GLAVA

Proces razvoja softvera

Pod razvojem softvera Cesto se ne podrazumeva samo neposredno pisanje pro-
grama, ve¢ i procesi koji mu prethode i slede. U tom, Sirem smislu, razvoj softvera
naziva se i Zivotni ciklus razvoja softvera. Razvoj softvera razlikuje se od slucaja
do sluéaja, ali u nekoj formi obi¢no ima sledece faze i podfaze:

Planiranje: Ova faza obuhvata prikupljanje i analizu zahteva od narucioca softve-
ra, razreSavanje nepotpunih, visesmislenih ili kontradiktornih zahteva i kre-
iranje precizne specifikacije problema i dizajna softverskog resenja. Podfaze
ove faze, opisane u poglavlju 1.1, su:

*% Analiza i specifikovanje problema;
*% Modelovanje resenja;
*% Dizajn softverskog resenja.

Realizacija: Ova faza obuhvata implementiranje dizajniranog softverskog resenja u
nekom konkretnom programskom jeziku. Implementacija treba da sledi opste
preporuke, kao i preporuke specifiéne za realizatora ili za konkretan projekat.
Analizom efikasnosti i ispravnosti proverava se pouzdanost i upotrebljivost
softverskog proizvoda, a za narucioca se priprema i dokumentacija. Podfaze
ove faze su:

% Implementiranje (kodiranje, pisanje programa) (o nekim aspektima ove
podfaze govori glava 77);

% Evaluacija — analiza ispravnosti i analiza efikasnosti (o nekim aspektima
ovih podfaza govore redom glava ?7 i glava 77);

% lzrada dokumentacije (obi¢no korisnicke dokumentacije — koja opisuje
koris¢enje programa i tehnicke dokumentacije — koja opisuje izvorni
kod);

1.1. Planiranje 2

Eksploatacija: Ova faza pocinje nakon 5to je ispravnost softvera adekvatno pro-
verena i nakon Sto je softver odobren za upotrebu. Pustanje u rad ukljucuje
instaliranje, podesavanja u skladu sa specifiénim potrebama i zahtevima ko-
risnika, ali i testiranje u realnom okruzenju i sveukupnu evaluaciju sistema
u stvarnim uslovima koris¢enja. Organizuje se obuka za osnovne i napredne
korisnike i obezbeduje odrzavanje kroz koje se ispravljaju greske ili dodaju
nove manje funkcionalnosti. U odrzavanje se obi¢no ulozi vise od tri Cetvrtine
ukupnog rada u ¢itavom zivotnom ciklusu softvera. Podfaze ove faze su:

% Obuka i tehni¢ka podrska;
*% Pustanje u rad;

*% Odrzavanje.

Postoje medunarodni standardi, kao 5to su ISO/IEC 12207 i ISO/IEC 15504,
koji opisuju zivotni ciklus softvera kroz precizno opisane postupke izbora, implemen-
tacije i nadgledanja razvoja softvera. Kvalitet razvijenog softvera Eesto se ocenjuje
prema nivou uskladenosti sa ovim standardima.

Kontrola kvaliteta softvera (eng. software quality assurance, SQA) pokriva kom-
pletan proces razvoja softvera i sve njegove faze i podfaze. Proces kontrole kvalite-
ta, takode opisan standardom ISO/IEC 15504, treba da osigura nezavisnu potvrdu
da su svi proizvodi, aktivnosti i procesi u skladu sa predefinisanim planovima i
standardima.

Faze razvoja softvera i moguce probleme na 3aljiv nacin ilustruje €uvena kari-
katura prikazana na slici 1.1.

Za razvoj softvera relevantni su i procesi istrazivanja trzista, nabavke softvera,
narucivanja softvera, tenderi, razmatranje ponuda i sliéni, ali u ovom tekstu neée
biti re¢i o njima.

1.1 Planiranje

Poslovna analiza u fazi planiranja bavi se, pre svega, preciznom postavkom
i specifikovanjem zahteva, dok se modelovanje i dizajn bave razradom projekta
koji je definisan analizom zahteva. U fazi planiranja Cesto se koriste razli¢ite dija-
gramske tehnike i specijalizovani alati koji podrzavaju kreiranje ovakvih dijagrama
(takozvani CASE alati, engl. Computer Aided Software Engineering). Procesom
planiranja strateski rukovodi arhitekta Citavog sistema (engl. enterprise architect,
EA). Njegov zadatak je da napravi opsti, apstraktan plan svih procesa koji treba
da budu softverski podrzani.

1.1.1 Analiza i specifikovanje problema

Proces analize i specifikovanja problema obiéno sprovodi poslovni analiticar
(engl. business analyst, BA), koji nije nuzno informaticar, ali mora da poznaje rele-
vantne poslovne ili druge procese. Kada se softver pravi po narudzbini, za poznatog
kupca, u procesu analize i specifikovanja problema vrsi se intenzivna komunikacija

3 1. Proces razvoja softvera

How the customer explained it | | How the Project Leader How the Analyst designed it How the Programmer wrote it How the Business Consultant
understood it described it

How the project was. What operatiens installed How the customer was billed
documented

How it was supported What the customer really
needed

Slika 1.1: Faze razvoja softvera ilustrovane na 3aljiv nacin

poslovnog analitiCara sa naruciocima, krajnjim korisnicima ili njihovim predstav-
nicima. Kada se softver pravi za nepoznatog kupca, ¢esto u kompanijama ulogu
narucioca preuzimaju radnici zaposleni u odeljenju prodaje ili marketinga (koji ima-
ju ideju kakav proizvod bi kasnije mogli da prodaju).

U komunikaciji poslovnog analiti¢ara sa naruciocima, Cesto se najpre vrsi analiza
postojecih resenja (na primer, postojeceg poslovnog procesa u kompaniji koja uvodi
informacioni sistem) i razmatraju se moguénosti njihovog unapredenja uvodenjem
novog softvera. Narucioci ¢esto nemaju informaticko obrazovanje, pa njihovi zahte-
vi koje softver treba da zadovolji mogu da budu neprecizni ili €ak i kontradiktorni.
Zadatak poslovnog analiti€ara je da, u saradnji sa naruciocima, zahteve precizi-
ra i uobli¢i. Rezultat analize je opsta specifikacija problema koja opisuje problem
(na primer, poslovne procese) i zeljene funkcionalnosti programa, ali i potrebnu
efikasnost i druga svojstva.

Pored precizne analize zahteva, zadatak poslovne analize je i da proceni: obim
posla’ koji treba da bude uraden (potrebno je precizno definisati sta projekat treba
da obuhvati, a Sta ne); rizike koji postoje (i da definise odgovarajuce reakcije u

10bim posla esto se izrazava u terminima broja potrebnih Eovek-meseci (jedan €ovek-mesec
podrazumeva da jedan €ovek na projektu radi mesec dana).

1.1. Planiranje 4

slu€aju da nesto pode drugacije nego 5to je planirano); potrebne resurse (ljudske i
materijalne); oekivanu cenu realizacije projekta i njegovih delova; plan rada (po
fazama) koji je neophodno postovati i sliéno.

Kada je problem precizno specifikovan, prelazi se na slede¢e faze u kojima se
modeluje i dizajnira resenje specifikovanog problema.

1.1.2 Modelovanje reSenja

Modelovanje resenja obi¢no sprovodi arhitekta resenja (engl. solution archi-
tect, SA), koji mora da razume specifikaciju zahteva i da je u stanju da izradi
matematicke modele problema i da izabere adekvatna softverska resenja, na pri-
mer, programski jezik, bazu podataka, relevantne biblioteke, strukture podataka,
algoritamska resenja, itd.

Model moze biti matematicki model (na primer, optimizacioni model, sistemski
graf ili formalna specifikacija ponasanja), ali i simulacija, heuristicki opis sistema,
pseudokod ili vizuelna skica koja oslikava osnovne funkcionalnosti i odnose me-
du komponentama. U odredenim domenima koriste se i posebni domen-specifiéni
jezici.

Cilj modelovanja resenja je da se slozeni problemi razloze na jasne logicke celine
koje se zatim mogu dalje precizirati kroz dizajn softverskog sistema. Model mora da
bude dovoljno precizan da se iz njega moze izvesti dizajn, ali i dovoljno apstraktan
da omoguci fleksibilnost u izboru konkretnih tehnologija.

Na primer, u sistemu za elektronsku narudzbinu hrane, reSenje moze biti mo-
delovano kao relacija izmedu korisnika, restorana i narudzbina, pri éemu tok na-
rudzbine predstavlja automat sa stanjima: , kreirana”, , potvrdena”, ,,u pripremi”, ,u
dostavi", ,isporucena”.

Modelovanje reSenja je posebno vazno u kompleksnim sistemima jer omogu-
¢ava bolju komunikaciju medu ¢lanovima tima i olakSava procenjivanje troskova,
slozenosti i rizika implementacije.

Modelovanje resenja fokusira se na razumevanje problema i njegovih klju¢nih
komponenti, dok dizajn detaljno opisuje kako ¢e te komponente biti tehnicki rea-
lizovane na konkretnoj platformi.

1.1.3 Dizajn softverskog reSenja

U procesu dizajniranja, arhitekta softvera (engl. software architect) vrsi preci-
ziranje reSenja i opisuje arhitekturu softvera (engl. software architecture).

5 1. Proces razvoja softvera

Predstavlja celokupnu strukturu softvera i nacine na koje ta struktura obez-
beduje integritet sistema i zeljeni ishod projekta (ispravan softver, dobre
performanse, postovanje rokova i uklapanje u planirane troskove). Arhitek-
tura softvera ukljuéuje i komponente, njihove medusobne odnose i inter-
akcije, kao i principe i smernice koje vode dizajn i evoluciju softverskog
resenja.

Dizajn razraduje i pojmove koji su u ranijim fazama bili opisani nezavisno od
konkretnih tehnologija, daju¢i opsti plan kako sistem da bude izgraden na konkret-
noj hardverskoj i softverskoj platformi. Tokom dizajna Eesto se koriste neki unapred
ponudeni obrasci (engl. design patterns) za koje je praksa pokazala da predstavljaju
kvalitetna resenja za odredenu klasu problema.

U jednostavnijim sluajevima (na primer kada softver treba da radi autonom-
no, bez korisnika i korisnickog interfejsa), dizajn moze biti dat i u neformalnom
tekstualnom obliku ili u vidu jednostavnog dijagrama toka podataka tj. tokovnika
(engl. data flow diagram)?. U kompleksnijim slucajevima, koriste se standardizo-
vane graficke notacije (kaze se i graficki jezici), poput UML (Unified Modeling
Language), koji omogucavaju modelovanje podataka, modelovanje poslovnih pro-
cesa i modelovanje softverskih komponenti.

Neke od osnovnih tema koje se razmatraju u okviru dizajna softvera su:

%

Apstrahovanje (engl. abstraction) — apstrahovanje je proces generalizacije
kojim se odbacuju nebitne informacije tokom modelovanja nekog entiteta
ili procesa i zadrzavaju samo one informacije koje su bitne za sdm softver.
Na primer, apstrahovanjem se uocava da boja ociju studenta nema nikakvog
znacaja u informacionom sistemu fakulteta i ta informacija se onda odbacuje
prilikom predstavljanja studenta u sistemu.

3%

Profinjavanje (engl. refinement) — profinjavanje je proces razvoja programa
odozgo-nanize. Nerazradeni koraci se tokom profinjavanja sve vise precizi-
raju dok se na samom kraju ne dode do sasvim preciznog opisa u obliku
funkcionalnog programskog koda. U svakom koraku jedan zadatak razlaze se
na sitnije zadatke. Na primer, u nekoj situaciji, zadatak koji obavlja funkci-
ja obradi_podatke_iz_datoteke() razloze se na zadatke koje obavljaju
funkcije otvori_datoteku(), procitaj_podatke(), obradi_podatke(),
zatvori_datoteku(), itd. Apstrahovanje i profinjavanje medusobno su su-
protni procesi.

% Dekompozicija (engl. decomposition) — cilj dekompozicije je razlaganje na
komponente koje je lakse razumeti, realizovati i odrzavati. Njen proizvod nije

20vi dijagrami ilustruju kako podaci teku kroz sistem i kako se izlaz izvodi iz ulaza kroz niz
funkcionalnih transformacija, ali ne opisuju kako ih treba implementirati. Notacija koja se koristi
u tokovnicima nije standardizovana, ali razli¢ite notacije su ¢esto veoma sli¢ne i intuitivne.

