
Ele
ktr

on
ska

ver
zija

(20
25

)1
GLAVA

Proces razvoja softvera

Pod razvojem softvera često se ne podrazumeva samo neposredno pisanje pro-
grama, već i procesi koji mu prethode i slede. U tom, širem smislu, razvoj softvera
naziva se i životni ciklus razvoja softvera. Razvoj softvera razlikuje se od slučaja
do slučaja, ali u nekoj formi obično ima sledeće faze i podfaze:

Planiranje: Ova faza obuhvata prikupljanje i analizu zahteva od naručioca softve-
ra, razrešavanje nepotpunih, višesmislenih ili kontradiktornih zahteva i kre-
iranje precizne specifikacije problema i dizajna softverskog rešenja. Podfaze
ove faze, opisane u poglavlju 1.1, su:

✽ Analiza i specifikovanje problema;
✽ Modelovanje rešenja;
✽ Dizajn softverskog rešenja.

Realizacija: Ova faza obuhvata implementiranje dizajniranog softverskog rešenja u
nekom konkretnom programskom jeziku. Implementacija treba da sledi opšte
preporuke, kao i preporuke specifične za realizatora ili za konkretan projekat.
Analizom efikasnosti i ispravnosti proverava se pouzdanost i upotrebljivost
softverskog proizvoda, a za naručioca se priprema i dokumentacija. Podfaze
ove faze su:

✽ Implementiranje (kodiranje, pisanje programa) (o nekim aspektima ove
podfaze govori glava ??);

✽ Evaluacija – analiza ispravnosti i analiza efikasnosti (o nekim aspektima
ovih podfaza govore redom glava ?? i glava ??);

✽ Izrada dokumentacije (obično korisničke dokumentacije – koja opisuje
korišćenje programa i tehničke dokumentacije — koja opisuje izvorni
kôd);

1



Ele
ktr

on
ska

ver
zija

(20
25

)

1.1. Planiranje 2

Eksploatacija: Ova faza počinje nakon što je ispravnost softvera adekvatno pro-
verena i nakon što je softver odobren za upotrebu. Puštanje u rad uključuje
instaliranje, podešavanja u skladu sa specifičnim potrebama i zahtevima ko-
risnika, ali i testiranje u realnom okruženju i sveukupnu evaluaciju sistema
u stvarnim uslovima korišćenja. Organizuje se obuka za osnovne i napredne
korisnike i obezbeđuje održavanje kroz koje se ispravljaju greške ili dodaju
nove manje funkcionalnosti. U održavanje se obično uloži više od tri četvrtine
ukupnog rada u čitavom životnom ciklusu softvera. Podfaze ove faze su:

✽ Obuka i tehnička podrška;

✽ Puštanje u rad;

✽ Održavanje.

Postoje međunarodni standardi, kao što su ISO/IEC 12207 i ISO/IEC 15504,
koji opisuju životni ciklus softvera kroz precizno opisane postupke izbora, implemen-
tacije i nadgledanja razvoja softvera. Kvalitet razvijenog softvera često se ocenjuje
prema nivou usklađenosti sa ovim standardima.

Kontrola kvaliteta softvera (eng. software quality assurance, SQA) pokriva kom-
pletan proces razvoja softvera i sve njegove faze i podfaze. Proces kontrole kvalite-
ta, takođe opisan standardom ISO/IEC 15504, treba da osigura nezavisnu potvrdu
da su svi proizvodi, aktivnosti i procesi u skladu sa predefinisanim planovima i
standardima.

Faze razvoja softvera i moguće probleme na šaljiv način ilustruje čuvena kari-
katura prikazana na slici 1.1.

Za razvoj softvera relevantni su i procesi istraživanja tržišta, nabavke softvera,
naručivanja softvera, tenderi, razmatranje ponuda i slični, ali u ovom tekstu neće
biti reči o njima.

1.1 Planiranje

Poslovna analiza u fazi planiranja bavi se, pre svega, preciznom postavkom
i specifikovanjem zahteva, dok se modelovanje i dizajn bave razradom projekta
koji je definisan analizom zahteva. U fazi planiranja često se koriste različite dija-
gramske tehnike i specijalizovani alati koji podržavaju kreiranje ovakvih dijagrama
(takozvani CASE alati, engl. Computer Aided Software Engineering). Procesom
planiranja strateški rukovodi arhitekta čitavog sistema (engl. enterprise architect,
EA). Njegov zadatak je da napravi opšti, apstraktan plan svih procesa koji treba
da budu softverski podržani.

1.1.1 Analiza i specifikovanje problema
Proces analize i specifikovanja problema obično sprovodi poslovni analitičar

(engl. business analyst, BA), koji nije nužno informatičar, ali mora da poznaje rele-
vantne poslovne ili druge procese. Kada se softver pravi po narudžbini, za poznatog
kupca, u procesu analize i specifikovanja problema vrši se intenzivna komunikacija



Ele
ktr

on
ska

ver
zija

(20
25

)

3 1. Proces razvoja softvera

Slika 1.1: Faze razvoja softvera ilustrovane na šaljiv način

poslovnog analitičara sa naručiocima, krajnjim korisnicima ili njihovim predstav-
nicima. Kada se softver pravi za nepoznatog kupca, često u kompanijama ulogu
naručioca preuzimaju radnici zaposleni u odeljenju prodaje ili marketinga (koji ima-
ju ideju kakav proizvod bi kasnije mogli da prodaju).

U komunikaciji poslovnog analitičara sa naručiocima, često se najpre vrši analiza
postojećih rešenja (na primer, postojećeg poslovnog procesa u kompaniji koja uvodi
informacioni sistem) i razmatraju se mogućnosti njihovog unapređenja uvođenjem
novog softvera. Naručioci često nemaju informatičko obrazovanje, pa njihovi zahte-
vi koje softver treba da zadovolji mogu da budu neprecizni ili čak i kontradiktorni.
Zadatak poslovnog analitičara je da, u saradnji sa naručiocima, zahteve precizi-
ra i uobliči. Rezultat analize je opšta specifikacija problema koja opisuje problem
(na primer, poslovne procese) i željene funkcionalnosti programa, ali i potrebnu
efikasnost i druga svojstva.

Pored precizne analize zahteva, zadatak poslovne analize je i da proceni: obim
posla1 koji treba da bude urađen (potrebno je precizno definisati šta projekat treba
da obuhvati, a šta ne); rizike koji postoje (i da definiše odgovarajuće reakcije u

1Obim posla često se izražava u terminima broja potrebnih čovek-meseci (jedan čovek-mesec
podrazumeva da jedan čovek na projektu radi mesec dana).



Ele
ktr

on
ska

ver
zija

(20
25

)

1.1. Planiranje 4

slučaju da nešto pođe drugačije nego što je planirano); potrebne resurse (ljudske i
materijalne); očekivanu cenu realizacije projekta i njegovih delova; plan rada (po
fazama) koji je neophodno poštovati i slično.

Kada je problem precizno specifikovan, prelazi se na sledeće faze u kojima se
modeluje i dizajnira rešenje specifikovanog problema.

1.1.2 Modelovanje rešenja

Modelovanje rešenja obično sprovodi arhitekta rešenja (engl. solution archi-
tect, SA), koji mora da razume specifikaciju zahteva i da je u stanju da izradi
matematičke modele problema i da izabere adekvatna softverska rešenja, na pri-
mer, programski jezik, bazu podataka, relevantne biblioteke, strukture podataka,
algoritamska rešenja, itd.

Model može biti matematički model (na primer, optimizacioni model, sistemski
graf ili formalna specifikacija ponašanja), ali i simulacija, heuristički opis sistema,
pseudokod ili vizuelna skica koja oslikava osnovne funkcionalnosti i odnose me-
đu komponentama. U određenim domenima koriste se i posebni domen-specifični
jezici.

Cilj modelovanja rešenja je da se složeni problemi razlože na jasne logičke celine
koje se zatim mogu dalje precizirati kroz dizajn softverskog sistema. Model mora da
bude dovoljno precizan da se iz njega može izvesti dizajn, ali i dovoljno apstraktan
da omogući fleksibilnost u izboru konkretnih tehnologija.

Na primer, u sistemu za elektronsku narudžbinu hrane, rešenje može biti mo-
delovano kao relacija između korisnika, restorana i narudžbina, pri čemu tok na-
rudžbine predstavlja automat sa stanjima: „kreirana”, „potvrđena”, „u pripremi”, „u
dostavi”, „isporučena”.

Modelovanje rešenja je posebno važno u kompleksnim sistemima jer omogu-
ćava bolju komunikaciju među članovima tima i olakšava procenjivanje troškova,
složenosti i rizika implementacije.

Modelovanje rešenja fokusira se na razumevanje problema i njegovih ključnih
komponenti, dok dizajn detaljno opisuje kako će te komponente biti tehnički rea-
lizovane na konkretnoj platformi.

1.1.3 Dizajn softverskog rešenja

U procesu dizajniranja, arhitekta softvera (engl. software architect) vrši preci-
ziranje rešenja i opisuje arhitekturu softvera (engl. software architecture).



Ele
ktr

on
ska

ver
zija

(20
25

)

5 1. Proces razvoja softvera

Arhitektura softvera
Predstavlja celokupnu strukturu softvera i načine na koje ta struktura obez-
beđuje integritet sistema i željeni ishod projekta (ispravan softver, dobre
performanse, poštovanje rokova i uklapanje u planirane troškove). Arhitek-
tura softvera uključuje i komponente, njihove međusobne odnose i inter-
akcije, kao i principe i smernice koje vode dizajn i evoluciju softverskog
rešenja.

Dizajn razrađuje i pojmove koji su u ranijim fazama bili opisani nezavisno od
konkretnih tehnologija, dajući opšti plan kako sistem da bude izgrađen na konkret-
noj hardverskoj i softverskoj platformi. Tokom dizajna često se koriste neki unapred
ponuđeni obrasci (engl. design patterns) za koje je praksa pokazala da predstavljaju
kvalitetna rešenja za određenu klasu problema.

U jednostavnijim slučajevima (na primer kada softver treba da radi autonom-
no, bez korisnika i korisničkog interfejsa), dizajn može biti dat i u neformalnom
tekstualnom obliku ili u vidu jednostavnog dijagrama toka podataka tj. tokovnika
(engl. data flow diagram)2. U kompleksnijim slučajevima, koriste se standardizo-
vane grafičke notacije (kaže se i grafički jezici), poput UML (Unified Modeling
Language), koji omogućavaju modelovanje podataka, modelovanje poslovnih pro-
cesa i modelovanje softverskih komponenti.

Neke od osnovnih tema koje se razmatraju u okviru dizajna softvera su:

✽ Apstrahovanje (engl. abstraction) – apstrahovanje je proces generalizacije
kojim se odbacuju nebitne informacije tokom modelovanja nekog entiteta
ili procesa i zadržavaju samo one informacije koje su bitne za sâm softver.
Na primer, apstrahovanjem se uočava da boja očiju studenta nema nikakvog
značaja u informacionom sistemu fakulteta i ta informacija se onda odbacuje
prilikom predstavljanja studenta u sistemu.

✽ Profinjavanje (engl. refinement) – profinjavanje je proces razvoja programa
odozgo-naniže. Nerazrađeni koraci se tokom profinjavanja sve više precizi-
raju dok se na samom kraju ne dođe do sasvim preciznog opisa u obliku
funkcionalnog programskog koda. U svakom koraku jedan zadatak razlaže se
na sitnije zadatke. Na primer, u nekoj situaciji, zadatak koji obavlja funkci-
ja obradi_podatke_iz_datoteke() razlože se na zadatke koje obavljaju
funkcije otvori_datoteku(), procitaj_podatke(), obradi_podatke(),
zatvori_datoteku(), itd. Apstrahovanje i profinjavanje međusobno su su-
protni procesi.

