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Preface 

Particularly during the last thirty years, many criticisms have been directed 
at the school mathematics curriculum. In response, a number of movements 
have left their trace-New Mathematics, Real-world Applications, Problem 
Solving and now Back to the Basics. Moreover, with so many students 
encouraged to take mathematics for the sake of their careers, educators 
have tried to respond in a practical way to the difficulties they find in the 

subject. 
The result is that mathematics in school is suffering from ecological over- 

load. The attempt to respond in a piecemeal way to often conflicting advice 
has threatened the enterprise with being swamped. Whatever the merits of 
the criticisms of the traditional mathematics program and however com- 
pelling the psychological and political consequences of high failure rates, 
the attempt at a resolution seems often to have resulted in a denatured 
curriculum, one from which any depth, sophistication or joy has been rig- 
orously expunged. Students nibble at topics, abandoning them before they 
discover any reason to master them. The mathematics taught is quickly 
lost to memory and must be reviewed at a later stage (often in a remedial 

class). 
Rather than fragment mathematics, it may be more productive to take 

an integrated approach, in which students are encouraged to dwell on a 
mathematical topic long enough to sense how it is put together and what 
its proper context is. Formerly, students might spend a whole year in a 

single area of mathematics-Euclidean geometry, the analytic geometry of 
conic sections, trigonometry and statics, theory of equations. They had the 
chance to learn many techniques and experience through astute reasoning 
and manipulation the power of mathematics. Better students would develop 
a sensitivity to pattern and elegance, and find mathematics both substantial 
and satisfying. 

This book is not a textbook. Nor is its topic being particularly recom- 

mended for inclusion, indiscriminately, into the school curriculum. How- 
ever, it should convey some of the breadth and depth found close to the 

traditional school and college curricula, and encourage the reader not only 
to follow up on some of the historical and technical references, but to pull 

out pen and paper to tackle some problems of special interest. Some of the 
mathematics will be difficult, but I believe that it will all be accessible. 

The intended audience consists of students at both high school and col- 
lege who wish to go beyond the usual curriculum, as well as teachers who 
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wish to broaden their mathematical experience and discover possible ma- 
terial for use with their regular or enriched students. In particular, I am 
concerned about two groups of students. 

There are those who romp through the school curriculum in mathemat- 
ics while they have yet to complete other subjects. A standard response to 
this situation is to accelerate them, either into calculus or into college pre- 
maturely. While this is undoubtedly appropriate for some, my experience 
is that very often such acceleration is counterproductive and leads to an 

unsettled academic experience. 
Then there are those who get caught up in contest activity. It is now 

possible to spend much of the spring semester preparing for and writing 

contests, and this may have some value. However, there are some for whom 
contests are not congenial and others who emphasize the short-term goal 
of solving problems and winning contests at the expense of proper mathe- 

matical growth. 
What seems to be needed is a mathematical enrichment which starts 

with school mathematics, broadens it and yet is sufficiently down-to-earth 
that the student can explore it in an elementary way with pencil and paper 
or calculator. 

The theory of equations seems to fill the bill. There is a large algorith- 
mic component, so that students can enjoy technical mastery. At the same 

time, they are led through their experiences into an appreciation of struc- 
ture and a sense of historical and mathematical context. Beginning with 
topics of high school-factoring, theory of the quadratic, solving simple 
equations-polynomial theory looks forward to central areas of the uni- 

versity curriculum. Having seen the derivative and the Taylor expansion 
in an algebraic setting, and having graphed polynomials and appreciated 
the role of continuity of polynomials in root approximation, students will 

then see in calculus how these ideas can be adapted to a wider class of 
functions. The algorithms of evaluation, factoring and root approximation 
will provide a base of experience upon which a college numerical analysis 
course can be built. The ring of polynomials provides a concrete model 
of an abstract structure encountered in a modern algebra course. Having 
studied the role of the complex plane in the analysis of polynomials, stu- 
dents will better be able to appreciate the richness of a complex variable 
course and see many of the results there as extensions from polynomials 
to a wider class of functions. Other areas, such as combinatorics, geometry 

and number theory, also make a brief appearance. 

I offered a course on polynomials for four successive years to high school 
students in the Toronto area. They were given a set of notes, a monthly 
problem set for which solutions were submitted for grading, a monthly lec- 

ture at the university and a set of videotaped lectures. It was advertised 
for those who had completed school mathematics, but were still in high 
school. Many students enrolled in the course, some stuck with it and only 
a few wrote the optional examination at the end of the year. However, the 
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profile of the students who did well is interesting. They were not always the 
final-year senior students, who were “busy” making sure they got grades 
high enough to get into college, nor were they, on the whole, local contest 
winners. Several were students who still had another year to spend at high 
school (with some mathematics left to take); they struggled with the prob- 
lem sets, but their work improved steadily during the year. One participant 
gave the following assessment of her experience: 

After innumerable years of “math enrichment” consisting of 
pointless number games, I was prepared for another similar 

course. Great was my surprise when I found this course to be 
extremely challenging. Its difficulty was somewhat dismaying 
at the start, but now I find that many doors have been opened 
and that I have the confidence to tackle more complex ideas in 
math. . . . I have gained a great deal of insight into a subject 

I trivially used to discard as an easy school course. But most 
important for me is that I have gained a vast amount of faith 
in my ability to solve challenging problems. 

It is assumed that the reader can manipulate simple algebraic expressions 
and solve linear and quadratic equations as well as simple systems in two 
variables. Some knowledge of trigonometry, exponentials and logarithms is 
required, but a background in calculus is not generally needed. The few 
places in which calculus intervenes can be passed over. While many of the 
topics of this book will not appear in regular courses, they should be of 
value through their historic importance, application or intrinsic interest 

and as a backdrop to other college-level material. 
Since this is not intended to be a comprehensive treatment, readers are 

encouraged to delve into the often excellent publications that are recom- 

mended. They will find that the boundary between elementary and deep 
mathematics is often very thin, and that close to results known for centuries 
one finds frontiers of modern research. 

The book is organized along the following lines: 

(a) Exercises: These introduce the basic ideas and advance the required 
theory. Through examples, students should grasp the principal results and 
techniques. The emphasis is on familiarity rather than proof; while readers 
should get some sense of why a given result is true, it is expected that 

they will have recourse to some other text for a formal treatment. Stu- 
dents should work through the exercises in order, consulting the hints and 

answers where necessary. However, if they feel that they have a general 
understanding, they might skim through and work ahead, backtracking if 
necessary to pick up a lost idea. Readers who find the last three sections 
of Chapter 1 difficult may wish to proceed to Chapter 2 and 3 and return 
to these sections later. 
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(b) Explorations: While these are inserted near related material in the 

exercises, readers should not feel obliged to work at them right away. In 
general, they are not needed to follow the main thread. Their purpose is 

to raise questions and encourage investigation; some explorations involve 
new theory, some are straightforward problems and others involve questions 
which have deep ramifications. All are intended only as starting points. The 
investigations should be revisited as more experience is gained. 

(c) Problems: Each chapter concludes with problems drawn from a vari- 
ety of sources: journals such as the American Mathematical Month/y and 
Crux Mathematicorum, contests and Olympiads, examination and scholar- 
ship papers. The first ten or so of each set are moderately difficult, but after 
that they are not arranged in any particular order. Some are tough. Stu- 
dents who get blocked should return to the problem intermittently. Hints 

are provided. 

In referring to exercises and problems, I will use a single number to refer 
to a question in the same section, and the section number with the question 
number separated by a dot to refer to a question in a different section of 
the same chapter. A triple designation will refer to a question in a different 
chapter; for example, 2.3.4 refers to Exercise 4 of Section 3 of Chapter 2. 

One source of problems is worth special mention. Until the mid 1960s 
students in Ontario wrote Grade 13 examinations set by the provincial 
Department of Education. Besides the regular papers (Algebra, Analytic 
Geometry, Trigonometry and Statistics), students vying for a university 
scholarship had the opportunity to write a Mathematical Problems Paper. 
Through Jeff Martin of the Etobicoke Board of Education, I have acquired 
copies of these papers. In many of the problems, I have been struck by 
the emphasis on mathematical competence; they could be done, not by a 

leap of ingenuity, but rather through a thorough grasp of standard but 
somewhat sophisticated techniques. These problem papers (and I am sure 

they had their counterpart in other jurisdictions) should not be lost to our 

collective memories; they are indicative of the skills which were expected 
of a previous generation of students who planned to do university level 
mathematics. I believe that students still need to be skillful, and indeed 

should not be denied the pleasure of feeling competent in what they do. 
I would like to acknowledge the assistance and advice of various organiza- 

tions and individuals.‘In particular, I am indebted to the Ontario Ministry 
of Education and the Queen’s Printer of Ontario for permission to use 
problems from the Ontario Problems Papers, the Canadian Mathematical 
Society for permission to use problems appearing in Crux Mathematicorum, 
the Canadian Mathematical Olympiad and its other publications, and the 

Mathematical Association of America for permission to use problems from 
the Putnam Competition, the Monthly and the Magazine. 

I am grateful to the Samuel Beatty Fund, administered by a board rep- 
resenting the graduates of Mathematics and Physics at the University of 
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Toronto, for a grant to hire a student to check over the manuscript. Miss 
Azita Bassiji, a Toronto undergraduate, has been helpful with her sugges- 
tions. 

Various colleagues have looked through the material and offered useful 
advice, in particular Peter Borwein of Dalhousie University in Halifax, Nova 
Scotia, Tony Gardiner of the University of Birmingham in England, Abe 
Shenitzer of York University in Toronto, Ontario, and John Wilker of the 
University of Toronto. I am also thankful to the many students and teachers 
who functioned as guinea pigs, especially, to Jim Farintosh, a teacher at the 
George S. Henry Academy in North York, Ontario, for his enthusiasm and 
insights and to Ravi Vakil, currently an undergraduate at the University 
of Toronto, for his comments on an early draft. 

I heartily praise Paul Halmos, the general editor of the series to which this 
book belongs, for his open-hearted acceptance of the concept of the book 
and his encouragement in bringing it to fruition. While I was preparing 
the manuscript, University College of the University of Toronto provided 
access to a word processor and printer. With pleasure, I acknowledge the 

understanding and efficiency of Springer-Verlag in preparing the book for 
publication, notably those in the Editorial and Production departments. 

Finally, I wish to express my deep appreciation to my wife, Eileen, and 
children, Judy and Paul, for their support and encouragement over the 
many years that this project was maturing. 

E.J. Barbeau 
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1 

Fundamentals 

1.1 The Anatomy of a Polynomial of a Single 
Variable 

3t3 - 7t2 + 4t + 1 and 8t6 - t5 + fit” + &it - 1 are polynomials. So are 
(t2 - l)/(t - 1) for t # 1 an cos2(arccost) for -1 5 t 5 1. But t1i3 and d 

sint are not polynomials. What do we mean by a polynomial? 

A function of a single variable t is a polynomial on its domain 
if we can put it in the form 

UJ” + un-p +. 1. + a1t + do 

where ura, an-l,. . . , al, uo are constants. 

This definition says that every polynomial can be expressed as a finite 
sum of monomial terms of the form akt” in which the variable is raised 
to a nonnegative integer power. We use the convention that to = 1, so 
that uot’ = uc. To begin with, we will look at polynomials for which the 
constants ui are real or complex numbers. 

With this definition in hand, we can immediately agree that the first two 
functions are polynomials. For the next two, we have to remove a disguise: 

(t2 - l)/(t - 1) = t + 1 

cos2(arccost) = cos20 = 2cos20 - 1 = 2t2 - 1 

where t = cos6, 0 5 6 5 ?r. The last two, t’13 and sint, do not look 
like polynomials, but how can we decide for sure? One way is to look for 
properties which distinguish these functions from polynomials. One of the 
tasks of this book will be to provide a number of such characteristics to 

assist in this sort of classification question. 
In the title of this section, we promised you some anatomy. Here it is. For 

the polynomial, u,t” + u,-#-’ +. . . + ult + uc, with a, # 0, the numbers 

si (0 < i < n) are called coefficients. a, is the leading coefficient, and a# 
the leading term. uo is the constant term or the constant coeficient. al is 
the linear coefficient and art the linear term. When the leading coefficient 
a, is 1, the polynomial is said to be manic. 

The nonnegative integer n is the degree of the polynomial; we write 
degp = n. A constant polynomial has but a single term, uc. A nonzero 
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constant polynomial has degree 0, but, by convention, the zero polyno- 
mial (all coefficients vanishing) has degree -oo. Special names are given to 
polynomials of low degree: 

degree of polynomial type of polynomial 

1 linear 

2 quadratic 

3 cubic 

4 quartic 

5 quintic 

We can evaluate a polynomial by replacing its variable by any number 

and carrying out the computation. The value of a polynomial p(t) at t = r 
is denoted by p(r). For example, if p(t) = 3t3 - 2t2 - t + 4, its value when 
t = 2 is p(2) = 3.23 - 2.22 - 2 + 4 = 24 - 8 - 2 + 4 = 18. Since polynomials 
are a simple type of function easy to evaluate, they are very useful in 
approximating other more complex functions. 

A zero of a polynomial p(t) is any number r for which p(r) takes the 
value 0. When p(r) = 0, we say that r is a root or a solution of the 

equation p(t) = 0. There are many situations in which we need to have 
information about the zeros of a polynomial, and considerable amount of 
attention is devoted to methods of solving equations p(t) = 0 either exactly 

or approximately. In particular, knowing the zeros of polynomials is often 
helpful in graphing a wide variety of functions and obtaining inequalities. 

In operating with polynomials, we treat the variables as though they 
were numbers. Let 

p(t) = a0 + alt + a2t2 + . . . + a,t” 

q(t) = b. + bit + b2t2 + . . . + b,tm 

be any two polynomials. 

Sum: (p + q)(t) = (a0 + bo) + (UI + bl)t + (a2 + b2)t2 + . .. . 

Difference: (p - q)(t) = (a0 - bo) + (al - b,)t + a. . . a 

Product of a constant and a polynomial: (cp)(t) = cao + calt + ca2t2 + . . . . 

Product of two polynomials: (pq)(t) = aobo + (aobl + albo)t + 

(aoba+albl +a2bo)t2 +***+(aob, +alb,-1 +...+aib,-i+...+a,bo)t’+ 
. . . + (u,b,)tm+? 

Composition of two polynomials: (p o q)(t) = p(q(t)). This definition in- 

structs us to replace each occurrence oft in the expression for p(t) by q(t). 
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Exercises 

1. State the degree, and the constant, linear and leading coefficients of 
the following polynomials: 

(a) 7t5 - 6t4 + 3t2 + 1 

(b) 8t5 + 22 + 3 

(c) 4t3 

(d) (3t - 1)(2t + 1). 

2. Give examples of 

(a) a manic polynomial of degree 7 

(b) a non-manic polynomial of degree 3 

(c) a polynomial of degree -oo. 

3. Decide which of the following functions are polynomials. For each 

polynomial in the list, specify its degree, its constant coefficient, its 
linear coefficient, its leading coefficient, and its values at t = 0 and 
t = -(l/2). 

For some of the functions, you may not be able to make a firm decision 
at this point. As you master more of the theory of polynomials, you 
should return to them. 

(4 0 

(b) 3t4 

(c) 3+ t2 

(d) 8t2 - 3t 

(e) t+t-’ 

(f) 8t2 + t3i4 + 2t3j2 - 3tgi4 + 8 (0 < t) 

(g) sinS(arc sint) (-1 < t 5 1) 

(h) sinS(arc sint) (-1 5 t 5 1) 

(i) cos4(arc cost) (-1 5 t 5 1) 

6) St 

(k) 3t3 - 2t4 + 5t2 + 6t5 

(1) gt + 4’ - 2t + 6 

k-4 lwt 

(n) t’12 (0 2 t) 

(0) t3-t 

tP> tant 
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(4) (1+ t2)-’ 

( r 1 3+t-2t= 
t+7 . 

4. Let p(t) = 3t - 4 and q(t) = 2t2 - 5t + 8. Verify that 

(a) (p + q)(t) = 2t2 - 2t f 4 

(b) (7~ - 6q)(t) = -12t2 + 51t - 76 

(c) (pq)(t) = (qp)(t) = 6t3 - 23t2 + 44t - 32 

(d) (p o q)(t) = 6t2 - 15t + 20 

(e) (q 0 p)(t) = 18t2 - 63t + 60. 

5. In multiplying two polynomials together, we can use the method of 
detached coefficients. In finding the product of the polynomials t3 + 

3t2 - 2t + 4 and 2t2 + t + 6, the paper-and-pencil computation looks 
like this: 

1 3 -2 4 
2 1 6 

6 18 -12 24 
13-2 4 

2 6 -4 8 

2 7 5 24 -8 24. 

Justify this algorithm and use it to read off the product of the two 

polynomials. 

6. (a) Multiply th e polynomials 4t3 + 2t2 + 7t + 1 and 2t2 + t + 6 by 
using the method of detached coefficients. 

(b) Evaluate each of the two polynomials and their product at t = 
10. 

(c) Compare the paper-and-pencil long multiplication for the prod- 
uct of the numbers 4271 and 216 with the table given in (a). 

7. Using a pocket calculator, multiply 11254361 by 57762343 by each of 
the following methods: 

(a) Multiply the polynomials 1125t + 4361 and 5723 + 2343, and 

evaluate the product at t = 104. 

(b) Multiply the polynomials llt2+254t+361 and 57t2+762t+343, 
and evaluate the product at t = 103. 

8. Find the product of 26543645132 and 27568374445. 

9. Let p and q be nonzero polynomials. Show that 
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(4 degtp + d 6 max(deg p, deg q). ( max(a, 6) is the larger of the 
two numbers a and b) 

(b) de&q) = deep + deg q. 

Give examples when equality and strict inequality hold in (a). Ob- 
serve that, because of the convention that the sum of --oo and any 
nonnegative number is -00, the degree of the zero polynomial is de- 
fined in such a way as to make (b) valid when one of the polynomials 
is zero. 

10. Is deg(p o q) related in any way to deg(q op)? 

11. Find a pair p, q of polynomials for which p o q = q o p, 

12. (a) Is it possible to find a polynomial, apart from the constant 0 

itself, which is identically equal to 0 (i.e. a polynomial p(t) with 
some nonzero coefficient such that p(c) = 0 for each number 
c)? Try to justify your answer. [This is not an easy question, 
although the answer is not surprising. Examine your justification 
carefully to see what you are assuming about polynomials; can 
you explain why it is valid to use the properties you think you 
need?] 

(b) Use your answer to (a) to deduce that, if two polynomials assume 

exactly the same values for all values of the variable, then their 
respective coefficients are equal. [Thus, there is only one way, up 
to order of writing down the terms, of presenting a polynomial 

as a sum of monomials.] 

13. (a) Find all polynomials f such that f(2t) can be written as a poly- 
nomial in f(t), i.e. for which there exists a polynomial h such 
that 

f(W = W(t)). 

(b) Use the identity sin2 2t = 4sin2 t(1 - sin2 t) to show that sint is 
not a polynomial. 

14. Show that, for t > 0, log t is not a polynomial. 

15. Find all periodic polynomials, i.e. polynomials g(t) which satisfy an 

identity of the type g(t + Jc) = g(t) for some k and all t. Deduce that 

the trigonometric functions sin t, cost and tan t are not polynomials. 

16. Prove that t’i3 is not a polynomial. 

17. Show that, if p, f, g are nonzero polynomials for which pf = pg, then 

f=s* 



6 1. Fundamentals 

18. Show that, for any positive integer k, 

(1+ t)(1 + t2)(1 + t4>. . . (1+ t2y = 1 + t + t2 + t3 +. * * + t? 

19. Characterize those polynomials p(t) for which 

(4 p(t) = d-4 

(b) p(t) = --d-t). 

20. As seen in Question 4, it is not always the case that p o q = q o p for 
polynomials p and q. If p o q = q o p, then q is said to commute with 
p under composition. Determine all polynomials p(t) which commute 

under composition with t2, i.e. for which p(t2) = [p(t)12. 

Explorations 

E.l. Square of a Polynomial. The square of a polynomial is the product 
of a polynomial with itself. Normally, the square has more nonzero terms 
than the polynomial itself. Show that this always occurs for polynomials 
of degrees 1, 2 and 3 having more than one term. Find a polynomial with 
more than one term whose square has exactly the same number of terms as 
the polynomial. Is it possible to find a polynomial whose square actually 
has fewer terms? 

E.2. (a) Let p(t) = at2 + bt + c be any quadratic polynomial. Verify that 

~(1) + ~(4) + ~(6) + ~(7) = ~(2) + ~(3) + ~(5) + ~(8). 
(b) Partition the set of numbers { 1,2,3,. . . ,14,15,16} into two sets such 

that, given any cubic polynomial p(t) with integer coefficients, the sum of 
the numbers p(k) where k ranges over one of the two sets is the same as 
the sum where k ranges over the other. 

(c) Let m be a positive integer. It is a remarkable fact that the numbers 
from 1 to 2”‘+l inclusive can be subdivided into two subsets A and B 
such that, for any polynomial p(t) of degree not exceeding m, the sum 
of the values of the polynomials over the numbers in A is equal to the 
sum of the values over the numbers in B. Show that we can reduce the 
problem to finding sets A and B for which the sum of the kth powers of 
the numbers in one set is equal to the sum of the kth powers for the other, 
for k = 0, 1,2,. . . , m. 

(d) This situation can be generalized. If d and m are any integers with 
d 2 2, the set of numbers from 1 to d”‘+’ can be subdivided into d disjoint 
subsets such that, for any polynomial of degree not exceeding m, the sum 
of its values over any of the subsets is the same. 

(e) Problem (a) can be generalized in another way. Consider the question 
of looking for disjoint sets (al, ~2, . . . , a,) and (bl, b2, . . . , b,,) of integers for 
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which the sum of the kth powers of the numbers of the two subsets are equal 
fork=1,2,3 ,..., m. 

For the case m = 2, (1, 5, 6) and (2, 3, 7) have equal sums (12) and 
square sums (62). Show that it is not possible to find two sets with only 
two numbers in each whose sums and square sums are equal. 

For each fixed m, we ask for sets (ai) and (bi) for which the number 
n of elements is as small as possible. From (a), we can see that n can be 
made equal to 2”. Can it be made significantly smaller? Examine the cases 
m = 3, 4, 5, 6. 

E.3. Polynomials as Generating Functions. We do not always want to 
think of the variable as a placeholder for a number. In combinatorial prob- 
lems, we focus on the coefficients of polynomials as carriers of information. 
Consider this problem: A furniture company has warehouses at Albany, 
Buffalo, Montreal and Toronto. Deliveries have to be made to Kingston, 
Rochester and Syracuse. Each warehouse has one truck which can visit at 
most one city in a day. There are other constraints: 

(i) the Albany warehouse does not serve Kingston and Rochester; 

(ii) the Buffalo warehouse does not serve Kingston; 

(iii) the Toronto warehouse does not serve Syracuse; 

(iv) the Montreal warehouse does not serve American cities. 

In how many ways can the dispatcher arrange the deliveries for today? 
The dispatcher is free to defer any delivery until a later day. However, 

there is no point sending trucks from two different depots to the same 
destination. With these points in mind, we can reformulate the problem. 
Make a chart to show the origins, destinations and forbidden links: 

ABMT 

KXX 

R X X 

S x x 

Each city is represented by its initial letter. We can regard the chart as 
a 3 x 4 chessboard with the X-squares not available for the placement of 
a chessman. The problem is to find the number of ways of choosing no 
more than three of the available squares so that no two are in the same 
row or column. Choice of the (R, B) square, for instance, indicates that the 
Buffalo truck is to make the delivery to Rochester. Equivalently, we have 

to find the number of ways of placing at most three rooks (castles) in the 
available squares of the chessboard so that no one threatens any other. 

This particular problem is sufficiently simple that the possibilities can be 
enumerated without difficulty. However, for more complicated problems, we 
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can enlist the aid of rook polynomials to help us avoid omissions or repeats 
in our counting. 

Let an m x n (m rows, n columns) chessboard C be given, with some of 

its squares forbidden. For each nonnegative integer k, let rk be the number 
of ways of placing k rooks so that none is on a forbidden square and no 
two are in the same row or column. By convention, ru = 1. Also, rk = 0 if 
k > c = min(m, n). The rook polynomial R(C; t) is defined to be 

rg + rlt + r2t2 + . . ’ + rCtc. 

Since smaller chessboards have shorter and more easily defined rook polyno- 
mials, we look for ways of building more complex polynomials from simple 
ones. 

Suppose S is one of the available squares on the chessboard C. Form 

chessboards Cr and C2 as follows: 

(1) Ci is the same as C except that the square S is forbidden; 

(2) C2 is the (m - 1) x (n - 1) board obtained from C by deleting the 

entire row and column containing S. 

Let R(C1; t) and R(C2; t) be the corresponding rook polynomials. 

Show that R(C; t) = R(C1; t) + tR(C2; t). 
Apply this process to obtain the rook polynomial for the problem of the 

delivery trucks. Read off from its coefficients the number of ways in which 
the dispatcher can send out one, two or three trucks, and give the answer 
to the problem. 

Here are some further questions to consider: 
(a) What is the rook polynomial of an m x n board with no forbidden 

squares? 
(b) Other sorts of generating functions can be found. Consider the prob- 

lem of choosing 6 coins from among 3 coppers, 2 nickels, 2 dimes, 1 quarter 

and 1 half-dollar. You are permitted more than one coin of any denomina- 
tion; coins of the same value are regarded as indistinguishable. To tackle 
the problem systematically, introduce a variable t to act as a counter for 
the number of coins, and the symbols c, n, d, q, h for the coins. We can 
think of the product nd2q as standing for the choice of four coins consisting 

of one nickel, two dimes and one quarter. Using the counter t, we form the 
term nd2qt4 with the exponent oft indicating the number of coins chosen. 

Let 

P(t) = (1 + ct + c2t2 + c3t3)(1 + nt + n2t2)(1 + dt + d2t2)(1 + qt)(l + ht). 

Expand P(t) in ascending powers of t and interpret the coefficients. In 
particular, what is the relevance of the coefficient of t6 to our problem? 
Now set c = n = d = q = h = 1. How do you interpret the coefficients 

now? What is the solution to the coin problem? 
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(c) Let n be a positive integer and let al, . . . , a,, be n symbols. What is 
the coefficient oft’ in the expansion of the product (1 + alt)(l + aat) 
(1 + a$) . . . (1 + ant)? Argue that the coefficient of t’ in the expansion 

of (1 + t)” is ( : ) (read: “n choose r”), the number of distinct ways of 

choosing r objects from n distinct objects. 

1.2 Quadratic Polynomials 

Many of the issues which arise for polynomials in general can be illus- 
trated in the special case for which the degree is 2. We review results 
about quadratics. 

Exercises 

1. Let p(t) = at2 + bt + c be a quadratic polynomial. 

(a) Show that p(t) can be written in the form 

- -&(b2 - 4uc). 

(b) Use (a) t o d t e ermine all the roots of the equation 

t2 - 7t + 12 = 0. 

(c) Give a general formula for the roots of a quadratic. 

2. (a) Verify that t2 - r2 = (t - r)(t + r). 

(b) Let r be a zero of the polynomial p(t) = at2 + bt + c. Verify that 
p(t) = p(t) -p(r) = (t - r)(at + ar + b). 

(c) Show that r is a zero of a quadratic polynomial p(t) if and only 
if p(t) can be written in the form (t - r)q(t) for some linear 
polynomial q(t). 

3. Solve for x the equation 

2m(l+ x2) - (1 + m2)(x + m) = 0. 

4. Theory of the quadraiic. Let at2 + bt + c be a polynomial whose 
coefficients are complex numbers. 

(a) Deduce from Exercise l(a) that u2 + bt + c can be written as a 
constant times the square of a linear polynomial if and only if 
its discriminant b2 - 4ac vanishes. In this case, show that there 
is only one zero of the polynomial. 
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(b) Show that if the discriminant of the polynomial does not vanish, 
then it has two zeros. 

(c) Let m and n denote the zeros of at2 + bt + c. (When the discrimi- 
nant vanishes, there is only one zero so in this case we set both m 
and n equal to that zero.) Show that at2+bt+c = a(t-m)(t-n). 

(d) Show that the sum of the zeros of the quadratic at2 + bt + c is 
-b/a, and that the product of the zeros is c/a. 

5. For which values of m will the polynomial 

m2t2 + 2(m + l)t + 4 

have exactly one zero? 

6. Let s and p be numbers. Show that the solutions (c, y) of the system 

z+y=s 

xY=P 

are the zeros in some order of the quadratic t2 - st + p. 

7. Determine the values of x for which 6x2 - 52 - 4 is negative. 

8. Determine those values of k for which the equation 

x2+x+2 

3x+1 
=k 

is solvable for real 2. 

9. If the domain of the function 

x2+2-1 

x2 + 32 + 2 

is the set of all real numbers, show that it assumes all real values. 

10. Given that m and n are the roots of the quadratic 6t2 - 5t - 3, find 
a quadratic whose roots are m - n2 and n - m2, without actually 

finding the values of m and n individually. 

11. Let m and n be the roots of the equation t2 + bt + c = 0. Show that 
b and c are the roots of the equation 

t2 + (m + n - mn)t - mn(m + n) = 0. 

12. (a) Let p(t) and q(t) be two quadratic polynomials with integer co- 
efficients. Prove that, if they have a nonrational zero in common, 
then one must be a constant multiple of the other. 
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(b) Find a counterexample to (a) if the word “nonrational” is re- 
placed by “rational.” 

13. Show that, if 2 = (b - d)/(a - c) satisfies one of the equations 

x2 - ux+b=O 

x2-cx+d=O, 

then it satisfies the other as well. 

14. (a) Let ei, bi be nonnegative reals (1 5 i 5 n). The function e(uit + bi)2 
i=l 

is a polynomial in t. Explain why its discriminant is nonpositive. 

(b) Use (a) to establish the Cauchy-Schwarz-Bunjakovsky Inequal- 

ity: 

When does equality occur? 

15. (a) Verify the Lagrange identity: 

(b) Use (a) to establish the Cauchy-Schwarz-Bunjakovsky Inequal- 

ity. 

16. Diameters of an ellipse. The equation of an ellipse whose axes lie 

along the axes of coordinates and whose center is at the origin can 
be written b2x2 + .2y2 = b2a2, where a and b are the lengths of the 
semi-axes. Find the locus of the midpoints of chords of the ellipse 
with fixed slope m; such a locus is called a diameter of the ellipse. 
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(Let the equation of a typical chord be y = mx + k, where k is 

a parameter. The midpoint of the chord is given by ((21 + x2)/2, 
(yi + y2)/2) where (xi, yi) (i = 1,2) are the endpoints of the chord. 

The xi are found by solving the system consisting of the equations 
of the chord and the ellipse; eliminating y yields a quadratic in x. 
However, it is not necessary to actually determine the xi individually.) 

17. Let a, b be two nonnegative real numbers. Use the fact that the zeros 
of the quadratic (t - &)(t - 4) are real to establish the arithmetic- 

geometric mean inequality (ab) Ii2 < $(a + b) with equality if and 

only if a = b. 

18. An interesting question in numerical approximation is how closely a 
nonrational root of an equation can be approximated by a rational. 
In this exercise, we see that if a quadratic equation with integer co- 
efficients has a nonrational root r, then no rational number can be 
any closer to it than the reciprocal of the square of its denominator 
multiplied by a constant. 

Suppose that a, b, c are integers and that r is a nonrational root of 
the quadratic equation at2 + bt + c = 0. Let u = p/q be any rational 
number, and suppose that Iu - rI < 1. 

Prove that 

l/q2 5 IP( 5 1~ - rlK 

where K = Z(arj + Ial + lbl. 

Deduce that there is a constant M such that 

jr -p/q! 1 M/q2 for any rational p/q. 

Explorations 

E.4. Graphical Solution of the Quadratic. Suppose a quadratic equa- 

tion x2 - ux + v = 0, with real coefficients and real roots is given. How can 

this equation be solved graphically? In other words, segments of length u 
and v are given and it is required to use them in determining points in the 
plane from which the roots might be found using the ancient Greek tools, 
ruler and compasses. 

One such method is attributed to Thomas Carlyle. Assume for conve- 
nience, that u and v are positive. Construct the circle with the segment 

joining (0,l) and ( , ) IJ v as d iameter. Verify that the abscissae of its points 
of intersection with the x-axis are the required roots. Relate the condition 
that the circle intersects the x-axis to the discriminant condition for real 

roots. 
Can you find other methods? 
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E.5. Polynomials, some of whose values are squares. The square 
integers 1 = 12, 25 = 52 and 49 = 72 are in arithmetic progression. This 
means that there is a linear polynomial, for example 1 + 24t, whose values 
are squares for three consecutive integer values oft. Is it possible to find 
a linear polynomial which takes a square value at four consecutive integer 
values of the variable t? 

If a quadratic polynomial p(t) is the square, [q(t)j2 of a linear polynomial 
with integer coefficients, then it will always assume square values for integer 
values of t. Is the converse true? If not, what is the maximum number 
of square values which a quadratic polynomial (not equal to the square 
of a linear polynomial) might assume at consecutive integer values of its 
variable. In particular, determine a quadratic polynomial which assumes 
six consecutive square values. 

Somewhat related to these questions is that of taking two finite disjoint 
subsets U and V of the integers and seeing whether there exists a poly- 
nomial p(t) with integer coefficients which is square when t belongs to U 

and nonsquare when t belongs to V. For example, one can find a quadratic 
polynomial f(t) for which f(l), f(9), f(8), f(6) are squares but f(1986) is 
a nonsquare. 

1.3 Complex Numbers 

The roots of the quadratic equation t2 $- 2t + 8 = 0 are -1 + J-‘;i and 

-1 - fl. Thus, even simple polynomial equations lead us beyond the real 
number system. If we expand the system to include such “imaginaries” as 
fl, we shall see that the theory of polynomials can be placed in a very 
natural setting indeed. A complex number is one which can be written in 
the form z + yi where x and y are real and i2 = -1. Do not worry about 
what i “means”; all we need to know is that its square is -1. The set C 
of all complex numbers x + yi can be represented by points (x, y) in the 

Cartesian plane; such a representation is called the Argand diagram and 
we refer to the complex plane. The x-axis is called the real axis and the 

y-axis the imaginary axis. 

In discussing complex numbers, it is useful to have some more terminol- 

ogy: 
Let z = z + yi denote a complex number, with x and y real. 
The real part, Re z, of z is the number 2. 
The imaginary part, Im z, of z is the number y. 
The complex conjugate, IF, of z is x - yi. 
The modulus or absolute value of z, denoted by IzI, is dw. This is 

the distance from the origin to the point representing z. 
The argument of z is the angle between the real axis and the line joining 

0 and z, measured in the counterclockwise direction. It is denoted by arg z. 
Generally, we assign to arg z a value between 0 and 27r. 
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The polar decomposition. Let r = 1z1,6’ = arg z, then z = r(cos B+isin 0). 

z=xtyi 

Through the introduction of complex numbers, we can find an expression 

for the solution of any quadratic equation with real coefficients. Suppose 
we try to solve quadratic equations with complex coefficients or polynomial 
equations of higher degree. Would it be necessary to extend our number 
system still further to accommodate the situation? For example, Leibniz 

recognized that a root of t4 + a4 = 0 is given by a-, but apparently 

did not realize that u&i could be expressed in the form a + bi. It is a 
remarkable fact that no further extension of the number system is required 

in order to solve any polynomial equation. In Exercises 10 and 12, this 
will be shown insofar as quadratic equations with complex coefficients are 

concerned; the more general result will be discussed in Chapter 4. 

Exercises 

1. Given that the square of every real number is nonnegative, show that 

a complex number can be written in exactly one way in the form 
x + yi with x and y real. 

2. (a) Show that the transformation z - iz corresponds to a rotation 

of the complex plane counterclockwise through an angle of 7r/2. 

(b) Describe the result of applying the transformation in (a) twice. 

(c) Let w be an arbitrary fixed complex number. Give a geomet- 
ric description of the transformation z - wz on the complex 
plane. 

3. Let z = x+yi = r(cosO+isinO), w = u+vi be two complex numbers. 
Show that 

(a) z + w = (x + u) + (y + v)i 

(b) zw = (2~ - yv) + (xv + yu)i 
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(c) %+w=F+?Tj 

(d) zUr=;iv 

(e) I = z 

(f) Re z = rcosf3 = f(z+F) < [zl 

(g) Im z = rsin0 = $(z - Z?) 5 121 

(h) 1z12 = zZ 

(i) I4 = I4 I4 
(j) arg(zw) = arg z + arg w (up to an integer multiple of 2~) 

(k) 1% + WI 5 I4 + I4 

(1) 2-1’2(14 + IYl> I I4 5 I4 + IYI 
(m) for 2 # 0, l/z = ??/IzI”. 

4. The Greek geometers were interested in discovering which geomet- 
ric entities could be constructed from given data using only ruler 
(straightedg ) d e an compasses. Given the points representing 0, z and 
w in the Argand diagram, determine ruler and compasses construc- 
tions for Z, z + 20, zw and l/z. 

5. Let c be a fixed real number and w a fixed complex number. Find the 

locus of points z in the Argand diagram which satisfy the equation 
Re (zw) = c. 

6. Let /Z be a fixed positive constant. Describe the locus of the equation 

121 = klz + 11. 

7. Use complex numbers and an Argand diagram to solve the following 

problem: Some pirates wish to bury their treasure on an island. They 
find a tree T and two rocks U and V. Starting at T, they pace off the 
distance from T to U, then turn right and pace off an equal distance 
from U to a point P, which they mark. Returning to T, they pace 

off the distance from T to V, then turn left and pace off an equal 
distance (to TV) to a point &, which they mark. The treasure is 
buried at the midpoint of the line segment PQ. 

Years later, they return to the island and discover to their dismay at 

the tree T is missing. One of them decides to just assume any position 
for the tree and then carry out the procedure. Is this strategy likely 

to succeed? 

8. Prove De Moivm’s Theorem: For any integer n, 

(r(cos0 + isine))” = r”(cosne+ isinne). 

9. Determine all those complex numbers z for which 
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(a) z3 = 1 

(b) z4 = 1 

(c) 26 = 1 

(d) zd= 1. 

Indicate the solutions of each equation on an Argand diagram. 

10. (a) Let a,b be real numbers. Find real numbers z and y for which 
(x + yi)2 = a + hi. 

(b) Determine the square roots of -7 - 24i. 

11. Solve the equations 

(a) t2 + 3t + 3 - i = 0 

(b) t2 + (2i - 1)t + (5i + 1) = 0. 

12. Show that every quadratic equation with complex coefficients has at 
least one complex root, and therefore can be written as the product 
of two linear factors with complex coefficients. 

13. Prove that 11 + izl = II- izl if and only if z is real. 

14. (a) Let p(t) b e a polynomial with real coefficients. Show that, for 

any complex number w, p(E) = p(w). Deduce that, if w is a zero 
of p(t), then so is Z. 

(b) Give a counterexample to show that (a) is not true in general if 
p(t) has some nonreal coefficients. 

15. Let n be a nonnegative integer. The Tchebychef Polynomial Tn(z) is 
defined, for -1 5 x 5 1, by 

To(x) = I 

T,,(x) = cos n(arc cos z) (n 2 1). 

(a) Show that Tn+l(c) - 2xTn(z) + Tn-l(x) = 0 (n > 1). 

(b) Find TI(x), TV, T3(x) and T4(x). Sketch the graphs of these 
functions. 

(c) For each n, establish that T,(x) is a polynomial and determine 
its degree. (Do this in two ways, by (a) and by de Moivre’s 
Theorem.) 

(d) Show that 

G(x) = ‘2(-y ( ; ) xn-2yl _ x2)t. 

Td 
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Exploration 

E.6. Commuting Polynomials. Two polynomials are said to commute 

under composition if and only if (poq)(t) = (qop)(t) (i.e. p(q(t)) = q(p(t)). 
We define the composition powers of a polynomial as follows 

Pi2V) = p(p(t)) 

pL31(t) = p(p(p(t))) 

and, in general, pIk](t) = p(plk-‘](t)) for Ic = 2,3,. . . . 
Show that any two composition powers of the same polynomial commute 

with each other. 
One might ask whether two commuting polynomials must be composition 

powers of the same polynomial. The answer is no. Show that any pair of 
polynomials in the following two sets commute 

I. {P : 12 = 1,2,. . .} 

II. {T,(t) : n = 1,2,. . .}. 

Let a and b be any constants with a # 0. Show that, if p and q are 
two polynomials which commute under composition, then the polynomials 
(t/u - b/a) o p o (at + b) and (t/u - b/a) o q o (at + b) also commute under 
composition. Use this fact to find from sets I and II other families which 
commute under composition. 

Can you find pairs of polynomials not comprised in the foregoing dis- 
cussion which commute under composition? Find families of polynomials 
which commute under composition and within which there is exactly one 

polynomial of each positive degree. 

1.4 Equations of Low Degree 

With access to complex numbers, we are able to determine the solutions 
to any quadratic equation whose coefficients are real, or even complex. It 
is a notable result, realized by mathematicians in the sixteenth century, 
that one does not have to extend the number system any further in order 
to solve real cubic or quartic equations. One phenomenon which led to the 
adoption of complex numbers was the use of nonreal roots of a quadratic 
equation in determining the real roots of a real cubic equation. 

Exercises 

1. (a) Let p(t) b e a cubic polynomial. Show that r is a root of the 

polynomial equation p(t) = 0 if and only if p(t) = (t - r)q(t) for 
some quadratic polynomial q(t). 
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(b) Determine by inspection a root of the polynomial equation 

t3 - 4t + 3 = 0, 

and use this information to find a complete set of solutions to 
the equation. 

2. Consider the cubic equation 

x3 - 12x2 +29x - 18 = 0. 

As we shall see below, it is possible to solve cubic equations in which 
the quadratic coefficient vanishes. Fortunately, a simple transforma- 
tion permits us to reduce any cubic to this form. Verify that the 
substitution x = t + 4 converts the equation to 

t3 - 19t - 30 = 0. 

By inspection, obtain a solution to the equation in t, and thence solve 

the equation in x. 

3. The solutions of the cubic equations so far have involved finding one 
solution by guessing. This is too much to expect in general. Argue 
that, if a general method can be found to solve cubic equations of the 

form 
ts+pt+q=o, 

then it is possible to solve any cubic equation. 

4. The cubic equation: Cardan’s Method. An elegant way to solve the 
general cubic is due to Cardan. The strategy is to replace an equation 
in one variable by one in two variables. This provides an extra degree 
of freedom by which we can impose a convenient second constraint, 

allowing us to reduce the problem to that of solving a quadratic. 

(a) Suppose the given equation is 

t3 + pt + q = 0. 

Set t = u + v and obtain the equation 

u3+v%-(3uv+p)(21+v)+q=O. 

Impose the second condition 3uv + p = 0 (why do we do this?) 
and argue that we can obtain solutions for the cubic by solving 
the system 

u3+v3= -q 

uv = -p/3. 



1.4. Equations of Low Degree 19 

(b) Show that u3 and v3 are roots of the quadratic equation 

x2 + qx - p3/27 = 0. 

(c) Let D = 27q2 + 4p3. Suppose that p and q are both real and 

that D > 0. Show that the quadratic in (b) has real solutions, 

and that if us and us are the real cubic roots of these solutions, 
then the system in (a) is satisfied by 

(u, v) = (uo, vo), (uow, vow2), (uow2, VW) 

where w is the imaginary cube root (-1 + -)/2 of unity. 
Deduce that the cubic polynomial t3 +‘pt + q has one real and 
two nonreal zeros. 

(d) Suppose that p and q are both real and that D = 0. Let uc be 
the real cube root of the solution of the quadratic in (b). Show 
that, in this case, the cubic has all its zeros real, and in fact can 

be written in the form 

(t + “o)2(t - 2uo). 

(e) Suppose that p and q are both real and that D < 0. Show 
that the solutions of the quadratic equation in (b) are nonreal 
complex conjugates, and that it is possible to choose cube roots u 
and v of these solutions which are complex conjugates and satisfy 
the system in (a). If u = P(COS B+i sin 6) and v = r(cos 0-i sin e), 
show that the three roots of the cubic equation are the reals 

2r cos 8,2r cos(fl + 2~/3), 2r cos(0 + 4~/3). 

(f) Prove that every cubic equation with real coefficients has at least 

one real root. 

5. Use Cardan’s Method to solve the cubic equations: 

(a) x3 - 6x + 9 = 0. 

(b) x3 - 7x + 6 = 0. 

[(b) will require the use of a pocket calculator and some trigonometry; 
remember de Moivre’s Theorem (Exercise 3.8); work to an accuracy 

of three decimal places.] 

6. By means of a transformation, convert the equation 

x3 - 15x2 - 33x + 847 = 0 

to the form t3 +pt + q = 0, and verify that D = 0 (in the notation of 
Exercise 4). Solve the given equation for x. 
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7. On August 7, 1877 (?), Arthur Cayley (1821-1895) wrote to Rudolf 
Lipschitz (1832-1903) a letter containing the following paragraph: 

As to the cubic, there is a variation of Cardano’s solu- 
tion which I think is theoretically interesting: if instead of 
assuming x = a + b, we assume x = a2b + ab2, then instead 
of ab and a3 + b3, we have only a3b3 and a3 + b3 rationally 

determined: a and b may therefore be any values whatever 
of the cube roots of a3, b3, but the apparently g-valued 
function a2b + ab2 will be only 3-valued. 

(Rudolf Lipschitz, Briefwechsel mit Cantor, Dedekind, 
Helmholtz, Kronecker, Weierstrass. DMV, Vieweg & Sohn, 

1986)? 

Verify that Cayley’s remark is true. (Cayley’s x, a, b correspond to 
our t, u, v in Exercise 4.) 

8. Why is the general method of solving a cubic equation not a part of 
most school curricula? 

9. Find the relationship between p and q in order that the equation 
x3 + px + q = 0 may be put into the form 

x4 = (x2 + ox + b)2. 

Hence, solve the equation 

8x3 - 36x + 27 = 0. 

10. Vieta [Cajori, History, p. 1381 had an alternative method of solving 
a cubic of the form 

x3 - 3a2x = a2b 

where a, b are real numbers which satisfy Ibl 5 2]a]. Show that, if 4 
is defined by b = 2a cos 4, then a solution of the equation is given by 

x = 2a cos(l/3)4. Use this method to locate a solution of each of the 
following equations: 

(a) x3 - 3a2x = 0. 

(b) x3 - 3x - 2 = 0. 

11. The quartic equation: Descartes’ Method (1637). 

(a) Argue that any quartic equation can be solved once one has a 
method to handle quartic equations of the form 

t4 +pt2 + qt + r = 0. 

‘Used with permission of the editor, Dr. Winfried Scharlau, and the publisher. 
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(b) Show that the quartic polynomial in (a) can be written as the 
product of two factors 

(t” + ut + v)(t2 - ut + w) 

where u, 21, w satisfy the simultaneous system 

v+w-?.62=p 

u(w - v) = q 

vw=r. 

Eliminate v and w to obtain a cubic equation in u2. 

(c) Show how any solution u obtained in (b) can be used to find all 

the roots of the quartic equation. 

(d) Use Descartes’ Method to solve 

t4 + t2 + 4t - 3 = 0 

t4 - 2t2 + 8t - 3 = 0. 

12. The qua&c equation: Ferruri’s method. 

(a) Let a quartic equation be presented in the form 

t4 + 2pP + qt2 + 2rt + s = 0. 

The strategy is to complete the square on the left side in such 

a way as to incorporate the cubic term. Show that the equation 
can be rewritten in the form 

(t2 + pt -t u)2 = (p” - q + 2u)P + 2(pu - r)t + (I62 - s), 

where u is indeterminate. 

(b) Show that the right side of the transformed equation in (a) is the 
square of a linear polynomial if u satisfies a certain cubic equa- 
tion. Explain how such a value of u can be used to completely 
solve the quartic. 

(c) Use Ferrari’s Method to solve 

t4 + t2 + 4t - 3 = 0 

t4 - 2t3 - 5t2 + lot - 3 = 0. 

13. Reciprocal equations. A reciprocal polynomial has the form 

uxn + bx”-’ + CX”-~ + .+. + cz2 + bx + a, 

in which Q # 0 and the coefficients are symmetric about the middle 
one. A reciprocal equation is of the formp(t) = 0 with p(t) a reciprocal 

polynomial. 



22 1. Fundamentals 

(a) Verify that each of the following polynomials is a reciprocal poly- 

nomial: 
x3 + 4x2 + 4x + 1 

3x6 - 7x5 + 5x4 + 2x3 + 5x2 - 7x + 3. 

(b) Show that 0 is not a zero of any reciprocal polynomial. 

(c) Show that -1 is a zero of any reciprocal polynomial of odd 
degree, and deduce that any reciprocal polynomial of odd degree 

can be written in the form (x + l)q(x), with q(x) a reciprocal 
polynomial of even degree. 

(d) Show that, if r is a root of a reciprocal equation, then so also is 
l/r. 

14. (a) Let QX~~ + bx2k-1 + . . . + rxk + . . . + bx + a = 0 be a recipro- 
cal equation of even degree 2k. Show that this equation can be 
rewritten 

a(xk + xmk) + b(xk-’ + xv’+‘) -I-. . . + r = 0. 

(b) Let t = x+x -l. Verify that x2+xs2 = t2-2 and that x3+xm3 = 
t3-3t. Prove that, in general, x”‘+x-~ is a polynomial of degree 
m in t. 

(c) Use the substitution in (b) to show that the reciprocal equation 
in (a) can be rewritten as an equation of degree k in the variable 
t . Deduce that the solution of a reciprocal equation of degree 2k 

can in general be reduced to solving one polynomial equation of 
degree k as well as at most k quadratic equations. 

15. (a) Show that the transformation t = x+x-’ applied to the equation 

2x4+5x3+x2+5x+2=0 

leads to the equation 

2t2 + 5t - 3 = 0. 

Solve the latter equation for t and use the result to obtain solu- 
tions to the original equation. 

(b) As a check, verify that the left side of the equation in x can be 
written as the product of the two quadratic polynomials which 
arise in solving for x once the two values oft are found. 

16. (a) Show that a product of reciprocal polynomials is a reciprocal 

polynomial. 
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(b) Show that, if f, g, h are polynomials with f = gh and f and 
h are both reciprocal polynomials, then g is also a reciprocal 

polynomial. 

17. (a) A quartic equation of the form 

x4+px3+qx2+rx+r2/p2=0 

is said to be quasi-reciprocal. Show that the substitution 

t = x + r/p2 

leads to the equation t2 + pt + q - 2r/p = 0. 

(b) A method for solving the general quartic equation can be for- 
mulated as follows. Suppose the given equation can be written 
in the form 

x4 - qx2 - rx - s = 0. 

Set x = u + v to obtain the equation 

u4+4vu3+(6v2-q)u2+(4 v3-2qv-r)u+(v4-qv2-rv-s) = 0. 

Show that this becomes a quasi-reciprocal equation in u if v is 
chosen so that 

v3 + (1/2r)(q2 + 4s)v2 + (q/2)v + (r/8) = 0. 

(c) Use (a) and (b) t o o bt ain a solution to the equation 

x4+3x2-2x+2=0. 

Exploration 

E.7. The Reciprocal Equation Substitution. The substitution t = 

x + 2-l is used in solving reciprocal equations. The quantity xn + x-” 
can be expressed as a polynomial pn(t) of t (see Exercise 14). Verify that 

PO(t) = 2, PI(t) = t and that pn+l(t) = t p,(t)--p,-l(t) for n 2 1. Tabulate 
these polynomials and look for patterns among their coefficients. Examine 
the composition pm opn(t) f or indices m and n. Test the conjecture that all 
coefficients of p,,(t) except the leading coefficient are divisible by n when 

n is prime. Is this true? Is there any connection between the polynomials 
p,(t) and the Tchebychef polynomials (Exercise 3.15)? 
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1.5 Polynomials of Several Variables 

If x and y are the roots of a quadratic equation at2 + bt + c = 0, then 
-b/u = x + y and c/a = xy. The expressions z + y and xy are examples of 
polynomials in the two variables x and y. In general, a function f(x, y) is 

a polynomial in x and y if and only if it can be represented as a finite sum 
of terms of the form 

where c is a coefficient and k and m are nonnegative integers. The number 
k + m is called the degree of the term, and the degree of the polynomial 
f(x, y) is equal to the highest degree of its terms. Polynomials of several 
variables can be added, subtracted and multiplied in a way analogous to 
polynomials of a single variable, in which like terms are collected and the 

variables are assumed to adhere to all the usual arithmetic laws. 
There are two classes of polynomials of two variables which we shall 

consider: 

(i) symmetric polynomials f(x, y) which satisfy f(x, y) = f(y) x); 

(ii) homogeneous polynomials in which all the terms are of the same 
degree. 

For example, si = x+y is symmetric and homogeneous of degree 1, while 

s2 = xy is symmetric and homogeneous of degree 2. However, x2+x+ y+y2 
is symmetric but not homogeneous, while x2y + 2x3 is homogeneous but 
not symmetric. 

Similar definitions can be made for functions of three variables, say x, 
y, z. A polynomial is any finite sum of the type cxkymz”, with k, m, n 

nonnegative integers. The degree of the polynomial is the highest degree 
k + m + n of any of its terms. If all the terms have the same degree, the 
polynomial is said to be homogeneous. If the polynomial f(x) y, z) satisfies 

f(x, Y, 4 = f(x, z, Y> = f(y, x,4 = f(y, z,x) = f(z) 2, Y) = fk YA then 
f(x, y, z) is said to be symmetric. 

The elementary symmetric functions 

Sl =x+y+z 

s2 = xy + ye + zx 

s3 = xyz 

are both homogeneous and symmetric. 
The purpose of this section is to introduce some elementary properties 

of polynomials of several variables. 
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Exercises 

1. What are the degrees of the following polynomials? Are they homo- 
geneous? symmetric? 

(4 X-Y 

(b) 3xy + 2x2 

(c) 4x$ + 3x + 3y + 4x2y 

(d) 5x + 7 

(e) xy” + yz2 + zx2 

(f) xy” + yz2 + 2x2 - x2y - y2z - %2X 

2. Show that a polynomial f(x, y, z) in the variables x, y, z is homoge- 
neous of degree d if and only if 

f(% ty, tz) = fv(x, Y, z). 

3. One can also define the notion of homogeneity for polynomials of a 
single variable. What are the homogeneous polynomials of degree k 
in a single variable x? 

4. Show that each symmetric polynomial in two or three variables can 

be written as a sum of homogeneous symmetric polynomials. 

5. The elementary symmetric polynomials sr = x + y and s2 = xy of 
two variables are the building blocks for all symmetric polynomials 
in the sense that every symmetric polynomial can be expressed as a 
polynomial in the elementary symmetric polynomials. 

For example, 

x2 + y2 = (x + y)2 - 2xy = s: - 2s2 

Prove that every symmetric polynomial can be written as a polyno- 

mial of the elementary symmetric function SI, ~2. 

As we have seen in Exercise 2.4, if x and y are the zeros of a quadratic 
polynomial, then x + y and xy are expressible in terms of the coef- 

ficients. The result just established means that we can evaluate any 
symmetric polynomial function of the roots of a quadratic equation 
without actually having to solve it. An analogous result for polynomi- 
als of higher degree is of great practical and theoretical use, for, as we 
have seen, the task of obtaining solutions to a polynomial equation 
becomes heavier with the degree. 
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6. Let p(t) = at3 +- bt2 + ct + d be a cubic polynomial whose zeros are 

x, Y, z* 

(a) Show that 

p(t) = p(t) - p(x) = (t - x)(at2 + (ax + b)t + (ax2 + bx + c)). 

(b) Show that p(t) can be written in the form 

a(t - x)(t - y)(t - z). 

(c) By expanding the product in (b) and comparing coefficients, 
verify that 

x+y+z=-b/a 

xy+yz+zx=c/Q 

xyz = -d/a. 

7. Find a necessary and sufficient condition on p, q, r that the zeros of 

t3 + pt2 + qt + r 

are in arithmetic progression. 

8. Express each of the following polynomials as a polynomial in the 

elementary symmetric functions sr = x + y + z, s2 = xy + yz + zx, 
s3 = xyz: 

x3 + y3 + z3 

x2y3 + x3y2 + x2z3 + x3z2 + y2z3 + 9%” 

(2 + Y>(Y + z)(z +x). 

9. (a) Verify that 

x3+y3+z3-3xyz = (x+y+z)(x2+y2+z2-xy-xz-yz). 

(b) Write x2 + y2 + z2 - xy - xz - yz as the sum of three squares of 

polynomials and deduce that this quantity is nonnegative when- 
ever 2, y, z are real. 

(c) Prove the arithmetic-geometric mean inequality: if a, b, c 2 0, 

then 
(abc)“3 5 (Q + b + c)/3 

with equality if and only if a = b = c. 
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10. A polynomial of several variables tl, t2, . . . , t, is a finite sum of mono- 
mials of the type 

__ 

+‘2a... m trm 

where a is a coefficient and the ri are nonnegative integers. The degree 
ofthis term is rl+r2+rg+...+r,,,, and the degree of the polynomial 

is equal to the highest degree of any of its terms. 

A polynomial of several variables is homogeneous (of degree d) if and 
only if each term is of the same degree (d). 

A polynomial of several varibles is symmetric if it remains unchanged 
no matter how we interchange its variables. 

Given a set of variables, tl, t;! , . . . , t,, there is a special class of sym- 

metric polynomials associated with them. There are the elementary 
symmetric functions: 

Sl =sl(tl,t2,...,t,)=tl+t2+***+t, 

s2 = SZ(tllt2,. . . ,tm) = t1t2 -l-t1t3 + --*+t1t, 

+ t&l + . . . + t,-1t, 

. . . 

s, is the sum of all possible products of P of the variables (this sum 

terms) 

. . . 

s,-1 = Sm-l(tl,t2 ,...) tm) = -&t2...i,...tm 

i=l 

(A “hat” denotes a deleted term.) 

Give all symmetric homogeneous polynomials of degree 0, 1 and 2 in 
the variables tl, t2, t3,. . . , t,, and show how they can be expressed 

as a polynomial in the functions sr and ~2. 

11. Formulate and prove the analogue of Exercise 2 for any number of 
variables. 

12. The polynomial g(x, y) has the property that, for any numerical sub- 

stitutions of x and y, g(z, y) = g(y, x). Must g(z, y) be symmetric in 
the variables x and y? 
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Explorations 

ES. Suppose that f(x, y) is a function of the two real variables x and y. 

For each llxed, value of x, f(z, y) is a polynomial in y. For each fixed value 
of y, f(x, y) is a polynomial in x. Is f(x, y) necessarily a polynomial of the 
two variables x and y? 

There is more to this question than might seem initially apparent. The 
hypothesis says, for example that, for each specific 2, f(x, y) can be written 
in the form 

f(X,Y) = Qo+aly+...+Q.nyn, 

where not only the coefficients ai but also the degree n depends on x. On 
the face of it, it might happen that for certain choices of x, n could be 

arbitrarily large. However, if f(z) y) were a polynomial in x and y jointly, 

the number n would not exceed some fixed number independently of x. 

E.9. The Range of a Polynomial. Any polynomial is a continuous func- 

tion of its variables. One important consequence is the restriction it imposes 
on its possible range of values. Let f(x) be a polynomial with real coef- 
ficients of n real variables, where x = (xi, x2, . . . , xn). For any vectors 
a and b, the line segment joining a and b consists exactly of the points 
(1 - t)a + tb with 0 5 t 5 1. Then p(t) = f((1 - t)a + tb) is a polynomial 
in t; as t varies between 0 and 1, p(t) varies continuously between f(a) and 
f(b) and accordingly assumes every value between f(a) and f(b). 

For any polynomial f with real coefficients, define its range as the set 

Rj = {f(x) : x = (x1 , . . . , xn) with xi real}. Argue that RI must be a 

subset of R of one of the following types: 

(a) a singleton (i.e. a set with a single element); 

(b) a finite interval with or without either endpoint; 

(c) a closed halfline {r : r 5 c} or {r : r 2 c}; 

(d) an open halfline {r : r < c) or {r : r > c); 

(e) the entire set of real numbers. 

Show that (a) occurs if and only if f is a constant polynomial. Give 
examples in which (c) and (e) occur. Show that (b) can never occur. Can 
(d) occur for polynomials of one variable? more than one variable? 

E.lO. Diophantine Equations. Who has not seen the Pythagorean equa- 

tion X2 + Y2 = Z2? This is a diophantine equation with integer coefficients 
and exponents and for which integer solutions are sought. This one, for ex- 
ample, is satisfied by (X,Y,Z) = (3,4,5), (8, 15, 17), (5, 12, 13). Often, 
diophantine equations have infinitely many solutions and the solver seeks 

some formula which will give all, or at least a significant portion of, the 
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solutions. These formulae may be in the form of polynomials with inte- 
ger coefficients. For example, verify that (X, Y,Z) = (%(x2 - y2), 2zzy, 
z(z2 + y2)) satisfies the Pythagorean equation and verify that every nu- 

merical solution (up to the order of X and Y) can be found by suitable 
numerical substitutions for 2, y and t. 

How can such polynomial solutions to diophantine equations be found? 
For the Pythagorean equation, the usual argument uses some basic number 
theory. But such an argument is not always readily available. Rather, one 
might work empirically, using a computer to churn out a large number 
of numerical solutions, and then examining these for some pattern from 
which to indicate that they are values of certain polynomials. Here are 
some examples for you to work on. 

(a) X3 + Y3 + Z3 = W3 is satisfied by (X, Y, 2, W) = 

(3,4,5,6), (3,109 l&19), (4,17,22,25), 
(11,15,27,29), (7,149 17,20), (12,19,53,54), 
(12,31,102,103), (20,54,79,87), (23,94,105,126), 
(27,46,197,198), (27,64,306,307), (28,53,75,84), 

(34,39,65,72), (38,48,79,87), (48,85,491,492), 
(48,109,684,685), (65,127,248,260), 
(107,230,277,326), (227,230,277,356). 

Look for patterns which may yield solutions which are polynomials and for 
which some of the numerical solutions above are obtained by evaluation of 
the polynomials. 

Euler generated polynomial solutions for X3 + Y3 + Z3 = W3 in the 
followingway.LetX=p+q,Y=p-q,Z=r-s,W=r+s.Showthat 
this leads to the requirement 

p(p2 + 3q2) = s(s2 + 3r2). 

At this point, we introduce parameters TA, v, t, y, .z, w in such a way that u 
and v appear only linearly in an equation; this will enable us to determine 

their ratio in terms of z, y, z, w. Set 

p = xu + 3yv s = 3zv - wu 

q = yu - xv r = WV + zu. 

Plug these into the equation for p, q, r, s and determine what the ratio of 
u to v must be. Now substitute back in to obtain expressions for p, q, r, s 

and ultimately X, Y, 2, W in terms of z, y, z, w. 
(b) The simultaneous system 2(B2 + 1) = A2 + C2; 2(C2 + 1) = B2 + D2 
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is satisfied by (A, B, C, D) = 

(6,23,32, w, (16,87,122,149), 
(39,70,91,108), (51,148,203,246), 
(59,228,317,386), (59,630,889,1088), 

(79,242,333,404), (83,516,725,886), 
(108,157,194,225), (147,302,401,480), 

(225,296,353,402), (324,557,718,849), 

(402,499,580,651). 

There is a family of solutions in which A, B, C, D are given by evaluating 
linear polynomials at integer values. However, the numerical data above 
will suggest polynomial solutions of higher degree. 

(c) Let r be a fixed numerical parameter. Find polynomial solutions to 

X2+rXY+Y2=Z2. 

(d) Show that there are infinitely many integers which are equal to the 
sum of the squares of their digits written to some base. 

(e) Show that there are infinitely many integers which are equal to the 

sum of the cubes of their digits written to some base. For example, 17 

written in base 3 has the representation (122)3 and is the sum of the cubes 
of 1, 2 and 2. 

(f) In Exploration E.2, we considered pairs of sets of numbers for which 
the sum of various powers of the elements of one were equal to the cor- 
responding powers of the elements of the other. Look for pairs of sets of 
polynomials which have the same property. 

1.6 Basic Number Theory and Modular 
Arithmetic 

What numbers can be expressed as the difference of two integer squares? 

Since (x + 1)2 - x2 = 22 + 1, it is clear that every odd number can be so 

expressed. How about 98? If x2 - y2 = 98, then 2 and y must be either 

both even or both odd. But in this case, it is straightforward to argue that 

x2 - y” is divisible by 4. Thus, the representation of 98 is not possible. 
This type of argument occurs frequently in studying polynomials with 

rational and integer coefficients. Accordingly, in this section we will re- 
view some basic properties of the number system. Another reason for the 
importance of knowledge about the structure of integers is the fact that 
the family of polynomials shares much of this structure and the theory is 
developed in an analogous way. 

First, some terminology. N denotes the set {1,2,3,. . .} of natural num- 

bersandZtheset{ . . . . -2,-1,0,1,2,. . .} of all integers. For any pair a, b, 
of integers, we say that a divides b (in symbols: ulb) if and only if there is 
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an integer c for which b = UC. Thus, for example, 371111 since 111 = 37 x 3. 
The only integers which divide every other integer are +l and -1. Every 

integer divides 0, since, for each integer k, we can write 0 = k0. 
If aJb, then Ial 2 lbl, so that, if ulb and blu, then either a = b or a = -b. 

For two nonzero integers a and b, an integer d such that dlu and dlb is called 
a common divisor of a and b. There is a unique largest integer g which is 
a common divisor of a and b; this is the greatest common divisor of a and 

b. We denote g by gcd(u, b). 
If ulc, then c is a multiple of a. If c is a multiple of both a and b, then c is 

a common multiple of a and b. There is a unique smallest positive integer 
which is a multiple of both a and b; this is the least common multiple of a 

and b. 
The greatest common divisor of two integers is a multiple of every com- 

mon divisor. The least common multiple divides every common multiple. 
An integer p is prime if and only if p is positive, p # 1 and the only 

positive divisors of p are 1 and p. A pair of integers is coprime if their 
greatest common divisor is 1. 

A fundamental result is the following. 

Division Theorem. Let u, b belong to Z with a > 0. There are integers q 
(quotient) and r (remainder) such that 

b=qu+r and O<r<u. 

Furthermore, q and r are uniquely detewnined. That is, if the foregoing 
conditions are satisfied with (q, r) replaced by (q’,r’), then r’ = r and 
q’ = q. 

Exercises 

1. The Euclidean algorithm. There is an ancient algorithm for finding the 
greatest common divisor of two given numbers which makes repeated 
use of the Division Theorem. The original context for the algorithm 
was not whole numbers but what the Greek geometers called magni- 

tudes. Length is an example. One magnitude measures a second if the 
second is an positive integer multiple of the first; two magnitudes are 

commensurable if there is a magnitude which measures them both. 
In Book X, Propositions 1, 2, and 3, of his Elements, Euclid presents 
a practical method for determining whether or not two magnitudes 

are commensurable, and, in the latter case, of arriving at the greatest 
common measure. The Greeks might have used these results in ge- 

ometry, for example, to show that the side and diagonal of a square 
are incommensurable. 

To see how Euclid’s algorithm works in a numerical situation, let us 
find the greatest common divisor of 418 and 1606. Divide the smaller 
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number into the larger to get 

1606 = 3.418 + 352. 

Explain why the greatest common divisor of 418 and 1606 is the same 
as the greatest common divisor of 352 and 418. Accordingly, we look 
for the greatest common divisor of 352 and 418. 

418 = 1.352 + 66 

Continue on: 
352 = 5.66+22 

66 = 3.22+0. 

What is the greatest common divisor of 418 and 1606? Justify your 
answer. Carry out the same process to find gcd(20119, 34782). 

Explain the following pencil-and-paper rendition of the Euclidean 
algorithm: 

3 
418)1606 

2. (a) An important application of the Euclidean algorithm is to obtain 
a representation for the greatest common divisor of two numbers. 
Taking the numerical example of the last exercise, we can start 
with the representation of the greatest common divisor given by 
the second last equation and work our way back through the 

equations: 

22 = 1.352 - 5.66 = 1.352 - 5(418 - 1.352) 

= 6.352 - 5.418 = 6(1606 - 3.418) - 5.418 

= 6.1606 - 23.418. 

This can be rendered in a handy paper-and-pencil form. Suppose 
we have performed the paper-and-pencil calculation to find the 
greatest common divisor. Now construct the table: 

-5 -1 -3 

1 -5 6 -23. 
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Explain where the numbers in the top row come from. Show that 
the numbers in the bottom row can be obtained successively by 
following the scheme 

* . 21 

v w uw+v. 

Explain the relevance of the scheme. Finally, show how the table 
can be used to find numbers 21, yr, x2, y2, x3, y3 to satisfy 

(b) Find integers x and y to satisfy 

(i) 3 = 121: + 21y 

(ii) 9 = 12x + 21y 

(iii) 6 = 24x + 66y 

(iv) gcd(20119,34782) = 20119x + 34782~. 

This exercise illustrates the general result: Let a and b be two 
integers whose greatest common divisor is g. Show that there 
exists integers x and y such that g = ux + by. 

The set {uc + by : x, y E Z} is precisely the set of all multiples 
of the greatest common divisor of a and b. 

(c) Using the general result enunciated in (b), show that every com- 
mon divisor of a pair of integers divides the greatest common 
divisor. 

3. (a) Let p be a prime and a be any integer. Show that a is a multiple 
of p if and only if the greatest common divisor of p and a is not 

1. 

(b) Show that, if a is not a multiple of the prime p, then there exist 
integers z and y for which 1 = ux + py. 

(c) Prove that, if a and b are any integers, and if the prime p is a 
divisor of the product ub, then either p\u or plb. 

(d) Let n 1 2 be a positive integer. Show that there are prime 
numbers pl , ~2, . . . ,pk and positive exponents el, e2,. . . , ek such 
that 

n=p;lpT...pp. 

Show that this representation is unique up to the order of the 
prime power factors. 

(e) Give the representation described in (e) for the numbers 418, 

1606, 20119 and 34782. 
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4. (a) Let two positive integers m and n be written out as a product of 
prime powers. Express the greatest common divisor u and least 
common multiple v of m and n as a product of the powers of 

the primes involved in representing m and n. 

(b) Show that mn = uv. 

(c) Show that v divides every common multiple of m and n. 

5. Let m E N and a, b E Z. We say that a E b (mod m) (read: “a is 
congruent to b modulo m”) if and only if mlu - b. 

(a) Show that a - b (mod m) if and only if a and b have the same 
remainder upon division by m. 

(b) If a E b and c - d (mod m), show that a + c - b + d (mod m) 
and UC E bd (mod m). Explain how we take account of these 

facts every time we add up a column of figures or multiply two 
large numbers using paper and pencil. 

(c) Show that if p is any polynomial with integer coefficients, and if 
a E b (mod m), then p(u) E p(b) (mod m). 

6. Let m E N, and a, b E Z. Consider the problem of solving the follow- 
ing congruence 

ux E b (modm). 

A solution is any number k for which uk - b is divisible by m. 

(a) Show that 7 is a solution of the congruence 4x z 3 (mod 5). 
Find all other solutions of this congruence. 

(b) Find all solutons of the congruences 

(i) 4x z 3 (mod 6) 

(ii) 4x - 2 (mod 6). 

Cc) c ;;;ngg;f3 4 a, m). Show that, if ux E b (mod m) has a solution, 

(d) Conversely, show that if g = gcd(u,m) and glb, then the con- 
gruence ux q b (mod m) has a solution. 

(e) We say that the solution of a congruence ux 5 b (mod m) is 
unique module m, or, simply, unique if the difference between 
any solutions is divisible by m. In other words, the requirement 
is that au E au G b (mod m) implies u E’V (mod m). 

Show that the solution of the congruence is unique if and only 
if gcd(u,m) = 1. 

(f) Show that, if p is a prime, and a is not a multiple of p, then 
there is exactly one value of x satisfying 

uxrl(modp) and l<zlp-1. 
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Explorations 

E.ll. Define the length of the Euclidean algorithm as the number of divi- 

sions required to complete it. Find that pair of numbers not exceeding 20 
for which the Euclidean algorithm has its greatest length. Answer the same 

question replacing 20 by higher numbers. In general, enumerate those pairs 
(a, b) of numbers for which the algorithm for the greatest common divisor 
is at least as long as the algorithm for any pair (u,v) with 1 5 u 2 a, 
llv<b. 

E.12. How many solutions (modulo m) are there to the congruence uz E b 
(mod m) in general? 

E.13. Is it possible to find a polynomial of a single variable n which assumes 
a prime value for every integer value of n? One famous attempt turned up 
the example n2 - n + 41 which is prime for 0 < n 5 40, but composite 
when n = 41. More generally, there are other primes p such as 11 and 17 
for which n2 - n + p is prime for 0 5 n 5 p - 1. Checking this is made 

easier by the result that, if n2 - n + p is prime for 0 5 n 5 m + 1, then 

it is prime for 0 5 n 5 p - 1. This was posed as a problem in the 1987 
International Mathematical Olympiad. 

Show that, no matter what polynomial p(n) with integer coefficients 
is given, there are infinitely many values of the integer n for which the 
polynomial assumes a composite value. 

However, it is possible to find a polynomial of several variables with in- 
teger coefficients for which all the positive values it assumes are primes, 
although it will also assume nonpositive values. Such a polynomial is very 
complicated. In the next Exploration, you will see how to construct a poly- 
nomial all of whose positive values coincide with another well known set. 

E.14. Polynomials Whose Positive Values Are Fibonacci Num- 
bers. In the year 1202, the eminent mathematician Leonardo of Pisa (Fi- 

bonacci) posed in his book, Liber abaci, a famous problem: How many pairs 
of rabbits can be produced in a year from a single pair provided that it 

begets a new pair at the end of each month from the second month on 
and each new pair similarly reproduces? Thus, the original pair survives 
without issue through the first two months and produces a second pair at 

the end of the second month. At the end of the third month, the older pair 
gives rise to a third pair, while at the end of the fourth month, the offspring 
of the two oldest pairs bring the number of pairs up to five. 

Denote by Fk the number of pairs at the beginning of the kth month (at 
the end of the (k - 1)th month). Then for each positive integer n 1 2, the 
number F”+l of pairs extant during the (n + 1)th month will include the 
F,, pairs alive in the previous month plus the offspring of the F,-1 pairs 
who were alive two months before. Thus, F,, satisfies the recursion relation 

Fl = F2 = 1 F,,+l = F,+F,-1 (n=2,3,4 ,... ). 
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We can answer Fibonacci’s question by computing each F,, in turn: 

1, 1,2,3,5,8,13,21,34,55,89,144,233,377,610,. . . . 

The number of pairs present at the beginning of the 13th month is Fl3 = 

233, so that after one year, the original pair is responsible for the production 
of 232 new ones. 

We will look at the question of finding a general formulae for the terms 
of the sequence in Exploration E.50. Our interest here is to construct a 

polynomial of two variables whose positive values are precisely the numbers 
F,, where n is a positive integer. 

(a) Show that for each value of n exceeding 1 

F,,+mlF,,-l -F,” = 
1 

1 if 72 is even 
-1 if n is odd. 

(b) Let x and y be positive integers such that 

I(y - x)y - x21 = 1. (*) 

It can be shown that y - z, t, y are consecutive terms in the Fibonacci 
sequence. First note that x 5 y and y - x 5 x, and that, if x = y, then 

(x, y) = (1,1) and, if y - z = 2, then (x,y) = (1,2). 
The desired result can be proved by induction. It holds for y 5 F3. 

Assume that n > 3 and it holds for y 5 F,. Now let (*) be valid when 

x>OandF,,<y<F,+1. Show that x 5 F,, and that, if z = y - x, then 

1(x - %)X - %21 = 1. 

Use the induction hypothesis to argue that z - z, z, x, and hence z, x, y 
are consecutive Fibonacci numbers. 

(c) What are the positive values assumed by the polynomial 

2 -[(y- x)y- x212 

when x and y are integers? 
(d) Determine a polynomial f(x, y) with integer coefficients such that, 

whenever x and y are integers for which f(x, y) > 0, f(z, y) belongs to the 

Fibonacci sequence. 

1.7 Rings and Fields 

Problems involving polynomials often require us to distinguish whether 
the coefficients are rational or nonrational, real or complex. The solution 
of even real equations require us to draw in nonreal entities. Since there are 
rules of operation equally valid for the various number systems-rational, 
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real, complex-which we wish to consider, it is convenient to define abstract 
structures which embody these. 

In thinking about these abstract structures, it is usually adequate to 

imagine you are dealing with some concrete model. Thus, a field is a struc- 
ture which embraces as particular cases the sets of rationals, reals or com- 
plex numbers, so you can think of a field as being very like any one of 
these sets in the way in which the elements can be combined by addition, 
subtraction, multiplication and division. However, any result which can be 

established for fields in general holds for rational, real or complex numbers 
in particular. Rings and integral domains, in which division is not always 
possible, are exemplified by the set of integers or the set of polynomials. 

Here are the axioms, or ground rules by which we shall operate. 

Let 5’ be a system of entities for which there are two operations, + (which 
we will call addition) and . (which we will call multiplication). Consider the 

following axioms: 

A.l. If a and b belong to S, then a + b belongs to S. 

A.2. For a and b in S, a + b = b + a. 

A.3. For a, b, c in S, (a + b) + c = a + (b + c). 

A.4. There is an element in S, denoted by 0 and called the zero for which 
a + 0 = 0 + a = a whenever a belongs to S. 

A.5. Given any element a in S, there is exactly one element, denoted by 
-a and called the additive inverse, such that a + (-u) = (-u) + a = 0. 

M.l. If a, b belong to S, then ab belongs to S. 

M.2. For a, b in S, ub = bu. 

M.3. For a, b, c in S, (ub)c = u(bc). 

M.4. There is an element in S, denoted by 1 and called the identity, for 
which a . 1 = 1. a = a whenever a belongs to S. 

M.5. For any a in S with a # 0, there is an element, denoted by a-l and 
called the multiplicative inverse, such that 

a.a --l=.-l.a=1 

D. For a, b, c in S, u(b + c) = ub + UC and (b + c)a = bu + cu. 

Any system of entities which satisfies all of these axioms is called a field. 
Some structures do not quite manage to be fields, such as: 

ring: a system satisfying A.l-5, M.l, M.3, D. 
commutative ring: a ring which satisfies M.2. 

commutative ring with an identity: a ring which satisfies M.2 and M.4. 
integral domain: a commutative ring with identity which has no zero 

divisors (this means that if ub = 0, then either a = 0 or b = 0). 
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Exercises 

1. Show that the following are fields with the usual definitions of addi- 

tion and multiplication: 

(a) R : the set of all real numbers 

(b) Q : the set of all rational numbers 

(c) C : the set of all complex numbers x + yi with x, y real, and 
i2 = -1. 

2. Show that Z is not a field, but is an integral domain. 

3. Show that N is not even a ring. 

4. Let F[t] denote the set of all polynomials in the variable t whose 
coefficients lie in a field F and for which addition and multiplication 

are defined as in Section 1.1. Thus, Q[t], R[t] and C[t] are the sets 
of polynomials whose coefficients are, respectively, rational, real and 

complex. 

(a) Show that Q[t], R[t], C[t] are integral domains. 

(b) Show that F[t] is an integral domain. 

(c) Interpret Z[t] and show that Z[t] is an integral domain. 

(d) Interpret F[ti, t2 , . . . , tm]. Show that this is an integral domain. 

We say that F[t] is the set of polynomials over F. 

5. (a) Show that every field is an integral domain. 

(b) Show that every integral domain satisfies the cancellation law: 

ifuc=bcandc#O,thenu=b. 

6. Let m > 2 be a positive integer. The set Z, consists of the numbers 

I&l, 2,3, * * * > m - 1). We define addition and multiplication on this 

set modulo m: 

u+b=c meansthatO<c<m-landu+bEc(modm) 

ub=c meansthatO<c<m-landubEc(modm). 

(a) Fill in the addition and multiplication tables for Z7: 

+Q123456 -Q123456 
0 3 0 0 

1 1 4 6 1 4 

2 3 0 2 6 3 

3 5 2 30 6 5 4 

4 4 1 4 4 2 3 

5 1 5 4 

6 3 6 5 
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(b) Show that Z, is a commutative ring with identity. 

(c) Characterize those values of m for which Z, is a field. 

(d) Show that, if Z, is not a field, then it is not even an integral 

domain. 

7. Write down a complete list of polynomials of degrees 0, 1, 2, 3, 4 in 
the ring Z,[t]. Indicate in your list which of the polynomials cannot 
be obtained by multiplying two polynomials of lower degree. This will 
include all polynomials of degrees 0 and 1. Will it also include any 
polynomials of degrees 2, 3 and 4? 

8. Show that the polynomial t7 - t takes the value 0 for every value of 

t in Zr. (This shows that, in contrast to the complex field, there are 
fields in which nonzero polynomials take the value 0 no matter what 
value is substituted for the variable.) 

Exploration 
E.15. Let p be a prime. How many different polynomials of degree n over 
Z, are there? Try to find a formula for the number of manic polynomi- 
als in Z,[t] of degrees 2, 3, 4 which cannot be expressed as a product of 
polynomials of lower degree. 

1.8 Problems on Quadratics 

1. Given that tan A and tan B are the roots of the equation x2+px+q = 
0, find the value of 

sin2(A + B) + psin(A + B) cos(A + B) + q cos2(A f B). 

2. Find the value of the positive integer n for which the quadratic equa- 
tion n . 

C( x + i - 1)(x + i) = 10n 
i=l 

has solutions x = r and x = r + 1 for some number r. 

If the coefficient 10 is replaced by an integer p, for which values of p 
does a corresponding value of n exist? 

3. Find a necessary and sufficient condition that one root of the quadratic 
equation ax2 + bx + c = 0 is the square of the other. 

4. Let p(t) be a manic quadratic polynomial. Show that, for any integer 
n, there exists an integer k such that 

dn)p(n + 1) = p(k). 
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5. Prove that, if the roots of x2 +px + q = 0 are real, then the roots of 
x2 + px + q + (x + u)(2z + p) = 0 will be real for every real number a. 

6. A mathematics teacher wrote the quadratic z2 + 101: + 20 on the 

board. Then each student either increased by 1 or decreased by 1 
either the constant or the linear coefficient. Finally x2 + 202 + 10 
appeared. Did a quadratic trinomial with integer zeros necessarily 
appear on the board in the process? 

7. Suppose a < b and c < d. Solve the system 

a2 + b2 = c2 + d2 

a+b+c+d=O. 

8. Find necessary and sufficient conditions on the real numbers a, b, c, 
d for the equation 

z2 + (u + bi)z + (c + di) = 0 

to have exactly one real and one nonreal root. 

9. Show that if z2 + px + q = 0 and px2 + qx + 1 = 0 have a common 
root, theneitherp+q+1=Oorp2+q2+1=pq+p+q. 

10. If p and q are real numbers which do not take simultaneously the 
values p = 0, q = 1, and if the roots of the equation 

(1-q+$) x2 + p(1 + q)z + 4(4 - I) + f = 0 

are equal, show that p2 = 4q. 

11. Show that all the real values of x which satisfy the equation 

tan(7rcotx) = cot(n tan z) are given by 

4tanr=2n+1fJ4n2+4n-15, 

when n is a positive or negative integer different from -2, -1, 1. 

12. Find all positive integers n for which the quadratic equation 

an+1x2 - : + ug + . . . + Q;+~ + (al + u2 + f.. + a,) = 0 

has real roots for all reals al, us, . . . , a,+~. 

13. Let p(z) = r2 +a%+ b have complex coefficients and satisfy Ip( = 1 

whenever 1~1 = 1. Prove that a = b = 0. 
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14. (a) Find necessary and sufficient conditions on a, b, w so that the 
roots of z2 + 2u~ + b = 0 and z - w = 0 are collinear in the 
complex plane. 

(b) Find necessary and sufficient conditions on a, b, c, d so that the 
roots of z2 + 2~3% + b = 0 and r2 + 2cr + d = 0 are collinear in 
the complex plane. 

15. Show that, if -(b/u)cos2{(1/4)arc cos[(b2 - 8ac)/b2]} exists, then it 
is a root of the equation ax2 + bx + c = 0. 

16. Let u and v be the roots of the equation 

z + (l/z) = 2(cos 4 + i sin 4) where 0 < 4 < ?r. 

(a) Show that U+ i and v + i have the same argument and that u - i 

and v - i have the same modulus. 

(b) Find the locus of the roots u, v in the complex plane when 4 
varies from 0 to 7r. 

17. Solve 

x2 - (2~ - b - c)x + (a2 + b2 + c2 - bc - cu - ub) = 0. 

18. Let a, b, c be nonzero integers such that the greatest common divisor 
of b and UC is 1. Prove that ax2 + bx + c and ax2 + bx - c can both be 
written as the product of linear polynomials with integer coefficients 

if and only if UC = rs(r2 --s2) and b2 = (r2 + s~)~, where r and s are 

relatively prime integers. 

19. If a, b and h are constants, prove that the maximum and minimum 
values of a cos2 0 + 2h sin 8 cos 0 + b sin2 0 are the roots of the equation 
(x - u)(x - b) = h2. 

20. What conditions must be satisfied by the constants a, b, c for the 
quadratic function 

f(x,y)=x2-y2+2ux+2by-c 

to be the product of two linear factors? 

21. (a) If the line y = mx+c is tangent to the curve b2x2 -a2y2 = a2b2, 

show that u2m2 = b2 + c2. 

(b) Chords of th e circle x2 + y” = r2 touch the hyperbola b2x2 - 
u2y2 = u2b2. Find the equation of the locus of the midpoints. 

22. Determine all those quadratic polynomials whose zeros are symmetric 
about the imaginary axis, i.e. r + is is a zero if and only if -r + is is 
a zero. 
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23. Find the equations of those conjugate diameters of the ellipse b2x2 + 

U2Y2 = a2b2 which are of equal length. (Two diameters are conjugate 
if each is the locus of midpoints of chords parallel to the other. Refer 

to Exercise 2.16.) 

24. Let ax2 + bx + c be a quadratic polynomial with real coefficients for 
which hrz2 + bz + cl 5 1 for 0 5 2 5 1. Prove that Ial + Ibl + ICI 5 17. 
Give an example for which equality holds. 

1.9 Other Problems 

1. Suppose that t3 + pt + q = 0 has a nonreal root a + bi, where a, b, p, 
q are all real and q # 0. Show that aq > 0. 

2. Consider a polynomial f(z) with real coefficients having the property 

fb(x)) = s(f(+)) f or every polynomial g(x) with real coefficients. 
Determine and prove the nature of f(x). 

3. If a, b, c, d are real numbers, show that each of the two systems of 
three equations is equivalent to the other: 

I. a2+b2 = 2 c2 +d2 = 2 ac = bd 
II. a2+c2 = 2 b2 +d2 = 2 ab= cd. 

4. Find a simple expression for the positive root of 

x3-3x2-Z:-dLo0. 

5. Show that any root of 

(x + a + b)(x-’ + u-l + b-‘) 7 1 

is a root of 

(x” + a” + b”)(x-” + a-” + b-“) = 1, 

where n is any odd integer and where a and b are both different from 

0. 

6. (a) Given that x + a + &q = 0, where x is not 0, verify that 

(b) Given that y = pz + q, where p 2 0 and 2 + a + m 
verify that 

y + (up - q) + &P - q>2 - (bp2 - 2apq + q”) = 0. 

= 0, 
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If y is nonzero, deduce that 

Y + (b2 - Wq + q2)/y + 2(ap - q) = o. 

7. Find the square roots of 1 - x + d22x - 15 - 8x2. 

8. Determine necessary and sufficient conditions that ax4 + bx3 + cx2 + 
dx+e (u # 0) is of the formp(q(x)), where p and q are both quadratic. 

9. From the pair of equations 

x= l-v+(v/u), y= l-u+(u/v), 

deduce the pair of equations 

u=l-y+(y/x), v=l-x+(x/y), 

and conversely. 

10. Solve the equation 

(x - 2)(x - 3)(x - 4)(x - 5) = 360. 

11. Show that the polynomial x4y2+y4~2+~4x2-3x2y2~2 always assumes 
a nonnegative value when I, y, z are real, but cannot be written as 
the sum of squares of polynomials over R in x, y, Z. 

12. Express x4+y4+x2+y2 as the sum of the squares of three polynomials 
over R in x, y. 

13. Let P(x,y) = x2y+xy2 and &(x,y) = x2+xy+y2. For each positive 

integer n, define 

Fn(x, y) = (x + y)” - xn - y” 

Gn(x, y) = (x + y)” + x” + y”. 

Observe that Gs = 2Q, F3 = 3P, G4 = 2Q2, Fs = 5PQ, Gg = 
2Q3 + 3P2. Prove that, for each positive integer n, either F,., or G, 
is expressible as a polynomial in P and Q over Z. 

14. Define a sequence of polynomials P,(x, y, z) as follows: 

Po(x, Y, %) = 1 

Pm(X,Y,Z) = (x + %>(Y + z)Pm-l(X,Y,Z + 1) - ~2L-l(~,Y,4 

Prove that each P,(x, y, Z) is symmetric in x, y, Z. 
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15. How many distinct terms are there in the expansion of 

2&l + x2)(21 + x2 + 23) * . * (Xl + x2 + . . * + zn)? 

16. Let u be an integer. Simplify 

17. Show that there are infinitely many pairs of positive integers m and 
n for which 4mn - m - n + 1 is a perfect square. 

18. Determine all numbers u for which 

(i) there is a cubic polynomial p with integer coefficients for which 

u, u2, u3 are distinct zeros; 

(ii) u is nonrational. 

19. For any polynomial p(t) = a,P + am-ltm-l + ... + alt + a~, let 

r(p(t))=a~+a~_l+...+Q:+ag. 

Let f(t) = 3t2 + 7t + 2. Find, with proof, a polynomial g(t) for which 

6) s(O) = 1; 

(ii) r(f(t)“) = r(g(t)“) for n = 1,2,. . . . 

20. Given that x2 + # = 6ry and z > y > 0, determine 

x+Y -. 
X-Y 

Hints 

Chapter 1 

1.12. (a) The constant term is the value of the polynomial at 0. 

(b) The difference of the two polynomials is identically zero. 

1.13. (a) deg f(2t) = degf(t). What is deg h(i)? 

1.14. 1og2t = log2 + 1ogt. 

1.15. g(t + k) -g(t) is identically equal to 0. 

1.17. p(f - g) is identically zero. 

1.18. Either use induction or multiply both sides by 1 -t. 
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1.20. p(t2) has terms in only even powers of t. 

2.3. One root is t = m. 

2.5. The discriminant should vanish. 

2.8. The equation leads to a quadratic in x. For which values of Ic is the 
discriminant nonnegative? 

2.10. Express the sum and product of m - n2 and n - m2 in terms of 
m + n = 5/6 and mn = -l/2. 

2.14. (a) The polynomial does not take negative values. 

2.17. The discriminant of the quadratic, i.e. (fi+ &)2 -4fi, is not less 
than 0. 

3.3. (k) For a clean proof, apply (h), (d) and (f) to 1% + ~1~. 

3.5. The given locus is l/w times the locus of Re(z) = c. 

3.7. Let U and V be represented by the points 0 and 1 in the complex 
plane, and suppose the tree T is at z. Locate the points P and Q, 
noting that multiplication by i corresponds to a rotation through a 

right angle. Show that the midpoint of PQ does not depend on z. 

3.10. The solution of the equations for x and y in terms of a and b can be 

facilitated using the theory of the quadratic. 

3.14. (a) Make use of Exercise 3(c) and 3(d). 

3.15. (d) Use de Moivre’s Theorem, Exercise 3.8. 

4.4. (b) Use Exercise 2.4. 

4.9. To convert the particular equation to the general form, let y = 2x. 

4.16. (b) Let u be the polynomial g with its coefficients in the opposite 
order, i.e. u(t) = tkg(l/t) where JC = degg. Show that uh = f = gh 

and use Exercise 1.17. 

5.5. It suffices to prove the result for polynomials of the form x”y’ + xbya. 

5.7. Three numbers are in arithmetic progression if and only if their sum 

is equal to three times one of the numbers. 

5.9. (c) Let Q = x3, etc., and apply (a) and (b). 

6.3. (c) Multiply the equation in (b) by b. 

6.5. (b) Note that ac - bd = a(c - d) + (u - b)d. 
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7.7. A complete collection of quadratic polynomials which can be ex- 
pressed as the product of two linears can be obtained by multiplying 
together all possible (not necessarily distinct) linear parts; the num- 
ber of ways of doing this is easily determined. 

8.1. Express tan(A + B) in terms of tan A and tan II, and thence in terms 
of p and q. 

8.2. Write the left side of the equation in the form ax2 + bz + c. Verify 
that 

3 k(i - 1)i = (n + l)n(n - 1). 
i=l 

8.3. Consider (r - s2)(s - r2), w h ere r and s are the roots. Whatever 
method you use, be sure to show that the condition you obtain implies 
and is implied by one root being the square of the other. 

8.4. By considering q(t) = p(n + t), it suffices to prove the result is true 
for n = 0 and any quadratic. 

8.5. Express the discriminant of the second quadratic as the sum of a 
square and a multiple of the discriminant of the first quadratic. 

8.6. x2 + (b + 1)x + b has integer zeros for b E Z. 

8.7. a and b have, respectively, the same sum and the same product as -c 

and -d. 

8.8. Substitute .z = r, the real root, into the equation and separate the 
real and imaginary parts. 

8.9. A common root of the two equations is a root of any equation of the 

form f(x)(x” + px + 9) + g(x)(px2 + qx + 1) = 0. 

8.11. tan(n cot x) = tan(z/2 - x tan x). 

8.12. Form the discriminant and complete some obvious squares. 

8.13. p(l), p(-1), p(i), p(-i) all belong to the unit disc; what does this 
mean in terms of the coefficients a, b? 

8.14. Solve the quadratic equation by completing the square. The line join- 
ing the complex numbers r and s consists of the points (1 - t)r + ts 
where t is real. 

8.15. Let cos48 = (b2 - 8ac)/b2. Determine cos2 28 then take its square 

root and find cos2 0. 

8.16. Solve the equation for z by completing the square. Note that 
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(i) i = cos(?r/2) + isin(?r/2), so that 

i(cos 4 + i sin 4) = cos(+ + x/2) + i sin(d + 7r/2); 

(ii) cos 4 = sin(d + x/2) and sin 4 = - cos(d + x/2). 

Ultimately, obtain expressions for the roots of the equation in terms 
of e = 412 + x/4. 

8.18. Assume that the factorization over Z occurs. Show that the discrim- 
inants are perfect squares of the same parity. Find u and v such 
that b2 = u2 + v2. To get lb1 as a sum of squares, use the equation 
(r + is)2 = u + iv as inspiration. 

8.19. Put the expression in the form A + Bcos20 + Csin20 = A+ 
D sin(20 + 4). 

8.20. If f(x, y) h as 1 inear factors, the discriminant of f(x, y) as a quadratic 

in x must be square as a quadratic in y; what can be said about the 
discriminant of the second quadratic? 

8.21. (a) Substituting y = mx+c into the other equation yields a quadratic 
equation with equal roots. 

(b) Use the theory of the quadratic to determine the midpoints of the 
chords. If 1(x, y) = 0 is on the locus, find m and c in terms of x and 

y, and substitute into the condition obtained in (a). 

9.1. What are the other two roots? Do not solve the equation; just use 
the fact that the coefficients are real and one of them is 0. 

9.2. In particular, f commutes with any constant polynomial. 

9.3. A, B, C all vanish iff A2 + B2 + C2 = 0. 

9.4. The observation (fi)” - fi = fi suggests trying x = fi + u. 

9.6. (a) With the help of a surd conjugate, determine l/x. 

(b) Simplify the left side of the first equation. 

9.7. Can the square root ever be real? pure imaginary (i.e. a real multiplied 

by i)? 

9.9. What is xu? yv? 

9.10. Expand the left side as the product of two quadratics whose leading 
and linear coefficients agree, then put it in the form (u - l)(u + 1). 

9.11. Use the arithmetic-geometric mean inequality (Exercise 5.9). 
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9.12. Let the given polynomial be equal to c[fi(~,y)]~. Since constant 
terms of the fi must vanish, we can write fi(x, y) = eiZ2 + bixy + 

ciy2 + uix + viy. Use vectors: let a = (or, ~2, c13), etc. and verify that 
a.b=a-u=b~c=c~v=u~v=O,b~u+a~v=O,b-v+u.c=O. 
Try u = (0, l,O), v = (O,O, 1). 

9.13. Compare F,, and (x+Y)~F,,-~ with a view to setting up an induction 
process. Note that (x + Y)~ = & + xy. 

9.14. The hard part is to show symmetry in c and I. Establish this by 
induction. Look at Pn+l(x, y, z) - P,,+l(z, y, x). 



2 
Evaluation, Division, and 
Expansion 

2.1 Homer’s Method 

A Knight wishes to evaluate the polynomial 8t3 - 5t2 + 4t + 1 at t = 2. He 
takes it to the Royal Reckoner, who charges 10 sous for each multiplication 
and 5 sous for each addition. Since there are three multiplications required 
for the first term, two for the second and one for the third, the multiplica- 
tions will cost 60 sous. In addition, there will be a 15 sou charge for adding 
the terms, for a grand total of 75 sous. The Knight wonders whether the 
job could be done more cheaply. 

After some thought, he makes a suggestion. Write the first two terms 

in the form (8t - 5)t2, and substitute in t = 2. We then have one mul- 

tiplication and one subtraction inside the bracket, followed by two other 
multiplications, for a total cost of 35 sous. This compares very favorably 
with the 55 sous it would have cost using the Royal Reckoner’s method. 
Why not carry this regrouping further? The sum of the first three terms is 
equal to 

((8t - 5)t + 4)t. 

We still have only three multiplications along with two additions or sub- 
tractions when we substitute in t = 2 and evaluate. All we have to do 
now to get the value of the polynomial we started with is to make one 

more addition. The total cost is 45 sous. The nested form is going to save 

money! 

Exercises 

1. Consider the problem of evaluating the polynomial 

3t3 - 4t2 + 7t + 2 

at t = 3. 

(a) Show that the polynomial can be written in the form 

(((3t - 4)t + 7)t + 2) 

and use this to effect a cheap evaluation at t = 3. 
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(b) A paper-and-pencil algorithm for making the evaluation in (a) 
has the following table as its final result. 

3 -4 7 2 
9 15 66 

3 5 22 68 

Explain how the table is to be filled in and where the answer is 
found. 

(c) Show that the computation can be done on a pocket calculator 

using one of the following two procedures, depending on the 
calculator: 

(9 
Press buttons Result 

3x3= 9 
-4 = 5 
x3 = 15 
+7 = 22 
x3 = 66 
+2 = 68 

(ii) 

Press button Operator Result 

3 Enter 3 
3 Multiply 9 

4 Subtract 5 

3 Multiply 15 

7 Add 22 
3 Multiply 66 

2 Add 68 

This method of evaluating a polynomial is called Homer’s 

Method. 

2. Show that the Horner table for evaluating the polynomial 3t3 - 4t2 + 
7t + 2 at t = -2 is 

3 -4 7 2 

-6 20 -54 

3 -10 27 -52 

What is the required value? Check your answer independently. 
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3. In applying Horner’s Method, you should not fail to record zero coef- 
ficients. Check that the table for evaluating at t = 6 the polynomial 

t5 - 4t3 + 2t2 - 7 

is 
1 0 -4 2 0 -7 

6 36 192 1164 6984 

1 6 32 194 1164 6977 

and read off the required value of the polynomial. Check the value 
independently. 

4. Make up several polynomials of various degrees and evaluate them for 
a number of values of 1. Compare the number of operations required 
in Horner’s Method to the number that would be required for a term- 

by-term evaluation. 

5. Programme a computer to carry out an efficient calculation of the 
value oft = 2.376 of the polynomial 

4.82t5 f 87.2433t4 - 764.331t2 + 12.354t + 77.4412. 

6. A student, evaluating a polynomial, presses the following buttons on 
his pocket calculator: 

7x6~ x6=-2= x6=-3=x6=+1= x6=+2= 

Find the polynomial being evaluated and the point of evaluation. 

Determine the value of the polynomial. 

7. Find the polynomial, the point of evaluation and the required value 
of the polynomial from the following table: 

3 5 1 -2 6 
6 22 46 88 

3 11 23 44 94 

Check your answer using a pocket calculator. 

8. (a) Verify that 

t4 + t2 - 3t + 7 = (t3 + 3t2 + lot + 27)(t - 3) + 88. 

(b) Construct the Horner table for evaluating this polynomial at 

t = 3. The last entry in the bottom row gives the value sought. 
Interpret the remaining entries in the bottom row. Account for 
your interpretation. 
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(c) Construct the Horner table for evaluating at t = 3 the polyno- 

mial 

t3 + 3t2 + lot + 27. 

(d) Use the table in (c) to express the polynomial there in the form 

q(t)(t - 3) + r, for some polynomial q(t) and constant r. Check 
your answer by direct computation. 

(e) Write q(t) in the form u(t)(t - 3) + v for some polynomial u(t) 
and constant v. 

(f) Combine the results of the previous parts of this problem to 

write the polynomial t4 + t2 - 3t + 7 in the form 

b. + bl(t - 3) + b2(t - 3)2 + b,(t - 3)3 + b4(t - 3)4 

for some constants bi. Show how the computation can be dis- 
played in a convenient table. 

9. Explain the connection between the table 

3 -2 4 7 
31 5 

3 1 5 12 
3 4 

3 4 9 
3 

3 7 

3 

and the identity 

3t3 - 2t2 + 4t + 7 = 12 + 9(t - 1) + 7(t - 1)2 + 3(t - 1)s. 

10. For each of the following polynomialsp(t) and constants c, use Horner’s 

Method to write p(t) in the form (t - c)q(t) +p(c) and expand p(t) in 
terms of powers of (t - c). In each case, check your answer by making 
the substitution t = c + s, expanding out p(c + s) as a polynomial in 
s, and then substituting t - c for each occurrence of s. 

(a) p(t) = t4 + t2 - 3t + 7 c = 3 

(b) p(t) = t5 - 4t3 + 2t2 - 7 c = -5 

(c) p(t) = t7 + t6 - t4 + t2 - 5t - 1 c = 6. 
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11. Expand the polynomial y7 - 4y6 + 2y4 - y” + y + 1 in terms of (y + 2) 

and evaluate it at y = -1.95 to two decimal places. 

12. What does the table for expanding p(t) in powers oft look like? 

13. Let p, q, r, s be the zeros of the quartic t4 - 3t3 + 2t2 + 5t - 2. Use 
Horner’s Method to find a polynomial with integer coefficients whose 
zeros arep+3, q+3, r+3, s+3. 

Explorations 

E.16. We can evaluate 65 by means of four multiplications. However, the 
number of multiplications can be reduced to 3: 

6 x 6 = 36, 36 x 36 = 1296, 6 x 1296 = 7776. 

In general, for an arbitrary positive integer n and constant c, what is the 
minimum number of multiplications necessary to compute c”? 

(a) Show that, if n = 2k+1 then c” can be obtained with no more than 

L multiplications. Is it possible to get by with fewer multiplications? 

(b) Show that c” can be computed using a pocket calculator or a com- 
puter by some sequence of the following two operations: 

(i) multiply the display by c (which can be stored in memory); 

(ii) square the display. 

(c) Plan the procedure baaed on (b) which you would use to determine 
c51. How many multiplications are required? The binary representation (i.e. 
to base 2) of 51 will give a clue as to the order in which operations (i) and 

(ii) might be taken. 

E.17. For small positive values of the integer n, determine the expansion 

of tn in terms of (t - 1) using Horner’s table. Look for patterns, depending 
on n and Ic, which govern the coefficients of (t - l)k. Try to find general 

formulae for these coefficients. Rewrite the equation you get by making the 
substitution t = 1 + x. 

E.18. Factorial Powers and Summations. The formulae 

1+2+...+72= 2 L(n+l) n= 1,2,... 

l2 + 22 + . . . + n2 = $n(n + 1)(2n + 1) n= 1,2,... 

are familiar to many high school students. The task of finding analogous 
closed formulae for the sums of higher powers such as cubes and fourth 
powers increases in complexity with the exponent. Is there a systematic 
way of proceeding in general? 
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Taking notice of the fact that the nth term of any series is equal to 

the difference between the sums of the first n terms and of the first n - 1 
terms, one can see that the two formulae given above can be established 
by verifying the algebraic results 

n = +(n + 1) - i(n - 1)n 

n2 = &(n + 1)(2n + 1) - i(n - l)n(2n - 1). 

With these formulae which express the general term of the series as a 
difference, we can obtain the required sum by “summation by differences.” 
For example, 

1+2+ . ..+n= il.2, i2.3 -3.2 +... 
> 

+ in(n+l)-i(n-1)n 1 = $(n+l) 

after a cancellation of terms. This method seems unsatisfactory since we 
do not usually know in advance how to find a function whose differences 
are n and n2. 

To get around this, we try to find functions which have differences which 
are simply described, and then try to express the summands of the series 
in terms of these functions. 

Let g(n) be a function of the integer n. The first order difference of g(n) 
is defined by 

b(n) = s(n + 1) - s(n). 

Find Ag(n) when g(n) = nk (Jc = O,l, 2,3,4,5)? Verify that An6 = 6n5 + 
15n4 + 20n3 + 15n2 + 6n + 1. The result is quite complicated. A function 
which has a difference of a simpler type is the factorial power of n. This is 

defined as follows: 

let k be a positive integer. Then the k2h factorial power of n is 

given by 

rack) = n(n - l)(n - 2) . . . (n - k + l), 

where there are k factors, each 1 less than its predecessor. 

Verify that An(“) = kdk-‘). 
The value of this formula is that we can now conveniently sum by differ- 

ences. Using the fact that 

(r + l)(“+l) - p(k+l) = (k + l)rck), 
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show that 

c 
n ,.(k) _ ’ 

r=l 

- h+l(n + l)(k+‘) 

fork= 1,2,3 ,... . 
Since we know how to sum factorial powers, we can now sum ordinary 

powers by expressing them first in terms of factorial powers. For example, 
verify that r2 = d2) + r(l), and use this fact to derive the summation 

formula for the first n squares. 
Express r3 as a “polynomial” in factorial powers and use the result to 

derive a formula for the sum of the first n cubes. Try out the process for 

higher powers. 
How can we systematically determine the factorial power expansion of 

a given polynomial, such as r k7 Horner’s method can be adapted to this . 

purpose. For example, suppose r4 is to be written in the form 

r4 = c,dn) + c,-ldnsl) + .. . + clr f CO. 

Observe that the polynomial r4 - cc is divisible by r; the polynomial r4 - 
(cc + clr) is divisible by r - 1, and so on. We can use this to design a 

“Homer’s” table whose entries are the desired coefficients. 

Thus, a suitable table for r4 would be 

1 0 0 0 0 
0 0 0 0 

1 0 0 0 0 
1 1 1 

1 1 1 1 
2 6 

1 3 7 
3 

1 6 

Justify this table and read off the factorial expansion of r4 from it. Check 
directly that the expansion is correct. Use this to derive a formula for the 

sum of the first n fourth powers. 
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For the polynomial 4r3 + 2r2 - r - 1, verify that the Horner’s table is 

4 2 -1 -1 
0 0 0 

4 2 -1 -1 

4 6 

4 6 5 
8 

4 14 

and use this to determine a factorial power expansion of the given cubic. 
(For convenience, we can simply delete the first two lines of the table.) [See 

also Exercise 7.1.16-17, Explorations E.54 and E.57.l 

2.2 Division of Polynomials 

In Exercise 1.8, we observed that the bottom line of Horner’s table gave us 
the coefficients of the quotient q(t) w h en we divided the polynomial p(t) 

by (t - c) to obtain an identity of the form 

p(t) = q(t)@ - c) + k. 

By analogy with numbers, we can look upon this equation as representing 

a division. The polynomial p(t) is divided by (t-c), yielding a quotient q(t) 
and a remainder k. However, there is no reason to restrict our attention to 

divisors of degree 1. 
The exercises in this section will sketch in the details of a theory of 

division for polynomials which is similar to that for integers. The extent 
to which we can discuss division of one polynomial by another depends on 
the domain from which the coefficients are taken, so let us establish some 
terminology: 

Let D be an integral domain, and D[t] be the set of all polynomials in 
the variable t with coefficients in D. For short, if f(t) belongs to D[t], we 

say that f(t) is a polynomial over D. For any pair f(t), g(t) of polynomials 
in D[t], we say that g(t) divides f(t) (in symbols: g(t) ] f(t)) if there is a 

polynomial h(t) in D[t] for which f(t) = g(t)h(t). In this situation, g(t) is 

a divisor or factor of f(t) and f(t) a multiple of g(t). 

Exercises 

1. Let p(t) be any polynomial over an integral domain D and c be any 
element of D. Consider the equation 

p(t) = (t - c)q(t) + k 
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where q(t) is a polynomial and k a constant polynomial over D. 

(i) Show that degq = (degp) - 1. 

(ii) By making the substitution t = c, verify that k = p(c). 

2. Factor Theorem. Let c belong to an integral domain D and p(t) be 
any polynomial over D. Show that (t - c) divides p(t) if and only if 

p(c) = 0. 

3. Let r be a zero of the polynomial p(t) over an integral domain, so 
that for some polynomial q(t), p(t) = (t - r)q(t). Prove that, ifs # r, 
then s is a zero of p(t) if and only ifs is a zero of q(t). 

4. (a) Suppose rl, r2,. . . , rk are distinct zeros of a polynomial p(t) over 
an integral domain. Show that there exists a polynomial q(t) for 

which p(t) = (t - ?y)(t - r2) . . . (t - rk)q(i!). 

(b) Prove that the number of distinct zeros of a nonzero polynomial 
over an integral domain cannot exceed its degree. 

(c) Verify that the polynomial t2-5t+6 over 212 has more than two 
zeros. This example shows that (b) may fail when the condition 
that the coefficients belong to an integral domain is dropped. 

5. Let Q and b be two distinct zeros of a polynomial f(t), so that, for 
some polynomials u(t) and v(t), 

f(t) = (t - a)u(t) = (t - b)v(t). 

Prove that the remaining zeros of f(t) are the solutions of the equa- 

tion 

u(t) - v(t) = 0. 

6. Consider the equation -t4 - 51 - 6 = 0. 

(a) By inspection, determine two integer solutions. 

(b) Use Exercise 5 to determine two other solutions of the equation. 

7. Exercise 1 treats the case when the divisor is of degree 1, in which case 
we find that the remainder is a constant. Can we talk about division 
by polynomials of degree exceeding l? Consider the possibility of 

dividing the polynomial 

f(t) = 4t5 - 3t4 - 7t2 + 6 

by the polynomial 

g(t) = t3 + 7t2 + 3t - 2. 
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If we think of the “size” of a polynomial as being measured by its de- 
gree, then, as with numbers, we can take away a multiple of g(t) which 

leaves as a remainder, a “smaller” quantity which will in turn be sub- 
sequently divided by g(t). In the context of polynomials, “smaller” 
means “of lower degree”. Subtracting 4t2g(t) will leave such a remain- 

der. 

(4 

(b) 

cc> 

Verify that f(t) - 4t2g(t) = -31t4 - 12t3 + t2 + 6. 

Take away a multiple of g(t) from the right hand side of (a) to 
leave a remainder of lower degree. Continue on in this fashion 
until a remainder of degree less than that of g(t) is obtained. 

Show that the process of parts (a) and (b) can be written in the 
form of the long division algorithm: 

4tz - 31t + 205 

t3 + 7tz + 3t - 21 4t5 - 3t4 + OP - 7P + Ot+ 6 

’ 4t5 + 28t4 -i- 12t3 - 8t2 

- 31t4 - 12t3 + t2 + Ot+ 6 
- 31t4 - 217t3 - 93t2 + 62t 

205t3 -I- 94t2 - 62t + 6 

205t3 + 1435t2 + 615t - 410 
- 1341t2 - 677t + 416 

(4 

(e) 

From the algorithm in (c), read off the quotient and the remain- 
der for the equation 

f(t) = g(W) + r(t). 

Check your answer by directly computing the right hand side. 

The algorithm in (c) can be more clearly presented by suppress- 

ing the variable to obtain 

4 -31 205 
173 -2)4 -3 0 -7 0 6 

4 28 12 -8 
-31 -12 1 

-31 -217 -93 62 
205 94 -62 
205 1435 615 -410 

-1341 -677 416 

A further compression of this is Homer’s Method of Synthetic Di- 

vision which can be regarded as a generalization of his method for 
division by a binomial (t - c) and which in this case takes the form: 
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8 

9 

10 

11 

12 

13 

Explain how to perform the algorithm, how to read off the quotient, 
and remainder and why it works. 

Make up a number of long division problems involving polynomials. 
Solve them by the long division algorithm and by Horner’s Method 
of Synthetic Division, and check the results. 

Establish: 

Division Theorem. Let f and g be two polynomials over a field F and 
suppose that deg g 2 1. Then there are polynomials q (quotient) and 

r (remainder) such that 

f =gq+r and degr<degg. 

The Division Theorem was formulated for polynomials over a field. 
The case of dividing the polynomial 3t2 + t + 1 by 2t - 1 in Z[t] shows 

that it does not always hold for polynomials over an integral domain. 
Formulate and prove a modified version of the theorem in this case. 

In the case of dividing a polynomial f(t) by the binomial (t - c), the 
remainder can be given by a formula f(c) involving the polynomial f 
and the coefficients of the divisor. Derive a formula for the remainder 
when f(t) is divided by (t - a)(t - b). 

Let F be a field and let F[x, y] denote the ring of polynomials in 

the variable x and y with coefficients in F. Suppose f (x, y) belongs 
to F[x, y]. Apply the Factor Theorem to the ring F[x] to show that 

f (x, x) = 0 if and only if (x - y) is a factor of f (x, y). More generally, 
show that y - g(x) divides f(x, y) if and only if f(x,g(x)) = 0, for 

g(x) in F[x]. 

Consider the symmetric homogeneous polynomial 

f (x, Y, 4 = x2$ + x3y2 + x2.z3 + x3,z2 + y2z3 + y3z2. 

To find a representation of this polynomial in terms of the elementary 

symmetric polynomials 

Sl(X, y, z) = x + y + z 

s2(x, y, z) = xy + yz + zx 

33(x, Y, z) = XYZ, 

proceed as follows: 
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(a) Set z = 0 and obtain that f (x, y, 0) = (x + y)x29. 

