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1. Introduction

A signed graph Ġ is obtained from an (unsigned) graph G by accompanying each
edge e by the sign σ(e) ∈ {1,−1}. We say that G is the underlying graph of Ġ.
The set of vertices of Ġ is denoted by V (Ġ); we also write n for |V (Ġ)|. Obviously,
every graph can be interpreted as a signed graph with all edges being positive.

The n × n adjacency matrix A (or AĠ) of Ġ is obtained from the (0, 1)-
adjacency matrix of G by reversing the sign of all 1’s which correspond to negative
edges. The characteristic polynomial of Ġ is ΦĠ(x) = det(xI−AĠ); its roots form

the spectrum of Ġ. The minimal polynomial φĠ is the unique monic polynomial
of minimal degree such that φĠ(AĠ) = O. The polynomial ΦĠ has integral
coefficients; a method for their computation is given in [1]. Moreover, φĠ also
has integral coefficients, and the proof is exactly the same as that for the minimal
polynomial of a graph — see, for example, [3].

Signed graphs with 2 (here and after, distinct) eigenvalues are studied in
[4, 8, 13]. It has been shown that they must be regular. Here we continue by the
next natural step, i.e., by considering regular signed graphs with 3 eigenvalues.

The paper is organized as follows. Section 2 is reserved for terminology and
notation. Some basic results on signed graphs with exactly 3 eigenvalues are given
in Section 3. Certain constructions are presented in Section 4. We also determine
all the signed graphs with 3 eigenvalues, which are either signed line graphs or
have vertex degree 3. Computational results concerning those with at most 10
vertices are given in Section 5.

2. Preliminaries

Our notation is standard; in particular, we write I, J and O for an identity matrix,
an all-1 matrix and an all-0 matrix, respectively. Occasionally, the size of a matrix
will be given in a subscript.

If the vertices i and j of a signed graph are adjacent, we write i ∼ j; in
particular the existence of a positive (respectively, negative) edge between these

vertices is designated by i
+∼ j (respectively, i

−∼ j).

A signed graph is complete, bipartite or r-regular if the same holds for its
underlying graph. In particular, a 3-regular signed graph is called cubic.

We say that a signed graph is homogeneous if its edge set is empty or all the
edges have the same sign. Otherwise, it is inhomogeneous. The negation −Ġ of Ġ
is obtained by reversing the sign of all edges of Ġ.

A walk in a signed graph is defined in the same way as the walk in a graph. A
walk is positive if the number of negative edges contained (counted with their rep-
etition) is even; otherwise, it is negative. Accordingly, a cycle in a signed graph is
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positive if the number of negative edges contained is even; otherwise, it is negative.
The difference between the numbers of positive and negative walks of length k
starting at vertex i and terminating at j is denoted by wk(i, j); for i = j, we sim-
ply write wk(i). In particular, we use ti (respectively, qi) to denote the difference
between the numbers of positive and negative triangles (respectively, quadrangles)
passing through i.

A signed graph is called walk-regular if, for each vertex i, wk(i) is constant
for every non-negative integer k. Setting k = 2, we arrive at an unsurprising
conclusion that every walk-regular signed graph is regular.

For U a subset of the vertex set of a signed graph Ġ, let ĠU be the signed
graph obtained from Ġ by reversing the sign of every edge between a vertex in U
and a vertex outside U . The signed graph ĠU is said to be switching equivalent

to Ġ. Similarly, we say that the signed graphs Ġ and Ḣ are switching isomorphic

if Ḣ is isomorphic to a signed graph which is switching equivalent to Ġ. Switching
equivalence and switching isomorphism preserve the eigenvalues.

