
SOME NOTES ON SPECTRA OF

COGRAPHS

Türker Bıyıkoğlu
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Abstract

A cograph is a P4–free graph. We first give a short proof of the
fact that 0 (−1) belongs to the spectrum of a connected cograph
(with at least two vertices) if and only if it contains duplicate (resp.
coduplicate) vertices. As a consequence, we next prove that the
polynomial reconstruction of graphs whose vertex–deleted subgraphs

have the second largest eigenvalue not exceeding
√

5−1
2

is unique.
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1 Introduction

A cograph is usually defined as a P4–free graph. There are many other
definitions of cographs. For example, a cograph is a graph defined by the
following rules:

(i) K1 is a cograph;

(ii) if G and H are cographs then their (disjoint) union G⊕H is a cograph;

(iii) if G and H are cographs then their join G⊗H is a cograph.

If G is an arbitrary (simple) graph and u its vertex, then Γ(u) and
Γ[u] denote open and closed neighbourhoods of u, respectively; so Γ(u) =
{v | v ∼ u} while Γ[u] = Γ(u)∪{u}. Two vertices are duplicate (coduplicate)
if their open (resp. closed) neighbourhoods are the same. So u and v are
duplicate (coduplicate) vertices if Γ(u) = Γ(v) (resp. Γ[u] = Γ[v]).

It was proved by G. Royle (see [10]), that 0 is an eigenvalue of a con-
nected cograph (with at least two vertices) only if it contains duplicate
vertices. In addition, it is implicitly mentioned (in the same paper) that
−1 is an eigenvalue of a cograph only if it contains coduplicate vertices. In
Section 3, we prove both statements in another way.

We now introduce the polynomial reconstruction problem. Let G be a
graph on n vertices, and let

PG(x) = det(xI −AG) = xn + an−1(G)xn−1 + · · ·+ a1(G)x + a0(G)

be the characteristic polynomial of its adjacency matrix AG. Since PG(x)
is invariant with respect to the labelling of the vertices, it is also called the
characteristic polynomial of G. The collection of eigenvalues of G, i.e.

{λ1(G), λ2(G), . . . , λn(G)}
is called the spectrum of G. In sequel, we will usually suppress the graph
name from our notation, and in addition will assume that λ1 ≥ λ2 ≥ · · · ≥
λn. Let Gi = G− vi (i = 1, 2, . . . , n), and let

P(G) = {PG1 , PG2 , . . . , PGn},
be the collection of characteristic polynomials of vertex–deleted subgraphs
of G. P(G) is also called the polynomial deck of G; the corresponding
collection of subgraphs will be referred to as a deck. We consider the
following problem.

Problem 1 Is it true (for n > 2) that the characteristic polynomial PG of
G is determined uniquely by its polynomial deck, i.e. by P(G)? In other
words, if P(G) = P(H), does it mean that PG(x) = PH(x) for every x?
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This problem is called the polynomial reconstruction problem, and it was
posed by D.M. Cvetković (in 1973), and later studied by many authors. In
Section 4, we consider the polynomial reconstruction problem for graphs
whose second largest eigenvalue is around

√
5−1
2 . More precisely, we will

assume that all subgraphs from the deck have the second largest eigenvalue
bounded from above by σ (=

√
5−1
2 ), the golden section. The structure of

graphs G with λ2(G) ≤ σ has been studied in [7, 8, 14]. Graphs having the
property λ2(G) ≤ σ (σ–property) will be called σ–graphs. For convenience,
graphs G for which λ2(G) < σ (λ2(G) = σ) will be called σ−–graphs (resp.
σ0–graphs), In addition, since every σ−–graph is a P4–free graph (by the
Interlacing Theorem – see, for example, [3] p. 19), it is as well a cograph.

2 Preliminaries

In view of the second definition of cographs we have that graph G is a co-
graph if and only if it can be represented by a cotree (see [1]). We now define
two types of cotrees, denoted by TG and T̂G, respectively, representing a
cograph G.

