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Abstract

A graph is called self–centered if all of its vertices have the same eccentricity. We prove

some new properties of such graphs and obtain all minimal self–centered graphs of up to 10

vertices.
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1. Introduction

We restrict ourselves to undirected graphs without loops or multiple edges. Let G
be an arbitrary graph and let V (G) and E(G) denote the sets of its vertices and edges,
respectively. For vertices v, w ∈ V (G), let d(v, w) be the number of edges in a shortest
path from v to w, called the distance between v and w. Let further e(v) = max{d(v, w) :
w ∈ V (G)} denote the eccentricity of the vertex v. The radius r(G) and the diameter
diam(G) are the minimum and maximum eccentricity, respectively. The set of all vertices
v ∈ V (G) with minimum eccentricity is known as the center of G. We say that the graph G
is self–centered if all vertices have equal eccentricity. If self–centered graph G has diameter
d, we simply say that G is d–self–centered. Some results on such graphs are established
in [1], [2], [3], [4], [5], etc. Obviously, if graph is self–centered, every vertex belongs to its
center and every vertex is the end of some diametral path. Also, a graph is 1–self–centered
if and only if it is a complete graph.

2. On Self–Centered Graphs

The obtained family of minimal self–centered graphs (see the next section) enables us
to formulate and prove some statements. In order to introduce some of them, we need
to recall some notions (they are taken from [6], but usually used in other literature, as
well). The union G1∪G2 of graphs G1(V1, E1) and G2(V2, E2) is the graph G(V, E) where
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V = V1 ∪ V2 and E = E1 ∪ E2. The complete product (or join) G1∇G2 is obtained from
G1 ∪ G2 by joining every vertex of G1 to every vertex of G2 by an edge. The cartesian
product G1 × G2 is the graph with vertex set V = V1 × V2 for which the adjacency of
vertices is defined in the following way: two vertices (v1, v2), (w1, w2) ∈ V are adjacent if
and only if either v1 = w1 and v2w2 ∈ E2 or v1w1 ∈ E1 and v2 = w2. The line graph L(G)
of a given graph G is defined in the following way: there is a one–to–one correspondence
between the set of vertices of L(G) and the set of edges of G, and two vertices in L(G)
are adjacent if and only if the corresponding edges in G are incident. We say that G
is a minimal graph for some property if it loses this property when an arbitrary edge is
removed.

First, we prove the following result.

Theorem 2.1. Let G1 and G2 be graphs with sets of vertices and edges V (G1), E(G1)
and V (G2), E(G2), respectively. Then

(i) The complete product G1∇G2 is a 2–self–centered graph if and only if ∆(G1) <
|V (G1)| − 1 and ∆(G2) < |V (G2)| − 1.

(ii) If G1 and G2 are m– and n–self–centered graphs respectively, then G1×G2 is (m+n)–
self–centered graph. Reciprocally, if G1 × G2 is self–centered graph then both graphs
G1 and G2 are self–centered.

(iii) If G1 is a minimal d–self–centered graph then every edge is contained in some di-
ametral path.

Proof. (i) Let G1∇G2 be 2–self–centered, then e(v) = 2 for every v ∈ V (G1∇G2), and
therefore ∆(G1) < |V (G1)|−1 and ∆(G2) < |V (G2)|−1. Conversely if ∆(G1) < |V (G1)|−1
and ∆(G2) < |V (G2)| − 1 then its complete product is clearly 2–self–centered.

(ii) This statement follows from the fact that the eccentricity of a vertex (v1, v2) is the
sum of the eccentricities of v1 and v2.

(iii) If an edge e is not contained in any diametral path, then G − e is d–self–centered,
as well. But in this case G is not minimal self–centered.

Remark 2.1. Statement (iii) of the previous theorem does not hold for an arbitrary self–
centered graph. An example for this can be obtained by inserting any edge into graph G7

depicted in Figure 2.

Now we have the following theorem.

Theorem 2.2. Let G and L(G) be d– and f–self–centered graphs, respectively. Then,
f ∈ {d − 1, d, d + 1}.

Proof. Let v1v2 and w1w2 be two arbitrary edges of G. We have d(vi, wj) ≤ d for any
choice of i, j. Therefore, the shortest path between these edges contains at most d + 1
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vertices which implies f ≤ d + 1. Further, let f < d − 1 and let the edges v1v2 and w1w2

correspond to vertices of L(G) at distance f . Then, the eccentricity of any of vertices vi,
wj (i, j = 1, 2) is strictly less than d, which is a contradiction.

If G = K2 (1–self–centered) then L(G) = K1 is 0–self–centered. On the other hand,
examples of G and L(G) which are both d–self–centered can be easily found. Hence we
have the following interesting problem: Determine the remaining (if any) d–self–centered
graphs whose line graphs are (d − 1)– or (d+1)–self–centered.

Let N(v) (resp. N [v]) denote the open (resp. closed) neighbourhood of an arbitrary
vertex v. A self–centered graph does not contain cut–vertices or bridges (cut–edges). Also,
the following theorem holds.

Theorem 2.3. If G is d–self–centered, (d ≥ 2) then any maximal circuit in G consists of
at least 2d vertices. Also, in the case d = 2, a maximal circuit has length 4 if and only if
G is a complete bipartite graph with 2 vertices in one partition.

