
usklađenosti sa planom.

• Alati za rizike: identifikacija + rano uočavanje
trendova/indikatora problema → pravovremene akcije
(sprečiti/ublažiti).

• Primeri sa tržišta: Jira (izveštavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i
agilne procese).

51



Šta daju alati: praćenje, metrike, rizici, primeri

• Alati nisu samo „podsetnici“: podrška za odluke i evaluaciju
napretka.

• Osnovno: zadaci, rokovi, organizacija timskog rada.
• Metrike (primeri iz teksta):

• broj završenih zadataka po vremenu,

• pokrivenost testovima,
• broj otvorenih bagova.

• Na osnovu metrika: procene troškova/trajanja i praćenje
usklađenosti sa planom.

• Alati za rizike: identifikacija + rano uočavanje
trendova/indikatora problema → pravovremene akcije
(sprečiti/ublažiti).

• Primeri sa tržišta: Jira (izveštavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i
agilne procese).

51



Šta daju alati: praćenje, metrike, rizici, primeri

• Alati nisu samo „podsetnici“: podrška za odluke i evaluaciju
napretka.

• Osnovno: zadaci, rokovi, organizacija timskog rada.
• Metrike (primeri iz teksta):

• broj završenih zadataka po vremenu,
• pokrivenost testovima,

• broj otvorenih bagova.

• Na osnovu metrika: procene troškova/trajanja i praćenje
usklađenosti sa planom.

• Alati za rizike: identifikacija + rano uočavanje
trendova/indikatora problema → pravovremene akcije
(sprečiti/ublažiti).

• Primeri sa tržišta: Jira (izveštavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i
agilne procese).

51



Šta daju alati: praćenje, metrike, rizici, primeri

• Alati nisu samo „podsetnici“: podrška za odluke i evaluaciju
napretka.

• Osnovno: zadaci, rokovi, organizacija timskog rada.
• Metrike (primeri iz teksta):

• broj završenih zadataka po vremenu,
• pokrivenost testovima,
• broj otvorenih bagova.

• Na osnovu metrika: procene troškova/trajanja i praćenje
usklađenosti sa planom.

• Alati za rizike: identifikacija + rano uočavanje
trendova/indikatora problema → pravovremene akcije
(sprečiti/ublažiti).

• Primeri sa tržišta: Jira (izveštavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i
agilne procese).

51



Šta daju alati: praćenje, metrike, rizici, primeri

• Alati nisu samo „podsetnici“: podrška za odluke i evaluaciju
napretka.

• Osnovno: zadaci, rokovi, organizacija timskog rada.
• Metrike (primeri iz teksta):

• broj završenih zadataka po vremenu,
• pokrivenost testovima,
• broj otvorenih bagova.

• Na osnovu metrika: procene troškova/trajanja i praćenje
usklađenosti sa planom.

• Alati za rizike: identifikacija + rano uočavanje
trendova/indikatora problema → pravovremene akcije
(sprečiti/ublažiti).

• Primeri sa tržišta: Jira (izveštavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i
agilne procese).

51



Šta daju alati: praćenje, metrike, rizici, primeri

• Alati nisu samo „podsetnici“: podrška za odluke i evaluaciju
napretka.

• Osnovno: zadaci, rokovi, organizacija timskog rada.
• Metrike (primeri iz teksta):

• broj završenih zadataka po vremenu,
• pokrivenost testovima,
• broj otvorenih bagova.

• Na osnovu metrika: procene troškova/trajanja i praćenje
usklađenosti sa planom.

• Alati za rizike: identifikacija + rano uočavanje
trendova/indikatora problema → pravovremene akcije
(sprečiti/ublažiti).

• Primeri sa tržišta: Jira (izveštavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i
agilne procese).

51



Šta daju alati: praćenje, metrike, rizici, primeri

• Alati nisu samo „podsetnici“: podrška za odluke i evaluaciju
napretka.

• Osnovno: zadaci, rokovi, organizacija timskog rada.
• Metrike (primeri iz teksta):

• broj završenih zadataka po vremenu,
• pokrivenost testovima,
• broj otvorenih bagova.

• Na osnovu metrika: procene troškova/trajanja i praćenje
usklađenosti sa planom.

• Alati za rizike: identifikacija + rano uočavanje
trendova/indikatora problema → pravovremene akcije
(sprečiti/ublažiti).

• Primeri sa tržišta: Jira (izveštavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i
agilne procese). 51



Alati i tehnike korišćeni u razvoju
softvera

Sistemi za kontrolu verzija



Sistemi za kontrolu verzija (VCS): svrha

• VCS: praćenje promena, saradnja i istorija projekta.

• Nazivi koji se sreću: SCM (Source Code Management), RCS
(Revision Control System).

• Suština: čuvanje sadržaja + beleženje promena + pristup
različitim verzijama.

• Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greške u kodu).

Repozitorijum čuva izvorni kod i istoriju izmena:

• verzije datoteka (datum/vreme),

• istoriju izmena (ko/kada/šta + opis),

• grane (paralelan razvoj i kasnije spajanje).

52



Sistemi za kontrolu verzija (VCS): svrha

• VCS: praćenje promena, saradnja i istorija projekta.

• Nazivi koji se sreću: SCM (Source Code Management), RCS
(Revision Control System).

• Suština: čuvanje sadržaja + beleženje promena + pristup
različitim verzijama.

• Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greške u kodu).

Repozitorijum čuva izvorni kod i istoriju izmena:

• verzije datoteka (datum/vreme),

• istoriju izmena (ko/kada/šta + opis),

• grane (paralelan razvoj i kasnije spajanje).

52



Sistemi za kontrolu verzija (VCS): svrha

• VCS: praćenje promena, saradnja i istorija projekta.

• Nazivi koji se sreću: SCM (Source Code Management), RCS
(Revision Control System).

• Suština: čuvanje sadržaja + beleženje promena + pristup
različitim verzijama.

• Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greške u kodu).

Repozitorijum čuva izvorni kod i istoriju izmena:

• verzije datoteka (datum/vreme),

• istoriju izmena (ko/kada/šta + opis),

• grane (paralelan razvoj i kasnije spajanje).

52



Sistemi za kontrolu verzija (VCS): svrha

• VCS: praćenje promena, saradnja i istorija projekta.

• Nazivi koji se sreću: SCM (Source Code Management), RCS
(Revision Control System).

• Suština: čuvanje sadržaja + beleženje promena + pristup
različitim verzijama.

• Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greške u kodu).

Repozitorijum čuva izvorni kod i istoriju izmena:

• verzije datoteka (datum/vreme),

• istoriju izmena (ko/kada/šta + opis),

• grane (paralelan razvoj i kasnije spajanje).

