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SOME RELATIONS BETWEEN THE SKEW SPECTRUM OF AN
ORIENTED GRAPH AND THE SPECTRUM OF CERTAIN

CLOSELY ASSOCIATED SIGNED GRAPHS

ZORAN STANIĆ

Abstract. Let RG′ be the vertex-edge incidence matrix of an oriented graph
G′. Let Λ(Ḟ ) be the signed graph whose vertices are identified as the edges
of a signed graph Ḟ , with a pair of vertices being adjacent by a positive
(resp. negative) edge if and only if the corresponding edges of Ġ are adjacent
and have the same (resp. different) sign. In this paper, we prove that G′ is
bipartite if and only if there exists a signed graph Ḟ such that Rᵀ

G′ RG′ − 2I

is the adjacency matrix of Λ(Ḟ ). It occurs that Ḟ is fully determined by G′.
As an application, in some particular cases we express the skew eigenvalues
of G′ in terms of the eigenvalues of Ḟ . We also establish some upper bounds
for the skew spectral radius of G′ in both the bipartite and the non-bipartite
case.

1. Introduction

For a finite simple graph G = (V,E), an oriented graph G′ is a pair (G, σ′),
where σ′ is the orientation satisfying σ′(ij) ∈ {i, j}, for every ij ∈ E. If σ′(ij) = j,
we say that the edge ij is oriented from i to j and designate this by i → j (or
j ← i); an oriented edge is also known as an arc. Similarly, a signed graph Ġ is a
pair (G, σ), where σ is the signature satisfying σ(ij) ∈ {1,−1}, for every ij ∈ E.
The edge set of Ġ consists of positive and negative edges, and we interpret a graph
as a signed graph with all edges being positive. In both cases we denote n = |V |
and say that G is the underlying graph (of G′ or Ġ).

The skew adjacency matrix (of G′) SG′ = (sij) is the n × n matrix defined by:
sij = 1 if there is an edge oriented from j to i, sij = −1 if there is an edge oriented
from i to j, and sij = 0 otherwise. The eigenvalues of SG′ are called the skew
eigenvalues of G′ and they form the skew spectrum of G′, which consists of purely
imaginary numbers. It is easy to verify that non-zero skew eigenvalues come in
pairs µ and −µ (with equal algebraic multiplicity). Consequently, the rank of SG′
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is even. The largest modulus of skew eigenvalues of G′ is called the (skew) spectral
radius and denoted by ρ(G′).

The vertex-edge incidence matrix RG′ of G′ is the matrix whose rows and
columns are indexed by V (G′) and E(G′), respectively, such that its (i, e)-entry
is 1 if e is oriented to i, −1 if e is oriented from i, and 0 otherwise.

The adjacency matrix (of Ġ) AĠ = (aij) is obtained from the (0, 1)-adjacency
matrix of G by reversing the sign of all 1s which correspond to negative edges.
The eigenvalues and the spectrum of Ġ are identified as the eigenvalues and the
spectrum of AĠ, respectively. Since AĠ is symmetric, its eigenvalues are real. The
spectral radius is defined as in the case of oriented graphs and denoted by the same
symbol.

For a signed graph Ġ, we denote by Λ(Ġ) the signed graph whose vertices are
the edges of Ġ, such that a pair of vertices is joined by a positive (resp. negative)
edge if and only if the corresponding edges of Ġ are adjacent and have the same
(resp. different) sign. In relation to this definition, we remark that there are several
definitions of a signed line graph. A combinatorial one can be found in works of
Zaslavsky [8], while the one tailored for the spectral theory can be found in [1, 3, 6].
These definitions differ in sign and the corresponding underlying graph is also the
underlying graph of Λ(Ġ). In case of unsigned graphs, the line graph L(G) of G is
the graph whose vertices are identified with the edges of G, with two vertices being
adjacent whenever the corresponding edges are adjacent.

To visualize the previous definitions, in Figure 1 we illustrate an underlying
graphG, an oriented graphG′ = (G, σ′) (in which the edge orientation is designated
by arrows), a signed graph Ġ = (G, σ) (in which negative edges are dashed), the
line graph L(G) and the signed graph Λ(Ġ). Enumerations of the edges in G and Ġ
correspond to enumerations of the vertices in L(G) and Λ(Ġ). This figure will also
help us to visualize some forthcoming results.

