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We give a brief introduction; for more details, we refer the reader to Zaslavsky’s survey [11].
A signed graph G is a pair (G, o), where G = (V, E) is an ordinary (unsigned) graph, called
the underlying graph, and o: E — {—1,+1} is the signature. In this context we do not
make a distinction between the multiplicative groups {—1,+1} and {—,+}. The edges
mapped to 1 are positive, those mapped to —1 are negative, and together they comprise the
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Abstract

Let G be a signed graph with n vertices and the frustration index ¢. We prove the
existence of k (k > () edges ej,ea, ..., e of G such that

k
MG) MG —e) SM(Ger—en) <o < (G- D),
i=1
where A1 denotes the largest eigenvalue, and an inequality in above chain is strict unless
the signed graph on the left hand side is disconnected with at least two components
with the same largest eigenvalue. We also prove the existence of a connected balanced
spanning subgraph H such that

(MH) = M@)(A+XN(H) [n
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>

where A is the maximum vertex degree in H, along with the equality precisely in the
trivial case when G is balanced. We also derive some consequences of the previous
results.
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edge set of G; we write this as ET(G)UE~(G) = E(G). A graph G is interpreted as a signed
graph with the all-positive signature; in our notation, it is recognized by the absence of a
dot symbol. The number of vertices of G is denoted by n. The n x n adjacency matriz Ac
of G is obtained from the standard adjacency matrix of its underlying graph by reversing
the sign of all 1s which correspond to negative edges. The eigenvalues, the spectrum and the
eigenvectors of G are the eigenvalues, the spectrum and the eigenvectors of A, respectively.
Since Ag is symmetric, the eigenvalues of G are real. The largest eigenvalue is called the
indez and denoted by A\ (G).

A cycle in G is positive if the product of its edge signs is 1; otherwise, it is negative.
A signed graph is balanced if every cycle in it is positive; otherwise, it is unbalanced. Balance
is a fundamental concept, and measuring how far a signed graph deviates from it is a useful
information. An invariant that can be met in this context is the frustration index ¢; it is
equal to the minimum number of edges whose deletion results in a balanced signed graph.
Evidently, a largest balanced spanning subgraph of a signed graph is obtained by deleting
¢ edges. It is not necessarily unique. Computing the frustration index of a signed graph
is a significant ingredient in solving problems in many fields including physics, chemistry,
biology, social psychology and social networks. For more details, see [2] and references
therein. For relations between the frustration index and some spectral invariants, we refer

oll,3,4,7, 11].

Another fundamental concept is the switching equivalence. If U is a subset of the vertex
set V of G, then the signed graph GU obtained by reversing the sign of every edge with one
end in U and the other in V' \ U is a switching of G, and we say that G and GV are switching
equivalent. This concept is particularly important in the spectral theory since switching
equivalent signed graphs share the same spectrum [11]. There is an approach in which the
entire switching class is considered as a single signed graph [4]. For this paper it is important
to know that for every eigenvalue of a signed graph, there exists a switching in which this
eigenvalue is associated with a non-negative eigenvector [9].

In this study we consider the interplay between the index and the frustration index of a
signed graph. The obtained relationships include the indices of certain spanning subgraphs
and some structural invariants. Our results and the corresponding remarks are given in the
next section. Their proofs are separated in Section 3.

2 Owur contribution

If e is an edge of G, then the spanning subgraph obtained by deleting e is denoted by
G —e. Tt is well-known (see [6, Proposition 1.3.10] or [8, Corollary 1.5]) that, for an unsigned
graph G, A1 (G) > A\ (G — e) holds for every e € E(G) whenever G is connected. Moreover,
if G is disconnected, then there exists an edge for which the previous inequality holds,
unless G has at least two components that share the same index. In the latter case we have
M(G) = M (G —e), for every e € E(G). In the context of signed graphs, deleting of an edge
may result is a signed graph with a larger, or equal, or a smaller index. In short, anything
is possible. In this paper we prove the following result.
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Theorem 2.1. For a signed graph G with the frustration index (, there exist k (k > 0) edges
€1,€a,...,¢e such that
k
M(G) MG =) MG —er—e) <o <0 (G- D),
i=1
where an inequality in the above chain is strict unless the signed graph on the left hand side
18 disconnected with at least two components that share the same index.

In other words, we prove the existence of at least ¢ edges for which we have the inequalities
that are opposite to those that occur in the context of graphs. Clearly, the interesting cases
occur for k # 0. It is noteworthy to add that if G is connected and balanced, then we
have k = 0.

In the next result we estimate the index of a signed graph G in terms of n, ¢, and two
invariants of a largest balanced spanning subgraph: its index and the maximum vertex degree.
However, we formulate the result in the form of a lower bound for the frustration index, since
computing the frustration index is NP-hard [10], while the quantities on the right hand side
are computed in a polynomial time of n; for the index, see [6].

