

$$
f(x, y)
$$

$$
A=[a, b] \times[c, d]=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}
$$

$a=x_{0}<x_{1}<\ldots<x_{m}=b$
$c=y_{0}<\varphi_{1}<\ldots<\varphi_{n}=d$

$$
A_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]=\left\{(x, y) \left\lvert\, \begin{array}{l}
x_{i-1} \leq x \leq x_{i} \\
y_{j-1} \leq y \leq y_{j}
\end{array}\right.\right.
$$

$m \cdot n \quad i=1 \ldots, m, j=1 \ldots n$ $\left.y_{j-1} \leq y \leq y_{j}\right\}$

$$
P_{[a, b] \times[a, d]}=\left\{A_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

Δx_{i} duginu $\left[x_{i}-1, x_{i}\right]$
$\Delta y_{j} \quad\left[y_{j-1}, y_{j}\right]$

$$
\Delta A_{i j}=\Delta x_{i} \cdot \Delta y_{j} \quad \text { (porrisia) }
$$

zapremina: $f\left(x_{i}^{*}, y_{j}^{*}\right) \cdot \Delta x_{i} \Delta y_{j}$

$$
\begin{array}{r}
\sum_{i=1}^{u} \sum_{j=1}^{u} f\left(x_{i}^{*}, y_{j}^{*}\right) \cdot \Delta x_{i} \cdot \Delta y_{j}=R(f, P) \\
\\
\text { Rinanara }
\end{array}
$$

Rinanara int. sima
$\|p\|$ dijagouala Aij

$$
\|P\| \rightarrow 0 \quad\left(\Delta x_{i} \rightarrow 0, \Delta y_{j} \rightarrow 0\right)
$$

$$
\begin{array}{r}
f\left(x_{i} y_{1} z\right) \\
f: A_{m} \rightarrow \mathbb{R}, A \leq \mathbb{R}^{3} \\
A=[a, b] \times[e, d] \times\left[e_{i} f\right] \\
a=x_{0}<x_{1}<\ldots<x_{m}=b \\
c=y_{0}<y_{1} c \ldots, y_{u}=d \\
e=z_{0}<z_{1}<\ldots<z_{s}=f \\
\left(y_{j}, z_{k}\right) \Delta x_{i}, \Delta y_{j}, \Delta z_{k} \rightarrow 0 \\
A i j k=\Delta x_{i} \cdot \Delta y_{j} \cdot \Delta z_{k}
\end{array}
$$

$$
\begin{array}{r}
R(f, R)=\sum_{i=0}^{u} \sum_{j=0}^{u} \sum_{k=0}^{s} f\left(x_{i}^{*}, y_{j}^{*}, z_{k}^{*}\right) \cdot \Delta x_{i} \cdot \Delta y_{j} \Delta z_{k} \\
R \\
R=\left\{A_{i k} l \ldots\right\}
\end{array}
$$

$\|P\| \rightarrow 0$

$$
\int_{a}^{e} f(x) d x
$$

$$
\begin{aligned}
& \iint_{A} f(x, y) d x d y \\
& \int_{B} f(x, y) d x d y
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{a_{1}} f(x) d x=C_{1} \\
& \int_{a_{2}}^{a_{2}} f(x) d x=c_{2}
\end{aligned}
$$

a_{n}

$$
\int_{a_{n-1}} f(x) d x=C_{b-}
$$

$$
\int_{a}^{b} f(c) d x=C_{1}+\ldots+C_{n}
$$

$$
\underset{\sim}{A}=\left[\begin{array}{c}
a, b] \times\left[c_{i} d\right] \\
\times
\end{array}\right.
$$

Iutegracia mad proizvolnoms
 - blasicu

$$
\begin{array}{ll}
f: D \rightarrow \mathbb{R}, & D \subseteq \mathbb{R}^{2} \\
\bar{f}: A \rightarrow \mathbb{R}, & A \subseteq \mathbb{R}^{2} \\
\bar{f}= \begin{cases}f(x), & x \in D \\
0, & x \notin D\end{cases}
\end{array}
$$