✽ Dekompozicija (engl. decomposition) – cilj dekompozicije je razlaganje na
komponente koje je lakše razumeti, realizovati i održavati. Njen proizvod nije

2Ovi dijagrami ilustruju kako podaci teku kroz sistem i kako se izlaz izvodi iz ulaza kroz niz
funkcionalnih transformacija, ali ne opisuju kako ih treba implementirati. Notacija koja se koristi
u tokovnicima nije standardizovana, ali različite notacije su često veoma slične i intuitivne.



Ele
ktr

on
ska

ver
zija

(20
25

)

1.1. Planiranje 6

implementacija, već opis arhitekture softverskog rešenja. Postoje različiti pri-
stupi dekompoziji, obično u skladu sa programskom paradigmom koja će se
koristiti (na primer, objektno-orijentisana, funkcionalna, itd). Većina pristupa
teži razlaganju na komponente tako da se što više smanje njihove zavisnosti
(tako što unutrašnje informacije jednog modula nisu dostupne iz drugih) i da
se poveća kohezija (jaka unutrašnja povezanost) pojedinačnih komponenti.
Na primer, u funkcijski-orijentisanom dizajnu, svaka funkcija odgovorna je
samo za jedan zadatak i sprovodi ga sa minimalnim uticajem na druge funk-
cije. Rezultat dekompozicije često se prikazuje grafički, u vidu strukturnog
modela sistema koji opisuje veze između komponenti i njihovu hijerarhiju
(na svakom nivou hijerarhije, svakom čvoru koji nije list, odgovara nekoliko,
obično između dva i sedam, podređenih čvorova).

✽ Modularnost (engl. modularity) – softver se deli na komponente koje se na-
zivaju moduli. Svaki modul ima precizno definisanu funkcionalnost i poželjno
je da moduli što manje zavise jedni od drugih kako bi mogli da se koriste i u
drugim programima.

1.1.4 Objedinjeni jezik za modelovanje, UML dijagrami

Objedinjeni jezik za modelovanje, UML (eng. Unified Modeling Language)
dijagrami predstavljaju vizulenu tehniku za kreiranje dijagrama kojim se
opisuju zahtevi, akcije i fizička distribucija softverskog rešenja. UML je
standardizovani jezik za modelovanje softvera.

UML je pre svega grafički jezik, ali se može koristiti i u tekstualnom obliku.
Samo neki elementi se po standardu opisuju tekstualno. Postoji mnogo vrsta UML
dijagrama i ovde će biti prikazani samo neki od njih. Ipak, svi UML dijagrami se
mogu podeliti na:

✽ Strukturni dijagrami – prikazuju strukturu sistema i odnose između njegovih
komponenti. Primeri su dijagrami klasa, objekata, komponenti, rasporeda,
itd.

✽ Dijagrami ponašanja – prikazuju kako se sistem ponaša tokom izvršavanja.
Primeri su dijagrami aktivnosti, stanja, sekvenci, upotrebe, itd.

Strukturni dijagrami.



Ele
ktr

on
ska

ver
zija

(20
25

)

7 1. Proces razvoja softvera

Strukturni UML dijagrami predstavljaju statički prikaz softverskog sistema
i opisuju njegove elemente (klase, pakete, komponente, uređaje) i njihove
međusobne odnose. Za razliku od dijagrama ponašanja, oni ne sadrže infor-
maciju o vremenskom toku niti o dinamičkim promenama stanja. Koriste se
u svim fazama razvoja softvera – od analize do implementacije i isporuke.

Najčešće korišćeni strukturni dijagram je dijagram klasa. Dijagram klasa pri-
kazuje klase, njihove atribute i metode, kao i odnose kao što su nasleđivanje,
asocijacija, kompozicija, agregacija i zavisnost. Na primer, u sistemu za upravlja-
nje bibliotekama, klase Knjiga, Član i Zaduženje povezane su odnosima koji
odražavaju pravila zaduživanja knjiga (Slika 1.2).

Biblioteka

- naziv: String
- adresa: String

+ dodajKnjigu(k: Knjiga): void
+ ukloniKnjigu(k: Knjiga): void

Knjiga

- isbn: String
- naslov: String
- autor: String

+ dostupna(): bool
+ rezerviši(): void

«service» Notifikator

+ pošaljiPodsetnik(c: Član):
void

Osoba

- ime: String
- email: String

+ prijaviSe(): bool

Član

- id: int
- status: Status

+ zaduži(k: Knjiga): bool
+ razduži(k: Knjiga): void

Zaduženje

- datumOd: Date
- datumDo: Date

+ produži(d: int): void

StavkaZaduženja

- redniBroj: int

+ vrati(): void

1

0..*
1 1..*

11
1 0..*koristi

Slika 1.2: Primer strukturnog UML dijagrama klasa za sistem biblioteke (nasleđi-
vanje, asocijacija, kompozicija, agregacija i zavisnost).

Pored dijagrama klasa, postoje i drugi strukturni dijagrami kao što su: dijagrami
objekata, dijagrami komponenti, dijagrami rasporeda, dijagrami slučajeva upotrebe
i drugi. Dijagram slučajeva upotrebe grafički prikazuje funkcionalnosti softverskog
sistema kroz interakcije između korisnika (aktera) i osnovnih scenarija korišćenja.
Na višem nivou apstrakcije, fokus je na manjem broju generalizovanih, poslovnih
scenarija koji opisuju glavne uloge pojedinačnih grupa korisnika.



Ele
ktr

on
ska

ver
zija

(20
25

)

1.2. Metodologije razvoja softvera 8

Dijagram sekvence.

Dijagram sekvence prikazuju ponašanje sistema u odnosu na vremenski
redosled događaja, odnosno način na koji objekti međusobno komuniciraju
kroz vreme u procesu izvršavanja neke aktivnosti. On jasno ilustruje koji
subjekti ili objekti učestvuju u određenim koracima, kojim redosledom se
aktivnosti odvijaju, kao i kako se odgovornosti prenose između njih.

Dijagram sekvence se prikazuje u dve dimenzije – vertikalna i horizontalna di-
menzija (Slika 1.3). Vertikalna osa označava protok vremena (odozgo nadole), dok
horizontalna osa predstavlja različite objekte uključene u interakciju. Svaki obje-
kat je predstavljen vertikalnom linijom (životni vek objekta), na kojoj se aktivnosti
objekta prikazuju uskim pravougaonicima. Aktivnosti počinju prijemom poruke i
završavaju se njenom obradom. Ukoliko se objekat kreira tokom sekvence, to se
označava porukom tipa create, a uništenje objekta prikazuje se simbolom „X” na
kraju njegove linije aktivnosti.

Razmena poruka između objekata prikazana je horizontalnim strelicama. Poru-
ke mogu biti sinhrone ili asinhrone, pri čemu sinhrone poruke impliciraju čekanje
odgovora pre nastavka aktivnosti. Rezultat akcije se prikazuje povratnom strelicom,
koja nije obavezna osim u situacijama gde je rezultat značajan za tok događaja.

Na primer, dijagram sekvence može detaljno ilustrovati proces autentifikacije
korisnika u sistemu, uključujući slanje upita bazi podataka, validaciju kredencijala
i generisanje autentifikacionog tokena.

Dijagrami sekvence pružaju jasan vizualni prikaz interakcija, čime pomažu ra-
zumevanju tokova, definisanju interfejsa metoda, kao i pronalaženju eventualnih
problema i optimizaciji sistema.

1.2 Metodologije razvoja softvera

I u teoriji i u praksi postoje mnoge metodologije razvoja softvera. U praksi su
one često pomešane i često je teško striktno razvrstati stvarne projekte u posto-
jeće metodologije. U nastavku je opisano nekoliko često korišćenih metodologija i
ključnih ideja na kojima su zasnovane.

1.2.1 Metodologija vodopada

Metodologija vodopada je najstarija metodologija. Prvi put formalno je opisana
1970. godine, iako je praksa postojala i ranije, još od pedesetih godina prošlog veka.
Vodopad metodologija je bila standard u industriji softvera tokom 70-ih i 80-ih
godina posebno u velikim organizacijama kao što su vlade i velike korporacije. U
strogoj varijanti ove tradicionalne metodologije na sledeću fazu u razvoju softvera
prelazi se tek kada je jedna potpuno završena (slika 1.4):



Ele
ktr

on
ska

ver
zija

(20
25

)

9 1. Proces razvoja softvera

Korisnik
Netflix

aplikacija
Servis za

autentifikaciju
Servis za

reprodukciju

Pokreni reprodukciju

prijava(email,
lozinka)

token

zahtevReprodukcije(videoId,
token)

Sesija
strima

kreiraj (sessionId)

Plan strima
(manifest)

dohvatiSegment(i)
(ponavljaj)

segment[i]

Zaustavi reprodukciju

zatvori(sessionId)

vr
em

e

Slika 1.3: Primer dijagrama sekvence aplikacije za reprodukciju video sadrzaja.

✽ zahtevi: Skupljanje svih korisničkih zahteva, njihovo dokumentovanje i odo-
bravanje od strane relevantnih strana;

✽ dizajn: Razrada tehničke arhitekture i specifikacija koje će se koristiti tokom
implementacije;

✽ implementacija: Pisanje koda prema specificiranom dizajnu i zahtevima;

✽ testiranje: Verifikacija i validacija da sistem funkcioniše prema zahtevima;



Ele
ktr

on
ska

ver
zija

(20
25

)

1.2. Metodologije razvoja softvera 10

✽ integracija: Kombinovanje različitih modula u jedinstven sistem i verifikacija
njihove međusobne kompatibilnosti;

✽ održavanje: Faza nakon isporuke gde se ispravljaju greške i dodaju potrebne
nadogradnje.

Ova metodologija se smatra primenljivom ako su ispunjeni sledeći uslovi:

✽ svi zahtevi poznati su unapred i njihova priroda ne menja se bitno u toku
razvoja;

✽ zahtevi su u skladu sa očekivanjima svih relevantnih strana (investitori, kori-
snici, realizatori, itd.);

✽ zahtevi nemaju nerazrešene, potencijalno rizične faktore (na primer, rizike
koji se odnose na cenu, tempo rada, efikasnost, bezbednost, itd);

✽ pogodna arhitektura rešenja može biti opisana i podrobno shvaćena;

✽ na raspolaganju je dovoljno vremena za rad u etapama.

Analiza i specifikovanje problema

Modelovanje rešenja

Dizajn softverskog rešenja

Implementacija

Analiza efikasnosti i ispravnosti

Izrada dokumentacije

Obuka i tehnička podrška

Puštanje u rad

Održavanje

Slika 1.4: Ilustracija za metodologiju vodopada

Ova metodologija koristi se obično u veoma velikim timovima. Detaljna doku-
mentacija za sve faze je neophodna što je korisno u velikim i kompleksnim projekti-
ma. Prednosti ove metodologije su jasna struktura jer osigurava da se svaki aspekt
detaljno analizira pre nego što se krene sa sledećom fazom.



Ele
ktr

on
ska

ver
zija

(20
25

)

11 1. Proces razvoja softvera

Metodologija ne predviđa modifikovanje prethodnih faza jednom kada su za-
vršene i ova osobina, krutost metodologije, predmet je najčešćih kritika. Često,
klijentu je veoma teško da eksplicitno na početku projekta odredi sve zahteve. Iz-
rada aplikacija često traje toliko dugo da se zahtevi promene u međuvremenu i
završni proizvod više nije sasvim adekvatan a ponekad ni uopšte upotrebljiv. Ko-
risnici (klijenti) se obično uključuju samo na početku (za zahteve) i na kraju (za
prihvatanje), što može dovesti do neslaganja između korisničkih očekivanja i ispo-
ručenog proizvoda. Dodatno, postoje problemi i u fazi razvoja kada članovi tima
moraju da čekaju izradu zadataka od kojih njihov rad zavisi. Vreme potrošeno
čekajući da se zadatak odblokira nekada bude veće od produktivnog vremena.

Metodologija vodopada se danas retko koristi, mada može biti korisna kod pro-
jekta sa veoma jasnim i nepromenljivim zahtevima kao što su sistemi sa visokim
nivom rigidnosti (na primer, medicinski uređaji ili avijacija). Poznato je da NA-
SA koristi metodologiju vodopada u okviru izrade softvera za svemirski šatl, što
je opravdano imajući na umu da su zahtevi i analiza za ovakav softver unapred
striktno i jasno definisani. Postoje varijante metodologije vodopada (na primer,
V-metodolologija) koje se češće koriste.

