Uvodu u informatiku — Proces razvoja

softvera

Danijela Simi¢
RS

1. februar 2026.

MATOD

YHuBep3nTeTy beorpaay
MaTtemMaThykn bakyntet

1. Uvod

2. Zivotni ciklus razvoja softvera
3. Standardi i kontrola kvaliteta
4. Planiranje

5. Metodologije razvoja softvera

6. Eksploatacija

7. Alati i tehnike koriséeni u razvoju softvera

Uvod

Zivotni ciklus razvoja softvera

Razvoj softvera i zivotni ciklus

e Razvoj softvera nije samo pisanje programa.

Razvoj softvera i zivotni ciklus

e Razvoj softvera nije samo pisanje programa.

e U Sirem smislu obuhvata procese pre i posle kodiranja.

Razvoj softvera i zivotni ciklus

e Razvoj softvera nije samo pisanje programa.
e U Sirem smislu obuhvata procese pre i posle kodiranja.

e Taj siri okvir zove se zivotni ciklus razvoja softvera.

Faze zivotnog ciklusa

e Planiranje

Faze zivotnog ciklusa

e Planiranje

e Realizacija

Faze zivotnog ciklusa

e Planiranje
e Realizacija

e Eksploatacija

Faze zivotnog ciklusa

e Planiranje
e Realizacija

e Eksploatacija

Faze zivotnog ciklusa

e Planiranje
e Realizacija

e Eksploatacija

Koja faza je najbliza naruciocu, a koja krajnjim korisnicima?

Zivotni ciklus razvoja softvera

Planiranje

Planiranje

e Prikupljanje i analiza zahteva od narucioca.

Planiranje

e Prikupljanje i analiza zahteva od narucioca.

e Razresavanje nepotpunih, visesmislenih ili kontradiktornih
zahteva.

Planiranje

e Prikupljanje i analiza zahteva od narucioca.

e Razresavanje nepotpunih, visesmislenih ili kontradiktornih
zahteva.

e Kreiranje precizne specifikacije problema i dizajna resenja.

Planiranje

e Prikupljanje i analiza zahteva od narucioca.

e Razresavanje nepotpunih, visesmislenih ili kontradiktornih
zahteva.

e Kreiranje precizne specifikacije problema i dizajna resenja.

Planiranje

e Prikupljanje i analiza zahteva od narucioca.

e Razresavanje nepotpunih, visesmislenih ili kontradiktornih
zahteva.

e Kreiranje precizne specifikacije problema i dizajna resenja.

e Analiza i specifikovanje problema

Planiranje

e Prikupljanje i analiza zahteva od narucioca.

e Razresavanje nepotpunih, visesmislenih ili kontradiktornih
zahteva.

e Kreiranje precizne specifikacije problema i dizajna resenja.

e Analiza i specifikovanje problema

e Modelovanje resenja

Planiranje

e Prikupljanje i analiza zahteva od narucioca.

e Razresavanje nepotpunih, visesmislenih ili kontradiktornih
zahteva.

e Kreiranje precizne specifikacije problema i dizajna resenja.

e Analiza i specifikovanje problema
e Modelovanje resenja

e Dizajn softverskog resenja

Zivotni ciklus razvoja softvera

Realizacija

Realizacija

e Implementiranje dizajniranog resenja u konkretnom jeziku.

Realizacija

e Implementiranje dizajniranog resenja u konkretnom jeziku.

e Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

Realizacija

e Implementiranje dizajniranog resenja u konkretnom jeziku.
e Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

e Priprema dokumentacije za narucioca.

Realizacija

e Implementiranje dizajniranog resenja u konkretnom jeziku.
e Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

e Priprema dokumentacije za narucioca.

Realizacija

e Implementiranje dizajniranog resenja u konkretnom jeziku.
e Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

e Priprema dokumentacije za narucioca.

e Implementiranje (kodiranje)

Realizacija

e Implementiranje dizajniranog resenja u konkretnom jeziku.
e Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

e Priprema dokumentacije za narucioca.

e Implementiranje (kodiranje)

e Evaluacija (analiza ispravnosti i analiza efikasnosti)

Realizacija

e Implementiranje dizajniranog resenja u konkretnom jeziku.
e Analiza efikasnosti i ispravnosti: pouzdanost i upotrebljivost.

e Priprema dokumentacije za narucioca.

e Implementiranje (kodiranje)
e Evaluacija (analiza ispravnosti i analiza efikasnosti)

e Izrada dokumentacije (korisnicka i tehnicka)

Zivotni ciklus razvoja softvera

Eksploatacija

Eksploatacija

e Pocinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

Eksploatacija

e Pocinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

e Pustanje u rad: instaliranje, podesavanja, testiranje u realnom
okruzenju.

Eksploatacija

e Pocinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

e Pustanje u rad: instaliranje, podesavanja, testiranje u realnom
okruzenju.

e Obuka korisnika i odrzavanje: ispravke gresaka i manje dopune.

Eksploatacija

e Pocinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

e Pustanje u rad: instaliranje, podesavanja, testiranje u realnom
okruzenju.

e Obuka korisnika i odrzavanje: ispravke gresaka i manje dopune.

Eksploatacija

e Pocinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

e Pustanje u rad: instaliranje, podesavanja, testiranje u realnom
okruzenju.

e Obuka korisnika i odrzavanje: ispravke gresaka i manje dopune.

U odrzavanje se obi¢no ulozi vise od tri cetvrtine ukupnog

rada.

Eksploatacija

e Pocinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

e Pustanje u rad: instaliranje, podesavanja, testiranje u realnom
okruzenju.

e Obuka korisnika i odrzavanje: ispravke gresaka i manje dopune.

U odrzavanje se obi¢no ulozi vise od tri cetvrtine ukupnog

rada.

e Obuka i tehnicka podrska

Eksploatacija

e Pocinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

e Pustanje u rad: instaliranje, podesavanja, testiranje u realnom
okruzenju.

e Obuka korisnika i odrzavanje: ispravke gresaka i manje dopune.

U odrzavanje se obi¢no ulozi vise od tri cetvrtine ukupnog

rada.

e Obuka i tehnicka podrska

e Pustanje u rad

Eksploatacija

e Pocinje nakon adekvatne provere ispravnosti i odobrenja za
upotrebu.

e Pustanje u rad: instaliranje, podesavanja, testiranje u realnom
okruzenju.

e Obuka korisnika i odrzavanje: ispravke gresaka i manje dopune.

U odrzavanje se obi¢no ulozi vise od tri cetvrtine ukupnog

rada.

e Obuka i tehnicka podrska
e Pustanje u rad

e Odrzavanje

Standardi i kontrola kvaliteta

Standardi zivotnog ciklusa

e Postoje medunarodni standardi koji opisuju zivotni ciklus
softvera: ISO/IEC 12207 i ISO/IEC 15504.

Standardi zivotnog ciklusa

e Postoje medunarodni standardi koji opisuju zivotni ciklus
softvera: ISO/IEC 12207 i ISO/IEC 15504.

e Kroz precizno opisane postupke: izbor, implementacija,
nadgledanje razvoja.

Standardi zivotnog ciklusa

e Postoje medunarodni standardi koji opisuju zivotni ciklus
softvera: ISO/IEC 12207 i ISO/IEC 15504.

e Kroz precizno opisane postupke: izbor, implementacija,
nadgledanje razvoja.

e Kvalitet se Cesto ocenjuje prema nivou uskladenosti sa

standardima.

Kontrola kvaliteta (SQA)

e Pokriva kompletan proces razvoja i sve faze i podfaze.

Kontrola kvaliteta (SQA)

e Pokriva kompletan proces razvoja i sve faze i podfaze.

e Treba da osigura da su proizvodi,
aktivnosti i procesi u skladu sa planovima i standardima.

Kontrola kvaliteta (SQA)

e Pokriva kompletan proces razvoja i sve faze i podfaze.

e Treba da osigura nezavisnu potvrdu da su proizvodi,

aktivnosti i procesi u skladu sa planovima i standardima.

e Proces kontrole kvaliteta je takode opisan standardom
ISO/IEC 15504.

Karikatura: faze i problemi

Howi the customer explainedit | | How the Project Leader How the Analyst designed it How the Programmer wrote it How the Business Consultant
understood it described it

How the project was How the customer was billed

documented

What operations installed

How it was supperted What the customer really
neaded

10

Planiranje

Planiranje: ko sta radi

e Poslovna analiza: precizna postavka i specifikovanje zahteva.

11

Planiranje: ko sta radi

e Poslovna analiza: precizna postavka i specifikovanje zahteva.

e Modelovanje i dizajn: razrada projekta definisanog
zahtevima.

11

Planiranje: ko sta radi

e Poslovna analiza: precizna postavka i specifikovanje zahteva.

e Modelovanje i dizajn: razrada projekta definisanog
zahtevima.

e Koriste se dijagramske tehnike i alati za dijagrame: CASE

alati.

11

Planiranje: ko sta radi

e Poslovna analiza: precizna postavka i specifikovanje zahteva.

e Modelovanje i dizajn: razrada projekta definisanog
zahtevima.

e Koriste se dijagramske tehnike i alati za dijagrame: CASE

alati.

11

Planiranje: ko sta radi

Poslovna analiza: precizna postavka i specifikovanje zahteva.

Modelovanje i dizajn: razrada projekta definisanog

zahtevima.

Koriste se dijagramske tehnike i alati za dijagrame: CASE

alati.

Planiranjem strateski rukovodi arhitekta sistema (EA).

11

Planiranje: ko sta radi

e Poslovna analiza: precizna postavka i specifikovanje zahteva.

e Modelovanje i dizajn: razrada projekta definisanog

zahtevima.

e Koriste se dijagramske tehnike i alati za dijagrame: CASE
alati.

e Planiranjem strateski rukovodi arhitekta sistema (EA).

e Zadatak EA: opsti, apstraktan plan procesa koji treba
softverski podrzati.

11

Planiranje: uloge i izlazi

e BA (poslovni analiti¢ar): zahtevi — specifikacija problema.

12

Planiranje: uloge i izlazi

e BA (poslovni analiti¢ar): zahtevi — specifikacija problema.

e SA (arhitekta resenja): specifikacija — modeli resenja.

12

Planiranje: uloge i izlazi

e BA (poslovni analiti¢ar): zahtevi — specifikacija problema.
e SA (arhitekta resenja): specifikacija — modeli resenja.

e EA (arhitekta sistema): ,velika slika" procesa u sistemu.

12

Planiranje: uloge i izlazi

e BA (poslovni analiti¢ar): zahtevi — specifikacija problema.
e SA (arhitekta resenja): specifikacija — modeli resenja.

e EA (arhitekta sistema): ,velika slika" procesa u sistemu.

12

Planiranje: uloge i izlazi

e BA (poslovni analiti¢ar): zahtevi — specifikacija problema.
e SA (arhitekta resenja): specifikacija — modeli resenja.

e EA (arhitekta sistema): ,velika slika" procesa u sistemu.

12

Planiranje

Analiza i specifikovanje problema

Analiza i specifikovanje: poslovni analiticar (BA)

e Analizu obi¢no sprovodi poslovni analiticar (BA).

13

Analiza i specifikovanje: poslovni analiticar (BA)

e Analizu obi¢no sprovodi poslovni analiticar (BA).

e BA ne mora biti informaticar, ali mora poznavati relevantne

procese.