52



Sistemi za kontrolu verzija (VCS): svrha

• VCS: praćenje promena, saradnja i istorija projekta.

• Nazivi koji se sreću: SCM (Source Code Management), RCS
(Revision Control System).

• Suština: čuvanje sadržaja + beleženje promena + pristup
različitim verzijama.

• Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greške u kodu).

Repozitorijum čuva izvorni kod i istoriju izmena:

• verzije datoteka (datum/vreme),

• istoriju izmena (ko/kada/šta + opis),

• grane (paralelan razvoj i kasnije spajanje).

52



Sistemi za kontrolu verzija (VCS): svrha

• VCS: praćenje promena, saradnja i istorija projekta.

• Nazivi koji se sreću: SCM (Source Code Management), RCS
(Revision Control System).

• Suština: čuvanje sadržaja + beleženje promena + pristup
različitim verzijama.

• Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greške u kodu).

Repozitorijum čuva izvorni kod i istoriju izmena:

• verzije datoteka (datum/vreme),

• istoriju izmena (ko/kada/šta + opis),

• grane (paralelan razvoj i kasnije spajanje).

52



Sistemi za kontrolu verzija (VCS): svrha

• VCS: praćenje promena, saradnja i istorija projekta.

• Nazivi koji se sreću: SCM (Source Code Management), RCS
(Revision Control System).

• Suština: čuvanje sadržaja + beleženje promena + pristup
različitim verzijama.

• Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greške u kodu).

Repozitorijum čuva izvorni kod i istoriju izmena:

• verzije datoteka (datum/vreme),

• istoriju izmena (ko/kada/šta + opis),

• grane (paralelan razvoj i kasnije spajanje).

52



Sistemi za kontrolu verzija (VCS): svrha

• VCS: praćenje promena, saradnja i istorija projekta.

• Nazivi koji se sreću: SCM (Source Code Management), RCS
(Revision Control System).

• Suština: čuvanje sadržaja + beleženje promena + pristup
različitim verzijama.

• Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greške u kodu).

Repozitorijum čuva izvorni kod i istoriju izmena:

• verzije datoteka (datum/vreme),

• istoriju izmena (ko/kada/šta + opis),

• grane (paralelan razvoj i kasnije spajanje).

52



Timski rad: javni repozitorijum i privatni radni prostor

• Model rada: javni repozitorijum + privatni radni prostor.

• Tok: preuzmi → izmeni → vrati izmene u repozitorijum.

• Ako više ljudi radi na istoj komponenti: sistem pomaže pri
integraciji i upozorava na konflikte.

• Opisi izmena su važni: formalna komunikacija u timu (često
obavezno pravilo).

• Skladištenje verzija često koristi delte (čuvaju se razlike između
verzija) radi uštede prostora.

53



Timski rad: javni repozitorijum i privatni radni prostor

• Model rada: javni repozitorijum + privatni radni prostor.

• Tok: preuzmi → izmeni → vrati izmene u repozitorijum.

• Ako više ljudi radi na istoj komponenti: sistem pomaže pri
integraciji i upozorava na konflikte.

• Opisi izmena su važni: formalna komunikacija u timu (često
obavezno pravilo).

• Skladištenje verzija često koristi delte (čuvaju se razlike između
verzija) radi uštede prostora.

53



Timski rad: javni repozitorijum i privatni radni prostor

• Model rada: javni repozitorijum + privatni radni prostor.

• Tok: preuzmi → izmeni → vrati izmene u repozitorijum.

• Ako više ljudi radi na istoj komponenti: sistem pomaže pri
integraciji i upozorava na konflikte.

• Opisi izmena su važni: formalna komunikacija u timu (često
obavezno pravilo).

• Skladištenje verzija često koristi delte (čuvaju se razlike između
verzija) radi uštede prostora.

53



Timski rad: javni repozitorijum i privatni radni prostor

• Model rada: javni repozitorijum + privatni radni prostor.

• Tok: preuzmi → izmeni → vrati izmene u repozitorijum.

• Ako više ljudi radi na istoj komponenti: sistem pomaže pri
integraciji i upozorava na konflikte.

• Opisi izmena su važni: formalna komunikacija u timu (često
obavezno pravilo).

• Skladištenje verzija često koristi delte (čuvaju se razlike između
verzija) radi uštede prostora.

53



Timski rad: javni repozitorijum i privatni radni prostor

• Model rada: javni repozitorijum + privatni radni prostor.

• Tok: preuzmi → izmeni → vrati izmene u repozitorijum.

• Ako više ljudi radi na istoj komponenti: sistem pomaže pri
integraciji i upozorava na konflikte.

• Opisi izmena su važni: formalna komunikacija u timu (često
obavezno pravilo).

• Skladištenje verzija često koristi delte (čuvaju se razlike između
verzija) radi uštede prostora.

53



Timski rad: javni repozitorijum i privatni radni prostor

• Model rada: javni repozitorijum + privatni radni prostor.

• Tok: preuzmi → izmeni → vrati izmene u repozitorijum.

• Ako više ljudi radi na istoj komponenti: sistem pomaže pri
integraciji i upozorava na konflikte.

• Opisi izmena su važni: formalna komunikacija u timu (često
obavezno pravilo).

• Skladištenje verzija često koristi delte (čuvaju se razlike između
verzija) radi uštede prostora.

53



Git i drugi sistemi (SVN, Mercurial)

• Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreže, veća otpornost).

• SVN: centralizovan — jedan centralni repozitorijum (lakši
nadzor, manje fleksibilno).

• Mercurial: takođe distribuiran, sličan Gitu.

• Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

• Ciljevi dizajna (sažeto): distribuiran razvoj, brzina/efikasnost
(kompresija + delte), pouzdanost (SHA1 integritet),
nepromenljivost istorije, atomske transakcije, grane, slobodan
alat.

• U knjizi: Git preko komandne linije (GUI klijenti često nude
samo deo funkcionalnosti).

54



Git i drugi sistemi (SVN, Mercurial)

• Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreže, veća otpornost).

• SVN: centralizovan — jedan centralni repozitorijum (lakši
nadzor, manje fleksibilno).

• Mercurial: takođe distribuiran, sličan Gitu.

• Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

• Ciljevi dizajna (sažeto): distribuiran razvoj, brzina/efikasnost
(kompresija + delte), pouzdanost (SHA1 integritet),
nepromenljivost istorije, atomske transakcije, grane, slobodan
alat.

• U knjizi: Git preko komandne linije (GUI klijenti često nude
samo deo funkcionalnosti).