1.2.2 Metodologija iterativnog i inkrementalnog razvoja

U ovoj metodologiji, opisanoj prvi put šezdesetih i sedamdesetih godina prošlog
veka (ilustrovanoj slikom 1.5), razvoj se sprovodi u iteracijama i projekat se gradi
inkrementalno. Iteracije obično donose više detalja i funkcionalnosti, a inkremen-
talnost podrazumeva dodavanje jednog po jednog modula, pri čemu i oni mogu
biti modifikovani ubuduće. U jednom trenutku, više različitih faza životnog ciklusa
softvera može biti u toku. U ovoj metodologiji vraćanje unazad je moguće.

Inicijalno planiranje Planiranje Implementacija

Evaluacija Eksploatacija

Slika 1.5: Ilustracija za iterativnu metodologiju



Ele
ktr

on
ska

ver
zija

(20
25

)

1.2. Metodologije razvoja softvera 12

1.2.3 Metodologija rapidnog razvoja

U ovoj metodologiji (engl. rapid application development), opisanoj sedamde-
setih i osamdesetih godina prošlog veka, faza planiranja svedena je na minimum
zarad brzog dobijanja prototipova u iteracijama. Faza planiranja preklapa se sa
fazom implementacije što olakšava izmene zahteva u hodu. Proces razvoja kreće
sa razvojem preliminarnog modela podataka i algoritama, razvijaju se prototipovi
na osnovu kojih se definišu, preciziraju ili potvrđuju zahtevi naručioca ili korisnika.
Ovaj postupak ponavlja se iterativno, sve do završnog proizvoda. Aplikaciju prati
vrlo ograničena dokumentacija.

Ova metodologija ponekad može dovesti do niza prototipova koji nikada ne do-
stižu do zadovoljavajuće finalne aplikacije. Čest izvor takvih problema su grafički
korisnički interfejsi (engl. graphical user interface; GUI). Naime, korisnici napredak
u razvoju aplikacije doživljavaju prvenstveno kroz napredak grafičkog korisničkog
interfejsa. To podstiče programere, pa i vođe projekata, da se u prototipovima
usredsređuju na detalje grafičkog interfejsa umesto na druge segmente aplikacije
(kao što su, na primer, poslovni procesi i obrada podataka). Čak i mnogi razvojni
alati privilegovano mesto u razvoju softvera daju razvoju grafičkih interfejsa. Ova-
kav razvoj aplikacije često dovodi do niza prototipova sa razrađenim korisničkim
interfejsom, ali bez adekvatnih obrada koje stoje iza njega.

Ova metodologija pogodna je za razvoj softvera za sopstvene potrebe ili za
potrebe ograničenog broja korisnika.

1.2.4 Spiralna metodologija

Ova metodologija (opisana prvi put krajem osamdesetih godina prošlog veka)
kombinuje analizu rizika sa drugim metodologijama kao što su metodologija vo-
dopada i metodologije iterativnog razvoja. Spirala koja ilustruje ovu metodologiju
(prikazana na slici 1.6) prolazi više puta kroz faze kao što su planiranje, implemen-
tacija i evaluacija tekućeg verzije, kao i analiza rizika. Različite faze ne sprovode se
istovremeno, već jedna za drugom. Prvi prototip pravi se na osnovu preliminarnog,
pojednostavljenog dizajna i predstavlja samo aproksimaciju finalnog proizvoda. Na
kraju svake iteracije, prototip se evaluira, analiziraju se njegove dobre i loše stra-
ne, profinjuje specifikacija za sledeću iteraciju i analiziraju se rizici (rizici koji se
odnose na bagove, na cenu, tempo rada, efikasnost, bezbednost, itd). Na primer,
planiranje dodatnog testiranja smanjuje rizik od neispravnog proizvoda, ali može da
uveća cenu ili da nosi rizik zakasnelog izlaska na tržište. Ako neki rizik ne može biti
eliminisan, naručilac mora da odluči da li se sa projektom nastavlja ili ne. Ukoliko
se sa projektom nastavlja, ulazi se u sledeću iteraciju.

1.2.5 Agilna metodologija razvoja

Agilne metodologije su upotrebi od devedesetih godina prošlog veka a trenutno
su verovatno najpopularnije.



Ele
ktr

on
ska

ver
zija

(20
25

)

13 1. Proces razvoja softvera

Eksploatacija

Analiza rizika

Prototipovi

Pregled

Definisanje
ciljeva

Identifikovanje i
razrešavanje rizika

Planiranje
sledeće iteracije

Implementacija i
evaluacija

Slika 1.6: Ilustracija za spiralnu metodologiju

Agilne metodologije
Stavlja fokus na zadovoljstvo korisnika i zato se podstiče rana i inkremetalna
isporuka softvera u vidu iteracija sa minimalnim dodavanjem funkcionalno-
sti u kratkim vremenskim intervalima (obično od jedne do četiri nedelje).

Na ovaj način se teži minimizovanju rizika, kao što su bagovi, prekoračenje
budžeta ili izmena zahteva. Dodatne smernice za razvoj daju prioritet isporuci
naspram analize i dizajna (iako ove aktivnosti nisu obeshrabrene).

Radi se u malim, visokomotivisanim timovima koji su samoorganizovani i imaju
kontrolu nad odlukama o projektu. Agilne metodologije zahtevaju permanentnu
komunikaciju, poželjno uživo (zbog čega, međutim, ne ostaje mnogo pisanog traga
o progresu niti pisane dokumentacije).

Agilne metode su razvijene u nastojanju da se prevaziđu uočene slabosti kon-
vencionalnog razvoja softvera. Agilni razvoj može doneti važne prednosti, ali nije
primenjiv na sve projekte, sve proizvode, sve ljude i sve situacije. U današnjem
vremenu često je teško ili nemoguće predvideti kako će se softver razvijati kako
vreme prolazi. Potrebe krajnjih korisnika se menjaju, a novi konkurentski proizvodi
i rešenja pojavljuju se nekada iznenada, bez upozorenja. Zato, u mnogim situacija-
ma nije moguće u potpunosti definisati specifikacije pre početka projekta i razvoj
softvera mora biti dovoljno agilan da bi se prilagodio novim, promenjenim zahte-
vima. Sa druge strane, promene su skupe. Jedna od najprivlačnijih karakteristika
agilnog pristupa je njegova sposobnost da smanji troškove promena tokom celog
softverskog procesa.



Ele
ktr

on
ska

ver
zija

(20
25

)

1.2. Metodologije razvoja softvera 14

Manifest agilne metodologije je osnovni dokument koji opisuje principe i vred-
nosti agilnog razvoja softvera. Kreiran je 2001. godine od strane grupe programera
i ima dvanaest jednostavnih principa, kao što su: glavna mera napretka je upotre-
bljivost raspoloživog softvera, održivi razvoj, neprekidna usredsređenost na dobar
dizajn, pojedinci i interakcije pre procesa i alata, funkcionalan softver pre obimne
dokumentacije, odgovor na promene pre nego praćenje plana, itd.

Jedan od ciljeva ove metodologije je u ranom otkrivanju i ispravljanju propusta
i neusklađenih očekivanja. Svaka iteracija odnosi se na minijaturni softverski proi-
zvod sa svim uobičajenim fazama razvoja (koje se izvršavaju istovremeno). Svaku
iteraciju potrebno je završiti na vreme i dobiti saglasnost naručioca. Za razliku od
rapidne metodologije, u okviru koje se, u iteracijama, razvijaju nekompletni pro-
totipovi, u agilnoj metodologiji, nakon nekih iteracija softver može biti isporučen
naručiocu (ili na tržište) iako nema upotpunjenu funkcionalnost.

Agilna metodologija u mnogim je aspektima razvoja softvera uopštena, te po-
stoji više vidova ove metodologije koji preciziraju neke njene aspekte, uključujući
skram i ekstremno programiranje.

Skram

Skram
Skram (engl. scrum) je vid agilne metodologije u kojem se neposredna,
praktična iskustva koriste u upravljanju izazovima i rizicima. Skram razvoj
se sastoji od jednog ili više Skram timova, pri čemu svaki Skram tim čine
tri uloge: vlasnik proizvoda, skram master i razvojni tim (Slika ??).

Softverski proizvod sve vreme se održava u stanju koje se potencijalno može
isporučiti. Vreme je podeljeno u kratke intervale, „sprintove“, obično duge samo
jedan mesec ili kraće i na kraju svakog sprinta svi akteri i članovi tima sastaju
se da razmotre stanje projekta i planiraju dalje korake. Skram ima jednostavan
skup pravila, zaduženja i sastanaka koji se, zarad jednostavnosti i predvidivosti,
nikad ne menjaju. Postoje sastanci na početku i kraju svakog sprinta, ali i kratki,
petnaestominutni dnevni sastanci („dnevni skram“).

SLIKA ROLA
SLIKA AKTIVNOSTI

Vlasnik proizvoda (engl. product owner) je koja poseduje celovito razumevanje
projekta i autoritetom koja usmerava članove tima. Vlasnik proizvoda ima
ključnu ulogu u osiguravanju sveukupnog uspeha rešenja koje se razvija ili
održava. Njegova osnovna odgovornost je da odredi šta će biti razvijeno i
kojim redosledom. U tom smislu, vlasnik proizvoda nadgleda, a to uključuje
kreiranje, redefinisanje, procenu i prioritizaciju spiska zahteva (eng. scrum
backlog). Time vlasnik proizvoda osigurava da se donose dobre finansijske



Ele
ktr

on
ska

ver
zija

(20
25

)

15 1. Proces razvoja softvera

odluke na svim nivoima – od planiranja verzije proizvoda koja će biti obja-
vljena, ali i sprinta pa do samog spiska zahteva proizvoda. Takođe, na kraju
svakog sprinta, vlasnik proizvoda je odgovoran za odluku o tome da li će se
finansirati sledeći sprint.

Kako bi ispunio ove odgovornosti, vlasnik proizvoda mora balansirati dve
ključne uloge. S jedne strane, on predstavlja naručioce – kupce i korisnike
i njegova uloga je da razume njihove potrebe i prioritete. Sa druge strane,
on komunicira i sa razvojnim timom. On definiše kriterijume za prihvatanje
funkcionalnosti koje se razvijaju i osigurava da se sprovode testovi kako bi se
ti kriterijumi proverili. Tako da je on delom i poslovni analitičar, ali i tester.

Ključno je da vlasnik proizvoda proverava kriterijume za prihvatanje proizvo-
da tokom izvođenja sprinta, umesto da čeka na kraj sprinta. Funkcionalnosti
se testiraju čim su završene i vlasnik proizvoda može brzo da identifikuje
greške i nesporazume, i tako da omogućavajući timu da te probleme reši pre
kraja sprinta.

Skram master (engl. scrum master) je osoba koja olakšava komunikaciju između
vlasnika proizvoda i tima. Skram master pomaže timu i organizaciji da se
pridržavaju skram vrednosti i principa. Oni vode tim kroz rešavanje problema
i uklanjanje prepreka, radi poboljšanja skram procesa i štite tim od spoljašnjih
ometanja. Skram master nije tradicionalan menadžer tima i ne vrši kontrolu.

Razvojni tim je samoorganizovana, multidisciplinarna grupa odgovorna za dizajn,
izgradnju i testiranje proizvoda. Tim obično ima od pet do devet članova,
uključujući osobe sa različitim veštinama kao što su programiranje, testiranje
i dizajn korisničkog interfejsa. Ova raznolikost osigurava da tim poseduje
sve potrebne veštine da isporuči visokokvalitetan, funkcionalan softver, bez
potrebe da se oslanja na druge timove ili da prenosi posao, što često vodi do
nesporazuma i kašnjenja.