The first cotree TG is a rooted tree (with r as the root) in which any
interior vertex w is either of ⊕–type (corresponding to the union), or ⊗–
type (corresponding to the join). The terminal vertices (leaves) are typeless
(each of them represents itself in G). Any interior vertex, say w, represents
a subgraph of G induced by the terminal successors of w, and is denoted
by Gw. All terminal vertices are on the same distance from the root.
Also, all interior vertices which are on the same distance from the root
are of the same type. Moreover, the direct successors (or children) of any
interior vertex w have a type which differs from the type of w (or they
are typeless if being the terminal vertices). The direct successors of w
(denoted by w1, w2, . . . , wq) represent the subgraphs Gw1 , Gw2 , . . . , Gwq . If
w is of ⊕–type then Gw =

∑q
i=1 Gwi , or otherwise, if w is of ⊗–type then

Gw =
∏q

i=1 Gwi . In particular, G = Gr. A next-to-terminal vertex (for
short, an NTT–vertex) is a vertex of TG whose all direct successors are
terminal vertices.

The second cotree T̂G will be called a minimal cotree. It is obtained from
the previous one by deleting the superfluous vertices, i.e. those interior
vertices which have exactly one child. In this situation, its parent (if any)
and child are identified. Note also, that in this way, all paths from the root
to NTT–vertices are (⊗,⊕)–alternating, but not necessarily of the same
length.

It is worth mentioning that the second representation is unique. As an
illustration, we give a simple example (in Fig. 1 we present a cograph G

followed by its two representations, TG and T̂G).
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Fig. 1

Remark 2.1 Note first that minimal cotree T̂G enables us to identify eas-
ily (in G) the collections of duplicate and coduplicate vertices. Namely,
any collection of mutually duplicate (coduplicate) vertices have (in the cor-
responding minimal cotree) a common parent which is an NTT–vertex of
⊕–type (resp. of ⊗–type). It is also interesting to note that in the comple-
ment of G (i.e. G), the roles of duplicate and coduplicate are exchanged. In
addition, in complements the corresponding trees are obtained by exchang-
ing the types of ⊕ and ⊗ vertices.

It is also worth mentioning that any pair of duplicate (resp. coduplicate)
vertices gives rise to an eigenvector of G for 0 (resp. −1) defined as follows:
all its entries are zero except those corresponding to u and v which can be
taken to be 1 and −1, or vice versa. Thus any collection with k mutually
duplicate (resp. coduplicate) vertices gives rise to k−1 linearly independent
eigenvectors for 0 (resp. −1).

We now focus our attention to the polynomial reconstruction problem.
Since

P ′G(x) =
n∑

i=1

PGi(x)

(see, for example, [3] p. 60) we can readily determine the characteristic
polynomial except for the constant term. If we know any eigenvalue of
G, then the constant term is uniquely determined (see [4]). In particular,
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this will be the case if some polynomial from the polynomial deck has a
multiple root. Then, by the Interlacing Theorem, the same root appears in
the characteristic polynomial. More generally, if we know the value of the
characteristic polynomial in some point, we are again done.

No example of non–unique reconstruction (for n > 2) of the charac-
teristic polynomial is known so far. On the other hand, the uniqueness
of the polynomial reconstruction is proved for several classes of graphs,
like regular graphs [4], trees [5] (see also [2]), unicyclic graphs [16], graphs
whose vertex–deleted subgraphs have spectra bounded from bellow by −2
[13, 15], small graphs up to 10 vertices [5], etc. There are also many re-
sults proved on reconstructing the bipartite graphs [4], disconnected graphs
[5, 11, 16], graphs with terminal vertices [11, 12, 16], etc. It is also worth
mentioning that the characteristic polynomial of any graph G (with n > 2)
is reconstructible if the decks P(G) and P(G) are known (see [9]).

It is known that, from the polynomial deck, the number of vertices
n(G), the number of edges e(G), as well as the vertex–degree sequence
(deg(v1), deg(v2), ..., deg(vn)) are reconstructible. A larger list of invariants
and properties which are reconstructible from the polynomial deck one can
find in [2] or [16]. For certain classes of graphs, the knowledge of these
invariants and/or properties can be sufficient to get a positive answer to
Problem 1.

3 The multiplicities of 0 and –1 in the spectra
of cographs

The main result of this section is Theorem 3.1. It provides an alternative
proof of the results of G. Royle (see [10]) without addressing the charac-
teristic polynomials of graphs G and G, and answers the question posed
in [10] directed to finding such proofs. It is worth mentioning that the
first author (T.B.) has also provided a proof (unpublished) of Theorem
3.1, part (i). Both alternative proofs are based on the first cotree (i.e. TG)
for representing cographs.