1.1. Planiranje 6

implementacija, ve¢ opis arhitekture softverskog resenja. Postoje razliciti pri-
stupi dekompoziji, obi¢no u skladu sa programskom paradigmom koja ¢e se
koristiti (na primer, objektno-orijentisana, funkcionalna, itd). Vecina pristupa
tezi razlaganju na komponente tako da se $to vise smanje njihove zavisnosti
(tako 3to unutrasnje informacije jednog modula nisu dostupne iz drugih) i da
se poveca kohezija (jaka unutrasnja povezanost) pojedinaénih komponenti.
Na primer, u funkcijski-orijentisanom dizajnu, svaka funkcija odgovorna je
samo za jedan zadatak i sprovodi ga sa minimalnim uticajem na druge funk-
cije. Rezultat dekompozicije Eesto se prikazuje graficki, u vidu strukturnog
modela sistema koji opisuje veze izmedu komponenti i njihovu hijerarhiju
(na svakom nivou hijerarhije, svakom &voru koji nije list, odgovara nekoliko,
obi¢no izmedu dva i sedam, podredenih Evorova).

Modularnost (engl. modularity) — softver se deli na komponente koje se na-
zivaju moduli. Svaki modul ima precizno definisanu funkcionalnost i pozeljno
je da moduli sto manje zavise jedni od drugih kako bi mogli da se koriste i u
drugim programima.

1.1.4 Objedinjeni jezik za modelovanje, UML dijagrami

Objedinjeni jezik za modelovanje, UML (eng. Unified Modeling Language)
dijagrami predstavljaju vizulenu tehniku za kreiranje dijagrama kojim se
opisuju zahtevi, akcije i fizicka distribucija softverskog resenja. UML je
standardizovani jezik za modelovanje softvera.

UML je pre svega graficki jezik, ali se moze koristiti i u tekstualnom obliku.
Samo neki elementi se po standardu opisuju tekstualno. Postoji mnogo vrsta UML
dijagrama i ovde ¢e biti prikazani samo neki od njih. Ipak, svi UML dijagrami se
mogu podeliti na:

Strukturni dijagrami — prikazuju strukturu sistema i odnose izmedu njegovih
komponenti. Primeri su dijagrami klasa, objekata, komponenti, rasporeda,
itd.

% Dijagrami ponasanja — prikazuju kako se sistem pona3a tokom izvrsavanja.
Primeri su dijagrami aktivnosti, stanja, sekvenci, upotrebe, itd.

Strukturni dijagrami.

1. Proces razvoja softvera

Strukturni UML dijagrami predstavljaju staticki prikaz softverskog sistema
i opisuju njegove elemente (klase, pakete, komponente, uredaje) i njihove
medusobne odnose. Za razliku od dijagrama ponasanja, oni ne sadrze infor-
maciju o vremenskom toku niti o dinamic¢kim promenama stanja. Koriste se
u svim fazama razvoja softvera — od analize do implementacije i isporuke.

Najcesce koris¢eni strukturni dijagram je dijagram klasa. Dijagram klasa pri-
kazuje klase, njihove atribute i metode, kao i odnose kao Sto su nasledivanje,
asocijacija, kompozicija, agregacija i zavisnost. Na primer, u sistemu za upravlja-
nje bibliotekama, klase Knjiga, Clan i ZaduZenje povezane su odnosima koji
odrazavaju pravila zaduzivanja knjiga (Slika 1.2).

Knii
Biblioteka e
- naziv: String . - isbn: String «service» Notifikator
- adresa: Strinécl’ls{l 1 0..*| - naslov: St'rlng ; .

C - autor: String + posaljiPodsetnik(c: Clan):
+ dodajKnjigu(k: Knjiga): void ' void
+ ukloniKnjigu(k: Knjiga): void + dostu[-nvnla(). b.00| .

+ rezervisi(): void L
Osoba Zaduzeni
aduzenje StavkaZaduzenja
- ime: String 1 1%
- email: String oA i jz:ﬂ:g: B::: -‘7 - redniBroj: int
+ prijaviSe(): bool i . + vrati(): void
+ produzi(d: int): void .

Clan

- id: int
- status: Status

+ zaduzi(k: Knjiga): bool
+ razduzi(k: Knjiga): void

Slika 1.2: Primer strukturnog UML dijagrama klasa za sistem biblioteke (nasledi-
vanje, asocijacija, kompozicija, agregacija i zavisnost).

Pored dijagrama klasa, postoje i drugi strukturni dijagrami kao sto su: dijagrami
objekata, dijagrami komponenti, dijagrami rasporeda, dijagrami slu¢ajeva upotrebe
i drugi. Dijagram slucajeva upotrebe graficki prikazuje funkcionalnosti softverskog
sistema kroz interakcije izmedu korisnika (aktera) i osnovnih scenarija koris¢enja.
Na visem nivou apstrakcije, fokus je na manjem broju generalizovanih, poslovnih
scenarija koji opisuju glavne uloge pojedinacnih grupa korisnika.

1.2. Metodologije razvoja softvera 8

Dijagram sekvence.

Dijagram sekvence prikazuju ponasanje sistema u odnosu na vremenski
redosled dogadaja, odnosno nacin na koji objekti medusobno komuniciraju
kroz vreme u procesu izvrSavanja neke aktivnosti. On jasno ilustruje koji
subjekti ili objekti ucestvuju u odredenim koracima, kojim redosledom se
aktivnosti odvijaju, kao i kako se odgovornosti prenose izmedu njih.

Dijagram sekvence se prikazuje u dve dimenzije — vertikalna i horizontalna di-
menzija (Slika 1.3). Vertikalna osa oznacava protok vremena (odozgo nadole), dok
horizontalna osa predstavlja razlicite objekte ukljucene u interakciju. Svaki obje-
kat je predstavljen vertikalnom linijom (Zivotni vek objekta), na kojoj se aktivnosti
objekta prikazuju uskim pravougaonicima. Aktivnosti pocinju prijemom poruke i
zavrSavaju se njenom obradom. Ukoliko se objekat kreira tokom sekvence, to se
oznacava porukom tipa create, a uniStenje objekta prikazuje se simbolom , X" na
kraju njegove linije aktivnosti.

Razmena poruka izmedu objekata prikazana je horizontalnim strelicama. Poru-
ke mogu biti sinhrone ili asinhrone, pri ¢emu sinhrone poruke impliciraju cekanje
odgovora pre nastavka aktivnosti. Rezultat akcije se prikazuje povratnom strelicom,
koja nije obavezna osim u situacijama gde je rezultat znacajan za tok dogadaja.

Na primer, dijagram sekvence moze detaljno ilustrovati proces autentifikacije
korisnika u sistemu, ukljuCujuéi slanje upita bazi podataka, validaciju kredencijala
i generisanje autentifikacionog tokena.

Dijagrami sekvence pruzaju jasan vizualni prikaz interakcija, ¢ime pomazu ra-
zumevanju tokova, definisanju interfejsa metoda, kao i pronalaZenju eventualnih
problema i optimizaciji sistema.

1.2 Metodologije razvoja softvera

| u teoriji i u praksi postoje mnoge metodologije razvoja softvera. U praksi su
one Cesto pomesane i Cesto je tesko striktno razvrstati stvarne projekte u posto-
je¢e metodologije. U nastavku je opisano nekoliko Cesto koriséenih metodologija i
klju€nih ideja na kojima su zasnovane.

1.2.1 Metodologija vodopada

Metodologija vodopada je najstarija metodologija. Prvi put formalno je opisana
1970. godine, iako je praksa postojala i ranije, jos od pedesetih godina proslog veka.
Vodopad metodologija je bila standard u industriji softvera tokom 70-ih i 80-ih
godina posebno u velikim organizacijama kao sto su vlade i velike korporacije. U
strogoj varijanti ove tradicionalne metodologije na slede¢u fazu u razvoju softvera
prelazi se tek kada je jedna potpuno zavrsena (slika 1.4):

1. Proces razvoja softvera

Korisnik Netflix Servis za Servis za
orisni aplikacija autentifikaciju reprodukciju

Pokreni reprodukciju

prijava(email,
lozinka)

I
I
I
1
1
1
1
1
1
1
1
I
I
I
I
I
1
1
1 1
zahtevReprodukcije(videold, |
token) [
T
1

Sesija kreiraj (sessionId)
strima

Plan strima

S (manifest) ___________ L

vreme

(ponavijaj)

Zaustavi reprodukciju

|
I
I
T
I
I
I
I
I
|
I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
|
|
|
I
I
I
I
I
I
I
I
|
I
|
|
|
I
I
I
I
I
I
I
I
I
I
L
|
|
|
I
: zatvori (ggssionld)
X [

I

I

I

I

I

I

|

|

|

I

I

i

I

I

I

I

I

I -

Slika 1.3: Primer dijagrama sekvence aplikacije za reprodukciju video sadrzaja.

% zahtevi: Skupljanje svih korisni¢kih zahteva, njihovo dokumentovanje i odo-
bravanje od strane relevantnih strana;

%% dizajn: Razrada tehnicke arhitekture i specifikacija koje ée se koristiti tokom
implementacije;

& implementacija: Pisanje koda prema specificiranom dizajnu i zahtevima;

% testiranje: Verifikacija i validacija da sistem funkcionise prema zahtevima;

1.2. Metodologije razvoja softvera 10

% integracija: Kombinovanje razli¢itih modula u jedinstven sistem i verifikacija
njihove medusobne kompatibilnosti;

%t odrzavanje: Faza nakon isporuke gde se ispravljaju greske i dodaju potrebne
nadogradnje.

Ova metodologija se smatra primenljivom ako su ispunjeni slede¢i uslovi:

% svi zahtevi poznati su unapred i njihova priroda ne menja se bitno u toku
razvoja;

%% zahtevi su u skladu sa oCekivanjima svih relevantnih strana (investitori, kori-
snici, realizatori, itd.);

%% zahtevi nemaju nerazresene, potencijalno rizicne faktore (na primer, rizike
koji se odnose na cenu, tempo rada, efikasnost, bezbednost, itd);

% pogodna arhitektura reSenja moze biti opisana i podrobno shvacena;

* na raspolaganju je dovoljno vremena za rad u etapama.

| Analiza i specifikovanje problema |

f

| Modelovanje resenja |

i

| Dizajn softverskog resenja |

f

| Implementacija |

|

| Analiza efikasnosti i ispravnosti |

| Izrada dokumentacije |

| Obuka i tehnicka podrska |

f

| Pustanje u rad |

|

| Odrzavanje |

Slika 1.4: llustracija za metodologiju vodopada

Ova metodologija koristi se obi€éno u veoma velikim timovima. Detaljna doku-
mentacija za sve faze je neophodna 5to je korisno u velikim i kompleksnim projekti-
ma. Prednosti ove metodologije su jasna struktura jer osigurava da se svaki aspekt
detaljno analizira pre nego 3to se krene sa slede¢om fazom.

11 1. Proces razvoja softvera

Metodologija ne predvida modifikovanje prethodnih faza jednom kada su za-
vrsene i ova osobina, krutost metodologije, predmet je najéescih kritika. Cesto,
klijentu je veoma tesko da eksplicitno na pocetku projekta odredi sve zahteve. Iz-
rada aplikacija Cesto traje toliko dugo da se zahtevi promene u meduvremenu i
zavrsni proizvod vise nije sasvim adekvatan a ponekad ni uopste upotrebljiv. Ko-
risnici (klijenti) se obi¢no ukljuuju samo na pocetku (za zahteve) i na kraju (za
prihvatanje), sto moze dovesti do neslaganja izmedu korisnickih oekivanja i ispo-
ruéenog proizvoda. Dodatno, postoje problemi i u fazi razvoja kada ¢lanovi tima
moraju da Cekaju izradu zadataka od kojih njihov rad zavisi. Vreme potroseno
Cekajuéi da se zadatak odblokira nekada bude veée od produktivnog vremena.