13

Analiza i specifikovanje: poslovni analiticar (BA)

e Analizu obi¢no sprovodi poslovni analiticar (BA).

e BA ne mora biti informaticar, ali mora poznavati relevantne
procese.

e U praksi: intenzivna komunikacija sa naruciocima / korisnicima
/ predstavnicima.

13

Analiza i specifikovanje: poslovni analiticar (BA)

e Analizu obi¢no sprovodi poslovni analiticar (BA).

e BA ne mora biti informaticar, ali mora poznavati relevantne
procese.

e U praksi: intenzivna komunikacija sa naruciocima / korisnicima
/ predstavnicima.

13

Analiza i specifikovanje: poslovni analiticar (BA)

e Analizu obi¢no sprovodi poslovni analiticar (BA).

e BA ne mora biti informaticar, ali mora poznavati relevantne
procese.

e U praksi: intenzivna komunikacija sa naruciocima / korisnicima
/ predstavnicima.

13

Sta BA radi u komunikaciji sa naruciocima

e Analiza postojecih resenja i mogucnosti unapredenja novim
softverom.

14

Sta BA radi u komunikaciji sa naruciocima

e Analiza postojecih resenja i mogucnosti unapredenja novim
softverom.

e Zahtevi su Cesto neprecizni ili kontradiktorni.

14

Sta BA radi u komunikaciji sa naruciocima

e Analiza postojecih resenja i mogucnosti unapredenja novim
softverom.

e Zahtevi su Cesto neprecizni ili kontradiktorni.

e Zadatak BA: da zahteve precizira i uobli¢i u saradnji sa
naruciocima.

14

Sta BA radi u komunikaciji sa naruciocima

e Analiza postojecih resenja i mogucnosti unapredenja novim
softverom.

e Zahtevi su Cesto neprecizni ili kontradiktorni.

e Zadatak BA: da zahteve precizira i uobli¢i u saradnji sa
naruciocima.

14

Sta BA radi u komunikaciji sa naruciocima

e Analiza postojecih resenja i mogucnosti unapredenja novim

softverom.
e Zahtevi su Cesto neprecizni ili kontradiktorni.

e Zadatak BA: da zahteve precizira i uobli¢i u saradnji sa

naruciocima.

e Rezultat: opsta specifikacija problema (procesi +
funkcionalnosti + potrebna efikasnost i druga svojstva).

14

Poslovna analiza: procene u planiranju

e Procena obima posla (npr. u Covek-mesecima) i jasna
granica: Sta ulazi/sta ne.

15

Poslovna analiza: procene u planiranju

e Procena obima posla (npr. u Covek-mesecima) i jasna

granica: Sta ulazi/sta ne.
e |dentifikacija rizika i definisanje reakcija ako stvari krenu

drugacije.

15

Poslovna analiza: procene u planiranju

e Procena obima posla (npr. u Covek-mesecima) i jasna
granica: Sta ulazi/sta ne.

e |dentifikacija rizika i definisanje reakcija ako stvari krenu
drugacije.

e Procena resursa (ljudskih i materijalnih).

15

Poslovna analiza: procene u planiranju

Procena obima posla (npr. u ¢ovek-mesecima) i jasna
granica: Sta ulazi/sta ne.

Identifikacija rizika i definisanje reakcija ako stvari krenu

drugacije.

Procena resursa (ljudskih i materijalnih).

e Procena cene realizacije (i delova projekta).

15

Poslovna analiza: procene u planiranju

e Procena obima posla (npr. u Covek-mesecima) i jasna
granica: Sta ulazi/sta ne.

e |dentifikacija rizika i definisanje reakcija ako stvari krenu
drugacije.

e Procena resursa (ljudskih i materijalnih).

e Procena cene realizacije (i delova projekta).

e Plan rada po fazama koji se postuje.

15

Planiranje

Modelovanje resenja

Modelovanje resenja: arhitekta resenja (SA)

e Modelovanje obi¢no sprovodi arhitekta resenja (SA).

16

Modelovanje resenja: arhitekta resenja (SA)

e Modelovanje obi¢no sprovodi arhitekta resenja (SA).

e SA razume specifikaciju zahteva i izraduje modele problema.

16

Modelovanje resenja: arhitekta resenja (SA)

e Modelovanje obi¢no sprovodi arhitekta resenja (SA).
e SA razume specifikaciju zahteva i izraduje modele problema.

e SA bira adekvatna softverska resenja: jezik, baza, biblioteke,
strukture podataka, algoritamska resenja, itd.

16

Sta moze biti model resenja

e Matematicki model (optimizacioni model, sistemski graf,
formalna specifikacija).

17

Sta moze biti model resenja

e Matematicki model (optimizacioni model, sistemski graf,
formalna specifikacija).

e Simulacija, heuristicki opis, pseudokod, vizuelna skica.

17

Sta moze biti model resenja

e Matematicki model (optimizacioni model, sistemski graf,
formalna specifikacija).

e Simulacija, heuristicki opis, pseudokod, vizuelna skica.

e U nekim domenima: domen-specificni jezici.

17

Sta moze biti model resenja

e Matematicki model (optimizacioni model, sistemski graf,
formalna specifikacija).

e Simulacija, heuristicki opis, pseudokod, vizuelna skica.

e U nekim domenima: domen-specificni jezici.

17

Sta moze biti model resenja

Matematicki model (optimizacioni model, sistemski graf,

formalna specifikacija).

Simulacija, heuristi¢ki opis, pseudokod, vizuelna skica.

e U nekim domenima: domen-specificni jezici.

Model treba da bude dovoljno precizan za dizajn, ali i dovoljno

apstraktan za fleksibilnost tehnologija.

17

Cilj modelovanja i odnos prema dizajnu

e Cilj: razlaganje slozenog problema na jasne logicke celine.

18

Cilj modelovanja i odnos prema dizajnu

e Cilj: razlaganje slozenog problema na jasne logicke celine.

e Modelovanje pomaze komunikaciji u timu i proceni troskova,
slozenosti i rizika.

18

Cilj modelovanja i odnos prema dizajnu

e Cilj: razlaganje slozenog problema na jasne logicke celine.

e Modelovanje pomaze komunikaciji u timu i proceni troskova,

slozenosti i rizika.

e Modelovanje: razumevanje kljuénih komponenti; dizajn: kako

¢e se tehnicki realizovati na konkretnoj platformi.

18

Primer: elektronska narudzbina hrane

e Model: relacija izmedu korisnika, restorana i narudzbina.

19

Primer: elektronska narudzbina hrane

e Model: relacija izmedu korisnika, restorana i narudzbina.

e Tok narudzbine kao automat sa stanjima: kreirana —
potvrdena — u pripremi — u dostavi — isporucena.

19

Planiranje

Dizajn softverskog resenja

Dizajn: arhitekta softvera i arhitektura

e U dizajnu, arhitekta softvera precizira resenje.

20

Dizajn: arhitekta softvera i arhitektura

e U dizajnu, arhitekta softvera precizira resenje.

e Opisuje arhitekturu softvera.

20

Dizajn: arhitekta softvera i arhitektura

e U dizajnu, arhitekta softvera precizira resenje.

e Opisuje arhitekturu softvera.

20

Dizajn: arhitekta softvera i arhitektura

e U dizajnu, arhitekta softvera precizira resenje.

e Opisuje arhitekturu softvera.

Celokupna struktura softvera i na€in na koji ta struktura obez-
beduje integritet sistema i zeljeni ishod projekta (ispravan sof-
tver, performanse, rokovi, troskovi). Ukljucuje komponente,
njihove odnose i interakcije, kao i principe/smernice za dizajn
i evoluciju.

20

Sta dizajn radi (u odnosu na prethodne faze)

e Razraduje pojmove ranije opisane nezavisno od tehnologija.

21

Sta dizajn radi (u odnosu na prethodne faze)

e Razraduje pojmove ranije opisane nezavisno od tehnologija.

e Daje opsti plan kako sistem da bude izgraden na konkretnoj
hardverskoj i softverskoj platformi.

21

Sta dizajn radi (u odnosu na prethodne faze)

e Razraduje pojmove ranije opisane nezavisno od tehnologija.

e Daje opsti plan kako sistem da bude izgraden na konkretnoj
hardverskoj i softverskoj platformi.

o Cesto koristi unapred ponudene obrasce: design patterns.

21

Kako se dizajn zapisuje: jednostavni vs kompleksni sistemi

e Jednostavniji slucajevi: neformalni tekst ili dijagram protoka
podataka.

22

Kako se dizajn zapisuje: jednostavni vs kompleksni sistemi

e Jednostavniji slucajevi: neformalni tekst ili dijagram protoka
podataka.

e Dijagram protoka podataka prikazuje tok podataka i
funkcionalne transformacije, ali ne opisuje implementaciju.

22

Kako se dizajn zapisuje: jednostavni vs kompleksni sistemi

e Jednostavniji slucajevi: neformalni tekst ili dijagram protoka
podataka.

e Dijagram protoka podataka prikazuje tok podataka i
funkcionalne transformacije, ali ne opisuje implementaciju.

e Kompleksniji slu¢ajevi: standardizovane graficke notacije
(graficki jezici), npr. UML.

22

Tema 1: Apstrahovanje (abstraction)

e Proces generalizacije: odbacivanje nebitnih informacija.

23

Tema 1: Apstrahovanje (abstraction)

e Proces generalizacije: odbacivanje nebitnih informacija.

e Zadrzavaju se samo informacije bitne za softver.

23

Tema 1: Apstrahovanje (abstraction)

e Proces generalizacije: odbacivanje nebitnih informacija.
e Zadrzavaju se samo informacije bitne za softver.

e Primer: boja ociju studenta nije relevantna u IS fakulteta —

odbacuje se.

23

Tema 2: Profinjavanje (refinement)

e Razvoj odozgo-nanize: nerazradeni koraci se postepeno
preciziraju.

24

Tema 2: Profinjavanje (refinement)

e Razvoj odozgo-nanize: nerazradeni koraci se postepeno
preciziraju.

e Svaki zadatak se razlaze na sitnije zadatke.

24

Tema 2: Profinjavanje (refinement)

e Razvoj odozgo-nanize: nerazradeni koraci se postepeno
preciziraju.
e Svaki zadatak se razlaze na sitnije zadatke.

e Krajnji rezultat: precizan opis u obliku programskog koda.

24

Profinjavanje: primer razlaganja

e Jedan zadatak razlaze se na podzadatke / pomocne funkcije.

25

Profinjavanje: primer razlaganja

e Jedan zadatak razlaze se na podzadatke / pomocne funkcije.

25

Profinjavanje: primer razlaganja

e Jedan zadatak razlaze se na podzadatke / pomocne funkcije.

obradi_podatke_iz_datoteke ()
-> otvori_datoteku()
-> procitaj_podatke()
-> obradi_podatke ()

-> zatvori_datoteku()

e Apstrahovanje i profinjavanje su suprotni procesi.

25

Tema 3: Dekompozicija (decomposition)

e Cilj: razlaganje sistema na komponente koje je lakse razumeti,
realizovati i odrzavati.

26

Tema 3: Dekompozicija (decomposition)

e Cilj: razlaganje sistema na komponente koje je lakse razumeti,
realizovati i odrzavati.

e Proizvod dekompozicije nije implementacija, ve¢ opis
arhitekture.

26

Tema 3: Dekompozicija (decomposition)

e Cilj: razlaganje sistema na komponente koje je lakse razumeti,
realizovati i odrzavati.

e Proizvod dekompozicije nije implementacija, ve¢ opis
arhitekture.

e Pristupi zavise od paradigme (OO, funkcionalna, ...).