Tokom izvršenja sprinta, tim sarađuje kako bi stavke iz liste zahteva pretvo-
rio u potencijalno isporučive funkcionalnosti. Oni sami organizuju svoj rad,
planiraju, upravljaju i realizuju zadatke, uz održavanje redovne komunikacije
kroz dnevne sastanke. Ovi dnevni sastanci omogućavaju timu da pregleda
napredak, prilagodi planove i osigura usklađenost sa ciljem sprinta. Na po-
četku svakog sprinta, učestvuju u planiranju sprinta sa vlasnikom proizvoda
i skram masterom kako bi odredili najvažnije stavke liste zahteva koje treba
obraditi, osiguravajući usklađenost tima sa ukupnim ciljevima projekta.

Razvojni tim takođe igra ključnu ulogu u anaiziranju sprinta, gde ceo skram
tim i zainteresovane strane procenjuju obavljeni posao i identifikuju oblasti za
poboljšanje. Radom u kratkim, iterativnim ciklusima, tim može kontinuirano
unapređivati proizvod, kao i svoje procese, osiguravajući stalno poboljšanje i
prilagođavanje. Tim radi transparentno, otvoreno deli informacije i zajedno
rešava probleme kako nastaju. Naglasak je na zajedničkoj odgovornosti za
obavljene zadatke, jer rezultat rada zavisi od celog tima.



Ele
ktr

on
ska

ver
zija

(20
25

)

1.3. Ekspoloatacija 16

Ekstremno programiranje je vid agilne metodologije u kojem su posebno va-
žne jednostavnost, motivacija i kvalitetni odnosi unutar tima. Programeri rade u
parovima (dok jedan programer piše kôd, drugi pokušava da pronađe i ukaže na
eventualne greške i nedostatke) ili u većim grupama, na kodu jednostavnog dizajna
koji se temeljno testira i unapređuje tako da odgovara tekućim zahtevima. U ek-
stremnom programiranju, sistem je integrisan i radi sve vreme (iako svesno nema
potpunu funkcionalnost). Svi članovi tima upoznati su sa čitavim projektom i pišu
kôd na konzistentan način, te svako može da razume kompletan kôd i da radi na
svakom delu koda. U ekstremnom programiranju, faze se sprovode u veoma malim
koracima i prva iteracija može da dovede, do svesno nepotpune ali funkcionalne
celine, već za jedan dan ili nedelju. Zahtevi se obično ne mogu u potpunosti utvrditi
na samom početku, menjaju se tokom vremena, te naručilac treba da konstantno
bude uključen u razvojni tim. Naručiocu se ne prikazuju samo planovi i dokumenti,
već konstantno i (nekompletni, nesavršeni, ali funkcionalni) softver. Dokumentacija
mora da postoji, ali se izbegava preobimna dokumentacija.

1.3 Ekspoloatacija

U fazi eksploatacije softver se uvodi u rad (eng. deployment) i održava u stabil-
nom, bezbednom i predvidljivom režimu. Uvođenje u rad obuhvata isporuku nove
verzije u ciljno okruženje (npr. oblak ili lokalna infrastruktura), uz upravljanje kon-
figuracijom, zavisnostima i mogućnošću brzog povratka na prethodnu verziju ako
se pojave problemi. Savremeni procesi se oslanjaju na automatizovane cevovode
izgradnje i isporuke (eng. CI/CD): kontinuirana integracija automatizuje izgradnju
i testiranje svake promene koda, dok kontinuirana isporuka/puštanje u rad omo-
gućava bezbedno i često objavljivanje novih verzija, uz smanjenje rizika i vremena
između promene i korisničke vrednosti.

Nakon puštanja u rad, neophodno je praćenje nakon uvođenja (eng. post-
deployment monitoring): prikupljanje podataka , dnevnika rada (eng. logs) radi
ranog otkrivanja degradacije performansi, regresija i incidenata, uz pragove, alar-
me i jasno definisane ciljeve kvaliteta usluge. Uvode se strategije oporavka, kontrola
pristupa, redovno ažuriranje, kao i provera ranjivosti. Na kraju, upravljanje krajem
životnog veka (eng. end-of-life management) obuhvata planirano gašenje ili mi-
graciju sistema: pravovremenu komunikaciju sa korisnicima, arhiviranje i zaštitu
podataka, usklađenost sa propisima i planiranje zamena, čime se smanjuju tehnički
dug i operativni rizik.

1.4 Alati i tehnike korišćeni u razvoju softvera

1.4.1 Alati za upravljanje projektima
Upravljanje softverskim projektima obuhvata planiranje, organizaciju, praćenje

i kontrolisanje svih aspekata procesa razvoja. To podrazumeva pažljivo upravljanje
ljudima (timovima i pojedincima), procesima (metodologije, radni tokovi, standar-



Ele
ktr

on
ska

ver
zija

(20
25

)

17 1. Proces razvoja softvera

di) i problemima (zahtevi, ograničenja, rizici) u cilju postizanja optimalnog balansa
između kvaliteta, vremena i troškova. U okviru takvog pristupa, ključni pojmo-
vi uključuju korišćenje softverskih metrika, adekvatnu procenu obima i složenosti
projekta, identifikaciju i upravljanje rizicima, pravovremeno kreiranje rasporeda ak-
tivnosti, kontinuirano održavanje i reinženjering postojećih softverskih rešenja.

Alati za upravljanje projektima nisu samo pasivni podsetnici, već i aktivni me-
hanizmi podrške za donošenje odluka i evaluaciju napretka. Pored klasičnih funk-
cionalnosti dodele zadataka, definisanja rokova i organizovanja timskog rada, ovi
alati omogućavaju praćenje softverskih metrika (na primer, broj završenih zadataka
u jedinici vremena, stepen pokrivenosti testovima, broj otvorenih bagova) koji se
mogu koristiti za bolju kontrolu kvaliteta, povećanje produktivnosti i optimizaciju
procesa razvoja. Na osnovu takvih metrika moguće je generisati procene troškova
i trajanja projekta, kao i pratiti da li projekat napreduje u skladu sa planiranim
rasporedom.

Postoje alati koji pomažu u rukovanju rizicima, pomažu da se ricici identifiku-
ju, ali i da se izbegnu neplanirani troškovi, kašnjenja ili pad kvaliteta isporučenog
softvera. Takvi alati prate istoriju razvoja i generišu projektne metrike koje se mo-
gu koristiti za rano uočavanje trendova ili indikatora problema, što omogućava
pravovremene akcije da bi se problemi spremičili ili ublažili.

Na tržištu se ističu brojni alati koji podržavaju sve ove aspekte projektnog me-
nadžmenta. Među najpopularnijim su Jira, koja omogućava napredne mogućnosti
izveštavanja, detaljnu integraciju sa sistemima za kontrolu verzija i metodologijama
kao što su skram ili kanban, i Trello, intuitivna i vizuelno jednostavna platforma
idealna za manje timove i agilne procese, gde je brz i lak pregled stanja zadataka
od suštinskog značaja.

1.4.2 Sistemi za kontrolu verzija

Sistemi za kontrolu verzija (eng. version control systems – VCS) su ključni alati
u razvoju softvera za praćenje promena, saradnju i upravljanje istorijom projekta.
Među njima, Git je najpopularniji i najšire korišćen. Ovi sistemi su poznati i pod
drugim imenima, recimo kao menadžer izvornog koda (eng. Source Code Mana-
gement – SCM) ili kao sistem za kontrolu revizija (eng. Revision Control System
– RCS). Bez obzira na terminologiju, cilj ostaje isti: čuvati sadržaj, beležiti sve
promene i omogućiti pristup različitim verzijama.

Prilikom rada na projektu veoma je važno osigurati čuvanje rezervne kopije
projekta jer može doći do gubitka podataka usled greške u kodu ili kvara diska.
Održiva i pouzdana strategija čuvanja rezervene kopije projekta obično uključuje
i kontrolu verzija omogućavajući programerima praćenje i upravljanje revizijama.
Repozitorijum je centralizovano skladište gde se čuva sav izvorni kod projekta
zajedno sa istorijom svih izmena. Repozitorijum sadrži:

Verzije datoteka – Sve datoteke i dokumenti projekta, ali i sve njihove različite
verzije obeležene i datumom i vremenom kada je neka verzija napravljena.



Ele
ktr

on
ska

ver
zija

(20
25

)

1.4. Alati i tehnike korišćeni u razvoju softvera 18

Istorija izmena – Evidencija o svakoj promeni koja je napravljena u kodu, uklju-
čujući ko je napravio promenu, kada je promena napravljena, kao i opis pro-
mene. Ove izmene ujedno predstavljaju i formalan način komunikacije između
članova tima koji rade na istom projektu.

Grane – Različite verzije koda koje se mogu razvijati paralelno i na taj na-
čin je omogućeno istovremeno razvijanje različitih funkcionalnosti ili verzija
projekta.

Repozitorijum omogućava timovima da efikasno sarađuju, prate promene i vrše
integraciju različitih delova koda na kontrolisan način.

U početku, upravljanje skladištem je bila ključna funkcija sistema za kontrolu
verzija, smanjujući prostor na disku potreban za održavanje svih verzija. Kada se
kreira nova verzija, čuva se samo razlika između nje i prethodne verzije (delta).
U okviru repozitorijuma se čuvaju sve delte (izmene) nad projektom. Te delte,
kada se primene na osnovnu verziju, ponovo kreiraju ciljnu verziju. Obično i na
repozitorijumu i na lokalnom računaru na kom programer radi na projektu se čuva
najnovija, poslednja verzija, a korišćenjem delti je moguće kreirati ranije verzije.

U timskom razvoju softvera, različiti članovi tima često rade na istoj kompo-
nenti istovremeno. U ovakvim okolnostima važno je izbeći sukobe između njihovih
promena. Sistemi za kontrolu verzija koriste model javnog repozitorijuma i privat-
nog radnog prostora. Programeri preuzimaju komponente iz repozitorijuma u svoj
privatni radni prostor, prave promene, a zatim ih vraćaju nazad. Ako više ljudi radi
na jednoj komponenti, sistem upozorava ostale i osigurava da izmenjene komponen-
te dobiju različite identifikatore verzija, kao i integraciju svih izmena u jedinstven
kod. Dodatno, programerima je omogućeno da dodaju opise svojih izmena, tako
da svi članovi tima mogu da razumeju zbog čega je neka promena nastala. Ovo
je često poželjno, a zapravo u mnogim organizacijama i obavezan korak prilikom
unosa izmena u kod.

Dodatno, sistemi za kontrolu verzija često imaju pridružene i dodatne alate za
analizu koda. Na primer, alati koji formatiraju kod, alati za statičku analizu koda
koji otkrivaju potencijalne greške, i alati za kontinualnu integraciju koji automatski
prevode i testiraju kod. Kod koji ne može da se prevede ili ne prolazi sve testove
obično se ne može ni postaviti na glavni ili javni repozitorijum.

Veoma često, deo sistema za kontrolu verzija je i proces revizije koda (eng. code
review). Pre nego što se izmene unesu u glavni repozitorijum, drugi programeri,
članovi tima, ili supervizori pregledaju predložene izmene. Tokom ove revizije, oni
analiziraju kvalitet, efikasnost, sigurnost i održivost koda. Nakon što se utvrdi da
je kod u skladu sa standardima projekta i da nema kritičnih grešaka, odobrava se
integracija izmena u glavni repozitorijum.

Kao što je već rečeno, najpoznatiji i najšire korišćen sistem za kontrolu verzija
je Git. Git je distribuirani sistem za kontrolu verzija, što znači da svaki korisnik
ima punu kopiju istorije repozitorijuma, što omogućava rad van mreže i veću ot-
pornost na greške. Pored Gita, postoje i drugi sistemi za kontrolu verzija, kao što
su Subversion (SVN) i Mercurial. SVN je centralizovani sistem, što znači da postoji



Ele
ktr

on
ska

ver
zija

(20
25

)

19 1. Proces razvoja softvera

jedan centralni repozitorijum kojem korisnici pristupaju. Ovo olakšava centralizova-
nu kontrolu i nadzor, ali može biti manje fleksibilno u poređenju sa distribuiranim
sistemima kao što je Git. Mercurial je takođe distribuirani sistem, sličan Gitu, ali
je Git poznat po jednostavnosti korišćenja i brzini.