(b) Consider the polynomial 

Ll(x, Y, z) = f(x, Y, z) - 31(x, YI Z>ES2(X, Y, 412. 
Show that g(x, y, 0) = g(x, 0, y) = g(0, y, z) = 0 and deduce that 
xyz is a factor of g(x, y, z). 

(c) Determine a polynomial h(x, y, z) for which 

dx, Y, 4 = XYZ h(x, y, 4. 

Is h(x, y, z) symmetric and homogeneous? What is the degree of 

h(x, Y, +’ 

(d) Write h(x, y, ) z as a polynomial in si, s2 and ss. 

(e) Write f (x, y, z) as a polynomial in si, $2 and ss. 

14. Carry out the procedure of Exercise 13 on the other two polynomials 
given in Exercise 1.5.8. 

15: -Gauss’ Theorem on Symmetric Functions. In Exercises 1.5.5 and 

s. , 1.5.8, the representation of a symmetric polynomial in terms of the 
elementary symmetric polynomials was carried out for specific exam- 

ples of low degree. In this exercise, we will outline the proof of this 

result in general. 

Lettl,tz,.. . , t, be n variables and let sl,s2,. . . , s,, be the elementary 
symmetric functions of these variables; namely, si is the sum of the 

n 

( > i 
possible products of i of the variables tk (1 5 j 5 n). Then 

any symmetric polynomial in the variables 6 can be ex- 
pressed as a polynomial in the variable si (1 5 i 5 n). 

(a) It is enough to prove the result for homogeneous polynomials. 

We use induction. Verify that, trivially, the result holds for all 
polynomials of degree 0 and for all polynomials of a single vari- 

able. 

(b) Suppose as an induction hypothesis, that the result holds for 

(i) all polynomials of degree < k and any number of variables; 

(ii) all polynomials of degree k and n - 1 or fewer variables; 

where k 2 1 and n 2 2. 

Let p(h,t2,t3,. . . , tn) be a homogeneous symmetric polynomial 
of degree k. Show that p(tl,tz, . . . ,tn-i, 0) is a homogeneous 
symmetric polynomial of n - 1 variables which, by the induction 
hypothesis, can be written in the form q(ul, 212, . . . , un-l), where 
q is a polynomial in the elementary symmetric functions uj of 

the n - 1 variables ti (1 < i 5 n - 1). 
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(c) In (b), argue that 

P(h)..., tn) -q(s1,s2 ,..., h-1) 

is a symmetric polynomial which vanishes for t, = 0, and hence 
vanishes when any of the variables ti is individually set equal to 
0. 

(d) Show that the polynomial p - q in (c) either vanishes or can be 
written as the product of tit2 . . . t, and a homogeneous symmet- 
ric polynomial of degree k - n, and use this fact along with the 
induction hypothesis to complete the proof of Gauss’ Theorem. 

Explorations 

E.19. Chromatic Polynomials. One of the most notorious problems of 
all time is the Four Color Problem. Suppose that you are given any map 
drawn upon a sphere; every region is such that you can pass from any point 
in the region to any other without having to leave the region (technically, 
any two points in a region can be connected by an arc in the region). One 
wishes to color this map in such a way that any two regions which have 

a common boundary line are colored differently. With some maps, such as 

those like a checkerboard, two colors will be enough. Other maps, such as 
the map of Canada, will require at least three. However, no one has ever 
been able to find a map for which more than four colors were needed. The 
Four Color Problem is to show that no such map exists. 

The problem came to light first in 1852, when Francis Guthrie, a stu- 
dent at the University of London, posed it to his brother Frederick, who 
in turn passed it on to Augustus de Morgan. Evidently, it did the rounds 
among mathematicians for a number of years, for in 1878, Arthur Cay- 
ley mentioned at a meeting of the London Mathematical Society that he 
was unable to solve it. In the following two years, independent “proofs” 
were published by P. G. Tait and A. B. Kempe. However, P. J. Heawood 

discovered errors in these in 1890, although he did prove a fairly general 
result about coloring maps. Interest grew in the problem and it spawned 
many new techniques, but a solution eluded an ever-increasing circle of 
mathematicians. Eventually, in 1976, a complicated proof of the conjecture 
requiring extensive computer resources was found by Haken and Appel. 

A survey of map colorings appears in G. Ringel, Map Color Theorems 

(Springer, 1974). 
In tackling a problem like the Four Color conjecture, it is customary to 

reformulate the situation. Represent each region by a node or vertex (you 
can think of this as the capital of the region); join two vertices by edges if 
and only if their corresponding regions have a boundary line in common. 
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Such an array of vertices and edges is called a graph. Some examples of 

graphs are the following: 

The graphs involved in map coloring problems can be drawn on a plane 
or a sphere, but there are some graphs which cannot be drawn on a plane 
surface without the edges intersecting in points other than vertices. Such 
a graph is 

A B c 

D E F 

in which each of the vertices A, B, C is connected to each of the vertices 

D, E, F. 

The question of coloring regions on a map can be reinterpreted as col- 

oring vertices on a graph in such a way that any two vertices joined by 
an edge are colored differently. Recall that a graph, in this context, is a 
collection of points or vertices some pairs of which are connected by edges. 
To study coloring problems in a systematic way, we define for a graph G 

the chromatic function Cc(t). This is the number of ways in which the 
graph G can be colored with no more than t colors so that two vertices 
joined by an edge are colored differently. The Four Color Conjecture says 
that, if G is a graph which can be presented on the surface of a sphere with 

no crossing of edges except at vertices, then CG(~) is always at least 1. 
(a) Suppose that n,. is the number of ways a graph G with a finite number 

n of vertices can be colored with exactly r distinct colors. Show that 

Cc(t) = 2 ( ; ) nr. 
r=O 

Thus the chromatic function of a graph with finitely many vertices is a 
polynomial. 
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(b) Show that, if G is a graph with exactly n vertices and no connecting 
edges, then 

Cc(t) = tn. 

(c) Show that, if G is a graph with exactly n vertices, any two of which 
are connected by an edge, then 

CG(t) = t(t - l)(t - 2). . . (t - n + 1). 

(d) The chromatic function of a graph can be found by adding together 
the chromatic functions of related graphs. Let G be a graph containing two 
vertices a and b not connected by an edge. From G, form a graph E by 

connecting a and b by an edge and a graph F by replacing a and b by a 
vertex c (not already in G) which is to be connected to any vertex in G 

which joins either a or b. Show that 

CC?(t) = CE(t) + Cl+)* 

Deduce from this that one can express any chromatic function as the sum 
of chromatic functions of the form t(t - 1). . . (t - k + 1) corresponding to 
graphs every pair of whose points is joined by an edge. 

(e) Each of th f 11 e o owing polynomials is the chromatic function of a graph 
with four vertices. Determine the graphs: 

t4 - 6t3 + lit’ - 6t, t4 - 5t3 + 8t2 - 4t, t4 - 4t3 + 5t2 - 2t, 

t4 - 4t3 + 6t2 - 3t, t4 - 3t3 + 3t2 - t, t4 - 2t3 + P, t4 - P, t4. 

(f) Consider the graph with vertices A, B, C, D, E, F diagrammed 
above. Show that this graph cannot be colored with 0 or 1 colors, but 
can be colored with 2 colors in exactly two ways. Show that its chromatic 

polynomial is 
t(t - l)(t4 - 8t3 + 28t2 - 47t + 31). 

(g) What is th e c h romatic polynomial of the graph made up of the ver- 

tices and edges of a cube? of each of the other four platonic solids (tetra- 
hedron, octahedron, dodecahedron, icosahedron)? 

E.20. The Greatest Common Divisor of Two Polynomials. Formu- 
late a definition of common divisor of two polynomials. What is meant by 
greatest common divisor in this context? There is some ambiguity in what 
the greatest common divisor should be; we can remove it by insisting that it 
be manic. Devise a Euclidean algorithm analogous to that of Exercise 1.6.1 
for determining the greatest common divisor. Will this algorithm lead to a 
representation of the form uf + vg (u and v polynomials) for the greatest 
common divisor? Is it true that every common divisor divides the greatest 

common divisor? Try out your ideas on the pairs: 

(a) 2t3 + 9t2 + 8t - 5 and t2 + 5t + 6 
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(b) 2t3 + 9t2 + 8t - 4 and t2 + 5t + 6. 

E.21. Investigate formulae for the remainder when a polynomial f(t) is 
divided by 

(4 (t - elk 
(b) (t-al)(t-az)(t--a+-(t-a,) 

(c) (t - a)‘-(t - b)“. 

2.3 The Derivative 

The algorithm given in Section 1 for expanding a given polynomial p(t) in 
terms of powers of (t - c) for a constant c is a mechanical method which 
does not give much insight into the structural significance of the coefficients. 
We would like to be able to describe them in terms of the polynomial p(t) 
and the constant c. Surprisingly, this is done through the introduction of 
a concept which most students encounter in quite a different domain- 

the calculus. Let us begin with two observations before continuing to the 
exercises. 

(1) p(t) is the sum of monomials akt k. If we have an expansion of each 

monomial in terms of powers of (t - c), then the expansion of p(t) is the 
sum of the expansions of the monomials. 

(2) We can write p(t) = q(t)(t - c) + p(c). If we can obtain an expansion 
for q(t), then we can insert it into this equation to get one for p(t). The 
constant q(c) occurs as the coefficient of (t - c) in the expansion for p(t); 
can we express this in terms of p? Can the coefficients of higher powers of 
(t - c) be similarly identified? 

Exercises 

1. Construct Horner’s Table for the expansion of the following polyno- 

mials in terms of ascending powers of (t - c): 

(4 t2 

lb) t3 

(c) t4. 

Check your result by expanding t” = [c + (t - c)]“. 

2. Verify, by Horner’s method or otherwise, that the first two terms in 
the expansion of tm in terms of powers of (t - c) are 

cm + mm-‘(t - c). 
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3. Show that the first two terms in the expansion of a polynomial 

p(t) = a&” + a,-#-l + * * * + a1t + a0 

in terms of ascending powers of (t - c) are 

P(C) + p’(c)(t - c) 

where p’(t) is the polynomial p’(t) = na,t”-’ + (n - l)an-$‘-2 + 

(n - 2)a,-2iT3 + . . . + 2a2t + al. 

4. The derivative. For any polynomial p(t), the polynomial p’(t) defined 
in Exercise 3 is called the derivative of p(t). The process of obtaining 
the derivative of a polynomial is called diflerentiation. 

(a) Verify that the derivative of the polynomial 3t5-7t4+6t2-5t-3 
is 15t4 - 28t3 + 12t - 5. 

(b) Find the derivative of the polynomial 4t13 - 3ta - 5t7+4t3 + 76t. 

5. Properties of the derivative. Establish the following properties of the 
derivative, where p and q are polynomials and k is a constant: 

(a) (p + q)‘(t) = p’(t) + q’(t). Extend this to an arbitrary sum of 

polynomials. 

(b) W’(t) = W(t). 

cc> $J$.lys= p’(t)q(t) + p(t)q’(t) in the special case p(t) = tp and 

(4 W’(t) 1 p’(Mt) +p(th’(t) f or arbitrary polynomials p and q. 
Extend this to a product of more than two polynomials. 

(e) the derivative of p(t)’ is rp(t)‘-‘p’(t) for an arbitrary positive 
integer r (use (d)). 

(f) (P 0 q)‘(t) = p’(q(t))q’(t). 

6. Verify the properties of the derivative given in Exercise 5 for the 
special case 

p(t) = 3t2 - 4t + 2 and q(t) = 4t3 - 2t2 + 6t + 1. 

7. Since differentiation of a polynomial leads to another polynomial, we 
can apply the operation of taking the derivative repeatedly. Thus, if 

p’(t) is the derivative of p(t), th e second derivative of p(t) is p”(t) = 

(p’)‘(t). In general, we can define 

p(O)(t) = p(t) 

p(l)(t) = p’(t) 

p’“‘(t) = p”(t) 

pck)(t) = (p(k-‘))‘(t) for k > 3. - 
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(a) Verify that if u(t) = t 5-4t3+2t2-7, then u’(t) = 5t4-12t2+4t, 
u” t) = 20t3 - 24t + 4, d3)(t) = 60t2 - 24, ~(~1 = 120t and 

\ UC5 (t) = 120. 

(b) Show that, for any polynomial p(t) and any positive integer r 
not exceeding degp, degp(‘) = (degp) - r. 

(c) Show that, for any polynomial p(t) of positive degree n, p(“) is 
a constant polynomial and ~(‘1 = 0 for r > n. 

(d) Derive a formula for (pq)“(t) and generalize it to a formula for 

(Pd”‘(t). 

8. Show that for any positive integers m and k, with m 5 k, the mth 
derivative of (t - c)~ is equal to 

k(k - l)(k-2)...(k-m+ l)(t -c)~-~. 

9. We are now in a position to show that every polynomial has an ex- 
pansion in terms of powers of (t - c) and to identify the coefficients. 

The result is: 

Taylor’s ‘Theorem. Let p(t) b e any polynomial of degree n and c be 
a constant. Then 

p(t) = P(C) + p’(c)(t - c) + p!!l& _ c)2 + p!f!$+, - c)3 

+...+ p&?$+t _ C)k + . . . 

where the sum on the right has at most n + 1 nonzero terms. 

The right-hand side is called the Taylor expansion of p(t) about c. 

Verify the theorem for the polynomial t4 + t2 - 3t + 7 expanded in 
terms of powers of (t - 3)) checking your answer against the result of 
Exercise 1.8. 

Establish Taylor’s Theorem in the following steps: 

(a) Use the Division Theorem to establish that p(t) can be written 
in the form 

p(t) = cn(t - c)” +pl(t) where degpr 5 n - 1. 

(b) By repeated use of the Division Theorem on the remainders 
resulting from the procedure in (a), show that 

p(t) = co + q(t - c) + CZ(t - c)2 + cg(t - c)3 + . . . . 
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(c) Differentiate both sides of the equation in (b) repeatedly. Set 
t = c to obtain 

P(C) = co 

P’(C) = Cl 

p”(C) = 2!c2 

and in general 

p@‘(c) = 3!c3 

P(~)(C) = k!ck for 0 < k < n. - - 

Substitute in (b) to obtain the result. 

10. What does the Taylor Expansion of p(t) about c amount to when 
c = O? 

11. Form the Taylor Expansions for p(t) and q(t) about c. Multiply them 
together and verify that the result is 

(P(l)(C) + (Pd’W - c) + ;(PnYkw - 4” + . . . * 

12. (a) Use Taylor’s Theorem to establish the Binomial Expansion 

(1 + t)^ = 1 + nt + (;)tz+...+( ;>tk+...+t”. 

(b) Prove that 

(u + b)” = a” + na”-lb + . . . + anskbk + . . . + b”. 

13. Another approach to use in expanding p(t) in terms of powers of 
(t - c) is to make the substitution t = c + s, and compute p(c + s) in 
ascending powers of s. Do this for the polynomial t3 - 4t2 + 7t + 2 
and check that the coefficient of s’ is p(‘)(c)/r! for each value of r. 

14. For several polynomials and values of c of your choice, find the Tay- 

lor expansion and check your answer by (i) Horner’s Method, (ii) a 
substitution of the type t = c + s, (iii) multiplying out and adding 

the terms of the expansion. 

15. Multiplicity of zeros. In Exercise 2.2, we found that c is a zero of a 
polynomial p(t) f d i an only if (t - c) is a factor of p(t). Using this 
result as a basis, we can sharpen the idea of a zero. 
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(a) Show that, for any number c and any nonzero polynomial p(t), 
we can find a nonnegative integer r, not exceeding the degree of 
p(t), such that 

p(t) = (t - c)‘q(t) 

where q(t) is a polynomial with q(c) # 0. Thus, (t - c)’ di- 
vides p(t) while (t - c) r+l does not. The number r is called the 
multiplicity of c as a zero of p(t). If c is not a zero then c has 
multiplicity 0. A zero of multiplicity one is called a simple zero. 

(b) Let p(c) = 0. Sh ow that the multiplicity of c as a zero of p(t) 
exceeds 1 if and only if c is a zero of p’(t). In this situation, show 

that the multiplicity of c as a zero of p(t) exceeds the multiplicity 
of c as a zero of p’(t) by 1. 

(c) Show that (t - ) c is a zero of positive multiplicity r if and only 
ifp(c)=p’(c)=...= p(‘-‘j(c) = 0 and p(‘)(c) # 0. 

(d) What is the term of lowest degree in the Taylor expansion of 
p(t) about c if c is a zero of multiplicity r? 

16. Let p be a polynomial and c a constant. Prove or disprove: if p(c) = 
p”(c) = 0, then c is a zero of p of multiplicity at least three. 

Explorations 

E.22. Higher Order Derivatives of the Composition of Two Func- 
tions. Let p and q be any two polynomials. Is there a general formula 
for the kth derivative (p o q)(‘)(t) of their composition? To deal with this 
question, let us introduce some notation: 

pk to denote p(l)(q(t)), the kth derivative of p evaluated at q(t); 
qk to denote p’(t), the kth derivative of q at t. 

Verify that 

(P 0 d’(t) = PlQl 

(P 0 q)“(t) = PZQ? + Pl Q2 

(P 0 !I)“‘@) = P3Qf + 3PzQ142 + PlQ3 * 

Compute derivatives of the next few higher orders and look for patterns. 
For example, try to get the profile of a general term without regard to the 
exact value of the coefficient; relate the subscript for p to the powers of the 
derivatives of q in each product (can you explain the relationship). What 
is the nature and the value of the coefficient of the term with the factor 

pk-1 in the development of the kth derivative? 

E.23. Partial Derivatives. The ring F[z, y], of polynomials in two vari- 

ables over a field F can be thought of in two ways: 

(i) as a ring of polynomials in the variable z over F[y]; 
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(ii) as a ring of polynomials in the variable y over F[z]. 

Corresponding to these, we can consider two types of differentiation of a 
polynomial f (x, y): 

(i) partial differentiation with respect to x resulting in the partial deriva- 
tive fi(x, y), with y treated as a constant. 

(ii) partial differentiation with respect to y resulting in the partial deriva- 
tive fY(x, y), with x treated as a constant. 

For example, if f(z, y) = 5x3y2 + 32’~ - 2z3 + 4y - 7, 

fs(x, y) = 15z2y2 + 6xy - 6x2 

fy(x, y) = 102sy + 3x2 + 4. 

Just as in the case of polynomials of one variable, we can consider deriva- 

tives of higher order. For example, we can define 

fk&,Y) = (f&(x, Y), f&Y Y) = (f&(x, Y>Y 

with fyt and fgY defined similarly. What would these second order partial 
derivatives be for the examples? 

(a) Formulate and prove a conjecture concerning the relationship between 

fsy and fyr. 
(b) Define partial derivatives of the third order. How many distinct pos- 

sibilities are there? 
(c) Define partial derivatives of the kth order, for any positive integer k. 
(d) Show that, for any polynomial of two variables, the kth order partial 

derivatives all vanish for k sufficiently large. How is the minimum such 

value of k related to the degree of the polynomial? 

(e) We can formulate a version of Taylor’s Theorem in which f (x, y) can 

be expanded about (a, b) in the form: 

f (x, Y) = coo + clo(x - a) + COI(Y - b) + cu(x - a)’ + c12(x - Q)(Y - b) 

+ c22(y - b)’ + 1. . . 

Write down the form of the terms of higher degree and determine the 
coefficients in terms of the partial derivatives of f (x, y) at (a, b). 

(f) Generalize the results of this section for polynomials of more than 
two variables. 

E.24. Homogeneous Polynomials. In Section 1.5, we defined a poly- 
nomial to be homogeneous of degree d if each of its terms had the same 
degree d. For a polynomial of two variables, this is equivalent to requir- 
ing that f(tx,ty) = tdf(x, y) ( see Exercise 1.5.2). Write down a number 

of homogeneous polynomials of various degrees and compute for each the 
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quantity xfz + yfY. What does this equal when deg f = l? deg f = 2? 
Make a conjecture and prove it. Does the property that you have found 

characterize homogeneous polynomials (i.e. if a polynomial has the prop- 
erty, must it be homogeneous)? What is the generalization for more than 
two variables? 

E.25. Cauchy-Riemann Conditions. Consider a polynomial f (2) over 
C of the complex variable z. If we make the substitution z = x + yi, and 
separate out the real and imaginary parts, we can express f(z) in the form 

u(x, Y) + iv(x, Y), where ‘u and v are polynomials in R[t, y]. For example, 
if f(z) = 3z2 + (2 + i)z - (2 - 3i), verify that 

f (x + Yi> = 3(x2 + 2xyi - y2) + (2 + i)(x + yi) - (2 - 3i) 

= [3(x2-y2)+2x-y-22]+[6xy+x+2y+3]i, 

so that, in this case U(X, y) = 3(x2 - y2) + 2x - y - 2 

Thus, each complex polynomial f (2) corresponds to two real polynomials 

~(2, y), v(z) y). What pairs {u, v} of polynomials arise in this way? Is it 
possible to find a corresponding f for any given pair, or must there be some 
relation connecting u and v? 

To look at a simple example, show that it is not possible to find a complex 
polynomial f( ) f z or which ~(2, y) = z and v(x, y) = 0. (Such a polynomial 
would have to satisfy f(x + iy) = z for all real x and y.) If a(~:, y) = z, 
what are the possibilities for v( 2, y)? 

It turns out that there are two simple equations connecting the partial 
derivatives u2, v, , uY, vY . By looking at the above example, as well as other 
polynomials of low degree, make a conjecture. Now prove it, noting that 

essentially you have to check your conjecture for the polynomial Z” for each 
positive integer 12. 

Compute the second order derivatives u,,, uYy, v,,, vyY for the above 
example, as well as for other polynomials. Look for patterns and make 

conjectures. 
Suppose that you are given a polynomial u(z, y) in R[x, y]. Investigate 

whether it is always possible to find a polynomial f(z) in C[Z] such that 

f(x+yi) = u(x,Y)+qx,Y), f or some real polynomial v(x) y). For example, 

you might look at ~(2, y) = 0, xy or x2. If such a polynomial v(x, y) exists, 
how many possibilities are there? 

The relationship connecting the first order partial derivatives of u and v is 
not just a matter of idle curiosity. The natural generalization of polynomials 
is a class of functions f(r) defined for a complex variable z which can be 
expressed by an infinite series of monomials involving powers of z. The 

real and imaginary parts of the functions in this class can be characterized 
by the Cauchy-Riemann Conditions (in which the notion of derivative is 
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realized through the medium of limits). A second order differential equation 
satisfied by the real and imaginary parts of these functions is one that has 
an important part to play in physics. Partly for this reason, functions of a 
complex variable have a useful role in this science. 

E.26. The Legendre Equation. In applied mathematics, the differential 
equation 

(1 - x’)y” - 2x4 + n(n + 1)y = 0 . . . (1) 

(where y is a function of x) plays an important role. What sort of solutions 
does this equation have? 

To find out, differentiate the equation r times to obtain 

(1 - x’)y(‘+‘) - 2(r + l)xy(‘+‘) + (n - r)(n + 1 + r)ycr) = 0. . . . (2) 

Thus, if n is a positive integer and r = n, z = y(‘+l) satisfies the equation 

(1 - 2’)~ - 2(r + 1)zz = 0. . . . (3) 

Show that (3) is not satisfied by any nonzero polynomial z in the variable 
z. Deduce that any polynomial solution y of (1) has degree not exceeding 
n. 

Equation (1) in fact does have a polynomial solution y = P,(x). Check 
this for n = 1,2,3,4. To find it more generally, observe that, from (2), 

PC+“)(O) = -(n - r)(n + 1 + r)Pc)(O). . . . (4) 

It follows from (4) that ~~+2’(0) = 0 for r = n, n+2, n+4,. . . . Suppose we 

ensure that pik’(0) = 0 for k > n + 1 by setting P?-“(O) = Ppv3’(0) = 
. . . = pp-w(q = . . . = 0. Then, by Taylor’s Theorem, we have that 

P*(x) = ;Pp(o)x” + -ppqqp-2 + . . . . 
(nT2)! 

Suppose that Pp)(O) = n!. Use (4) to obtain the remaining coefficients. 

Verify that the polynomial so obtained is a solution of (1). 

2.4 Graphing Polynomials 

One picture is worth a thousand words. This adage is especially true in 

mathematics in dealing with the behaviour of functions. The graphs of real 
polynomials can provide at a glance valuable information about their zeros 
and degrees. It can be a useful tool in analyzing results about polynomials in 
such areas as the theory of approximation of functions by polynomials. This 
section will require knowledge from a first course in differential calculus. 
Let us review some of the terminology required: 
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Let f(z) be a polynomial defined on R. We say that f(x) is increasing 
on an interval [a, b] = {x : a 5 x 5 b} if, for each pair of values u, v 
within the interval such that u 5 v, f(u) 5 f(v). It can be shown that f is 
increasing on the interval if and only if its derivative is nonnegative there. 

f(x) is decreasing on [a, b], if, for a 2 TJ < v 5 b, f(u) 1 f(v). This is 
equivalent to asserting that its derivative is nonpositive on the interval. 

f(x) has a maximum at the point c if there is some small interval with 

c in its interior such that f(x) 5 f(c) whenever x lies in the interval. 
Necessarily, at each maximum, f’(c) = 0. 

f(x) has a minimum at the point c if on some small interval with interior 

point c, f(x) 2 f(c) f or each x in the interval. Again, this implies that 

f’(c) = 0. 
c is a critical point for f if f’(c) = 0. At a critical point, f could have a 

maximum, a minimum or neither a maximum nor a minimum. 
We will use the fact that each polynomial f(x) is continuous in 2. This 

means that small changes in the value of x give rise to small changes in 
f(x). Thus, a graph of a polynomial is a smooth curve without any breaks 
or corners. One consequence of this is that somewhere on each interval 
[a,b], f(x) assumes every value which lies between f(a) and f(b). 

Exercises 

1. Sketch the graph of a typical constant polynomial. 

2. Sketch the graph of a polynomial of the form ax + b, where a and b 
are real with a nonzero. Deduce from the graph that this polynomial 
assumes each real value exactly once. 

3. (4 

Q-4 

(4 

(4 

Sketch the graphs of the polynomials x2 and (x - k)‘. 

Using the representation 

ax2+bx+c=a(x+$)2- (y) 

sketch the graph of the polynomial ax2 + bx + c, where a, b, 
c are real and a is nonzero. Distinguish the cases in which the 

leading coefficient and the discriminant are separately positive 
and negative. Determine on the graph all maxima and minima 

for the function. 

On the same axes as in (b), sketch the graph of the derivative 
of the quadratic. Relate the values of the derivative to the be- 
haviour of the quadratic function. 

Deduce that no polynomial over R of degree 2 can assume all 
possible real values. 
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(e) Show that, if a quadratic polynomial has two real roots, then its 
derivative must have its root between them. 

4. Sketch the graphs of the following cubits. For each, on the same axes, 
sketch the graphs of its first and second derivatives. 

(4 x3 

(b) x3+ 8 

(c) x3- 8 

(d) x3 + 12x 

(e) x3 - 12x 

(f) x3 + ax; distinguish the cases that a is positive and negative 

(g) x3 + ax + b. 

5. Consider the general cubic over R, ax3 + bx2 + cx + d. Show that 
there is a change of variable of the form s = x + k, which will render 
it in the form as3 + ms + n for some real numbers m and n. Use this 

fact to discuss the graph of the general cubic. 

6. Let f(t) be a cubic polynomial. The point u in R at which f” van- 
ishes is called an inflection point. The point (u, f (u)) on the graph of 

the cubic generally separates the convex part of the graph from the 
concave part. Show that the graph of any cubic is centrally symmetric 
about its inflection point. (You have to show that, if (u-v, f(u) - w) 

is on the graph, so also is the point (u + v, f(u) + w). 

7. Use the results of your investigation on cubits to argue that 

(a) every cubic with real coefficients has at least one real zero; 

(b) every cubic with real coefficients assumes every real value at 

least once. 

8. Sketch the graphs of the following quartics. On the same axes for 
each, sketch its first and second derivatives. 

(b) x4 + 3x2 + 2 

(c) x4 - 3x2 + 2 

(d) x4 - 5x - 6 

(e) x4 + 5x - 6 

(f) x4 + 3x2 - 36x 

(g) x4 + 3x2 - 36x + 48 
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9. Discuss the possible graphs of the general quartic ax4 + bx3 + cx2 + 
dx + e. You may find it helpful to make a translation of coordinates 

which will eliminate the cubic term. 

10. (a) Sketch the graph of the polynomial 

6x5 - 15x4 - 10x3 + 30x2 + 10. 

How many real zeros does this polynomial have? 

(b) For each nonnegative integer m, find the set of values k for which 
the polynomial 

6x5 - 15x4 - 10x3 + 30x2 + k 

has exactly m real zeros (i) not counting multiplicity; (ii) count- 

ing multiplicity. 

11. Prove that every polynomial p(t) of odd degree with real coefficients 
has at least one real root. Deduce that p(t) = (t - r)q(t) for some real 

r and polynomial q(t) over R. 

Explorations 

E.27. Consider the graphs of the polynomials you have drawn already. In 

how many points can such a graph be intersected by a line with equation 
of the form y = k? of the form y = mx + b? Make a conjecture concerning 
this number and the degree of a polynomial. Investigate further using poly- 

nomials of higher degree than 4; be sure to sketch the derivative as well 
and to relate the values of the derivative to the behaviour of the graph of 

the polynomial. 

E.28. Rolle’s Theorem. The task of finding the zeros of a polynomial 
becomes more difficult as the degree of the polynomial increases. Accord- 
ingly, it is often helpful to be able to relate the zeros of a polynomial to the 
roots of its derivative, whose degree is lower. The technique we are about 
to discuss was initiated by the mathematician Michel Rolle in a book called 
l+aite’ d’algkbre published in 1690. 

Suppose that a and b are two consecutive zeros of a real polynomial f(x); 
that is, f(a) = f(b) = 0 and f d oes not vanish between a and b. Sketch 
some possible graphs for f ( ) x on the interval [a, b], and argue that f must 
have at least one maximum or minimum in the interior of the interval. 

Deduce Rolle’s Theorem, that between any two zeros of f(x) there is at 
least one real zero of f’(x). 

Suppose that u and v are two consecutive zeros of f’(x). What can be said 

about the number of real zeros of f(x) between u and v? If the derivative 
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f’(x) has k real zeros, what can be said about the number of real zeros of 

f (x)3 
Show that a real polynomial of degree n cannot have more than n real 

zeros, counting multiplicity. 
Rolle’s result as stated above can be strengthened. If f (x) has consecutive 

real zeros at a and 6, then by the Factor Theorem, we can write f(x) in 
the form 

f(x) = (x - a)r(x - b)‘g(z) 

where g(x) is a polynomial which does not vanish at any point in the 
interval [a, b]. (Justify this statement.) Show that 

(x - a)(x - b)f’(x) = f(x)[r(x - b) + s(x - a) 

Every zero of f’(x) b e t ween a and b is a zero of the function in the square 
brackets on the right hand side. Now look at the value of this function at 
x = a and x = b, and draw the conclusion that the number of zeros of 

f’(x) strictly between a and b must be odd, if we adopt the convention of 
counting each zero as often as its multiplicity indicates. 

Assume that the following is the graph of a real polynomial. What can 
be said about its degree and about the signs of its first three and last three 
coefficients? 

2.5 Problems 

1. What is the highest multiplicity a root can have for the equation 

x(x - 1)(x - 2). . . (x - n + 1) = k? 
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2. PI, P2, P3 are quadratic polynomials with positive leading coefficients 
and real zeros. Show that, if each pair of them has a common zero, 
then the trinomial 4 + P2 + P3 also has real zeros. 

3. Show that, if n is a positive integer greater than 1, 

-- 
r:, - (:$2 

is a polynomial in x of degree n - 2, and find its coefficients 

(a) when it is arranged in powers of x, 

(b) when it is arranged in powers of (x - 1). 

4. If n is a positive integer, prove that 

(1-x)3”+3n+(l-x)3”-2+ 3n’:y, 3)x2(1-x)3”-4+. -. = (l-x3)“. 

5. Suppose that ac - b2 # 0. Consider the equation 

ax3 + 3bx2 + 3cx + d = 0. 

(a) Show that the equation has two equal roots if and only if 

(bc - ad)’ = 4(ac - b’)(bd - c”). 

(b) Show that, if the equation has two equal roots, they are each 

equal to 

6. Prove that 

(bc - ad)/[2(ac - b’)]. 

(n + l)‘+l -(n+l)=(r+l)S,+ ‘11 S,-i+...+(r+l)Si 
( > 

where S, = 1’+2’+3’+...+n’. 

7. Find all polynomials p of degree k with real coefficients for which 

p(p(t)) is a positive integer power of p(t). 

8. Find all polynomials p and q for which p(t) = q(p’(t)). 

9. (a) Find all polynomials p(t) of degree not exceeding 3 which com- 
mute with their first derivatives, i.e. for which 

P(P’W) = p’(p(t)). 

(b) For each integer n > 4, determine a polynomial of degree n 
which commutes with its derivative. 
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10. Let zcn) = z(z - 1). . . (z - n + 1) for n a positive integer and let 
t(O) = 1. Prove that 

(x + y)(n) = 2 ( ; ) .(k)y(“-k). 
k=O 

11. Determine a polynomial solution of the differential equation 

203/1’+9~+4y’+y=x3+5x2-2X-2, 

where y is to be found as a function of x. 

12. Find a polynomial j(x) of degree 5 such that f(x) - 1 is divisible by 
(x - 1)3 and f(x) is itself divisible by x3. 

13. If the polynomial asx3 + a2x2 + arx + as (as # 0) is the third power 
of a linear polynomial, prove that 

9aoa3 = ala2 

and 

Prove the converse: if these two conditions are satisfied, then the 
polynomial is the third power of a linear polynomial. 

14. Let k be the smallest positive integer with the property: 

There are distinct integers a, b, c, d, e such that p(x) = 

(X - u)(x - b)(x - c)(x - d)(x - e) has exactly k nonzero 
coefficients. 

Find with proof, a set of integers a, b, c, d, e for which the minimum 
is achieved. 

15. Define polynomials fn(x) for n = 0, 1,2,. . ., by 

lo(x) = 1 

ha(O) = cl (n 2 1) 

fL+&) = (n + l>fn(x + 1) (fl 2 0). 

Find, with proof, the explicit factorization of free(l) into powers of 
distinct primes. 

16. Find polynomials f(x) such that 

f(x”) + f(x)f(x + 1) = 0. 
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17. Find all odd manic quintic polynomials over Z which have at least 
two integer zeros and take the value -29670 when evaluated at 10. 
What is the value of the integer zero? 

18. Let f(x) be a polynomial of degree at most n. Determine the degree 
of the polynomial 

f(x) - xf’(x) + (x2/2!)f”(X) - (x3/3!)f”‘(X) + *. * 

+ (-l)“(x”/n!)f(^)(z). 

19. Let T be a real number, and let A be the set of polynomials f over R 
which satisfy 

(9 f(O) 2 0; 

(ii) if f(0) = 0, then f’(0) = 0 and f”(0) 10; 

(iii) f(O)f”(O) - j’(O)2 2 rf(O)f’(O). 

(a) Give an example of a nonconstant polynomial in A. 

(b) Prove that, if c > 0 and f, g are in A, then cf, f + g, fg all 
belong to A. 

Hints 

Chapter 2 

1.13. If the zeros of j’(t) are known, what are the zeros of f(t - 3)? 

2.11. The remainder has degree not exceeding 1. Write it in the form 
u(t - Q) + v(t - b). 

3.9. (a) Use induction on the degree of p. Note that, if p(t) = ~,t” + . . ., 
then deg(p(t) - a,(t - c)“) < degp(t). 

4.6. Translate the graph so that the inflection point is at the origin. 

5.1. Let f(x) = x(x - 1)(x - 2). .a (x - n + 1) - Ic. Show that f’(z) = 
(x - 1)(x - 2)(x - 3) * *. (x - n + 1) +x(x - 2)(x - 3). 1. (x - n + 1) + 
x(x - 1)(x -3)=(x-n+l)+*** and consider the signs of f’(O), 

f’(l), f’(2), * * ** What can be deduced about the number of distinct 

zeros of f(z) and their multiplicities? 

5.2. Let the three polynomials be a(x - u)(x - o), b(x - u)(x - w), 
c(x - v)(x - w) and examine the sum of these evaluated at u, V, 
w in turn. 
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5.3. Put over a common denominator and check the numerator for a dou- 
ble zero at x = 1. 

(b) Set u = x - 1 and expand binomially. 

5.4. 1-x3 = (l-x)[(l-x)~+~x]. Expand the nth power of the expression 
in square brackets binomiahy. 

5.5. Observe that 

ax3 + 3bx2 + 3cx + d = x(ax’ + 2bx + c) + (bx’ + 2cx + d) 

a(ax3 + 3bx2 + 3cx + d) = (ax + b)(ax’ + 2bx + c) 

+ [2(ac - b2)x - (bc - ad)] 

d(ax3 + 3bx2 + 3cx + d) = (cx + d)(bx’ + 2cx + d) 

+ x’[(ad - bc)x + 2(bd - c”)]. 

Note that a root of the equation has multiplicity exceeding 1 if and 
only if it is a zero of ax2 + 2bx + c. 

5.6. The right side is 

Interchange the order of summation, and interpret the i-sum as part 
of a binomial expansion. 

5.7. If p(x) is nonconstant, then p(t) - tm has infinitely many zeros for 
some value of m. 

5.9. Differentiate the identity. 

5.10. Use induction, noting that (z + y)(“+‘) = (x + y)(x + y - l)(m). 

5.11. What must the degree of y be? Differentiate the equation three times 
and work backwards. 

5.13. The zero of the second derivative of the cubic is a zero also of the 
cubic itself and its first derivative. 

5.14. 0 can be at most a simple zero of the quintic. 

5.15. Look at the function for small values of n and make a conjecture. 

5.16. If r is a zero, so are r2 and (r - 1)2. What are the possible zeros of 

f(x)? 

5.17. If u is a zero, then so is --u. Thus, the polynomial has the form 

x(x - u)(x + u)( x2 - v). Setting x = 10 indicates that we should look 
for two divisors of -2967 which sum to 20. 

5.18. What does the expansion remind you of? (Change x to Q.) 
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Factors and Zeros 

3.1 Irreducible Polynomials 

30 = 6.5; t3-6t+4 = (t-2)(t2+2t-2). Both equationsexpress an element 
as a product of others. If we disallow the use of +l and -1, the factors of 
30 are smaller than 30, so that 30 can be written as a nontrivial product 

of integers in only finitely many ways. Furthermore, factoring further gives 
30 = 2.3 .5 and every factorization of 30 involves products of the primes 
2, 3, 5 or their negatives. 

For polynomials, degree plays the role of numerical size in restricting 
the ways in which a polynomial can be written as a product of others. 
This is a similarity between the domains of integers and polynomials which 
distinguishes each from the fields of rationals, reals and complex numbers. 

Specifically, we ask: 

(a) To what extent can a polynomial be decomposed as a product of other 

polynomials? Is it ever possible to continue factoring the factors we 

get indefinitely, or must we stop after a finite amount of time? 

(b) Is there a notion of “prime” analogous to that for number which can 
be applied to polynomials? 

(c) Can every polynomial be written as a product of these “prime” ones? 

If so, is such a representation unique up to order of factors? 

(d) Can we actually identify the “prime” polynomials? 

Let us look in turn at these equations. Over a field, such as Q, R and 
C, if p(t) is a polynomial and c is a nonzero constant, then c-lp(t) is 

also a polynomial over the field. Thus, every polynomial admits trivial 
factorizations of the type 

p(t) = c . c-‘p(t). 

The constant polynomials play the role of +l and -1 for the integers in 

that they are universal divisors. If we are to give a meaningful analysis of 

the questions asked, we should ask them only in the context of nontrivial 
factorizations. 

If p = fg is a nontrivial factorization of p, then deg f and degg are both 

strictly less than deg p, and deg p = deg f + deg g. We cannot continue to 
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factor indefinitely, and after a finite number of factorizations must arrive 
at factors which are divisible only by constants and constant multiples of 
themselves. 

Thus, the notion of primeness we require is embodied in this definition: 
a polynomial p over an integral domain is irreducible if and only if 

(i) degp 2 1 and 

(ii) if p = fg for polynomials over the domain, then either f or g is 
constant. 

Whether or not a polynomial can be factored is sensitive to the domain 
over which it is taken. For example, t2 + 1 can be factored as the product 
(t-i)(t+i) over the complex field, but it turns out to be irreducible over the 

reals and the rationals. Thus, we have to consider each domain individually. 
However, the fact that Z C Q C R C C means that factorization with 
respect to one of these domains will have some bearing on factorization 
with respect to the others. 

The study of the solvability of polynomial equations involves looking at 
fields in which their roots can be found. Knowing the irreducible factors of 
the polynomials enables us to examine the structure of these fields. 

Exercises 

1. (a) Show that the rational l/2 can be written as the product of two 
rationals in infinitely many ways. 

(b) Show that any element of Q can be written as the product of 
two others in infinitely many ways. (Thus, a field can have no 
prime or irreducible elements.) 

2. Let p(t) E Z[t]. Sh ow that the constant polynomial c divides p(t) if 

and only if c divides every coefficient of p(t). 

3. Prove that every linear polynomial at + b over an integral domain is 
irreducible. 

4. Show that every irreducible polynomial over C is irreducible over R 
and that every irreducible polynomial over R is irreducible over Q. 

5. Show that the polynomial t2 + 1 is irreducible over R. 

6. Let p(t) be any polynomial over an integral domain and let k belong 

to the domain. Define q(t) = p(t - k). Show that the polynomial q(t) 
is irreducible over the domain if and only if p(t) is irreducible over 
the domain. 

7. Let c be an integer. 
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(a) Show that, if c is positive, t2 +c is irreducible over Z, Q and R, 
but reducible over C. 

(b) Suppose that c = -d2 for some integer d. Show that t2 + c is 
reducible over 2, Q, R and C. 

(c) Suppose that c is negative, but, not the negative of an integer 
square. Show that t2+c is irreducible over Z and Q, but reducible 
over R and C. 

8. Discuss the irreducibility of the polynomial at2 + bt + c over Z, Q, R 

and C, where a, b, c are integers. 

9. Show that the polynomial St2 - gt - g is reducible over Q and write 
it as a product of linear factors. 

10. Since Q is the smallest field which contains the ring Z, one might 
wonder whether there is some connection between reducibility over Q 
and over Z. Consider first a polynomial whose coefficients are integers; 
obviously, if it is reducible over Z, it is reducible over Q. On the face 
of it, it is not clear that the converse is true. The following exercises 
will deal with this issue. 

(a) Let f(t) be a polynomial with rational coefficients. Show that 
f(t) can be written in the form (c/d)g(t) where g(t) is a poly- 
nomial with integer coefficients whose greatest common divisor 
is 1. 

(b) If g(t) is reducible over Z, show that f(t) is reducible over Q. 

(c) Suppose that f(t) is reducible over Q. Show that g(t) can be 
written in the form 

g(t) = (albh Wgdt) 

where a/b is a fraction in its lowest terms and g1 and g2 are poly- 
nomials over Z such that the coefficients of each have greatest 
common divisor 1. 

(d) If it can be shown, in (c), that lb1 = 1, it will follow that g(t) 
is reducible over Z. To obtain a proof by contradiction of this 
fact, suppose that p is any prime which divides b. Let uttr and 
v,t’ be the terms of lowest degree of g1 and g2 respectively 
whose coefficients are not divisible by p. Show that the coefficient 
of tr+’ in gl(t)gz(t) is not divisible by p, and deduce that the 
coefficient of this term in g(t) cannot be an integer. 

(e) Conclude that, in (a), f(t) is irreducible over Q if and only if 
g(t) is irreducible over Z. 

(f) Let h(t) b e a o p ly nomial over Z. Show that h(t) is irreducible 
over Q if and only if it is irreducible over Z. 
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11. Let p(t) be a manic polynomial over Z. Show that, if r is a rational 
root of p(t), then r must be an integer. 

12. The Eisenstein Cri2erion. Given a polynomial over Z, it is usually 
difficult to decide immediately whether it is irreducible. Neverthe- 
less, it is possible to determine conditions which will decide the issue 

in a large number of cases and which will permit the easy construc- 
tion of irreducible polynomials. One important result is the following 
Eisendein Criterion: 

Suppose that the polynomial h(t) = c,t” +c,-It”-’ +. + .+ 
clt + co has integer coefficients ci and that there is a prime 
integer p for which 

(a) p is not a divisor of the leading coefficient c,; 

(b) p is a divisor of every other coefficient CO, cl,. . . ,cn-1; 

(c) p2 does not divide the constant coefficient CO. 

Then the polynomial q(t) is irreducible over Z. 

To get a handle on the proof of this, consider the special case that 
h(t) is a cubic satisfying the conditions. Suppose that q(t) is reducible. 
Then it can be written in the form 

cst3 + czt2 + clt + co = (bit + bo)(azt2 + alt + a,~). 

Write out the ci in terms of the ai and bi, and argue that p must divide 
exactly one of a0 and bo, say ao. Deduce that p must accordingly 
divide al and ~2, yielding a contradiction. Now give a proof of the 
criterion for polynomials of arbitrary degree. 

13. Use the Eisenstein Criterion with a suitable prime to show that 2t4 + 
21t3 - 6t2 + 9t - 3 is irreducible over Z. 

14. Find a linear polynomial over Z which does not satisfy the Eisenstein 
Criterion. 

15. Show that the polynomial t2 + t + 1 does not satisfy the Eisenstein 
Criterion for any prime, yet is irreducible over Z. 

16. Let h(t) = cZm+ltzm+’ + cg,t”” + .. . + clt + CO be a polynomial of 
odd degree 2m + 1 2 3 over Z. Suppose that, for some prime p, 

(a) P$cz~+~; 

(b) plci (m+lIi-Q2m); 

Cc> P2 I cj (0 5 j 5 ml; 

(4 p34’co. 
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Show that f(t) is irreducible. (Eugen Netto, Mufhematische Annalen 
48 (1897)). 

17. Let r be a positive integer. Show that t’ - 2 is irreducible over Q. Is 
the polynomial irreducible over R? 

18. For each pair r, n of positive integers with 2 5 r 2 n + 1, show that 
there is a polynomial of degree n irreducible over Q with exactly r 
terms. 

19. Let p be prime integer. Show that the polynomial tJ’-r + tp-’ + . . . + 
t+ 1 does not satisfy the Eisenstein Criterion for any prime, but that 
it is transformed by the substitution t = 1 + s to a polynomial in 
s which does satisfy the Criterion for the prime p. Deduce that the 
polynomial is irreducible. Check the details when p is given the values 
3, 5, and 7. 

20. Find the smallest three integers n for which the polynomial t”-’ + 
p-2 +. . . + t + 1 is reducible. 

21. Suppose f(t) and g(t) are nonzero polynomials over an integral do- 

main D contained in C, and that g(t) is irreducible over D. Suppose 

also that there is a complex number w (not necessarily in D) for 
which f(w) = g(w) = 0. P rove that, for some polynomial h(t) over 

D, f(t) = !ww 

22. Let g(t) be an irreducible polynomial over an integral domain D con- 
tained in C. Prove that every complex zero of g(t) is simple. 

3.2 Strategies for Factoring Polynomials over Z 

It is useful to know how to factor polynomials. Not only is factoring helpful 
in solving equations, but it is often possible to read off information from a 
factorization which would otherwise be hidden. 

Even when it is known that a polynomial over Z is reducible, it can be 

quite a challenge to actually obtain its factors. While there are systematic 
ways of doing so, they are generally complicated and long. Consequently, 
it is desirable to have a variety of techniques to make the task manageable. 
The exercises in this section will introduce some of these. With experience, 

these techniques can be used with discretion and flexibility for efficient 
factorization. 

Exercises 

1. (a) Consider the quadratic polynomial 6t2 + 2t - 20. Determine two 
integers u and v for which u + v = 2 and uv = -120. Verify that 
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6t + u and vt - 20 are both integer multiples of the same linear 
polynomial. Write the given polynomial in the form 

6t2 + ui! + vt - 20 

and thence factor it. 

(b) For the quadratic at2 + bt + c, show how the determination of 
integers u and v with u + v = b and uv = ac can lead to a 
factorization of the quadratic into linear factors over Z. 

(c) Factor each of the following quadratics and determine the values 

of t for which it is negative: 

28t2 + 57t + 14 

20t2 + 39t - 44. 

2. (a) Consider the polynomial ak - bk. Use the Factor Theorem to de- 
duce that a-b is a factor, and thence write the given polynomial 
as the product of two factors. 

(b) Let k be an odd integer. Use the Factor Theorem (Exercise 
2.2.12) to deduce that a + b is a factor of ak + b” and write 
this polynomial as a product of two factors. 

3. Sometimes a polynomial can be manipulated into a standard form for 
factorization. Write the following polynomials as difference of squares 
and thence factor them over Z. Determine their zeros. 

(a) 4t2 - 20t - 13 

(b) 5t2 - 6t + 1 

(c) t4 - 47t2 + 1. 

4. (a) Show that a manic cubic reducible over Z must have an integer 
zero. 

(b) Given that the cubic t3 - 8t2 + 33t - 42 is reducible over Z, factor 
it. 

5. In factoring a polynomial, it is often useful to recall that the degree 
of the polynomial is the sum of the degrees of its factors. Prove that, 
if a polynomial of degree n is reducible, then it must have at least 

one factor whose degree does not exceed n/2. 

6. One way to factor a polynomial is by the method of undelermined 
coefficients. A factorization of a certain form is assumed, and equa- 
tions satisfied by the coefficients of the factors is set up. Consider for 
example the problem of factoring the polynomial 

t” + 98t4 + 1. 



86 3. Factors and Zeros 

Because of the symmetry of the coefficients, one might try to find two 
symmetrically related factors, each of degree 4. 

(a) Show that, if there is a factorization of the form 

t” + 98t4 + 1 = (t4 + ai3 + bt2 + ct + d)(t4 + kt3 + mt2 + nt + r) 

thenwemusthaver=d=lorr=d=-1 

O=a+k 

O=m+ak+b 

O=n+ma+bk+c 

98=2d+an+bm+ck 

O=ad+bn+cm+kd 

O=bd+cn+dm 

0 = d(c + n). 

(b) Show that k = - a, n = -c, a(b - m) = 0, c2 = (b + m)d = a’d. 

(c) Show that a # 0, so that d = 1, c2 = a2, b = m. 

(d) Determine a factorization of ts + 98t4 + 1 as a product of two 
polynomials of degree 4. 

7. Test the following polynomials for irreducibility over Q. Factor all 

the reducible polynomials as far as you can. 

(a) 7t - 8 

(b) 2t2 + 2t - 1 

(c) 4t2 + 4t - 1 

(d) 28t2 + llt - 24 

(e) 28t2 - llt + 24 

(f) 2t3 + 3t2 - 21t - 6 

(g) (t2 + 2t)’ - 5(t2 + 2t) + 6 

(h) t4 + 2t3 + t2 + t + 1 

(i) 3t4 - 2t3 - t2 - 3t - 1 

(j) 4t5 - 15t3 + 5t2 + 15t - 9 

(k) t6 - t4 - t2 + 1 

(1) t3 - t2 - 24t - 36 

(m) t3 - 7t” + 13t - 15 

(n) t5 - t3 - 3t2 - 2t - 1 
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(0) 15 - 3t4 - t2 - 4t + 14 

(p) t” - 98t4 + 1. 

8. Let f be a nonzero homogeneous polynomial of several variables. 
Prove that, if f is reducible, then each of its factors must be homo- 
geneous. 

9. Let f be a symmetric polynomial of several variables. If f is reducible, 
must each of its factors be symmetric? Justify your answer. 

10. Factor each of the following polynomials. 

(a) 5(a - b)’ - 4a2 + 4ab 

(b) x2y - ys - x2z + y2z 

(c) x2y - xy2 + y2z - yz2 + z2x - 2x2 

(d) x3 + y3 + z3 - 3xy.z 

(e) bc(b - c) + ca(c - a) + ab(a - b) 

(f) x(y” - z”) + y(z2 - x2) + 2(x2 - y2) 

(g) Y4Y + z) + 4x + z> + XY(X + Y) 

11. Let n be a nonnegative integer and define the polynomial 

pn(x, y, z) = xn(z - y) + y”(x - z) + z”(y - x). 

(a) Verify that p,(x, y, z) = 0 if any two of x, y, z are equal. 

(b) Deduce from (a) that po(x, y, z) and pl(x, y, z) are the zero poly- 
nomials. 

(c) If n 1 2, show that 

Pn(X, Y, 2) = (2 - Y)(Y - z)(z - 4Qn(X, Y, z) 

where qn(x, y, z) is a homogeneous symmetric polynomial of de- 
gree n - 2. Show that the coefficients of x”-‘, y”-‘, z”-’ in 
q,,(x, y,z) are each 1. 

(d) Identify qn(x, y, z) for n = 2,3,4. 

(e) It is possible to get a shadow of a possible factorization by set- 
ting one of the variables equal to 0 and factoring the resultant 
polynomial of fewer variables. Factor p,(x, y, 0). 

(f) Factor P~(x, Y, z) and p6(? Y, z). 

12. Factor(x+y+z)k-xk-yk-zkfork=3,5,7. 

13. Is it true in general that if a polynomial with integer coefficients is 
irreducible over Z, for some m, it must be irreducible over Z? 
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14. Show that each of the following polynomials is irreducible over Z, 
for some m. Can you deduce from this that it is irreducible over Z? 

(a) t2 + t + 1 

(b) 49t2 + 35t + 11 

(c) 124t3 - 119t2 + 35t + 64. 

15. (a) Factor 63t4 - 2t3 - 79t2 + 52t - 10 over Z4, Z5, Z7, Zg. 

(b) Use the factorizations of the polynomial in (a) over the finite 
domains to determine a factorization over Z. 

16. To demonstrate how cumbersome a “sure-fire” method can be, con- 

sider the problem of factoring the quintic polynomial 

f(t) = lot5 + 3t4 - 38t3 - 5t2 - 6t + 3. 

One strategy is to note that any factorization over Z leads to a numer- 
ical factorization of the possible values that j(t) can assume. Thus, 

knowing, say, f(1) d e t ermines a finite set of values which any factors 
might assume at 1. 

(a) Verify that f(-1) = 35, f(0) = 3, f(1) = -33. 

(b) Supposing that f(t) is reducible over Z, we can assume that 
there is a factor g(t) of degree at most 2. Verify that, if g(-1) = 
u, g(0) = v, g(1) = w, then 

2g(t) = (w + u - 2v)P + (w - U)t + 2v. 

(c) Show that u I 35, v I 3, w I 33, so that there are 8 x 4 x 8 = 256 

possible choices of (u, v, w) to examine in determining g(t). 

(d) Show that w + u - 2v is an even divisor of 20. 

(e) With no loss of generality, we can assume v = 1 or v = 3 (why?). 
Show that, if v = 1, the possible values of w + u are -18, -8, 
-2, 0,4, 6, 12,22, and that if v = 3, the possible values of w+u 

are -14, -4, 2, 4, 8, 10, 16, 26. 

(f) Use (c), (4, (e) t o n candidates for a factor g(t). Does one of fi d 
them work? 

Exploration 

E.29. Let a, b, n be positive integers. Investigate under what conditions 

the polynomial 
t2--t+a 

is a factor of t” + t + b over Z. 
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E.30. A sequence of polynomials tin(t) is defined by the recurrence: 

ulJ(t) = 0 q(t) = 1 

uZL,(t) = %-l(t) - 21,-z (n 12). 

Write out and factor the first few terms of the sequence. Look for any 
interesting relationships among the polynomials in the sequence. Evaluate 
the polynomials in the sequence at t = 1,2,3,4. Here are a number of facts 
for you to verify: 

(1) 

(‘4 %I@> = 

(3) 

(4) u,(t) = 

(5) u; - u; 

U,(t)=t”-l- ( n;2)v+ (“pp-5 

n-4 - 
( > 3 

p-7 + . . . 

(t2 - 4)-l/‘(y” - y-“) where y = +[t + (t2 - 4)‘/“] 

un(i) = 2-+-1) [( ;)w+ (;)(t2-4)t”-3 

+ 
( > 

; (t2 - 4)2f3-5 + . . . 

I 

sin ntr 
sin where t = 2~0~0. What are the zeros of un(t)? 

= %a-k%+k (0 5 k 5 n) 

(6) u:+l - 4 = uzn+l (0 5 n) 

(7) 4 = un--lun+l + 1 (1 _< n) 

(8) UI + ~3 + . . . + u-h-1 = ui (1 5 n) 

(9) un + %+2k = (‘1lk+l - Uk-l)%+k (0 I n; 1 2 k) 

(lo) ‘IIn + %+Zk+l = (uktl - uk)(%+k + ‘1ln+k+l) (0 5 k, n) 

(11) U2k = (uk+l - uk-1)uk (1 5 k) 

(12) UZk+l = (uk+l - uk)(uk+l + uk) (0 5 k) 

(13) ‘11, = $[tu,-1 + ((t’ - 4)ui-, + 4)‘/“] (1 5 n) 

(14) If m In, then u, I un (as polynomials with integer coefficients) 
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(15) Show that 

UT + up + *. . + 26; _ (?/*+I+ 1+ y-(*+‘))(y” + 1+ y-“) - 3(t + 1) 

u1+ ‘u2 + * . * + U” - (t2 - 4)@ + 1) 

Deduce from this that UT + uz +. . . + uz is divisible by u1 + u2 + . . .u, 

(1 5 n). 

Define polynomials v, and w, as follows: 

VI-J = 0 Vl = 1 

V2m = VZm-1 + Vzm-2 (m 2 1) 

V2mtI = (t - 2)vzm + V2m-1 (m 1 1) 

wo = 2 Wl = 1 

w2, = (t - 2)2~2~-1+ wzm-2 (m 1 1) 

W2m-t1 = w2m + warn-1 (m 2 1) 

(16) v,+z = tv, - vn-2 wn+z = ha - w-2 (n L 2) 

(17) v2m = urn (m 2 0) 

(18) vzm+l(t) = (-l)*wmtl(-~) (m 2 0) 

(19) U” = vnwn = ~(v”+lw”-1+ ~“-1wntl) 

(20) When n = 2’, u, = plp2. “p, where pi(t) = t and pk = pzBl - 2 

(k 2 1). 

3.3 Finding Integer and Rational Roots: Newton’s 
Method of Divisors 

A first step in factoring polynomials over Q is to use the Factor Theorem 
to locate linear factors by finding rational zeros. It is straightforward to 

see that all but finitely many rationals can be rejected as possible zeros. 
Special techniques will narrow down the possibilities even further. 

Exercises 

In these exercises, q(t) will represent the polynomial 

cntn + C,-ltn-l + C,-p--2 $ *. . + qt + co 

with integer coefficients ci. 
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1. (a) Show that the rational number a/b is a zero of q(t) if and only 
if 

cnan + c”-la”b + c”-2an-‘b2 + ..a + club”-l + cob” = 0. 

(b) If the zero a/b of q(t) is written in lowest terms, show that c,, is 

a multiple of b and that co is a multiple of a. 

2. Prove that any rational zero of a manic polynomial with integer co 
efficients must in fact be an integer. 

3. For each polynomial, determine all of its rational zeros. Recall that, 

having found one rational zero, you can divide the polynomial by a 
suitable linear factor and deal with a polynomial of lower degree to 
determine the other rational zeros. 

(a) 5t3 - 4t2 + 3t + 2 

(b) 6t3 + 13t2 - 22t - 8 

(c) 3t4 + 5t3 + 2t2 - 6t - 4 

(d) t4 - t3 - 32t2 - 62t - 56. 

4. If a/b is a rational zero of q(t) written in lowest terms. Then, as we 
have seen, a I CO. Another way of expressing this is to say that -a is 
a divisor of q(0). There is a useful generalization to this: 

if q(t) is a polynomial over Z with rational zero a/b, ihen 

bt - a is a divisor of q(t) over Z, and, for each integer m, 

bm - a must be a divisor of q(m). 

In this exercise, this result will be first applied and then demon- 

strated. 

(a) Consider the polynomial 6t3 + 13t2 - 22t - 8. Show that any 

positive rational zero must be one of 

1, l/2, l/3, l/6, 2, 213, 4, 4/3, 8, 813. 

Evaluate the polynomial at t = -2, -1, 1, 2, and apply the 
result with these values of m to eliminate all but two of the 

rationals in the list as a possible zero of the polynomial. 

(b) Show that, if a/b is a zero of the polynomial, then 

q(t) = (bt - a)(r,-It”-’ + r”-2t”-’ + . . . + rlt + ro) 

where the coefficients rn, rn-1, . . . , r1, rs are rational numbers 
satisfying 

cn = brn-l 



92 3. Factors and Zeros 

~“-1 = br”-2 - urn-l 

c,,-2 = br,-3 - ar,,-2 

. . . 

c2 = bq - ar2 

cl = bra - arl 

co = -are. 

(c) In (b), suppose that a/b is written in lowest terms. It is known 
that a, b and the ci are integers, and also that a I CO and b I cn. 
By looking at the equations relating the ri and the ci in turn 
from the top, prove that 

k-1 is an integer 

br,-2 is an integer 

b2rn-3 is an integer 

. . . 

b”-‘ro is an integer. 

and conclude that each ri is a rational whose denominator di- 
vides b”-l. Similarly, by looking at the equations in turn from 
the bottom, show that each ri is a rational whose denominator 
divides an-r. Deduce from this each ri is an integer. 

(d) Complete the proof of the result. 

5. Newton’s Method of Divisors. The set of equations involving ci, ri, a 
and b in Exercise 4 is the basis of an algorithm known as Newton’s 
Method of Divisors. We wish to check whether a/b is a root of q(t). 
Write in a row the coefficients of the polynomial, beginning with the 
constant coefficient: 

co Cl c2 c3 ... C”. 

Divide CO by a. If the result is not an integer, then we do not have a 
zero. If the result is an integer, let co/a = so (this is -ro in Exercise 
4); write this integer under cr. Draw a line across. Beneath the line, 
put the sum of cl1 and bso: 

co Cl c2 ... 

so 

co cl + bso 
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Divide cl + bso by a. If the result is not an integer, a/b is not a zero. 
Otherwise, let the quotient be sr, and write sr under cz. Beneath the 

line, put cg + bsl. Continue on to get a table: 

co Cl c2 c3 *a. 

so Sl s2 

co cl + bso c2 + bsl c3 + bs2 ..a 

Each si is equal to (ci+bsi-1)/a. Stop if some si fails to be an integer, 
for then a/b is not a zero. If all the si turn out to be integers, then 

for a/b to be a zero, c, must equal -bs,-1, and the last term below 

the line must be 0. 

(a) Justify this algorithm. 

(b) The method is mainly used to check for integer zeros (b = l), 

which explains why the coefficients are listed in ascending rather 
than descending order in the top row of the table. Devise an 
alternative algorithm which takes the coefficients in the opposite 
order. 

(c) Two candidates for rational zeros of 2t3 - lit’ + 2t + 15 are 3 
and 3/2. Verify that the respective tables for these are 

15 2 -11 2 15 2 -11 2 

5 5 4 -1 

15 7 15 12 -3 0 

Construct the tables for the candidates 5 and 512. Identify zeros 
of 2t3 - lit’ + 2t + 15 and factor this polynomial over Z. 

6. Find all rational zeros of the following polynomials: 

(a) 4t3 - 22t2 + 7t + 15 

(b) 40t3 + 25t2 + 9t - 9 

(c) 5tz - 12t + 4 

(d) t3 - 9t2 + llt + 21 

(e) 8t3 + 20t2 - 18t - 45 

(f) 6t4 + t3 - 66t2 + 30t + 56. 

7. Write as a product of irreducible factors over Z: 

18t5 - 48t4 + 23t3 + 174t2 - 171t - 60. 

8. Find all the zeros of the polynomial 

24t5 + 143t4 - 136t3 + 281t2 + 36t - 140. 
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9. We can check whether a is a zero of a polynomial q(t) over Z by 
evaluating q(a) by Horner’s Method. In the case q(t) = 4t3 - 22t2 + 

7t + 15, a = 5, we get the table for Horner’s and Newton’s Methods 

respectively: 

4 -22 7 15 15 7 -22 4 
20 -10 -15 3 2 -4 

4 -2 -3 0 15 10 -20 0 

Is there any connection between these tables? Explain. 

10. In using Newton’s Table to check a negative rational zero, what dif- 
ference does it make to consider the numerator to be negative and 
the denominator to be positive rather than the other way around? 

11. Consider the linear polynomial ct + d. If a/b is a zero of this, then 
a 1 d and b 1 c. Consider rationals which satisfy these conditions, and 
explain what happens in the bottom line of the table for Newton’s 
Method of Divisors for the unsuccessful candidates. 

12. Let 0 = 2~15. 

(a) Verify that cos tJ/2 + cos 28 = 0. 

(b) Show that 2~ = cos 0 satisfies the equation 

x = 2(4x4 - 42’ + 1) - 1. 

(c) Factor 8x4 - 8x2 - x + 1 over Z, and deduce that cos 0 is a zero 
of a quadratic polynomial over Z. 

(d) Determine cos 0. 

Exploration 

E.31. Find all integers n for which the zeros of the quadratic polynomial 

nt2 + (n + 1)t - (n + 2) 

are rational. 

3.4 Locating Integer Roots: Modular Arithmetic 

What is a quick way to see that the polynomial t2 - 131t + 267 cannot 
possibly have an integer zero? Such a zero must be even or odd. If t is 
given an even value, then t2 and -1332 are even, and the polynomial must 
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take an odd value. Similarly, if t is given an odd value, then the value of 
the polynomial is again odd. Thus, no substitution for t will give an even 
value for the polynomial and the polynomial will always fail to vanish for 
integer t. How can we extend this type of argument? 

In the example, we made use of the fact that 0 is even. In fact, 0 is 
the only integer which is divisible by every other integer, and in particular 

by every prime. Accordingly, if a polynomial q(t) over Z has an integer 
zero r, then q(r) E 0 (mod m) for each rn. On the one hand, we can 
find candidates for integer zeros among the solutions of this congruence for 
suitable values of m. On the other hand, if we can find an integer m for 
which the congruence has no solution, then there can be no integer zero of 
the polynomial. 

In this section, we will be concerned with solving congruences of the 
form q(t) E 0 (mod m). It turns out that we can do this by solving the 
congruence when m is a prime power and piecing together the solutions for 
prime powers to discover the solution for an arbitrary modulus. 

Exercises 

1. Consider the following congruence: 

t2 - 9t - 36 E 0 (mod m) 

(a) Show that the solutions of the congruence for m = 8 are the 
same as the solutions of the congruence 

t2 -t - 4 G 0 (mod 8). 

Verify that the only solutions of the congruence modulo 8 are 
t E 4 and t E 5. Write out all the integer solutions of the 
congruence between 0 and 39 inclusive. 

(b) Solve the congruence t2 - 9t - 36 E 0 (mod 5). Write out all the 
integer solutions of the congruence between 0 and 39 inclusive. 

(c) Show that every solution of the congruence t2 - 9t - 36 s 0 

(mod 40) is a solution of the congruences in (a) and (b). Use 
this fact to write out all the solutions of the congruence modulo 
40 between 0 and 39 inclusive. 

(d) Use the result of (c) to guess the zeros of the polynomial t2 - 
9t - 36. Check your guesses. 

2. Let q(t) be a polynomial over Z. Show that, if a E b (mod m), then 
q(a) E q(b) (mod m), for any posit*ive integer m. 

3. Let q(t) be a polynomial over Z, and let m be a positive integer 
which is a product of prime powers pk. Argue that every solution of 
the congruence 

q(t) E 0 (mod m) 
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is also a solution of the congruence 

q(t) q 0 (modp’). 

4. Find all the positive integers less than 100 which leave a remainder 1 
when divided by 3, remainder 2 when divided by 4 and remainder 2 
when divided by 5. Perform this task in the following way: (1) write 
out in increasing order those numbers congruent to 2 modulo 5; (2) 
cross out those which are not congruent to 2 modulo 4; (3) cross out 
those which are not congruent to 1 modulo 3. 

How many answers are there? Suppose we remove the restriction that 
the number be positive and less than 100; what would the answers 

be? 

5. Find a positive integer not exceeding 1000 which leaves a remainder 
3 upon division by 7, 4 upon division by 11 and 2 upon division by 
13. 

6. Suppose that the positive integer m is the product of two integers 
u and v with greatest common divisor 1. Let a and b be any two 
integers. Prove that there exists exactly one integer c such that 

O<c<m-1 

cEa (modu) c E b (modv). 

(You will need the result of Exercise 1.6.6(d).) 

7. Chinese Remainder Theorem. Let m = m1m2 . . . m, be the product 
of r integers mi, each pair of which has greatest common divisor 1. 

Suppose al, a2,. . . ,a, are any r integers. Show that there is exactly 
one integer c for which 

c E ai (mod mi). 

One way to prove this is to use induction on r, building on Exercise 

6. However, another proof can be devised along the following lines: 

(a) Any number which is divisible by all the numbers mj except 

rni has the form timlmz ~1. riti . . . m, (where the hat indicates 
a deleted entry). 

(b) ti can be chosen in such a way that the number in (a) is con- 
gruent to 1 modulo rni (see Exercise 1.6.6). Thus, we can find 
an integer ci for which 

ci~O(modmj) when jfi 

Ci E 1 (mod mi). 
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(c) Let c = clal + c2a2 + c3a3 + .-. + c,a,. 

8. For which positive values of the integer n is ns - n2 not divisible by 
504? 

9. (a) Solve th e o f II owing congruence modulo 4 and modulo 9: 

8t2 -7t+9=0. 

(b) Argue that, by the Chinese Remainder Theorem, there should 

be two incongruent solutions of the congruence in (a) modulo 

36. 

(c) Find the solutions of the congruence modulo 36. 

10. How many positive integers less than 48 satisfy each of the systems 
of congruences: 

(a) x z 5 (mod S), x E 4 (mod 8) 

(b) y E 5 (mod 6), y E 3 (mod 8) 

(c) z E 3 (mod 6), z E 5 (mod 8)? 

Use this exercise to argue that in general the Chinese Remainder 
Theorem is false if the condition that the factors of m are pairwise 

coprime is dropped. 

11. Solve the congruence t2 + 2 s 0 (mod 243) by following these steps: 

(a) Noting that 243 E 35, argue that any solution of the congruence 
satisfies t2 + 2 E 0 (mod 3). 

(b) Verify that t2 + 2 E 0 (mod 3) is satisfied by t E 1 (mod 3). 

(c) We now turn to the congruence t2 + 2 z 0 (mod 9). Show that 
if t = 1 + 3u is a solution to this congruence, then 

which implies that 1 + 2u z 0 (mod 3). Thus, 21 = 1 + 3v, and 
t=4+9v. 

(d) Show that, if t = 4 + 9v and t2 + 2 z 0 (mod 27), then 

18 + 72v + 81v2 z 0 (mod 27). 

Reduce this to the equivalent congruence 1 + v E 0 (mod 3). 

Thus, t = 22 + 27~. 

(e) Continue the process to obtain, in turn, a solution of 

t2+2=o 

modulo 81 and modulo 243. Check your answer. 
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(f) A second solution of the congruence t2 + 2 G 0 (mod 3) is t z 2 

(mod 3). Find a solution of t2 + 2 - 0 (mod 243) of the form 
t = 3k -t 2. 

Determine the number of incongruent solutions for each of the fol- 
lowing congruences: 

(a) 2t3 + t + 3 E 0 (mod 1000) 

(b) 2t3 + t + 3 s 0 (mod 83349). 

Solve the congruence: 3x3 - 4x2 + 103: - 3 E 0 (mod 675). For one 
of the solutions, evaluate the polynomial and verify that the value is 
divisible by 675. 

Consider the polynomial equation 

t5 - 4t4 - 411t3 - 452t2 - 3322t - 828 = 0. 

12 

13. 

14. 

15. 

Explorations 

(a) Argue that the absolute value of any root is less than 5000. 

(b) Find those values of t between -5000 and 5000 for which the 
value of the polynomial is a multiple of 5000. Argue that any 
integer root of the equation must be one of these values and thus 
find all its integer roots. 

Using congruences, find all integer roots of the equation 

2t4 + 20t3 + 19t2 - t - 90 = 0. 

E.32. Little Fermat Theorem. Verify that n3 E n (mod 3) and n5 E n 
(mod 5) for each integer n. These are particular instances of a general 
result: 

np s n (mod p) 

whenever p is prime and n is an integer. 
One way to see this is to follow an argument given by L. Euler (1707- 

1783). Since the result is clear for p = 2, we suppose that p is an odd prime 

and prove the result by induction on n. Observe that P 

( > 
k is a multiple 

ofpforl<k<p-1. 
The case n = 1 is obvious. Euler gave two arguments for the n = 2 case. 

First, expand the right side of 2P = (1 + 1)P binomially and write as a 
congruence modulo p. Alternatively, one can get a slightly stronger result 
by using 

2P-’ - 1= (1+ 1)P-’ - 1= pg ( p r, l ) 

k=l 
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and 

(‘i’)+(L:)=( kT.1) 
fork=1,3,5 ,..., p-2. 

The induction step follows easily from 

(1 + n)p - (1 + n) = ‘2 ( i ) nk + (np - n). 
kc1 

E.33. Hensel’s Lemma. In Exercise 4.11, we showed how to solve a 
congruence to a prime power by starting with a solution modulo the prime 
and then increasing the exponent by steps of 1. Taylor’s Theorem is the 
basis of a more efficient method which allows us to solve the congruence in 
successive stages in which the exponent is doubled. Suppose p” is a prime 

power and the polynomial congruence to be solved is 

f(t) 3 0 (modpk). (*I 

Suppose h and k are positive integers such that 1 5 h < k 5 2h, andthat 
a solution u is known to the congruence 

f(t) q 0 (modpA). 

Then any number of the form u + mph also satisfies this congruence. We 
try to find a number v of this form which will satisfy (*). Thus, we can 
think of u as a “first approximation” to a solution to (*). 

Taylor’s Theorem can be employed to express f(v) in terms of f(u): 

f(v) = f(u) + (v - 4f’W + (v - 42Kwv”w 

+ (l/S)f”‘(u)(v - U) + . ..I. 

If v is to satisfy (*) and v G u (mod ph), argue that we must have 

0 q f(u) + (v - u)f’(~) (modpk). 

Conversely, show that if we can determine v z u (mod ph) such that 

0 G f(u) + (v - u)j’(u) (modp2h), 

then v is a solution to (*). 
Let us see how this can be used to solve the congruence 

t2 + 2 G 0 (mod 243). 

The congruence t2 + 2 - 0 ( mod 3) is satisfied by t = 1. Making the 
substitution p = 3, h = 1, f(t) = t2 + 2, u = 1, we find that j(u) = 2, 
f’(u) = 2 and the congruence for v becomes 

0 E 3 + 2(v - 1) (mod 9). 
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Verify that the unique solution of this is v G 4 (mod 9). 
For the next step, let h = 2 and u = 4, so that f(u) = 18 and j’(u) = 8 

and the congruence for v becomes 

0 E 18 + S(v - 4) (mod 81) 

or 
8v - 14 (mod81). 

This is a congruence of the form studied in Exercise 1.6.6. Since 8 and 
81 are coprime, there is a unique solution modulo 81. By making use of 
the Euclidean algorithm (Exercise 1.6.2) or otherwise, obtain the solution 

v E 22 (mod 81). 
For the final step, let h = 4 and u = 22. Show that this leads to the 

congruence 
0 E 486 + 44(v - 22) (mod 812) 

or 
44v E 482 (mod 812). 

Obtain the solution v = 2695. Conclude that t2+2 z 0 (mod 3”) is satisfied 
by t = 2695, and obtain the solution to the same congruence (mod 35) as 

required. 
Let us return to the general situation. Establish the following result: 

Suppose 1 5 h < k < 2h, p is prime and f(t) is a polynomial over Z. 
Suppose further that u% an integer for which 

(i) f(u) E 0 (mod ph) 

(ii) f’(u) $ 0 (mod p). 

Then there is an integer w for which wf’(u) E 1 (mod p2h) and the number 
v = u - wf(u) satisfies the congruence 

f(v) - 0 (modp2h). 

Why is the condition f’(u) $ 0 (mod p) imposed? To see that some 

condition like (ii) is needed, verify that 

t2 + t + 1 E 0 (mod 3) is solvable 

P+t+1=0( mod 9) is not solvable. 

This result is the heart of the proof of Hensel’s Lemma: 
Let p be a prime and let f(t) be a polynomial over Z. Suppose ~1 is a 

solution of the congruence f(t) - 0 (mod p) such that f’(u1) # 0 (mod p). 
Then for each positive integer k, there is a solution uk of the congruence 

f(t) = 0 (mod pk). 
Solve the congruence t4 + t2 + t + 1 s 0 (mod 256). [Answer: 1491. 
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3.5 Roots of Unity 

The factorization of t” - 1 was studied by C.F. Gauss (1777-1855)) who 
wanted to find out the condition on n in order that a regular n-gon could 
be constructed using ruler and compasses. 

From de Moivre’s Theorem, it is possible to locate all the zeros of this 
polynomial as equally spaced points on the circumference of the unit circle 
in the complex plane (i.e. as vertices of a regular n-gon). From this it is a 

simple step to derive the decomposition oft” - 1 into linear factors over C. 
These factors can then be combined to yield factorizations over R and Z. 

In this section, we will denote tn - 1 by P,(t). 

Exercises 

1. Roots of unity. Let n be a positive integer, and let r(cos B + i sin 0) be 
a root of the polynomial P,(t). Use de Moivre’s Theorem (Exercise 
1.3.8) to show that 

r”(cosn0 + isinn0) = 1. 

Take absolute values of both sides and deduce that r = 1. Show that 
n0 must be an integer multiple of 27r. 

Show that a complete set of zeros of P,(t) consists of the complex 

numbers, 

1, cos 2x/n + i sin 27r/n, cos 47rln + i sin 4x/n, . . . , 

cos 
2(n - 1)7r + isin 2(n - ‘>~ 

n n ’ 

These are called the nth roots of unity. 

Draw in the complex plane the unit circle (center 0 and radius 1)) 

and indicate on this circle the location of the nth roots of unity. 

2. Show that the factorization of P,,(t) over C into a product of irre- 
ducible polynomials is given by 

3. Factor over C the following polynomials: P2, P3, Pa, Ps, Pa. Express 
all coefficients in the form a + bi where a, b are real. 
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4. By a suitable pairing of linear factors over C of the polynomial P,(t), 
show that we can obtain a factorization of P,(t) as a product of 
irreducible polynomials over R as follows: 

(n-1)/2 
for n odd, P,(t) = (t - 1) n (t2 - 2cos(2kn/n)t + 1) 

k=l 

(n-2)/2 
for n even, P,(t) = (t - l)(t + 1) n (t2 - 2cos(2klr/n)t + 1) 

k=l 

In particular, obtain a factorization of Pa(t) and P5(t) over R. 

5. Show that, among the 8 distinct 8th roots of 1, there are 

(i) one square root of 1 other than 1 itself; 

(ii) two fourth roots of 1 which are not square roots of 1; 

(iii) four eighth roots of 1 which are not fourth roots of 1. 

6. Which 12th roots of 1 are roots of lower degree? Make a table showing 
each 12th root of 1 and the minimum exponent to which it must be 

raised to yield 1. 

7. A complex number C is a primitive nth root of unity if and only if 

C” = 1 but Ck # 1 for each integer k with 1 5 k 5 n - 1. That is, n 
is the smallest exponent to which C can be raised to yield 1: 

(a) Verify that there are 4 primitive 8th roots and 4 primitive 12th 
roots of unity. 

(b) Let w be an nth root of unity. Show that there exists a positive 
number m such that (i) m n and (ii) w is a primitive mth root 1 
of unity. 

8. For positive integer n, let <,, = cos(2a/n) + isin(2n/n). 

(a) Show that the zeros of Pn(t) are precisely the powers of <“. 

(b) Show that 1 + Cn + <i + . . . + C-’ = 0. 

(c) Prove that the primitive nth roots of 1 are the numbers <z where 

l<a<n- 1 and gcd(a,n) = 1. (Test this for specific n, such 
as n = 12.) 

(d) For p a prime, show that every pth root of unity is primitive 

except 1 itself. 

(e) Show that, for n 2 3, the number of primitive nth roots of unity 
is even. 
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9. The nth cyclotomic polynomials Q,,(t) is the product of all the linear 
polynomials (t - (‘) where C ranges over the primitive nth roots of 
unity. Show that 

Pn(t) = jlIQd(t) 

where the product is taken over all the divisors d of n. 

(It turns out that the coefficients of Qn(t) are integers and that these 
polynomials are irreducible over Q.) 

10. Verify that 

(a) &2(t) = t + 1 

(b) &4(t) = t2 + 1 

(c) Qs(t) = t2 -t + 1 

(4 &s(t) = t4 + 1 

(e) Qp(t) = tp-’ + tpv2 + . . . + t + 1 when p is prime. 

11. Compute the cyclotomic polynomials Qs, Qib, Q12, Qi4, Qis and 

&IS. 

12. (a) If k is even, show that C&k(t) = Qk(t2). 

(b) If k is odd and exceeds 2, show that &2k(t) = Qk(-t). 

13. Find the nth roots of -1 and factor the polynomial t” + 1 over C, R 
and Q. 

14. Let c = r(cos0 + isin 8) be a complex number. Find the nth roots of 

c and factor the polynomial t” - c over C. In particular, find the nth 

roots of 2 and factor t” - 2 over C, R and Q. 

15. Show that, if k 1 n, then Pk(t) I P,(t) over C, R and Q. Test the 
conjecture: if k and m are divisors of n, then Pk(t)Pm(t) I P,(t). 

16. Let C be a primitive 5th root of unity. Show that u = c2 + C3 and 
v = (‘l + C4 are zeros of the polynomial t2 + t - 1. 

17. Let (’ be a primitive 7th root of unity. Show that u = C3 + C5 + C6 
and v = C + C2 + C4 are zeros of the quadratic t2 + t,+ 2. 

18. Let p be any prime. We say that a is a quadratic residue modulo p 
if there is some number x such that x2 E a (mod p). Otherwise, we 

call a a quadratic nonresidue. 

(a) Verify that the quadratic residues modulo 5 are 1 and 4 and 
those modulo 7 are 1, 2, 4. 

(b) Find the quadratic residues modulo 11, 13, 17. 
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(c) Let p be a prime and let C be a primitive pth root of unity. 

Define 

u = C([” : a is a quadratic nonresidue modulo p, 12 a < p} 

v = c{p : a is a quadratic residue modulo p, 1 5 a < p}. 

For the cases p = 11, 13, 17, show that u and v are the zeros 
of a quadratic polynomial of the form t2 + t + 6, where k is an 
integer. 

(This has significance for ruler and compasses constructions in the 

plane. Since such a construction locates points as intersections of 
straight lines and circles, the coordinates of constructible points are 

found by solving linear and quadratic equations whose coefficients 

belong to the smallest field containing the coordinates of points al- 
ready given or constructed. The result of this exercise implies that 
the points u and v are constructible in the complex plane once the 
unit circle is given. In the case p = 17, it can be shown that one 
can solve a succession of quadratic equations, each with coefficients 
expressible in terms of the roots of its predecessors, until one finally 
obtains the root Ciz itself. As a consequence there exists a ruler-and- 
compasses construction for a regular 17-gon in the plane. This result, 
due to Gauss, holds when 17 is replaced by any prime, such as 257, 
which is 1 plus a power of 2. It is this result which accounts for the 
original interest in cyclotomic polynomials.) 

19. (a) Show that the coefficient of xn in the expansion of j(x) = 
(x6 + x5 + x4 + x3 + x2 + z)” is the number of ways of rolling a 

total of n with two distinguishable ordinary cubical dice. 

The remainder of the exercise is devoted to assigning numbers to the 
faces of the two dice in such a way that the number of ways of rolling 
a total of n is the same as for two ordinary dice. 

(b) Verify the factorization 

f(x) = x2(x + 1)2(x2 + x + 1)2(t2 - x + 1)“. 

(c) We wish to write f(x) = g(x)h(x) where g(x) # h(x) and 

g(x) = xyx + 1)“(22 + x + 1)“(22 - x + l)d 

with 0 5 a, b, c, d 2 2. If we can arrange that g(x) and h(s) are 
each equal to the sum of six not necessarily distinct terms of the 

form xk, then the numbers k can be used to label the faces of 
the dice. Argue that, for the desired labeling, we must have that 
g(1) = h(1) = 6 and a = b = c = 1. Determine g(x) and h(x). 
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(d) Explain how to construct Sicherman dice, two nonstandard cu- 
bical dice whose faces are assigned numbers in such a way that 
the number of ways of rolling n is the same as for two ordinary 
dice. 

Explorations 

E.34. Degree of the Cyclotomic Polynomials. Let 4(n) be the degree 
of the polynomial Q,(t). Th is is equal to the number of positive integers a 
which are coprime with n, i.e. for which 1 5 a < n and gcd(a, n) = 1. 

Let us compute d(24). To find the numbers a between 1 and 24 which 
are coprime with 24, we sieve out the multiples of those primes dividing 
24. We remove 12 multiples of 2 and 8 multiples of 3. However, 4 multiples 
of 6 have been removed twice. Consequently, only 12 + 8 - 4 = 16 numbers 
have been sieved out and there are 8 remaining: 1, 5, 7, 11, 13, 17, 19, 23. 
Thus 4(24) = 8. 

If there are three primes dividing n, the situation is more complex. Take 

the case n = 60 for instance. Its prime divisors are 2, 3, 5, and in crossing 
out multiples of these, we encounter each multiple of 6, 10 and 15 twice 
and each multiple of 30 three times. To fix our ideas, assign a weight 1 to 
each number to begin with. Every time we cross a number out, its weight 
is reduced by 1; every time it is restored, its weight is increased by 1. Our 
task is to cross out and restore in such a way that in the end, all multiples 
of 2, 3 and 5 have weight 0 and all other numbers have weight 1. Show that 
this can be achieved by the following procedures: 

cross out all multiples of 2, 3 and 5 in turn 
restore all multiples of two of the primes, i.e. of 6, 10, 15, in turn 
cross out all multiples of three primes. 

Thus we start out with 60 numbers, cross out 30+20+ 12, restore 10+6+4 
and cross out 2, leaving 16 numbers with weight 1. What are these numbers? 

To generalize this, we need the MGbius function p(n): 

/J(l) = 1; #u(n) = 0 ‘f 1 n is divisible by any square exceeding 1; 

472) = C-1) k i n is the product of exactly k distinct primes. f 
Prove the following: 

(a) If p is prime, then d(p) = p - 1; +(p”) = pk-‘(p - 1) 

(b) 4(n) = x(n/d)p(d) = xdp(n/d) where the sum is taken over all 

din din 
the divisors of n. Verify this formula for n = 24 and n = 60. 

(c) If gcd(m,n) = 1, then 

4(mn) = 4(mM(n> 

dmn) = f4mMn). 
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(d) Suppose n is the product of powers of distinct primes p. Show that 

4(n)=nn(l-i). 

Pb 

(e) n = Cdl” 4(d). Verify this for n = 12, 24, 60. 

The Mobius function has a role to play in determining the polynomials 

Q,, in terms of Pk. Justify the equations 

Q6(t) = Pl(t)P’3(t) 

P2(t)P3(t) 

&g(t) = $f. 
3 

Generalize to general n. Use the formula obtained to check the degree of 
Qn(t), and to obtain QPq(t) when p and q are distinct primes. 

E.35. Irreducibility of the Cyclotomic Polynomials. It has already 
been observed that the cyclotomic polynomials corresponding to primes 
are irreducible. Investigate irreducibility of Qn(t) when n is composite. 

E.36. Coefficients of the Cyclotomic Polynomials. If n is equal to a 
prime power or twice a prime power, it is easy to check that the coefficients 

of Qn(t) are +l or -1. Does this remain true when n is the product of two 
primes? Is it true in general? 

E.37. Little Fermat Theorem Generalized. The positive integers less 
than 24 which are coprime to 24 are 1, 5, 7, 11, 13, 17, 19, 23. Suppose we 
take any number coprime with 24, say 7, and multiply each number in this 

list by it, reducing the result modulo 24. The list of products in order is 
7, 11, 1, 5, 19, 23, 13, 17. Thus, multiplication by 7 simply permutes the 
number in the list. To appreciate the significance of this, let us turn to the 
general situation. 

Let m be a positive integer, k = 4(m) (the function defined in Explo- 

ration E.34) and al, as,. . . , ok be those positive integers less than n which 
are coprime with n. Let n be any integer coprime with m. Prove the fol- 

lowing: 

(i) for each i, there is an index j for which aj E noi (mod m); 

(ii) if a, # a,, then na, # na, (mod m); 

(iii) for each i, there is an index j for which ai E naj (mod m); 

(iv) if the numbers in the set {nal, na2,. . . , nok} are each replaced by 
their remainders upon division by m, we get precisely the numbers 
in the set {ai, ~2, . . . , ok}; 
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(v) ala2a3 .--ak 3 nk(ula2 . ..ak) (mod m). 

Deduce that n4(*) 3 1 (mod m), and obtain the Little Fermat Theorem 
as formulated in Exploration E.32 as a corollary. 

3.6 Rational Functions 

For any field F, the set of polynomials F[t] with the usual addition and 
multiplication is a commutative ring like Z. Just as Z can be embedded in 
the field Q, F[t] is contained in the field of rational functions. These are 
expressions of the form p(t)/q(t) where p and q are polynomials over F and 
q(t) is not the zero polynomial. Addition, subtraction, multiplication and 

division of rational functions are carried out as for rational numbers. An 
important difference between polynomials and rational functions is that it 
is not always possible to evaluate a rational function at every point of its 
underlying field F. A rational function p(t)/q(t) assumes the value p(c)/q(c) 
when t = c, except when c is a zero of q, in which case the value is left 
undefined. For example, (3t+2)/(t2-4) is a rational function over Q whose 
value is undefined at 2 and -2. 

Exercises 

1. Show that every rational function f(t) can be written in the form 
p(t) + g(t), where p(t) is a polynomial (possibly 0) and g(t) is a 

rational function the degree of whose numerator is smaller than the 
degree of the denominator. 

2. Show that the rational function 

at + b 

(t - m)(t - n) 

can be written in the form 

A B 
-+- 
t-m t-n 

for some constants A and B determined by 

A(t - n) + B(t - m) = at + b. 

Just.ify the assertion that the appropriate values of A and B can be 

found by making the substitutions t = m and t = n. Find A and B 
by this method and check that the values obtained are correct. 

3. Write the rational function 

t + 14 

(t - 1)(t + 4) 
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in the form 
A B -- 

t-1 +t+4 

for suitable constants A and B. 

4. (4 Let N/q(t) b e a rational function for which the degree of the 

numerator is less than that of the denominator and the de- 
nominator q(t) is the product of h distinct linear factors t - si 
(1 5 i 5 k). Show that p(t)/q(t) can be written in the form 

,g, (t TQi) 
-- 

for suitable constants ci. 

(b) Prove that, in (a), the ci are uniquely determined by the formula 

Ci = P(Q)/d(Qi). 

(c) Deduce from (a) a representation of that polynomial f(t) of 
degree less than Jz for which f(si) = bi, where, for 1 5 i 5 k, bi 
are assigned values. 

5. In each case, use a partial fraction representation of ak to determine 
C{ak : lc=2,3,... , n}, where ak is equal to 

(4 l/W - 111 
(b) l/P3 - 4 

(c) (kt + l)((kl- 1)X + 1)’ 

6. The partial fraction decomposition can be extended to the situation 
in which q(t) is a product of irreducible factors some of whose degrees 
are greater than 1. In this case, for each such factor v(t), there is a 

summand of the form u(t)/v(t) where deg u(t) < deg v(t). 

(4 

(b) 

Verify that t4 - 108t + 243 = (t - 3)2(t2 + 6t + 27). 

The rational function 
t3 + t2 + 15t - 27 

t4 - 108t + 243 
can be written in the 

form 
-- 
t _” 3 + (t :3)2 + t2 C+t6;:27 ’ 

Determine the constants A, B, C, D and check your answer. 

7. Express the rational function 

- rw 7t2 2t + 3 = 
24 - 3t3 + t2 - 3 

as a sum of partial fractions, one associated with each real irreducible 
factor of the denominator. 
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8. For 2 < n 5 5, write out the partial fraction decomposition of 
l/(P - 1) over Q and C. What is the decomposition over C for 
an arbitrary positive integer n? 

Explorations 

E.38. Principal Parts and Residues. What happens in the partial frac- 
tion decomposition if the denominator q(t) of a rational function p(t)/q(t) 
has repeated irreducible factors? Suppose q(t) = (t-c)kr(t) where r(c) # 0. 

Then p(t)/q(t) can be written in the form 

u(t) 
(t - C)k 

+ s(t) 
* 

where deg u(t) < k. To see this, note that by the Euclidean algorithm, there 
are polynomials g(t) and h(t) such that 

1 = g(t)(t - cy + h(t)?=(t). 

(Consult Exercise 1.6.2 for the numerical case and Exploration E.20.) Di- 
viding by q(t) and doing some manipulating yields the required represen- 
tation. 

By using the Taylor expansion of u(t) in terms of t - c, show that, for 
suitable coefficients ei, 

u(t) -=~+(t”“c;:_, +-.+&. (t - c)k 

This is called the principal part of the rational function at c. For t close 
to c, the numerical behaviour of the rational function is approximated by 

that of its principal part. The coefficient al of (t-c)-’ is called the residue 
at c. Both the principal part and the residue play an important role in 
the theory of functions of a complex variable; the residue can be used to 
compute definite integrals which often cannot be evaluated by elementary 
means. 

In the special case that k = 1, 

q(t) = (t - CM(t) + (t - +w 

for some polynomial u(t), where q’(c) # 0. Show that the residue ofp(t)/q(t) 

at c is equal to p(c)/q’(c). 

More generally, if q(t) = v(t)kr(t), where v(t) is irreducible and gcd 
(v(t), r(t)) = 1, we can write 

p(t) w(t) 4 - - + - 
q(t) (Wk r(t) 

where deg w < k deg v. 
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Show, by dividing w(t) by v(t), that there are polynomials ai (1 < i 5 Ic), 
for which degai < degv and 

w(t) = Ok(t) + ak-1(+(t) + ak-2(t)v(t)2 + ‘..+ al(t)v(t)k-l, 

so that 

w(t)=-+ ak @> 

v(t)” v(t)” 

ak-dt) + . . . + adt) 
v(t)“-’ v(t)’ 

3.7 Problems on Factorization 

1. Factor over 2: 

(a) 4x4+ 1 

(b) z4 - 20~~ + 4 

(c) X2Y2 - (x + Y)XY + x + y - 1 

(d) x2y2z2-(x+y+z)xy%+xy+y%+%x-1 

(e) (b - c)~ + (c - a)” + (a - b)3 

(f) a2(b + c) + b2(c + a) + abc - c3 

(g) bc(b + c) + ca(c + a) -t ab(a + b) -I- 2abc 

(h) bc(b + c) + ca(c - a) - ab(a + b) 

(i) xl0 +x5+1 

(j) 2x3 + 6xy2 + z3 - 3x2% + 3#2 

(k) s~~+y~+%~+z~y~%~-2x~ y%-2xy2%-2xy%2+2xy+2x%+2y%-4 

(1) x2(y3 - %3) + y2(z3 - x”) + %2(X” - ys) 

(m) (a + b + c)~ - (b + c)~ - (c + a)” - (a + b)4 + a4 + b4 + c4 

(n) (bc + ca + ab)3 - b3c3 - c3a3 - a3b3 

(0) 2(bc + ca + ab)2 - a2(b + c)~ - b2(c + u)~ - c2(a + b)2 

(P) 6(x5 + y” + z”) - 5(z2 + y2 + z”)(x” + y3 + z3) 

(q) 2(x4 + y” + z4 + w4) - (x2 + y2 + z2 + w2)2 + 8xyzw 

(r) x3y3 + y3r3 + %3z3 - x4y% - xy4% - xyz4 

(s) (~2+y2+%2)(x+y+%)(2+y-%)(y+%-x)(%+x-y)-8x2y2%2 

(t> x(y + g2 + Y(% + x)2 + %(X + y)2 - 4xyz 

(u) a4 + b4 - c4 - 2a2b2 + 4abc2 

2. Show that the two equations 

x4 - x3 $ x2 + 2x - 6 = 0 

x4 + x3 + 3x2 + 42 + 6 = 0 

have a pair of complex roots in common. 
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3. Find a polynomial p(x) such that [P(x)]~ - x is divisible by (x - 1) 
(x - 2)(x - 3). 

4. Find values of a and b which will make 

(ax + b)(x5 + 1) - (52 + 1) 

divisible by z2 + 1. Check your answer. 

5. (a) If ax3 + bx + c, where a # 0, c # 0, has a factor of the form 

x2+px+1, 

show that 
a2- , c2 = ab 

(b) In this case, prove that ax3 + bx + c and cc3 + bx2 + a have a 
common quadratic factor. 

6. If the quadratic function 3x2 + Ppxy + 2y2 + 2ax - 4y + 1 can be 
resolved into factors linear in x and y, prove that p must be a root of 

the equation 

p2+4ap+2a2+6=0. 

7. A manic cubic polynomial over Z has the property that one of its 
zeros is the product of the other two. Show that it must be reducible 
over Z. 

8. For what integer a does x2 - z + a divide xl3 + x + 90? 

9. Show that 

b2(a - b)(c - b){(a - b)2 + (c - b)2} - ab2c(a2 + c2) + b5(a - b-i-c) 

is the cube of a polynomial. 

10. Determine all values of the parameters a and b for which the polyno- 

mial 
x4 + (20 + 1)x3 + (a - 1)2x2 + bx + 4 

can be factored into a product of two manic quadratic polynomials 
p(x) and q(x) such that the equation q(x) = 0 has two different roots 
r and s with p(r) = s and p(s) = r. 

11. Prove that 212 divides 

3(81”+l) + (16n - 54)9”+’ - 320n2 - 1447~ + 243. 

12. Let j(x) = xn + xa + 1 be a polynomial over Z2 such that 0 < a < n. 
Show that, if f(x) h as any repeated factors, then f(x) is a perfect 
square. 
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13. (a) Determine a necessary and sufficient condition on the integers b 
and c such that both the polynomials 

t2+bt+c and t2+bt+c+1 

are reducible over Z. . 
(b) Determine integers b and c such that both the polynomials 

3t2 + bt + c and 3t2 + bt + c + 1 

are reducible over Z. 

14. Let n be a positive integer, p be a prime, q = p” and m = 
(qp - l)/(q - 1). Prove that x’J - z - 1 divides xm - 1 over Z, if 
and only if n = 1. 

15. Factor over Z: (x4 - 1)” - x - 1. 

16. Prove that the polynomial (x + y)” - z” - y” is divisible by 

(a) x2 + ty+ y2 where n s 5 (mod 6) 

(b) (x2 + xy + y2)2 when n E 1 (mod 6) 

(c) z3 + 2z2y + 2xy2 + y3 when n is a prime exceeding 3. 

17. For each positive integer k, show that t5 + 1 is a factor of 

(t4 - 1)(t3 - t2 + t - l)k + (t + 1)t4”-1. 

18. If a positive integer m has a prime factor greater than 3, show that 
4m - 2m + 1 is composite. 

19. Determine all values of the positive integer n for which 4” + n4 is 

prime. 

20. Suppose that m is a positive odd integer exceeding 3. Prove that 

22m + 1 

5 

is a composite integer. 

21. Let f(x, y) b e a symmetric polynomial. Show that, if (x - y) is a 

factor of j(z, y), then so is (x - Y)~. 

22. Prove that, for any positive integer n exceeding 1, the equation 
1 f 2x + 3x2 +. . . + nx”-1 = n2 has a rational root between 1 and 2. 
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3.8 Other Problems 

1. Suppose that x2 = yx - 1 and y2 = 1 - y. Show that x5 = 1 but that 
2 # 1. 

2. Is 

correct? 

a3 + b3 a+b 

a3 + (a - b)3 = a+(a-b) 

3. For which integers x is x4 + x3 + x2 + z + 1 a perfect square? 

4. Let a and b be rational. Can t5 - t - 1 and t2 + at + b ever have a 

common complex zero? 

5. Find a and b so that the equations x3 + ax2 + 11x + 6 = 0 and 
x3 + bx2 + 14x + 8 = 0 may have two roots in common. 

6. Suppose that al, a2,. . . , az,, are distinct integers such that 

(x - al)(x - a2)(x - as) . . . (x - azfl) + (-1)“-‘(n!)2 = 0 

has an integer root r. Show that 

2nr = al + a2 + ag + . . . + azn. 

7. Find all integer values of m for which the polynomial 

t3-mt2-mt-(m2+1) 

has an integer zero. 

8. Prove that, if f(t) is a polynomial with integer coefficients and there 

exists a positive integer k such that none of the integers f( 1)) f(2), . . . , 
f(k) is divisible by k, then f(t) has no integer zeros. 

9. Let f be a manic polynomial over Z and suppose that there are four 
distinct integers a, b, c, d for which 

f(a) = f(b) = f(c) = f(d) = 12. 

Show that there is no integer k for which f(k) = 25. 

10. Let the zeros m, n, k of t3 + at + b be rational. Prove that the zeros 
of mt2 + nt + k are rational. 

11. Find constants a, b, c, d, p, q for which 

a(x - P)~ + b(x - q)2 = 5x2 + 8x + 14 

c(x - p)” + d(x - q)2 = x2 + 102 + 7. 
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12. Determine the range of w(w + x)(w + y)(w + 2) where z, ‘y, z, w are 
real numbers which satisfy 

13. If 2 + y + z = 0, prove that 

x5 + y5 + %5 x3 + y3 + %3 x2 + y2 + %2 
= 

5 3 * 2 ’ 

14. If 

by/z + cr/y = a 

m/x + ax/z = b 

ax/y + by/x = c, 
show that 

(a) xs3 + ym3 + C3 + x-ly-iz-l = 0 

(b) a3x3 + b3y3 + c3z3 + abcxyz = 0 

(c) a3 + b3 + c3 = 5abc. 

15. If x + y + z = 0, show that 

{ 
y-z 

z+ 
z-x x-y 
-+- = 9. 

Y % >( 
-+&+L 
Y--z X-Y > 

16. If ~(1 - mzy/x3) = y(1 - mxz/$) = ~(1 - myx/,$) with x, y, t 
unequal, prove that each quantity is equal to x + y + t - m. 

17. Suppose a, b, c, d are integers, that r is a zero of P(x) = x3 + ax2 + 
bx - 1, r + 1 is a zero of y3 + cy2 + dy + 1, and that P(x) is irreducible 
over Q. Express another zero s of P(x) as a function of r which does 

not explicitly involve a, b, c or d. 

18. Let n = 2m, where m is an odd integer greater than 1. Let 0 = 
cos(2a/n) + i sin(2x/n). Express (1 - ~9)~’ explicitly as a polynomial 
in 8, i.e. akfl” +Uk-iflk-’ +. . . + al 0 + ac, with integer coefficients ai. 

19. Let F be a finite field having an odd number m of elements. Let p(x) 
and q(x) be irreducible polynomials over F of the form x2 + bx + c. 

(a) Prove that q(z) = p(x + h) - k for some h and k in F. 

(b) For how many elements k in F is p(x) + k irreducible? 

20. Show that the product of four consecutive terms of an arithmetic 
progression of integers plus the fourth power of the common difference 
is a perfect square. Give a nontrivial example in which this quantity 
is actually a perfect fourth power. 
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21. Let f, g, h be polynomials over R or C. Suppose that f = g”‘h, 

where g does not divide h. 

(a) Show that gm-l divides f’, the derivative of f. 

(b) The example g = (t - 1)3, f = (t - 1)3(t3 - 1)2 shows that it is 

possible for gm to divide f’. Is it possible for gm+’ to divide f’? 

22. Show that, for every positive integer n, there is a polynomial f(x) of 
degree n and a related polynomial g(x) for which 

[f(x)l” - 1 = (x2 - W412. 

23. Put {m}! = (xm - 1)(x”-1 - 1). . .(x - 1) for m 2 1 and {O}! = 1. 

Show that 

is a polynomial with rational coefficients. 

24. If x + y + .z = xyz, show that 

2x 2Y 2% 2x 
-+- 
1 - x2 l-y2+ m= 1 - x2 

2y 2% 
jqyy2’. 

25. Suppose that 

22x3 + y2y3 = 23x1 + y3yl = 21x2 + yly2 = 1 

and 

dl = x2y3 - x3y2 

d2 = X3Yl - XlY3 

4 = 21~2 - 22~1. 

Show that dl + d2 + d3 = dld2d3. 

26. (a) For which integers a, b does the quadratic t2 - at + b have a zero 
which is a root of unity? 

(b) Show that, if t2 - (a” - 2b)t + b2 has a zero which is a root of 

unity, then so does t2 - at + b (where a, b E Z). 

27. Suppose that a, b, c are nonzero integers and u, v are roots of unity for 
which u2 # 1, v2 # 1, and au + bv + c = 0. Show that Ial = lb] = ICI. 

28. Show that x = sin(a/l4) is a root of the equation 

8x3 - 4x2 - 4x + 1 = 0. 
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29. A regular polygon of seven sides is inscribed in a circle of unit radius. 

Prove that the length of a side of the polygon is a root of the equation 

x6 - 7x4 + 14x2 - 7 = 0 

and state the geometrical significance of the other roots. 

30. Let f(n) = n3 + 396n2 - llln + 38. Prove that f(n) s 0 (mod 3”) 
has precisely nine solutions modulo 3” for all integers m 2 5. 

31. Show that it is not possible to find polynomials f(t), g(t) over C 
which are coprime such that 

f(t+ 1) f(t) 1 -s-z--. 
dt + 1) t?(t) I! 

Hints 

Chapter 3 

1.5. Suppose t2 + 1 = (at + b)(ct + d). Derive a contradiction if a, b, c, d 
are real. 

1.8. Reducibility over Z requires care. If at2 + bt + c has rational zeros, it 
can be written in the form (u/v)(pt + q)(rt + s), where gcd(u,v) = 
gcd(p, q) = gcd(r, s) = 1. Must v be equal to l? 

1.16. Suppose h(t) is reducible and can be written as the product of Gait’ 
and Chit’. Consider the two cases: (1) p divides only one of a0 and bo; 
(2) p divides each of a0 and bo. In case (l), compare with the proof of 
the Eisenstein Criterion. In case (2), show by induction that p must 
divide ok and bk for 0 5 k 5 m; look at the coefficients of t2k and tk. 

1.21. Consider the greatest common divisor of f(t) and g(t). Consult Ex- 
ercise 1.6.2 and Exploration E.20. 

2.7. (d) Write 11 as the sum of integers of opposite parity whose product 
is -24.28 = -25 a3.7. 

(f) Apply the Eisenstein Criterion. 

(i) Factor 3t4 - 2t3 - t2. 

(j) (k) Look for an integer zero. 

(n) Eliminate the possibility of a linear factor. Try the method of 
undetermined coefficients. 

(0) Assume a factorization (t2 + at + b)(t3 + ct2 + dt + e). Show that 
b and e have opposite parity and that, in fact, b is even and e is odd. 
This reduces the pair (b,e) to two possibilities, up to sign. 

(p) Write as a difference of squares. 
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2.8. Let g = u + v and h be two polynomials with 0 5 degv < deg u. 

Show that gh cannot be homogeneous. Recall Exercise 1.7.4(d). 

2.10. (a) (b) W ‘t ri e as the sum of two polynomials which have a factor in 
common. 

(c) (e) (f) Use the Factor Theorem. 

(d) If reducible, there must be a homogeneous linear factor. Try a 
symmetric one. 

(g) If reducible, th ere must be a homogeneous linear factor. Then 

for some a, b, the polynomial must vanish under the substitution 
~=.ax+by. 

2.11. Express pn(x, y,z) as a polynomial in Z. Use long division by z2 - 
(x + y)z + xy; alternatively, experiment with some numerical values 
of x and y to get a handle on a possible factorization. 

2.12. Use the Factor Theorem to find linear factors. What is the factoriza- 
tion when z = O? 

2.13. What is the significance of the divisibility of the leading coefficient 
by m? 

2.14. Test small moduli. 

3.4. (b) If a/b is a root, then the long division algorithm in which q(t) is 
divided by bt - a should yield integer coefficients at every stage in 

the quotient. 

4.12. Note that 2t3 + t + 3 = (t + 1)(2t2 - 2t + 3). 

5.12. (a) Show that C is a primitive Pkth root of unity iff c2 is a primitive 
kth root. 

(b) Show that (’ is a primitive kth root iff -C is a primitive 2kth root. 

6.4. Use induction on k. Choose cl to express 

p(t) Cl -- 
q(t) t - al 

in the form pl(t)/ql(t) where ql(t) has the zeros a2,. . . , ak. 

6.7. We seek a representation of the form 
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6.8. For example 

1 1 
-=t-1+ 

Bt3+Ct2+Dt+E 

t5 - 1 @+P+P+t+l 

for suitable A, B, C, D, E. 

7.1. (c) Rearrange terms; collect terms with factor x + y. 

(d) Set z = 1 and compare with (c). Alternatively, set ty = 1. 

(e) Set b = c. 

(g) Set a + b = 0. 

(i) Set z equal to an imaginary cube root of unity. 

(j) Try a substitution z = ax. 

(k) Express as a difference of squares. 

(m) Set c = 0, a + b + c = 0. Four linear factors are easily found. 

(p) Factor the polynomial determined by setting t = 0. Alternatively, 
express in terms of the elementary symmetric functions x + y + z, 

xy + yr + 22, xyz (see Exercise 2.2.13). 

(q) The polynomial vanishes when (x,y,z, w) = (l,l, 1,l). What 
possible linear factors does this suggest? 

(s) Write as a polynomial in z 2, Is there a substitution for z2 as a 
function of x and y which will make the polynomial vanish? 

(u) Factor as a difference of squares. 

7.3. What should p(l), p(2), p(3) be? 

7.4. The polynomial should vanish when z = i. 

7.5. (a) The zeros of the quadratic are reciprocals; the sum of the zeros 
of the cubic is 0. Use Exercise 1.5.6. 

(b) The zeros of cx3 + bx2 + a are the reciprocals of the zeros of 

ax3 + bx + c. 

7.6. Use the method of undetermined coefficients. It can be arranged that 

the constant term in each linear factor is 1. 

7.8. x2 - x + a must divide xl3 + 2 + 90 when x = 0,l. The case a = -2 
can be eliminated almost at once; factor the quadratic. 

7.9. To get an idea of what the cube root might be, look at the situation 
in which any one of the variables is set equal to 0. Make a conjecture 
and check it out using the Factor Theorem. Can you manipulate the 
polynomial directly to reveal that it is a cube? 
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7.10. Let u = r + s and v = rs. Express the quadratic factors in terms of 
u and v. 

7.11. Let x = gn+l and try to factor the quadratic in x. Can 320n2+144n- 
243 be factored over Z? 

7.12. Remember, 1+ 1 = 0. Since a repeated factor of a polynomial divides 
its derivative, examine the greatest common divisor of z” + x0 + 1 
and its derivative. 

7.14. The following facts will be useful to keep in mind: 

(1) pr = 0 for each r in Z, ; 

(2) xq-x- 1 ixm- 1 iff xm - 1 E 0 (mod xq - x - 1). Thus setting 
x’J = x + 1 should lead to xm - 1 - 0; 

(3) (y + %)” = yp + 9; 

(4) xm=x.xq. ....xqp-l and xq = x = 1, x4 = (x + 1)‘J = xQ + 1 = 
x+2,...; 

(5) ByFermat’sTheorem,xP-x haspzeros0,1,2,...,p-1. What 
does this say about its factorization over Z,? 

7.16. Let x = ty. Check when the zeros oft2+t+l are zeros of (t+l)n-tn-l 
and its derivative. 

7.21. If f(x,d = (X - ddd, w a is the relationship between q(x, y) h t 
and dy, xl? 

7.22. Look at the cases n = 2,3,4 and make a conjecture. 

8.3. Observe that for any integer x, the left side lies between (x2 +~/2)~ 

and (x2 + x/2 + l)2. 

8.6. The integers r - ai are nonzero and distinct. Arrange them in ascend- 
ing order of absolute value and examine their product. 

8.7. If t is an integer root, then m2 + (t2 + t)m - (t3 - 1) = 0 is solvable 

for integer m. The discriminant (t2 + 3t - 4)2 + (24t - 20) must be a 
perfect square not strictly between (t2 + 3t - 3)2 and (t” + 3t - 5)2. 

8.8. If m is an integer zero, then f(m - ck) E 0 (mod k) for each integer 

C. 

8.9. Identify four linear factors of f(t) - 12. What can be said about the 
factorization of the integer f(k) - 12? 

8.10. What can be said about m + n + k? 

8.11. Solve the system for (x-P)~ and (x-q)2; use a discriminant condition. 
Compare coefficients. Guess. 
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8.12. Use Exercise 2.12 to factor 0 = -w7 - x7 - y7 - z7. 

8.13. Use Exercise 2.12. Note that 2(~~+y~+2~+xy+yt+zx) = z2+y2+z2. 
Alternatively, set z = -(x + y) and simplify the three terms. 

8.14. (a) Use the third equation to eliminate c from the other two. 

8.16. If u is the desired quantity, then x3 - y3 + mz(x - y) = u(x2 - y2). 
Note that x # y. Find a similar equation for y and z. 

8.17. Any polynomial for which r is a zero must be divisible by P(x). Use 

this fact to obtain an equation relating a and b. 

8.19. (a) Th e si ni g fi cance of the condition that m is odd is that u -f- u # 0 

for any element u in F. Consequently the equation 2x = k is always 
solvable for 2. Choose h so that p(x + h) and q(x) have the same 

linear coefficient, and then choose k. 

(b) The reducible quadratics are easy to count-one for each pair of 
zeros in F. Use (a) to show that the number of irreducibles is the 
same for each linear coefficient of the quadratic. 

8.21. Write f and g as a product of irreducibles and examine the exponents. 

8.22. The first few cases are (f(x),g(x)) = (x, l), (2x2 - 1,2x), (4x3-3x, 
4x2 - 1). Make a conjecture about f(x). Consult Exercise 1.3.8. Recall 
that cos2 n0 - 1 = - sin2 nf?. 

8.23. Write {m}! as a product of cyclotomic polynomials. What is the 
exponent of &d(x)? 

8.24. 2x/(1-x2) suggests a substitution x = tan u, etc. Look at tan(u+. . .). 
Interpret the condition and the conclusion. Alternatively, put the left 
side over a common denominator and express the numerator as a 

polynomial in the elementary symmetric functions. 