Let G be a cograph, and AG its adjacency matrix. Consider a (real)
vector x = (x1, x2, . . . , xn)T such that AGx = λx. Clearly, x is an eigen-
vector of G for λ if x 6= 0. Let w be an interior vertex of TG, and let Uw

be the set of terminal vertices which are the successors of w. Then the
eigenvalue equation, for a vertex u ∈ Uw, can be written in the following
form:

λxu =
∑

v∈Γ(u)∩Uw

xv +
∑

v∈Γ(u)\Uw

xv. (1)

For short, we put Su,w =
∑

v∈Γ(u)∩Uw
xv, and Rw =

∑
v∈Γ(u)\Uw

xv (note,
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Rw does not depend on the choice of u ∈ Uw). Recall at this place that two
vertices of G are adjacent (non–adjacent) if their least common ancestor in
TG is of ⊗-type (resp. ⊕-type).

If w is an NTT–vertex, then

Su,w =
{

0, if w is a ⊕−vertex,∑
v∈Γ(u)∩Uw

xv, if w is a ⊗−vertex.

Otherwise, if w is not an NTT–vertex, let w1, w2, . . . , wq be the children of
w in TG. Assume also that u ∈ Uwk

for some fixed k (1 ≤ k ≤ q). Then

Su,w =

{ ∑
v∈Γ(u)∩Uwk

xv, if w is a ⊕−vertex,∑
v∈Γ(u)∩Uwk

xv +
∑

v∈Uw\Uwk
xv, if w is a ⊗−vertex.

Let Sw =
∑

v∈Uw
xv. Then the previous equation becomes

Su,w =

{ ∑
v∈Γ(u)∩Uwk

xv, if w is a ⊕−vertex,

−∑
v∈Uwk

\Γ(u) xv + Sw, if w is a ⊗−vertex.

Let u ∈ Uw. If w is an NTT–vertex then (1) can be written as follows:

λxu = Rw, if w is a ⊕−vertex, or (2)

λxu = −xu + Sw + Rw, if w is a ⊗−vertex. (3)

Otherwise, if w is not an NTT–vertex, and if u ∈ Uwk
⊆ Uw for some k

(1 ≤ k ≤ q), then (1) can be written as follows:

λxu =
∑

v∈Γ(u)∩Uwk

xv + Rw, if w is a ⊕−vertex, or (4)

λxu = −
∑

v∈Uwk
\Γ(u)

xv + Sw + Rw, if w is a ⊗−vertex. (5)

Denote by Sp(G) the spectrum of a graph G. The main result in this
section reads.

Theorem 3.1 Let G be a connected cograph on at least two vertices. Then
the following holds:

(i) if G has no duplicate vertices then 0 6∈ Sp(G);

(ii) if G has no coduplicate vertices then −1 6∈ Sp(G).
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Proof Observe first that r, the root of TG, is the vertex of ⊗–type (note,
otherwise G is disconnected). Consider next NTT–vertices, and let w be
any of them. Then w has only one child provided λ = 0 and it is of ⊕–type,
or λ = −1 and it is of ⊗–type (otherwise, G has duplicate or coduplicate
vertices, respectively).

To prove the theorem, we will show that the vector x, satisfying AGx =
λx (for λ ∈ {0,−1}), is non–negative, or non–positive. But this is a con-
tradiction (since x is not orthogonal to the eigenspace corresponding to the
largest eigenvalue of G, which is a connected graph).

Our proof is based on induction arguments.

Induction basis: Assume that w is a fixed NTT–vertex. We claim that all
xu’s with u ∈ Uw are ≥ 0, or ≤ 0 (for λ ∈ {0,−1}). Clearly, we can take
further on that |Uw| > 1.

First, for λ = 0, w must be of ⊗–type (otherwise, G has duplicate
vertices). So, by (3), xu = Sw + Rw for any u ∈ Uw. Since Sw and Rw

depend only on w, xu is constant for u ∈ Uw, and we are done. Secondly,
for λ = −1, w must be of ⊕–type (otherwise, G has coduplicate vertices).
So, by (2), xu = −Rw for any u ∈ Uw, and we are again done.