In this paper we use the concept of signed line graphs that can be found
in [1, 13]. We repeat the basic notation and definition, since there is an alternative
version of signed line graphs, which differs from our up to sign [14]. Introduce
the vertex-edge orientation η : V (Ġ) × E(Ġ) −→ {1, 0,−1} formed by obeying
the following rules: (1) η(i, jk) = 0 if i /∈ {j, k}, (2) η(i, ij) = 1 or η(i, ij) = −1
and (3) η(i, ij)η(j, ij) = −σ(ij). In fact, every edge gets two orientations, so η
is also called a bi-orientation. The vertex-edge incidence matrix Bη is the matrix
whose rows and columns are indexed by V (Ġ) and E(Ġ), respectively, such that
its (i, e)-entry is equal to η(i, e). Then, even in the case that multiple edges exist,
we have

BT
η Bη = 2I +AL(Ġ) ,

where L(Ġ) is taken to be a signed line graph of Ġ. Note that L(Ġ) depends on η,
so one may observe that we should write L(Ġη), but since different orientations
give switching equivalent line graphs, we simplify the notation and use L(Ġ) to
denote a representative of the entire switching equivalence class. We remark that
this concept does not generalize the concept of line graphs; for example, the line
graph of a positive triangle is a negative triangle.

3. Basic Results

We start with a straightforward result.

Theorem 1. An r-regular signed graph Ġ has at most 3 eigenvalues if and only

if there exist α, β, γ ∈ Z such that
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(1)

2ti = αr + γ, for all i,
w3(i, j) = αw2(i, j), for all i ≁ j,

w3(i, j) = αw2(i, j)− β, for all i
+∼ j,

w3(i, j) = αw2(i, j) + β, for all i
−∼ j,

where ti is defined in the previous section.

If Ġ has exactly 3 eigenvalues, say λ, µ and ν, then

(2) λ+ µ+ ν = α, λµ+ λν + µν = β, λµν = γ.

Proof. If Ġ has at most 3 eigenvalues, then there exist integral coefficients α, β
and γ such that

(3) A3 − αA2 + βA− γI = O

holds for its adjacency matrix. Equating the corresponding entries, we arrive at
the equalities (1). (For example, the (i, i)-entries of A3, A2, A and I are 2ti, r, 0
and 1, respectively, and similarly in the remaining cases.)

Conversely, if the equalities (1) hold, then the identity (3) also holds, and
thus Ġ has at most 3 eigenvalues.

Finally, if Ġ has exactly 3 eigenvalues, considering the minimal polynomial
of its adjacency matrix, we conclude the proof.

Note that if a regular signed graph has at most 3 eigenvalues, then

∑

j
+
∼i

w2(i, j)−
∑

j
−

∼i

w2(i, j)

is a constant for all i. Indeed, using A3 = A2A, we get that the above difference
is equal to the (i, i)-entry of A3 which is constant by the first equality of (1).

The definition of a walk-regular signed graph, given in the previous section,
extends the notion of walk-regularity of a graph. Moreover, the result of Godsil
and McKay [5] – stating that a graph G is walk-regular if and only if the diagonal
entries of Ak (k ≥ 1) are mutually equal or if and only if the characteristic
polynomials ΦG−i are identical for all i ∈ V (G) — can directly be transferred
to the field of signed graphs. The proof, established in the mentioned reference
and [6], remains unchanged. What is interesting is the following result.

Theorem 2. A regular signed graph with at most 3 eigenvalues is walk-regular.

Proof. We prove that Ak has a constant diagonal for k ≥ 1. By Theorem 1, we
already know that this holds for k ≤ 3.
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Fix k (k ≥ 4) and assume that the diagonal entries are equal for all powers
as of Ak−1. Using (3), we get

Ak−3
(

A3 − αA2 + βA− γI
)

= O,

giving
Ak = αAk−1 − βAk−2 + γAk−3.

Since the right-hand side has a constant diagonal, the result follows by induction
argument.

Now, when do our signed graphs have exactly 2 eigenvalues? We already
mentioned that such signed graphs must be regular, which in fact follows easily
by considering their characteristic polynomial. In the same way, we conclude that
a signed graph has 2 eigenvalues if and only if there exists an integer α such that

w2(i, j) = 0, for all i ≁ j,

w2(i, j) = α, for all i
+∼ j,

w2(i, j) = −α, for all i
−∼ j.

These eigenvalues are discussed in [13]; they are either irrational square roots
of an integer (with equal multiplicities) or integral. Here is a similar result when
a signed graph has 3 eigenvalues.