26

Tema 4: Modularnost (modularity)

e Softver se deli na komponente: moduli.

27

Tema 4: Modularnost (modularity)

e Softver se deli na komponente: moduli.

e Svaki modul ima precizno definisanu funkcionalnost.

27

Tema 4: Modularnost (modularity)

e Softver se deli na komponente: moduli.
e Svaki modul ima precizno definisanu funkcionalnost.

e Pozeljno: malo meduzavisnosti, da moduli mogu da se koriste i
u drugim programima.

27

Planiranje

Objedinjeni jezik za modelovanje: UML
dijagrami

UML: objedinjeni jezik za modelovanje

UML (Unified Modeling Language) je vizuelna tehnika i stan-
dardizovani jezik za modelovanje softvera: opisuje zahteve,
akcije i fizicku distribuciju resenja.

28

UML: objedinjeni jezik za modelovanje

UML (Unified Modeling Language) je vizuelna tehnika i stan-
dardizovani jezik za modelovanje softvera: opisuje zahteve,
akcije i fizicku distribuciju resenja.

e UML je pre svega graficki jezik.

28

UML: objedinjeni jezik za modelovanje

UML (Unified Modeling Language) je vizuelna tehnika i stan-
dardizovani jezik za modelovanje softvera: opisuje zahteve,
akcije i fizicku distribuciju resenja.

e UML je pre svega graficki jezik.

e Moze se koristiti i u tekstualnom obliku (samo neki elementi
po standardu).

28

UML: objedinjeni jezik za modelovanje

UML (Unified Modeling Language) je vizuelna tehnika i stan-
dardizovani jezik za modelovanje softvera: opisuje zahteve,
akcije i fizicku distribuciju resenja.

e UML je pre svega graficki jezik.
e Moze se koristiti i u tekstualnom obliku (samo neki elementi
po standardu).

e Postoji mnogo UML dijagrama; ovde prikazujemo samo neke.

28

Dve velike grupe UML dijagrama

e Strukturni dijagrami: prikazuju strukturu sistema i odnose
izmedu komponenti (klase, objekti, komponente, raspored, ...).

29

Dve velike grupe UML dijagrama

e Strukturni dijagrami: prikazuju strukturu sistema i odnose
izmedu komponenti (klase, objekti, komponente, raspored, ...).

e Dijagrami ponasanja: prikazuju kako se sistem ponasa tokom
izvrsavanja (aktivnosti, stanja, sekvence, upotrebe, ...).

29

Strukturni UML dijagrami

Strukturni dijagrami su staticki prikaz: opisuju elemente (kla-
se, pakete, komponente, uredaje) i njihove odnose; ne sadrze

vremenski tok ni dinamicke promene stanja. Koriste se od ana-

lize do implementacije i isporuke.

30

Najcesci strukturni dijagram: dijagram klasa

e Prikazuje klase, njihove atribute i metode.

31

Najcesci strukturni dijagram: dijagram klasa

e Prikazuje klase, njihove atribute i metode.

e Prikazuje odnose: nasledivanje, asocijacija, kompozicija,
agregacija, zavisnost.

31

Najcesci strukturni dijagram: dijagram klasa

e Prikazuje klase, njihove atribute i metode.

e Prikazuje odnose: nasledivanje, asocijacija, kompozicija,
agregacija, zavisnost.

e Primer: sistem biblioteke (Knjiga, Clan, ZaduZenje).

31

Primer: UML dijagram klasa (biblioteka)

- email: String

Biblioteka e
- e Strln.g - isbn: String
- adresa: String >
orgltu 0..*| - naslov: String
o+ o4 .
+ dodajKnjigu(k: Knjiga): - autor: String
void
- " + dostupna(): bool
kloniK k: K :
+.u oniKnjigu(niig2) + rezervisi(): void
void
Osoba Zaduzenje
- ime: String - datumOd: Date

- datumDo: Date

+ prijaviSe(): bool

+ produzi(d: int): void

Clan

-id: int

StavkaZ
- redniB

+ vrati(

32

Jos strukturnih dijagrama

e Dijagrami objekata

88

Jos strukturnih dijagrama

e Dijagrami objekata

e Dijagrami komponenti

88

Jos strukturnih dijagrama

e Dijagrami objekata
e Dijagrami komponenti

e Dijagrami rasporeda

88

Jos strukturnih dijagrama

Dijagrami objekata

Dijagrami komponenti

Dijagrami rasporeda

Dijagram slucajeva upotrebe

88

Jos strukturnih dijagrama

Dijagrami objekata

Dijagrami komponenti

Dijagrami rasporeda

Dijagram slucajeva upotrebe

88

Jos strukturnih dijagrama

e Dijagrami objekata
e Dijagrami komponenti
e Dijagrami rasporeda

e Dijagram slucajeva upotrebe

e Dijagram slucajeva upotrebe prikazuje funkcionalnosti
sistema kroz interakcije izmedu korisnika (aktera) i osnovnih

scenarija koris¢enja.

88

Jos strukturnih dijagrama

e Dijagrami objekata
e Dijagrami komponenti
e Dijagrami rasporeda

e Dijagram slucajeva upotrebe

e Dijagram slucajeva upotrebe prikazuje funkcionalnosti
sistema kroz interakcije izmedu korisnika (aktera) i osnovnih
scenarija koris¢enja.

e Na visem nivou: manji broj generalizovanih poslovnih scenarija
(glavne uloge grupa korisnika).

88

Dijagram sekvence: sta prikazuje

Dijagram sekvence prikazuje ponasanje sistema kroz vremen-
ski redosled dogadaja: kako objekti komuniciraju kroz vreme
tokom izvrsavanja aktivnosti.

34

Dijagram sekvence: sta prikazuje

Dijagram sekvence prikazuje ponasanje sistema kroz vremen-
ski redosled dogadaja: kako objekti komuniciraju kroz vreme
tokom izvrsavanja aktivnosti.

e Prikazuje: ko ucestvuje, kojim redosledom se odvija, kako se
prenose odgovornosti.

34

Primer: dijagram sekvence

Com] |

Netflix Servis za Servis za
aplikacija autentifikaciju reprodukciju

J

vreme

Pokreni reprodukciju

Zaustavi reprodukciju

prijava(email,
lozinka)

I
zahtevReprodukcije (videold,
token)

i
|
Sesija kreiraj (sessionId)
strima [
Plan strima
(manifest)

I

dohvatiSegment (i)
(ponavljaj)

segment [i]

zatvori (ggssionld)

35

Metodologije razvoja softvera

Metodologije razvoja softvera

e Postoji mnogo metodologija razvoja softvera (u teoriji i praksi).

36

Metodologije razvoja softvera

e Postoji mnogo metodologija razvoja softvera (u teoriji i praksi).

e U praksi su Cesto pomesane i tesko je projekte striktno svrstati.

36

Metodologije razvoja softvera

e Postoji mnogo metodologija razvoja softvera (u teoriji i praksi).
e U praksi su Cesto pomesane i tesko je projekte striktno svrstati.

e U nastavku: nekoliko Cesto koriséenih metodologija i kljucne
ideje.

36

Metodologije razvoja softvera

Metodologija vodopada

Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

e zahtevi

37

Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

e zahtevi

e dizajn

37

Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

e zahtevi
e dizajn

e implementacija

37

Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka
e zahtevi
e dizajn
e implementacija

e testiranje

37

Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

e zahtevi

e dizajn

e implementacija
e testiranje

e integracija

37

Metodologija vodopada (waterfall)

Stroga varijanta: faze redom, bez povratka

e zahtevi

e dizajn

e implementacija
e testiranje

e integracija

odrzavanje

37

| Analiza i specifikovanje problema |

| Modelovanje resenja

| Dizajn softverskog reenja |

|

| Implementacija |

|

| Analiza efikasnosti i ispravnosti |

Izrada dokumentacije |

Obuka i tehnicka podrska

| Pustanje u rad

|

| Odrzavanje

38

e Kada je primenljiva: zahtevi su poznati unapred, stabilni, bez
rizicnih nepoznanica; arhitektura se moze detaljno opisati; ima

vremena za etape.

39

e Kada je primenljiva: zahtevi su poznati unapred, stabilni, bez
rizicnih nepoznanica; arhitektura se moze detaljno opisati; ima
vremena za etape.

e Prednosti: jasna struktura + neophodna detaljna
dokumentacija (Cesto u velikim timovima).

39

e Kada je primenljiva: zahtevi su poznati unapred, stabilni, bez
rizicnih nepoznanica; arhitektura se moze detaljno opisati; ima

vremena za etape.

e Prednosti: jasna struktura + neophodna detaljna
dokumentacija (Cesto u velikim timovima).

o Kritike: krutost (nema menjanja faza), zahtevi se menjaju,
korisnici su Cesto ukljuceni samo na pocetku i kraju, cekanja
izmedu zavisnih zadataka.

39

Kada je primenljiva: zahtevi su poznati unapred, stabilni, bez
rizicnih nepoznanica; arhitektura se moze detaljno opisati; ima

vremena za etape.

Prednosti: jasna struktura 4+ neophodna detaljna
dokumentacija (Cesto u velikim timovima).

Kritike: krutost (nema menjanja faza), zahtevi se menjaju,
korisnici su Cesto ukljuceni samo na pocetku i kraju, cekanja
izmedu zavisnih zadataka.

Danas se retko koristi; moze biti korisna kod rigidnih sistema
(npr. medicinski uredaji, avijacija); postoje varijante (npr.
V-metodologija).

39

Metodologije razvoja softvera

Metodologija iterativnog i inkrementalnog
razvoja

Iterativni i inkrementalni razvoj

e Razvoj se sprovodi u iteracijama. Inicijalno planiranje Planiranje Im

Evaluaci

40

Iterativni i inkrementalni razvoj

e Razvoj se sprovodi u iteracijama. Inicijalno planiranje Heriens I

e Sistem se gradi inkrementalno

(dodavanje modula).

Evaluaci

40

Iterativni i inkrementalni razvoj

(] Razvoj se sprovodi u iteracijama. Inicijalno planiranje Planiranje Im

e Sistem se gradi inkrementalno

(dodavanje modula).

e Moduli se mogu modifikovati u
budu¢im iteracijama.

Evaluaci

40

Iterativni i inkrementalni razvoj

(] Razvoj se sprovodi u iteracijama. Inicijalno planiranje Planiranje ~ Im

Sistem se gradi inkrementalno

(dodavanje modula).

Moduli se mogu modifikovati u
budu¢im iteracijama.

U jednom trenutku vise faza
zivotnog ciklusa moze biti u toku. Srlivee]

40

Iterativni i inkrementalni razvoj

(] Razvoj se sprovodi u iteracijama. Inicijalno planiranje Planiranje ~ Im

Sistem se gradi inkrementalno
(dodavanje modula).

Moduli se mogu modifikovati u

budu¢im iteracijama.

U jednom trenutku vise faza

Evaluaci

zivotnog ciklusa moze biti u toku.

Vraéanje unazad je moguce.

40

Metodologije razvoja softvera

Metodologija rapidnog razvoja

Rapidni razvoj (RAD)

e Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

41

Rapidni razvoj (RAD)

e Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

e Planiranje se preklapa sa implementacijom — lakse izmene
zahteva u hodu.

41

Rapidni razvoj (RAD)

e Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

e Planiranje se preklapa sa implementacijom — lakse izmene
zahteva u hodu.

e Krece se od preliminarnog modela podataka i algoritama.