8.25. Multiply each di by two suitable expressions equal to 1 and add. 

8.26. (a) If u is an imaginary zero of the quadratic, so is c = 21-l. What is 
the sum and product of the zeros? 

8.27. A second equation relating u and v is obtained by taking complex 
conjugates. Note that iI= u-l, IY = 21-l. 

8.28. Use de Moivre’s Theorem and the fact that sin 1712 = 1 to derive the 

required equation. 



Equations 

4.1 Simultaneous Equations in Two or Three 
Unknowns 

A man standing on a railway bridge 32 meters long observes a 
train coming towards the bridge at 120 km per hour. It turns 
out that whichever way he runs at his top speed of 15 km per 
hour, he will reach the end of the bridge at the same time as the 
train. How far from the end of the bridge closest to the train is 
he? 

This typical textbook problem can be solved by the introduction of vari- 
ables and setting up equations which relate them. For example, if we let x 
be the distance to the end of the bridge nearest the train and y the dis- 
tance to the other end in meters, we can derive the simultaneous system of 
equations 

x+y=32 y-x=4 

both of which must be satisfied by x and y. 
This system can be solved in a straightforward way. Using one equation, 

we can solve for y in terms of x and use this to obtain from the other equa- 
tion a single equation in x. However, some problems involve equations of 
higher degree and it is not so easy to untangle the variables. In this section, 
a few techniques for handling a simultaneous system will be reviewed. Un- 
less otherwise specified, x, y, z will denote variables and the other letters 
constants. 

Exercises 

1. Solve the system of equations 

x+y=16 

x+%=20 

y + f = 22. 

2. Consider the system 

alx+bly+clz=O 
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~22 + bzy + c2z = 0. 

Suppose that neither equation is a constant multiple of the other. 

(a) Manipulate the first equation multiplied by c2 and the second 
multiplied by cr to obtain a single equation relating the variables 
x and y alone. 

(b) Show that, for any solution x, y, z, 

x : y : z = (blc2 - b2cl) : (CIQ - alc2) : (alb2 - a2bl). 

(c) Prove that the set of solutions of the system is given by 

x = (blc2 - b2cl)k 

Y = (ClU2 - a1c2p 

z = (alb2 - a2bl)k 

where k is any number. 

For convenience we can use the display 

X Y z 

‘xclxalxbl 
b, c2 a2 b, 

as a mnemonic. In vectorial terms, the solution set of the two equa- 

tions consists of the set of vectors (x, y,z) which are orthogonal to 
the vectors (al, bl, cl) and (02, ba, ~2). Such vectors must be multiples 
of the cross product of these two vectors. 

3. Solve the system 
x+2y+3z = 0 

x-y+z = 0 
x2 + y2 + z2 = 152 . 

4. Consider the pair of equations, where up # 0: 

at2 + bt + c = 0 

pt2 + qt + T = 0. 

(a) Show that, if the equations have a root u in common, then 

u2 : u : 1 = (br - cq) : (cp - ar) : (aq - bp). 
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(b) Prove that the equations have a root in common if and only if 

(cp - c~r)~ = (br - cq)(aq - bp). 

5. (a) Find the conditions on a and b that 

P-2t+a=o 

t2-8t+b=O 

have a root in common. 

(b) Determine a particular numerical pair (a, b) for which the equa- 
tions in (a) have a root in common, and check your result by 
showing that the two quadratics have a common factor. 

6. Suppose that xyz # 0 and that 

p = x - yz/x, q = y - zx/y, P = z - xy/z, a/x + b/y + c/z = 0. 

(a) Prove that 

O=pxy+qyz+rzx=q/x+r/y+P/z 

0 = pxz + qxy + ryz = r/x + p/y + q/z. 

(b) Eliminate x, y, z from the given system of equations to obtain 
an equation in the remaining variables. 

7. Show that the solutions of the system 

x+y+z=a 

xy+yz+zx=b 
xyz = c 

are given by the roots of the cubic equation 

t3 - at2 + bt - c = 0 

taken in some order. 

8. Solve the system 
x+y+z=12 

xy+yz+zx=41 
xyz = 42 . 

9. By expressing x2 + y2 + z2 and x3 + ys + z3 in terms of the elementary 
symmetric functions (Exercise 1.5.8), find a system of the type in 
Exercise 7 equivalent to each of the systems and thence solve it: 
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(4 
x+y+z = 15 

x2+y2 +z2 = 83 

x3 + y3 + z3 = 495 

(b) 
x+y+z = 2 

x2 +y2 + z2 = 14 
xyz = -6 . 

10. By factoring the left side of the first equation, or otherwise, solve the 
system 

x2+3xy-4y2 = 0 
x2 +xy+y2 = 7y3 -4. 

11. (a) Suppose that r, oi, bi (i = 1,2, . . . , n) are numbers for which 
ai/bi = r for each i. Let a = Cai, b = Cbi. Show that a/b = r. 

(b) If 
X Y Z 

-=-z-z 
11-y 6-z 7-x 

2 

use (a) to determine x -+ y + z, and solve this equation for x, y, 
Z. 

4.2 Surd Equations 

In solving an equation in a single variable x, we begin with the assumption 
that x satisfies the equation and deduce that x must be one of a number of 
possibilities. If a polynomial equation is involved, we are content to accept 

all of these as valid solutions. However, strictly speaking, the solution of 

the equation is not properly complete until the possible solutions have been 
checked by substitution into the equation. 

While, for polynomial equations, all of the putative solutions turn out 
to be valid, for surd equations, more care is needed. The manipulations for 
solving surd equations often lead to more general equations, not equivalent 
to their predecessors, so that in effect information about the solution is lost. 
The result is that only some of the values turned up by the analysis may 
satisfy the original equation. The remaining values which do not satisfy the 
equation are said to be ettraneous. This phenomenon will be illustrated in 
the exercises. 

For surds involving real numbers, e denotes the unique real number y 
for which yk = x when k is an odd integer. However, when k is an even 

integer, fi is defined only for z > 0 and denotes the unique nonnegative 
real number y for which y” = x. 
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Exercises 

1. Consider the equation &??? + m = 1. 

(a) As part of a strategy to obtain an equation without surds, derive 
an equation in which the two surds are on opposite sides of the 
equal sign. 

(b) Square the two sides of the equation in (a) to obtain a new 
equation. 

(c) Rewrite the equation in (b) so that only the surd term appears 
on one side. 

(d) Derive a final equation by squaring the two sides of the equation 

in (c). 

(e) Show that, if the given equation has a solution, then x = 7. 

(f) Verify that x = 7 does not satisfy the given equation. 

(g) Check which of the equations (d), (c), (b), (a) is satisfied by 
2 = 7. 

(h) Consider the given equation along with the equations in (a), 

(b), (c), (d). For each adjacent pair of equations, state which of 
the pair implies the other. Explain how the extraneous solution 
2 = 7 arises. 

(i) Make up an equation similar to the given equation for which 
2 = 7 is a solution. 

2. Show how to solve a surd equation of the form 

kdiii?ii+cx+d=O 

where k, a, b, c, d are real and ak # 0, by making the substitution 
y = Jm. Determine conditions under which it has 0, 1, 2 real 
roots. 

3. Solve the equations 

(a) J&T= x-2 

(b) 4-=x+4 

(c) 4&-Ti+x+4=0. 

4. Solve the equations 

(a) &TT = 3x - 5 

(b) dm = 5 - 3x. 



126 4. Equations 

5. (a) Verify that, if w = $&+ fi, then 

(b) Solve the equation 

6. Solve the equation 

x2+18x+30=2 x2+18x+45. 

7. (a) Without trying to solve it, explain why the equation 

l-x+@%=0 

has no real solution. 

(b) For which values of the parameter b does the equation 

l-x+JK%=o 

have a real solution? Verify that the solution satisfies the equa- 

tion. 

4.3 Solving Special Polynomial Equations 

Since antiquity, it has been known how to solve problems which we now 
recognize as quadratic equations. Lacking a convenient algebraic notation 
and having no notion of imaginary number, early mathematicians gave their 
solutions in the form of algorithms or geometric constructions which were 
applicable only in special cases. Although some equations of higher degree 
were handled by Middle Eastern mathematicians around 1000 AD, interest 
in these rose markedly in the sixteenth century when Tartaglia, Cardan 
and Ferrari discovered the means of solving cubic and quartic equations in 

general. During the next 250 years, attempts to solve general equations of 
higher degree failed, although the theory of equations was consolidated with 

the help of modern notation and a number system which included surds 
and imaginaries. In particular, the evidence pointed strongly towards the 
proposition that every complex polynomial equation had a root and that 
the number of roots, counting multiplicity, was equal to the degree. 

Finally, at the outset of the nineteenth century, Ruffini and Abel estab- 
lished that the roots of a general equation of degree greater than 4 could 
not be expressed in terms of the coefficients as could those of equations 
of lower degree. Thus it would not be possible to prove the Fundamental 
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Theorem of Algebra that every complex polynomial had a zero by actually 
expressing a zero in terms of the coefficients. However, already in 1797, 
Gauss had established this result by other means. 

We will review some of the methods for solving polynomial equations, 
and then turn to the Fundamental Theorem. While a proper formulation 
of the proof of this theorem requires quite advanced mathematics, it is 
possible to discuss the strategy behind the proof in such a way that the 
reader, even without the necessary background in topology, is nevertheless 

convinced of its plausibility. 

Exercises 

1. In Exercise 2.2.4, it was shown that the number of zeros of a noncon- 
stant polynomial over an integral domain (and, in particular, over 
a field) cannot exceed its degree. This is true, even if each zero is 
counted as often as its multiplicity. In general, a polynomial need not 
have as many zeros as its degree might indicate. Provide examples of 
quadratic polynomials over the following fields which have no zeros 
in the field: Q, R, Z2, Zs, Zs, Zr. 

2. Consider the case of polynomials over the field of complex numbers. 
Verify that the number of zeros of a polynomial counting multiplicity 

is equal to the degree of the polynomial in the following cases: 

(a) the degree does not exceed 4; 

(b) the polynomial is a reciprocal polynomial of degree not greater 
than 9; 

(c) the polynomial is tn - c, for some positive integer n and complex 

number c. 

3. Occasionally, trigonometry can be used to find the roots of a high de- 
gree polynomial equation. For example, one problem in the American 
Mathematical Monthly asked for the roots of the equation 

An(y) = 2a 

where 

fn(y) = yn - n~“--~ + [n(n - 3)/2!]~“-~ + . . . 

+ (-qn(n - r - 1)(7a - r - 2). . . (n - 2r + 1)/r!]y”-2’ + . . . , 

in particular when a = 1. 

(a) Solve the equation in the cases a = 1 and n = 2,3,4,6,8. 

(b) Verify that cos # + i sin 0 and cos 0 - i sin 0 are the roots of the 
quadratic equation t2 -yt+l=O,wherey=2cos8. 
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(c) Use 2 cos n0 = (cos 0 + i sin 0)” + (COS 0 - i sin t9)n to verify that 

2cos2e=(2cose)y-2=y2-2 

2cos3e = (2cos2e)y- 2cose = y3 - 3y 

and, in general, that 

2 cos ne = (2 co+ - i)e)y - 2 CO+ - 2)e 

is a polynomial in y for n > 4. \ 

(d) Verify that 

for 3 _< r 5 n/2. 

(e> Verify that L(Y) = YLI(Y) - JLZ(Y) for n L 3. 

(f) Show that 2 cos n0 = fn(2 COST), and deduce that, if ]a] 5 1, 
the equation is satisfied by y = 2 case, where cos nB = a. [See 
Exploration E.30 for a similar sequence of polynomials.] 

(g) To handle th e case in which Ial 1 1, we go back to (b) and begin 
with the observation that 21 and l/u are the roots of the equation 
t2 - yt + 1 = 0, where y = u+ l/u. In a similar way, show that 

2(u” + IL-” ) = fn(u + u-l), and deduce that the equation is 
satisfied by y = u + u-i where u2” - au” + 1 = 0. 

(h) How many roots does the equation have? 

4. One strategy in solving polynomial equations is to make a transfor- 
mation of the equations into a special form which will be easier to 

handle. For example, the method of completing the square (Exercise 
1.2.1) permits the reduction of a general quadratic equation to one 
of the form t2 - c = 0. 

Suppose that p(t) is a polynomial of degree n. Show that there is a 
constant k such that p(t - 1) is a constant multiple of a polynomial 
of the form 

t” + a,-2tnm2 + an-3tn-3 + . . . 

in which the coefficient of P-l vanishes. 

Show that each solution of the equation p(t) = 0 is of the form s - k 
where t = s is a solution of the equation p(t - k) = 0. 

5. Because of the transformation of Exercise 4, in order to handle the 
general quintic equation, it suffices to deal with quintic polynomials 
of the form 

t5 + at3 + bt2 + ct + d. 



4.3. Solving Special Polynomial Equations 129 

We might try to factor it as the product of a quadratic and a cubic: 

(t2 + ut + v)(t3 - ut2 + wt + z). 

By comparing coefficients, obtain four equations for U, v, w, z in terms 
of a, b, c, d. Eliminate the variables v, w, z and obtain a polynomial 
equation for u. What is the degree of this equation? Can the value of 
u be found by solving an equation for a power of u whose degree is 
less than 5? 

6. If a polynomial over a field does not have a zero in the field, then it 

is possible to find a larger field containing the coefficients which also 
contains a zero. Let us look at the situation when the polynomial is 
quadratic and the coefficient field is Q. 

Suppose d # 1 is an integer which is not divisible by any perfect 
square except 1. Then 4 is nonrational and so the polynomial t2 - d 

has no zero in Q. However, we can extend Q to a larger field by 
“adjoining” a. Let 

Q(&)={a+b&: a,bEQ}. 

(a) Verify that fi, 1 + 2fi and (l/3)(7 - 4&) are members of 

Q(d), but that 4, 31i3 and i are not. 

(b) Is i a member of Q(G)? 

(c) Show that Q(i) # C. 

(d) Verify that Q(d) is closed under the operations of addition, 

subtraction and multiplication. 

(e) The surd conjugate of a+b& is defined to be a-b&. Verify that 

the product of any number in Q(d) with its surd conjugate is 
rational, and deduce that the reciprocal of any element in Q(A) 
is also in Q(h). 

(f) Show that Q(a) is th e smallest field which contains all of Q 
along with the number 4. 

(g) Write t2 - d as a product of linear factors over Q(d). 

(h) Determine integers b and c such that bc # 0 and t2 + bt + c is 
irreducible over Q and reducible over Q(a). 

7. The role played by Q in Exercise 6 can be played by any field F. 
Thus, F(a) = {a + b&i : a, b E F}. 

(a) Verify that C = R(G). 

(b) Let F = Q(fi). Show that F(a) consists of numbers of the 
form a + bfi + cd + dfi, where a, b, c, d E Q. Determine 
(a+bfi+c&+d&)-‘. (Ob serve that Q(d)(d) = Q(&>(fi>, 
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so it makes sense to denote this extension by Q(fi, fi) and to 
regard it as the field obtained from Q by adjoining both fi and 

6) 

8. It is possible to adjoin to a field F zeros of polynomials of degree 
higher than 2. For example, F(21i4) is the set of elements of the form 

where a, b, c, d E F. 

(a) Show that each element of F(21j4) can be written in exactly one 
way in the form specified. 

(b) Verify that F(21i4) is closed under addition, subtraction and 
multiplication. 

(c) Show that 
(a + 21i4b + 21’,2c + 23’4d)-1 

also belongs to F(2114) and deduce that F(21i4) is a field. 

(d) In particular, determine (1+23/4)-1 and (1+21/4+21/2+23/4)-‘. 
Check your answer. 

[Remark: Extending an arbitrary field F begs the question of the 
existence of the radical in some field larger than F. For example, 

in forming Q(d), we know that fi exists as a real number and 

so Q(A) is a subset of R. However, F need not be a number field 
in order for the extension to be definable. In general, one adjoins a 

number making use only of the fact that it is to satisfy a polynomial 
equation over F. It is in this spirit that, for example, we need not ask 

what J--i is, but just know that it is something which satisfies the 
equation x2 + 1 = 0, i.e. something which yields -1 when squared.] 

9. (a) Let F be any field contained in R, and let f(t) be a cubic poly- 

nomial over F. Suppose d but not fi is a member of F and that 
F(h) contains a zero of f(t). Prove that f(t) is reducible over 

F and accordingly F contains a zero of f(t). 

(b) Suppose g(t) is a cubic polynomial over Q and that Fs, Fr , . . . , F, 
is a sequence of fields contained in R such that Fc = Q, and for 
i= 1,2,..., n, Fi = Fi-l(&) where di E Fi-1. Prove that, if 
g(t) has a zero in F,, then g(t) has a rational zero. 

[Remark: This is used to establish the celebrated result that there is 
no general ruler-and-compasses construction for trisecting an angle.] 

10. Let f(t)=t3-3t+l. 
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(a) Solve the equation f(t) = 0 by Cardan’s Method (Exercise 

1.4.4). To find u3 and v3, we need access to the field Q(n) 
obtained by adjoining a to Q, and finally t = 21 + v is 

found in the field obtained by further adjoining a cube root 
of (l/2)(-1+,&3). Sh ow that the roots of the equation as well 

as fl are all contained in the smallest field which contains Q 
along with C, a primitive ninth root of unity. Denote this field 

by Q(C). 
(b) Verify that Cc’ + C3 + 1 = 0 and prove that Q((‘) is an integral 

domain. In fact, Q(C) is a field, the hard part to show being that 

it is closed under the taking of reciprocals. The general argument 
for doing this runs as follows: Let g(t) be any polynomial of 
degree less than 6 over Q (so that g(C) is a typical element of 
Q(c)). Since t6+t3+1 is irreducible over Q, the greatest common 
divisor of g(t) and t6 + t3 + 1 is 1. By the Euclidean algorithm, 
we can find polynomials u(t) and v(t) over Q such that 

u(t)(P + t3 + 1) + v(t)g(t) = 1. 

Set t = C to obtain v(C)g(C) = 1. Use this technique to determine 
(‘-l and (c3 + <)-l as polynomials of 6. 

(c) With C denoting a primitive ninth root of unity, verify that the 
zeros of f(t) are <+Cs, C2+c7, c4+c5 by (i) direct substitution, 
(ii) showing that the coefficients of f(t) are suitable symmetric 
functions of the zeros. 

(d) The field Q(C) contains nonreal numbers. However, all of the ze- 

ros of f(t) are real. Argue that the smallest field which contains 
Q along with the zeros of f(t) is contained in R and is thus not 

Q(C). 
(e) Show that, if ‘u is any zero of f(t), then the other two zeros are 

u2 - 2 and 2 - ?J - u2. Deduce that 

Q(u)={a+bu+cu2 : a,b,cEQ} 

is the smallest field containing Q and the zeros of f(t). 

Explorations 

E.39. Solving by Radicals. Perhaps it is surprising to be told that a 
certain mathematical procedure is impossible, that it can never be found 
regardless of the time and energy expended in the search. Yet, it can be 

shown beyond any doubt, that, because of the underlying structure of the 
number system, there is no general method like those for quadratics, cubits 
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and quartics of finding the roots of polynomial equations of arbitrary de- 
gree. To formulate the type of solution we mean, let us look at polynomials 
of low degree. 

To find the zero of at + b, we simply divide one coefficient by another; 
thus, the roots can be found within the field containing the coefficients by 
means of a field operation (division) performed on the coefficients. 

The quadratic is more complicated. Finding the zeros often leads us 

outside of the smallest field containing the coefficients, but in a special 
way-through taking square roots. Thus, with the field operations of ad- 
dition, subtraction, multiplication and division, as well as the taking of 
square roots, the root of any quadratic is accessible from its coefficients, 
and the standard quadratic formula displays this explicitly. 

In solving a general cubic equation, we had to first solve a quadratic and 
then take cube roots. Thus, we can obtain the roots of a cubic equation 
from its coefficients, provided we allow the field operations as well as the 
extraction of square and cube roots. Finally, any method for solving a 
quartic equation involved the field operations and the extractions of square 
and cube roots. 

Keeping these cases in mind, we say that a polynomial equation p(t) = 0 
is solvable by radicals if and only if the roots of p(t) = 0 are determinable 
from the coefficients by means of the field operations and the extraction of 
kth roots for certain integers k performed in some order. A radical is any 
number of the form cl/‘. There exist polynomials of the fifth and higher 
degree which are not solvable by radicals. The analysis of this theorem 
requires theory of groups, fields and vector spaces beyond the scope of this 
book, but the range of ideas can be indicated by means of an example. 

The quartic equation 

t4 - 4t3 + 6t2 - 4t - 1 = 0 

can be rewritten as (t - 1)” = 2. It has the four roots tl = 1 + 2114, 
t2 = 1 - 2114, t3 = 1 + 2114i, t4 = 1 - 21j4i where 2114 denotes the 

positive fourth root of 2. None of these roots liis in Q, the smallest field 
which contains the coefficients of the polynomial. However, there is a way 

of telling how much we have to add to Q in order to get the roots. 
We begin with the observation that two rational numbers, a and b, are 

distinguishable in the sense that there are polynomial equations over Q 
which are satisfied by one but not by the other. Such an equation would 

be t - a = 0, which is satisfied by a but not by b. However, & and -& 
are indistinguishable in the sense that any polynomial equation over Q 
which has one of these numbers as a root must also have the other (try to 
disprove this statement). In general, we look at various subsets of the roots 
of a polynomial and examine how these can be distinguished from others 
by polynomial equations of several variables. Let us see how this works out 
in the example before us. 
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The polynomial t4 - 4t3 + 6t2 - 4t - 1 = (t - 1)4 - 2 is irreducible 
over Q, and therefore cannot be factored as a product of polynomials of 
strictly lower. degree with rational coefficients. Consequently, there are no 
linear, quadratic or cubic polynomials over Q with some of the ti as zeros. 
Furthermore, any polynomial over Q of degree at least 4 which has any ti 
as a zero must be divisible by t4 - 4t3 + 6t2 - 4t - 1 and therefore have all 
the ti among its zeros. Accordingly, there is no polynomial in one variable 

over Q which is satisfied by some but not all of the ti. 
Let us take the ti a pair at a time. Verify that tl + t2 and t3 + t4 are 

both equal to 2 while tl + t3, tl + t4, t2 + t3, t2 + t4 all differ from 2. Thus 
the equation 

u+v-2=0 

is satisfied by (u, v) = (tl, t2), (t3, t4), but not by other pairs of roots. This 
shows that there are polynomial equations over Q which are satisfied by 
some but not all of the pairs of the roots. Intuitively, this suggests that the 
four roots are not as far from being in Q as they might be. 

We now introduce the group of the quartic equation. To do so, we describe 
first the permutations associated with the elements tl, t2, t3, t4: there are 
the 4! = 24 ways of reordering the four elements by replacing each by 
another. 

The identity permutation, denoted by c, leaves each ti fixed. 
There are six permutations which interchange two of the roots and leave 

the remaining two alone. These will be denoted by (12), (13), (14), (23), 
(24), (34); the numbers between the parentheses indicate the indices of the 

roots to be interchanged. 
There are eight permutations which cyclically interchange three of the 

roots and leave the remaining one alone. These are (123), (124), (132), 

(134), (142), (143), (234), (243). F or example, (142) corresponds to replac- 

ing tl by t4, replacing t4 by t2, and replacing t2 by tl. 
There are three permutations which interchange pairs of the four roots. 

These are (12)(34), (13)(24), (14)(23). For example, (13)(24) interchanges 
tl and t3, and interchanges t2 and t4. 

There are six permutations which cyclically interchange all four of the 

roots. These are (1234), (1243), (1324), (1342), (1423), (1432). Thus, (1342) 
replaces tl by t3, t3 by t4, t4 by t2 and t2 by tl. 

A product of two permutations is defined by applying the permutations 
in succession. For example the product of (123) and (1243) is effected as 

follows: 

replace tl by t2 (by (123)), then t2 by t4 (by (1243)), for a net replacement 

of tl by t4; 
replace t2 by t3, then t3 by tl, for a net replacement of t2 by tl; 
replace t3 by 21, then tl by t2, for a net replacement of t3 by t2; 
replace t4 by t3. 
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Thus we can write (123) . (1243) = (1432). Unlike a product of numbers, 
this product is not commutative; sometimes, taking the factors in a differ- 
ent order gives a different result. For example, (1243) . (123) = (1324) # 
(123). (1243). 

Verify the following: (12)(34) . (132) = (234); (13) . (234) = (1423); 
(12) . (1432) = (243). 

The set of 24 permutations along with this operation of “multiplication” 
constitutes the group of all permutations of four numbers. Of these 24, we 
select a certain subset in the following manner to make up the grozlp of 

the polynomial. Consider all possible polynomial equations with rational 
coefficients of the form P(tl, t2, t3, t4) = 0 which are satisfied by the ti. For 
example, verify that the following hold: 

(a) tl + t2 + t3 + t4 = 4 

(b) tltzt& = -1 

(c) t: + t; + t; + t: = 4 

(d) tl + tz = 2 

(e) t3 + t4 = 2 

(f) (tl - t2)4 = 32 

Cd (t2 - t3)4 = -8 

(h) (t3 - t4)4 = 32 

(i) (tl - Q4 = -8 

(j) (tl - t2)4 + 4(t2 - t3)4 = 0. 

Equations (a), (b), and (c) are symmetrical in the ti, and remain valid no 
matter how we permute the variables. However, for the others, there are 
some permutations of the roots which will render them false. For example, 
(d) remains valid under the permutation (13)(24) (which converts it to (e)), 
but not under the permutation (123), since t2 + t3 is not equal to 2. 

The group of the polynomial t4 - 4t3 + 6t2 - 4t - 1 over the field Q 
(the smallest field which contains the coefficients) is the set of all permu- 
tations which preserve the validity of any equation over Q of the form 

P(tl, t2, t3, t4) = 0. Denote this group by G. Show that G always contains 
E, does not contain (123), and contains along with any two permutations, 
their product (in either order). 

It can be shown that in fact there are eight permutations in G. With this 

information, it is not too hard to see what they are. Consider the equation 
(d). Argue that any permutation which replaces tl by t2 must also replace 

t2 by tl, so that (123), (124), (1234) and (1243) do not belong to G. In a 
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similar way, eliminate (132), (142), (1342), (1432), (13), (134), (234), (14), 

(23), (24) (143) (243). Th us, G consists of the permutations 

We enlarge the base field (the smallest containing the coefficients) by 
adjoining a radical to Q: the hope is that by adjoining enough radicals, we 

will eventually obtain a large enough field to contain not only the coeffi- 
cients, but also the roots as well. In the present example, we can achieve 
this by adjoining first the radical i = fl, and then the radical 2114. 

The smallest field Q( i containing Q and the radical i is ) 

{a + bi : a, b E Ql. 

Just as we did for Q, we can now define the group of our polynomial over 

Q(i)ath e se o a t f 11 permutations which preserve the validity of polynomial 
equations of the roots whose coefficients are allowed to lie in Q(i). The 
family of admissible equations will now be larger than before; for example, 
it will include 

(k) (tl - t2)(t3 - t4)3 = -32i 

(1) (tl - t2)3(t3 - t4) = 32i. 

Accordingly, the group over Q(i) will be smaller; the equations (k) and 
(1) can be used to argue that it will not contain (12), (34), (13)(24) and 
(14)(23). However, it turns out that each of the permutations c, (1423), 

(W(W, (1324) converts the two equations above as well as every other 
valid equation over Q(i) into a valid equation. 

The field Q(i) is a splitting field for the polynomial t2 + 1, being the 
smallest field that contains both the coefficients and the roots of t2 + 1, 
or alternatively, being the smallest field in which the polynomial can be 

“split” into linear factors. Show that the group of t2 + 1 over Q consists 

of the two permutations of its zeros, namely the identity permutation and 

the permutation which interchanges them. Call this group G1. This group 
can be tied in with the groups of the original polynomial over Q and Q(i) 
in the following way. Partition the group G into two subsets: 

H1 = {E., (1423), (12)(34), (1324)) 

Hz = ((1% (34)s (13X24), (I4)(23)). 

Observe that HI is the group over Q(i). Verify that, if each of the permu- 
tations in Hr is applied to (tl - t2)3(t3 - t4)/32, we obtain a polynomial 

in the ti equal to i. However, verify also that each of the permutations in 
Hs gives a polynomial equal to -i. This actually holds for other polyno- 
mials in the roots which are equal to i as well. Thus, we can think of the 
sets HI and H2 as corresponding to the two elements of Gr, and we can 
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express the relationship between the groups G, Gi and HI by the notation: 

G1 Y G/HI. 
Finally, we subject the base field to a second enlargement by adjoining 

2114 to Q(i) to get the field Q(i,2rj4), which is the splitting field of the 
quartic polynomial. This field consists of numbers of the form 

where a, b, c, d E Q(i). 
The group Kr of the quartic polynomial over Q(i, 2114) consists solely 

of the identity permutation. For example, any permutation must keep tl 
fixed since ti = 1 + 2114 is a polynomial equation over Q(i, 2i14) satisfied 
by the roots. 

There are two groups of interest: G/H1 and HI, which correspond to 
the adjunction of the two radicals i and 2114 to the base field. The main 

idea to grasp is that in some sense we can describe the degree of symmetry 

displayed by the roots of a polynomial equation by means of a certain group 
of permutations, and that this group can be broken down into component 
parts through successive adjoinings to the base field for the polynomial. In 

general, suppose we have a polynomial p(t) over a base field Fo for which 
the equation is solvable by radicais. This means that the splitting field for 
the polynomial is the culmination of a sequence of intermediate fields, each 
of which is obtained from its predecessor by adjoining all kth roots of some 
number a: 

where, for each j > I, Fj = Fj-l(ai’“‘) with aj E Fj-1. Compute the 
groups of p(t) over these fields, Gj being the group over Fj. Then 

where the last group consists of the identity permutation alone. Each field 
Fj is the splitting field of a polynomial of the form tk - a over Fj-1; the 

group of this polynomial over Fj-1 is Hi. We can write Hj 2 Gj-l/Gi to 
indicate that there is a close relationship among the three groups. 

It can be shown that the groups Hj arising from adjunctions of radicals 
are characterized by a special property, and this in turn imposes a restric- 
tion on the structure of G. However, it is possible to find polynomials with 
degree as low as 5 whose groups do not satisfy the restriction, and therefore 
whose equations cannot be solved by radicals. 

What is the group associated with the polynomial t3 - 3t f I (Exercise 

3.10)? 

E.40. Constructions Using Ruler and Compasses. An early topic 

in many Euclidean geometry courses is ruler-and-compasses constructions. 
This reflects the ancient Greek interest in the so-called Three Famous Prob- 

lems of Antiquity, namely 
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(1) given an arbitrary angle, to construct an angle of one third the mag- 
nitude using only straightedge and compasses (‘Itisecting an Angle); 

(2) given the side of a cube, to construct the side of a cube of twice the 
volume (Duplication of the Cube); 

(3) given the radius of a circle, to construct the side of a square whose 
area is equal to that of the circle (Squaring the Circle). 

After mastering the method of bisecting a general angle, many students 
spend long hours trying to find a method of angle trisection and often have 
trouble believing that the job is impossible-not because they are not clever 
enough, but because of the intrinsic mathematical structure. Let us see 
why this is so. 

If there were a general trisection method, then it would work in particular 
for an angle of 60 degrees. This would mean that we could construct an 
angle of 20 degrees, or equivalently, construct a right-angled triangle with 
hypotenuse of length 1 and one side of length cos 20’. The problem is the 

following: 

Given a segment of length 1, is it possible to construct a 
segment of length z = cos20°, with the following operations 
permitted 

(1) choice of an arbitrary point 
(2) construction of a straight line through two specified 

points 
(3) construction of a circle with a specified center and radius 
(4) determination of points of intersection of two straight 

lines, two circles or a line and a circle? 

If we introduce Cartesian coordinates in the plane, the coordinates of the 

points of intersection in (4) can be found by solving linear or quadratic 
equations whose coefficients lie in the smallest field determined by the co- 
efficients of the equations of the lines or circles involved. 

Suppose we begin with the points (0,O) and (1,0) (determining a segment 
of length 1) and construct other points successively using lines and circles 

determined by points already constructed. Then the coordinates of each 
point so constructed would lie in some field F, which is the last in a chain 
of quadratic extensions (as described in Exercise 3.9). 

Can we construct the point (z,O), where t = cos 20°? Using the formula 
relating cos 30 and cos 8, verify that x satisfies the equation 8x3-62- 1 = 0, 
and that the polynomial on the left side is irreducible over Q. Now apply 

Exercise 3.9. 
Give a similar argument to show that duplication of the cube is impos- 

sible. 
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4.4 The Fundamental Theorem of Algebra: 
Intersecting Curves 

The Fundamental Theorem of Algebra states that every polynomial of posi- 

tive degree over C has at least one complex zero. Since there is no algorithm 
which will allow us to construct such a root in general, the proof of this 
theorem has to be tackled indirectly in a way which exploits the structure 
of the complex plane. We look at the complex numbers geometrically. Each 
complex number z = x + yi can be represented by a point (x, y) in the 

Cartesian plane. A polynomial equation in the variable z is equivalent to 
a pair of real equations in the variables x and y, whose loci are curves in 

the plane. The intersections of these curves correspond to solutions of the 
polynomial equation. Thus, the proof of the fundamental theorem depends 
on ensuring that certain curves intersect. The exercises in this section will 
examine the situation when the polynomial has low degree and suggest how 
one proceeds with the task in general. 

Exercises 

1. Let a, b be real numbers with a # 0. Show that, if z = x + yi, with x 
and y real, the complex equation 

az+b=O 

is equivalent to the simultaneous real system 

ax+b=O ay = 0 

in the sense that any solution of one corresponds to a solution to 
the other. Solve the real system graphically and argue that there is 
always a’unique solution. 

2. Illustrate graphically the solutions in the complex plane of the fol- 
lowing equations: 

(a) 3% + 4 = 0 

(b) (2 + i)z + (-3 + 4i) = 0. 

3. Let a = p + qi and b = r + si be two complex numbers with a # 0. 

Find a real system of two simultaneous equations equivalent to the 
complex equation az + b = 0. Solve the system graphically and argue 

that it always has a unique solution. 

4. (a) Let a, b, c be real numbers, with (I # 0. Show that the substitu- 
tion z = x + yi permits a reformulation of the complex equation 

az2 + bz + c = 0 
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as a simultaneous real system 

ax2 + bx - ay2 + c = 0 w 

y(2ax + b) = 0. CL) 

(b) Show that the locus of (L) is a perpendicular pair of straight 
lines intersecting in the point (-b/2a, 0). 

(c) Verify that (H) can be rewritten in the form 

(x + b/2a)2 - y2 = (1/2a)2(b2 - 4~). 

(d) If b2 - 4ac = 0, show that the locus of (H) is a pair of per- 
pendicular straight lines intersecting in (-b/2a,O). Sketch the 
graphical solution of the two equations. 

(e) Suppose b2 - 4ac # 0. Show that the locus of (H) is a hyperbola 
whose center is (-h/2a,O) and whose asymptotes are the lines 
x-y+b/2a=Oandz+y+b/2a=O. 

(f) If b2 - 4ac > 0, show that the loci of (H) and (L) intersect in 
two points on the x-axis. Sketch the graphical solution of the 

two equations. 

(g) If b2 - 4ac < 0, show that the loci of (H) and (L) intersect in 
two distinct points on the line x = -b/2a which are symmetrical 
about the real axis. Sketch the graphical solution of the two 
equations. 

(h) Show that (d), (f) and (g) confirm that: 

(i) if b2 - 4ac = 0, the quadratic equation az2 + bz + c = 0 has 

a single real root; 

(ii) if b2 - 4ac > 0, the quadratic equation has two distinct real 

roots; 

(iii) if b2 - 4ac < 0, the quadratic equation has two distinct 
nonreal roots, each the complex conjugate of the other. 

(i) On the graphs sketched in (d), (f) and (g) draw a circle whose 
center is at the origin and whose radius is sufficiently great that 

its interior contains all the points of intersection of the loci of 
(H) and (L). Label the points where the locus of (H) intersects 
the circle by the letter R (<as in real) and the points where the 
locus of(L) intersects the circle by the letter I (as in imaginary). 
Verify that there are four points with each of the labels R and 
I, and that the R-points alternate with the I-points. 

5. Illustrate graphically the solutions in the complex plane of the fol- 
lowing equations: 
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(a) z2 + 2% + 3 = 0 

(b) .z2 + 22 - 3 = 0 

(cl z2 -6z+9=0 

(d) z2 + 2iz - 1 = 0 

(e) z2 + (1 + 2i)z + (-1 + i) = 0. 

6. (a) Let p and q be nonzero reals. Show that the cubic equation 

z3+pz+q=o 

is equivalent through the transformation z = x+yi to the system 

x3-3xy2+px+qrO (4 

y(3z2 - y” + p) = 0. m 

(b) Show that the locus of (B) consists of the x-axis along with a 

hyperbola whose center is 

lines y = &z and y = - $ 

0,O) and whose asymptotes are the 

3x. How does the sign of p determine 
which of the x-axis and the y-axis is the transverse axis of the 
hyperbola? 

(c) Verify that the equation (A) can be written in the form 

y2 = (1/3)(x2 + P + n/x). 

(d) Verify that 

Jx2 + P + (!7/x> - x = [p + (Q/X)]/ [ Jx2 + P + w4 + x] 7 

and deduce that the locus of (A) is asymptotic to the pair of 

straight lines whose equation is 3y2 = x2. 

(e) Show that (A) is asymptotic to the y-axis. 

(f) Sketch the graphs of (A) and (B) on the same axes, indicating 

where the curves are likely to intersect. Then draw a circle with 

center at the origin whose radius is large enough that all the 
points of intersection of (A) and (B) are in its interior. Label 
all the intersection points of (A) with this circle by the letter 
R, and all the intersection points of (B) with this circle by the 
letter I. Verify that the letters R and I alternate. 

7. Carry out the procedure of Exercise 6 on the equation z3 + z + 1 = 0. 
Show that the equivalent real system is 

x3-3xy2+2+1=0 y(3x2 - y2 + 1) = 0. 

Sketch the graphs of these two curves, and verify that the cubic equa- 
tion has one real solution between -1 and 0 and two nonreal complex 
conjugate solutions. 
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8. Solve graphically the equations: 

(a) z3 - 72 + 6 = 0 

(b) .z3 - t - 1 = 0 

(c) 23 + i = 0. 

9. (a) Show that th e t ransformation z = x + yi applied to the equation 

%4 - 2%2 + 3% - 2 = 0 

yields the simultaneous real equations 

x4 - 6x2$ + y4 - 2x2 + 2y2 + 3x - 2 = 0 

423y - 4x$ - 4xy + 3y = 0. 

(b) Show that (C) can be rewritten in the form 

y2 = (3x2 - 1) f d8z4 - 4x2 - 3x + 3. 

((3 

CD) 

When -2 < x < 1, show that there is one positive value for y2 
giving two real values of y. When x < -2 or x > 1, show that 

there are two distinct positive values of y2 giving four real values 
of y. When z = -2, and x = 1, show that there are two values 
of y2, one of which is zero, and that there are three values of y. 

(c) Find tan 0, tan2 0, tan 30, tan2 38 for 0 = 7r/8, and determine 
the asymptotes of the curves (C) and (D). 

(d) Sketch the loci of the equations (C) and (D), and on the same 
axes indicate a circle with center at the origin and radius suffi- 

ciently large that the interior of the circle contains all the inter- 

section points of the curves (C) and (D). Label all the intersec- 
tion points of the circle and the locus of (C) with R and of the 

circle and the locus of (D) with I. Verify that the points R and 

I alternate. 

10. Let n be a positive integer. Consider the polynomial equation 

Zn + a,-1%+-l + Q,-2z”-2 + * f f + al% + al-J = 0. 

Suppose that z = x+ya’ transforms this equation to u(x, y)+iv(x, y) = 
0, where u and v are polynomials over R. 

We wish to examine where a circle with centre at the origin and a very 
large radius r intersects each of the loci u(x, y) = 0 and v(x, y) = 0. 
Let (r cose,rsin8) be a typical point on this circle. Use de Moivre’s 

Theorem (Exercise 1.3.8) to show that 

u(r cos 0, r sin 0) = r” cos n0 + terms of lower degree in T 
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v(r cos 0, r sin 0) = r” sin n0 + terms of lower degree in r. 

Since r is very large, the terms involving the highest powers of P in 
the expansions of u and v will be dominant, and the terms of lower 

degree will be negligible by comparison except where cos n0 and sin nr9 
are near zero. Consequently, as 0 increases from 0 to 27r, it is to be 
expected that u(r cos 6, r sin 0) changes sign roughly as r’” cos n0 and 
v(r cos 0, r sin 0) changes sign roughly as r” sin n0. 

Sketch the graphs of cosnt9 and sin nr9 as functions of 0 over the 
domain 0 5 0 < 2n, and verify that each has 2n zeros, those of one 

function interlacing those of the other. 

If we mark with an R the intersection of the largest circle and the 
locus of U(X, y) = 0 and with an I the intersection of the large circle 
and the locus of v(x, y) = 0, argue that the points R and I will be 
approximately evenly spaced around the circumference of the circle 
and the R-points will alternate with the I-points. 

The final step is to argue that the part of the locus of u(x, y) = 0 
inside the circle consists of a number of curves connecting pairs of 

R-points and the part of the locus of v(x, y) = 0 inside the circle 

consists of a number of curves connecting pairs of I-points, and then 
to deduce that the two loci must inevitably intersect. Check this in the 
case of the quintic: indicate on a circle ten points R and ten points 
I alternating with the R-points; join pairs of points with the same 
letter and check the plausibility that some line joining 2 R-points 
must intersect some line joining 2 I-points. 

4.5 The Fundamental Theorem: Functions of a 
Complex Variable 

A second approach to the Fundamental Theorem involves the idea of curves 

winding around the origin. To handle this, we need some way of visualiz- 
ing the action of functions of complex variables. In the case of real func- 

tions, this is done by sketching graphs in the plane. However, since the 
space of complex numbers has two real dimensions, we would need a four- 
dimensional space in which to construct the graph of a complex function 
of a complex variable. We avoid this by looking at two complex planes, 
one for the domain of the function and the other for the range. Suppose 

h(z) is a function of the complex variable z and w = h(z). For each z in 
the complex plane of the domain (the z-plane), we plot the corresponding 
point w = h(r) in the plane of the range (the w-plane). We write z = x+yi 
and w = u + vi. 

This in itself is not very useful. To get a sense of how the function h 
behaves, it is better to envisage z as a moving point in the z-plane and 
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to consider how the image point h(z) moves correspondingly through the 
w-plane. Thus, as z traces out a certain curve, one would expect h(z) to 
trace out a curve in the w-plane. By looking at the images of special curves, 

we can analyze the behaviour of h. In particular, if a curve in the z-plane 
passes through a zero of h(z), its image in the w-plane must pass through 
the origin. Thus, the problem of showing that h has a zero reduces to the 

problem of showing that some image curve must pass through the origin. 

Exercises 

1. Let h(z) = .z~ - (3 + i)% + (1 - 29. 

(a) Draw the real and imaginary axes of two complex planes, to be 
labelled the t-plane and the w-plane. In the r-plane plot each 
of the points 0, 1, i, 1 + i, 5 + i, -2, and in the w-plane plot the 
images of these points under h. 

(b) Let x be real, and show that h(x) = (x2 - 3x + 1) - (x + 2)i. 
Show that the image of the real axis under the mapping h is the 
curve given parametrically in the w-plane by 

u=x2-3x+1 

v = -(x + 2). 

Verify that this image curve is a parabola with equation u = 
v2 + 7v + 11. Sketch this parabola, and indicate by an arrow the 
direction in which h(z) moves along the parabola as z moves in 
the positive direction along the real axis. 

2. Consider the polynomial p(z) = 2’ + z + 1. This polynomial has two 
zeros, both on the circle in the r-plane of radius 1. We study the 

impact of this fact on the images of circles of various radii under the 
mapping z - p(z). 

(a) Verify that 

p(rcos0 + irsine) = r(cos0 + isinO)(2rcose+ 1) + (1 - r”). 

Deduce that, for any point Z, its image p(z) in the zu-plane can be 
found by following a dilatation with center 0 and magnification 
factor (2r cosfl + 1) by a translation 1 - r2 in the direction of 
the positive real axis. 

(b) Verify that p(0) = 1 and that 

~p(rcose+irsine) - 11 < r(2r+ l)+r2 = r(3r+ 1). 
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(c) Deduce from (b), that if 1.~1 < l/3, then p(z) is contained within 
the circle of center 1 and radius 2/3. More generally, deduce 
from (b) that the closer a circle is to the origin in the r-plane, 
the closer its image in the w-plane will be to the point 1. 

(d) Suppose r > l/2. Verify that, as 0 increases from 0, the point 
p(r cos 0 + ir sine) starts from a point 1 + r + r2 on the real 
axis and moves in a counterclockwise direction about ‘the origin, 
staying above the real axis as long as 2r cos 0 + 1 is positive. 
Show that the image of the circle of radius r under the mapping 
z -+ p(z) crosses the real axis at the points 1 + r + r2, 1 - r2, 

1 - r + r2 and again at 1 - r2 when the argument of z is 0, some 
angle between (l/2) T and T, T, and some angle between ?r and 

(3/2)x, respectively. 

(e) Suppose r < l/2. Show that the real axis is intersected only 
twice by the image of the circle of radius r, and argue that this 
image is a small loop which does not intersect itself. 

(f) Let C, be the circle of radius r in the z-plane and D, its image 
in the w-plane under the mapping z - p(z). Sketch D, for 

(i) 0 < r < l/2 

(ii) r = l/2 

(iii) l/2 < r < 1 

(iv) r = 1 

(v) 1 < r (say r = 4). 

When l/2 < r, verify that D, has two loops. 

(g) Verify that D4 lies in the annulus {w : 8 < 12~1 < 24). 

(h) Let r be a fixed radius. Imagine a vector drawn in the w-plane 
from 0 to a point on D,. As .z traces around C, in a counter- 
clockwise direction, the vector joining 0 to p(z) will rotate. Verify 
that, if 0 < r < 1, this vector will move back and forth without 
completing even a single rotation around 0, while, if 1 < r, the 
vector will make two complete circuits of the origin. 

3. Let p(z) = z2 + 2% + 1. 

(a) r;fT2;hat P( r cos 0 + ir sin 0) = Sr(cos 0 + i sin O)(r cos 0 + 1) + 

(b) Carry out an analysis of the image curves of C, as in Exercise 
2, and verify that, as r decreases, the value for which the inner 
loop of the image D, disappears is the same as the value for 
which D, passes through the origin. Explain the significance of 
this. 

4. Let p(z) = z2 + 32 + 2. 
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rcosO+irsinO) = r(cosO+isinO)(2rcosO+3)+ 

(b) Analyze the image D, of the curves C, for the values r > 2, 
r = 2, r = 312, r = 1 and r < 1. Verify that, as r decreases, the 
inner loop contracts to a point while Dr still makes at least one 
circuit of the origin, and disappears for r = 312. 

5. Let p(z) = z3 - 72 + 6. 

(a) Verify that p( r cos 0 + ir sin 0) = r(cos 0 + i sin O)(4r2 cos2 0 - 
r2 - 7) + (-2r3 cos 0 + 6). 

(b) Show that p( r cos 0 + ir sin 0) is real exactly when 0 = 0, 0 = rr 

or when cos2 0 = (l/4) + (7/[4r2]). Deduce that, when r is very 

large, the image of the circle of center 0 and radius r crosses the 

real axis when 0 is equal or close to one of the angles 0, z/3, 

2~13, T, 4~13, 5~13. 

(c) Suppose r2 < 713. Show that 

(i) Im p(r cos O+ir sin 0) and Im (r cos O+ir sin 0) have opposite 
signs; 

(ii) the image of the circle of radius r meets the real axis only 
twice; 

(iii) the image does not make a circuit of the origin when r < 1 
and makes one circuit of the origin when 1 < r. 

(d) Suppose r2 > 713. Show that the image of the circle of radius r 
crosses the real axis 6 times when 0 = 0, Or, ?r - Or, ?r, ?r + 0,. , 

27r - Or, where 0,. = arccos((l/4)(1 + 7re2))li2. 

(e) Verify that the image of the circle Cr makes 

(i) no circuit of the origin when 0 < r; 

(ii) one circuit of the origin when 1 < r < 2; 

(iii) two circuits of the origin when 2 < r < 3; 

(iv) three circuits of the origin when 3 < r. 

6. Let h(z) = P. Show that, if z makes one counterclockwise circuit of 
the origin along the circle ]z] = r, then h(z) makes n counterclockwise 
circuits of the origin. 

7. Let p(z) = Z” + Q,,-~z”+~ + Q,+~.z”-~ + . . . + art + ao. Suppose that 

r is any positive real number exceeding 1 for which 

f 2 2{lan-11 + Ian-2 I + I%-31 + a*.+ Ia11 + I(-Jol). 

(a) Show that, if 1.~1 = r, then 

Izn -p(z)1 5 {la,-ll+la,-2l+...+lall+ laol}r”-’ L (1/2)r”. 
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(b) Use (a) to argue that, when ]%I = r, then p(z) is in the annulus 
with center 0, inner radius (1/2)r” and outer radius (3/2)r”. 

(c) Use (a) to argue further that, as t makes one counterclockwise 

circuit of the circle with center 0 and radius r, p(z) must make 
n circuits of the origin. 

8. Sketch a proof of the fundamental theorem along the following lines. 

(a) It suffices to prove the theorem for manic polynomials p(z). 

(b) If p(0) = 0, the theorem holds. It suffices therefore to establish 
the result when p(0) # 0. 

(c) If r is sufficiently small, then as z traces around C,, its image 
p(z) will not make a circuit of the origin. 

(d) If r is sufficiently large, then as z traces around C,, its image 
p(z) will make at least one circuit of the origin. 

(e) Let r grow slowly from small to large values. How will the image 
D, of C, vary? Why is it plausible to infer that for some value 

of r, D, must contain the origin? 

4.6 Consequences of the Fundamental Theorem 

The fundamental theorem has a number of consequences about the fac- 
torization of a polynomial and the extent to which a polynomial can be 
determined by certain of its values. 

Exercises 

1. Let p(t) be a polynomial over C with positive degree n. By the Fun- 
damental Theorem it has at least one complex zero, but, it is known 

that there are no more than n distinct zeros (Exercise 2.2.4). Let 
these be tl, t2,. . . ,tk where 1 < k 5 n. Show that there are positive 
integers rni and a constant c for which 

(i) ml + m2 + . a. + mk = n; 

(ii) p(t) = c(t - tl)“l(t - t2)m2 f - . (t - tk)m*. 

2. Prove that a polynomial over C is irreducible if and only if its degree 
is 1. [A field with the property that only linear polynomials are irre- 
ducible is said to be algebraically closed; thus, this result states that 
C is an algebraically closed field. Over such a field, every nonconstant 

polynomial has a zero.] 

3. Let p(t) be a polynomial over R. p(t) can have zeros which are either 

real or nonreal; however, the complex conjugate of any zero is also a 

zero (Exercise 1.3.14). 
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(a) If si is a nonreal zero of p(t), prove that the polynomial 

t2 - (2Re si)t + Isi12 

is a polynomial irreducible over R which divides p(t). 

(b) Prove that p(t) can be written as a product of real irreducible 
linear and quadratic polynomials. 

(c) Deduce that a polynomial over R is irreducible if and only if it 
is linear or quadratic of the form at2 + bt + c with b2 - 4ac < 0. 

4. Let p(t) be a polynomial over C of positive degree n. Prove that p(t) 
assumes every complex value at least once and assumes all but finitely 
many complex values n times. 

5. Show that every real polynomial of odd degree has an odd number of 

real zeros, counting multiplicity, and deduce that such a polynomial 
has at least one real zero. 

6. Let r1, r2, . . . , r, be all the roots (each repeated as often as its multi- 
plicity indicates) of the complex polynomial ant” + a,-lP-’ + . . . + 
alt + a~. Show that 

rl + r2 + . . . + rn = -an-Jan 

rlr2r3 .. .r, = (-l)“ao/an, 

and that the sum of all possible products of k of the roots is equal to 
(--l)“-k,,-k/a,. 

7. Suppose that a complex polynomial p(t) can be factored in two ways: 

p(t) = fi(t - ai) = fi(t - bj). 
i=l j=l 

Show that m = n and that the ai’s are the same as the bj’s in some 
order. 

8. Let as, bo, al, bl,. . . ,a,, 6, be 2(n + 1) complex numbers, with the 

ei distinct. Show that there is at most one polynomial p(t) of degree 
not exceeding n for which p(ai) = bi (0 5 i 5 n). 

9. Suppose that a polynomial p(t) over C has the following properties: 

(i) the multiplicity of 1 as a zero of p(t) is even (possibly 0); 

(ii) If r is a zero of p(t), then l/r is a zero with the same multiplicity 
as r. 

Prove that p(t) is a reciprocal polynomial (see Exercises 1.4.13 and 
1.4.16). 
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10. Let f(t) be a polynomial of degree n over Z. Show that, if f(t) as- 
sumes prime integer values for 2n + 1 distinct values of t, then f(t) 
is irreducible over Z. 

Explorations 

E.41. Zeros of the Derivative. Suppose a polynomial f(t) of degree n 
over R has n real zeros. Since every zero of f(t) of multiplicity m is a 
zero of f’(t) of multiplicity m - 1, and since, by Rolle’s Theorem, there 

is a zero of f’(t) b e t ween any distinct pair of consecutive zeros of f(t), it 
follows that f’(t) has at least n - 1 real zeros counting multiplicity. Since 
degf’(t) = n - 1, it follows that all the zeros of f’(t) are real. 

The fact that the reality of all zeros of a polynomial implies the reality 
of all zeros of its derivative can be formulated in a way which leads to 
an interesting generalization. If u is the smallest and v the largest zero of 

f(t), then not only the zeros of f(t) but also those of f’(t) lie in the closed 
interval [u, w]. 

Now suppose that f(t) is an arbitrary polynomial over C of degree n with 
zeros r1,r2,..., n z (not necessarily all distinct). These are represented by 

points in the complex plane. Let P be the smallest convex polygonal region 
with boundary which contains them; some of the zeros will be vertices, 
others may lie on edges while the remainder will be in the interior. The 
diagram illustrates a possible situation: 

Observe that this polygonal region can be represented as the intersection 
of half-planes, namely those portions of the complex plane which lie on one 
side of the lines containing the edges of the polygon. 



4.7. Problems on Equations in One Variable 149 

The result we want is that all the zeros of the polynomial f’(t) also lie 
in the polygonal region P. 

Verify that this result is true for any polynomial of degree 2. What are 
the possible shapes of P in this case? 

To prove the result in general, we require some preliminary facts which 
will help reduce the situation to the special case that two zeros are real 

and the remainder lie in the upper half plane. 
(1) If Sk is the set of zeros of fck)(t) (k = 0, 1, . . . , n - l), then the set of 

zeros of the polynomial gck)(t), where g(t) = f(t + w),‘is Sk - w = {z-w : 

% E Sk}. 

(2) With Sk as in (1)) the set of zeros of htk)(t), where h(t) = f(wt), is 
w--l& = {w-l% : % E Sk}. 

(3) If rl, r2,. . . ,rk are the zeros of f(t) with respective multiplicities 

ml, mz, . . . , mk, then 

f’(t) ml 
f(t)=t-rl+“‘+~* 

From (1) and (2), we see that the result holds for f(t) iff it holds for 
either f(t + w) or f(wt) for fixed w # 0. By suitable choice of wr and wz, 
we can arrange that any two zeros representing vertices of P correspond to 
two real zeros u and w of the polynomial q(t) = f(wl(t + wg)) and that the 
remaining zeros of q(t) 1 ie in the upper half plane, i.e. if q(w) = 0, then Im 

w 1 0. 
From (3), any zero of f’(t) w ic is not an ri must make the rational h h 

function on the right side vanish. We show that the right side will not vanish 

for t = z when Im z < 0. Look at each term individually, and observe that 

Im(r - ri) < 0, so that Im(mi(z - pi)-‘) > 0. Hence Im(f’(f)/f(z)) is 
positive. 

Now go back to the function f(t) and argue that all of the zeros of f’(t) 
lie in the same halfplane determined by each edge of P as contain the zeros 
of f(t). Hence, all the zeros.of f’(t) must lie in P. 

4.7 Problems on Equations in One Variable 

1. Solve x4 + a4 = 4az(x2 + a”). 

2. Solve the equation 

(x2 - 2 - 2)4 + (2x + 1)” = (x2 + x - 1)4 

3. Solve (x2 - 4)(x2 - 2x) = 2. 

4. Solve the equation (x + a)(x + 2a)(x + 3a)(x + 4a) = b4. 
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5. For which values of a, b, c does the equation 

x+a&+b+&=c 

have infinitely many real zeros. 

6. Let k be a positive real number. Solve for real x. 

,/x+Jm=c. 

7. Let a, b be positive. Solve the equation 

d2ab + 2ax + 26x - $-b2-$= &=&d=-. 

8. Solve (x2 + 3x + 2)(x2 + 7x + 12) + (x2 + 5x - 6) = 0. 

9. (a) Let p(t) = at2 + bt + c. Suppose that u # v and that p(u) = u, 

p(v) = v. Let q(t) = p(p(t))- t. Show that u and v are two zeros 
of the quartic polynomial q(t) and determine a quadratic whose 
zeros are the other two zeros of q(t). 

(b) Apply (a) to solve 

(t2 - 3t + 2)2 - 3(P - 3t + 2) + 2 -t = 0. 

10. Solve for real 2: 

11. Show that 4cos2(7r/14) is the greatest root of the equation 

x3 - 7x2 + 14x - 7 = 0. 

12. Consider the equation x4 = (1 - x)(1 - x2)2. Show that if either 
1 - x2 = -x3 or 1 - x2 = x holds, then the equation is satisfied. 

Deduce that 

x4 - (1 - x)(1 - x2)2 = (x” - x2 + 1)(x2 + x - 1). 

13. Find a real solution to the equation 

(X2 - 9x - l)lO + 99x1° = loxs(x2 - 1). 
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4.8 Problems on Systems of Equations 

Solve the following systems of equations: 

1. x4 + y2 - xys - 9x/8 = 0 

y4 + x2 - yx3 - 9y/8 = 0 (for real x, y). 

2. x/a + b/y + c/z = a/x + y/b + c/z = a/x + b/y + z/c = 1. 

3. x+y+r=o 
x2 + y2 + z2 = 6ab 
x3+y3+z3=3(a3+b3). 

4. x+y--z=2 

x2 + y2 - z2 = 8 - 2xy 
x3 + y3 - z3 = 86 - 3XY%. 

5. xy + yz + zx = a2 - x2 = b2 - y2 = c2 - z2. 

6. 31x2y2 - 7y4 - 1121~ + 64 = 0 

x2-7xy+4y2+8=0. 

7. x2 - (y - .z)~ = a2 
y2 - (z - x)” = b2 
r2 - (x - y)2 = c2 
in which a, b, c are constants different from 0. 

8. Let a, b, c be different real numbers. Show that the only real solution 
of the system of equations 

x+y+z=o 

ax+by+cz=O 

x3 + y” + z3 = 3(b - C)(C - a)(a - b) 

isx=b-c,y =c-a,z=a-b. 

9. x(y + z) = a 

y(% +x) = b 
z(x + y) = c 
where it is understood that the greatest of a, b, c is less than the sum 

of the other two. 

10. (a) U+ 21 = (l/u) + w = (l/v) + (l/w) 

(b) u + 2, + (11~) = (l/u) + w + (U/W) = (l/v) + (l/w) + VW = 
uzJ+ (w/u) + (l/VW). 

11. x2+y2 = 13 x3 + y3 = 35. 
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12. x+y+z=3a 

x2+y2+z2= 14+2a+5a2 

xyz = 6 - lOa - 4a2. 

13. a(y - z) + b(z - x) + c(x - y) = 0 
(x - y)(y - z)(z - x) = d3 
x+y+z=e. 

14. x(y + z)~ = 1 + a3 
x+y=3/2+z 
yz = 3116. 

15. x2 + 2xy - y2 = ax + by 
x2 - 2xy - y2 = bx - ay (a, b are real constants). 

16. x2 + w2 + v2 = a2 VW + u(y + z) = bc 
w2 + y2 + u2 = b2 wu + v(z + x) = ca 
v2 + u2 + .z2 = c2 UZI + w(x + y) = ab 
(a, b, c are positive reals; x, y, Z, u, V, w to be real). 

17. u + 21 = a 
ux+vy=b 
‘11x2 + vy2 = c 
ux3 + vy3 = d (a, b, c, d are nonzero constants). 

18. x+y+r=5 
x2 + y2 + 22 = 9 
xy+u+vx+vy=o 
yz + u + vy + vz = 0 
%X + u + vz + VX = 0. 

19. by + cz = (y - z)” 
cz + ax = (z - x)~ 

ax + by = (x - Y)~. 

20. 
(ab + 1)(x2 + 1) = (a2 + l)(xy + 1) 

(x + 1) (Y + 1) 

Cab + l)(y2 + 1) = (b2 + l)(xy + 1) 

(Y + 1) (x+1) * 

21. x3+y3+z3=8 
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22. Prove that (x,y) = (1,2) is the unique real solution of 

x(x + y)2 = 9 

“(Y3 - x3) = 7. 

23. Given that none of Ial, lb(, ICI is equal to 1, and that 

22 = y2 + %2 - Say% 

y2 = .z2 + x2 - 26%x 

%2 = x2 + y2 - acxy, 

show that 
x2 y2 22 -=-= 

1 - a2 1 - b2 sCa. 

What happens if Ial = l? 

24. x” + 2y2 + 3%’ = 36 
3x2 + 2y2 + z2 = 84 

xy+xz+yz = -7. 

25. Find all real a for which there exist nonnegative reals xi for which 

c 
kxk = 0 

kc1 

5 

c 
k3xk = a2 

k=l 

5 

c 
k5 xk = a3. 

k=l 

26. Determine all real p for which the system x+y+% = 2, y%+%x+xy = 
1, xyz = p has a real solution. 

27. xy = 2 

(3 + Syl(x - Y))~ + (3 - Syl(x + Y>)~ = 82. 

28. Show that the real solutions (xi, yi, %i) of 

(x - 5)2 + (y - 2)2 + (z - 6)2 = 49 

(x - 11)2 + (y - 7)s + (% - 2)2 = 49 

38x - 56y - 132 = 0 

satisfy xl + x2 = 16, yr + y2 = 9, zr + z2 = 8. 
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29. Given that a 2 1 and b are real numbers, prove that the system 

y=x3+ax+b 

z=y3+ay+b 

x=z3+az+b 

has exactly one real solution. 

30. Solve 
x(x - y - z) = a 

Y(Y - z-x)=b 

I(% - x - y) = c. 

31. If x + x-l = a, y + y-l = b and a2 + b2 + z2 = 4 + abz, determine z 

in terms of x and y. 

32. If 

and 
ux vy W% 

show that (x/u + y/v + .z/w)~ = a2/u2 + b2/v2 + c2/w2. 

33. Let a, b, c be positive numbers such that fi + 4 + fi = a/2. 
Prove that the system 

Jy--a+JTT=l 

Jzi;+&-S=1 

JKT+Jy-c=1 

has exactly one real solution. 

34. Solve for 2, y, z: 

yz = a(y + z) 

xz = b(x + z) 

xy = c(x + y). 
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4.9 Other Problems 

1. For which complex numbers a is the mapping 

one-one on the closed unit disc (1~1 5 l)? 

2. The mapping z - z2 maps a straight line in the complex plane onto 
a parabola. Identify the vertex of the parabola. 

3. Find necessary and sufficient conditions on p, q, r that the roots of 

x3+px2+qx+r=0 

are the vertices of an equilateral triangle in the complex plane. 

4. Find, in terms of a, b, c, a formula for the area of a triangle in the 
complex plane whose vertices are the roots of 

x3 - ax2 + bx - c = 0. 

5. Show that a necessary and sufficient condition that a real cubic equa- 
tion ax3 + bx2 + cx + d = 0 have one real and two pure imaginary 
roots is that bc = ad and ac > 0. 

6. Let a, b, c, d be complex numbers, all with absolute value equal to 
unity. Prove that, in the unit circle with center 0, the polynomial 
az3 + bz2 + cz + d has a maximum absolute value not less than &. 

7. Let p(x) be a polynomial of positive degree n and let 0 < m 5 n. 
Suppose that co, cl, cz, . . . , c, are constants for which 

co + Cl2 + c2x2 +. *. + C,~,~lxn-m-l + cn-+p(x) 

+ c,-,+lp(x + 1) + . . . + C,P(X + m) = 0 

identically. Show that CO = cl = . . . = c,, = 0. 

8. f(t) is a polynomial of degree n over C such that a power of f(t) 
is divisible by a power of f’(t), i.e. [f(t)]” is divisible by [f’(t)]9 for 

some positive integers p and q. 

Prove that f(t) is divisible by f’(t) and that f(t) has a single zero of 
multiplicity n. 

9. The nonconstant polynomials p(t) and q(t) over C have the same set 
of numbers for their zeros, but with possibly different multiplicities. 

The same is true of the polynomials p(t) + 1 and q(t) + 1. Prove that 

p(t) = q(t). 
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10. Determine a manic cubic polynomial over Q one of whose zeros is 
1 _ p/3 + p/3. 

Hints 

Chapter 4 

1.1. Add the equations and determine x + y + z first. 

1.3. Use Exercise 2 and the first two equations to obtain x : y : z. 

1.4. Set t = u and consider the two equations as a linear system in the 

“variables” u2, u, 1. 

1.6. (a) Multiply the first equation by xy, XZ, respectively. Treat the other 

equations similarly. 

1.11. (a) Add the equations ai = rbi. 

3.3. (c) t”+2 = yP+1 - tk. 

3.4. Use the quadratic and cubic cases to predict what k should be. 

3.8. We wish to find a number p + 21f4q + 21f2r + 23f4s such that 
(a+. ..)(~+a. .) is an element of F. Begin by multiplying (a+21i2c)+ 
2114(b + 21i2d) by a number to yield a product with no terms in 2114. 

Now multiply by a second factor which disposes of the terms in 21i2. 

3.9. If a + b&i is a zero of f(t), then so also is a - b&. Use the Factor 
Theorem to determine a quadratic factor of f(t) over F. Or, the third 

zero is the sum of the zeros less 2a. 

6.10. If p = qr is prime, then either q or r is 1. How often can a polynomial 
assume the values fl? 

7.1. Write equation as difference of squares equals 0. 

7.2. Let u = x2 + x - 1, v = x2 - x - 2. Write as equation in u and v. 
Factor. 

7.3. Let x = 1 -t. 

7.4. Write the left side as (u - a’)(~ + a2), where u = x2 + 5ax + 5a2. 

7.7. Square both sides and write in terms of y = x[x - (a + b)]. 

7.9. Use the Factor Theorem to find the form of p(t) - t and also of 
p(p(t)) -p(t). Note that p(p(t)) -t is the sum of these two quantities. 
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8.1. Begin by eliminating the terms with coefficient 9/8 and determine 
simple possible relations between t and y. 

8.2. The equations lead to relations of the form u + v = u-l + V-‘; study 
this first. 

8 5 . . Let u = a2 - x2 = . . . , and write zy + yz + zt in terms of U. 

8.6. One strategy is to find a homogeneous equation of the fourth degree 
in z and y which might be factored. Multiply the second equation 
by 14xy. Note also that the second equation can be used to give an 
expression for 64. 

8.7. Factor the left sides as differences of squares. Let u = -z + y+ z, etc. 

8.9. Solve first for zy, yz and zx. 

8.10. (a) 1 = (U + v - U-‘)(u + v - V-‘). 

(b) Equate the four members in pairs. Eliminate denominators and 
manipulate terms to find factors which might be cancelled out. 

8.11. Solve for u = x + y, v = xy. 

8.13. If o, b, c can not all be the same, the first equation and (y - z) + (z - 
x) + (CC - y) = 0 lead to a determination of (y - z) : (z-x) : (x - y). 

8.14. The last two equations can be used to determine (Y+.z)~ = (Y-z)~+ 
4yz in terms of 2. 

8.15. Note that (x+~i)~ = (x2-y2)+2xyi. What is (x+yi)[(a+b)+(a-b)i]? 
Be careful; x and y need not be real. 

8.16. Express the difference of two expressions for b2c2 as a sum of squares. 

8.20. Dispose of the case a = b first. Make a change of variable x = 

(1 + a)/( 1 - u), y = (1 + v)/( 1 - V) ; u and v each satisfy a quartic 
equation whose roots are obvious. 

8.25. For any quadratic polynomial p(t), ap(a) = Chp(k2)xk. 

8.28. If (21, yr, zi) and (22,y2,z2) satisfy the system, then (zr + x2,. . .) 
should satisfy the linear equation. Observe that (x, y, z) = (16,9,8) 
satisfies the linear equation. 

8.33. Let T be an equilateral triangle of side 1. There is a one-one corre- 
spondence between points P inside the triangle and positive reals a, 
b, c for which &+A+&= 34, and the distances from P to the 

respective sides are fi, fi, 4. Also, Jy(l is the side length of a 
right triangle with hypotenuse fi and other side 4. 
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9.5. Note that the conditions imply that ct + d = a-‘c(at + b). 

9.6. Noting that the relation 1 + w + w 2 = 0 is a good way of disposing of 

excess terms, calculate Ip( + jp(wz)j” + lp(w2r)j2, where w is an 
imaginary cube root of unity. 

9.8. Write the derivative r(t) as a product of irreducible powers which di- 

vide f(t) and a polynomial g(t). D oes g(t) have any zeros in common 

with f(t)? What is the degree of g(t)? 

9.9, By way of reconnoitring, look first at the possibility that p(t) has only 
simple zeros. What can be said of the zeros of (p - q)(t)? of p’(t)? 
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Approximation and Location 
of Zeros 

5.1 Approximation of Roots 

The population of,a biological species in a favorable environment will in- 
crease steadily from year to year. Often, we can assume that the annual 
increase will be given by a factor a, so that if x is this year’s population 

and f(z) next year’s, f(x) = az, where a > 1. This equation may model 
the situation quite well for small populations, but as the population grows, 
factors arise which tend to limit it: nonavailability of food, greater visibil- 

ity to predators, conflict arising from crowded conditions. Mathematically, 

this can be handled by introducing a “second-order” term in the population 
function: 

f(x) = ax - bx2 (b > 0). 

Thus for large values of x, f(x) will be less than x and the population will 
decrease. There will be an intermediate level of population, 20, for which 
the factors promoting increase are balanced by those promoting decrease. 
This level can be found by solving the quadratic equation x = f(x). 

Those familiar with the habits of June bugs, spruce budworm and lem- 
mings are aware of another phenonenon. For these, there is no “steady 

state” population which persists from year to year. Rather, their numbers 
cycle between large and small values. Can we model this using some func- 

tion f(z) given above? 
If we imagine a two-year cycle of a lean year with population size xl fol- 

lowed by a glut year with larger population size x2, then these two numbers 
will satisfy 

12 = f(C1) Xl = f(x2) 

2; # f(x;) for i = 1,2. 

Thus, x1 and 22 will be roots of the quartic equation 

2 = f(f(x)) = a2x - (ab + ba2)x2 + 2ab2x3 - b2x4. 

Whether one model successfully represents the cycling population turns on 
whether Q and b can be chosen so that the quartic has two positive real 
roots apart from x = (a - 1)/b which are less than x = a/b (the population 
level which leads to extinction). 
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This quartic equation is easy to solve explicitly. However, if we look at 
the possibility of a three-year cycle in which there are distinct population 

sizes xl, 22 and xs for which 

x2 = f(q) 23 = f(x2) x1 = f(x31, 

then the xi will be roots of the polynomial equation 

x = foYf(x))) 

which is of the eighth degree. Two obvious roots are x = 0 and the positive 
value of x for which x = f(x). But when the factors corresponding to these 
roots are removed, this still leaves us with an equation of the sixth degree 
to solve. Even if it were possible to solve this equation, it might be at the 
expense of a fair bit of grind, and the answer might be in a form from which 

it is hard to find out much about the roots, even whether they are relevant 
to the problem at hand. What is really needed is a collection of techniques 
which will yield useful information in an efficient way. 

Many mathematical situations give rise to polynomial equations. If the 
degree is higher than four, it is usually hopeless to think of solving them 

exactly. However, this may not be necessary, and techniques which allow us 
to locate the roots in a rough sense may be enough to support the analysis 

we wish to make. 
Information sought about roots falls into two main categories: 

(i) numerical approximation 

(ii) location. 

Under the first heading are treated methods which yield roots to desired 
numerical accuracy. Under the second are discussed methods which will 
enable us to say whether there are real or nonreal roots, positive or negative 
roots, or roots within a given region of the complex plane. 

In this section, we will examine methods of numerical approximation. 

Exercises 

1. The method of bisection. Let p(t) b e any polynomial over R. Suppose 
further that p(a) is negative while p(b) is positive. The graph of p is 
a continuous curve which joins the point (a,p(a)) below the x-axis to 
the point (b,p(b)) b a ove the x-axis. Accordingly, it will cross the axis 
somewhere between a and b. 

(a) Argue that p(t) h as at least one real zero between a and b. 

(b) Show that, either (a + b)/2 is a zero of p(t), or else ~((a + b)/2) 
differs in sign from either p(a) or p(b). 
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(c) Show that, if (a+ b)/2 is not a zero of p(t), then there is a zero 
either between a and (e + b)/2 or else between (a + b)/2 and b. 

(d) Let n be a given number. Determine an algorithm which will 

produce an interval of length no more than (b - a)2-” which 

contains a zero of p(t). 

2. For each of the following polynomials, find consecutive integer values 
of the variable at which the values of the polynomial differ in sign. 

Between these values, determine by the method of Exercise 1, a zero 
to an accuracy of two decimal places 

(a) t4 - t3 -P-t-1 

(b) 2x3 - 9x2 + 12x + 7 

(c) 2t6 - 7t5 + t4 + t3 - 12tz - 5t + 1 

3. Linear interpolation. Refer to the diagram 

(a) Find the equation of the straight line joining the points (a,p(a)) 
and (b,p(b)), and determine its intersection with the z-axis. 

(b) Explain why it is reasonable to take 

p(a)@ - 4 
a - p(b) - ~(a) 

as a first approximation to a zero of p(t). 

(c) Devise a modification of the Method of Bisection using (b) and 

test it out on the polynomials in Exercise 2. 

4. Homer’s Method. The Horner’s algorithm provides a systematic way 

of approximating zeros. Let p(t) = t4 - 3t3 + 7t2 - 15t + 1 and consider 
the following chain of Horner’s tables: 
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1 -3 7 -15 1 

2 -2 10 -10 

1 -1 5 -5 -9 

2 2 14 I 

1 1 7 9 

2 6 I 

1 3 13 

2 1 w 

1 5 13 9 -9 
0.5 2.75 7.875 8.4375 

1 5.5 15.75 16.875 -0.5625 

0.5 3.00 9.375 I 
1 6.0 18.75 26.25 

0.5 3.25 

1 6.5 22 0.5 1 i 

1 7 22 26.25 -0.5625 

0.02 0.1404 0.4428 0.5339 

1 7.02 22.1404 26.6928 -0.0286 
. . . 

(a) Argue that p(t) h as a zero between 2 and 3. 

(b) Use Horner’s Table to verify that, if u = t-2, then p(t) = q(u) = 
u4 + 5u3 + 13uz + 9u - 9. 

(c) Show that q(u) h as a zero between 0.5 and 0.6, and therefore 

that p(t) has a zero between 2.5 and 2.6. 

(d) Justify the foregoing Horner’s tables as an attempt to estimate 
2.52 = 2 + 0.5 + 0.02 as a zero of p(t). Carry the table further 
to obtain an accuracy of three decimal places. 

5. Newton’s Method. A method which can be regarded as an infinitesimal 

version of that of Exercise 3 and a formalization of that of Exercise 
4 can be formulated with the help of Taylor’s Theorem. We suppose 
that we are given a number u which is believed to be close to an 
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unknown zero T of p(t). This method will enable us to (often) find a 
better approximation to r. 

(a) Use Taylor’s Theorem to argue that 0 = p(r) is approximately 
equal top(u)+p’(u)(r-u), and therefore r will be approximately 
equal to u - p(u)/p’(u). 

Thus, we can start with an approximation ui = ‘u, and for i = 

2,3,4, . . . , move to successive approximations ui, where 

Uj = Uj-1 - P(w-l)/P’(w-1). 

(b) There is a zero of the polynomial 2t6 - 7t5 + t4 + t3 - 12t2 - 5t + 1 
between t = 3 and t = 4. Explain and verify the following table 
created in approximating this zero; give the zero to two decimal 

places. 
t p(t) p’(t) p(t)lp’(t) 

3 -257 139 -1.849 

4.849 7594.21 13224.74 0.574 
4.275 2385.60 5703.92 0.418 
3.857 691.35 2673.82 0.259 
3.598 160.02 1504.00 0.106 
3.492 20.18 1144.69 0.018 
3.474 0.073 1089.66 0.000 

(c) There is also a zero of the same polynomial between 0.125 and 
0.25. Using each of these values as first approximations, deter- 
mine this zero to three decimal places. 

(d) Use Newton’s Method to approximate the zeros of the other 

polynomials in Exercise 2(a) and 2(b). 

(e) We can get a geometric picture of Newton’s Method. Show that 
the tangent to the graph of y = p(x) through the point (u,p(u)) 
intercepts the z-axis at the point (r~ - p(u)/p’(u),O). For each 
of the following graphs, the initial approximation is indicated. 
Indicate where the next few approximations will lie. 
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0) 

(ii) 

(iii) Y = P(X) 

*X 

6. Let c # 1. Show that Newton’s Method applied to the polynomial 
tc - 1 and any first approximation yields the zero c-l in one step. 

With a diagram, explain why this occurs. 

7. (a) Let c > 0. Sh ow that Newton’s Method applied to the poly- 

nomial t2 - c yields from any positive approximation al, the 
sequence {a,,} of successive approximations to 4, where 

1 
a,+1 = --(a, + c/a,) 

2 
(n 2 1). 

(b) Find an expression which relates the difference ai+r - c to the 
difference u: - c. Argue that, as n becomes larger, a, gets closer 
and closer to JE. Show that {a,.,} is decreasing for n 2 2. 

8. Determine to three decimal places all of the real zeros of the polyno- 
mial 3t4 - 2t3 - t2 - 3t + 1. Use all of the methods discussed in these 
exercises. 

9. Newton’s Method for successive approximations to the root of an 

equation is a particular instance of a more general approach: 

Given an equation p(t) = 0, derive from it an equation of 
theformt = f(t) with which it shares a solution. Pick a first 
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approximation ~1 to the solution, and let un = f(u,,-1) for 
n 2 2. With suitable choice off and ~1, the sequence {u,,} 
should converge to a solution r of t = f(t) and hence of 

p(t) = 0. 

For Newton’s Method, one makes the choice f(t) = t - p(t)/p’(t). 

Other choices are possible. Consider the polynomial equation 

(4 

@I 

(4 

(4 

(4 

( f 1 

t3 - 4t - 18 = 0. 

Argue that there is a unique positive root r and that it lies 
between 3 and 4. 

The equation can be rewritten in the form t = f(t), where 
4f(t) = t3 - 18. Begin with a value ~1 (say 3) and define suc- 
cessively u, = f(~,-1) for n > 2. Does u,, approach a solution 
of the given equation? 

Sketch the graphs of the polynomial t and f(t). The solution of 

the equation is determined by the point at which the graphs 
cross. For the values of ‘~1 you used in (b), plot the points 

(~1, ~4, (~2, 4, (w,w), (w,w), (~3, 4, . . . . How do YOU ac- 
count for the behaviour observed in (b)? 

Let g(t) = (4t + 18) ‘I3 Show that the given equation is equiv- . 
alent to the equation t = g(t). Let vr be equal to 3, 4 or some 
other value of your choice, and define v, = g(vn-1) for n 2 2. 
Does the sequence {vn} appear to approach a limit? 

Sketch the graphs of the functions t and g(t), and plot the points 
(vr, v2), (~2,212)~ (~2, us), (us, us), . . . . Indicate on the x-axis the 

points 211, ~2, ~3,214,. . . . 

Let v > r where 3 < r < 4 and r3 = 4r + 18. Verify that 

v - g(v) = 
v3 - (4v + 18) 

v2 + v(4v + 18)‘j3 + (4v + 18)2/3 

and 

4(v - r) 

g(v)-r = (4v + 18)2/3 + (4v + 18)U3(4r + 18)li3 + (4r + 18)2/3’ 

Deduce that r < g(v) < v and that g(v) - r < (1/2)(v - r). 

Argue that if vi = v, then the sequence {v,} should converge 

towards the root r. Hence determine to five decimal places a 
solution of the given polynomial equation. 
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Explorations 

E.42. Convergence of Newton Approximations. It is not always the 

case that Newton’s Method approximates the intended zero of a polyno- 
mial. The difference between successive approximations to a zero of p(t) is 
given by an expression of the form p(u)/p’(u), which may be large if p’(u) 

is small (the graph is quite flat at the approximation) or p(u) is large (the 
approximation is too far from the zero). 

Consider, for example the polynomial t3 - llt2 + 24t = t(t - 3)(t - 8). 
Sketch the graph of this polynomial. Examine the sequence of approxima- 
tions which begin respectively with 4, 5, 5.5, 5.7, 6. 

One may well wonder what happens if the polynomial has no real zeros. 
Experiment with the polynomial t2 + 1. Show that if we begin with the 
approximation cot 0, then the next approximation is cot 28. You might also 

observe that if the first approximation is Re w/Im w for some w E C, then 
the next one is Re w2/Im w2. 

E.43. Newton’s Method According to Newton. In his monograph, 
Analysis by equations of an infinite number of terms, Isaac Newton pro- 

vided a method of showing how a function can be written as a power series. 
As an illustration, he approximated a solution of a numerical equation. 

Study the following passage and compare it to the procedure described in 
Exercise 5: 

Let the Equation ~~-29-5 = 0 be proposed to be resolved: 
and let 2 be a number which differs from the Root sought, by 
less than a tenth Part of itself. Then I put 2 + p = y, and I 
substitute this Value in Place of it in the Equation, and thence 
a new Equation arises, viz. p3 + 6p2 + lop - 1 = 0, whose Root 
p is to be sought for, that it may be added to the Quotient: 
viz. thus (neglecting p” + 6p2 upon the Account of their small- 

ness) lop - 1 = 0, or p = 0,l is near the Truth; therefore 
I write 0, 1 in the Quotient, and then suppose 0,l + q = p, 
and this it’s [sic!] value I substitute, as formerly, whence results 

q3 + 6, 3q2 + 11, 23q + 0,061 = 0. 
And since 11,23q + 0,061 = 0 comes near to the Truth, or 

since q is almost equal to -0,0054 (viz. by dividing until as 
many Figures arise as there are places betwixt the first Figures 

of this and the principal Quotient) I write -0,0054 in the lower 
part of the Quotient, since it is negative. 

And then supposing -0,0054 + r = q, I substitute this as 
formerly, and thus the Operation is continued as far as you 
please. But if I desire to continue the Work only to twice as 
many Figures as there are in the Quotient except one, instead 

of q I substitute -0,0054+r into this 6, 3q3+11, 23q+O, 061, viz. 
neglecting its first Term (q3) upon the Account of it’s Smallness, 
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and there arises 6, 3r2+ll, 16196r+O, 000541708 = 0 almost, or 
(rejecting 6, 3r2) r = -0,00004853 almost, which I write in the 
negative part of the Quotient. Finally, subducting the negative 
Part of the Quotient from the affirmative, I have 2,09455147 
the Quotient sought. 

y3--y-5=0 

2+p=y 

0,1+q=p 

-0.0054 + r = q 

+Y3 
+2Y 
-5 
Sum 

+P” 
+6p2 
+1op 
-1 
Sum 

+6, 3q2 
+11 23q 

+O, 061 
Sum 

+2,10000009 

-0,00544853 
+2,09455147 = y 

+8+12p+6p2+p3 
-4-2~ 
-5 

-I+ lop + 6p2 + p” 

+o, 001+ 0,03q + 0,3q2 + q3 
+0,06+1,2+6,0 
+1, +10 
-1 

+O, 061+ 11,23q + 6, 3q2 + q3 

+0,000183708 - 0,06804r + 6, 3r2 
-0,060642 + 11,23 
+O, 061 

SO, 000541708 + 11,16196r + 6, 3r2 

-0,00004854 + s = r 

Verify that the method given by Newton is essentially the method given 
in the Exercises, and work Newton’s example in the modern way. Interpret 
Newton’s table. 

E.44. Newton’s Method and Hensel’s Lemma. Refer to Explorations 
E.33 and E.43. In Newton’s Method, we start with an approximation u 
and move to a new approximation v = u - f(u)/f’(u). If we are lucky, we 
will end up with an approximation which is closer to the desired root, in 

the sense that If( will b e smaller than if(~ Thus, the absolute value is 
used to give a measure of closeness. To make this more precise, we introduce 

into R a distance function d defined by 

d(a, b) = la - bl. 

The smaller the value of d, the closer the points a and b. This distance 
function has three fundamental properties: 

(i) d(a, b) = 0 if and only if a = b; 
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(ii) d(a, b) = d(b, a); 

(iii) d(a, c) 2 d(a, b) + d(b, c). 

5. Approximation and Location of Zeros 

The third property is the triangle inequality; roughly speaking, it says that 
two points which are close to a given point cannot be too far from each 
other. 

There is an analogue of this idea of distance and closeness that we can 
formulate for integers. Let p be a fixed prime. Beginning with the idea that 
0 is the only integer which is divisible by every prime power pk, we regard 
an integer as being “close” to zero if it is divisible by a high power of p. 

Accordingly, we define, for the integer n, 

InIp = P-’ 

if p” is the highest power of p which divides n. 
Verify that, in the case p = 3, 1171s = 1, 11813 = l/9, 19721s = l/243. 

What is 1125012? 112501s? 1125Olr? 
We now define the p-adic distance between the two integers m and n by 

dp(m, n) = Im - nip. 

Verify that dP satisfies the properties (i), (ii), (iii) listed above. 
Suppose we seek an integer root of the polynomial equation f(x) = 0 

over 2. Then we want a succession of approximations u which will make 
If(~ smaller and smaller, so that the p-adic distance from u to the desired 
solution will tend to 0. Following Newton’s lead, we use the approximation 

u to obtain the approximation v = u - f(~)/f’(~). 

However, there is a problem with this. All the quantities we deal with 
are supposed to be integers, and v will not in general be an integer. The 
problem is that the reciprocal of an integer is not an integer, so we need 

some way of replacing the quantity l/f’(~) by something which makes sense 
in this context. Review the Exploration on Hensel’s Lemma, and explain 
how this difficulty is surmounted. Explain why the choice of v ensures that 
If(v)lp will be smaller than If(u) 

E.45. Continued fractions: Lagrange’s Method of Approximation. 
Suppose we know that a polynomial p(t) vanishes for some value r of t 
between the integers a and a + 1. Then r = a + (l/s) where s > 1. If in 

the equation p(r) = 0 we make the substitution r = a + (l/s), we get a 
polynomial equation in s: q(s) = 0. Let b be an integer for which the root 
s lies between b and b + 1. Write s = b + (l/u), and continue the process, 

solving a polynomial equation for U, placing ‘u between consecutive integers, 

and so on. We finally end up with 
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1 
r=a+ 

1 
b+ 1 I 

c+ 
d+-+ . . . 

where a, b, c, d, e, . . . are integers. Such an expression is called a continued 
fraction. More conveniently, we can write this as a+l/b+l/c+l/d+l/e+. . ., 
where each fraction bar has everything that follows in the denominator. 

Approximations to r can be obtained by taking the part after any of the 
plus signs to be zero. Verify that this yields the rational approximations: 

a, (ab + 1)/b, (abc + a + c)/(bc + l), . . . 

For example, if the equation to be solved is t2 - 2 = 0, we know there is 
a root between 1 and 2. Set t = 1 + l/s and get s2 - 2s - 1 = 0, which has 
a root between 2 and 3. Set s = 2 + l/u and get u2 - 2u - 1 = 0. Deduce 

that 

Jz=1+1/2+1/2+1/2+1/2+... 

and verify that the successive approximations to fi are 1, 312, 715, 17/12, 
41129,. . . . Work these out numerically to see how they approach fi. Com- 
pare this sequence of approximations with those obtained from Newton’s 
Method (Exercise 5.1.7) and the starting values 1, 3/2, 7/5, 17/12, respec- 
tively. (Compare Exploration E.30. When t = 6, the sequence u,, is 0, 1, 
6, 35, 204,. . . . Factor the terms of this sequence.) 

Find the continued fraction representations of the roots of t2 - t - 1 = 0 
and give the first five rational approximations to these roots. 

Show that the substitution t = 1 + l/s in t4 - t3 - t2 - t - 1 = 0 yields 
3s4 + 2s3 - 2s2 - 3s - 1 = 0, which has a root between 1 and 2. Substitute 

s = 1+1/u to obtain u4-11u3-22u2-1421-3 = 0. Show that this equation 

in u has a solution between 12 and 13, and hence obtain the approximation 

25/13 for a root of the original equation. 

E.46. Continued Fractions: Another Approach for Quadratics. The 

quadratic equation t2 + bt + c = 0 can be rewritten as t = -b - (c/t). 
Substitute this expression for t into the right side, and repeat the process 
to obtain a continued fraction expansion for t. Try this on the polynomials 
t2 - 2t - 1, t2 - 2t + 1, t2 - t - 1, t2 - 2, t2 - 3t + 2, t2 -t + 1, t2 -t - 6, 
t2 + t - 6. Does the related sequence of approximations always converge? 

If so, to which zero does it converge? 
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5.2 Tests for Real Zeros 

How many real zeros does the polynomial t5 - 3t4 - t2 -4t + 14 have? Where 
are they located? Quickly, we can say there is at least one but no more than 
five. Can we find out more without having to go to the trouble of solving 
the equation, even approximately? The answer is yes, there are methods 
which will allow us to determine whether real roots exist and how many lie 

inside a given interval without having to pin them down numerically. Three 
common ones are the Descartes’ Rule of Signs, the Fourier-Budan Method 
and Sturm’s Method. Each of these provides more precise information than 
its predecessor, but at the expense of an increased amount of work. 

In the following exercises, (a, b) refers to the open interval {x : a < x < b} 
and [a, b] to the closed interval {x : a 5 x _< b}. 

Exercises 

1. Show that the polynomial 6ts + 5t6 + 12t4 + 2t2 + 1 has no real zeros. 

2. Show that a nontrivial polynomial whose nonzero coefficients are all 
positive reals can have no real nonnegative zeros. 

3. Suppose that p(t) is a polynomial over R with positive leading coef- 
ficient such that p(k) < 0 for some real k. Show that p(t) has a real 
zero which exceeds k. 

4. Show that the real linear polynomial at + b (ub # 0) has a positive 
zero if and only if the coefficients a and b have opposite signs. 

5. Let p(t) be a polynomial over R. Show that r is a zero of the poly- 
nomial p(t) f d i an only if -r is a zero of p(-t). 

6. Suppose a real polynomial a,$ + a,-lt”-’ +. . . + alt + a0 be given. 
Write down its nonzero coefficients in order, and replace each positive 

one by + and each negative one by -. We say that the coefficients 

have k sign changes if, as we read along the sequence of + and - 
signs, there are k places where there is a sign change. 

(a) Verify that th e sequence of signs corresponding to 8t3 + 3t2 -t + 1 
is + + - +, and that the coefficients have two sign changes. 

(b) Verify that the sequence of signs corresponding to the polyno- 
mial (t - 4)(8t3 + 3t2 - t + 1) is + - - + -, and that the 
coefficients have three sign changes. 

(c) Suppose that the coefficients of the polynomial p(t) have k sign 

changes, and that r is a positive real. Show that the polynomial 
(t - r)p(t) has at least k + 1 sign changes. 
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7. Descartes’ rule of signs. Let p(t) be a polynomial over R. Prove that 
p(t) cannot have more positive zeros counting multiplicity than there 

are sign changes in its coefficients, and cannot have more negative 

zeros counting multiplicity than there are sign changes in the coeffi- 
cients of p(-t). 

8. Use Descartes’ Rule of Signs to verify that tl’ + t” - 3t5 + t4 + t3 - 

2t2 + t - 2 has at most 5 positive and 2 negative zeros. Deduce that 
it has at least 4 nonreal zeros. 

9. Verify Descartes’ Rule of Signs for each of the following quadratics 
by actually determining its zeros: 

(a) 8t2 - 8t + 1 

(b) 4t2 - 4t + 1 

(c) t2 - t + 1. 

10. Suppose in the real polynomial ant” + . . . + alt + ao, u,,ue # 0 and 

ak = ak+l = 0 for some k with 1 5 k 5 n - 2. Prove that the 
polynomial cannot have all its zeros real. 

11. Prove that the real polynomial u,t”+a,-~t”-l+~~ .+u3t3+t2+t+1 
cannot have all its zeros real. 

12. There are various ways of obtaining estimates of an upper bound for 
the real zeros of a real polynomial. For example, suppose that 

f(t) = a&” + a,-lP-l + . . . + aptP + . . . + alt + a0 

is a polynomial over R such that 

(1) Q* >o 

(2) there is at least one negative coefficient 

(3) p is the largest value of i for which ai < 0. 

Let M = maX{ Iail : ai < 0). 

(a) Verify that, if r > 1, then 

f(r) > a,r” - M(P+’ - l)(r - 1)-l. 

(b) Prove that, if r > 1 + (M/cI,)“(~-~), then 

a,(r - l)“-p > A4 

and deduce that anrn(r - 1) > M+‘+‘. 

(c) Deduce from (a) and (b) that if r > 1 + (M/a,)‘I(“-P), then 

f(r) > 0. 
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(d) Deduce that, if r is any positive zero of f(t), then 

r<l+ I- 
M c -. 
Qn 

13. Suppose f(t) = Cakt k is a polynomial of degree n over R which 

satisfies the hypotheses of Exercise 12. Let 

Si = C(C4j : j > i,aj > 0)~ 

the sum of all positive coefficients of powers oft greater than the ith; 

R = max{]ai]/si : ai < 0). 

(a) Verify that tm = (t - l)(tm-’ + tmw2 + 3 .. + t + 1) + 1. 

(b) Consider the polynomial 

g(t) = 3t4 + 2t3 - 8t2 + t - 7. 

By (a) applied to powers of t with positive coefficients, verify 
that 

g(t) = 3(t-l)t3+(-8+5(t-l))t2+5(t-l)t+(-7+6(t-1))+6. 

Deduce that g(r) > 0 if r - 1 > max{8/5,7/6} = 8/5. 

(c) Show that, in general, if r > 1, then 

f(r) > E{[Odi + (r - l)si]ri : Ui < 0) 

and deduce that, if f(r) = 0, then r < 1 + R. 

14. Apply the results of Exercises 12 and 13 to determine upper bounds 
for the real zeros of 

(a) t’l + t” - 3t5 + t4 + t3 - 2t2 + t - 2 

(b) t7 - t6 + t5 + 2t4 - 3t3 + 4t2 + t - 2. 

15. Rolle’s Theorem. At the end of the seventeenth century, Michel Rolle 
gave a method of locating intervals which contain zeros of a real poly- 

nomial p(t). If p(t) is hard to deal with, determine a real polynomial 

q(t) whose derivative is equal to p(t), i.e. q’(t) = p(t). It may happen 
that it is easier to determine where the zeros of q(t) might be, perhaps 
because q(t) is factorable. 

Rolle’s result is that, if a and b are distinct real zeros of q(t), then 
the open interval (a, b) will contain at least one real zero of p(t). The 
proof of this result is sketched in Exploration E.28 at the end of 
Section 2.4. 
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(a) If a # band q(a) = q(b), h s ow f rom Rolle’s Theorem that p(t) = 

q’(t) has a zero in the interval (a,b). 

(b) Let q(t) have m real zeros counting multiplicity. Show that p(t) 

has at least m - 1 real zeros counting multiplicity. 

(c) Let p(t) = 2t3 - 3t2 - t + 1. Determine a polynomial q(t) for 
which q’(t) = p(t). If possible, factor q(t) and use the result to 

determine intervals which contain the zeros of p(t). 

(4 Let ~0, al, . . . , a, be real numbers satisfying as + ai/2 + ~$3 + 
. . .+a,/(n+l) = 0. Show that the equation ao+alt+. . .+a,t” = 

0 has at least one real root. 

16. Let f(t) be any polynomial over R of degree exceeding 1. Prove that 

there is a real value of H for which not all the zeros of f(t) + k are 
real. 

17. Theorem of Fourier and Budan. A more sophisticated test than 
Descartes’ Rule of Signs is given by the following. Suppose p(t) is 
a polynomial over R, and that 11 and v are reals with ‘u < v and 

P(U)P(V) # 0. Th e number of zeros between u and v cannot be greater 
than A-B, where A is the number of changes of sign in the sequence 
(p(u),p’(‘u), p”(u), . . .) and B is th e number of changes of sign in the 
sequence (p(v),p’(v),p”(v), . . .). If this number differs from A - B, it 

must do so by an even amount. 

(a) Let p(t) = t5-t4-t3+4t2 -t- 1. Form the sequences (p(u),p’(u), 

p”(u), . . .) for u = -2, -1, 0, 1. Verify that the signs of the terms 
of the sequences are given in the following table: 

u = -2 
u = -1 

; I;+-+-+) 5changes 
- - + - +) 4 changes 

‘u= 0 : (--+--+) 3changes 

u= 1 : (++++++) Ochanges 

Deduce from the Fourier-Budan Theorem that there is exactly 
one real zero in each of the intervals (-2, -1) and (-1, 0), and 
either one or three real zeros in the interval (0,l). 

(b) Use the Fourier-Budan Theorem to verify that 8t2 - 8t + 1 has 
one zero in each of the intervals (0,1/2) and (l/2,1). 

(c) Obtain Descartes’ Rule of Signs for positive zeros as a conse- 
quence of the Fourier-Budan Theorem. 

(d) Show that for the polynomial t4 + t2 + 4t - 3, Descartes’ Rule of 
Signs gives a sharper estimate for the number of negative zeros 
than the Fourier-Budan Theorem. 

18. Verify the Fourier-Budan Theorem for the following quadratics by 
computing their roots: 
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(a) t2-t u=-1 v=2 

(b) t2-t+l u=-1 v=2. 

19. Let p(t) = 2t6 - 7t5 + t4 + t3 - 12t2 - 5t + 1. 

(a) Verify that 

p(t) = (2t - 7)t5 + (t2 - 12)t2 + (t2 - 5)t + 1 

= 2t6 + t(t + l)(-7t3 + 8t2 - 7t - 5) + 1, 

and deduce that all the real zeros of p(t) lie between -1 and 
712. 

(b) Use the Fourier-Budan Theorem to deduce that the polynomial 
has 

(i) exactly one zero in the interval (3, 7/2) 

(ii) one or three zeros in the interval (l/8, l/4) 

(iii) nil or two zeros in the interval (-1, -l/2). 

(c) Calculate p(-1), p(-l/2) and p(-3/4) and refine the conclusion 
in (b)(iii). 

20. Prove the theorem of Fourier-Budan for linear and quadratic poly- 
nomials. (In the quadratic case, let the polynomial be t2 + bt + c and 
look at the possible arrangements of signs in the sequence (t2 + bt + c, 

2t + b, b) at various points u and v. Sketch graphs to illustrate each 
possibility.) 

21. Locate intervals which contain real zeros of the following polynomials. 
Get as much information as you can about these zeros. 

(a) t5 - 3t4 - t2 - 4t + 14 

(b) 24t5 + 143t4 - 136t3 + 281t2 + 36t - 140 

(c) 2t4 + 5t3 + t2 + 5t + 2 

(d) 16t6 + 3t4 - 3t3 - 142t2 - 9t - 21 

(e) 16t7 - 5t5 - 97t4 - 95t3 - 79t2 + 36. 

Explorations 

E.47. Proving the Fourier-Budan Theorem. The key to proving the 
Fourier-Budan Theorem is the observation that deleting the first entry of 
the sequences (p(u),p’(u), . . .) and (p(v), p’(v), . . .) gives the corresponding 
sequences for the derivative. This suggests that we should explore the rela- 
tionship between the zeros of p(t) and those of p’(t), and the tool for doing 

this is Rolle’s Theorem (see Exploration E.28). The proof can be executed 
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by induction on the degree of the polynomials. Suppose it holds for all de- 

grees less than n = degp(t). To avoid complications, let us suppose that 
the derivative does not vanish at either u or v. 

There are a number of cases to consider: 

(1) p and p’ have the same sign at u and the same sign at v; 

(2) p and p’ have the same sign at u and opposite signs at v; 

(3) p and p’ have opposite signs at u and the same sign at v; 

(4) p and p’ have opposite signs at both u and v. 

A second subdivision of cases is whether p has at least one or no zeros in 
the interval [u, v]. 

Suppose, to take a special case, that p does have at least one zero in the 
interval, the smallest being y and the largest .z, so that u < y 5 z < v, and 

that p and p’ have the same sign at u but opposite signs at v. Assigning 
A and B the meanings of Exercise 2.17 and C and D the corresponding 
meaning for p’, establish the following (generous use of graph-sketching is 
recommended): 

(i) A=C,B=D+l; 

(ii) If p(t) has k zeros counting multiplicity in [u, v], then p’ has k - 1 + 2i 
zeros in [y, ~1 for some nonnegative integer i; 

(iii) p’ has an odd number of zeros between u and y; 

(iv) p’ has an odd number of zeros between z and v. 

Now use the induction hypothesis that the number of zeros of p’ is less 

than C - D by an even nonnegative integer. 

E.48. Sturm’s Theorem. The difficulty with the Method of Fourier- 
Budan is that, while the polynomials p(t) and p(t) + c might have different 

numbers of real roots in an interval, the taking of the derivative suppresses 
the constant c and causes information to be lost. A more refined method, 
due to Sturm, permits us to actually count the number of real roots in any 
interval, although Sturm’s sequences are more troublesome to obtain than 
Fourier-Budan sequences. 

Let p(t) be a given real polynomial. To define the polynomial sequence 

(PO(t), Pl(t),P2(t>l * * .) we need, we make a continued use of the division 
algorithm in much the same way as is done for the Euclidean algorithm. 

The pi(t) are chosen to satisfy: 

POW = P(t) 

pi(t) = p’(t), the derivative of p(t) 
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n(t) = pl(t)ql(t) - dt), degpz < degpl 

n(t) = n(Mt) - n(t), degp3 < dem 

m(t) = m(Mt) - p&), degp4 < dew3 
and so on until a zero remainder is reached. Thus, at each stage for k 1 2, 
pk(t) is the negative of the remainder when p&z(t) is divided by p&i(t). 
If there are multiple roots, the last nonzero remainder will not be constant. 
Call this the Sturm sequence for p(t). 

Verify that two such sequences, taken to the last nonzero term, are 

(t3 - t + 1, 3t2 - 1, (2/3)t - 1, -23/4) 

tt3 -3t+2,3P-3,2t-2). 

Let 21 < v. Suppose that U is the number of sign changes in the se- 
quence (po(~),p1(~),p2(~),p3(~), . . .) and V is the number of sign changes 
in the sequence (p0(v),p~(v),p2(~),p3(~), . . .). Sturm’s Theorem says that 
the number of real roots of p(t) between u and v (with each multiple root 
counted exactly once) is exactly U - V. 

To see how it works, consider the following -example: find the number 

of roots between -2 and +2 for each of the following polynomials (i) t2 - 
t, (ii) t2 - t + l/4, (iii) t2 - t + 1. First, verify that the Fourier-Budan 

Theorem does not allow us to distinguish the behaviour of these three 
polynomials. Now verify that the Sturm sequences of polynomials for the 
three are respectively: 

(i) (t2 - t,2t - 1,1/4) 

(ii) (t” - t + 1/4,2t - 1) 

(iii) (t2 - t + 1,2t - 1, -3/4). 

Use Sturm’s Theorem to determine the number of roots between -2 and 

+2 for each and check the result directly. 
Use Sturm’s Theorem to locate the real roots of the polynomial t5 - t4 - 

t3 + 4t2 - t - 1 and 2t6 - 7t5 + t4 + t3 - 12t2 - 5t + 1 to within intervals 
bounded by consecutive integers. Approximate each root to two places of 
decimals. 

Obtain from Sturm’s Theorem the following corollary: all roots of a manic 
polynomial are real if and only if all the nonzero polynomials in its Sturm 
sequence have positive leading coefficients. 

Having worked out a couple of Sturm series, you will probably feel the 
need for some simplification. Note first that, since we are interested only in 
the sign of the values of certain polynomials, we can replace any polynomial 
in Sturm’s sequence by a positive constant multiple of it. What this means 
is that we can set up our division at each stage in such a way as to clear 
all the fractions and deal only with integers. 
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Secondly, observe that if we divide the terms of Sturm’s sequence by 
the same polynomial, the number of sign changes will not be affected. If 
q(t) is the greatest common divisor of p(t) and p’(t), verify that the Sturm 
sequence for p(t)/q(t) is th e same as the Sturm sequence of p(t) divided by 
q(t). Verify also that the zeros of p(t)/q(t) are all simple and are exactly the 
same as the zeros of p(t). Thus, one can deal with the polynomial p(t)/q(t) 
which may have degree less than that of p(t). 

How does one prove Sturm’s Theorem? Argue that it suffices to prove the 
result when all the zeros of p(t) are simple. In this case, show that Sturm’s 

sequence ends in a constant and that it is not possible for two consecutive 
polynomials in Sturm’s sequence to have a common zero. For convenience, 
we will assume that no polynomial in Sturm’s sequence vanishes at the 
endpoints u and v of the interval under consideration. We look at several 
cases: 

(i) Suppose that no polynomial pi(t) has a zero between u and v. Argue 
that each polynomial in Sturm’s sequence maintains the same sign on the 
interval (u, v), and so the number of sign changes in Sturm’s sequence 
evaluated at u and at v are the same. 

(ii) Suppose that r lies between u and v and that r is a zero of some 

pi(t) (1 5 i 5 n - 1). Note that r must be a simple zero. Show that pi-i(r) 
and pi+l(r) are nonzero and have opposite signs. Choose the number s 
sufficiently small that pi-1 and pi do not change sign and pi has only the 

root r in the closed interval [r - s,r + s]. Show that the number of sign 

changes in {pi-l(t),pi(t),pi+l(t)} is the same at r - s and r + s. 
(iii) Suppose that r lies between u and v and that p(r) = 0. Show that a 

small positive real s can be chosen so that 

(a) u<r-s<r<r+s<v 

(b) p(t) has only the simple zero r in the closed interval [r - s, r + s] 

(c) p’(t) has no zero in the closed interval [r - s, r. + s] 

(d) p(r - s) has sign opposite to each of p(r + s), p’(r - s) and p’(r + s). 

Deduce that Sturm’s sequence has one more sign change when evaluated 

at r - s than when evaluated at r + s. 
Complete the proof of Sturm’s Theorem by subdividing the closed inter- 

val [u, v] into subintervals at the endpoints of which none of the pi vanish 
and within which there is at most one number r which is a zero of any of 
the pi. 

E.49. Oscillating Populations. In the beginning of this chapter, the 
function f(x) = ax- 6x2 was introduced. We can think of x as representing 
a population density for some species in a certain area, so that its value 
will lie between 0 and 1. Consider the special case a = b. Thus, let 

f(x) = ax(1 -x) (0 5 x 5 1). 
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Sketch the graph of the equation y = f(x) when a = l/2, 1, 2, 3, 4, 8. On 
the same axes, sketch the graph of y = x. 

If a is sufficiently small, then f(x) < x for all x > 0, and the population 
modelled by this function is headed for extinction. Show that, if a > 1, 
then the function f(x) has a unique fixed point u for which ‘1~ = f(u) and 

O<u<l. 
Is this fixed point stable or unstable? It will be stable if, when we start 

the population size at a value close to u, it will, as the years pass, approach 
ever more closely to 21. Otherwise it will be unstable. There is a convenient 
way of picturing the situation. 

Consider the example a = 3/2. In this case, the fixed point of f(x) is 
l/3, and we can sketch the graph below. 

Suppose that we begin with a population density xc, which we will mark 
on the x-axis. To find the point on the axis corresponding to the density 
xi = f(x0) one year later, 

(i) draw the vertical line x = xc; it will meet the graph of the equation 
y = f(x) at the point (xc, xi); 

(ii) draw the horizontal line y = zi through (xe,xi); it will meet the 
graph of the equation y = x at the point (xi, xi); 

(iii) draw a perpendicular from (xi, xi) to meet the x-axis at (xi, 0). 

By repeating this procedure, we can mark on the axes the population den- 

sities 22, x3, . . . for successive years. Perform this for initial population 
densities l/4 and l/2, and verify in both cases that the population moves 

monotonically (either steadily increasing or steadily decreasing) towards 

l/3. 
When there is stability, it is not always the case that the population 

varies monotonically. Sometimes it oscillates around the stable position 
while approaching it. Sketch on the same axes the graphs of y = 
(2.5)x(1-z) and y = x. With an initial population density of 0.5, compute 
the density for the next five years. Using your graphs, make a diagram to 
illustrate how the population oscillates around the fixed point 0.6. 



5.3. Location of Complex Roots 179 

There are values of a for which the fixed point is an unstable population 

density. For example, in the case a = 4, the fixed point is 0.75. Calculate 
the population density for ten successive years when the initial density is 
0.74. Make a diagram to illustrate the situation. How do you account for 
the instability? What do you think will happen to the population density 
in the long run? 

For which values of the parameter a will the nonzero fixed point u for 

the function f(x) represent a stable population density? 
Consider the possibility of a population density which oscillates between 

two values which are the roots other than 0 and u of the equation x = 
f(f (x)). Verify that this equation can be written 

x[ax - (a - l)][Q”X” - a(a + 1)x + (u + l)] = 0. 

Verify that, when a = 3, it has a triple root x = 2/3, that when a > 3, it 
has three positive real roots with one on either side of (a - 1)/a, and when 
a < 3, it has two nonreal roots. Discuss the stability of the fixed point when 
a is less than, equal to and greater than 3. Compute the derivative off at 
the fixed point, and discuss the significance of the value of that derivative. 

If you have access to a computer, examine the possibility of a population 
density which has a k-year cycle, for which, if zi+i = f (xi), we have zk = 
xc, but x0,x1, x2, . . . , z&i all differ. 

5.3 Location of Complex Roots 

Certain classes of difference (recursion) and differential equations have as- 
sociated with them a polynomial whose roots give information about the 

properties of the solutions. In Exporation E.50 we will see for instance, 
that if the zeros of the related polynomial lie in the interior of the unit disc 

in the complex plane, then the nth term of a recursion will tend to 0 as n 
grows large. For differential equations, it is often useful to know whether or 
not there are any zeros in the right half plane (i.e. for which the real part 
is positive). One approach is to adopt the idea used in our second proof of 
the Fundamental Theorem of Algebra (Section 4.5), that if a polynomial 
has a zero in the region surrounded by a closed curve, then the image of 
that curve under the action of the polynomial makes at least one circuit of 

the origin. 
In the exercises, we will first look at estimates of the size of the zeros, 

and then sample techniques for locating zeros within certain regions of the 

complex plane. 
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Exercises 

1. Let w be any zero of the polynomial a,t” + a,-lt”-’ +. . . . Show that 

(a) w = o;l[-a,-i - fzn-2wB1 -I. f - ai~-“+~ - a~w~~+l] 

@I lwl 5 bnl-l c;=o bkl- 

2. Let fc,~i,rs ,..., 2, be complex numbers. Show that 

(a) IZI +z2++..+znl 6 IzII+I~~I+-~~+I~~I 

(b) (zo+rl +-+.+~,a( 2 Izol- Ial- Izzl-...- Iznl. 

When does equality occur? 

3. Cauchy’s estimate. Let p(t) = a,t” + .. . + ac and let K be the 

maximum of the absolute values of as/a,, al/a,, . . . ,a,-i/a,. Show 
that, if w is a zero of p(t), then 

(a) 0 = a,w”[l+(a,~~/a,)w~‘+~~~+(a~/a,)w~”+’+(ao/a,)w~”] 

(b) lwl < K + 1. 

4. (a) Show that, if w is a nonvanishing zero of the polynomial p(t), 
then 20-l is a root of the polynomial t”p(t-‘). 

(b) Use (a) and th e result of Exercise 3 to determine a lower bound 

for the absolute value of a nonzero root of a polynomial equation. 

5. (a) Let n _> 1, and suppose ai (0 5 i 5 n) are complex numbers 
with a0 # 0. Show that the polynomial 

t” - Jan&-l - lan-21tn-2 - . . . - lqlt - laoI 

has a unique positive zero r. 

(b) Prove that every zero of the polynomial 

t” + Q,-lP--l +. * * + qt + al-J 

satisfies ]w] 5 r, where r is defined as in (a). 

6. The polynomial at + b has the zero -b/a. In (c), this will be general- 
ized to an estimate for the zeros of polynomials of higher degree. In 
what follows, n 1 2, 

g(t) = b,t” + . . . + b,t + b. 

f(t) = a,P + . . * + a1t + ao. 

(a) Let 0 < b, 5 bnwl 5 bn-2 _< e-e < bl 5 bo. Show that every 
zero w of the polynomial g(t) must satisfy ]w] > 1. 
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(b) Let b, 1 b,-l >_ . . . >_ bo > 0. Show that every zero w of the 

polynomial g(t) must satisfy IwI < 1. 

(c) Let ei be all positive and let 21 be the minimum and v the maxi- 

mum of the quantities a,-l/a,, u,,-z/a,+~, . . . ,al/az, as/ar. 
Show that every zero w of the polynomial f(t) must satisfy 

u < lw] < 21. 

(d) Verify that all the zeros w of 7t4 + 8t3 + 2t2 + 3t + 1 satisfy 

l/4 < lull < 3/2. 

7. Use the exercises to obtain estimates on the absolute values of the 
zeros of the following polynomials. Compare the sharpness of the 
different techniques. 

(a) t2 -t + 1 

(b) t5 - t4 - t3 + 4t2 - t - 1 

(c) tll + ts - 3t5 + t4 + t3 - 29 + t - 2 

(d) 3t2 - t + 4. 

8. Schur-Cohn Criterion. 

(a) Show that both zeros w of the real polynomial t2 + bt +c satisfy 
1~1 < 1 if and only if lb1 < 1 + c < 2. 