Metodologija vodopada se danas retko koristi, mada moze biti korisna kod pro-
jekta sa veoma jasnim i nepromenljivim zahtevima kao $to su sistemi sa visokim
nivom rigidnosti (na primer, medicinski uredaji ili avijacija). Poznato je da NA-
SA koristi metodologiju vodopada u okviru izrade softvera za svemirski 3atl, 5to
je opravdano imajuéi na umu da su zahtevi i analiza za ovakav softver unapred
striktno i jasno definisani. Postoje varijante metodologije vodopada (na primer,
V-metodolologija) koje se esce koriste.

1.2.2 Metodologija iterativnog i inkrementalnog razvoja

U ovoj metodologiji, opisanoj prvi put Sezdesetih i sedamdesetih godina proslog
veka (ilustrovanoj slikom 1.5), razvoj se sprovodi u iteracijama i projekat se gradi
inkrementalno. lteracije obi¢no donose vise detalja i funkcionalnosti, a inkremen-
talnost podrazumeva dodavanje jednog po jednog modula, pri ¢emu i oni mogu
biti modifikovani ubuduée. U jednom trenutku, vise razli¢itih faza zivotnog ciklusa
softvera moze biti u toku. U ovoj metodologiji vraéanje unazad je moguce.

. - Planiranje Implementacija
Inicijalno planiranje

Evaluacija Eksploatacija

Slika 1.5: llustracija za iterativnu metodologiju

1.2. Metodologije razvoja softvera 12

1.2.3 Metodologija rapidnog razvoja

U ovoj metodologiji (engl. rapid application development), opisanoj sedamde-
setih i osamdesetih godina proslog veka, faza planiranja svedena je na minimum
zarad brzog dobijanja prototipova u iteracijama. Faza planiranja preklapa se sa
fazom implementacije 5to olakSava izmene zahteva u hodu. Proces razvoja krece
sa razvojem preliminarnog modela podataka i algoritama, razvijaju se prototipovi
na osnovu kojih se definisu, preciziraju ili potvrduju zahtevi narucioca ili korisnika.
Ovaj postupak ponavlja se iterativno, sve do zavrsnog proizvoda. Aplikaciju prati
vrlo ograni¢ena dokumentacija.

Ova metodologija ponekad moze dovesti do niza prototipova koji nikada ne do-
stizu do zadovoljavajuée finalne aplikacije. Cest izvor takvih problema su graficki
korisnicki interfejsi (engl. graphical user interface; GUI). Naime, korisnici napredak
u razvoju aplikacije dozivljavaju prvenstveno kroz napredak grafickog korisnickog
interfejsa. To podsti¢e programere, pa i vode projekata, da se u prototipovima
usredsreduju na detalje grafickog interfejsa umesto na druge segmente aplikacije
(kao 5to su, na primer, poslovni procesi i obrada podataka). Cak i mnogi razvojni
alati privilegovano mesto u razvoju softvera daju razvoju grafickih interfejsa. Ova-
kav razvoj aplikacije Cesto dovodi do niza prototipova sa razradenim korisnic¢kim
interfejsom, ali bez adekvatnih obrada koje stoje iza njega.

Ova metodologija pogodna je za razvoj softvera za sopstvene potrebe ili za
potrebe ograni¢enog broja korisnika.

1.2.4 Spiralna metodologija

Ova metodologija (opisana prvi put krajem osamdesetih godina proslog veka)
kombinuje analizu rizika sa drugim metodologijama kao 5to su metodologija vo-
dopada i metodologije iterativnog razvoja. Spirala koja ilustruje ovu metodologiju
(prikazana na slici 1.6) prolazi vise puta kroz faze kao 5to su planiranje, implemen-
tacija i evaluacija tekuceg verzije, kao i analiza rizika. Razli¢ite faze ne sprovode se
istovremeno, ve¢ jedna za drugom. Prvi prototip pravi se na osnovu preliminarnog,
pojednostavljenog dizajna i predstavlja samo aproksimaciju finalnog proizvoda. Na
kraju svake iteracije, prototip se evaluira, analiziraju se njegove dobre i lo3e stra-
ne, profinjuje specifikacija za slede¢u iteraciju i analiziraju se rizici (rizici koji se
odnose na bagove, na cenu, tempo rada, efikasnost, bezbednost, itd). Na primer,
planiranje dodatnog testiranja smanjuje rizik od neispravnog proizvoda, ali moze da
uveca cenu ili da nosi rizik zakasnelog izlaska na trziste. Ako neki rizik ne moze biti
eliminisan, naruilac mora da odluci da li se sa projektom nastavlja ili ne. Ukoliko
se sa projektom nastavlja, ulazi se u sledecu iteraciju.

1.2.5 Agilna metodologija razvoja

Agilne metodologije su upotrebi od devedesetih godina proslog veka a trenutno
su verovatno najpopularnije.

13 1. Proces razvoja softvera

Definisanje A Identifikovanje i
ciljeva ‘ razreSavanje rizika
Analiza rizika
‘ Prototipovi
Pregled
Planiranje Eksploatacija Implementacija i
sledece iteracije evaluacija

Slika 1.6: llustracija za spiralnu metodologiju

Stavlja fokus na zadovoljstvo korisnika i zato se podstice rana i inkremetalna
isporuka softvera u vidu iteracija sa minimalnim dodavanjem funkcionalno-
sti u kratkim vremenskim intervalima (obicno od jedne do Cetiri nedelje).

Na ovaj nacin se tezi minimizovanju rizika, kao sto su bagovi, prekoracenje
budzeta ili izmena zahteva. Dodatne smernice za razvoj daju prioritet isporuci
naspram analize i dizajna (iako ove aktivnosti nisu obeshrabrene).

Radi se u malim, visokomotivisanim timovima koji su samoorganizovani i imaju
kontrolu nad odlukama o projektu. Agilne metodologije zahtevaju permanentnu
komunikaciju, pozeljno uzivo (zbog ¢ega, medutim, ne ostaje mnogo pisanog traga
o progresu niti pisane dokumentacije).

Agilne metode su razvijene u nastojanju da se prevazidu uocene slabosti kon-
vencionalnog razvoja softvera. Agilni razvoj moZe doneti vazne prednosti, ali nije
primenjiv na sve projekte, sve proizvode, sve ljude i sve situacije. U danasnjem
vremenu Cesto je tesko ili nemoguce predvideti kako ¢e se softver razvijati kako
vreme prolazi. Potrebe krajnjih korisnika se menjaju, a novi konkurentski proizvodi
i reSenja pojavljuju se nekada iznenada, bez upozorenja. Zato, u mnogim situacija-
ma nije mogucée u potpunosti definisati specifikacije pre pocetka projekta i razvoj
softvera mora biti dovoljno agilan da bi se prilagodio novim, promenjenim zahte-
vima. Sa druge strane, promene su skupe. Jedna od najprivlaénijih karakteristika
agilnog pristupa je njegova sposobnost da smanji troskove promena tokom celog
softverskog procesa.

1.2. Metodologije razvoja softvera 14

Manifest agilne metodologije je osnovni dokument koji opisuje principe i vred-
nosti agilnog razvoja softvera. Kreiran je 2001. godine od strane grupe programera
i ima dvanaest jednostavnih principa, kao 5to su: glavna mera napretka je upotre-
bljivost raspolozivog softvera, odrzivi razvoj, neprekidna usredsredenost na dobar
dizajn, pojedinci i interakcije pre procesa i alata, funkcionalan softver pre obimne
dokumentacije, odgovor na promene pre nego pracenje plana, itd.

Jedan od ciljeva ove metodologije je u ranom otkrivanju i ispravljanju propusta
i neuskladenih ocekivanja. Svaka iteracija odnosi se na minijaturni softverski proi-
zvod sa svim uobicajenim fazama razvoja (koje se izvrSavaju istovremeno). Svaku
iteraciju potrebno je zavrsiti na vreme i dobiti saglasnost narucioca. Za razliku od
rapidne metodologije, u okviru koje se, u iteracijama, razvijaju nekompletni pro-
totipovi, u agilnoj metodologiji, nakon nekih iteracija softver moze biti isporucen
naruciocu (ili na trziste) iako nema upotpunjenu funkcionalnost.

Agilna metodologija u mnogim je aspektima razvoja softvera uopstena, te po-
stoji vise vidova ove metodologije koji preciziraju neke njene aspekte, ukljucujuci
skram i ekstremno programiranje.

Skram

Skram (engl. scrum) je vid agilne metodologije u kojem se neposredna,
prakticna iskustva koriste u upravljanju izazovima i rizicima. Skram razvoj
se sastoji od jednog ili vise Skram timova, pri ¢emu svaki Skram tim Cine
tri uloge: vlasnik proizvoda, skram master i razvojni tim (Slika 77).

Softverski proizvod sve vreme se odrzava u stanju koje se potencijalno moze
isporuciti. Vreme je podeljeno u kratke intervale, ,sprintove”, obi¢no duge samo
jedan mesec ili kra¢e i na kraju svakog sprinta svi akteri i Clanovi tima sastaju
se da razmotre stanje projekta i planiraju dalje korake. Skram ima jednostavan
skup pravila, zaduzenja i sastanaka koji se, zarad jednostavnosti i predvidivosti,
nikad ne menjaju. Postoje sastanci na pocetku i kraju svakog sprinta, ali i kratki,
petnaestominutni dnevni sastanci (,,dnevni skram").

SLIKA ROLA
SLIKA AKTIVNOSTI

Vlasnik proizvoda (engl. product owner) je koja poseduje celovito razumevanje
projekta i autoritetom koja usmerava clanove tima. Vlasnik proizvoda ima
kljuénu ulogu u osiguravanju sveukupnog uspeha resenja koje se razvija ili
odrzava. Njegova osnovna odgovornost je da odredi sta ¢e biti razvijeno i
kojim redosledom. U tom smislu, vlasnik proizvoda nadgleda, a to ukljucuje
kreiranje, redefinisanje, procenu i prioritizaciju spiska zahteva (eng. scrum
backlog). Time vlasnik proizvoda osigurava da se donose dobre finansijske

15 1. Proces razvoja softvera

odluke na svim nivoima — od planiranja verzije proizvoda koja ¢e biti obja-
vljena, ali i sprinta pa do samog spiska zahteva proizvoda. Takode, na kraju
svakog sprinta, vlasnik proizvoda je odgovoran za odluku o tome da |i ¢e se
finansirati sledeéi sprint.

Kako bi ispunio ove odgovornosti, vlasnik proizvoda mora balansirati dve
kljuéne uloge. S jedne strane, on predstavlja naruCioce — kupce i korisnike
i njegova uloga je da razume njihove potrebe i prioritete. Sa druge strane,
on komunicira i sa razvojnim timom. On definiSe kriterijjume za prihvatanje
funkcionalnosti koje se razvijaju i osigurava da se sprovode testovi kako bi se
ti kriterijumi proverili. Tako da je on delom i poslovni analiticar, ali i tester.

Klju€no je da vlasnik proizvoda proverava kriterijume za prihvatanje proizvo-
da tokom izvodenja sprinta, umesto da ¢eka na kraj sprinta. Funkcionalnosti
se testiraju ¢im su zavrSene i vlasnik proizvoda moze brzo da identifikuje
greske i nesporazume, i tako da omogucavajuéi timu da te probleme resi pre
kraja sprinta.

Skram master (engl. scrum master) je osoba koja olaksava komunikaciju izmedu
vlasnika proizvoda i tima. Skram master pomaze timu i organizaciji da se
pridrzavaju skram vrednosti i principa. Oni vode tim kroz reSavanje problema
i uklanjanje prepreka, radi poboljsanja skram procesa i stite tim od spoljasnjih
ometanja. Skram master nije tradicionalan menadzer tima i ne vrsi kontrolu.

Razvojni tim je samoorganizovana, multidisciplinarna grupa odgovorna za dizajn,
izgradnju i testiranje proizvoda. Tim obi¢no ima od pet do devet ¢lanova,
uklju€ujuéi osobe sa razli¢itim vestinama kao §to su programiranje, testiranje
i dizajn korisnickog interfejsa. Ova raznolikost osigurava da tim poseduje
sve potrebne vestine da isporudi visokokvalitetan, funkcionalan softver, bez
potrebe da se oslanja na druge timove ili da prenosi posao, sto Cesto vodi do
nesporazuma i kasnjenja.

