Katedra za računarstvo i informatiku

## Uvod u interaktivno dokazivanje teorema

## Vežbe 5

## Zadatak 1 Algebra skupova

Diskutovati o sledećim termovima:

```
term {1, 2, 3}
term {1::nat, 2, 3}
term (\epsilon)
term (\cap)
term (\cup)
term (\cup) A
term A\cupB
term (A::'a set) - B
```


## Zadatak 2 Isar dokazi

Pokazati sledeća tvrđenja o skupovima pomoću jezika Isar.
Napomena: Dozvoljeno je korišćenje samo simp metode za dokazivanje pojedinačnih koraka.

```
lemma \(-(A \cup B)=-A \cap-B\)
proof
    show \(-(A \cup B) \subseteq-A \cap-B\)
    proof
        fix \(x\)
        assume \(x \in-(A \cup B)\)
        then have \(x \notin A \cup B\) by simp
        then have \(x \notin A \wedge x \notin B\) by simp
        then have \(x \in-A \wedge x \in-B\) by simp
        then show \(x \in-A \cap-B\) by simp
    qed
next
    show \(-A \cap-B \subseteq-(A \cup B)\)
    proof
        fix \(x\)
        assume \(x \in-A \cap-B\)
        then have \(x \in-A \wedge x \in-B\) by simp
        then have \(x \notin A \wedge x \notin B\) by simp
        then have \(x \notin A \cup B\) by simp
        then show \(x \in-(A \cup B)\) by simp
    qed
qed
```

Savet: Iskoristiti find-theorems - V- $\longleftrightarrow-\vee$ - za pronalaženje odgovarajuće teoreme.
lemma $A \cup B=B \cup A$
proof

```
show }A\cupB\subseteqB\cup
proof
    fix }
    assume }x\inA\cup
    then have }x\inA\veex\inB\mathrm{ by simp
    then have }x\inB\veex\inA\mathrm{ using disj-commute[of x }\inAx\inB]\mathrm{ by simp
    then show }x\inB\cupA\mathrm{ by simp
qed
next
    show }B\cupA\subseteqA\cup
    proof
        fix }
        assume }x\inB\cup
        then have }x\inB\veex\inA\mathrm{ by simp
```



```
        then show }x\inA\cupB\mathrm{ by simp
    qed
qed
```

Savet: Iskoristiti aksiomu isključenja trećeg $A \vee \neg A$ u kontekstu operacije pripadanja $(\in)::$ ' $a$
$\Rightarrow '$ a set $\Rightarrow$ bool.

```
lemma \(A \cup(B \cap C)=(A \cup B) \cap(A \cup C)\) (is ?left = ?right)
proof
    show ?left \(\subseteq\) ? right
    proof
        fix \(x\)
        assume \(x \in\) ?left
        then have \(x \in A \vee x \in B \cap C\) by \(\operatorname{simp}\)
    then show \(x \in\) ? right
    proof
        assume \(x \in A\)
        then have \(x \in A \cup B \wedge x \in A \cup C\) by simp
        then show \(x \in\) ? right by simp
    next
        assume \(x \in B \cap C\)
        then have \(x \in B \wedge x \in C\) by \(\operatorname{simp}\)
        then have \(x \in A \cup B \wedge x \in A \cup C\) by \(\operatorname{simp}\)
        then show \(x \in\) ? right by simp
    qed
    qed
next
    show ?right \(\subseteq\) ?left
    proof
        fix \(x\)
        assume \(x \in\) ? right
        then have \(*: x \in A \cup B \wedge x \in A \cup C\) by simp
        have \(x \in A \vee x \notin A\) by simp
        then show \(x \in\) ?left
        proof
            assume \(x \in A\)
            then show \(x \in\) ?left by simp
```

```
    next
        assume }x\not\in
        from this and * have }x\inB\wedgex\inC by sim
        then have }x\inB\capC\mathrm{ by simp
        then show }x\in\mathrm{ ?left by simp
    qed
    qed
qed
lemma }A\cap(B\cupC)=(A\capB)\cup(A\capC)\mathrm{ (is ?left = ?right)
proof
    show ?left \subseteq? right
    proof
        fix }
        assume }x\in\mathrm{ ?left
        then have *: }x\inA\wedgex\inB\cupC\mathrm{ by simp
        then have }x\inA\mathrm{ by simp
        from * have }x\inB\cupC\mathrm{ by simp
        then have }x\inB\veex\inC\mathrm{ by simp
        from this and }\langlex\inA\rangle\mathrm{ have }x\inA\capB\veex\inA\capC\mathrm{ by simp
        then show }x\in\mathrm{ ?right by simp
    qed
next
    show ?right \subseteq? ?left
    proof
        fix }
        assume x\in?right
        then have }x\inA\capB\veex\inA\capC\mathrm{ by simp
    then show }x\in\mathrm{ ?left
    proof
        assume }x\inA\cap
        then have }x\inA\wedgex\inB\mathrm{ by simp
        then have }x\inA\wedgex\inB\cupC\mathrm{ by simp
        then show }x\in\mathrm{ ?left by simp
    next
        assume }x\inA\cap
        then have }x\inA\wedgex\inC\mathrm{ by simp
        then have }x\inA\wedgex\inB\cupC\mathrm{ by simp
        then show }x\in\mathrm{ ?left by simp
        qed
    qed
qed
lemma }A-(B\capC)=(A-B)\cup(A-C) (is ?left = ?right
proof
    show ?left \subseteq? ?right
    proof
        fix }
        assume }x\in\mathrm{ ?left
        then have *: x\inA\wedgex\not\inB\capC by simp
        then have }x\inA\mathrm{ by simp
```

```
    from * have }x\not\inB\capC\mathrm{ by simp
    then have }x\not\inB\veex\not\inC\mathrm{ by simp
    then show }x\in\mathrm{ ? right
    proof
        assume }x\not\in
        with }\langlex\inA\rangle\mathrm{ have }x\inA-B\mathrm{ by simp
        then show }x\in\mathrm{ ?right by simp
    next
        assume x\not\inC
        with }\langlex\inA\rangle\mathrm{ have }x\inA-C\mathrm{ by simp
        then show }x\in\mathrm{ ?right by simp
    qed
    qed
next
    show ?right \subseteq ?left
    proof
        fix }
        assume x f ?right
        then have }x\inA-B\veex\inA-C by sim
        then show }x\in\mathrm{ ?left
        proof
            assume }x\inA-
            then have }x\inA\wedgex\not\inB\mathrm{ by simp
            then have }x\inA\wedgex\not\inB\capC\mathrm{ by simp
            then show }x\in\mathrm{ ?left by simp
        next
            assume }x\inA-
            then have }x\inA\wedgex\not\inC\mathrm{ by simp
            then have }x\inA\wedgex\not\inB\capC\mathrm{ by simp
            then show }x\in\mathrm{ ?left by simp
        qed
    qed
qed
```