(b) Show that all the zeros w of the real polynomial t3 + bt2 + ct + d 
satisfy 1~1 < 1 if and only if 

Ibd-cl < l-d2 Ib+dl < Il+cl. 

9. A polynomial over the complex field is said to be stable if and only if 
every one of its zeros has a negative real part. (The terminology arises 

from applications; stability of a polynomial corresponds to physical 
or biological stability of some system giving rise to the polynomial.) 

(a) Show that a real stable polynomial must be the product of a 
real constant and factors of the form t + r and t2 + bt + c, where 

r, b and c are positive. 

(b) Show that the signs of all the coefficients of a real stable poly- 
nomial must be the same. 

(c) Show that a linear or quadratic real polynomial is stable if and 
only if all the coefficients are of the same sign. 

(d) Give an example of a cubic polynomial whose coefficients are all 
positive, but which is not stable. 

10. We obtain a criterion for stability of the cubic polynomial 

f(t) = at3 + bt2 + ct + d (a > 0). 
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(a) Show that, if all the zeros of f(t) have negative real part, then 

a, b, c, d are all positive. Henceforth, we will assume that this 

condition holds. 

(b) Show that, if all the zeros of f(t) are real, then all must be 

negative and bc - ad > 0. 

(c) Show that, if bc 5 ad, then f(t) must have a nonreal zero. 

(d) Suppose that f(t) has two nonreal zeros u f vi (v # 0). Verify 
that, for t = u f vi, f(t) = 0 is equivalent to 

uu3 + bu2 + cu + d = v2(3au + b) 

and 
3au2+2bu+c=av2; 

eliminate v2 to obtain 

8a2u3 + 8abu2 + 2(b2 + ac)u + (bc - ad) = 0. 

Show that 

(i) if bc > ad, then u < 0; 

(ii) if bc = ad, then u = 0; 

(iii) if bc < ad, then u > 0. 

(e) Show that a cubic polynomial at3 + bt2 + ct + d is stable if and 

only if all its coefficients are nonzero with the same sign and 

bc > ad. 

[This condition has a nice generalization, known as the Routh-Hurwitz 
Criteria, to polynomials of degree n. These can be conveniently ex- 
pressed using determinants.] 

11. Nyquist diagram. To test the stability of a given polynomial, first 
determine a positive real M which is greater than the absolute values 

of its zeros. Let C be the curve consisting of that portion of the 
imaginary axis consisting of points yi for which ]y] 5 M and the 

semicircle of center 0 and radius M lying to the right of the imaginary 

axis. The image p(C) of this curve is called the Nyquist diagram for 
the polynomial. 

(a) Show that the polynomial is stable if and only if its Nyquist 

diagram does not make a circuit of the origin. 

(b) Verify that all of the zeros of ,z2 + 22 - 3 lie inside the circle of 
center 0 and radius 6. Show that this polynomial maps the y-axis 
(imaginary axis) onto the parabola y2 + 4x + 12 = 0 with vertex 

(-3,0) (the point (x, y) is identified with the complex number 

x + yi). Verify that the image .of the point G(cosB + isine) is 
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(6cosB+ 1)12(cosf?+isin0) - 39. Sketch the Nyquist diagram 
for this polynomial (taking M = 6) and verify that it winds once 
around the origin. Deduce that the quadratic is not stable. 

12. Discuss stability of the following polynomials: 

(a) z3 + 2 

(b) z3 + 2z2 + 32 + 1 

(c) z4 + 3z3 + z2 + z + 8. 

Exploration 

E.50. Recursion Relations. The Fibonacci sequence was introduced in 
Exploration E.14; it is given by the recursion relations 

Fl = F2 = 1 F,+l = F,,+F,,-l (n=2,3,4 ,... ). 

While any term of the sequence can be found using these equations, the 
process is both tedious and sensitive to a miscalculation, since an error at 
any point would contaminate the computation from then on. One would 
like to have a formula from which the nth term can be found directly. 

For some sequences, such a formula is easy to find. For example, let 
S,, be the sum of the positive integers up to n. This sequence can be 
defined recursively by Si = 1, S,, = S,-i + n. However, one can directly 
compute each S,, by the familiar formula S, = (1/2)n(n + 1). For the 
Fibonacci sequence, there, too, is a formula, but one would have to be 
clever indeed to guess it. However, with the proper approach, it can be 
found in a straightforward way. 

Often, we can solve a problem by looking to a simpler one for guidance. 
Either we might find a stepping stone to the more complex situation or at 
least get a better idea of the ingredients of a solution. What would happen 
if we had a sequence for which each term depended only on its immediate 
predecessor, to wit 

u,+l = run (n = 2,3,4,...) 

for some number r independent of n? This sequence is geometric and the 

nth term is ulr”-l. Can we reduce the Fibonacci sequence to this one? 
With r a number to be specified later, we can write the recursion relation 

for F,, as: 

F,+I + (r - l)Fn = rF, + F,.,-1 = r(F” + r-‘F,+l). 

If we pick r so that r - 1 = r-l, then u, = Fn+l + (r - l)F,, will be a 
geometric progression. Verify that 

F,+I + (r - l)F,, = (F2 + (r - 1)Fl)r n-1 = rn for n > 2. 
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Verify that there are two possible values of r: r1 = (l/2)(1 + &), r2 = 
(l/2)(1 - I/?$. El’ lminate Fn+l from the two equations 

Fn+l + (r1 - l)F,, = r; 

to obtain that 

F,+I + (r2 - l)F,, = ry 

F, = (l/&)[rT - rt]. 

Check that this formula actually works for 1 5 n 5 5. 

Use a pocket calculator to work out the values of r1 and r2. Argue that 

F,,+JF,, gets closer and closer to rr as n becomes larger (so that F,, be- 
comes close to being a geometric progression). 

There are a number of striking relations satisfied by the terms of the 
Fibonacci sequence which can be established with the aid of the formula 
for the general term. For example, show that: 

(i) F,f + Fz+l = &+I (n L 1) 

(ii) F,,+lF*-l - Fz = (-1)” (n >_ 2) 

(iii) F,f+l + F,f - F,fsl = F3,, (n >_ 2) 

F2k = i(F4n - hzn) (n 2 1) 

(v) if mln, then FmlFn. 

Other recursion relations can be handled in a similar way. Work out the 
general term for the recursion xn = 3x,-r - 2x,-2 (n 1 3), given that the 

initial terms are (a) x1 = 1, 22 = 3; (b) cl = 1, 22 = 2. 
Sometimes the recursion gives rise to a polynomial equation with a dou- 

ble root. Show that, if xn+l = 2axn - u2x,-1 (n 1 2), the form xn+l - 
(2~ - r)x, = r(x,, - (2a - r)x,-1) is possible only for r = a. How 
would you modify the technique to deal with this situation? Obtain x,, = 
a”-‘21 + (n - l)~“-~(x2 - axr). 

Now consider a sequence for which the general term depends on its three 
immediate predecessors, such as for example one whose terms satisfies 

v,,+l = 6v, - llv,-1 + 6~~2 (n 2 3). 

Show that, if we rewrite this in the form 

(v,+l + QV, + bun- I) = r(v, + a~,-1 + bv,-2), 

then r3 = 6r2 - llr + 6 and ( r, a, b) = (1, -5,6), (2, -4,3), (3, -3,2). Use 
this information to set up a system of three linear equations to solve for 

v,+r, VA, 21,-l in terms of vr, ~2, 213. 
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In general, for fixed k, a recursion of the type 

U,+l = UOV, + al&-1 + “. + akv,-k 

can be written in the form 

(v,+l + bovn + . . .) = r(v, + bov,-l + . . -) 

provided r is a root of the equation rk+l = aOrk + . . . + ok. Knowing the 
roots of this equation will provide us information on the general behavior of 
the sequence. In the special case that all its roots rl, t-2, . . . , Pk are distinct, 
it can be shown that 

where the coefficients ci depend on vi, ~2,. . . , vk. Thus, if all ri are real 
and less than 1 in absolute value, v, will become closer and closer to zero. 
In any case, as n grows larger, lv,+Jv, I tends to the largest Iri I. 

For each of the following recursions, write out the first 10 or so terms to 
get some idea of how it behaves, whether increasing or decreasing without 
bound, tending to zero, oscillating boundedly or unboundedly. In each case, 
there is a certain polynomial whose zeros can be used to give a formula 
for the general term of the recursion. Find the zeros of the polynomials 
and consider how the behaviour of the sequence is related to the following 
properties of the zeros: 

(a) the zero of largest absolute value is positive and exceeds 1 

(b) the zero of largest absolute value is negative and is less than 1 

(c) the zero of largest absolute value lies outside the unit circle 

(d) the zero of largest absolute value lies on the unit circle 

(e) all zeros have absolute value less than 1 

(f) all zeros are nth roots of unity for some integer n. 

(i) u. = 1 u1 = 2 u,+i = 21, -21,-r (n 2 1) 

(ii) uc = 2 ~1 = 3 21,+i = 3u, - 2u,-i (n > 1) 

(iii) ~0 = 3 211 = 2 u,+i = 3u, -221,-l (n 1 1) 

(iv) uc = ~1 = 1 621,+i = 721, - 2.1~“~~ (n 2 1) 

(v) uo = ul = 212 = 1 21,+1 = 2~~ - u+i + 2~~~2 (n > 2) 

(vi) us = ‘1~1 = us = 1 2u,+l = u, -226,-l + U1,-2 (n > 2) 

(vii) us = ui = 1 212 = 2 zL,+i = U, - 2u,-i + 221,-z (n > 2). 
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5.4 Problems 

1. Prove that, for complex k the polynomial t3 - 3t + k never has more 
than one real zero in the closed interval [0, 11. 

2. Prove that the positive root of 

x(x + 1)(x + 2) . . . (x + n) = 1 

is less than l/n!. 

3. Prove that all roots but one of the equation 

nx” = ~+x+z~+..++x”-~ 

have absolute value less than 1. 

4. Show that x4 - 5x3 - 4x2 - 7x + 4 = 0 has no negative roots. 

5. Let fo(t) = t and f,,(t) = fn-l(t)2 - 2 for n 2 1. Show that the 
equation f,,(t) = 0 has 2” real roots. 

6. Let a and b be unequal real numbers. Prove that 

(a - b)t” + (a2 - b2)tn-1 + . . . + (a’- - b”+‘) = 0 

has at most one real root. 

7. Let al > Q2 > u3 > u4 > u5 > es, and let p = al + . . . + a6, 

4 = ala3 + (3305 + a5al + a$4 + a4a6 + a6a2, r = ala305 $- a2a4a6. 

Show that all the zeros of 2t3 - pt2 + qt - r are real. 

8. Let a, b, c > 0. Show that the equation 

x3 - (a” + b2 + c”)x - 2abc = 0 

has a unique positive root u which satisfies 

(2/3)(a + b + c) < u < a + b + c. 

9. The equation (z - Q~)(x - ~2) . . . (x - a,) = 1 where Qi E R, has n 
real roots ri. Find the minimum number of real roots of the equation 

(x - rl)(x - r2). . . (x - rn) = -1. 

10. Let p(x) be a polynomial of degree n with real roots al, as, a3, . . . , a,. 
Suppose the real number b satisfies 

Prove that 

lb - all < lb - ail (2 5 i < n). 

IPWI 1 2 -“+llp’(a)(b - m)l. 
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11. Prove that the roots of the cubic equation 

t3 - (a + b + c)t2 + (ab + bc + co - d2 - e2 - f2)t 

+ (ad2 + be2 + cf2 - abc - 2def) = 0 

are real when a, b, c, d, e, f are real. 

12. Determine each real root of 

x4 - (2.1OlO + 1) x2 - 2 + 1020 + 1o’O - 1 = 0 

correct to four decimal places (a denotes multiplication). 

13. Consider polynomials .x2 - bx+c with integer coefficients which have 
two distinct zeros in the open interval (0,l). Exhibit with a proof the 
least positive integer value of a for which such a polynomial exists. 

14. The sequence {qn(x)} of polynomials is defined by 

91(x) = 1 +x 42(x) = 1+ 2x 

and, for m 1 1 by 

Q2m+l(X) = q2m(X) + (m + l)XqZm-l(X) 

92m+2(X) = Q2m+l(X) + (m + l)XQ2m(X). 

Let x,, be the largest real solution of qn(x) = 0. Prove that {x,,} is 
an increasing sequence whose limit is 0. 

15. Assuming that all the zeros of the cubic t3 + at2 + bt + c are real, 
show that the difference between the greatest and the least of them 
is not less than (u” - 3b)‘j2 nor greater than 2(a2 - 3b)‘i2. 

16. How many roots of the equation z6 + 6% + 10 = 0 lie in each quadrant 
of the complex plane? 

17. Show that 

4x172 + 1)64 - 3X9(X + 1)27 + 224(x + 1)” - 1 = 0 

has at most 14 positive roots. 

18. For which real values of a do all roots of z3 - z2 + a = 0 satisfy 
I%1 2 l? 

19. Let the zeros a, b, c of f (t) = t3+pt2+qt+r be real, and let a 2 b 5 c. 
Prove that, if the interval (b, c) is divided into six equal parts, a zero 
of f’(x) will be found in the fourth part, counting from the end 6. 
What will be the form of f(t) if the root in question of f’(t) = 0 falls 
at either end of the fourth part? 
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20. Let 731 < 782 < .. . < nk be a set of positive integers. Prove that the 
polynomial 1 + z”l + zn3 + . . . + 9’~ has no zeros inside the circle 

l-4 < (1/2)(&- 1). 

21. For which complex values of a do all the zeros of z3 + 12( 1 + ifi)% + a 
lie on a straight line? 

22. Show that 1 + t + t2/2! + t3/3! + . . . + t2”/(2n)! = 0 has no real roots. 

23. Prove that a polynomial p(t) f or which p(t) is real when t is real and 

nonreal when t is nonreal must be linear. 

24. Let p(t) = ao+alt+. . .+a”t” be a real polynomial of degree exceeding 

1, such that 
I”/21 

0 < a0 < - x[1/(2k+ l)]a2k. 

k=l 

Prove that p(t) h as a real zero r such that Irl < 1. 

25. p(z) is a complex polynomial whose zeros can be covered by a closed 
circular disc of radius R. Show that the zeros of rip(z)) - kp’(z) can 

be covered by a closed circular disc of radius R + lkl, where n is the 
degree of p(z), k is any complex number and p’(z) is the derivative 

of p(z). 

26. Find all the zeros of azPt* - bzp + b - a (0 < a < b) which satisfy 

I%[ = 1. 

27. Suppose that -1 < u 5 1. Prove that each root of the equation 

has modulus 1. 

2 
“i-1 - ux” f ‘212 - 1 = 0 

28. Show that, for all integers k >_ 0, 

tn + 1) -kx” + n -Lx+1 + * *. + 2-kx + 1 = 0 

has no real root if n is even and exactly one root if n is odd. 

29. Let al, 02,. . . , a” be nonzero reals with al < 02 < . . . < a”. Show 

that the following equation holds for n real values of x: 

01 02 
-+- +...+%==, 
al-x 02 -x 0” - x 

if all the oi have the same sign. What happens if al < 0 < a,? 

30. Let k > 0. Show that, if lail < k (1 5 i 5 n), then 

1+ 01z + 0222 + . . . + 0”Z” = 0 

has no root with IzI < l/(k + 1). Is the converse true? 
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31. Show that every zero z of the complex polynomial 

f(%) = %” + an-l%“-’ +. * * + aI% + 00 

satisfies -b 5 Re z < a, where a and b are the unique positive roots 
of the equations 

z”+(Rea,-r)~“-~ - la,-211”--2 - IQ,-312--3 - - * * - Ia1 Ix - laoI = 0 

x” - (Re Q,-$z”-~ - 1*,4~2”-2- IO”-3lt”-3-. . .- lqlz- laoI = 0. 

32. Suppose that p(t) h as n distinct real zeros exceeding 1. Show that 

a(t) = o2 + l)PWP’W + tL.Pw2 + (P’W21 

has at least 2n - 1 distinct real zeros. 

33. Let p(z) be a polynomial of degree n with only real zeros and real 
coefficients. Show that 

(n - %w12 - np(z)p”(z) 2 0. 

34. Show that there exist infinitely many manic polynomial equations 
over Z of degree n such that n - 1 of the roots occur within a specified 

interval, however small. 

35. Let m be a positive integer and define the real polynomials f(z) and 

s(x) by 
(1+ k??), = f(z) + ig(x). 

Prove that, for arbitrary real numbers a and b, not both zero, 

d(x) + b(x) 

has only real zeros. 

Hints 

Chapter 5 

2.10. How many sign changes can there be altogether in the polynomial at 
t and at -t? 

2.11. Multiply by t - 1 and apply Exercise 10. 

3.5. (b) Note that the polynomial in (a) is positive when t > r. 
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3.6. (a) A standard way to isolate the difference of the coefficients is to 
multiply the polynomial by 1 - t. Show that, if lwl < 1 and w # 1, 

then l(l-w)g(w)l > bo-(bo-b~)-(b~-b~)-~~~-(b,-l-b,)-b,. 

(b) Use the result of Exercise (a) along with Exercise 4(a). 

(c) The conditions imply that 0 < ana” 5 an-run-l < . . . < ur’l~ 5 

Qo- 

3.8. (a) Consider two cases, according as the zeros are real or nonreal. 
Observe that, if l+c 5 lbl, then both zeros are real. Examine (l+c)fb 
as a function of the zeros. 

(b) This solution needs some careful arguing. Again, look at two cases 
according as one or three zeros are real. Write out 1 f b + c f d and 
1 - c + bd - d2 in terms of the zeros. It may be useful to recognize 

the values of the polynomials at t = -1 and t = 1. 

4.1. If u and v are distinct real zeros, find a relation between them which 

indicates that 0 < u, w < 1 cannot occur. Alternatively, look at what 
the graph of the polynomial must be. 

4.2. Show that the left side exceeds 1 at x = l/n!. Express (x + k) as 

q1+ x/k). 

4.3. Multiply by x-“. 

4.4. Separate the even and odd powers of x; this is a “quickie”. 

4.5. Prove more generally by induction that fn(t) = h has 2” real roots 
when Ikl < 2. 

4.6. Multiply the equation by (t - a)(t - b). Rolle’s Theorem will be useful. 
(Exploration E.28). 

4.7. Rewrite the polynomial as (t-al)(t-a3)(t-as)+(t-u2)(t-a4)(t-as>. 

4.8. The hard part is to show that f(2(ra + b + c)/3) 5 0. This is equiv- 
alent to showing that lOXa - 6Ca2b + 6abc is nonnegative. Since 
this quantity vanishes when a = b = c, try to write it in the form 

A(b - c)~ + B(c - d)” + C(u - b)2. A, B and C will of course be linear 
and homogeneous in a, b, c. 

4.9. Factor H(x - ei) - 1. 

4.10. Factorp(t) andcomputep’(ar). Note that Iei-erl _< [ai-bl+lb-all. 

4.11. Let Q < b 5 c and u 5 V, where u and v are the zeros of (t - e) 
(t - c) - e2. f(u) can be written as a perfect square. 

4.12. The left side can be written as a quadratic in (2” - lOlo). 
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4.13. What is the sign of the value of the polynomial at 0 and l? What 

about the discriminant? What about the product of the zeros? Use 

(u - l)(c - 1) 1 0 to show b 2 5. 

4.14. Use induction. Show that xzm+z > -l/(m + 1) by plugging z = 
-l/(m + 1) into both equations. 

4.16. Let z = r(cos0 + isine) and write the equation as a real system in r 
and 0. Let 0 < 0 < ?r. What is the sign of sin60? 

4.17. Differentiate. Factor out the highest power of z and z+ 1. Differenti- 
ate some more. The strategy is to use Holle’s Theorem to relate the 
positive roots of the equation to the roots of an equation of the form 
~(x)P(z + 1)” = 0, where the degree of u(x) can be identified. 

4.18. First look at the case in which all zeros are real. For the situation in 
which there are two nonreal zeros u f iv and one real zero r, use the 

relationship between zeros and coefficients to obtain a system for r, 
u and u2 + v2. Eliminate r and u and get a cubic equation for u2 + v2 
which involves a. 

4.19. Make a linear change of variable and deal with a polynomial whose 
zeros are -u, -v, v where u 1 v 1 0. Identify the endpoints of the 
interval which should contain a zero of the derivative. 

4.20. What quadratic over Z has (l/2)(&- 1) as zero? Deal with the case 

nl > 2 first. If 121 = 1, multiply the polynomial by 1 - z. 

4.21. What is the sum of the zeros? If the zeros are on a straight line, what 
is the relationship between this line and the origin? 

4.22. The polynomial has a minimum. Its derivative vanishes there. 

4.23. What does the property imply concerning the zeros of p(t)? Look at 

p(t) + k for all real values of k. 

4.24. Let q’(t) = p(t) and q(0) = 0. Show that q(1) < q(-1) and that q(t) 
is increasing at t = 0. Sketch the graph of q(t). 

4.25. Look at n - kp’(r)/p(z). 

4.26. What roots of unity will satisfy the equation? Suppose IzI = 1. Note 

that bzP = &‘+‘J + (b - e). Take absolute values. 

4.27. If there is a root with modulus unequal to 1, there is a root z with 

modulus exceeding 1. For such a root, Z”(Z - u) = (1 - UZ). Let 

z = r(cos 0 + i sin 0) and look at the square of the absolute values of 

both sides. 

4.28. Use induction. 
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4.29. Multiply up the denominators and evaluate the two sides at x = ei. 

4.31. If Re z > a, then 1% + a,-rl 2 Re (z + a,-~) > a + Re(a,-1). 

4.32. q(t) can be factored. 

4.33. Use induction. Multiply the left side by n - 1. 

4.34. It is easy to find a polynomial of degree n - 1 over Z whose zeros are 
prescribed rationals. If such a polynomial is perturbed by adding a 
sufficiently small multiple oft”, the zeros will not move much. 

4.35. Express ej(x) + bg(x) in terms of (1 + ix)“’ and (1 - ix)“‘. What can 
be said about the absolute value of the ratio of these two quantities 

when x is a zero? 



6 

Symmetric Functions of the 
Zeros 

6.1 Interpreting the Coefficients of a Polynomial 

Does the polynomial t6+2t5+3t4 -4t3+5t2+6t+7 have any nonreal zeros? 
Some methods for answering this question have already been discussed, 
but there is another approach which exploits the relationship between the 
coefficients and the roots. If the zeros tl, t2, . . . , ts were real, then 

Q = tf + t; + . . * + 1; 

would have to be positive. Is there a way of determining Q without having 
to go to all the trouble of finding the zeros? 

& is a symmetric function of the zeros. In Exercise 4.6.6, it was indicated 
that, as a result of the Fundamental Theorem of Algebra, the elementary 
symmetric functions of the zeros are expressible in terms of the coefficients. 
In Exercise 2.2.15, Gauss’ Theorem that every symmetric polynomial can 
be written in terms of the elementary symmetric functions was presented. 
As a consequence, we can obtain an expression for Q in terms of the coef- 

ficients and, thus, check its sign. If Q turns out to be negative, we can be 
sure that not all the zeros are real. If Q turns out to be nonnegative, then 
there may or may not be nonreal zeros. 

Already, for polynomials of low degree, we have exploited the relationship 

between zeros and coefficients (see, for example, Exercise 1.2.16 and 4.1.7- 
9). With the Fundamental Theorem in hand, we can generalize this to 

polynomials of arbitrary degree. 
Recall that, if ti (1 5 i < n) are the zeros of a,t” + +. . + alt + ac and s, 

is the rth elementary symmetric function of the ti, then 

sr = (-l)‘a,-,/a,. 

Exercises 

1. Find a cubic equation whose roots are the squares of the roots of the 
equation z3 - x2 + 3x - 10 = 0. 
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2. Let ZL, v, w be the zeros of the cubic polynomial 4t3 - 7t2 - 3t + 2. 

Determine a cubic polynomial whose zeros are u-(~/VW), r~-(l/wu), 

w - (l/uv). 

3. Let m, n,p, q be the zeros of the quartic polynomial t4-3t3+2t2+t-1. 
Without determining any of m, n, p, q explicitly, determine a sextic 
polynomial whose zeros are mn, mp, mq, np, nq, pq. Check your 
answer in an independent way. 

4. Find the manic polynomial whose zeros are the reciprocals of those of 
the polynomial t3 - 2t2 + 6t + 5. Find the polynomial of degree 3 over 
Z with these zeros for which the coefficients have greatest common 
divisor 1. 

5. Let p(t) = Ca,tP be a polynomial over C. Using the relationship 

between zeros and coefficients, verify that a polynomial whose zeros 
are the reciprocals of those of p(t) is 

a# + a#-’ + a&-2 + * .. + a,-It + a, = Pp(l/t). 

6. Let p(t) = Ca,.P have zeros ti. Determine a polynomial whose zeros 

are kti (1 5 i 5 n). 

7. (a) The sum of the zeros (counting multiplicity) of a polynomial is 
0. Prove that the sum of the zeros of the derivative is also 0. 

(b) If%1 , . . . , zn are the zeros of a polynomial p(t) = tn +a,,-#‘-2 + 

;,*:;;gy.. 
, wn-l are the zeros of p’(t), prove that ncwf = 

8. (a) Show that, if all the zeros of a polynomial p(t) = Cart’ are real, 

then azsl 1 2a,-2a, an d a: 2 2aoa2. Show that the converse 

is not true. 

(b) Use (a) to verify that not all the zeros of the polynomial t6 + 
2t5 + 3t4 - 4t3 + 5t2 + 6t + 7 are real. 

(c) By making use of Rolle’s Theorem, strengthen the result of (a) 
to: if the zeros are real, then (n - 1)~;~, 2 2na,a,-2. Give an 
example to show that the converse is not true for n 2 3. 

9. Consider the cubic polynomial p(t) = t3 + at2 + bt + c, with a, b, c 
real. Suppose its zeros are x, y, z. 

(a) Verify that xy = ,r2 + az + b and that 

(x - Y)~ = --[3z2 + 2az - (a” - 4b)] = (a” - 3b) -p’(z). 
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(b) Prove that, if x, y, z are real, then a2 >3b and that z (and, by 
symmetry, x and y as well) must lie in the closed interval [u, v], 
where 

u= (l/3) (- a -2&G) 

21 = (l/3) (-a + 2JKG) 

Note that p’(u) = p’(v) = o2 - 3b. 

(c) With the hypotheses of (b), prove that p(u) 5 0 5 p(v) and 

deduce that 

]2a3 - 9ab + 27~1 5 2(a2 - 3b)3/2 

and thence that 

a2b2 - 4a3c + 18abc - 4b3 - 27c2 2 0. 

(d) Suppose that a2b2 - 4a3c + 18abc - 4b3 - 27c2 > 0. Show that 
a2 - 3b 2 0 and that the cubic p(t) has three real zeros. 

[Cf. Problems 1.4.4, 5.4.15, 6.2.5.1 

10. Solve the equation t4 - t3 - 7t2 + 23t - 20 = 0, given that the product 

of two of the roots is -5. 

11. Consider the polynomial equation 

x4+px3+qx2+rx+s=0. 

(a) Prove that the product of two of its roots is equal to the product 
of the other two iff r2 = p2s. 

(b) Prove that, if the sum of two of its roots is equal to the sum of 
the other two, then p” + 8r = 4pq. 

(c) Suppose that p3 + 8r = 4pq. Must the sum of two of its roots 
equal the sum of the other two? 

12. In Exercise 1.4.11, the quartic equation 

t4 + pt2 + qt + r = 0 . . . (1) 

was solved by factoring the left side as (t2 + ut + v)(t2 - ut + w), 
where u satisfies the equation 

t6 + 2pt4 + (p2 - 4r)t2 - q2 = 0. . . . (2) 

(a) Argue that the roots of (2) can be given as f2a, f2b, f2c, where 

a, b, c are selected so that 8abc = -q. 
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(b) Let (Y = a - b - c,P=b-c-u,y=c-a-b,S=a+b+c. 

Verify that 

a+P+y+6=0 

(YP+CYY+a6+py+Pb+y6=(a+P)(r+a)+(YP+YS 

= -2(u2 + b2 + c2) 

cr& + C@ + ayb + p-16 = (a + P)rb + aP(r + 5) = 8abc 

a,f?yb = (u2 + b2 + c2)2 - 4(u2b2 + u2c2 + b2c2). 

(c) Make use of (2) to show that u2, b2, c2 are the roots of the 

equation 64t3 + 32pt2 + 4(p2 - 4r)t - q2 = 0. 

(d) From (b) and (c), show that Q, p, y, 6 are the roots of (1). 

6.2 The Discriminant 

In the theory of the quadratic polynomial ut2+ bt+c, it is possible to detect 
the presence of a double zero by examining the discriminant b2 - 4ac, 
a function of the coefficients. For the cubic polynomial t3 + pt + q, the 
expression 27q2 + 4p3 plays a similar role. When the coefficients are real, 
the signs of these expressions determine whether all the zeros are real. 
(See Exercises 1.2.1, 1.4.4.) In Exercise 1.9, it was found that the zeros of 
t3 + at2 + bt + c were real if and only if a2b2 ‘- 4u3c + 18abc - 4b3 - 27c2 
was nonnegative. 

For a polynomial of arbitrary degree, a function of the coefficients can be 
determined which will vanish precisely when the polynomial has a nonsim- 
ple zero and, for real polynomials, will be nonnegative if (but not necessar- 
ily, only if) all zeros are real. The link between zeros and coefficients will 
be Gauss’ theorem for symmetric functions. (See Exercises 1.5.10, 2.2.15.) 

Exercises 

1. Let p(t) = ant” +. . . + a0 be a polynomial with zeros tl, . . . , t,. 

(a) Consider the expression 

(t1 - tz)(t1 - t3). . . (t2 - t3)(t2 - t4) * * * (t3 - t4) * * f (&-I - &), 

which is a product of 
n 

( > 
2 terms (one for each pair of zeros). 

Verify that it will vanish exactly when there is a zero of multi- 
plicity exceeding 1, but that it is not symmetric in the zeros. 
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(b) Let D(tl,h , . . . , tn) be the square of the expression in (a). This 
is called the discriminant of the polynomial p(t). Verify that 
it is a homogeneous symmetric polynomial of degree n(n - 1) 
and that it vanishes exactly when there is a zero of multiplicity 
greater than 1. 

(c) Must the discriminant of a polynomial over R be real? 

2. Verify that for the quadratic polynomial at2 + bt +c, the discriminant, 
as defined in Exercise l(b) is (b/u)2 - 4(c/a) (which is equal to the 
usual discriminant divided by a square). 

3. (a) Suppose that p(t) is a polynomial over R with discriminant D 
whose zeros are all real. Prove that D 10. 

(b) Show that the converse of (a) is true for quadratic and cubic 

polynomials, but not for polynomials of higher degree. 

4. Show that if p(t) is a polynomial over R with all zeros distinct, then 

(i) if there are an odd number of pairs of nonreal complex conju- 
gates among the zeros, then D < 0; 

(ii) if there are an even number of pairs of nonreal complex conju- 
gates among the zeros, then D > 0. 

5. (a) Find the discriminant of the polynomial t3 +pt + q and state its 
relationship to the quantity 27q2 + 4p3. 

(b) Find the discriminant of the cubic t3 + at2 + bt + c and of the 
general cubic azt3 + a2t2 + alt + ao. 

6. Find the zeros of each of the following quartics and use them to 
evaluate their discriminants: 

(a) t4 - 1 

(b) t4 + 5t2 + 4. 

7. Show that the discriminant of a polynomial over C is nonzero if and 
only if the greatest common divisor of the polynomial and its deriva- 

tive is a nonzero constant. 

Exploration 

E.51. What is the discriminant oft” - l? 
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6.3 Sums of the Powers of the Roots 

While the determination of an arbitrary symmetric function of the zeros 

of a polynomial might be quite difficult, it is relatively easy to determine 
the sums of various powers of the roots by setting up a recursion relation. 
In the exercises, we suppose that p(t) = t” + c,-ltnB1 + . . . + clt + co is a 
manic polynomial with zeros tr , . . . , t,. Define 

PO = n 

and 
pk=t:+tt+...+ti (Ic=1,2 )... ). 

As before, s, will denote the rth elementary symmetric function of the 
zeros. 

Exercises 

1. Let a, b, c be the roots of the equation 

x3 - 2x2 + x + 5 = 0. 

Find the value of a4 + b4 + c4. 

2. Verify that pl = s1 and that p2 = sf - 2s~. 

3. It is straightforward to give a recursion relation for pk when k 1 n. 
Prove that, for r 3 0, 

Pn+r + cn-1pn+r-1 + Cn-2pn+r-2 + . . * + clpr+l + cop, = 0. 

4. When k < n, the recursion relation to express pk in terms of sums of 
earlier powers is a little more complicated. Verify that 

(a) PI + h-1 = 0 

(b) p2 + cn-IPI + 2c,+2 = 0. 

5. The purpose of this exercise is to develop a conjecture concerning ~3. 

(a) Observe that p3 is of degree 3 in the ti. Infer that ~~~-4, ~~-5,. . ., 
cl, CO will not likely be involved in an expression of ~3. 

(b) On the basis of the information obtained in Exercises 3 and 4, 
argue that it is reasonable to guess an equation of the form 

~3 + klc,-lpz + kzc,.-m + k3c,-3 = 0. 
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(c) Assuming for the moment that (b) is valid, what must the coef- 
ficients ki be? Try the substitutions (l,O, 0, 0, . . .), (1, l,O, 0,. . .) 
and (1, l,l,O,. . .) for (tl, t2,t3, t4,. . .) to obtain three linear 

equations which must be satisfied by the ki. Solve these equa- 
tions to obtain kl = k2 = 1 and k3 = 3. 

6. On the basis of Exercise 3, 4 and 5, it is reasonable to conjecture 
that,fork=1,2,3 ,..., n-l, 

pk + Cn-@k-l + cn-2pk-2 + . . * + cn-k+lpl + h&k = 0. 

This result can actually be established by induction on the degree n 
of p(t) (i.e. the number of the ti). 

(a) Verify that th e result holds for n = 2 and n = 3. 

(b) Suppose that the result has been established for polynomials of 

degree up to n - 1. Let c: and pi be obtained respectively from 

ci to pi by setting t, = 0. Verify that the manic polynomial with 
zeros tr, t2,. . . , t,-1 is 

P-l + C;J”-2 + . f * + c&t2 + c;t + c;. 

Use the induction hypothesis to establish that 

pk + cn-@k-l + . . . + c,-k+lpl + h-k 

(considered as a polynomial in the ti) vanishes for t, = 0. De- 
duce that it is divisible by t,, and therefore, because of its sym- 

metry is actually divisible by tit;! . . . t,. Conclude that, because 

its degree as a polynomial in the ti is equal to k < n, it must in 

fact vanish. 

7. Let t2 + clt + cc have zeros tl and tz. Write down recursion relations 
for pk = tf +tf (1 < k 5 5) and verify them directly. Determine these 

pk in terms of cl and cc only. 

Carry this out for the polynomials t2 - 3t + 2 and t2 + t + 1, and verify 
your answers directly. 

8. Find the sum of the fifth powers of the zeros of t3 + 7t2 - 6t - 1. 

9. Let ~1, zz, . . . , Z, be complex numbers for which Z! + ~5 +. . . + Z: = 0 

for 1 5 k 2 n. Must each Zi vanish? 

Explorations 

E.52. Use the recursion relations for the pk to obtain expressions for each 
of them which involve only the coefficients ci and none of the other pi. 
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Another approach to obtaining the recursion relation for the pk is to 
make use of infinite series expansions. Observe that the derivative satisfies 

” p(t) Iw) = z t - ti -+lfp>-‘. 

Make a change of variable t = l/s. Then 

S "-'#(l/S) = S"p(l/S) fJl+ tiS+tfS2 +tfS3 + **') 

i=l 

or 

nc” + (n - l)c,-1s + (n - 2)~“~~s~ + . . . + 2c2sne2 + c~s”-~ 

= (C” + cn-1s + C”4S2 + "'+COS")~(l+tiS+...). 

i=l 

On collecting terms in the various powers of s, the right side becomes 

(C” + C”-1s + c,4s2 + . . .+c0s")(n+pls +p2s2 +p3s3+ -e-) 

= nC"+(nC"-~+p~C")s+(nC,-2+plc"-l+p2~~)~~+~~-. 

Bring all nonzero terms to one side of the equation. On the basis that 
a power series (like a polynomial) vanishes iff all its coefficients vanish, 
obtain the recursion relations. 

E.53. A Recursion Relation. Fix the values of cl, cz, cs, . . . and consider 

the sequence {PI, ~2, ~3, . . . , P”, . . .} whose first n terms are given and whose 
remaining terms satisfy the equation 

Pn+r + cn-1Pn+r-1 + Cn-2Pn+r-2 + . . . + qpr+1 + cop, = 0 

forr= 1,2,3,4,5 ,.... Assign the values to the first n entries according to 
the equations 

Pk = -Cn-@k-l - C,-2Pk-2 - ***- kc”-+. 

Use the theory of Exploration E.50 to find a formula for pk as a sum of 

kth powers. Look at the particular cases n = 1,2,3. 

E.54. Sum of the First n kth Powers. What is the formula for the sum 
lk + 2k + . -. + nk, the sum of the first n kth powers? Consider the manic 
polynomial 

S”(t) = (t-- l)(t - 2)(t - 3)+..(t -n) = t” + b(n, l)t”-’ 

+ b(n, 2)tnv2 + . . . + b(n, n) 

whose roots are the integers 1,2, . . . , n. Verify that the coefficients are given 
in the following table: 
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n b(n,O) b(n, 1) b(n,2) b(n,3) b(n,J) b(n,5) b(n,6) 
0 1 

1 1 -1 

2 1 -3 2 

3 1 -6 11 -6 

4 1 -10 35 -50 24 

5 1 -15 85 -225 274 -120 

6 1 -21 175 -735 1624 -1764 720 

7 1 -28 322 -1960 6769 -13132 13068 

8 1 -36 546 -4536 22449 -67284 118124 

Use this table and the relations developed earlier in this section to find 

the sum of the first n kth powers for 1 5 n < 8 and 1 5 k 2 7. Look into 

the possibility of determining a formula for the sum in general. Can you 
verify the familiar formulae for k = 1,2,3? Assess for iti effectiveness this 
approach for getting a general formula. 

6.4 Problems 

1. (a) If the roots of x3+ ax2+bx+c = 0 are in arithmetic progression, 
prove that 2a3 - 9ub + 27~ = 0. 

(b) If the roots of x3 + ax2 + bx + c = 0 are in geometric progression, 
show that u3c = b3. 

2. Given the product p of the sines of the angles of a triangle and the 
product q of their cosines, show that the tangents of the angles are 
the roots of the equation 

3. If a, b, c are the roots of the equation 

x3 - x2 - x - 1 = 0, 

(a) show that a, b, c are all distinct, 

(b) show that b” -c” c” -a” a” -b” 
- - - 

b-c + c-u ?- u-b 

is an integer for n = 1,2, . . . . 

4. It is given that the roots of the equation 

17x4 + 36x3 - 14x2 - 4x + 1 = 0 

are in harmonic progression. Find these roots. 
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5. The product of two of the four roots of the quartic equation 

x4 - 18x3 + kx2 + 200x - 1984 = 0 

is -32. Determine k. 

6. Three of the roots of x4 -px3 + qx2 - rx + s = 0 are tan A, tan B and 
tanC, where A, B, C are angles of a triangle. Determine the fourth 
root as a function of p, q, r, s alone. 

7. If x, y, z are real and satisfy x + y + z = 5 and yr + 2x + xy = 3, 
prove that -1 5 z 5 13/3. 

8. Let u, V, w be the roots of x3 - 6x2 + ax + a = 0. Determine all real 

a for which (U - 1)3 + (V - 2)3 + (w - 3)3 = 0. For each a determine 
the corresponding values of U, v, 20. 

9. Determine those values of the real number a and positive integer n 
exceeding 1 for which 

” xk+2 c --n-3 
k=l xk - ’ 

where x1,22,..., xn are the zeros of x” + ax”-’ + on-lx + 1. 

10. Ifu+v+w=O,provethat,forn=0,1,2 ,..., 

u”+3 + ?l”+3 + w”+3 = u?lw(u” + v” + w”) 

+ (1/2)(U2 + V2 + Wz)(u”+l + Z)*+l + w*+l)* 

11. Let p, q, r, s be the roots of the quartic equation x4-ax3+bx2-cx+d. 

Find the quartic whose roots are pq + qr + rp, pq + qs + sp, pr+ rs + sp, 

qr + rs + sq. 

12. Find all integer values of a such that all the zeros of t4 - 14t3 + 61t2 - 
84t + a are integers. 

13. Suppose that p( I is a polynomial of degree at least 2 whose coeffi- ) 
cients are complex numbers and not all real. Prove that the equation 

PWPW = ~(4 h as roots in both the upper and lower half planes 

(i.e. for which Im,r take both positive and negative values). Give an 

example to show that this is false when the degree of p(z) is 1. 

14. Determine all polynomials of degree n with each of its n+l coefficients 

equal to +l or -1 which have only real zeros. 

15. Suppose that every zero of the polynomial f(x) is simple. If every 
root of the equation f’(x) = 0 be subtracted from every root of the 
equation f(x) = 0, find the sum of the reciprocals of the differences. 
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16. Show that the roots of the cubic equation 

64t3 - 192t2 - 60t - 1 = 0 

are cos3(2r/7) sec(6?r/7), cos3(4a/7) sec(2?r/7), cos3(67r/7) sec(4n/7). 

17. Solve for 2, y, t, w: 

xfay+a2z+a3w=a4 

x + by + b2z + b3w = b4 

x + cy + C2% + c3w = c4 

x+dy+d2z+d3w=d4 

where a, b, c, d are all distinct. 

18. Let x = U(V-w)‘, y = v(w-u)~, % = w(u-v)~ where U+V+W = 0. 
Eliminate U, V, w to obtain 

x3 + y3 + z3 + a(x2y + x2% + y2x + y”.z + z2x + t2y) + bxyz = 0 

for suitable a and 6. 

19. Let U, v, w be distinct constants. Solve 

A+Y+L,l 
a+u b+u c+u 

Z+Y+“,l 
Q+v b+v c+v 

L+Y+L=1. 
a+w b+w c+w 

Hints 

Chapter 6 

1.4. There are two approaches: either use symmetric functions, or else 
make a substitution into t3 - 2t2 + 62 + 5 = 0 to determine the 
equation that s = l/t must satisfy. 

1.8. (a) Can a quadratic counterexample be found? 

1.9. (a) Note that xyr = -c. For the latter part, express (x - Y)~ in terms 

of symmetric functions of x and y, which are then e-xpressible in terms 

of t. 

(b) What does the negativity of 3%2 + 2az - (a2 - 4b) imply about 
the relationship between % and the zeros of the quadratic? 

(d) What is the sign of p(t) at the zeros of p’(t)? 
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1.11. (a) Express p and r in terms of the roots to get two equations for 

(a + b) and (c + d), w h ere a, b, c, d are the zeros and ab = cd. If 
r2 = p2s, the equation is quasi-reciprocal (Exercise 1.4.17). 

(c), (d) Consider the substitution x = -p/2 - y. 

3.1. a3 and a4 can be expressed in terms of lower powers of a. 

3.9. Use Exercise 6 to determine the polynomial of degree n with zeros zi. 

4.1. (a) Let the zeros be r - s, r, r + s. 

4.3. (a) A double root is a zero of the derivative. 

(b) Use b k+3 = bk+2 + bk+’ + bk, etc. and induction. 

4.4. The reciprocals of terms in harmonic progression are in arithmetic 

progression. 

4.8. Note that (u - 1) + (V - 2) = -(w - 3). Cube this equation. 

4.9. Let yk = zk - 1. What polynomial has zeros yk? 

4.11. Let 21 = r + s, v = rs, w = p + q, t = pq and express the coefficients 
of the given quartic and the zeros of the required quartic in terms of 
u, v, w, %. 

4.12. Look at values assumed by t4 - 14t3 + 16t2 - 84t (which can be easily 
factored). 

4.13. What can be said about the sum of the roots of the equation? 

4.14. Where ri are the roots, look at C(rf +ri”). What is the lower bound 
for the values of each summand? 

4.15. Look at f(x)/f’(x). 

4.16. The purported roots have the form v3(4v3-32r)-l, where u = cose for 

suitable 0. One strategy is to first determine the cubic equation whose 
roots are the reciprocals of these. The reciprocals can be simplified to 
an expression in v -2. The cubic equation whose roots are v should be 
found, so that the elementary functions in the vs2 can be determined. 

4.17. a, b, c, d are the zeros of the quartic t4 - wt3 - zt2 - yt - x. 

4.18. u, V, w are the zeros of a polynomial t3+pt+q. Express the symmetric 
functions of x, y, z in terms of p and q. 

4.19. Consider the cubic polynomial (t + a)(t + b)(t + c) - x(t + b)(t + c) - 
y(t + a)(t + c) - z(t + a)(t + b). What are its zeros? What values oft 

will isolate the coefficients x, y, z? 



Approximations and 
Inequalities 

7.1 Interpolation and Extrapolation 

A scientist wishes to know the index of refraction of pure water relative 

to air for sodium light at a temperature of 54’C. A table provides the 
following information: 

Temperature (“C.) Index (r(T)) 

20 1.33299 

30 1.33192 

40 1.33051 

50 1.32894 
60 1.32718 
70 1.32511 

80 1.32287 

90 1.32050 
100 1.31783 

Likely, the number sought lies between 1.32718 and 1.32894. Can we be 
more precise? Can we find a function which expresses the index in terms 

of the temperature? If not, can we sensibily approximate a functional re- 

lation between the variables by means of a polynomial? We will look at 

some possible approaches, and assess the effectiveness for this particular 
situation. 

Exercises 
1. One way to find the required index of refraction from the given table 

is to argue that, as 54 is 4/10 of the way from 50 to 60, the index 
lies 4/10 of the way from 1.32894 to 1.32718. Verify that this leads 
to the result 

1.32894 - (0.4)(0.00176) = 1.32824. 

Does this seem reasonable? 

2. The approach in Exercise 1 amounts to assuming that, between 50’ 
and 60°, the index r(T) is a linear function of T: 

r(T)=aT+b (5O<T<60). 
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The coefficients a, b are to be determined from the conditions that 
~(50) = 1.32894 and r(60) = 1.32718. Verify that this leads to a = 
-0.000176 and b = 1.33774. What value of r(54) will this yield? 

3. Let f(z) be a real-valued function defined on the closed interval 

[a,b] = {x : a 5 2: 5 b}. Show that f(z) is linear (i.e. a polyno- 
mial of degree 1) if and only if 

f(x) = (b - u)-~[(z - u>f(b> + (b - 4f(41. 
Verify that, if 2 = (1 - t)u + tb, this condition can be rewritten 

f(x) = Cl- W(u) + tf(b). 

4. (a) On a graph, plot the points (T, r(T)) and join the points by a 
smooth curve. Observe that the ,relationship between T and r(T) 
is probably not linear and argue that the linear approximation 
has probably underestimated the true value of r(54). 

(b) In an attempt to improve our estimate of r(54), we can try a 
quadratic formula r(T) = uT2 + bT + c, for values of T near 54. 

Since there are three coefficients to be found, we use information 
about r for three values of T. We take those values closest to 54, 

namely 40, 50 and 60. Show that this leads to the formula 

r(T) = -0.00000095T2 - 0.0000715T + 1.33489. 

What value of r(54) does this yield? 

(c) The experimental value of ~(54) is 1.32827. Is this what you 
would expect? 

5. In the general interpolation situation, we have a function f whose 
values are known at n + 1 points: 

f(ai)=bi (i=O,l,2 ,..., n). 

To estimate its values elsewhere, we could take in its place a polyno- 

mial which agrees with the function f at the ei. As in the example of 
the index of refraction, we try to make the degree of the polynomial 

as small as possible. 

In this connection, we have the result that there is a unique polyno- 

mial p(t) such that degp(t) 5 n and p(si) = bi for i = 0, 1,2,. . . ,n. 

(cf. Exercise 4.6.8). 

There is a straightforward way of constructing this polynomial. First, 
we need some building blocks. With the help of the Factor Theorem, 
determine, for each i = 0, 1, . . . , n, that there is a polynomial pi(t) of 

degree not exceeding n for which 

pi(q) = 1 pi(q) = 0 (i # j). 
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Then verify that p(t) = CzO bipi(t) is the desired polynomial. This 
is called the Lagrange polynomial determined by the conditions. 

6. Determine the quadratic Lagrange polynomial Q which satisfies 

q(-2) = 7, n(l) = 2 and q(3) = 1. Write it in the form at2 + bt + c. 

7. In practice, the Lagrange form is not generally the best way to obtain 
a polynomial fitting certain data, particularly if many other values of 

the polynomial are also required. 

Consider the sequence: 1, 3, 6, 10, 15, 21, 28, 36, . . . . Show that 
these are successive values of a quadratic polynomial evaluated on 

the positive integers. 

We form a di$erence table for this sequence as follows. Write out 
the terms of the sequence in a column; beside the column, put a 
second whose entries are the differences between successive terms of 
the first; form a third column from the second in the same fashion, 
and continue on. Here is what you get in this case: 

1 
2 

3 1 

3 0 
6 1 

4 0 
10 1 

5 0 
15 1 

From the table, decide what terms should follow the entry 36 in the 
original sequence. Check your guess using the quadratic polynomial. 

8. Consider the sequence of values: 2, 11,35,85, 175,322,546,870, . . . . 

Carry out the procedure of Exercise 7, continuing until a column of 
zeros is obtained. This will occur in the sixth column of the table. 

Let us suppose that the sequence arises from the evaluation of a 

function f(n) at the successive points 1, 2, 3, . . . . What do you think 

the form of this function might be? What do you think the next two 
terms of the sequence following 870 might be? 

What is the nth term of the sixth column of the table? 

What is the nth term of the fifth column of the table? 

What is the nth term of the fourth column of the table? the third 
column? the second column? the first column? 

Give a function f(n) which reproduces the sequence. 



208 7. Approximations and Inequalities 

9. Let f(n) be a function defined on the positive integers. As in Exercises 
7 and 8, construct a table for the sequence f(l), f(2), f(3), . . . . 

(a) Verify that the nth term of the second column is .f(n+ 1) - j(n). 
Call this quantity Af(n). 

(b) Verify that the nth term of the third column is [f(n + 2) - 

f(n + l)] - [f(n + 1) - f(n)] = f(n + 2) - V(n + 1) + f(n). Call 

this quantity A(Af(n)) or A2f(n). 

(c) Let us denote the nth element of the (h + 1)th column by 

Akf (n). 

Prove that 

Akf(n) = A(Ak-‘f(n)) = &(-l)k-’ ( f ) f(n + + 
i=O 

10. In general, for any function f(t), we can define three operators 

If(t) = f(t) . identity 
of = f(t + 1) I shift 
Af(t) = j(t + 1) - f(t) : difference. 

Any of these operators can be iterated. Thus, 

Ekf@) = E(Ek-‘f(t)) 

Akf(t) = A(A”-‘f(t)) (h > 2). 

(a) Verify that, for functions f and g and constant c, 

A(cf (t)) = cAf (t) 

A(f + g)(t) = Af(t) + W). 

(b) Verify that E”f (t) = f(t + k). 
(c) When f(t) = t2 -3t+l, verify that If(t) = t2-33t+l, Ef(t) = 

t2 -t - 1, Af(t) = 2t - 2 and A2f(t) = 2. 

(d) The operators I, E, A can be manipulated like numbers, with 
iteration playing the role of multiplication and I playing the role 
of 1. Justify the equations 

A=E-I and E=I+A. 

(e) Determine an expression for Ak f (t) in terms off(t), f (t + l), . . . 
by expanding Ak = (E - I)k b inomially and applying this op- 

erator to f(t). Compare with Exercise 9(c). 
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(f) Manipulating formally, we have Ek = (I+A)k. Expand the right 

side by the binomial theorem and use it to obtain the result 

f(t+k) = f(t)+kAf(Q+ ( ; ) A2f(t)+ ( ; ) A3f(t)+-.. 

(g) Make the substitution t = 1, k = n - 1 in (f) to determine the 
polynomial in n whose values at n = 1,2,3,. . . are respectively 

(i) 1,3,6,10,15 ,... 

(ii) 2,11,35,85,175,322 ,.... 

11. Consider the function g(n) whose values for n = 1, 2, 3, 4, 5, 6 are 

respectively 6, 50, 225, 735, 1960, 4536. Since we know six values of 

g, we might suppose that g(n) is given by a polynomial of the fifth 
degree in n. Make up a difference table, and determine what this 

polynomial is. 

12. Refer to the table for the index of refraction of water for sodium light 

given at the beginning of this section. Let f(t) be the index when the 
temperature is lot degrees Celsius. 

(a) Determine: Af(2), A3f(3), A2f(5). 

(b) Neglect fourth order differences, and use 

f(5.4) = (I + A)1.4f (4) 

= f(4) + (1.4)Af(4) + (1/2)(1.4)(0.4)A2f(4) + ... 

to approximate the index of refraction for 54’C. 

(c) Use f(5.4) = (I + A)-0,6f(6) to approximate the index of re- 

fraction for 54’C. 

13. Given the following table 

number natural logarithm 

0.5 -0.69315 
1.0 0.00000 
1.5 0.40547 
2.0 0.69315 
2.5 0.91629 

3.0 1.09861 
3.5 1.25276 

4.0 1.38629 

interpolate to approximate the natural logarithms of 1.25, 0.75, 2.1, 

2.71828. Extrapolate to find the natural logarithm of 0, 0.25, 5.0. 
Use various methods. Check your answers with a pocket calculator 

or from a table of logarithms. 
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14. Investigate finding an approximate value of fi from a table of powers 
of 2 with integer exponents. 

15. Find the polynomial of least degree whose values at -3, -2, -1, 0, 
1, 2, 3, are, respectively, 5, 6, 13, 17, 21, 23, 29. 

(a) as the Lagrange polynomial for these data 

(b) using the difference operator. 

Are your answers to (a) and (b) the same. Why? 

16. Factorial powers. Define the rth factorial power oft by 

t(O) = 1 

t(l) = t 

t(‘) = t(t - l)(t -2)e..(t -r+ 1) (rfactors) (r 2 1). 

(a) Verify that 
t2 = t(2) + t 

t3 = tC3) + 30 + t. 

(b) Express t4 and t5 in terms of factorial powers. 

(c) Show that every (ordinary) power oft, and therefore every poly- 
nomial in t, can be expressed as a linear combination 

c c&t(‘) 
of factorial powers. To see how this can be done systematically, 
consult Exploration E.18 in Chapter 2. 

(d) Show that, for each r = 1,2,. . . , At(‘) = rt(‘-l). 

17. (a) Show that for any polynomial f(t) of degree n, A”f (t) # 0 
and Akf(t) = 0 for k 2 n + 1. Is the converse true, i.e. if 
An+lf (t) = 0 for some function f(t), must f(t) be a polynomial 

of degree n? 

(b) Deduce from (a), that, for any positive base b # 1, b’ is not a 

polynomial in t. 

(c) Use a difference table to argue that the nth term of the Fibonacci 
sequence defined in Exploration E.14 is not a polynomial in n. 

18. (a) Let f(t) be a polynomial of degree not exceeding k over C. Verify, 
that 

f(t) = &)k-’ ( “i ) ( t r, 1; l ) f(i) 
i=o 
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where, for any nonnegative integer m, and any u, 

U ( > = 
U(U-l)(u-2)...(U-7n+l) u(m) 

m I m. 
=1. 

m. 

(b) Let ~1, ~2, . . . , a, be arbitrary complex numbers and suppose 
that f(t) is a polynomial over C of degree less than n. Show 
that, if p(t) = (t - ui)(t - ~2) .. . (t - a,), then 

f(t)= k[f (Ui)/#(U~)](t-Ul)*“(tZii)‘ee(t-U,). 

i=l 

19. (a) Give an example of a polynomial over Q whose coefficients are 
not integers, but which take an integer value for every integer 

value of the variable. 

(b) Suppose that f(t) is a polynomial of degree k over C and that 

f(o), f(l), f(‘%-.>f(k) are integers. Prove that f(n) is an 
integer for each integer n. 

20. Find the polynomial h of least degree for which 

h(k) = 2k (k = O,l, 2,. . . ,n). 

What is h(n + l)? 

Explorations 

E.55. Building Up a Polynomial. Consider the following simple-minded 
way of building up, step by step, a polynomial whose value at ei is bi 
(0 5 i 5 n). Let the first guess at the required polynomial be bo. This has 

the correct value at uc, but not at 01. So we add a correction which will keep 

the correct value at uo and make the value at ai correct: bo + bol(t - ao), 
for a suitably chosen bol. What should the value of bol be? Now we add 
a further term to make the value of the polynomial correct at ~2. So as 
to not disturb what has been achieved already, this term should be of the 

form bo12(t - uo)(t - al). 
At the kth stage, we should have a polynomial 

bo + bol(t - uo) + bolz(t - uo)(t - UI) + + . 

+ bon..k(t - uo)(t - al)---(t - Uk-1). 

What should the expressions for the coefficients bolz...n: be? Try to formulate 
them in such a way that it is possible to use some analogue of the difference 
table. 
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The polynomial obtained should be the same as the Lagrange polynomial 
of degree n determined by the data. Investigate whether this is indeed so. 

E.56. Propagation of Error. In making a certain physical observation, 
we measure the values of a function as follows: 

f(l) = f(2) = f(3) = o, f(4) = 1, f(5) = f(6) = f(7) = 0. 

We have reason to believe that the function should vanish identically and 

that f(4) is in error. Keeping f(4) as indicated, construct a difference 

table. Investigate various ways of interpolating the value of f(3.5) using 

polynomials which fit some of the data. 

E.57. Summing by Differences. Let g(t) = Af(t). Show that 

&g(i) = f(b+ 1) -f(l). 
i=a 

In Exploration E.18, this formula was invoked in the case g(i) = ick). Apply 
it to find the following sums: 

(a) a + ar + ur2 + . . . + urn-’ 

(b) a + (u + d) + (u + 2d) + . . . + (u + (n - l)d) 

(c) CLzl 1”’ where m = 1,2,3,4,5. 

For (c), express the power k” a.9 a sum of terms involving factorial powers. 

See Explorations E.18 and E.54. 
The operators A and C are analogous to differentiation and integration 

in calculus. What correspond to the following results? 

(i) -$ It f (u)du = f(t) 
a 

(ii) J” fl(u)du = f(b) -f(u) 
a 

(iii) J” f ‘(u)g(u)du = f (b)db) - f (ah(a) - /” f (u)d(u)du. 
a a 

E.58. The Absolute Value F+unction. Let f(t) = ItI for -1 5 t 5.1, 
and let f,,(t) be the unique polynomial of degree at most n for which 
fn(t) = f(t) when t is one of the n + 1 equally spaced points (-1) + F 
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(k=O,1,2,... , n). Verify the table 

1 1 
2 t2 
3 (3t2 + 1)/4 
4 (-4t4 + 7P)/3 
5 (-125t4 + 290t2 + 27)/192 
6 (81t6 - 135t4 + 74t2)/20 

Argue that, in general, fn(t) is an even function and that f;(O) = 0. 
Investigate various strategies for conveniently obtaining the polynomial 

f,,(t). For example, one might first determine the polynomial gn(t) of degree 
not exceeding n for which g,,(t) = max(t,O) at the specified points and 
note that fn(t) = gn(t) + gn(-t) = 2g,(t) - t. Alternatively, if n = 2m 
and h,(t) = ItI for t = -m, -m + 1,. . . , -l,O, 1,. . . ,m, then h,+l(t) = 
h,(t) + c,t2(t2 - l)(t2 - 4) . e . (t2 - m2) for some constant c,,, and fn(t) = 
kh,(mt). 

If t is a point in the closed interval [-1, 11, is it necessarily the case that 

linh,, fn(t) = f (V 

7.2 Approximation on an Interval 

Suppose that f(t) is a real-valued function defined for at least some values 

oft with a 5 t 5 b. For example f(t) could be a table of values used by 

an insurance company to determine premiums or could be a nonpolyno- 
mial function given by a formula. How can we accurately compute f(t) for 

certain values of t between a and b? As we have seen in Chapter 2, the 
values of polynomials are straightforward to compute, so it is worth trying 
to find a polynomial which closely approximates the function on the given 
interval. 

It is natural to take a polynomial which agrees with f where the value of 
f can be explicitly determined. But this is fraught with danger. If f(t) = 
sin(2rnt) for 0 5 t 5 1, the polynomial of least degree which coincides with 

f when t = 0, l/n, 2/n,. . . , 1 is 0, but this hardly reflects the behaviour of 
f. Furthermore, a slight change in the value of f at one of the evaluation 

points may dramatically alter the polynomial which interpolates it. We 
have no guarantee that making a polynomial close in value to f at one 

place will ensure that it is close overall. 
This difficulty can be circumvented by giving up the requirement of exact 

agreement at some points in favour of gaining some flexibility for making 
the approximation close everywhere. 

What does it mean for functions to be close on a whole interval? There is 
not one right answer which applies in all contexts. The “distance” between 
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two functions can be defined in many ways, and we will content ourselves 
here with a very brief sampler of approximation theory. 

Exercises 

1. Least squares. Suppose we have a function f whose values are known 
for certain points ei within an interval: f (ei) = bi. Typically, bi may 
be the experimentally observed values of one variable when another 
variable is given the value ei (eg. indices of refraction correspond- 
ing to temperatures). It often happens that the points (ei, bi) in the 
Cartesian plane fall roughly along a straight line, so that it is rea- 

sonable to make a linear approximation p(t) = mt + k to f(t). The 
coefficients m and k are to be chosen to make p “fit” as closely as 
possible to f at the data points (ai, bi). 

The criterion used for least squares approximation is that m and k 
should be chosen to minimize 

2 Ip(ui) - f (ui)12 = k(mai + k - bi)2 
i=l i=l 

(a) Consider the particular case, f(0) = 1, f(1) = 3, f(2) = 4. Show 
that, according to the criterion, m and k should be chosen to 

minimize 

(k - 1)2 + (m + k - 3)2 + (2m + k - 4)2 

= 5m2 + 6mk + 3k2 - 22m - 16k + 26. 

To carry out the minimization, fix k and complete the square 

for the resulting quadratic in m. Deduce a relationship between 
m and k for the minimum to occur. Now carry out the same 
procedure reversing the roles of m and k which will yield the 
minimizing values. Verify that these are m = 312 and k = 716. 

Plot the points (0, l), (1,3), (2,4) and the line y = mc+k. Judg- 
ing with your eye, do you think the line obtained is reasonable? 

(b) Experiment with some other examples. 

(c) What happens when r = 2? 

(d) What happens when the points (ai, bi) turn out to be collinear? 

2. Alternation. In Exercise 1, we sought a line of closest fit on the basis 
of a finite number of values of the function to be approximated. Here, 

we consider a different setting in which we actually have an expression 
for f(t) for every t in the interval [a, b]. For any approximant p(t) we 

let the quantity 

maxIIf (t) - p(t)1 : a F t L bl 
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measure the degree of closeness between f(t) and p(t). This measures 
how far apart the values of f(t) and p(t) can get over the whole 

interval. The approximation problem is to choose p from a set of 
desired approximants to make this maximum as small as possible. (It 
is re-emphasized that this is but one of many possible measures of 
closeness we could have chosen.) 

(a) Suppose we ask for our approximant p(t) to be a constant poly- 
nomial c. Then, the question is: what value of c will make 

max{lf(t) - cl : a < t 5 b} 

as small as possible? 

Consider the following graphical representation. Argue that, for 
the optimum value of c, the function f(t) - c should have a 
maximum of the same absolute value but opposite sign as its 
minimum. 

I I 
I (a, 0) 

w 
I(W t 

(b) Find the best constant polynomial approximation on the closed 

interval [0, l] to each of the following functions: 

(i) sin(d) 

(ii) t” (k a positive integer) 

(iii) l/(1 + t). 

(c) Consider polynomial approximations of degree not exceeding 1. 
Then we wish to choose a and b in such a way as to minimize 

max{lf(t) -(at + b)l : 0 5 t 5 1). 

By considering the following sketch, argue that for the optimum 
choice of a and 6, f(t) - (at + b) assumes an extreme value at 

least three times, that all of these extreme values have the same 
absolute value and that there are at least two changes in sign as 
we move from one extreme value to the next. 
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--y=at+b 

3. Suppose that f(t) is a given function and that p(t) is a polynomial 

of degree not exceeding n. Let 

K = max{ (f(t) - p(t)1 : a 5 t <_ b}. 

Suppose that there are n + 2 distinct points tc,tr, t2,. . . , tn+l in the 
interval such that 

(i) If(ti) - p(ti)( = K (0 5 i 5 n + 1) 

(ii) f(ti+l) - P(ti+l) = -[f(h) -P(h)] (0 5 i 5 n) 

(i.e., the maximum distance between the graphs is achieved with al- 
terna.te signs at least n + 2 times). The diagram illustrates a possible 
situation when n = 3. 

,‘--I 

(a) Suppose that q(t) is a polynomial such that 

max{lf(t) - q(t)] : a 5 t 5 b} < K. 
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Argue that the graph of q must cross that of p in at least n + 1 
places. (Use a sketch.) Deduce that degq(t) 2 n + 1. 

(b) Suppose, instead, for the polynomial in (a) that 

max{]f(t) - q(t)1 : a 5 t 5 b} = K. 

Argue that either q(t) = p(t) or deg q(t) 2 n + 1. 

(c) Conjecture a characterization of the polynomial p(t) of degree 
not exceeding n for which 

m=UfW - PWI : a 5 t 5 b1 

is as small as possible. Do you think that the polynomial p(t) is 
uniquely determined? 

4. (a) Solve th e o f 11 owing problem for k: = 1,2,3. Find that polynomial 
pk(t) of degree not exceeding Jz - 1 which minimizes 

max{]tk -pk(t)l : -1 5 t 5 1) 

over all polynomials of degree not exceeding Ic - 1. 

(b) Let Ck = tk -pk(t). Sketch the graphs of Cl, Cz, Cs. Roughly 
speaking, what should be graph of Ck look like? 

(c) Does this exercise have anything to do with Exercise 1.3.15 and 

Exploration E.6? 

5. Bernstein polynomials. Let f(t) (0 5 t < 1) be a function defined on 
the closed unit interval [0, 11. The B ernstein polynomial of order n 
corresponding to f(t) is defined by 

B(f, n;t) = 2 f(k/n) ( z ) tk(l - t)n-k. 
k=O 

(a) Verify that 

B(f, l;t) = mu1 - t) + f(lY 

B(f,2;t) = f(O)(l - t)2 + 2f(l/2)t(l -t) + f(l)t” 

B(f, 3; t) = f(O)(l - t)3 + 3f(1/3)t(l - t>z 

+ 3f(2/3)t2(1 - t) + f(l)t3. 

(b) Prove that, if f(t) = 1 and g(t) = t for 0 5 t 5 1, then 

B(f,n;t) = 1 B(g,n;t) = t. 

(c) What is B(t2,n; t)? These are not all the same. Check the cases 
n = 2,3,4 to discover the pattern. 
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Comment: It turns out that 

when the function f(t) is continuous in t. 

Let us get some insight into this result. 

Since 

c L ( > tk(l - tyk = 1 
(why?), we can think of the terms of this sum as nonnegative weights 
which add up to 1. For each t, B(f, n; t) is a weighted average of the 

values f(O), f(lln), fCJ/n),. . . , f( 1). When t = 0, the only weight 
which does not vanish is at the k = 0 term and B(f, n;O) = f(0). 
When t = 1, all the weight is at the k = n term and B(f, n; 1) = f(1). 
For intermediate values of t, it turns out that the terms where k/n 
is close to t are weighted more heavily than the other terms. By the 

continuity of j(t), when k/n is near t, then f(k/n) is close to f(t), 
so that, in the average, the most weighted terms are those that are 

about equal to f(t). Th is weighting becomes more pronounced as n 
increases, so that B(f, n;t) draws ever closer to f(t) for each value 

oft. 

Another way to look at the situation is as follows. Fix t between 0 
and 1. Imagine a dartboard of area 1, of which a portion of area t 
is painted red. Hurl n darts randomly at the board, all piercing the 
board somewhere. If k of them land in the red area, you receive a 
prize of f(k/n) d o 11 am. What is your expectation (intuitively, your 
average winnings) if this game were to be frequently repeated? The 
probability of getting exactly k darts in the red area is the product 

of 

n 

( > k 
the number of ways of selecting the k darts from the n thrown 

tk the probability that all k of these darts land in the red area 

(1 - t)n-k the probability that the other (n - k) darts do not land 

in the red area. 

The expectation is the average payoff over all possible occurrences, 
i.e. the sum of the products of the payoffs and probability of getting 
them. This is B(f, n; t). 

Now increase the number n of darts used in the game. For very large 
n, it is highly probable that the proportion landing in the red area 
will be close to t, so that the expected payoff will be close to f(t). 
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6. (a) Show that the mapping f -+ B(f, n; t) is linear: i.e. 

B(f+g,n;t) = B(f,n;t)+B(g,n;t) 

B(cf, n; t) = cB(f, n; t) 

for any functions f and g and any constant c. 

(b) For n = 1,2,3,4, find those values of k and those functions f 

for which 

W, n;t) = W(t). 

[Such functions f(t) are called eigenjunctions of the operator B 
and the corresponding values of k eigenvalues.] 

Explorations 

E.59. Taylor Approximation. (Knowledge of calculus required.) Let a 

function f(t) be given which is defined for values of t near 0 and which 
possesses derivatives of all order at t = 0. This means that the function has 
a derivative, its derivative also has a derivative, and so on indefinitely. One 
can try to approximate f(t) by a polynomial which, up to some order, has 
exactly the same derivative values as f(t) does when t = 0. 

Show that a polynomial p(t) of d e g ree not exceeding n is determined 

uniquely by specifying the n + 1 values p(O), p’(O), . . . , p(^)(O). 
Suppose the values f(O), f’(O), . . . , f(“)(O) are given. What is the poly- 

nomial p(t) for which p(“)(O) = fck)(0) when 0 5 k 5 n? We call this the 
Taylor approximant of order n at the value 0. 

Sketch the graphs of log(1 + t) an d sin t along with their Taylor approx- 

imants of orders 1, 2 and 3 at the value 0. 

How should the Taylor approximant of order n at the general value c be 
defined? 

E.60. In this chapter, we have discussed a number of approximation tech- 
niques. We can compare their effectiveness on a particular example. Con- 
sider the problem of approximating t 1/Z for 100 < 3: < 200. On the same - 
axis, with a large scale, sketch the graphs of the followmg functions: 

(a) x1f2 

(b) the linear function whose values agree with x1i2 when x = 100 and 

x = 196 

(c) the quadratic function whose values agree with x112 at x = 100, 
x = 144 and x = 196 

(d) the linear polynomial p(t) which minimizes 

max{ lt’j2 -p(t)1 : 100 < t 6 200) 
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(e) the Bernstein polynomial of degree 2 (modified to the interval) 

(f) the Taylor approximants of degrees 1, 2 and 3 at 100, 121, 144. 

In particular, use the above approximants to estimate (125)l/‘, and com- 
pare your results with the true answer. 

7.3 Inequalities 

Often, an important consideration in comparing two functions is to deter- 
mine when one exceeds the other. One of the most useful inequalities is 
that between the arithmetic and geometric means of positive quantities. 

For nonnegative reals al, a~, . . . , a,, the geometric mean is defined to be 

(Ql(132 . . .a,) 
l/n 

and the arithmetic mean to be 

(al + a2 + . . . + a,)/n. 

The Arithmetic-Geometric Means (AGM) Inequality asserts that 

(ala2 . . . ata) 1’n < (a1 + a2 + . - . + a,)/n 

with equality if and only if all the oi are equal. This has already been 
established in the cases n = 2 and n = 3 (Exercises 1.2.17 and 1.5.9) 
by showing that x2 + y2 - 2xy 2 0 and x3 + y3 + .z3 - 32~~ 1 0 when 

x, y, z 2 0. For inequalities in general, one useful strategy is to write an 
appropriate function as a sum or product of polynomials known to be 
positive, such as squares of other polynomials. This was also the basis of 
one of the arguments (Exercise 1.2.15) used in establishing the Cauchy- 
Schwarz-Bunjakovsky (CSB) Inequality: 

with inequality iff the ratio of the ui is equal to the ratio of the bi. 

In the exercises, we will establish some other useful inequalities. 

Exercises 

1. (a) Write z4 + y4 + .r4 + w4 - 4xyzw in the form up2 + bq2 + cr2 

where a, b, c are positive constants and p, q, T are polynomials 
over R in x, y, z, w. 

(b) Establish the AGM inequality for n = 4. 
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2. (a) Verify the identity 

x6 + y6+z6+u6+~6+w6-6xyzuvw 

= ~(x2+y2+,a)[(y2-z2)2+(%2-x2)2+(x2-y2)2] 

+ i(u2 + v2 + w2)[(v2 - w2)2 + (w2 - u2)2 + (u2 - v2)2] 

+ 3(xyt - uvw)2. 

(b) Establish the AGM inequality for n = 6. 

3. Suppose it is known that, for a certain positive integer k, 

x:+x;+x;+--+x; 2 kxlxz.*.xk 

for any nonnegative real xi. Prove that 

YT + Y2” + Y3” + . . - + YE 2 vm . . . yfl 

for any nonnegative real yi, where n = 2k or n = 3k. 

4. Deduce from Exercise 3 that the AGM inequality holds for n = 2’3’ 
for T, s nonnegative integers. 

5. We wish to demonstrate for any positive integer n and real variables 
xi that 

xy + x; + . . * +xi -nx122...x, 2 0. 

One can follow the procedure suggested by Exercise 4 in which the 
problem can be reduced to the case in which n is prime. However, for 
larger values of n, it is far from clear whether one can conveniently 
manipulate the left side into a form which is clearly nonnegative (Ex- 

ploration E.61 asks you to investigate the case of n = 5). As often 
happens in mathematics, a more convenient argument can be found 
if we are prepared to prove a more general result. Accordingly, we in- 
troduce weights wi. These are positive real numbers wi which satisfy 

The generalized arithmetic mean with weight w is defined by the 
expression 

w1a1+ W2Q2 + ---+ wnun 

and the generalized geometric mean with weight w by 

uyJlay~. . .a;“. 

(a) What values of wi will yield the standard means? 
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(b) Let u = w,-r/(w,-1 + wn), v = w,/(w,-1 - w,) and a = 
uu,,-1 + vu,. Verify that 

wlul + 20202 + . f. + w,u, = wlul + w2a2 + . f. + w,-2an-2 

+ (w-1 + w,)u. 

(c) Prove, by induction on n, that for all nonnegative real ai and 
positive weights wi, 

wl WC2 . . . 
a1 a2 axm 5 wla2 + . . . + wnun. 

6. (Knowledge of calculus required.) With the help of some simple prop- 
erties of the graph of the logarithm function, a short and general proof 
of the AGM inequality is possible. We use the notation of Exercise 5. 
For x > 0, let log x denote the logarithm of x to base e. Observe that 
D(logx) = l/x > 0 and 02(logz) = -l/z2 < 0,so that the graph of 
the equation y = logx is increasing and concave. 

(a) Sketch the graph of the equation y = logt. Verify that the 
tangent to the graph through the point (1,0) has the equation 
y = z - 1 and that. the graph lies below its tangent through the 

whole domain of x. Deduce that logz 5 x - 1 for x > 0. 

(b) Verify that 

log(a~la;a . *. a;* )=wlloga~+*~~+w,loga,. 

(c) Let m = wiai + wzaz +. .. + ~,,a,. Show that 

log&-lOgm<(Ui/?Yh)-1 (i=1,2,...,n). 

(d) By multiplying the ith equation in (c) by wi and adding, show 

that 

(CWi log Ui) - log ?73 5 0. 

Deduce from this the generalized AGM inequality. 

7. Prove the following 

(a) x+x-l>2 forx>O 

(b) 4x(1 - Z) 5 1 for + E R. 

8. Let al,. . . , a, be positive reals. Use the CSB inequality to establish 
that 

(a~+u2+~~~+u,)(u~1+u~1+.--+u~‘)>n2 

with equality iff all the oi are equal. 



7.3. Inequalities 223 

9. (a) Prove by induction on n that, if zi 2 -2 and xi all have the 
same sign, then 

When does equality hold? 

(b) Deduce from (a) the Bernoulli inequality 

(1 + x)” > 1 + nz 

for nonzero x >_ -2 and n a positive integer exceeding 1. 

10. Newton’s inequalities. Let n be a positive integer and suppose that 

x1,x2,***, x,, are positive real numbers. For P = 1,2,. . . , n, define 

s, = cz122. “X,, the rth elementary symmetric function 

CXlXZ * * * 2, 
Uf = 

n ’ 

( > 

the average of the products of r numbers 

v, = uy. r 

Observe that vi is the ordinary arithmetic mean and vn the ordinary 

geometric mean of the xi, so that v, 2 vr. This can be generalized 
to the chain of inequalities 

(a) Let f(t) = H{(t -xi) : i = 1,2,. . . ,n}. Show that 

f(t) = i!” + 2(-l)’ ( : ) d+--‘. 
r=l 

(b) Use Rolle’s Theorem to argue that, for k = 1,2, . . . , n - 1, the 

Cc) 

(4 

kth derivative fck)(t) is a polynomial of degree n - k with n - k 

real positive zeros counting multiplicity. 

Verify that f(n-2)(t) = (n!/2)(t2 - 2ult + ~2) and deduce from 
the discriminant condition that 212 5 $. 

Note that 

n ( > G-2 1 1 

2 
-= -+...+- 

ull 21x2 +a-1% 

n ( > %-I -= 
1 %l 

$+.. .+; 

and apply (c) to l/Xi to obtain u,-2u, 5 u:-1. 
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(e) The results of (c) and (d) can be generalized to u,-ru,+r < 
uz for r = 2,3,..., n - 1. This is established by an induction 
argument on the number of the xi. The result holds for n = 3. 
Suppose it holds when the number of the ti does not exceed 
n - 1. From (a), obtain that 

f’(t) = n 

1 

t”-’ + “e(-1)’ ( n f ’ ) u.t”-‘-‘] . 
t-=1 

(f) Suppose the zeros of f’(t) are ~1,. . . , ~~-1. For 1 < r 5 n - 1, 
let 

& = CYlY2 “‘Yrr, 

so that the Z, are to the yi what the u, are to the xi. Use the 
argument of (a) to obtain 

f@) = n 
1 
p-1 +ng(-l)‘. ( n ; l ) %.t”-‘-‘1 . 

?-El 

11. 

12. 

Deduce that u, = zr for 1 5 P 2 n - 1. Use the induction 
hypothesis to obtain u,-iu,+i < u,” for 2 5 r 5 n - 2. 

(g) Use (c), (d), (e), (f) to obtain for 1 5 P 5 n - 1, 

u2(ulu3)2(u2u4)3 . . . (UT-1U,+# 5 u’4u;u; *. . up, 

and, hence 
P u,+l 5 u:+l, i.e. v,+i 5 v,. 

Suppose that a, b, c are nonnegative reals for which (1 + a)(1 + b) 

(1 + c) = 8. We can apply the result of Exercise 10 to show that 
ubc 5 1. Simply show that the left side of the given condition is not 
less than (1 + u)~ where u3 = abc. 

Suppose that a, b, c are positive real numbers. Show that 

a+;+:< 
a” + bs + 8 

a3b3c3 ’ 

This can be established by repeated use of the AGM inequality. To 
get started, write the right side as the sum of three terms of the form 
a5/b3c3 and apply the AGM inequality to the sum of each pair. 

Exploration 

E.61. Can the polynomial x5 + y5 + ,z5 + u5 + v5 - 5xyzuv be manipu- 
lated into a form in which it is clearly seen to be nonnegative for x, y, t, 
u, v nonnegative? Consider the analogous question for other numbers of 
variables. 
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7.4 Problems on Inequalities 

1. Find all real triples (x, y, z) for which (l-~)~+(x-y)~+(y-~)~+z~ = 
l/4. 

2. Prove that, for real x, y, Z, 

(x + y)z 5 (1/2)(Z2 + y2) + Z2. 

3. Suppose that a and b are nonzero real numbers and that all the zeros 
of the real polynomial 

at” - at”-’ + u,-2tn-2 + . . . + azt2 - n2bt + b = 0 

are real and positive. Prove that all the zeros are equal. 

4. Show that the real polynomial t” + at”-’ + btns2 + + . . + k has at 
least one nonreal zero if a2 - 2b < n(k”/“). 

5. If z, y, z 1 0, prove that 

x3 + y3 + z3 2 y2z + z2x + x2y 

and determine when there is equality. 

6. Prove, that, if x, y,z > 0, then 

x(y - 2)” + Y(” - *)2 1 (x - *)(y - %)(X + y - *). 

7. Show that, if all the zeros of at4 - bt3 + ct2 - t + 1 are positive, then 

c >80a + b. 

8. Prove that, for x 1 0 and n a positive integer, 

x”+l - (n + 1)x + n 1 0. 

9. Let o, b, c, d > 0 and c2 + d2 = (a” + b2)3. Show that 

a3/c + b3/d 2 1 

with equality iff ad = bc. 

10. Suppose N(x) = 0 for x negative, N(0) = 1 and N(x) = N(x - 6) +x 
for x positive. Show that, for each positive integer x, that 

(x + 1)(x + 5)/12 5 N(x) 5 (x2 + 6x + 12)/12. 

11. Let A, B, C be the angles of a triangle. Prove that 

tan2(A/2) + tan2(B/2) + tan2(C/2) 2 1. 
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12. Determine u so that the zeros of the polynomial t2 - (3u + 1)t + 
(2u2 - 3u - 2) are real and the sum of their squares is minimal. 

13. Let m and n be positive integers and let 2, y be positive reals. Show 
that 

(z)“‘” 2 (f)* (I)“. 

14. Determine the largest value of y such that 

for all x > 0. 

15. Let f(t) be an irreducible polynomial of degree n exceeding 1 over 

Z, and suppose that r is a zero of f(t). Show that there is some 
constant k which depends on f and r such that Ip/q - rl > k/q” for 
each rational p/q written in lowest terms with q a positive integer. 

16. Find the maximum and minimum values of 

x+1 z+l 

xy+x+l 
+ 

Y+l + 

yz+y+l *x+*+1 

subject to the conditions that x, y, z 2 0 and xyz = 1. 

7.5 Other Problems 

1. Let n be a positive integer greater than 2 and let f be any polyno- 

mial of degree not exceeding n - 2. If al, or,. . . , a, are any complex 
numbers and p(t) = (t - al)(t - ~2) . . . (t - a,), prove that 

n c f(Ui) _ 0. 
izl P’(%) 

2. Let a, b, c, d be distinct complex numbers. Show that 

(4 

a4 b4 C4 

(a - b)(a - c)(u - d) + (b - u)(b - c)(b - d) + (c - u)(c - b)(c - d) 

+ (d - a)(df b)(d - c) 

= u+b+c+d. 
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(b) 

(u - byyu - c) ’ (b - ai;b - c) ’ (c - uy;c - b) 

= (a + b + c)~ - 2(a + b + c)(bc + cu + ub) + abc. 

3. Let 

i=l 

Sk(n) = &l(i) (k 2 2). 
i=l 

Show that Sk(n) = n(n + 1). . .(n + k)(2n + k)/(k + 2)!. 

4. Let m and n be integers with m > n > 0, and let c be any constant. 

Define 

f(m) = e(-1)’ ( y ) (m - k + c)“. 

k=O 

Show that f(m) = 0 if m > n and that f(n) = n!. 

5. Let -1 5 u < 1. Determine the smallest number K, which satisfies 

the condition 

IS’WI 5 K” 
whenever g(t) is a polynomial such that degg(t) 2 2 and lg(t)l 5 1 
for -1 5 t 5 1. 

6. Let f(x) = (x - xr)...(x - x,) for -1 5 ti 5 1. Prove that there 

cannot exist numbers a, b for which 

(9 Iml 2 1 
(ii) If(b)1 L 1 

(iii) -1 < a < 0 < b < 1. 

7. Let ni (0 5 i 5 k) be any k + 1 integers for which no < n1 < n2 < 
. . . < nk. Show that 

rI (nrni) 
o<i<jlk (j - j) 

is an integer. 

8. Construct, with proof that the construction works, a polynomial p(x) 

over Z such that 

Ip(x) - 0.51 < l/1981 

for each 2 for which 0.19 5 x 5 0.81. 



(k = 0,1,2, . . . , n) is given for x # zk for any k by 

P(X) = www 

where 

N(x) = g[(-l)kyk sin uk/(X - xk)] 

k=O 

and 

D(x) = &(-I)’ sin uk/(x - xk)]. 
k=O 
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9. Determine all pairs (p, q) of real numbers for which the inequality 

IA/i?- ) PX - Q I (1/2)(Jz - 1) 

is true for each x for which 0 < x 5 1. 

10. Prove that the polynomial p with degree not exceeding n that assumes 
the value yk at the values 

xk = COS t‘k where uk = [(2k + l)?r/(2n + 2)] 

Hints 

Chapter 7 

1.9. (c) Prove by induction. 

1.20. Observe that 

2’=1+( ;)+( ;)+...+( 3. 

2.6. (a) Look at the equation for the eigenfunction when t = 0,l. What 

does this imply if k # l? 

3.1. (a) One term is (x2 - y2)2. 

3.3. For the n = 2k case, pair the yr off and apply the AGM inequality 

to each pair. 

4.1. Apply the CSB inequality to {(l-x), (z-y), (y-z),%} and {l,l, l,l}. 

4.2. Express the difference of the two sides as a sum of squares. 

4.3. Let ri be the zeros. Apply the CSB inequality to {ri} and {r,:‘}. 
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4.4. Apply the AGM inequality to {rf}. 

4.5, 4.6. Take the difference of the two sides. 

4.7. If a # 0, let u = p-’ + q-l, v = r-l + s-l. Use the AGM inequality 
to obtain a lower estimate for c/u - b/a in terms of u and v. 

4.8. Use induction. 

4.9. Let c = ua3 and d = vb3. The condition expressed in terms of u, v 

and w = u2(u2 + b2)-l is u2w3 + v2(1 - ~1)~ = 1. When ad = bc, 
we have that w = v(u + v)-’ and the condition becomes u2v3 + 
v2u3 = (u+v)~, which is equivalent to 1 = (u-l +v-~)~. It has to be 

shown in general that 21-l +v-’ 1 1. This can be done by looking at 
u2w3 + v2(1- w>s - (u-1 + v-l)-? 

4.11. Let A, B be acute and express the left side in terms of u = tan A/2 
and v = tan B/2; apply the AGM inequality. 

4.12. Express the sum of squares in terms of u and minimize over those u 
for which the zeros of the quadratic are real. 

4.13. Use the AGM inequality for the set which contains x/m m times and 
y/n n times. 

4.14. The inequality is equivalent to y 5 min{x + 2/x : z 2 0). The 
function in the brackets can be minimized using the AGM inequality 

in a way similar to Problem 13. 

4.15. Let f(t) = (t - r)g(t); note that g(r) # 0 (why?). Determine M so 
that Is(t)] 5 M for It - r] 5 1 and observe that If(p/q)I > l/q”. 

5.1. Consider the coefficient of P-l of the Lagrange polynomial p(t) for 
which p(ai) = f(oi). What is p(t)? 

5.2. Use Lagrange polynomials. 

5.3. Use double induction on k and n. The cases n = 1 and k = 1 are 
clear. Suppose the result is known for any n and 1 5 k 5 r - 1 as 

wellasfork=rand l<n<m-1. 

5.4. f(m) is the nth order difference of a polynomial of degree n. Write 
the sum without the summation sign. 

5.5. If l/2 2 ]u] 5 1, write g(x) as a Lagrange polynomial with respect 

to its values at x = -1, 0, 1. Then one can get a sharp estimate of 
]g’(u)] in terms of ]g(-l)], ]g(O)] and ]g(l)]. The case 0 < ]u] 5 l/2 
is more difficult. Sketch a few graphs; there are essentially two cases 
to consider according as g(z) is monotone on [-1, l] or not. Reduce 
to the situation that g(z) assumes both the values -1 and +l. 
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5.6. Begin by a careful study of the quadratic case. What happens if all 
the xi have the same sign? Use an induction argument. The case that 

zi 5 a < 0 < b 5 x,, can be disposed of by looking at the values 
of the polynomial at a and b after dividing by (x - x1)(2: - x,,). As 
for the case that a 5 xi 5 x, 5 b, note that p(a)p(b) is the product 
of quadratics (a - xi)(b - zi) in the xi. The remaining cases can be 

handled by similar types of consideration. 

5.7. It has to be shown that G(X) = II(zj - zi)/(j - i) takes integer values 

whenever the components of x are integers. Argue that it is enough 
to consider nonnegative integer values and prove by induction on the 
maximum of the zi. The result is clear if this maximum is /c. Now 
fix h of the k + 1 variables and consider G as a function of a single 

variable. Use the fact that a polynomial of degree not exceeding k 
over Z which assumes integer values for at least k + 1 consecutive 
integers assumes integer values at each integer point. 

5.8. There is an obvious example of a polynomial with integer coefficients 
which assumes arbitrarily small values on any open subinterval of 
[-l,l]. Adapt this. 

5.9. Draw a diagram. 

5.10. Express this polynomial using Lagrange’s formula. What are the zeros 
of the Tchebychev polynomials? Use this fact in your expression for 
p(z). Look at the special case in which each yk is 1. 
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Miscellaneous Problems 

1. Solve x(3y - 5) = y2 + 1 in integers. 

2. Solve 
a3 - b3 - c3 = 3abc 

a2 = 2(b + c) 

simultaneously in positive integers. 

3. Find all integer solutions (x, y, z) of the system 

3=x+y+z=x3+y3+t3. 

4. Let f(x) = x2+x. Show that 4f(a) = f(b) has no solutions in positive 
integers. 

5. Solve the equation (x2 + y)(x + y2) = (x - y)” for integers x, y. 

6. Consider the diophantine equation x3 = y2 + 4. Observing that 
y2 + 4 = (y + 2a’)(y - Pi), solve first the equation (U + ~i)~ = y + 2i 
for integers u, V, y and use this to obtain solutions (x, y) in integers 
to the given equation. 

7. Let Q, b, c, d be integers with a # 0. Can axy + bx + cy + d = 0 have 

infinitely many solutions in integers x and y? 

8. Solve for integers I, y the equation 

x3-y3=2xy+8. 

9. Determine infinitely many solutions in rational numbers x, y, .z, t of 
the equation: 

(x + y&)2 + (z + t&i)’ = 27 + lOti. 

10. Determine all integer solutions (x, y, z) of 

~ZZ+f/L--&. 

11. Find ten rational values of x such that 3x2 - 5x + 4 is the square of 
a rational number. 
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12. If x, y, z are rational numbers for which x3 + 3y3 + 9z3 - 9xyt. = 0, 
prove that x = y = z = 0. 

13. Solve each of the following equations for unequal integers x, y: 

(a) (x + 1)2 -x2 - (x - 1)2 = (y + 1)2 - y2 - (y - 1)2 

(b) (x + 1)3 - z3 - (x - 1)s = (y + 1)s - ys - (y - 1)s 

(c) (x + 1)4 - x4 - (x - 1)4 = (y + 1)4 - y4 - (y - 1)4. 

14. Let the polynomial f(t) = t” + a,-it’+l +.a . + art + 1 have nonneg- 
ative coefficients and n real zeros. Prove that f(2) 1 3”. 

15. Solve the system of equations: 

x2 + 2yz = x 
y” + 2x2 = % 
22+2xy=y. 

16. P, Q, R are three polynomials over R of degree 3 for which P(z) 5 

Q(x) 5 R( ) f z or a real x. For some real U, equality holds. Prove that 11 
there exists a constant k with 0 5 k < 1 for which Q = ICP + (1 - k)R. 

Does this property still hold if P, Q, R are of degree 4? 

17. Find an explicit polynomial P(a, b) such that there is a straight line 
intersecting the graph of y = x4 + ax3 + bx2 + cx + d in exactly four 
points if and only if P(Q, b) > 0. 

18. Find the value of the real number p for which the equation 

x3+px2+3x-lO=O 

has three real roots a, b, c for which c - b = b - a > 0. 

19. p(x) and q(x) are polynomials which satisfy the identity p(q(x)) = 
q(p(x)) for all real x. If the equation p(x) = q(x) has no real solution, 

show that the equation p(p(x)) = q(q(x)) also has no real solution. 

20. Let P(x, y) be a polynomial in x and y of degree at most 2. Suppose 
that A, B, C, A’, B’, C’ are six distinct points in the xy-plane such 
that A’ lies on BC, B’ lies on AC and C’ lies on AB. Prove that if 
P vanishes at these six points, then P is identically equal to zero. 

21. Show that 

c(a - b)3 + a(b - c)” + b(c - Q)~ = a + b + c 

c2(b-u)+a2(c-b)+b2(a-c) 

22. Determine a polynomial with integer coefficients one of whose zeros 

is (3/5)‘i7 + (5/3)ii7. 
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23. (a) Let nl, 122,. . . , nd be a set of positive integers exceeding 1, with 
any pair relatively prime. Let ai be the number of prime factors 
of ni counting repetitions when ni is written as a product of 
primes. Define 

p(x) = f: z - c $!$L + c +;;;;^ - . . . 

i=l i#j 

where the right side is the sum of 2* - 1 terms. Prove that 
p(x) is monotonically increasing on the closed interval [0,2], that 
p(x) 5 1 there and p(x) can assume the value 1 if and only if 

one of the ni is a power of 2. 

(b) Let m and n be two positive integers exceeding 1, and let a and b, 
respectively, be the number of prime factors counting repetitions 

when m and n are written as the product of primes. Suppose 
the least common multiple of m and n is k and that c is the 

number of prime factors of k. Let 

p(x) = x0/m + x*/n - xc/k. 

Show that p(z) is increasing on the closed interval [0,2], p(x) 5 1 
there with equality possible if and only if either m or n is a power 
of 2. 

24. Find polynomials p(x) and q x) over Z such that 

p(fi+d3+fi)/q(Jz+ 3+fi)=Jz+& $ 

25. Consider the equation 

j/igZTZ+J~=J x2+9x+3p+9 (*) 

in which x and p are real and the square roots are real and nonneg- 
ative. Show that, if (*) holds, then 

(x2 + 2 - p)(z2 + 8x + 2p + 9) = 0. 

Hence, find the set of real p such that (*) is satisfied by exactly one 
real number x. 

26. What condition must be satisfied by the coefficients u, v, w of the 
polynomial 

X3 -ux2+vx-w 

in order that the line segments whose lengths are the zeros of the 
polynomial can form a triangle. 
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27. Determine necessary and sufficient conditions on a, b, c such that 

az+by+cz=O 

and 
a~=+b&-&ccJ1-z2=0 

should admit a real solution x, y, Z, with 1x1 5 1, IyI 5 1, 1.~1 5 1. 

28. Let the polynomial xl’+*xg+ . . -+*x + 1 be given, where the starred 
coefficients are to be filled in by two players playing alternately until 
no stars remain. The first player wins if all zeros of the polynomial are 
nonreal; the second player wins otherwise. Is there a winning strategy 

for the second player? 

29. Let A, B, X, Y be variables subject to AX - BY = 1. 

(a) Find explicit polynomials u and v in A, B, X, Y over Z such 

that A4u - B4v = 1. 

(b) Show that, for each pair m, n of positive integers, there are 
polynomials u, v in A, B, X, Y for which A”‘u - B”v = 1. 

30. Let p(x) be a polynomial over R of even degree n for which p(x) > 0 
for all x. Prove that p(x) + p’(x) + . . . + p(“)(x) > 0 for all x. 

31. Three positive numbers 2, y, z lie between the least and greatest of 
three positive numbers a, b, c. If 

x+y+z =a+b+c and xy.~ = abc, 

show that, in some order x, y, z are equal to a, b, c. 

32. Prove that every polynomial has a nonzero polynomial multiple whose 

exponents are all divisible by 1 000 000. 

33. Let p and q be polynomials over C of positive degree. Suppose that 
Pk = {Z E C : p(z) = k} and Qk = {Z E C : q(r) = k}. Show that, 
if PO = Qc and PI = Qi, then p = q. 

34. Suppose that U, v, w, x, y, z are real numbers with x, y, z all distinct 
for which the equations 

u3 + x3 = 113 + y3 = w3 + r3 = Q3 

and 
u(y - %) + V(% - x) + w(x - y) = 0 

hold. Show that uvw + xyz = a3. 

What is the situation if x = y? 
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35. Show that the set of real numbers x which satisfy the inequality 

70 
k 

c- 
>2 

x-k - 4 
k=l 

is a union of disjoint intervals, the sum of whose lengths is 1988. 

36. Let a, b, c, d, e, f be complex numbers for which Ca = Ca3 = 0. 
Prove that 

(a + c)(a + d)(a + e)(a + f) = (b + c)(b + d)(b + e)(b + fh 

37. Eliminate u, v, w from the equations 

a=cosu+cosv+cosw 
b = sin u + sin v + sin w 
c=cos2u+cos2v+cos2w 
d = sin 2u + sin 2v + sin 2w. 

38. Eliminate 0 between 
x=cotB+tan0 

y=secB-cose. 

39. Show that x6 - x5 + x4 - x3 + x2 - x + 314 has no real zeros. 

40. Prove that the local maximum and local minimum values of the real 
polynomial x3 + 3px2 + 3qx + r are given by 

2p3 - 3pq + P + 2(p2 - q)3f2 

and 

2p3 - 3pq + r - 2(p2 - q)3’2. 

41. (a) Suppose that 

a2 + b2 - c2 - d2 a2 - b2 - c2 + d2 
= 

a-b+c-d a+b+c+d ’ 

Show that 
ab - cd bc-ad 

a-b+c-d=a+b+c+d’ 

(b) Find a set of integers a, b, c, d which satisfy the equations in 

(4. 

42. Prove that a real polynomial p( ) x w ic assumes rational values for h h 
rational x and irrational values for irrational z must be linear. 
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43. If a/(bc - u2) + b/(ca - b2) + c/(ab - c2) = 0, prove that 

a/(bc - a2)2 + b/( ca - b2)2 + c/(ab - c2)2 = 0. 

44. Solve 1 + l/l + l/l + l/l + .e e + l/l + x = x. (The left side is a 
continued fraction with n slashes.) 

45. Find all polynomials f(t) over R such that 

f(t)@ + 1) = f(t2 + i? + 1). 

46. Is there a set of real numbers u, v, w, x, y, % satisfying 

u2 + v2 + w2 + 3(x2 + y2 + z”) = 6 

47. Suppose that x + y + % = x-l + y-l + z-l = 0. Show that 

x6 + y6 + 26 

x3 + y3 + 23 
= XY%. 

48. Show that, if p is an odd prime and k is a positive integer, then 

%P + 1 I(%@ - l)(%P--2 - %P-3 + * * * + % - l)k + (% + l)z(p-l)k-‘. 

49. Observe that B3 - 73 = (22 + 32)2 and 1O53 - 1O43 = (g2 + 102)2. 
Show that, if the difference of two consecutive cubes is a square, then 

it is the square of the sum of two successive squares. 

50. Prove that the only positive solution of 

x+$+%3=3 

y+%2+x3=3 

z+x2+y3=3 

is (x, y, %) = (1, l,l). 

51. How many real solutions are there to the equation 

6c2 - 77[2] + 147 = 0, 

where [x] denotes the greatest integer not exceeding x? 

52. Let k be a real parameter. Sketch the possible forms of the graphs of 
the equation 

y = x4 + 1x2 - 2k2(2k + 1)x, 

specifying for each form the values of k which give rise to it. 
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53. A triangle has sides of length 29, 29, 40. Find all other triangles with 
integer sides with the same perimeter and area. 

54. Show that 

Nx - Y>(X - 2) + (Y - %)(Y - x) + t% - XX% - Y)l 

can be expressed as the sum of three squares. 

55. If x, y, % > 0, show that 

1 1 1 3 - - - ~ 
x(1 + y) + y(l+ %) + z(l+ x) > 1+xyt’ 

56. Reduce to lowest terms 

(ab - x2)2 + (ax + bx - 2x2)(ax + bx - 2ab) 

(ab + x2)2 - x2(a + b)2 

Explorations 

E.62. For n 2 2, let qn(z) be the polynomial %-‘[(l + z)” - 1 - %“I. For 
which values of n do all its zeros satisfy ]%I = l? 

E.63. Two Trigonometric Products. For small positive integer values 

of m, use a pocket calculator to find the approximate values of the products 

cos(n/(2m + 1)) cos(27r/(2m + 1)) cos(37r/(2m + 1)). . . cos(m?r/(2m + 1)) 

and 

tan(s/(2m + 1)) tan(27r/(2m + 1)) tan(37r/(2m + 1)). . . tan(m7r/(2m + 1)). 

Make a conjecture as to the exact values of these expressions. Can you 
establish this conjecture, at least for some values of m? 

One way to approach the situation is to look at the polynomial 

f(t) = fi (t - set” &) . 

k=l 

The two products can be found by taking the square roots of the values 
If(O)] and If(l)]. With the help of a calculator, make conjectures regard- 
ing the coefficient of f(t) f or various values of m, and try to check your 
conjecture for as many cases as possible. 

E.64. Polynomials All of Whose Derivatives Have Integer Zeros. 
The cubic polynomial t3 - 36t2 + 285t - 250 and its first and second deriva- 
tives all have integer zeros. Find other cubic polynomials with the same 
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property. Do there exist polynomials of higher degree which, along with all 
their derivatives, have integer zeros? 

E.65. Polynomials with Equally Spaced Zeros. Let f(t) be a poly- 
nomial whose zeros are equally spaced, i.e. form an arithmetic progression. 
Does this impose any symmetry on its graph? on the zeros of its deriva- 
tives? Can anything be said in general about the relative sizes of the local 
maximum and minimum values of the polynomial? 

E.66. Composition of Polynomials of Several Variables. If p(t) and 
q(t) are polynomials in a single variable t, then deg(p o q) = (degp)(deg q). 

One consequence of this is that (p o q)(t) = t identically only if the degree 
of both p and q is 1. Thus, the only polynomials of a single variable which 

possess a polynomial inverse with respect to composition are linear. 
What is the situation for more than one variable? Suppose, for example, 

we consider the mapping 

dx, Y) = (Sl(X:, Y), g2(x, Y>> 

which take the real Cartesian plane of points (x, y) into itself, where the 
component functions fi and gi are polynomials in the variables x and y. 
These two mappings can be composed to obtain f o g: 

fO!idX,Y) = (fl(sl(~:,Y),92(~,Y)),fz(gl(~,Y),g2(~,Y))). 

For example, if f(x, y) = (x + y2, x3 - 22~) and g(x, y) = (xy, x - y), then 

f 0 g(x, y) = (x2 + y2 - xy, X3Y3 - 2X2Y + 2XY2). 

What can be said about the relationships among the degrees of the poly- 

nomials? Is it necessarily the case that the degree of the components of 

f o g exceeds the degree of the components of f and g. Suppose f and g 
are mappings with polynomial components for which f o g(x, y) = (x, y) 
identically. Must all the components off and g be of degree l? 

E.67. The Mandelbrot Set. Let c be a fixed complex number and define 
the quadratic polynomial f(.~) = z2 + c. Define the following sequence: 

.zl = 0 r, = f(zn-l) for n 12. 

on a complex plane, plot the points of this sequence for the cases c = 

O,l,-l,-2, -1/2,i, 1 + i. 

Depending on the value of c, the terms of the sequence can either (i) 
remain within the confines of some disc of finite radius, or (ii) contain 

terms of arbitrarily large absolute value. The Mandelbrot set A4 consists 
of all those values of c for which (i) occurs. Using a computer or pocket 

calculator, test other values of c to see whether they lie in the set M. Plot 
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the points of the Mandelbrot set on the complex plane. There is, of course, 
the problem of deciding whether or not the terms of a sequence which 

initially does not wander too far from 0 will eventually remain bounded. 
Is there any way of deciding how many terms to compute before c can be 
put in the Mandelbrot set or not? 

Alternatively, one can fix a value of c and begin the iteration with dif- 
ferent values of zi. Let P, be the set of zi for which the sequence remains 
within some disc of finite radius. What does PO look like? PI? Try to plot 
points in PC for various values of c. 

E.68. Sums of Two Squares. One of the most celebrated results of 
Leonard Euler (1707-1783) is that every prime of the form 4n + 1 can be 
written as the sum of two squares. From a certain identity (which you can 
derive for yourself by examining the squares of the absolute values of a + bi, 
c+ di and the product (u + bi)(c + di)), t. i can be shown that every number 

which is the product of sums of two squares is itself a sum of two squares. 
Moreover, every product of factors of the form 2”, p” and q2’“, where U, 
v, w are nonnegative integers and p, q are primes with p f 1 (mod 4) and 
q E 3 (mod 4), can be expressed as the sum of two squares. 

There is an algorithm which determines the representation of a prime 
4n + 1 as the sum of two squares. Define a transformation T on number 
triples as follows: 

Ttx, Y, %I= 
1 

(X-Y- z,y,2y+z) ifx>y+z 
(y+z-x,2,2x-z) ifx<y+z. 

Verify that the quantity 4xy + z2 is left invariant by this transformation. 
Start with (n, 1,1) and apply T repeatedly. For example, when n = 8,9, 

we obtain the chains 

(8,Ll) - (6,193) - (2,1,5) - (4,2,-l) 

- WJ) - PJJ) - (4,2,1) 
- (GW - (6,1,-3) - (8,1, -1) 
- (B,l,l) - ... 

(9,Ll) - (7,I,3) - (3,135) - (3,3,1) 
- (1,3,5) - (7,1,-3) - (9,1,-l) 
- (9,1,1) - *** 

If, somewhere in the chain, we find the triple (r,r,s), show that 472 + 1 = 

(2~)~ + s2. For example, the chain (9,1,1) contains (3,3,1) and we find 
that 37 = 62 + 12. 

If the number 4n+l is expressible as the sum of two squares, will the chain 

beginning with (n, 1,l) always contain the form (r, r,s)? Does repeated 

application of T to (n, 1,1) always return to (n, 1, l)? If so, what can be 

said about the length and symmetry of the cycle? If not, what are the 
exceptional values of n? 
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E.69. Quaternions. A polynomial of degree n over a field has at most 
n zeros. This result may no longer hold if instead of a field we choose a 
structure for which not all the field axioms are valid. One such structure 
was invented by the British mathematician William R. Hamilton in 1843. 
Its elements are quaternions, generalized complex numbers of the form 

a+bi+cj+dk 

where a, b, c, d are real and i, j, k are distinct elements assumed to satisfy 

the relations 

i2 = j2 = k2 = -1, ij = k, jk = i, ki = j. 

We add, subtract and multiply quaternions in much the same way we 
do complex numbers, and assume that we have access to associativity of 
addition and multiplication and to the distributive law. For example, verify 
that we must have ji = -k, ik = -j, kj = -i, ijk = -1 and 

(a + bi + cj + dk)(p + qi + rj f sk) = (up - bq - cr - sk) 
+(aq+bp+cs-dr)i+(ar+cp+dq-bs)j 
+ (us + dp + br - cq) k. 

All the field axioms except commutativity of multiplication (Axiom M.2, 

Section 1.7) hold. By considering the product (o + bi + cj + dk)(u - bi - 
cj - dk), show that each element for which not all of a, b, c, d are zero 
has a multiplicative inverse and determine what this inverse is. Do this for 

several numerical examples and check your work. 

An equation of the form ux = v where u and v are quaternions with 
u # 0 has a unique solution. The situation for quadratic equations is more 
interesting. Find all quaternion solutions to the equations x2 = 1 and 
z2 = -1. Investigate the general quadratic equation ax2 + bx + c = 0. 

Are there any quadratic polynomials irreducible over the quaternions? 
Does the factor theorem hold? Is it true that a polynomial can always be 
factored as a product of irreducibles? Is such a factorization unique up to 
the order of the factors? 

Investigate the equation x” = 1 for n 1 3. 

Hints 

Chapter 8 

1. Divide y2 + 1 by 3y - 5 to obtain x and clear fractions. 

2. The difference of the sides of the first equation can be factored. 

3. Factor (x + y + .z)~ - (x3 + y3 + ,r3). 



Hints 241 

4. Multiply by 4 and complete the square on both sides. 

5. Find a quadratic equation for y in terms of z. 

7. Multiply by a and find two factors whose product contains the sum 
of the first three terms. 

8. Write y = x + 21 and apply a discriminant condition to the quadratic 
in x to obtain an equation in u. 

9. Obtain two rational equations and use them to find a homogeneous 
quadratic equation in x and y. 

10. Let the equation u + v = Z. Cube this equation and show that uv is 
an integer p. Determine expressions for x and y. 

11. Set the polynomial equal to u2 and examine the discriminant of the 
polynomial in 2. 

12. If there is a rational solution, it must be an integer. Let (u, v, w) be 
such. What can be said about divisibility by 3? 

14. Apply the AGM inequality to lrlr2 . . . rkl to obtain an inequality for 

the coefficients oi. 

15. Add the three equations to determine x + y + Z. Take the difference 
of the second and third equations to determine other simple relations 
among the variables. Be careful about dividing by a quantity which 
might be zero. 

16. Q(z) - P(x) = (x - u)F(x). Wh a can be said about the degree and t 
sign of F(x)? 

17. What can be said about the convexity of the graph which can be 
intersected by a line in four points? What implication does this have 
for the second derivative of the quartic? 

18. The condition 2b = a + c can be used to derive an equation for b 

which does not involve p. 

19. The hypothesis implies that p(t) - q(t) never changes in sign. Let 
t = p(x), t = q(x). 

20. Let y = mx + k be a side of the triangle. Then P(x, mx + k) has at 
least three distinct zeros. Use the Factor Theorem. 

21. Use the Factor Theorem. 

22. Write the number in the form v = u + u-l and determine u7 + up7 
in terms of v. 
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23. (a) 1 - p(x) can be written as a product. 

24. We want fi + 6 + fi to be a zero of p(x) - (x - &)q(x). What 
is the polynomial of smallest degree in y = x - 6 over Z with the 

zero y= Ji+fi? 

25. Two squarings with some rearranging leads to a product of two 
quadratics set equal to zero. Thus the four possible roots can be 

explicitly identified and analyzed. 

26. Look at the sign of the coefficients, the discriminant and the product 
(Q + b - c)(b + c - a)(c + a - b), where a, b, c are the zeros. 

27. Look at cases according as a, b, c are positive, negative or zero. The 
hard case is that in which none are zero and the signs differ. Let 
2 = cos 21, etc. 

28. A real zero can be guaranteed as the sum of the values of the poly- 
nomial for two different substitutions of the variable vanishes. 

29. Solve the problem for m = n = 2 by considering (AX - BY)3. 

30. Let q(x) = p(x) +. . a. What is the parity of the degree of q(x)? What 

can be said about the extremum of q(x)? 

31. Let f(t) and g(t) b e cubits with the zeros x, y, z and a, b, c respec- 

tively. Look at the sign of (f - g)(t) at a and c. 

32. Let the zeros of the polynomial be ri. Recall the factorization of 

2” - rr where n = 1 000 000. 

33. Consider the number of distinct zeros of p(x), q(x) and (p - q)(x). 

How many zeros does p’(x) have counting multiplicity? 

34. The system p + q + r = 0, up + vq + wr = 0, xp + yq + zr = 0 
has a nontrivial solution for (p, q, r). Show that bu + cx = bv + cy = 

bw + cz = 1 for some b and c. Use the conditions cx = 1 - bu and 
z3 = a3 - u3 to obtain a cubic equation satisfied by u. The same 

equation is satisfied by v and w. 

35. Multiply by the product of the (x-k) to render the difference between 
the two sides of the inequality in the polynomial form p(x). What is 
the relation between the endpoints of the interval and the zeros of 

p(x)? 

36. Show that the left side multiplied by (u + b) is symmetric in all six 
variables. You will need to show that Cabc = 0. 

37. Write a + bi, a - bi, c + di, c- di in terms of the symmetric functions 
of x = cos u + i sin u, etc. Use the first three equations to solve for 
the symmetric functions which can then be plugged into the fourth. 
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38. Look at x2 - y2 and xy. 

40. The local extrema are those k for which y = k is tangeut to the graph 
of the cubic. 

41. 2(ab - cd) = [u” + b2 - c2 - d2] - [(Q - b)2 - (c - d)2]. Factor the 

difference of squares. 

42. All the coefficients must be rational so we can assume that they are 
integers. Reduce to the manic case with prime constant coefficient, 
so that a great deal can be said about the rational zeros. Recall the 
role of the Intermediate Value Theorem in guaranteeing real zeros. 

43. Let u = a/(bc - a2), etc. and look at VW - u2, etc. 

44. Explore the situation for small n and make a conjecture. 

45. If r is a zero of f(t), what other zeros must there be? 

46. Apply the AGM inequality to u2 + 3x2. 

47. Factor z3 + y3 + .r3 - 3xyz. 

48. Every zero of the divisor should make the dividend vanish. 

49. The equation is (2 + 1)3 - x3 = y”. Express as a quadratic in x and 

complete the square. 

50. Take the differences of the equations in pairs. 

51. Sketch the graphs of y = 6x2, y = 77x - 147 and y = 77[x] - 147. 

53. Determine the form of a cubic whose zeros are u = 49-a, etc. Heron’s 
formula for the area will be useful. 

56. The denominator is a difference of squares. Use the Factor Theorem. 



Answers to Exercises and 
Solutions to Problems 

Answers to Exercises 

Chapter 1 

1.1. (a) 5, 1, 0, 7; (b) 5, 3, 2, 8; (c) 3, 0, 0, 4; (d) 2, -1, 1, 6. 

1.2. (a) t7; (b) 2t3; (c) 0. 

1.3. There are seven polynomials. (a) -00, 0, 0, 0, 0, 0; (b) 4, 0, 0, 3, 0, 

3/16; (c) 2, 3, 0, 1, 3, 13/4; (d) 2, 0, -3, 8, 0, 7/2; (h) 3, 0, 3, -4, 0, -1; 
(i) 4, 1, 0, 8, 1, -f; (k) 5, 0, 0, 6, 0, 9/16. 

1.7. 650 078 260 327 823. 

1.8. 731 765 148 134 177 451 740. 

1.10. degpo q = degq op = (degp)(degq). 