54



Git i drugi sistemi (SVN, Mercurial)

• Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreže, veća otpornost).

• SVN: centralizovan — jedan centralni repozitorijum (lakši
nadzor, manje fleksibilno).

• Mercurial: takođe distribuiran, sličan Gitu.

• Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

• Ciljevi dizajna (sažeto): distribuiran razvoj, brzina/efikasnost
(kompresija + delte), pouzdanost (SHA1 integritet),
nepromenljivost istorije, atomske transakcije, grane, slobodan
alat.

• U knjizi: Git preko komandne linije (GUI klijenti često nude
samo deo funkcionalnosti).

54



Git i drugi sistemi (SVN, Mercurial)

• Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreže, veća otpornost).

• SVN: centralizovan — jedan centralni repozitorijum (lakši
nadzor, manje fleksibilno).

• Mercurial: takođe distribuiran, sličan Gitu.

• Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

• Ciljevi dizajna (sažeto): distribuiran razvoj, brzina/efikasnost
(kompresija + delte), pouzdanost (SHA1 integritet),
nepromenljivost istorije, atomske transakcije, grane, slobodan
alat.

• U knjizi: Git preko komandne linije (GUI klijenti često nude
samo deo funkcionalnosti).

54



Git i drugi sistemi (SVN, Mercurial)

• Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreže, veća otpornost).

• SVN: centralizovan — jedan centralni repozitorijum (lakši
nadzor, manje fleksibilno).

• Mercurial: takođe distribuiran, sličan Gitu.

• Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

• Ciljevi dizajna (sažeto): distribuiran razvoj, brzina/efikasnost
(kompresija + delte), pouzdanost (SHA1 integritet),
nepromenljivost istorije, atomske transakcije, grane, slobodan
alat.

• U knjizi: Git preko komandne linije (GUI klijenti često nude
samo deo funkcionalnosti).

54



Git i drugi sistemi (SVN, Mercurial)

• Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreže, veća otpornost).

• SVN: centralizovan — jedan centralni repozitorijum (lakši
nadzor, manje fleksibilno).

• Mercurial: takođe distribuiran, sličan Gitu.

• Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

• Ciljevi dizajna (sažeto): distribuiran razvoj, brzina/efikasnost
(kompresija + delte), pouzdanost (SHA1 integritet),
nepromenljivost istorije, atomske transakcije, grane, slobodan
alat.

• U knjizi: Git preko komandne linije (GUI klijenti često nude
samo deo funkcionalnosti).

54



Git i drugi sistemi (SVN, Mercurial)

• Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreže, veća otpornost).

• SVN: centralizovan — jedan centralni repozitorijum (lakši
nadzor, manje fleksibilno).

• Mercurial: takođe distribuiran, sličan Gitu.

• Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

• Ciljevi dizajna (sažeto): distribuiran razvoj, brzina/efikasnost
(kompresija + delte), pouzdanost (SHA1 integritet),
nepromenljivost istorije, atomske transakcije, grane, slobodan
alat.

• U knjizi: Git preko komandne linije (GUI klijenti često nude
samo deo funkcionalnosti).

54



Alati i tehnike korišćeni u razvoju
softvera

Distribuirani softverski sistemi



Distribuirani softverski sistemi

• Distribuiran sistem = softver koji radi na više
računara/čvorova i komunicira preko mreže.

• Ciljevi: skaliranje, dostupnost i otpornost na kvarove.

• Cena: više složenosti u komunikaciji, sinhronizaciji,
testiranju i bezbednosti.

• Performanse zavise i od mreže (propusnost, latencija,
opterećenje), ne samo CPU-a.

55



Distribuirani softverski sistemi

• Distribuiran sistem = softver koji radi na više
računara/čvorova i komunicira preko mreže.

• Ciljevi: skaliranje, dostupnost i otpornost na kvarove.

• Cena: više složenosti u komunikaciji, sinhronizaciji,
testiranju i bezbednosti.

• Performanse zavise i od mreže (propusnost, latencija,
opterećenje), ne samo CPU-a.

55



Distribuirani softverski sistemi

• Distribuiran sistem = softver koji radi na više
računara/čvorova i komunicira preko mreže.

• Ciljevi: skaliranje, dostupnost i otpornost na kvarove.

• Cena: više složenosti u komunikaciji, sinhronizaciji,
testiranju i bezbednosti.

• Performanse zavise i od mreže (propusnost, latencija,
opterećenje), ne samo CPU-a.

55



Distribuirani softverski sistemi

• Distribuiran sistem = softver koji radi na više
računara/čvorova i komunicira preko mreže.

• Ciljevi: skaliranje, dostupnost i otpornost na kvarove.

• Cena: više složenosti u komunikaciji, sinhronizaciji,
testiranju i bezbednosti.

• Performanse zavise i od mreže (propusnost, latencija,
opterećenje), ne samo CPU-a.

55



Osnovne osobine distribuiranih sistema

• Deljenje resursa: zajedničko korišćenje diskova, baza, servisa,
itd.

• Konkurentnost: delovi sistema rade paralelno (često uz
asinhronu komunikaciju).

• Skalabilnost: kapacitet raste dodavanjem ili jačanjem resursa.

• Otpornost na greške: sistem nastavlja rad i kad neki čvor
otkaže (npr. replikacija, preusmeravanje).

56



Osnovne osobine distribuiranih sistema

• Deljenje resursa: zajedničko korišćenje diskova, baza, servisa,
itd.

• Konkurentnost: delovi sistema rade paralelno (često uz
asinhronu komunikaciju).

• Skalabilnost: kapacitet raste dodavanjem ili jačanjem resursa.

• Otpornost na greške: sistem nastavlja rad i kad neki čvor
otkaže (npr. replikacija, preusmeravanje).

56



Osnovne osobine distribuiranih sistema

• Deljenje resursa: zajedničko korišćenje diskova, baza, servisa,
itd.

• Konkurentnost: delovi sistema rade paralelno (često uz
asinhronu komunikaciju).

• Skalabilnost: kapacitet raste dodavanjem ili jačanjem resursa.

• Otpornost na greške: sistem nastavlja rad i kad neki čvor
otkaže (npr. replikacija, preusmeravanje).

56



Osnovne osobine distribuiranih sistema

• Deljenje resursa: zajedničko korišćenje diskova, baza, servisa,
itd.

• Konkurentnost: delovi sistema rade paralelno (često uz
asinhronu komunikaciju).

• Skalabilnost: kapacitet raste dodavanjem ili jačanjem resursa.

• Otpornost na greške: sistem nastavlja rad i kad neki čvor
otkaže (npr. replikacija, preusmeravanje).