Linux kernel je razvijan pomoću BitKeepera, komercijalnog alata za kontrolu
verzija. Godine 2005. kompanija koja poseduje BitKeeper odlučila je da više ne do-
zvoljava besplatno korišćenje alata. Linux zajednica je morala da pronađe drugačije
rešenje. Linus Torvalds je tražio besplatan alat koji bi zadovoljio sve potrebe za
razvoj Linux kernela, pa je osmislio i razvio Git zajedno sa grupom programera. Git
je morao da zadovolji nekoliko ključnih zahteva:

✽ Distribuiran razvoj: Omogućiti paralelan i nezavisan razvoj u privatnim re-
pozitorijumima bez stalne potrebe za sinhronizacijom sa centralnim repozito-
rijumom. Programeri mogu raditi na različitim lokacijama, čak i van mreže,
uz istovremeno omogućavanje hiljadama programera da rade na istom pro-
jektu. Svaki repozitorijum ima kompletnu istoriju svih promena.

✽ Brzina i efikasnost: Da bi se uštedelo na prostoru i skratilo vreme prenosa,
korišćene su kompresije i đelta"tehnika. Distribuirani model umesto centrali-
zovanog modela osigurao je da kašnjenje mreže ne ometa svakodnevni razvoj.

✽ Pouzdanost: Pošto je Git distribuirani sistem za kontrolu revizija, važno je
imati apsolutnu sigurnost da je integritet podataka očuvan. Git koristi krip-
tografsku hash funkciju SHA1 (eng. Secure Hash Function) za imenovanje
i identifikaciju objekata u svojoj bazi podataka, što osigurava integritet i
poverenje u distribuirane repozitorijume.

✽ Preuzimanje odgovornosti: Ključni aspekt sistema za kontrolu verzija je
znati ko je promenio datoteke i, ako je moguće, zašto. Git nameće vođenje
evidencije o izmenama pri svakom menjanju datoteke.

✽ Nepromenljivost: Git-ova baza podataka repozitorijuma sadrži objekte koji
su nepromenljivi. To znači da, kada su kreirani i smešteni u bazu podataka,
ne mogu biti izmenjeni. Dizajn Git baze podataka znači da je cela istorija koja
se nalazi unutar baze podataka za kontrolu verzija takođe nepromenljiva.

✽ Atomske transakcije: Niz promena koje treba da se obave se obavljaju sve
zajedno ili se uopšte ne obavljaju. To znači da ako prilikom unosa izmena se
desi da mrežna veza se prekine ili server prestane da radi, izmene neće biti
delimično primenjene i na taj način ostaviti datoteku u neispravnom stanju.

✽ Grane: Omogućiti paralelno razvoj različitih grana u okviru kojih se mogu
razvijati različite funkcionalnosti. Omogućiti i spajanje grana u jednu.

✽ Slobodan za korišćenje.

Ima mnogo različitih načina za korišćenje Gita. U ovoj knjizi Git se koristi putem
komandne linije. Komandna linija je jedino mesto gde možete pokrenuti sve Git



Ele
ktr

on
ska

ver
zija

(20
25

)

1.4. Alati i tehnike korišćeni u razvoju softvera 20

komande – većina GUI-ja implementira samo delimičan skup Git funkcionalnosti
radi jednostavnosti i izbor grafičkog klijenta je stvar ličnog ukusa.

Osnovni pojmovi i tokovi rada u Git-u

Repozitorijumi (eng. repositories). Repozitorijum je „projekat sa memori-
jom“: pored samih fajlova (koda, slika, dokumentacije), on čuva i istoriju izmena
— ko je šta menjao i kada, kao i informacije o granama i verzijama. Te informacije
Git smešta u poseban direktorijum .git, koji se nalazi unutar projekta, pa se zato
repozitorijum može posmatrati kao običan folder proširen mehanizmom za praćenje
promena.

Repozitorijum može postojati lokalno (na računaru) i udaljeno (na zajedničkom
serveru). Lokalna kopija omogućava rad i bez interneta, dok udaljeni repozitorijum
(eng. remote) služi da članovi tima razmenjuju promene i imaju zajedničko mesto
na kome se čuva „zvanična“ verzija projekta. Novi repozitorijum se pravi komandom
git init, a postojeći se preuzima komandom git clone.

Revizije (eng. commits). Revizija (eng. commit) je zapis jedne smislene pro-
mene u projektu: predstavlja trenutak u kome kažemo „ovo je sada novo, stabilno
stanje u odnosu na malopre“. Svaka revizija ima kratku poruku koja opisuje šta je
urađeno, podatke o autoru i vremenu, kao i jedinstveni identifikator (heš) pomoću
koga se tačno zna na koju se reviziju mislilo. Niz revizija čini istoriju projekta, pa
se u svakom trenutku može videti kako je projekat nastajao i po potrebi vratiti na
neko ranije stanje.

Pravljenje revizije se obično radi u dva koraka. Najpre se izaberu fajlovi (ili
delovi izmena) koje želimo da uđu u sledeću reviziju komandom git add, a zatim
se ta promena zabeleži komandom git commit. Ovaj pristup pomaže da revizije
budu „čiste“ i tematski jasne, umesto da se mnogo nepovezanih izmena nađe u
jednom zapisu. Istorija se pregledava komandom git log, dok se razlike između
verzija ili lokalnih izmena vide komandom git diff.

Grane (eng. branches). Grana je „radna verzija“ projekta u kojoj se razvija
određena funkcionalnost, ispravlja greška ili radi eksperiment, bez uticaja na glavnu,
stabilnu verziju (najčešće granu main). Ideja je jednostavna: dok je posao u toku
i još nije spreman, on se drži odvojeno; kada bude završen i proveren, promene se
prenose u glavnu granu postupkom spajanja (eng. merge). Na taj način više ljudi
može da radi paralelno na različitim delovima projekta, a da se stabilna verzija ne
„kvari“ nedovršenim izmenama.

Nova grana se obično pravi za konkretan zadatak. Kreiranje i prelazak na novu
granu radi se komandom git switch -c naziv, dok se spisak postojećih grana
može videti komandom git branch.

Spajanje (eng. merge). Spajanje je postupak kojim se promene iz jedne grane
prenose u drugu (najčešće iz grane u kojoj se razvijala funkcionalnost u glavnu



Ele
ktr

on
ska

ver
zija

(20
25

)

21 1. Proces razvoja softvera

granu main). U velikom broju slučajeva Git može sam da objedini izmene, jer
prepoznaje koji delovi fajlova potiču iz koje grane i kako da ih spoji u jedinstvenu
verziju.

Problem nastaje kada su u obe grane menjani isti redovi (ili vrlo bliski delovi)
istog fajla, ali na različite načine. Tada Git ne može da pogodi šta je ispravno
rešenje i prijavljuje konflikt (eng. conflict), koji programer mora ručno da razreši
tako što izabere ili kombinuje odgovarajuće delove teksta. Spajanje se pokreće
komandom git merge, a rezultat je ažurirana ciljna grana i zabeleženo da je do
spajanja došlo. U praksi se spajanje u stabilnu granu radi oprezno, najčešće tek
nakon pregleda promena i proverenog pokretanja testova.

Zahtevi za spajanje (eng. pull requests). Zahtev za spajanje (eng. pull requ-
est) je postupak kojim se na platformama kao što su GitHub ili GitLab predlaže da
se promene iz jedne grane uključe u drugu (najčešće u main). Autor najpre objavi
svoju granu na zajedničkom repozitorijumu, a zatim otvara zahtev za spajanje ka-
ko bi ostali mogli da vide šta je promenjeno, da komentarišu i da provere da li je
rešenje dobro.

Suština zahteva za spajanje je kontrolisana provera pre integracije: promene se
pregledaju (pregled koda), po potrebi se diskutuje pristup, a zatim se obično pokre-
nu automatske provere, kao što su testovi i alati koji upozoravaju na potencijalne
greške. Tek kada su provere zadovoljene, promene se spajaju u ciljnu granu. Na
ovaj način se smanjuje verovatnoća da se u stabilnu verziju projekta unesu greške
i povećava se transparentnost timskog rada.

Reorganizacija istorije (eng. rebase). Rebase (eng. rebase) je postupak kojim
se „sredi“ istorija jedne grane tako da se ona nasloni na najnovije stanje glavne grane
(main), kao da je rad na toj grani krenuo od tog novijeg trenutka. Najjednostavnije
rečeno, rebase služi da svoju granu uskladiš sa najnovijim promenama iz main i
da istorija izgleda urednije (češće kao jedna ravna linija), bez dodatnog zapisa o
spajanju.

Ova operacija se radi komandom git rebase. Važno je znati da rebase može
da promeni „obeležja“ postojećih revizija, pa se zato uglavnom koristi dok grana
još nije podeljena sa drugima (dok je lokalna ili dok na njoj ne radi više ljudi).
Ako je grana već objavljena i drugi su je preuzeli, rebase može da napravi zbrku pri
usklađivanju, pa se tada koristi samo uz jasan dogovor u timu.

Tokovi rada (eng. workflows) i tipični obrasci. Git je jedan alat, ali se u
različitim timovima koristi na različite načine. Zato se unapred dogovara tok rada:
koje grane postoje, kako se naziva grana za novi zadatak, kada se promene spajaju
u glavnu verziju, ko i kako pregleda promene i koje provere (npr. testovi) moraju
da prođu. Dobar tok rada je važan jer sprečava haos: ako svako radi „po osećaju“,
brzo se dobije istorija koju je teško razumeti i još teže održavati.

Centralizovani tok rada (eng. centralized workflow) je najjednostavniji: postoji
jedna glavna grana (najčešće main) i svi rade tako što redovno preuzimaju najnovije



Ele
ktr

on
ska

ver
zija

(20
25

)

1.4. Alati i tehnike korišćeni u razvoju softvera 22

stanje i objavljuju svoje izmene. Ovaj model je lak za učenje i dobar za manje
timove, ali u većim timovima obično zahteva dodatna pravila, na primer da se ne
sme direktno spajati u main, već da promene moraju prvo da prođu kroz zahtev za
spajanje.

Tok sa granama funkcionalnosti (eng. feature branch workflow) danas je najče-
šći u praksi. Za svaki zadatak otvara se posebna grana, u njoj se radi i prave revizije,
a zatim se otvara zahtev za spajanje (eng. pull request) ka main. Pre spajanja se
promene pregledaju i proveravaju, pa tek onda ulaze u glavnu granu. Da bi se izbe-
gli veliki konflikti, grana se povremeno usklađuje sa najnovijim stanjem main (bilo
spajanjem merge (eng. merge), bilo reorganizacijom istorije rebase (eng. rebase)).

Gitflow je formalniji model koji uvodi više stalnih grana, najčešće main za
stabilna izdanja i develop za tekući razvoj, uz posebne grane za pripremu izdanja
i hitne ispravke. Koristan je kada se izdanja objavljuju u jasno planiranim ciklusima i
kada je važno održavati strogu strukturu. Međutim, za timove koji objavljuju veoma
često, ovaj model može biti suviše složen, pa se tada obično bira jednostavniji tok
rada sa granama funkcionalnosti.

Primer 1.1. Jedan tipičan tok rada u praksi
U nastavku je prikazan objedinjeni primer rada u timu: preuzimanje repozitori-
juma, rad u grani funkcionalnosti, beleženje revizija, sinhronizacija sa glavnom
granom, objavljivanje grane i integracija kroz pull request. Primer koristi savre-
mene komande switch i restore; u starijim vodičima često se sreće checkout.