Induction hypothesis: Assume now that w is a fixed interior vertex of TG,
but not an NTT–vertex. Let w1, w2, . . . , wq be its children. Clearly, we can
take that q > 1. Assume next that the following condition holds: for fixed
k (1 ≤ k ≤ q), all xu’s with u ∈ Uwk

are ≥ 0, or ≤ 0. At this place we can
say that the children of w are scanned, while w has to be scanned. (So,
in the previous part of the proof, NTT–vertices were scanned; now we are
scanning w.) Note also that a vertex such as w above always exists (it can
be encountered by moving from the root downwards to NTT–vertices).

Induction step: We need now to prove that all xu’s with u ∈ Uw are ≥ 0,
or ≤ 0. For this aim, assume to the contrary, and let us and ut be the
vertices of Uw, for which, say xus > 0, while xut < 0. Then, us ∈ Uwi ,
while ut ∈ Uwj for some fixed i 6= j (1 ≤ i, j ≤ q).

We now distinguish two cases depending on λ.

Case 1: λ = 0. First, let w be a vertex of ⊕–type. Then xv ≥ 0 for v ∈ Uwi

(by induction hypothesis, since us ∈ Uwi). So, by (4), Rw ≤ 0 (note, xus

is not included in corresponding sum). Similarly, xv ≤ 0 for v ∈ Uwj (by
induction hypothesis, since ut ∈ Uwj ). So, by (4), Rw ≥ 0. Consequently,
Rw = 0. In addition, since wk (1 ≤ k ≤ q) is of ⊗–type, Rwk

= Rw, and
thus Rwk

= 0. Consider next Gwk
. It does not have duplicate vertices

(otherwise, G = Gr would have), and is connected (since wk is of ⊗–type).
Let yk be a restriction of x on Uwk

. Clearly, AGwk
yk = λyk and yk ≥ 0,

or ≤ 0. For k = i (or k = j) yk 6= 0, since us (or ut) belongs to Uwk
,
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and therefore xus
(or xut

) is an entry of yk. But this is a contradiction as
desired (with yk and Gwk

in the role of x and G).
Secondly, let w be a vertex of ⊗–type. By putting in (5) k = i, u = us,

we get Sw +Rw > 0 (note, that in this case (5) can be written as Sw +Rw =∑
v∈Uwi

\Γ(us), and xus is included in corresponding sum). Similarly, by
putting in (5) k = j, u = ut, we get Sw + Rw < 0, a contradiction.

So we have encountered a contradiction at some intermediate stage, or
have proved an induction step; consequently, the proof of part (i) follows.

Case 2: λ = −1. First, let w be a vertex of ⊕–type. Then (4) can be
written in the following form

∑

v∈Γ[u]∩Uwk

xv + Rw = 0.

Taking that k = i, u = us, and also that k = j, u = ut, we get that Rw < 0,
and respectively Rw > 0, a contradiction.

Secondly, let w be a vertex of ⊗–type. Then (5) can be written in the
following form

−
∑

v∈Γ[u]\Uwk

xv + Sw + Rw = 0.

Similarly as in Case 1 (subcase λ = 0) we get that Sw +Rw = 0 (by putting
in (5) k = i, u = us, and k = j, u = ut). Therefore, by (5),

∑

v∈Uwk
\Γ[u]

xv = 0 (6)

for all u ∈ Uwk
(1 ≤ k ≤ q). Henceforth, assume that k = i, or k = j.

Then we first get that all pairs of vertices u1 and u2 from Uwk
for which

xu1 and xu2 are not both zero are adjacent (otherwise (6) fails to hold).
Consider now the vertices us and ut (as chosen above). They are mutually
adjacent, and also adjacent to all vertices from (Uwi ∪ Uwj ) \ {us, ut} (as
pointed above). In addition, they have the same neighbours out of Uw, and
so us and ut are coduplicate in G, a contradiction.

So we have encountered a contradiction at some intermediate stage, or
have proved an induction step; consequently, the proof of part (ii) follows.

This completes the proof. ¤

We will now deduce several consequences of the above result. Let
m(λ;G) denote the multiplicity of an eigenvalue λ of G. We will now
assume that the corresponding cotree of a cograph G is a minimal cotree
T̂G.