56



Skaliranje: scale up vs scale out

• Scale up: jači postojeći čvor (više RAM/CPU) → brže, ali
često skuplje i ograničeno hardverom.

• Scale out: dodavanje novih čvorova → fleksibilnije i često
isplativije, ali zahteva dobar dizajn.

• Tipični problem: mrežna uska grla i ravnomerna raspodela
opterećenja.

Mini-provera (30s): Kod kog pristupa je važnije dobro
balansiranje opterećenja i zašto?

57



Skaliranje: scale up vs scale out

• Scale up: jači postojeći čvor (više RAM/CPU) → brže, ali
često skuplje i ograničeno hardverom.

• Scale out: dodavanje novih čvorova → fleksibilnije i često
isplativije, ali zahteva dobar dizajn.

• Tipični problem: mrežna uska grla i ravnomerna raspodela
opterećenja.

Mini-provera (30s): Kod kog pristupa je važnije dobro
balansiranje opterećenja i zašto?

57



Skaliranje: scale up vs scale out

• Scale up: jači postojeći čvor (više RAM/CPU) → brže, ali
često skuplje i ograničeno hardverom.

• Scale out: dodavanje novih čvorova → fleksibilnije i često
isplativije, ali zahteva dobar dizajn.

• Tipični problem: mrežna uska grla i ravnomerna raspodela
opterećenja.

Mini-provera (30s): Kod kog pristupa je važnije dobro
balansiranje opterećenja i zašto?

57



Arhitektura: klijent–server (osnova)

• Najčešći model za sisteme dostupne preko interneta.

• Klijent (pregledač/aplikacija) prikazuje i šalje zahteve; server
obavlja obradu i pristupa podacima.

• Često postoji više serverskih instanci (na više računara) radi
većeg kapaciteta.

• Balansiranje opterećenja: zahtevi se raspoređuju na više
servera da bi sistem podneo veći broj korisnika.

58



Arhitektura: klijent–server (osnova)

• Najčešći model za sisteme dostupne preko interneta.

• Klijent (pregledač/aplikacija) prikazuje i šalje zahteve; server
obavlja obradu i pristupa podacima.

• Često postoji više serverskih instanci (na više računara) radi
većeg kapaciteta.

• Balansiranje opterećenja: zahtevi se raspoređuju na više
servera da bi sistem podneo veći broj korisnika.

58



Arhitektura: klijent–server (osnova)

• Najčešći model za sisteme dostupne preko interneta.

• Klijent (pregledač/aplikacija) prikazuje i šalje zahteve; server
obavlja obradu i pristupa podacima.

• Često postoji više serverskih instanci (na više računara) radi
većeg kapaciteta.

• Balansiranje opterećenja: zahtevi se raspoređuju na više
servera da bi sistem podneo veći broj korisnika.

58



Arhitektura: klijent–server (osnova)

• Najčešći model za sisteme dostupne preko interneta.

• Klijent (pregledač/aplikacija) prikazuje i šalje zahteve; server
obavlja obradu i pristupa podacima.

• Često postoji više serverskih instanci (na više računara) radi
većeg kapaciteta.

• Balansiranje opterećenja: zahtevi se raspoređuju na više
servera da bi sistem podneo veći broj korisnika.

58



Varijante arhitektura

• Master–rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ograničenja (npr. real-time).

• Dvoslojna / višeslojna klijent–server:

• dvoslojna: klijent direktno priča sa jednim serverom;
• višeslojna: prezentacioni / aplikacioni / data sloj (mogu na

odvojenim čvorovima) → lakše skaliranje i održavanje.

• P2P (peer-to-peer): nema stroge podele na klijent/server;
čvorovi razmenjuju resurse direktno (prednost: otpornost;
mana: više koordinacije/overheada).

59



Varijante arhitektura

• Master–rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ograničenja (npr. real-time).

• Dvoslojna / višeslojna klijent–server:

• dvoslojna: klijent direktno priča sa jednim serverom;
• višeslojna: prezentacioni / aplikacioni / data sloj (mogu na

odvojenim čvorovima) → lakše skaliranje i održavanje.

• P2P (peer-to-peer): nema stroge podele na klijent/server;
čvorovi razmenjuju resurse direktno (prednost: otpornost;
mana: više koordinacije/overheada).

59



Varijante arhitektura

• Master–rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ograničenja (npr. real-time).

• Dvoslojna / višeslojna klijent–server:
• dvoslojna: klijent direktno priča sa jednim serverom;

• višeslojna: prezentacioni / aplikacioni / data sloj (mogu na
odvojenim čvorovima) → lakše skaliranje i održavanje.

• P2P (peer-to-peer): nema stroge podele na klijent/server;
čvorovi razmenjuju resurse direktno (prednost: otpornost;
mana: više koordinacije/overheada).

59



Varijante arhitektura

• Master–rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ograničenja (npr. real-time).

• Dvoslojna / višeslojna klijent–server:
• dvoslojna: klijent direktno priča sa jednim serverom;
• višeslojna: prezentacioni / aplikacioni / data sloj (mogu na

odvojenim čvorovima) → lakše skaliranje i održavanje.

• P2P (peer-to-peer): nema stroge podele na klijent/server;
čvorovi razmenjuju resurse direktno (prednost: otpornost;
mana: više koordinacije/overheada).

59



Varijante arhitektura

• Master–rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ograničenja (npr. real-time).

• Dvoslojna / višeslojna klijent–server:
• dvoslojna: klijent direktno priča sa jednim serverom;
• višeslojna: prezentacioni / aplikacioni / data sloj (mogu na

odvojenim čvorovima) → lakše skaliranje i održavanje.

• P2P (peer-to-peer): nema stroge podele na klijent/server;
čvorovi razmenjuju resurse direktno (prednost: otpornost;
mana: više koordinacije/overheada).

59



Komunikacioni modeli: RPC vs poruke

• RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

• Pošiljalac obično čeka odgovor.
• Zahteva da su obe strane istovremeno dostupne.

• Poruke + redovi (message-based): asinhrono slanje; poruka
čeka dok primalac ne bude dostupan.

• Bolje podnosi privremenu nedostupnost.
• Često postoji međusoftver koji rutira poruke i brine o

transformaciji/pouzdanosti.

60



Komunikacioni modeli: RPC vs poruke

• RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

• Pošiljalac obično čeka odgovor.

• Zahteva da su obe strane istovremeno dostupne.

• Poruke + redovi (message-based): asinhrono slanje; poruka
čeka dok primalac ne bude dostupan.

• Bolje podnosi privremenu nedostupnost.
• Često postoji međusoftver koji rutira poruke i brine o

transformaciji/pouzdanosti.