Since the skew adjacency matrix is asymmetric with non-real eigenvalues (un-
less G′ has no edges), in our recent work [7] we considered the existence of a related
signed graph whose eigenvalues fully determine the skew eigenvalues of G′. It oc-
curs that in such cases the entire theory of real symmetric matrices can be used in
the study of skew spectra of oriented graphs. Motivated by these results, in this
paper we consider relations between the skew spectrum of an oriented graph G′ and
the spectrum of a signed graph whose adjacency matrix is given by Rᵀ

G′RG′−2I. In
particular, we establish some properties of such a signed graph and prove that G′
is bipartite if and only if there exists a signed graph Ḟ such that Rᵀ

G′RG′ − 2I is
the adjacency matrix of Λ(Ḟ ). It occurs that Ḟ is fully described by G′. In certain
cases we express the characteristic polynomial of Λ(Ḟ ) in terms of the characteristic
polynomial of G′. The paper concludes with some upper bounds for the spectral
radius of G′ expressed in terms of the spectral radius of L(G) and the spectral
radius of L(bd(G)), where bd(G) denotes the bipartite double of G, defined in the
next section.

Some terminology, notation and necessary results are given in Section 2. In par-
ticular, one can find some recently established relations between the skew spectrum
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Figure 1. A graph G, an oriented graph G′ = (G, σ′), a signed
graph Ġ = (G, σ), the line graph L(G) and the signed graph Λ(Ġ).
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of an oriented graph and the spectrum of an associated (for the specific definition
of ‘associated’) signed graph. Results that include similar relations are reported in
Section 3.

2. Preliminaries

We first specify some cycles of an oriented and a signed graph. In the forth-
coming notation, the subscript denotes the number of vertices of a cycle under
consideration. We say that an even oriented cycle C ′2l, considered as a subgraph of
an oriented graph, is oriented uniformly if by traversing the cycle we pass through
an odd (resp. even) number of edges oriented in the route direction for l odd (even).
A cycle in a signed graph is called positive if it contains an even number of negative
edges; otherwise, it is said to be negative.

For a subset U ⊆ V (Ġ), let ĠU be the signed graph obtained from Ġ by reversing
the sign of every edge between a vertex in U and a vertex in V (Ġ) \ U . We say
that Ġ and ĠU are switching equivalent. Switching equivalent signed graphs share
the same spectrum. We recall from [8] that a signed graph is switching equivalent
to its underlying graph if and only if all its cycles are positive. The negation −Ġ
is obtained by reversing the sign of every edge of Ġ.

For an oriented graph G′, the bipartite double bd(G′) is the oriented graph whose
skew adjacency matrix is defined by the Kronecker product Sbd(G′) = SG′ ⊗ AK2 ,
where AK2 is the adjacency matrix of the complete graph with 2 vertices. Precisely,
if the vertices of G′ are labelled by i1, i2, . . . , in, then the vertices of bd(G′) are
i11, i12, i21, i22, . . . , in1, in2 and there is an arc iuk → ivl if and only if there is
an arc iu → iv and k 6= l. The bipartite double of a signed graph Ġ is defined
analogously, so this is the signed graph determined by Abd(Ġ) = AĠ⊗AK2 . Clearly,
every bipartite double is bipartite.

We proceed with some theoretical results. For an oriented graph G′ = (G, σ′)
and a signed graph Ġ = (G, σ), we say that the signature σ is associated with the
orientation σ′ if

σ(ik)σ(jk) = siksjk holds for every pair of edges ik and jk. (2.1)

Being associated is a symmetric relation.
We know from [7] that, for a graph G and an orientation σ′, there exists a signa-

ture σ associated with σ′ if and only if G is bipartite. The orientation σ′ and the
signature σ are associated in the following sense: σ′ induces two switching equiv-
alent signed graphs (one with signature σ and the other being the negation of the
first one) and the signature σ induces two oriented graphs (one with orientation σ′
and the other obtained by reversing the orientation of every edge of the first one).
Further, if σ′ and σ are associated, then we also say that G′ and Ġ are associated.
The reader may observe that the oriented graph G′ and the signed graph Ġ of
Figure 1 are mutually associated.