Theorem 2.2. Let G be a connected signed graph with n vertices and the frustration index ¢,
and H a balanced subgraph obtained by deleting ¢ edges. Then H is connected and

’> (A (H) — MSZ) (A + M\ (H)) \/z 21)

where A is the mazimum vertex degree in H. The equality holds if and only if G is balanced.

For example, if we add a negative edge to the all-positive quadrangle, we obtain a signed
graph with ¢ = 1, while the right hand side of (2.1) is close to 0.49. Following the proof of
the previous theorem (see the next section), one may obtain the inequality in which H is
replaced with G (the underlying graph of G) and 2 in denominator is replaced with 4. The
only difference in the proof occurs in (3.2) where both replacements are performed. Since
M (H) > d, where d is the average vertex degree in H (see [8, p. 28]), the inequality (2.1)
remains valid if we write d instead of the index of H.

We also prove the following particular result. The net degree of a vertex in a signed graph
is the difference between the number of positive and the number of negative edges incident
with it. We say that a signed graph is net-reqular if its net degree, considered as a function
on the vertex set, is a constant.

Corollary 2.3. Let G be a connected signed graph with n vertices and the frustration index (.
If a deletion of ¢ edges results in a balanced reqular subgraph of vertex degree r, then

(r —M(G))n

9 ;
where the equality holds if and only if G switches to a net-reqular signed graph with net
degree \(G) =1 — 2%,

n

(> (2.2)

This result is interesting since the equality may occur for £ > 0. It also estimates the
distance between the index of G and the index of a largest balanced spanning subgraph in
case when this subgraph is regular.
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3 Proofs

If the vertices ¢ and j are adjacent, then we write ¢ ~ j. The existence of a positive
(resp. negative) edge between these vertices is designated by i ~ j (i ~ j). A dominate
component of a signed graph G is a component whose index coincides with the index of G;
if G is connected, then itself is the dominate component. Throughout the section we assume
that an entry z; of an eigenvector of G corresponds to the vertex ¢. The all-positive unit
eigenvector associated with the index of a connected graph is called the principal eigenvector.
We use 0 and j to denote the all-zero vector and the all-1 vector, respectively; the dimension
will be clear from the context.
We proceed with the proof of our first result.

Proof of Theorem 2.1. Assume that ¢ # 0, since otherwise there is nothing to prove. Let H
be a switching of G in which the largest eigenvalue /\1(H ) is associated with a non-negative
unit eigenvector, say x = (21, xs, . .., Z,)T; we have said in the introductory section that such
a switching exists. If e = ij is a negative edge of H and y is a unit eigenvector to )\1(H —e),
then we have

MH =€) = MH) =y Ay —xTApx = ZERI"nﬁiT| X (zTAH_ez> —xTAyx

>xTAy x—xTApx =xT (AH—e - AH)X = 2x;x; > 0. (3.1)

This proves that the desired inequality holds for A\;(G) and Ay (G — e;), where e, is any edge
that becomes negative in the switching transformation of G to H; since ¢ # 0, such an edge
must exist.

Clearly, this inequality reduces to equality if G has at least two dominate components.
Assume that there is exactly one dominate component. If H is disconnected, then x is zero
on every vertex outside the dominate component.

We claim that H has at least one negative edge for which at least one of the inequalities
of (3.1) is strict. Assume for contradiction that this is not true. In this case, from (3.1) we
deduce that )\1(H ) appears in the spectrum of both H and H — e, and in both is afforded
by x.

If for some negative edge ij of H we have z; = 0 and xj; # 0, then by considering
eigenvalue equations at the vertex 7 in both signed graphs we obtain

ka—Zxk—Zxk— Z xk—xj—)\l(H ij)x; —xj:/\l(H)xi—xj,
kL kti

ko~
k#3j

which is impossible for z; # 0.

Suppose now that for every negative edge ij we have z; = 0,z; = 0. First, the dominate
component of H has at least one positive edge, as otherwise we would have x = 0. Conse-
quently, this component contains a vertex, say s, that is incident with positive and negative
edges. Again, from the eigenvalue equation and the fact that x has no negative entries, we
obtain xj = 0 for every k ~ s. Proceeding in this way, we arrive at x; = 0, for 1 < k < n,
which is impossible.
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Therefore, there exists at least one negative edge satisfying at least one strict inequality.
Denoting such an edge by ey, we obtain \(G) = M(H) < M(H — e1) = M (G — 1), as
desired.

To conclude the proof, we replace G with G —e; in the beginning and repeat the previous
part to obtain the second inequality in the statement formulation. This procedure is repeated
as long as H has at least one negative edge. Since the frustration number of G is ¢, it will
be performed at least ¢ times. Too see this, it is sufficient to observe that a deletion of less
than ¢ edges of G results in an unbalanced signed graph, and so every its switching has at
least one negative edge. The proof is completed. O]

To prove Theorem 2.2, we need the following lemmas. The first one is a known result.