60



Komunikacioni modeli: RPC vs poruke

• RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

• Pošiljalac obično čeka odgovor.
• Zahteva da su obe strane istovremeno dostupne.

• Poruke + redovi (message-based): asinhrono slanje; poruka
čeka dok primalac ne bude dostupan.

• Bolje podnosi privremenu nedostupnost.
• Često postoji međusoftver koji rutira poruke i brine o

transformaciji/pouzdanosti.

60



Komunikacioni modeli: RPC vs poruke

• RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

• Pošiljalac obično čeka odgovor.
• Zahteva da su obe strane istovremeno dostupne.

• Poruke + redovi (message-based): asinhrono slanje; poruka
čeka dok primalac ne bude dostupan.

• Bolje podnosi privremenu nedostupnost.
• Često postoji međusoftver koji rutira poruke i brine o

transformaciji/pouzdanosti.

60



Komunikacioni modeli: RPC vs poruke

• RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

• Pošiljalac obično čeka odgovor.
• Zahteva da su obe strane istovremeno dostupne.

• Poruke + redovi (message-based): asinhrono slanje; poruka
čeka dok primalac ne bude dostupan.

• Bolje podnosi privremenu nedostupnost.

• Često postoji međusoftver koji rutira poruke i brine o
transformaciji/pouzdanosti.

60



Komunikacioni modeli: RPC vs poruke

• RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

• Pošiljalac obično čeka odgovor.
• Zahteva da su obe strane istovremeno dostupne.

• Poruke + redovi (message-based): asinhrono slanje; poruka
čeka dok primalac ne bude dostupan.

• Bolje podnosi privremenu nedostupnost.
• Često postoji međusoftver koji rutira poruke i brine o

transformaciji/pouzdanosti.

60



Bezbednost i eksploatacija u distribuiranim sistemima

• Više čvorova i veza ⇒ veća površina napada (presretanje,
neovlašćen pristup, DoS, lažni podaci).

• Osnove: enkripcija, autentifikacija, kontrola pristupa,
redovno ažuriranje i provera ranjivosti.

• Operativno: monitoring + logovi + alarmi radi ranog
otkrivanja regresija i incidenata.

• Oblak se često koristi kao “prirodan nastavak” distribuiranih
sistema: resursi se lako povećavaju/smanjuju po potrebi.

61



Bezbednost i eksploatacija u distribuiranim sistemima

• Više čvorova i veza ⇒ veća površina napada (presretanje,
neovlašćen pristup, DoS, lažni podaci).

• Osnove: enkripcija, autentifikacija, kontrola pristupa,
redovno ažuriranje i provera ranjivosti.

• Operativno: monitoring + logovi + alarmi radi ranog
otkrivanja regresija i incidenata.

• Oblak se često koristi kao “prirodan nastavak” distribuiranih
sistema: resursi se lako povećavaju/smanjuju po potrebi.

61



Bezbednost i eksploatacija u distribuiranim sistemima

• Više čvorova i veza ⇒ veća površina napada (presretanje,
neovlašćen pristup, DoS, lažni podaci).

• Osnove: enkripcija, autentifikacija, kontrola pristupa,
redovno ažuriranje i provera ranjivosti.

• Operativno: monitoring + logovi + alarmi radi ranog
otkrivanja regresija i incidenata.

• Oblak se često koristi kao “prirodan nastavak” distribuiranih
sistema: resursi se lako povećavaju/smanjuju po potrebi.

61



Bezbednost i eksploatacija u distribuiranim sistemima

• Više čvorova i veza ⇒ veća površina napada (presretanje,
neovlašćen pristup, DoS, lažni podaci).

• Osnove: enkripcija, autentifikacija, kontrola pristupa,
redovno ažuriranje i provera ranjivosti.

• Operativno: monitoring + logovi + alarmi radi ranog
otkrivanja regresija i incidenata.

• Oblak se često koristi kao “prirodan nastavak” distribuiranih
sistema: resursi se lako povećavaju/smanjuju po potrebi.

61



Alati i tehnike korišćeni u razvoju
softvera

Mikroservisno orijentisan razvoj softvera



Mikroservisi: ideja i poreklo

• CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

• Problem CBSE prakse: teže je nezavisno razvijati delove i
skalirati samo ono što treba.

• Mikroservisi proširuju ideju: sistem se ne gradi kao jedan
monolit, već kao skup manjih servisa.

• Svaki servis je samostalno isporučiv i ima sopstveni ciklus
razvoja (razvoj/test/deploy nezavisno).

• Servisi komuniciraju mrežnim protokolima ⇒ prirodno se
uklapaju u distribuirane sisteme.

62



Mikroservisi: ideja i poreklo

• CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

• Problem CBSE prakse: teže je nezavisno razvijati delove i
skalirati samo ono što treba.

• Mikroservisi proširuju ideju: sistem se ne gradi kao jedan
monolit, već kao skup manjih servisa.

• Svaki servis je samostalno isporučiv i ima sopstveni ciklus
razvoja (razvoj/test/deploy nezavisno).

• Servisi komuniciraju mrežnim protokolima ⇒ prirodno se
uklapaju u distribuirane sisteme.

62



Mikroservisi: ideja i poreklo

• CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

• Problem CBSE prakse: teže je nezavisno razvijati delove i
skalirati samo ono što treba.

• Mikroservisi proširuju ideju: sistem se ne gradi kao jedan
monolit, već kao skup manjih servisa.

• Svaki servis je samostalno isporučiv i ima sopstveni ciklus
razvoja (razvoj/test/deploy nezavisno).

• Servisi komuniciraju mrežnim protokolima ⇒ prirodno se
uklapaju u distribuirane sisteme.

62



Mikroservisi: ideja i poreklo

• CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

• Problem CBSE prakse: teže je nezavisno razvijati delove i
skalirati samo ono što treba.

• Mikroservisi proširuju ideju: sistem se ne gradi kao jedan
monolit, već kao skup manjih servisa.

• Svaki servis je samostalno isporučiv i ima sopstveni ciklus
razvoja (razvoj/test/deploy nezavisno).

• Servisi komuniciraju mrežnim protokolima ⇒ prirodno se
uklapaju u distribuirane sisteme.

62



Mikroservisi: ideja i poreklo

• CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

• Problem CBSE prakse: teže je nezavisno razvijati delove i
skalirati samo ono što treba.

• Mikroservisi proširuju ideju: sistem se ne gradi kao jedan
monolit, već kao skup manjih servisa.

• Svaki servis je samostalno isporučiv i ima sopstveni ciklus
razvoja (razvoj/test/deploy nezavisno).