In the following theorems the exponent stands for the multiplicity of the corre-
sponding eigenvalue.
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Theorem 2.1 ([7]). For a bipartite graph G and an orientation σ′, if rank(SG′) =
2k and σ is associated with σ′, then

±iλ1,±iλ2, . . . ,±iλk, 0n−2k

are the skew eigenvalues of G′ = (G, σ′) if and only if
±λ1,±λ2, . . . ,±λk, 0n−2k

are the eigenvalues of Ġ = (G, σ).

Theorem 2.2 ([7]). Given a graph G and an orientation which determines G′
such that rank(SG′) = 2k, let H ′ = (H,σ′) denote the bipartite double of G′ and
Ḣ = (H,σ) denote the signed graph whose signature is associated with σ′. Then

±iλ1,±iλ2, . . . ,±iλk, 0n−2k

are the skew eigenvalues of G′ if and only if
(±λ1)2, (±λ2)2, . . . , (±λk)2, 02(n−2k)

are the eigenvalues of Ḣ.

3. Results

We first consider the matrix Rᵀ
G′RG′ − 2I.

Theorem 3.1. For the incidence matrix RG′ of an oriented graph G′, let A =
Rᵀ
G′RG′ − 2I. The following statements hold:

(i) A is the adjacency matrix of a signed graph, say Ḣ.
(ii) Every triangle of Ḣ arises either from a triplet of edges incident with the

same vertex of G′ or a triangle of G′. Every induced cycle of length ≥ 4
arises from an induced cycle of the same length of G′.

(iii) Every triangle of Ḣ that arises from a triplet of edges incident with the
same vertex is positive. An induced cycle that arises from an induced cycle
of G′ of an odd (resp. even) length is negative (resp. positive).

(iv) The spectrum of Ḣ is determined by the spectrum of RG′Rᵀ
G′ .

Proof. (i): Since every column of RG′ contains exactly two non-zero entries, one
being 1 and the other −1, we get that every entry of the main diagonal of Rᵀ

G′RG′

is 2. An off-diagonal (i, j)-entry of Rᵀ
G′RG′ is equal to ri · rj (where ri is the ith

column of RG′ and the dot stands for the standard inner product), and thus it
belongs to {−1, 0, 1}. It follows that Rᵀ

G′RG′ − 2I is a symmetric (−1, 0, 1)-matrix
with zero diagonal, i.e., it is the adjacency matrix of a signed graph.

(ii): If i, j, k are the vertices of a triangle in Ḣ then we have ri ·rj, rj ·rk, rk ·ri ∈
{−1, 1}, which means that the corresponding edges of G′ are either incident with
the same vertex or form a triangle.

Let Ċl be an induced cycle of length l ≥ 4 with vertices i1, i2, . . . , il (indexed in
the natural order). Then for the corresponding rows of RG′ , we have ri · ri+1 ∈
{1,−1}, for 1 ≤ i ≤ l − 1 and r1 · rl ∈ {1,−1}, which means that they determine
the edges of a cycle of G′. If this cycle is not an induced one, then we have
rj · rk ∈ {1,−1} for an additional (non-consecutive) pair of columns, which implies
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that the vertices ij and ik of Ḣ are joined by an edge, contradicting the assumption
that Ċl is an induced cycle.

(iii): First, if i and j are adjacent edges of G′, then for the (i, j)-entry of A we
have

aij =
{
−1, if exactly one of i and j is oriented to the common vertex;

1, otherwise.
It follows immediately that every triplet of edges with a common vertex gives
rise to a positive triangle of Ḣ. Let C ′l be an induced cycle of length l in G′,
and assume first that its edges are oriented in the route direction. Then, for l odd
(resp. even), the corresponding cycle of Ḣ is negative (resp. positive). By observing
that reversing of the orientation of a single edge of C ′l causes reversing of the sign
of exactly two edges in the corresponding cycle of Ḣ, we conclude that, in fact,
its signature remains unchanged. Since every orientation of C ′l is obtained by a
successive reversing of the orientation of a single edge, we arrive at the desired
result.