1.12. (a) Let p(t) = a,P + . .. + alt + as be such a polynomial. Then 

a0 = p(0) = 0. For any real nonzero c, u,cn-’ + . .. + al = p(c)/c = 0. 
(We do not know that the left side vanishes at c = 0 without further 

development; in order to avoid this issue, we need to make a more elaborate 
argument at this point.) Suppose, if possible, al # 0. Choose c such that 

0 < c< 1 and 

24a21+..*+ l%l> < bll. 

Then 

1 U73C n-1 + u,~1C”-2+...+ulI 

2 Iall - [lu,p-l + lu,-llc”-2 + --a+ ~u2~c3 

L la11 - c[bnl+ bn-1l+ . ..+ b211 

> Iall - (1/2)l~ll > 0, 

a contradiction. Hence al = 0, and, for all c # 0, u,c”-~ + . .+ + uz = 

p(c)/c2 = 0. c on t inue on to show in turn that uz, us, a4,. . . a, all vanish. 
Thus, p(t) must be the zero polynomial. 

With more background, other proofs can be given. For example, the 
conditions p(0) = p(1) = . . + = p(n) = 0 leads to a system of n + 1 linear 
equations in the unknowns a~, al, . . . , a, for which the solution is unique. 
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Alternatively, the identical vanishing of p(t) implies the same for all of its 
derivatives, whence Taylor’s Theorem identifies all the coefficients as 0. 

The reader might wish to reflect on the validity of the following proof, 
which assumes the Factor Theorem. Let n be the degree of a nonzero poly- 
nomial p which vanishes identically. Since p vanishes at 0, 1, 2, 3,. . . , n, we 
can write 

p(t) = t(t - 1)(t - 2). f *(t - n)q(t), 

for some polynomial q. The degree of the left side is n while that of the 

right side is at least n + 1, a contradiction. 

1.13. (a) If f(2t) = h(f(t)), then deg f(t) = deg f(2t) = deg h(t) deg f(t), 

so that, either f is a constant c and h(c) = c, or else h(t) is linear of the 
form ut + 21. If f(t) = untn + . . . + alt + a0 with a, # 0, we have 

2”u,t” + 2n-lun-#+1 + . . . + 2u1t + uo 

= uuntn + UU,-ltn-l +. . . + uu1t + (uuo + v). 

Hence 2”Uk = ‘1LUk (1 5 k 5 n) and 00 = uao + 2). Thus, f(t) = ant” i- uo 
and h(t) = 29 + (1 - 2”) a0 where n is a positive integer, and a, and a0 
are arbitrary constants. 

(b) The relation has the form f(2t) = h(f(t)), with f(t) = sin2 t and 
h(t) = 4t(l-t). But, since h is quadratic, by (a), f cannot be a polynomial. 

1.14. First solution. If log t is a polynomial, then, by 13.(a), log 2t = log 2+ 
logt implies logt = at” + b. But then log2 = (2”ut” + b) - (utn + b) = 

(2n - l)uP, which is false. 
Second solution. Suppose logt = f(t), a polynomial of degree n. Since 

f(t2) = 2f(t), comparing degrees yields 2n = n, whence n = 0. But then 
logt must be a constant, which is false. 

1.15. Suppose that g(t) = ant” +. . . is periodic with positive period k and 
a, # 0. Then g(t + k) - g(t) = knu,t”-’ + . . . vanishes identically, so its 
leading coefficient /man is 0. Hence n = 0 and g must be constant. 

1.16. If t113 is a polynomial of degree k, then 3k = degt = 1, which 
contradicts k being an integer. 

1.17. p(f - g) = 0. If f - g is not the zero polynomial, then the left side 
would be a polynomial of nonnegative degree which vanishes identically, a 

contradiction. 

1.19. (a) The coefficients of all the odd powers oft are 0. 

(b) The coefficients of all the even powers oft are 0. 

1.20. Suppose p(t) h as more than one term and p(t) = uP+bP +a . ., where 
n = degp and m is the next highest nonnegative exponent corresponding 
to a nonzero coefficient. Equating p(t2) and [p(t)12 yields ut2n + bt2”’ +. . . = 
u2t2n + 2ubtm+” + . . ., whence 2m = m + n. But this contradicts m < n. 
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Hence, p(t) has a single term, and it can be seen that the polynomials 

commuting with t2 are precisely the powers of t. 

2.1. (b) 3, 4; 

Cc) 2u 

-b+,/j?=-&ii and A-@-== 

2u 

2.3. m, (1 - m2)/2m. 

2.5. 1, -l/3, 0. 

2.7. The zeros of 6x2 - 5x - 4 are -l/2 and 413. Thus 6x2 - 5x - 4 = 

(2x + 1)(3x - 4) is negative for -l/2 < x < 413. 

2.8. The discriminant of x2 + (1 - 3k)x + (2 - k) is 9k2 - 2k - 7 = 

(9k+7)(k- l), h’ h w ic is nonnegative for k 2 1 and k 5 -7/g. These are 
the only values of k for which the equation is solvable. 

2.9. The range of the function is the set of k for which 

(k - 1)x2 + (3k - 1)x + (2k + 1) = 0 

is solvable. The discriminant, equal to (k - 1)2 + 4, is always positive so 
that the equation is solvable for all k. 

2.10. Since m + n = 516 and mn = -l/2, we have that the sum of the 
roots of the desired quadratic is (m+n)-(m2+n2) = (m+n)-(m+n)2+ 
2mn = -31/36 and the product of the roots is mn - (m3 + n”) + (mn)2 = 
mn - (m + n)3 + 3mn(m + n) + (mn)2 = -449/216. Thus, a quadratic 
polynomial with the desired roots is 216t2 + 186t - 449. 

2.12. (a) Suppose r is a common nonrational zero of p(t) and q(t). Choose 

integers a and b for which (up + bq)(t) is either linear or a constant. If 
(up+ bq)(t) were linear, it would have rational coefficients but a nonrational 
zero, which cannot occur. Hence it is a constant. Since (up+ bq)(r) = 0, we 
must have that (up + bq)(t) is th e zero polynomial, from which the result 

follows. 

(b) t2 - t; t2 + t. 

2.13. Suppose x = (b- d)/(u - ) c sa IS t’ fi es x2-ux+b = 0. Since (a-c)x = 
(b - d), --ax + b = -cx + d, so that x2 - cx + d = x2 - ax + b = 0 as 

required. 

2.14. (a) The quadratic polynomial is always nonnegative and can vanish 
only if t = -bi/ui for each i simultaneously. Hence it has either coincident 

real zeros or two nonreal zeros. 
(b) The desired inequality is a rewriting of the condition that the dis- 

criminant of the polynomial in (a) is nonpositive. Equality occurs if and 

only if the discriminant vanishes, which occurs when there is a single real 
zero. The condition for equality is that bi/ui are equal for all i. 
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2.16. The abscissae 21 and 22 of the endpoints of the chord y = mx + k 

are the roots of the equation (b2 + u2m2)x2 + 2u2kmx + u2(k2 - b2) = 0. 
Hence the coordinates (X, Y) of the midpoints of the chord are given by 

X = -u2km(b2 + u2m2)-l, Y = mX + k = kb2(b2 + u2m2)-‘, 

from which it follows that the diameter lies along the line b2x + mu2y = 0. 
For the case that all the chords are vertical, the locus has equation y = 0. 

2.18. Since the quadratic equation has a nonrational root, p(u) # 0 for each 
rational u. Since p(u) can be written as a fraction whose denominator is 
q2, it follows that l/q2 5 Ip(u The right inequality follows from exercise 
2(b). For the final assertion, take M = l/K. 

3.1. Suppose x, y, u, v are real and x + yi = u + vi. Rearranging terms 
and squaring yields (x - u)” = -(v - Y)~, whence x - u = v - y = 0. 

3.2. (c) z - wz is a central similarity (dilatation) with factor ]w] followed 
by a counterclockwise rotation through angle arg w. 

3.4. Given z, to construct l/z: Construct the line A joining 0 to a point 
u on the unit circle such that the real axis bisects the angle zOu. Let the 
circle with center 0 and radius ]z] meet the positive real axis at T. Let B be 
the line through I‘ and U, and C be the line through 1 parallel to B. The 
intersection of A and C is the point l/z. 

3.5. The locus evidently contains c/w = c-ii?/]w12. For z on the locus, 

Re[(z - c/w)w] = 0, w h ence (z - c/w)w = ik for some real k. The locus is 

a straight line consisting of points z = [c+ ik]Z?/lwl” (k E R). 

3.6. Let z = x + yi. For k = 1, the locus is a straight line with equation 
2x = - 1. For k # 1, the equation of the locus is 

x2 + y2 = k2(x2 + 2x + 1 + y2). 

For k > 1, the locus is a circle with center (-k2/(k2 - l),O) and radius 
k/(k2 - 1). If k < 1, the locus is a circle with center (k2/(1 - k”),O) and 

radius A/( 1 - k2). 

3.7. Let the rocks U and V be the points 0 and 1 respectively in the complex 
plane. If T is at z, then P is at iz and Q is at 1+ (-i)(z - 1) = (1+ i) - iz. 
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The treasure is located at (l/2)( l+ ‘) 1 , midway between P and Q. Since this 
does not depend on z, the position of the treasure is the same regardless 
of the position of T. 

3.8. For positive integer n, use induction. For n = -1, note that 
(cosx-isinx)(cosx+isinx) = 1. For n = -6 < 0, we have that (cosx+ 
isin~)-~ = (cos Lx + isin kc)-’ = cos(-k)x + isin(-k)c. 

3.9. Each equation implies that IzI = 1, so that z = cos6’ + isin 0 for some 
8. 

(a) cos 30 + i sin 3~9 = 1 implies that 38 is a multiple of 27r, thus the solu- 
tions are 1, cos(2?r/3)+isin(27r/3) = $(-l+ifi), cos(2r/3)-isin(27r/3) = 

4(-l - ifi). 
(b) 1, i, -1, -i. 

(c) 1, (1 + ifi)/Z, (-1 + h&/2, -1, (-1 - id)/2, (1 - i&)/2. 
(d) 1, (1+ i)/& i, (-1+ i)/fi, -1, (-1 - i)/fi, -i, (1 - i)/fi. 
In each case, the numbers are equally spaced on the perimeter of the unit 

circle with center at the origin. 

3.10. (a) Since x2 - y2 = u, 22~ = b, it follows that x2 and -y2 are the 
roots of 

t2 - at - b2/4 = 0. 

Let c2 = u2 + b2, c > 0. Then t2 = $(c + a), y2 = i(c - u). If b > 0, 

(x:,Y> = kh/m, Ad-); if b < 0, (2, Y> = (=h/m, 
r/m). In the case that b = 0, c = Ial, and z = 0 or y = 0 
according as a is negative or positive. 

(b) 3 - 4i and -3 + 4i. 

3.11. a) We have 2t = -3 f da. Applying Exercise 10 yields 

+ -3 + 4i = f(1 + 2i). The roots are -2 - i and -1 + i. 
(b) Note that the discriminant is -7 - 24i = (3 - 4i)2. The roots are 

2 - 3i and -1 + i. 

3.12. We can apply the quadratic formula for the roots of the equation. 
Exercise 10 shows how the square root of the discriminant can be found. 

3.13. Il+izl = Il-izl _ (l+iz)(l-27) = (l-iz)(l+zY) U i(z-YF) = 
-i(z -F) _ 2 -F = 0 _ z is real. 

3.15. (a) Let e = arccos x. The equation is equivalent to 

cos(n + i)e + cos(n - qe = 2 cos d cos 8. 

(b) x, 2x2 - 1, 4x3 - 32, 8x4 - 8x2 + 1. 

(c) Since Tn+l = 2xTn - Tn-l, by induction it can be established that 
T, is a polynomial of degree n. 
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(d) By de Moivre’s Theorem, 

cosn0 + isin n0 n 
n 

= cc > cos”-* e sins Oi* 
S 

a=0 

n 

= 
Y( ) 2: 

cos n-2r esin2r e(i2)r 

r=O 

+ “n$21 ( 2t “+ 1 ) COStl-2t-l ,in2f+l @j2t+l 

= ‘z( ~r)(-l)~~0s+2rO(sin2B)‘+i{.ee}. 

t-=0 

Equating real parts, setting 0 = arccos x, cos 0 = x, sin2 0 = 1 - x2 yields 

the results. 

4.1. (a) Let p(t) = at3 + bt2 + ct + d. Then for any number P, p(t) -p(r) = 

(t -r)[u(t2+rt +r2)+b(t+r)+c] = (t-r)[ut2+(ur+b)t +(ur2+br+c)]. 
The result follows immediately. 

(b) One root is 1. By (a), we can write the given cubic as a product of 
t - 1 and a quadratic polynomial. Indeed, it is equal to (t - l)(t” + t - 3). 
The solutions are: 1, [-1 + &l/2, [-1 - a]/2. 

4.2. The solutions are E = 1,2,9. 

4.4. (d) If ui is the single root of the quadratic, we have q = -2~: and 
p = -3ui, and the factorization can be checked. 

(e) We can choose real r and 0 such that 

U: = r3(cos 38 + isin 38) 

71: = r3(cos3e - isin38). 

The condition that uevo be real requires that ue = r(cos 0 + i sin 0) and 

ve = r(cos t9 - i sin 0). Note that w = cos 27~13 + i sin 2~13. 

4.5. (a) -3, (3 + iy/T?)/S, (3 - ifi)/2. 
(b) u3 = 3.569O[cos 147.30°+isin 147.30’1 and u = l.OOOO+l.l549i. The 

solutions are 2, 1, -3. 

4.6. x = t + 5 yields t3 - 108t + 432 = 0, x = -7, 11, 11. 

4.7. x3 + px + q = 0 being the equation, set x = u2b + ab2. An argument 
similar to that in Exercise 4(a) leads to 3u3b3 = -p and p(u3 + b3) = 3q. 
Having found the determination a and b for the cube roots of a3 and b3 

respectively, the pairs (a, b), ( uw, bw), (uw2, 6w2) all yield the same values 

of u2b + ub2. 
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4.9. p3+8q2 = 0. If y = 2x, the latter equation becomes y4 = (~~+6y-18)~. 

4.10. (a) 4 = ~12, x = 2acos r/6 = I/%. 
(b) 4 = 0, x = 2. 

4.11. (b) us + 2pu4 + (p2 - 4r)u2 - q2 = 0. 
(d) The equation for u2 is us + 2u4 + 13u2 - 16 = 0, which leads to u = 1 

and the factorization 

t4 + t2 + 4t - 3 = (P + t - l)(? -t + 3). 

The equation for u2 is u6 - 4u4 + 16u2 - 64 = 0 which leads to u = 2 and 
the factorization 

t4 - 2t2 + 8t - 3 = (P + 2t - l)(P - 2t + 3). 

4.12. (b) Setting the discriminant of the quadratic equal to zero yields 
2u3 - qu2 + 2(pr - s)u + (qs - p2s - r2) = 0. 

(c) The first equation is equivalent to (t2 + 1)2 = (t - 2)2. 
For the second equation, u is given by 2u3 + 5u2 - 4u - 7 = 0, and we can 
rewrite the equation as (t2 - t - 1)2 = 4(t - 1)2. 

4.13. (c) A reciprocal polynomial of odd degree can be written in the form 
u(x~~+~ + 1) + bx(x2k-1 + 1) + CX~(X~~-~ + 1) +. . . = 0. Noting that when 
m is odd we have 

xm + 1 = (x + l)(xm-l - 2m-2 + Zm-3 -. . . - 2 + l), 

we obtain the result. 

4.14. (b) Prove by induction on m. If the result is true for m 5 r, then 

xr+l + x-(‘+l) = qxr + x-‘) - (xr-l + x-(4), 

whence the left side is a polynomial of degree r + 1. 
(c) Since x = 0 is not a solution of the equation, we can replace it by the 

equivalent 
u(xk + x-~) + b(x’-’ + x-tk-‘)) + ... = 0. 

A change to the variable t gives an equation of degree k in t. Having found 
values oft, we can then solve equations of the form x2 - tx + 1 = 0 for x. 

4.15. (a) t = l/2, -3. 
(b) 2x4 + 5x3 + x2 + 5x + 2 = (2x2 - x + 2)(z2 + 3x + 1). 

4.17. (c) x = u + v leads to a quasi-reciprocal equation in u provided that 
4v3 + v2 - 6v + 1 = 0. Taking v = 1 leads to the equation u4 + 4u3 + 9u2 + 
8u+4=0.Lett=u+2/u.Thent2+4t+5=0,whencet=-2fi.The 
equation u2 + (2 f i)u + 2 = 0 can be solved for u (see Exercise 3.10) and 
then x = u + 1. 
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5.1. Homogeneous: (a), (b), (e), (f); Symmetric: (c). 

5.2. The “only if’ part is straightforward. Suppose the result holds. Then 

for each x, y, z, the equation can be written in the form 

tdfd(? Y,z> + xtkfk(x, % z) = id+, Y, z> 

kfd 

where fk is homogeneous of degree k. By Exercise 1.12, fd = f, fk = 0, 
whence the result follows. 

5.3. CXk. 

5.4. Each homogeneous polynomial can be obtained by collecting up like 
terms in the given polynomial. 

5.5. Every symmetric polynomial in two variables can be expressed as a 
sum of polynomials of one or other of the types cxkyk = cst or c(xayb + 

xbya) = csgpg-,, whereu<bandpi=x’+yifori=1,2,....Showby 
induction, using the expansion of (x + y)‘, that pi is a polynomial in sr and 

S2. 

5.7. The sum of the zeros is equal to -p. The zeros are in arithmetic 
progression if and only if their average is equal to one of them, i.e. if and 
only if -p/3 is a zero. This yields the condition 2p3 + 27r = 9pq. 

5.8. ST - 3SlS2 + 353; SlS; - S2S3 - 2s:~; (sl - z)(sl - y)(sl - x) = 
sf - s& + SlS2 - s3 = SlS2 - s3. 

5.12. Consider the polynomial 21(x, y) = g(x, y)-g(y, x) = uo(y)+ai(y)x+ 

U2(Y)X2 + f.. + u,(y)x". For each value of y, this polynomial vanishes 

identically in x, so that the polynomial coefficients ai vanish identically 
in y. But this means that each ai is the zero polynomial, so that u itself is 

the zero polynomial. 

6.1. gcd(20119, 34782) = 341; the quotients are 1, 1, 2, 1, 2, 5. 

6.2. (b) (iv) 341 = (34782)(11) - (20119)(19). The pencil and paper table 
is 

-2 -1 -2 -1 -1 

1 -2 3 -8 11 -19 

6.3. (a) ,If a is a multiple of p, then gcd(a,p) = p # 1. On the other hand, 
ifg=gcd(a,p)#1,then,sinceg~p,g=p,sop~u. 

(b) Use the general result enunciated in Exercise 2. 
(c) Suppose p does not divide a. For some integers x, y, we have that 

1 = ux +py, whence b = ubx + bpy. Since p divides both terms of the right 
side, p must divide b. 

(d) The result holds for n = 2. Assume it holds for each number less 
than n. Let pl be the smallest positive divisor of n exceeding 1; then pl 
must be prime (why?). Then either n = ~1, in which case this is the only 
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representation of n as a product of primes, or n/p1 < n, and we can ap- 
ply the induction hypothesis to obtain the desired representation. By an 

extension of Exercise (c), it can be shown that the only primes dividing n 
must be the pi and thence that the representation is unique. 

(e) 
418 = 2.11.19 1606 = 2.11.73 
20119 = 11.31.59 34782 = 2.3.11.17.31 

6.4. (a) If pa and pb are the highest powers of the prime p dividing m 
and n respectively, then pmin(alb) and ~“~(~1~) are the highest powers of p 
dividing u and v respectively. 

(b) and (c) are straightforward consequences of (a). 

6.6. (a) x = 2 + 5k where k is an integer. 
(b) (i) no solution. (ii) x E 2 (mod 3). 
(d) There exist u and v such that g = au + mu. Let x = (b/g)u. 
(e) uu z au (mod m) + m I u(u - v) + m I (u - v) (since gcd(u, m) = 

1) =F u 3 v (mod m). 

7.4. (d) F[t] is th e set of all polynomials in the n variables tl with co- 

efficients in F. We prove that F[t] is an integral domain by induction on 

the number of variables. It is true for n = 0 (see Exercise 5). Suppose it 
is true for n - 1 variables. Let f and g be two nonzero polynomials over 
F. Write f(t) = art; + . . . and g(t) = b,tf, + . .., where the coefficients 
are polynomials in the n - 1 variables tl,. . . , t,-1 and a, # 0, b, # 0. 
Then f(t)g(t) = urbstL+’ + . . . . By the induction hypotheses, the leading 

coefficient is nonzero, so fg # 0. 

7.5. (a) If ab = 0, a # 0, then b = u-lab = 0. 
(b) ac = bc + (u - b)c = 0 + a - b = 0 + a = b. 

7.6. (c) Z, is a field if and only if m is prime. 

(d) If m is composite, then ub = m - 0 (mod m) is possible for numbers 
a and b, neither of which are divisible by m. 

7.7. The following polynomials cannot be expressed as a product of polyno- 

mials of lower degree: t, t+l, t2+t+l, t3+t+l, t3+t2+1, t4+t3+t2+t+l, 
t4 + t3 + 1, t4 + t + 1. Since the leading coefficient is 1 and there are two 
choices for each other coefficient, there are 2d polynomials altogether of 
degree d. 

Solutions to Problems 

Chapter 1 

8.1.tanA+tanB=-p,tanAtanB=q.Ifq=l,A+B~?r/2(mod?r), 
which yields the result q. If q # 1, the expansion formula for tan(A + B) 
yields -p = (1 - q) tan(A + B), whence 

sin2(A + B) + psin(A + B) cos(A + B) + q cos2(A + B) 
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= sin2(A + B) + (q - 1) tan(A + B) sin(A + B) cos(A + B) + q cos2(A + B) 

= sin2(A + B) + qsin2(A + B) - sin2(A + B) + q cos2(A + B) = q. 

8.2. 

n 

x(x + i - l)(z + i) = pn * nx2 + n2x + (n+lbw)-pn=O 

i=l 
3 

Hence 2r + 1 = -n and r(r + 1) = (n2 - 1)/3 - p. Eliminating r yields 
n2=12p+1.1fp=10 therm= 11 and the solutions of the quadratic are 

-5 and -6. In general,’ n must have the form 6k f 1, whence p = 3k2 f k. 

8.3. Solution 1. Let the roots of ax2 + bx + c = 0 be P and s. Then one is 
the square of the other if and only if 

0 = (r - s2)(s - r2) = rs + r2s2 - [(r + s)3 - 3rs(r + s)], 

which is equivalent (using r + s = -b/u, rs = c/a) to 

0 = u2c + ac2 + b3 - Sabc. 

Solution 2. Suppose that the roots of ax2 + bx + c = 0 are u and u2. 

Then u + u2 = -b/a, whence au2 + au + b = 0. But au2 + bu + c = 0, 

so (b- a)~ = (b - c). If a = b, then b = c and the equation is a constant 

multiple of x2 +x + 1 = 0. If a # b, then substitute u = (b - c)/(b - a) into 
au2 + bu + c = 0. In either case, we obtain 

b3 + 02c + ac2 - 3abc = 0. 

On the other hand, let u and v be the roots of ax2 + bx + c = 0, and 
suppose that b3 + a2c + ac2 - 3abc = 0. Then b = -a(u + v), c = auv leads 

to 0 = (u - v2)(v - u2), so one of u and v is the square of the other. 
Solution 3. If u and u2 are the roots of the given equation, then u is a 

common root of the two equations ax2 + bz + c = 0 and az2 + ax + b = 0 

(since U+ u 2 = -b/a). Hence (b - a)u = (b - c). Substituting this into the 

equation yields the condition a(b - c)~ + b(b - a)(b - c) + c(b - a)2 = 0. 

On the other hand, suppose the condition holds. If a = b, then b = c 
and the equation is a constant multiple of x2 + z + 1 = 0, each of whose 
roots is the square of the other. If a # 6, then u = (b - a)-‘(b - c) satisfies 
ax2 + bx + c = 0 and ax2 + a,z + b = 0. Hence u + u2 = -b/a and u2 must 
be the second root of ax2 + bx + c = 0. 

8.4. Let q(t) = p(n + t) = t2 + bt + c. Then p(n)p(n + 1) = c(1 + b + c) = 
q(c) = p(n + c). Also, p(n)p(n + 1) = p(n - c - b). 

8.5. The discriminant of the second quadratic is 

4(” + lg2 - 12(q + ap) = (2a - p)2 + 3(p2 - 4q), 
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from which the result follows. 

8.6. The quadratics all have the form x2 + ux + b. Each alteration changes 
the value of a - b by 1. Initially, a - b = -10; finally, a - b = 10. Hence, 
somewhere along the way, a - b = 1, and we have a quadratic with zeros 
-1, -b. 

8.7. (a + b)2 = (c + d) 2 implies ub = cd, so that -c and -d are the zeros 
of t2 - (u + b)t + ab. Hence a + d = b + c = 0. It is easy to check that any 
solution of this equation satisfies the given equations. 

8.8. Let r be the real root of the given equation. Then (r” + ur + c) + 
(br + d)i = 0. S ince the sum of the roots is nonreal, b # 0 and we have 
r = -d/b. Sub s 1 u t’t t ing this into r2 + ur + c = 0 yields abd = b2c + d2. 

On the other hand, suppose that abd = b2c + d2 and b # 0. Then z2 + 
(u+bi)z+(c+di) = (z+d/b)(z+b(c+di)/d) has one real and one nonreal 
zero. 

8.9. A common zero of x2 + px + q and px2 + qx + 1 is a zero of 
x(x2 + px + q) - (px2 + qx + 1) = x3 - 1 = (x - 1)(x2 + x + 1). If the 

zero is 1, then 1 + p + q = 0. Otherwise, the zero satisfies x2 + x + 1 = 0, 
and it follows that (p - 1)x + (q - 1) = 0. Solving this equation for x and 

substituting into x2 + px + q = 0 yields p2 + q2 + 1 = p + q + pq. 

8.10. The discriminant of the quadratic reduces to (4q - p2)[(1 - q)” +p2], 

the second factor being nonzero by hypothesis. 

8.11. Since tan(r cot x) = tan(x/2 - ?r tan x), ?r cot x = 7r/2 - x tan x + nir 
for some integer n. Hence 

tanx+l/tanx-(2n+1)/2=0. 

Solving this equation for tanx yields the result. The quantity under the 

radical is (2n + 1)2 - 16, which is negative exactly when n = -2, -1, 0, 1. 

8.12. The discriminant is equal to 

e(2ak - h+1)2 - (n - 4)d+1. 
k=l 

If n 5 4, this is always nonnegative. If n > 4, take ai = 1 for 1 5 i 5 n 

and a,,+1 = 2 to obtain an equation with nonreal roots. 

8.13. Solution 1. Since p(l), ~(-1)~ p(i), p(-i) belong to the unit disc, so 
also do (1/2)(p(l) +p(-1)) = 1 + b and (1/2)(p(i) +p(-i)) = -1 + b. A 
quick sketch convinces one that b = 0. Since p( 1) = 1 + a and p( -1) = 1 - a 
belong to the unit disc, a = 0. 

Solution &. Let Q = q + ri, b = s + ti. Then 

4 = Ip( + Ip( + Ip( + Ip( = 4 + 4(q2 + r2 + s2 + t2), 
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from which the result follows. 

8.14. (a) The quadratic equation can be rewritten (z - u)~ = a2 - b. Let u 
be such that u2 = a2 - b. Then the roots of the equation are -a + u and 
--a - u. The roots of the quadratic and linear equations are collinear if and 
only if, for some real t, 

w = (1 - t)(-u + u) + t(-u - u) = --a + (1 - 2t)u 

if and only if (20 + u)/ u is real, if and only if (w + u)-il is real. 

(b) Suppose the roots of z2 + 2cz + d = 0 are -c + v and -c - v. Then 
the four roots are collinear if and only if u and v are real multiples of a - c. 
(Make a sketch.) 

8.15. Let cos48 = (b2 - 8uc)/b2. Then cos2 28 = (b2 - 4uc)/b2, from which 
it follows that 2cos2 0 - 1 = d-/b. It follows that -(b/u) cos2 0 is a 
root of the given quadratic equation. 

8.16. The equation z2 - 2(cos 4 + i sin $)z + 1 = 0 is equivalent to 

[z - (cos qj + i sin +)I” = cos2$-sin2+- 1+2isin$cos4 

= 2i sin ~(COS 4 + i sin f#~) 

= 2 sin 4[cos(+ + 7r/2) + i sin(+ + r/2)]. 

Solving for z yields two roots 

u=(cosf$+isin~)+~%Gj(cosB+isinf9) 

v=(cos4+isin4)-&Gj(cosB+isinB) 

where 0 = 412 + 7r/4. (Note that 7r/4 < e < 37r/4.) 
Observe that 

cos 4 = sin(a/2 + 4) = sin 28 = 2 sine cos e 

sin~=-c0s(7r/2+~)=2sin2~-1=1-2Cos2e. 

Then 
u+i=(2sinB+&GKj)(cose+isin8) 

v+i=(2sine-$GGj)(cosB+isin8). 

Since 2sin 8 - ,/ZGGjJ = 2sin B - &%? B - 2 > 0, it follows that 
arg(u + i) = arg(v + i) = 8. 

Also, 

u-i = 2 cos B(sin e - i cos e) + J~(COS e + i sin e) 

= [-2ic0sB + ~iZEji~(COSe + isine) 

v-i = [-2i cam e - &ZG~](COS e + i sin e) 
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It4 - i] = 121 - i] = J4cos2 e + 2sin #I = Jz. 

Hence u and v lie on a circle with center i and radius 4. The line joining 
u and v passes through -i and makes an angle 8 = 4/2+ n/4 with the real 
axis. As C#J moves from 0 to 7r, u traces that part of the circle in the upper 

half plane from 1 to -1 while v traces that part in the lower half plane 

from 1 to -1. 

8.17. The equation can be rewritten (x-~)~+(x-a)(b+c)+b~+c~- bc = 
0. Solving this for x - a by the quadratic formula yields the solutions 
a + bw + cw2 and a + bw2 + CU, where w is an imaginary cube root of 1. 

8.18. If ax2 + bx + c and ax2 + bx - c are both factorable over Z, then 
b2 - 4uc = q2 and b2 + 4uc = p2 for positive integers p and q, which must 
have the same parity. Let 2u = p + q and 2v = p - q. Then b2 = u2 + v2 
and 2ac = uv. One of u and v must be even, say v = 2w. 

Noting that (r + si)2 = u + 2wi implies that (r2 + s2)2 = u2 + 4w2, we 

solve r2 - s2 = u, rs = w for r and s. Thus, r2 and -s2 are the roots of 
the equation 

t2 - ut - w2 = 0 

whence r2 = (lb1 + u)/2 and s2 = (lb1 - u)/2. It remains to show that r and 

s are integers. Now, b and u have the same parity and satisfy 

(.y) (q2)=w2. 

Let d be a prime divisor of w. Then d divides exactly one of the factors 
on the left. Otherwise, d would divide their sum b. But d divides UC = uw, 
which contradicts the coprimality of b and UC. It follows that each factor 
on the left is a square, and so r and s are integers. It is straightforward to 
show that r and s are coprime. 

Hence, Ibl = r2 + s2 and UC = rs(r2 - s2). On the other hand, if these 
conditions are satisfied, then 

b2 - 4uc = (r” - 2rs - s2)2 

and 
b2 + 40~ = (r2 + 2rs - s2)2 

and the quadratic can be factored. 
The condition on a, b, c cannot be weakened to require merely that their 

greatest common divisor be 1 (as specified in the source of this problem). 
For a discussion, see Amer. Math. Monthly 47 (1940), 187-188. 

8.19. 

acos20 + 2hcosBsinB+bsin20 

= (1/2)[(~ + b) + (U - b) cos 28 + 2h sin 281 

= (1/2)[(u + 6) + d(u - b)2 + 4h2 sin(28 + 4)] 
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where tan+ = (a - b)/2h. The maximum (minimum) occurs when 

sin(20 + 4) is equal to 1 (-1, respectively). 

8.20. f(x, y) h as mear factors if and only if f(x, y) = 0 is solvable in x 1’ 

as a linear function of y. The discriminant of this quadratic equation is 
4y2 - Shy + 4a2 + 4c, which is a square of a linear function in y exactly 
when b2 = a2 + c. 

8.21. (a) Substituting y = mx + c into b2x2 - a2y2 = a2b2 yields the 
quadratic equation 

(a2m2 - b2)x2 + 2a2cmx + a2(b2 + c”) = 0 

for the abscissae of the intersection point. The discriminant is 
4u2b2(b2 + c2 - a2m2) and this vanishes if and only if the line is tangent to 
the curve. 

(b) The midpoint between the points of intersection of the line y = mx+c 
and the circle x2 + y2 = r2 is 

( 

-cm c -- 
> 1+m2’l+m2 ’ 

Let y = mx + c be tangent to b2x2 - a2y2 = a2b2, so that a2m2 = b2 + c2 
and let (x, y) be on the locus. Then 

m = -z/y c = (x2 + y2)/y. 

Hence a2x2 = b2y2 + (x2 + y2)2. Note that this is independent of r and 
contains the points (0,O) and (a, 0). However, to take account of the fact 
that the points on the locus lie within the circle, we require that x2 + y2 5 
r2. 

8.22. at2 + bt + c has zeros r + is, -r + is (r # 0) if and only if at2 - ibt - c 
has zeros s + ir, s - ir, which occurs if and only if ib/a, c/a are real 
and b2 - 4ac 1 0. Also, at2 + bt + c has zeros iu and iv if and only if 

at2 - ibt - c has real zeros, which occurs if and only if ib/u and c/u are real 
and b2 - 4ac < 0. Hence, the necessary and sufficient conditions are that 
ib/a and c/u are real. 

8.23. If one diameter is y = mx, its conjugate is ma2y+ b2x = 0. The line 

y = mx intersects the ellipse in points (~1, v) for which (b2+a2m2)u2 = a2b2; 
the line ma2y+b2x = 0 in points (z, w) for which (m2a2+b2)z2 = m2a4. We 
require that u2 + v2 = z2 + w2, which leads to m2a2( b2 - a2) = b2(b2 - u2). 
The case a = b is that of a circle and all diameters are of equal length. 

When a # b, we must have m = b/a, so that the equations of the conjugate 
diameters are bx + ay = 0 and bx - ay = 0. 

8.24. Invoking the given inequality for x = 0, f, 1 yields -1 5 c 5 1, 
-4 5 a + 2b + 4c 5 4, -1 5 a + b + c 5 1, respectively. Eliminating b and 
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a from the last two inequalities yields respectively -6 5 a - 2c 5 6 and 
-5 5 b + 3c 5 5. Taking account of ICI 5 1 leads to Ial < 8 and Ibl _< 8. 
Hence Ial + lb] + ICI 2 17. Equality holds for the polynomial 8x2 - 82 + 1 = 
2(2x - 1)2 - 1. 

9.1. a - bi is also a root; since the sum of the roots is 0, the third root is 
-2~. Hence the product of the roots is -2u(u2 + b2) = -9, from which the 
result follows. 

9.2. Let g(z) be the constant polynomial c. Then f(c) = c, so that f(x) = x 
for each x. 

9.3. Observe that (u2 + b2 - 2)2 + (c2 + d2 - 2)2 + 2(uc - bd)2 = 

(2 + c2 - 2)2 + (b2 + d2 - 2)2 + 2(ub - ~d)~. Each of I and II is equiv- 
alent to one side of this identity vanishing. 

9.4. Trying x = u + fi yields (u” - 3u2 + 5~ - 6 + ~U(U - 2)1/2 = 0, which 
is evidently satisfied by u = 2. Thus, x = 2 + $ 2. 

9.5. If u+b = 0, i.e. u = -b, then both equations are identities in x. On the 
other hand, suppose a + b # 0. Two roots of the first equation are -a and 
-b. Multiplying this equation by x yields a nontrivial quadratic equation, 
so that these are the only two roots. Both of these are roots of the second 
equation. 

9.6. (a) Since (-u - d-)(-a + dn) = b, it follows that b/x = 
-a + dn from which the result follows. 

(b) The equation for y can be rewritten y + c + dn = 0, where 
c = up - Q and d = bp2 - Pupq + q2. Now apply (a) to (y, c, d). 

9.7. We make two initial observations: 
(1) 22x - 15 - 8x2 = -(2x -3)(4x - 5) 2 0 if and only if 514 5 x 5 312. 

(2) (x2 - 2x + 1) - (22x - 15 - 8x2) = (3x - 4)2 > 0 so that 

1 - x + 422x - 15 - 8x2 < 0 when 514 5 x 5 312, x # 413. 

Hence, the square roots of the given expression are 

0 when x = 413 
pure imaginary (i times a real) when 5/4 5 x 5 3/2, x # 4/3 
not real, not pure imaginary otherwise. 

Consider the case x < 514 or x > 312, and let the square root be u + iv. 
Then 

.U2-$=l-x 

whence 

4u2v2 = 8x2 - 22x + 15 

(u2 + v2)2 = (u” - v2)2 + 4u2v2 = (3x - 4)? 
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Take u2 + v2 = 3x - 4. Then 2u2 = 2x - 3, 2v2 = 42: - 5. If 3: < 514, the 

square roots are 

If x > 312, the square roots are 

Finally, it can be seen that, if 514 5 x 5 312, the square roots are 

9.8. Let p(x) = ox2 + px + y and q(x) = Az2 + px + V. The condition 
that the given quartic is of the form p(q(x)) leads to, on comparison of 
coefficients, 

u=crA2 

b = 2(~Ap 
c=‘LaXv+a~2+/3X 

d= 2cY#Uv+pp 
e = av2+/3v+-y. 

The first two conditions lead to 2pu = Xb; the second and third lead to 
cp - dX = op3. Eliminating ~1 from these two equations and noting that 
a = oX2, we obtain the necessary condition 

4abc - 8u2d = b3. 

On the other hand, suppose that this condition is satisfied. If b = 0, then 

d = 0, and we can takep(x) = ux2+cx+e, q(x) = z2. Suppose that b # 0. 
Choose X = 1, (Y = a, p = b/2u. Any choice of p and v which satisfies 
d = bv + (b/Su)/3 will give a correct expression for c. Finally, the equation 
for e dictates the appropriate value of y. Thus, the coefficients of p and q 

are found. 

9.9. xu = u + v - uv = yv. Substituting v/u = x/y into the first pair of 

equations yields the second pair. 

9.10. The equation can be rewritten (x2 - 7x + 10)(x2 - 7x + 12) = 360, 

which leads to (;~~-7x+ll)~ = 361. Hence, ~~-72-8 = 0 or z2-7x+30 = 
0, leading to z = -1, 8, (l/2)(7 f i&f). 

9.11. That x4y2+y4z2fz4x2 > 3x2y2z2 is a consequence of the arithmetic- 
geometric mean inequality (Exercise 1.5.9). Suppose that the polynomial 
is the sum of the squares of polynomials f(x, y, z). Each of these must 
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have degree 3. No polynomial has a term in x3, y3 or z3, for such terms 
would result in terms in the sum in x6, y6 or z6, respectively, with positive 

coefficients. No j(x, y, z) can have terms in yz2, for such a term would 
produce in the sum terms in y2z4 with positive coefficients. Since y2z4 can 
come only from squaring yz2 (and not from a product of y2z and z3), there 
would be no cancellation of such terms. Similarly, there are no terms in zx2 
and xy”. Hence, each f(x, y,z) has the form ut2y + by2z + cz2x + dxyz. 
But the sum of any number of squares of such f(x, y, z) would produce a 
term in x2y”z2 with a positive coefficient (certainly, not -3x2y2z2). 

9.12. See the hints for a possible strategy. Three polynomials with the 
required property are 

x2 + (1 - fi)y2 

UY2 +3: 

-uxy + y 

where u is the positive square root of 2(fi - 1). 

9.13. Let n 2 3. Then 

F,, = (x+y)” -xc”- y” 

= (x + y)2[(x + yy2 - (x”-2 + f-2)] 

+ xy[xy"-3+xn-3y+2x"-2+2yn--2] 

= (x2 + xy + y2)F,,-2 + xy[(x + Y)“-~ + x*-~ 

+ y-2 + xy-3 + xn-3yJ 

= QF,,-2 + PG,-3. 

Similarly, G, = QG,,-2 + PF,,-3. These equations can be used as a basis 
of an induction argument that F, is a polynomial in P and Q when n is 
odd and G, is a polynomial in P and Q when n is even, once it has been 
checked that this is so when n 5 3. 

9.14. We have PO = 1, PI = xy + xz + YZ, P2 = (XY + xz + ~z)~ + 

(x + Y>(X + %)(Y + z>. A ssume as an induction hypothesis that P, is sym- 
metric in (2, y, 2) for m < 12. 

It is clear that P,+l g symmetric in x and y. It suffices to show that 

Pn+l(X, Y, z) = Pn+l( z, y, x). First, observe that, for m 5 n, 

Pm+l(x, Y, %) - Pm++, Y, x> = (x + 4Qm(x, Y, z> 

where 

Q&x, Y, %> = (Y+%)~,(x,Y, %+I)--(x+~)Pm(x+L Y, z)+(x--z)Pm(x, Y, 2). 

Since the left side vanishes for m 5 n - 1, so also does Qm(x, y, z). We 
show that Qn(x, y, z) = 0. 
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From the recursion relation, 

(Y + zPn(x, Y, z + 1) - (x + Y)P*(X + 1, Y, 4 + (2 - z>Pn(x, Y, z) 

= (y+z)[(a:+z+l)(y+%+l)P - ( n 1 x,Y,%+2)-(%+1)2pn-l(a:,Y,%+1)1 

- (x + Y>[(X + z + l)(Y + z)Pn-1(x + Ly, z + 1) - z2Prl-1(x + 1, y, %)I 

+ (x - z)[(x + %)(Y + z)Pn.-1(x, y, z + 1) - z2pn-l(X,Y, 41. 

Using Q+i(x, y, z + 1) = Qn-i(t, y, z) = 0, we have that 

(i) (Y + z + l)P,- ( 1 x,y,z + 2) = (x + y)P,-1(x + l,y,z + 1) - 

(x - % - l)Pn-1(x, y, z + 1) 

(ii) (x--z)Pn-l(x, Y, %) = (x+y)P,-1(x+1, Y, z)--(~+z)P~-l(x, Y, z+l). 

Substituting these into Qn(x, y, z) yields a linear combination of 
P,-~(a: + 1, y, z + l), P,-1(x, y, z + 1) and Pn-l(z + 1, y, r), all of whose 
coefficients vanish. Hence Qn(x, y, z) = 0 as required. 

9.15. Each term in the expansion is a product 

xf’ xfaxfJ . . . x;” 

where the nonnegative integers ui satisfy 

a2 + a3 + . . . +u,sn-1 
01 + a2 + 03 +. . f + 0, = 12. 

Conversely, for any choice of nonnegative integers satisfying these condi- 
tions, there is a term in the expansion with these exponents. (Each factor 
of the expression contributes an xi to the product; for like terms, there is 
no cancellation. To build a term of the required type, start with the xi of 

highest index i and work from right to left through the product.) 

Let f(n) be the number of terms. Clearly, f(1) = 1 and f(2) = 2. In 
selecting the ui, consider the possibility that the first equality holds in the 

rth line, so that we have 

a, = 0 

an-1 I 1 

&I-r+2 +. . . + a,-1 5 r - 2 1 

(4 

G-r+1 +. . . + a,-1 = P (B) 

h-r I 1 
a,-,+1 + anvr 5 2 

1 
cc> 

a1 + ** * + unwr = n - T. J 
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If T = 1, there are f(n - 1) ways of choosing al,. . . ,a,-1 to satisfy 
inequalities (C). If T = n, the re are j(n - 1) ways of choosing al,. . . ,a,-1 
to satisfy (A) (in th’ is case, a, = 0 and al is determined by the last line). 
If 1 < T < n, there are f(r - 1) ways of satisfying (A) and f(n - r) ways 
of satisfying (C). H ence, with the convention that f(0) = 1, 

n-1 

f(n) = C f(r)f(n - I- + 

r=O 

To find a closed form for f(n), we make use of a generating function. Let 
y be the formal power series defined by 

y = 1+ f(l)x + f(2)x2 + f(3)x3 + . . * 

= 1 + 1: + 2x2 + 5x3 + 14x4 + 42x5 + . . . . 

Then, with the recursion relation taken into account, it can be checked that 

XY2 -y+l=O. 

Solving this equation for y yields 

Y= 
1 - (1 - 4x)1/2 

2x * 

Expanding the right-hand side binomially, we find that 

m,=g n$)=&( ?)=A( ,,,,). 
This problem is E2972 posed in the American Mathematical Monthly 89 

(1982), 698. A solution with reference appears in the Amer. Math. Monthly 

93 (1986), 217-218. 

Note: The numbers 1, 1, 2, 5, 14, 42, 132, 429,. . . , f(n - l), . . . are called 
the Catalan numbers. An article in Scientific American (June, 1976; pages 
120-125) draws attention to a number of interesting properties and inter- 

pretations. Euler showed that the nth term is the number of ways a fixed 
convex polygon with n + 1 vertices can be decomposed by diagonals into 
nonoverlapping triangles. Catalan interpreted the nth term as the number 
of ways a chain of n letters in fixed order can be equipped with n - 1 pairs 

of parentheses so that two terms reside between a corresponding pair. For 

example, when n = 4, we have 

I am indebted to W. Karpinski for the observation that 

[ 
f(n - l)f(n - 2) 

’ + 24 f(n)f(n - 2) - f(n - 1)2 1 = (2n + ‘I” 
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for n 2 3. This is a straightforward manipulative exercise for the reader, 

9.16. Let z be the sum, with x and y its first and second terms; thus, 
z = x + y. If u = 0 or u 1 3/8, then x3 and y3 are real, so that x and y 
have uniquely determined real values, as well as nonreal values. For other 

values of u, x3 and y3 are nonreal complex conjugates. We will assume that 
for each nonreal determination of z and y, they are complex conjugates. 
Then xy = 1 - 27~ and z satisfies the equation 

z3 = x3 + y3 + 3xyz = (6u - 2) + (3 - 6u)z 

or 0 = z3 + (6u - 3)~ - (6u - 2) = (z - 1)(z2 + z + 6u - 2). Hence z = 1 
or2z=-lf&KXK. 

When u 2 318 and the real determinations of x and y are taken, then 
z = 1; test this out on your pocket calculator. The other two values of z are 
given by the nonreal xw + p2 and xw2 + yw where w is an imaginary cube 
root of unity. Observe that these numbers satisfy the quadratic equation 
z2 + z + 6u - 2 = 0 since their sum is -(x + y) = -1 and their product is 
x2+ y2 - xy=x3+y3=6u-2. 

When u = 0, then z = -2 corresponds to the real determination of x 
and y. The nonreal determinations of (x, y) are (-w, -w2) and (-w2, -w) 
and these both yield z = 1. 

When u # 0, u < 318, then z is always real and takes each of the three 
possible values corresponding to the determination of x and y. 

9.17. m = (1/2)t(t-l), n = (1/2)t(t+l)satisfy4mn-m-n+1 = (t2-1)2. 

9.18. The sum of the zeros, u(l+ u + u2), and the sum of products of pairs 
of the zeros, u3(1 + u + u2) must be rational. Either 1 + u + u2 = 0 or u2 is 
rational. If u2 is rational, then u(1 + u2) = (u + u2 + u”) - u2 is rational. 
Since u is nonrational, 1 + u2 = 0. Thus, the possible values of u are 

i, -i, (-1 + id?)/2, (-1 - i&)/2. 

9.19. First, observe that, if 

u(t) = (at + b)(c,t’ + c,-ltr-l + . . . + qt + co) 

v(t) = (bt + u)(c,.t’ + c,.wltr-’ + . . . + clt + co), 

then l?(u(t)) = u2(Ecq) + Pab(Ccici+l) + b2(Ccf) = l?(v(t)). 
We have f(t) = (t + 2)(3t + 1). Let g(t) = (2t + 1)(3t + 1) = 6t2 + 5t + 1. 

Then, for n = 1, 2, . . ., 

r(f(t)y = r((t + 2)“(3t + 1)“) 

= r((2t + i)(t + 2)“-‘(3t + I)“) 

= r((2t + ij2(t + 2y2(3t + i)n) 

= . ..= r((2t + iy(3t + 1)“) = r(g(t)n). 



264 Answers to Exercises and Solutions to Problems 

9.20. Since (Z + Y)~ = 8xy and (z - Y)~ = 4xy, the answer is a. 

Answers to Exercises 

Chapter 2 

1.5. -1062.6855. 

1.6. 7t5 - 2t3 - 3t2 + t + 2; 6; 53900. 

1.7. 3t4 + 5t3 + t2 - 2t + 6; 2; 94. 

1.10. (c) 325301 + 372391(t - 6) + 182521(t - 6)2 + 49656(t - 6)3+ 
8099(t - 6)4 + 792(t - 6)5 + 43(t - 6)6 + (t - 6)7. 

1.11. -357 + 1157(y + 2) - 1585(y + 2)2 + 1184(y + 2)3 - 518(y + 2)4 + 

132(y + 2)5 - lS(y + 2)6 + (y + 2)7, 

1.13. If f(t) is the given polynomial, then the polynomial sought is f(t -3). 

Expand f(t) P in owers of t + 3 to obtain f(t) = (t + 3)4 - 15(t + 3)3 + 

83(t + 3)2 - 196(t + 3) + 163. The required polynomial is t4 - 15t3 + 83t2 - 
196t + 163. 

2.2. By Exercise 1, p(t) = (t - c)q(t) +p(c), from which the result follows. 

2.3. If q(s) = 0, then p(s) = 0. Suppose 0 = p(s) = (s - r)q(s). Since an 

integral domain has no zero divisors and s - r is nonzero, q(s) = 0. 

2.5. Since u(b) = 0, we have that u(t) = (t - b)w(t) so that f(t) = 

(t - a)(t - b)w(t) and v(t) = (t - a)w(t). Hence u(t) - v(t) = (a - b)w(t) 
and the result follows. 

2.6. t4-5t-6 = (t+l)(t3-t2+t-6) = (t-2)(t3+2t2+4t+3). The remaining 
zeros of this quartic are those of (t3 + 2t2 + 4t + 3) - (t3 - t2 + t - 6) = 

3(t2 + t + 3). (Ob serve that t4 - 5t - 6 = (t + l)(t - 2)(t2 + t + 3).) 

2.7. (d) 4t5 - 3t4 - 7t2 + 6 = (t3 + 7t2 + 3t - 2)(4t2 - 31t + 205)+ 
(-1341t2 - 677t + 416). 

2.9. Consider the set S = {f - gh : h E F[t]}. It contains a polyno- 

mial r = f - gq of lowest degree. Suppose, if possible, deg r 2 deg g. Let 

g(t) = a&“’ + .. . and r(t) = bm+ktm+6 + .. . . The polynomial r(t) - 

bm+ka;‘tkg(t) = f - s(q + b,+uG t ) 1 k belongs to S, but has degree less 

than deg r(t), contradicting the choice of r. Hence deg r < deg g. 

2.11. f(t) = q(t)(t - a)(t - b) + At + B, for some polynomial q(t) and 
constants A and B. Substituting t = a and t = b yields 

A = fta) - fcb), 
a-b 

B = ‘ftb) - bf(a) 
a-b ’ 

2.13. (e) f = sls$ - 2s:s3 - S2S3. 
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3.5. (4 (~1~2 . . -Pn)‘= ~;~~PlP2-P~-Pn. 

(e) @q)(t) = Wq(t)r. D’ff 1 erentiating yields (poq)‘(t) = Cru,q(t)r-lq’(t) 
from which the result follows. 

3.15. (a) Prove the result by induction on the degree of p. If degp = 0, 

the result holds for each c with r = 0. Suppose the result holds for all 
polynomials of degree not exceeding n - 1 1 0. Let degp = n. Then, if 

p(c) # 0, we may take r = 0. If p(c) = 0, then p(t) = (t - c)u(t) and we 
may apply the induction hypothesis to achieve u(t) = (t - c)‘-‘q(t) where 
q(c) # 0 for some positive integer r. 

(b) Let p(t) = (t - c)‘q(t) h w ere r 1 1, q(c) # 0. Then p’(t) = 
(t - c)‘-l[rq(t) + (t - c)q’(t)]. Th e q uantity in square brackets does not 
vanish when t = c. Hence p’(c) = 0 _ r - 1 1 1 _ r 2 2. The result 
follows. 

(d) p(‘+) 
-+‘- CY. 

4.3. (e) The quadratic must assume either a maximum or minimum value 
between the two zeros. At this extremum, the derivative has a zero. 

4.4. (f) 

a>0 

J, 

/ 
/ 

/ 
/ 

/ 

/ 

4.5. Set s = x + b. a. The change of variables represents a horizontal shift 
of the origin of coordinates. 

4.6. The graph of any cubic polynomial is a horizontal translate of the 
graph of a polynomial of the form uz3 + cx + d, which in turn is a vertical 
translate of the graph ax3 + cx. In the case of ax3 + cx, the inflection point 

is at the origin and (x, y) satisfies the equation y = ax3 + cx if and only if 
(-x, -y) does. The result follows. 

4.7. (a) Let the polynomial be ax3+bx2+cx+d = x3(a+b/x+c/x2+d/x3). 
When 1x1 is large enough, the quantity in parenthesis has the same sign as 
a, and the sign of the polynomial is the same as the sign of ux3. Hence the 
polynomial takes both positive and negative values, and so must vanish at 

some point because of the continuity. 

/ ) 

Y 

y=x3+ax a<0 

/ / \ \ / \ 
/ \ \ \ 

X 

7 

y =X3 +ax 

J X 
\ \ \ \ \ \ 
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4.8. (c) 
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~=~4-33~2+ 

=(x2-2)(x2-1) 

J. X 
Cd) J 

\ 

i 

\ \ \ \ \ 

y=x4-5x-6 

/ 

x 

‘\ \ \ \ \ \ 
\ 

(e) Y4 

y=x4+5x-6 

(0 Yt 
J’ =x4 + 3x* ~ 36x 

\ 
\ 
\ 

4.10. (a) Let p(x) = 6 x5 - 15x4 - 10x3 + 30x2 + 10. Then p'(x) = 30x4 - 
60x3-30x2+60x = 30(2-2)(x- 1)2(x+ 1). p(z) is increasing for x 5 -1, 
decreasing for -1 L x _< 0, increasing for 0 5 x 5 1, decreasing for 
1 2 x < 2, increasing for 2 5 x. Also ~(-1) = 29 > 0, p(0) = 10 > 0, 

p(1) = 21 > 0, p(2) = 2 > 0. 

c-1,29) 

7@ * 

(1,211 

4 (0, 10) 
CL21 

c 
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(b) Let q(x) = 6x5 - 15 x4 - 10x3 + 30x2 = x2(6x3 - 15x2 - 10x + 30). 
The number of zeros of q(x) + k: is the number of times the line y + !C = 0 
intersects the graph of y = q(x). F’r om the graph we see that q(x) + k has 

exactly one simple real zero when k < -19 or JC > 8; 
exactly three simple real zeros when -19 < L < -11 or 0 < JZ < 8; 
exactly five simple real zeros when -11 < k: < 0; 
one double and one simple real zero when k = -19, 8; 
one double and three simple real zeros when k = -11, 0. 

YA 

(-1,191 

----_---_ 

(2, -8) 

Solutions to Problems 

Chapter 2 

5.1. Let f(x) = x(x - 1) .. .(x - n + 1) - k. Then f’(x) takes values 
of alternate signs at x = 0, 1,. . . , n - 1. Hence, f’(x) has n - 1 distinct 
zeros, one between each pair i - 1, i of integers (1 5 i < n - 1). Since 

degf’(z) = n- 1 , each of these zeros must be simple. Hence, a zero of f(x) 
has multiplicity at most 2. We can make any zero r of f’(x) a zero of f(z) 
as well by choosing k = r(r - 1) . . . (r - n + 1). 

5.2. If all three have a common zero, the result is trivial. Otherwise, the 
polynomials can be written u(x-u)(x-v), b(x-u)(x-to), c(x-v)(x-w) 
where a, b, c are positive and u < v < w. Their sum is positive at u and 
w, negative at v, and so the sum has a zero between u and v, as well as 
between v and w. 

5.3. (a) Putting the expression over a common denominator (1 - x)~ yields 

a numerator n(1 - x) - (1 - x”). This vanishes along with its derivative 
when x = 1, so that it is divisible by (1 - x)“. We find that the given 

expression is equal to 

2 n-2 + 2xnm3 + 3xnm4 + 1.. + (n - 2)x + (n - 1). 
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(b) Setting u = x - 1 in the expression yields 

uv2{-nu - [l - (1+ u)“]} = 2 ( ; ) uk-2 = 2 ( ; ) (x - I)? 
kc2 k=2 

5.4. 

(1 - xs)n = [(l - x)(1 + x + x2)]” 

= (1 - z)“[(l - x)” +3x]” 

= (1 - x)“[(l - x)2n + n(3x)(l- x)2+-2 + ...I 

which yields the result. 

5.5. Let u be a root of multiplicity exceeding 1. If u = 0, the condition (a) 
follows immediately. Let u # 0. Then au2 + 2bu + c = 0 implies that 

O=(uu3+3bu2+3cu+d)-u(uu2+2bu+c)=bu2+2cu+d 

whence 

0 = u(bu2 + 2cu + d) - b(au2 + 2bu + c) 

= 2(uc - b2)u + (ad - bc) 

and 

0 = c(bu2 + 2cu + d) - d(uu2 + 2bu + c) 

= u[(bc - ud)u + 2(c2 - bd)]. 

Condition (a) and result (b) follow immediately. 
On the other hand, assume that the condition in (a) holds. Since 

u(ux3 + 3bx2 + 3cx + d) = (ax + b)(ax2 + 2bx + c) 

+ [2(uc - b2)x - (bc - ad)], 

any common zero of ax2 + 2bx + c and 2(uc - b2)x - (bc - ad) must be at 
least a double zero of the cubic. But the quadratic and linear polynomials 
have a common zero if and only if 

u(bc - ud)2 + 4b(ac - b2)(bc - ad) + 4c(uc - b2)2 = 0. 

This is ensured by using condition (a) to substitute for (bc - ud)2. 
Remark. Consider the case that ac - b2 = 0. If the cubic equation has 

a double root, then we must have ad - bc = 0. On the other hand, if (a) 
holds, then ad - bc = 0 and 

u2(ux3+3bx2+3cx+d) = (ux+b)3+(3ux+b)(uc-b2)+u(ad-bc) = (ux+b)3. 
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5.6. 

(r + l)Sr + ( ’ i ’ ) Srel +. . - + (r + 1)Si = k k ( ’ f ’ ) k’+l-j 

k=l j=l 

= k[(l + k)‘+l - k’+’ - l] = (n + l)‘+i - 1 - n. 

k=l 

5.7. Let p(p(x)) = p(x)“. Comparing degrees of the two sides yields k2 = 
km, from which k = -00, 0 or m. If p(x) is constant, then it must be 0, 1 
or, in the case of odd m, -1. If p(x) is nonconstant, it assumes infinitely 
many values, so that p(t) -t” h as infinitely many zeros t = p(x). But then 

p(t) = tm. 

5.8. The equation is satisfied if p(t) = c, a constant polynomial, and q(t) 

is any polynomial with q(0) = c. Suppose degp(t) = n > 1, degq(t) = r. 

Then n = r(n - 1) f rom which n = r = 2. Hence, there exist coefficients a, 

b, c, u, v, w for which 

at2 + bt + c = u(2ut + b)2 + v(2at + b) + w. 

Expanding and comparing coefficients yields 1 = 4uu, b = b + 2uv, c = 
ub2 + vb + w, whence v = 0. Hence p(t) can be an arbitrary quadratic 
at2 + bt + c while 4aq(t) = t2 - (b2 - 4uc). 

5.9. The only constant polynomial is 0. Let p(t) = at + b. Then the identity 
is satisfied as long as p(u) = a, so that p(t) = u[t + (1 - u)]. Let p(t) = 
at2 + bt + c. By substitution, we arrive at the requirements a = l/2, b = 0, 
whence p(t) = (1/2)t2 + c. 

If degp(t) = 3, comparing the leading coefficients of both sides of 

p’(p(t)) = p(p’(t)) (1) 

yields p(t) = ( 1/9)t3 + . . e. However, obtaining the other coefficients by 
substituting into (1) is an unappetizing task, and another tack is desirable. 

Differentiate (1) repeatedly to obtain 

p”(p(t))p’(t) = p’(p’(t))p”(t) (2) 

P”‘(P(QP’W2 + P”(P(t))P”(t> = P”(P’(t))P”(t>2 + p’(p’(t))p”‘(t). (3) 

If 0 is the sole zero ofp’(k), then p’(t) = t2/3 and we must have that p(t) = 
t3/9. Otherwise, let r # 0 and p’(r) = 0. Then, from (2), p’(O)p”(r) = 0. 
Either p’(0) = 0 or p”(r) = 0. In the latter case, since p”‘(t) is a nonzero 
constant, (3) gives p’(0) = 0. Hence 

p’(t) = t2/3 - rt/3 
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and 
p(t) = t”/9 - rt2/6 + c. 

Substitute t = 0 into (1) and (3) to obtain 3c = c2 - rc, whence c = 0 or 
c= r+3, and 

(2~13 - r/3)(-r/3) = (-r/3)(r2/9), 

whence 6c = 3r + r2. Hence (r,c) = (6,9) or (-3,0). The first leads to 
p(t) = t3/9 - t2 + 9 which is valid, and the second to p(t) = t3/9 + t2/2 
which is not (check t = 6). Hence p(t) = t3/9 or p(t) = t3/9 - t2 + 9. 

In general, if p(t) = n ‘-‘Y, then p(p’(t)) = p’(p(t)). 

5.10. The result holds for n = 1. Suppose it holds for n = m > 1. Then 

(x + yp+') = (x + y)(x + y - 1p 

(x - l)Wy(m-k) 

= ; ) x(k)y(m+l-k) 

= g ( k’c 1 ) xWy(m+l-k) + 2 ( ; ) x(~)~++~-~) 
k=O 

= .(~+lJ+$ [( k:l ) + ( y )] x@)Y(m+l--k) 

+ y(“+l), 

which yields the result for n = m + 1. The result follows by induction. 

5.11. If y is a polynomial in x, the degree of the left side equals the degree 
of y, so that y must be a cubic. Successive differentiations of the equation 

yield 

9y”’ + 4y” + d = 3x2 + 10x - 2 

4~“’ + y” = 6x + 10 

y”’ = 6. 

Working up from the last equation, we find that y” = 6x-14, y’ = 3x2-14x 
and y = x3 - 7x2 + 4. It is readily checked that this indeed satisfies the 
differential equation. 

5.12. f(x) has the form ax5 + bx4 + cx3. For some polynomial g(x), ax5 + 

bx4 + cx3 - 1 = (x - 1)3g(x). D’ff 1 erentiating the equation twice and setting 
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x = 0 yields g(0) = 1, g’(0) = 3, g”(0) = 12. Since degg = 2, use Taylor’s 
Theorem to obtain g(x) = 6x2 + 3x + 1. Hence, f(x) = 6x5 - 15x4 + 10x3. 

5.13. Suppose usx3 + azx2 + ~13: + uc is the cube of a linear polynomial. 
Then it must have a triple zero u which is a zero of its first and second 
derivatives. Hence u = -u2/3us. Since 3usu2 + 2uzu + al = 0, we find that 

ui = 3uius. Finally, a3u3 + u2u2 + uiu + uo = 0 leads to 9uou3 = aluz. 
On the other hand, suppose that the conditions are satisfied. Let p = 

a3 1’3, q = a0 . 1’3 Then, it is rea dily checked that the cubic is equal to (px+q)3. 

5.14. (x - 2)(x - 1)x(x + 1)(x + 2) = x5 - 5x3 + 4x has three nonzero 
coefficients. If p(x) has only two nonzero coefficients, it must have one of 
the forms x5 - a, x5 - bx, for otherwise 0 would be at least a double root. 
But neither possibility has five integer solutions. Hence k = 3. 

5.15. For small values of n, we find that fc(x) = 1, fi(x) = x, fz(x) = 

x(x + 2), f3(2) = x(x + 3)2. A s an induction hypothesis, let n 2 1 and 
sunldpose that fn(x) = x(x + n)“-‘. Then f,,(x) = (x + n)” - n(x + n)“-’ 

fA+l(x) = (n + 1)(x + n + 1)” - (n + l)n(x + n + 1),-l. 

Hence 

fn+l(x) = (x + 12 + l)n+l - (n + 1)(x + n + l)n = x(x + n + l)n. 

In particular, ficc(l) = 101”. 

5.16. If f(x) is constant, then f(x) = 0 or -1. Otherwise, let r be a zero 

off. Then r2, r4,. . . must also be zeros. Since f has at most finitely many 
zeros, Irl can take only the values 0 and 1. Also, (r - 1)” is a zero of f, 
so Ir - 11 = 0 or 1. Consulting a sketch of the complex plane assures us 
that the only possibilities are r = 0 and r = 1. Hence f(x) = ax”‘(x - 1)“. 
Trying this out leads to a = -1, m = n. 

5.17. The polynomial must have the form x5 + ax3 + bx. If u is a non- 
trivial zero, then so is -u, and the polynomial can be factored to x(x - u) 
(x + u)(x2 - v) where u2v = b, u2 + v = --a. Substituting x = 10 yields 

(10 - u)( 10 + u)( 100 - v) = -2967 = -3.23.43. Now 10 - u and 10 + u are 
a pair of divisors of 2967 which sum to 20; the only possibilities are given 
by u = 13 and u = 33. Thus, there are two polynomials which satisfy the 
conditions: x5 - 226x3 + 9633x and x5 - 1186x3 + 105633x. 

5.18. The expression is equal to the Taylor expansion of f(0) about the 

point 2. If f(0) = 0, t i vanishes identically and the degree is -oo. If f(0) # 

0, it is constant and the degree is 0. 

5.19. (a) p(t) = t2 + 1. 
(b) For convenience, let f(0) = x, f’(0) = y, f”(0) = z; g(0) = u, 

g’(0) = v, g”(0) = w. That cf is in A is obvious. Suppose that x and u are 
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positive. Then, since 

(x + u)(z + w) - (y + v)” - r(x + u)(y + v) = x-‘(x + u)(xz - y2 - rxy) 

+ u-l(x + U)(UUJ - v2 - ruv) + (2x)-‘(zv - YU)~ 

and 
(XU)(XW + 2yv + ZU) - (xv + yu)2 - r(xu)(xv + yu) 

= x2(uw - v2 - ruv) + u”(xz - y2 - rxy), 

it follows that f + g and fg are in A along with f and g. If t = 0, then 

y = 0 and x > 0, and it is straightforward to check that f + g and fg are 
in A along with f and g. 

Answers to Exercises 

Chapter 3 

1.1. (b) Let x be any rational. For any other nonzero rational y, we have 

x = y(y-lx). 

1.2. Let the coefficients of p(t) and q(t) be ai and bi respectively. If p(t) = 

cq(t), then ai = cbi for each i, i.e. clai. The converse is straightforward. 

1.3. If at + b = f(t)g(t), the degrees of f(t) and g(t) must be 0 and 1 in 
some order. 

1.4. If f is a polynomial over R with a nontrivial factorization f = gh over 
R, then this is also a factorization over C. Hence an irreducible polynomial 
over C is also irreducible over R. An analogous argument applies for R and 

Q- 

1.5. Suppose, if possible, that t2 + 1 = (at + b)(d + d). Then UC = bd = 1 
and ad + bc = 0. Hence, a and c must be nonzero reals with the same sign. 
Similarly, b and d are nonzero with the same sign. Hence, ad and bc are 
nonzero with the same sign, and so cannot satisfy ad+ bc = 0. Thus, t2 + 1 
cannot be factored over R. 

1.6. Note that p(t) = f(t)g(t) if and only if p(t - k) = f(t - k)g(t - k). 

1.7. (a) t2+c has nonreal zeros and so cannot be factored over R. However, 

t2 + c = (t + i&)(t - J) i c is a factorization over C. 
(b) t2 - d2 = (t - d)(t + d) is a factorization over 2, Q, R, C. 

(c) t2 + c = (t + J-c)(t - J=-) c is a factorization over R, C. Suppose, 
if possible, that F c were rational; let it be u/v in lowest terms. Then 
-cv2 = u2. Since gcd(u, v) = 1, v must be 1 and so -c is a perfect square, a 
contradiction. Hence t2+c does not have rational zeros and so is irreducible 
over Q. 
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1.8. Assume that a > 0 and note that 

at2 + bt + c = u[(t - b/2u)2 - (1/4e)(b2 - 4ac)]. 

Apply Exercises 7 and 6. The quadratic at2 + bt + c is 

(i) always reducible over C 

(ii) reducible over R iff b2 - 4ac 1 0 

(iii) reducible over Q iff b2 - 4ac is a perfect square. 

Reducibility over Z requires more careful analysis. It is necessary that 
the discriminant b2 - 4ac be a perfect square, say d2. On the other hand, 
if this is true, then 

at2 + bt + c = (1/4a)(2at + b - d)(2ut + b + d) = (u/v)(pt + q)(rt + s) 

where gcd(u, v) = gcd(p, q) = gcd(r, s) = 1. Comparing coefficients of both 
sides, we find that v must divide pr, ps + qr, qs. Suppose d is a prime 
divisor of v. Then, if (say) dip, then d)(q. Hence dls and d$r. But then 
dips and d$qr, so that d$ps + qr, a contradiction. Hence v has no prime 
divisors, so v = 1. Therefore at2 + bt + c is reducible over Z if b2 - 4uc is a 
perfect square. 

1.9. (5/4)t2 - (31/45)t - (8/5) = ((5/6)t - 6/5)((3/2)t +4/3), for example. 

1.10. (a) Express the coefficients off over a least common divisor d. Then 
let c be the greatest common divisor of the numerators. 

(c) We can write (c/d)g(t) = f(t) = fl(t)fz(t) where fr and f2 have 
rational coefficients. Each fi can be written in the form (ci/di)gi, as in (a). 
The result follows with a/b = clczd/dldzc. 

(d) Let gl(t) = Cu&, gz(t) = Cvjtj. Let p, r, s be as specified. The 
coefficient of tr+’ in the product gl(t)gz(t) is 

c uiv,+,-i + u,v, + c uivr+a-i. 
i<r i>r 

Since the prime p divides ui for i < r and Vr+s-i for i > r, p divides both 
sums. But p.jwrvb, so that the coefficient of tr+’ in (a/b)gl(t)g2(t) is not 
an integer, yielding a contradiction. 

1.11. Let f(t) = t” + anvltn-l + . . . + alt + ac, and suppose that r = u/v 

(in lowest terms). Then ‘1~” + ‘&r aiunsivi = 0. If a prime p divides v, 
then p must also divide U, contradicting the coprimality of u and v. 

1.12. Let h(t) = f(t)g(t), where f(t) = Gait’, g(t) = Cbjtj. Then 

co = aobo 

cl = aobl + albo 
c2 = aobz + ulbl + uzbo 
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Since plcc and p2rt)cg, p must divide exactly one of a0 and bo, say plac, 

p$bo. Then 

plcl *plalbo =$plal 

P I c2 * P I do - P I U2. 

Continue on to find in succession that plug,. . . ,~[a,. But then plc, = unb,, 
yielding a contradiction. 

1.13. Apply the Eisenstein Criterion with prime 3. 

1.14.t + 1, 3t+4. 

1.15. t2 + t + 1 has nonreal zeros and so is irreducible over Z. 

1.16. Assume that h(t) is irreducible; use the notation of Exercise 12. If p 

fails to divide one of uc or bo, say the latter, the argument of Exercise 12 
leads to a contradiction. The remaining case is that each of ue and bo are 

divisible by p but not by p2. 

We show by induction that plai, pjbi for i = 0, 1,. . . , m. This is true for 
i = 0. Suppose that it has been shown for i = 1,2,. . . , R - 1, where k < m. 

Consider 

c2k = uob2k + albak-1 + * * * + akbk + uk+lbk-l + . * * + uxkbo. 

Since p is a divisor of cgk, ac, . . . , a&i, bo, . . . , bk-1, p alSO divides Uk bk, 
and thus at least one of ak and bk. 

Now, consider 

ck =aobk +albk-1 + .**+ak-lbl +akbo. 

Sincep2isadivisorofck,aibk-I,..., ak,lbl, p2 also divides aobk + akbo. 

Now, suppose plak. Then, p21ukbo, so p21aobk. But p21fue, so plbk. Similarly, 

if p]bk, then pjak. Hence p divides both ak and bk. 
Therefore, plai, plbi for 0 < i 5 m, and so p divides ~a,,,+1 = uOb2m+l + 

. . e + amb,+l + um+lbm + . . . + az,,,+l bo, yielding a contradiction. 

1.17. Apply the Eisenstein Criterion for p = 2 to show irreducibility over Z, 
hence over Q. The polynomial is reducible over R by the Factor Theorem 

since it has a real root 2i/‘, when r > 1. 

1.18. Construct a polynomial of the form t” + . . . + 2, where r - 2 terms 
apart from the leading and constant ones have even nonzero coefficients. 
Such a polynomial is irreducible by the Eisenstein Criterion with prime 2. 

1.19. By Exercise 6, P-l + tPv2 +a. . + t + 1 is irreducible as a polynomial 

in t if and only if (1 + s)P-’ + (1 + s)Ps2 + . . . + (1 + s) + 1 is irreducible 
as a polynomial in s. The latter polynomial can be written 

(l+s)‘-1 

S 
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Since 1 
( ) 

is divisible by p for 2 5 k 5 p - 1, the irreducibility follows 

from the Eisenstein Criterion with prime p. 

1.20. 
t3 + t2 + t + 1 = (t + l)(P + 1) 

t5 + t4 + t3 + t2 + t + 1 = (t + 1)(t2 + t + l)(P -t + 1) 

t7 + t6 + * *. + t + 1 = (t + l)(P + l)(P + 1). 

1.21. Let u(t) be a polynomial of largest degree over D which divides both 

f(t) and g(t). If g(t) d oes not divide f(t), then u(t) is a nonzero constant. 
By repeated application of the division algorithm (cf. Exercise 1.6.2), we 
can express u(t) in the form f(t)p(t) + g(t)q(t) for some polynomials p(t) 
and q(t) over D. But then u(w) = 0, a contradiction. 

1.22. Suppose if possible that g(t) h as a nonsimple zero w. Then g(w) = 
g’(w) = 0. By Exercise 21, g(t) divides g’(t), which is a contradiction, since 

0 5 deg g’(t) < deg g(t). 

2.1. (a) (u,v) = (12,-10). 6t2 + 2t - 20 = 6t2 + 12t - lot - 20 = 

(6t - lO)(t + 2) = 6t2 - lot + 12t - 20. 
(b) at2 + bt + c = as1 2 2 [a t + u(u + v)t + Uv] = a-‘(at + u)(at + v). Let 

w = gcd(a, u), a = wz, u = wy. Since a ] vwy, z ] vy. Since gcd(z, y) = 1, 
z Iv. Thus 

at2 + bt + c = [zt + (u/w)][wt + (v/z)]. 

(c) 28t2+57t+14 = 28t2+49t+8t+14 = (7t+2)(4t+7) is negative when 
-7/4 < t < -2/7. 20t2 + 39t - 44 = 20t2 + 55t - 16t - 44 = (4t + 11)(5t - 4) 
is negative when -1114 < t < 415. 

2.2. (a) uk - bk = (a - b)(ak-’ + ake2b + . . . + abks2 + bk-l). 

(b) a6 + bk = (a + b)(akml - akm2b + . . . - abkm2 + bkW1). 

2.3. (a) 4t2 - 20t - 11 = (2t - 5)2 - 62 = (2t - 11)(2t + 1). 
(b) 5t2 - 6t + 1 = (3t - 1)2 - 4t2 = (t - 1)(5t - 1). 

(c) t4 - 47t2 + 1 = (t2 + 1>z - 49t2 = (P - 7t + 1)(t2 + 7t + 1). 

2.4. (a) Any reducible cubic can be factored as the product of a linear and 
a quadratic. Since the leading coefficients of the factors divide that of the 
polynomial, the linear factor must have the form k(t - k), where k is an 
integer. Such k is a zero. 

(b) Any integer zero must divide 42. A little trial and error yields the 
zero 2 and the factorization (t - 2)(t” - 6t + 21). 

2.6. (d) (t” + 4t3 + 8t2 - 4t + l)(t4 - 4t3 + 8t2 + 4t + 1). 

2.7. (a), (b), (c), (e), (f) Irreducible. 

(d) (7t + 8)(4t - 3). 

(g) (t2 + 2t - 2& + 3)(t - 1). 
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(h) t2(t + 1)2 + (t + 1) = (t3 + t2 + l)(t + 1). 
(i) (3t + l)(t3 - t2 - 1). 
(j) (t - 1)3(2t + 3)2. 
(k) (t2 + l)(t - 1)2(t + 1)2. 

(1) (t - 6)(t + 2)(t + 3). 
(m) (t - 5)(t2 - 2t + 3). 
(n) (t2 + t + l)(t3 - t2 -t - 1). 
(0) (t2 - 2)(t3 - 3t2 + 2t - 7). 
(p) (t4 + lots + l)(t4 - lot2 + 1). 

2.8. Suppose that f = gh. Write g = ‘u + v where u is homogeneous and 
deg v < deg u = deg g. Then gh = uh + vh and deg vh < deg uh = deg f. 
Since f is homogeneous, we must have vh = 0, whence v = 0 and g is 
homogeneous. Similarly, h is homogeneous. 

2.9. No. A counterexample is z2y2+2ty-t2-y2 = (ty+z--y)(xy-z+y). 

2.10. (a) (u - b)(a - 5b). 

(b) (x - Y)(X + Y)(Y - z). 
(cl (x - Y)(X - Z)(Y - z). 
(d) (x + y + z)(z2 + y2 + z2 - zy - yz - IX). 

(e) (a - b)(a - c)(b - c). 

(0 (x - Y)(Y - z>(z - xl. 
(g) Substituting z = ax + by yields a(1 + u)x3 + b(1 + b)y3 + 

(a + 2ab + b2 + l)xg + (a2 + 2ab + b + 1)z2y. No choice of a, b will make 

all coefficients vanish simultaneously. The polynomial is irreducible. 

2.11. (b) Prom (a), p,(x, y, z) is divisible by (z - y)(y - z)(z - z). Since 
degp, < 3 when n = 0, 1, the only way p, can be divisible by a polynomial 
of degree 3 is for it to vanish identically. 

(d) qa(x, Y, z) = 1; 93(x, Y, z) = 2 + Y + z; a(x, Y, z) = x2 + y2 + z2 + 
zy+yz+zz. 

(e) pn(x, y, 0) = xy(y - x)(ynB2 + xfw3 + . . . + xnB2). 
(f) 4*(x, y, z) = z”-2 + (x + y)z”-3 + (x” + xy + y2)z”+ + 

(x3 + x2y + xy2 + y7)z”-5 + * * * + (x”-2 + x”--3y + . * f + y-2). 

2.12. 

(x + y + z)3 - x3 - y3 - z3 = 3(X + y)(y + Z)(Z + x) 

(x+y+z)5-x5-y5- z5 = 5(t+y)(y+z)(z+x)(x2+y2+z2+xy+yz+zx) 

(x + y+z)7-x7-y7-z7 

= 7(t+y)(y+z)(z+x)(x4+...+2t3y+*..+3x2y2+*** 

+ 5t2yz + * * .) 

= 7(x+y)(y+Z)(Z+x)[(x2+Y2+f2+xY+YZ+42 

+ xyz(2 + y + z)]. 
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2.13. No. 2t2+t-1 = (2t-l)(t+l) is reducible over Z, but irreducible over 

Z2. However, if the leading coefficient of the polynomial is not divisible by 
m, then irreducibility over Z, implies irreducibility over Z. (Any factor- 

ization over Z would yield a factorization over Z, involving polynomials 
of the same degree.) 

2.14. (a) t2 + t + 1 is irreducible over Zs, hence over Z. 
(b) 49t2 + 35t + 11 is irreducible over Zs, hence over Z. 
(c) Over Zs, th e p ly o nomial is equal to t3 + t2 + 2t + 1. Since it has no 

zero in Zs, it is irreducible over Zs. Since 3tl24, the polynomial must be 
irreducible over Z. 

2.15. (a) Over Z4, the polynomial is 

3t4 + 2t3 + t2 + 2 = 3(t + 1)2(t2 + 2). 

Over Z5, it is 

3t4 + 3t3 + t2 + 2t = t(t + 3)(3t2 + 4t + 4). 

Over Z7, it is 

5t3 + 5t2 + 3t + 4 = (t + 5)(5P + t + 5). 

Over Zg, it is 

7t3 + 2t2 + 7t + 8 = (t + 2)(7t2 + 6t + 4). 

(b) The results of (a) suggest a factorization of the form 

(at2 + bt + c)(ut2 + vt + w) 

with (a, b, c) 3 (7,6,4) and (u, v, w) - (0, 1,2) modulo 9. Since au = 63, 

the only possibility is a = 7, u = 9. Since cw = -10, c E 4 (mod 9), w f 2 
(mod 9), we must have c = -5, w = 2. 

Since the factorization is equivalent modulo 7 to (t + 5)(5t2 + t + 5) 
and since 9 E -5 (mod 7), we should have (a, b,c) E (0, -1, -5) and 
(21, ?I, w) z (-5, -1, -5) modulo 7. Thus b E 6 (mod 9), b q 6 (mod 7) 
leads to b E 6 (mod 63) and v - 1 (mod 9), v - -1 (mod 7) leads to 

v E -8 (mod 63). 
This leads to the trial (7t2 + 6t - 5)(9t2 - 8t + 2) which works. 

2.16. lot5 + 3t4 - 38t3 - 5t2 - 6t + 3 = (5t2 + 9t - 3)(2t3 - 3t2 - t - 1). 

3.1. (b) b divides every term but the first of the left side, and so divides 
c,a”. Since gcd(u” , b) = 1, b must divide cn . 

3.2. This is a consequence of Exercise 1. 

3.3. (a) No rational zeros. (b) 4/3. (c) 1, -2/3. (d) -4, 7. 
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3.4. The values of the polynomial at -2, -1, 1, 2 are, respectively, 40, 21, 
-11, 48. All but l/2 and 4/3 are eliminated. 

3.6. (a) 5. (b) 3/8. (c) 2, 2/5. (d) -1, 3, 7. (e) 3/2, -3/2, -5/2. (f) -7/2, 
413. 

3.7. (3t - 4)(3t + 5)(2t3 - 6t2 + 9t + 3). 

3.8. -7, 2/3, -5/8, (l/2)(1 + id?), (l/2)(1 - id?). 

3.9. Newton’s Table is Horner’s Table for the polynomial t3q( l/t) evaluated 
at l/5. This polynomial has zero l/5 iff q(t) has zero 5. 

3.12. (a) Note that 8/2 and 28 are supplementary. 
(b) From (a), cos0 = 2~0~~28 - 1 = 2(2cos2 0 - 1)2 - 1. 
(c) 8x4 - 8x2 - x + 1 = (X - 1)(2x + 1)(4x2 + 2x - 1). By (b), cose is a 

zero of this polynomial. Since case is not equal to 1 nor -l/2, it must be 
azeroof4x2+2a:-1. 

(d) (A- 1)/4. 

4.1. (a) 4, 5, 12, 13, 20, 21, 28, 29, 36, 37. 
(b) 2, 7, 12, 17, 22, 27, 32, 37. 
(c) For any integer t, 40 divides t2 - 9t - 36 iff 5 and 8 do. The congruence 

is satisfied by 12 and 37. 

4.4. 22, 82. 

4.5. 444. 

4.6. By Exercise 1.6.6 (d), th ere is a number w such that a + wu E b (mod 

v). Choose c such that 0 5 c _< m - 1 and c E a + wu (mod UV). Then c is 
the required number. 

If c and d satisfy c = d - a (mod u), c E d - b (mod v), then c - d is 
divisible by u and v, hence by UV. Hence c G d (mod m). If both 0 5 c 5 
m - 1, 0 5 d < m - 1, then c = d. 

4.8. 504 = 7.8.9. n” - n2 = n2(n” - 1) is always divisible by 7 and 9, as 

well as by 8 when n G 0, 1,3 (mod 4). If n E 2 (mod 4), n6 - 1 is odd and 
n2 is divisible by 4 but not by 8. Hence n8 - n2 is not divisible by 504 iff 
nE2 (mod 4). 

4.9. (a) t 5 3 (mod 4); t E 0, 2 (mod 9). (c) t E 11, 27 (mod 36). 

4.10. (a) None. (b) 11, 35. (c) 21, 45. 

4.11. (e) 22. (f) 221. (Note that t satisfies this congruence iff -t does.) 

4.12. (a) 1000 = 23.53. 2t3 + t + 3 q 0 (mod 5) is satisfied for t E 3, 4 
(mod 5). The solution t 3 3 (mod 5) does not lead to a solution modulo 
53 (cf. Exploration E.33). H owever, the congruence modulo 125 is satisfied 

by t E 124. The solution modulo 8 is 7. Hence, 2t3 + t + 3 E 0 (mod 1000) 
has a unique solution t E 999 (mod 1000). 
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(b) 83349 = 35.73. For a solution, we require t F 51, 193 or 242 (mod 
243) and t - 41,48, 90, 97, 139,146, 156, 188, 195,237,244,286, 293, 335 
or 342 (mod 343). Therefore, there are 3 x 15 = 45 solutions modulo 83349. 
For example, t - 51 (mod 243), t E 41 (mod 343) leads to the solution 
t E 25080 (mod 83349). 

4.13. 675 = 33.52. Any solution x must satisfy x 3 12 or 16 (mod 27) and 
x E 2, 7, 9, 12, 17,22 (mod 25). There are 2 x 6 = 12 incongruent solutions 
in all modulo 675. An obvious solution is x E 12 (mod 675). 

4.14. (a) For any zero r, we must have r 5 = 4r4+411r3+452r2+3322r+828. 
If Irl > 2, then 

lr15 5 41r14 + 4111r13 + 4521r12 + 3322lrl + 828 5 42001r14 + 828 

so that Irl 5 4200 + (828/lr14) < 5000. 
(b) Solve the congruence modulo 5000 = 23.54. If r is a root of the 

equation, then r E 1, 2 or 3 (mod 8) and r E 7 (mod 25) or r 3 23 (mod 
625). The roots are 23 and -18. 

4.15. Solving the congruence modulo 32.23 yields t E 18,63 (mod 72). The 
only integer root is -9. 

5.3. t2 - 1 = (t - 1)(t + 1). 

t3 - 1 = (t - l)(t - (-1 + i&)/2)(t - (-1 - ifi)/2). 
t4 - 1 = (t - l)(t + l)(t - i)(t + i). 

t6 - 1 = (t” - l)(t + l)(t - (1 + ifi)/2) t - (1 - i&)/2). 
P-1 = (t”-l)(t-(l+i)/JZ)(t-(l-i)/ J- 2)(t+(l+i)/JZ)(t+(l-i)/JZ). 

5.4. Note that 

[t - (cos 2kn/n + i sin Pklr/n)][t - (cos 2kr/n - sin Sk?r/n)] 

= t2 - (2cos2k?r/n)t + 1 

t5 - 1 = (t - l)(? - (2 cos 2?f/5)t + l)(G - (2 cos 47r/5)t + 1). 

5.6. Minimum exponents and zeros of &2(t) 1 : 1; 2 : -1; 3 : (-1&i&)/2; 
4 : fi; 6 : (1 f i&)/2; 12 : the remaining four zeros. 

5.7. (b) Let m be the smallest positive integer for which w”’ = 1. By the 
division algorithm, we can write n = qm + r, where q and r are integers 

and 0 < r < m. Then w’ = wn(wm)-q = 1. From the minimality of m, it 

follows than r = 0. Hence m/n, and, clearly, w is a primitive mth root of 
unity. 

5.8. (a) By de Moivre’s Theorem, cos(2kr/n) + isin(2k?r/n) = <,k. 
(b) Since t” - 1 = (t - l)(t”-l + tnw2 +. . . + t + l), all nth roots of unity 

except 1 itself are zeros of the second factor. 
(c) Suppose gcd(a, n) = d. Th en, if C is an nth root of unity, ([“)“ld = 

(Cn)a/d = 1. Hence, if C” is primitive, then d = 1. Suppose d = 1 and let 
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k be the smallest positive exponent for which (<a)k = 1. It can be seen 
that the powers of C” cycle through the set { 1, C”, c20,. . . , c(k-l)o}. Since 
(6”)” = 1, n must be a multiple of k so that n = mk. Since ( is a primitive 

nth root and C ak = 1, ak must be a multiple of n, say ak = qn. Hence 
a = qm, so that m divides n and a. Therefore, m = 1 and C” is a primitive 
nth root. 

(e) gcd(a, n) = gcd(n - a, n), so that a - n - a is a pairing of positive 
integers less than n and coprime with n. Note that a # n - a when n 2 3. 

5.9. The zeros of P,(t) consist of all the primitive dth roots of unity, where 
d runs through all the positive divisors of n. For each zero, there is a 
corresponding linear factor. By collecting together all the linear factors for 
the primitive dth roots, we obtain the required representation. 

5.11. &$I = t6+t3+ 1; 

&lo = t4 -ts+tz-t+1; 
f&2 = t4 - t2 + 1; 

Q14 = t6 -t5+t4-t3+t2-t+1; 

Q15 = ts - t7 + t5 - t4 + t3 - t + 1; 

Q1fj = t” + 1. 

To find, for example, &Is(t), we look for the complementary factors of 
Pls(t) whose zeros are primitive lst, 3rd, 5th roots of unity. Thus 

&(t) = (t5 - 1)(t’O + t5 + 1) 

= (P-1)(t2+t+1)(t8-P+P-t4+t3-t+1). 

5.12. (a) It is straightforward to see that if 6 is a primitive 2kth root of 
unity, then C2 is a primitive kth root of unity. Let k be even and C2 be a 
primitive kth root of unity. Suppose that C is a primitive rth root of unity. 
Then k <_ r 5 2k and either r = 2k or r is odd. Since (C”)” = 1 and Ck # 1, 

we must have ck = -1. Hence C’-’ = -1, so that <2(r-k) = 1. Hence 
r - k 2 k, so that r 1 2k. Thus, i is a primitive Pkth root of unity. 

The primitive kth roots of unity are precisely the numbers of the form 

((:k)2, where gcd(a, k) = gcd(a, 2k) = 1. 

Qk(t2) = II{(t2 - <a) : 1 _< a < k,gcd(a, k) = 1) 

= II{(t - <ik)(t - C,“,‘(l) : 1 5 a < k, gcd(u, k) = 1) 

= II{(t - ctk) : 1 _< a < 2k, gcd(a, 28) = 1) 

= Qak(t). 

(b) Let k be odd and let C be a primitive kth root of unity. Then no 
power of C is equal to -1, whence it follows that no odd power of -6 is 
equal to 1. Hence, if (-C)’ = 1, then r is even and c’ = 1. But then r is 
an even multiple of k, i.e. a multiple of 2k. It follows that -C is a primitive 

2kth root of unity. 
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On the other hand, if-c is a primitive Pkth root of unity, then (-0” = 

-1, from which < k = 1 It is straightforward to see that C is a primitive . 
kth root of unity. Hence 6 is a primitive kth root of unity iff -(’ is a 
primitive 2kth root of unity. Thus t&(t) = Qk(-t), since deg&k(t) is 
even by Exercise 8. 

5.13. cos[(2k + l)a/n] + isin[(2k+l)?r/n],fork=O,l,..., n-l. 

5.14. r’l”(cos 2ka/n + i sin 2k?r/n) (0 5 k < n - 1). 

5.15. Let n = kr. Then, if u = tr, we have t” - 1 = uk - 1 = (u - 1) 
(uk-’ +. . . + l), from which the result follows. The conjecture is false; take 
k = 1, m = 2. 

5.17. Use C + C2 + . . f + C6 = -1 and C7 = 1 to check that u+ v = -1, 

uv= 2. 

5.18. (a) Modulo 11: 1, 3, 4, 5,9; Modulo 13: 1, 3,4, 9, 10, 12; Modulo 17: 
1, 2, 4, 8, 9, 13, 15, 16. 

(b)Foranyprimep,u+v=C{C” : l<u<p-l}=-l.Whenp=ll, 
13, 17, the product uv = 3, -3, -4, respectively. 

5.19. f(x) = (x4 + 2x3 + 2x2 + x)(xa + x6 + x5 + x4 + x3 + x). The faces 
of the dice are labeled (4,3,3,2,2,1) and (8,6,5,4,3,1). For more on this 
consult : 

Duane Broline, Renumbering the faces of dice. Math. Mug. 52 (1979), 

312-315. 
J.A. Gallian & D.J. Rusin, Cyclotomic polynomials and nonstandard 

dice. Discrete Math. 27 (1979), 245-249. 
Martin Gardner, Mathematical games. Scientific American 238 (1978), 

19-32. 

6.1. Suppose f = u/v. Divide v into ti to obtain 2~ = pv + w where deg w < 
degv. Then the result follows with g = w/v. 

6.2. Putting the sum A/(t -m)+ B/(t - n over a common denominator and ) 
equating the numerator to at + b yields the condition A(t - n) + B(t - m) = 
at + b for t # m, n. This can be interpreted as saying that the polynomial 
A(t - n) + B(t - m) - (at + b) vanishes for infinitely many values oft (all 

but t = m, n). But this implies that it must be the zero polynomial (by 
Exercise 2.2.4) and so vanishes for t = m and t = n. 

A = (am + b)/(m - n); B = (an + b)/(n - m). 

6.3. A = 3, B = -2. 

6.4. (a) The result can be proved by induction on k. It is clearly true when 
k = 1. Suppose it has been established when the degree of the denominator 
is less than k. 
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Consider the difference 

p(t) A = PM - w(t) -- 
q(t) t - al q(t) 

where q(t) = (t-ul)ql(t) an d cl is a constant to be determined. The degree 
of the numerator is strictly less than the degree of q(t). Since ql(a1) # 0, we 
can choose cl so that p(al)-clql(al) = 0. Thusp(t) = clql(t)+(t-al)pl(t), 
for some polynomial PI(t). 

Hence 
P(t> = c1 

q(t) 

I PlW 
t - a1 a(t) 

Since degpl(t) < degql(t), th e induction hypothesis can be applied to 

m(Wq1(t). 

(b) If the sum is put over a common denominator, the numerator is 

p(t) = CCi(t - al).~.(tTii)...(t -a,). (*> 

(The hat denotes a deleted term.) Note that 

q’(t) = C(t - ~1) . +. (t Zj). . . (t - ura), 

SO that p(ai) = ciq’(ai). 

cc> 

f(t) = k[bi(t - al) . . . (t Si) . . . (t - u,)/q’(ui)]. 
i=l 

6.5. (a) 
n 

c 
1 “1 1 

c 
1 n-l 

k=2k(k-l)=k=21i-~=1-~= n ’ 

(b) When n = 2, the sum is l/6. For n > 3, we have 

= ; p29+q 

k=l k=2 k=3 

= i[l-l/2-l/n+l/(n+l)] 

= (n+2)(n- 1) 
4n(n+l) ’ 

(c) If x = 0, th e sum is equal to n - 1. If x = -1, -l/2,. . . ,-l/n, the 
sum is not defined. 

n 

k=2 (kc + l)((:- 1)” + 1) = : c (k - 1’,x + 1 - kzi 1 1 
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1 1 1 n-l 
=- 

[ 
--- = 

x x+1 7x2 + 1 1 (x+ l)(nx+ 1)’ 

6.6. We have t3+t2+15t-27 = [A(t-3)+B](t2+6t+27)+(Ct+D)(t-3)2. 
Setting t = 3 yields B = 1. Comparison of coefficients leads to A = 2/3, 

B = 1, C = l/3, D = 0. 

6.7. t4 - 3t3 + t2 - 3t = t(t - 3)(t2 + 1). The rational function has the 
representation 

1 2 

t+ 

-t + 1 
-- -+-. 

t-3 t2 + 1 

6.8. 
111 

[ 

1 

a=- --- 2 t-1 t+1 I 

1 

1 

[ 

1 t+2 
m=- 

-- 
3 t-1 t2+t+1 1 
1 1 

= 3 t-1+t-w [- A+$$2 1 
where w = (-1 + i&)/2. 

1 1 1 1 2 

- t4 - 1 = ------ [ 1 4 t-1 t2 1 t+1 + 

1 1 1 . i 

= 4 [ --- +2-- 1 t-1 t+1 t-i t+i 

1 1 

[ 

1 t3 2t2 + 3t 4 + + 

- = 
- -- 

t5- 1 5 t-1 t4+@+P+t+1 I 

1 1 

[ 

c c2 c3 c4 ---- 
= 5 t-1+&C+ t--2+&(3+-. t - p 1 

If (t” - l)-’ = ~~~~ ui(t - <A)-‘, then ai must satisfy 

- uj fl(c; - <i) = 1 or Ui<~n~(Iv<~) = 1. 

j#i i=l 

Since the product is equal to t”-’ + . . . + t + 1 evaluated at t = 1, we find 

that ai = CL/n. 



284 Answers to Exercises and Solutions to Problems 

Solutions to Problems 

Chapter 3 

7.1. (a) (2x2 + 1)2 - 4x2 = (2x2 +2x + 1)(2x2 - 2x + 1). 

(b) (x2 - 2)2 - 16x2 = (x2 +4x - 2)(z2 - 4x - 2). 

(c) (xy - x - y + l)(xy - 1) = (Z - l)(y - l)(zy - 1). 
(d) (xz - l)(yz - l)(xy - 1). 
(e) 3(a - b)(b - c)(c - a). 

(f) (a + c)(b + c)(a + b - c). 

(d (a f b)(b + c>(c + a). 
(h) (a + b)(b + c)(c - a). 
(i) (x2 + x + f)(xd - x7 + x5 - x4 + x3 - x + 1). 

i”k: :‘z;;z,x - 2zz + z2 + 3Y2). 
z - xyt - 2)(X + y + z - xyz + 2). 

(1) (f- Y)(Y - z>(z - x>(xy + yz + zx). 
(m) 12abc(a + b + c). 

(n) 3ubc(a + b)(b + c)(c + u). 
(0) 2ubc(a + b + c). 

(P) (z + Y + s)“[(z + Y + z)3 - 5(x + y + z)(xy + yz + ZX) + 15xyz] = 
(x + y + z)“[x” + y3 + z3 - 2x2y - 2xy2 - 2y2z - 2yz2 - 2z2x - 22x2 + 6xyz]. 

(d (x + Y + z + w>(x + Y - z - W)(X - y + w - z)(x - y - z + w). 
(r) (xy - z2)(yz - x2)(.2x - y2). 

(s) (x2 + y2 - s2)(y2 + 22 - X2)(%” + x2 - y2), 

(t> (x + Y>(Y + z)(z + 3). 
(u) [(a” + b2) + (2ab - ~“)][(a~ + b2) - (2ab - c2)] = [(a + b)2 - c”] 

[(a - b)2 + c”] = (a $ b + c)(u + b - c)(a” + b2 + c2 - 2ab). 

7.2. (x4 - x3 + x2 + 2x - 6) = (x2 - x + 3)(x2 - 2). 
(x4+x3+3x2+4x+6)=(x2-x+3)(x2+2x+2). 

7.3. Since [P(x)]~ - x should vanish when x = 1, 2, 3, we require that 
p(1) = 1, p(2) = 21j5, p(3) = 31i5. A possible polynomial p is the quadratic 
ax2 + bx f c, where 

2~ = 31i5 - 26/5 + 1, b = 21i5 - 1 - 3a, c = 1 - a - b. 

7.4. Since i should be a zero of the polynomial, we have that (-a + b- 1) + 
(a + b - 5)i = 0. H ence a = 2, b = 3, and 

(2x + 3)(x5 + 1) - (5x + 1) = 2(x6 + 1) + 3x(x4 - 1) 

= (x2 + 1)[2(x4 - x2 + 1) +3x(x2 - l)]. 

7.5. (a) The zeros of x2 + px + 1 are reciprocals, say r and l/r. These are 
also zeros of ax3 + bx + c. Since the sum of the zeros of the cubic is 0, its 
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third zero is -(r + l/r). S ince -c/a is the product of the zeros and b/a is 
the sum of all products of pairs of the zeros, 

a2 - c2 
-= 

ab 
1 - wd2 = 1 

b/a ’ 

(b) The zeros of cx3+bx2+u are r, l/r, -(r+l/r)-l. Hence both cubits 
are divisible by x2 +px + 1 = (x - r)(x - l/r). 

7.6. If the polynomial is equal to (UX + vy + w)(qx + ry + s), then uq = 3, 
ur + vq = 2p, vr = 2, us + wq = 2a, us + wr = -4, ws = 1. By multiplying 
each factor by a suitable constant (the first by s, the second by w) if 

necessary, we may suppose that w = s = 1. Hence uq = 3, u + q = 2u, so 
that u and q are the zeros of t2 - 2at + 3 = (t - a)2 - (a2 - 3). Also vr = 2, 

v + r = -4, so that v and r are zeros of t2 + 4t + 2. We may assume that 
r=-2+&andv=-2-d. 

Hence, 

2p = ur + vq = u(r - v) + (U + q)v = u(2Jz) - 2(2 + Jz)a 

3 p+2a=(u-u)JZ 

* p2 + 4ap + 4a2 = 2(~ - a)” = 2(a2 - 3) 

+ p2+4ap+2u2+6=0. 

7.7. Let the polynomial be t3 + at2 + bt + c and its zeros be r, s and rs. 
Then (1 + r)(l + s) = 1 - a and rs(1 + r)(l + s) = b - c. If a # 1, then 
rs = (b-c)/(l- ) a is rational and t - rs is a factor of the cubic. (Observe 
that, in fact, 1 - a is a divisor of b - c, since rs must be an integer.) If 
a = 1, then, say, r = -1 and b = c. In this case, t + 1 is a factor of the 
cubic. 

7.8. Setting x = 0 and x = 1, we find that a must divide both 90 and 92. 
Hence a = -2, -1, 1 or 2. Since x2 - x - 2 = (x - 2)(x + l), and 2 and -1 
are not zeros of xl3 + x + 90, a # -2. Similarly, a # 1. Thus, a = -1 or 
a = 2. 

If u is a zero of x2 - x - 1, then u2 = u + 1, whence u4 = 3u + 2, 
ud = 21~ + 13, u12 = 144~ + 89, u l3 = 233~ + 144 # -u - 90. Hence u is 
not a zero of xl3 + x + 1. Thus a # -1. 

1fvisazeroofx2-x+2,thenv2=v-2,v4=-3v+2,vs=-3v-14, 
V12 = 45v - 46, v13 = -v - 90. Hence both zeros of x2 - x + 2 are zeros of 
xl3 + x + 90. Thus, a = 2. 

Checking, we find that 

x13+x+90=(x2-x+2)(x11+x10-xg-3xd-x7+5x6+7x5 

- 3x4 - 17x3 - 11x2 + 23x + 45). 

7.9. It is the cube of b(b - a - c). 
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7.10. Let u = r + s, v = rs. Then q(x) = x2 - ux + v and p(x) = 
(x - r)(x -s) + (r + s - x) = x2 - (u + 1)x + (u + v). Expressing the given 
polynomial as the product of p(x) and q(x) and comparing coefficients leads 
to 

2a+l=-(2u+l)*a+u+l=O 

(a - 1)2 = u2 + 2(u + v) * 2(u + v) = (a - 1)2 - u2 = -4a 

4 = v(u + v) = -2av. 

Since u = -a - 1 and u + v = -2~2, it follows that v = --a + 1 and that 
4 = 2a2 - 2a. Hence a = 2 or a = -1. 

Since b = -u(u+v)-v(u+l) = -(3u2+u), we have that (a, b) = (2, -14) 
or (-1, -2). Thus, the possibilities are 

x4 + 5x3 + x2 - 14x + 4 = (x2 + 3x - 1)(x2 + 2x - 4) 

x4-x3+4x2-2x+4=(x2+2)(x2-x+2). 

7.11. 320n2+ 144nl243 = (an+ b)(cn+d) implies that b and d are powers 
of 3, gcd(uc, 3) = 1 and ad + bc = 144 z 0 (mod 9). Hence, without loss of 
generality, we can take b = 9, c = -27. We find that 320n2 + 144n - 243 = 

(8n + 9)(40n - 27). 
Hence 

3(81”+l) + (16n - 54)9”+’ - (320n2 + 144n - 243) 

= [3(9”+‘) + (40n - 27)][9”+l - (8n + 9)] 

= [27(9” - 1) + 40n][9(9” - 1) - 8n] 

= 82[27(9”-1+9n-2+9”-3+. . .+1)+5n][9(9”-1+9”-2+9”-3+. . .+1)-n]. 

It is straightforward to check that, modulo 8, for each n, each factor of the 
last member in square brackets is congruent to 0. Hence the given quantity 
is divisible by 84 = 212. 

7.12. If n = 2m, a = 2b, then x” + xa + 1 = (x”’ + x’ + 1)“. If f(x) = 
xn + x” + 1 with exactly one of n and a even, then f’(x) = xk where 
k = n - 1 or a - 1, and gcd(f, f’) = 1. If n and a are both odd, then 
f’(x) = x-1 + xa-‘, so that f(x) = xf’(x) + 1 and gcd(f, f’) = 1. Since 

any repeated factor of f( ) x must also divide f’(x), the result follows. 

7.13. If at2 + bt + c and at2 + bt + c + 1 are both reducible over Z, then 
for some integers m and n, 

b2 - 4ac = m2 and b2 - 4ac - 4u = n2. 

Hence 4a = m2 - n2. 
(a) In the case that a = 1, this yields 4 = m2 - n2 = (m - n)(m + n). 

Since m and n have the same parity, we must have m = 2, n = 0, whence 



Solutions to Problems; Chapter 3 287 

b2 = 4(c+ 1). Th us, c+ 1 is a square, say u2, from which b = 2u. Conversely, 
ifb=2uandc= u2 - 1, both t2 + bt + c and t2 + bt + c + 1 are evidently 
reducible over Z. 

(b) If a = 3, we are led to b2 = 4(4 + 3~). Choosing c = 7 makes 4 + 3c 
a square, and we obtain the examples 

3t2 + lot + 7 = (3t + 7)(t + 1) 

3t2 + lot + 8 = (3t + 4)(t + 2). 

7.14. Modulo xq - x - 1, it can be shown by induction that 

xqpGx+r, (r=1,2 ,... ). 

This is clearly true for r = 1. If it is true for r = k, then 

Xq k+l z (x + 1) Ir = q - xQk + 1 E (x + k) + 1 = x + (k + 1). 

Hence, 

xm - l- x . XP . . . . . x9p-1 -1~x(x+l)(x+2)...(x+p-1)--l 

= - xp-x- 1. 

If n = 1, then p = q and xp - x- 1 E 0. If n > 1, then q > p and 
XP-x-1$0. 

7.15. (x4 - 1)4 - x - 1 = (x4 - 1)4 - x4 + (x4 - 2 - 1) = (x’ - x - 1) 

[(x4 - 1)3 + (x4 - 1)2x + (x4 - 1)x2 + x3 + 1). The second factor vanishes 
for x = -1 and x = 0, and so it is equal to 

x(x + l)(xlO - x9 + x8 - 3x6 + 3x5 - 2x4 + 3x2 - 2x + 1). 

7.16. Let w be an imaginary cube root of unity so that w2 + w + 1 = 0. 
Then, when t = w, 

(t + 1)” - t” - 1 = [(w + 1)” - 1 - w”] = -(WZn + 1+ w”) = 0 

when n E 1, 5 (mod 6). Hence t -w divides the given polynomial. Since 
t2 + t + 1 is the product of two factors of the type t-w, this too divides the 

given polynomial. The derivative of (t + 1)” -t” - 1 is n[(t + 1),-l - tnel]. 
When n E 1 (mod S), this too vanishes for t = w and hence is divisible by 
t2 + t + 1. Prom these facts, the results can be obtained by setting x = ty. 

7.17. The given polynomial can be written as a rational function with 
numerator 

(t4 - l)k+’ + (t + l)k+V-’ 
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and denominator (t + l)k. It suffices to show that the numerator is divisible 

by t5 + 1, or, equivalently, vanishes when we set t5 = -1. This can be seen 
by expanding the numerator binomially and pairing the terms: 

t4k+4 -( k;1)t4k+( ‘;‘)+4-( k;l)t-+...+(-qk+l 

+ t4k-1 +( “:‘)t4k+( k;1)t4k+l+( ‘;‘)4”f2+...+tS’. 

7.18. Let p be any prime exceeding 3. We show that x2 - x + 1 divides 
x2P - xr + 1. Let w be a zero of the quadratic. Then w is a primitive 6th 

root of unity. Since p - 1 or 5 (mod 6), Wp is also a primitive 6th root of 
unity, so that w is a zero of x2P - xp + 1, from which the divisibility follows. 

Suppose that m = kp, with p as above’ and x = 2k. Then it follows that 
4k-2k+1divides4m-2m+1. 

7.19. n is clearly odd. Let n + 1 = 2r. Then 

4" + n4 = (2" + n2)2 - n22”+l = (2” + n2’ + n2)(2” - n2’ + n”). 

If r = 2 or 3, the number is easily cnecked to be composite. If r 2 4, then 
2n + n2 > 2” = 2’-‘2’ > (2r - 1)2’, so that both factors of the number 
exceed 1 and the number is composite. If r = n = 1, the number is prime. 

7.20. Let 2k= m + 1. Then 

22m + 1 = (2” + 1)2 - 22k = (2” + 2” + 1)(2m - 2” + 1). 

There are four cases to be considered. If (k, m) E (2,3) or (3,1) (mod 4), 

then 2m - 2k + 1 E 0 ( mod 5); if (k, m) E (1,1) or (0,3) (mod 4), then 

2" + 2k + 1 E 0 (mod 5). I n any case, one of the factors is divisible by 5 

and, when m > 3, it is straightforward to check that both factors exceed 5. 

7.21. f(x, Y) = (X - Yhdx, Y) + fb49 = (Y - +a 4 =b dx, Y) = 
-q(y, x). Since q(x, y) is a polynomial, this last equation persists for y = x, 
so that q(x, x) = 0. By the Factor Theorem, q(x, y) = (x - y)r(x, y) and 
the result follows. 

7.22. The equation can be rewritten 

0 = nx”-l + (n - 1)~“~~ + . . . + 2x - (n - l)(n + 1) 

= [nx - (n + l)][~“-~ + 2xns3 + 3xnB4 + . . . + (n - l)], 

whence x = (n + 1)/n is a solution. 

8.1.. yx = x2 + 1 j x2 - x3 - x = x2 - yx2 = (1 - y)x2 = y2x2 = 
x4 + 2x2 + 1 j x4 + x3 + x2 + x + 1 = 0, whence the result follows. 

8.2. If b = 2u, both sides of the equation are undefined. Let b # 2~. Now 
a3 + b3 = (a + b)( u2-ub+b2) anda3+(u-b)3=(2a-b)[a2-u(a-b)+ 
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(Q - b)z] = (2~ - b)(02 - ab + b2). If a2 + b2 = ab (i.e. a/b is a primitive 6th 

root of unity), the left side of the equation is undefined and the equation is 
not valid. Hence, the equation is valid as long as b # 2a and a2 + b2 # ab. 

8.3. An obvious solution is x = 0. Since, for every nonzero integer x, 

x cannot be even. If x is odd, we must have that 

which reduces to x2 - 2x - 3 = 0. The only other solutions are 2: = -1, 3. 

8.4. First solution. Suppose z is a common zero of the two polynomials. 

Then 

z + 1 = z5 = z(az + b)2 = (a” - 3a2b + b2)z + (a3b - 2ab’) 

Since I is nonrational (why?), 

a4-3a2b+b2 = 1 

a3b - 2ab2 = 1. 

Eliminate b2 from (1) and (2) to get 

5a3b=2a5-20-l. 

Squaring (3) d an using (2) to eliminate b2 gives 

25a5(a3b - 1) = 8a1’ - 16a6 - 8a5 + 8a2 + 8a + 2. 

Use (3) to eliminate b and obtain 

Jo + 3a6 - llc? - 402 - 4a - 1 = 0. 

(1) 

(2) 

(3) 

(4 

(5) 

But (5) has no rational roots. Hence the assumption of a common zero 
leads to a contradiction. 

Second solution. If z is a common zero, then z is a zero of the remainder 
(a” - 3a2b + b2 - 1)~ - (a3b - 2ab2 - 1) when the quintic is divided by the 
quadratic. This leads to (l), (2), which when solved as a linear system for 

b and b2 yields 

5a3b = 2a5 - 2a - 1 5ab2 = a5 - a - 3. 

Elimination of b yields (5) and the argument proceeds as before. 



290 Answers to Exercises and Solutions to Problems 

8.5. First solution. Let U, v, w be the zeros of x3 + ax2 + 11x + 6 and u, 
v, % the zeros of z3 + bx2 + 14x + 8. Then 

u+v+w=--a uv+uw+vw=11 uwv=-6 
u+v+z=-b uv + U% + V% = 14 uvz = -8 

* w(u + v) = 11- uv z(u + v) = 14 - uv 6% = 8w 
a 6(14 - uv) = 8(11- uv) + uv = 2 
* w=-3, %=-4*u+v=-3. 

Hence a = 6, b = 7. 
Second solution. The common zeros of two polynomials are zeros of their 

difference (Q - b)x2 - 3x - 2. Now 

6 + 11x + .x2 + x3 = (2 + 3x + (b - a)x2)(3 + x) 

+ (4a - 3b - 3)x2 + (1 + a - b)x3. 

Since 2+3x+(b-a)x2 divides 6+11x+ax2+x3, it follows that 4a-3b-3 = 
l+a-b=O,ore=6,b=7. 

8.6. Since the r-ai are distinct nonzero integers and at most two can have 
the same absolute value, their absolute values arranged in increasing order 
are respectively at least equal to 1, 1, 2, 2, 3, 3,. . . , n, n. Hence 

However, since ll(r - oi) = (-1)“(n!)2, equality actually occurs. Thus, 
the numbers r - ai are +l, -1, +2, -2,. . . ,+n, -n in some order and 
r-al+r-a2+.. .+r-az,=l-1+2-2+...+n-n=O.Theresult 
follows. 

8.7. Let t3 - mt2 - mt - (m2 + 1) have an integer zero t. Then t must be 

such that the quadratic equation 

m2 + (t2 + t)m - (t3 - 1) = 0 

has an integer solution m. The discriminant of this quadratic is 

t4 + 6t3 + t2 - 4 = (t2 + 3t - 4)2 + (24t - 20) = (t + 4)2(t - 1)2 + 4(6t - 5). 