41

Rapidni razvoj (RAD)

e Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

e Planiranje se preklapa sa implementacijom — lakse izmene
zahteva u hodu.

e Krece se od preliminarnog modela podataka i algoritama.

e Prototipovi sluze da se zahtevi definisu / preciziraju / potvrde.

41

Rapidni razvoj (RAD)

e Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

e Planiranje se preklapa sa implementacijom — lakse izmene
zahteva u hodu.

e Krece se od preliminarnog modela podataka i algoritama.
e Prototipovi sluze da se zahtevi definisu / preciziraju / potvrde.

e Dokumentacija je vrlo ogranicena.

41

Rapidni razvoj (RAD)

e Planiranje je svedeno na minimum radi brzih prototipova u
iteracijama.

e Planiranje se preklapa sa implementacijom — lakse izmene
zahteva u hodu.

e Krece se od preliminarnog modela podataka i algoritama.
e Prototipovi sluze da se zahtevi definisu / preciziraju / potvrde.

e Dokumentacija je vrlo ogranicena.

41

Rapidni razvoj (RAD)

e Planiranje je svedeno na minimum radi brzih prototipova u

iteracijama.

e Planiranje se preklapa sa implementacijom — lakse izmene

zahteva u hodu.
e Krece se od preliminarnog modela podataka i algoritama.
e Prototipovi sluze da se zahtevi definisu / preciziraju / potvrde.

e Dokumentacija je vrlo ogranicena.

e Moguci problem: niz prototipova bez zadovoljavajuée finalne
aplikacije, ¢esto zbog fokusiranja na GUI umesto na
obradu/podatke.

41

Rapidni razvoj (RAD)

e Planiranje je svedeno na minimum radi brzih prototipova u

iteracijama.

e Planiranje se preklapa sa implementacijom — lakse izmene

zahteva u hodu.
e Krece se od preliminarnog modela podataka i algoritama.
e Prototipovi sluze da se zahtevi definisu / preciziraju / potvrde.

e Dokumentacija je vrlo ogranicena.

e Moguci problem: niz prototipova bez zadovoljavajuée finalne
aplikacije, ¢esto zbog fokusiranja na GUI umesto na
obradu/podatke.

e Pogodno: sopstvene potrebe ili ogranien broj korisnika.

41

Metodologije razvoja softvera

Spiralna metodologija

Spiralna metodologija

e Kombinuje analizu rizika sa

vodopadom i iterativnim razvojem.

ciljeva

Definisanje 4
Analiza rizil

Pr

Pregled

Planiranje

Eksploatacija
sledece iteracije

42

Spiralna metodologija

e Kombinuje analizu rizika sa

vodopadom i iterativnim razvojem.

e Spirala prolazi vise puta kroz:
planiranje, implementaciju,
evaluaciju tekuce verzije, analizu
rizika.

ciljeva

Definisanje 4
Analiza rizil

Pr

Pregled

Planiranje

Eksploatacija
sledece iteracije

42

Spiralna metodologija

e Kombinuje analizu rizika sa

vodopadom i iterativnim razvojem.

e Spirala prolazi vise puta kroz:
planiranje, implementaciju,
evaluaciju tekuce verzije, analizu
rizika.

e Faze se sprovode jedna za drugom
(ne paralelno).

Definisanje 4
ciljeva ‘ [
Analiza rizi
Pre
Pregled
Planiranje Eksploatacija
sledece iteracije

42

Spiralna metodologija

e Kombinuje analizu rizika sa

vodopadom i iterativnim razvojem.

e Spirala prolazi vise puta kroz:
planiranje, implementaciju,
evaluaciju tekuce verzije, analizu
rizika.

e Faze se sprovode jedna za drugom
(ne paralelno).

e Prvi prototip je aproksimacija
finalnog proizvoda.

Definisanje 4
ciljeva ‘ [
Analiza rizi
Pre
Pregled
Planiranje Eksploatacija
sledece iteracije

42

Spiralna metodologija

e Kombinuje analizu rizika sa

vodopadom i iterativnim razvojem.

e Spirala prolazi vise puta kroz:
planiranje, implementaciju,
evaluaciju tekuce verzije, analizu
rizika.

e Faze se sprovode jedna za drugom
(ne paralelno).

e Prvi prototip je aproksimacija

finalnog proizvoda.

e Na kraju iteracije: evaluacija,
profinjavanje specifikacije i analiza
rizika (bagovi, cena, tempo,
efikasnost, bezbednost, ...).

Definisanje 4
ciljeva ‘ [
Analiza rizi
Pre
Pregled
Planiranje Eksploatacija
sledece iteracije
42

Spiralna metodologija

e Kombinuje analizu rizika sa

vodopadom i iterativnim razvojem.

e Spirala prolazi vise puta kroz:
planiranje, implementaciju,
evaluaciju tekuce verzije, analizu
rizika.

e Faze se sprovode jedna za drugom
(ne paralelno).

e Prvi prototip je aproksimacija

finalnog proizvoda.

e Na kraju iteracije: evaluacija,
profinjavanje specifikacije i analiza
rizika (bagovi, cena, tempo,
efikasnost, bezbednost, ...).

Definisanje 4
ciljeva ‘ [
Analiza rizi
Pre
Pregled
Planiranje Eksploatacija
sledece iteracije
42

Metodologije razvoja softvera

Agilna metodologija razvoja

Agilna metodologija razvoja

Fokus na zadovoljstvo korisnika kroz ranu i inkrementalnu is-
poruku: iteracije sa minimalnim dodavanjem funkcionalnosti
u kratkim intervalima (obic¢no 1-4 nedelje).

43

Agilna metodologija razvoja

Fokus na zadovoljstvo korisnika kroz ranu i inkrementalnu is-
poruku: iteracije sa minimalnim dodavanjem funkcionalnosti
u kratkim intervalima (obic¢no 1-4 nedelje).

43

Agilna metodologija razvoja

e Cilj: minimizovanje rizika (bagovi, prekoracenje budzeta,
izmena zahteva).

44

Agilna metodologija razvoja

e Cilj: minimizovanje rizika (bagovi, prekoracenje budzeta,
izmena zahteva).

e Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

44

Agilna metodologija razvoja

e Cilj: minimizovanje rizika (bagovi, prekoracenje budzeta,
izmena zahteva).

e Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

e Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (Cesto uzivo) — manje pisanog traga i
dokumentacije.

44

Agilna metodologija razvoja

e Cilj: minimizovanje rizika (bagovi, prekoracenje budzeta,
izmena zahteva).

e Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

e Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (Cesto uzivo) — manje pisanog traga i
dokumentacije.

e Nije primenljivo svuda: svet se menja, specifikacije esto ne
mogu unapred potpuno; agilnost pomaze adaptaciji i moze
smanjiti troskove promena.

44

Agilna metodologija razvoja

Cilj: minimizovanje rizika (bagovi, prekoracenje budzeta,
izmena zahteva).

Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (Cesto uzivo) — manje pisanog traga i
dokumentacije.

Nije primenljivo svuda: svet se menja, specifikacije esto ne
mogu unapred potpuno; agilnost pomaze adaptaciji i moze
smanjiti troskove promena.

Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre pracenja
plana, ...).

44

Agilna metodologija razvoja

Cilj: minimizovanje rizika (bagovi, prekoracenje budzeta,
izmena zahteva).

Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (Cesto uzivo) — manje pisanog traga i
dokumentacije.

Nije primenljivo svuda: svet se menja, specifikacije esto ne
mogu unapred potpuno; agilnost pomaze adaptaciji i moze
smanjiti troskove promena.

Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre pracenja
plana, ...).

Iteracija = mali proizvod sa svim fazama (istovremeno);

. . - 44
zavrsava se na vreme | uz saglasnost narucioca.

Agilna metodologija razvoja

Cilj: minimizovanje rizika (bagovi, prekoracenje budzeta,
izmena zahteva).

Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (Cesto uzivo) — manje pisanog traga i
dokumentacije.

Nije primenljivo svuda: svet se menja, specifikacije esto ne
mogu unapred potpuno; agilnost pomaze adaptaciji i moze
smanjiti troskove promena.

Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre pracenja
plana, ...).

Iteracija = mali proizvod sa svim fazama (istovremeno);

. . - 44
zavrsava se na vreme | uz saglasnost narucioca.

Agilna metodologija razvoja

Cilj: minimizovanje rizika (bagovi, prekoracenje budzeta,
izmena zahteva).

Prioritet: isporuka ispred analize i dizajna (ali nisu
obeshrabreni).

Mali, visokomotivisani, samoorganizovani timovi; stalna
komunikacija (Cesto uzivo) — manje pisanog traga i
dokumentacije.

Nije primenljivo svuda: svet se menja, specifikacije esto ne
mogu unapred potpuno; agilnost pomaze adaptaciji i moze
smanjiti troskove promena.

Agilni Manifest (2001): 12 principa (npr. funkcionalan softver
pre obimne dokumentacije, odgovor na promene pre pracenja
plana, ...).

Iteracija = mali proizvod sa svim fazama (istovremeno);

. . - 44
zavrsava se na vreme | uz saglasnost narucioca.

Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
ti€na iskustva koriste u upravljanju izazovima i rizicima.

45

Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
ti€na iskustva koriste u upravljanju izazovima i rizicima.

e Razvoj se odvija kroz sprintove (obi¢no do mesec dana ili
krace).

45

Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
ti€na iskustva koriste u upravljanju izazovima i rizicima.

e Razvoj se odvija kroz sprintove (obi¢no do mesec dana ili
krace).

e Proizvod se odrzava u stanju koje se potencijalno moze
isporuciti.

45

Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
ti€na iskustva koriste u upravljanju izazovima i rizicima.

e Razvoj se odvija kroz sprintove (obi¢no do mesec dana ili
krace).

e Proizvod se odrzava u stanju koje se potencijalno moze
isporuciti.

e Na kraju svakog sprinta: sastanak aktera i tima radi pregleda

stanja i planiranja.

45

Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
ti€na iskustva koriste u upravljanju izazovima i rizicima.

e Razvoj se odvija kroz sprintove (obi¢no do mesec dana ili
krace).

e Proizvod se odrzava u stanju koje se potencijalno moze
isporuciti.

e Na kraju svakog sprinta: sastanak aktera i tima radi pregleda
stanja i planiranja.

e Skram ima jednostavan skup pravila/zaduzenja/sastanaka koji

se ne menja.

45

Skram (Scrum): ideja i ritam rada

Skram je vid agilne metodologije u kojem se neposredna, prak-
ti€na iskustva koriste u upravljanju izazovima i rizicima.

e Razvoj se odvija kroz sprintove (obi¢no do mesec dana ili
krace).

e Proizvod se odrzava u stanju koje se potencijalno moze
isporuciti.

e Na kraju svakog sprinta: sastanak aktera i tima radi pregleda
stanja i planiranja.

e Skram ima jednostavan skup pravila/zaduzenja/sastanaka koji
se ne menja.

e Postoje sastanci na pocetku i kraju sprinta + dnevni skram
(15 min).

45

Uloge u Skram timu

e Skram razvoj se sastoji od jednog ili vise Skram timova.

46

Uloge u Skram timu

e Skram razvoj se sastoji od jednog ili vise Skram timova.
e Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram
master, razvojni tim.

46

Uloge u Skram timu

e Skram razvoj se sastoji od jednog ili vise Skram timova.
e Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram
master, razvojni tim.