Corollary 3.1 If G is a cograph then m(0; G) + m(−1;G) ≥ 1.
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Proof The statement is trivial if G has only one vertex. If G has at least
two vertices then there is an NTT–vertex in T̂G with at least two children
and therefore, depending on its type, either m(0; G) ≥ 1 or m(−1;G) ≥ 1,
and the proof follows. ¤

Corollary 3.2 If G is a cograph which does not contain isolated vertices,
then

(i) m(0; G) =
∑

w∈V0
(tw − 1);

(ii) m(−1; G) =
∑

w∈V1
(tw − 1),

where V0 (resp. V1) is the set of interior vertices (in T̂G) of ⊕–type (resp.
⊗–type) having tw children as terminal vertices. In addition, 0 and −1 are
the non–main eigenvalues of G.

Proof We first prove that two vertices, say u and v, are duplicate (resp.
coduplicate) in G if they have a common parent in T̂G. Assume (for con-
tradiction) that w is a common ancestor of u and v, but not a common
parent. If so, there exists a vertex w′ of the type opposite to the type of w,
and belonging to w–u (or w–v) path in T̂G. Let c be a terminal successor
of w′ (note w′ has at least two children). But then c is adjacent to exactly
one of the vertices u and v, and consequently, they are neither duplicate,
nor coduplicate. Therefore, w must be a parent of u and v.

Taking into consideration the positions of all collections of mutually
duplicate (coduplicate) vertices of G, we immediately get (i) and (ii) (see
also Remark 2.1).

This completes the proof. ¤

Remark 3.1 To compute all other eigenvalues of G (being a cograph) we
can make use of the divisor technique (see, for example, [3], Chapter 4). To
get an equitable partition, we can take that each cell is either a collection
of mutually duplicate or coduplicate vertices, or it is a singleton consisting
of the remaining vertices. In this situation we have

PG(x) = xm(0;G)(x + 1)m(−1;G)DG(x),

where m(0; G) and m(−1;G) are given in Corollary 3.2, while DG(x) is
the characteristic polynomial of the divisor of G (as specified above).

4 A positive result in the polynomial recon-
struction problem

In this section we will consider the polynomial reconstruction problem for
graphs whose polynomial deck consists only of σ–graphs. Recall first that
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any such graph G on at least 5 vertices has no (induced) subgraphs equal
to 2K2; otherwise, λ2(G−v) ≥ 1 for some v ∈ VG (by the Interlacing Theo-
rem). (Note also that the polynomial reconstruction problem is resolved for
small graphs up to 10 vertices.) So all components of G but one are isolated
vertices, if G is to be disconnected. On the other hand (see [5], Theorem
8 and Corollary 1), if G as a disconnected graph is a counterexample to
the reconstruction problem, it must have just two components of the same
order. Therefore, we can assume further on that G is connected. Similarly,
we can conclude that G does not contain P5 as an induced subgraph.

First, we have the following lemma.

Lemma 4.1 A σ–graph which is not a cograph is a σ0–graph.

Proof Recall that the second largest eigenvalue of any σ–graph does not
exceed σ. On the other hand, each graph which is not a cograph contains a
path P4 as an induced subgraph, and therefore its second largest eigenvalue
is bounded from below by σ.

This completes the proof. ¤
In the remainder of the section we will distinguish two cases:

(i) at least one vertex–deleted subgraph of G contains P4 as an induced
subgraph, and

(ii) none of vertex–deleted subgraphs of G contains P4 as an induced
subgraph.

We resolve the case (i) in the following theorem.

Theorem 4.1 If the deck of G consists of σ–graphs and if P4 is an induced
subgraph of G′ = G − v for some v, then the polynomial reconstruction is
unique.

Proof Observe first that G′ must be a σ0–graph (by assumptions and by
the Interlacing Theorem). So, any vertex in G′, say u, should be of these
types:

(1) non–adjacent to a vertex of P4,

(2) adjacent to both terminal vertices of P4,

(3) adjacent to both non–terminal vertices of P4, and

(4) adjacent to all vertices of P4
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(see [7], Corollary 2.3). The same holds for the vertex v (by exchanging
the roles of u and v). Therefore, each vertex of G, outside of P4 has one
of the above types. Therefore, we get that G contains σ as an eigenvalue
(not necessarily the second one). To see this, define an eigenvector (for σ)
as follows: let 1, σ, −σ and −1 be the entries corresponding to vertices of
P4 (in natural order); let all other entries be equal to 0. In this way, we
get that σ is an eigenvalue of G, and so the polynomial reconstruction is
unique.