• Servisi komuniciraju mrežnim protokolima ⇒ prirodno se
uklapaju u distribuirane sisteme.

62



Ključni principi, prednosti i izazovi

• Tri principa:

• Ograničeni kontekst (bounded context): servis ima jasnu
poslovnu odgovornost i granice.

• Veličina: čim servis preraste (previše funkcionalnosti) ⇒
podela na manje.

• Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez
“blokiranja” drugih servisa.

• Prednosti: skaliraš samo opterećeni servis; timovi rade
paralelno; različite tehnologije po servisu; veća robusnost (pad
jednog servisa ne ruši ceo sistem).

• Tipična isporuka: servisi često u kontejnerima (npr. Docker)
sa svim zavisnostima i konfiguracijom.

• Izazovi: sporija/skuplja mrežna komunikacija; rizik
preopterećenja zajedničkog servisa; teže testiranje i
debagovanje (interakcije); pitanja podataka i
konzistentnosti (posebno ako se deli baza).

63



Ključni principi, prednosti i izazovi

• Tri principa:
• Ograničeni kontekst (bounded context): servis ima jasnu

poslovnu odgovornost i granice.

• Veličina: čim servis preraste (previše funkcionalnosti) ⇒
podela na manje.

• Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez
“blokiranja” drugih servisa.

• Prednosti: skaliraš samo opterećeni servis; timovi rade
paralelno; različite tehnologije po servisu; veća robusnost (pad
jednog servisa ne ruši ceo sistem).

• Tipična isporuka: servisi često u kontejnerima (npr. Docker)
sa svim zavisnostima i konfiguracijom.

• Izazovi: sporija/skuplja mrežna komunikacija; rizik
preopterećenja zajedničkog servisa; teže testiranje i
debagovanje (interakcije); pitanja podataka i
konzistentnosti (posebno ako se deli baza).

63



Ključni principi, prednosti i izazovi

• Tri principa:
• Ograničeni kontekst (bounded context): servis ima jasnu

poslovnu odgovornost i granice.
• Veličina: čim servis preraste (previše funkcionalnosti) ⇒

podela na manje.

• Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez
“blokiranja” drugih servisa.

• Prednosti: skaliraš samo opterećeni servis; timovi rade
paralelno; različite tehnologije po servisu; veća robusnost (pad
jednog servisa ne ruši ceo sistem).

• Tipična isporuka: servisi često u kontejnerima (npr. Docker)
sa svim zavisnostima i konfiguracijom.

• Izazovi: sporija/skuplja mrežna komunikacija; rizik
preopterećenja zajedničkog servisa; teže testiranje i
debagovanje (interakcije); pitanja podataka i
konzistentnosti (posebno ako se deli baza).

63



Ključni principi, prednosti i izazovi

• Tri principa:
• Ograničeni kontekst (bounded context): servis ima jasnu

poslovnu odgovornost i granice.
• Veličina: čim servis preraste (previše funkcionalnosti) ⇒

podela na manje.
• Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez

“blokiranja” drugih servisa.

• Prednosti: skaliraš samo opterećeni servis; timovi rade
paralelno; različite tehnologije po servisu; veća robusnost (pad
jednog servisa ne ruši ceo sistem).

• Tipična isporuka: servisi često u kontejnerima (npr. Docker)
sa svim zavisnostima i konfiguracijom.

• Izazovi: sporija/skuplja mrežna komunikacija; rizik
preopterećenja zajedničkog servisa; teže testiranje i
debagovanje (interakcije); pitanja podataka i
konzistentnosti (posebno ako se deli baza).

63



Ključni principi, prednosti i izazovi

• Tri principa:
• Ograničeni kontekst (bounded context): servis ima jasnu

poslovnu odgovornost i granice.
• Veličina: čim servis preraste (previše funkcionalnosti) ⇒

podela na manje.
• Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez

“blokiranja” drugih servisa.

• Prednosti: skaliraš samo opterećeni servis; timovi rade
paralelno; različite tehnologije po servisu; veća robusnost (pad
jednog servisa ne ruši ceo sistem).

• Tipična isporuka: servisi često u kontejnerima (npr. Docker)
sa svim zavisnostima i konfiguracijom.

• Izazovi: sporija/skuplja mrežna komunikacija; rizik
preopterećenja zajedničkog servisa; teže testiranje i
debagovanje (interakcije); pitanja podataka i
konzistentnosti (posebno ako se deli baza).

63



Ključni principi, prednosti i izazovi

• Tri principa:
• Ograničeni kontekst (bounded context): servis ima jasnu

poslovnu odgovornost i granice.
• Veličina: čim servis preraste (previše funkcionalnosti) ⇒

podela na manje.
• Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez

“blokiranja” drugih servisa.

• Prednosti: skaliraš samo opterećeni servis; timovi rade
paralelno; različite tehnologije po servisu; veća robusnost (pad
jednog servisa ne ruši ceo sistem).

• Tipična isporuka: servisi često u kontejnerima (npr. Docker)
sa svim zavisnostima i konfiguracijom.

• Izazovi: sporija/skuplja mrežna komunikacija; rizik
preopterećenja zajedničkog servisa; teže testiranje i
debagovanje (interakcije); pitanja podataka i
konzistentnosti (posebno ako se deli baza).

63



Ključni principi, prednosti i izazovi

• Tri principa:
• Ograničeni kontekst (bounded context): servis ima jasnu

poslovnu odgovornost i granice.
• Veličina: čim servis preraste (previše funkcionalnosti) ⇒

podela na manje.
• Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez

“blokiranja” drugih servisa.

• Prednosti: skaliraš samo opterećeni servis; timovi rade
paralelno; različite tehnologije po servisu; veća robusnost (pad
jednog servisa ne ruši ceo sistem).

• Tipična isporuka: servisi često u kontejnerima (npr. Docker)
sa svim zavisnostima i konfiguracijom.

• Izazovi: sporija/skuplja mrežna komunikacija; rizik
preopterećenja zajedničkog servisa; teže testiranje i
debagovanje (interakcije); pitanja podataka i
konzistentnosti (posebno ako se deli baza).

63



Alati i tehnike korišćeni u razvoju
softvera

Ugrađeni softver



Ugrađeni softver: šta je i zašto je poseban

• Ugrađeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uređajem i reaguje
na događaje iz okruženja.

• Radi pod ograničenim resursima: memorija, procesorska
snaga, energija ⇒ optimizacije nisu luksuz nego obaveza.

• Često je real-time: odgovor mora stići u strogo definisanom
roku. Kašnjenje može imati ozbiljne posledice (npr. kočenje).