Tokom izvrsenja sprinta, tim saraduje kako bi stavke iz liste zahteva pretvo-
rio u potencijalno isporucive funkcionalnosti. Oni sami organizuju svoj rad,
planiraju, upravljaju i realizuju zadatke, uz odrzavanje redovne komunikacije
kroz dnevne sastanke. Ovi dnevni sastanci omogucavaju timu da pregleda
napredak, prilagodi planove i osigura uskladenost sa ciljem sprinta. Na po-
Cetku svakog sprinta, ucestvuju u planiranju sprinta sa vlasnikom proizvoda
i skram masterom kako bi odredili najvaznije stavke liste zahteva koje treba
obraditi, osiguravajuci uskladenost tima sa ukupnim ciljevima projekta.

Razvojni tim takode igra klju¢nu ulogu u anaiziranju sprinta, gde ceo skram
tim i zainteresovane strane procenjuju obavljeni posao i identifikuju oblasti za
poboljsanje. Radom u kratkim, iterativnim ciklusima, tim moze kontinuirano
unapredivati proizvod, kao i svoje procese, osiguravajuci stalno poboljsanje i
prilagodavanje. Tim radi transparentno, otvoreno deli informacije i zajedno
reSava probleme kako nastaju. Naglasak je na zajednickoj odgovornosti za
obavljene zadatke, jer rezultat rada zavisi od celog tima.

1.3. Ekspoloatacija 16

Ekstremno programiranje je vid agilne metodologije u kojem su posebno va-
Zne jednostavnost, motivacija i kvalitetni odnosi unutar tima. Programeri rade u
parovima (dok jedan programer pise kdd, drugi pokusava da pronade i ukaze na
eventualne greske i nedostatke) ili u ve¢im grupama, na kodu jednostavnog dizajna
koji se temeljno testira i unapreduje tako da odgovara teku¢im zahtevima. U ek-
stremnom programiranju, sistem je integrisan i radi sve vreme (iako svesno nema
potpunu funkcionalnost). Svi €lanovi tima upoznati su sa Citavim projektom i pisu
kéd na konzistentan nacin, te svako moze da razume kompletan kéd i da radi na
svakom delu koda. U ekstremnom programiranju, faze se sprovode u veoma malim
koracima i prva iteracija moze da dovede, do svesno nepotpune ali funkcionalne
celine, ve¢ za jedan dan ili nedelju. Zahtevi se obi€no ne mogu u potpunosti utvrditi
na samom pocetku, menjaju se tokom vremena, te narucilac treba da konstantno
bude ukljuéen u razvojni tim. Naruciocu se ne prikazuju samo planovi i dokumenti,
ve¢ konstantno i (nekompletni, nesavrseni, ali funkcionalni) softver. Dokumentacija
mora da postoji, ali se izbegava preobimna dokumentacija.

1.3 Ekspoloatacija

U fazi eksploatacije softver se uvodi u rad (eng. deployment) i odrzava u stabil-
nom, bezbednom i predvidljivom rezimu. Uvodenje u rad obuhvata isporuku nove
verzije u ciljno okruzenje (npr. oblak ili lokalna infrastruktura), uz upravljanje kon-
figuracijom, zavisnostima i moguénoséu brzog povratka na prethodnu verziju ako
se pojave problemi. Savremeni procesi se oslanjaju na automatizovane cevovode
izgradnje i isporuke (eng. Cl/CD): kontinuirana integracija automatizuje izgradnju
i testiranje svake promene koda, dok kontinuirana isporuka/pustanje u rad omo-
gucava bezbedno i €esto objavljivanje novih verzija, uz smanjenje rizika i vremena
izmedu promene i korisnicke vrednosti.

Nakon pustanja u rad, neophodno je pracenje nakon uvodenja (eng. post-
deployment monitoring): prikupljanje podataka , dnevnika rada (eng. logs) radi
ranog otkrivanja degradacije performansi, regresija i incidenata, uz pragove, alar-
me i jasno definisane ciljeve kvaliteta usluge. Uvode se strategije oporavka, kontrola
pristupa, redovno azuriranje, kao i provera ranjivosti. Na kraju, upravijanje krajem
Zivotnog veka (eng. end-of-life management) obuhvata planirano gasenje ili mi-
graciju sistema: pravovremenu komunikaciju sa korisnicima, arhiviranje i zastitu
podataka, uskladenost sa propisima i planiranje zamena, ¢ime se smanjuju tehnicki
dug i operativni rizik.

1.4 Alati i tehnike koriSéeni u razvoju softvera

1.4.1 Alati za upravljanje projektima

Upravljanje softverskim projektima obuhvata planiranje, organizaciju, pracenje
i kontrolisanje svih aspekata procesa razvoja. To podrazumeva pazljivo upravljanje
ljudima (timovima i pojedincima), procesima (metodologije, radni tokovi, standar-

17 1. Proces razvoja softvera

di) i problemima (zahtevi, ogranicenja, rizici) u cilju postizanja optimalnog balansa
izmedu kvaliteta, vremena i troskova. U okviru takvog pristupa, kljuéni pojmo-
vi ukljuéuju koris¢enje softverskih metrika, adekvatnu procenu obima i slozenosti
projekta, identifikaciju i upravljanje rizicima, pravovremeno kreiranje rasporeda ak-
tivnosti, kontinuirano odrzavanje i reinzenjering postojeéih softverskih resenja.

Alati za upravljanje projektima nisu samo pasivni podsetnici, ve¢ i aktivni me-
hanizmi podrske za donosenje odluka i evaluaciju napretka. Pored klasi¢nih funk-
cionalnosti dodele zadataka, definisanja rokova i organizovanja timskog rada, ovi
alati omogucavaju pracenje softverskih metrika (na primer, broj zavrsenih zadataka
u jedinici vremena, stepen pokrivenosti testovima, broj otvorenih bagova) koji se
mogu koristiti za bolju kontrolu kvaliteta, povecanje produktivnosti i optimizaciju
procesa razvoja. Na osnovu takvih metrika moguée je generisati procene troskova
i trajanja projekta, kao i pratiti da li projekat napreduje u skladu sa planiranim
rasporedom.

Postoje alati koji pomazu u rukovanju rizicima, pomazu da se ricici identifiku-
ju, ali i da se izbegnu neplanirani troskovi, kasnjenja ili pad kvaliteta isporucenog
softvera. Takvi alati prate istoriju razvoja i generisu projektne metrike koje se mo-
gu koristiti za rano uocavanje trendova ili indikatora problema, sto omoguéava
pravovremene akcije da bi se problemi spremicili ili ublazili.

Na trzistu se istiCu brojni alati koji podrzavaju sve ove aspekte projektnog me-
nadzmenta. Medu najpopularnijim su Jira, koja omogucava napredne moguénosti
izveStavanja, detaljnu integraciju sa sistemima za kontrolu verzija i metodologijama
kao sto su skram ili kanban, i Trello, intuitivna i vizuelno jednostavna platforma
idealna za manje timove i agilne procese, gde je brz i lak pregled stanja zadataka
od sustinskog znacaja.

1.4.2 Sistemi za kontrolu verzija

Sistemi za kontrolu verzija (eng. version control systems — VCS) su kljucni alati
u razvoju softvera za pracenje promena, saradnju i upravljanje istorijom projekta.
Medu njima, Git je najpopularniji i najsire koris¢en. Ovi sistemi su poznati i pod
drugim imenima, recimo kao menadzer izvornog koda (eng. Source Code Mana-
gement — SCM) ili kao sistem za kontrolu revizija (eng. Revision Control System
— RCS). Bez obzira na terminologiju, cilj ostaje isti: ¢uvati sadrzaj, beleziti sve
promene | omoguciti pristup razli¢itim verzijama.

Prilikom rada na projektu veoma je vazno osigurati Cuvanje rezervne kopije
projekta jer moze doé¢i do gubitka podataka usled greske u kodu ili kvara diska.
Odrziva i pouzdana strategija Cuvanja rezervene kopije projekta obi¢no ukljucuje
i kontrolu verzija omoguéavajuéi programerima pracenje i upravljanje revizijama.
Repozitorijum je centralizovano skladiste gde se ¢uva sav izvorni kod projekta
zajedno sa istorijom svih izmena. Repozitorijum sadrzi:

Verzije datoteka — Sve datoteke i dokumenti projekta, ali i sve njihove razli¢ite
verzije obelezene i datumom i vremenom kada je neka verzija napravljena.

1.4. Alati i tehnike koris¢eni u razvoju softvera 18

Istorija izmena — Evidencija o svakoj promeni koja je napravljena u kodu, uklju-
Cujuéi ko je napravio promenu, kada je promena napravljena, kao i opis pro-
mene. Ove izmene ujedno predstavljaju i formalan nacin komunikacije izmedu
¢lanova tima koji rade na istom projektu.

Grane — Razlicite verzije koda koje se mogu razvijati paralelno i na taj na-
¢in je omoguéeno istovremeno razvijanje razliGitih funkcionalnosti ili verzija
projekta.

Repozitorijum omoguéava timovima da efikasno saraduju, prate promene i vrse
integraciju razli¢itih delova koda na kontrolisan nacin.

U pocetku, upravljanje skladistem je bila kljuéna funkcija sistema za kontrolu
verzija, smanjujuci prostor na disku potreban za odrzavanje svih verzija. Kada se
kreira nova verzija, Cuva se samo razlika izmedu nje i prethodne verzije (delta).
U okviru repozitorijuma se €uvaju sve delte (izmene) nad projektom. Te delte,
kada se primene na osnovnu verziju, ponovo kreiraju ciljnu verziju. Obi¢no i na
repozitorijumu i na lokalnom racunaru na kom programer radi na projektu se ¢uva
najnovija, poslednja verzija, a koris¢enjem delti je moguce kreirati ranije verzije.

U timskom razvoju softvera, razli¢iti €lanovi tima Cesto rade na istoj kompo-
nenti istovremeno. U ovakvim okolnostima vazno je izbeéi sukobe izmedu njihovih
promena. Sistemi za kontrolu verzija koriste model javnog repozitorijuma i privat-
nog radnog prostora. Programeri preuzimaju komponente iz repozitorijuma u svoj
privatni radni prostor, prave promene, a zatim ih vracaju nazad. Ako vise ljudi radi
na jednoj komponenti, sistem upozorava ostale i osigurava da izmenjene komponen-
te dobiju razlicite identifikatore verzija, kao i integraciju svih izmena u jedinstven
kod. Dodatno, programerima je omogucéeno da dodaju opise svojih izmena, tako
da svi ¢lanovi tima mogu da razumeju zbog Cega je neka promena nastala. Ovo
je Cesto pozeljno, a zapravo u mnogim organizacijama i obavezan korak prilikom
unosa izmena u kod.

Dodatno, sistemi za kontrolu verzija ¢esto imaju pridruzene i dodatne alate za
analizu koda. Na primer, alati koji formatiraju kod, alati za staticku analizu koda
koji otkrivaju potencijalne greske, i alati za kontinualnu integraciju koji automatski
prevode i testiraju kod. Kod koji ne moze da se prevede ili ne prolazi sve testove
obi¢no se ne moze ni postaviti na glavni ili javni repozitorijum.

Veoma Cesto, deo sistema za kontrolu verzija je i proces revizije koda (eng. code
review). Pre nego 5to se izmene unesu u glavni repozitorijum, drugi programeri,
¢lanovi tima, ili supervizori pregledaju predlozene izmene. Tokom ove revizije, oni
analiziraju kvalitet, efikasnost, sigurnost i odrzivost koda. Nakon $to se utvrdi da
je kod u skladu sa standardima projekta i da nema kriti¢nih gresaka, odobrava se
integracija izmena u glavni repozitorijum.

Kao 5to je vec reCeno, najpoznatiji i najsire koris¢en sistem za kontrolu verzija
je Git. Git je distribuirani sistem za kontrolu verzija, sto znaci da svaki korisnik
ima punu kopiju istorije repozitorijuma, 5to omoguéava rad van mreze i vecu ot-
pornost na greske. Pored Gita, postoje i drugi sistemi za kontrolu verzija, kao sto
su Subversion (SVN) i Mercurial. SVN je centralizovani sistem, Sto znaci da postoji

19

1. Proces razvoja softvera

jedan centralni repozitorijum kojem korisnici pristupaju. Ovo olaksava centralizova-
nu kontrolu i nadzor, ali moze biti manje fleksibilno u poredenju sa distribuiranim
sistemima kao sto je Git. Mercurial je takode distribuirani sistem, slican Gitu, ali
je Git poznat po jednostavnosti koriséenja i brzini.

