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1. Introduction

A threshold graph can be defined in many ways, as can be seen in [2]. Here we follow the definition
via binary generating sequences. Accordingly, a threshold graph G(b) is obtained from its binary
generating sequence of the form b = (b, b, - - - b,) in the following way:

(1) fori =1, G, = G(by) = K,, i.e., a single vertex;

(i1) for i > 2, with G;_; = G(b\b, - - - b;_y) already constructed, G; = G(bb; - - - b;_1b;) is formed by
adding an isolated vertex to G;_; if b; = O (that is, a vertex non-adjacent to any vertex in G;_;)
or by adding a dominating vertex to G;_; if b; = 1 (that is, a vertex adjacent to all the vertices in

Gi-1).

Clearly, G(b) = G,. A schematic representation of a threshold graph is illustrated in Figure 1(a); its
vertices are partitioned into cells U;, V; (1 <i < h).

The vertices in U = Ule U; induce a co-clique, while the vertices in V = U?;l Vi induce a clique.
An equivalent definition of a threshold graph says that a graph is a threshold graph if it does not contain
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neither 2K, (the disjoint union of two edges), P, (the 4-vertex path) or C,4 (the 4-vertex cycle) as an
induced subgraph [6].

A bipartite counterpart to the threshold graph is a chain graph which is generated by the same
binary sequence in the following way:

(1) fori =1, G, = G(b,) = K, 1.e., a single vertex belonging to one colour class, say white vertex;

(1) for i > 2, with G;-; = G(b1by---b;_1), G; = G(b1b; - - - b;_1b;) is obtained by adding to G,_; an
isolated white vertex if b; = 0 or a black vertex which dominates all previously added white
vertices if b; = 1.

A schematic representation is illustrated in Figure 1(b).

th Sh th Sh
U, O Vi U, O Vi
th—1 Sh—1 th—1 Sh—1
Unh-1 V-1 Unh-1 V-1
Sh—2 th— Sh—2
Un—2 V2 Un—2 V-2
S1 S1
U1 Vl Ul ‘ Vl
(a) Threshold (b) Chain

Figure 1. A schematic representation of a threshold and a chain graph.

Here are some conventions on binary generating sequences. First, observing that due to the
defining rule (i), (either a threshold or a chain) graph is independent of b, we use the convention that
the binary sequences always start with zero. Moreover, if b, = 1, then the corresponding graph is
connected; otherwise, it is connected up to isolated vertices. Accordingly, since we restricted
ourselves to connected graphs, a binary sequence can be written as

b =(0"1")(021%)---(0"1°), where f;,s; >0, for 1 <i<h. (1.1)

(Naturally, #;’s and s,’s are lengths of maximum runs of consecutive zeros and ones, respectively.)

In a so-called split graph the vertex set can be divided into two disjunct sets, say U and V, in such
a way that U induces a co-clique and V induces a clique. Evidently, every threshold graph is a split
graph and the neighbourhoods of the vertices are totally ordered by inclusion. By deleting all the edges
that belong to the clique V = [ JI, V; (see Figure 1) of a threshold graph, we obtain the chain graph that
is generated by the same binary sequence. Note that for any x € U, the subgraph induced by V U {x}
induces a maximal clique in the corresponding threshold graph.

We say that a graph is Hamiltonian if it contains a cycle passing through all of its vertices. Every
such a cycle is called a Hamilton cycle.
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In this paper we revisit the results obtained in [1] on Hamiltonicity of threshold graphs. We give
necessary and sufficient conditions for a threshold graph to be Hamiltonian in terms of its generating
binary sequence.

The paper is organized as follows. In Section 2 we recall the results of Harary and Peled [1].
In Section 3 we interpret these results in terms of the entries of the generating binary sequence of a
threshold graph and give a criterion for Hamiltonicity of a threshold graph that can be deduced directly
from its binary sequence. This criterion is implemented in the algorithm presented in Section 4, where
we also include an algorithm that determines whether a given chain graph is Hamiltonian. In Section 5
we identify the chain graph of a given order that contains minimum number of Hamilton cycles. Some
concluding notes and directions for future research are given in Section 6.

