Uvod u interaktivno dokazivanje teorema

Vežbe 6

Zadatak 1 Svojstva funkcija

Pokazati da je slika unije, unija pojedinačnih slika.
Savet: Razmotriti teoreme image-def i vimage-def.
lemma image-union:
shows $f^{\prime}(A \cup B)=f^{\prime} A \cup f^{\prime} B$
proof
show $f^{\prime}(A \cup B) \subseteq f^{\prime} A \cup f^{\prime} B$
proof
fix y
assume $y \in f^{\prime}(A \cup B)$
then have $\exists x . x \in A \cup B \wedge f x=y$ by auto
then obtain x where $x \in A \cup B f x=y$ by auto
then have $x \in A \vee x \in B$ by auto
then have $f x \in f^{\prime} A \vee f x \in f^{\prime} B$ by auto
with $\langle f x=y\rangle$ show $y \in f^{\prime} A \cup f^{\prime} B$ by auto
qed
next
show $f^{\prime} A \cup f^{\prime} B \subseteq f^{\prime}(A \cup B)$
proof
fix y
assume $y \in f^{\prime} A \cup f^{\prime} B$
then have $y \in f^{\prime} A \vee y \in f^{\prime} B$ by simp
then show $y \in f^{\prime}(A \cup B)$
proof
assume $y \in f^{\prime} A$
then have $\exists x . x \in A \wedge f x=y$ by auto
then obtain x where $x \in A f x=y$ by auto
then have $x \in A \cup B$ by simp
then have $f x \in f^{\prime}(A \cup B)$ by simp
with $\langle f x=y\rangle$ show $y \in f^{\prime}(A \cup B)$ by auto
next
assume $y \in f^{\prime} B$
then have $\exists x . x \in B \wedge f x=y$ by auto
then obtain x where $x \in B f x=y$ by auto
then have $x \in A \cup B$ by simp
then have $f x \in f^{\prime}(A \cup B)$ by simp
with $\langle f x=y\rangle$ show $y \in f^{\prime}(A \cup B)$ by auto
qed
qed
qed
Neka je funkcija f injektivna. Pokazati da je slika preseka, presek pojedinačnih slika.
Savet: Razmotriti teoremu inj-def.

```
lemma image-inter:
    assumes inj \(f\)
        shows \(f\) ' \((A \cap B)=f^{\prime} A \cap f^{\prime} B\)
proof
    show \(f\) ' \((A \cap B) \subseteq f^{\prime} A \cap f^{\prime} B\)
    proof
        fix \(y\)
        assume \(y \in f^{\prime}(A \cap B)\)
        then have \(\exists x \in A \cap B . f x=y\) by auto
        then obtain \(x\) where \(x \in A \cap B f x=y\) by auto
        then have \(x \in A \wedge x \in B\) by auto
        then have \(f x \in f^{\prime} A \wedge f x \in f^{\prime} B\) by auto
        with \(\langle f x=y\rangle\) show \(y \in f^{\prime} A \cap f{ }^{\prime} B\) by auto
    qed
next
    show \(f\) ' \(A \cap f^{\prime} B \subseteq f^{\prime}(A \cap B)\)
    proof
        fix \(y\)
        assume \(y \in f^{\prime} A \cap f^{\prime} B\)
        then have \(y \in f^{\prime} A y \in f^{\prime} B\) by auto
        from \(\left\langle y \in f{ }^{‘} A\right\rangle\) obtain \(x a\) where \(x a \in A f x a=y\) by auto
        moreover
        from \(\left\langle y \in f^{‘} B\right\rangle\) obtain \(x b\) where \(x b \in B f x b=y\) by auto
        ultimately
        have \(x a=x b\) using assms by (simp add: inj-def)
        with \(\langle x a \in A\rangle\) have \(x b \in A\) by auto
        with \(\langle x b \in B\rangle\) have \(x b \in A \wedge x b \in B\) by auto
        then have \(x b \in A \cap B\) by auto
        then have \(f x b \in f^{\prime}(A \cap B)\) by auto
        with \(\langle f x b=y\rangle\) show \(y \in f\) ' \((A \cap B)\) by auto
    qed
qed
```