Theorem 3. If a regular signed graph has exactly 3 eigenvalues and their multi-

plicities are not all mutually equal, then either one eigenvalue is integral and the

remaining two are irrational algebraic conjugates with equal multiplicities or all

the eigenvalues are integral.

Proof. Let the eigenvalues be denoted as in Theorem 1, let mλ, mµ and mν

denote their multiplicities, and assume (without loss of generality) that mλ ≤
mµ ≤ mν . Observe that the polynomial

(4)
Φ(x)

φ(x)mλ
= (x− µ)mµ−mλ(x− ν)mν−mλ

has integral coefficients, as follows, say, by the polynomial long division scheme,
since both Φ and φ have integral coefficients, and the latter one is monic.

For mλ < mµ, comparing the coefficients of the polynomial (4) with those
of the binomials it consists of, we immediately conclude that if mµ < mν , then
µ, ν ∈ Z, while if mµ = mν , then µ, ν ∈ Z or they are irrational algebraic
conjugates. In all cases (x− µ)(x− ν) has integral coefficients, and consequently
the same holds for φ(x)/((x− µ)(x− ν)), so λ is integral.

For mλ = mµ, the polynomial (4) reduces to (x− ν)mν−mλ , and since it has
integral coefficients, ν must be integral. Considering φ(x)/(x− ν), we get that λ
and µ are integral or irrational algebraic conjugates.
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We express the multiplicities in terms of the remaining parameters. So, using
the notation from the above and considering the first three spectral moments of
the adjacency matrix, we get

(5) mλ =
(r + µν)n

(λ− µ)(λ− ν)
, mµ =

(r + λν)n

(µ− λ)(µ− ν)
, mν =

(r + λµ)n

(ν − λ)(ν − µ)
.

Using the spectral moments of order 3 and 4, and Theorem 2, we get a pair
of feasibility conditions

(6)
mλλ

3 +mµµ
3 +mνν

3 = 2tin,

mλλ
4 +mµµ

4 +mνν
4 = (r(2r − 1) + 2qi)n.

4. Constructions and Determinations

Let Ġ × Ḣ denote the tensor product of Ġ and Ḣ, i.e., the signed graph whose
adjacency matrix is identified with the Kronecker product AĠ ⊗AḢ . It is known

that every eigenvalue (with repetition) of Ġ × Ḣ is obtained as a product of an
eigenvalue of Ġ and an eigenvalue of Ḣ. If Ġ and Ḣ are connected and at least
one of them is non-bipartite, then their tensor product is connected.

Various signed graphs with 3 eigenvalues can be obtained as tensor products
of existing signed graphs with 2 or 3 eigenvalues. Similarly, for an all-1 matrix J ,
AĠ ⊗ J is the adjacency matrix of a signed graph with 3 eigenvalues whenever Ġ
has either 2 eigenvalues or 3 eigenvalues such that one of them is 0. One can
arrive at similar conclusions by considering the matrix (AĠ+ I)⊗J − I (this idea
can be found in [3]).

Here is another construction. By G̈ we denote the signed multigraph obtained
by inserting a negative (parallel) edge between every pair of adjacent vertices of
a graph G.

Proposition 4. There is a connected regular signed graph with (n, r) = (4k, 2k)
and eigenvalues ±k

√
2 and 0, for k ≥ 2. There also exists a connected regular

signed graph with (n, r) = (ik, 4k) and eigenvalues ±2k and 0, for i ≥ 3, k ≥ 2.

Proof. For the first family, we consider the adjacency matrix A of a negative
quadrangle (with eigenvalues ±

√
2) and the k×k all-1 matrix Jk. The Kronecker

product A⊗ Jk determines a desired complete bipartite signed graph.

For the second, recall from [13] that the signed line graph L(C̈i), i ≥ 3, is
4-regular with eigenvalues ±2. If A is its adjacency matrix, then a desired signed
graph is obtained by the same product (with Jk). Observe that it is connected
by the way of construction.
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By [13], if G is an r-regular signed graph with n vertices, then the character-
istic polynomial of its line graph is given by

(7) ΦL(Ġ)(x) = −(x+ 2)
(r−2)n

2 ΦĠ(r − x− 2).