2. Results obtained in [1]

Let G be a threshold graph with vertex set I U J, where I (with |I| = r) induces a co-clique and J
(with |J] = s) induces a maximal clique. Let further B denote the chain graph obtained from G by
deleting all edges in the subgraph induced by J. For B, letd, < d, < --- < d,ande; < e; < --- < ¢
denote the degrees of the vertices xy, x5,...,x, € I and yy, y,,...,ys € J, respectively.

In order to determine whether a given threshold graph is Hamiltonian, the authors of [1] first showed
that this problem can be reduced to the question of Hamiltonicity of the corresponding chain graph B
with the colour classes of the same size, as shown in the sequel.

The first lemma gives sufficient conditions for a split graph to be non-Hamiltonian.

Lemma 2.1. ([1]) Let G be a split graph with vertex set I U J, where I induces a co-clique of size r
and J induces a maximal clique of size s. If either r > s or r < s with e;_, = 0, then G is not
Hamiltonian.

In what follows we only consider threshold graphs with r > 2, since for r = 0, G is Hamiltonian if
and only if s > 3, while for r = 1, G is Hamiltonian if and only if d; > 2.

Since any threshold graph is a split graph, by the previous lemma, Hamiltonian threshold graphs
satisfy 2 < r < s and e;_, > 0. The next lemma shows that the problem under the consideration can be
reduced to the Hamiltonicity of threshold graphs with |U| = |V].

Lemma 2.2. ([1])If2 < r < s and e,_, > O, then the threshold graph G is Hamiltonian if and only if
the threshold subgraph G* obtained by deleting the vertices yi, Yy, ..., Vs, is Hamiltonian.

Remark 2.1. In [1] the conclusion that after dropping yi,y,,...,ys—, from J the resulting threshold
graph will have a maximal clique and co-clique of the same size is wrong. The correct conclusion is
that in this case we have s = r + 2 and in the resulting graph a clique induced by {y,_,1,..., Y} is not
a maximal one. A maximal one can be obtained by adding a vertex from a co-clique of the smallest
degree. For example, in the threshold graph generated by (0>120°1%), the size of a maximal clique is 6
and the size of a co-clique is 3. After dropping yi, y,, y3 we obtain the threshold graph generated by
(0°1%). However, in this graph r # s, since = 2 and s = 4.

In what follows we assume that in a threshold graph G, |U| = |V|. Then the edges in the clique
cannot be used in any Hamiltonian cycle, and therefore can be dropped from G, yielding the chain
graph B with |U| = |V| > 2.
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Forq € {0,1,...,|U| - 1}, we denote by S, the set of inequalities

di>j+1, for 1 <j<g;
ej>j+1, for 1 <j<|Ul-1-q.

The next theorem gives two equivalent conditions for a chain graph B with |[U| = |V| > 2 to be
Hamiltonian.

Theorem 2.3. ([1]) If |U| = |V| > 2, then the following conditions are equivalent:

(a) B is Hamiltonian,
(b) S, holds for some q € {0, 1,...,|U| - 1};
(c) S, holds for each q € {0, 1,...,|U| - 1}.

To conclude, in order to determine whether an arbitrary threshold graph is Hamiltonian, all three
results reported in Lemma 2.1, Lemma 2.2 and Theorem 2.3 should be employed.

3. New versions of results obtained in [1]

In this section we restate the results from Section 2 in terms of the entries of the generating binary
sequence of a given threshold graph. Afterwards, we amalgamate them to obtain a result that gives
necessary and sufficient conditions for a threshold graph to be Hamiltonian.