46

Uloge u Skram timu

e Skram razvoj se sastoji od jednog ili vise Skram timova.
e Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram

master, razvojni tim.

e Vlasnik proizvoda (product owner): odreduje 5ta se razvija
i kojim redosledom; kreira/redefinise/procenjuje/prioritizuje
scrum backlog; definise kriterijume prihvatanja i proverava ih

tokom sprinta.

46

Uloge u Skram timu

e Skram razvoj se sastoji od jednog ili vise Skram timova.
e Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram
master, razvojni tim.

e Vlasnik proizvoda (product owner): odreduje 5ta se razvija
i kojim redosledom; kreira/redefinise/procenjuje/prioritizuje
scrum backlog; definise kriterijume prihvatanja i proverava ih
tokom sprinta.

e Skram master: olaksava komunikaciju, pomaze pridrzavanje
vrednosti/principa, uklanja prepreke i stiti tim od ometanja;
nije tradicionalni menadzer.

46

Uloge u Skram timu

e Skram razvoj se sastoji od jednog ili vise Skram timova.
e Svaki Skram tim ima tri uloge: vlasnik proizvoda, skram
master, razvojni tim.

e Vlasnik proizvoda (product owner): odreduje 5ta se razvija
i kojim redosledom; kreira/redefinise/procenjuje/prioritizuje
scrum backlog; definise kriterijume prihvatanja i proverava ih
tokom sprinta.

e Skram master: olaksava komunikaciju, pomaze pridrzavanje
vrednosti/principa, uklanja prepreke i stiti tim od ometanja;
nije tradicionalni menadzer.

e Razvojni tim: samoorganizovan i multidisciplinaran (obi¢no
5-9 ¢lanova); dizajnira/gradi/testira; pretvara stavke backloga
u potencijalno isporucive funkcionalnosti; radi uz redovnu

komunikaciju i zajedni¢ku odgovornost. 05

Ekstremno programiranje (XP)

e Vid agilne metodologije: posebno su vazni jednostavnost,
motivacija i kvalitetni odnosi u timu.

47

Ekstremno programiranje (XP)

e Vid agilne metodologije: posebno su vazni jednostavnost,
motivacija i kvalitetni odnosi u timu.

e Pair programming: jedan pise kod, drugi trazi greske i
nedostatke (ili rad u ve¢im grupama).

47

Ekstremno programiranje (XP)

e Vid agilne metodologije: posebno su vazni jednostavnost,
motivacija i kvalitetni odnosi u timu.

e Pair programming: jedan pise kod, drugi trazi greske i
nedostatke (ili rad u ve¢im grupama).

e Kod jednostavnog dizajna koji se temeljno testira i
unapreduje prema tekué¢im zahtevima.

47

Ekstremno programiranje (XP)

e Vid agilne metodologije: posebno su vazni jednostavnost,
motivacija i kvalitetni odnosi u timu.

e Pair programming: jedan pise kod, drugi trazi greske i
nedostatke (ili rad u ve¢im grupama).

e Kod jednostavnog dizajna koji se temeljno testira i
unapreduje prema tekué¢im zahtevima.

e Sistem je integrisan i radi sve vreme (iako nema potpunu

funkcionalnost).

47

Ekstremno programiranje (XP)

Vid agilne metodologije: posebno su vazni jednostavnost,
motivacija i kvalitetni odnosi u timu.

Pair programming: jedan pise kod, drugi trazi greske i
nedostatke (ili rad u ve¢im grupama).

Kéd jednostavnog dizajna koji se temeljno testira i
unapreduje prema tekué¢im zahtevima.

Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

Svi ¢lanovi tima poznaju ceo projekat; kod je konzistentan i

svako moze da radi na svakom delu.

47

Ekstremno programiranje (XP)

e Vid agilne metodologije: posebno su vazni jednostavnost,
motivacija i kvalitetni odnosi u timu.

e Pair programming: jedan pise kod, drugi trazi greske i
nedostatke (ili rad u ve¢im grupama).

e Kod jednostavnog dizajna koji se temeljno testira i
unapreduje prema tekué¢im zahtevima.

e Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

e Svi ¢lanovi tima poznaju ceo projekat; kod je konzistentan i
svako moze da radi na svakom delu.

e Veoma mali koraci: prva iteracija moze dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

47

Ekstremno programiranje (XP)

Vid agilne metodologije: posebno su vazni jednostavnost,
motivacija i kvalitetni odnosi u timu.

Pair programming: jedan pise kod, drugi trazi greske i
nedostatke (ili rad u ve¢im grupama).

Kéd jednostavnog dizajna koji se temeljno testira i
unapreduje prema tekué¢im zahtevima.

Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

Svi ¢lanovi tima poznaju ceo projekat; kod je konzistentan i
svako moze da radi na svakom delu.

Veoma mali koraci: prva iteracija moze dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

Zahtevi se menjaju — narucilac je konstantno ukljucen;

prikazuje se stalno funkcionalan (iako nekompletan) softver.
47

Ekstremno programiranje (XP)

e Vid agilne metodologije: posebno su vazni jednostavnost,
motivacija i kvalitetni odnosi u timu.

e Pair programming: jedan pise kod, drugi trazi greske i
nedostatke (ili rad u ve¢im grupama).

e Kod jednostavnog dizajna koji se temeljno testira i
unapreduje prema tekué¢im zahtevima.

e Sistem je integrisan i radi sve vreme (iako nema potpunu
funkcionalnost).

e Svi ¢lanovi tima poznaju ceo projekat; kod je konzistentan i
svako moze da radi na svakom delu.

e Veoma mali koraci: prva iteracija moze dati svesno nepotpunu,
ali funkcionalnu celinu za dan ili nedelju.

e Zahtevi se menjaju — narudilac je konstantno ukljucen;
prikazuje se stalno funkcionalan (iako nekompletan) softver.

e Dokumentacija postoji, ali se izbegava preobimna o

Eksploatacija

Eksploatacija: uvodenje u rad (deployment) i CI/CD

e Eksploatacija: softver se uvodi u rad i odrzava u stabilnom,

bezbednom i predvidljivom rezimu.

48

Eksploatacija: uvodenje u rad (deployment) i CI/CD

e Eksploatacija: softver se uvodi u rad i odrzava u stabilnom,

bezbednom i predvidljivom rezimu.

e Deployment: isporuka nove verzije u ciljno okruzenje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

48

Eksploatacija: uvodenje u rad (deployment) i CI/CD

e Eksploatacija: softver se uvodi u rad i odrzava u stabilnom,

bezbednom i predvidljivom rezimu.

e Deployment: isporuka nove verzije u ciljno okruzenje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

e Kljuéno: mogucnost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.

48

Eksploatacija: uvodenje u rad (deployment) i CI/CD

e Eksploatacija: softver se uvodi u rad i odrzava u stabilnom,

bezbednom i predvidljivom rezimu.

e Deployment: isporuka nove verzije u ciljno okruzenje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

e Kljuéno: mogucnost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.

e Automatizovani cevovodi izgradnje i isporuke (Cl/CD):

48

Eksploatacija: uvodenje u rad (deployment) i CI/CD

Eksploatacija: softver se uvodi u rad i odrzava u stabilnom,

bezbednom i predvidljivom rezimu.

Deployment: isporuka nove verzije u ciljno okruzenje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

Kljuéno: moguénost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.

Automatizovani cevovodi izgradnje i isporuke (Cl/CD):
e Kontinuirana integracija (Cl): automatizuje izgradnju i
testiranje svake promene koda.

48

Eksploatacija: uvodenje u rad (deployment) i CI/CD

e Eksploatacija: softver se uvodi u rad i odrzava u stabilnom,

bezbednom i predvidljivom rezimu.

e Deployment: isporuka nove verzije u ciljno okruzenje (oblak ili
lokalno), uz upravljanje konfiguracijom i zavisnostima.

e Kljuéno: moguénost brzog povratka na prethodnu verziju
(rollback) ako se pojave problemi.
e Automatizovani cevovodi izgradnje i isporuke (Cl/CD):
e Kontinuirana integracija (Cl): automatizuje izgradnju i
testiranje svake promene koda.
e Kontinuirana isporuka/pustanje u rad (CD): bezbedno i
Cesto objavljivanje novih verzija, uz manje rizika i krac¢e vreme
do korisnicke vrednosti.

48

Nakon pustanja: monitoring, oporavak i kraj zivotnog veka

e Post-deployment monitoring: prikupljanje podataka i
dnevnika rada (logs) radi ranog otkrivanja degradacije

performansi, regresija i incidenata.

49

Nakon pustanja: monitoring, oporavak i kraj zivotnog veka

e Post-deployment monitoring: prikupljanje podataka i
dnevnika rada (logs) radi ranog otkrivanja degradacije
performansi, regresija i incidenata.

e Pragovi, alarmi i jasno definisani ciljevi kvaliteta usluge.

49

Nakon pustanja: monitoring, oporavak i kraj zivotnog veka

e Post-deployment monitoring: prikupljanje podataka i
dnevnika rada (logs) radi ranog otkrivanja degradacije

performansi, regresija i incidenata.
e Pragovi, alarmi i jasno definisani ciljevi kvaliteta usluge.

e Strategije oporavka + kontrola pristupa + redovno azuriranje

+ provera ranjivosti.

49

pustanja: monitoring, oporavak i kraj zivotnog veka

Post-deployment monitoring: prikupljanje podataka i
dnevnika rada (logs) radi ranog otkrivanja degradacije
performansi, regresija i incidenata.

Pragovi, alarmi i jasno definisani ciljevi kvaliteta usluge.

Strategije oporavka + kontrola pristupa + redovno azuriranje
+ provera ranjivosti.

Upravljanje krajem zivotnog veka (end-of-life): planirano
gasenje ili migracija sistema, komunikacija sa korisnicima,
arhiviranje i zastita podataka, uskladenost sa propisima i

planiranje zamena (manji tehnicki dug i operativni rizik).

49

Alati i tehnike koriséeni u razvoju
softvera

Alati i tehnike koriséeni u razvoju
softvera

Alati za upravljanje projektima

Upravljanje softverskim projektima: sta obuhvata

e Upravljanje projektima: planiranje, organizacija, pracenje i
kontrola procesa razvoja.

50

Upravljanje softverskim projektima: sta obuhvata

e Upravljanje projektima: planiranje, organizacija, pracenje i
kontrola procesa razvoja.

e Upravljanje:

50

Upravljanje softverskim projektima: sta obuhvata

e Upravljanje projektima: planiranje, organizacija, pracenje i
kontrola procesa razvoja.
e Upravljanje:

e ljudima (timovi i pojedinci),

50

Upravljanje softverskim projektima: sta obuhvata

e Upravljanje projektima: planiranje, organizacija, pracenje i
kontrola procesa razvoja.
e Upravljanje:
e ljudima (timovi i pojedinci),
e procesima (metodologije, radni tokovi, standardi),

50

Upravljanje softverskim projektima: sta obuhvata

e Upravljanje projektima: planiranje, organizacija, pracenje i
kontrola procesa razvoja.
e Upravljanje:
e ljudima (timovi i pojedinci),
e procesima (metodologije, radni tokovi, standardi),
e problemima (zahtevi, ogranicenja, rizici).

50

Upravljanje softverskim projektima: sta obuhvata

e Upravljanje projektima: planiranje, organizacija, pracenje i
kontrola procesa razvoja.
e Upravljanje:
e ljudima (timovi i pojedinci),
e procesima (metodologije, radni tokovi, standardi),

e problemima (zahtevi, ogranicenja, rizici).

e Cilj: balans kvalitet — vreme — troskovi.