(iv): This follows since Rᵀ
G′RG′ and RG′Rᵀ

G′ share the same non-zero eigenvalues
along with their multiplicities. �

Now, we consider Λ(Ġ) in more detail.

Theorem 3.2. The following statements hold:
(i) Λ(Ġ) is isomorphic to Λ(−Ġ).

(ii) Λ(Ġ) is switching equivalent to its underlying graph.

Proof. Claim (i) follows by definition of Λ(Ġ), as reversing the sign of two adjacent
edges of Ġ does not change the sign of the edge between the corresponding vertices
of Λ(Ġ).

(ii): We prove that all the cycles in Λ(Ġ) are positive. Similarly to the previous
theorem, a triangle in Λ(Ġ) arises either from a triplet of edges with a common
vertex or from a triangle (of Ġ). Other induced cycles arise from induced cycles
of the same length. We immediately get that the triangle obtained from a triplet
of edges with a common vertex is positive. Let further Ċl be an induced cycle
in Ġ. If all the edges of Ċl are negative, then the corresponding cycle of Λ(Ġ)
is positive (by definition of Λ(Ġ)). For otherwise, observe that every maximal
sequence of consecutive negative edges of Ċl gives rise to exactly 2 negative edges
in the corresponding cycle of Λ(Ġ): they are obtained from the first and the last
edge of such a sequence and their neighbouring positive edges. Since all the negative
edges of Ċl can be partitioned into the described maximal sequences, we get that
the number of negative edges in the corresponding cycle of Λ(Ġ) is even, and so
this cycle is positive. Summa summarum, all induced cycles of Λ(Ġ) are positive.

Assume now that Λ(Ġ) contains a non-induced negative cycle, and let Ċ be
such a cycle which is shortest in length. Obviously, Ċ contains a pair of adjacent
vertices such that the edge between them does not belong to Ċ. Then the edges
of Ċ and the mentioned additional edge gives 2 cycles such that exactly one of
them is negative. The existence of the negative one contradicts either the fact that
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all induced cycles are positive or the assumption on the length of Ċ. Therefore, all
cycles of Λ(Ġ) are positive, which by [8] means that this signed graph is switching
equivalent to its underlying graph, and we are done. �

Corollary 3.3. If G is the underlying graph of Ġ, then L(G) and Λ(Ġ) share the
same spectrum.

Proof. By definitions of the line graph L(G) and the signed graph Λ(Ġ), we con-
clude that if G is the underlying graph of Ġ, then L(G) is the underlying graph
of Λ(Ġ), and then the result follows by Theorem 3.2 (ii). �

To visualize the previous proof, the reader can see Figure 1. We proceed by the
question concerning the existence of a signed graph Ḟ such that Rᵀ

G′RG′ − 2I is
the adjacency matrix of Λ(Ḟ ).

Theorem 3.4. An oriented graph G′ is bipartite if and only if there exists a signed
graph Ḟ such that Rᵀ

G′RG′ − 2I is the adjacency matrix of Λ(Ḟ ).

Proof. Assume that Rᵀ
G′RG′ − 2I is the adjacency matrix of Λ(Ḟ ) for some Ḟ .

By Theorem 3.2 (ii), Λ(Ḟ ) is switching equivalent to its underlying graph, and
consequently it does not contain a negative cycle. By Theorem 3.1 (iii), G′ does
not contain an induced cycle of an odd length, and then the same holds for non-
induced ones; hence, G′ is bipartite.

Assume now that G′ is bipartite. By Theorem 2.1, there exists a signed graph Ġ
associated with G′ in the sense of (2.1). We claim that Ġ appears in the role of Ḟ ,
that is, Rᵀ

G′RG′ − 2I is the adjacency matrix of Λ(Ġ). Observe that the signature
of Ġ is determined by RG′ in exactly the same way as the signature of the signed
graph determined by Rᵀ

G′RG′ − 2I. Namely, two adjacent edges of Ġ are of the
same sign if and only if the corresponding vertices of the signed graph determined
by Rᵀ

G′RG′ − 2I are joined by a positive edge. Therefore, by definition of Λ(Ġ),
Rᵀ
G′RG′ − 2I is its adjacency matrix. �

We record that, by the previous proof, if G′ is bipartite and Ġ is associated
with G′, then Rᵀ

G′RG′ − 2I is the adjacency matrix of Λ(Ġ). For example, by an
appropriate labelling of vertices of G′ of Figure 1, one can get that Rᵀ

G′RG′ − 2I is
the adjacency matrix of Λ(Ġ) of the same figure.