Ele
ktr

on
ska

ver
zija

(20
25

)

23 1. Proces razvoja softvera

# 1) Preuzimanje repozitorijuma (lokalna kopija sa celom istorijom)
git clone https://example.com/projekat.git
cd projekat

# 2) Pregled stanja i istorije
git status
git log --oneline --decorate --graph --max-count=10

# 3) Kreiranje grane za novu funkcionalnost i prelazak na nju
git switch -c feature/validacija-unosa

# (ovde izmenite fajlove u editoru, npr. dodate validaciju u
src/input.cpp),→

git diff # pregled lokalnih izmena

# 4) Priprema izmena i beleženje revizije
git add src/input.cpp include/input.h
git commit -m "Dodaj osnovnu validaciju korisnickog unosa"

# 5) Objavljivanje grane na udaljenom repozitorijumu
git push -u origin feature/validacija-unosa

# 6) U međuvremenu se main promenio: preuzimamo novosti bez
automatskog spajanja,→

git fetch origin

# 7 Postavljanje grane na najnoviji main radi linearnije istorije
git rebase origin/main

# Ako nastane konflikt:
# - otvorite konfliktne fajlove, razresite oznake <<<<<<< =======

>>>>>>>,→
# - zatim:
git add src/input.cpp
git rebase --continue

# Nakon rebase-a objavljujemo novu istoriju:
git push

# 8) Pull request (na platformi): otvaranje PR-a feature/... -> main,
pregled i automatske provere,→

# (nije Git komanda; radi se kroz GitHub/GitLab interfejs)

# 9) Nakon sto je PR spojen, lokalno osvezavanje glavne grane
git switch main
git pull



Ele
ktr

on
ska

ver
zija

(20
25

)

1.5. Savremeni trendovi i tehnologije u razvoju softvera 24

1.5 Savremeni trendovi i tehnologije u razvoju softvera

1.5.1 Distribuirani softverski sistemi
Distribuirano softversko inženjerstvo bavi se razvojem, održavanjem i isporukom

softverskih sistema koji se izvršavaju na više računara ili geografski distribuiranih
čvorova. Za razliku od centralizovanih sistema, komponente distribuiranih sistema
rade paralelno i komuniciraju putem mrežnih protokola, što omogućava skaliranje,
povećanu dostupnost i otpornost na kvarove. Danas su gotovo svi veliki sistemi
distribuirani, ali ovaj pristup uvodi dodatne izazove u pogledu komunikacije, sin-
hronizacije, bezbednosti i upravljanja odvojenim komponentama.

Distribuirani sistemi su složeniji od centralizovanih, što ih čini težim za dizajn,
implementaciju i testiranje. Performanse distribuiranog sistema ne zavise samo od
brzine izvršavanja pojedinačnog procesora, već i od mrežne propusnosti, opterećenja
mreže i brzine svih računara uključenih u sistem.

Distribuirani sistemi imaju nekoliko osnovnih osobina:

✽ Deljenje resursa: Više računara na mreži zajednički koriste hardverske i
softverske resurse (npr. diskove, štampače, baze podataka i kompajlere), što
omogućava da se optimalno iskoristi dostupna infrastruktura.

✽ Paralelno izvršavanje (konkurentnost): Više procesa se izvršava istovre-
meno na različitim čvorovima, čime se povećava brzina obrade podataka
i efikasnost sistema. Često je neophodna međusobna komunikacija procesa
putem poruka ili signala. Međutim, komunikacija je ponekad asinhrona, što
može dovesti do kašnjenja – sistem može čekati dolazak podataka ili se, u
slučaju prevelike količine dolaznih informacija, može se pojaviti čekanje na
svoj red za obradu.

✽ Skalabilnost: Distribuirani sistemi se mogu skalirati dodavanjem novih resur-
sa. Skalabilnost je ključna karakteristika distribuiranih sistema koja omogu-
ćava proširenje kapaciteta sistema u skladu sa rastućim zahtevima korisnika.
Sistem se mora projektovati tako da se njegov kapacitet može povećavati.

Jedan način skaliranja je povećanje kapaciteta postojećih čvorova (eng. sca-
ling up). U ovom pristupu zamenjuju se ili unapređuju resursi unutar posto-
jećih čvorova (na primer, povećanjem memorije ili brzine procesora). Iako se
na ovaj način postiže veća moć obrade, ova metoda može biti ograničena
hardverskim kapacitetom i često je skuplja.

Drugi način skaliranja sistema je dodavanje novih čvorova (eng. scaling out).
Ovde se u mrežu dodaju novi čvorovi kako bi se povećala ukupna obrada i
raspodelilo opterećenje. Dodavanje novih čvorova je često isplativiji i omo-
gućava veću fleksibilnost. Zahteva pažljivo projektovanje sistema u početnoj
fazi, uzimajući u obzir mogućnost budućeg proširenja. Prilikom dodavanja,
neophodno je ravnomerno rasporediti opterećenje i sinhronizovati rad svih
čvorova, kako novih, tako i postojećih. Međutim, ponekad, sama mrežna



Ele
ktr

on
ska

ver
zija

(20
25

)

25 1. Proces razvoja softvera

arhitektura i ograničenja u propusnosti mreže mogu uticati na efikasnost
skaliranja.

✽ Otpornost na greške: Zahvaljujući upotrebi dodatnih resursa i mogućnosti
replikacije podataka, distribuirani sistemi mogu nastaviti da funkcionišu i u
slučaju otkaza pojedinačnih čvorova. Ukoliko neki čvor prestane sa radom,
često se implementiraju mehanizmi za automatsko preusmeravanje zahteva
kako bi se izbegao potpuni prekid rada.

Arhitektura distribuiranih sistema. Distribuirani sistemi kojima se pristupa
preko interneta najčešće se organizuju premaklijent–server modelu. U ovim siste-
mima, korisnik komunicira sa aplikacijom koja se izvršava na lokalnom uređaju (na
primer, putem web pretraživača ili mobilne aplikacije), dok daljinski server pruža
neophodne usluge, poput pristupa web sadržajima. Ovakva arhitektura omogućava
jasno razdvajanje prezentacije informacija od same obrade podataka, što doprinosi
boljoj skalabilnosti i upravljanju sistemom.

Više serverskih procesa može se izvršavati na istom procesoru, ali se često serve-
ri implementiraju kao multiprocesorski sistemi, gde se zasebna instanca serverskog
procesa pokreće na svakom računaru. Softver za balansiranje opterećenja raspo-
ređuje zahteve klijenata ravnomerno na sve servere, čime se omogućava obrada
većeg broja zahteva od pojedinačnih klijenata.



Ele
ktr

on
ska

ver
zija

(20
25

)

1.5. Savremeni trendovi i tehnologije u razvoju softvera 26

Arhitektura Karakteristike

Master – rob
arhitektura
(eng. master–slave)

Ovaj model se primenjuje u sistemima gde je kritično
zadovoljiti stroga vremenska ograničenja i odreago-
vati na zahteve u realnom vremenu.

Glavni čvor (master) raspoređuje zadatke potčinje-
nim čvorovima (rob), što omogućava precizno pla-
niranje i brzu obradu.

Primer takvog sistema je upravljanje semaforima u
saobraćaju.

Dvoslojna
(eng. two-tier)
klijent–server
arhitektura

U ovom jednostavnom modelu, aplikacija se sastoji
od jednog centralnog servera i brojnog skupa klije-
nata.

Server obrađuje zahteve, dok klijenti komuniciraju
direktno sa njim.

Zbog centralizacije podataka, komunikacija između
klijenta i servera je često enkriptovana kako bi se
obezbedila sigurnost.

Tipičan primer primene je bankomat sistem, gde
ATM uređaji (klijenti) pristupaju centralnoj bazi po-
dataka na računaru (server).

Višeslojna
(eng. multi-tier)
klijent–server
arhitektura

Pogodna je za velike sisteme sa visokim brojem
transakcija, gde se podaci integrišu iz više izvora,
a često se primenjuje i dodatni integracioni server
radi objedinjavanja distribuiranih podataka.

Ovaj model deli aplikaciju na više logičkih slojeva
– prezentacioni sloj, sloj za upravljanje podacima,
aplikacioni sloj i sloj baze podataka. Svaki sloj može
da se izvršava na zasebnom čvoru, što omogućava
ravnomernu raspodelu opterećenja i poboljšava ska-
labilnost sistema.

Koristi se kod aplikacija velikih razmera koje imaju
nekoliko stotina ili hiljada klijenata.



Ele
ktr

on
ska

ver
zija

(20
25

)

27 1. Proces razvoja softvera

Decentalizovana
arhitektura
(eng. peer-to-peer,
P2P)

Koristi se kada klijenti razmenjuju lokalno sačuva-
ne informacije, a uloga centralnog servera se svo-
di na povezivanje klijenata. Za razliku od klijent–
server modela, gde postoji jasna podela između ser-
vera (pružalaca usluga) i klijenata (primaoca uslu-
ga), P2P sistemi su decentralizovani — svaki čvor
može da obavlja računanje i skladišti podatke. Pri-
meri ovakvih sistema su kriptovalute (Bitcoin), si-
stemi za razmenu datoteka (BitTorrent), kao i razni
servisi za razmenu poruka.
U principu, u P2P sistemima ne postoji striktna razli-
ka između klijenata i servera, jer svaki čvor pokreće
kopiju aplikacije koja sadrži komunikacione protoko-
le i standarde.
Primenjuje se kada je sistem računarski intenzivan
i obradu je moguće podeliti na veliki broj nezavi-
snih operacija. Takođe i u situacijama kada primar-
na funkcija sistema jeste razmena informacija među
pojedinačnim računarima, bez potrebe za centrali-
zovanim upravljanjem podacima.
Prednosti ove arhitekture su visoka redundantnost,
otpornost na otkaze i fleksibilnost u korišćenju raspo-
loživih resursa. Međutim, nedostaci uključuju mo-
gućnost dupliranja obrade istih zahteva i značajano
komunikaciono opterećenje čvorova.

Komunikacioni modeli. Komunikacija između komponenti distribuiranog siste-
ma može se ostvarivati na dva osnovna načina:

✽ Proceduralna interakcija: Podrazumeva da jedan računar poziva pozna-
tu uslugu koju nudi neki drugi računar i (obično) čeka da ta usluga bude
isporučena. Realizovana putem poziva udaljenih procedura (RPC) ili, u slu-
čaju Jave, udaljenih metoda (RMI). U RPC, jedna komponenta poziva drugu
komponentu kao da je lokalna procedura ili metoda. Ovaj model zahteva da
i pozivajući i pozvani entitet budu istovremeno dostupni, što može predsta-
vljati problem u slučaju privremene nedostupnosti neke komponente.

✽ Komunikacija zasnovana na porukama: Poruke se smeštaju u redove če-
kanja dok primalac ne postane dostupan, čime se omogućava asinhrona ko-
munikacija. Međusoftver (eng. middleware), odnosno softver koji se nalazi
‘između’ operativnog sistema i aplikacija, igra ključnu ulogu u upravljanju



Ele
ktr

on
ska

ver
zija

(20
25

)

1.5. Savremeni trendovi i tehnologije u razvoju softvera 28

komunikacijom, transformacijom podataka i održavanju konzistentnosti iz-
među različitih komponenti.

U suštini, RPC ima iste zahteve kao i lokalni poziv procedure ili metode. Nasu-
prot tome, u pristupu zasnovanom na porukama, moguće je tolerisati nedostupnost,
jer poruka jednostavno ostaje u redu dok primalac ne postane dostupan. Dalje, nije
neophodno da pošiljalac i primalac budu svesni postojanja jedan drugog; oni jedno-
stavno komuniciraju sa međusoftverom, koji je odgovoran za prosleđivanje poruka
odgovarajućem sistemu.

Implementacione tehnologije i bezbednost. U savremenom razvoju distri-
buiranih sistema koriste se različite tehnologije i programski jezici koji pokrivaju
sve aspekte izgradnje aplikacija – od baze podataka do korisničkog interfejsa. Na
primer, SQL se široko koristi za rad sa relacionim bazama podataka, dok se Java
često primenjuje za razvoj serverske logike. Sa druge strane, za razvoj korisnič-
kog interfejsa popularni su Angular, React i JavaScript, koji omogućavaju
kreiranje dinamičnih i responzivnih web aplikacija.