• Pouzdanost i sigurnost su ključne (automobili, medicinski
uređaji, saobraćaj, telekom).

• Dizajn ograničavaju i fizički uslovi (prostor, temperatura,
vibracije, energetska efikasnost).

64



Ugrađeni softver: šta je i zašto je poseban

• Ugrađeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uređajem i reaguje
na događaje iz okruženja.

• Radi pod ograničenim resursima: memorija, procesorska
snaga, energija ⇒ optimizacije nisu luksuz nego obaveza.

• Često je real-time: odgovor mora stići u strogo definisanom
roku. Kašnjenje može imati ozbiljne posledice (npr. kočenje).

• Pouzdanost i sigurnost su ključne (automobili, medicinski
uređaji, saobraćaj, telekom).

• Dizajn ograničavaju i fizički uslovi (prostor, temperatura,
vibracije, energetska efikasnost).

64



Ugrađeni softver: šta je i zašto je poseban

• Ugrađeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uređajem i reaguje
na događaje iz okruženja.

• Radi pod ograničenim resursima: memorija, procesorska
snaga, energija ⇒ optimizacije nisu luksuz nego obaveza.

• Često je real-time: odgovor mora stići u strogo definisanom
roku. Kašnjenje može imati ozbiljne posledice (npr. kočenje).

• Pouzdanost i sigurnost su ključne (automobili, medicinski
uređaji, saobraćaj, telekom).

• Dizajn ograničavaju i fizički uslovi (prostor, temperatura,
vibracije, energetska efikasnost).

64



Ugrađeni softver: šta je i zašto je poseban

• Ugrađeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uređajem i reaguje
na događaje iz okruženja.

• Radi pod ograničenim resursima: memorija, procesorska
snaga, energija ⇒ optimizacije nisu luksuz nego obaveza.

• Često je real-time: odgovor mora stići u strogo definisanom
roku. Kašnjenje može imati ozbiljne posledice (npr. kočenje).

• Pouzdanost i sigurnost su ključne (automobili, medicinski
uređaji, saobraćaj, telekom).

• Dizajn ograničavaju i fizički uslovi (prostor, temperatura,
vibracije, energetska efikasnost).

64



Ugrađeni softver: šta je i zašto je poseban

• Ugrađeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uređajem i reaguje
na događaje iz okruženja.

• Radi pod ograničenim resursima: memorija, procesorska
snaga, energija ⇒ optimizacije nisu luksuz nego obaveza.

• Često je real-time: odgovor mora stići u strogo definisanom
roku. Kašnjenje može imati ozbiljne posledice (npr. kočenje).

• Pouzdanost i sigurnost su ključne (automobili, medicinski
uređaji, saobraćaj, telekom).

• Dizajn ograničavaju i fizički uslovi (prostor, temperatura,
vibracije, energetska efikasnost).

64



Razvoj: RTOS, konkurentnost i modelovanje ponašanja

• Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

• U praksi se softver često realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

• Zato se često koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se poštovali rokovi.

• Opšti OS (Windows / standardni Linux) ne garantuju
real-time; postoje real-time varijante Linux-a (npr. RTLinux /
PREEMPT-RT).

• Ponašanje sistema se često modeluje dijagramima stanja
(reakcije na periodične i aperiodične signale).

• Često se koristi C zbog efikasnosti, ali bez ugrađene podrške
za konkurentnost ⇒ oslanjanje na RTOS mehanizme
(semafori, međusobno isključivanje) i veći rizik grešaka ako se
njima loše upravlja.

65



Razvoj: RTOS, konkurentnost i modelovanje ponašanja

• Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

• U praksi se softver često realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

• Zato se često koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se poštovali rokovi.

• Opšti OS (Windows / standardni Linux) ne garantuju
real-time; postoje real-time varijante Linux-a (npr. RTLinux /
PREEMPT-RT).

• Ponašanje sistema se često modeluje dijagramima stanja
(reakcije na periodične i aperiodične signale).

• Često se koristi C zbog efikasnosti, ali bez ugrađene podrške
za konkurentnost ⇒ oslanjanje na RTOS mehanizme
(semafori, međusobno isključivanje) i veći rizik grešaka ako se
njima loše upravlja.

65



Razvoj: RTOS, konkurentnost i modelovanje ponašanja

• Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

• U praksi se softver često realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

• Zato se često koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se poštovali rokovi.

• Opšti OS (Windows / standardni Linux) ne garantuju
real-time; postoje real-time varijante Linux-a (npr. RTLinux /
PREEMPT-RT).

• Ponašanje sistema se često modeluje dijagramima stanja
(reakcije na periodične i aperiodične signale).

• Često se koristi C zbog efikasnosti, ali bez ugrađene podrške
za konkurentnost ⇒ oslanjanje na RTOS mehanizme
(semafori, međusobno isključivanje) i veći rizik grešaka ako se
njima loše upravlja.

65



Razvoj: RTOS, konkurentnost i modelovanje ponašanja

• Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

• U praksi se softver često realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

• Zato se često koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se poštovali rokovi.

• Opšti OS (Windows / standardni Linux) ne garantuju
real-time; postoje real-time varijante Linux-a (npr. RTLinux /
PREEMPT-RT).

• Ponašanje sistema se često modeluje dijagramima stanja
(reakcije na periodične i aperiodične signale).

• Često se koristi C zbog efikasnosti, ali bez ugrađene podrške
za konkurentnost ⇒ oslanjanje na RTOS mehanizme
(semafori, međusobno isključivanje) i veći rizik grešaka ako se
njima loše upravlja.

65



Razvoj: RTOS, konkurentnost i modelovanje ponašanja

• Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

• U praksi se softver često realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

• Zato se često koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se poštovali rokovi.

• Opšti OS (Windows / standardni Linux) ne garantuju
real-time; postoje real-time varijante Linux-a (npr. RTLinux /
PREEMPT-RT).

• Ponašanje sistema se često modeluje dijagramima stanja
(reakcije na periodične i aperiodične signale).

• Često se koristi C zbog efikasnosti, ali bez ugrađene podrške
za konkurentnost ⇒ oslanjanje na RTOS mehanizme
(semafori, međusobno isključivanje) i veći rizik grešaka ako se
njima loše upravlja.

65



Razvoj: RTOS, konkurentnost i modelovanje ponašanja

• Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

• U praksi se softver često realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

• Zato se često koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se poštovali rokovi.

• Opšti OS (Windows / standardni Linux) ne garantuju
real-time; postoje real-time varijante Linux-a (npr. RTLinux /
PREEMPT-RT).