50

Upravljanje softverskim projektima: sta obuhvata

e Upravljanje projektima: planiranje, organizacija, pracenje i
kontrola procesa razvoja.
e Upravljanje:
e ljudima (timovi i pojedinci),
e procesima (metodologije, radni tokovi, standardi),
e problemima (zahtevi, ogranicenja, rizici).
e Cilj: balans kvalitet — vreme — troskovi.
e Kiljuéni pojmovi: metrike, procena obima/slozenosti,
upravljanje rizicima, raspored aktivnosti, odrzavanje i
reinzenjering postojecih resenja.

50

Sta daju alati: pracenje, metrike, rizici, primeri

e Alati nisu samo ,,podsetnici: podrska za odluke i evaluaciju
napretka.

51

Sta daju alati: pracenje, metrike, rizici, primeri

e Alati nisu samo ,,podsetnici: podrska za odluke i evaluaciju
napretka.
e Osnovno: zadaci, rokovi, organizacija timskog rada.

51

Sta daju alati: pracenje, metrike, rizici, primeri

e Alati nisu samo ,,podsetnici: podrska za odluke i evaluaciju
napretka.

e Osnovno: zadaci, rokovi, organizacija timskog rada.
e Metrike (primeri iz teksta):

51

Sta daju alati: pracenje, metrike, rizici, primeri

e Alati nisu samo ,,podsetnici: podrska za odluke i evaluaciju
napretka.
e Osnovno: zadaci, rokovi, organizacija timskog rada.
e Metrike (primeri iz teksta):
e broj zavrsenih zadataka po vremenu,

51

Sta daju alati: pracenje, metrike, rizici, primeri

e Alati nisu samo ,,podsetnici: podrska za odluke i evaluaciju
napretka.
e Osnovno: zadaci, rokovi, organizacija timskog rada.
e Metrike (primeri iz teksta):
e broj zavrsenih zadataka po vremenu,
e pokrivenost testovima,

51

Sta daju alati: pracenje, metrike, rizici, primeri

e Alati nisu samo ,,podsetnici: podrska za odluke i evaluaciju
napretka.
e Osnovno: zadaci, rokovi, organizacija timskog rada.
e Metrike (primeri iz teksta):
e broj zavrsenih zadataka po vremenu,
e pokrivenost testovima,
e broj otvorenih bagova.

51

Sta daju alati: pracenje, metrike, rizici, primeri

e Alati nisu samo ,,podsetnici: podrska za odluke i evaluaciju
napretka.
e Osnovno: zadaci, rokovi, organizacija timskog rada.
e Metrike (primeri iz teksta):
e broj zavrsenih zadataka po vremenu,
e pokrivenost testovima,
e broj otvorenih bagova.
e Na osnovu metrika: procene troskova/trajanja i pracenje
uskladenosti sa planom.

51

Sta daju alati: pracenje, metrike, rizici, primeri

e Alati nisu samo ,,podsetnici: podrska za odluke i evaluaciju
napretka.

e Osnovno: zadaci, rokovi, organizacija timskog rada.
e Metrike (primeri iz teksta):

e broj zavrsenih zadataka po vremenu,

e pokrivenost testovima,

e broj otvorenih bagova.

e Na osnovu metrika: procene troskova/trajanja i pracenje
uskladenosti sa planom.

e Alati za rizike: identifikacija + rano uocavanje
trendova/indikatora problema — pravovremene akcije
(spreciti/ublaziti).

51

Sta daju alati: pracenje, metrike, rizici, primeri

e Alati nisu samo ,,podsetnici: podrska za odluke i evaluaciju
napretka.
e Osnovno: zadaci, rokovi, organizacija timskog rada.
e Metrike (primeri iz teksta):
e broj zavrsenih zadataka po vremenu,
e pokrivenost testovima,
e broj otvorenih bagova.

e Na osnovu metrika: procene troskova/trajanja i pracenje
uskladenosti sa planom.

e Alati za rizike: identifikacija + rano uocavanje
trendova/indikatora problema — pravovremene akcije
(spreciti/ublaziti).

e Primeri sa trzista: Jira (izveStavanje, integracije,
skram/kanban), Trello (jednostavno vizuelno, manje timove i

agilne procese). 51

Alati i tehnike koriséeni u razvoju
softvera

Sistemi za kontrolu verzija

Sistemi za kontrolu verzija (VCS): svrha

e VCS: pracenje promena, saradnja i istorija projekta.

52

Sistemi za kontrolu verzija (VCS): svrha

e VCS: pracenje promena, saradnja i istorija projekta.

e Nazivi koji se sre¢u: SCM (Source Code Management), RCS
(Revision Control System).

52

Sistemi za kontrolu verzija (VCS): svrha

e VCS: pracenje promena, saradnja i istorija projekta.

e Nazivi koji se sre¢u: SCM (Source Code Management), RCS
(Revision Control System).

e Sustina: Cuvanje sadrzaja + belezenje promena + pristup
razlicitim verzijama.

52

Sistemi za kontrolu verzija (VCS): svrha

e VCS: pracenje promena, saradnja i istorija projekta.

e Nazivi koji se sre¢u: SCM (Source Code Management), RCS
(Revision Control System).

e Sustina: Cuvanje sadrzaja + belezenje promena + pristup
razlicitim verzijama.

e Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greske u kodu).

52

Sistemi za kontrolu verzija (VCS): svrha

e VCS: pracenje promena, saradnja i istorija projekta.

e Nazivi koji se sre¢u: SCM (Source Code Management), RCS
(Revision Control System).

e Sustina: Cuvanje sadrzaja + belezenje promena + pristup
razlicitim verzijama.

e Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greske u kodu).

52

Sistemi za kontrolu verzija (VCS): svrha

e VCS: pracenje promena, saradnja i istorija projekta.

e Nazivi koji se sre¢u: SCM (Source Code Management), RCS
(Revision Control System).

e Sustina: Cuvanje sadrzaja + belezenje promena + pristup
razlicitim verzijama.

e Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greske u kodu).

Repozitorijum Cuva izvorni kod i istoriju izmena:

e verzije datoteka (datum/vreme),

52

Sistemi za kontrolu verzija (VCS): svrha

e VCS: pracenje promena, saradnja i istorija projekta.

e Nazivi koji se sre¢u: SCM (Source Code Management), RCS
(Revision Control System).

e Sustina: Cuvanje sadrzaja + belezenje promena + pristup
razlicitim verzijama.

e Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greske u kodu).

Repozitorijum Cuva izvorni kod i istoriju izmena:

e verzije datoteka (datum/vreme),

e istoriju izmena (ko/kada/sta + opis),

52

Sistemi za kontrolu verzija (VCS): svrha

e VCS: pracenje promena, saradnja i istorija projekta.

e Nazivi koji se sre¢u: SCM (Source Code Management), RCS
(Revision Control System).

e Sustina: Cuvanje sadrzaja + belezenje promena + pristup
razlicitim verzijama.

e Korisno i za pouzdanu strategiju rezervnih kopija (kvar diska,
greske u kodu).

Repozitorijum Cuva izvorni kod i istoriju izmena:

e verzije datoteka (datum/vreme),
e istoriju izmena (ko/kada/sta + opis),

e grane (paralelan razvoj i kasnije spajanje).

52

Timski rad: javni repozitorijum i privatni radni prostor

e Model rada: javni repozitorijum + privatni radni prostor.

53

Timski rad: javni repozitorijum i privatni radni prostor

e Model rada: javni repozitorijum + privatni radni prostor.

e Tok: preuzmi — izmeni — vrati izmene u repozitorijum.

53

Timski rad: javni repozitorijum i privatni radni prostor

e Model rada: javni repozitorijum + privatni radni prostor.
e Tok: preuzmi — izmeni — vrati izmene u repozitorijum.
e Ako vise ljudi radi na istoj komponenti: sistem pomaze pri

integraciji i upozorava na konflikte.

53

Timski rad: javni repozitorijum i privatni radni prostor

Model rada: javni repozitorijum + privatni radni prostor.

Tok: preuzmi — izmeni — vrati izmene u repozitorijum.

Ako vise ljudi radi na istoj komponenti: sistem pomaze pri

integraciji i upozorava na konflikte.

Opisi izmena su vazni: formalna komunikacija u timu (Cesto

obavezno pravilo).

53

Timski rad: javni repozitorijum i privatni radni prostor

Model rada: javni repozitorijum + privatni radni prostor.

Tok: preuzmi — izmeni — vrati izmene u repozitorijum.

Ako vise ljudi radi na istoj komponenti: sistem pomaze pri

integraciji i upozorava na konflikte.

Opisi izmena su vazni: formalna komunikacija u timu (Cesto

obavezno pravilo).

53

Timski rad: javni repozitorijum i privatni radni prostor

e Model rada: javni repozitorijum + privatni radni prostor.

e Tok: preuzmi — izmeni — vrati izmene u repozitorijum.

e Ako vise ljudi radi na istoj komponenti: sistem pomaze pri
integraciji i upozorava na konflikte.

e Opisi izmena su vazni: formalna komunikacija u timu (Cesto

obavezno pravilo).

e Skladistenje verzija Cesto koristi delte (Cuvaju se razlike izmedu

verzija) radi ustede prostora.

53

Git i drugi sistemi (SVN, Mercurial)

e Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreze, veca otpornost).

54

Git i drugi sistemi (SVN, Mercurial)

e Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreze, veca otpornost).

e SVN: centralizovan — jedan centralni repozitorijum (laksi
nadzor, manje fleksibilno).

54

Git i drugi sistemi (SVN, Mercurial)

e Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreze, veca otpornost).

e SVN: centralizovan — jedan centralni repozitorijum (laksi
nadzor, manje fleksibilno).

e Mercurial: takode distribuiran, slican Gitu.

54

Git i drugi sistemi (SVN, Mercurial)

e Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreze, veca otpornost).

e SVN: centralizovan — jedan centralni repozitorijum (laksi
nadzor, manje fleksibilno).

e Mercurial: takode distribuiran, slican Gitu.

54

Git i drugi sistemi (SVN, Mercurial)

e Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreze, veca otpornost).

e SVN: centralizovan — jedan centralni repozitorijum (laksi
nadzor, manje fleksibilno).

e Mercurial: takode distribuiran, slican Gitu.

e Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

54

Git i drugi sistemi (SVN, Mercurial)

e Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreze, veca otpornost).

e SVN: centralizovan — jedan centralni repozitorijum (laksi
nadzor, manje fleksibilno).

e Mercurial: takode distribuiran, slican Gitu.

e Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

o Ciljevi dizajna (sazeto): distribuiran razvoj, brzina/efikasnost
(kompresija + delte), pouzdanost (SHAL integritet),
nepromenljivost istorije, atomske transakcije, grane, slobodan
alat.

54

Git i drugi sistemi (SVN, Mercurial)

e Git: distribuirani VCS — svaki korisnik ima punu istoriju
repozitorijuma (rad van mreze, veca otpornost).

e SVN: centralizovan — jedan centralni repozitorijum (laksi
nadzor, manje fleksibilno).

e Mercurial: takode distribuiran, slican Gitu.

e Kratko poreklo: Linux kernel je ranije koristio BitKeeper; 2005.
dolazi do promene uslova, pa inicira razvoj Gita.

o Ciljevi dizajna (sazeto): distribuiran razvoj, brzina/efikasnost
(kompresija + delte), pouzdanost (SHAL integritet),
nepromenljivost istorije, atomske transakcije, grane, slobodan
alat.

e U knjizi: Git preko komandne linije (GUI klijenti ¢esto nude
samo deo funkcionalnosti).