Let G and B be a threshold graph and a chain graph generated by a binary sequence (1.1). If #; # 1,
then the degrees of vertices in B corresponding to a co-clique / and a maximal clique J = V U {x} for
some x € U, are:

di,dy,. . d) ! with dp = Y,
0, el e,....e), with e;= 37 ;- 1. 3.1)

Note that the vertex degrees are given in non-decreasing order, and according to Figure 1, they are
the degrees of vertices in U, Uj,_1,...,U; \ {x} and {x}, V1, V>, ..., V), respectively.

Otherwise, if t; = 1, then G is a split graph in which the subgraph induced by V U U, gives a
maximal clique. Then the degrees of vertices in B corresponding to the colour classes | J", U; and
VU U, are:

di,dy, .. dp |, with dj= YL, s,
1+ s s : _ \J
01, e, ...,e", with e; =3 ;. (3.2)
Let T = Z?:] t;and § = Zf’zl s;. From the previous observations, it follows that the size of the

maximal clique s and the size of the corresponding co-clique r satisfy r =7 —l and s = S + 1.
We first state the following lemma that determines when e,_, = 0 may occur.

Lemma 3.1. Let G be a threshold graph generated by (1.1), such that s > r. Then e,_, = 0 holds if
andonlyifty# lands—r=1orty =land s—re{l,2,...,s;+ 1}.

Proof. From (3.1), it follows that for #; # 1, ¢; = 0 if and only if i = 1. Otherwise, from (3.2) ¢; = 0 if
and only if i € {1,2,...,s; + 1}. This completed the proof. m]
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Next, Lemma 2.1 applied to threshold graphs states the following.

Lemma 3.2. Let G be a threshold graph generated by (1.1). If r > sorty # land s—r=1o0rt; =1
and s —re{l,2,...,s1 + 1}, then G is not Hamiltonian.

In the sequel we consider only threshold graphs with s > r+ 2 if t; # 1 and with s > r + 51 + 2
if t; = 1. Let the integer ¢ be defined in the following way: if s — r — 1 < sy, then £ = 0; otherwise,

¢ is the least integer such that Zf;l s;i<s—-r—-1«< Zf;'ll s; (obviously, such an integer exists). The

- 1

dropping of the vertices yi, y,,...,y,—, from J is equivalent to dropping y,; from U; and y»,...,y_,
from V. Consequently, the new graph G* is generated by the binary sequence

+1

(()Zfill ti—1 12,»=1 Si—(S—r—l)OtM 1562 ...t lsh). (3_3)
Next we state a reformulation of Lemma 2.2.

Lemma 3.3. Let G be a threshold graph generated by (1.1) with s > r > 2. Then G is Hamiltonian if
and only if a threshold graph G* generated by (3.3) is Hamiltonian.

For s7,, = ijll s; — (s —r — 1), the degrees of vertices in U* and V* in the corresponding bipartite
graph B* of G* given in non-decreasing order are

* _ *
dl _”'_dth =5,
* T= e e e — * —
dlh+1 - - dth+th,1 = Sp-1 t Sh,
h
* = e e e — * —_— .
dtl’+3+"'+th+1 - - dtg+2+~~-+th - Siy
i=6+2
h
* = e e e — * — L —
tegp+e+tp+1 T - dt1+f2+'“+th—l — E tl 1
i=1
and
{+1
— % _ Z o
el B N es;ﬂ - tl 1’
i=1
{+2
* _ _ * _ o
Sper+l T TSy ttse T 2 ,tl 1,
i=1
h
* = .. = * — L
es;n”fﬂ*’“‘“h—l“ - es;+1+s”2+-~+sh E ti—1.

i=1

Next, we consider the system of inequalities S, g € {0, 1,...,T — 1}, for Z?:l s; = Zf’l:l t;.

