Uvod u interaktivno dokazivanje teorema Vežbe 04

Zadatak 1 Algebra skupova

Diskutovati o sledećim termovima:

term {1, 2, 3} term {1::nat, 2, 3} term (\in) term (\cap) term (\cup) term (\cup) term (\cup) term $(\cup A$ term $A \cup B$ term ($A::'a \ set$) – B

Zadatak 2 Isar dokazi

Pokazati sledeća tvrđenja o skupovima pomoću jezika Isar.

Napomena: Dozvoljeno je korišćenje samo simp metode za dokazivanje pojedinačnih koraka.

```
\mathbf{lemma} - (A \cup B) = -A \cap -B
proof
 show -(A \cup B) \subseteq -A \cap -B
 proof
   fix x
   assume x \in -(A \cup B)
   then have x \notin A \cup B by simp
   then have x \notin A \land x \notin B by simp
   then have x \in -A \land x \in -B by simp
   then show x \in -A \cap -B by simp
 qed
\mathbf{next}
 show -A \cap -B \subseteq -(A \cup B)
 proof
   fix x
   assume x \in -A \cap -B
   then have x \in -A \land x \in -B by simp
   then have x \notin A \land x \notin B by simp
   then have x \notin A \cup B by simp
   then show x \in -(A \cup B) by simp
 qed
qed
```

Savet: Iskoristiti find-theorems - \lor - \lor - \lor - za pronalaženje odgovarajuće teoreme.

lemma $A \cup B = B \cup A$ proof

show $A \cup B \subseteq B \cup A$ proof fix xassume $x \in A \cup B$ then have $x \in A \lor x \in B$ by simp then have $x \in B \lor x \in A$ using disj-commute [of $x \in A x \in B$] by simp then show $x \in B \cup A$ by simp qed \mathbf{next} show $B \cup A \subseteq A \cup B$ proof fix xassume $x \in B \cup A$ then have $x \in B \lor x \in A$ by simp then have $x \in A \lor x \in B$ using disj-commute [of $x \in A x \in B$] by simp then show $x \in A \cup B$ by simp qed qed

Savet: Iskoristiti aksiomu isključenja trećeg $A \vee \neg A$ u kontekstu operacije pripadanja (\in) :: 'a \Rightarrow 'a set \Rightarrow bool.

```
lemma A \cup (B \cap C) = (A \cup B) \cap (A \cup C) (is ?left = ?right)
proof
 show ?left \subseteq ?right
 proof
   fix x
   assume x \in ?left
   then have x \in A \lor x \in B \cap C by simp
   then show x \in ?right
   proof
     assume x \in A
     then have x \in A \cup B \land x \in A \cup C by simp
     then show x \in ?right by simp
   \mathbf{next}
     assume x \in B \cap C
     then have x \in B \land x \in C by simp
     then have x \in A \cup B \land x \in A \cup C by simp
     then show x \in ?right by simp
   qed
 ged
\mathbf{next}
 show ?right \subseteq ?left
 proof
   fix x
   assume x \in ?right
   then have *: x \in A \cup B \land x \in A \cup C by simp
   have x \in A \lor x \notin A by simp
   then show x \in ?left
   proof
     assume x \in A
     then show x \in ?left by simp
```

```
next
     assume x \notin A
     from this and * have x \in B \land x \in C by simp
     then have x \in B \cap C by simp
     then show x \in ?left by simp
   qed
 qed
qed
lemma A \cap (B \cup C) = (A \cap B) \cup (A \cap C) (is ?left = ?right)
proof
 show ?left \subseteq ?right
 proof
   fix x
   assume x \in ?left
   then have *: x \in A \land x \in B \cup C by simp
   then have x \in A by simp
   from * have x \in B \cup C by simp
   then have x \in B \lor x \in C by simp
   from this and \langle x \in A \rangle have x \in A \cap B \lor x \in A \cap C by simp
   then show x \in ?right by simp
 qed
\mathbf{next}
 show ?right \subseteq ?left
 proof
   fix x
   assume x \in ?right
   then have x \in A \cap B \lor x \in A \cap C by simp
   then show x \in ?left
   proof
     assume x \in A \cap B
     then have x \in A \land x \in B by simp
     then have x \in A \land x \in B \cup C by simp
     then show x \in ?left by simp
   \mathbf{next}
     assume x \in A \cap C
     then have x \in A \land x \in C by simp
     then have x \in A \land x \in B \cup C by simp
     then show x \in ?left by simp
   qed
 qed
qed
lemma A - (B \cap C) = (A - B) \cup (A - C) (is ?left = ?right)
proof
 show ?left \subseteq ?right
 proof
   fix x
   assume x \in ?left
   then have *: x \in A \land x \notin B \cap C by simp
   then have x \in A by simp
```

from * have $x \notin B \cap C$ by simp then have $x \notin B \lor x \notin C$ by simp then show $x \in ?right$ proof assume $x \notin B$ with $\langle x \in A \rangle$ have $x \in A - B$ by simp then show $x \in ?right$ by simp \mathbf{next} assume $x \notin C$ with $\langle x \in A \rangle$ have $x \in A - C$ by simp then show $x \in ?right$ by simpqed qed \mathbf{next} **show** $?right \subseteq ?left$ proof fix xassume $x \in ?right$ then have $x \in A - B \lor x \in A - C$ by simp then show $x \in ?left$ proof assume $x \in A - B$ then have $x \in A \land x \notin B$ by simp then have $x \in A \land x \notin B \cap C$ by simp then show $x \in ?left$ by simp next assume $x \in A - C$ then have $x \in A \land x \notin C$ by simp then have $x \in A \land x \notin B \cap C$ by simp then show $x \in ?left$ by simp qed qed qed