Lemma 3.1 (Cioaba and Gregory [5, Theorem 3.2 and Lemma 3.3]). Let x = (z1,Z2,...,2,)7
be the principal eigenvector of a connected graph G with n (n > 2) vertices, the mazimum
vertex degree A and the minimum vertex degree §. For x, = maxi<,<, ¥;, we have
A Py A
m—1A4+d§ = 77 A+ \(G)
with equality in the second place if and only if p is adjacent to all vertices of a reqular graph
on n — 1 vertices.

We continue with a particular case.

Lemma 3.2. Let x = (x1,x9,...,x,)7 be the principal eigenvector of a connected graph G
with n (n > 2) vertices and the maximum vertex degree . For xq = MaX;zp iwp Ti, we have
A(n —1)
< e S
(A+M(G)n

Proof. We set A\; = A\1(G) and use d; to denote the degree of a vertex i. We have the following
chain of equalities and inequalities (for a brief explanation, see the subsequent text):

I—Zx —x +a: + Z x >x + 22 +Zx >x + +;<Z )2

i¢{p,q} i~q i~gq
212 2
o, o, TgM A ( >‘1> 2
B T T T i DAars T AT

Precisely, the second inequality in the previous chain follows from the Cauchy-Schwarz in-

equality, as
By ai= (X r)(Xa) = (X))

i~q i~q i~q i~q

while the third inequality follows from Lemma 3.1 and d, < A. Now, we have

2 < —A <1 — —A )
T A+ N (n—1DA+6/)
which, after replacing 6 with A, leads to the desired result. O
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Now, the announced proof.

Proof of Theorem 2.2. First, we prove that H is connected. Although we believe that this
is known, for the sake of completeness we provide a short argumentation. We delete the ¢
edges in question one-by-one, and in every step observe that the edge that should be deleted
belongs to at least one cycle (even more, at least one negative cycle) of the obtained subgraph.
Since this edge is in a cycle, its deletion does not result in a disconnected subgraph.

Since H is balanced, without loss of generality we may assume that it has no negative
edges (i.e., it is isomorphic to its underlying graph H). In this case, an edge of G is positive
if and only if it belongs to H. To see this it is sufficient to observe that the existence of a
negative edge outside H implies the existence of a balanced spanning subgraph obtained by
deletion of less than ¢ edges of G, which is impossible.

Let y be the principal eigenvector of H. As in the proof of Theorem 2.1, we compute

M(H) = M(G) <yT(Ay — =2 > (3:2)

jyeEE— (G)

Since ¢ and j are non-adjacent in H, from Lemmas 3.1 and 3.2, we obtain

3 A An-1) A n—1
Yi¥y = A+MHE)\ (A+M(H)n A+ X\(H) n

for all ij € E—(G). This leads to

A n—1
A—i‘/\l(H) n ’

M(H) = M(G) <20

and the desired inequality follows.

If G is balanced, then we have ¢ = 0 and A\ (H) = A\ (G), and so the equality in (2.1)
holds. Conversely, if G is unbalanced and we have equality in (2.1), then we have equality
in many places, but in particular there is the equality in the upper bound of Lemma 3.1. If
this equality holds, then the corresponding vertex (denoted by p in the lemma) must have
degree n — 1 in H, but it has not since it is incident with at least one negative edge in G.
This contradiction concludes the proof. O

Finally, we prove the corollary.

Proof of Corollary 2.3. Suppose a deletion of £ edges of G results in a balanced regular
subgraph H of vertex degree r. In this case, r is the index of H, see 8, p. 11]. Asin the proof
of Theorem 2.2, we may apply a switching that transforms H into H, and simultaneously G
into a switching equivalent signed graph, say G’. The principal eigenvector of H is \/Lﬁj
and, in this case, the inequality (3.2) becomes 7 — A\ (G') < 2 which leads to (2.2) as
M(G) = M (G).

It remains to consider the equality in (2.2). Assume first that this equality occurs. Then,

as in the previous proofs, we have the equality in (3.2), which means that \/iﬁ j is an eigenvector

to A (G'). We know from [7] that a signed graph has a constant eigenvector if and only if
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it is net-regular (and then this eigenvector is associated with the net degree). Since H is
regular, and G’ is net-regular, we deduce that negative edges of G’ induce a regular signed
graph of degree Zf, which gives the net degree r — Zf. Since A;(G’) and the net degree share

the same eigenvector, they must coincide. Summa summarum, GG switches to a net-regular

signed graph with net degree A\;(G) =r — %‘;, as desired.

Conversely, if G is as in the statement formulation, then the equality in (2.2) follows by
a direct computation. O
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