Linux kernel je razvijan pomocu BitKeepera, komercijalnog alata za kontrolu
verzija. Godine 2005. kompanija koja poseduje BitKeeper odlucila je da vise ne do-
zvoljava besplatno korisé¢enje alata. Linux zajednica je morala da pronade drugacije
reSenje. Linus Torvalds je trazio besplatan alat koji bi zadovoljio sve potrebe za
razvoj Linux kernela, pa je osmislio i razvio Git zajedno sa grupom programera. Git
je morao da zadovolji nekoliko kljuénih zahteva:

2

*

sk

%

%

Distribuiran razvoj: Omoguciti paralelan i nezavisan razvoj u privatnim re-
pozitorijumima bez stalne potrebe za sinhronizacijom sa centralnim repozito-
rijumom. Programeri mogu raditi na razli¢itim lokacijama, ¢ak i van mreze,
uz istovremeno omogucavanje hiljadama programera da rade na istom pro-
jektu. Svaki repozitorijum ima kompletnu istoriju svih promena.

Brzina i efikasnost: Da bi se ustedelo na prostoru i skratilo vreme prenosa,
koris¢ene su kompresije i delta"tehnika. Distribuirani model umesto centrali-
zovanog modela osigurao je da kasnjenje mreze ne ometa svakodnevni razvoj.

Pouzdanost: Posto je Git distribuirani sistem za kontrolu revizija, vazno je
imati apsolutnu sigurnost da je integritet podataka ocuvan. Git koristi krip-
tografsku hash funkciju SHA1 (eng. Secure Hash Function) za imenovanje
i identifikaciju objekata u svojoj bazi podataka, 3to osigurava integritet i
poverenje u distribuirane repozitorijume.

Preuzimanje odgovornosti: Kljucni aspekt sistema za kontrolu verzija je
znati ko je promenio datoteke i, ako je moguée, zasto. Git nameée vodenje
evidencije o izmenama pri svakom menjanju datoteke.

Nepromenljivost: Git-ova baza podataka repozitorijuma sadrzi objekte koji
su nepromenljivi. To znadi da, kada su kreirani i smesteni u bazu podataka,
ne mogu biti izmenjeni. Dizajn Git baze podataka znaci da je cela istorija koja
se nalazi unutar baze podataka za kontrolu verzija takode nepromenljiva.

Atomske transakcije: Niz promena koje treba da se obave se obavljaju sve
zajedno ili se uopste ne obavljaju. To znaci da ako prilikom unosa izmena se
desi da mrezna veza se prekine ili server prestane da radi, izmene nece biti
delimiéno primenjene i na taj nacin ostaviti datoteku u neispravnom stanju.

Grane: Omoguciti paralelno razvoj razlicitih grana u okviru kojih se mogu
razvijati razli¢ite funkcionalnosti. Omoguéiti i spajanje grana u jednu.

Slobodan za koriséenje.

Ima mnogo razli¢itih nacina za koris¢enje Gita. U ovoj knjizi Git se koristi putem
komandne linije. Komandna linija je jedino mesto gde mozete pokrenuti sve Git

1.4. Alati i tehnike koris¢eni u razvoju softvera 20

komande — ve¢ina GUI-ja implementira samo delimic¢an skup Git funkcionalnosti
radi jednostavnosti i izbor grafickog klijenta je stvar licnog ukusa.

Osnovni pojmovi i tokovi rada u Git-u

Repozitorijumi (eng. repositories). Repozitorijum je ,projekat sa memori-
jom": pored samih fajlova (koda, slika, dokumentacije), on cuva i istoriju izmena
— ko je 5ta menjao i kada, kao i informacije o granama i verzijama. Te informacije
Git smesta u poseban direktorijum .git, koji se nalazi unutar projekta, pa se zato
repozitorijum moze posmatrati kao obican folder prosiren mehanizmom za praéenje
promena.

Repozitorijum moze postojati lokalno (na racunaru) i udaljeno (na zajedni¢kom
serveru). Lokalna kopija omogucava rad i bez interneta, dok udaljeni repozitorijum
(eng. remote) sluzi da ¢lanovi tima razmenjuju promene i imaju zajedni¢ko mesto
na kome se €uva ,,zvani¢na" verzija projekta. Novi repozitorijum se pravi komandom
git init, a postojeci se preuzima komandom git clone.

Revizije (eng. commits). Revizija (eng. commit) je zapis jedne smislene pro-
mene u projektu: predstavlja trenutak u kome kazemo ,,0vo je sada novo, stabilno
stanje u odnosu na malopre”. Svaka revizija ima kratku poruku koja opisuje sta je
uradeno, podatke o autoru i vremenu, kao i jedinstveni identifikator (hes) pomoéu
koga se tacno zna na koju se reviziju mislilo. Niz revizija Cini istoriju projekta, pa
se u svakom trenutku moze videti kako je projekat nastajao i po potrebi vratiti na
neko ranije stanje.

Pravljenje revizije se obi¢no radi u dva koraka. Najpre se izaberu fajlovi (ili
delovi izmena) koje zelimo da udu u slede¢u reviziju komandom git add, a zatim
se ta promena zabelezi komandom git commit. Ovaj pristup pomaze da revizije
budu ,iste” i tematski jasne, umesto da se mnogo nepovezanih izmena nade u
jednom zapisu. Istorija se pregledava komandom git log, dok se razlike izmedu
verzija ili lokalnih izmena vide komandom git diff.

Grane (eng. branches). Grana je ,radna verzija" projekta u kojoj se razvija
odredena funkcionalnost, ispravlja greska ili radi eksperiment, bez uticaja na glavnu,
stabilnu verziju (najces¢e granu main). Ideja je jednostavna: dok je posao u toku
i jos nije spreman, on se drzi odvojeno; kada bude zavrsen i proveren, promene se
prenose u glavnu granu postupkom spajanja (eng. merge). Na taj nacin vise ljudi
moze da radi paralelno na razli¢itim delovima projekta, a da se stabilna verzija ne
,kvari' nedovrsenim izmenama.

Nova grana se obi¢no pravi za konkretan zadatak. Kreiranje i prelazak na novu
granu radi se komandom git switch -c naziv, dok se spisak postoje¢ih grana
moze videti komandom git branch.

Spajanje (eng. merge). Spajanje je postupak kojim se promene iz jedne grane
prenose u drugu (najcesce iz grane u kojoj se razvijala funkcionalnost u glavnu

21 1. Proces razvoja softvera

granu main). U velikom broju slu¢ajeva Git moze sam da objedini izmene, jer
prepoznaje koji delovi fajlova poticu iz koje grane i kako da ih spoji u jedinstvenu
verziju.

Problem nastaje kada su u obe grane menjani isti redovi (ili vrlo bliski delovi)
istog fajla, ali na razli¢ite nacine. Tada Git ne moze da pogodi sta je ispravno
reSenje i prijavljuje konflikt (eng. conflict), koji programer mora ruéno da razresi
tako §to izabere ili kombinuje odgovarajué¢e delove teksta. Spajanje se pokrece
komandom git merge, a rezultat je aZurirana ciljna grana i zabelezeno da je do
spajanja doslo. U praksi se spajanje u stabilnu granu radi oprezno, najéesce tek
nakon pregleda promena i proverenog pokretanja testova.

Zahtevi za spajanje (eng. pull requests). Zahtev za spajanje (eng. pull requ-
est) je postupak kojim se na platformama kao 5to su GitHub ili GitLab predlaze da
se promene iz jedne grane ukljuée u drugu (najces¢e u main). Autor najpre objavi
svoju granu na zajedni¢kom repozitorijumu, a zatim otvara zahtev za spajanje ka-
ko bi ostali mogli da vide 3ta je promenjeno, da komentarisu i da provere da li je
reSenje dobro.

Sustina zahteva za spajanje je kontrolisana provera pre integracije: promene se
pregledaju (pregled koda), po potrebi se diskutuje pristup, a zatim se obi¢no pokre-
nu automatske provere, kao Sto su testovi i alati koji upozoravaju na potencijalne
greske. Tek kada su provere zadovoljene, promene se spajaju u ciljnu granu. Na
ovaj nacin se smanjuje verovatnoca da se u stabilnu verziju projekta unesu greske
i poveCava se transparentnost timskog rada.

Reorganizacija istorije (eng. rebase). Rebase (eng. rebase) je postupak kojim
se sredi” istorija jedne grane tako da se ona nasloni na najnovije stanje glavne grane
(main), kao da je rad na toj grani krenuo od tog novijeg trenutka. Najjednostavnije
reCeno, rebase sluzi da svoju granu uskladis sa najnovijim promenama iz main i
da istorija izgleda urednije (Ce3¢e kao jedna ravna linija), bez dodatnog zapisa o
spajanju.

Ova operacija se radi komandom git rebase. Vazno je znati da rebase moze
da promeni ,obelezja" postojecih revizija, pa se zato uglavnom koristi dok grana
jos nije podeljena sa drugima (dok je lokalna ili dok na njoj ne radi vise ljudi).
Ako je grana ve¢ objavljena i drugi su je preuzeli, rebase moze da napravi zbrku pri
uskladivanju, pa se tada koristi samo uz jasan dogovor u timu.

Tokovi rada (eng. workflows) i tipicni obrasci. Git je jedan alat, ali se u
razli¢itim timovima koristi na razli¢ite nacine. Zato se unapred dogovara tok rada:
koje grane postoje, kako se naziva grana za novi zadatak, kada se promene spajaju
u glavnu verziju, ko i kako pregleda promene i koje provere (npr. testovi) moraju
da produ. Dobar tok rada je vazan jer sprecava haos: ako svako radi ,,po osecaju”,
brzo se dobije istorija koju je tesko razumeti i jo$ teze odrzavati.

Centralizovani tok rada (eng. centralized workflow) je najjednostavniji: postoji
jedna glavna grana (najées¢e main) i svi rade tako 5to redovno preuzimaju najnovije

1.4. Alati i tehnike koriséeni u razvoju softvera 22

stanje i objavljuju svoje izmene. Ovaj model je lak za ucenje i dobar za manje
timove, ali u ve¢im timovima obi¢no zahteva dodatna pravila, na primer da se ne
sme direktno spajati u main, ve¢ da promene moraju prvo da produ kroz zahtev za
spajanje.

Tok sa granama funkcionalnosti (eng. feature branch workflow) danas je najce-
§¢i u praksi. Za svaki zadatak otvara se posebna grana, u njoj se radi i prave revizije,
a zatim se otvara zahtev za spajanje (eng. pull request) ka main. Pre spajanja se
promene pregledaju i proveravaju, pa tek onda ulaze u glavnu granu. Da bi se izbe-
gli veliki konflikti, grana se povremeno uskladuje sa najnovijim stanjem main (bilo
spajanjem merge (eng. merge), bilo reorganizacijom istorije rebase (eng. rebase)).

Gitflow je formalniji model koji uvodi vise stalnih grana, najées¢e main za
stabilna izdanja i develop za tekudéi razvoj, uz posebne grane za pripremu izdanja
i hitne ispravke. Koristan je kada se izdanja objavljuju u jasno planiranim ciklusima i
kada je vazno odrzavati strogu strukturu. Medutim, za timove koji objavljuju veoma
Cesto, ovaj model moze biti suviSe slozen, pa se tada obi¢no bira jednostavniji tok
rada sa granama funkcionalnosti.

Primer 1.1. Jedan tipi¢an tok rada u praksi
U nastavku je prikazan objedinjeni primer rada u timu: preuzimanje repozitori-
Jjuma, rad u grani funkcionalnosti, beleZenje revizija, sinhronizacija sa glavnom
granom, objavljivanje grane i integracija kroz pull request. Primer koristi savre-
mene komande switch i restore; u starijim vodicima Cesto se sre¢e checkout.