Theorem 5. The line graph L(Ġ) of a connected r-regular signed graph has 3
eigenvalues if and only if one of the following holds.

(i) Ġ is a positive quadrangle, any pentagon or a negative hexagon,

(ii) Ġ has 2 eigenvalues, but it is not switching equivalent to Kn, or

(iii) Ġ is switching equivalent to a strongly regular graph.

Proof. First, if r = 2, then L(Ġ) is also a cycle, and the result follows easily,
giving (i).

For r ≥ 3, we recall, say from [10], that the vertex degree occurs in the
spectrum of a connected signed graph if and only if it is switching equivalent
to its underlying graph. Now, if L(Ġ) has 3 eigenvalues then, by (7), either Ġ
has 2 eigenvalues, where r is not one of them, or Ġ has 3 eigenvalues, where r
is one of them. Indeed, the eigenvalues of L(Ġ) are −2 and the solutions of
ΦĠ(r − x − 2) = 0, and the conclusion follows since the existence of r in the

spectrum of Ġ implies that −2 is one of the solutions of the previous equation.
In the former case, we immediately arrive at (ii), as a connected signed graph

which has 2 eigenvalues and is switching equivalent to its underlying graph must
be K̇n (n ≥ 2).

In the latter case, Ġ has 3 eigenvalues and it is switching equivalent to its
underlying graph. The underlying graph must be strongly regular, since every
connected regular graph with 3 eigenvalues is strongly regular [12, Theorem 3.4.7].

The opposite implication is verified directly.

We also determine cubic signed graphs with 3 eigenvalues.

Theorem 6. Every connected cubic signed graph with 3 eigenvalues is switching

equivalent to its underlying graph or to the negation of its underlying graph.

Proof. Assume to the contrary, and denote the signed graph in question by Ġ.
Throughout the proof we use the notation from Section 3.

If Ġ has no integral eigenvalue, then by Theorem 3, they are of the same
multiplicity equal to n

3 . By the second equality of (6), we have

λ4 + µ4 + ν4 = 45 + 6qi.

Using λ + µ + ν = 0 and λ2 + µ2 + ν2 = 9 (the spectral moments), we compute
λ4+µ4+ ν4 = 81

2 , which implies qi = −3
4 . Since this parameter must be integral,

we arrive at contradiction.
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Assume now that at least one eigenvalue of Ġ, say λ, is integral. If an
eigenvalue of Ġ is 3 or −3, then Ġ is switching equivalent to G or to its negation,
so assume further that the spectrum of Ġ lies in (−3, 3). Since λ is integral, it
follows that

(8) z = µν and s = µ+ ν

are also integral; if necessary, see (2). Moreover, we have z ∈ [−8, 8] and s ∈
[−5, 5]. By (8), −µ2 + sµ − z = 0, and since µ is real and µ 6= ν, we obtain
s2 − 4z > 0.

Now, we need to consider all the integral possibilities for z and s (belonging
to the given segments and satisfying the last inequality) in conjunction with the
equalities (5)–(6). In fact, all the possibilities are resolved easily giving no feasible
solutions. We skip the details, but for example, if z ∈ {7, 8} then there is no
possibility for s. For z ∈ {5, 6}, given inequality is satisfied only for s = 5,
but then at least one of µ or ν does not belong to the given interval, and so
on. A critical case passing all the (in)equalities (with λ, ti, qi integral) occurs
for (z, s) = (−5, 0), giving (λ, µ, ν, ti, qi) =

(

0,
√
5,−

√
5, 0, 0

)

. Since the last two

parameters are zero, we have A2
Ġ
= 3I, and thus the eigenvalues of Ġ are ±

√
3,

contradicting the obtained values.

Clearly, all connected homogeneous cubic signed graphs with 3 eigenvalues
are cubic strongly regular graphs or their negations. The former ones are the
Petersen graph and the complete bipartite graph K3,3.