In the remainder of the paper we use Φ to denote the characteristic polyno-
mial of an (oriented or signed) graph under consideration. It coincides with the
characteristic polynomial of the corresponding (skew) adjacency matrix. To avoid
possible confusion, the graph is indicated in the subscript. Recall that a graph is
said to be bipartite semiregular if it is bipartite and the vertices belonging to the
same part have equal degree.

We start with a simple lemma.

Lemma 3.5. If a bipartite signed graph Ġ is associated with an oriented graph G′,
then Ġ is switching equivalent to its underlying graph if and only if every cycle
of G′ is oriented uniformly.
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Proof. The result follows since a cycle in Ġ is positive if and only if the same cycle
in G′ is oriented uniformly. �

We now determine the characteristic polynomial of Λ(Ġ) in some particular
cases.

Theorem 3.6. If G′ is a bipartite semiregular oriented graph with n1 vertices of
degree r1 and n2 (n2 ≤ n1) vertices of degree r2, such that all its cycles are oriented
uniformly, then

ΦΛ(Ġ)(x) = (x− r1 + 2)n1−n2(x+ 2)β
n2∏
i=1

(
(x− r1 + 2)(x− r2 + 2)− λ2

i

)
,

where Ġ is associated with G′, β = n1r1 − n1 − n2 and λ1, λ2, . . . , λn2 are the
first n2 largest imaginary parts of the skew eigenvalues of G′.

Proof. Since every cycle of G′ is oriented uniformly, from Lemma 3.5 we get that Ġ
is switching equivalent to its underlying graph G, and therefore ΦG is its character-
istic polynomial. By Corollary 3.3, ΦL(G) is the characteristic polynomial of Λ(Ġ).

Further, we know form [2, Proposition 1.2.18] that the characteristic polynomial
of the line graph of a bipartite semiregular graph is given by

ΦL(G)(x) = (x− r1 + 2)n1−n2(x+ 2)β
n2∏
i=1

(
(x− r1 + 2)(x− r2 + 2)− ν2

i

)
, (3.1)

where β is defined in this theorem and ν1, ν2, . . . , νn2 are the first n2 largest eigen-
values of G. By the previous part of the proof, we may replace ΦL(G) with ΦΛ(Ġ)
in (3.1). Finally, since G shares the spectrum with Ġ, by Theorem 2.1, the first
n2 largest eigenvalues of G coincide with the first n2 largest imaginary parts of the
skew eigenvalues of G′, and we are done. �

Here is an immediate corollary concerning bipartite regular oriented graphs.

Corollary 3.7. If G′ is a bipartite regular oriented graph with n vertices and
m edges, such that all its cycles are oriented uniformly, then

ΦΛ(Ġ)(x) = (x+ 2)m−n
n∏
i=1

(x− λi − r + 2),

where Ġ is associated with G′, r is the vertex degree and λ1, λ2, . . . , λn are the
imaginary parts of the skew eigenvalues of G′.

Proof. The result follows by setting n1 = n2 (= n
2 ), r1 = r2 (= r) in Theorem 3.6

and taking into account that 2m = rn. �

In other words, under the assumptions of the previous corollary, if ±iλ1, ±iλ2,
. . . ,±iλk, 0n−2k are the skew eigenvalues of G′, then ±λ1 + r − 2, ±λ2 + r −
2, . . . , ±λk + r − 2, (r − 2)n−2k, (−2)m−n are the eigenvalues of Λ(Ġ).