23

1. Proces razvoja softvera

1) Preuzimanje repozitorijuma (lokalna kopija sa celom istorijom)
git clone https://example.com/projekat.git
cd projekat

2) Pregled stanja % istorije
git status
git log --oneline --decorate --graph --max-count=10

3) Kreiranje grane za novu funkcionalnost i prelazak na nju

git switch -c feature/validacija-unosa

(ovde izmenite fajlove u editoru, mpr. dodate validaciju u
— src/input.cpp)
git diff # pregled lokalnih izmena

4) Priprema izmena t beleZenje revizije
git add src/input.cpp include/input.h

git commit -m "Dodaj osnovnu validaciju korisnickog unosa"

5) Objavljivanje grane na udaljenom repozitorijumu

git push -u origin feature/validacija-unosa

6) U meduvremenu se main promenio: preuzimamo novosti bez
— automatskog spajanja

git fetch origin

7 Postavljanje grane na najnovijt main radi linearnije istorije

git rebase origin/main

Ako nastane konflikt:

- otvorite konflikine fajlove, razresite oznake <<<<<KKK =======
o DOOOO>>

- zatim:

git add src/input.cpp

git rebase --continue

Nakon rebase-a objavljujemo nmovu istoriju:

git push

8) Pull request (na platformi): otvaranje PR-a feature/... -> main,
— pregled i automatske provere
(nije Git komanda; radi se kroz GitHub/GitLab interfejs)

9) Nakon sto je PR spojen, lokalno osvezavanje glavne grane
git switch main
git pull

1.5. Savremeni trendovi i tehnologije u razvoju softvera 24

1.5 Savremeni trendovi i tehnologije u razvoju softvera

1.5.1 Distribuirani softverski sistemi

Distribuirano softversko inzenjerstvo bavi se razvojem, odrzavanjem i isporukom
softverskih sistema koji se izvr3avaju na vise racunara ili geografski distribuiranih
Evorova. Za razliku od centralizovanih sistema, komponente distribuiranih sistema
rade paralelno i komuniciraju putem mreznih protokola, 5to omogucava skaliranje,
povecanu dostupnost i otpornost na kvarove. Danas su gotovo svi veliki sistemi
distribuirani, ali ovaj pristup uvodi dodatne izazove u pogledu komunikacije, sin-
hronizacije, bezbednosti i upravljanja odvojenim komponentama.

Distribuirani sistemi su slozeniji od centralizovanih, sto ih Cini tezim za dizajn,
implementaciju i testiranje. Performanse distribuiranog sistema ne zavise samo od
brzine izvrsavanja pojedinacnog procesora, ve¢ i od mrezne propusnosti, opterecenja
mreze i brzine svih racunara ukljuéenih u sistem.

Distribuirani sistemi imaju nekoliko osnovnih osobina:

%

Deljenje resursa: Vise racunara na mrezi zajednicki koriste hardverske i
softverske resurse (npr. diskove, stampace, baze podataka i kompajlere), sto
omogucava da se optimalno iskoristi dostupna infrastruktura.

()

% Paralelno izvrsavanje (konkurentnost): Vise procesa se izvrsava istovre-
meno na razli¢itim ¢vorovima, Cime se povecava brzina obrade podataka
i efikasnost sistema. Cesto je neophodna medusobna komunikacija procesa
putem poruka ili signala. Medutim, komunikacija je ponekad asinhrona, sto
moze dovesti do kasnjenja — sistem moze Cekati dolazak podataka ili se, u
slucaju prevelike kolicine dolaznih informacija, moze se pojaviti ¢ekanje na
svoj red za obradu.

3

¢ Skalabilnost: Distribuirani sistemi se mogu skalirati dodavanjem novih resur-
sa. Skalabilnost je klju¢na karakteristika distribuiranih sistema koja omogu-
¢ava prosirenje kapaciteta sistema u skladu sa rastu¢im zahtevima korisnika.
Sistem se mora projektovati tako da se njegov kapacitet moze poveéavati.

Jedan nacin skaliranja je povecanje kapaciteta postojecih ¢vorova (eng. sca-
ling up). U ovom pristupu zamenjuju se ili unapreduju resursi unutar posto-
jec¢ih &vorova (na primer, povecanjem memorije ili brzine procesora). lako se
na ovaj nacin postize veta mo¢ obrade, ova metoda moze biti ogranicena
hardverskim kapacitetom i Cesto je skuplja.

Drugi nacin skaliranja sistema je dodavanje novih ¢vorova (eng. scaling out).
Ovde se u mrezu dodaju novi ¢vorovi kako bi se povecala ukupna obrada i
raspodelilo opterecenje. Dodavanje novih ¢vorova je Cesto isplativiji i omo-
gucava vecu fleksibilnost. Zahteva pazljivo projektovanje sistema u pocetnoj
fazi, uzimaju¢i u obzir moguénost buduceg prosirenja. Prilikom dodavanja,
neophodno je ravnomerno rasporediti opterecenje i sinhronizovati rad svih
¢vorova, kako novih, tako i postoje¢ih. Medutim, ponekad, sama mrezna

25 1. Proces razvoja softvera

arhitektura i ogranicenja u propusnosti mreze mogu uticati na efikasnost
skaliranja.

%

Otpornost na greske: Zahvaljuju¢i upotrebi dodatnih resursa i moguénosti
replikacije podataka, distribuirani sistemi mogu nastaviti da funkcionisu i u
slucaju otkaza pojedinacnih ¢vorova. Ukoliko neki ¢vor prestane sa radom,
Cesto se implementiraju mehanizmi za automatsko preusmeravanje zahteva
kako bi se izbegao potpuni prekid rada.

Arhitektura distribuiranih sistema. Distribuirani sistemi kojima se pristupa
preko interneta najcesée se organizuju premaklijent—server modelu. U ovim siste-
mima, korisnik komunicira sa aplikacijom koja se izvr3ava na lokalnom uredaju (na
primer, putem web pretraziva€a ili mobilne aplikacije), dok daljinski server pruza
neophodne usluge, poput pristupa web sadrzajima. Ovakva arhitektura omogucava
jasno razdvajanje prezentacije informacija od same obrade podataka, sto doprinosi
boljoj skalabilnosti i upravljanju sistemom.

Vise serverskih procesa moze se izvrsavati na istom procesoru, ali se Cesto serve-
ri implementiraju kao multiprocesorski sistemi, gde se zasebna instanca serverskog
procesa pokre¢e na svakom racunaru. Softver za balansiranje optereéenja raspo-
reduje zahteve klijenata ravnomerno na sve servere, Cime se omoguéava obrada
veceg broja zahteva od pojedinacnih klijenata.

1.5. Savremeni trendovi i tehnologije u razvoju softvera 26

Master — rob Ovaj model se primenjuje u sistemima gde je kriti¢no
arhitektura zadovoljiti stroga vremenska ogranicenja i odreago-
(eng. master—slave) vati na zahteve u realnom vremenu.

Glavni évor (master) rasporeduje zadatke potcinje-
nim ¢vorovima (rob), Sto omogucava precizno pla-
niranje i brzu obradu.

Primer takvog sistema je upravljanje semaforima u

saobracaju.
Dvoslojna U ovom jednostavnom modelu, aplikacija se sastoji
(eng. two-tier) od jednog centralnog servera i brojnog skupa klije-
klijent—server nata.
arhitektura
Server obraduje zahteve, dok klijenti komuniciraju
direktno sa njim.
Zbog centralizacije podataka, komunikacija izmedu
klijenta i servera je Cesto enkriptovana kako bi se
obezbedila sigurnost.
Tipican primer primene je bankomat sistem, gde
ATM uredaji (klijenti) pristupaju centralnoj bazi po-
dataka na ra€unaru (server).
Viseslojna Pogodna je za velike sisteme sa visokim brojem
(eng. multi-tier) transakcija, gde se podaci integrisu iz viSe izvora,
klijent—server a Cesto se primenjuje i dodatni integracioni server
arhitektura radi objedinjavanja distribuiranih podataka.

Ovaj model deli aplikaciju na vise logickih slojeva
— prezentacioni sloj, sloj za upravljanje podacima,
aplikacioni sloj i sloj baze podataka. Svaki sloj moze
da se izvrsava na zasebnom ¢&voru, sto omogucava
ravnomernu raspodelu opterecenja i poboljsava ska-
labilnost sistema.

Koristi se kod aplikacija velikih razmera koje imaju
nekoliko stotina ili hiljada klijenata.

27

1. Proces razvoja softvera

Decentalizovana
arhitektura

(eng. peer-to-peer,
P2P)

Komunikacioni modeli.

Koristi se kada klijenti razmenjuju lokalno sacuva-
ne informacije, a uloga centralnog servera se svo-
di na povezivanje klijenata. Za razliku od klijent—
server modela, gde postoji jasna podela izmedu ser-
vera (pruzalaca usluga) i klijenata (primaoca uslu-
ga), P2P sistemi su decentralizovani — svaki ¢vor
moze da obavlja racunanje i skladisti podatke. Pri-
meri ovakvih sistema su kriptovalute (Bitcoin), si-
stemi za razmenu datoteka (BitTorrent), kao i razni
servisi za razmenu poruka.

U principu, u P2P sistemima ne postoji striktna razli-
ka izmedu klijenata i servera, jer svaki ¢vor pokrece
kopiju aplikacije koja sadrzi komunikacione protoko-
le i standarde.

Primenjuje se kada je sistem racunarski intenzivan
i obradu je moguce podeliti na veliki broj nezavi-
snih operacija. Takode i u situacijama kada primar-
na funkcija sistema jeste razmena informacija medu
pojedina¢nim racunarima, bez potrebe za centrali-
zovanim upravljanjem podacima.

Prednosti ove arhitekture su visoka redundantnost,
otpornost na otkaze i fleksibilnost u koris¢enju raspo-
lozivih resursa. Medutim, nedostaci ukljucuju mo-
gucnost dupliranja obrade istih zahteva i znacajano
komunikaciono opterecenje ¢vorova.

Komunikacija izmedu komponenti distribuiranog siste-

ma moze se ostvarivati na dva osnovna nacina:

% Proceduralna interakcija: Podrazumeva da jedan racunar poziva pozna-
tu uslugu koju nudi neki drugi raunar i (obi€no) ¢eka da ta usluga bude
isporucena. Realizovana putem poziva udaljenih procedura (RPC) ili, u slu-
¢aju Jave, udaljenih metoda (RMI). U RPC, jedna komponenta poziva drugu
komponentu kao da je lokalna procedura ili metoda. Ovaj model zahteva da
i pozivajuéi i pozvani entitet budu istovremeno dostupni, $to moze predsta-
vljati problem u slu€aju privremene nedostupnosti neke komponente.

%

Komunikacija zasnovana na porukama: Poruke se smestaju u redove e-

kanja dok primalac ne postane dostupan, ¢ime se omoguéava asinhrona ko-
munikacija. Medusoftver (eng. middleware), odnosno softver koji se nalazi
‘izmedu’ operativnog sistema i aplikacija, igra klju¢nu ulogu u upravljanju

1.5. Savremeni trendovi i tehnologije u razvoju softvera 28

komunikacijom, transformacijom podataka i odrzavanju konzistentnosti iz-
medu razli¢itih komponenti.

U sustini, RPC ima iste zahteve kao i lokalni poziv procedure ili metode. Nasu-
prot tome, u pristupu zasnovanom na porukama, moguce je tolerisati nedostupnost,
jer poruka jednostavno ostaje u redu dok primalac ne postane dostupan. Dalje, nije
neophodno da posiljalac i primalac budu svesni postojanja jedan drugog; oni jedno-
stavno komuniciraju sa medusoftverom, koji je odgovoran za prosledivanje poruka
odgovarajuéem sistemu.

Implementacione tehnologije i bezbednost. U savremenom razvoju distri-
buiranih sistema koriste se razli¢ite tehnologije i programski jezici koji pokrivaju
sve aspekte izgradnje aplikacija — od baze podataka do korisnickog interfejsa. Na
primer, SQL se Siroko koristi za rad sa relacionim bazama podataka, dok se JAva
Cesto primenjuje za razvoj serverske logike. Sa druge strane, za razvoj korisnic-
kog interfejsa popularni su ANGULAR, REACT i JAVASCRIPT, koji omogucavaju
kreiranje dinamicénih i responzivnih web aplikacija.