So far, we restricted ourselves only to signed graphs that are regular. Of
course, the non-regular ones can also have 3 eigenvalues. In fact, there is an
extensive literature concerning homogeneous non-regular signed graphs with 3
eigenvalues (see [9] and references therein). Our contribution includes specified
signed graphs derived from block designs.

Recall that a balanced incomplete block design (a BIBD) is an arrangement
of p points into b blocks of size k in such a way that every point is contained in r
blocks and every pair of points occurs together in l blocks. It holds p ≤ b (the
Fisher inequality), and in the case of equality, a BIBD is said to be symmetric.

Since b = p(p−1)
k(k−1) l and r = p−1

k−1 l (see [12, p. 107]), the integers (p, k, l) are usually
taken as the basic parameters of a BIBD.

If P is the p× b point-block incidence matrix of a BIBD, then

A =

(

O 2P − J
(2P − J)T O

)

is the adjacency matrix of a complete bipartite signed graph, say Ġ. We say
that Ġ is associated with the corresponding BIBD. Determine now whether such
a signed graph has 3 eigenvalues.
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Theorem 7. A signed graph Ġ associated with a BIBD with parameters (p, k, l)
has 3 eigenvalues if and only if k = p

2 , k = p or a design is asymmetric with

k = 1
2

(

p±√
p
)

.

Proof. By using the notation introduced upon the theorem, we get

A2 =

(

(2P − J)(2P − J)T O
O (2P − J)T (2P − J)

)

.

Since the diagonal blocks of A2 share the same non-zero eigenvalues, we conclude
that the eigenvalues of A2 are the eigenvalues of the top-left block and, if p < b,
zero.

Since PP T = lJp + (r − l)Ip, PJT = rJp, JJ
T = bJp and JP T = rJp, the

eigenvalues of (2P − J)(2P − J)T are

pb− 4(p− 1)(r − l) and 4(r − l).

Therefore, A has 3 eigenvalues if and only one of the above eigenvalues is zero or
they are equal, along with p < b. Now, both implications follow by direct algebraic
computation. Indeed, equating the former eigenvalue with zero and expressing b
and r in terms of the basic parameters, we get

p2(p− 1)

k(k − 1)
l − 4(p− 1)

(

p− 1

k − 1
l − l

)

= 0,

which, after a short transformation, gives k = p
2 . Similarly, r− l = 0 gives k = p,

while in the last case we arrive at k = 1
2

(

p±√
p
)

.

For k = p, we get a homogeneous complete bipartite signed graph. Exam-
ples of BIBDs satisfying the remaining conditions of the previous theorem can be
obtained by inspecting the list of BIBDs of small order given in [2, Section II.1].
Observe that if a BIBD has k = 1

2

(

p+
√
p
)

, then the complementary BIBD has
k = 1

2

(

p−√
p
)

. Finally the assumption that, in the last case, a BIBD is asym-
metric cannot be omitted, because there exist symmetric BIBDs which satisfy
the condition for k and which produce regular signed graphs without 3 eigenval-
ues. An example is a symmetric BIBD with parameters (4s2, s(2s+ 1), s(s+ 1)),
for s ∈ Z\{0}, known as a Menon design, giving a regular signed graph with
eigenvalues ±2s.

5. Computational Results

We conclude our research by the exhaustive computer search on connected non-
complete regular signed graphs with 3 eigenvalues, at most 10 vertices and vertex
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· · ++++· · +−+−
++ · · ++
+− · · −+
+++− · ·
+−++ · ·
1. 2.732,−0.732,−22

· · · · ++++· · · · ++++· · · · ++−−· · · · ++−−
++++ · · · ·
++++ · · · ·
++−− · · · ·
++−− · · · ·
2. 2.832, 04,−2.832

· · + · ++++· · · −+−+−
+ · · · ++++· − · · −+−+
+++− · · + ·
+−++ · · · +
+++−+ · · ·
+−++ · + · ·
3. 3.832,−14,−1.832