• Ponašanje sistema se često modeluje dijagramima stanja
(reakcije na periodične i aperiodične signale).

• Često se koristi C zbog efikasnosti, ali bez ugrađene podrške
za konkurentnost ⇒ oslanjanje na RTOS mehanizme
(semafori, međusobno isključivanje) i veći rizik grešaka ako se
njima loše upravlja. 65



Alati i tehnike korišćeni u razvoju
softvera

Veštačka inteligencija u razvoju softvera



Veštačka inteligencija u razvoju softvera: kada ima smisla

• VI pomaže kada postoji obrazac koji je teško eksplicitno
isprogramirati (nelinearno, šumovito, kompleksno).

• Potrebni su dostupni i kvalitetni podaci (reprezentativni za
realne uslove).

• Problem je često prediktivan (zaključivanje iz istorijskih
podataka).

• Cena greške treba da bude prihvatljiva: VI nije egzaktna ⇒
za visoko-rizične domene često ide VI + ljudska ekspertiza /
dodatna provera.

• Ako se obrasci menjaju vremenom, VI može da se re-trenira
i prilagođava.

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.
jednostavne formule), nema obrasca ili nema podataka, ili je greška
preskupa. 66



Veštačka inteligencija u razvoju softvera: kada ima smisla

• VI pomaže kada postoji obrazac koji je teško eksplicitno
isprogramirati (nelinearno, šumovito, kompleksno).

• Potrebni su dostupni i kvalitetni podaci (reprezentativni za
realne uslove).

• Problem je često prediktivan (zaključivanje iz istorijskih
podataka).

• Cena greške treba da bude prihvatljiva: VI nije egzaktna ⇒
za visoko-rizične domene često ide VI + ljudska ekspertiza /
dodatna provera.

• Ako se obrasci menjaju vremenom, VI može da se re-trenira
i prilagođava.

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.
jednostavne formule), nema obrasca ili nema podataka, ili je greška
preskupa. 66



Veštačka inteligencija u razvoju softvera: kada ima smisla

• VI pomaže kada postoji obrazac koji je teško eksplicitno
isprogramirati (nelinearno, šumovito, kompleksno).

• Potrebni su dostupni i kvalitetni podaci (reprezentativni za
realne uslove).

• Problem je često prediktivan (zaključivanje iz istorijskih
podataka).

• Cena greške treba da bude prihvatljiva: VI nije egzaktna ⇒
za visoko-rizične domene često ide VI + ljudska ekspertiza /
dodatna provera.

• Ako se obrasci menjaju vremenom, VI može da se re-trenira
i prilagođava.

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.
jednostavne formule), nema obrasca ili nema podataka, ili je greška
preskupa. 66



Veštačka inteligencija u razvoju softvera: kada ima smisla

• VI pomaže kada postoji obrazac koji je teško eksplicitno
isprogramirati (nelinearno, šumovito, kompleksno).

• Potrebni su dostupni i kvalitetni podaci (reprezentativni za
realne uslove).

• Problem je često prediktivan (zaključivanje iz istorijskih
podataka).

• Cena greške treba da bude prihvatljiva: VI nije egzaktna ⇒
za visoko-rizične domene često ide VI + ljudska ekspertiza /
dodatna provera.

• Ako se obrasci menjaju vremenom, VI može da se re-trenira
i prilagođava.

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.
jednostavne formule), nema obrasca ili nema podataka, ili je greška
preskupa. 66



Veštačka inteligencija u razvoju softvera: kada ima smisla

• VI pomaže kada postoji obrazac koji je teško eksplicitno
isprogramirati (nelinearno, šumovito, kompleksno).

• Potrebni su dostupni i kvalitetni podaci (reprezentativni za
realne uslove).

• Problem je često prediktivan (zaključivanje iz istorijskih
podataka).

• Cena greške treba da bude prihvatljiva: VI nije egzaktna ⇒
za visoko-rizične domene često ide VI + ljudska ekspertiza /
dodatna provera.

• Ako se obrasci menjaju vremenom, VI može da se re-trenira
i prilagođava.

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.
jednostavne formule), nema obrasca ili nema podataka, ili je greška
preskupa. 66



Razvoj VI rešenja i VI kao alat programera

• VI se koristi i kao pomoćni alat u razvoju: asistenti (npr.
GitHub Copilot, ChatGPT, Cline) za dopunu koda, testove,
refaktorisanje, dokumentaciju.

• Ograničenja: alati mogu generisati netačan/neefikasan kod;
postoje i bezbednosne i pravne brige (slanje vlasničkog koda,
pitanja autorskih prava).

• Praksa često koristi hibridni pristup: asistenti za nepoverljive
zadatke, a lokalni modeli/klasični alati za osetljiv kod.

67



Razvoj VI rešenja i VI kao alat programera

• VI se koristi i kao pomoćni alat u razvoju: asistenti (npr.
GitHub Copilot, ChatGPT, Cline) za dopunu koda, testove,
refaktorisanje, dokumentaciju.

• Ograničenja: alati mogu generisati netačan/neefikasan kod;
postoje i bezbednosne i pravne brige (slanje vlasničkog koda,
pitanja autorskih prava).

• Praksa često koristi hibridni pristup: asistenti za nepoverljive
zadatke, a lokalni modeli/klasični alati za osetljiv kod.

67



Razvoj VI rešenja i VI kao alat programera

• VI se koristi i kao pomoćni alat u razvoju: asistenti (npr.
GitHub Copilot, ChatGPT, Cline) za dopunu koda, testove,
refaktorisanje, dokumentaciju.

• Ograničenja: alati mogu generisati netačan/neefikasan kod;
postoje i bezbednosne i pravne brige (slanje vlasničkog koda,
pitanja autorskih prava).

• Praksa često koristi hibridni pristup: asistenti za nepoverljive
zadatke, a lokalni modeli/klasični alati za osetljiv kod.

67


	Uvod
	Životni ciklus razvoja softvera
	Planiranje
	Realizacija
	Eksploatacija

	Standardi i kontrola kvaliteta
	Planiranje
	Analiza i specifikovanje problema
	Modelovanje rešenja
	Dizajn softverskog rešenja
	Objedinjeni jezik za modelovanje: UML dijagrami

	Metodologije razvoja softvera
	Metodologija vodopada
	Metodologija iterativnog i inkrementalnog razvoja
	Metodologija rapidnog razvoja
	Spiralna metodologija
	Agilna metodologija razvoja

	Eksploatacija
	Alati i tehnike korišćeni u razvoju softvera
	Alati za upravljanje projektima
	Sistemi za kontrolu verzija