Takode, GO je postao vrlo cenjen jezik u razvoju distribuiranih sistema zbog
svoje jednostavnosti, visokih performansi i podrske za konkurentno programiranje.
Njegova ugradena podrska za paralelno izvrsavanje Cini ga idealnim za izgradnju
sistema koji zahtevaju visoku propusnost i efikasno koriséenje resursa.

Kljuénu ulogu u odrzavanju doslednosti i pouzdanosti distribuiranih sistema
igraju algoritmi za postizanje konsenzusa, medu kojima je RAFT jedan od najpo-
znatijih. Postizanje konsenzusa znaci da grupa servera, uprkos moguéim otkazima
pojedina¢nih ¢vorova, mora da se usaglasi oko zajednickog stanja sistema — na
primer, o redosledu operacija nad bazom podataka. RAFT osigurava da svi Cvorovi
imaju isti pregled podataka, 5to je od presudnog znacaja za integritet i pouzdanost
distribuiranih aplikacija.

Projektovanje distribuiranih sistema mora da se fokusira i na bezbednost. Si-
stem mora da bude otporan na razli¢ite vrste napada, ukljucujuéi presretanje poda-
taka, uskraéivanje usluga (DoS), neovlas¢ene izmene i ubacivanje laznih podataka.
Implementacija enkripcije, autentifikacije i kontrola pristupa predstavlja osnovu za
zastitu podataka i komunikacionih kanala. Vise tacaka pristupa i brojni komunika-
cioni kanali zahtevaju napredne sigurnosne mehanizme kako bi se zastitili podaci i
transakcije u sistemu.

Programiranje u oblaku (eng. cloud computing) i distribuirani sistemi.
Programiranje u oblaku predstavlja prirodan nastavak distribuiranog softverskog
inzenjerstva, omogucavajuc¢i koris¢enje udaljenih resursa bez potrebe za izgrad-
njom sopstvene infrastrukture. Na primer, umesto ulaganja u sopstveni prostor za
skladistenje podataka, moguce je koristiti usluge poput Amazon S3, dok se algorit-
mi vestacke inteligencije mogu izvrsavati na udaljenim serverima. Takode, blokéejn
tehnologije koriste distribuirane resurse za obradu transakcija i verifikaciju podata-
ka, ¢ime se omogucava sigurnost i transparentnost.

29 1. Proces razvoja softvera

Ovakav pristup smanjuje troskove infrastrukture, jer se resursi dinamicki pri-
lagodavaju trenutnim potrebama, a timovi za razvoj distribuiranih sistema mogu
brze i fleksibilnije implementirati nove funkcionalnosti. Ovo omoguéava agilni ra-
zvoj softvera, gde se resursi lako povecavaju ili smanjuju u zavisnosti od zahteva
projekta, bez dodatnih ulaganja u fizi¢ki hardver.

Distribuirano softversko inzenjerstvo predstavlja kompleksan, ali neophodan pri-
stup u savremenom IT svetu, omogucavajuéi visok nivo otpornosti, skalabilnosti
i efikasnosti. lako nudi brojne prednosti, projektovanje ovakvih sistema zahteva
pazljivo balansiranje izmedu performansi, bezbednosti i pouzdanosti. Savremene
implementacije distribuiranih sistema oslanjaju se na napredne komunikacione mo-
dele i tehnologije, Cime se postize robustan temelj za buduce inovacije u oblasti
softverskog inzenjerstva.

1.5.2 Mikroservisno orijentisan razvoj softvera

Komponentno softversko inzenjerstvo (eng. Component Based Sofware Enge-
eneering, CBSE), razvijeno tokom 1990-ih, formalizovalo je ideju da se slozeni si-
stemi grade spajanjem ,crnih kutija" — komponenti sa jasno definisanim zadacima
i eksplicitnim ulazno-izlaznim interfejsima. Ovakav pristup podsticao je ponovnu
upotrebu koda, ali je Cesto otezavao nezavisan razvoj pojedinaénih delova aplikacije
i skaliranje samo onih komponenti kojima je to bilo potrebno. CBSE se prirodno
nadovezuje na principe objektno orijentisanog programiranja, dok ih arhitektonski
stil mikroservisa (engl. microservices) dodatno prosiruje uvode¢i autonomne, samo-
stalno isporucive servise koji medusobno komuniciraju mreznim protokolima, ¢ime
se postize veca agilnost i skalabilnost sistema. Umesto razvoja jedne velike (mono-
litne) aplikacije, sistem se razlaze na skup manjih, medusobno nezavisnih servisa.
Kljuéna razlika u odnosu na bibliotke ili klasicne komponente jeste to Sto je svaki
servis samostlna jedinica sa sopstvenim ciklusom razvoja, koja se moze isporuditi
nezavisno u odnosu na ostale servise.

SLIKA - PRIMER (situaational awareness)

Tri klju¢na principa mikroservisne arhitekture su:

Y

% Ograniceni kontekst (eng. bounded context) — svaki servis ima jasno defini-
sanu odgovornost i granice. Servis je ogranien na jednu poslovnu potrebu
(funkcionalnost) i lako je razumeti njegovu svrhu, ali i pronaci i menjati ze-
ljene funkcionalnosti.

% Velicina — fokus je na maloj velicini servisa. Cim servis postane prevelik (sa
velikim brojem funkcionalnosti), treba ga podeliti na manje servise.

s Nezavisnost — svaki servis je nezavistan i moze se razvijati, testirati, imple-
mentirati i skalirati nezavisno od drugih servisa. Ovo omogucava timovima
da rade na razli¢itim servisima istovremeno bez medusobnog ometanja. Je-
dina bitna zavisnost je komunikacija izmedu servisa, koja se obi¢no ostvaruje
putem mreznih protokola.

1.5. Savremeni trendovi i tehnologije u razvoju softvera 30

Obratimo paznju da su mikroservisna arhitektura omogucava laksu izgradnju
distribuiranih sistema jer svaki servis se moze naéi na razli¢itim racunarima, a
komunikacija izmedu servisa se obavlja putem mreznih protokola.

Mikroservisna arhitektura omogucava timovima da koriste razli¢ite tehnologije
i programske jezike za razlicite servise. Na primer, ako neki servis zahteva inteziv-
na raunanja, moze se implementirati u C+-+, dok se drugi servis koji je okrenut
krajnjim korisnicima moze implementirati u JAVASCRIPT jeziku. Sa druge stra-
ne, u monolitnim sistemima, koris¢enje razli¢itih tehnologija je otezano jer bi cela
aplikacija morala da bude napisana u jednoj tehnologiji.

Mikroservisi se Eesto isporucuju u kontejnerima, na primer, koriste¢i DOCKER.
Kontejner sadrzi sve 5to je potrebno za pokretanje servisa — izvrsni kod servisa, ali
i biblioteke i konfiguracije koje su potrebne za njegovo pokretanje. Na ovaj nacin,
servisi se mogu pokrenuti na bilo kojem racunaru koji ima instaliran DOCKER, bez
potrebe za dodatnim konfiguracijama.

Mnoge kompanije su usvojile mikroservisnu arhitekturu, uklju¢ujuéi NETFLIX,
AMAZON, GOOGLE, LINKEDIN i dr.

Mikroservisna arhitektura omoguéava i veéu robusnost sistema. Ako neki ser-
vis prestane da radi, to ne utic¢e na rad drugih servisa. Na primer, ako servis za
autentifikaciju korisnika prestane da radi, to neée uticati na rad servisa za pretra-
gu proizvoda. Ovo omogucava da sistem se moze koristiti iako neki servisi nisu
dostupni.

Mikroservisi nude i neke izazove. Na primer, komunikacija izmedu servisa moze
biti spora i moze do¢i do kasnjenja u radu sistema. Moze se desiti da razliciti servisi
zahtevaju akciju od jednog istog servisa, sto moze dovesti do preopterecenja tog
servisa ili nemoguénost da se zahtev ispuni. Testiranje i debagovanje mikroservi-
sa moze biti slozenije nego kod monolitnih sistema, jer je potrebno testirati svaki
servis posebno, ali i testirati interakcije izmedu servisa. Ponekad mikroservisi dele
istu bazu podataka (mada prema preporukama svaki mikroservis ima svoju bazu,
ali nekada nije moguce realiovati takvu arhitekturu), sto moze dovesti do proble-
ma sa konzistentnos¢u podataka. U ovim situacijama najces¢e se uvodi dodatni
mikroservis koji se brine o upravljanju podacima.

1.5.3 Ugradeni softver

Ugradeni softver (eng. embedded softver) je deo integrisanog hardversko-softve-
rskog sistema, dizajniran da upravlja uredajem i reaguje na dogadaje iz njegovog
okruzenja u realnom vremenu. Za razliku od standardnih softverskih aplikacija,
ugradeni softver radi u uslovima ogranicenih resursa poput memorije, procesorske
snage i energije. Cesto se nalazi u uredajima poput automobila, kuénih aparata,
medicinskih uredaja, telekomunikacione opreme i drugih specijalizovanih sistema,
gde je pouzdanost i efikasnost klju¢na.

Klju€na karakteristika ugradenih sistema jeste rad u realnom vremenu, $to znaci
da sistem mora da odgovori na dogadaje unutar striktno definisanih vremenskih
rokova. Ako reakcija sistema nije dovoljno brza, moze do¢i do ozbiljnih posledica —

31 1. Proces razvoja softvera

na primer, sistem za kocenje automobila mora momentalno da reaguje na komandu
koCenja da bi se sprecila nesreca.

Ugradeni softver €esto radi u uslovima ogranicenih resursa kao sto su memorija,
procesorska snaga i energetska potrosnja, zbog Cega je primena razli¢itih tehnika
optimizacije obavezna. Ovo ukljuCuje pazljivo upravljanje memorijom, procesor-
skom snagom i energijom uredaja.

Ugradeni sistemi imaju sledece karakteristike:

%k Direktna interakcija sa hardverom je ¢esto neophodna.

% Reakcije na okruzenje mogu biti periodiéne (npr. redovno ocitavanje
senzora) ili aperodiéne (kao reakcija na iznenadne dogadaje poput
aktiviranja alarma).

% Sigurnost i pouzdanost su kljuéne karakteristike, posebno u aplikaci-
jama kao sto su medicinski uredaji, sistemi za kontrolu saobracaja ili
automobilski sistemi.

% Postoje fizicka ogranicenja koja mogu uticati na dizajn sistema, kao
Sto su ogranicen prostor, energetska efikasnost, temperatura rada ure-
daja, vibracije, itd.

Proces razvoja embedded softvera je interdisciplinaran, zahteva saradnju iz-
medu inZenjera hardvera i softvera radi osiguravanja optimalne integracije i sin-
hronizacije. Razvoj moze zapoceti izborom odgovaraju¢eg hardvera i operativnog
sistema ili definisanjem softverskih zahteva prema kojima se kasnije bira odgova-
raju¢a platforma.

Ugradeni softver obiéno se realizuje kao skup konkurentnih procesa, tj. pro-
cesa koji se paralelno izvrsavju i koji medusobno komuniciraju. Zbog zahteva za
konkurentnim izvrsavanjem, najcesce se koristi operativni sistem za rad u realnom
vremenu (eng. Real-Time Operating System — RTOS), ciji rasporediva¢ (eng. sc-
heduler) upravlja izvrSavanjem procesa i resursima. RTOS se razlikuje od opstih
operativnih sistema kao sto su Windows ili Linux u standardnoj verziji, jer ovi si-
stemi ne mogu uvek garantovati reakciju u realnom vremenu. Medutim, postoje
specijalizovane verzije Linuxa (npr. RTLinux ili PREEMPT-RT) koje su prilagodene
za rad u realnom vremenu.

Za modeliranje ponasanja sistema Cesto se koristi dijagrami stanja, koji jasno
pokazuju kako sistem menja stanja kao reakciju na spoljasnje dogadaje, tj. ulazne
signale. Signali mogu biti periodiéni (na primer, redovno ocitavanje senzora) ili
aperodiéni (na primer, reakcija na neoCekivane dogadaje).