Takođe, Go je postao vrlo cenjen jezik u razvoju distribuiranih sistema zbog
svoje jednostavnosti, visokih performansi i podrške za konkurentno programiranje.
Njegova ugrađena podrška za paralelno izvršavanje čini ga idealnim za izgradnju
sistema koji zahtevaju visoku propusnost i efikasno korišćenje resursa.

Ključnu ulogu u održavanju doslednosti i pouzdanosti distribuiranih sistema
igraju algoritmi za postizanje konsenzusa, među kojima je Raft jedan od najpo-
znatijih. Postizanje konsenzusa znači da grupa servera, uprkos mogućim otkazima
pojedinačnih čvorova, mora da se usaglasi oko zajedničkog stanja sistema – na
primer, o redosledu operacija nad bazom podataka. Raft osigurava da svi čvorovi
imaju isti pregled podataka, što je od presudnog značaja za integritet i pouzdanost
distribuiranih aplikacija.

Projektovanje distribuiranih sistema mora da se fokusira i na bezbednost. Si-
stem mora da bude otporan na različite vrste napada, uključujući presretanje poda-
taka, uskraćivanje usluga (DoS), neovlašćene izmene i ubacivanje lažnih podataka.
Implementacija enkripcije, autentifikacije i kontrola pristupa predstavlja osnovu za
zaštitu podataka i komunikacionih kanala. Više tačaka pristupa i brojni komunika-
cioni kanali zahtevaju napredne sigurnosne mehanizme kako bi se zaštitili podaci i
transakcije u sistemu.

Programiranje u oblaku (eng. cloud computing) i distribuirani sistemi.
Programiranje u oblaku predstavlja prirodan nastavak distribuiranog softverskog
inženjerstva, omogućavajući korišćenje udaljenih resursa bez potrebe za izgrad-
njom sopstvene infrastrukture. Na primer, umesto ulaganja u sopstveni prostor za
skladištenje podataka, moguće je koristiti usluge poput Amazon S3, dok se algorit-
mi veštačke inteligencije mogu izvršavati na udaljenim serverima. Takođe, blokčejn
tehnologije koriste distribuirane resurse za obradu transakcija i verifikaciju podata-
ka, čime se omogućava sigurnost i transparentnost.



Ele
ktr

on
ska

ver
zija

(20
25

)

29 1. Proces razvoja softvera

Ovakav pristup smanjuje troškove infrastrukture, jer se resursi dinamički pri-
lagođavaju trenutnim potrebama, a timovi za razvoj distribuiranih sistema mogu
brže i fleksibilnije implementirati nove funkcionalnosti. Ovo omogućava agilni ra-
zvoj softvera, gde se resursi lako povećavaju ili smanjuju u zavisnosti od zahteva
projekta, bez dodatnih ulaganja u fizički hardver.

Distribuirano softversko inženjerstvo predstavlja kompleksan, ali neophodan pri-
stup u savremenom IT svetu, omogućavajući visok nivo otpornosti, skalabilnosti
i efikasnosti. Iako nudi brojne prednosti, projektovanje ovakvih sistema zahteva
pažljivo balansiranje između performansi, bezbednosti i pouzdanosti. Savremene
implementacije distribuiranih sistema oslanjaju se na napredne komunikacione mo-
dele i tehnologije, čime se postiže robustan temelj za buduće inovacije u oblasti
softverskog inženjerstva.

1.5.2 Mikroservisno orijentisan razvoj softvera
Komponentno softversko inženjerstvo (eng. Component Based Sofware Enge-

eneering, CBSE), razvijeno tokom 1990-ih, formalizovalo je ideju da se složeni si-
stemi grade spajanjem „crnih kutija“ – komponenti sa jasno definisanim zadacima
i eksplicitnim ulazno-izlaznim interfejsima. Ovakav pristup podsticao je ponovnu
upotrebu koda, ali je često otežavao nezavisan razvoj pojedinačnih delova aplikacije
i skaliranje samo onih komponenti kojima je to bilo potrebno. CBSE se prirodno
nadovezuje na principe objektno orijentisanog programiranja, dok ih arhitektonski
stil mikroservisa (engl. microservices) dodatno proširuje uvodeći autonomne, samo-
stalno isporučive servise koji međusobno komuniciraju mrežnim protokolima, čime
se postiže veća agilnost i skalabilnost sistema. Umesto razvoja jedne velike (mono-
litne) aplikacije, sistem se razlaže na skup manjih, međusobno nezavisnih servisa.
Ključna razlika u odnosu na bibliotke ili klasične komponente jeste to što je svaki
servis samostlna jedinica sa sopstvenim ciklusom razvoja, koja se može isporučiti
nezavisno u odnosu na ostale servise.

SLIKA - PRIMER (situaational awareness)
Tri ključna principa mikroservisne arhitekture su:

✽ Ograničeni kontekst (eng. bounded context) – svaki servis ima jasno defini-
sanu odgovornost i granice. Servis je ograničen na jednu poslovnu potrebu
(funkcionalnost) i lako je razumeti njegovu svrhu, ali i pronaći i menjati že-
ljene funkcionalnosti.

✽ Veličina – fokus je na maloj veličini servisa. Čim servis postane prevelik (sa
velikim brojem funkcionalnosti), treba ga podeliti na manje servise.

✽ Nezavisnost – svaki servis je nezavistan i može se razvijati, testirati, imple-
mentirati i skalirati nezavisno od drugih servisa. Ovo omogućava timovima
da rade na različitim servisima istovremeno bez međusobnog ometanja. Je-
dina bitna zavisnost je komunikacija između servisa, koja se obično ostvaruje
putem mrežnih protokola.



Ele
ktr

on
ska

ver
zija

(20
25

)

1.5. Savremeni trendovi i tehnologije u razvoju softvera 30

Obratimo pažnju da su mikroservisna arhitektura omogućava lakšu izgradnju
distribuiranih sistema jer svaki servis se može naći na različitim računarima, a
komunikacija između servisa se obavlja putem mrežnih protokola.

Mikroservisna arhitektura omogućava timovima da koriste različite tehnologije
i programske jezike za različite servise. Na primer, ako neki servis zahteva inteziv-
na računanja, može se implementirati u C++, dok se drugi servis koji je okrenut
krajnjim korisnicima može implementirati u JavaScript jeziku. Sa druge stra-
ne, u monolitnim sistemima, korišćenje različitih tehnologija je otežano jer bi cela
aplikacija morala da bude napisana u jednoj tehnologiji.

Mikroservisi se često isporučuju u kontejnerima, na primer, koristeći Docker.
Kontejner sadrži sve što je potrebno za pokretanje servisa – izvršni kod servisa, ali
i biblioteke i konfiguracije koje su potrebne za njegovo pokretanje. Na ovaj način,
servisi se mogu pokrenuti na bilo kojem računaru koji ima instaliran Docker, bez
potrebe za dodatnim konfiguracijama.

Mnoge kompanije su usvojile mikroservisnu arhitekturu, uključujući Netflix,
Amazon, Google, LinkedIn i dr.

Mikroservisna arhitektura omogućava i veću robusnost sistema. Ako neki ser-
vis prestane da radi, to ne utiče na rad drugih servisa. Na primer, ako servis za
autentifikaciju korisnika prestane da radi, to neće uticati na rad servisa za pretra-
gu proizvoda. Ovo omogućava da sistem se može koristiti iako neki servisi nisu
dostupni.

Mikroservisi nude i neke izazove. Na primer, komunikacija između servisa može
biti spora i može doći do kašnjenja u radu sistema. Može se desiti da različiti servisi
zahtevaju akciju od jednog istog servisa, što može dovesti do preopterećenja tog
servisa ili nemogućnost da se zahtev ispuni. Testiranje i debagovanje mikroservi-
sa može biti složenije nego kod monolitnih sistema, jer je potrebno testirati svaki
servis posebno, ali i testirati interakcije između servisa. Ponekad mikroservisi dele
istu bazu podataka (mada prema preporukama svaki mikroservis ima svoju bazu,
ali nekada nije moguće realiovati takvu arhitekturu), što može dovesti do proble-
ma sa konzistentnošću podataka. U ovim situacijama najčešće se uvodi dodatni
mikroservis koji se brine o upravljanju podacima.

1.5.3 Ugrađeni softver

Ugrađeni softver (eng. embedded softver) je deo integrisanog hardversko-softve-
rskog sistema, dizajniran da upravlja uređajem i reaguje na događaje iz njegovog
okruženja u realnom vremenu. Za razliku od standardnih softverskih aplikacija,
ugrađeni softver radi u uslovima ograničenih resursa poput memorije, procesorske
snage i energije. Često se nalazi u uređajima poput automobila, kućnih aparata,
medicinskih uređaja, telekomunikacione opreme i drugih specijalizovanih sistema,
gde je pouzdanost i efikasnost ključna.

Ključna karakteristika ugrađenih sistema jeste rad u realnom vremenu, što znači
da sistem mora da odgovori na događaje unutar striktno definisanih vremenskih
rokova. Ako reakcija sistema nije dovoljno brza, može doći do ozbiljnih posledica –



Ele
ktr

on
ska

ver
zija

(20
25

)

31 1. Proces razvoja softvera

na primer, sistem za kočenje automobila mora momentalno da reaguje na komandu
kočenja da bi se sprečila nesreća.

Ugrađeni softver često radi u uslovima ograničenih resursa kao što su memorija,
procesorska snaga i energetska potrošnja, zbog čega je primena različitih tehnika
optimizacije obavezna. Ovo uključuje pažljivo upravljanje memorijom, procesor-
skom snagom i energijom uređaja.

Ugrađeni sistemi imaju sledeće karakteristike:

✽ Direktna interakcija sa hardverom je često neophodna.

✽ Reakcije na okruženje mogu biti periodične (npr. redovno očitavanje
senzora) ili aperodične (kao reakcija na iznenadne događaje poput
aktiviranja alarma).

✽ Sigurnost i pouzdanost su ključne karakteristike, posebno u aplikaci-
jama kao što su medicinski uređaji, sistemi za kontrolu saobraćaja ili
automobilski sistemi.

✽ Postoje fizička ograničenja koja mogu uticati na dizajn sistema, kao
što su ograničen prostor, energetska efikasnost, temperatura rada ure-
đaja, vibracije, itd.

Proces razvoja embedded softvera je interdisciplinaran, zahteva saradnju iz-
među inženjera hardvera i softvera radi osiguravanja optimalne integracije i sin-
hronizacije. Razvoj može započeti izborom odgovarajućeg hardvera i operativnog
sistema ili definisanjem softverskih zahteva prema kojima se kasnije bira odgova-
rajuća platforma.

Ugrađeni softver obično se realizuje kao skup konkurentnih procesa, tj. pro-
cesa koji se paralelno izvršavju i koji međusobno komuniciraju. Zbog zahteva za
konkurentnim izvršavanjem, najčešće se koristi operativni sistem za rad u realnom
vremenu (eng. Real-Time Operating System – RTOS), čiji raspoređivač (eng. sc-
heduler) upravlja izvršavanjem procesa i resursima. RTOS se razlikuje od opštih
operativnih sistema kao što su Windows ili Linux u standardnoj verziji, jer ovi si-
stemi ne mogu uvek garantovati reakciju u realnom vremenu. Međutim, postoje
specijalizovane verzije Linuxa (npr. RTLinux ili PREEMPT-RT) koje su prilagođene
za rad u realnom vremenu.

Za modeliranje ponašanja sistema često se koristi dijagrami stanja, koji jasno
pokazuju kako sistem menja stanja kao reakciju na spoljašnje događaje, tj. ulazne
signale. Signali mogu biti periodični (na primer, redovno očitavanje senzora) ili
aperodični (na primer, reakcija na neočekivane događaje).