Savet: Razmotriti teoremu surj-def i surjD.

```
lemma surj-image-vimage:
    assumes surj \(f\)
        shows \(f^{\prime}\left(f-{ }^{\prime} B\right)=B\)
proof
    show \(f\) ' \(f-{ }^{\prime} B \subseteq B\)
    proof
        fix \(y\)
        assume \(y \in f^{`} f-{ }^{\text {' }} B\)
        then obtain \(x\) where \(x \in f-{ }^{`} B f x=y\) by auto
            then have \(f x \in B\) by auto
            with \(\langle f x=y\rangle\) show \(y \in B\) by auto
        qed
next
    show \(B \subseteq f^{\prime} f-{ }^{\prime} B\)
    proof
        fix \(y\)
        assume \(y \in B\)
```

with assms obtain x where $f x=y$ using surjD by metis
with $\langle y \in B\rangle$ have $x \in f-‘ B$ by auto
then have $f x \in f^{\prime}(f-$ ' $B)$ by auto
with $\langle f x=y\rangle$ show $y \in f^{\prime} f-‘ B$ by auto
qed
qed
Pokazati da je kompozicija injektivna ako su pojedinačne funkcije injektivne.
Savet: Razmotrite teoremu inj-eq.
lemma comp-inj:
assumes $\operatorname{inj} f$
and $i n j g$
shows $\operatorname{inj}(f \circ g)$

proof

fix $x y$
assume $(f \circ g) x=(f \circ g) y$
then have $f(g x)=f(g y)$ by auto
with $\langle i n j f$ ¢ have $g x=g y$ by (simp add: inj-eq)
with $\langle i n j g\rangle$ show $x=y$ by (simp add: inj-eq)
qed

lemma

assumes $\operatorname{inj} f$
shows $x \in A \longleftrightarrow f x \in f^{\prime} A$
proof
assume $x \in A$
then show $f x \in f^{\prime} A$ by auto
next
assume $f x \in f^{\prime} A$
then obtain x^{\prime} where $x^{\prime} \in A f x=f x^{\prime}$ by auto
with $\left\langle i n j f\right.$ ¢ have $x=x^{\prime}$ by (simp add: inj-eq)
with $\left\langle x^{\prime} \in A\right\rangle$ show $x \in A$ by auto
qed
lemma inj-vimage-image:
assumes inj f
shows $f-{ }^{\prime}\left(f^{\prime} A\right)=A$
proof
show $f-f^{\prime} A \subseteq A$
proof
fix x
assume $x \in f-$ ' $\left(f^{\prime} A\right)$
then obtain y where $y \in f$ ' $A f x=y$ by auto
then obtain x^{\prime} where $x^{\prime} \in A f x^{\prime}=y$ by auto
with $\langle f x=y\rangle$ have $f x=f x^{\prime}$ by auto
with assms have $x=x^{\prime}$ by (simp add: inj-eq)
with $\left\langle x^{\prime} \in A\right\rangle$ show $x \in A$ by auto
qed
next
show $A \subseteq f-{ }^{\prime} f$ ' A
proof

```
    fix }
    assume }x\in
    then have fx\inf'}A\mathrm{ by auto
    then show }x\inf-'f'A by aut
    qed
qed
```

Kompozicija je surjekcija ako su pojedinačne funkcije surjekcije.
lemma comp-surj:
assumes surj f
and surj g
shows $\operatorname{surj}(f \circ g)$
unfolding surj-def
proof
fix z
from $\langle\operatorname{surj} f\rangle$ obtain y where $\langle z=f y\rangle$ by auto moreover
from $\langle\operatorname{surj} g\rangle$ obtain x where $\langle y=g x\rangle$ by auto
ultimately
have $z=f(g x)$ by auto
then show $\exists x . z=(f \circ g) x$ by auto
qed
lemma vimage-compl:
shows $f-‘(-B)=-(f-‘ B)$
proof
show $f-{ }^{\prime}(-B) \subseteq-f-{ }^{\prime} B$
proof
fix x
assume $x \in f-{ }^{\prime}(-B)$
then obtain y where $y \in-B f x=y$ by auto
then have $y \notin B$ by auto
with $\langle f x=y\rangle$ have $f x \notin B$ by auto
then have $x \notin f-{ }^{\prime} B$ by auto
then show $x \in-f-{ }^{\prime} B$ by auto
qed
next
show $-f-{ }^{\prime} B \subseteq f-{ }^{\prime}(-B)$
proof
fix x
assume $x \in-f-{ }^{\prime} B$
then have $x \notin f-{ }^{\prime} B$ by auto
then have $f x \notin B$ by auto
then have $f x \in-B$ by auto
then show $x \in f-‘(-B)$ by auto
qed
qed