1.5. Savremeni trendovi i tehnologije u razvoju softvera 32

h ™ g
S N

~
Senzor)

C

P _
(Senzor > (senzor Senzor
\\,,7 _— \,

\V

Signal

Sistem za
rad u realnom
menu

\ T~ 0dgovor

Akeija D (Akeija D (Akcija

Slika 1.7: Opsti model ugradenog sistema sa reakcijom u realnom vremenu

Pri razvoju embedded softvera, Cesto se koriste sistemski programski jezici
poput jezika C zbog efikasnosti generisanog koda. Medutim, jezici poput
programskog jezika C nemaju ugradenu podrsku za konkurentnost ili upra-
vljanje deljenim resursima. Zbog toga programeri moraju pazljivo da koriste
mehanizme RTOS-a kao 5to su semafori ili medusobno iskljucivanje. Ovo
moze povecati rizik od gresaka, jer je potrebno dodatno znanje o specific-
nim sistemskim pozivima i radu sa hardverom.

Ugradeni sistemi Cesto zahtevaju UML dijagrame, posebno dijagrame stanja,
kako bi se jasno definisalo pona3anje sistema i njegovo reagovanje na razliGite
signale. Time se olak3ava dizajn, implementacija i testiranje sistema.

Kao zakljuéak — ugradeni softver predstavlja kriticnu komponentu savre-
menih uredaja, omogucavajué¢i im pouzdanost, efikasnost i pravovremeno
reagovanje na zahteve okruzenja.

1.5.4 Vestacka inteligencija u razvoju softvera

U danasnjem svetu, vestacka inteligencija (V1) igra sve znacajniju ulogu u ra-
zvoju softvera, omogucavajuéi brze i efikasnije procese. Dodatno, u savremenom
raCunarstvu se mnogi problemi koji nisu se mogli resiti tradicionalnim algoritmima
sada mogu resiti koris¢enjem vestacke inteligencije.

Ipak, vestacka inteligencija nije zamena za ljudsku kreativnost i inovativnost i
ne predstvlja “magicni Stapi¢’ za sve probleme. Pre nego 3to se zapocne projekat
zasnovan na VI, potrebno je proceniti da li je primena ovih tehnika zaista neop-
hodna i ekonomski opravdana. Danasnji VI sistemi Cesto zahtevaju veliku kolicinu
podataka i veliku koli¢inu racunarskih resursa (elektricne struje). U donjoj tabeli

33

1. Proces razvoja softvera

prikazane su opste smernice koje pomazu pri odlucivanju kada je VI korisna, a kada

nije.

Postoji obrazac koji treba nauciti. VI sluzi da prepozna obrasce u podaci-
ma, odnosno kompleksne relacije i veze koje su tesko uocljive ljudima ili se
ne mogu lako eksplicitno isprogramirati. Kompleksan obrazac znaci da me-
du podacima postoje mnogobrojne, nelinearne i esto sumovite veze koje je
nemoguce opisati jednostavnim pravilima (npr. raspored piksela koji otkriva
lice ili kombinacija trzisnih signala koja utice na cenu akcije). Za jednostavne
— poput racuna povrsine A=a-b ili bacanja postenog novci¢a gde obrasca
nema — dovoljan je klasi¢an kod, a masinsko ucenje ne donosi prednost.

Podaci su dostupni. Da bi se obucio model, potreban je dovoljan broj poda-
taka koji su relevantni za problem koji se resava. Ako podaci nisu dostupni,
onda postoji mehanizam da se podaci prikupe ili generisu. Na primer, za
prepoznavanje lica potrebno je mnogo slika lica sa razli¢itim izrazima, uglo-
vima i osvetljenjem. Ako podaci nisu dostupni ili su nedovoljni, VI nece biti
efikasna. Takode, podaci moraju biti kvalitetni i reprezentativni za problem
koji se resava. Na primer, ako se model obucava na slikama lica, ali su slike
loseg kvaliteta ili nisu raznovrsne, model neée biti sposoban da prepozna lica
u razli¢itim uslovima.

Problem je prediktivan. VI je korisna kada je cilj predvideti buduée doga-
daje na osnovu istorijskih podataka. Na primer, predikcija voznje automobila,
vremenskih uslova ili popularnosti proizvoda na osnovu objava na drustvenim
mrezama.

Cena greske je mala. VI sistemi nisu egzaktni i mogu napraviti greske. Ako
je cena greske visoka (npr. u medicini ili autonomnim vozilima), onda je bo-
lje koristiti klasicne algoritme koji su pouzdaniji. Na primer, ako VI sistem
pogresno prepozna tumor na slici, to moze dovesti do pogresne dijagnoze i
leCenja pacijenta. U takvim situacijama, u danassnjem svetu, Cesto se koristi
kombinacija VI i ljudske ekspertize, gde VI pomaze lekaru da brze i efikasnije
identifikuje potencijalne probleme, ali konaénu odluku donosi lekar. Sli¢no je
i u autonomnim vozilima, gde VI pomaze u prepoznavanju prepreka i dono-
Senju odluka, ali je voza¢ uvek odgovoran za bezbednost voznje. VI se danas
koristi i u dokazivanju matematickih teorema, gde se koristi za prepozna-
vanje obrazaca i generisanje novih dokaza, ali postoje nezavisni sistemi koji
proveravaju ispravnost tih dokaza. Sa druge strane, VI je potpuno bezbedno
koristiti u marketingu za sisteme preporuka i sli¢no.

Obrasci se vremenom menjaju. Ako se obrasci u podacima menjaju tokom
vremena, VI moze da se prilagodi tim promenama. Na primer, ako se trendovi
na druStvenim mrezama menjaju, VI moze da se obucava na novim podacima
kako bi ostala relevantna. Sa druge strane, ako su izlazi i uvek isti (npr.
racunanje povrsine kvadrata), onda VI nije potrebna.

1.5. Savremeni trendovi i tehnologije u razvoju softvera 34

Proces razvoja softvera zasnovan na vestackoj inteligenciji je itertivan i Cesto
ukljucuje sldece korake:

1. Definisanje problema i metrike. Prvi korak je jasno definisanje cilja i me-
trika koje e se koristiti za merenje uspeha.

2. Prikupljanje i priprema podataka. Prikupljanje relevantnih podataka i nji-
hova priprema za obucavanje modela. Ovo moze ukljucivati ¢iséenje podata-
ka, anotaciju, normalizaciju, transformaciju i sliéno. U danasnjem vremenu
koristete se i tehnike generativne vestacke inteligencije za generisanje poda-
taka koji nedostaju ili za obogacivanje postoje¢ih podataka. Takode, korak
pripreme podataka Cesto moze biti klju¢an za uspeh projekta, jer kvalitet
podataka direktno uti¢e na performanse modela.

3. Obucavanje modela. Obu¢avanje modela na pripremljenim podacima. Ovo
moze ukljuéivati izbor algoritma, podeSavanje hiperparametara i evaluaciju
modela na testnim podacima. Model se obi¢no obucava na trening skupu, a
postoji odvojen skup podataka na kojima se model testira.

4. lIterativna analiza i poravka modela. Analiza rezultata obucavanja i testi-
ranja modela, identifikacija problema i iterativno popravka modela. Ovo moze
ukljucivati promenu arhitekture modela, dodavanje novih funkcija, promenu
hiperparametara ili promene u samom skupu podataka.

5. Kontinuirano pracenje i azuriranje modela. Nakon sto je model imple-
mentiran, vazno je kontinuirano pratiti njegovu performansu i azurirati ga
prema potrebi. Ovo moze ukljucivati prikupljanje novih podataka, obuca-
vanje modela na novim podacima ili prilagodavanje modela promenama u
obrascima podataka.

Pored razvoja VI softvera, vestacka inteligencija se takode koristi u razlicitim
fazama razvoja softvera i kao pomo¢ni alat za programere. Sve Eesce se koriste “pa-
metni” asistenti zasnovani na velikim jezickim modelima. Najpoznatiji su GITHUB
CopPiLOT i CHATGPT, ali postoje i alternative kao sto su AMAZON CODEWHI-
SPERER, TABNINE, GOOGLE DUET Al i JETBRAINS Al ASSISTANT. Ovi alati
se integrisu u razvojna okruzenja (VS CoODE, INTELLL], JETBRAINS RIDER itd.)
i pomazu pri automatskom dovrsavanju koda, generisanju testova, refaktorisanjima
i pisanju dokumentacije. Oblast se brzo razvija i gotovo svakog meseca pojavljuju
se nova resenja ili novi modeli (na primer, CODELAMA, CLINE, STARCODER)
Ocekuje se da ¢e u buduénosti biti jos vise inovacija i poboljsanja u ovoj oblasti.

Sa druge strane, vazno je napomenuti da ovi alati nisu savrseni i da ponekad
mogu generisati netacan ili neefikasan kod. Komercijalne verzije ovih alata najcesce
su pretplaéene i nisu svima finansijski dostupne, a mnoge organizacije ih ograni-
Cavaju ili potpuno zabranjuju zbog bezbednosnih i pravnih briga (slanje vlasnickog
koda ka eksternim servisima za obradu, nejasna pitanja autorskih prava nad gene-
risanim kédom i drugo). Zbog toga se u praksi Cesto koristi “hibridni" pristup: VI
asistenti za zadatke koji nisu poverljivi, a lokalni modeli ili klasicni alati za rad na
osetljivom kodu.

35 1. Proces razvoja softvera

Pitanja i zadaci za vezbu

Pitanje 1.1. Sta su slicnosti a koje razlike izmedu projekata u gradevinarstvu i
informacionim tehnologijama?

Pitanje 1.2. Navesti faze razvoja softvera i ko ih obi¢no sprovodi.
Pitanje 1.3. Koje dve vrste dokumentacije treba da postoje?

Pitanje 1.4. Nabrojati najznacajnije metodologije razvoja softvera. Istrazi na
internetu koje su metodoloje razvoja softvera danas najpopularnije.

Pitanje 1.5. Koje su glavne razlike u performansama distribuiranih i centralizova-
nih sistema, i koji faktori najvise uti¢u na brzinu obrade podataka u distribuiranim
sistemima?

Pitanje 1.6. Objasnite koncept skalabilnosti u distribuiranim sistemima i nave-
dite razlike izmedu povecanje kapaciteta postojecih ¢vorova (eng. scaling up) i
dodavanja novih ¢vorova (eng. scaling out), uz konkretan primer kako se svaki
od ovih pristupa moze primeniti u praksi.

Pitanje 1.7. U kontekstu razlicitih arhitekturnih modela (gospodar—rob, dvo-
slojna, viseslojna i decentalizovana arhitektura), koje su prednosti i mane svakog
modela, i u kojim scenarijima je jedan model pogodniji od drugog?

Pitanje 1.8. Koji su osnovni razlozi zasto se za ugradeni softver Cesto koriste
operativni sistemi za rad u realnom vremenu (RTOS) umesto klasicnih operativnih
sistema?

Pitanje 1.9. Koji osobine i zahtevi uticu na razvoj ugradenog softvera?

Pitanje 1.10. Objasnite tri kljucne razlike izmedu komponentno softverskog in-
Zenjerstva (CBSE) i mikroservisne arhitekture.

Pitanje 1.11. Navedite i obrazlozite najmanje dve prednosti i jedan izazov upo-
trebe DOCKERA prilikom isporuke mikroservisa, uz konkretan primer.

Pitanje 1.12. Definisite pojam ograni¢enog konteksta u domenu mikroservisa.

Pitanje 1.13. Kompanija zeli da predvidi da Ii ¢e se odredeni proizvod prodavati
bolje slede¢eg meseca na osnovu samo tri fiksne numericke metrike koje se ne me-
njaju tokom godine. Objasnite sa dva argumenta zasto bi tradicionalni algoritam
mogao biti prikladniji od primene modela masinskog ucenja.

Pitanje 1.14. Nabrojte (tacnim redosledom) pet glavnih faza razvoja ML sof-
tverskog resenja opisanih u tekstu i ukratko navedite sta je cilj svake faze.

Pitanje 1.15. (a) Navedite dve konkretne pogodnosti koje GITHUB COPILOT
ili slicni asistenti donose programerima.

(b) Imenujte dva glavna razloga zbog kojih neke organizacije ipak zabranjuju
upotrebu ovih alata u svojim projektima.

	Proces razvoja softvera
	Planiranje
	Metodologije razvoja softvera
	Ekspoloatacija
	Alati i tehnike korišćeni u razvoju softvera
	Savremeni trendovi i tehnologije u razvoju softvera