This completes the proof. ¤
Before we consider the case (ii) we need the following two lemmas.

Lemma 4.2 Let H be a cograph such that λ2(H) ≤ σ, and let r be the root
of T̂H . If r is of ⊗–type (resp. ⊕–type) then each terminal vertex of T̂H is
at distance at most 7 (resp. 8) from the root.

Proof First, let r be of ⊗–type. Assume to the contrary that there is a
terminal vertex in T̂H at distance 8 from r. If so, the tree of Fig. 2 appears
in T̂H as an induced subtree, and let H ′ be the corresponding cograph
(it is a an induced subgraph of H). Since λ2(H ′) > σ (a computational
argument) we get a contradiction (by the Interlacing Theorem).

Secondly, let r be of ⊕–type. So its children are the vertices of ⊗–type
(or terminal vertices). Since the distance between these vertices and their
terminal successors cannot exceed 7 (in virtue of the above arguments), the
distance between r and terminal vertices cannot exceed 8, and we are done.

This completes the proof. ¤

Lemma 4.3 Let H be a cograph on at least 10 vertices satisfying λ2(H) ≤
σ. Then m(0; H) + m(−1; H) ≥ 2.

Proof By the previous lemma, each terminal vertex in T̂H is at distance
at most 8 from the root (of T̂H). Since H has at least 10 vertices we
get that at least one interior vertex (of T̂H) has at least three children
as terminal vertices, or at least two interior vertices have two children as
terminal vertices and the proof follows. ¤

Remark 4.1 Regarding to the formulation of the previous lemmas, it is
noteworthy to add that the following question (posed by the second author)
is still open: Is there a cograph whose second largest eigenvalue is equal to
σ?
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We are now in position to prove the next theorem.

Theorem 4.2 If the deck of G consists of σ–graphs none of them con-
taining P4 as an induced subgraph, then the polynomial reconstruction is
unique.

Proof Clearly, we can assume that G has at least 11 vertices. If so, G
does not contain P4 as an induced subgraph (since otherwise, G′ = G − v
for some v would contain P4, contrary to assumptions). Therefore, G is a
cograph. Since every vertex–deleted subgraph of G has at least 10 vertices
we have (by Lemma 4.3) that m(0; G′) + m(−1; G′) ≥ 2 for every such
subgraph.

Now, we distinguish two cases:

Case 1: for at least one subgraph G′ = G− v (v ∈ V (G)), m(0; G′) ≥ 2 or
m(−1; G′) ≥ 2. Then, by the Interlacing Theorem, G contains 0 or −1 as
an eigenvalue, and so the polynomial reconstruction is unique.

Case 2: for all subgraphs G′ = G − v (v ∈ V (G)), we have m(0; G′) =
m(−1; G′) = 1. Then we claim that both numbers, 0 and −1, are the
eigenvalues G. First, we have (as above) that m(0; G)+m(−1; G) ≥ 2. So,
in the worst case we can have either m(0; G) = 2 and m(−1; G) = 0, or
m(0; G) = 0 and m(−1; G) = 2. But then we have in G either two pairs, or
one triplet, of mutually duplicate (resp. coduplicate) vertices. But then,
by deleting a vertex (say v) not in one of the above sets, we get the same
situation in G′ = G− v, a contradiction. This proves our claim, and so the
polynomial reconstruction is unique.

This completes the proof. ¤
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Collecting the results above we arrive at the main result of this section.

Theorem 4.3 The polynomial reconstruction is unique for those graphs
whose vertex–deleted subgraphs have the second largest eigenvalue not ex-
ceeding

√
5−1
2 .

Proof If there is a graph in the deck which contains P4 as an induced sub-
graph, the polynomial reconstruction is unique by Theorem 4.1. Otherwise,
the polynomial reconstruction is unique by Theorem 4.2.

This completes the proof. ¤
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[13] S.K. Simić, A note on reconstructing the characteristic polynomial of
a graph, In: Combinatorics, Graphs and Complexity. (Proc. of the
Fourth Czechoslovakian Symp. on Combinatorics, eds. J. Nešetřil, M.
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