Lemma 3.4. Let G be a threshold graph generated by (1.1), with Zf-’:l §; = 2?:1 t; 2 2. Then G is
Hamiltonian if and only if

h h
Disiz Y+, for 2<j<h (3.4)

=] =]
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Proof. Recall from Section 2 that a threshold graph G, with § = T, is Hamiltonian if and only if the
corresponding chain graph B is Hamiltonian. Next, by Theorem 2.3, the chain graph B is Hamiltonian
if and only S, holds for g = T — 1. On the other hand, for (3.4) and each repeated vertex degree, we
have

h h
Zi:j i 2 Zi=j+1 fi +2,

h h h

Now, it is easy to see that S7_; holds if and only if (3.4) holds. Note that the inequality Z?:l s; >

f-’: 1 ti — 1 + 1 1s not included, since (by the assumption that S = T') it holds as equality. i

Remark 3.1. The left hand sides of (3.4) are equal to the vertex degrees, while the right hand sides
register the position of the last occurrence of the corresponding vertex degree augmented by 1.

Gathering all the previous results, we arrive at our main result — the criterion for the Hamiltonicity
of a threshold graph based on its generating binary sequence.

Theorem 3.5. Let G be a threshold graph generated by (1.1) such that r > 2. If either s < r + 1 for
ty #lors<r+s,+1fort, =1, then G is not Hamiltonian. Otherwise, G is Hamiltonian if and only
ift+1=hor

h
5i2 ) 1, for £+2<j<h, (3.5)

h
=j i=j

1

{+1

where for s—r—1 < s1, £ = 0, and otherwise € is the least integer such that Zle s <s—r—=1<3.2 s

Proof. A threshold graph G generated by (1.1) is Hamiltonian if and only G* generated by (3.3) is
Hamiltonian. Now, G* is Hamiltonian if and only if the corresponding chain graph B* generated
by (3.3) is Hamiltonian. The last one holds if and only if £ + 1 = h or otherwise if and only if the
system of inequalities (3.4) holds for B*, i.e., if and only if

Zh:sizzh:ti, for {+2<j<h,

=J =]

which completes the proof. O

As a corollary we state a necessary and sufficient condition for a chain graph to be Hamiltonian.
Note that Hamiltonian chain graph has the colour classes of the same size (see [3]) and cannot have
any pendant edges. Moreover, in any Hamiltonian chain graph generated by (1.1), the inequalities
t; > s; + 1 and s, > t;, + 1 must hold.

Corollary 3.6. Let G be a chain graph generated by (1.1), such that T > 2. If either S # TorS =T
andty < sy + 1 ors, <t,+1, then G is not Hamiltonian. Otherwise, G is Hamiltonian if and only if

Zhls,-zzh:t,-+1, for 2 < j<h.

=] =]
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4. Algorithms

In this section we present algorithms for recognition of Hamiltonian threshold graph and
Hamiltonian chain graph. The input is a binary generating sequence, and in return we obtain the
decision whether the corresponding threshold (resp. chain) graph is Hamiltonian or not.

Algorithm 1 (checks if a given threshold graph is Hamiltonian).

(0) INPUT: Generating binary sequence (0 1°1)(021%2) - - - (0™ 1°").
1. Calculate rand s. r = Y0 ;= 1; 5 = 30 s+ 1.
If r=1Ad; =s,>2then RETURN TRUE. If r = 1 Ad; = 5, = 1 then RETURN FALSE.
Ift#1As<r+1)Vv(t; =1As<r+s; +1)then RETURN FALSE.
Determine the least integer ¢ such that Zle s;i<s—-r—-1< ijll s, If s—r—1< s, take £ = 0.

If £+ 1 = hor all inequalities in (3.5) hold then RETURN TRUE. Otherwise, RETURN FALSE.

A

Algorithm 2 (checks if a given chain graph is Hamiltonian).

(0) INPUT: Generating binary sequence (0" 1°1)(021%2) - - - (0" 1°").
1. Calculate T and S. T = 3" t;and S = 3" | 5.
2. 0T #SV (T =S At <s1+1Vs, <t,+ 1)) then RETURN FALSE.
3. If the inequalities Zf: iSi = ?: ;ti+ 1 hold for 2 < j < h then RETURN TRUE. Otherwise,
RETURN FALSE.