Ele
ktr

on
ska

ver
zija

(20
25

)

1.5. Savremeni trendovi i tehnologije u razvoju softvera 32

Sistem za
rad u realnom

vremenu

Senzor Senzor Senzor Senzor

Si g nal

Akci j a Akci j a Akci j a

Od g ovor

Slika 1.7: Opšti model ugrađenog sistema sa reakcijom u realnom vremenu

Pri razvoju embedded softvera, često se koriste sistemski programski jezici
poput jezika C zbog efikasnosti generisanog koda. Međutim, jezici poput
programskog jezika C nemaju ugrađenu podršku za konkurentnost ili upra-
vljanje deljenim resursima. Zbog toga programeri moraju pažljivo da koriste
mehanizme RTOS-a kao što su semafori ili međusobno isključivanje. Ovo
može povećati rizik od grešaka, jer je potrebno dodatno znanje o specifič-
nim sistemskim pozivima i radu sa hardverom.

Ugrađeni sistemi često zahtevaju UML dijagrame, posebno dijagrame stanja,
kako bi se jasno definisalo ponašanje sistema i njegovo reagovanje na različite
signale. Time se olakšava dizajn, implementacija i testiranje sistema.

Kao zaključak – ugrađeni softver predstavlja kritičnu komponentu savre-
menih uređaja, omogućavajući im pouzdanost, efikasnost i pravovremeno
reagovanje na zahteve okruženja.

1.5.4 Veštačka inteligencija u razvoju softvera
U današnjem svetu, veštačka inteligencija (VI) igra sve značajniju ulogu u ra-

zvoju softvera, omogućavajući brže i efikasnije procese. Dodatno, u savremenom
računarstvu se mnogi problemi koji nisu se mogli rešiti tradicionalnim algoritmima
sada mogu rešiti korišćenjem veštačke inteligencije.

Ipak, veštačka inteligencija nije zamena za ljudsku kreativnost i inovativnost i
ne predstvlja “magični štapić” za sve probleme. Pre nego što se započne projekat
zasnovan na VI, potrebno je proceniti da li je primena ovih tehnika zaista neop-
hodna i ekonomski opravdana. Današnji VI sistemi često zahtevaju veliku količinu
podataka i veliku količinu računarskih resursa (električne struje). U donjoj tabeli



Ele
ktr

on
ska

ver
zija

(20
25

)

33 1. Proces razvoja softvera

prikazane su opšte smernice koje pomažu pri odlučivanju kada je VI korisna, a kada
nije.

✽ Postoji obrazac koji treba naučiti. VI služi da prepozna obrasce u podaci-
ma, odnosno kompleksne relacije i veze koje su teško uočljive ljudima ili se
ne mogu lako eksplicitno isprogramirati. Kompleksan obrazac znači da me-
đu podacima postoje mnogobrojne, nelinearne i često šumovite veze koje je
nemoguće opisati jednostavnim pravilima (npr. raspored piksela koji otkriva
lice ili kombinacija tržišnih signala koja utiče na cenu akcije). Za jednostavne
– poput računa površine A = a ·b ili bacanja poštenog novčića gde obrasca
nema – dovoljan je klasičan kod, a mašinsko učenje ne donosi prednost.

✽ Podaci su dostupni. Da bi se obučio model, potreban je dovoljan broj poda-
taka koji su relevantni za problem koji se rešava. Ako podaci nisu dostupni,
onda postoji mehanizam da se podaci prikupe ili generišu. Na primer, za
prepoznavanje lica potrebno je mnogo slika lica sa različitim izrazima, uglo-
vima i osvetljenjem. Ako podaci nisu dostupni ili su nedovoljni, VI neće biti
efikasna. Takođe, podaci moraju biti kvalitetni i reprezentativni za problem
koji se rešava. Na primer, ako se model obučava na slikama lica, ali su slike
lošeg kvaliteta ili nisu raznovrsne, model neće biti sposoban da prepozna lica
u različitim uslovima.

✽ Problem je prediktivan. VI je korisna kada je cilj predvideti buduće doga-
đaje na osnovu istorijskih podataka. Na primer, predikcija vožnje automobila,
vremenskih uslova ili popularnosti proizvoda na osnovu objava na društvenim
mrežama.

✽ Cena greške je mala. VI sistemi nisu egzaktni i mogu napraviti greške. Ako
je cena greške visoka (npr. u medicini ili autonomnim vozilima), onda je bo-
lje koristiti klasične algoritme koji su pouzdaniji. Na primer, ako VI sistem
pogrešno prepozna tumor na slici, to može dovesti do pogrešne dijagnoze i
lečenja pacijenta. U takvim situacijama, u danasšnjem svetu, često se koristi
kombinacija VI i ljudske ekspertize, gde VI pomaže lekaru da brže i efikasnije
identifikuje potencijalne probleme, ali konačnu odluku donosi lekar. Slično je
i u autonomnim vozilima, gde VI pomaže u prepoznavanju prepreka i dono-
šenju odluka, ali je vozač uvek odgovoran za bezbednost vožnje. VI se danas
koristi i u dokazivanju matematičkih teorema, gde se koristi za prepozna-
vanje obrazaca i generisanje novih dokaza, ali postoje nezavisni sistemi koji
proveravaju ispravnost tih dokaza. Sa druge strane, VI je potpuno bezbedno
koristiti u marketingu za sisteme preporuka i slično.

✽ Obrasci se vremenom menjaju. Ako se obrasci u podacima menjaju tokom
vremena, VI može da se prilagodi tim promenama. Na primer, ako se trendovi
na društvenim mrežama menjaju, VI može da se obučava na novim podacima
kako bi ostala relevantna. Sa druge strane, ako su izlazi i uvek isti (npr.
računanje površine kvadrata), onda VI nije potrebna.



Ele
ktr

on
ska

ver
zija

(20
25

)

1.5. Savremeni trendovi i tehnologije u razvoju softvera 34

Proces razvoja softvera zasnovan na veštačkoj inteligenciji je itertivan i često
uključuje sldeće korake:

1. Definisanje problema i metrike. Prvi korak je jasno definisanje cilja i me-
trika koje će se koristiti za merenje uspeha.

2. Prikupljanje i priprema podataka. Prikupljanje relevantnih podataka i nji-
hova priprema za obučavanje modela. Ovo može uključivati čišćenje podata-
ka, anotaciju, normalizaciju, transformaciju i slično. U današnjem vremenu
koristete se i tehnike generativne veštačke inteligencije za generisanje poda-
taka koji nedostaju ili za obogaćivanje postojećih podataka. Takođe, korak
pripreme podataka često može biti ključan za uspeh projekta, jer kvalitet
podataka direktno utiče na performanse modela.

3. Obučavanje modela. Obučavanje modela na pripremljenim podacima. Ovo
može uključivati izbor algoritma, podešavanje hiperparametara i evaluaciju
modela na testnim podacima. Model se obično obučava na trening skupu, a
postoji odvojen skup podataka na kojima se model testira.

4. Iterativna analiza i poravka modela. Analiza rezultata obučavanja i testi-
ranja modela, identifikacija problema i iterativno popravka modela. Ovo može
uključivati promenu arhitekture modela, dodavanje novih funkcija, promenu
hiperparametara ili promene u samom skupu podataka.

5. Kontinuirano praćenje i ažuriranje modela. Nakon što je model imple-
mentiran, važno je kontinuirano pratiti njegovu performansu i ažurirati ga
prema potrebi. Ovo može uključivati prikupljanje novih podataka, obuča-
vanje modela na novim podacima ili prilagođavanje modela promenama u
obrascima podataka.

Pored razvoja VI softvera, veštačka inteligencija se takođe koristi u različitim
fazama razvoja softvera i kao pomoćni alat za programere. Sve češće se koriste “pa-
metni” asistenti zasnovani na velikim jezičkim modelima. Najpoznatiji su GitHub
Copilot i ChatGPT, ali postoje i alternative kao što su Amazon CodeWhi-
sperer, Tabnine, Google Duet AI i JetBrains AI Assistant. Ovi alati
se integrišu u razvojna okruženja (VS Code, IntelliJ, JetBrains Rider itd.)
i pomažu pri automatskom dovršavanju koda, generisanju testova, refaktorisanjima
i pisanju dokumentacije. Oblast se brzo razvija i gotovo svakog meseca pojavljuju
se nova rešenja ili novi modeli (na primer, CodeLama, Cline, StarCoder)
Očekuje se da će u budućnosti biti još više inovacija i poboljšanja u ovoj oblasti.

Sa druge strane, važno je napomenuti da ovi alati nisu savršeni i da ponekad
mogu generisati netačan ili neefikasan kod. Komercijalne verzije ovih alata najčešće
su pretplaćene i nisu svima finansijski dostupne, a mnoge organizacije ih ograni-
čavaju ili potpuno zabranjuju zbog bezbednosnih i pravnih briga (slanje vlasničkog
koda ka eksternim servisima za obradu, nejasna pitanja autorskih prava nad gene-
risanim kôdom i drugo). Zbog toga se u praksi često koristi “hibridni” pristup: VI
asistenti za zadatke koji nisu poverljivi, a lokalni modeli ili klasični alati za rad na
osetljivom kodu.



Ele
ktr

on
ska

ver
zija

(20
25

)

35 1. Proces razvoja softvera

Pitanja i zadaci za vežbu

Pitanje 1.1. Šta su sličnosti a koje razlike između projekata u građevinarstvu i
informacionim tehnologijama?

Pitanje 1.2. Navesti faze razvoja softvera i ko ih obično sprovodi.

Pitanje 1.3. Koje dve vrste dokumentacije treba da postoje?

Pitanje 1.4. Nabrojati najznačajnije metodologije razvoja softvera. Istraži na
internetu koje su metodoloje razvoja softvera danas najpopularnije.

Pitanje 1.5. Koje su glavne razlike u performansama distribuiranih i centralizova-
nih sistema, i koji faktori najviše utiču na brzinu obrade podataka u distribuiranim
sistemima?

Pitanje 1.6. Objasnite koncept skalabilnosti u distribuiranim sistemima i nave-
dite razlike između povećanje kapaciteta postojećih čvorova (eng. scaling up) i
dodavanja novih čvorova (eng. scaling out), uz konkretan primer kako se svaki
od ovih pristupa može primeniti u praksi.

Pitanje 1.7. U kontekstu različitih arhitekturnih modela (gospodar–rob, dvo-
slojna, višeslojna i decentalizovana arhitektura), koje su prednosti i mane svakog
modela, i u kojim scenarijima je jedan model pogodniji od drugog?

Pitanje 1.8. Koji su osnovni razlozi zašto se za ugrađeni softver često koriste
operativni sistemi za rad u realnom vremenu (RTOS) umesto klasičnih operativnih
sistema?

Pitanje 1.9. Koji osobine i zahtevi utiču na razvoj ugrađenog softvera?

Pitanje 1.10. Objasnite tri ključne razlike između komponentno softverskog in-
ženjerstva (CBSE) i mikroservisne arhitekture.

Pitanje 1.11. Navedite i obrazložite najmanje dve prednosti i jedan izazov upo-
trebe Dockera prilikom isporuke mikroservisa, uz konkretan primer.

Pitanje 1.12. Definišite pojam ograničenog konteksta u domenu mikroservisa.

Pitanje 1.13. Kompanija želi da predvidi da li će se određeni proizvod prodavati
bolje sledećeg meseca na osnovu samo tri fiksne numeričke metrike koje se ne me-
njaju tokom godine. Objasnite sa dva argumenta zašto bi tradicionalni algoritam
mogao biti prikladniji od primene modela mašinskog učenja.

Pitanje 1.14. Nabrojte (tačnim redosledom) pet glavnih faza razvoja ML sof-
tverskog rešenja opisanih u tekstu i ukratko navedite šta je cilj svake faze.

Pitanje 1.15. (a) Navedite dve konkretne pogodnosti koje GitHub Copilot
ili slični asistenti donose programerima.

(b) Imenujte dva glavna razloga zbog kojih neke organizacije ipak zabranjuju
upotrebu ovih alata u svojim projektima.


	Proces razvoja softvera
	Planiranje
	Metodologije razvoja softvera
	Ekspoloatacija
	Alati i tehnike korišćeni u razvoju softvera
	Savremeni trendovi i tehnologije u razvoju softvera