If t 2 1, then 

(t2 + 3t - 4)2 + (24t - 20) > (P + 3t - 3)2, 

so that t 5 8. If t 5 -5, then 

(t2 + 3t - 4)2 + (24t - 20) 5 (P + 3t - 5)2, 
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so that t > -15. Thus, -15 5 t 5 8. Checking possibiEties leads to the 
following polynomials: 

m t3 - mt2 - mt - (m2 + 1) 

-77 t3 + 77t2 + 77t - 5930 = (t + 10)(t2 + 67t - 593) 

-13 t3 + 13t2 + 13t - 170 = (t + lO)(@ + 3t - 17) 
-7 t3 + 7t2 + 7t - 50 = (t - 2)(t2 + 9t + 25) 
-2 t3 + 2t2 + 2t - 5 = (t - l)(@ + 3t + 5) 
0 &-l=(t-l)(t2+t+l) 
1 t3 - t2 - t - 2 = (t - 2)(t2 + t + 1) 

8.8. Suppose, if possible, that m is an integer zero off. Let k be any positive 
integer. Determine an integer c so that r = m - kc is one of (1,2,3, . . . , k}. 
Then f(r) = f(m - kc) E f(m) = 0 (mod k). The result follows by a 
contradiction argument. 

8.9. For some polynomial g(t), 

f(t) - 12 = (t - a)(t - b)(t - c)(t - d)g(t). 

If f(k) = 25, then substituting k into this equation yields a representation 
of 13 as the product of at least four distinct integers, an impossibility. 

8.10. Since m + n + k = 0, 1 is a zero of the quadratic. The other zero 
must be k/m = -1 - n/m. 

8.11. We must have 

(ad - bc)(x - p)” = (5d - b)x2 + (8d - 10b)x + (14d - 7b). 

The discriminant of the right side must vanish, so that 

(4d - 5b)2 = 7(5d - b)(2d - b), 

which simplifies to (3d - 2b)(2d + b) = 0. Similarly, 

(ad - bc)(x - q)” = (a - 5c)x2 + (lOa - 8c)z + (7a - 14~) 

yields (3c - 2a)(2c + u) = 0. 

Further information is obtained by comparing quadratic and constant 
coefficients in the two equations: 

a+b=5 c+d=l 

up2 + bq2 = 14 cp2 + dq2 = 7. 

Experimenting with IpI = 1, IqJ = 2 leads to the possibility 

(a, h c, d,p, q) = (2,3, -1,2,1, -2). 
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8.12. Observe that 

0 = -w7-x7-y7-%7=(x+y+%)7-x7-y7-%7 

= 7(x + y)(y + %)(% + x)[(x” + y2 + %2 + xy + y% + %x)2 

+ ZY%(Z + y + %)I. 

Now, 

4(x2 + Y2+~2+xY+Y~+%2)2+4xY%(Z+Y+%) 

= [(x + y)2 + (y + %)” + (% + x)“]” - 4xyzw 

= [(w+“)2+(w+x)2+(w+y)2]2-4xy%w 

= [3w2 + 2w(x + y + %) + x2 + y2 + %“I” - 4XY%W 

= [w2 + x2 + y2 + t212 - 4xyzw 

1 [2]wx] + 2]yz]]2 - 4xyzw 

1 [4( lwxyz ])‘/2]2 - 4xyzw 

1 12]xyzw] 10 

by a double application of the Arithmetic-Geometric Mean Inequality (Ex- 
ercise 1.2.17), with equality iff Ix] = ]y] = ]%I = ]w] = 0. Otherwise, at least 
one of x + y, y + %, % + x vanishes. In any case, w(w + Z)(W + y)(w + %) 
assumes only the value 0. 

8.13. This follows directly from Exercise 2.12. A generalization to four 

variables appears in Crux Mathematicorum 2 (1976), 180. 

8.14. (a) Using the third equation to eliminate c from the other two yields 

=(x2%2 - xy?z) + b(x# + y2z2) = 0 

a(x2.z2 + x3y) + b(y2z2 - x2yz) = 0. 

Eliminating a and taking account of bxy # 0 leads to 

x3%3 + y323 + x3y3 + x2y2t.2 = 0. 

(b) Determining abc by multiplying the right sides gives 

abc = 2abc + a2bx2zB2 + a2cx2yB2 + b2cxe2y2 + ab2y2zs2 

+ a~~,z’y-~ + bc2x-2r2. 

Multiplying by zy% gives 

0 = abcxyz + a2z3(byz-’ + WY-‘) + b2y3(crx-1 + axz-‘) 

f c2z3(axy-’ + byx-I) 

= abcxyz + a3x3 + b3$ + c3z3. 
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(c) Cubing the three equations and adding (taking account of (a) and 
(b)) yields 

a3 + b3 + c3 = b3y3(z-3 + x-“) + c3z3(xm3 + yS3) 

+ a3x3(ys3 + z-“) + 9abc 

= b3y3(-x-‘y-‘z-1 - y-3) + ,3,3(-x-~y-‘z-~ _ %-3) 

+ a3x3(-x-‘yS1z-’ - y-“) + 9abc 

= -(a” + b3 + c3) - x-‘y-‘zS1(a3x3 + b3y3 + c”z”) + Sabc, 

whence the result. 

8.15. Multiplying out the left side yields 

3+x%(% - x) + xy(x - y) + zy(y - %) + XY(X - Y) +xz(z - X) + dy - %) 

Y4Y - %> X%(% - x) “Y(X - Y) 

= 3+ [(x/!/%)(x-y- t.)+(y/xz)(-x+ y- %>+(%/xY>(-x - y+ %>I 

= 3+2(x3+ y3+Z3)/(xy%)= 9 

by Exercise 1.5.9(a). 

8.16. Let each quantity be equal to u. Then 

x3 - myr = ux2 and y3 - mxz = uy2. 

Subtract and divide by x - y to get 

x2+xy+y2+mz=u(x+y). 

Similarly, ,r2 + zy + y2 + mx = u(y + z). Subtract and divide by x - z to 
getx+y+z-mmu. 

8.17. Since 0 = (r + 1)3 + c(r + 1)2 + d(r + 1) + 1 = r3 + (3 + c)r2 + 

(3+2c+d)r+(2+c+d), r is a zero of x3+(3+c)x2+(3+2c+d)x+(2+c+d). 
Since P(x) is irreducible, this cubic must coincide with P(x) and so a = 
3+c,b=3+2c+d,-1=2+c+d,whenceb=canda=3+b.Letsbe 
a second zero of P(x); the third zero is l/rs, and we obtain 

-3=b-a=rs+r-‘+s-‘+r+s+r-‘s-l. 

Hence 

0 = (r2 + r)s2 + (r2 + 3r + 1)s + (r + 1) 

= [(r+l)s+l][rs+(r+l)], 

from which it follows that s = -(r + 1)-l or -(r + l)r-‘. 

8.18. 9 satisfies the equation 

o=i+~~=(i+e)(i-e+e~-83+...-em-~+em-~). 
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Since 0 # 1, it is the second factor which vanishes and we obtain 

1 = l-e+e2--3+...+em-l_,, 

= (i-e)(i+e2+...+em-l). 

Hence, 

(I- e)-l = i + e2 + e4 + . . . + em--l = e + e3 + e5 + . . . + em-2. 

8.19. (a) If p(x) = x2 + bx + c, q(x) = x2 + dx + e, choose h and k such 
that2h+b=dandh2+bh+c-k=e. 

(b) The reducible manic quadratics are of the form (x - r)(x - s), where 
r, s E F; there are m(m+ 1)/2 of these. The total number of manic quadrat- 

ics is m2, so there are m(m - 1)/2 irreducible quadratics. From (a), it can 

be seen that for each of the m choices of linear coefficient, the number 
of irreducible quadratics is the same. Hence, for a given choice, there are 
(m - 1)/2 irreducible quadratics for appropriate values of k. 

8.20. If the four terms are a - d, a, a + d, a + 2d, we obtain 

(a - d)a(a + d)(a + 2d) + 8 = (a” + ad - d2)2. 

If a2 + ad - d2 = b2, then (2a + d)2 = 4b2 + 5d2. For example, b = 1, 
d = 3 leads to a fourth power. A more general solution appears in Amer. 
Math. Monthly 57 (1950) 186. 

8.21. (b) Suppose f = u~~u~~ .. .uik, where the ui are irreducible with 

any pair coprime and ai 1 1, and g = ui1u2 ... up, where bi 2 0. Since 
f = g”‘h with g not dividing h, it follows that ai 2 mbi for each i and that, 

for some irreducible factor, say ui, ai < (m+ l)bl. Now UT’-’ but not UT’ 
divides f'. Since al - 1 < (m + l)bl - 1 < (m + l)bl, it follows that gm+’ 
does not divide f’. 

8.22. By de Moivre’s Theorem (Exercise 1.3.8), cosnB+ isinn = u(cos0, 
sin2 0) + i sin Bv(cos 0, sin2 f?), for some polynomials u and v. Let x = cos 0. 
Then the result holds with f(x) = T,(x) = cosne and g(x) = v(x, 1 -x2). 

8.23. Since xk - 1 = H{Qd(x) : dlk}, {m}! is a product of factors 

&d(x), where each Qd(x) occurs as often as d divides a number in the 
set {1,2,..., m}; the exponent of &d(z) is [m/dJ. It suffices to show that, 

for each positive integer d, 

[(m + n)/dJ + [m/&J + 144 I 1244 + 1244 a 

Let m = ud+r, n = vd +s where 0 5 r, s < d. Then the difference between 
the right and left sides is 

12r/dJ + 12s/dJ - [(r + s)/dJ. 
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This is clearly nonnegative if 0 5 r + s < d. If d 5 r + s < 2d, then at least 

one of 2r and 2s is no less than d and the expression is again nonnegative. 

8.24. First solution. (x, y, z real). Let x = tanu, y = tan v, z = tan w. 

Then (1 - xy - yz - ZX) tan(u + v + w) = x + y + z - xyx. Observe first 
thatxy+yz+zx-landx+y+z- xyz cannot vanish simultaneously. 
Otherwise, x+y+z = ~(1 -XZ-yz) so that 0 = (x+y)(l+x2). Thus, we 
can see that the sum of any two variables is 0, which is impossible. Hence 
x+y+~=xy~ifftan(u+v+w)=Oiffu+v+wisamultipleofa. 

Suppose x + y + z = xyz. Then u + v + w is a multiple of 7r, so 
that 2u + 2v + 2w is a multiple of rr. Then tan 2u + tan 2v + tan2w = 
(tan 2u)(tanPv)(tan 2w), and the result follows. 

Second solution. Putting the left side over a common denominator yields 
the numerator 

2(x + y + %) + 2xyz(xy + yz + zx) - 2[(x + y + z)(xy + yz + zx) - 3+yz] 

which, under the stated conditions, reduces to 8xy~. 

8.25. 
dl = (x2!/3 - x3Y2)(x3xl + ?/3&)(21x2 + YlY2) 

= xlx2x3(~1x2Y3 - x1?/2x3) + Y1!/2!/3(Ylx2!/3 - YlY223) 

+ XlYl(4Y,2 - 4Y,2). 

Obtain a similar expression for d2 and d3, and check the required identity 
directly. 

8.26. (a) a = b + 1 iff 1 is a zero of the quadratic; a + b + 1 = 0 iff -1 is a 
zero. Suppose the quadratic has a zero u which is a nonreal root of unity. 
Then ii = u-l is also a zero of the quadratic. Since the product of the zeros 

is 1, b = 1. Since Iu+u-‘1 < 2, it follows that (a, b) = (-1, l), (0, l), (1,l); 

these possibilities yield quadratics whose zeros are primitive cube, 4th and 
6th roots of unity respectively. 

(b) Let f(t) be the first quadratic and g(t) be the second. If f(1) = 0, 
then (b + 1)” = a2 and either g(1) or g(-1) vanishes. If f(-1) = 0, then 

a2 + (1 - b)2 = 0 so that a = 0, b = 1 and g(i) = 0. Otherwise b2 = 1 
and a2 - 2b = -1, 0, 1. We must have (a, b) = (-1, l), (1,1) and the result 
follows. 

8.27. We have that au = -bv - c and aTi = -bT- c, whence a2 = b2 + c2 + 
2bccos 8, where 0 = Pkr/n for some k, n E N and v = cos 0 + isin 8. Thus, 
case is a rational number; write it as p/q in lowest terms with q positive. 

Suppose, if possible, that q 1 3. Since cos20 = (2p2 - q2)/q2 and the 
greatest common divisor of 2p2 - q2 and q2 is either 1 or 2, cos20 has 

a denominator in lowest terms at least equal to iq2 > q. We find that 
cos 8, c~s 28, cos 48, cos 88, . . . are all rationals, each of whose denominators 

in lowest terms exceeds that of its predecessor. Hence, these cosines are 
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all unequal. However, let n = 2*m with m odd. Since the powers of 2 
cannot be all incongruent modulo m, there exist i,j E N with i > j and 
2’ G 2j (mod m), whence 23’(2’-j - 1) E 0 (mod m). Let r = i - j. Then 
2r+60 - 26C3 = 2J(2r - 1)2k?r/m is a multiple of 2?r and cos 2’+YI = cos 2”0, 
yielding a contradiction. 

Therefore, the only possible values of case are 0, &f and fl. Since v 

is not real, v must be a nonreal fourth or sixth root of unity. Similarly, 
so is u. Suppose, if possible, that v = i. Then a2u2 = c2 - b2 + 2bci and 
a3u3 = (3b2c - c”) + (b3 - 3bc2)i. Since bc(b2 - 3c2) # 0, u2 and u3 are 
nonreal and so u is neither a fourth nor sixth root of unity. Hence v # i; 
similarly, v # -i and u # fi. Hence u and v are both nonreal sixth roots 

of unity and we have one of u = v, u = -v, u = v2, u = -v2. Since 
the first two possibilities would imply that u was rational, we must have 

&au2 + bv + c = 0. Since the manic irreducible polynomial with zero v is 
t2 f t + 1, the required result follows. 

8.28. First solution, Let u = cos(7r/14)+isin(s/l4), so that 2ix = u-u-‘. 
Since iu = cos(4n/7)+isin(4r/7), iuisazerooft6+t5+t4+t3+t2+t+1, 
whence 

(-2 + u4 - u2 + 1) + i(u5 - u3 + 1) = 0 

or 
-(u” - us3) + i(u2 + uV2) + (u - u-‘) - i = 0. 

Since -8ix3 = (u” - u-“) - 3(u - u-l) and -4x2 = (u2 + u-“) - 2, we can 
substitute for x, divide by i and obtain the required equation. 

Second solution. Applying de Moivre’s Theorem and using cos2(?r/14) = 

1 - x2 yields 

l=sinn/2 = 7(1 - Z”)“Z - 35(1- .2)%3 + 21(1- x2)x” - x7 

= 7x - 56x3 + 112x5 - 64x’. 

This can be manipulated to 

0 = (x + 1)(8x3 - 4x2 - 4x + 1)2. 

Since z # -1, the result follows. 

8.29. Let v = sinr/7. The length of the side of the heptagon is 2v. We 
have, by de Moivre’s Theorem, 

O=sin7r=7v-56v3+112v5-64~~. 

Setting x = 2v yields the result. Other roots of the equation are v = 
f sin(2n/7), f sin(3s/7), so that the roots of the equation in x are the 
lengths of the sides and diagonals and their negatives. 

A similar problem posed for a regular undecagon (11-gon) is Problem 
2864, Amer. Math. Monthly 27 (1920), 482; 28 (1922), 91. 
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8.30. We have the following table of solutions: 

Modulo the congruence is satisfied by n congruent to 
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33 = 27 1 (mod 3) 
34 =81 1,4 (mod 9) 
35 = 243 19 (mod 27) 
36 = 729 46 (mod 81) 
37 = 2187 208 (mod243) 

Suppose m 1 5 and n - a (mod 3”-2) satisfies f(n) E 0 (mod 3”). 
Then a E 1 (mod 9) and f(a) = 3”k. Let n = a + 3”-2b, so that n2 G 

a2 + 3”-2 2ab and n3 G a3 + 3”-la2b (mod 3”+‘); then 

f(n) E f(a) + 3”-‘a2b + 3”-’ e264ab - 3”-’ .37b (mod 3”+l). 

Hence f(n) E 0 (mod 3”+‘) e 3k + (a2 + 264a - 37)b E 0 (mod 9) 
_ 3k + (a - 4)(a - 2)b E 0 (mod 9). Since a E 1 (mod 9), a - 4 = 3u, 
where u is not divisible by 3, so that 

f(n) E 0 (mod 3”+‘) _ k + u(a - 2)b E 0 (mod 3). 

The last congruence is uniquely solvable for b modulo 3. 
Since f(n) z 0 (mod 3”) h as a unique solution a modulo 3”-2 (and 

therefore nine solutions a + ~3”~~) where 0 5 c 5 8, modulo 3”), it follows 
that f(n) E 0 (mod 3”+‘) has a unique solution a + 3”-2b modulo 3”-‘, 

and the required result follows by induction. 

8.31. Suppose such a representation were possible. Then g(t) cannot be 

constant and tg(t)f (t + 1) - tg(t + l)f(t) = g(t)g(t + 1). Since f(t) and 
g(t) have no common divisor of positive degree, g(t) I tg(t + l), so that 

tg(t + 1) = u(t)s(t). BY considering degrees and leading coefficients, and 

by noting that g(t) is not constant, we see that u(t) = t - c where c # 0. 

Hence g(t) has zeros c + k for k = 1,2, . . ., which contradicts g(t) having 
positive degree. 

Answers to Exercises 

Chapter 4 

1.1. (x,y,z) = (7,9,13). 

1.3. (x,y, z) = (10,4,-S), (-10, -4,6). 

1.4. If (2, y, Z) satisfies 

ax + by + cz = px + qy + rz = 0, (*> 
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then by Exercise 4.2, x : y : z = (br - cq) : (cp - ar) : (aq - bp). If there 
is a solution of the form (x, y, z) = ( u2, u, l), then (a) follows, and y2 = xz 
shows that the condition (b) is necessary. 

If (b) holds, then for every solution of system (+), y2 = xz. If there is a 
solution with nonzero Z, then there is a solution with z = 1; if y = u, then 
x = u2 and the two quadratic equations have a common root. On the other 
hand, if it turns out that z = 0, then y = 0. Since up # 0, x = 0, so 0 is a 
common root of the two quadratic equations. 

1.5. (a) 12(b - 4a) = (a - b)2. 

1.6. (b) Since x-l : y-l : 2-i = (qr - p2) : (pr - q2) : (pq - r2), we 
obtain a(qr - p2) + b(pr - q2) + c(pq - r”) = 0. 

1.8. x, y, z are the zeros of t3 - 12t2 + 41t - 42 and are therefore 2, 3, 7 in 
some order. 

1.9. (a) 3, 5, 7. (b) 1, -2, 3. 

1.10. (x,y) = (u,u) or (-4 , ) h v v w 
or (-1 f ifi)/14. 

ere u = 1 or (-2 f i&)/7 and v = 2 

1.11. (x, y,z) = (6,8,2). 

2.1. (g) x = 7 satisfies (d), but not (a), (b), (c). 
(h) Consider an equation of the type U = V. This implies U2 = V2. 

However, if U2 = V2, then either U = V or U = -V. Hence, U2 = V2 is 
valid under a wider range of circumstances than is U = V. We have that 
(a) is equivalent to the given equation; (a) 3 (b); (b) _ (c); (c) 3 (d). 

(i) m - &FZ = 1. 

2.2. The equation becomes cy2 + aky + (ad -,bc) = 0. If this equation has a 

nonnegative solution y, then there is exactly one corresponding solution x 
to the given equation. Any negative or nonreal solution y yields no solution 
2. 

If c = 0, there is a unique solution y = -d/k and a solution x when 
d/k < 0. 

If c # 0, there are no solutions 3: if a2k2 < 4c(ad - bc) or if a2k2 2 
4c(ad - bc) 1 0 and ak/c > 0. If a2k2 > 4c(ad - bc) > 0 and ak/c < 0, 
then there are two nonnegative solutions y and two solutions x. If a2k2 = 
4c(ad - bc) and ak/c 5 0, or if a2k2 > 4c(ad - bc) and 4c(ad - bc) < 0, 
then there is one nonnegative solution y and one solution x. 

Discussion of problems of this type can be found in Goro Nagase, Exis- 

tence of real roots of a radical equation, Math. Teacher 80 (1987), 369-370. 

2.3. (a) y = m leads to y2 -y-6 = 0. The solution y = 3 corresponds 
to x = 5; y = -2 is extraneous. 

(b) y = m leads to y2 - 4y + 3 = 0, and (x, y) = (8,3), (0,l). 

(c)y=-1 ea s d t o y2 + 4y + 3 = 0. There are no solutions x. 
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2.4. Both equations lead to 0 = (x - 2)(4x - 7). 
(a) 2, 7/4; (b) no solutions. 

2.5. (b) Let u = 14 + x, v = 14 - x. Apply (a) to obtain w = 4 and 

64 = 28 + 12qm. Th’ is simplifies to 27 = 196 - x2, whence x = f13. 
Both are valid solutions. 

2.6. Set y = x2 + 18x + 45 and obtain y - 15 = 2fi. There are two roots 

y = 9 and y = 25. The first is extraneous; the second leads to a quadratic 
equation which can be solved for x. 

2.7. (a) Since dm > x for all real x, the left side of the equation is 
always strictly positive. 

(b) Suppose that the equation is solvable. Then 

x2 + b = (1 - x)~ = 1 - 2x + x2 

so that 2x = 1 - b. Testing this out, we find that 

1 - x + I/= = (1/2)[1+ b + dm] 

= (1/2)[1+b+(l+b)]=l+b#O whenb>-1 

{ (1/2)[1+ b - (l+ b)] = 0 when b 5 -1. 

Thus, there is no solution when b > -1 and x = (1 - b)/2 is a solution 
when b < -1. 

3.2. (a) See Exercises 1.2.4, 1.4.4, 1.4.11, 1.4.12, 1.4.13. 
(b) Let the reciprocal polynomial have the variable t. If it has even degree 

2k, the substitution x = t + t-’ leads to a polynomial equation of degree k 
in x. If k 5 4, then, by (a), the number of solutions, counting multiplicity 
is, k. Each of the solutions gives rise to two values of t, namely the roots 
of t2 - xt + 1 = 0. If the reciprocal polynomial has odd degree, it is the 
product oft + 1 and a polynomial of even degree, and the result follows. 

3.3. (a) The solutions for various n are: 2 : 2, -2; 3 : -1,-l, 2; 4 : 

-2,0,0,2;6:-2,-l,-1,1,1,2;8:-2,-fi,-fi,O,O,&,&2. 
(c) If tl and t2 are the roots of t2 - yt + 1 = 0, then, for each n 1 3, 

tl = yty-’ - tyv2, from which the result follows. 

(f) The result is true for n = 1,2. Suppose it holds up to n = k 1 2. 
Then 

2cos(k + i)e = y(2 cos ke) - (2 cos(k - i)e) 
= Yfk (2 cos 0) - fk-l (2 case) = fk+1(2COSo). 

3.5. The four equations are a = w + v - u2; b = z + uw - uv; c = uz + VW; 
d = vz. Eliminating w yields the system b = z + au + u3 - 2uv; c = 
uz +av + u2v - v2; d = vz. Eliminating z yields the system c = bu + 3u2v - 
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au2-u4+av -v2; d= bv+2uv2 - auv - u3v. Rearranging terms, we find 
that 

v2-(3u2+a)v+(u4+au2-bu+c)=O 

2uv2 + (b - au - u3)v - d = 0 

whence (b + ua + 5u3)v - (2u5 + 2au3 - 2bu2 + 2cu + d) = 0. 
Eliminating v, we find that 

(2u5 + 2au3 - 2bu2 + 2cu + d)2 - (3u2 + a)(2u5 + 2au3 - 2bu2 

+ 2cu + d)(5u3 + au + b) + (u4 + au2 - bu - c)(5u3 + au + b)2 = 0, 

an equation in u of degree 10 which cannot in general be reduced to an 
equation of lower degree. 

3.6. a) Suppose, if possible, that fi = a + b&. Then 2 = (a” + 3b2) + 
2ab $ 3. Since fi is not rational, ab = 0. But this cannot occur. If 3i13 = 

a + b&, then 3 = (a” + 9ab2) + 3b(a2 + b2)fi. Hence b = 0, which is 
impossible. Since Q(d) C R, i $Z Q(a). 

(b) Suppose i = a + b@. Then -1 = (a2 - 3b2) + 2abi&, so ab = 0. 
But either a = 0 or b = 0 is impossible. 

(c) d E C but xh $Z Q(i). 
(e) (a + b&)-l = (a2 - b2d)-‘(a - b&). 
(f) Any field which contains Q and & must contain all the elements of 

the form a + bfi, where a, b E Q, hence must contain Q(d). On the other 

hand, Q(d) is itself a field, and so the result follows. 
(h) It suffices to choose b, c such that b2 - 4c is equal to d multiplied by 

a square, say b2 - 4c = 4d. This can be arranged if c + d = 1, b = 2. An 

example is t2 $2t + (1 - d). 

3.7. (b) 

(a + bxh + c& + d&)-l = [(a2 + 2b2 - 3c2 - 6d2)2 - 8(ab - 3cd)2]-1 

[(a + b/h) - &(c + dfi)][(a2 + 2b2 - 3c2 - 6d2) - 2h(ab - 3cd)]. 

3.8. (a) 

(a + 21i4b + 21i2c + 23/4d)-’ = [(a” - 4bd + 2~~)~ - 2(2ac - b2 - 2d2)2]-1 

[(a + 21j2c) - 21i4(b + 2’/“d)][(a” - 4bd + 2c2) - 21i2(2ac - b2 - 2d2)]. 

(I+ 2114 + 2112 + p/4)-1 = -(I _ p/4) 

(1+ 23’4)-’ = (1 - 4.21i4 + 2.21’2 - 23’4)/(-7). 

3.9. (a) Let f(t) = at3 + bt2 + ct + k and suppose that u E F(h) is a zero 
of f(t). If u E F, then the result follows. Otherwise, u = v + w&, with 

v, w E F, w # 0, and 

0 = [a(v” + 3vw2d) + b(v2 + w2d) + cv + k] 
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+ [a(3v2w + w3d) + 2bvw + cw]J;i. 

Since 4 $ F, it f 11 o ows that both expressions in square brackets must 
vanish, resulting in 0 = f (v- ~4). The third zero of the cubic is -(b/a)- 
2v, a member of F. 

(b) By (a), we see that g(t) has a zero in F,,-1, hence in Fn-2, etc. 

3.10. (b) Using C6 = -C3 - 1, ‘t 1 is straightforward to show that Q(c) is 
closed under addition, subtraction and multiplication. As for the inverse of 
C3 + C, by the Euclidean algorithm, we obtain 

Hence 

(9 + t3 + 1) = (t3 - t + l)(P + t) + (t2 - t + 1) 

(t3 + t) = (t + l)(P -t + 1) + (t - 1) 

(t2 - t + 1) = t(t - 1) + 1. 

1 = (t2 - t + 1) - t[(t3 + t) - (t + l)(P - t + l)] 

= (t2 + t + l)(P -t + 1) - t(t3 + t) 

= (t2 + t + l)[(P + t3 + 1) - (t3 -t + l)(P + t)] - t(t3 + t) 

= (P+t+1)(t6+t3+1)-(t5+t4+t+1)(t3+t). 

Setting t = C yields 

1 = -(C” + c4 + c + l)(C” + C), 

whence (C3 + C)-’ = -(C” + c4 + C + 1). 
Similarly, C-l = -(C” + C2). 
(e) There are many ways of verifying the zeros. For example, 

f (u2 - 2) = u6 - 6u4 + 9u2 - 1 = (3u - 1)” - 6u4 + 9u2 - 1 

= -6u(u3 - 3u + 1) = 0. 

Since the sum of the three zeros is 0, the third zero must be 2 - u - u2. 
The reciprocal of any element in Q(u) can be found by using the Euclidean 

algorithm as outlined in (b). 

4.2. (b) The corresponding real system is 2x - y - 3 = 0, x + 2y + 4 = 0. 

4.3. The corresponding real system is px - qy + r = 0, qx + py + s = 0. 

The lines are perpendicular and hence intersect in exactly one point. 

4.5. (e) The corresponding real system is 

(x + l/2)2 - (y + 1)2 = l/4 

(2x + l)(y + 1) = 0 
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and the points of intersection are (-1, -1) and (0, -1). 

4.8. (a) The equivalent real system is 

x9-3x$-7x+6=0 

y(3x2 - y2 - 7) = 0. 

A, B, C denote solutions 

(b) The equivalent real system is 

x3 - 3xy2 = 2 + 1 

3x2y - y3 = y 

which can be written 

y2 = (1/3)(x2 - 1 - l/x) 

y(3x2 - y2 - 1) = 0. 

4.9. (b) Note that (3~~ - 1)2 - (8~~ - 4x2 - 3x + 3) = x4 - 2x2 + 3x - 2 = 

(x - 1)(x + 2)(x2 - x + l), f rom which the sign of this difference is easily 

determined. 
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When x < -2, 

0 < 4x2(2x2 - 1) < 8x4 - 4x2 - 3x + 3 < (3x2 - I)~; 

when -2 < x < 1, 

0 <(3x2 - 1)2 < 8x4 - 4x2 - 3x + 3; 

when 1 < x, 

0 < x2+3=8x2 -4x2-3x2+3 <8x4 -4x2 -3x+3 <(3x2 - 1)2. 

From these inequalities follow the desired conclusions. 
(c) tan0 = a- 1; tan28 = 3-2fi; tan38 = fi+ 1; tan238 = 

3 + 2fi. The asymptotes of (C) are the straight lines y2 = (3 f 2fi)x2 or 

y = f(tan 0)x, y = f(tan 30)x. Note that the locus of (D) is the union of 
the loci y = 0 and y2 = x2 - 1 + (3/4x); its asymptotes are the straight 

lines y = 0, x = 0 and y = fx. 

(4 
YA 

5.1. (b) 
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5.2. (f) 
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1 +r+r2 

-15 + 

- 

-15 - 

5 

5.3. (b) The quadratic has a single zero of multiplicity 2. If the quadratic 
has two distinct zeros on the curve 1~1 = 1, the image Di of this curve 
would pass through the origin twice and therefore have a double loop. For 
T close to 1, D, would also display the double loop, and the loop would 
disappear for some value of r strictly less than 1. In the present case, the 
double loop occurs when r > 1, but disappears precisely at the point when 

it passes through the origin. 
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I I I r>l 

5.4. 

I I 

D, 
r<l 

0 6 

DI 

D2 
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6.1. Let mi be the multiplicity of the zero ti. We have that p(t) = 

(t - tl)mlpl(t), where m(h) # 0. S ince t2 - tl # 0, t2 must be a zero 
of pi(t) of multiplicity m2 so that p(t) = (t - tl)“‘(t - t2)mzp2(t), where 
pz(t) vanishes at neither t i nor t2. Continuing in this way, we find that 
p(t) = q(t)(t - tl)ml . . . (t - tk)m* ) where q(t) is a polynomial over C which 
does not vanish at any ti. If degq(t) 1 1, then q(t) must have a zero, by 
the Fundamental Theorem. But such a zero would be an additional zero of 
p(t), yielding a contradiction. Hence q(t) must be a constant. 

6.3. (a) If si is a zero of p(t), so is Zi. Therefore, p(t) is divisible by 
(t - Si)(t - Si). 

(b) p(t) can be written as the product of linear polynomials over C. Lin- 
ear factors corresponding to nonreal zeros can be paired off and combined 
into real quadratic factors, as in (a). 

6.4. For any complex number k, p(t)-k is a polynomial over C with exactly 
n zeros counting multiplicity. The only values of k for which the zeros are 
not distinct are those for which p(t) - H and its derivative p’(t) have a zero 
in common. Thus, p(t) - k has a multiple zero only when k = p(r) for some 

zero T of p’(t). S ince p’(t) has only finitely many zeros, the result follows. 

6.6. We can write 

a# + u,-~t”-’ + * * * + a0 = u,(t - q) . . * (t - rn). 

The result follows from expanding the right side and comparing coefficients. 

6.7. Since 0 = ~(a,) = II(a, - bj), it follows for some j, a, = bj. Let 

j = n, say. Then 
772-l n-1 

n (t - u;) = n(t - bj). 
i=l j=l 

Continue the argument, pairing off and cancelling factors t - ui and t - bj . 

6.8. Suppose p(t) and q(t) have degree not exceeding n and p(oi) = q(oi). 

Then (p- a>(t) h as d g e ree not exceeding n and at least n + 1 zeros, whence 
it is the zero polynomial. The result follows. 

6.9. 

p(t) = C(t2 - 2t + l)m fi(t2 - (ri + l/Yi)t + 1)“’ 
i=l 

for complex zeros ri with multiplicity mi within the closed unit disc. Each 
quadratic factor is a reciprocal polynomial and it is straightforward to prove 
that their product is also a reciprocal polynomial. 

6.10. Let f(ui) be p rime for 0 5 i 5 2n, and suppose, if possible that 
f(t) = g(t)h(t) where degg(t) = m 2 1, degh(t) = n - m 2 1. Then 
either Ig(ui)l = 1 f or more than 2m of the oi or Ih( = 1 for more than 
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2(n - m) of the a;. Suppose the former occurs. Then either g(t) - 1 or 
g(t) + 1 must vanish for at least m+ 1 of the oi, contradicting the fact that 

deddt) f 1) = m. Hence, the factorization f = gh is not possible and f(t) 
is irreducible. 

Solutions to Problems 

Chapter 4 

7.1. The equation can be rewritten (x - u)” - 6u2x2 = 0. Factoring the left 
side as a difference of squares leads to two quadratic equations. 

7.2. Let u = x2 + x - 1, v = x2 - x - 2, so that u - v = 2x + 1. Let 

g(x) = (x2 + x - 1)4 - (x” - 2 - 2)4 - (2x + 1)” 

= u4 - v4 - (u - v)” = 2V(U - V)(2U2 - uv + v”) 

Then g(x) = 0 * (1) v = 0 q x = -1 or x = 2 

or (2) u - 2) = 0 =j 2 = -l/2 

or (3) 0 = 2u2 - uv + v2 = 2x4 + 2x3 - x2 + x + 4. 

In case (3)) we have 4~ = (1 f iJ?) v, which yields the quadratic equations 

(3 - iJs)x2 + (5 + iJ5)x + (-2 + 2iJ5) = 0 

(3 + h/7)x2 + (5 - il/T)x + (-2 - 2ifi) = 0 

for the remaining solutions. [As a check, note that the product of the two 

quadratic polynomials is equal to 

(322 + 52 - 2)” + 7(x2 - x - 2)2 = 8(2x4 + 2x3 - x2 + 2 + 4).] 

7.3. The substitution x = 1 - t yields the equation 

t4 - 2t3 - 4t2 + 2t + 1 = 0 

or (t2+tv2)-2(t-t-l)-4 = 0. Set u = t-t-‘, whence u2 = (t2+tm2)-2. 
IIence u2 - 2~ - 2 = 0. We solve successively for U, t and x. 

7.4. The equation can be rewritten 

(x2 + 5ux + 5~2~)~ - u4 = b4, 

whence x2 + 5ax + 5a2 = &/w (cf. Problem 33.20). 

7.5. The equation implies z+ufi+b = x+c2-2cfi, whence (u+~c)~x = 
(c2 - b)2. 
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For there to be infinitely many solutions, it is necessary that a = -2c 
and b = c2. Suppose these conditions hold. Then the equation reduces to 

\/ (A--cpc-t/F. 

If c < 0, the equation has no solution. If c 2 0, then it is satisfied by all I 
for which 0 < z 5 c2. Hence there are infinitely many solutions iff c > 0 

and a = -2c, b = c. 

7.6. Square both sides: 

2x+2dm=k2. 

There are two possible cases to consider: (1) z > 1; (2) x 5 1. If x > 1, 
then the equation reduces to 42: = k2 + 2. A necessary condition for a 
solution x > 1 is that k > a. If 4 > 2, then it can be checked that 
x = (k2 + 2)/4 indeed satisfies the equation. If x 5 1, then the equation 
reduces to 2x+2( l-x) = k2, or 2 = k2. Hence, for a solution, it is necessary 
that k = 4. On the other hand, let 2 be any number with l/2 5 x 5 1. 
Then it is readily checked that the square of the left side is 2. 

Thus, if k2 > 2, then x = (k2+2)/4 satisfies the equation, while if k2 = 2, 

any x with 1 5 2x 5 2 satisfies the equation. 

7.7. Squaring both sides of the equation and collecting terms gives: 

2ub - y = 2&j73, 

where y = x[x - (u + b)]. Sq uaring again leads to y2 = &by, whence y = 0 

or y = 8ub. The solution y = 8ub is extraneous (since 2ub - y would be 

negative). Hence x = 0 or 2: = a + b. The first of these is extraneous, but 
x = a + b is a valid solution. 

7.8. Let y = x2 + 5x. The equation becomes 

(Y + 4)(~ + 6) + (Y - 6) = 0, 

whose solutions are y = -2 and y = -9. We can now form two quadratic 
equations for the four values of x. 

7.9. (a) p(t) = t + u(t - u)(t - v) (by the Factor Theorem) 

=a p(t) - u = (t - u)[u(t - v) + 11; 

p(t) - v = (t - v)[a(t - U) + l] 

* p(p(t)) - t = p(p(t)) - p(t) + p(t) - t 

= ah(t) - u)(p(t) - v) + (t - u)(t - v)] 

= u(t - u)(t - v)[u2(t - u)(t - v) + u(2t - U - v) + 1 + l] 

= u(t - u)(t - v)[u(p(t) - t) + u(2t) + (b - 1) + 21 

= a(t - u)(t - v)[u2t2 + u(b + 1)t + ac + b + 11. 
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(Note that u(u + v) = 1 - b, being the sum of the zeros of p(t) - t.) 
Hence, two zeros of the quartic p(p(t)) -t are u and v and the remaining 

zeros are zeros of at2 + u(b + 1)t + QC + b + 1. 
(b) Here, a = 1, b = -3, c = 2, u = 2+fi, v = 2-fiand the quadratic 

equation for the remaining two zeros is t2 - 2t = 0. Hence t = 2 f a, 0 or 
2. 

7.10. For the radical dm to be defined, we require 1x1 2 1. If c < -1, 
then x + dm = dm - Ix] < 0 and the left side of the equation is 
not defined. Hence x 2 1. 

First solution. Let x = (1/2)(u + u-l), where u 1 1. Then &?? = 

(1/2)(U - u-1). S’ mce x(x + 1) = (u” + l)(u + 1)2/4u2 and x(z - 1) = 
(u” + l)(u - 1)2/4U2, squaring the equation and simplifying yields u4 = 3, 
whence x = i(3 ‘I4 + 3-‘i4). This checks out. 

Second solution. Squaring the equation yields 

cx - JZi)3 = 2x&Zi[x - &Zj 

* (x - &ci)” = 2x&F 

==+ 2x2 - 1 = 4xJXi * 12x4 - 12x2 - 1 = 0, 

from which x2 and eventually x can be determined. 

7.11. Let v = cos(nll4). By de Moivre’s Theorem, cos(a/2) = 0 = 64v7 - 
112~~ + 56v3 - 7v = v[(~v~)~ - 7(4~~)~ + 14(4v2) - 71. The same equation 
is valid for v = cos(3a/14) and v = cos(5n/14), so the three roots of the 

given equation must be 4cos2(?r/14), 4cos2(3r/14) and 4cos2(57r/14), of 
which the first is the largest (cf. Problem 3.8.29). 

7.12. If l-z2 = -x3, then (l-~)(l-x~)~ = (l-x)x’ = (x2-x3)x4 = x4. If 
1-x2 = x, then (l-~)(l-x~)~ = (l-x)x2 = x2x2 = x4. The zeros U, v, w 

ofx3-x2+1 aredistinct andeachisazerooff(x) = x4-(l-x)(l-~“)~. By 
the Factor Theorem, f(x) is divisible by x3 -x2 + 1 = (x - U)(X - v)(x - w). 
Similarly, x2 + x - 1 divides j(x). S ince the cubic and quadratic have no 
zeros in common, f(x) = k(x3 - x2 + 1)(x2 + x - 1). Checking leading 
coefficients of both sides reveals that k = 1. 

7.13. The equation can be rewritten 

(x2 - 9x - l)iO - loxs(x2 - 9x - 1) + 9x10 = 0. 

The quadratic equation x2 - 9x - 1 = x has real roots, and each of these 

roots satisfies the given equation. 

8.1. Multiply the first equation by y, the second by x, and take the dif- 
ference: 0 = (x3 - y3)(2xy - 1). Either x = y or 2xy = 1. If x = y, 
then x = y = 0 or 9/8. If y = 1/2x, then the first equation becomes 
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8x6 - 9x3 + 1 = 0, whence x3 = 1 or l/8. The solutions (x, y) are (O,O), 

(9/8,9/8), (1, w, w, 1). 

8.2. First, note that, if u + v = u-l + v-l, then (U + v)(l - UV) = 0, 
whence u = -v or uv = 1. Applying this to u = x/a, v = b/y, we have 

that, either x/u + b/y = 0 or x/a = y/b. Similar options occur for (2,~) 
and (y, z). Suppose x/a + b/y = 0. Then c = Z, and a/x + b/y = 0, so that 
x/u = a/x. Thus, x = fa, y = Fb. Similarly, we can handle y/b + c/z = 0 
and x/a + c/z = 0. 

The only remaining possibility is z/a = y/b = Z/C. If the common value 
is t, then t2 - t + 2 = 0. 

The complete set of solutions (x, y, Z) consists of (a, b, -c), (a, -b, c), 
(-a, b, c), (ta, tb, tc) where 2t = 1 f ifi. 

8.3. xy + X.Z + yz = -3ub, xyz = u3 + b3, so that x, y, z are the zeros of 

t3 - 3ubt - (a” + b3) = [t - (a + b)][t2 + (a + b)t + u2 - ub + b2]. 

8.4. x + y = z + 2, (x + Y)~ = z2 + 8 e z = 1, x + y = 3. 

x3+y3-1 = 86-3~~ _ (~+y)~-3xy(x+y) = 87-3~~ u zy = -10. 

(2, y,z) = (5,-2,1) or (-2,5,1). 

8.5. Let u = a2 - x2 = b2 - y2 = c2 - z2. Then 

u - &Gk/~=&T&Lzi+~iq 

j [2u2 - (a2 + b2)u + a2b2] - 2udzdG 

= (c” - u)(u2 + b2 - 2u + 2d=&5-i) 

j 2c2u + u2b2 - c2(a2 + b2) = 2c2Ja2b2 - (a2 + b2)u + u2 

+ 4a2b2c2u + u4b4 + a4c4 + b4c4 

- 2u2b2c2(a2 + b2 + c2) = 0 

u2 + b2 + c2 
a u= 

2 1 
(x,y,z) = f;(bcu-’ - abc-’ - acb-l) , 

+acb-’ - abc-’ - bcu-l), f;(ubc-’ - acb-’ - bca-l)). 

The task of checking these solutions is left to the reader. 

8.6. Multiplying the second equation by 14xy and adding the result to the 

first yields 

-7y4 + 14x3y - 67x2y2 + 56xys + 64 = 0 

3 -7y4 + 56xy3 - 67x2y2 + 14x3y + (x2 - 7xy + 4~~)~ = 0 

3 x4 - lOx2y2 + 9y4 = 0 

* (x - 3y)(x + 3y)(x - y)(x + y) = 0. 
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Checking the possibilities leads to (x, y) = (2,2), (-2, -2), (3, l), (-3, -l), 
and four other solutions given by 3x2 + 2 = 0, x + y = 0 and 17y2 + 4 = 0, 
x+3y=o. 

8.7. Let u = -x+y+x, v = x-y+%, w = x+y-Z. The equations become 

VW = u2, uw = b2, uv = c2. Then b2v = a2u, w = c2 lead to u = fbca-l, 

v=fucb-1.Alsow=fabc-1.Then2x=v+w,2y=u+w,2z=u+v. 

8.8. From the first two equations x : y : z = (b - c) : (c-a) : (u - b). Using 

this in the last equation leads to (x, y, Z) = (b - c, c - a, a - b). 

8.9.Sincexy-xr=b-c,wefindthat2xy=u+b-cand2x%=u-b+c. 

Hence %(a + b - c) = y(u - b + c). This, with 2yz = -a + b + c yields 

2(u + b - c)z2 = (u - b + c)(-a + b + c). 

Similarly, x2 and y2 can be found. 

8.10. (a) w = u + v - u-l, w-l = u + v - v-l 

* l=(u+v)z-(u+v)(u-l+v-l)+u-lv-l 

j 1 - u-%--l = (u + v)2(1- u-%-1) 

3- uv=l,u+v=l or u+v=-1. 

Hence (u,v, w) = (z, z-l,%), (z, 1 - Z, (Z - 1)~~‘) or (z, -(l + z), 
-(l + z)z-I), for arbitrary nonzero z. 

(b) Equating first and second, first and third, second and fourth, third 
and fourth members, respectively, yields 

uv(w - l)(w - u) = w(v - l)(W - 1) . . . (1) 

UV(W - l)(vw - 1) = w(u - l)(uv - 1) . . . (2) 

u(uv - l)(vw - 1) = vw(w - l)(u - 1) . . . (3) 

vw(uv - l)(w - u) = u(v - l)(w - 1) . . . (4) 

The solutions in which any one of u = 1, v = 1, w = 1, 21 = w, uv = 1, 
VW = 1 occur are covered by the following: (21, v, w) = (1, Z, z-l), (z, 1, z), 

( ZJ -I, 1) where z is nonzero. 

If none of the foregoing possibilities occur, then we can cancel freely in 

manipulating the above four equations. From (1) and (2), we have 

(u - l)(w - u) = (v - l)(vw - l), 

and from (3) and (4), 

(vw)2(u - l)(w - u) = 212(v - l)(vw - 1). 

Hence, u = VW or u = -VW. 
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Suppose that u = VW. Substituting for w in (2) leads to v2 = 1, and we 
get the solutions (u, v, w) = (-1, 1, -l), (-1, -1,1) already noted. 

Suppose that u = -VW. Substituting for w in u-l + w + uw-l = v-l + 
w-l + VW leads to 

(v - u)(l + v + u - UV) = 0. 

If v = u, then w = -1. Expressing everything in terms of u, we find that 
the given system is satisfied iff 

0 = u3 + u2 + u - 3 = (u - l)(u2 + 2u + 3) 

and 

O=3u3+u2-u-1=(3u-5)(u2+2u+3)+14. 

But these are inconsistent and there is no solution with v = u. If uv = 
1 + u + v (and u = -VW), then the first member of the given system is 
equal to the fourth and the second is equal to the third. Thus, the system 
is satisfied iff (4) holds: 

-u(u + v)(-uv-l - u) = u(v - 1)(-uv-l - 1) 

or 
u2(u + v)(l + v) = -u(v - l)(u + v) 

or u(1 + v) = -(v - 1) or u+v+uv = 1 or u+v =O. Hence (u,v,w) = 
(i, -i, 1) or (-;, i, l), which has already been noted. 

8.11. Let u = x + y, v = xy. Then the two equations become u2 - 2v = 13, 
~(13 - v) = 35, whence 0 = u3 - 39u + 70 = (u - 5)(u - 2)(u + 7). Hence 
x and y are the zeros of any one of the quadratics t2 - 5t + 6, 2t2 - 4t - 9, 

t2 + 7t + 18. 

8.12. x, y, .z are the zeros of the cubic 

t3-3ut2+(2u2-a-7)t+(4u2+10a-6) = (t+2)[t-(2u-l)][t-(u+3)]. 

8.13. Suppose a, b, c are all distinct. From the first equation and (y - Z) + 
(z - x) + (x - y) = 0, it f o 11 ows that x - y = t(a - b), y - t = t(b - c), 

z - x = t(c - a) for some t. The second equation then determines t. Finally, 
writing two of the variables in terms of a third, we find from the third 
equation that 

3x = e + t(2a - b - c), 3y = e + t(2b - a - c), 32 = e + t(2c - a - b). 

If exactly two of a, b, c are equal, say a = b # c, then x = y and the 

second equation is consistent iff d = 0. If d = 0, any value oft will work 
and the solution can be completed using the third equation as before. 

If a = b = c, then the first equation imposes no restriction. We can 
substitute z = e - (x + y) into the second equation, choose an arbitrary 
value of x and solve a cubic equation in y and thence determine Z. 
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8.14. From the last two equations 

(y + %)2 h (y - z)2 + 4 y% = 914 - 3x + x2 + 314 = x2 - 3x + 3. 

Hence u3 = x(x2 - 3x + 3) - 1 = (Z - 1)3, so that x = 1 + a, 1 + wu or 

1 + w2a, where w is an imaginary cube root of unity. Substituting this into 

the last two equations yields quadratic equations for y and Z. 

8.15. Adding and subtracting the two equations yields 

2(x2 - y2) = (u + b)x - (a - b)y 

4xy = (a - b)x + (a + b)y. 

Hence 

and 

2(x + ~i)~ = [(a + b) + (a - b)i](x + yi) 

2(x - ~i)~ = [(a + b) - (a - b)i](x - yi). 

If real solutions x, y are sought, these equations are equivalent. We obtain 
x + yi = Cl whence (x, y) = (0,O) or 2(x + yi) = (a + b) + (u - b)i, whence 

(2, Y> = ((a + b)P, (a - bY2). 
However x and y may be nonreal and a more careful analysis is needed. 

If x + yi and x - yi are both nonzero, then we are led to the second solution 
above. The remaining cases are as follows: 

(1) x + yi = 0 and 2(x - y;) = (a + b) - (a - b)i 

* (x7 Y) = 
( 

(a + b) - (u - b)i (a - b) + (u + b)i 

4 ’ 4 > 
; 

(2) x - yi = 0 and 2(x + yi) = (a + b) + (u - b)i 

* (2, Y) = 
( 

(u + b) + (a - b)i (u - b) - (a + b)i 

4 ’ 4 > 

, 

8.16. Equating two expressions for b2c2 yields 

0 = (v2+u2 +%“)( w2 + y2 + u”) - [VW + u(y + z)]” 

= (uw - vy)2 + (uv - W%)2 + (u” - yz)2. 

Hence, uw = vy, uv = wz, u2 = ye, and similarly, VW = UX, v2 = XZ, 
w2 = xy. 

By substitution, we obtain x(x + y + Z) = a2, y(x + y + z) = b2, 

%(X + y + %) = c2, whence (x + y + z)~ = a2 + b2 + c2 = d2. Therefore 

(x, y, z, u, v, w) = *(a2/d, b2/d, c2/d, bc/d,ca/d, ah/d). 

8.17. Eliminating u from each adjacent pair of equations yields 

v(y - x) = b - ux 
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whence 

vy(y - x) = c - bx 

vy2(y - x) = d - cx 

(c - bx)2 = (b - ux)(d - cx). 

The solutions for which y = x can occur only if x = b/u = c/b = d/c. In 
this case, u and v are restricted only by u + v = a. Henceforth, we exclude 
this possibility. 

Consider the possibility that y = 0. This is feasible only if bd = c2, in 
which case x = c/b = d/c, u = b/x and v = a - u. 

Now (ac - b2)x2 - (ad - bc)x + (bd - c2) = 0. Suppose that UC - b2 # 
0. Then we can solve for x and determine the remaining variables from 
y(b-ux)=c-bx,v(y-x)=b-ux,u=u-v.Ifac-b2=O,ud-bc#O, 

then the quadratic equation collapses to a linear equation with a single 
root x = b/u = c/b. But then 0 # d - cx = y2(b - ax) = 0, a contradiction. 

The remaining possibility is that all coefficients of the quadratic vanish. In 
this case, t/u = c/b = d/c. From the three equations at the head of the 
solution, we find that 

(i) v = 0, x = b/u so that u = a and y is arbitrary; 

(ii) y = b/u = c/b = d/ c so that either u = 0, v = a and x is arbitrary or 

else u # 0 and x = y = b/a. 

A method for dealing with general equations of this type is given in S. 
Ramanujan, Note on a set of simultaneous equations, J. Ind. Math. Sot. 4 
(1912), 94-96 = Collected papers (#3), 18-19 (Chelsea, 1927, 1962). 

8.18. From the given system, we can derive 

(xy + yz + ZX) + 3u + 1Ov = 0 or 8 + 3u + 1Ov = 0 

(v + Y)(Z - x) = 0 

(v + z>(y - x) = 0 

(v + x)(z - y) = 0. 

The first two equations of the given system show that x, y, z cannot all 
be equal. Also, x, y, z cannot all be distinct, since then v + y, v + z, v + x 

could not vanish simultaneously. Hence, exactly two of x, y, z are equal, 
sayx=y#z.Then2x+z=5,2x2+r2=9,v+x=Oand3u+-lOv=-8. 
Hence (x, y, z, u, v) = (2,2,1,4, -2) or (4/3, 4/3, 7/3, 16/9, -4/3). 

8.19. If any of x, y, z vanish, then (x, y, z) is one of (O,O,O), (a, O,O), 
(0, b,O), (O,O, c). Suppose, if possible, that xyz # 0. Adding these three 
equations yields 
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whence ux = (x-y)(x-z), by = (y-x)(y-z), cz = (z-x)(z-y). Hence 

ax(z - y) = by(x - z) a z(ax + by) = (u + b)xy 

+ bx-’ + ay-’ - (a + b)z-’ = 0. 

Similarly 
cx -’ - (u + c)y-l + az-’ = 0 

-(b + c)x-’ + cy-’ + bz-’ = 0. 

Prom any two of these equations, x : y : z = 1 : 1 : 1, SO that by + cz = 
cz + ux = ax + by = 0, which is feasible only if a = b = c = 0. 

8.20. If a = b, it is straightforward to verify that the equation is satisfied 

iff x = y. Suppose a # b and let x = (1+ u)/(l - u), y = (1+ v)/(l - v). 
The equations become 

(ub + 1)(u2 + 1) = (a2 + l)(uv + 1) 

(ub + l)(v2 + 1) = (b2 + l)(uv + 1). 

(At this point, some obvious solutions can be noted: (u, v) = (a, b), (-a, -b), 
(i, i), (-i, -i).) These equations lead to 

(b2 + 1)(u2 + 1) = (a” + 1)(v2 + 1) 

or 

and 

(u” + l)v2 = (b2 + 1)u2 + (b + u)(b - a) 

Hence 

(u2 + 1)v = (ab + 1)u + u(b - a)u-‘. 

[(u” + l)(b2 + 1) - (ub + 1)2]u2 + [(a2 + l)(b + a)(b - a) - 2(ab + l)u(b - u)] 

- a2(b - u)~u-~ = 0 

* 0 = u4 + (1 - a2)u2 - a2 = (u2 - u2)(u2 + 1). 

Therefore, the four obvious solutions are the only solutions and we can 
now determine x and y. 

8.21. First solution. Let u = x + y, v = xy. The three equations become 

~~-3uv+z~=8,~~-2v+,z~=22,~~+uz+v=O.Hence(u+~)~=8 
and (u + z)” + 22 2 = 22, whence (u + t,t2) = (2,9), (2w, 11 - 2w2), 

(2w2, 11 - 2~). This leads to the solutions (x, y,z) = (-3,2,3), (2, -3,3), 
(3,2, -3), (2,3, -3) and a number of nonreal solutions such as (2w, 

-&l - 2w2, &l - 2~~). Here, w is an imaginary cube root of unity. 
Second solution. The last equation is (z + x)(z + y) = 0. Let z = -2; 

the case z = -y can be similarly handled. Then y3 = 8, so that y = 2, 2w, 
2w2. Then 2x2 = 22 - y2 permits x to be determined. 
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8.22. First solution. Clearly 0 < x < y. If x 5 1, then (x + y)” > 9, so that 

y >_ 2. Hence 

9(y3 - 1) 5 9(y3 - x3) = 7(x + y)2 _< 7(y + 1)2 

* (Y - 2)(9y2 + lly + 8) < 0. 

Since 9y2 + lly + 8 has a negative discriminant, it is always positive. Hence 
y=2,x= 1. On the other hand, if x > 1, then (x + Y)~ _< 9, so y 5 2. 

Then (y - 2)(9ti + lly + 8) > 0 and y = 2, x = 1. 
Second solution. Since x > 0, let x = t2. Then 7zW2 + %‘j = y3 = 

(32-l - z~)~, whence 

0 = 2%’ - 9z6 + 27%s + 7% - 27 

= (% - 1)(2%S + 2%7 + 2 z6 - 7%’ - 7%4 - 7z3 + 20z2 + 20% + 27) 

= (% - 1)[(%2 + % + 1)(22” - 7%3 + 20) + 71. 

The polynomial 2z6 - 7z3 + 20, considered as a polynomial in %3, has 
negative discriminant, and so is always positive. Since z2 + z + 1 is also 
positive, the term in square brackets never vanishes, and so z = 1. Thus, 
(x, y) = (2,l) is the only solution. 

8.23. Since x2 = (y + %)2 - 2(1 + a)y% = (y - %)2 + 2(1 - a)yr, it follows 
that 

whence 

2(1+ U)Y% = (x + y + %>(Y + z - x) 

2(1- a)yz = (x + y - %)(X + % - y), 

4(1 - .2),2y2z2 = (x + y + %>(Y + .% - x)(x + y - %)(X + % - ?/)x2. 

Similar equations hold for 1 - b2 and 1 - c2. From these it can be seen 
that, when Ial, (bl, ICI are distinct from 1, 

x2(1 - u2)-l = y2(1 - b2)--l = ~~(1 - c2)-l. 

Ifu=1,thenx2=(y-%)2,whencey=x+zorz=x+y.Ify=x+z, 
then 2% = -bx:z and xy = cxy, whence x = 0, or XT # 0, y = 0, b = -1, or 
xy # 0, z = 0, c = 1, or xyz # 0, b = -1, c = 1. The cases z = x + y and 
a = -1 can be handled similarly. 

8.24. Adding the first two equations yields 

x2 + y” + %2 = 30 (*> 

whence (x + y + z)~ = 30 + 2(-7) = 16. 
Taking the difference of the first two equations yields x2 - %2 = 24. 
Case(i):Fromx+z=4-y,x- % = 24(4 - y)-‘, we obtain (x, y, z) = 

(U + 621-l, 4 - 2u, u - 6u-l) where 2u = 4 - y. Substituting this into 
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(*) yields (u - 3)(3u3 + u2 - 4u - 12) = 0. C onversely, any solution of this 
equation leads to a solution of x+y+% = 4, x2-22 = 24, x2+y2+z2 = 30, 
and hence of the given system. 

Case (ii): From x + % = -4 - y, x - % = 24(-4 - y)-‘, we obtain 

(2, y, z) = (v + 6v-5 -4 - 2v, v - 6~l) where 2v = -4 - y. Substituting 
this into (*) yields (v + 3)(3v3 - v2 - 4v + 12) = 0. Any solution of this 
equation yields a solution of the original system. 

Hence (x,y,%) = (5,-2, l), (-5,2,-l), (U + 621-l, 4 - 2u, u - 6u-l) 
where u(u - 1)(3u + 4) = 12 or (v + 621-l, -4 - 2v, v - 6~~‘) where 
v(v + 1)(3v - 4) = -12. 

8.25. For any quadratic polynomial f(t), it is easy to verify that 

Ckf(k2)xk = uf(u). 

In particular, if f(t) = (t - a)2, we obtain that 

Ck(k2 - a)2xk = 0 

whence each term of the sum on the left must vanish. This implies either 
that each Xl, vanishes, in which case a = 0, or that a = m2 for m equal to 
one of 1, 2, 3, 4, 5, in which case x ,,, = m and the remaining zk vanish. 

8.26. Suppose we have a real solution (x, y,%). Then x + y = 2 - % and 
xy = (% - l)“, so that 

0 5 (x - y)2 = (2 - %)” - 4(% - 1)2 = %(4 - 32). 

Hence, we must have 0 5 % 5 4/3. Then p = xy% = z(z - 1)2 assumes 
all values between 0 and 4/27 inclusive (sketch a graph of the function 
Z(% - 1)2). 

Conversely, if 0 5 p 5 4/27, then the equation z(z - 1)2 = p is solvable 
for real % with 0 5 % 5 4/3. For such %, the quadratic t2 - (2- z)t + (% - 1)2 

has real zeros x, y, and we have a real solution (x, y, %) of the given system. 

8.27. The second equation implies that 

x+Y X-Y 
-+- 
X-Y x+Y 

=f 3+; [ 1 
whence one of x = f2y, y = f2x holds. The solutions (x, y) to the 
;yat$ns are (2,1), (-2,-l), (1, 2), (-l,-2), (2i,-i), (-2i,i), (i,-2i), 

. . 
2, 2. 

8.28. The first two equations represent spheres in Cartesian S-space with 
radii 7 and centers (5,2,6) and (11,7,2). Since the centers are less than 14 
units apart, the spheres intersect in a circle lying on the plane 12x + 1Oy - 
82 = 109. Since the plane 38x - 56y - 13% = 0 passes through the point 

(8,9/2,4) h h w ic is at the same time midway between the centers of the 
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sphere and at the center of the circle of intersection, it must intersect this 
circle in exactly two points, (xi, yi, zi) and (x2, ~2, ~2). It is easily verified 
that (16 - xl, 9 - yi, 8 - zi) satisfies the three equations, and so this point 

can be none other than (x2, ~2, z2). 

8.29. Suppose if possible that at least two of x, y, z are equal. Then 
x = y = z = t where t3 + (u - 1)t + b = 0. By Exercise 1.4.4, there is a 
unique real value oft which satisfies this equation. 

If x, y, z are all distinct, then from 

z - y = (y - x)(y2 + y-z + x2 + a) 

x - t = (z - y)(z2 + zy + y2 + a) 

y - x = (x - %)(x2 + xz + z2 + a), 

we have that 

1 = (y2 + yx + x2 + a)(z2 + zy + y2 + a)(~” + xy + y2 + a) > u3, 

which contradicts the condition on a. 

8.30. Since a.z + cx = bz + cy = ay + bx, it follows that 

x:y:z=a(b+ c - u) : b(c + a - b) : c(a + b - c). 

Taking a suitable constant of proportionality, values of x, y, z satisfying 
the given equations can be found. 

8.31. 

%2 - abz + (u” + b2 - 4) = ,z2 - (xy + xy-’ + x-‘y + x-‘y-‘)z 

+ (x2 + x-2 + y2 + y-2) = [% - (“y-l + x-‘y)][z - (xy + x-‘y-l)]. 

8.32. Let t = ux/a” = vy/b2 = wzjc”. Then x/u = t(a/u), etc. so that 
t2(u2/u2 + b2/v2 + c2/w2) = 1. Hence 

(x/u + y/v + z/w)~ = (tu2/u2 + tb2/v2 + tc2/w2)2 

= u2/u2 + b2/v2 + c2/w2. 

8.33. A complete set of solutions of the equation fi + G = 1 

can be described geometrically as follows. Let BC be a segment of length 
1. Each solution (y, z) of the equation corresponds to a point P on the 

segment of length 1 parallel to and distant 4 from BC. 

/qiy 

BdF-= &Ti C 

For the system of three equations, form a triangle ABC whose sides 
are three segments of length 1. The solution of the system is given by the 
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squares of the lengths of AP, BP and CP, where P is any point distant 
4, &, fi from BC, CA, AB respectively. Since there is exactly one such 
point, the system has exactly one solution. 

8.34. Suppose abc # 0. Then xyz # 0 and the system becomes y-l +z-l = 
a-‘, etc., whence 2x-l = b-’ + c-l - a-‘, etc. If, say a = 0 and bc # 0, 
then yz = 0 + x = 0 =+ y = z = 0. If, say a = b = 0 and c # 0, then 
either z = 0 and x, y are arbitrary solutions of the third equation or else 
x = y = 0 and t is arbitrary. If a = b = c = 0, then two of x, y, z must 
vanish and the third is arbitrary. 

9.1. For each complex z, z and -z - l/a have the same image under 
the mapping. Hence the mapping is one-one on the closed unit disc iff 

IzI 5 1 * 1% + l/al > 1. T k a ing z = 0 yields the necessary condition 
Ial < 1. If further, (al # l/2, then taking z = -IuI/a # -1/2a yields the 
condition Ial < l/2. Hence, it is necessary that Ial 2 l/2. 

But this condition is also sufficient. The intersection of the closed discs 
with radii 1 and centers 0 and -l/a is empty if Ial < l/2 and contains 
a single point if Ial = l/2. Hence, for Ial 5 l/2, the conditions 1.~1 5 1, 
1% + l/al 5 1 are simultaneously fulfilled iff 101 = l/2 and .z = --z - l/a = 
-1/2a. 

9.2. If the straight line passes through the origin, its image under t - z2 

is a ray emanating from the origin and not a parabola. So we exclude this 

case. Let w be the point on the line closest to the origin. Then a typical 
point on the line is represented by w + iwr = w( 1 + ir), where r is real. The 

image of this point is w”( 1 - r2 + 2ir). The locus of 1 - r2 + 2ir is a parabola 
whose axis coincides with the real axis and whose vertex is at 1. The locus 
of w”( 1 - r2 + 2ir) is the image of this parabola under a dilatation followed 

by a rotation, and so is a parabola whose vertex is at w2. 

9.3. Three points in C are vertices of an equilateral triangle iff they can be 
obtained from the points 1, w, w2 by a dilatation followed by a translation. 
The center of the triangle is represented by one third of the sum of the 
numbers corresponding to its vertices. 
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The roots of x3 +px2 + qx + r = 0 are vertices of an equilateral triangle iff 
they have the form -p/3 + u, -p/3 + uw, -p/3 + uw2 for some nonzero u. 
This happens iff the cubic equation can be written in the form (x+P/~)~ = 
u3 for some nonzero u, which occurs iff p2 = 3q, r = p3/27 - u3, i.e. 

p” # 27r. 
A generalization can be found in Crux Mathematicorum 9 (1983), 218- 

221. 

9.4. First, we determine the area of a triangle with vertices u, v, w in the 
complex plane. This area remains unchanged if we subject the points to 

a translation (subtraction of u) followed by a rotation (multiplication by 

Iv-~I-~(iT--zi)) t o o bt ain the vertices 0, Iv - u], Iv - u]-~(w - u)(‘ii- 21). 
Using the half-base-times-height formula for area yields 

$1~ - ul . Im[]v - ul-‘(w - u)(is - G)] 

Refer to Exercises 1.4.2-4. A change of variables x = y+a/3 converts the 
equation to one of the form y3 + py + q = 0 whose zeros are obtained from 
those of the given equation by a translation and whose coefficients p, q are 
expressible in terms of a, b, c. If u, v, w are the zeros of the polynomial in y, 
then w = -(u + v) and the formula for the area reduces to (3/4)]u’ii - UV]. 

Now u = r+s, v = rw+sw2, where 18r3 = -9q+dm, s = -p/3r 
and w is an imaginary cube root of unity. The area is thus 

lw2 - wl(lr12 - ls12) = di(IrI” - ls12). 

9.5. If the zeros are u, iv, -iv (u, v real), then b = -au, c = uv2 and 
d = -auv2, from which the necessity of the conditions follow. 

On the other hand, if UC > 0 and bc = ad, we have that 

at3 + bt2 + ct + d = (at + b)(t2 + a-‘~), 

from which the sufficiency of the conditions can be deduced. 

9.6. Taking note of the fact that ]a] = Ibl = ICI = IdI = 1, we find that, 
when ]z] = 1, 

Ip( = p(z)p(z> = 4 + (ud)z3 + (Ed)z-3 + (U-E + bz)z2 

+ (tic + 6d)z-” + (a8 + bE + cz)z + (Eb + bc + Ed)%-‘. 

Let w be an imaginary cube root of unity. Since 1 + w + w2 = 0, 

Ip( + Ip(wz)l” + lp(w2z)12 = 12 + 3~2%~ + 3sidz-3. 

Choosing t to be a cube root of zd gives the right side the value 18, whence 
at least one of the three terms on the left side is at least 6. The result follows. 
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The result can be generalized to polynomials of degree n. See Problem 
4426 in Amer. Math. Monthly 58 (1951), 113; 59 (1952), 419. 

9.7. Let n = 1 and p(x) = az + b. For m = 0, the condition is that C~CJZ + 
(cc + cib) = 0 identically; f or m = 1, the condition is that (cc + ci)ae + 
(cc+ci)b+cia = 0 identically. In either case, it can be seen that cc = cl = 0. 

Suppose that the result holds for polynomials of degrees up to n - 1 
inclusive. Let degp(z!) = n and 0 5 m _< n - 1. Then, differentiating the 
condition leads to a similar condition for the derivative p’(z) and the result 
follows in a straightforward way from the induction hypothesis. 

The only case left to consider is that 

cop(z) + c1p(2 + 1) + * * * + cnP(z + n) = O 

identically. Since the leading coefficient must vanish, cc + cl + . . . + c, = 0, 
whence 

0 = c&(x + 1) -p(z)] + c&(c + 2) - P(Z)] + . . . + Glb(2 + n> - P(Z)1 

= (Cl + c2 + . . . + cn)q(z> + (cz + . . . + G$?(~ + 1) 

+ (c3+. * f + c*)q(z + 2) + . . . + c,q(z + n - 1) 

where q(z) = p(z + I) - p(z), a polynomial of degree n - 1. The desired 

result now follows from the induction hypothesis. 

9.8. Let 

f(t) = &(t - rip, 
i=l 

where ml + rns + . . . + ?nk = n. Then 

f'(t) = Cfi(t - Ti)"i-lg(t) 

i=l 

for some polynomial g(t) which does not vanish at any ri. The degree of 

(n - 1) - &(mi - 1) = L - 1. 
i=l 

But since a power of f’(t) divides a power of f(t), each zero of g(t) is a zero 
of f(t). But, since g(t) and f(t) do not share any zero, g(t) is constant, so 

that L = 1, ml = n. It is easily checked that any polynomial of the form 
c(t - T)” satisfies the conditions of the problem. 

9.9. Suppose that n = degp(t) 2 degq(t) and that, if possible, (p - q)(t) 
is not identically zero. Let the distinct zeros of p(t) and q(t) be ~1,. . . , U, 
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and those of p(t) + 1 and q(t) + 1 be ~1, . . . , v,. Clearly, the Ui are distinct 
from the vj. Since each ui and each vj is a zero of (p - q)(t), it follows that 

n = m=(degp(t), deg q(t)) 2 dedp - q>(t) 2 r + s. 

Consider the derivative p’(t), which is also the derivative of p(t)+ 1. Since 
the multiplicity of each zero of p(t) and of p(t) + 1 exceeds its multiplicity 
as a zero of p’(t) by 1, p’(t) has at least n - T zeros, counting multiplicity, 
from among the ui and n - s zeros, counting multiplicity, from among the 
vj. Hence 

(n- r)+(n-s),<degp’(t)=n-l$n<r+s-l<r+s. 

But this contradicts the earlier inequality, and so (p - q)(t) must be the 

zero polynomial. 

9.10. Suppose the polynomial is t3 + at2 + bt + c. Let u = 1 - 2ii3 + 22/3. 
Then u2 = -3 + 3.22/3 and u3 = -9 + 9.2113. Since u is a zero of the 
polynomial, 

(-9 - 3a + b + c) + (9 - b)21’3 + (31s + b)22’3 = 0. 

The coefficients in parentheses vanish when (a, b, c) = (-3,9, -9) and we 
obtain the polynomial t3 - 3t2 + 9t - 9. 

Answers to Exercises 

Chapter 5 

1.2. (a) -0.77, 1.93; (b) -0.43; (c) 0.15, 3.47. 

1.3. (c) For example, the final polynomial of Exercise 2 has p(3) = -257 
and p(4) = 1133. Taking a = 3, b = 4 yields the next approximation 3.293. 
With a = 3.293, b = 4, we are led to 3.377. 

1.5. (c) 0.148. 

(e) (4 

1.7. (b) a;+, - c = (a; - c)s/(4aE). It follows that for n 2 2, ui 2 c, 
and, since a, - a,+1 = (u: - c)/(2a,), {a,} eventually decreases. Since 
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ai - c < ai + c < 2ai (for n 1 2), we have that u:+~ - c < (a: - c)/2, so 

that u:+~ - c < 2 -(“-‘)(a~ - c). From this estimate, the result follows. 

1.8. Let the polynomial be p(t). When t 5 -1, p(t) > 3t4 - t2 > 0 and 

when -1 < t < 0, p(t) > -t2 - 3t = -t(t + 3) > 0. Hence all of the real 
zeros of p(t) are positive. Two zeros are 0.295 and 1.336. As can be seen 
by the methods of Section 2, there are only two real zeros. 

1.9. (b) Each successive u, seems to be farther from P t.ha.n its predecessor. 

(d, e) Beginning with 3, the sequence of successive approximations is: 
(3, 3.10723, 3.121968, 3.123983, 3.124258, 3.124297, 3.124302, . . .}. Begin- 
ning with 4, the sequence is: (4, 3.239609, 3.139972, 3.126440, 3.124595, 

3.124342, 3.124307, 3.124303). Th e zero, to five decimal places, is 3.12430. 

2.6. (c) The proof is by induction on the degree of p(t). To give a feel for 
the argument, examine the case that degp(t) = 1. Since p(t) = at is trivial 
to analyze, let p(t) = at + b, b # 0. Then (t - r)p(t) = at2 + (b - ra)t - rb. 
If ab > 0, then a and -rb differ in sign; if ab < 0, then a and -rb have one 
sign and b - ra the opposite sign. In any case, the result holds. 

Suppose the result holds for polynomials of degree up to n - 1 1 0. Let 

p(t) = &It” + q(t), where q(t) = an-#-l + . . . + alt + ac. Then 

(t - r)p(t) = a,t”+l - ra,P + (t - r)q(t) 

= ant n+l + (a,-~ - ran)t” + . . . . 

Suppose p(t) has k sign changes. 
Case (i): a, has the same sign as the next nonzero coefficient. Then q(t) 

has k sign changes. The leading coefficients of (t - r)p(t) and (t - r)q(t) 

have the same sign and all other corresponding coefficients except that of 
tn have the same value. Hence (t - r)p(t) has at least as many sign changes 
as (t - r)q(t), and the result follows. 

Case (ii): a, differs in sign from the next nonzero coeficient. Then q(t) 
has k - 1 sign changes. Whether or not a,-1 vanishes, the coefficients of 
tnS1 and t” in (t - r)p(t) h ave opposite signs, so that this polynomial has 
one more sign change than (t - r)q(t), i.e. at least k + 1 sign changes. 
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2.7. Let r1, r2 , . . . , rk be all the positive zeros of p(t), each taken as often 
as its multiplicity. Then p(t) = (t - rl)(t - r2) . . . (t - rk)q(t) where q(t) has 
no positive zeros and, say, m sign changes. Applying Exercise 2.6, we find 

that p(t) has k + m sign changes. The second part follows from Exercise 5. 

2.10. The two adjacent vanishing coefficients correspond to consecutive 
powers oft, one even and one odd. Let the signs +, -, 0 of the remaining 
n - 1 coefficients be written out in order. Denoting the polynomial by p(t), 
we see that there is a sign change between two consecutive coefficients in 

a given position which are nonzero for exactly one of p(t) and p(-t). If 
two nonzero coefficients are separated by a zero coefficient (apart from ak 
and Uk+r), then there are at most two sign changes involved with p(t) and 
p(-t) together. As a consequence, there are at most n - 2 changes of sign 
for p(t) and p(-t) together, and so at most n - 2 real zeros. Since p(0) # 0, 
the result follows. 

2.11. Multiplying the given polynomial by t - 1 yields 

ant” + (a,-1 - a,)t” + e-e+ (1 - a3)t3 - 1. 

By Exercise 10, this has at most n - 1 real zeros. 

A similar argument shows that, if any three consecutive coefficients of a 
real polynomial are equal and nonzero, the zeros of the polynomial are not 

all real. See problem El283 in Amer. Math. Monthly 64 (1957), 592; 65 

(1958), 286. 

2.12. (a) 

f(r) = a,P + (an-lrnsl +a .. + a,+lrP+l) + a,? 

+ a,-19-l + -..+ air + ao. 

For 0 5 i 5 p, if ai < 0, then Mr’ 2 0 > air’, while if ai > 0, Mr’ 1 air’. 

For p < i < n, ai > 0. Hence 

f(r) > a,P + M(rP + 9-l + . . . + r + 1). 

(b) The first inequality is obvious. Since r > r - 1, 

ad n-P-l(r - 1) > an(r - l)“-P-‘(r - 1) > M. 

(cl From (b), 

a,# > MTP+l(r - l)-’ > M(TJ’+’ - l)/(r - 1). 

Now apply (a). 

2.14. (a) 1 + fi < 2.201; 1 + 3/2 = 2.5. 

(b) 1 + 3 = 4; 1 + 1 = 2. 
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2.15. (a) Let q(a) = q(b) = k. Th en a and b are zeros of the polynomial 

q(t) - k whose derivative is p(t). 
(b) Suppose there are k distinct real zeros, r1, r2,. . . , rk of q(t). Since 

the multiplicity of each ri as a zero of p(t) is one less than its multiplicity 
as a zero of q(t), the total multiplicity of all the ri as zeros of p(t) is 
m-b. However, Rolle’s theorem provides an additional zero of p(t) between 
adjacent pairs of the pi for an additional k - 1 zeros. 

(c) We can take 2q(t) = t4-2t3-t2+2t = (t+l)t(t-l)(t-2). By Rolle’s 
theorem, p(t) has a zero in each of the intervals (-l,O), (0, l), (1,2). 

(d) Let f(t) = act+ait2/2+...+antn+1 /(n+l). Since f(0) = f(1) = 0, 
by Rolle’s theorem, f’(t) = a0 + alt + . . . + a,t” has at least one zero in 

the interval (0,l). 

2.16. It is straightforward to see the result by examining the graph off(t). 
Here is an analytic argument. If not all the zeros of f(t) are real, we may 

take k = 0. Suppose all the zeros ui of f(t) are real. Then the zeros vi of 
f’(t) are all real, and we can label them so that 

Ul L Vl 2 u2 1 v2 >_ . . . 1 u,,-~ 1 v,,-~ >_ u, (where n = deg f(t)). 

With no loss of generality, we can assume that the leading coefficient of 
f(t) is 1, so that f(t) = (t - ul)(t - ~2). . + (t - IL,,). For t > ~2, we have 
that 

(t - ux)(t - u2) = - $1 + u2)] 2 - &l - u2)2, 

so that 

1 
f(t) >_ --(ul - u2)2(u2 - u3)(u2 - u4) * * * (u2 - %I). 

4 

Let k be any positive real exceeding the absolute value of the right side of 

this inequality. Then f(t) + k d oes not vanish for t 2 ~2. If f(t) + k has 
m real zeros, then all are less than u2. The derivative f’(t) of f(t) + k has 

at least m - 1 real zeros less than uz. But then m - 1 < n - 2, so that 
m 5 n - 1 and we have the required result. 

2.17. (c) Referring to the Taylor Expansion of p(t) about 0, we see that 
the number of sign changes of the coefficients is equal to the number of sign 
changes in the sequence (p(O), p’(O), . . .). On the other hand, for sufficiently 
large positive v, P(~)(V) has the same sign as the leading coefficient of p(t) 
for each k. Take this value of v with u = 0 in the Fourier-Budan criterion; 
A is the number of sign changes in the coefficients and B = 0. 

(d) For t = -2, the sequence of derivative values has signs +, -, +, 

-, +; fort = 0, the signs are -, +, +, 0, +. The Fourier-Budan Theorem 

provides for 1 or 3 zeros in the interval [-2,0]. However, since t4 + t2 -4t - 3 

has one sign change, the Descartes’ Rule of Signs puts an upper bound of 
1 on the number of zeros. 

[t4 + t2 + 4t - 3 = (9 + t - l)(P - t + 3).] 
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2.21. (a) The real zeros are -a, 4, approx. 3.087. 
(b) Zeros are -7, 2/3, -5/8, (l/2)(1 f ifi). 

(c) 2t4 + 5t3 + t2 + 5t + 2 = (2P - t + 2)(P + 3t + 1). 
(d) Polynomial is (4t - 7)(4t5 + 7t4 + 13t3 + 22t2 + 3t + 3). Real zeros 

are 714 and approx. -1.6896. 

(e) There are three real and four nonreal zeros. The polynomial factors 
as (4t + 3)(t2 + t + 2)(4t4 - 7t3 - llt + 6). The nonrational zeros are 
approximately 0.4912 and 2.1829. 

3.1. (b) If [WI 5 1, then the inequality is satisfied. Otherwise 1~1~~ < 1 
and (a) can be applied. 

3.2. (b) 

I%ol = I(%0 + 21 + *. . + 2,) - (Zl + *. . + &)I 

< Izo+... +z*I+Itl+z2+*~~+%,~. 

Applying (a) and transferring terms yields the result. Strict equality holds 
iff all the zi have the same argument. 

3.3. (b) If ]w] < 1, the inequality holds. Otherwise, 1~l-l < 1 and, from 

(4, 

0 2 ]a,ur”][l - K(]w]-’ + ]w]-~ + +.. + ]w]-“1 

> lanw”I(IwI - l)-l(]w] - 1- K). 

3.5. (a) By Descartes’ Rule of Signs, there is at most one positive zero. 
Since the polynomial is negative at t = 0 and positive for large t, there is 

at least one positive zero. 
(b) Since the polynomial in (a) is positive for t > r, it follows that for 

I4 > r, 

Iwn + an-lwnsl +. . . + alw + a01 2 lwnl - la,-lwn-l I - .. . - laoI > 0. 

[A generalization of Exercise 2 and this Exercise appears in Emeric Deutsch, 
Bounds for the zeros of polynomial, Amer. Math. Monthly 88 (1981), 205- 

206.1 

3.6. (1 - w)g(w) = b. + (b, - bo)w + . . . + (b, - b,&w” - b,,w”+‘. For 

/WI 5 1, w # 1, we have from Exercise 2(b) that 

I(1 - w)s(w)l > bo - lb1 - bol - lb2 - bll - .e. - lb, - bn-11 - lbnl 

= b. + (bl - bo) + (b2 - bl) + . . . + (b, - b,-l) - b, = 0. 

Since, also, 1 is not a zero of g(t), the required result follows. 
(b) w is a zero of g(t) iff w-l is a zero of hot” + bit”-’ +. . .+ b,-It + b,, 

whence the required result follows from (a). 
(c) It is straightforward to see that 0 < a,un 5 a,-lu”-’ 5 ... 5 alu 5 

ao. If bi = aiui, then w is a zero of f(t) iff w/u is a zero of g(t). By (a), 
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]w/u] > 1, so that ]w] > u. A similar argument using (b) and-the fact that 
anvn 1 an-lvnS1 2 . . . 2 alv 2 a0 yields lw] < v. 

3.8. (a) Case 1: Both zeros are nonreal. If the zeros are u + vi and u - vi, 

then (1 + c) + b = (1 - u)” + v2 and (1 + c) - b = (1 + u)~ + v2 are both 
positive, so that Ibl < 1 + c always holds. Hence c < 1 _ u2 + v2 < 1 _ 
both zeros lie in the interior of the complex unit disc. 

Case 2: Both zeros are real. If the zeros are r and s, then (1 + c) - b = 

(l+r)(l+s) and (l+c)+b = (1-r)(l-s). Suppose that IrI < 1, Is] < 1. 
Then -1 < c = rs < 1 j 0 < 1 + c < 2. Also, 1 f r and 1 f s are positive, 
so that (1 + c) f b > 0 + b < 1 + c. On the other hand, if lb1 < 1 + c < 2, 
then (1 f r)(l f s) > 0, so that 1 + r and 1 + s have the same sign, as do 
1 - r and 1 - s. Since lrsl = ICI < 1, this forces -1 < r, s < 1, as required. 

For other treatments of this criterion, consult problems El313 in Amer. 
Math. Monthly 65 (1958), 284, 776 and 1029 in Crux Math. 11 (1985), 83; 
12 (1986), 191-193. 

(b) Case 1: The teros are nonreal. Let the zeros be r, u+vi, u-vi. Then 

1 - b + c - d = (1 + r)[(l + u)” + v”] 

l+b+c+d=(l-r)[(l-~)~+v~] 

1 - c + bd - d2 = [l - (u” + v2)][(1 - ru)2 + r2v2]. 

Hence-1<r<1,u2+v2<1~]b+d]<1+candc-bd<l-d2. 
Let all the zeros lie within the open disc defined by ]z] < 1. Then the 

product -d of the zeros satisfies IdI < 1. Hence 1 - d2 > 0 and d(b + d) 5 

Id(b+d)l<Ib+dl<1+csothatbd-c<1-d2.HenceIc-bdl<1-d2 
and lb + dl < 1 + c = ]I+ cl. 

On the other hand, suppose lbd - cl < 1 - d2 and Jb + dl < 11 + cl. 

Clearly c - bd < 1 - d2. We show that 1 - b + c - d and 1 + b + c + d 

must both be positive. Suppose, if possible, that 1 - b + c - d 5 0 and 

1 + b + c + d 2 0. Then 1 + c and -(l + c) do not exceed b + d so that 

II+ 4 5 lb + 4, a contradiction. On the other hand, if 1 - b + c - d 2 0 

and 1 + b + c + d 5 0, then 1 + c and -(l + c) do not exceed -(b + d), so 
that 11 + cl 2 -(b + d) = lb + dl, a contradiction. Since 1 - b + c - d and 

1 + b + c + d also cannot both be negative, we must have lb + dl < 1 + c 
and all zeros lie inside the open unit disc. 

Case 2: All zeros are real. Let the zeros be p, q, r with p < q < r. Then 

1 - b + c - d = (1 +p)(l + q)(l + r) 

l+b+c+d=(l-p)(l-q)(l-r) 

1 -c+bd-d2 = (l-pq)(l-pr)(l -qr). 

Let all the zeros lie within the open unit disc. From the above equations, 

Ib+dl<l+c=Il+~landc-bd<l-d~.AsinCasel,itcanbeshown 
thatbd-c<l-d2,sothat]bd-c]<l-d2. 
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On the other hand, suppose that Ibd - cl < 1 - d2 and lb + dl < II+ cl. 
AsinCasel,itcanbearguedthatl-b+c-dandl+b+c+dhave 

the same sign. Suppose 1 - b + c - d < 0 and 1 + b + c + d < 0. Then 

lb + dl < -(l + c). S ince 0 < 1 - d2 and bd - c < 1 - d2, it follows that 
d(b + d) < 1 + c < 0, so that II+ cl < IdI lb + dJ < lb + dl, a contradiction. 

Hencel-b+c-d>Oandl+b+c+d>O.Notingthat-l+b-c+d 
and 1 + b + c + d are the respective values of the polynomial at -1 and 1, 

we see that one of the following possibilities obtains: 

(i) -l<p<l<qlr 

(ii) p 5 q < -1< r < 1 

(iii) -1 < p 5 q 5 P < 1. 

Ad (i), 1 - qr < 0 and (1 - pq)(l - pr)(l - qr) > 0 implies that p > 0 and 
pq < 1 < pr < pqr = -d, which contradicts 1 - d2 > 0. Ad (ii), 1 - pq < 0 
implies that r < 0 and d = lpqrl > lprl > 1 > lqrl, which contradicts 
1 - d2 > 0. Hence (iii) must hold. 

3.9. (d) If the zeros of a manic cube are r, u + iv, u - iv, with r, U, v real, 

then the coefficients are positive w r + 2u < 0, 2ru + u2 + v2 > 0 and 

r(u2 + v2) < 0. The last inequality forces r to be negative. However, we 
can choose u to be a small positive value and v a large value to achieve the 

other two inequalities. For example, taking r = -3, u = 1, v = 3 leads to 
the polynomial t3 + t2 + 4t + 30. 

3.10. (d) Let p(t) = 8a2t3 + 8abt2 + 2(b2 + ac)t + (bc - ad). We are given 
that p(t) has a real zero u. If bc > ad, then p(t) > 0 for t 2 0, so that 
u < 0. If bc 5 ad, then p(t) = 2t(2at + b)2 + 2act + (bc - ad) shows that 
p(t) has no negative zero. If bc = ad, then u must be zero and it can be 

checked directly that f(&@) = 0. If bc < ad, then u > 0. 

3.11. (a) The reasoning, analogous to that of Section 4.5, can be outlined 

as follows. If the Nyquist diagram does make at least one circuit of the 
origin, then by shrinking the semi-circle in the right side of the z-plane 
down to a point, we find that its image curve must at some stage pass 

through the origin. Suppose the Nyquist diagram does not make a circuit 
of the origin. Let D be the image of the circle of radius M. Since the disc 
of radius M contains all the zeros of the polynomial, D must wind around 
the origin n times (n being the degree of the polynomial). Consider three 
curves: 

DI: the image of the semi-circular arc {z : IzI = M, Rez 2 0}, 
D2: the image of the semi-circular arc {Z : 1.~1 = M, Re,r 2 0}, 
Da: the image of the line segment {Z : z = yi, y real, IyI < M}. 
D = D1 U D2. A point tracking around D traces around D1 and D2 in 

succession. D1 U 03 does not make any circuit of the origin, so that all the 

winding around the origin is done by the D2 part of the curve. By making 
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a few sketches, we can see that D2 U 03 (the image of the left semi-circle) 
must wind around the origin n times. But then the left semi-circle must 
surround all n zeros of the polynomial, leaving none for the right semi-circle 

to surround. 

3.12. (a) The Nyquist diagram indicates that the polynomial is unstable. 

2 - 8i 

(b) Every real zero must be negative. Suppose u + iv is a nonreal zero. 

Then (u3 + 2u2 + 3u + 1) = v2(3u + 2) and 3u2 + 4u + 3 = v2. Eliminating 
v2 leads to 8u3 + 16u2 + 14u + 5 = 0, whence u cannot be nonnegative. 
Hence any nonreal zero must have negative real part. 

(c) Every real zero must be negative. If u + vi is a nonreal zero, then 

(u4 + 3u3 + u2 + u + 8) - (6u2 + 9u + l)v2 + v4 = 0 

(4u3 + 9u2 + 2u + 1) = (4u + 3)v2 

Eliminating v2 leads to 

. . . (1) 

. . . (2) 

+ (4213 + 92 + 2u + 1)2 = 0. 

The leading coefficjent of the left side is negative and the constant coef- 
ficient is positive. Hence the equation is satisfied for at least one positive 

value of u. Such a positive value of u leads to a pair of real values of v, so 
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that the system has a solution u + vi with u > 0. Hence the given equation 
is not stable. 

Solutions to Problems 

Chapter 5 

4.1. Let u, v be any two distinct real zeros, if such exist of t3 - 3t + k. Then 
u3 - v3 = 3(u - v), whence u2 + uv + v2 = 3. If both u and v are positive 
and less than 1, then the left side is less than 3, yielding a contradiction. 
Hence at most one real zero lies in [0, 11. 

An alternative solution can be based on the graph of the polynomial, 
using the fact that there is a unique maximum when t = -1 and a unique 
minimum when t = 1. 

4.2. By Descartes’ Rule of Signs, there is at most one positive root. The 
left side can be rewritten as 

n!z(l+ x)(1+ c/2)(1 + 2/3)-a-(1 + z/n), 

which for z = l/n! exceeds 1. Since the left side is less than 1 for 2 = 0, it 

must equal 1 for some z between 0 and l/n!. 

4.3. Clearly, t = 1 satisfies the equation and x = 0 does not. Let n 2 2. 
The equation can be rewritten 

n = xen + xsn+l + . . . + 2-l. 

If 1x1 2 1, then ]xVn + . . . + z-r] < n with equality iff both 1x1 < 1 and 

all powers of x-l have the same argument iff x = 1. Therefore, for all z 
satisfying the equation, either z = 1 or 1x1 < 1. 

A number of other solutions, some using Exercise 3.6, can be found in 

Amer. Math. Monthly 66 (1959), 143-144. 

4.4. With the quartic written as (z2 - 2)2 - 2(5x2 + 7), it is evident that 

it is positive when x is negative. 

4.5. We prove by induction that, if Ikl < 2, then f,,(t) = k has 2n distinct 

real roots. The result is clearly true when n = 0. Suppose it holds for n - 1. 
Then fn(t) = k _ f,+l(t) = m or fn-l(t) = -m. By the 
induction hypothesis, each of the alternative equations has 2”-l distinct 
real roots, and any root of one is not a root of the other. The result follows. 

4.6. The equation can be rewritten 

tn+’ + at” + . . . + a”+’ = tn+’ + bt” + . . . + bn+l. 

After multiplication by (t - a)(t - b), this becomes f(t) = 0 where 

f(t) = (tnt2 - a”t2)(t - b) - (tnt2 - b”+2)(t - a) 

= (a - b)t“+’ - (ant2 - b”t2)t + &(a”+’ - b”+‘). 
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We have that f(a) = f(b) = 0 and f’(t) = (n+2)(a-b)t”+‘-(a”+2-bn+2). 
If n is even, f’(t) h as exactly one real zero, counting multiplicity, so that 

f(t) has at most two. These are already accounted for by the extraneous 

roots a and b of f(t) = 0, so that the original equation has no root. 
If n is odd, then f’(t) h as exactly two zeros counting multiplicity, so f(t) 

has at most three. Since two of these are accounted for by a and b, then 
given equation has at most one root. 

4.7. Let 

f(t) = 2t3 - pt2 + qt - r = (t - al)(t - as)(t - as) 

+ (t - a2)(t - a4)(t - as). 

Since f (ai) is positive for i = 1,4,5 and negative for i = 2,3,6, there must 
be a real zero in each of the intervals (asj-1, asj) for j = 1,2,3. 

4.8. By Descartes’ Rule of Signs, there is at most one positive root. De- 
noting the left side by f(x), we have that 

f (a + b + c) = 2Ca2b + 4abc > 0 

and 

27f(2(a + b + c)/3) = -[lOXa - 6Ca’b + Gabc] = -{[S(a + b) - c][a - b12 

+ [5(b + c) - a][b - cl2 + [5(c + a) - b][c - a]“}. 

Without loss of generality, suppose a 2 b 1 c. If a 5 5(b + c), then 
f(2(a + b + c)/3) 5 0. On the other hand, if a > 5(b + c), then 

lOXa - 6Ca2b + 6abc > [2u3 - 6a2(b + c)] + [2a3 - 6a(b2 + c2] 

+ [2a3 - Gbc(b + c)] > 4a2(b + c) + 44a(b2 + c”) + 4bc(b + c) > 0, 

so again f (2(u + b + c)/3) < 0. The required result follows. 

Remark. Another solution can be found in Crux Math. 11 (1985), 129. 
See also the discussion to problem 787 in Crux Math. 10 (1984), 56-58, in 

which it is pointed out that, if a, b, c are three sides of a given quadrilateral, 
the length E of the fourth side in order to achieve maximum area is given 
by the equation of the problem. In fact, the points can be arranged in a 

semi-circle whose diameter is the fourth side. 

4.9. By the Fundamental Theorem of Algebra, we have that 

(x - a1)(2 - a2). . .(x - a,) - 1 = (x - rr)(x - rs) f.. (x - r,), 

whence it can be seen that the second equation has n zeros a;. 
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4.10. Let p(x) = k(x - ar)(x - a2) .. . (z - a,). Then p’(al) = 
k(a2 - al)(a3 - al) a. . (a, - al). For i = 2,3,. . . , n, 

lai - all 5 lai - bl + lb - a11 < 2lb - ail. 

[p(b)1 = k fi lb - ail > k2-“+‘lb - all fi lui - all 
i=l i=2 

= 2~“+‘lp’(al)(b - al)l. 

4.11. Let the left side be f(t) and suppose that a 5 b 5 c. We have that 

f(t) = (t - b)[(t - a)(t - c) - e2] - (t - a)d2 - (t - c)f2 - 2def. 

The quadratic (t - a)(t - c) - e2 is nonpositive for t = a and t = c and 

so has real zeros u and v for which u _< a 5 c < v. Thus (a - u)(c - U) = 

(v - a)(v - c) = e2, whence 

f(u) = (Ja-;kr f &=iif)2 2 0 

and 
f(v) = -(Gd& Gf)2 < 0. 

Since the leading coefficient off(t) is positive, f(t) has a zero not exceed- 
ing u, a zero not less than v and a zero in the interval [u, v]. The only way 
in which f(t) might fail to have three real zeros is that u = a = b = c = v. 

But, in this case, e = 0 and f(t) = (t - u)[(t - a)2 - d2 - f2] evidently has 
three real roots. 

Remark. The roots of this equation are the eigenvalues of the real sym- 
metric matrix (a f e/f bd/ d ), e c w ic must be real from matrix theory. h h 

4.12. By Descartes’ Rule of Signs, there are at most two positive roots. If 
f(z) denotes the left side, then 

f(x) = (x2 - lOlO) - (Z2 - lore) - (x + 1) 

= (X2 - 10” - 0.5)2 - (x + 1.25). 

Since f (105) < 0 and f ( lo5 f 10V2) = [10m4 f 2.103 - 0.512 - [lo5 f 10m3 + 

1.251 > lo6 - lo5 - 2 > 0, the two roots lie in the open intervals (99999.99, 

100000) and (100000, 100000.01). If x < 0, it is straightforward to see that 
f(x) > 0, so that there are no negative roots. 

The positive roots are solutions of the two equations 

x = [lOlo + 0.5 + (x + 1.25)1’2]1’2 (1) 

x = [lOlo + 0.5 - (x + 1.25)1/2]1/2. (2) 
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We solve by successive approximation, by evaluating the right side at x = 

105. With the aid of the binomial theorem, this yields 

(1) x = 105[1 + (316.73)10-‘“]1’2 = lo5 + (158.36)10-5 

= 100000.0016 

(2) 2 = 105[1 - (315.73)10-10]“2 = lo5 - (157.86)10-5 

= 99999.9984. 

These solutions check out. 

4.13. Suppose that p(x) = ax2 - bx + c has two distinct zeros in (0, l), 
and that a, b, c are integers with a positive. Then b > 0, c = p(0) > 0, 
a - b + c = p(1) > 0, b2 - 4ac > 0 and the product c/u of the zeros is less 
than 1. Thus, it is necessary that 

(1) 0 < c < a, 

(2) b < a + c, 
(3) 4ac < b2. 
Since a and c are positive integers, (a - l)(c - 1) 2 0, whence b2 > 4ac > 

4(a + c - 1) 2 4b j b 2 5 j 2a > a + c 2 6 =P a 2 4. Now a = 4 forces 
c = 2 or c = 3, either of which make (2) and (3) incompatible. Hence a 2 5. 

Consider the possibilities for a = 5. If c > 2, then (2) and (3) are incom- 
patible. However, c = 1 forces b = 5 and yields the polynomial 5z2 - 5x+ 1, 
which has the stated property. 

4.14. Since each q,,(x) has nonnegative coefficients, any real zero cannot 
be positive. It is readily checked that ql(x) and q2(x) each have a negative 

zero. Suppose, for some n 1 2, it has been established that qi(O) > 0 and 

that each qi(x) has at least one negative zero and that the greatest such 

zero xi satisfies xi-1 < xi (2 < i 5 n). Then, for 1 5 i 5 j 5 n, qi(x) > 0 
for Xj < 2 5 0. 

From the recursion relations, it follows that q,+l(O) > 0 and qn+l(xn) < 
0, so that qn+l(x) has at least one zero in the interval (x,, 0). Thus, there 
is a largest real zero x,+1 and it satisfies x, < x,+1 < 0. 

In fact, it can be shown that xz,,,+2 > -l/(m + 1) for m 2 1. For, from 
the recursion relations, we find that 

q2m+2(-l/(m + 1)) = -q2m-l(-l/(m + 1)). 

If qzm+2(- l/(m + 1)) < 0, th en xzm+2 > -l/(m + 1). On the other hand, 

if qzm+z(-l/(m + 1)) > 0, then qm-I(-l/(m + 1)) < 0, so that x2,+2 > 

~2~-1 > -l/(m + 1). 

Therefore, if r is any positive number, no matter how small, we can 
choose a positive integer m so that -r < -l/(m + 1) < 0. Then, for 
n 2 2m + 2, -r < x, < 0, so that the x, get closer and closer to 0. 
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Remark. These polynomials occur as the denominators of a sequence 
of convergents in a continued fraction representation of the infinite series 
1 - x + 2x2 - 6x3 + 24x4 - 120x5 + . .. studied by L. Euler around 1760. 

See E.J. Barbeau, Euler subdues a very obstreperous series Amer. Math. 
Monthly 86 (1979), 356-372. 

4.15. First solution. Let the three zeros be u, v, w with u > v 2 w. Let 
u - w = r and u - v = s, so that v - w = r - s. Hence 

2(a2 -3b) = 2(u+v+w)2-6(uv+vw+wu) 

= (u - w)2 + (u - v)Z + (v - w)2 

= r2+s2+(r-s)2 

= 2(s - r/2)2 + 3r2/2 2 0. 

Under the condition 0 5 s 5 r, the quadratic (in r and s) is minimized 
when s = r/2 and maximized when s = 0 or s = r. Hence 

(3/2)r2 5 2(a2 - 3b) 5 2r2, 

so that 

(u” - 3b)1’2 5 u - w < (2/&)(a2 - 3b)1’2 < 2(a2 - 3b)1’2. 

(Solution due to David Ash.) 
Second solution. By a change of variable x = t + a/3, we can write 

t3 + at2 + bt + c = x3 + pz + q where p = b - a2/3. Consider the graph of 

y = x3 + px + q. It is centrally symmetric about the point (0, q) and has 
parallel tangents at (zl,q) and (x2,(1). 

The distance between the roots of x3 +px +q = 0 is the distance between 
the outer points of intersection of the curve and the line y = 0. Prom the 
shape of the curve, it can be seen that this distance lies somewhere between 
the values 22 - 21 and 24 -23, where xl, 0, zz are the roots of the equation 
x3 + px + q = q and x3, x4 are the roots of the equation x3 + px + q = r, 

where r is chosen so that the equation has a double root. 
Clearly, c2 - r1 = 2(-p)lj2 (so that, in particular a2 - 3b = -3p > 

0). Now, x3 + px + (q - r) has a double zero when it shares a zero with 

its derivative 3x2 + p, i.e. when its zeros are either (-~/3)“~, (-p/3)l’“, 
-2(-~/3)l’~ or the negative of these. Hence x4 - 2s = 3(-~/3)“~. 
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The distance between the outer zeros of x3+px+q is equal to the distance 
between the outer zeros of the given polynomial, and it lies between 

x:4 - tg = 3(-p/3)‘12 = (a2 - 3b)l12 

and 
x2 - Xl = 2(-p) ‘I2 = (2/d)(a2 - 3b)‘i2. 

4.16. ‘It is clear that .r6 + 6% + 10 = 0 has no pure imaginary roots. Since 
6% + 10 2 0 when z > -513 and z6 + 6% 1 0 when t < -513, there are no 
real roots. Since the coefficients are real, the number of zeros in the first 
and fourth quadrants are equal as are the number of zeros in the second 
and third quadrants. This it suffices to consider zeros z = r(cos 0 + isin 0) 
for which r > 0 and 0 < 0 < 7r, i.e. sin0 > 0. 

For such a root 

r6cos60+6rcosB+10=0 . . . (1) 

r6sin68+6rsin0=0. . . . (2) 

From (2), r5 = -6 sin e/sin 68 + sin 60 < 0 + n/6 < i9 < n/3, ?r/2 < 0 < 
2~/3 or 5~/6 < 6’ < r. Substituting for r5 into (1) yields 

0 = r(r5 cos 68 + 6 cos 0) + 10 = (6r sin 50)/(sin 60) + 10 

so that r = -(5 sin 68)/(3 sin se). 
Hence e must satisfy the equation f (8) = 0 where 

f (0) = 6.35 sin 0 sin5 58 - 55 sin6 68. 

Note that f(O) is positive for 0 = 7r/6, ?r/2 and 5?r/6, and negative for 

0 = 7r/3 and 2rr/3. Since f(r) = 0, we look at f(r - 4) = f(4), where 4 is 
very small. In this case, sin+ & 4, sin54 L ~I#J and sin64 - 64, so 

f (4) 2 6.35 - 55@- - 55 .6’@ < 0. 

Thus f(4) must vanish in each of the open intervals 

(0, r/6), (r/6, r/3), (43~/2), (~/2,27r/3), (2a/3,5~/6), (5~/6,4. 

Note that the vanishing of f(d) entails that sin50 must be positive. Since 
sin60 < 0 for e in the second, fourth and sixth intervals, we obtain a 

positive value of r and a viable solution (r,d) to the equations (1) and (2). 
(The zeros off (6) in the other three intervals lead to inadmissible solutions 
with r < 0.) 

Thus there are six zeros of z6 + 6% + 10, one in the first quadrant whose 
argument is between 916 and n/3, two others in each of the second and 

third quadrants, and one in the fourth quadrant. 
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4.17. Let f(x) denote the left side. We make use of Rolle’s Theorem, 

f’(x) = u~(x)xyx + 1)ss + Vi(X)X8(X + 1)26 + Wi(Z)Z3(X + l)‘, 

where degur(x) = degvr(x) = degwi(x) = 1. The positive zeros of f’(x) 

are the same as those of 

g(x) = ul(x)x’2(x + 1)56 + 2)1(x)x5(x + 1)19 + w(x). 

Differentiating twice yields 

g”(X) = u3(x)x10(x + 1)54 + 2)3(x)x3(x + 1)17 

where degus(x) = degvs(x) = 3. The positive zeros of g”(x) are the same 

as those of 
h(x) = 213(x)x7(x + 1)s7 + v3(x). 

Differentiating four times yields 

d4)(x) = 21,(x)x3(x + 1)34 

where degur(x) = 7. 
The number of positive zeros of hc4)(x) does not exceed 7 = deg u?(x). 

Hence the number of positive zeros of h(x) and g”(x) does not exceed 11, 
the number of positive zeros of g(x) and f’(x) does not exceed 13, and the 

number of positive zeros of f(x) does not exceed 14. 

4.18. This problem could be solved by using Exercise 3.8 and the delin- 

eation of the cases for real and nonreal zeros made through Exercise 6.1.9. 
However, let us take a more elementary approach. 

Let f(t) = t3-t2+a. For f(t) not to have a real zero outside of the closed 
interval [-l,l], it is necessary that a = f(1) 10 and -2+a = f(-1) 5 0, 
i.e. 0 5 a 2 2. Since the zeros of f’(t) are 0 and 213, f(t) has a maximum 
at t = 0 and a minimum at t = 213. All zeros are real iff a = f (0) > 0 and 

-4127 + a = f (213) 5 0 iff 0 5 a < 4127. For all a in this range, all three 
zeros lie in [-l,l]. 

(To get an intuitive idea of what is happening, we imagine how the zeros 
of f(t) vary with a near a = 0 and a = 4127. Let a = 0; f(t) has a double 

zero at t = 0 and a simple zero at t = 1. As a decreases through zero, two 
real zeros of f(t) converge to 0 and then split into a complex conjugate 

pair moving away from 0 while one real zero increases along the real axis 
through 1. Thus we can see that for a < 0, the real zero will lie outside the 

unit disc. Now let a = 4127. Then f(t) has a double zero at t = 213 and a 
simple zero at t = -l/3. As a increases through 4127, two real zeros off(t) 
converge to 213 and then split into a complex conjugate pair moving away 
from 213 while one real zero moves to the left through -l/3. It will be 
possible for a to increase further above 4127 before the zeros leave the disc. 
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We know the real zero does not leave until a = 2. When will the nonreal 
zero leave?) 

Let a > 4127 and suppose that the three zeros are r, u + iv and u - iv. 
Then 

r+2u=l 2ru+u2+v2=0 r(u2+v2)=-a. 

We eliminate u and P from these three equations. From the first and third 

-a = (1 - 2u)(u2 + v2). 

From the second and third 

-2au + (u” + v2)2 = 0. 

Hence 
-a2 = [a - (u” + v2)“](u2 + v”). 

Thus, u2 + v2 is the unique positive zero of the polynomial g(t) = t3 - 
at - a2. This zero lies in the interval 

(0, l] e 0 5 g(1) M 0 5 1 - a - a2 W a < (l/2)(& - 1). 

[Note that 4/27 < (l/2)(& - 1) < 2.1 

Hence, all three zeros of f(t) 1 ie in the closed unit disc iff 0 5 a < 

(l/2)(&5 - 1). 

4.19. We can make a change of variable t = s + (b + c)/2 to obtain a 
polynomial g(s) = s3 + us2 - v2s - uv2 whose zeros are -u, -v, v where 
u 2 v 2 0. The zeros of g(s) and g’(s), respectively, are equal to the zeros 
of j(t) and f’(t) translated by -(b + c)/2. Hence it suffices to show the 
result for g(s), i.e. that g’(s) = 3s2 + 2us - v2 has a zero in the closed 
interval [0, v/3]. 

Clearly g’(0) 5 0, g’(v/3) = 2v(u - v)/3 2 0. If g’(0) = 0, then v = 0 
and g(s) has 0 as a double zero, so that f(t) has b = c as a double zero. 

If g’(v/3) = 0, then g(s) has -v = -U as a double zero, so that f(t) has 
a = b as a double zero. 

4.20. Observe that u = (l/2)(& - 1) is the unique positive zero of the 

polynomial 1 - t - t2, so that, if ]z] < u, then 1 - ]z] - ]z12 > 0. 
First, suppose that ni 12. Then, for 1.~1 < u < 1, 

]l$ tnl + 2”’ + . . . + z-1 > 1 - ]z]“’ - ]Z]“2 - . . . - ]zI”k 

1 1 - 1212 - ]%I3 - . . * > 1 - ]#(l - ]z])-i 

= (1- ]z] - ]Z]“)(l - ]z])-i > 0. 

On the other hand, let ni = 1. Observe that 

(1 - ,Z)(1+ 2 + Z”Z +. *. + fn*) = 1 - z2 + g(z), 
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where g(z) is a sum of the form C f zk with /Z 2 2. By an estimate similar 
to that above, 

I(1 - z)(l + z + .zfla + . . *)I > (1 - ]z( - ]z]2)(1 - ]z])-’ > 0. 

Thus, the result follows. 

4.21. Suppose that all the zeros lie on a straight line. Since the sum of 
the zeros is 0, the line must pass through 0, so that the zeros are -UJ, uw, 
(1 - U)UI for some complex w and real u with 0 5 u 5 1. We have that 

[-u - (1 - U) + U(1 - u)]U? = 12(1+ ifi) 

+ (u2 - u + 1)2u2 = -24(cos r/3 + isin 7r/3) 

= 24(cos 4x/3 + i sin 4~13). 

Hence w = fr(cos2?r/3 + isin2rr/3), where (u2 - u + l)r2 = 24. 

By considering the product of the zeros, we find that 

a = w3(u - u2) = fr3(u - u”) = ~t24~/~(u - u”)(u” - u + 1)-3/2 

= &243/2(1/4 - v)(3/4 + v)-~/~ 

where 0 5 v = (l/2 - u)” 5 l/4. Hence a must be real. 

(Remark. One has the suspicion that Ial is minimized when the equation 
has a double root. This will occur when u = 1 -u = l/2. In fact, by finding 
the zeros j&( 1 - i&) of the derivative 3[z2 + 4( 1 + id)], we can identify 

the roots of the equation in the critical situation as &fi(l - ifi) with 
multiplicity 2 and ~2fi(l - ifi). This will occur when a = ~32fi. In 
view of this, we would expect 243/2[1/4 - v][3/4 + vlT3j2 to assume its 

maximum value of 32& when v = 0. Thus, we look at the difference of the 

squares of these two quantities.) 

Now 

Hence 

2l’ - 243[1/4 - v12[3/4 + VI-” 

= 2’[3/4 + ~]-~[4(3/4 + v)~ - 27(1/4 - v)“] 

= 27[3/4 + v]-~v(~v - 9)2 2 0. 

JaJ = 243/2[1/4 - v][3/4 -I- v13j2 5 fi” = 324. 

On the other hand, suppose a is real and satisfies ]a] 5 32fi. Then we 
can find u such that ~t24~/~u(l - u)(l - u + u2)-‘j2 assumes the value 
a. Then, if r and w are determined by the equations above, we find that 
the symmetric functions in -w, uw, (1 - u)w yields the coefficients of the 
equation and therefore must be its roots. 

This result is generalized in El. Math. 12 (1957), 12. 
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4.22. Denote the left side by p(t). S ince p(t) is positive for large It 1, p(t) 
assumes its minimum value on R at some point c; we must have that 
p’(c) = 0. But then p(c) = p’(c) + c2”/(2n)! > 0, so that p(t) has a positive 
minimum and is therefore everywhere positive. 

4.23. Suppose p(t) is real iff t is real. Then for all real values of k, p(t) + k 
has the same property. Hence all the zeros of p(t) + k are real for each value 
of k. By Exercise 5.2.16, this can occur only if degp(t) = 1. 

4.24. Let q(t) = set + alt2/2 + ... + a,t”+‘/(n + 1). Then q(0) = 0, 

q’(t) = p(t) and q’(0) = a0 > 0, so that q(t) is increasing at t = 0. 
However, q(l)-q(-1) = 2(ae+a2/3+a4/5+...) < 0, so that q(1) < q(-1). 
Hence q(t) cannot be increasing on the whole of the interval [-1, 11, so that 
q’(t) = p(t) must assume both positive and negative values there. Hence, 
for some r E [-l,l], p(r) = 0. 

4.25. Let the zeros of p(z) be ri (1 5 i 5 n). Then, for z # ri, 

n - kp’(z)/p(z) = n - kC(z - ri)-‘. 

Suppose that ]z] > R+ lkl, then 

It. - ril > IzI - lril > (R+ lkl) - R = lkj. 

Hence IkC(z - ri)-‘1 5 IklC(lz - ril)-’ < n, SO that np(z) - kp’(z) # 0. 

The result follows. 

4.26. Let d be the greatest common divisor of p and q, and let zd = 1. 
Then zP+‘J = zp = 1 and so z is a zero of the polynomial. On the other 

hand, if ]z] = 1 and bzf’ = azP+Q + b - a, then 

b = lbzpl = ]azP+q + b - al 5 a + (b - a) = b, 

so that lazP+q + b - al = a + (b - a). Hence zP+q = 1 and so zp = 1. Hence 
Zd = 1. 

4.27. Suppose there exists a root z with ]z] # 1. Since the reciprocal of any 
zero is also a zero, we may suppose that z = r(cos 0 + i sin 0) with r > 1. 