In the last two statements we give some upper bounds on ρ(G′) expressed in
terms of ρ(L(G)) (if G′ is bipartite) and ρ(L(bd(G))) (if G′ is non-bipartite).
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Theorem 3.8. For the spectral radius ρ(G′) of a connected bipartite oriented
graph G′ with underlying graph G, we have

(i) ρ(G′) ≤ 1
2 (ρ(L(G)) + 2), with equality if and only if G′ is regular and all

its cycles are oriented uniformly, and
(ii) if G′ is not a path, ρ(G′) ≤ ρ(L(G)), with equality if and only if G′ is a

uniformly oriented cycle.

Proof. By Theorem 2.1, we have ρ(G′) = ρ(Ġ), where as before Ġ is associated
with G′. Observe that the largest eigenvalue of Ġ does not exceed the largest
eigenvalue of G, along with equality if and only if Ġ and G are switching equivalent;
this fact is explicitly proved in [5]. Now, since Ġ is bipartite, its spectrum is
symmetric about the origin, and so we have that ρ(Ġ) ≤ ρ(G), with equality
if and only if they are switching equivalent. By the result of Shi [4], we have
ρ(G) ≤ 1

2 (ρ(L(G)) + 2) (with equality if and only if G is regular) and, if G is not a
path, ρ(G) ≤ ρ(L(G)) (with equality if and only if G is a cycle). Thus, we get the
inequalities of (i) and (ii). Equality cases follow by ρ(G′) = ρ(G) if and only if Ġ
is switching equivalent to G, that is, by Lemma 3.5, if and only if the cycles of G′
are oriented uniformly. �

The upper bound of (i) gives a better estimate whenever ρ(L(G)) > 2. Now,
the non-bipartite case.

Theorem 3.9. For the spectral radius ρ(G′) of a non-bipartite oriented graph G′

with underlying graph G, we have ρ(G′) < 1
2 (ρ(L(bd(G))) + 2) and ρ(G′) <

ρ(L(bd(G))).

Proof. Following the proof of the previous theorem, we get

ρ(G′) = ρ(bd(Ġ)) ≤ ρ(bd(G)), (3.2)

and then we get ρ(G′) ≤ 1
2 (ρ(L(bd(G))) + 2) and ρ(G′) ≤ ρ(L(bd(G))).

It remains to show that, in these upper bounds, equality cannot occur. Assum-
ing the contrary, we get that the inequality of (3.2) must reduce to equality, i.e.,
we get ρ(bd(Ġ)) = ρ(bd(G)), which implies that bd(Ġ) and bd(G) are switch-
ing equivalent. Let C ′l be an odd cycle (of G′) with vertices i1, i2, . . . , il (indexed
in the natural order), and let C ′2l be the corresponding cycle of bd(G′). Then
every vertex iu of C ′l produces its two copies in C ′2l, say iu1 and iu2, and (ac-
cording to the definition of a bipartite double) the vertices of C ′2l are ordered as
i11, i22, i31, . . . , il1, i12, i21, i32, . . . , il2. It follows also by definition that an edge
iuiv of C ′l gives its two copies in C ′2l, iu1iv2 and iu2iv1, whose orientation is deter-
mined by the orientation of iuiv in the sense that if iu → iv, then iu1 → iv2 and
iu2→ iv1. This, together with the vertex ordering of C ′2l, implies that C ′2l contains
an even number of edges oriented in the route direction. In other words, C ′2l is not
oriented uniformly, and thus the corresponding cycle of bd(Ġ) is negative. Hence,
by Lemma 3.5, bd(Ġ) is not switching equivalent to its underlying graph, which
contradicts our assumption. �
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Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11 000 Belgrade, Serbia
zstanic@math.rs

Received: February 4, 2020
Accepted: October 13, 2020

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)

https://mathscinet.ams.org/mathscinet-getitem?mr=3497981
https://mathscinet.ams.org/mathscinet-getitem?mr=2120511
https://mathscinet.ams.org/mathscinet-getitem?mr=3279389
https://mathscinet.ams.org/mathscinet-getitem?mr=2298995
https://mathscinet.ams.org/mathscinet-getitem?mr=3998150
https://mathscinet.ams.org/mathscinet-getitem?mr=4154730
https://www.researchgate.net/publication/338867787
https://mathscinet.ams.org/mathscinet-getitem?mr=2766941

	1. Introduction
	2. Preliminaries
	3. Results
	References