54

Alati i tehnike koriséeni u razvoju
softvera

Distribuirani softverski sistemi

Distribuirani softverski sistemi

e Distribuiran sistem = softver koji radi na vise
racunara/cvorova i komunicira preko mreze.

55

Distribuirani softverski sistemi

e Distribuiran sistem = softver koji radi na vise
racunara/cvorova i komunicira preko mreze.

e Ciljevi: skaliranje, dostupnost i otpornost na kvarove.

55

Distribuirani softverski sistemi

e Distribuiran sistem = softver koji radi na vise

racunara/cvorova i komunicira preko mreze.
e Ciljevi: skaliranje, dostupnost i otpornost na kvarove.

e Cena: vise slozenosti u komunikaciji, sinhronizaciji,

testiranju i bezbednosti.

55

Distribuirani softverski sistemi

e Distribuiran sistem = softver koji radi na vise

racunara/cvorova i komunicira preko mreze.
e Ciljevi: skaliranje, dostupnost i otpornost na kvarove.

e Cena: vise slozenosti u komunikaciji, sinhronizaciji,
testiranju i bezbednosti.

e Performanse zavise i od mreze (propusnost, latencija,
opterecenje), ne samo CPU-a.

55

Osnovne osobine distribuiranih sistema

e Deljenje resursa: zajednicko koris¢enje diskova, baza, servisa,

itd.

56

Osnovne osobine distribuiranih sistema

e Deljenje resursa: zajednicko koris¢enje diskova, baza, servisa,

itd.

e Konkurentnost: delovi sistema rade paralelno (Eesto uz
asinhronu komunikaciju).

56

Osnovne osobine distribuiranih sistema

e Deljenje resursa: zajednicko koris¢enje diskova, baza, servisa,

itd.

e Konkurentnost: delovi sistema rade paralelno (Eesto uz

asinhronu komunikaciju).

e Skalabilnost: kapacitet raste dodavanjem ili jacanjem resursa.

56

Osnovne osobine distribuiranih sistema

e Deljenje resursa: zajednicko koris¢enje diskova, baza, servisa,

itd.

e Konkurentnost: delovi sistema rade paralelno (Eesto uz

asinhronu komunikaciju).
e Skalabilnost: kapacitet raste dodavanjem ili jacanjem resursa.

e Otpornost na greske: sistem nastavlja rad i kad neki ¢vor
otkaze (npr. replikacija, preusmeravanje).

56

Skaliranje: scale up vs scale out

e Scale up: jaci postojeci ¢vor (vise RAM/CPU) — brze, ali
Cesto skuplje i ograni¢eno hardverom.

Mini-provera (30s): Kod kog pristupa je vaznije dobro
balansiranje optere¢enja i zasto?

57

Skaliranje: scale up vs scale out

e Scale up: jaci postojeci ¢vor (vise RAM/CPU) — brze, ali
Cesto skuplje i ograni¢eno hardverom.

e Scale out: dodavanje novih évorova — fleksibilnije i Cesto
isplativije, ali zahteva dobar dizajn.

Mini-provera (30s): Kod kog pristupa je vaznije dobro
balansiranje optere¢enja i zasto?

57

Skaliranje: scale up vs scale out

e Scale up: jaci postojeci ¢vor (vise RAM/CPU) — brze, ali
Cesto skuplje i ograni¢eno hardverom.

e Scale out: dodavanje novih évorova — fleksibilnije i Cesto

isplativije, ali zahteva dobar dizajn.

e Tipicni problem: mrezna uska grla i ravnhomerna raspodela
opterecenja.

Mini-provera (30s): Kod kog pristupa je vaznije dobro

balansiranje optere¢enja i zasto?

57

ktura: klijent—server (osnova)

e Najces¢i model za sisteme dostupne preko interneta.

58

Arhitektura: klijent—server (osnova)

e Najces¢i model za sisteme dostupne preko interneta.

o Kilijent (pregledac/aplikacija) prikazuje i Salje zahteve; server
obavlja obradu i pristupa podacima.

58

Arhitektura: klijent—server (osnova)

e Najces¢i model za sisteme dostupne preko interneta.
o Kilijent (pregledac/aplikacija) prikazuje i Salje zahteve; server
obavlja obradu i pristupa podacima.

e Cesto postoji vise serverskih instanci (na vise racunara) radi

veceg kapaciteta.

58

tura: klijent—server (osnova)

Najces¢i model za sisteme dostupne preko interneta.
Klijent (pregledac/aplikacija) prikazuje i Salje zahteve; server
obavlja obradu i pristupa podacima.

Cesto postoji viSe serverskih instanci (na vise racunara) radi

veceg kapaciteta.

Balansiranje opterecenja: zahtevi se rasporeduju na vise

servera da bi sistem podneo veéi broj korisnika.

58

Varijante arhitektura

e Master—rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ogranicenja (npr. real-time).

59

Varijante arhitektura

e Master—rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ogranicenja (npr. real-time).

e Dvoslojna / viseslojna klijent—server:

59

Varijante arhitektura

e Master—rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ogranicenja (npr. real-time).
e Dvoslojna / viseslojna klijent—server:

e dvoslojna: klijent direktno prica sa jednim serverom;

59

Varijante arhitektura

e Master—rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ogranicenja (npr. real-time).
e Dvoslojna / viseslojna klijent—server:

e dvoslojna: klijent direktno prica sa jednim serverom;
e viseslojna: prezentacioni / aplikacioni / data sloj (mogu na
odvojenim ¢vorovima) — lak3e skaliranje i odrzavanje.

59

Varijante arhitektura

e Master—rob: master dodeljuje zadatke robovima; korisno kad
su bitna stroga vremenska ogranicenja (npr. real-time).
e Dvoslojna / viseslojna klijent—server:
e dvoslojna: klijent direktno prica sa jednim serverom;
e viseslojna: prezentacioni / aplikacioni / data sloj (mogu na
odvojenim ¢vorovima) — lak3e skaliranje i odrzavanje.
e P2P (peer-to-peer): nema stroge podele na klijent/server;
¢vorovi razmenjuju resurse direktno (prednost: otpornost;
mana: vise koordinacije/overheada).

59

Komunikacioni modeli: RPC vs poruke

e RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

60

Komunikacioni modeli: RPC vs poruke

e RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

e Posiljalac obi¢no ceka odgovor.

60

Komunikacioni modeli: RPC vs poruke

e RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

e Posiljalac obi¢no ceka odgovor.
e Zahteva da su obe strane istovremeno dostupne.

60

Komunikacioni modeli: RPC vs poruke

e RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

e Posiljalac obi¢no ceka odgovor.
e Zahteva da su obe strane istovremeno dostupne.

e Poruke + redovi (message-based): asinhrono slanje; poruka
Ceka dok primalac ne bude dostupan.

60

Komunikacioni modeli: RPC vs poruke

e RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.

e Posiljalac obi¢no ceka odgovor.
e Zahteva da su obe strane istovremeno dostupne.

e Poruke + redovi (message-based): asinhrono slanje; poruka
Ceka dok primalac ne bude dostupan.

e Bolje podnosi privremenu nedostupnost.

60

Komunikacioni modeli: RPC vs poruke

e RPC/RMI (proceduralno): poziv udaljene usluge kao da je
lokalna funkcija/metoda.
e Posiljalac obi¢no ceka odgovor.
e Zahteva da su obe strane istovremeno dostupne.
e Poruke + redovi (message-based): asinhrono slanje; poruka
Ceka dok primalac ne bude dostupan.
e Bolje podnosi privremenu nedostupnost.
o Cesto postoji medusoftver koji rutira poruke i brine o
transformaciji/pouzdanosti.

60

nost i eksploatacija u distribuiranim sistemima

e Vise Cvorova i veza = veca povrSina napada (presretanje,
neovlasc¢en pristup, DoS, lazni podaci).

61

Bezbednost i eksploatacija u distribuiranim sistemima

e Vise Cvorova i veza = veca povrSina napada (presretanje,
neovlasc¢en pristup, DoS, lazni podaci).

e Osnove: enkripcija, autentifikacija, kontrola pristupa,
redovno azuriranje i provera ranjivosti.

61

Bezbednost i eksploatacija u distribuiranim sistemima

e Vise Cvorova i veza = veca povrSina napada (presretanje,
neovlasc¢en pristup, DoS, lazni podaci).

e Osnove: enkripcija, autentifikacija, kontrola pristupa,
redovno azuriranje i provera ranjivosti.

e Operativno: monitoring + logovi + alarmi radi ranog
otkrivanja regresija i incidenata.

61

Bezbednost i eksploatacija u distribuiranim sistemima

e Vise Cvorova i veza = veca povrSina napada (presretanje,
neovlasc¢en pristup, DoS, lazni podaci).

e Osnove: enkripcija, autentifikacija, kontrola pristupa,
redovno azuriranje i provera ranjivosti.

e Operativno: monitoring + logovi + alarmi radi ranog
otkrivanja regresija i incidenata.

e Oblak se cesto koristi kao “prirodan nastavak” distribuiranih

sistema: resursi se lako povecavaju/smanjuju po potrebi.

61

Alati i tehnike koriséeni u razvoju
softvera

Mikroservisno orijentisan razvoj softvera

Mikroservisi: ideja i poreklo

e CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

62

Mikroservisi: ideja i poreklo

e CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

e Problem CBSE prakse: teze je nezavisno razvijati delove i
skalirati samo ono sto treba.

62

Mikroservisi: ideja i poreklo

e CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

e Problem CBSE prakse: teze je nezavisno razvijati delove i
skalirati samo ono sto treba.

e Mikroservisi prosiruju ideju: sistem se ne gradi kao jedan
monolit, ve¢ kao skup manjih servisa.

62

Mikroservisi: ideja i poreklo

e CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

e Problem CBSE prakse: teze je nezavisno razvijati delove i
skalirati samo ono sto treba.

e Mikroservisi prosiruju ideju: sistem se ne gradi kao jedan
monolit, ve¢ kao skup manjih servisa.

e Svaki servis je samostalno isporuciv i ima sopstveni ciklus
razvoja (razvoj/test/deploy nezavisno).

62

Mikroservisi: ideja i poreklo

e CBSE (1990-te): sistemi se grade spajanjem komponenti
(“crnih kutija”) sa jasnim interfejsima.

e Problem CBSE prakse: teze je nezavisno razvijati delove i
skalirati samo ono sto treba.

e Mikroservisi prosiruju ideju: sistem se ne gradi kao jedan
monolit, ve¢ kao skup manjih servisa.

e Svaki servis je samostalno isporuciv i ima sopstveni ciklus
razvoja (razvoj/test/deploy nezavisno).

e Servisi komuniciraju mreznim protokolima = prirodno se
uklapaju u distribuirane sisteme.

62

Kljucni principi, prednosti i izazovi

e Tri principa:

63

Kljucni principi, prednosti i izazovi

e Tri principa:
e Ograniceni kontekst (bounded context): servis ima jasnu
poslovnu odgovornost i granice.

63

Kljucni principi, prednosti i izazovi

e Tri principa:
e Ograniceni kontekst (bounded context): servis ima jasnu
poslovnu odgovornost i granice.
e Velicina: ¢im servis preraste (previse funkcionalnosti) =
podela na manje.