Since z”(z - u) = (1 - uz), we have that (z]~“]z - u12 = ]I- uz]‘. Thus 

r2”(r2-2rucos0+u2)=(l-2rucosB+u2r2). 

Since r > 1 and r2 - 2rucose + u2 1 (r - 1~1)~ > 0, 

r2 -2rucosB+u2 < 1 - 2ru case + u2r2 3 (r” - l)(l - u”) < 0, 

which contradicts ]u] 5 1 and r > 1. Hence ]z] = 1 for each zero z. 
A number of solutions to this problem is provided in Amer. Math. Monthly 

72 (1965), 1143-1144. One of them yields the result as a special case of the 
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following: if f(t) = Ca,t’ and g(t) = CZ,+,t’ satisfy a,g(t) = Eof(t), then 
all of the zeros of f(t) lie on the unit circle. 

4.28. If k = 0, the equation is 2” + t”-l + . . . + t + 1 = 0 and the result 
holds. Suppose the result has been established for k < r. Let 

f(z) = (n + 1)-@+‘)p + n-+-+1)$-1 + . . . + 2-(‘+1)2 + 1 

Then 
g’(c) = (n + l)--‘Z? + n-‘z”-l + . . . + 2-‘2 + 1. 

Suppose n is odd. Then, by the induction hypothesis, g’(z) has exactly 
one real zero. By Rolle’s Theorem, g(z) has at most two real zeros. Since 

g(O) = 0 and f(O) # 0, f(z) h as at most one real zero. But, since deg f(z) 

is odd, f(z) has a real zero. 
If n is even, g’(z) has no real zero, so g(e) has at most one real zero. 

Since g(0) = 0 and f(0) # 0, f(z) can have no real zero. 

4.29. The equation can be rewritten as f(z) = 0 where 

f(z) = n(al - 2)(a2 - x). . . (a, - Z) 

Now f(oi) = (-l)‘aipi where pi > 0. If all the ai have the same sign, then 
the signs of the f(ai) alternate and each interval (ai, oi+i) (1 < i 5 n - I) 

contains a root of the equation. Since 0 is an additional root, the equation 
has n distinct real roots. 

Suppose ok < 0 < ak+i. Then the above argument provides for a root 

of the equation in each interval (ai,ai+l) (1 < i < k - 1, k + 1 5 i 5 n). 

Now f(Q) and f(ak+i) have the same sign and f(0) = 0. Hence, either 
f(z) has at least two distinct roots in (ak,ak+i) or else a double root at 0. 
Hence the equation in this case has at least n - 1 distinct real roots, or n 
roots if we count multiplicity. The case n = 2, al = -1, a2 = 1 yields an 
equation with a double root at 0. 

4.30. Let ]z] < l/(k + 1). Then 

11 + alz+a2z2+...+anznl 

2 1 - Iall 1.~1 - Ia21 lz12 - ... - IanI 1-V 

1 1-k[(k+1)-‘+(k+1)-2+~~~+(k+1)-“] 

> 1 - k(l/k) = 0. 
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4.31. Let Rez > a. Then 

Iz + a,-11 > Re(z + a,+l) > a + Re(a,-1) 

= la,-21aP1 + la,-31a-2 + f. . + lacla-(n-l) 

> Ian-21 Iz(-l + Ian-31 lzlm2 + . .. + laOI lzl-(“-l) 

* If(z)1 2 Izn + a,-lz”-‘I - Ian-21 lzlnm2 - .. . - Ia01 > 0 

Let Rez < -b. Then 

-1% + a,-11 < Re(z + a,-1) < -b + Re(a,-1) 

= -[la,-2(b-’ + Ia,-31bm2 + .. . + (a01 lbl-(“-l)] 

< -Ian-21 (z(-l - lan-3) )zlm2 - . . f - Ia01 lzlsCnel) 

3 If(z)1 2 Izn + an-lznmll - Ian-21 lzl”-2 - ... > 0. 

4.32. q(t) = f(t)g(t) where f(t) = tp(t) + p’(t) and g(t) = tp’(t) + p(t). 
The function h(t) = tp(t) h as at least n + 1 distinct zeros (including 0), 
so that h’(t) = g(t) h as at least n distinct real zeros, all distinct from the 

zeros of p(t) exceeding 1. 
Let {ul,. . . , u,} be the set of simple zeros of p(t) exceeding 1, and 

{Vl,. . . ,v,} be the set of multiple zeros. Note that r + s = n. Each vi 
is a zero of both p(t) and p’(t) and so is a zero of f(t). Prom a sketch of a 
graph, it can be seen that the sign of f(ui) = p’(ui) alternates with i and 
that f(t) has at least r - 1 distinct zeros apart from the vi. Hence f(t) has 
at least r + s - 1 = n - 1 zeros exceeding 1. 

It remains to check that these zeros are distinct from the zeros of g(t) 
identified above. Suppose f(w) = g(w) = 0, 1~1 # 1. Then (w - l)@(w) - 
p’(w)) = 0, so that p(w) = p’(w) = (1 + w)-‘g(w) = 0 so w is not one of 
the zeros of g(t) distinct from those of p(t). 

4.33. The result is clear if degp(z) = 1. If n = 2 and p(x) = ax2 + ba: + c, 
then the left side is the discriminant b2 - 4ac which is nonnegative. Suppose 

the result has been established for polynomials of degree up to n - 1. Let 
p(x) be as specified and write it as (z - r)q(z), where r is a real zero of 

p(z) and degq(c) = n - 1. Then 

(n - 1)2(p’(~))2 - n(n - l)p(z)p”(2) = n(z - r)2[(n - 2)q’(x)2 

- (n - 1)7(~)d’(~:)l+ ki(z)(z - r> - (n - lM~)l” 1 0. 
4.34. Let (u, v) be a given open interval and let ai/bi (i = 1,2,, . . , n - 1) 

be any n - 1 rationals in the interval. The polynomial g(t) = II(bit - a;) is 
a polynomial of degree n - 1 all of whose zeros lie within the interval (u, v). 
The derivative g’(t) h as n - 2 zeros rj with u < r1 < r2 < . . . < r-,-z < V. 
The n numbers g(u), g(ri), g(ra), . . . ,g(rnT2), g(v) are all nonzero and 
alternate in sign. 



342 Answers to Exercises and Solutions to Problems 

Let c = min{lg(u)l, Ig(v)l, Ig(ri)l} and let k be a large positive integer 

such that (IuI + IvI)“/k < c. Define f(t) = P/k + g(t). Then the signs of 
f(t) agree with those of g(t) at u, rj, v and so the signs of f(t) at these 
n points alternate. Hence f(t) has n - 1 zeros in the interval (u, v). The 
polynomial kf(t) fulfils the requirements. 

4.35. Since (l+iX)m = f(z)+ ‘g( ), ‘t f 11 z z 1 o owsthat (l-iz)m = f(z)-is(x). 

Hence 

2[af(z) + bg(z)] = (a + bi)(l - ix)“’ + (a - bi)(l + iz),. 

Suppose that z is a zero of af(z) + bg(x). Then, clearly z # fi, and 

II+ izlm Ia + bil 

11 - izlm 
= - = 1 * II+ izl = 11 - izl 

la - bil 

j z is real (Exercise 1.3.13). 

Answers to Exercises 

Chapter 6 

1.1. Let the roots of the given equation be u, v, w. 
First solution. u2 + v2 + w2 = (u + v + w)~ - 2(uv + uw + VW) = -5; 

u2v2+u2w2+v2w2 = (uv+uw+vw) 2 -2uvw(u+v+w) = -11; UVW2 = 

(UVW)~ = 100. The equation x3 + 5x2 - 11x - 100 = 0 has the required 
roots. 

Second solution. The roots of z3 + x2 + 3x + 10 = 0 are -u, -v, -w. 
Since 

(X2 - u2)(x2 - v2)(x2 - w2) 

= (x - u)(x- v)(x - W)(X + u)(z + v)(x + w) 

= (x3-x2+3x- 10)(x3 + x2 + 3x + 10) 

= (x3 + 3x)2 - (x2 + lo)2 = x6 + 5x4 - 11X2 - 100. 

If y = x2, then 

(y - u2)(y - v2)(y - w”) = y3 + 5y2 - lly - 100 

is a polynomial with the required zeros. 

1.2. Since uvw = -l/2, the polynomial sought has zeros 3u, 3v, 3w and 

so is 4t3 - 21t2 - 27t + 54. 

1.3. With si representing the symmetric functions of m, n, p, q, we find 
that the required polynomial is 

0 - mn>(t - v>(t - mq)(t - w)(t - nq)(t - pq) 
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= t6 - (Cmn)t5 + (Cm2np + 3mnpq)t4 

- (Cm3npq + 2Cm2n2pq + Cm2n2p2)t3 

+ (Cm3n2p2q + 3m2n2p2q2)t2 - (Cm3n3p2q2)t 

+ m3n3p3q3 

= t6 - s2t5 + (SlS3 - S4)t4 - (sfs, + s; - 2S&)P 

+ (SlS3 - s4)s4t2 - s& + s; 

= t6 - 2t5 - 2t4 + 4t3 + 2t2 - 2t - 1. 

The given quartic has 1 as a double zero; indeed, 

t4 - 3t3 + 2t2 + t - 1 = (t - l)“(? -t - 1). 

The sextic will have two double zeros, and we find that 

t6 - 2t5 - 2t4 + 4t3 + 2t2 - 2t - 1 = (t - l)(t + l)(P -t - l)? 

1.4. (1/5)(5t3 + 6t2 - 2t + 1). 

1.5. Ifs, is the rth symmetric function of the zeros ti of p(t) and u, is the 
rth symmetric function of tf’, then 

ur = s,-,/s, = (-l)ra,-,/a,, 

whence the manic polynomial with zeros ti’ is 

(00)-l fJ-1)2rn,-rt’. 
r=O 

1.6. a,t” + ka,,-lP1 + e-e+ k”-‘alt + k”ao. 

1.7. (a) The polynomial must have the form a,P + a,-2tn-2 + . . . so that 
its derivative is na,t”-l + (n - 2)a,-2tn-3 +. . . . Since the next to leading 
coefficient of the derivative vanishes, the result follows. 

w: + * * .w;=(wl+.**+w,)2 - 2CWiWj = -2(n - 2)a,-2/n 

= (n - 2)[(%1 + **a+ Zn)2 - 2CZiZj]/n. 

It is conjectured by I.J. Schoenberg in Amer. Math. Monthly 93 (1986), 8- 

11 that in fact Clwi12 5 (n-2)(Clzi12/n). The reader may wish to establish 
this when degp = n = 3. See also problem E3115, Amer. Math. Monthly 

92 (1985), 666; 94 (1987), 689. 

1.8. (a) The sum of the squares of the zeros is (a,-l/a,)2 - (2a,+z/a,). 
If the zeros are real, then the sum of their squares is positive and the 
first inequality follows. The second inequality follows from the fact that, if 
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a0 # 0, the sum of the reciprocals of the squares of the zeros is (a1/ao)2 - 

@2/a0). 

For a quadratic, a necessary and sufficient condition for real zeros is 
that a: 2 4aoa2. Thus to find a counterexample, we choose the oi so that 
2aoa2 5 a: < 4aoa2. For example, the coefficients of 2t2 + 3t + 2 satisfy 
both conditions, but the zeros are nonreal. 

(b) In this case, a; = 4 < 2a4ac = 6, so that not all the zeros are real. 
(c) By Rolle’s Theorem, if all the zeros of p(t) = 2&t’ are real, then its 

(n - 2)th derivative has at least two real zeros. Hence the discriminant of 

(n - 2)(n - 3). . . (3)[n(n - l)a,t2 + 2(n - l)a,-lt + 2a,-21 

is positive. This yields the desired necessary condition. 
For n = 3, the condition becomes a; 2 3ala3 (cf. Exercises 9 (b)). A 

cubic polynomial with not all its zeros real which satisfies the condition is 
t3 + 5t2 + 7t. A counterexample of degree n is t” + 5t”-’ + 7tnT2. 

Remarks. The problem for the case n = 5 was posed in the 1983 USA 
Mathematical Olympiad. Observe that it would be unreasonable for a con- 
dition which does not involve the constant coefficient to be sufficient for 
the zeros to be real; for, if p(t) is any polynomial over R, k could be chosen 

sufficiently great that p(t)+k h as at most one real zero. See Exercise 5.2.16. 

1.9. (a) If z = 0, then xy = b. If z # 0, then xyz = -c = z3 + az2 + bz 
yields the result. Also 

(x - Y)” = (x+y)2-4xy=( -a-~)~-4(z~+az+b) 

= -[3z2 + 2az - (a2 - 4b)]. 

(b) (Z - Y)~ 2 0 3 3z2 + 2az - (a” - 46) must be negative j 3t2 + 
2at - (a” - 4b) must have real zeros u and v (u 5 v) and z must satisfy 
u 5 z < v =+- the discriminant 16(a2 - 3b) must be positive. 

(c) Consider the graph of p(t). 

A change in the value of c results in a vertical translation of the graph. For 
any c, u is no greater than the smallest real zero and v is no less than the 
largest. Hence p(u) 5 0 5 p(v). 

This can be written as 

u3 + au2 + bu < -c < v3 + au2 + bv. 
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Substituting for u and v yields 

(2a3 - gab) - (2a2 - 6b)dG 5 -27~ 

5 (2a3 - gab) -I- (2a2 - 6b)dG 

and this yields the first inequality. The second inequality can be found by 
squaring. 

(d) The inequality can be rewritten as 

(2a3 - 9ab + 27~)~ i 4(a2 - 3b)3 

from which it follows that the discriminant 4(a2 - 3b) of the quadratic 
p’(t) is positive. Let r and s be the real zeros of p’(t). If r < s, then 
3r = -a-(a2- 3b)li2 and 3s = -a + (a2 - 3b)lj2. We have, upon dividing 

p(t) by p’(t), that 

27p(r) = 3(3r + a)p’(r) - 6(a2 - 3b)r + 3(9c - ab) 

= 0 + 2(a2 - 3b)3/2 + (2a3 - 9ab + 27~) > 0 

while 

27p(s) = 3(3s + a)p’(s) - 6(a2 - 36)s + 3(9c - ab) 

= 0-2(a2 - 3b)3/2 + (2a3 - 9ab + 27~) < 0. 

Hence p(t) has a real zero less than r, between r and s and greater than s. 
If r = s, then a2 - 36 = 2a3 - Sub + 27~ = 0 and p(r) = 0. In this case, p 

has a triple zero at r. Thus, all zeros of p(t) are real. 

1.10. Let the roots be a, b, c, d with ab = -5. Then cd = 4. We have that 

-1 + (a + b)(c + d) = -7 

-5(c + d) + 4(a + b) = -23 

(a + b) + (c + d) = 1. 

Hence a + b = -2 and c + d = 3, so that the equation can be rewritten 

(t2 + 2t - 5)(P - 3t + 4) = 0 

and thence solved. 

1.11. (a) Let a, b, c, d be the roots and suppose that (ab)2 = (cd)2 = s. 
Then -p = (a + b) + (c + d) = -r/ah, which yields the result. On the 
other hand, if r2 = p2s, let t = z + r/px. The equation can be rewritten 

as t2 + pt + (q - 2r/p) = 0. Each solution t of this quadratic leads to an 
equation px2 - ptx + r = 0 the product of whose roots for either value oft 
is r/p (cf. Problem 1.4.17). 
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(b) First solution. Suppose the zeros are a, 6, c, d with a + b = c+ d = 
-p/2. Then p2/4 + ab + cd = q and (-p/2)(ab + cd) = -r. For these to be 
consistent, we require 2r/p = q - p2/4. 

Second solution. Make the change of variables x = - $p - y. Substitution 
into the original equation yields 

y” + py3 + qy2 + (qp - r - tp3)y + (-p4/16 + p2q/4 - rp/2 + s) = 0. 

This equation has exactly the same roots as the original equation and so 
its coefficients must be the same. In particular, qp - r - p3/4 = r, which 

yields the result. 
(c) Yes. The change of variable x = -p/2 - y as in (b) leads to exactly 

the same equation for y. Hence the roots a, 6, c, d of the equation in x 
are the same as the roots -p/2 - a, -p/2 - b, -p/2 - c, -p/2 - d of the 
equation in y. 

If, say, a = -p/2 - b and c = -p/2 - d, then a + b = c + d = -p/2. If, 
say, a = -p/2 - a, then -p/4 is a root of the given equation. But, in any 
case, -p/4 is a zero of the derivative 4x3 + 3px2 + 2qx + r, so -p/4 is a 
double root, and again pairs of roots have the same sum. 

2.3. (b) If a cubic over R does not have all its zeros real, they must be of 
the form r, u + vi, u - vi (r, u, v real, v # 0). The discriminant is then 

Kr - u)’ + v2]2(2vi)2 = -4v2[(r - u)” + v212 < 0. 

An example of a quartic with nonreal zeros and positive discriminant is 
t4 + 4 whose zeros are 1 + i, 1 - i, -1 + i, -1 - i and whose discriminant 

is 214. 

2.4. Suppose p(t) has a nonreal zero tl. Then its complex conjugate t2 is 
also a zero. Let tl = u + vi, t2 = u - vi. Then one of the factors in D is 

the square (tl - t2)’ = -4~‘. If t3 is another nonreal zero with complex 
conjugate t4, then D contains the product 

(t1 - Q2(t2 - t4)2 = It1 - t314. 

On the other hand, if t5 is a real zero, then D contains the product 

(t1 - t5)2(t2 - t5)2 = It1 - t514. 

Thus, one of the square factors involving tl and t2 is negative while the 
remaining factors involving either of these zeros can be combined into a 

positive product . 
Now look at factors of D not involving tl and t2. If there is another 

nonreal complex conjugate pair of zeros, the terms involving them can be 

combined to give a negative product. This argument can be continued on 
to show that the sign of the discriminant is (-l)k where k is the number 
of pairs of complex conjugate zeros. 
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2.5. Let the zeros of t3 + at2 + bt + c be 2, y, z. Then 

D = (r - Y)~(z - z)~(Y - z)~ 

= Cx4y2 -I- 2Cx3y2z - 2Cx4yz - 2Xx3$ - 6x2y2z2 

= (a2b2 - 2b3 - 3c2 - 2a3c + 4abc) + 2(abc - 3c2) 

- 2(a3c - 3abc + 3c2) - 2(b3 - 3abc + 3c2) - 6c2 

= a2b2 - 4a3c + 18abc - 4b3 - 27~~. 

2.6. (a) 1, -1, i, -i; -256. 
(b) i, -i, 2i, -2i; 5184. 

2.7. The discriminant is nonzero _ all the zeros of the polynomial are 
distinct, i.e. simple _ the polynomial and its derivative do not have any 
zero in common _ the only common divisors of the polynomial and its 
derivative are constant. 

3.1. First solution. a + b + c = 2 and a2 + b2 + c2 = (e + b + c)” - 
2(ab + ac + bc) = 2. Since a3 = 2a2 - a - 5, etc., 

a3 + b3 + c3 = 2(a2 + b2 -I- c”) - (a + b + c) - 15 = -13. 

Since o4 = 2a3 - a2 - 5u , etc -, 

a4 + b4 + c4 = 2(a3 + b3 + c”) - (u” + b2 + c2) - 5(u + b + c) = -38. 

Second sohtion. u4 + b4 + c4 = sf - 4sfs2 + 2s; + 4s3s1 = -38. 

3.3. For each i, 

tl +U,-ltl-l+ .“+Ulti +Uo = 0. 

Multiplying by 2’ and summing over 1 2 i 5 n yields the result. 

3.7. 
p1 + Cl = 0 Pl = -cl 

p2 +wJ, +2co = 0 p2 = c: - 2co 

p3+~1~2+~Clpl=o p3=-c:+3cOcl 

p4 +c1p3 +copz = 0 p4 = c: -4c,c:+ 2c; 
p5 + qp4 +cop3 = 0 p5 = -c: +5coc:: -5&. 

For t2 - 3t + 2, pl = 3, pa = 5, p3 = 9, p4 = 17, p5 = 33. For t2 + t + 1, 
p1 = p2 = p4 = p5 = -1, p3 = 2. 

3.8. pl = -7; p2 = 61; p3 = -466; p4 = 3621; p5 = -28082. 

3.9. Let zr,zz, . . . , z, be zeros of the polynomial 

f(t) = t” + C,-lP--l + . a. f qt + co, 

and let pk be the sum of their bth powers. Then, by exercise 6, c,,-k = 6 
for k = 1,2,..., n, so that f(t) = t”. Hence, each zi vanishes. 
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Solutions to Problems 

Chapter 6 

4.1. (a) If the roots are r - s, r, T + s, then a = -3r, b = 3r2 - s2 and 

c= -r(r2 - s2). The result follows by direct substitution. 
(b) If the roots are rs-I, r, rs, then a = -r(l + u), b = r2(1 + u) and 

c = -r3, where 2~ = s -+ s- l. The result follows by direct substitution. 

4.2. Let u = tanA, v =tanB,w= tanC where A, B, C are the angles of 

a triangle. Since 

O=tan(A+B+C)= U+v’w-Uvw 
l-(uv+vw+wu)’ 

Also, 

u+v+w=uvw=p/q. 

uw+vw+uv = (u+v)w+uv=(uv-l)w2+uv 

= 1 + (1+ w2)(21v - 1) 

= 1 + (sec2 C)(sin A sin B - cos A cos B) 

cos A cos B 

= l- 
cos(A + B) 1 

cos A cos B cos2 C 
=1+ 

cos A cos B cos C 
= 1+1/q. 

The result fohows. 

4.3. (a) Suppose, if possible, that a is a double zero of z3 - t2 - x - 1. 
Then a is a zero of the derivative 3x2 - 2x - 1, and hence a zero of 

8x + 10 = (3z2 - 2x - 1)(3x - 1) - 9(x3 - x2 - x - 1). 

But then a = -514, which cannot be a zero of the cubic. 
(b) The result is readily checked using symmetric functions of the roots 

for n = 1 and n = 2. Use induction, based on relations such as the following 
for k > 0 

bk+3 - $+3 bk+2 
- Ck+2 + 

bk+l _ Ck+l b” _ Ck 

b-c = b-c b -c +b-c- 

4.4. The zeros of 17x4 + 36z3 - 14x2-4x + 1 are in harmonic progression iff 

the zeros of x4-4x3-14x2+36x+17 are in arithmetic progression. Suppose 
that the zeros of the latter polynomial are o - 3d, a - d, a + d, a + 3d. Then 
a = 1 and (Q~ - 9d2)(u2 - d2) = 17, whence (d2 - 2)(9d2 + 8) = 0. Checking 
the coefficient -14 reveals that 9d2 +8 # 0. Hence d = fi and the roots of 
the given equation are the reciprocals of 1 - 3& 1 - 4, 1 + 4, 1 + 34. 
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4.5. k = 86. 

4.6. Let u = tan A, v = tan B, w = tanC, and let the fourth root be y. 
Wehavep-y=u+v-tw=uvw=s/y,uv+uw+vw+y(u+v+w)= 
q and (uv + uw + vw)y + uvw = r. Hence uv + uw + VW = q - s, so 
(q - s)y + (p - y) = r. Hence (q - s - 1)y = r -p. 

Suppose, if possible, that q = s + 1. Then uv + uw + VW = 1. Together 
with u + v + w = uvw, this implies that 

o= l-(u+v)w- uv = (1+ w”)(uv - 1) 

so uv = 1. Similarly uw = VW = 1 and we obtain a contradiction. Hence 
q - s - 1 # 0 and y = (r - p)/(q - s - 1). 

Remark. It can also be seen that y2 - py + s = 0. Eliminating y from 
the two equations gives a necessary constraint on the coefficients, which 
reflects the fact that not every set of three numbers can be represented as 
the tangents of the angles of a triangle. 

4.7. x + y = 5 - z and 

(x + y)z + xy = 3 * xy = z2 - 52. + 3 3 0 < (x - y)2 = (x + y)2 - 42y 

= -(3z2 - 1oz - 13) = -(z + 1)(3z - 13), 

from which the result follows, 

4.8. Suppose a is as required. Then u + v + w = 6 

ea (u-l)+(v-2)=-(w-3) 

+=9 (u - 1)s + (v - 2)3 + 3(u - l)(v - 2)(u + v - 3) 

= -(w - 3)3 

w (u - l)(v - 2)(u + v- 3) = 0. 

Similarly 

and 

(u - l)(w - 3)(u + w - 4) = 0 

(v - 2)(w - 3)(v + w - 5) = 0. 

Case 1. 21 = 1, v = 2, w = 3 are the zeros of the polynomial x3 - 6x2 + 
11x - 6, which is not of the required form. 

Case2.u=l,v+w=5,sothata=u(v+w)+vw=5-a+o=55/2. 

In this case, v and w are the zeros of x2 - 5x - 512 and the cubic is 

(x - 1)(x2 - 5x - 5/2) = x2 - 6z2 + 5x/2 + 5/2. 

Case3.v=2,u+w=4,sothata=8-a/2ja=16/3.Thecubicis 

(x - 2)(x2 - 4x - 8/3) = x3 - 6x2 + 16x/3 + 16/3. 
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Case4.~=3,u+v=3,sothata=9-a/3~u=27/4.Thecubicis 

(x - 3)(x2 - 32 - g/4) = x3 - 6x2 + 27x/4 + 2714. 

4.9. Let yk = zk - 1 for each k. Then the yk are the zeros of 

(Y + 1)” + a(y + 1)+l+ a”-‘(y + 1) + 1 = yn + (n + a)y”-1 + * * * 

+ [n + a(n - 1) + a”-‘]y + (2 + a + an-l) 

and 

n - 3 = c(xk + 2)(xk - l)--’ = X(1+ 3y,-‘) = n + 3Cyil. 

Hence 

-1 = By,-l = -[n + Q(fa - 1) + a”-I](2 + Q + a”--1)-l 

*an-’ + a + 2 = a”-’ + a(n - 1) + n 

=R a(2 - n) = n - 2*72=2 or a= -1. 

The case Q = -1 yields the polynomial x” - x”-l - x + 1 = 
(x - 1)(x”” - 1). B u in this case, one of the zeros is 1 and the left t 

side of the given equation is undefined. Hence a # -1. The case n = 2 
yields the polynomial x2 + 2ux + 1, whose zeros can be verified to satisfy 
the condition, provided a # -1. 

4.10. u, v, w are zeros of t3 - pt - q, where 

p = -(uv + VW + wu) = (1/2)(U2 + v2 + w2) 

and q = UVW. The result follows from adding the equation u”+~ = p&l + 
&L” to the corresponding equations for v and w. 

4.11. Let u = r+s,v=rs,w=p+q,z=pq.Thenu+w=u,vz=d, 
UW+V+Z = 6, uz+vw = c and the zeros of the required quartic are pu+v, 
qu f v, rw + z and SW + z. Note that 

(pu+v)+(qu+v)=uw+2v=b+v-z 

(rw+z)+(sw+z)=uw+2z=b+z-v 

(pu + v)(qu + v) = (uz + vw)u + v2 = cu + v2 

(rw + z)(sw + z) = (uz + vw)w + z2 = cw + z2. 

The sum of the zeros is 2(uw + v + z) = 2b. The sum of the products of 
pairs of zeros is 

(uw+2v)(uw+2z)+c(u+w)+v2+z2 =(uw+v+z)2+2vz+c(u+w) 
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= b2 +2d+ac. 

The sum of all products of three of the zeros is 

(uw + 2v)(cw + z”) + (uw + 2z)(cu + v2) 

= ucuw + uw(v2 + z2) + 2c(vw + zu) + 2vz(z + v) 

= ubc - c(u + w)(v + z) + uw(v2 + z2) + c2 + c(vw + ZU) 

+ 2db - Suvzw 

= abc + c2 + 2bd - (uz + vw)(uv + wz) + uw(v2 + z2) - 2uvzw 

= abc + c2 + 2bd - vz(u2 + w2 + 21120) 

= ubc + c2 + 2bd - a2d. 

The product of the zeros is 

(cu + v2)(cw + z2) = c2uw + c(uz2 + WV”) + v2z2 

= c2(uw + v + z) - C”(V + z) 

+ c[c(z + v) - VZ(U + w)] + v2z2 

= bc2 - acd + d2. 

Hence, the required quartic is 

x4 - 2bx3 + (2d + b2 + uc)x2 - (2bd - a2d + c2 + abc)x 

+ (d2 + bc2 - acd) = 0. 

Remark. Problem 4860 in the Amer. Math. Monthly 66 (1959), 596; 67 

(1960), 598 generalizes this problem to polynomials of degree n in which 
symmetric functions of degree q of any p of the zeros are taken. Here, n = 4, 

p = 3, q = 2. 

4.12. a must be a value assumed by -(t4 - 14t3 + 61t2 - 84t) for four 

integer values oft (possibly counting repetitions). Now 

t4 - 14t3 + 61t2 - 84t = t(t - 3)(t - 4)(t - 7) 

so that the left side assumes the same value for k and 7 - k. Suppose that 
a is such that k and 7 - k are zeros for some integer k. Then 

t4 - 14t3 + 61t2 - 84t + a = [t” - 7t + k(7 - k)][t” - 7t + (k - 3)(k - 4)]. 

The discriminant of the second factor is 50 - (2k - 7)2, which is square only 
for k = 0, 1, 3, 4, 6, 7. Hence a = 0 or a = 36. Indeed, t4 - 14t3 + 61t2 - 
84t + 36 = (t - 1)2(t - 6)“. 

4.13. Suppose that p(z) is of degree n 1 2. Then p( z)p(-z) - p(z) is of 
degree 2n and the coefficient of t2”-l is 0. Hence the sum of the roots of 
the equation is 0. It follows that if there are zeros in one half plane, then 



352 Answers to Exercises and Solutions to Problems 

there must be zeros in the other, in order for the imaginary parts to cancel 

in the sum. Any zero of p(z) satisfies the equation, so that if p(z) has any 
nonreal zeros, the result follows. Suppose p(z) has only real zeros. Then 

P(Z) = CH(Z - ri) w h ere all the ri are real and c is nonreal. The polynomial 
p(-Z) - 1 = CH(-Z - ri) + 1 assumes a nonreal value when z is real and 
not equal to -ri for any i and assumes the value 1 for z = -ri. Hence all 
the zeros of p(-z) - 1, which also satisfy the equation, are nonreal and the 
result follows. 

If p(z) = iz + l/2, then the equation becomes (iz + 1/2)2 = 0, both of 

whose roots are in the upper half plane. 

4.14. The polynomials zk(t f 1) satisfy the requirements, so we may assume 
that the degree n exceeds 1. Suppose that the leading coefficient is 1, so 
that the polynomial p(t) has the form 

t" + cn-ltn-l + c,-2t+-2 + . . * + qt + co 

with zeros ri. Note that all the ri fail to vanish. Then 

0 5 Crf = czml - 2c,-z =s- cn-z = -13 Crf = 3. 

Similarly, 
0 2 Criy2 = (c~/co)~ - 2(cz/cc) * Crf2 = 3. 

Hence 

e(rf + ri”) = 6. 
i=l 

Since rf + rr2 1 2 for each i, it follows that n 2 3. If n = 3, then lril = 1 
for each i and the only possibilities are t3 + t2 - t - 1 = (2 + 1)2(t - 1) and 

t3 - t2 - t + 1 = (t - 1)2(t + 1). If n = 2, then t2 - t - 1 and t2 + t - 1 
are the only possibilities and both satisfy the requirements. If the leading 

coefficient is to be -1, then the only possibilities are the negatives of these 
polynomials. 

4.15. Let the zeros of j(x) be ri and those of f’(x) be sj. Then, since 
f’(x) = f(x)C(x - ri)-l. F or each j, 0 = f’(sj) = f(sj)E(sj - ri)-l. Since 

f(Sj) # 0, C(Sj - ri)-’ = 0. 

4.16. The purported roots are of the form w = v3(4v3 - 3~)~’ = 

(4 - 3~~)~’ where 2v = u + u-l and u is a primitive 7th root of unity. 
Since 4v2 = u2 + us2 + 2 and 8v3 = u3 + um3 + 6v, it follows that 

8v3 + 4v2 -4v-l=O. 

Thus, the three zeros of 8t3+4t2-4t- 1 are vi = cos(2~/7), vz = cos(4%/7) 

and so the three zeros of t3 + 4t2 - 4t - 8 are v;i, 
the cubic whose zeros are w,T’ where wi = 
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We have that 

Cw;’ = 12 - 3x11:~ = 12 - 3(24) = -60, 

Cw;‘wj’ = 48 - 24Cvf2 + 9(Cv;2v;2) 

= 48 - 24(24) + 9(80) = 192 

and 

-1 
WI w2 -2w;1 = 64 - 48(Cvf2) + ~~(CV;~V;~) - 27r1;~v;~v~~ 

= 64 - 48(24) + 36(80) - 27(64) = 64. 

Hence wyl are the zeros of t3 + 60t2 + 192t - 64 and so the w; are the zeros 
of 64t3 - 192t2 - 60t - 1, as required. 

4.17. a, b, c, d are the zeros of the quartic t4 - wt3 - zt2 - yt -2, from which 
w = u+b+c+d, z = -(ub+uc+ad+bc+bd+cd), y = ubc+abd+acd+bcd, 
x = -ubcd. 

4.18. First, note that Cu3 = -Cu2v = 3uvw. Let the polynomial with 
zeros u, v, w be t3 +pt + q. Then 

x + y + z = Cuv2 - 6uvw = 9q 

xy + yz + ZX = cu3v3 + cu4vw - 3cu3v2w + 12u2v2w2 

= (uv + VW + WU)~ + uvw[Cu3 - 6Cu2v + Guvw] = p” + 27q2 

xyz = (-q)(-4p3 - 2792) = 4p3q + 279% 

Hence x, y, z are the zeros of the polynomial 

t3 - 9qP + (p3 + 27q2)t - (4p3q + 2793). 

Now, 

Cc3 + aCx2y + bxyz = [(9q)3 - 27q(p3 + 27q2) + 3(4p3q + 27q3)] 

+ a[9q(p3 + 27q2) - 3(4p3q + 27q3)] + b[4p3q + 27q3] 

= 27(3 + 6u + b)q3 + (-15 - 3u + 4b)p3q. 

This expression vanishes when (a, b) = (-1,3). 

4.19. The cubic polynomial f(t) = (t + a)(t + b)(t + c) - x(t + b)(t + c) - 

y(t + a)(t + c) - z(t + a)(t + b) h as zeros u, v, w, and so f(t) = (t - U) 
(t - v)(t - w). Hence 

f(-u) = -x(b - u)(c - u) = (-u - u)(-u - v)(-u - w), 

so that x(a - b)(a - c) = (u + u)(a + v)(a + w). The variables y and z can 
similarly be isolated. 
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Answers to Exercises 

Chapter 7 

1.5. 

p.(t)= (t -ai)...(tG).+*(t- a,) 
I 

(Ui -Ul)***(Qi-0,) * 

1.6. 

q(t) = (7/15)(t - l)(t - 3) - (1/3)(t + 2)(t - 3) + (l/lo)(t + 2)(t - 1) 

= (7/30)t2 - (43/30)t + (1615). 

1.7. 45, 55, 66, 78,.... 

1.8. nth terms from 6th column back to 1st column: 0, 3,3n+B, (3/2)n2 + 

(13/2)n + 7, (1/2)n3 + (5/2)n2 + 4n + 2, I(n) = (l/8)n4 + (7/12)n3 + 

(7/8)n2 + (5/12)n. 

1.10. (e) 

k> (4 

Akf(t) = &(-I)‘-’ ( : ) f(t + r). 

r=O 

f(n) = 2 + 9(n - 1) + (15/2)(n - l)(n - 2) + (ll/S)(n - l)(n - 2)(n - 3) 

+ (l/S)(n - l)(n - 2)(n - 3)(n - 4) 

= 2 + 9(n - 1) + (15/2)(n2 - 3n + 2) + (ll/6)(n3 - 6n2 + lln - 6) 

+ (1/8)(n4 - 10n3 + 3571~ - 50n + 24) 

which is the same as the answer to Exercise 1.8. 

1.11. 6 + 44(n - 1) + (131/2)(n - 1)c2) + 34(n - 1)c3) + (22/3)(n - 1)c4) + 
(2/3)(n - 1)c5). 

1.12. (a) -0.00107, -0.00003, -0.00031. 
(b) 1.32827. 
(c) 1.32832. 

1.13. log 1.25 = 0.22314; logo.75 = -0.28768; log2.1 = 0.74194; 
log2.71828 = 1.00000. 

1.15. Yes. Both polynomials have degree 6 and are each the uniquely de- 
termined polynomial taking the assigned values. 

1.16. (b) t4 = d4) + 6d3) + 7d2) + t, t5 = tc5) + 10tc4) + 25d3) + 15tc2) + t. 

(c) The proof is by induction. Suppose all powers of t up to t” can be 
written as a linear combination of factorial powers. Since tk+’ - dk+‘) 
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is a polynomial of degree k, each of its terms can be written as a linear 
combination of factorial powers and the result follows. 

1.17. (a) Use Exercise 16. We can write 

f(t) = b,t(“) + b,-&-‘) + . . . + bit + Lo. 

By repeated application of the A-operator, we find that Anf(t) = n!b, and 
A”+lf(t) = 0. 

The converse is not true. If f(t) = sin 27rt, then Af(t) = f(t + 1) -f(t) = 
0 for each t and all differences vanish. 

(b) Abi = (b - l)b*, so that A”b’ = (b- l)“b* is nonzero. Hence bt is not 

a polynomial. 

1.18. (a) The Lagrange Polynomial which assumes the value f(j) at t = j 
(j=O,l,..., k) is given by 

2 f(i)t(t - 1). . . (t - i + l)(t - i - 1) 1.. (t - k) 

i=l 
i(i - l)..e(2)(1)(-l)(-2) .e.(-k+i) ’ 

Since this is the unique polynomial of degree not exceeding k with the 
assigned values, the result follows. 

(b) The expression is the Lagrange polynomial with the value f(aj) when 
t = Uje 

1.19. (a) (1/2)t(t + l), or, more generally, 

(l/n!)t(t+ l).+.(t +n - 1). 

(b) Express f(t) as in Exercise 18(a). If n > k 1 i 2 0, then 

(:)( n;i;‘) 

is an integer, while if n < 0 2 i 5 k, 

(y)(“;i;‘)=(-l)i( InI+;- ) .(-l)k-i ( lilt: ) 

is an integer. Hence, for all n, the coefficient of f(i) in the expansion for 
f(n) is an integer and the result follows. 

1.20. 

h(t) = 2 ( : ) = kt(‘)/r! 
r=O t-=0 

h(n + 1) = 2”+l - 1. 

2.2. (b) (i) l/2; (ii) l/2; (iii) 314. 



356 Answers to Exercises and Solutions to Problems 

2.4. (a) Sketch graphs. pi(t) = 0. ps(t) = l/2, since the difference t2 - l/2 
achieves its maximum absolute values with alternating signs 3 times at 
t = -l,O, 1. p3(t) is of the form mt for some value of m, for it can be 
seen from a sketch that there is a value of m strictly between 0 and 1 for 
which It3 - mtl s ]l - ml for -1 5 t _< 1, and that t3 - mt assumes the 
value f(1 -m) with alternating signs at the four points -1, -b, b, 1 where 
0 < b < 1. The function (t3 - mt) + (1 - m) = (t + l)(t2 - t + 1 - m) is 
nonnegative for -1 5 t 2 1 and assumes its minimum value 0 when t = 6. 
Hence t2 -t-l-m = (t-b)2, so that the discriminant 1-4(1-m) = 4m-3 
vanishes. Hence m = 314 and p3(t) = 3t/4. 

(b) C1 = t, C, = (2t2 - 1)/2, C, = (4t3 - 3t)/4. 

(c) ck = T$!k-l. Th e maximum absolute value of Ck and Tk on [-1, l] 
is assumed at the k + 1 points t = cos ix/k where 0 < i 5 k. 

2.5. (b) 

B(f,n; t) = 5 ( ; ) t”(1 - t)n-k = [(l -t) + t]” = 1 
k=O 

%, n,t) = 2 k=. (t> ( ; )WY 

(c) B(t2, n; t) = [(n - l)t2 + t]/n. (See Remark after Answer 2.6.) 

2.6. (b) Since B(f, n; 0) = f(0) and B(f, n; 1) = f(l), if k # 1, the eigen- 

function f(t) must satisfy f(0) = f(1) = 0. 

n=l: k = 1 and f(t) = at + b 

n=2: k = 1 and f(t) = at + b 
k: = l/2 and f(t) = a(t2 -t) = ut(t - 1) 

n=3: k = 1 and f(t) = at + b 

k = 213 and f(t) = at(t - 1) 
k = 219 and f(t) = a(2t3 - 3t2 + t) = at(t - 1)(2t - 1) 

n=4: k = 1 and f(t) = at + b 

k = 314 and f(t) = at(t - 1) 
k = 3/B and f(t) = ut(t - 1)(2t - 1) 
k = 3132 and f(t) = a(14t4 - 28t3 + 17t2 - 3t) 

= at(t - 1)(14t2 - 14t + 3). 



Answers to Exercises; Chapter 7 357 

Remark. 

BUM) = f&(i) ( ; ) C-V-” ( :r,” )tr 

= gg(-l)p-kf (:) ( ; ) ( ; ) t’ 
= g (e ) [ipr-k ( ; ) f (:)I it’ 
= Arf(0)tr = (1 + tA)“f(O) 

where Af(t) = f(t + l/n) - f(t) in this situation. This gives a handy 

way of computing the Bernstein polynomials in ascending powers of t. It 
can be readily seen that deg B(f,n; t) 5 deg f(t) when f(t) is itself a 
polynomial. In particular, when f(t) = t2, then f(0) = 0, Af(0) = I/n2 

and A2f(0) = 2/n2 so that 

B(t2, n;t) = n(l/n2)t + 

Suppose B(f, n; t) = kf(t) for a polynomial f(t) = at’ + bt’-l + . .. of 
degree r. Differentiating both sides of the equation r times leads to 

Now, f(t) = at’+. . . can be written in terms of factorial powers as at(‘)+. . . 

where, here, t(‘) = t(t - l/n)(t - 2/n). . -(t - (r - 1)/n) (to take account 
of the changed differencing interval). Then t(‘) = (r/n)t(‘-‘), so that 

A’&‘) = r(r - l)(r - 2). . . (r - s + l)n-“t(‘-“). 

Hence A”f(0) = ur!n-’ and k = n(n- 1). . . (n-r+l)n-‘. Every eigenvalue 
must have this form. 

3.1. (a) (x2 - y2)2 + (22 - w2)2 + 2(xy - %W)2. 
(b) If a, b, c, d > 0, then we can find real x, y, z, w such that a = x2, 

etc. From (a) (a + b + c + d)/4 > xyzw = (ubcd)li4 as required. 

3.3. Consider the case n = 3k. We have that 

(yf” + YZk + y,““) + (y,“” + . . -) + ... 2 ~[(YIYzY~)~ +(Y4Y5Ys)" + ...I 

1 3kylym... . 

3.4. The inequality holds for n = 2 and n = 3. For n = 2’3$, we can use 

Exercise 2 repeatedly. 
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3.5. (a) Wi = l/n. 

(c) 
WI TJ.. 

a1 a2 n 
.awn= w1.. 

a1 
. a~~~2(a~-lu~)W*-1+W* 

5 wlal + ... + wn-2an-2 + (w,-I + w,-2)0~-,0~ 

5 wlal + . .. + Wn---2h-2 + (~~-1 + wu,-2)(uan-1 + vu,), 

which yields the result by (b). 

3.7. (a) Apply the AGM inequality to x and x-l. 
(b) 1 - 4x(1 - x) = (2x - 1)2 > 0. 

3.8. This is a consequence of the CSB inequality applied to u:12, uiJ2,. . . 

and .;iJ2, a;“‘, . . . . 

3.9. (a) When n = 1, equality holds without any restriction on x1. Let 
n = 2 and suppose only that both variables have the same sign. If either 

vanishes, we have essentially the n = 1 case. Otherwise, 

(1+ x1)(1 + x2) = 1 +x1 + x2 + 21x2 > 1+ z1+ X2. 

For n 2 3, there is a simple induction argument for the case that all 
xi 2 - 1. Assuming the result holds for n - 1, we find that the left side 
exceeds (1 + xi + 22 + . . . + x,,-i)(l + xn) which in turn exceeds the right 

side by the n = 2 case. (Where is the condition xi 2 -1 used?) 
However, with the stronger hypothesis on the xi, a more delicate argu- 

ment is needed. Again, assume the result for the n - 1 case. Then (assuming 
for convenience all Xi are nonzero), 

= [(1+xl)~~~(1+x,~l)-(1+x1+~~~+x~-l)] 

+xc,[(l+xl)***(l+x,-1)-l]. 

The first term on the right is positive by the induction hypothesis. If all 
the ti are positive, then the second term is clearly positive. If all the zi are 
negative, then -1 5 1 + xi 5 1, and both factors of the second term are 

negative. If any of the xi vanishes, we essentially have the case of a lower 
n. Equality holds iff at most one of the xi is nonzero. 

Solutions to Problems 

Chapter 7 

4.1. By the CSB inequality applied to the quartuples (1 - x), (x - y), 
(y - z), % and 1, 1, 1, 1, we have that 

1 = (l-x)+(x--y)+(y-z)+z 

5 41/2[(1 - x)” + (x - y)2 + (y - %)” + %2]i’2 = 1. 
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Equality occurs only when 1 - x = x - y = y - z = z = l/4, so that the 
only solution is (2, y, z) = (314, l/2, l/4). 

4.2. z2 + (1/2)(x2 + y2) - (x + y)z = (1/2)[(z - x)~ + (z - Y)~] 1 0. 

4.3.Letthezerosberl,rz,...,rn.Thenrl+r2+...+rn=1andrl’+ 
-1 

r2 +.. . + r;’ = n2. By the CSB inequality, 

n = pPr+/2 
i I &i?Tim=n. 

Thus, equality occurs between the middle members and rz = ri/r,T’ must 
be the same for each i. 

4.4. Let the zeros be rl, r2,. . . ,r”. If all the zeros were real, then, by the 
AGM inequality, 

r: + ri + . . . + rz 1 n(rfri . . . rz)““. 

Expressing the symmetric functions in terms of the coefficients yields a2 - 

2b 2 nk2/“, which contradicts the hypothesis. Hence, not all zeros are real. 

4.5. x3 + y3 + 23 - x2y - y2z - 222 

= x2(x - y) + y2(y - z) - z2(x - z) 

= (x2 - z”)(x - y) + (y2 - 22)(y - %) 

= (x - y)(x - z)(x + %) + (y - %)2(y + z). 

If either x 5 y 5 z or x 2 y 2 z, this expression is clearly seen to be 
nonnegative and the inequality follows. For the other possible relations 
among x, y, Z, a corresponding expression for the difference between the 
two sides occurs which makes the desired inequality plain. 

4.6. The difference of the two sides is 

%[X” + y2 + z2 - xy - yz - ZX] = (z/2)[(x - y)2 + (y - %)2 + (z - x)2]. 

4.7. First, consider the case that a # 0. Let p, q, r, s be the (positive) 
zeros of at4 -bt3+ct2-t+l,andletu=l/p+l/qandv=l/r+l/s. 
Then u + v = 1, p + q = pqu and r + s = rsv. It is required to show that 

c/a - b/u 2 80. 

Nowc/u-b/u=(p+q)(r+s)+pq+rs-(p+q)-(r+s)=pqrsuv+ 

pq(1 - u) + rs(l - v) = pqrsuv + pqv + rsu. By the AGM inequality, 
(m-l 5 (p-l + q-‘)/2, whence pq 2 4,~~~. Similarly, rs > 4vm2. Hence 

c/u - b/a 2 16(uv)-’ + ~(uv)-~(u” + v3) 

= 16(uv)-1 + ~(uv)-~(u~ - uv + v2) (since u + v = 1) 

= 4[3(uv)-1 + (v-2 + u-“)I 

= 4[(uv)-’ + (u-l + v-l)“] = 4[(uv)-’ + (uv)-2] 

= 4(1/2 + 11~~)~ - 1. 
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Since, subject to u + v = 1, uv 5 l/4, it follows that c/a - b/u 2 4(9/2)2 - 
1 = 80. Equality occurs everywhere in the above inequalities iff p = q = 
r=s=4. 

If a = 0, b # 0, then it is required to show that c/b 1 1, i.e. p + q + r 2 1 
where p, q, r are the zeros of the now cubic polynomial. But 

p+q+r=(p+q+r)(l/p+l/q+l/r)L3. 

Finally, if a = b = 0, it must be shown that c 1 0, which is obvious. 

4.8. For n = 1, the inequality is (x - 1)2 2 0. Suppose the inequality holds 
forn=k-l>l.Then 

xk+’ - (k + 1)x + k = x[xk - kx + (k - l)] + k(x - 1)2 > 0 

and the result follows by induction. 

4.9. Let c = ua3 and d = vb3. Then the given condition can be rewritten 

u2a6 + v2b6 = (a2 + b2)3 

which reduces to u2w3+ v2(1 - w)~ = 1, where w = u2(u2 + b2)-l. We have 

to show that 11-l + v-r 1 1, or equivalently u + v 1 UV. 
To get a purchase on the situation, let us examine the special case in 

which ad = bc. This is equivalent to vb2 = ua2, so that w = v(u + v)-’ and 
the given condition reduces to 

u2v3 + v2u3 = (u + v)” e u2v2 = (u + v)” e 1 = (U--l + v-i)? 

This suggests that we try to show that 

1 = u2w3 + v2(1 - w)3 2 u2[v/(u + v)]3 + V2[(U/(U + v)]” 

= u2v2/(u + v)2 = (l/u + 1/v)-? 

To this end, observe that 

t*> 

(u + v)3u2w3 + (u + v)V(l - w)3 - u2v3 - U3V2 

= u”[(u + v)3w3 - v3] + v”[(u + v)3(1 - w)3 - U”] 

= u2[(u+v)w-v][(u+v)2w2+(u+v)vw+v2] 

+ v2[(u + v)(l - w) - U][(U + v)2( 1 - w)2 

+ (u + v)u(l - w) + u2] 

= [(u + v)w - vJ{u’[(u + v)2w2 + (u + v)vw + v”] 

- v2[(u + v)2(1- 2w + w2) + (TJ + v)u(l - w) + U2]} 

= [(u+v)w - v](u + v)[(u2 - v”)(u + v)w2 

+ v(u + v)(u + 2v)w - vy2u + v)] 

= (u + v)[(u + v)w - v12[(u2 - v2)w + v(2u + v)] 

= (u + v)[(u + v)w - V]“[U”W + 2uv + (1 - w)v2] 1 0, 
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from which the inequality (*) follows, since 0 < w < 1. Equality occurs 
C4(u+V)w=v(j(u+v)(l-w)=uew/(l-w)=v/u~a2u= 
b2v _ ad = bc. 

4.10. The proof follows a modified induction argument on x. The result 
clearly holds for x = 0. Suppose 1 < x < 5. Then N(x) = 2, while 

x - (x + 1)(x + 5)/12 = (5 - x)(x - 1)/12 > 0 

and 
(x2 + 6x + 12)/12 - x = [(x - 3)2 + 31112 > 0. 

Suppose x 2 6 and that the result has been established for integers up 
to x - 6, i.e. that 

(x2 - 6x + 5)/12 5 N(x - 6) 5 (x2 - 6x + 12)/12. 

Since N(x) = N(x - 6) + 2, the result follows immediately. 

4.11. Suppose that A and B are acute. If TA = tan A/2 and v = tan B/2, 
then 0 < u, v 5 1 and tanC/2 = cot(A+B)/2 = (l-uv)/(u+v). Denoting 
the left side of the required inequality by S, we have that 

s = u2+v2+(1-uv)z(u+v)-2 

= [(u + v) + (1 - UV)(U + v)--‘12 - 2. 

Since 4uv 5 (u + v)~, (uv)(u + v)-’ 2 (u + v)/4. Hence 

s 2 [3(u + v)/4 + (u + v)-y2 - 2 > 3 - 2 = 1 

by application of the AGM inequality to 3(u + v)/4 and (u + v)-‘. 

4.12. The zeros of the quadratic are real iff u2 + 18~ + 9 2 0, i.e. when 
u < -9 - 64 or u 2 -9 + Sfi. The sum of the squares of the zeros is 

5u2+ 12~ + 5 = 5(u + 6/5)2 - 1115. The overall minimum of this quantity 

occurs at u = -615, and the minimum subject to the constraint on u occurs 

for the value of u closest to -615, namely u = -9 + Sfi. 

4.13. 

x+y=m(x/m)+n(y/n)=x/m+...+x/m+y/n+.--+y/n 

2 (m + n)[(x/m)m(y/n)“]‘~(m+“) 

by the AGM inequality. 

Remark. An elegant, albeit contrived, variant on the idea in the solution 

is the problem of maximizing x2y subject to x, y 2 0 and 

x+y+ d2x2+2xy+3y2 = k. 



362 Answers to Exercises and Solutions to Problems 

See Problem 358, Crux Muthemuticorum 4 (1978); 161; 5 (1979), 84. 

4.14. First solution. The inequality clearly holds when y = 0, so we need 
consider only nonnegative values of y. The difference 

1 y-x ---= 421: - y12 + (8 - y2)1 
1 +x2 Y+x 4(1+ X2>(Y + z> 

has the numerator (y/2)(8 - y2) w h en x = y/2, and so its minimum is 

nonnegative if and only if y 5 22/2. The answer is 2fi. 
Second solution. As above, we suppose that y > 0. Since y + x > 0, the 

inequality is equivalent to 

y _< min{x + 2/x : 2 > 0). 

By the AGM inequality, x + 2/x > 24, with equality iff x = 2/z = a, 
so that the largest y is 24. 

4.15. f(t) = (t - r)g(t) where 

g(t) = b”-lt”-l + . . . + bit + bo. 

Since f(t) is irreducible, it has no double zeros and so g(r) # 0. Let M = 

clbkl(lrj + l)k, so that [g(t)1 5 M for It - r( _< 1. Since f(t) is irreducible of 
degree exceeding 1, f(t) h as no rational zero, so that for any rational p/q, 

If(p/q)I = s/q” 2 l/q” for some integer s. 
If Ip/q - rl 5 1, then 

l/9” L lf(d9>l = Id9 - 4 Idda) I I Wpl9 - d. 

If Ip/q-rl 2 1, then Ip/q-rl 2 l/q”. Let k = min(l,l/M). Then Ip/q-rl 2 
k/q” as required. 

Remark. This result asserts that a rational approximation of a zero of 
a polynomial over Z is, in some sense, not very close to the zero. To look 
at the matter in another way, note that from this result follows that, if for 
each m, a nonrational number w satisfies Iw - p/q1 < l/q’” for infinitely 
many distinct rational numbers p/q, then w is not the solution of a polyno- 

mial equation with integer coefficients. (For suppose it were the solution of 

an irreducible equation of degree n; then we would have k/q” 5 [p/q - rl < 

119 “+l for infinitely many rationals p/q. Since for any denominator q, 

IPl9 - 4 < 119 “+l < 1 can occur at most finitely often, we must have 

that q < l/k for infinitely many positive integers q - an impossibility.) 
Other results on approximation of nonrationals by rationals can be found in 
Chapter 11 of G.H. Hardy & E.M. Wright, An Introduction to the Theory 
of Numbers (4th ed., Oxford, 1960). 

4.16. Multiply the numerator and denominator of the second (resp. third) 
member by x (resp. xy) and simplify to obtain the constant value 2. 
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5.1. The Lagrange polynomial of degree not exceeding n - 1 which assumes 
the values f(ui) at ei is 

~f(Qi)(t-(fl).*.(tZi).*.(t-(1.) 

i=l P’(ai) 

and this must be the polynomial f(t). Hence the coefficient oft”-’ must 
vanish and the result follows. 

5.2. (a) The Lagrange polynomial of degree not exceeding 3 which assumes 
the value t4 at t = a, b, c, d is 

x04(2 - b)(t - c)(t - d) 

(a - b)(a - c)(a - d) . 

This must be equal to t4 - (t - a)(t - b)(t - c)(t - d). Comparing the 
coefficient of t3 yields the result. 

(b) The quadratic polynomial which assumes the values u5, b5, c5 at a, 
b, c respectively is 

a5(t - b)(t - c) + b5(t - u)(t - c) + c5(t - u)(t - b) 

(a - b)(u - c) (b - a)(b - c) (c - u)(c - 6) ’ 

We can determine this polynomial in another way as 

t5 - (t3 - ut2 + vt - w)(t2 + rt + s) 

where u = a + b + c, v = ab + bc + cu, w = abc and r and s are chosen to 
make the coefficients of t4 and t3 vanish, i.e. 

r=u 

s=ru-v=u2-v. 

Then the left side of the required identity is equal to the coefficient of t2, 
namely 

as required. 

w - rv + su = w - 2uv + u3 

5.3. The proof is by double induction. The result holds for k = 1 and any 

n, as well as for n = 1 and any k. Suppose it has been established for 
k= 1,2,...,r- 1 and any n as well as for k = r and 1 5 n < m - 1. Then 

S,(m) = S,(m - 1) + S-l(m) 

= m(m + l)...( m-l+r)[(m-1)(2m-2+r)+(r+2)(2m+r- 

(r + 2)! 

= m(m + 1) ~1. (m - 1 + r)(2m + r)(m + r) 

(r + 2)! 
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as required. 

5.4. Let c, m, n be fixed, and define g(x) = (x+c)“. Then f(m) = A”g(O), 
which yields the result immediately. 

5.5. We have that 

g(x) = d-1)x(x - 1) 
2 

+ dW - x2> + 
dl)x(x + 1) 

2 

so that 

9’64 = M-1) - 29(O) + !7Wlx + w2)M1) - d-l>1 
= g(l)(x + l/2) +9(-1)(x - l/2) - 29(0)x. 

Suppose that l/2 5 ]u] 5 1. Then u + l/2 and u - l/2 have the same 
sign so that ]u + l/2] + ]u - l/2] = 2]u]. Thus 

I!ml I I!dl>l b + WI + ISWI Iu - WI + %@>l I4 
5 Iu + l/2] + ]u - l/2] + 2]U] = 4]U]. 

Equality occurs if g(x) = 2x2 - 1, so that K,, = 41~1. 
Suppose 0 5 ]u] 5 l/2. S ince the bound for u is the same as that for 

-u, with no loss of generality, we can take 0 5 u 5 l/2. There are several 
types of quadratic functions to consider: 

(1) g(x) is increasing on the interval [-l,l]; 

(2) g(x) is decreasing on the interval [-l,l]; 

(3) g(x) has a minimum at a point c in [-l,O]; 

(4) g(x) has a minimum at a point c in [0, 11; 

(5) g(x) has a maximum at a point c in [-l,l]. 

Cases (2) and (5) need not be treated directly since -g(x) falls under one 

of the other cases. 
If g(x) satisfies (l), then 

htx) = 2 ( 
g(x) - d-1) 
g(1) - g(-1) > 

_ ] 

is a quadratic such that Ih( 5 1 on [-1, l] and jg’(u)l 5 IV(u)] for all U. 
(The graph of h( ) x is obtained from that of g(x) by expanding the vertical 

scale.) Since h(1) = 1 and h(-1) = -1, the graphs of two such functions 

h(x) cross only when x = fl. Hence h(0) is as small as possible when 
h/(-l) = 0 (i.e. when h(x) = -1 + (x + 1)2/2) and as large as possible 
when h’(1) = 0 ( i.e. when h(x) = 1 -(x - 1)2/2). Thus -l/2 _< h(0) 5 l/2. 

Since 
h’(u) = (u + l/2) - (U - l/2) - 2h(O)u = 1 - 2h(O)u, 
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For case (3), it suffices to consider functions g(z) whose minimum value 
is -1 and maximum is +l. Then g(z) = -1 + 2(1- c)-~(z - c)~, so that 

g’(u) = 4(1 - c)-“(u - c). We wish to maximize ]g’(u)] over all possible 
values of c. By using calculus or the fact that the equation 

4(u = 4(u - c> 
(1 - t>2 (1 - c)2 

has c as a double root, one finds that the maximum value is (1 - u)-‘. 
Indeed 

4(u - c) 
&-qyy2= 

(1+ c - 2u)2 > o 

(1 - u)(l- c)2 - 

with equality iff c = 2u - 1. Hence [g’(u)1 < (1 - u)-’ with equality iff 

g(z) = -1 + [(z + 1 - 2u)2]/[2(1- u)“]. 
For case (4), we can consider functions of the form g(z) = -1 + 

2(1 + c)-~(z - c)~ where g’(u) = 4(1 + c)-~(u - c). Now, checking the 
extreme case c = 0 and c = 1, we find that 

4u 4(u - c> 4c(uc+u+l) > o 

--= (1+c)2 - (l+ c)Z 

$=$-(u-l)= 
(1 - c)[(3u + 1) - (u + l)c] > o 

(1+c)2 - 

Hence ]g’(u)] 5 max(4u, 1 - u), 
Thus, for ]u] 5 l/2, 

Is’(u)l L m&l + 14, (1 - ]~])-~,4]u], 1 - 14) = (1 - bI>-‘. 

In conclusion, we have 

Condition on u K, Function yielding equality 

l/2 < 1’111 5 1 44 222 - 1 

0 5 u 5 l/2 (1 - u)-’ -1+ (z + 1 - 2u)2/[2(1- u)2] 

-l/2 5 u < 0 (1+ u)-’ -1 + (2 - 1 - 2u)2/[2(1+ u)“]. 

Remark. Similar problems were posed in the Putnam Competition (6 

Al and 29 A5). For some perspective on the situation, see A.M. Gleason, 
R.E. Greenwood, L.M. Kelly, The William Lowell Putnam Mathematical 

Competition Problems and Solutions: 1938-1964 p. 207. The Tchebychef 
polynomials occur yet again: if p(z) is a polynomial of degree n for which 
-1 5 p(z) 5 1 for -1 5 t 5 1, then ]p’(z)] 5 n2 with equality occurring 
for some z when p(z) is a Tchebychef polynomial. 
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5.6. We deal first with the quadratic situation. Let 

f(x) = (x - v)(x - u) = (v - x)(u - x) = (x - (v + 4/2)2 - ((v - u)/2)2 

where -1 5 u 5 v 5 1. When u < t 5 v, then -1 5 f(z) < 0 with 
equality on the left iff v = -u = 1, x = 0. Also 

f(l)f(-1) = (1 - u2)(1 - v2) 5 1 

with equality iff u = v = 0. Hence, if f(z) # z2, at least one of f(1) and 
f(-1) is less than 1. If u + v < 0, then 0 < f(-1) < 1, and if u + v > 0, 

then 0 < f(1) < 1. 
There are certain cases in which the result is clear: 

(1) All of the Zi have the same sign. 

(2) The degree of p(z) is 1. 

(3) The degree of p(z) is 2, from the above analysis. 

Assume the result holds for polynomials of degree less than n 1 3. Let 
-1 < a < 0 < b < 1 and p(z) = (2 - ci)(z - 22). .. (x - I,,) where 
xi < 0 < x, and -1 5 xi 5 x2 5 ... < x, 5 1. With no loss of 
generality, we can take --a < b. Suppose that xi 5 a < 0 < b 5 I,. Then, 
if q(x) = (x - xs)...(x - x,-i), then 

Ip( = I(2 -x1)(3: - xn>l lq(x)l I ldz)l for 21 5 x I zn. 

By the induction hypothesis applied to q(x), Ip( 2 1 and Ip( 2 1 
cannot both occur. 

Now 

p(a)p(b) = fig(xi) where g(t) = (U - t)(b - x). 

i=l 

Since [g(x)1 5 1 f or a 5 x 5 1, if also g(-1) < 1 or a 5 xi, it follows that 

Ig(zi)l 5 1 for each i and that Ip( > 1 cannot occur. 
This leaves the situation that -1 5 xi < Q < 0 < z, < b < 1 and 

g(-1) = (1+ a)(1 + b) > 1. Now 2(1 + e) > g(-1) > 1, so that a > -l/2. 
Suppose if possible that Ip( > 1 and Ip( 2 1. Then we must have that 

xn - a > 1, so that x, > l/2. Then 

and 

IP( Ip(a) I 
Ma)l = (a - x1)(x, - a) 1 (a + l)(l - a) ’ Ma)1 ’ l 

IP(b) I IP(b) I 
Iqcb)l = (b - xl)(b - x,) ’ (b + l)(b - l/2) 

Mb) I 
’ 2(V) 

= IP( > 1 
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which contradicts the induction hypothesis. 

5.7. Since only differences of the ni are involved, it suffices to obtain the 
result when all the ni are nonnegative. Let 

G(x) = G(xo, xl,. . . , Xk) = I-I (7; 1;;’ 

both products taken over 0 5 i < j 5 k. We have to show that G takes 
integer values whenever x = n is a vector with integer entries. This will be 

proved by induction on n = max(ns, nl, . . . , nk). 
If n 5 k - 1, since all the ni are nonnegative and there are k + 1 of them, 

two of the ni must be equal and G(n) = 0. If n = k, then either two ni are 
equal or else {no, nl,. . . ,nk} = {0,1,2,. . . , k}. In either case, G(n) is an 

integer. 
Suppose it has been shown that G(n) is an integer when n 5 r for some 

T > k. Let n = r + 1. Without loss of generality, we may suppose that 
no = P + 1. If, for some i > 0, ni = P + 1, then G(n) = 0. Suppose that 
1zi 5 r (1 5 i _< r). Let 

f(t) = G(t, m, n2,. . . , ~1. 

By the induction hypothesis, f(t) is an integer for t = 0, 1,2,. . . , k, . . . ,r. 

Since deg f(t) = k, it follows from Exercise 1.19, that f(r+ 1) is an integer. 
Hence G(n) is an integer if n = r + 1. 

5.8. Let n be a positive integer to be determined later, and let p(x) = 

0.5[1+ (2x - l)n]. s ince all the coefficients of 1 + (2x - 1)” are even, p(x) 
has integer coefficients. Also 

Ip(x) - 0.51 = 0.512~ - I]“. 

If 0.19 5 x 5 0.81, then lp(z)-0.51 5 0.5(0.62)“. Now choose n sufficiently 
large that (0.62)n < 2/1981. 

5.9. First solution. In a diagram, let the graph of the function dm 
be given. Let us choose p and q so that the maximum value of the left 
side over all x in [0, l] is made as small as possible. From the diagram, we 
see that the line with equation y = px + q should go through the points 

(0, 1 + u) and (1,~) f or some positive value of u. Hence, slope p of the line 

must be -1 and it must also go through (l/J”, l/a-u). This is possible 
only if q = (l/2)(1 + 4) and u = (l/2)(4 - 1). From this, we see that 

the inequality of the problem is always satisfied if and only if p = 1 and 

q = (l/2)(1 + 4). 
Second solution. Let f(z) = dm - pz - q (0 5 x 5 1). We first 

establish that p has to be negative. For, 

f(0) = 1 - q 5 (l/2)@- 1) * -q 5 (l/2)@- 1) - I 
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and 

f(1) = -p-q 1 -(1/2)(&l) e-p 5 -q+(1/2)(Jz-1) 5 (&i-1)-1 < 0. 

Now, write x = cos0, so that 

f(cos ~9) = sin B - pcos t9 - q = JC&Fsin(0 + 4) - q, 

where d-sin 4 = -p and J-OS 4 = 1. f assumes its maximum 

value when B + 4 = 7r/2, i.e. when 

cos e = sin 4 = -p/J-, 

and we have that 

f(-P/&7) = AT2 - q* 

Let 0 5 u, v 5 1. Then If(u) - f(v)1 5 &- 1. In particular, 

~~-l=f(-p/~~)-f(O)<JZ-l~~~IJZ 

*p2_<l*p>--1 

and 

JS+p = f(-P/Jiq) - f(1) 5 h- 1 

* &&(Jz-1)-P 

+ l+p”s(3-2fi)-2(fi-l)p+p2 

=k 2(dLl)p_<2-2Jzap5 -1. 

Putting these facts together yields p = -1. Now, 

f (0) 1 -(W)(Jz - 1) * q I (W(Jz+ 1) 

and 

f(-P/Jl+p2) = f(l/Jz) = A-4 I (l/2)@-1) * q 2 (1/2)@+1>, 

so that q = (l/2)(4+ 1). 
So far, we have established what p and q must be if the inequality is valid 

for each x; we must now show that this choice works, i.e. that 

l&Z+ x - (l/2)(&+ 1)l _< (l/2)1&- 11 for 0 5 x 5 1. 

Since 0 5 (1 - &x)~ = 1 - 24~ + 2z2, it follows that 

1-x2<2-2~x+x2*~iG5+/5-x. 
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Since x2 5 x, it follows that 1 - x 5 dn. Hence 

--t + (1/2)(Jz+ 1) - (l/2)(& - 1) I J1-;cz 

5 --t + (l/2)(45 + 1) + (l/2)(& - l), 

which yields the result. 

5.10. By Lagrange’s Formula, 

P(X) = &Jk 
(x - x0) . . . (x - X&1)(X - xk+l) * . * (x - x,) 

k=O 
(tk - x0) ... . . +k - 2,) 

Now, Tn+l(x) = cos(n + 1)u = cos(n + 1) arccos x vanishes if and only if 

x = cosuk for some k. Hence Tn+l(x) = c,+i(x - xi). . .(x - 2,). Thus, 

when x # Xk for any k, we can write 

p(x) = Tn+l(x) g (2 - Xk;;;+l(xk) ’ 

In the special case that each yk 5 1, we find that 

1 = %+1(X) 2 l/[(X - Xk)T,f,+l(~k)]. 

k=O 

Differentiating Tn+l(x) = cos(n + 1)u with respect to u yields 

TA+,(x)(- sin u) = -(n + 1) sin(n + 1)~. 

In particular, when x = xk, we have that u = ‘uk and 

TA+,(Xk) = (n -k l)(-l)k/(SinUk) 

and the result follows. 

Solutions to Problems 

Chapter 8 

1. The equation is equivalent to (3y - 5)(9x - 3y - 5) = 34. Try out all 
the divisors 3y - 5 of 34 to obtain the solutions (x,y) = (-1, -4), (-1, l), 

(532) (5913). 

2. 0 = a3-b3-c3 -3abc= (a-b-c)(a2+b2+c2+ab+ac-bc). Since the 
second factor never vanishes for a, b, c not all zero, a = b + c. This yields 

(a,hc) = (&I, 1). 
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3. 24 = (x + y + 2)” - (x3 + y3 + z3) = 3Cx2y + 6xyz j 8 = x(y + z)~ + 

(x2 + YZ)(Y + z) = (y + z)(x + z)(x + y) = (3 - x)(3 - y)(x + y). Hence 

(X:,YJ) = (Ll,l), (4,4,-5), (4,--5,4), (-5,4,4). 

4. The equation can be rewritten 4(2a + 1)2 = (2b + 1)2 + 3. Since 4 and 1 
are the only squares which differ by 3, the result follows. 

5. The equation is equivalent to 

0 = x2y2 + 3xsy + xy - 3xy2 + 2y3 

= y[2y2 + (x2 - 3x)y + (x + 3x2)]. 

Either y = 0 and x is arbitrary or the quadratic in y has integer zeros. For 
the latter case, it is necessary that the discriminant 

(x2 - 3~)~ - 8(x + 3x2) = x(x - 8)(x + 1)” 

be a square. Hence, either x = -1, 0, 8, or else x2 - 8x = (x - 4)2 - 16 
is a perfect square, i.e. x = 9. Thus, the solutions (x, y) with y # 0 are 

C-1, -I), (8, --lo>, (9, -4% (9, -21). 

6. (u + vi)3 = y + 2i leads to v(3u2 - v2) = 2, whence v divides 2. Trying 
the possibilities yields (u, v) = (*l, l), (fl, -2). Since (u - vi)3 = y - 2i, 
we can take x = (u + vi)(u - vi), and obtain the solutions 

(2, y) = (u” + 212, u(u” - 3v2) = (2, F2), (5, Ql). 

7. a2xy+abx+acy+ad = 0 j (ax+c)(ay+b) = bc-ad. If bc= ad, then 
there are infinitely many solutions if and only if either c or b is a multiple 
of a (in which case one of the left factors can be made to vanish and the 

other can be arbitrary). If bc # ad, then ax + c and ay + b both divide a 
nonzero integer and there are at most finitely many possibilities for both 
x and y. 

8. First solution. Suppose xy > 0. Then, since 

(2 - l/)(x2 + xy + y2) = 2(xy + 4) 

we have that x > y. Since at least one of Ix] and ]y] differs from 1, x2 + 
xy+y2>xy+4,sothatx-y<2.Sincex#y,wehavethatx=y+l, 
which leads to y2 + y - 7 = 0 with no solution in integer y. 

Suppose x < 0 and y > 0. Then 

8 = x3 -2xy-ys+x2-2xy-y2=-(x+y)2, 

which is impossible. Suppose x > 0 and y < 0. Then 8 = x3-2xy-y3 > x3, 
so that x must be 1. This does not work. 

Hence xy = 0 and we have the solution (I, y) = (2,0), (0, -2). 
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Second solution. Let y = z + u. Then 

(3u + 2)x2 + (3u2 + 2u)x + (u” + 8) = 0. 

The discriminant of this quadratic equation is 

-3u4 + 4u3 + 4u2 - 962s - 64 = -(3u + 2)(u3 - 2u2 + 32) 

which is a positive square only for u = -2. This leads to the solutions 

(xc, Y) = (0, -a (2,O). 

9. Since fi is nonrational and x, y, z, t are to be rational, the equation is 
equivalent to the system 

x2 + 2y2 + z2 + 2t2 = 27 

xy + zt = 5. 

Hence 

(5x2 - 27xy + 10~~) + (5 .z2 - 27zt + 10t2) = 0 

* (5x - 2y)(x - 5y) + (5z - 2t)(z - 5t) = 0. 

Trying x - 5y = z - 5t = 0 reduces both equations of the system to 
y2 + t2 = 1 and we obtain, for example, the solution 

(x,y,z,J)= 
( 

-2% 2s 5 1- 
1+s2’1+s2’ 1+s2 ‘1+s2 > 

where s is any rational. [Trying 5x- 2y = z-St = 0 reduces both equations 

to 2y2 + 25t2 = 25. If we write y = 5u, then this becomes 2u2 + t2 = 1 
and we obtain, for example, the solution (x, y, z, t) = (4/3, 10/3, 5/3, l/3). 
Trying 5x - 2y = 5z - 2t = 0 reduces both equations to 2(y2 + t2) = 25 
and we obtain for example the solution (I, y, z, t) = (1, 5/2, 1, 5/2).] 

10. Let u = VT& and v = vr&. Observe that 

(1) u+v=z. 

(2) u3 + 213 + 3uv(u + v) = 23 * 3 2121% = z3 - u3 - v3 j 2121 is a rational 
number. Suppose uv = p/q in lowest terms. 

(3) u3v3 = (x + &)(z - fi) = x2 - y, an integer. Then p3 = (x2 - y)q3, 
so that any prime which divides q must divide p. Since gcd(p, q) = 1, 
we must have q = 1. Hence uv = p, an integer. 

Thus, u and v are zeros of the quadratic t2 - zt +p, with the result that 
2u = z + fi and 2v = z - 6, where w = z2 - 4~. The value of w can 
be either positive or negative. If positive, u and v are real and we decide 
arbitrarily that u 2 v. If w is negative, then fi is consistently taken to 
be one of the square roots of 20. 
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We can now solve for x and y. 

8(x + ,/jj) = 8u3 = (z” + 3%~) + (3z2 + w)& 

8(x - fi) = 8v3 = (z” + 3%~) - (3%2 + w)t/ii? 

so that 
8x = z3 + 3%~ = z(z2 + 3w) 

8,/j = (3%2 + w)fi 3 64y = (3z2 + w)~w. 

Hence, if there is a solution, we must have 

(x, y, z) = (z(z2 + 3w)/8, ~(3%~ + ~)~/64, z) 

for suitable % and w. On the other hand, (*) yields solutions since 

(*I 

= (1/2)[d(%3 + 320%) + (3%2 + w)& 

23 + SW%) - (322 + w)&J 

= (1/2)f/z+J;;)3+ t- 

= (VW + 6) + (% - 441 
= t. 

We need conditions to ensure that x, y, % are integers. Suppose that z = 2s 
is even. Then 0 E (3%2 + w)“w = (12~~ + W)~W (mod 64) 3 w = 2r is even 
=+ (6s2 + r)2r z 0 (mod 8) =+ r is even j 4120. Suppose % is odd. Then 

z(z2 + 3w) E 0 (mod 8) 3 w E 5 (mod 8). 

Hence, the integer solutions of the given equation are given by (*) where 
either (z, w) = (2s, 4t) or (2, w) = (2k + 1,8m + 5). 

Examples: 

(i) % = 1, w = 5 yields (z,y,%) = (2,5,1). In this case, u = (l/2)(1+&) 

and u3 = 2 + 4. 

(ii) w = 0 yields the obvious solution x = s3, y = 0, % = 2s. 

(iii) % = 6, w = -4 yields u = 3 + i, v = 3 - i, (x, y, z) = (18, -676,6). 

11. Let u = v/w be a given rational value for the polynomial. The equation 
3x2 - 5x + (4 - u”) = 0 has discriminant ( 12v2 - 23w2)/w2 and so will have 
rational solutions when 12v2 - 23w2 is a perfect square. 
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Try w = 1. Then we wish to find v and z such that 12v2 - 23 = ,r2. Two 
obvious solutions are (v, %) = (2,5), (4,13). We can find as many more as 
we wish by the following device: 

If t2 - 12s2 = 1 and z2 - 12v2 = -23, then 

(t + sdE)(t - s&q = 1 

(z + vfi)(z - vfi) = -23 

j (t + sfi)(z + vm)(t - sfi)(z - vfi) = -23 

* [(t% + 12sv) + (tv + S%)dis][(tZ + 12sv) 

- (tv + sz)fi] = -23 

=s (tr + 12s~)~ - 12(tv + ~2)~ = -23. 

In particular, t2 - 12s2 = 1 is satisfied by (t, s) = (7,2), so that if (v, %) sat- 
isfies 12v2-23 = z2, then we can obtain another solution (7v+2z, 7z+24v). 
Hence (v, z) = (2,5) g’ Ives rise, successively to (24, 83), (334, 1157), . . ., and 

tv, 2) = (4913) g’ Ives rise successively to (54, 187), (752,2605), . . . . 
We can try other values of w to obtain solutions. For example, w = 2 

requires making 4(3v2 - 23) a square, which will occur if v = 3. Here are 
some possibilities: 

u x such that 3x2 - 5x + 4 = u2 

2 51390 
4 3, -413 

24 44/3, - 13 
54 32, -91/3 

334 58113, -192 
752 435, -1300/3 

312 l/2,7/6 

12. Suppose, if possible, that there is a nontrivial rational solution. Be- 
cause of the homogeneity of the left side, there must be a nontrivial integer 
solution. For such a solution, xy% # 0 (otherwise, either 3 or 9 must be the 
cube of a rational number). Let (x, y, 2) = (u, v, w) be a nontrivial solution 
which minimizes 1x1 + IyI + 1~1. Clearly, u = 3t for some integer t. Then 
(x, y, z) = (v, w, t) is also a solution and [VI + [WI + ItI < IzI[+ Iv1 + Iwl, 
which contradicts the minimal property of (u, v, w). The result follows. 

13. (a) The equation is equivalent to x + y = 4 and the general solution is 
givenby(x,y)=(2-t,2+t)fortEZ. 

(b) The equation is equivalent to x + (y - 6)x + y(y - 6) = 0. The 
discriminant of the quadratic in x is equal to -3(y - S)(y + 2), and this is 
square only if y = -2, 0, 4, 6. Hence the solutions (x, y) = (4,-2), (6, 0), 

(-2,4), (0~6). 
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(c) First solution. The equation is equivalent to 

8(z2 + XY + y2 + 1) = (x + y)(x2 + y2). 

Prom this, it is clear that x and y have the same parity and that x + y > 0. 
If x and y are both positive, then (x, y) # (1,l) and 

x2 + y2 < x2 + xy + y2 + 1 < 2(x2 + y2) 

so that 8 < x+y < 16. Trying out in turn y = lo-x, y = 12-x, y = 14-x 
yields only the solutions (x, y) = (2, S), (8, 2). 

If x and y have opposite sign, then 

x2 + xy + y2 + 1 < x2 + y2, 

sothatx+y<8.Tryingoutinturny=2-x,y=4-x,y=6-xyields 

no further solutions. 

Second solution. Since x and y have the same parity, let 2u = x + y and 
v = xy. Then x2 + y2 = 4u2 - 2v and the equation becomes 

8(4u2 - v + 1) = 2u(4u2 - 2v) 

a (u - 2)” = 2u3 - 8u2 - 2 = 2(u - 2)(u2 - 226 - 4) - 18. 

We have that u # 2 and 

0 5 (x-y)2 = 4(u2- v) 

= 4(u - 2)-‘[u3 - 2u2 - 2u3 + 8u2 + 21 

= 4(u - 2)-l[-u2@ - 6) + 21 = 4(2 - u)-‘[u2(u - 6) - 21. 

Hence, u - 2 ] 18 and 3 5 u 5 6. The only possibility is that (u, v) = (5,16), 

so that (x, y) = (2,8), (8, 2). 

14. All the zeros must be negative, since f(x) > 0 for x > 0. Denote them 
by -ri (1 5 i 5 n). Since rlr2 1.1 r, = 1, the AGM inequality yields 

whence f(x) 2 (x + 1)” for x > 0. The result follows. 

15. Adding the equations yields (x+Y+z)~ = (x+y+z), whence x+y+z = 0 

or x + y + z = 1. Prom the difference of the last two equations, we find that 

(y-r)(y+z-2x+l)=O,whencey=zory+z=2x-l.Therearefour 
cases: 

(i) 2 + y + z = 0; y = z. then -2y = x = x2 + 2y2 = 6y2, so y = 0 or 
y = -l/3. Hence, (x,y, z) = (O,O,O) or (2/3, -l/3, -l/3). 

(ii) x+y+z = 0; y+z = 2x - 1. Then x = l/3 and we find that y and z 
are the zeros of the quadratic 9t2+3t+l. Hence, (x, y, z) = (1/3,w/3,w2/3) 
or (l/3, w2/3, w/3). 
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(iii)x+y+%=l;y=z.Theny=z=$(l-x)andx2+2y2=zimply 
0=3x2--442+1=(32-1)(x - 1). Hence, (x, y, Z) = (l,O,O) or (l/3, l/3, 

I/3). 
(iv) x + y + z = 1; y + z = 2x - 1. Then x = 2/3, and y and z are the 

zeros of 9t2 - 3t + 1. Hence (z, y, Z) = (2/3,-w/3, -w2/3) or (2/3, -w2/3, 

-w/3). 

Remark. An alternative approach starts with multiplying the second 
equation by y and the third by Z, and subtracting to get 0 = y3 - z3 = 

(y - z)(y” + yz + z”) w h ence y = Z, y = wz or y = w2%. The reader should 
follow up these three possibilities. 

16. Q(x) - P(x) = (x - u)F(x) where deg F 5 2, F(x) 1 0 for x 2 u and 

F(x) < 0 for z 5 u. Hence F(z) = (x - u)G(x) where degG(x) 5 1 and 
G(x) > 0 for each x. Thus G(z) must be zero or constant. Since the case 
that G(x) = 0 is straightforward, we can suppose that G(x) = a and 

Q(x) = P(x) + (x - U)~U where a > 0. 

Similarly 
Q(x) = R(x) - (x - u)2b where b > 0. 

Thus the result follows with k = b/(a + b). 
The result does not hold when P, Q, R are of degree 4. For example, let 

P(x) = x4-x2, Q(x) = x4, R(x) = 2x4+x2 (so u = 0). If Q = kP+(l-k)R, 
then taking x = 1 yields 3k = 2 while taking x = 2 yields 6k = 5, which 

are inconsistent. 

17. A straight line can intersect the graph of the quartic curve in exactly 
four points if and only if the curve is convex somewhere between each of 

the outer pair of intersection points and concave somewhere in between 

the inner pair (sketch a diagram). This occurs exactly when there are two 
inflection points, i.e. the second derivative of the quartic polynomial has 
two distinct real zeros. Thus P(a, b) = 3a2 - 8b. 

18. 

2b = a + c =+ 2b3 = b(ab + bc) = b(3 - ac) = 3b - 10 

+ O=*2b3-3b+10=(b+2)(2b2-4b+5). 

Hence b = -2, p = -(a + b + c) = -3b = 6 and the equation is 

0 = x3 + 6x2 + 3x - 10 = (x - 1)(x + 2)(x + 5). 

19. First solution. Suppose, if possible, that p(p(x)) = q(q(x)) has a real 
solution x = 20. Let u = p(w), v = q(w). By hypothesis, u # v. We have 

that P(U) = q(v), while p(v) = p(q(w)) = q(p(w)) = q(u). Hence the 
polynomial p(x) - q(x) h as opposite signs for x = u and x = v, and so 
must vanish between u and v. But this contradicts the hypothesis. 
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Second solution. Since p(x) and q(x) are continuous, then p(x) > q(x) 
for all x or p(x) < q(x) for all x. Suppose the former. Then p(p(x)) > 
q(p(x)) = p(q(x)) > q(q(x)) for all x and the result follows. 

20. Suppose, first, that AB and AC lie along the lines x = b and y = 
c. Then the polynomial P(b, y) has three distinct zeros and so vanishes 
identically. Similarly, P(x, c) must be the zero polynomial. Hence P(x, y) = 
k(x - b)(y - c). Since A’ lies on neither AB nor AC, P(z, y) vanishes at 
the coordinates of a’ only if k = 0. 

Otherwise, we may suppose that the lines AB, AC and BC lie along the 
respective lines y = mix+ki (i = 1,2,3). Since for each i, P(x, mix+ki) = 0 
has three distinct roots, the left side must be the zero polynomial. But then, 
by the Factor Theorem, P(x, y) is divisible by the three distinct factors 

y - mix - ki. Since deg P(x, y) 5 2, this is possible only if P(x, y) = 0. 

21. By the Factor Theorem, (ca - b)(b - c)(c - a) divides both the nu- 
merator and the denominator. Arguing from degree and coefficients, the 
denominator must be equal to this and the numerator must have an addi- 

tional symmetric linear factor, so that the result follows. 

22. Let u = (3/5)‘j7, v=~+u-~.Thenu~+u-~=v~-3v, 

u5 + u -5 = v5 - 5(v3 - 3v) - 1ov = v5 - 5v3 + 5v 

and 

u7 + u-7 = v7 - 7(v5 - 5v3 + 5v) - 21(v3 - 3v) - 35v 

=v 7 - 7v5 + 14v3 - 7V’ 

whence v is a zero of the polynomial 

t7 - 7t5 + 14t3 - 7t - (3/5 + 5/3). 

Multiplying this by 15 yields the required polynomial. 

23. (a) P(X) = l-n(l-zai/ni), f rom which the result follows immediately. 

(b) L t e r - c m, n) and d be the number of prime factors counting - g 4 
repetitions of r. Then m = ru, n = rv, k = ruv, c = a + b - d and 

p(x)=< [l- (1-T) (l-q-f)]. 

If, say, m = 2”, then r = 2d and p(2) = 1. On the other hand, if p(2) = 1, 
then 2d/r must equal 1 and either 2a-d = u or 2b-d = v. 

Remark. A generalized version of this problem in which there are s 
ni not pairwise relatively prime is found in the Canadian Mathematical 
Bulletin 24 (1981), 507, P292. 
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24. First solution. Let 

f(Y) = (~-fi-mY-\/z+mY+~-~)(y+Jz+~) 

= Y - lOy2 + 1. 

Then 

f(x-45) = x4 - 4&x3 + 20x2 - 24 

= -[(3x4 - 20x2 + 24) - (x - &)4x3]. 

Since f(&+fi+fi) = 0, we can takep(x) = 3x4-20x2+24, q(x) = 4x3. 

Second solution. Let u = a+&+&, v = &+a. Then u2-2uv+v2 = 
5 and v2 = 5+2&*u2- 2uv = -2& 3 u4 - 4u3v + 4u2v2 = 24 s- 
u4 - 4u3v + 4u2( 5 - u2 + 2uv) = 24 3 4u3v = 3u4 - 20u2 + 24, which yields 
the result. [Solution by Jeff Higham.] 

Remarks. Other possibilities are p(x) = -5x7+194x5-1520x3+3120x, 
q(x) = 576 (Colin Springer) and p(x) = x5 - 24x, q(x) = x4 - 20x2 - 24 
(Graham Denham). Prom this result, it can be deduced that fi+ &+ 6 
must be nonrational. The problem is due to Gregg Petruno, who obtained 
a more general result; consult Gregg N. Petruno, Sums of irrational square 
roots are irrational. Math. Magazine 61 (1988)’ 44-45. 

25. Square both sides and rearrange terms to obtain 

~~J=x2+3x+2 . . . (1) 

Square again, rearrange and factor to obtain 

(x2 + x-p)(x2+8x+2p+9)=0 . . . (2) 

There are four roots to equation (2): 

u = (-1+ l/m)/2 b = (-l- ,/m)/2 
c=--4+dm d=--4-JT?Zj 

For a viable solution x to the given equation, it is necessary that all 
radicals and quantities under radicals be positive: 

(a) x2 f 3x + 2 = (x + 2)(x + 1) 2 0, i.e. 2 5 -2 or x > -1; 

(b) x2<2p+1; 

(c) 3x + p + 4 > 0; 

(d) x2 +9x + 9 + 3p 10. 
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Thus, from (b), if p < -l/2, there is no solution. If p < -l/4, then a 
and b are not solutions. If p > 7/2, c and d are not solutions. If p < 712, 

then d 5 -4, SO that 3d +p+4 < 0 and x = d denies condition (c). Hence, 
d is never a solution of the given equation. 

Suppose that c is a solution. Then, since -l/2 5 p, c _< -4 +2fi < -1, 
so that, by condition (a), c 5 -2, and, by condition (c), p 2 -4 + 6 = 2. 
Hence, if p < 2, then c is not a solution. Thus, there are no solutions if 
p < -l/4. 

Let p 1 -l/4. Then 

2p+l-a2 = (Jxp+ l/q2 

3a+p+4= (&v+3/2)2 

a2+9a+3p+9 = p-a+9a+3p+9=8a+4p+9 

= (&X+2)2 

and a satisfies the equation. 
Also 

If p 1 2, then 

2p+ 1 - b2 = (dpx- 1/2)2 

3b+p+4= (dm-3/2)2 

b2 + 9b + 3p + 9 = (,/4x - 2)2. 

= ,/w-2= ,/b2+9b+3p+9. 

If 0 < p < 2, then the left side is 

(t/m - l/2) + (3/2 - dm) = 1, 

which is not equal to 

db2+9b+3p+9= I&7%21. 

If -l/4 5 p 5 0, then the left side is 

(l/2 - dm) + (3/2 - JpiT;I) = 2 - d&i 

and the given equation is satisfied. 

Summing up, we have the table: 

Range ofp Is a b c d a solution? 

p < -l/4 N N N N 

-l/4 5 p 5 0 YYNN 

o<p<2 YNNN 

25P YY?N 
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When p = -l/4, then a = b. Hence there is a unique solution if and only 

ifp=-1/4orO<p<2. 

26. Let a, b, c be the zeros of the cubic polynomial. Then, a, b, c are the 
lengths of the sides of a triangle if and only if a, b, c are positive real 
numbers for which a + b - c, a + c - b and b + c - a are all positive. 

Suppose that these conditions hold. Then the discriminant 18uvw + 
u2v2 - 27w2 - 4v3 - 4u3w is nonnegative and the numbers u, v, w, 

4uv - u3 - 8w = (a + b - C)(U + c - b)(b + c - u) 

are all positive. 
On the other hand, let these conditions hold. The discriminant condition 

guarantees that all the zeros are real. Since the polynomial is negative for 
nonpositive I, a, b, c must all be positive. Since two of a + b - c, a + c - b, 
b+c-a are positive in any case, the condition that their product is positive 
ensures that all three are positive. 

27. First solution. We look at a number of cases. 

(1) a = b = c = 0. The system is trivially solvable. 
(2) a = b = 0, c # 0. The system is not solvable, since it becomes 

z = dm = 0, which is impossible. 
(3) a = 0, bc # 0. The system becomes 

If the system is solvable, then b2y2 = c2z2 and b2(1 - y2) = c2(1 - z2), 

which implies b2 = c2. On the other hand, suppose that b2 = c2. Then 

(i) if b = c, the system is satisfied by (x, y, Z) = (p, 1, -l), where p is 
arbitrary; 

(ii) if b = -c, the system is satisfied by (x, y, Z) = (p, q, q) where p, q are 
arbitrary. 

Thus, in Case (3)’ there is a solution iff lb/ = ICI. 
(4) abc # 0: a, b, c all positive. Then 

Since ax + by + cz = 0, x, y, z cannot have all the same sign, so one of a, 
b, c is the sum of the other two. On the other hand, if, say, a = b + c, then 
(2, y, z) = (-1, 1’1) is a solution. 

(5) abc # 0: a, b, c all negative. As in (4), it can be shown that there is 
a solution iff one of a, b, c is the sum of the other two. 

(6) a, b, c # 0: not all of a, b, c have the same sign. Let there be a solution 
(x, y, 2) = (cos u, cos v, cos w) where 0 5 u, v, w 5 r. Then 

acosu+bcosv+ccosw=O 
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asinu+bsinv+csinw=O. 

Shifting two terms to the right side in each equation, squaring and adding 
yields 

a2 = b2 + c2 + Pbccos(v - w) 
b2 = a2 + c2 + Paccos(u - 20) 
c2 = a2 + b2 + 2ubcos(u - v). 

(*I 

On the other hand, suppose u, v, w can be chosen to satisfy (*). Then 

= a2+b2+c2+2ab(cosucosv+sinusinv)+.., 

= a2 + b2 + c2 + [c2 - u2 - b2] +. . . = 0. 

Hence, the given system is solvable iff the system (*) is solvable. 
We show that (*) is solvable iff Ial 5 lb/ + ICI, Ibl 5 Ial + ]c] and ]c] 2 

IQ] + 161. If (*) is solvable, then a2 < b2 + c2 + 2lbl ICI = (lb1 + Ic])~, etc. On 
the other hand, suppose the inequality conditions hold. Then we can form 

a triangle with sides ]a], lbl, ]c] opposite angles A, B, C respectively. We 
can select 21, 21, w to satisfy 

lbcl cos A = -bccos(v -w) 

lacl cos B = -ac cos(u - w) 

Iubl cos C = -ub cos(u - v). 

For example, if bc > 0, ub < 0, UC < 0, we can choose u = B, v = B + C = 
x - A, w = 0. [Solution by Gary Baumgartner.] 

Second solution. Assume that ubc # 0, and let there be a solution 
(x, y, z) = (cosu,cos v,cos w), where 0 < u,v, w 5 ?r. Then, for each 8, 
we have that 

u cos(u + e) + ~CO~(V + e) + CCOS(W + e) 

= cose(ucosu+bcosv+ccosw) 

+ sinB(usinu+bsinv+csinw) =O. 

Taking 0 = -u yields a = -b cos(v -u)-ccos(w-u), whence Ial 5 Ibl+IcI. 
Similarly, Ibl 5 IQ]+ ]c] and ]c] 5 ]a]+ lb/. The rest can be treated as before. 

28. Yes. Since there are five odd powers of x, the second player can guar- 
antee that after the first player has completed four moves, there is a coeffi- 
cient of one of these powers which has not been assigned. When he comes 
to make his fourth move, he finds that the polynomial f(x) has the form 
g(x) + axp + bxd where g(x) is determined, r is odd and a, b have yet to be 

selected. Ifs is even, he notes that, since f(1) + f(-1) = g(1) +g(-1) + 2b 
does not depend on a, he can choose b in such a way that f(l)+ f (-1) = 0. 
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Since this guarantees that either 1 is a zero or f(1) and f(-1) have oppo- 
site signs, he can win regardless of the last move of the first player. If s is 
odd, he needs to take a little more care. In this case, he notes that 

2’f(l) + f(-2) = 2’g(l) + g(-2) + (2’ - 2”)b. 

Again, he can choose b to ensure that this quantity vanishes regardless of 
the first player’s last move and thus, as before, ensure a win. 

29. For the case m = n = 4, the strategy is to raise AX - BY to a 
sufficiently high power that A4 or B4 is a factor of each term. Thus, 

1 = (AX - BY)7 = A4(A3X7 - 7A2BX6Y + 21AB2X5Y2 - 35B3X4Y3) 

- B4(B3Y7 - 7AB2XY6 + 21A2BX2Y5 - 35A3X3Y4). 

The choice of u and v is clear. For general m, n, look at 1 = (AX - 

BY) . m+n-1 

30. Let q(x) = p(x) + p’(x) + ee. + p(“)(x). Then q(x) is a polynomial 
of even degree with positive leading coefficient. Suppose q(x) assumes its 
minimum value when x = u. Then 0 = q’(u) = q(u) - p(u). But then 
q(x) 2 q(u) = p(u) 2 0 for all z (cf. Problem 5.4.22). 

31. Suppose a 5 b 5 c. Let f(t) = (t - x)(t - y)(t - Z) and g(t) = 
(t - u)(t - b)(t - c). S ince f(c) 1 0 = g(c) and f(a) < 0 = g(u), there exists 
some point u in the interval [a,~] for which f(u) = g(u). This implies that 
(xy + xz + yz - ab - ac - bc)u = 0. Since u 1 a > 0, it follows that 
xy + xt + yz = ab + UC + bc and f(t) = g(t) identically. The result follows. 

For other solutions, see Amer. Math. Monthly 72 (1965)’ 185-186. 

32. Let n be a given integer. We can write the given polynomial in the 

form p(x) = k fl(x - ri). Let 

q(x) = xn JJ(xflwl + riXne2 + . . . + ry-“x + rr-‘). 

Then p(x)q(x) = Lx” n(xn - ry). We obtain the result by taking n = 
1 000 000. [Solution by M.S. Klamkin.] 

33. Suppose that the degree of p(x) is m and that of q(x) is n where 
m 1 n. If the distinct zeros of p(x) and q(x) are ui, 212,. . . , u, and the 
zeros of p(x) - 1 and q(z) - 1 are vi, ~2, . . . , v6, then the ui and the vj are 
distinct zeros of the difference (p - q)(z). If we can show that r + s > m > 
deg(p - q)(z), the result will follow. 

Now, the common derivative of p(x) and p(x) - 1 has at least (m - r) + 

(m - s) zeros counting multiplicity, so that 2m- r - s 5 degp’(z) = m - 1, 
whence r + s > m + 1 > m. 
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34. The system 
p+q+r=o 

up+vq+wr =0 

xp+yq+%r=o 
(*I 

in the variables p, q, r has a nontrivial solution 

Since z3 + u3 = y3 + v3, it follows that uy - vz # 0 (otherwise z = Ay and 
‘u = kv). Hence, we can solve the system bu + cz = bv + cy = 1 for b and c. 
Multiplying the equations (*) respectively by 1, -b, -c and adding yields 

0 = (1 - bw - cz)(x -y), whence bw+cz= 1. 
From (-CZ) 3 = (bu - 1)3 and -x3 = u3 - 03, etc., we find that the 

equation 
(c” - b3)t3 + 3b2t2 - 3bt + (1 - a3c3) = 0 

has (unequal) roots u, v, w, so that (b3 - c3)uvw = 1 - a3c3. Similarly, 

(b3-c3)t3+3c2t2-3ct+(l-a3b3) = 0 has roots x, y, z, so that (b3-c3)xyz = 
a3b3 - 1. Hence 

(b3 - c3)(uvw + xyr) = a3(b3 - c3). 

Since each of the two cubic equations has three roots and since b and c 

cannot both be zero, at least one of the cubic equations is nontrivial and 
b3 - c3 # 0. The result follows. 

Suppose CC = y = z. Then u = v = w and the result is trivial. If 2 = y, 
then u = v and the linear condition holds automatically. However, the 

result may fail. Let (u,v, w) = (12, 12, lo), (z,y,z) = (1,1,9), so that the 
cubic condition is satisfied with a3 = 1729. But uvw + zyz = 1449. If we 
put these numbers into the above solution, we find that (*) consists of 

p+q+r=lQ+q)+lOr=(p+q)+9r=O 

and that b = 4/49, c = l/49. Thus, u = 12, w = 10 are the roots of the 
equation 

0 = 63t3 - 2352t2 + 2881% - 115920 = 21(t - lO)(t - 12)(3t - 46) 

and x = 1, z = 9 are the roots of 

0 = 21(3t3 + 7t2 - 3432 + 333) = 21(t - 1)(t - 9)(3t + 37). 

Thus, if we take rather (u, v, w) = (12,46/3, lo), (x, y, z) = (1, -37/3,9), 
then the hypotheses and the conclusion of the problem are satisfied. 

35. The given inequality has no solution when x < 1 since all summands on 
the left side are negative and no solutions for large x when all summands 
assume very small positive values. The inequality will be satisfied when 2 
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slightly exceeds any one of the integers 1,2,. . . ,70 and not satisfied when 
z is slightly less than one of the integers 2,3,. . . ,70. Let 

p(x)=5(x-1)...(I-h)...(r-70)-4~h(z-1)...(x~~)...(1-7o). 
k=l 

Thenp(r)>Owhenr=1,3,5 ,..., 69andp(r)<Owhenr=2,4,6 ,..., 70. 
Since degp(x) = 70 and p(z) > 0 for large 2, p(x) has exactly one real zero 
u,. in each of the open intervals (r, r + 1) (1 < r 5 69) and a real zero 
urc > 70. The inequality will be satisfied exactly when x belongs to one of 
the intervals (r, u,] (1 5 r 5 70). Let S = 1+2+ . ..+70 = (35)(71). Since 
the coefficient of x6’ in p(z) is -5s - 4s = -9S, we find that Cu, = 9S/5. 

Hence the total length of all the intervals is 

E(u,. - r) = 9S/5 - S = 4(7)(71) = 1988. 
r=l 

36. First solution. Suppose a + b # 0. We have that 

0 = (CU)~ = u3 + 3Cu2b + 6Cubc 

= 0 + 3Ca2(-a) + 6Cubc = GCubc, 

where the summations are symmetric in the variables a, b, c, d, e, f. The 
left side multiplied by a + b is 

(Q + b)(u + C)(Q + d)(u + e)(u + f) 

= u5 + u4(Cb) + u3(Cbc) + u2(Cbcd) + u(Cbcde) + bcdef 

= (u5 - u”) + u2(uCbc + bed) + (dbcde + bcdef) 

= 0 + 0 + (uCbcde + bcdef), 

where the summations are symmetric in the variables b, c, d, e, f. By 
symmetry, the right side multiplied by a + b is the same, and the result 
follows. If a + b = 0, then the given conditions are c + d + e + f = c3 + 
d3 + e3 + f3 = 0 and we find that the coefficients of even powers of (o + c) 
(o + d)(a + e)(u + f) and (e - ~)(a - d)(u - e)(a - f) agree while those of 
odd powers vanish by a similar argument. 

Second solution. Noting that (u + c + d) + (b + e + f) is a factor of the 

sum of the corresponding cubes, we have that 

0 = (u + c + d)3 + (b + e + f)3 

= 3[(u + C)(U + d)(c + d) + (b + e)(b + f>(e + f)] 

whence 

(u + c)(u + d)(c + d) = -(b + e)(b + f)(e + f). 
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Similarly, 

(Q + e)(a + f)(e + f) = -(b + c)(b + d)(c + d). 

Multiplying the corresponding sides of these two equations yields the result 

when (c+ d)(e+ f) # 0. 
Suppose, say, that c + d = 0. If e + f = 0, too, then a = -b and the 

result is clear. If e + f # 0, then (b + e)(b + f) = (u + e)(u + f) = 0 and 
both sides of the required equation vanish. 

Third solution. For 1 5 k 5 6, let Sk be the sum of all products of k of 
the six variables and Pk be the sum of their kth powers. Define 

f(x) = (x + Q)(X + b)(x + c)(x + d)(x + e)(x + f) 

= (x6 + 52z4 + s4x2 + SC) + ~952. 

Then f(z)-2~52: = f(- ) x , so that 0 = f(u)-2ssu = f(b)-2sgb. Therefore, 

bf(a) = W4. 
If ub(u + b) # 0, this equation leads directly to the result. If a = b = 0, 

the result is obvious. If, say, a = 0, b # 0, then f(b) = 2s5b = 2b2cdef and 

the result holds. If a + b = 0, ub # 0, then f(u) = f(b) = 0, so that ss = 0. 
We can then write 

f(x) = (x2 - u”)(x” - v”)(x” - w2), 

where u2, v2, w2 are the zeros of t3 + szt2 + s+! + ss. Hence a = u, b = -u 

fv=vw;d c, 4 e, f are, in some order, v, -v, w, -w. The result again 

37. First solution. Let x = cosu+ isinu, y = cosv + isinv, z = cosw + 
i sin w, and define the symmetric functions p = x + y + z, q = xy + yz + zz, 
r = xyz. Then 

u+bi=p 

a - bi = q/r 

c+di=z2+y2+z2=p2-2q 

c - di = zs2 + ym2 + .ze2 = (q2 - 2pr)/r2. 

Since q = rjj and 121 = IyI = 1.~1 = Irl = 1, we deduce that 

lq12 = IpI2 = u2 + b2. 

Since 2q = (u + bi)2 - (c + di), it follows that 

(u2 - b2 - c)~ + (2ub - d)2 = 4(u2 + b2). 

Second solution. Let 0 = u + v + w. Then 

U2 - b2 = C + z[COS(e - U) + COS(e - V) + COS(e - W) 

= c+2ocosB+2bsine 

2ub = d+2usinB-2bcosfI 
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so that 

(u + bi)2 = (c + di) + 2(u - bi)(cosO + isine) 

=+ I(u + bi)2 - (c + di)l = 21~ - bil 

* (u2 - b2 - c)~ + (2ub - d)2 = 4(u2 + b2). 

[Solution by Georges Gonthier.] 
Third solution. We have 

(Q2 - b2 - c)/2 = cos(v + w) + cos(u + w) + cos(u + v) . . . (1) 

(2ub - d)/2 = sin(v + w) + sin(u + w) + sin(u + v) . . . (2) 

u2 -I- b2 - 3 = cos(v - w) + cos(w - u) + cos(u - v). . . . (3) 

The process that yields (3) f rom the equations for a and b yields the fol- 
lowing equation from (1) and (2): 

[(u2 + b2 - c)/212 + [(2ub - d)/212 - 3 

= cos((u + w) - (u + v)) + cos((u + v) - (v + 20)) + cos((v + w) - (u + w)) 

= u2+b2-3. 

[Solution by Alexander Pruss.] 

38. 

2 
X- Y2 = Cot2 e + tan2 e - sec2 e - ~08~ e + 4 

= --I + cos2 eccsc2 e - 1) + 4 = 3 + ~05~ e Cot2 e 

while 

xy = csc e - cotecose+tanesece-sine 

= csce(i - ~0s~ e) - sine + tan e set e = tan e set e. 

Hence x2y2(z2 - y2 - 3) = 1. 

39. The polynomial equals 

((3/4) - x) + (x2 + x4)( 1 - x) + Lr6 = (x - 1)(X5 + X3 + x) + (3/4) 

is clearly positive for x 5 3/4 and x > 1. The derivative of the polynomial 
is 

6x5 - 5z4 + 4x3 - 3x2 + 2x - 1 = ( 1/2)[(3x4 + 2x2 + 1)(4x - 3) + (1 - x4)] 

which is positive for 314 5 x < 1. Hence the given function increases on 
the closed interval [3/4, l] and so is positive there. 
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40. The local maximum and minimum values are those values of k for 
which y = k is tangent to y = x3 + 3px2 + 3qx + r. This occurs only if the 

equation f(x) = 0 has a double zero, where 

f(x) = x3 + 3px2 + 3qx + (r - k) 

= (x + p)” + 3(q - p2)(x + P) + (2~~ - 3pq + r - k). 

Now f’(x) = 3[(x + P)~ + (q - p2)]. S' mce j(x) has three real zeros, f’(z) 
has real zeros and p2 - q > 0. We have, by division, that 

3f(z) = (x + p)f’(x) + 3[2(q - p2>(x + P) + (2~~ - 3pq + r - k)]. 

Since a double zero of f(x) is a zero of f’(x), a zero u of f(z) is a double 

zero a 

2(q-p2)(x+p)+(2p3-3pq+r-k)=O 

and (x + P)~ + (q - p2) = 0 

+ 4(p2 - q)3 = 4(q - P~)~(x + p)” = (2p3 - 3pq + r - k)2 

- T2(P2 - q) 3/2 = 2p3 - 3pq + r - k 

e k = 2p3 - 3pq + r f 2(p2 - q)3/2. 

41. (a) 

2(ub - cd) 

a-b+c-d = 

[u” + b2 - c2 - d2] - [(u - b)2 - (c - d)2] 

a-b+c-d 

= (u” + b2 - c2 - d2)/(u - b + c - d) - [(u - b) - (c - d)] 

= (u2 - b2 - c2 + d2)/(u + b + c + d) - [(u + d) - (b + c)] 

[u2 - b2 
= 

- c2 + d2] - [(u + d)2 - (b + c)“] 2(bc - ad) 

u+b+c+d = u+b+c+d’ 

(b) (a, b,c,d) = (5,3,2,6) works. 

42. Suppose, if possible, that the degree of the polynomial f(z) is a number 
n exceeding 1. From Lagrange’s Formula, 

f(x) = 2 f(k)z(z - 1). . . (x=k) . . . (x - n) 

k=O 
k(k - l)...(k -n) 

it follows that all the coefficients must be rational. Hence, the polynomial 

df(x) obtained by multiplying f(x) by the least common multiple d of the 
denominators of its coefficients is a polynomial with the property of the 
problem which has integer coefficients. Suppose 

df(x) = u,,x” + a,-lx”-’ +. 1. + ulx + uo. 
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Let 

s(x) = C-ldf(+n) 
= 2” + u,-lx”-l + unun4x”-2 +. . - + u;-2u1x + uyuo. 

Then g(x) is a manic polynomial over 2 which has the property ascribed 

to f (4. 
We now modify g(x) to obtain a polynomial which is sure to have a 

real zero which is nonrational. To this end, observe that g(x) - g(0) - x 
has at most finitely many zeros, so that there exists a prime p for which 

g(p) -g(O) -p is nonzero. Let h(x) = g(x) -g(O) -p. Then h(x) is a manic 
polynomial over 2 of degree n which assumes rational values if and only if 
x is rational. Since h(0) < 0 and h(x) has positive leading coefficient, h(x) 
must have a positive zero. By hypothesis, this zero must be rational and 
thus must be an integer dividing the prime p, and so must be p. But this 
contradicts h(p) # 0. The result follows. 

Remark. Compare this with Problem 5.4.23. 

43. Let u = u/(bc- u2), v = b/(cu - b2), w = c/(ub - c2). Then VW - u2 = 
s/(bc - u2), wu - v2 = s/(cu - b2), uv - w2 = s/(ub - c2) where 

’ = 

(u3b3 + b3c3 + c3u3 - 3u2b2c2) 

(ub - c”)(cu - b2)(bc - u2) * 

Suppose, if possible, that s = 0. Then ub + bc + cu = 0 G- ub - c2 = 
-c(u + b + c), cu - b2 = -b(u + b + c), bc - u2 = -u(u + b + c) whence 
u = v = w = -l/(u + b + c) and so u + v + w is nonzero contrary to 

hypothesis. Hence s # 0, and so 

u/(bc - u”) + v/(cu - b2) + w/(ub - c”) = (3uvw - u3 - v3 - w”)/s 

= -(u + v + w)(u2 + v2 + w2 - uv - uw - vw)/s = 0 

as required. 

44. Let x = 1 + l/l + x = (2 + x)/(1 + x), xk+l = 1 + l/x, for k = 

1,2,.. . , n - 1. By induction, it can be shown that 

xk = (Fk+2 + Fk+lx)/(Fk+l + Fkx), 

where{Fk}={1,1,2,3,5,8 ,... } is the Fibonacci sequence. Thus, the equa- 

tion to be solved is x, = x, i.e. F,,+2 + F,+lx = (F,+l + F,,x)x, whence 

x = +iEygE. 

45. If w is a zero of f(t), th en so also are w2 + w + 1 and w2 - w + 1 = 

(w - 1)2 + (w - 1) + 1. s ince 2w = (w2 + w + 1) - (w2 - w + l), it 

follows that 212~1 5 lw2 + w + II+ I w2 - w + 11 with equality if and only if 
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w2 + w + 1 is a positive real multiple of -(w2 - w + 1). If there is equality, 
then lw2 + w + 11 = I w2 - w + 11 which occurs when 

2(wz+1)=(wz+w+1)+(wz-w+1)=0. 

Hence, except when w2 = -1, it must happen that IwI is strictly less than 
the maximum of lw2 + w + 1 I and lw2 - w + 1 I, so at least one of these three 
must differ from 1. It follows from this, since f(t) is a polynomial, that the 
only zeros of f(t) can be i and -i, and so f(t) = c(t2 + 1)” for c = 1 and 
nonnegative integer k. It is readily checked that this works. 

46. There is no solution. Otherwise, by the AGM inequality, 2&x 5 
u2 + 3x2, etc., so that 6 < 4fi = 2fi(ux + vy + wt) 5 6, which is a 
contradiction. 

47. x3+y3+%3-Qxy% = (x+y+%)(x2+y2+%2-xy-x%-y%) =o* 
x3 + ys + t3 = 3xyz. Similarly, xv3 + yV3 + %-3 = ~x-‘Y-‘%-~. Thus 

x6 + y6 + %6 = (x3 + y3 + %3)2 - 2t3y323(x-3 + y-3 + %-“) 

= 9x2y2z2 - 6~~~~2~ = 3x2y2t2, 

and this yields the result. 

48. Let w be a zero of %* + 1. Then w is simple, so it suffices to show that 
% = w makes the right side vanish. This is clear for w = -1. Otherwise, 
l-w+w2-. . .+uF’-l = 0 and the right side is equal to (-w-‘-l)(~*-‘)~+ 
(w + l)~(*-‘)~-’ h h w ic is 0. See Problem 3.7.17 and its solution for an 
alternative solution to a special case. 

49. Suppose that (x + 1)3 - x3 = y2. This implies that 

3(x2 + x) + 1 = y2 + 3(2x + 1)2 = 4y2 - 1 = (2y - 1)(2y + 1). 

Since 2y - 1 and 2y + 1 are relatively prime, either 

(1) 2y - 1 = u2, 2y + 1 = 3b2 for some a, b, or 

(2) 2y - 1 = 3c2, 2y + 1 = d2 for some c, d. 