It is not difficult to deduce that both algorithms are linear. Indeed, for step (5) of the former one
and step (3) of the latter one we first compute and compare the sums for j = A, then for j = h — 1,
and so on. In this way, every sum is computed on the basis of the previous one and we have at most n
iterations such that each one is performed with O(1) operations, which gives O(n) for these steps. The
complexity of the remaining steps is obvious.

We give some examples illustrating the applications of the algorithms.

Example 4.1. Let G be a complete split graph, i.e, a threshold graph generated by (0" 1°"). If 1, = 1,
s; > 1 then G is Hamiltonian. Otherwise, for #; > 2, if s; < #; — 1 then G is not Hamiltonian. If 5; > #
then G is Hamiltonian, since in this case we have { = Qand £+ 1 =h = 1.

Therefore, we conclude that a complete split graph is Hamiltonian if and only if the size of the
clique is greater than or equal to the size of the co-clique, except for the case where both are equal to 1.
Example 4.2. Let G be a threshold graph generated by (0" 1°021%2). If r = 1 (i.e., t; =1, = 1), then G
is Hamiltonian if and only if s, > 2. Forr > 2, ifeither t; +t, +2 > 51+ 55, 1y #lor s, < 1+ 16,1 = 1
then G is not Hamiltonian. Otherwise, if s —r — 1 < s, then G is Hamiltonian if and only if s, > #,,
while if s — 7 — 1 > s; then G is necessarily Hamiltonian.

Example 4.3. Let G be a particular threshold graph generated by (0°140'°1°0°1!10°1%). In this case we
have r = 20 and s = 30. Implementing the step (4) of Algorithm 1, we get4 < 30-20-1 < 10, which
implies that £ = 1. We next verify that the following inequalities hold: s3 + s4 > 13 + 1, and s4 > 14, and
since they do, we conclude that G is Hamiltonian.

Example 4.4. Let G be a particular chain graph generated by (0°140'°1°0°130%1%). In this case we have
r = s = 21. By the step (3) of the algorithm 2, we get s, + 53 + s4 # 1, + 13 + t4 + 1, which implies
that G is not Hamiltonian.
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5. The minimum number of Hamilton cycles in a Hamiltonian chain graph of a prescribed
order

In this section we give some observations on Hamiltonian chain graphs and we also determine chain
graphs with minimum number of Hamilton cycles. The problem on the value of the minimum number
of Hamilton cycles in a given graph has been considered for some special graph classes. For existing
literature and recent results related to threshold graphs, we refer the reader to [4].

An edge of a chain graph G generated by (1.1) is called a key edge of G if it joins a vertex in U,
to a vertex in V; for some 1 < i < h (see 1 (b)). As it will be shown in the sequel, key edges play a
significant role in determining Hamiltonian chain graphs. We proceed by the following lemmas.

Lemma 5.1. Let e be a key edge of a chain graph G generated by (1.1), then G — e is a chain graph.

Proof. Let e = uv, where u € U; and v € V;. We consider the following cases.
Case 1. If t;, > 1, 5; > 1 then G — e is a chain graph generated by
(O11°1) - - (O 150111017 1) (0" 15+1) - - - (0™ 1),
Case 2. If t;, > 1, 5; = 1, 1.e., if G 1s generated by
(0" 1)+ (0" 1) (O 1)(O'™ 1) - (0" 1),
then G — e is a chain graph generated by
(0" 1) -+ (0% 1510 (0 H LSty o (0 1),
Case 3. If t;, = 1, 5; > 1, i.e, if G is generated by
(017 (0% 1)(0 10" 1) - (0" 1),
then G — e is a chain graph generated by
(01151 - - - (01 151+ 1y(01 15101+ 15) . .. (O™ 1),
Case 4. If t; = 5; = 1, i.e., if G is generated by
(0719 -+ (O 15 )(0' 10" 1551) - (0 1),
then G — e is a chain graph generated by