63

Kljucni principi, prednosti i izazovi

e Tri principa:
e Ograniceni kontekst (bounded context): servis ima jasnu
poslovnu odgovornost i granice.
e Velicina: ¢im servis preraste (previse funkcionalnosti) =
podela na manje.
e Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez
“blokiranja” drugih servisa.

63

Kljucni principi, prednosti i izazovi

e Tri principa:
e Ograniceni kontekst (bounded context): servis ima jasnu
poslovnu odgovornost i granice.

e Velicina: ¢im servis preraste (previse funkcionalnosti) =
podela na manje.

e Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez
“blokiranja” drugih servisa.

e Prednosti: skaliras samo optereceni servis; timovi rade
paralelno; razlicite tehnologije po servisu; veca robusnost (pad
jednog servisa ne rusi ceo sistem).

63

Kljucni principi, prednosti i izazovi

e Tri principa:
e Ograniceni kontekst (bounded context): servis ima jasnu
poslovnu odgovornost i granice.

e Velicina: ¢im servis preraste (previse funkcionalnosti) =
podela na manje.

e Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez
“blokiranja” drugih servisa.

e Prednosti: skaliras samo optereceni servis; timovi rade
paralelno; razlicite tehnologije po servisu; veca robusnost (pad
jednog servisa ne rusi ceo sistem).

e Tipicna isporuka: servisi Cesto u kontejnerima (npr. Docker)
sa svim zavisnostima i konfiguracijom.

63

Kljucni principi, prednosti i izazovi

e Tri principa:

e Ograniceni kontekst (bounded context): servis ima jasnu
poslovnu odgovornost i granice.

e Velicina: ¢im servis preraste (previse funkcionalnosti) =
podela na manje.

e Nezavisnost: razvijanje, testiranje, deploy i skaliranje bez
“blokiranja” drugih servisa.

e Prednosti: skaliras samo optereceni servis; timovi rade
paralelno; razlicite tehnologije po servisu; veca robusnost (pad
jednog servisa ne rusi ceo sistem).

e Tipicna isporuka: servisi Cesto u kontejnerima (npr. Docker)
sa svim zavisnostima i konfiguracijom.

e lzazovi: sporija/skuplja mrezna komunikacija; rizik
preopterecenja zajednickog servisa; teze testiranje i
debagovanje (interakcije); pitanja podataka i

63
konzistentnosti (posebno ako se deli baza).

Alati i tehnike koriséeni u razvoju
softvera

Ugradeni softver

Ugradeni softver: sta je i zasto je poseban

e Ugradeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uredajem i reaguje
na dogadaje iz okruzenja.

64

Ugradeni softver: sta je i zasto je poseban

e Ugradeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uredajem i reaguje
na dogadaje iz okruzenja.

e Radi pod ogranicenim resursima: memorija, procesorska
snaga, energija = optimizacije nisu luksuz nego obaveza.

64

Ugradeni softver: sta je i zasto je poseban

e Ugradeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uredajem i reaguje
na dogadaje iz okruzenja.

e Radi pod ogranicenim resursima: memorija, procesorska

snaga, energija = optimizacije nisu luksuz nego obaveza.

e Cesto je real-time: odgovor mora sti¢i u strogo definisanom
roku. Kasnjenje moze imati ozbiljne posledice (npr. kocenje).

64

Ugradeni softver: sta je i zasto je poseban

e Ugradeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uredajem i reaguje
na dogadaje iz okruzenja.

e Radi pod ogranicenim resursima: memorija, procesorska
snaga, energija = optimizacije nisu luksuz nego obaveza.

e Cesto je real-time: odgovor mora sti¢i u strogo definisanom
roku. Kasnjenje moze imati ozbiljne posledice (npr. kocenje).

e Pouzdanost i sigurnost su kljuéne (automobili, medicinski
uredaji, saobracaj, telekom).

64

Ugradeni softver: sta je i zasto je poseban

e Ugradeni (embedded) softver je deo
hardversko-softverskog sistema: upravlja uredajem i reaguje
na dogadaje iz okruzenja.

e Radi pod ogranicenim resursima: memorija, procesorska
snaga, energija = optimizacije nisu luksuz nego obaveza.

e Cesto je real-time: odgovor mora sti¢i u strogo definisanom
roku. Kasnjenje moze imati ozbiljne posledice (npr. kocenje).

e Pouzdanost i sigurnost su kljuéne (automobili, medicinski
uredaji, saobracaj, telekom).

e Dizajn ogranicavaju i fizicki uslovi (prostor, temperatura,
vibracije, energetska efikasnost).

64

Razvoj: RTOS, konkurentnost i modelovanje ponasanja

e Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

65

Razvoj: RTOS, konkurentnost i modelovanje ponasanja

e Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

e U praksi se softver esto realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

65

Razvoj: RTOS, konkurentnost i modelovanje ponasanja

e Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

e U praksi se softver esto realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

e Zato se Cesto koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se postovali rokovi.

65

Razvoj: RTOS, konkurentnost i modelovanje ponasanja

e Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

e U praksi se softver esto realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

e Zato se Cesto koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se postovali rokovi.

e Opsti OS (Windows / standardni Linux) ne garantuju
real-time; postoje real-time varijante Linux-a (npr. RTLinux /
PREEMPT-RT).

65

Razvoj: RTOS, konkurentnost i modelovanje ponasanja

e Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

e U praksi se softver esto realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

e Zato se Cesto koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se postovali rokovi.

e Opsti OS (Windows / standardni Linux) ne garantuju
real-time; postoje real-time varijante Linux-a (npr. RTLinux /
PREEMPT-RT).

e Ponasanje sistema se ¢esto modeluje dijagramima stanja
(reakcije na periodi¢ne i aperiodicne signale).

65

Razvoj: RTOS, konkurentnost i modelovanje ponasanja

e Razvoj je interdisciplinaran: hardver + softver, uz stalnu
integraciju i sinhronizaciju.

e U praksi se softver esto realizuje kao skup konkurentnih
procesa/niti koji komuniciraju.

e Zato se Cesto koristi RTOS (Real-Time OS): scheduler
upravlja vremenom i resursima da bi se postovali rokovi.

e Opsti OS (Windows / standardni Linux) ne garantuju
real-time; postoje real-time varijante Linux-a (npr. RTLinux /
PREEMPT-RT).

e Ponasanje sistema se ¢esto modeluje dijagramima stanja
(reakcije na periodi¢ne i aperiodicne signale).

e Cesto se koristi C zbog efikasnosti, ali bez ugradene podrske
za konkurentnost = oslanjanje na RTOS mehanizme
(semafori, medusobno iskljucivanje) i veci rizik gresaka ako se

. _ : 65
njima loSe upravlja.

Alati i tehnike koriséeni u razvoju
softvera

Vestacka inteligencija u razvoju softvera

Vestacka inteligencija u razvoju softvera: kada ima smisla

e VI pomaze kada postoji obrazac koji je tesko eksplicitno
isprogramirati (nelinearno, Sumovito, kompleksno).

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.
jednostavne formule), nema obrasca ili nema podataka, ili je greska
preskupa. 66

Vestacka inteligencija u razvoju softvera: kada ima smisla

e VI pomaze kada postoji obrazac koji je tesko eksplicitno
isprogramirati (nelinearno, Sumovito, kompleksno).

e Potrebni su dostupni i kvalitetni podaci (reprezentativni za
realne uslove).

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.

jednostavne formule), nema obrasca ili nema podataka, ili je greska
preskupa. 66

Vestacka inteligencija u razvoju softvera: kada ima smisla

e VI pomaze kada postoji obrazac koji je tesko eksplicitno
isprogramirati (nelinearno, Sumovito, kompleksno).

e Potrebni su dostupni i kvalitetni podaci (reprezentativni za
realne uslove).

e Problem je Cesto prediktivan (zakljucivanje iz istorijskih
podataka).

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.

jednostavne formule), nema obrasca ili nema podataka, ili je greska
preskupa. 66

Vestacka inteligencija u razvoju softvera: kada ima smisla

e VI pomaze kada postoji obrazac koji je tesko eksplicitno
isprogramirati (nelinearno, Sumovito, kompleksno).

e Potrebni su dostupni i kvalitetni podaci (reprezentativni za
realne uslove).

e Problem je Cesto prediktivan (zakljucivanje iz istorijskih
podataka).

e Cena greske treba da bude prihvatljiva: VI nije egzaktna =
za visoko-rizicne domene Cesto ide VI + ljudska ekspertiza /

dodatna provera.

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.

jednostavne formule), nema obrasca ili nema podataka, ili je greska

preskupa. 66

Vestacka inteligencija u razvoju softvera: kada ima smisla

e VI pomaze kada postoji obrazac koji je tesko eksplicitno
isprogramirati (nelinearno, Sumovito, kompleksno).

e Potrebni su dostupni i kvalitetni podaci (reprezentativni za
realne uslove).

e Problem je Cesto prediktivan (zakljucivanje iz istorijskih
podataka).

e Cena greske treba da bude prihvatljiva: VI nije egzaktna =
za visoko-rizicne domene Cesto ide VI + ljudska ekspertiza /
dodatna provera.

e Ako se obrasci menjaju vremenom, VI moze da se re-trenira
i prilagodava.

Kada VI nije dobar izbor: pravila su jasna i stabilna (npr.
jednostavne formule), nema obrasca ili nema podataka, ili je greska
preskupa. 66

Razvoj VI resenja i VI kao alat programera

e VI se koristi i kao pomoéni alat u razvoju: asistenti (npr.
GitHub Copilot, ChatGPT, Cline) za dopunu koda, testove,
refaktorisanje, dokumentaciju.

67

Razvoj VI resenja i VI kao alat programera

e VI se koristi i kao pomoéni alat u razvoju: asistenti (npr.
GitHub Copilot, ChatGPT, Cline) za dopunu koda, testove,
refaktorisanje, dokumentaciju.

e Ogranicenja: alati mogu generisati netacan/neefikasan kod,;
postoje i bezbednosne i pravne brige (slanje vlasnickog koda,
pitanja autorskih prava).

67

Razvoj VI resenja i VI kao alat programera

e VI se koristi i kao pomoéni alat u razvoju: asistenti (npr.
GitHub Copilot, ChatGPT, Cline) za dopunu koda, testove,
refaktorisanje, dokumentaciju.

e Ogranicenja: alati mogu generisati netacan/neefikasan kod,;
postoje i bezbednosne i pravne brige (slanje vlasnickog koda,
pitanja autorskih prava).

e Praksa Cesto koristi hibridni pristup: asistenti za nepoverljive
zadatke, a lokalni modeli/klasi¢ni alati za osetljiv kod.

67

	Uvod
	Životni ciklus razvoja softvera
	Planiranje
	Realizacija
	Eksploatacija

	Standardi i kontrola kvaliteta
	Planiranje
	Analiza i specifikovanje problema
	Modelovanje rešenja
	Dizajn softverskog rešenja
	Objedinjeni jezik za modelovanje: UML dijagrami

	Metodologije razvoja softvera
	Metodologija vodopada
	Metodologija iterativnog i inkrementalnog razvoja
	Metodologija rapidnog razvoja
	Spiralna metodologija
	Agilna metodologija razvoja

	Eksploatacija
	Alati i tehnike korišćeni u razvoju softvera
	Alati za upravljanje projektima
	Sistemi za kontrolu verzija