Case (2) cannot occur, since it would imply that d2 = 3c2 + 2, an im- 
possibility. Hence, we must have Case (1) and 4y = u2 + 3b2 = 2(u2 + 1). 
Since Q is odd, we can write u = 2u + 1, whence y = u2 + (u + 1)2. 

Remark. In Amer. Math. Monthly 57 (1950), 190, it is noted that solu- 
tions of the equation are given by (x, y) = (xn, y,,) where (xe, ye) = (0, l), 

(xl, ~1) = (7,13) and (xn+l,yn+l) = (142, - G-I+ 6, 14~~ - ~~-1) for 
7a> 1. 

50. Prom the difference of the first two equations, we obtain that 

x(1 - x2) + y(y - 1) + %2(Z - 1) = 0. . . . (1) 
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Prom the difference of the last two equations, we obtain that 

Y(l - Y2> + 4% - 1) + x2(x - 1) = 0. 

Subtracting t times (2) from (1) yields 

. . . (2) 

Similarly 

x(x - 1)(1+ z + 2%) = y(y - 1)(1+ % + yz). . . . (3) 

y(y - 1)(1+ y + yx) = %(% - l)(l+ 2 + %X). . . . (4) 

It is clear from (3) and (4) that, if x, y, % are positive, then z, y, % are all 
equal to 1, all less than 1, or all greater than 1. The last two possibilities 
contradict the given equations and the result follows. 

51. Consider the graphs of the equations y = 6x2, y = 77x - 147 and 
y = 77[x] - 147. Since 6x2 - 77x + 147 = (3x - 7)(2x - 21), the first two 

curves cross when x = 713 and x = 2112. Prom the graphs, it can be seen 
that any solution x of the given equation must satisfy 3 5 x < 2112. Hence 

the possible values of [x] are integers between 3 and 10 inclusive. We now 
consider the following table: 

[xl Y = 77[zl- 147 ~16 [ml 

3 84 14 3 
4 161 26.8 5 
5 238 39.7 6 
6 315 52.5 7 
7 392 65.3 8 
8 469 78.2 8 
9 546 91 9 

10 623 103.8 10 

The solutions of the equation are those values of &6 for which [x] = 

[m], i.e. a‘, JG@, &i, @Z@. 

52. Let 

Then 

f(x) = x4 + kx2 - 2k2(2k + 1)x 

= x[x3 + kx - 2k2(2k + l)]. 

(1) f(x) has four distinct real zeros u the discriminant of the cubic 
factor is positive _ k3(3k + 1)(36k2 + 24k + 1) < 0. 

(2) f(k) = -k3(3k + 1). 
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(3) f’(x) = (x - k)g(x) where 

g(x) = 4x2 + 4kx + 2k(2k + 1) = (2x + k)2 + k(3k + 2). 

(4) f”(x) = 2(6x2 + k). 

(5) f(x) and f’(x) h ave a zero in common _ k = -l/2, -l/3, 0 or 
else g(x) and x3 + Lx - 2k2(2k + 1) have a zero in common. In the 
last case we have that 

(x3 + kx) + (4kx2 + 4k2x) = 0 + x2 + 4kx + (4k2 + k) = 0. 

Since also x2 + kc + (k2 + k/2) = 0, we obtain 3kx + (3k2 + k/2) = 0 
or x = -(k + l/6). Plugging this into the equation f(z) = 0 yields 
36k2+24k+1=Oor6k=(-2ffi). 

(6) f’(x) has three real zeros _ -213 5 k 5 0. Let the zeros of y(x) 
be k, r, s with r 5 s. 

(7) k is a double zero of j’(x) G+ 0 = g(k) = 2k(6k + 1) u k = 
0, -l/6. 

We consider various ranges of values for k: 

(a) k < -213: f x has a sin le minimum value at x = k and y(x) < 

o*-&<x,&6. 

(b) k = -213: r = s = l/3; f”(x) < 0 9 -l/3 < t < l/3. 

(c) -213 < k < (-2 - d)/6: Since r + s = -k > 0, rs = k(k + l/2), r 
and s are both positive. 

(d) k = (-2 - d)/6: r = l/6, s = (1 + fi)/6, j(s) = 0. 

(e) (-2 - &)/6 < k < -l/2: r and s are both positive. 

(f) k = -l/2: r = 0, s = l/2. 

(g) -l/2 < k < -l/3. 

(h) k = -l/3. 

(i) -l/3 < k < -l/6. 

(j) k = -l/6. 

(k) -l/6 < k < (-2 + &)/S. 

(1) k = (-2 + &)/6. 

(m) (-2 + &)/6 < k < 0. 

(n) k = 0. 

(0) k > 0. 
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(b) k=-; ” 

-2-43 Y’ 
(cl) k=T 

-2-g 
(e) 6 <kc-; 

Yb (f) k=-; ” 
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(i) -+<k<-i 
t 

y 

(k) +k<(-2+&)/6 

yt 

(ml 
I 

-2+@ J, 
- <k<Q 

6 

L X 

-2+43 y 
(1) k = 6 

t 

+ 

X 

(n) k=O , 
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53. Let a, b, c be the lengths of the sides. Then u+b+c = 98, and, by Heron’s 
formula for the area, 49(49 - a)(49 - b)(49 - c) = 4202. Let u = 49 - a, 

v = 49 - b, w = 49 - c. Then u + v + w = 49 and uvw = 3600, so that U, 
v, w are zeros of a polynomial of the form j(x) = x3 - 49x2 + rx - 3600. 

Prom the given example, we know that (u, v, w) = (9,20,20) works and 
we can write 

f(x) = (x - 9)(x - 20)2 - sx. 

Now, j(x) will have three real zeros _ the line y = sx intersects the 

cubic curve y = (x - 9)(x - 20)2 ’ m three points (counting multiplicity). 
This will occur for 0 5 s 5 k, where k is that positive value of s for which 
f(x) has a double zero, i.e. j(x) = (x - 9)(x - 20)2 - sx and f’(x) = 
(x - 2O)[(x - 20) + 2(x - 9)] - s have a zero in common. 

But any common zero of f(x) and f’(x) is a zero of 

f(x) - xf’(x) = -(x - 20)(x - 12)(2x + 15). 

Hence, when s = k, f(x) has 12 as a double zero. When 0 5 s 5 k, f(x) 
has a zero between 9 and 12 inclusive. Since such a zero must divide 3600, 
the possibilities are 9, 10 and 12. Checking these out yields the solutions 

(u,v, w) = (9,20,20), (10, 15, 24), (12, 12, 25) or (u,b,c) = (40,29,29), 
(39, 34, 25), (37, 37, 24). 

54. (x - y)2 + (y - %)2 + (% - x)? 

55. Multiply the difference of the two sides by the product of the denomi- 
nators to obtain 

x2y2r2(x + y + %) - 2xyz(xy + yz + ZX) + (“Y2 + j/z2 + %X2) 

+ xY+/2 + yz2 + %X2) - 2334x + y + %) + (xy + y.z + ZX) 
= xy(y + 1)(%X - 1)2 + yz(z + l)(xy - 1)2 + %X(X + l)(yz - 1)” 2 0. 

56. Factoring the denominator, first as a difference of squares, and then 
completely yields (u - x)(b - x)(u + x)(b + x). The numerator is equal to 

[u(b - x) + x(u - x)12 - [x(u - x) + x(b - x)][u(b - x) + b(u - x)] 

= (u” - ux)(b - x)~ + (x2 - bx)(u - x)” + (ax - bx)(u - x)(b - x) 

= (u - x)(b - x)[u(b - x) - x(u - x) + (a - b)x] = (u - x)“(b - x)“. 

The answer is (u - x)(b - x)/(u + x)(b + x). 
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E.l. The identity 

u(ud + bc) + (2bd + c”) = c(c + ub) + d(2b + u”) 

is useful in picking the coefficients of t4 + at3 + bt2 + ct +d in such a way that 
four coefficients of the nine in the square of this polynomial will vanish. The 

polynomial 
t4 + 2t3 - 2t2 + 4t + 4 

has five terms in its square. 

E.2. Write {ui} = (m) {bi} if Cuf = Cbf (k = 0, 1, 2, 3, 4,. . . , m). It can 
be seen that, if {ui} = (m) {bi}, then {UU~ + b} = (m) {ubi + V} for any u 

and v. To show how to construct pairs of subsets of integers with the first 
few powers equal, we illustrate with an example how to move from simple 
sets to more complex sets: 

(1) j-1, 11 = (1) i-2,21 

(2) {1,3) = (1) {0,4) 

(3) {4,0,4) = (2) {-2,2,1,3) 

(4) {--LO, 4) = (2) i--2,2,3) 

(5) i-2, -1,3) = (2) {--3,1,21 

(6) {3,4,8) = (2) {2,6,7) 

(7) {-2,-l&3,2,6,7)=(3)(-3,1,2,3,4,8} 

(8) j-2, -1,677) = (3) {-3,1,4,8) 

(9) (-9, -7,7,9) = (3) {-ll,-3,3,11). 

For the problem posed in (d), a solution for d = 3, m = 2 is 

{1,6,8,12,14,16,20,22,27) 

= (2) {2,4,9,10,15,17,21,23,25) 

= (2) {3,5,7,11,13,18,19,24,26). 
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The question of finding distinct sets with equal sums of powers pops 
up persistently in the literature. The most detailed treatment appears in 

Albert Gloden, Mehrgrudige Gleichungen, (Noordhoff, Groningen, 1944) 
MR 8, 441f. 

A discussion of the problem, in particular version (d), is found in E.M. 
Wright, Prouhet’s 1851 solution of the Tarry-Escott problem of 1910, 
Amer. Math. Monthly 66 (1959), 199-201. To divide the set of numbers up 
to d”+l into d sets with the desired property, write each number in the set 
to base d, sum the digits and classify according to the congruence of this 
sum modulo d. 

A history of the problem can be found in L.E. Dickson, History of the 

Theory of Numbers, (Washington, 1920; reprint, Chelsea, 1952) Vol. II, 
Chapt. 24. There is also a section (pages 328-332) on the problem in G.H. 
Hardy & E.M. Wright, An Introduction to the Theory of Numbers, (Oxford, 
4th ed., 1960). 

A recent reference in which the problem plays a role is Gerald Myerson, 
How small can a sum of roots be? Amer. Math. Monthly 93 (1986), 457- 

459. 
Other references related to the topic are 

J. Chernick, Ideal solutions of the Tarry-Escott problem 
Amer. Math. Monthly 44 (1937), 626-633. 

L.E. Dickson, Introduction to the Theory of Numbers 

(1929), pages 55-58. 

H.L. Dorwart & O.E. Brown, The Tarry-Escott problem 
Amer. Math. Monthly 44 (1937), 613-626. 

A. Gloden, Two theorems on multi-degree equalities 

Amer. Math. Monthly 53 (1946), 205. 

A. Gloden, Parametric solutions of two multi-degreed equalities 
Amer. Math. Monthly 55 (1948), 86-88. 

A. Gloden, Normal trigrade and cyclic quadrilaterals with integral sides 

and diagonals 
Amer. Math. Monthly 53 (1951), 244-247. 

Maurice Kraitchik, Mathematical Recreations 

(Norton, 1942; Dover), 79 

D.H. Lehmer, The Tarry-Escott problem 

Scripta Math. 13 (1947), 37-41. 

Joseph S. Madachy, Mathematics on Vacation 

(Scribner’s, 1966), pages 173-175. 

J.B. Roberts, A curious sequence of signs 
Amer. Math. Monthly 64 (1957), 317-322. 
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J.B. Roberts, Splitting consecutive integers into classes with equal power 
sums 

Amer. Math. Monthly 71 (1964), 25-37. 

J.S. Vidger, Consecutive integers having equal sums of squares 
Math. Mag. 38 (1965), 35-42. 

T.N. Sinha, On the Tarry-Escott problem 

Amer. Math. Monthly 73 (1966), 280-285. 

E.M. Wright, On Tarry’s problem 
Quart. J. Math. Oxford (1) 6 (1935), 261-267. 

Number curiosities 
Crux Mathematicorum (Eureka) 2 (1976), 62. 

Here are some problems references: 

# 963 Crzlx Mathematicorum 11 (1985), 292-296. 
El504 Amer. Math. Monthly 69 (1962), 165, 924. 

E.3. See for example, pages 111-129 of C.S. Liu, Introduction to Combina- 

torial Mathematics, (McGraw-Hill, 1968), or pages 162-171 of Alan Tucker, 
Applied Combinatorics, (Wiley, 1980). 

E.4. An account of geometric methods for solving quadratic equations ap- 

pears on pages 59-62 and pages 69-70 of Howard Eves, An Introduction to 

the History of Mathematics, (5th edition; Saunders, 1983). There is a fairly 
detailed discussion of the Euclidean technique of application of areas as well 
as an exercise on the approaches of Carlyle and von Staudt (1798-1867). 

For visual methods for equations of higher degree, consult T.R. Running, 
Graphical solutions of cubic, quartic and quintic, Amer. Math. Monthly 50 

(1943), 170-173. 

E.5. It is impossible to find four distinct square integers in arithmetic 
progression. The problem is discussed in Crux Mathematicorum 8 (1982), 
281-282 (Problem 677). Proofs appear in W. Sierpinski, Elementary Theory 

of Numbers, (New York, 1964), pp. 74-75; and L.J. Mordell, Diophantine 

Equations, (Academic Press), pp. 20-22. For a history of the problem, con- 
sult L.E. Dickson, History of the Theory of Numbers, (Washington, 1920; 
reprint, Chelsea, 1952), Vol. II, p. 440. 

The quadratic 60t2 - 60t + 1 takes successive square values at t = -2, 

-1, 0, 1, 2, 3. This can be discovered by noting that the second order 
differences of the sequence 361, 121, 1, 1, 121,361 are constant (see Section 
2.1, Exploration E.18; Exercise 7.1.17). 

We can try to generalize this example to have the quadratic take the 
successive integer values 

22 y2 x2 1 1 x2 yz %2. 

The conditions for constant second order differences are 

3x2-g =2 (1) 



Notes on Explorations 

2y2 - %2 = 1 . 

The positive solutions to equation (1) are given by 

where 

(Xk,Yk) = (l,l), (3,5), (11,19), (41,71), . . . 

xk+l = 2xk + yk = 4tk - xk-1 

Yk+l = 3xk + 2yk = 4yk - yk-1. 

The positive solutions to equation (a) are given by 

(Yj, 4 = (1, 11, (5,7), G-%41), * * * 

where 

yj+l = 3yj + 2Zj = 6yj - yj-1 

Zj+l = 4yj + 3%j = 6%j - %j-1. 
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(2) 

Putting these together, we arrive at two solutions (z,y, z) = (l,l, l), 

(3,5,7). Both these correspond to quadratics which are identically squares 
of linear polynomials. The existence of a nontrivial quadratic turns on 
whether the two “y-sequences” 

1, 5, 19, 71, 265, 989, 3691,. . . 

1, 5, 29, 169, 985, 5741,. . . 

have a third integer in common. This is a difficult question to deal with. 
For research into this type of problem, consult 

A. Baker & H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2 
Quart. J. Math. (2) 20 (1969), 129-137. 

K. Kubota, On a conjecture of Morgan Ward, I 
Acta Arith. 33 (1977), 11-48. 

R. Loxton, Linear recurrences of order two 
J. Austrul. Math. Sot. 7 (1967) 108-114. 

M. Mignotte, Intersection des images de certaines suites recurrentes lineaires 
Theor. Camp. Sci. 7 (1978), 117-122. 

P. Kanagasabapathy & Tharmambikai Ponnudurai, The simultaneous dio- 

phantine equations y2 - 3x2 = -2 and .z2 - 8x2 = -7 

Quart. J. Math. (2) 26 (1975), 275-278. 

Quadratics taking four successive square values x2, y2, z2, w2 when the 

variable takes the respective values 0, 1,2,3 are easy to find. The condition 
is that 

x2 + 3%2 = w2 + 3y? 
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Taking note of the special case k = 3 of the identity 

(p2 + kq2)(r2 + ks2) = (pr + kqs)2 + k(ps - qr)2 

= (pr - kqs)2 + k(ps + qr)2, 

we can take x = pr - 3qs, y = ps - qr, z = ps + qr, w = pr + 3qs. For 
example, (p,q, r, s) = (4,1,2,1) leads to (x, y, z, w) = (5,2,6,11) and the 
quadratic (1/2)(53t2 - 95t + 50). 

But more can be said. D. Allison gives the example 

-420t2 + 2100t + 2809 

which is square for integers between -1 and 6 inclusive, and the example 

-4980t2 + 321Oot + 2809 

which takes distinct square values for integers between 0 and 6 inclusive. 
Consult D. Allison, On square values of quadratics, Math. Proc. Camb. 

Phil. Sot. 99 (1986), 381-383; and Duncan A. Buell, Integer squares with 

constant second differences, Mathematics of Compulalion 49 (1987), 635- 
644. 

The “1986” problem is due to Andy Liu of the University of Alberta. He 

bases a solution on the observation that 

(t - l)(t - 9)(t - 8)(1 - 6) = (t2 - 12t)2 + 53t2 - 606t + 432. 

The polynomial (t2 - 12t)2 - (t - l)(t - 9)(t - 8)(t - 6) takes a negative 
value for t = 1986 and so provides a suitable example. P. Reiss of Winnipeg 

considers the polynomial 

f(t) = k(l - t)(t - 9) + r2 

where k and r are to be chosen to make f(8) and f(6) squares, say u2 and 
v2 respectively. We need 

15(u2 - r”) = 7(v2 - r”). 

A trial of u = r + 2 and v = r + 4 leads to r = 13 and k = 8. Thus 

f(t) = -8t2 + 80t + 97 works. Another polynomial which works is 2t(9 - t). 

Is it possible for a polynomial (not necessarily a quadratic) over Z to 
assume a square value at every integer, and yet itself not be the square of 
another polynomial? The answer is no, and we have the following general 
result due to W.H.J. Fuchs: 

Theorem. Suppose that f and g are two polynomials and that there is 
an integer m such that, for each integer n > m, there is a number k such 
that f(n) = g(k). Then there is a polynomial h such that f = g o h. If f 
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and g have integer coefficients and the leading coefficient of g is 1, then it 

can be arranged that h has integer coefficients. 
The square problem is the special case g(t) = t2. This theorem appears 

as a solution to problem E869 in the American Mathematical Monthly (56 

(1949), 338; 57 (1950) 114).Th is reference also gives a history of the square 
problem. See also Problems 114,190 on pages 132,143,325,341 of G. Polya 
& G. Szega, Problems and Theorems in Analysis, (4th ed., Springer). 

E.6. An entire set of polynomials contains at least one polynomial of each 
positive degree such that any pair commute. An elementary proof that every 
entire set consists, up to similarity with a linear polynomial, of either the 

ordinary powers or the Tchebychef polynomials appears in H.D. Block & 
H.P. Thielman, Commutative polynomials, Quart. Jour. Math. (Ser. 2) 1 

(1951), 241-243. 
This work is related to an attractive conjecture: Let f and g be continu- 

ous functions mapping the closed unit interval {x : 0 < x C 1) into itself 
for which f(g(t)) = g(f(x)) for all x; then there exists a point c for which 

f(c) = g(c) = c. Is th is conjecture true for polynomials? It is refuted for 

continuous functions in general by counterexamples given independently in 
the papers William M. Boyce, Commuting functions with no common fixed 
point, Trans. Amer. Math. Sot. 137 (1969), 77-92, MR 38 # 4267; and 
John Philip Huneke, On common fixed points of commuting continuous 
functions on an interval, 3’kans. Amer. Math. Sot. 139 (1969), 371-381, 

MR 38 # 6005. 

E.7. The connection between p,, and T, can be seen by noting that, if 
x = cos 0 + i sin 0, then 2” = cos n0 + i sin n0 and t = 2 cos 0. Thus, we are 
essentially interested in expressing 2 cos n0 in terms of 2 cos 0. The first few 
polynomials are as follows: 

n p,(t) 

0 2 
1 t 
2 t2-2 
3 t3 - 3t 
4 t4 - 4t2 + 2 = (t2 - 2)” - 2 

5 t5 - 5t3 + 5t 
6 t6 - 6t4 + 9t2 - 2 = (t3 - 3t)2 - 2 

= (P - 2)3 - 3(t2 - 2) 

7 t7 - 7t5 + 14t3 - 7t 

8 ts - 8t6 + 20t4 - 16t2 + 2 
= (t4 - 4t2 + 2)2 - 2 = (t2 - 2)4 - 4(t2 - 2)2 + 2 

For a study of the role of these functions in determining the algebraic 
character of certain values of trigonometric functions, see L. Carlitz & J.M. 
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Thomas, Rational tabulated values of trigonometric functions, Amer. Math. 

Monthly 69 (1962), 789-793. 

E.8. The problem of showing that f(z, y) is a polynomial if it is so in 
each variable separately was twice posed in the American Mathematical 

Monthly (# 4897 AMM 67 (1960), 295 & 68 (1961) 187; # E2940 AMM 
89 (1982), 273 & 91 (1984), 142). A solution was published in the note, 
F. W. Carroll, A polynomial in each variable separately is a polynomial, 
Amer. Math. Monthly 68 (1961), 42. 

E.9. If n = 1, then there are essentially three possibilities: 

(1) the polynomial is constant and its range is a singleton; 

(2) the polynomial is of odd positive degree and its range is all of R; 

(3) the polynomial is of even degree and its range is a closed semi-infinite 
interval of the form [m, oo) for positive leading coefficient or (00, m] 
for negative leading coefficient. 

The problem of determining the possible ranges of f(c, y) opened the 
1969 Putnam Examination. To the possible surprise of the competitors 
and perhaps even their supervisors, it turns out that the range can be an 
open half line. The example given is (xy - 1)2 + x2. (See G.L. Alexander- 
son, L.F. Klosinski & L.C. Larson, The W.L. Putnam Mathematical Com- 

petition Problems and Sol&ions: 1965-1984 (MAA, 1985).) There are no 
further possibilities when the number of variables exceeds 2. For complex 
polynomials, the range is either a singleton or all of C. For polynomials 
over Q defined on Q, the situation is complicated indeed. 

E.lO. (a) (28, 53, 75, 84) and (65, 127, 248, 260) are instances of the 
solution 

(x3 + 1,223 - 1,x4 - 2x74 + x). 

Other examples lead to the polynomial solutions 

(3x2, 6x2 - 3x + 1, 32(3x2 - 22 + 1) - 1, 3x(3x2 - 2x + 1)) 

(3x2, 6x2 + 3x + 1, 3x(3x2 + 2x + l), 3x(3x2 + 2x + 1) + l), 

one of which can be derived from the other by a change of variable x - 
-x. 

In his 1761 paper, Solutio generalis quorundam problematum diophante- 
orum quae vulgo nonnisi solutiones speciales admittere videntur (Opera 

Omnia (Series 1) 2, 428-458), Leonard Euler presents a number of formu- 
lae for three cubes which add up to a fourth cube. One of these is 

(x(x3 - y”), l/(x3 - y”), @x3 + I/“>, x(x3 + 2y3>>. 
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An equivalent diophantine equation is X3 + Y3 = U3 + V3. One polyno- 

mial solution is given by 

(X, Y, U, V) = (ax4 + bxy3, oly4 + cx3y, ax4 + cx$, ay4 + bx3y), 

where a, b, c are constants chosen to satisfy b(3a2 - b2) = c(3a2 - c2). For 
example, (a, b,c) = (7,11,2) will work. (Cf. Victor Thebault, El. Math. 8 

(1953), 47.) 
For a discussion of other solutions to this equation as well as to X4+Y4 = 

U4 + V4 in polynomials of two variables, see G.H. Hardy & E.M. Wright, 
An Introduction to the Theory of Numbers, (Oxford, 4th ed., 1960), pages 
199-201. 

(b) A simple solution is (x - 1, x, x + 1, x + 2). The solutions 

(6, 23, 32, 39), (39, 70, 91, lOS), (108, 157, 194, 225), etc. are instances of 

A = 2x3 - 5x = 2y3 - 3y2 - (7/2)y + (9/4) 

I3 = 2x3 + 2x2 - x + 1 = 2y3 - y2 - (3/2)y + (7/4) 

C = 2x3 + 4x2 + x - 2 = 2~” + y” - (3/2)y - (7/4) 

D = 2x3 + 6x2 + x - 3 = 2y3 + 3y2 - (7/2)y - (9/4). 

The variables are related by y = x + l/2. Note that D(x) = A(x + 1) = 
-A(-x - 1) and C(x) = -B(-x - 1). 

(c) This equation is satisfied by 

(X,Y,Z)=(2xy+rx2,y2-x2,x2+rxy+y2). 

A complex number method of solving the related equation 

is to let 2 = I(y+ xcose) + ixsinel. Then 

z2 = lb2 - x2) + 2x(y + x cos e)(cos e + i sin e)12 

yields the solution 

(X, y, z> = (2x(y + xcose),y2 -x2, x2 + ~XYCOS~ + y2). 

These equations were the subject of lively correspondence in the Reader 

Reflections column of the Mathematics Teacher; see 78 (1985), 238, 663; 

79 (1986) 158, 522; 80 (1987) 343. 
(d) Observing that (12)3 = l2 + 22, (23)~ = 22 + 32, etc., we find that, 

for numbers of base 2k + 1, 

k(2k + 1) + (k + 1) = k2 + (k + 1)“. 
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Similarly, we can discover that 

k(2k - 1) + k = k2 + k2. 

The number of integers which can be expressed as the sum of its digits 
to a given base b is given in the solution to Problem E2925 in Amer. Maih. 

Monthly 90 (1983), 401. 
(e) Observing that (130)4 = l3 + 33 + 03, (250)~ = 23 + 53 + 03, etc., we 

find that, for numbers of base 3k + 1, 

k(3k + 1)2 + (2k + 1)(3k + 1) = k3 + (2k + 1)3, 

and also that 

k(3k + 1)2 + (2k + 1)(3k + 1) + 1 = k3 + (2t + 1)3 + 13. 

(f) (-5x - 3y, -4x - y, -x - 2y, x + 2y, 4x + y, 5x + 3y) and (-4x - 3y, 
-5x - 2y, x - y, -x + y, 5x + 2y, 4x + 3y) are two sets of polynomials for 
which the sum of the kth powers of the elements of one set are equal to the 
corresponding power sums of the second set for 0 _< k 5 5. See the notes 
on Exploration E.2 for references. 

E.ll. An 1844 result of Gabriel Lame is that the number of steps in the 

Euclidean algorithm does not exceed five times the number of digits in the 
smaller number. If b is the smaller number in a pair (a, b) for which the 
Euclidean algorithm has n steps, it can be shown readily that b is at least as 
great as the nth Fibonacci number (see Exploration E.14.) Consult Ross 
Honsberger, A theorem of Gabriel Lame, Mathematical Gems II, Dolciani 

Mathematical Expositions # 2 (MAA, 1976), 54-57; and H. Grossman, 
On the number of divisions in finding a G.C.D., Amer. Math. Monthly 31 
(1924), 443. 

E.12. The congruence ax E b (mod m) is soluble iff gcd(a, m) divides b, and 
there are gcd(a, m) incongruent solutions modulo m. For details, consult 

G.H. Hardy & E.M. Wright, An Iniroduction to the Theory ofNumbers, 4th 
ed. (Oxford, 1960), Sect. 5.4, 51-52; Sect. 8.1, 94-95; and I. Niven & H.S. 
Zuckerman, An Iniroduction to the Theory of Numbers, 2nd ed. (Wiley, 

1960, 1966), Sect. 2.3, 31-32. 

E.13. Suppose p is odd and f(n) = n2-n+p is prime for 0 5 n 5 @+l. 

Then n2 - n + p is prime for 0 < n < p - 1. To see this, assume to the 

contrary that n2 - n +p is composite for at least one n not exceeding p- 1. 
Let q be the smallest prime that divides any one of the composite values of 
f(n) (0 5 n 5 p - 1). Thus q < m = p. (Explain why equality cannot 
occur .) 

Suppose that u is the smallest nonnegative integer for which qlf(u). 

(Explain why f(u) is composite, i.e. not equal to q.) Let q = 2k - 1. Since 
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f(k-i) E f(k+i) (mod q) f or each integer i, it can be argued that u 5 k. 

We have 

4k(k-1)+1=q2< f(u)<f(k)=k(k-l)+p 

whence 3(k - 1)2 < p, so that u 5 m + 1. But this contradicts the 
hypothesis. 

A polynomial of several variables whose positive values are prime is given 
in J.P. Jones, D. Sato, H. Wada & D. Wiens, Diophantine representations 
of the set of prime numbers, Amer. Math. Monthly 83 (1976), 449-464; 
and Problem P. 291, Canadian Math. Bull. 24 (1981), 505. 

E.14. With respect to the assertions in (b), we have the following. If x 2 y, 
then 

I(y - x)y - x21 = x2 + xy - y2 = x(x + y) - y2 >_ 2y2 - y2 = y2, 

so that (*) implies x = y = 1. If y - x > x, then 

4y2 - 4xy - 4x2 = y2 + 2y(y - 2x) + (y2 - 4x2) 2 y” 2 4, 

so that (*) implies y = 2, x = 1. In the induction step, if F,, < x < y < 

F ,,+I, then y - x < F,,-1 and 

(Y - X:>Y - x2 I (FeI - l)Fn+l - (Fn + l)2 

= (Fe-lFn+l - F,” - 1) - Fn+l - 2F,, 5 -3, 

which contradicts (*). See James P. Jones, Diaphantine representation of 
the Fibonacci numbers, Fibonacci Quart. 13 (1975), 84-88; and Problem 

3, Int. Math. Olympiad 1981, Math. Mug. 55 (1982), 55. 
The issue raised in this exploration is related to the tenth problem 

posed by David Hilbert in his famous keynote address to the International 
Congress of Mathematicians in 1900. He sought to give a prospectus of 
the main topics requiring the attention of mathematical researchers during 
the coming century. To provide a focus, he posed thirty-seven problems, 
and these have tended to become benchmarks for progress in mathematics. 
For a biographical account, read Constance Reid, David Hilbert (Springer, 
1970). 

The tenth problem is: Specify a procedure which in a finite number of 
steps enables one to determine whether or not a given diophantine equa- 
tion with an arbitrary number of indeterminates and with rational integer 

coefficients has a solution in rational integers. While it was later shown 
that no such general procedure exists, research into the question has led to 
significant developments in the foundations of mathematics. One direction 
has involved diophantine sets, i.e. sets S of natural numbers for which there 
is a polynomial f (y, x) over Z for which y belongs to S if and only if there 
are numbers x for which f(y, x) = 0. If we define 

!l(YT 4 = (Y + 1x1 - MY, xN2) - 1, 
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then y belongs to S if and only if y is a positive value assumed by the 
polynomial g(y,x). A survey article on Diophantine decision problems by 
Julia Robinson appears in W.J. LeVeque (ed.), Studies in number theory, 

- Studies in Mathematics 6 Math. Assoc. of America, 1969. 
The following references are also relevant: M. Davis, H. Putman & J. 

Robinson, The decision problem for exponential diophantine equations, 
Ann. Math. (2) 74 (1961), 425-436, MR24 # A3061; and Ju. V. Mati- 
jasevic, The Diophantineness of enumerable sets, Dokl. Akad. Nauk SSSR 

191 (1970), 279-282 = Soviet Math. Dokl. 11 (1970), 354-358, MR41 # 
3990. 

E.15. Since a polynomial is irreducible along with every positive multiple 
of itself, it is enough to look at manic polynomials; the total number of 

irreducibles will be p - 1 times the number of manic irreducibles. Clearly, 
there are p manic irreducibles of degree 1: t, t + 1, t + 2,. . . ,t + (p - 1). 

To determine the number of irreducibles of higher degree, subtract from 
the total number of polynomials of that degree the number obtainable as 
products of polynomials of lower degree. For example, there are 

P2- (P+ (;)) =(P2-P)/2 

manic irreducible quadratics. For p = 2, the only possibility is t2 + t + 1, 
while for p = 3, there are t2 + 1, t2 + t + 2, t2 + 2t + 2. 

There are (p3-p)/3 manic irreducible cubits. For p = 2, they are t3+t+ 1 
and t3 + t2 + 1. There are p(p - 1)2(p + 8)/8 manic irreducible quartics. 

See Markus Nijmeijer & Mike Staring, A formula that produces all, and 
nothing but, irreducible polynomials in Z,[x], Mathematics Magazine 61 

(1988), 41-44. 

E.16. A thorough discussion of this problem can be found in Donald E. 
Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algo- 

rithms, (Addison Wesley) pages 441-446. 

E.17. Horner’s table for the expansion of tn in terms oft - 1 is 

1 0 0 0 0 .*. 0 0 0 0 
1 1 1 1 ... 1 1 1 1 

1 11 1 1 *** 1 1 1 1 
1 2 3 4 .” n-3 n-2 n-l 

1 2 3 4 5 ..a n-2 n-l n 

1 3 6 10 ... 

1 3 6 10 15 ... 
. . . 
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the coefficient of x’ in the expansion of (1 + x)“, from 

Horner’s table we find that 

. . . 

It can be shown by induction on r that is equal to 

n(n - l)(n - 2). . . (n - r + 1) 

r. I 

This can be handled by summation techniques discussed in Exploration 18. 

E.18. The standard reference for finite differences is L.M. Milne-Thomson, 
The Calculus of Finite Diflerences, (Macmillan, London, 1933). For a lighter 
treatment, consult H. Freeman, Mathematics for Actuarial Students, Part 

II (Cambridge, 1952). 

E.19. For an introduction to coloring problems with some key references, 
see W.T. Tutte, Chromials, Studies in Graph Theory, Part II (ed. D.R. 

Fulkerson), (Studies in Mathematics, MAA, 1975), p. 361-377. Also, see 
Chapter 9 of C.L. Liu, Introduction 20 Combinatorial Mathematics, 

(McGraw-Hill, 1968) and Chapter 8 of Alan Tucker, Applied Combina- 

torics, (Wiley, 1980). The chromatic polynomials for the five Platonic solids 
are discussed in D.H. Lehmer, Coloring the Platonic solids, Amer. Math. 

Monthly 93 (1986), 288-292. 

E.20. A survey of the techniques of factoring polynomials is given in Section 
4.6.2 (pages 420-441) of Donald E. Knuth, The Art of Computer Progmm- 

ming, Vol. 2: Semi-Numerical Algorithms, (Addison-Wesley). The greatest 

common divisor is discussed on pages 434-436. 

E.21. The remainder for division by (t - c)~ is conveniently provided by 
Taylor’s Theorem which renders the polynomial in the form 

q(t)@ -c)k +ak-&-c)k-’ +“‘+al(t- C)+aO. 
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In dealing with polynomial divisors with more than one distinct zero, 
the divided difference technique of Exploration E.55 may be used. Al- 

ternatively, the remainder upon division of a polynomial p(t) by (t - ai) 

(t - us) . . . (t - a,) is the Lagrange polynomial of degree less than m which 
assumes the value p(ai) at ai (see Exercise 7.1.5). In a similar way, the re- 
mainder for division by (t - u)‘(t - b)S can be identified as that polynomial 
of degree less than r + s for which the kth derivative at Q (resp. b) agrees 
withthatofpata(resp.b)forO<k<r-l(resp.O<kss-1). 

E.22. The nth derivative of p o q is a sum of terms of the form 

where Ciai = n, Coi = k, and the coefficient is positive. The determination 
of the coefficients is an interesting combinatorial problem solved by Faa 

di Bruno in the middle of the last century. For a recent treatment and 
bibliography, consult Steven Roman, The formula of Fa& di Bruno, Amer. 

Math. Monthly 87 (1980), 805-809. 

E.23 & 24. Partial derivatives are studied in a second calculus course 
and are discussed in any textbook. The equation Cxidfldxi = kf for a 
homogeneous polynomial of degree k is called Euler’s equation. 

E.25. A natural generalization of polynomials is the class of complex-valued 
functions f(z) of a complex variable which satisfy the differentiability con- 
dition 

jimo f (’ + h, - f (‘) 
h 

exists 
(*I 

for each point .z in the complex plane. Students who are familiar only with 

the calculus of real-valued functions will not appreciate the strength of this 
condition. In contrast to the real case, in which h can tend to 0 from one of 
two real directions, in the complex plane h is permitted to tend to 0 in any 

way over a two dimensional neighborhood of 0. As a result, the condition 

implies that the functions (known as entire) have derivatives of all higher 
orders and can be represented as the sum of an infinite convergent power 
series a0 + ~1% + ~2%~ + 03%~ + *. . for every complex Z. These functions 
share many properties with polynomials. 

As for polynomials, we can write f(z) = u(x, y) + iv(x, y) and discover 
that (*) will be valid if and only if the Cauchy-Riemann conditions 

au/ax= avlay aulay= -avlax 

hold, where now the partial derivatives are defined through limits. 
A pleasant introduction to the theory is George Polya & Gordon Latta, 

Complex Variables, (Wiley, 1974). Another source which will richly reward 
the patient reader is the set of five short volumes by Konrad Knopp, pub- 
lished by Dover, New York: Elements of the Theory of Functions; Theory 
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of Functions: Parts I and II; Problem Book in the Theory of Functions: 

Volumes I and II. 

E.26. There are many relations which are satisfied by Legendre polynomi- 
als. One of the most striking is this formula 

2”n! P,(x) = D”(x2 - 1)” 

where D is the differentiation operator. The polynomials turn up as coef- 
ficients in a generating function expansion 

(1 - 2xt + t2)-‘12 = g P,(x)Y. 
n=O 

A list of properties of Legendre polynomials occurs on pages 50-53 of W. 
Magnus & F. Oberhettinger, Formulas and Theorems for the Functions of 
Mathematical Physics, (Chelsea, 1949). 

To get some idea of the richness of the area of mathematics which includes 

the study of these functions, consult Gabor Szegij, Orthogonal Polynomials, 

(AMS Colloquium, 1939). 
A discussion of Legendre’s use of these polynomials in 1782 in dealing 

with a problem of potential theory can be found on pages 525-528 of Morris 
Kline, Mathematical Thought from Ancient to Modern Times, (Oxford, 

New York, 1972). Legendre’s own paper (referred to in a book review in 

Bull. A.M.S. (NS) 19 (1988)) 346-348) is A.M. Legendre, Recherches sur 
l’attraction des spheroides homogenes, Me’m. Math. Phys. P&s. ci 1’Acad. 

Roy. Sci. (Paris) par divers savants 10 (1785)) 411-434. 
For other work, see Mary L. Boas, A formula for the derivatives of Leg- 

endre polynomials, Amer. Math. Monthly 70 (1963)) 643-644. 

E.28. Although Rolle’s Theorem is a standard topic of a first calculus 
course, Rolle himself was interested in using it to locate zeros of polyno 
mials. An English translation of an excerpt of his work with commentary 
can be found in D.E. Smith, A Source Book In Mathematics, Volume One 
(Dover, 1929, 1959). 

For a discussion of generalizing Rolle’s Theorem to the complex plane 

and an interesting open problem, consult I.J. Schoenberg, A conjectured 
analogue of Rolle’s Theorem to polynomials with real or complex coeffi- 
cients, Amer. Math. Monthly 93 (1986)) 8-13. 

E.29. Modulo the polynomial t2 - t + a we have that 

t3 E (1 - a)t - 0 

and, in general, 

tk = fk(a)t - afk-l(a) 
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(i.e. i!” - fk(a)t + a&l(a) is a multiple of t2 - t + a) where fl(a) = 1, 

fi(a) = 1 and fk+l(U) = fk(a) - afk-l(a) for k 2 2. Then t” + t + b is 
divisible by t2 - t + a if and only if fn(a) + 1 = 0 and b = uf,-l(u). Hence 
we need to examine the values of n and a for which f,,(a) = -1. When 
a = 1, the situation is straightforward and fn(l) = -1 _ n = 6k + 4 or 
6k + 5 for some 6. For n = 6k + 4, we have that 

t2 - t + 11 t6k+4 + t = t(t3 + l)(Pk - * *. + 1). 

For n = 6k + 5, we have that 

t2 - t + 11 t6k+5 + t - 1. 

This is easily checked since 

t5 + t - 1 = (t2 - t + l)(P + t2 - 1) 

and 
t6”+5 + t - 1 = f+‘)+5(t6 _ 1) + tW--‘I+5 + t _ 1 

for k 2 1. 
For higher values of a, the problem becomes more interesting. fn(2) = -1 

at least for n = 3, 5, 13, and we obtain 

t3 + t + 2 = (t2 - t + 2)(t + 1) 

t5 + t - 6 = (t2 -2 + 2)(t3 +t2 -t - 3) 

t13 + t + 90 = (t2 - t + 2)(P + t1° - tg - 3ts - t7 + 5t6 

+ 7t5 - 3t4 - 17t3 -llt2+23t+45). 

The question of the existence of other solutions to the equation f”(2) = -1 
is apparently quite difficult. It is known that a second order recurrence like 
fn(a) for a # 1 visits a given number at most finitely often. See the following 
papers : 

R. Alter & K. Kubota, Multiplicities of second order linear recurrences 
Trans. Amer. Math. Sot. 178 (1973), 271-284. 

K. Kubota, On a conjecture of Morgan Ward, I 

Acta Arithmetica 33 (1977), 11-48. 

R. Loxton, Linear recurrences of order two 
J. Austml. Math. Sot. 7 (1967), 108-114. 

M. Mignotte, A note on recursive sequences 
J. Austml. Math. Sot. 20 (A) (1975), 242-244. 

For the special case n = 5, see Stanley Rabinowitz, The factorization of 
x5 f x + n, Math. Mug. 61 (1988), 191-193. 
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E.30. The sequences ~~(4) and ~~(6) arise in the following context. The 
number 5040 is not only 1 less than a perfect square, but differs from each 
of the next three larger perfect squares by a perfect square: 

5040 = 712 - l2 = 722 - 122 = 732 - 172. 

The existence of other such numbers turns on making 8k2 + 1 and 3k2 + 1 
both squares for a fixed value of k. Now 8k2 + 1 is square _ k = un(6) 

for some n, and 3k2 + 1 is square _ k = u*(4) for some n. Hence the 
question arises as to what numbers ~~(4) and ~~(6) have in common. 

In the paper, M. Mignotte, Intersection des images de certaines suites 
recurrentes lineaires, Theor. Comp. Sci. 7 (1978), 117-122 it is shown that 
there are only finitely many such common numbers. Remarkably, in A. 
Baker & H. Davenport, The equations 3x2 - 2 = y” and 8x2 - 7 = .r2, 

Quart. J. Math. (2) 20 (1969), 129-137 a similar problem is solved using 
deep results in diophantine approximation. See also E.J. Barbeau, Num- 
bers differing from consecutive squares by squares, Canud. Math. Bull. 28 

(1985), 337-342. See Notes on Explorations E.5 and E.29. 
A similar problem involving sums instead of differences is E3080 found 

in Amer. Math. Monthly 92 (1985), 215; 95 (1988), 141. 
The paper by Carlitz and Thomas cited in the notes for Exploration E.7 

indicates how the sequence {u,,} is tied in with the sequence involved in 
the reciprocal substitution. 

E.31. The polynomial has rational zeros if and only if its discriminant 
5(n + 1)2 - 4 is a perfect square. Since 5(n + 1)2 - 4 has the same value 
for n = m and n = -2 - m, it suffices to determine the situation for 

nonnegative n. A little experimentation reveals that the discriminant is 
square when n + 1 takes alternate values of the Fibonacci sequence, i.e. 
when n + 1 is one of 1, 2, 5, 13, 34, 89,. . . . Indeed 

ot2+t-2=r--2 

t2 + 2t - 3 = (t - 1)(t + 3) 

4t2 + 52 - 6 = (4t - 3)(t + 2) 

12t2 + 13t - 14 = (3t - 2)(4t + 7) 

33t2 + 34t - 35 = (11t - 7)(3t + 5) 

88t2 + 89t - 90 = (8t - 5)( llt + 18). 

Finding a complete set of n amounts to solving the diophantine equation 
x2 - 5y2 = -4 (and then taking n = y - 1). A complete set of solutions is 

given by the recursion (xi,yi) = (1,1) and 

txn+l> Yn+l) = ((3% + 5~,,)/2, (xn + 3y,,)/2). 
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The reader may wish to explore further the intervention in the factorization 

of the Fibonacci sequence 1, 1,2, 3, 5, 8,. . . and the related Lucas sequence 

1, 3, 4, 7, 11, 18, 29, 47,. . . . For a reference, see Steven Schwartzman, 

Factoring polynomials and Fibonacci, Math. Teacher 79 (1986)) 54-56,65. 
Equations of the type x2 - &? = k come under the general heading of 

Pell’s equation. Since they arise in many number theoretic problems, their 
theory is covered in most elementary number theory texts. For a brief, 
insightful introduction to this area and its significance, see Chapter 7 of 
H. Rademacher, Higher Mathematics from an Elementary Point of View, 

(Birkhauser, 1983). 

E.33. For an appreciation of the role of padic numbers in the solution of 
diophantine equations, see the article Diophantine equations: p-udic meth- 

ods in W.J. LeVeque (ed.), Studies in number theory, Studies in Mulhe- 

matics 6 (Math. Assoc. of Amer., 1969). 

For other references on padic numbers, see G. Bachman, Introduction 

to p-Adic Numbers and Valuation Theory, (Academic, 1964); and Kurt 

Mahler, p-Adic Numbers and Their Functions, (Cambridge, 1981). 

E.35. The proof of the irreducibility of Q,.,(t) requires more advanced the- 
ory. See, for example, Section 53 of B.L. van der Waerden, Modern Al- 

gebra, Volume I (Ungar, New York, revised edition, 1953); and Theorem 
41, Chapter 12 of Jean-Pierre Tignol, Gulois’ Theory of Algebraic Equa- 

tions, (Longman, 1988). In Solomon W. Golomb, Cyclotomic polynomials 
and factorization theorems, Amer. Math. Monthly 85 (1978), 734-737; 88 
(1981) 338-339 criteria for reducibility of Qn(tr) and factorizability over 
Z of Qn(m) are discussed. 

E.36. For 
(P-1X9-1) 

Qpq = c G?, 
n=O 

it is shown in Sr. Marion Beiter, The midterm coefficient of the cyclotomic 
polynomial Fpq(x), Amer. Math. Monthly 71 (1964), 769-700 that 

c, = 
{ 

(-l)k if n = aq + bp + k in exactly one way 
0 otherwise. 

Let m be the smallest value of n for which Q”(t) has coefficients other 
than 0, 1, -1. By Exercise 3.5.12, it is clear that m must be odd. It can 
be shown that m is not a prime power or a product of two distinct primes 
(see Exploration E.35 for a reference). The smallest possibilities for m are 

45,63, 75,99, 105. It turns out that m = 105 and that 

Q1,,5(t) = 1 + t + t2 - t5 - t6 - 2t7 - . . . . 

In fact, the coefficients of cyclotomic polynomials can be arbitrarily large. 
For a discussion, consult Section 6 of R.C. Vaughan, Adventures in Arith- 

metick, or: How to make good use of a Fourier transform, MathemaZical 
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Intelligencer 9 (1987), no. 2, 53-60. Also see P. Erdos & R.C. Vaughan, 
Bounds for the rth coefficients of cyclotomic polynomials, .I. Land. Math. 

Sot. (2) 8 (1974) 393-400; MR 50, # 9835. 

E.37. A recent and somewhat advanced approach to Fermat’s Little The- 
orem which obtains the result in the general form 

xadp(n/d) E 0 (mod n) 

din 

where p is the Mobius function (Exploration E.34) is found in C.J. Smyth, 
A coloring proof of a generalization of Fermat’s Little Theorem, Amer. 

Math. Monthly 93 (1986), 469-470. 

E.38. The theory of functions of complex variables treats functions which 
can be regarded as generalizations of polynomials and rational functions. 
These are assumed to possess derivatives (see the note on Exploration 
E.25) except possibly at a discrete set of points on a region of the complex 

plane. The principal parts and residues of such functions become significant 
in the evaluation of integrals; indeed. some definite integrals of real-valued 

functions of a real variable can be evaluated by applying a “calculus of 
residues” for the determination of a corresponding complex integral. The 

understanding of this theory depends on a background of a second college 
calculus course. 

For a clear treatment, consult George Polya & Gordon Latta, Complex 

Variables, (Wiley, 1974). An older reference which will reward careful study 
is Konrad Knopp, Theory of Functions, Part I (Dover, 1952). 

E.39 & 40. Probably the best elementary account of the treatment of solv- 
ability of equations and ruler and compasses constructions is to be found 
in Charles R. Hadlock, Field theory and classical problems, (MAA, 1978: 

Carus Monograph # 19). Th ese problems are also treated in D.E. Little- 

wood, The Skeleton Key of Mathematics, (Hutchinson University Library, 
London, 1949, 1957). An excellent historically sensitive account appears 

in Jean-Pierre Tignol, Galois’ Theory of Algebraic Equations, (Longman, 
1988). A more advanced treatment of Galois theory is contained in Chapter 
4 of Nathan Jacobson, Basic Algebra I. 2nd ed. (Freeman, 1985). 

E.41. The theorem that the zeros of the derivative of a polynomial are con- 
tained within the smallest polygon containing the zeros of the polynomial 
is called the Gauss-Lucas Theorem. A thorough treatment can be found in 
Morris, Marden, Geometry of Polynomials, (AMS, 1949, 1966). In Chapter 
1, the result is interpreted physically and geometrically, while in Chapter 
2, it is established and extended. 

A section of problems on this result is found in Part III, Chapter 1, 
Section 3 of G. Polya & G. SzegG, Problems and Theorems in Analysis, 

(Springer-Verlag, 1972). In W.H. Echols, Note of the roots of the derivative 
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of a polynomial, Amer. Math. Monthly 27 (1920), 299-300 it is shown that, 
for a polynomial f(z) with real coefficients, the nonreal roots of f’(z) are in 
the closed discs whose diameters are segments joining the pairs of conjugate 

nonreal roots of f(z) (J ensen’s theorem). For further results, see J.L. Walsh, 
A new generalization of Jensen’s theorem on the zeros of the derivative of 

a polynomial, Amer. Math. Monthly 68 (1961)) 978-983. 
In the cubic case, the result is especially interesting. Let T be a non- 

degenerate triangle in the complex plane whose vertices are the zeros of a 
cubic f(t) and let E be the (Steiner) ellipse inscribed in T which touches 

the sides of T at their midpoints. Then the zeros of f’(t) are the foci of E. 
For an application of this result, see I.J. Schoenberg, A conjectured ana- 
logue of Rolle’s theorem for polynomials with real or complex coefficients, 
Amer. Math. Monthly 93 (1986)) 8-13. 

E.42. Newton’s Method inspired A. Cayley, a nineteenth century British 
mathematician, to study the sets of starting points which would yield a 
sequence of approximants to a given zero of the polynomial. This has been 
recently taken up and integrated with the study of fractals. See, for exam- 
ple, the article H.-O. Peitgen, D. Saupe & F. v. Haeseler, Cayley’s problem 
and Julia sets, Math. Intelligencer 6 (no. 2) (1984)) 11-20. 

E.43. The extract is taken from Newton’s tract, Analysis of equations of 

an infinite number of variables (page 320). This has been reprinted in 
Volume 1 of The Mathematical Works of Isaac Newton. Assembled with 
an introduction by Dr. Derek T. Whiteside, (Johnson Reprint, NY, 1964, 

1967). 
Readers may also be interested in the facsimile of a 1728 English trans- 

lation of another Newton work, Universal Arithmetick, originally written 
in Latin in 1684, and reproduced in Volume 2. The last part of the paper 
treats solution of equations and location of roots. 

E.45 & 46. Continued fractions are of use, not only for approximating 
the solutions of equations, but also in the treatment of diophantine equa- 
tions and the close approximation of nonrationals by rationals. Irrationals 

which are roots of quadratic equations over Z can be characterized by the 
periodicity of the numbers occurring in their continued fraction expansion. 

For a rich high school level introduction to the topic, consult C.D. Olds, 

Continued fractions, (MAA, 1963; New Mathematical Library). A recent 
book which provides an historical perspective on continued fractions through 
a study of the Greek theory of ratio is D.H. Fowler, The Mathematics of 

Plato’s Academy: A New Reconstruction, (Oxford, 1987). 
An excerpt of Lagrange’s work along with a brief history of continued 

fractions appears in Chapter II, Article 12 (p. 111-115) of D.J. Struik 
(ed.), A Source Book in Mathematics, 1200-1800, (Harvard, 1969). See 
also the excerpts of work of Bombelli (c. 1526-1573) and Cataldi (1548- 

1626) reproduced in translation on pages 80-84 of D.E. Smith, A Source 

Book in Mathematics, Volume One (Dover, 1959). 
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For a general introduction on the nature of the real number field, which 
includes a chapter on continued fractions, see Ivan Niven, Irrational num- 

bers (Carus monographs ll), (Math. Assoc. of Amer., 1956, 1967). 
A definitive work is H.S. Wall, Analytic Theory of Continued Fractions, 

(D. van Nostrand, 1948). 

E.49. Interest in the iterations of the function f(z) = az( 1 -z) has greatly 
increased during the last decade with the study of chaotic behaviour and 

the advent of high speed computers capable of dealing with complex prob- 
lems. For a gentle introduction, see A.K. Dewdney, Probing the strange at- 
tractions of chaos (Computer Recreations), Scientific American 257 (#l) 
(1987) 108-111. 

A recent book which explores the visual beauty of this area of mathe- 
matics is H.-O. Peitgen & P.H. Richter, The Beauty of Fractals: Images of 

Complex Dynamical Systems, (Springer-Verlag, 1986). 
A captivating layman’s introduction to this new branch of mathematics 

is the book James Gleick, Chaos: Making a New Science, (Viking Penguin, 
1987). This book also recounts the story of the Mandelbrot set, introduced 
in Exploration E.67. 

E.54. The formula for the sum of the first n kth powers for small values 
of k are given by the following formulae: 

k sum of first n kth powers 

1 n(n + 1)/2 = n2/n + n/2 

2 n(n + 1)(2n + 1)/6 = n3/3 + n2/2 + n/6 
3 n2(n + 1)2/4 = n4/4 + n3/2 + n2/4 

4 n5/5 + n4/2 + n3/3 - n/30 

5 n6/6 + n5/2 + 5n4/12 - n2/12 

6 n7/7 + n6/2 + n5/2 - n3/6 + n/42 

7 nd/8 + n7/2 + 7n6/12 - 7n4/24 + n2/12 

The coefficients involve a special sequence of numbers called the Bernoulli 
numbers. For some exercises on this topic, consult M. Spivak, Calculus (2nd 

ed., Publish or Perish, Washington, 1980), Exercise 7, p. 29-30; Exercises 

16, 17, p. 538-541. 
These sum formulae were derived by Jakob Bernoulli in his book, Ars 

conjectandi, published in 1713. For an English translation of the relevant 
excerpt, consult pages 316-320 of D.J. Struik (ed.), A Source Book in Math- 

ematics, 1200-1800, (Harvard, 1969); or pages 85-90 of D.E. Smith, A 

Source Book in Mathematics, Volume One, (Dover, 1959). 
An elementary derivation can be found in John G. Christiano, On the 

sum of powers of natural numbers, Amer. Math. Monthly 68 (1961), 149- 

151; and in Dumitru Acu, Some algorithms for the sums of integer powers, 
Math. Mug. 61 (1988), 189-191 are obtained other identities involving these 
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sums. The paper C. Kelly, An algorithm for sums of integer powers, Math. 

Mug. 57 (1984)) 296-297 gives an elementary derivation of 

l+e( m~1)(lt+2X+...+n’)=(n+l)m+1. 
k0 

A simple recursive technique baaed on the lemma: 

n 
if a,=~,, c then c ra, = (n + l)s, - 2 s, 

r=l f-=1 r=l 

can be found in D. Sullivan, The sums of powers of integers (note 71.23)) 
Math. Gut. 71 (1987)) 144-146. 

An application of matrices to the evaluation of power sums appears in 
A.W.F. Edwards, Sums of powers of integers: a little of the history, Math. 

Ga.zette 66 (1982), 22-28; and in A.W.F. Edwards, A quick route to sums 
of powers, Amer. Math. Monthly 93 (1986), 451-455. A discussion of ap- 
proximations for the sums is found in B.L. Burrows & R.F. Talbot, Sums 
of powers of integers, Amer. Math. Monthly 91 (1984), 394-403. 

Let &(n) be the sum of the first n squares, and for k 2 1, let Sk+l(n) = 

Sk(l) + &(2) + . . . + Sk(n). A tr s aightforward induction argument shows 

that 
(k + 2)!&(n) = n(n + l)(n + 2). . . (n + k)(2n + k). 

This result is generalized in Problem 4380 in Amer. Math. Monthly 57 

(1950)) 119; 58 (1951) 429. 

E.58. Even though f,,(t) interpolates more and more values of Itl, in fact 

link,, f,,(t) = ItI is true only for t = -1, 0, 1. For a reference to this fact, 
see page 37 of G.G. Lorentz, Approximation of Functions, (Holt, Rinehart 
& Winston, 1966). 

This phenomenon occurs for other functions as well. For example, if 

pn(t) interpolates (1 + t2)-l on [-5,5] at n + 1 equally spaced points, then 

lim,, pn(t) = (1 + t2)-l when ItI does not exceed approximately 3.63. 
Otherwise, the sequence diverges. A paper which analyses this rather subtle 
issue is James F. Epperson, On the Runge example, Amer. Math. Monthly 

94 (1987)) 329-341. 

E.61. In general 

is the sum of positive polynomials. For this and related results, consult 
Sections 2.18-2.23 of G.H. Hardy, J.E. Littlewood & G. Polya, Inequalities, 

(Cambridge, 1964). 
David Hilbert (1862-1942) considered the following problem: Let f(x) 

be a polynomial of degree n with m variables for which f(x) g 0 for all 
real vectors x. Is it true that f(x) is the sum of squares of fimtely many 
real polynomials? He showed that the answer is affirmative in the cases: 
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, (i) m = 2, n is even; 

(ii) n = 2, m is arbitrary; 

(iii) m = 3, n = 4. 

See Section 2.23 of the above reference for a brief discussion. 

Research on expressing polynomials as sums of squares has recently be- 
come active. See, for example, the paper M.-D. Choi & T.-Y. Lam, An 
old question of Hilbert, Conference on quadratic forms, 1976 (G. Orzech, 
ed.), Queen’s Papers in Pure and Applied Mathematics, 46 (1977), 385-405 
(Queen’s University, Kingston, Ontario). 

E.62. It is readily verified that 

Q3(%) = 3(1+ %) 

q4(z) = 4(2 + 3z + 2z2) 

Q5(%) = 5(1+ z)(l + % + 2”) 

Q7(%) = 7(1+ %)(l + % + %2)2 

all have zeros on the unit circle. When n 2 8, q;(z) has a zero whose 
absolute values exceeds 1, so that, by the Gauss-Lucas Theorem, the same 

is true of qn(z) itself. See Problem E3078 in Amer. Math. Monthly 92 

(1985), 215; 95 (1988)) 140. As for q,,(6), it can be written in the form 
(a+bt+az2)(c+dz+cz2) h w ere ad and bc are the zeros of the quadratic 

t2 - 15t + 48. From this it follows that @j(%) has two real quadratic factors 
and it can be further shown that each has nonreal zeros, so that all the 

zeros of &j(Z) lies on the unit circle. 

E.63. For an example of a polynomial mapping in two variables with poly- 

nomial inverse, consult page 694 of Gary H. Meisters, Jacobian problems 
in differential equations and algebraic geometry, Rocky Mountain J. Math. 

12 (1982) 679-705. F or an indication of the significance of this question 
in the study of differential equations and for further references, see Hyman 
Bass & Gary Meisters, Polynomial flows in the plane, Advances in Math. 

55 (1985), 173-208. 

E.67. For an elementary introduction to the Mandelbrot set, see the follow- 
ing Computer Recreations columns by A.K. Dewdney in Scientific Ameri- 

can: 253 (no. 2)) 198, 16-24; 257 ( no. 5), 1987, 140-145. See the note on 
Exploration E.49 for related references. 
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abscissa the first coordinate of a point in the Cartesian plane 

arithmetic progression a sequence in which the difference between ad- 

jacent entries is always the same 

closed interval a set of reals of the form {t : a < t 5 b} denoted by [a, b] 

closed unit disc the set {z : IzI 5 1) in the complex plane 

composite not prime 

coprime with greatest common divisor 1 

dilatation central similarity, homothety; a transformation which reduces 
the scale about a fixed center 

even function a function f satisfying f(-x) = f(x) 

factored written as a product 

fraction in lowest terms fraction for which the numerator and denom- 

inator are coprime 

geometric progression a sequence in which the ratio of adjacent entries 

is always the same 

harmonic progression a sequence of numbers whose reciprocals form an 

arithmetic progression 

identity equation valid for all values of the variable 

iff if and only if 

locus of an equation: the set of points in the plane or more generally in 

n-dimensional space whose coordinates satisfy the equation 

lower bound of a set of numbers: a number which does not exceed any 
number in the set 

negative strictly less than 0 

nonnegative greater than or equal to 0 

nonpositive less than or equal to 0 
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odd function a function f satisfying f (-x) = -f(x) 

417 

one-one correspondence function from one set onto another which is 

invertible, i.e. distinct elements of the domain have distinct images; 

a pairing of elements of one set with those of another 

open interval a set of reals of the form {t : a < t < b} denoted by (a, b) 

open unit disc the set {% : ]z] < 1) in the complex plane 

ordinate the second coordinate of a point in the Cartesian plane 

over D with coefficients in D 

parity the property of being even or odd 

positive strictly greater than 0 

pure imaginary a complex number equal to i times a nonzero real 

sign the property of being positive, negative or zero 

supplementary angles angles whose sum is 180’ 

surd conjugate of a + 4, a - fi 

trivial inconsequential, nonessential, extremely straightforward (accord- 
ing to context) 

unique only one, exactly one 

unit circle the circle in the complex plane with center 0 and radius 1, the 
set {% : ]zj = 1) 

unity one 

upper bound of a set of numbers: a number not less than any number in 

the set 

vanishes equals zero 

[CE] the greatest integer not exceeding z 

* implies, is sufficient for 

e is implied by, is necessary for 

e if and only if, is logically equivalent to 

N the set of natural numbers 1, 2, 3, 4,. . . 

Z (“Zahlen”) the ring of integers 
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Q the field of rational numbers 

R the field of real numbers 

C the field of complex numbers 

Heron’s Formula The area of a triangle with sides Q, b, c and semi- 
perimeter s = f (o + b + c) is J s(s - u)(s - b)(s - c). 

Intermediate Value Theorem Let f be a continuous, real-valued func- 
tion (in particular, a polynomial) defined on a closed interval [a, b]. 
Then f assumes on [a, b] every value between f(u) and f(b). If f(u) 
and f(b) have opposite signs, then f has a zero in [a, b]. 



Further Reading 

A gentle first reader is the Mir tract by Kurosh. Designed for a one- 
semester course is the book by MacDuffee (MacD), who treats selected 
topics. The text of Dobbs & Hanks (DH), written for prospective teachers, 
is an admirable reference. More comprehensive texts are those of Borofsky 
(Bo) and Uspensky (Us), h w o cover most of the topics handled in this 
book and provide proofs. Older texts which may be consulted are those 

of Burnside (Bu) and Dickson (Di). Chapter II of D.J. Struik’s Source 
Book contains excerpts from a number of historical papers on the theory of 
equations. For a modern abstract approach to polynomials, the experienced 
college student can have recourse to Lausch & N6bauer. An overview is 
provided by the essay on the theory of algebraic equations by B.N. Delone, 
which is Chapter 4 of Volume 1 of the collection edited by Aleksandrov, 

Kolmgorov and Lavrent’ev. 
A recent and highly recommended book by J.-P. Tignol deals with the 

theory of equations from an historical perspective, recapturing the method- 
ology of the pioneers in the field. This treats many of the topics of the first 
four and sixth chapters, in particular the question of solvability by radicals. 

Chapter 1. Solution of cubic and quartic equations: Bo, Ch. 8; Us, Ch. 
V and Bu, Ch. VI, Cajori (Hist), p. 133-139, DH, Ch. 3. 
Complex numbers: Bo, Ch. 1. 

Chapter 2. Horner’s method: Bo, Ch. 7; Bu, Ch. X, where it is used as 
a tool in approximately solving equations. 
Graphing: Bu, Ch. I; MacD, Ch. 4. 
Multiple roots and derivatives: Bu, Ch. VII; MacD, Ch. 3; DH, Sect. 2.3. 

Factor and remainder theorem: DH, Sect. 2.1. 

Chapter 3. Greatest common divisor, factorization: Bo, Ch. 2; MacD, 
Ch. 7; Us, Ch. I. 
Factoring and irreducibility: DH, Ch. 4. 
Partial fractions: MacD, Ch. 3. 

A survey article with many references on the current state of the art 
in factoring polynomials is Susan Laudau, Factoring polynomials quickly, 
Notices A.M.S. 34 (1987), Issue 253, 3-8. 

Chapter 4. The Fundamental Theorem: Di (1914), Ch. V; Bu, Ch. X. 
Uspensky (Us, Ch. X) discusses Lagrange’s method for solving cubic and 
biquadratic equations, and provides a different insight into Galois theory. 
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See also DH, Ch. 3, for a general discussion of solvability. An historical 
survey of the theory of equations and group theory appears in Cajori 
(Hist), p. 349-363. 
Ruler and compasses constructions: Bo, Ch. 9; Moise, Ch. 19. 

For a more comprehensive, but elementary, introduction to Galois the- 
ory, see the book by Hadlock. An elementary approach to the topological 
ideas behind the fundamental theorem is found in the book by Chinn & 
Steenrod. Those who would like to see the Fundamental Theorem in the 
hands of its discoverers should consult Struik. 

Chapter 5. General: Di (1914), Ch. X; Cajori (Hist), 363-366. 
Descartes rule: Bu, Ch. II; Di (1939)) Ch. VII; DH, Sect. 5.3. 

Bounds: Bu, Ch. VIII; Us, Ch. IV. 

Fourier-Budan: Bo, Ch. 6; Bu, Ch. IX. 

Approximation of roots: Bo, Ch. 7; Us, Ch. VIII; Bu, Ch. X; Di (1939), 
Ch. VIII; Vilenkin. 
Separation of roots: Rolle’s Theorem: Us, Ch. VI. 
Sturm’s Theorem: Bo, Ch. 6; Bu, Ch. IX; Us, Ch. VII; MacD, Ch. 4; Di 
(1939), Ch. VII; DH, Sect. 5.4. 
Continued fractions: Us, App. 2; Olds 
Location of zeros: Polya-Szegii, Part III, Ch. 1, Sect. 2. 

A discussion of criteria for stability of polynomials appears in Chapter 7 
of Kaplan. 

Chapter 6. Symmetric functions of roots: Bo, Ch. 11; Us, Ch. XI; MacD, 
Ch. 6; DH, Sect. 2.4, 2.5. 
Newton’s formula for power sums: Us, Ch. XI. 

Chapter 7. Finite differences and interpolation: Milne-Thomson, Ch. 

I-IV; Scarborough; Ralston, Ch. 3. 

Lagrange interpolation: DH, Sect. 2.2. 
A succinct, but advanced, introduction to approximation theory is given 

in Lorentz. This includes a treatment of Bernstein and Tchebychev poly- 
nomials. The alternation property is discussed in Section 7.3. 



Books 

A.D. Aleksandrov, A.N. Kolmogorov & M.A. Lavrent’ev (eds.), Mathemat- 

ics: Its Content, Method and Meaning (3 volumes) 

Moscow, 1956 (Russian); MIT, 1963 (English) 
Vol. 1, Ch. 4: B.N. Delone, Algebra: theory of algebraic equations. 

George A. Baker, Essentials of Pad6 Approximants 

Academic, 1975. 

S. Barnett, Polynomials and Linear Control Systems 

Marcel Dekker, NY, 1983. 

Maxime Bother, Introduction to Higher Algebra 

Dover, 1964. 

Samuel Borofsky, Elementary Theory of Equations 

Macmillan, NY, 1950 

William Snow Burnside, The Theory of Equations, With an Introduction 

to the Theory of Binary Algebraic Forms 

Dover, 1960. 

William Snow Burnside & Arthur William Panton, The Theory of Equa- 

tions, 2nd ed. 
Dublin, London, 1886 

Florian Cajori, A History of Mathematics, 3rd ed. 

Chelsea, 1980. 

Girolamo Cardano, The Great Art, or the Rules of Algebra (Artis Magnae, 

Sive de Regulis Algebraicis; 1545) 
Translated by T.R. Witmer 

MIT, 1968. 

W.G. Chinn & N.E. Steenrod, First Concepts of Topology 

New Mathematical Library #18 
Math. Assoc. of America, 1966. 

George Chrystal, Algebra, An Elementary Textbook for the Higher Classes 

of Secondary Schools and for Colleges 

2nd ed., Black, 1926; 7th ed., Chelsea, 1964. 

Allan Clark, Elements of Abstract Algebra 

Wadsworth, 1971. 

Nelson Bush Conkwright, Introduction to the Theory of Equations 

Ginn, 1957. 



422 Books 

Richard J. Crouse & Clifford W. Sloyer, Mathematical Questions From the 

Classroom 

Prindle, Weber & Schmidt, 1977. 

L.E. Dickson, Introduction to the Theory of Algebraic Equations 

Wiley, 1903. 

ibid, Elementary Theory of Equations 

Wiley, 1914. 

ibid, First Course in the Theory of Equations 

Wiley, 1922. 

ibid, New First Course in the Theory of Equations 

Wiley, 1939. 

P. Dienes, The Taylor Series 

Dover, 1957, pages 66-70. 

David E. Dobbs & Robert Hanks, A Modern Course in the Theoy of Equa- 

tions 

Polygonal Pub. House, 80 Passaic Ave., Passaic, NJ 07055, 1980. 

H.D. Ebbinghaus, et al., Zahlen 

(Grundwissen Mathematik I) 
Springer-Verlag, 1983. 

Howard Eves, An Introduction to the History of Mathematics 

5th ed., Saunders, 1983 
Exercise 3.10, p. 69; p. 59. 

Robert P. Feinerman & Donald J. Newman, Polynomial Approximation 

Williams & Wilkins, Baltimore, 1974. 

Harry Freeman, Mathematics for Actuarial Students, Part II: Finite Dif- 
ferences, Probability and Statistics 

Cambridge, 1952. 

Joseph A. Gallian, Contemporary Abstract Algebra 

Heath, 1986 
Chapter 20: Factorization of polynomials. 

Albert Gloden, Mehrgradige Gleichungen 

Noordhoff, 1944 (2nd ed.). 

Lois Wilfied Griffiths, Introduction to Theory of Equations 

Wiley, 1945. 

Charles R. Hadlock, Field Theory and Its Classical Problems 

Carus Monograph No. 19, MAA, 1978. 

H.S. Hall & S.R. Knight, Higher Algebra 

MacMillan, 1887. 

G.H. Hardy, J.E. Littlewood & G. Polya, Inequalities 

Cambridge, 1964 
Chapter 2. 



Books 423 

V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers 

Mathematics Enrichment Series; Houghton Mifflin, Boston, 1969. 

Nathan Jacobson, Basic Algebra I2nd ed. 

W.H. Freeman, NY, 1985. 

Wilfrid Kaplan, Operational Methods for Linear Systems 

Addison-Wesley, 1962 
Chapter 7: Stability of polynomials, pp. 403-435. 

Felix Klein, Elementary Mathematics from an Advanced Standpoint 

2 volumes; Dover, 1939. 

Donald E. Knuth, The Art of Computer Programming 

Addison-Wesley, 1969 
Section 4.6, pp. 360-444 (Vol. 2). 

Kaiser S. Kunz, Numerical Analysis 

New York, 1957, pages 34-37. 

A.G. Kurosh, Algebraic Equations of Arbitrary Degree 

Little Mathematical Library 

Mir, Moscow, 1977. 

Hans Lausch & Wilfried Ncbauer, Algebra of Polynomials 

North Holland/American Elsevier, 1973. 

Howard Levi, Polynomials, Power Series and Calculus 

Van Nostrand, Princeton, 1968. 

D.E. Littlewood, The Skeleton Key of Mathematics: A Simple Account of 

Complex Algebraic Theories 

Hutchinson University Library, London, 1949, 1957. 

C.S. Liu, Introduction to Combinatorial Mathematics 

McGraw-Hill, 1968 
p. 111 seq.; p. 248 seq. 

G.G. Lorentz, Approximation of Functions 

Holt, Rinehart & Winston, Athena Series, 1966. 

Cyrus Colton MacDuffee, Theory of Equations 

Wiley, 1954 

Morris Marden, Geometry of Polynomials 

Math. Surveys, No. 3; AMS, 1966. 

W.E. Milne, Numerical Analysis 

Princeton, 1949, pages 53-57. 

L.M. Milne-Thomson, The Calculus of Finite Differences 

Macmillan, London, 1933 

A.P. Mishina & I.V. Proskuryakov, Higher Algebra: Linear Algebra, Poly- 
nomials and General Algebra 

Pergamon, 1965. 



424 Books 

Edwin Moise, Elementary Geometry From an Advanced Standpoint 

Addison-Wesley, 1963. 

G. Polya & G. SzegG, Problems and Theorems in Analysis Vol. I 
4th ed., Springer-Verlag, 1972, pages 105-109, 300-305. 

G. Polya & G. Szegij, Problems and Theorems in Analysis Vol. II 
4th ed., Springer-Verlag, 1976 
pages 36-91, 129-134, 212-278, 319-330 

Part Six: Polynomials and trigonometric functions 

Part Eight, Chapter 2: Polynomials with integer coefficients and integer- 
valued functions. 

H. Rademacher, Higher Mathematics From an Elementary Point of View 

Birkhauser, 1983. 

A. Ralston, A First Course in Numerical Analysis 

McGraw-Hill, 1965, 1978, Chapter 3. 

Hans Reisel, Prime Numbers and Computer Methods for Factorization 

Birkhauser, 1985. 

Theodore J. Rivlin, An Introduction to the Approximation of Functions 

Blaisdell, 1969. 

James B. Scarborough, Numerical Mathematical Analysis, 2nd ed. 
Johns Hopkins, Baltimore, 1950. 

Arthur Schultze, Graphic Algebra 

Macmillan, NY, 1922 

Sections 58, 59, 65. 

David E. Smith (ed.), A Source Book in Mathematics (2 vols.) 

McGraw-HiIl, 1929; Dover, 1959. 

D.J. Struik (ed.), A S ource Book in Mathematics, 1200-1800 

Harvard, 1969. 

Jean-Pierre Tignol, Galois’ Theory of Algebraic Equations 

Longman, 1988. 

Joseph Miller Thomas, Theory of Equations 

McGraw-Hill, 1938. 

John Todd, Basic Numerical Mathematics 

Vol. 1: Numerical Mathematics 

Birkhauser, 1979 

p. 86: Aitken’s algorithm for computing the Lagrange polynomial by a 
succession of linear interpolations. 

Herbert Westren Turnbull, Theory of Equations, 5th ed. 
Interscience, 1957. 

James Victor Uspensky, Theory of Equations 

McGraw-Hill, 1948. 



Books 425 

Bartel Leender van der Waerden, Modern Algebm 

Ungar, 1949. 

Richard S. Varga, Topics in Polynomial and Rational Interpolation and 
Approximation 

University of Montreal, 1982. 

N.Ya. Vilenkin, Method of Successive Approximations 

Little Mathematical Library 
Mir, Moscow, 1979. 

N.N. Vorobyov, The Fibonacci Numbers 

Topics in Mathematics; D.C. Heath, Boston, 1963. 

Louis Weisner, Introduction to the Theory of Equations 

Macmillan, NY, 1938. 

Edmund Taylor Whittaker, The Calculus of Observations; a ‘lkatise on 
Numerical Mathematics 

Blackie, London, 1960. 

James H. Wilkinson, The Perfidious Polynomial 

Studies in Numercial Analysis 
ed. Gene H. Golub (MAA, 1984). 

I.M. Yaglom, Felix Klein and Sophus Lie: Evolution of the Idea of Symme- 

try in the Nineteenth Century 

Birkhauser, 1988, Chapter 1. 



Selected Papers 

Other papers which the reader may find interesting are listed below. After 
the title is the indication E, M, A often followed by a number. E indicates 

that the paper is elementary and accessible to a high school student, M 
that it is of moderate difficulty and accessible to an undergraduate, A that 
it is advanced for a reader with mathematical maturity and considerable 
background. In some cases, the classification is difficult to make and so it 

should be regarded only as a first approximation. The number indicates 

the chapter in this text for the topic. 
Most of the abbreviations for journals are straightforward. North Amer- 

ican readers may not be familiar with the British journal, Mathematical 
Gazette (Math. Gaz.). Other abbreviations which require some explana- 
tion are 

J. Math. & Phys. Journal of Mathematics and Physics 
Math. Comp. Mathematics of Computation 
Math. Ann. Mathematische Annalen 

Math. Intell. Mathematical Intelligencer 

N.C. Ankeny, One more proof of the fundamental theorem of algebra 
Amer. Math. Monthly 54 (1947), 464. 

I.N. Baker, Fixpoints of polynomials and rational functions 
J. Lond. Math. Sot. (1) 39 (1964), 615-622. [A] 

J.P. Ballantine, Complex roots of real polynomials 
Amer. Math. Monthly 66 (1959), 411-414. [M 5] 

Ed Bergdal, Complex graphs 
Math. Mug. 24 (1950), 195-202. [E 41 

E.R. Berlekamp, Factoring polynomials over large finite fields 

Math. Comp. 24 (1970), 713-735 [A 31 

W.A. Blankinship, A new version of the Euclidean algorithm 
Amer. Math. Monthly 70 (1963), 742-745. [E 1, 31 

R.P. Boas, Yet another proof of the fundamental theorem of algebra 
Amer. Math. Monthly 71 (1964), 180. [M 41 

R.P. Boas, Extremal problems for polynomials 
Amer. Math. Monthly 85 (1978), 473-475. [A 71 



Selected Papers 427 

David W. Boyd, The diophantine equation x2 + y”’ = 2”’ 
Amer. Math. Monthly 95 (1988), 544-547. [M l] 

Louis Brand, The roots of a quaternion 
Amer. Math. Monthly 49 (1942), 519-520. 

Rolf Brandl, Integer polynomials that are reducible modulo all primes 

Amer. Math. Monthly 93 (1986), 286-288. [A 31 

J.L. Brenner & R.C. Lyndon, Proof of the fundamental theorem of algebra 
Amer. Math. Monthly 88 (1981), 253-256. [M 41 

Louis Brickman, On nonnegative polynomials 
Amer. Math. Monthly 69 (1962), 218-221. [M l] 

J.R. Britton, A note on polynomial curves 
Amer. Math. Monthly 42 (1935), 306-310. [M 21 

Duane Broline, Renumbering the faces of dice 
Math. Magazine 52 (1979), 312-315. [E 31 

W.S. Brown, Reducibility properties of polynomials over the rationals 

Amer. Math. Monthly 70 (1963), 965-969. [A 3] 

R. Creighton Buck, Sherlock Holmes in Babylon 
Amer. Math. Monthly 8’7 (1980), 335-345. [E l] 
polynomial identities to generate Pythagorean triples 

F.J. Budden, Functions which permute the roots of an equation 
Math. Gaz. 60 (1976), 24-38. [M 61 

Sylvan Burgstahler, An algorithm for solving polynomial equations 
Amer. Math. Monthly 93 (1986), 421-430. [M 51 

R. Butler, The rapid factorization to high accuracy of quartic expressions 
Amer. Math. Monthly 69 (1962), 138-141. [M 31 

D.G. Cantor, Irreducible polynomials with integral coefficients have suc- 
cinct certificates 

J. Algorithms 2 (1981), 385-392, MR 83a:12003. [A 31 

D.G. Cantor & H. Zassenhaus, A new algorithm for factoring polynomials 
over finite fields 

Math. Comp. 36 (1981), 587-592, MR 82e:12020. [A 31 

L. Carlitz & J.M. Thomas, Rational tabulated values of trigonometric func- 
tions 

Amer. Math. Monthly 69 (1962), 789-793. [M l] 

F.W. Carroll, A polynomial in each variable separately is a polynomial 
Amer. Math. Monthly 68 (1961), 42. [M 1,2] 

Roger Chalkley, Cardan’s formula and biquadratic equations 
Math. Mug. 47 (1974), 8-14. [M l] 

Geng-Zhe Chang, Bernstein polynomials via the shifting operator 
Amer. Math. Monthly 91 (1984), 634-638. [M 71 



428 Selected Papers 

John G. Christiano, On the sum of powers of natural numbers 
Amer. Math. Monthly 68 (1961), 149-151. [E 61 

G.E. Collins, Computer algebra of polynomials and rationals 
Amer. Math. Monthly 80 (1973), 725-755. [A 3,5] 

Brian Conrey & Amit Ghosh, On the zeros of the Taylor polynomials as- 
sociated with the exponential function 

Amer. Math. Monthly 95 (1988), 528-533. [A 51 

Carl H. Denbow, Some types of elementary equations 

Math. Mug. 23 (1949), 137-141. [E l] 

Emeric Deutsch, Bounds for the zeros of polynomials 
Amer. Math. Monthly 88 (1981), 205-206. [E 51 

H.L. Dorwart, Irreducibility of polynomials 
Amer. Math. Monthly 42 (1935), 369-381. [M 3] 

J.E. Eaton, The Fundamental Theorem of Algebra 
Amer. Math. Monthly 67 (1960), 578-579. [A 41 

A.W.F. Edwards, A quick route to the sums of powers 
Amer. Math. Monthly 93 (1986), 451-455. [M 61 

Evelyn Frank, On the calculation of the roots of equations 
J. Math. &’ Phys. 34 (1955), 187-197. [M 51 
Generalization of Newton’s method to f(x, y) = g(x, y) = 0 

Determination of complex roots of complex polynomials 

Kenneth W. Frank, Bent wire---an application of quadratic equations and 

inequalities 
Math. Teacher 79 (1986), 57-58. [E l] 

J.A. Gallian & D.J. Rusin, Cyclotomic polynomials and nonstandard dice 
Discrete Math. 27 (1979), 245-259. [M 31 

Edward F. Gardner, Some little discussed facts about cubic polynomials 
(Sharing teaching ideas) 

Math. Teacher 81 (1988), 112-113. 

J. von zur Gathen & E. Kaltofen, Factorization of multivariate polynomials 
over finite fields 

Math. Comp. 45 (1985), 251-261. [A 31 

H.M. Gehman, Complex roots of a polynomial equation 
Amer. Math. Monthly 48 (1941), 237-239. [M 2,4] 

H.W. Gould, Euler’s formula for nth differences of powers 
Amer. Math. Monthly 85 (1978), 450-467. [M 71 

J.H. Grace, The zeros of a polynomial 
Proc. Cambridge Phil. Sot. 11 (1902), 352-357. 

D.R. Green, The historical development of complex numbers 
Math. Gaz. 60 (1976), 99-107. [E l] 



Selected Papers 429 

Louisa S. Grinstein, Upper limits to the real roots of polynomial equations 
Amer. Math. Monthly 60 (1953), 608-615. [M 51 

C.W. Groetsch, J.T. King, The Bernstein polynomials and finite differences 
Math. Mug. 46 (1973), 280-282. [M 71 
Bernstein polynomials appear as a finite difference approximant to a first 

order partial differential equation 

Emil Grosswald, Recent applications of some old work of Laguerre 
Amer. Math. Monthly 86 (1979), 648-658. [M 5] 

H. Guggenheimer, Bounds for roots of algebraic equations 
Amer. Math. Monthly 69 (1962), 915-916. [E 51 

J.E. Hacke, Jr., A simple solution of the general quartic 
Amer. Math. Monthly 48 (1941), 327-328. [E l] 

Morton J. Hellman, A unifying technique for the solution of the quadratic, 

cubic and quartic 
Amer. Math. Monthly 65 (1958), 274-276. [E 1,6] 

Morton J. Hellman, The insolvability of the quintic m-examined 
Amer. Math. Monthly 66 (1959), 410. [A] 

Garcia Henriquez, The graphical interpretation of the complex roots of 
cubic equations 

Amer. Math. Monthly 42 (1935), 383-384. [E 1,2] 

Irwin Hoffman & Larry Kauvar, Computer oriented mathematics: polyno- 
mial synthetic division 

Math. Teacher 63 (1970), 429-431. [E l] 

F.E. Hohn, The number of terms in a polynomial 
Amer. Math. Monthly 48 (1941), 686. [E l] 

J.S. Huang, Is a sequence of polynomials complete? 
Amer. Math. Monthly 85 (1978), 107-108. [A 7] 

C.A. Hutchinson, On Graeffe’s method for the numerical solution of alge- 
braic equations 

Amer. Math. Monthly 42 (1935), 149-161. [M 5] 

Margaret Wiscomb Hutchinson, Using synthetic division by quadratics to 
find rational roots 

Math. Teacher 64 (1971), 349-352 = Crouse & Sloyer, 286-289. [E 1,3] 

I.M. Isaacs, Solution of polynomials by real radicals 
Amer. Math. Monthly 92 (1985), 571-575. [A 41 

Elbert Johnson & C.R. Wylie, Jr., A nomographic solution of the quartic 
Amer. Math. Monthly 68 (1961), 461-464. [M l] 

E.C. Kennedy, Bounds for the roots of a trinomial equation 
Amer. Math. Monthly 47 (1940), 468-470 [E 51 

E.C. Kennedy, Concerning nearly equal roots 
Amer. Math. Monthly 48 (1941), 42-43. [E 51 



430 Selected Papers 

Clark Kimberling, Microcomputer-assisted mathematics: Roots: half-interval 

search 
Math. Teacher 78 (1985), 120-123. [E 51 

Clark Kimberling, Microcomputer-assisted mathematics: Roots: Newton’s 
method 

Math. Teacher 78 (1985), 626-629. [E 51 

Clark Kimberling, Factoring and unfactoring 
Math. Teacher 79 (1986), 48-53. [E 1,3] 

Murray S. Klamkin, A polynomial functional equation 
Eureka (Crux Mathematicorum) 4 (1978), 32-33. 

P.G. Laird & R. McCann, On some characterizations of polynomials 

Amer. Math. Monthly 91 (1984), 114-116. [M l] 

Susan Landau, Factoring polynomials quickly 
Notices A.M.S. 34 (1987), 3-8 (No. 1, Issue 253). 

M.A. Lee, Some irreducible polynomials which are reducible mod p for all 

P 
Amer. Math. Monthly 76 (1969), 1125. [A 31 

A.K. Lenstra, H.W. Lenstra, L. Lo&z, Factoring polynomials with ratio- 
nal coefficients 

Math. Ann. 261 (1982), 515-534. [A 31 

John S. Lew, Polynomials in two variables taking distinct integer values at 
lattice points 

Amer. Math. Monthly 88 (1981), 344-346. [A l] 

Tien-Yi Li, Solving polynomial systems 
Math. Intell. 9 (1987), no. 3, 33-39. [M 41 

W.B.R. Lickorish & K.C. Millett, The new polynomial invariants of knots 

and links 

Math. Magazine 61 (1988), 3-23. [M] 

Shih-Nge Lin, A method of successive approximations of evaluating the real 

and complex roots of cubic and higher-order equations 
J. Math. Phys. 20 (1941), 231-242. [M 51 

Daniel B. Lloyd, Factorization of the general polynomials by means of its 
homomorphic congruential functions 

Amer. Math. Monthly 71 (1964), 863-870. [M 3] 

David London, On a connection between the permanent function and poly- 
nomials 

Linear & Multilinear Alg. 1 (1973), 231-240. [M] 

Calvin T. Long, Gregory interpolation: a trick for problem solvers from out 
of the past 

Math. Teacher 76 (1983), 323-325. [E 71 



Selected Papers 431 

C.C. MacDuffee, Some applications of matrices in the theory of equations 
Amer. Math, Monthly 57 (1950), 154-161. [M 21 

D. Mackie & T. Scott, Pitfalls in the use of computers for the Newton- 

Raphson method 
Math. Gut. 69 (1985), 252-257. 

Pavan K. Malhotra, A new method of solving a quartic 
Amer. Math. Monthly 65 (1958), 280-282. [A l] 

Morris Marden, Location of zeros of infrapolynomials 
Amer. Math. Monthly 70 (1963), 361-371. [A 5,7] 

Morris Marden, Conjectures on the critical points of a polynomial 
Amer. Math. Monthly 90 (1983), 267-276. [A 51 

Kenneth 0. May & Henry S. Tropp, Some algebraic equations do not have 
exactly n roots 

Math. Teacher 66 (1973), 179-182 = Crouse & Sloyer, 279-282. [E 41 

John McKay, On computing discriminants 

Amer. Math. Monthly 94 (1987), 523-527. [M 61 

Katherine E. McLain & Hugh M. Edgar, A note on Golomb’s “Cyclotomic 
polynomials and factorization theorems” 

Amer. Math. Monthly 88 (1981), 753. [A 31 

M. Mignotte, An inequality about factors of polynomials 

Math. Comp. 28 (1974), 1153-1157. [A 3,5] 

Harold Willis Milnes, Conditions that the zeros of a polynomial lie in the 
interval [-1, l] when all zeros are real 

Amer. Math. Monthly 70 (1963), 746-750. [M 51 

L. Mirsky, A note on cyclotomic polynomials 
Amer. Math. Monthly 69 (1962), 772-775. [A 31 

Q.G. Mohammad, On the zeros of polynomials 

Amer. Math. Monthly 69 (1962), 901-904. [M 5] 

Q.G. Mohammad, On the zeros of polynomials 
Amer. Math. Monthly 72 (1965), 631-633. [A 3] 

J.C. Molluzzo, A representation theorem for polynomials of two variables 
Amer. Math. Monthly 82 (1975), 385-387. [M 6] 

Gerald Myerson, How small can a sum of roots of unity be? (unsolved 
problem) 

Amer. Math. Monthly 93 (1986), 457-459. [A 1,3] 

Goro Nagase, Using the discriminant for problems involving extrema 
Math. Teacher 79 (1986), 145-146. [E 1,2] 

Goro Nagase, Existence of real roots of a radical equation 
Math. Teacher 80 (1987), 369-370. 

D.J. Newman, Norms of polynomials 

Amer. Math. Monthly 67 (1960) 778-779. [A] 



432 Selected Papers 

Ivan Niven, The roots of a quaternion 
Amer. Math. Monthly 49 (1942), 386-388. [M l] 

William J. O’Donnell, Computers and the rational root system 
Math. Teacher 81 (1988), 142-145. 

Patrick J. O’Hara & Rene S. Rodriguez, Polynomials with zeros uniformly 
distributed on the unit circle 

Amer. Math. Monthly 85 (1978), 814-817. [A 51 

E.L. Ortiz & T.J. Rivlin, Another look at the Chebyshev polynomials 

Amer. Math. Monthly 90 (1983), 3-10. [M l] 

George H. Palagi, A conversation on factoring 
Math. Teacher 66 (1973), 671-672 = Crouse & Sloyer, 86-89. [A 31 

R.V. Parker, Multiplication and division by binomial factors 
Amer. Math. Monthly 65 (1958), 39-42. [A l] 

Ricarda A. Perez, Solving a polynomial equation of degree greater than 
two 

Math. Teacher 80 (1987), 207-208. [E l] 

Gregg N. Petruno, Sums of irrational square roots are irrational 
Math. Magazine 61. (1988), 44-45. [E l] 

John W. Pratt, Finding how many roots a polynomial has in (0,l) or (0, oo) 
Amer. Math. Monthly 86 (1979), 630-637. [M 51 

S. Ramanujan, Note on a set of simultaneous equations 
J. Ind. Math. Sot. 4 (1912), 94-96 = Collected papers (# 3), 18-19 

(Chelsea, 1927, 1962). 

R.M. R.edheffer, What! Another note just on the fundamental theorem of 
algebra? 

Amer. Math. Monthly 71 (1964), 180-185 [M 41 

R.E. Rice, B. Schweizer & A. Sklar, When is f(f(z)) = QZ’ + bz + c? 

Amer. Math. Monthly 87 (1980), 252-263. [A l] 

T.J. Rivlin, On the maximum modulus of polynomials 
Amer. Math. Monthly 67 (1960), 251-253. [A] 

D.W. Robinson, A matrix application of Newton’s identities 
Amer. Math. Monthly 68 (1961), 367-369. [M 61 

Raphael M. Robinson, Three old problems about polynomials with real 
roots (unsolved problems) 

Amer. Math. Monthly 95 (1988), 329-330. 

Steven Roman, The formula of Fa& di Bruno 
Amer. Math. Monthly 87 (1980), 805-809. [M 21 

David Ruelle, Is our mathematics natural? The case of equilibrium statis- 
tical mechanics 

Bull. Amer. Math. Sot. (NS) 19 (1988), 259-268. 



Selected Papers 433 

T.R. Running, Graphical solutions of cubic, quartic and quintic 
Amer. Math. Monthly 50 (1943), 170-173. [M 1,4] 

Herbert E. Salzer, Polynomials for best approximation over semi-infinite 
and infinite intervals 

Math. Mag. 23 (1949), 59-69. [M 71 

John Savage, Factoring quadratics 

Math. Teacher 82 (1989), 35-36. [E 1,3] 

I.J. Schoenberg & G. Szego, An extremum problem for polynomials 

Compositio Math. 14 (fast. 3) 260-268. [A 7] 

E.J. Scott, A formula for the derivatives of Tchebychef polynomials of the 

second kind 
Amer. Math. Monthly 71 (1964), 524-525. [A 1,2] 

Henry S. Sharp, A comparison of methods for evaluating the complex roots 
of a quartic equation 

J. Math. Phys. 20 (1941), 243-258. [M 1,5] 

Allen Shields, Polynomial approximation (Years Ago) 
Math. Intell. 9 (1987), no. 3, 5-7. 

W.M. Snyder, Factoring repunits 
Amer. Math. Monthly 89 (1982), 462-466. [A 31 

D.D. Stancu, A method of obtaining polynomials of Bernstein type of two 
variables 

Amer. Math. Monthly 70 (1963), 260-264. [M 71 

W.J. Sternberg, On polynomials with multiple roots 

Amer. Math. Monthly 52 (1945), 440. [M 2] 

H. Joseph Straight & Richard Dowds, An alternate method for finding the 

partial fraction decomposition of a rational function 

Amer. Math. Monthly 91 (1984), 365-367. [E 31 

R.J. Stroeker, How to solve a diophantine equation 

Amer. Math. Monthly 91 (1984), 385-392. [A 8] 

J.M. Thomas, The linear diophantine equation in two unknowns 
Math. Mug. 24 (1950), 59-64. [E l] 

Jan Turk, The fixed divisor of a polynomial 
Amer. Math. Monthly 93 (1986), 282-286. [A 31 

C.E. van der Ploeg, Duality in nonreal quartic fields 
Amer. Math. Monthly 94 (1987), 279-284. [A 41 

R.C. Vaughan, Adventures in Arithmetick, or: How to make good use of a 
Fourier transform 

Math. Intelligencer 9 (no. 2) (1987), 53-60. 

J.H. Wahab, Irreducibility of polynomials 
Amer. Math. Monthly 68 (1961), 366-367. [M 31 



434 Selected Papers 

H.S. Wall, Polynomials whose zeros have negative real parts 
Amer. Math. Monthly 52 (1945), 308-322. [M 51 

J.L. Walsh, On the location of the roots of certain polynomials 

Trans. Amer. Math. Sot. 24 (1922), 163-180. [M 51 

J.L. Walsh, An inequality for the roots of an algebraic equation 
Annals Math. 25 (1924), 285-286. [E 5] 

P.S. Wang & L.P. Rothschild, Factoring multivariate polynomials over the 

integers 
Math. Comp. 29 (1975), 935-950. [A 3] 

Paul S. Wang, An improved multivariate factoring algorithm 
Math. Comp. 32 (1978), 1215-1231. [M 3] 

L.E. Ward, Jr., Linear programming and approximation problems 
Amer. Math. Monthly 68 (1961), 46-53. [M 71 

William C. Waterhouse, A neglected note showing Gauss at work 
Historia mathematics 13 (1986), 147-156 [M 3] 

E.E. Watson, A test for the nature of the roots of the cubic equation 
Amer. Math. Monthly 48 (1941), 687. [E l] 

John J. Wavrik, Computers and the multiplicity of polynomial roots 
Amer. Math. Monthly 89 (1982), 34-56. [A 5] 

Kenneth W. Wegner, Trigonometric excursions and side trips 
Math. Teacher 60 (1967), 33-37 = Mathematics in the secondary school 

classroom: Selected Readings (eds. Rising & Wiesen; publ. T.Y. Crowell, 

1972), 376-382. [E 1,3] 

P.J. Weinberger, Finding the number of factors of a polynomial 
J. Algorithms 5 (1984), 180-186, MR 86h:llllO. [A 31 

C.R. White, Definitive solutions of general quartic and cubic equations 
Amer. Math. Monthly 69 (1962), 285-287. [M l] 

H.S. WiIf, Curve fitting matrices 
Amer. Math. Monthly 65 (1958), 272-274. [M 71 

Wm. Douglas Withers, Folding polynomials and their dynamics 
Amer. Math. Monthly 95 (1988), 399-413. [A] 

H. Zassenhaus, On Hensel factorization I 

J. Number Theor. 1 (1969), 291-311. [A 31 

H. Zassenhaus, A remark on the Hensel factorization method 

Math. Comp. 32 (1978), 287-292. [A 31 



Index 

Abel, 126 
absolute value, 13, 212 
algebraically closed, 146 
algorithms 

determination of zeros, 92- 

94, 160-167 
Euclidean, 31-33,34,63, 100 
evaluation of polynomials, 49- 

53 
factorial powers, 55-56 

Horner’s methods, 49-53, 58 
long division, 58 

multiplication, 4 
synthetic division, 58 
Taylor expansion, 51-53 

alternation, 214-217 

approximation 
nonrational by rational, 12, 

362,412 
over interval, 213-219,227 (7.5.8- 

9), 414 (E.58) 420 
successive, 160-165,323 (5.1.9) 
zeros, 159-165, 362 

Argand diagram, 13,187-188,303- 

305,335-338 
arithmetic progression, 26 (1.5.7), 

201 (6.4.1) 416 

Bernoulli 

inequality, 222 (7.3.9), 358 
numbers, 413 

Bernstein polynomials, 217-219, 

356-357 
binomial expansion 8, 53 (E.17), 

67 (2.3.12) 98, 404-405 

bisection, method of, 160-161 

calculator, 50-51, 53 
Cardan, 18-20, 126 
Catalan numbers, 262 
Cauchy-Riemann conditions, 70- 

71, 406 
Cauchy’s estimate, 180 
Cayley, 20, 412 (E.42) 

chaos, 413 
Chebyshev, see Tchebychef 
chromatic polynomials, 61-63 
coloring, 61-63, 405, 411 (E.37) 
combinatorics, 7-8,44 (1.9.15), 61- 

63, 396, 405, 406 (E.22) 
complex numbers, 13-16, 401 

square root, 16 
complex variable, function of, 142- 

146, 155, 303-305, 406- 
407,411 

composition of polynomials, 2, 43 

(1.9.8, 13) 259 
commuting,5 (l.l.ll), 6 (1.1.20), 

17, 23 (E.7), 42 (1.9.2), 
76 (2.5.9), 232 (8.19), 245, 

258,269, 375, 399 
degree, 5, 245 
derivatives, 68, 406 
several variables, 238, 415 

congruences 

linear, 34, 35, 96-97, 402 
polynomial, 95-98,99-100, 116 

(3.8.30) 278-279, 296- 
297 

continued fraction, 168-169, 236 
biology, 159, 177 (E.49) (8.44), 387, 412 



436 Index 

critical point, 72 
cube root of unity, imaginary, 19, 

158,248 (1.3.9), 263,313, 
315, 319-320, 375 

cubits, 17-20 
Cardan’s method, 18-19,249 
Cayley’s observation, 20,249 
discriminant, 19,195,196,197, 

242 (8.26), 316,347,379, 
389 (8.52) 

graph, 73, 265 
inflection point, 73, 334 
intersecting curves, 140-141, 

301-302 
irreducible, 114 (3.8.17) 
local extrema, 235 
location of zeros, 155 (4.9.3, 

5), 181,188 (5.4.21), 334, 
338 

nature of zeros, 19,42 (1.9.1), 
155 (4.9.5), 187 (5.4.11), 

195,233 (8.26), 344-345 

(6.1.9) 
reducible, 114 (3.7.7) 

symmetric functions of zeros, 

26,123-124, 152 (4.8.12), 
193-194, 312 

triple zero, 77 (2.5.13), 271 
Vieta’s method, 20 
winding around origin, 1.45, 

305 
zeros in progression, 201,232 

(8.18) 
zeros of derivative, 187 (5.4.19), 

412 
zeros, surds, 42 (1.9.4), 156, 

258 
cyclotomic polynomials, 103, 105, 

106, 120, 280-281, 294, 
410-411 

decreasing, 72, 364 
degree 

several variables, 24 
single variable, l! 4-5 

de Moivre’s theorem, 15,101,120, 
141, 249, 279, 294, 296, 
309 

derivative, 64-68, 197 (6.2.7) 
commuting with polynomial, 

76 (2.5.9) 
composition of functions, 68 
graphing, 72 
partial, 68-71 

zeros, 68,74-75,148-149,194, 
237,322, 343, 381,411 

Descartes 

quarticequation, 20, 195 (6.1.12) 
rule of signs, 170-171, 173, 

323-324, 330, 331, 332 
detached coefficients, method of, 

4, 58 
difference, 54, 208-209, 212, 227 

(7.5.4) 
difference table, 207 
differential equation, 77 (2.5.11), 

270 
Legendre, 71, 407 

dilatation, 247, 319 (4.9.2), 416 

diophantine equations, 28-30,400- 
402,403,410 (E.14) 412 
(E.45-46) 

Pell, 373,396-397,409-410 
problems, 231-232 

Pythagorean, 28, 371 (8.9) 
solutions, 369-374 
sum of cubes, 29, 400-401 

discriminant, 196-197, 316, 346- 

347 
see cubits, quadratics, quar- 

tics 
divisibility of numbers, 30-31 

greatest common divisor, 31- 

35, 100, 251-252, 279 
least common multiple, 31,33 

divisibility of polynomials, 51-52, 

56-59 
division theorem, 59 
greatest common divisor, 63- 

64, 197 (6.2.7) 301, 405 



Index 437 

synthetic division, 58 

eigenfunction, 219 
eigenvalue, 219, 332 (5.4.11), 357 
Eisenstein criterion, 83-84, 116, 

273-275 
elementary symmetric function, 24, 

25,27, 193 
ellipse 

diameters of, 11, 42, 257 
Steiner, 412 

entire 
function, 406 
set of polynomials, 399 

equilateral triangle, 155, 157, 318, 

319 
error, propagation of, 212 
Euclidean algorithm 

greatest common divisor, 31- 
33, 100, 175, 251, 301 

length, 34, 402 
Euler 

Catalan numbers, 262 
homogeneous functions, 69- 

70,406 
infinite series, 334 

little Fermat theorem, 98-99 

sums of cubes, 29, 400 
sums of two squares, 239 
totient function (+), 105, 106 

extraneous root, 124-126 

extrapolation, 205-210 

Fal di Bruno, 406 

factorial power, 54, 77 (2.5.10), 
210, 270, 354-355 

factorization, 80, 84.-88, llO--112, 
118-119,275-277,279,284- 

288,405, 407-408 
factor theorem, 57, 118, 156, 206, 

241, 243, 245, 376 
Fermat, little theorem, 98-99, 106- 

107,411 
Ferrari, 21, 126 

Fibonacci sequence, 35, 183-184, 
387,402, 403, 409-410 

field, 37 
finite, 114 (3.8.19), 294 
integers mod p, 38-39, 87- 

88, 252, 277 
field extension, 129-131,135-136, 

300-30 1 
finite differences, 54,207-210,211- 

212,354, 405 
four-color conjecture, 62 

Fourier-Budan theorem, 170,173- 
175 

fractals, 412, 413, 415 
Fuchs, theorem of, 398 
fundamental theorem of algebra, 

126-127,138-148,179,193 

Galois theory, 131-137,411,419- 
420 

Gauss 
fundamental theorem of al- 

gebra, 127 
theorem on symmetric func- 

tions, 26, 60, 193 
Gauss-Lucas theorem, 411, 415 

generating functions, 7-8, 262 
geometric progression, 201(6.4.1), 

348,416 
graphical solution, 12, 396 

graphs (curves)! 11, 71-75, 138- 
146,160-161,163-165,175, 
178, 191 (5.4.24)&06 (7.1.4) 
214-217,236 (8.52) 247, 
265-267,301-305,319 (4.9.2), 
322-323, 329, 344, 367 

(7.5.91, 389-392 
greatest common divisor, see di- 

visibility 

group, 133-l 36 

half-plane, 149, 179, 181-183 
Hamilton, W.R., 240 
harmonic progression, 201(6.4.4), 

348,416 



438 Index 

Hensel’s lemma, 99-100, 167-168 
Heron’s formula, 243, 393, 418 
Hilbert 

positive polynomials, 414-415 
tenth problem, 403 

homogeneous, see polynomials of 

several variables 
homogeneous linear system, 121- 

122 
Horner’s method, 49-53, 55-56, 

94,161-162,263-264,404 
hyperbola, 41, 139, 140, 257 

increasing, 72, 364 
index of refraction, 205-206, 209 

inequalities 
arithmetic-geometric mean, 12, 

26,220-222,224,228,229, 
241, 243, 292, 357-358, 
359,361, 374 

Bernoulli, 222 
Cauchy-Schwarz-Bunjakovsky, 

11, 220, 228, 358, 359 
Newton, 223-224 
problems, 224-226 
solutions, 358-362 

infinite series, 200, 334 
inflection point, 73 

integer zeros, 94-98, 113,119,202 
(6.4.12), 237, 290, 291 

integral domain, 37 

F[t], 38, 252 
intermediate value theorem, 160 

(5.1.1), 243, 375 (8.19), 
381 (8.31), 418 

interpolation, 205-210, 414 
irreducible polynomials, 39, 81- 

84, 86, 87, 101, 102, 114 
(3.8.19) 147, 148, 226, 

240, 294, 306, 404 

Lagrange 

identity, 11 
polynomial, 207,210,211,212, 

226 (7.5.1-2), 228 (7.5.10) 

229, 230, 354, 355, 363, 
369, 386, 406 

solution of equations, 419 

solution of quadratic, 168-169 
Lam& 402 
least squares, 214 
Legendre polynomials, 71, 407 
linear interpolation, 161 
linear polynomial, 2, 12, 188 (5.4.23), 

235 (8.42), 339, 386 
linear system of equations, 121- 

122 
Lipschitz, 20 

locus, 15, 247, 319 (4.9.2), 416 

logarithm, 5 (1.1.14), 209, 245 
Lucas sequence, 410 

Mandelbrot set, 238, 415 
matrix, 332 (5.4.11), 414 (E.54) 
maximum, 72, 235, 265, 364, 386 
minimum, 72, 225 (7.4.12), 235, 

265,361,364,381(8.30), 
386 

Mobius function, 105, 411 
modular arithmetic, 34 
manic polynomial, 1, 91, 156 

multiplicity, 67-68, 75, 155, 267, 

268,321, 322, 381 

Netto, 84 
Newton 

approximation of root, 162- 

164, 166-167, 169, 412 
inequalities, 223-224 
method of divisors, 92-93 

nonrational zeros, 246, 247 
Nyquist diagram, 182-183, 328- 

329 

Olympiad, xv 
International, xv, 35, 403 

USA, xiv, 344 
oscillation, 177-179 

p-adic numbers, 168, 410 



Index 439 

parabola, 143 (4.5.1), 155 (4.9.2), 

319 
partial derivatives, 68-71,406-407 
partialfractions, 108-110, 117-118, 

281-283 
Pell’s equation, 373 (8.11), 396- 

397,409-410 
permutations, 133-135 
pirate problem, 15, 45, 248 

polygon, 116 (3.8.29), 148, 262, 

296 
polynomials of several variables 

composition, 238 
definitions, 24-27 
elementary symmetric func- 

tions, 24, 25, 193, 251, 

384 
homogeneous, 24,25,27,59- 

61,87, 117, 251 
range, 28, 400 
symmetric, 24, 27,43, 59-61, 

112 (3.7.21), 251,260,383- 

384 
polynomials of single variable 

anatomy of, 1 
commuting, see composition 

of polynomials 
evaluation of, 2, 49-53 

even and odd, 6 (1.1.19), 245, 
416-417 

operations on, 2, 4, 56-59 
real coefficients, 16, 146-147 
uniqueness of representation, 

5 
positive polynomials, 43 (1.9.11, 

12), 47-48,220,224,259- 
260,414 

powers of numbers 

evaluation, 53, 404 

sums, see sums of first n pow- 

ers 
Tarry-Escott problem, 6,394- 

396 
powers of roots, sum of, 198-200, 

347 

primes, 31 

decomposition, 33, 252 
values of polynomials, 35,402- 

403 
primitive root of unity, 102, 117, 

280 
principal part, 411 
Putnam Competition, xiv, 365,400 

quadratic residue, 103 
quadratics, 2, 6, 9-12 

common zero, 122-123 
completion of square, 9, 72, 

334 (5.4.15) 
complex coefficients, 16, 140 
continued fraction, 169 
discriminant, 9,45,119 (3.8.7, 

ll), 139, 147, 196, 248, 
250, 253, 254, 257, 286, 
290, 341, 344-345, 370, 
372,409 

factoring, 84-85 
graph, 72, 265 
graphical solution, 12, 396 
hints, 45, 46-47 

interpolation, 206 
intersecting curves, 138-140, 

301 
location of zeros, 115, 181, 

187 
nature of zeros, 76, 115, 139, 

267, 272, 295, 333 
over quaternions, 240 

over Z,, 39, 114, 120 
problems, 9-12, 39-42 
solutions, 246-247, 252-258 

square values, 13, 396-398 
sum and product of zeros, 9- 

10, 25,371 
sums of powers of zeros, 199 
winding around origin, 143- 

145,303-305 
quartics, 2, 20-21, 57, 195-196, 

307 
biological species, 160 



440 Index 

composition of quadratics, 43, 

259 
Descartes’ method, 20, 195, 

250 
Ferrari’s method, 21, 250 
Galois theory, 132-136 

graph, 73, 236, 389-392 
intersecting curves, 141,302- 

303 
problems, 20-21,149-150,201- 

202 
quasi-reciprocal, 23, 195 (6.1.11), 

250 
solutions, 250, 307-308 
symmetric functions of zeros, 

195,202 
zeros in harmonic progression, 

201 (4.4), 348 
quaternions, 239-240 
quintics, 2, 74, 77, 78, 79, 128- 

129,266-267, 270,271 

Ramanujan, 314 
rational functions, 107-110 
rational zeros, 91-94, 113 (3.8.10), 

291,409 
real zeros 

conditions for, 186 (5.4.7), 187 

(5.4.11), 193,225 (7.4.4), 
344 

location of, 160-177, 187 (5.4.15, 

19) 
reciprocal polynomials, 21-23,147, 

250 
reciprocal substitution, 22, 23 
reciprocal zeros, polynomial with, 

180, 194 
recursion, 16 (1.3.15), 23, 35, 43 

(1.9.14), 48 (1.9.13), 89- 
90,100,165,177-179,183- 
185, 200, 388, 397, 408, 
409-410 

remainder, 52, 57, 64, 264 
residue, 109, 411 

Rolle’s theorem, 74-75, 148,172- 

173, 174-175, 190, 223, 
325,336,407 

rook polynomial, 7-8 
roots, see zeros 
roots of unity, 16, 101-104, 114, 

115,191,295 
Routh-Hurwitz criteria, 182 
Ruffini, 126 
ruler and compasses constructions, 

411 
angle trisection, 130, 137 
complex operations, 15, 247 
duplication of cube, 137 
quadratic equation, 12, 396 
regular 17-gon, 104 
squaring circle, 137 

Runge example, 414 

Schur-Cohn criterion, 181 

sequence, 414 
see also recursion 

shift, 208 

Sicherman dice, 105, 281 
simple zero, 68, 197, 202 
simultaneous equations, 121-124, 

151-154, 297-298, 309- 
319, 382 (8.34) 

solution by radicals, 131-136,411, 
420 

sphere, 317 

square root, 16 (1.3.10), 43, 164, 

169, 219, 248, 258 
squares 

difference of cubes equal to, 

236,388 
polynomials, number of terms 

of, 6 
sums of two, 239 

stable polynomials, 181-183,329- 
330 

Sturm’s theorem, 170, 175-177 
summation, 54, 212 
sums of first n powers, 76, 200- 

201,413 



441 

surd conjugate, 129,417 
surd equations, 124-126,150,154, 

231, 233, 298-299, 308, 

309,318-319 
surds, 40,42,43,44,124-126,129- 

130,231, 233, 234, 258- 
259,309, 310, 322, 367- 
368,371-372,376-379,417 

symmetric functions, 25-27, 134, 

193-199, 203, 242 

Tartaglia, 126 
Taylor expansion, 51-52, 66-67, 

78 (2.5.18), 99, 109,219, 
245 (1.1.12), 271,325,405 

Tchebychef polynomials, 16, 17, 

23,115 (3.8.22), 228 (7.5.10), 
230,248-249,356 (7.2.4), 

365, 369, 399 
translation, 319 
triangles 

anglesof, 201 (6.4.2), 202 (6.4.6), 

225 (7.4.11), 348, 380 
area of, 155 (4.9.4), 237 (8.53), 

320, 393, 418 
perimeter of, 237 
sides of, 237, 379 

trigonometric functions, 3, 5, 14, 

15, 16,39,40,46,47,94, 
101, 102, 127-128, 137, 
141-145, 215, 235, 237, 

252, 254-257, 294, 299, 

303, 309, 335, 339, 348, 

349, 368, 369, 380, 385, 
399.401 

undetermined coefficients, 85 

Vieta, 20 

on unit circle, 101,115 (3.8.26), 
188 (5.4.26,27), 191,237 
(E.62), 295, 339, 415 

symmetric functions of, 191- 
204,342-347,350-351 

see also arithmetic progres- 
sion; cubits; geometric pro- 

gression; harmonic pro- 
gression; nonrational ze- 
ros; quadratics, quartics; 
rational zeros; real zeros; 
roots of unity 

zero polynomial, 2, 5, 244-245, 
306 (4.6.8) 

zeros, 2 

common, 113 (3.8.4), 289 
equally spaced, 238 