(Otl 1’y... (Oli—l 1S1-|+1)(Oti+1+1 151y o (O] %),

Lemma 5.2. Every key edge of a Hamiltonian chain graph lies in at least one Hamilton cycle.
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Proof. Let G be Hamiltonian chain graph, e = uv be a key edge of G, withu € U; and v € V;, and let C
be a Hamilton cycle. If e € C, there is nothing to prove. Otherwise, let C has the form (u, s,...,v,t...).
Then u ~ s and v ~ ¢ which implies s € V; for some j > i and v € U; for some k < i, and consequently
s ~ t. So, both uv and st are the edges of G. The cycle C’ obtained by adding these two edges to C and
deleting us and vt from C is Hamilton and contains e. O

We are ready for the main result of this section.

Theorem 5.3. The minimum number of Hamilton cycles in a Hamiltonian chain graph of order
n=2h,h> 2, is 2" and this number is attained uniquely by the chain graph G, generated by

(0*1)(01)---(01?). (5.1)

2(h-1)

Proof. If G is Hamiltonian chain graph, then G has colour classes of the same order, say & (see [3]).
If G is generated by (0 1°! ---0%1%), then #; # 1 and s; # 1. The chain graph with minimum number
of Hamilton cycles is defined with minimum values of #’s, s;’s that, according to Corollary 3.6, are
th=s =2, =1,0i # 1, 5; = 1,j # k. The graph under consideration, i.e., the graph generated
by (5.1) is Hamiltonian, which is an easy exercise to prove. If any of ¢#;’s, s;’s takes a greater value than
the given one, then by deleting any key edge (which by Lemma 5.2 belongs to at least one Hamilton
cycle), we would obtain a graph that, in case that it is Hamiltonian, would have fewer number of
Hamilton cycles (as the deletion of an edge cannot increase the number of Hamilton cycles).

It remains to compute the number of Hamilton cycles, say c,;, which can be performed by induction
onh. Ifh=2,thenGy =Csand ¢y, =2>72 = 1.

Letn =2(h+1). If U; = {x,y} and V| = {z}, then by Lemma 5.2, neither Gy;+1) — Xz nor Gs+1) — 2
is Hamiltonian. Thus the path xzy must lie in every Hamilton cycle of G4y and so every Hamilton
cycle of Gy+1y) must go through z. And from z it may continue either through x or y. Assume, without
loss of generality, that z is followed by x. The remaining part of the Hamilton cycle must continue
through a vertex a ¢ {x,y, z} and before it returns to z it should go through y. Since Gyg41) \ {xz} 18
isomorphic to G, together with 2 possible choices starting from z we obtain ¢y = 2cy, = 2071
This completes the proof. m|

6. Conclusions and future work

It is well known that the problem of deciding whether a graph is Hamiltonian is NP-complete [5,
Chapter 8]. In this paper we showed that for some graphs with a particular structure, such as threshold
and chain graphs, the same decision can be obtained by employing very fast algorithms. We also
determined the minimum number of Hamilton cycles in Hamiltonian chain graphs.

Presented results can be extended in several directions. First, by considering more general classes
of graphs. A natural step after threshold graphs are the so-called cographs. By definition a graph is a
cograph if it does not contain the path P4 as an induced subgraph. Evidently, every threshold graph is
a cograph. It is known that every cograph can be obtained by the iterative procedure based on the fact
that if two graphs are cographs then their disjoint union and their join are cographs, as well [6]. Such a
procedure can be seen as an extension of the procedure that generates threshold graphs (defined in the
opening section and frequently used in this paper).
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Next, one may consider the constructions of algorithms that would determine some other structural
properties of threshold, chain, or some similar graphs. The question of the minimum number of
Hamilton cycles in a cograph is also an open problem.

Finally, our algorithms presented in Section 4 work in general cases for threshold and chain graphs
and both employ checking of a sequence of inequalities. It would be interesting to see under which
conditions some of these inequalities can be avoided, i.e., what is the structure of the corresponding
threshold or chain graph for which this part of the corresponding algorithm can be simplified.
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