· · · −+ · · −+· · · + · −+ · −· · · · −+−+ ·−+ · · · · +− ·
+ · − · · · − · +· −+ · · · · +−· +−+− · · · ·− · +− · + · · ·
+− · · +− · · ·
4. 32, 05,−32

· · · +−−+−−· · · −+−−+−· · · −−+−−+
+−− · · · +−−−+− · · · −+−−−+ · · · −−+
+−−+−− · · ·−+−−+− · · ·−−+−−+ · · ·
5. 42, 12,−25

· · · · · ++++ ·· · · · · ++− · +· · · · · +− · +−· · · · · + · −−−· · · · · · ++−−
++++ · · · · · ·
++− · + · · · · ·
+− · −+ · · · · ·
+ · +−− · · · · ·· +−−− · · · · ·
6. 2.244, 02,−2.244

· · · · + · +++ ·· · · · + · −− · +· · · · · ++ · −+· · · · · − · +−+
++ · · · · +− · ·· · +− · · · · −−
+−+ · + · · · · ·
+− · +− · · · · ·
+ · −− · − · · · ·· +++ · − · · · ·
7. 2.244, 02,−2.244

· · · + · + · + · +· · · · + · + · −+· · · · · ++−+ ·
+ · · · · + · + · −· + · · · · − · ++
+ · ++ · · · − · ·· ++ · − · · · − ·
+ · −+ · − · · · ·· −+ · + · − · · ·
++ · −+ · · · · ·
8. 2.244, 02,−2.244

· · ++++++++· · +−+−−++−
++ · · ++−−++
+− · · +−+−+−
++++ · · ++−−
+−+− · · −+−+
+−−++− · · −+
++−−++ · · −−
++++−−−− · ·
+−+−−++− · ·
9. 3.164, 02,−3.164

· · ++++++++· · ++−−++−−
++ · · ++−+−+
++ · · −−+−−+
+−+− · · ++−+
+−+− · · −−+−
++−++− · · −−
+++−+− · · ++
+−−−−+−+ · ·
+−+++−−+ · ·
10. 42, 1.244,−3.244

· · −−−−++++· · −−−−++++−− · · ++−−++−− · · ++−−++−−++ · · ++−−−−++ · · ++−−
++−−++ · · −−
++−−++ · · −−
++++−−−− · ·
++++−−−− · ·
11. 4.472, 06,−4.472

Table 1. Data on signed graphs of Theorem 8. We use a schematic representation of the
adjacency matrix (dot for 0, plus for 1 and minus for −1) and also give the corresponding
spectrum.

degree at least 4. (We omit those with r = 2, while those with r = 3 are considered
in Theorem 6.) Complete signed graphs are excluded, since the spectrum of such
a signed graph coincides with the Seidel spectrum of a graph induced by negative
edges, and such graphs with exactly 3 Seidel eigenvalues are already considered in
literature – for a review and a recent progress, see the work of Greaves [7]. We also
exclude in the presentation those that are switching isomorphic to homogeneous
signed graphs, since they are determined easily.

The search method is described in [11] (where one can find a report on search
on switching non-isomorphic signed graphs with at most 8 vertices). Accord-
ingly, here we determine a spanning tree of a given regular underlying graph,
then consider the number of eigenvalues of all possible signed graphs obtained
by reversing the signs of all edges outside the tree, and simultaneously eliminate
switching isomorphic ones. Here is a theorem.
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Theorem 8. Apart from those that are switching isomorphic to the homoge-

neous ones, there are exactly 15 switching non-isomorphic connected non-complete

signed graphs with 3 eigenvalues, at most 10 vertices and vertex degree at least 4.
The data on 11 signed graphs is given in Table 1, while the remaining 4 are the

negations of those with asymmetric spectrum.

The reader may observe that some of signed graphs presented in Table 1 are
obtained by the Kronecker products considered at the beginning of Section 4. For
example, the 2nd signed graph is AĊ4

⊗ J2 (Ċ4 being the quadrangle with one
negative edge), the 5th is AK3 ⊗ (2I3 − J3) and the 11th is SC5 ⊗ J2 (SC5 being
the Seidel matrix of the pentagon).
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