Det: $\iint_{D} f(x, y) d x d y=\iint_{A} \bar{f}(x, y) d x d y$
A - prawougaomik keil sudrà D
f - prosireuje od f

$$
\begin{aligned}
& A \cap B=C \\
& A=C \cup A_{1} \cup \ldots \cup A_{p} \\
& B=C \cup B_{1} \cup \ldots \cup B_{q} \\
& F(x, y)=0, \quad \forall x \notin D \\
& f(x, y)=0 \quad \forall x \in A_{1 \ldots,} A_{p,} B_{1 \ldots, B_{q}}
\end{aligned}
$$

$$
\begin{aligned}
& \iint_{A} \bar{f}(x) d x=\iint_{c} \bar{f}(x, y) d x d y \\
& \underbrace{\iint_{A_{1}} \underbrace{f(x, y) d x d y}_{0}+\ldots+\underbrace{\iint_{A p}^{f} \underbrace{f(y)}_{0}) d x d y}_{=0}}_{0} \\
& =\pi \int_{C} \int_{C} \bar{f}(x, y) d x d y \\
& =\iint_{B} \bar{f}(x, y) d x d y=\iint_{C} \bar{f}(x, y) d x d y+\underbrace{\iint_{B_{1}} \underbrace{\bar{f}(x, y)}_{0} d x d y+\ldots+\underbrace{\iint_{0}^{1}} \underbrace{\bar{f}(x)}) d x d y}
\end{aligned}
$$

$$
\begin{aligned}
=\left(\int_{B}^{y} \bar{f}(x, y) d x d y\right. & =\int_{C} \int_{C} \bar{f}(x, y) d x d y+\underbrace{\int_{B_{1}} \int_{0}^{\prime} \underbrace{f(x, y)}_{0} d x d y}_{B_{1}}+\ldots+\underbrace{\int_{0} \underbrace{f(x y) d x d y}_{0}}_{=0} \\
& =\int_{c} \bar{f}(x, y) d x d y
\end{aligned}
$$

$$
\iint_{A} \bar{f}(x, y) d x d y=\iint_{B} \bar{f}(x, y) d x d y=\iint_{C} \bar{f}(x, y) d x d y
$$

$f: G \rightarrow \mathbb{R}, G \subseteq \mathbb{R}^{2}$

$$
F(x, y)=0 \quad \forall x \notin G
$$

$$
\left.x) \leq y \leq g_{2}(x)\right\}
$$

$$
\begin{gathered}
\iint_{G} \quad A=[a, b] \times[c, d] \\
G \subseteq A
\end{gathered}
$$

$$
G \subseteq A
$$

$$
=\int_{a}^{b} \underbrace{\left(\int_{c}^{d} \bar{f}(x, y) d y\right)} d x
$$

$$
=\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right) d x
$$

$$
G=\left\{(x, y) \in \mathbb{R}^{2} \mid \quad h_{1}(y) \leq x \leq h_{2}(y), c \leq y \leq d\right\}
$$

$$
\iint_{G} f(x, y) d x d y \stackrel{d e d}{=} \int_{A} \bar{f}(x, y) d x d y
$$

$$
=\ldots(\text { slicio })=
$$

$$
\int_{c}^{d}\left(\int_{h_{1}(y)}^{\dot{h}_{2}(y)} f(x, y) d x\right) d y
$$

$$
f(x, y)=e^{y^{2}} \quad, D=\left\{(x, y) \mid 0 \leq x \leq 1, \quad \begin{array}{c}
9_{1}(x) \\
x \leq y \leq 1
\end{array}\right\}
$$

f reprekidua \Rightarrow vazi Fubnilera t.

$$
\begin{aligned}
f \text { reprekidua } \Rightarrow \text { razi Fubnipera } & \int_{D}^{1} f(x, y) d x d y=\int_{0}^{1}\left(\int_{x} e^{y^{2}} d y\right) d x \quad \stackrel{?}{=} \int_{\text {NE!!!! }}^{1}\left(\int_{0}^{1} e^{y^{2}} d x\right) d y \\
& \text { Spotiasip MORA mati }
\end{aligned}
$$

spoliasui MORA mati constomtue qranice