Proof. The first part of the statement follows from the fact that any two vertices of a
d–self–centered graph are contained in some common circuit (there are no cut–vertices).

If G = K2,n−2, then any maximal circuit in G has length 4. On the other hand, let
G be a 2–self–centered graph whose maximal circuits have 4 vertices. If ∆(G) = 2, then
G = C4 = K2,2. Now, suppose ∆ ≥ 3 and v be a vertex such that deg(v) ≥ 3. Let
W = V (G)\N [v]. Since maximal circuit has length 4, N(v) is independent. Further,
the 2–self–centrality of G implies that every vertex w ∈ W is adjacent to every vertex of
N(v). Finally, since the length of maximal circuit is 4, we get |W | = 1. Therefore, G is a
complete bipartite graph with 2 vertices in one partition.

In the following lemma we consider minimal self–centered graphs.

Lemma 2.1. Let G be a 2–self–centered graph having n ≥ 5 vertices and 2n − 5 edges.
Then, no edge can be subdivided so that the resulting graph remains 2–self–centered.
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Proof First, a minimal 2–self–centered graph with 2n − 5 edges exists for every n ≥
5. Such a graph is not unique and it can have the form shown Figure 1 (a). Assume
that an edge vw ∈ E(G) can be subdivided by a new vertex u and that the obtained
graph remains 2–self–centered. Since e(u) = 2, we have N(v, w) = V (G)\{v, w}, where
N(v, w) = N(v) ∪ N(w). Hence, |N(v, w)| = n − 2. Consider the following subsets of
V (G): K = N(v) ∩ N(w), L = N(v)\N [w] and M = N(w)\N [v] (compare Figure 1 (b)).
Note that |L|, |M | > 0 (otherwise, we have e(v) = 1 or e(w) = 1). Let us count the
number of edges of G. There are 2|K| edges which join every vertex from K to v and
to w; |L| (resp. |M |) edges which join every vertex from L (resp. M) to v (resp. w).
Additionally, we need at least |L|+ |M | − 1 edges, because of d(l, m) ≤ 2, l ∈ L, m ∈ M .
Finally, there is edge vw. Therefore,

2n − 5 = |E(G)| ≥ 2|K| + 2(|L| + |M |)
= 2(n − 2 − |L| − |M |) + 2(|L| + |M |)
= 2n − 4.

This contradiction proves the lemma.

By using the previous lemma we obtain a short proof of one known result (see [2]):

Corollary 2.1. If G is 2–self centered on n ≥ 5 vertices then G has at least 2n− 5 edges.

Proof. We have obtained the family of all minimal self–centered graphs of order up to 10
(Section 3) and we conclude that the statement holds for all these graphs. Now let n > 10
and we assume that the result holds for all graphs of order less than n. Let G be a minimal
2–self–centered graph on vertices with |E(G)| ≤ 2n− 6. Then there is a vertex u ∈ V (G),

such that deg(u) = 2 (otherwise, |E(G)| ≥ 3n
2

> 2n − 6). Let v and w be the neighbours

of u. If v and w are adjacent then the graph G − u is 2–self–centered, as well and it has
at most 2(n − 1) − 6 edges, which is a contradiction. On the other hand, if these vertices
are not adjacent, then the graph G′ = (G − u) + vw is a 2–self–centered graph on n − 1
vertices with at most 2(n − 1) − 5 edges, which is a contradiction.

3. Minimal Self–Centered Graphs

We obtain all minimal self–centered graphs up to order 10. A review of these graphs is
given in the following table.
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n\radius 2 3 4 5
4 1 - - -
5 2 - - -
6 4 1 - -
7 9 2 - -
8 29 8 1 -
9 102 27 2 -
10 518 118 8 1

Table 1

This library helps us to formulate some of the statements in the previous section and it
should be a useful tool for further research of this class of graphs. We use an algebraic way
to obtain it. We first generate all connected graphs of order n. After that, we eliminate
graphs which cannot be self–centered with specified radius (this includes the consideration
of vertex degree, number of edges etc.). In order to single out the self–centered graphs
from the reduced family, we consider the adjacency matrix A and its powers up to degree
d (if we search for minimal d–self–centered graphs) and check the following conditions for
these matrices: the (i, j)–entry, i �= j, must be different from zero in at least one of these
matrices and there is at least one such entry in every row (column) which equals zero
in all matrices A, ..., Ad−1. In the graph whose adjacency matrix satisfies the previous
conditions, we check its minimality by removing the edges. In this way we obtain all
graphs in Table 1. Graph K1 is 0–self–centered. Also, there are nine 1–self–centered
graphs of order n ≤ 10. If we add these values to the sum according to Table 1, we obtain
exactly 843 graphs.

Here we present 2–self–centered graphs of order n ≤ 7. The graphs are ordered lexico-
graphically by their number of edges and by their spectra in non–decreasing order.

Additionally, all graphs from Table 1 are available on the following internet address
http://www.matf.bg.ac.rs/∼zstanic/indexdiam.html. The obtained family enables us to
better understand the structure of self–centered graphs and it will be a useful tool for
further research.
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Figure 2
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