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Course description

In this course some theoretical aspects of computer science and
real use of computers will be presented. The following themes will
be covered:

Model theory with emphasis on finite model theory. Basics of
this theory will be given (first order languages and
theories, models, satisfaction relation, Completeness
and Compactness theorems). Some proofs will be
outlined and decision problem of first order theories
discussed.

Random graphs and an introduction to the theory of these
structures (Erdös, Rénei). On the basis of this theory
the so called 0-1 Low (Glebski, Kogan, Liagonki,
Talanov[1969], Fagin[1976]) will be inferred and
presented its application.
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Course description

Free algebras and equational logic. Examples and constructions
of free Boolean algebras. Birkhoff HSP theorem and
Completeness theorem for Equational logic. Word
problem (a decision problem for algebraic identities in
mathematics and computer science). Free Boolean
algebras and their applications in parallel computing.

Programming systems Programming platforms for symbolic
computations such as Wolfram Mathematica, Mace4
and TBA for finding finite structures will be
presented. The framing language of TBA is Python,
while the core of the program has parallel
implementation and it is designed for execution on
graphic cards.

During this course students would be asked to study and use the
programming language Python.
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Model theory: Preliminaries

These lectures are designed as an excursion through the main
topics of classical model theory. The most important constructions
and theorems of model theory and their proofs are outlined.

Boolean algebras play an important role in this book. The use of
Boolean algebras in model theory is prolific. We have applied them
in many model-theoretic constructions, but we also have applied
model theory in the proofs of certain properties of Boolean
algebras.

Basic constructions of models are presented such as the method
of constants, elementary chains of models and types. A few words
are devoted to abstract model theory.

However, we could not cover all the important topics in model
theory, but there are books of an encyclopedic nature on this
subject and the reader is directed to consult them whenever he
needs more details.
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Model theory: Preliminaries

We suppose that the student is acquainted with some parts of the
naive set theory. This includes the basic properties of ordinal and
cardinal numbers and partially, their arithmetic.

We have adopted Von Neuman representation of ordinals, so we
have taken that every ordinal is the set of all the smaller ordinals.
Therefore

0 = ∅, 1 = {0}, 2 = {0, 1}, . . . , ω0 = {0, 1, 2, . . .}, . . . (0.1)

Here ∅ denotes the empty set. The set of all natural numbers is
denoted by ω0, i.e. ω = ω0 = {0, 1, 2, . . .}. We do not distinguish
ordinal numbers ωα and cardinal numbers ℵα.
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Model theory: Preliminaries

If f : A → B is a mapping from a set A into a set B and X ⊆ A,
then

I f |X denotes the restriction of f to the set X ,

I f [X ] = {f (x) : x ∈ X}, but sometimes we write f (X ) for f [X ]
as well,

I f x or f (x) stands for the sequence fx1, fx2, . . . , fxn, where x
denotes the sequence x1, x2, . . . , xn.

The cardinal number of a set X is denoted by |X |, and the set of
all subsets of X by P(X ).
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Model theory: Preliminaries

Our metatheory is based on the ZFC set theory, and we shall not
point out explicitly when we use, for example, the Axiom of Choice
or its equivalents. However, all exceptions will be indicated, as the
use of the Continuum Hypothesis or some weaker variants of the
Axiom of Choice.

Final remarks are on usage and signs. The word ”iff” is often used
instead of the phrase ”if and only if”. The end of a proof is
indicated by �.
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Model theory: Introduction

Model theory is often defined as a union of formal logic and
universal algebra. More detailed analysis shows that model theory
is the study of the relationship between syntactical objects on the
one hand and the structures of a set-theoretical nature on the
other hand, or in other words, between formal languages and their
interpretations.

Therefore, two areas of logic, syntax and semantics, both have a
role to play in this subject.

While syntax is concerned mainly with the formation rules of
formulas, sentences and other syntactical objects, semantics bears
on the meaning of these notions.
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Model theory: Introduction

One of the most important concepts of model theory is the
satisfaction relation, denoted by |=, a relation between
mathematical structures and sentences. Model theory was
recognized as a separate subject during the thirties of the XX
century in the works of Thoralf Skolem (1887-1963, Norwegian),
Alfred Tarski (1901-1983, Polish), Kurt Gödel (1906–1978,
Austrian), Anatoly Malcev (1909–1967, Russian) and their
followers.

Since then, this field has developed vigorously, and was applied in
many other branches of mathematics: algebra, set-theory,
nonstandard analysis, computer science and even mathematical
economy.

We can speak of model theory of any kind of logic, but we shall
study model theory of first-order predicate calculus.
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Model theory: First-order languages

A first order language is any set L of constant symbols, function
symbols and relation symbols. Each of the relation and function
symbols has some definite, finite number of argument places.
Sometimes it is convenient to consider constant symbols as
function symbols with zero argument places. According to our
classification, we have

L = FncL ∪ RelL ∪ ConstL, where (0.2)

I FncL = {s ∈ L : s is a function symbol of L},
I RelL = {s ∈ L : s is a relation symbol of L},
I ConstL = {s ∈ L : s is a constant symbol of L},

If L and L′ are first order languages, and L ⊆ L′, then L′ is called
an expansion of the language L, while L is called a reduct of L′. If
L′\L is a set of constant symbols, then we say that L′ is a simple
expansion of L.
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Model theory: First-order languages

All these three sets are pairwise disjoint, and each of them may be
an empty set. Namely, we shall deal only with logic with equality.

The arity–function ar : L → ω assigns to each s ∈ L its length,
i.e. the number of argument places. By the remark above, if
s ∈ ConstL, we define ar(s) = 0, while for s ∈ FncL ∪ RelL, we
have ar(s) > 1.

In most cases it will be clear from the context what the lengths of
the symbols of L are, so in such cases the arity function will not be
mentioned explicitly. However, we take
FnckL = {F ∈ FncL : ar(F ) = k}. A similar meaning has RelkL for
relation symbols of L.

Example The language of ordered fields is L = {+,−, ·,6, 0, 1}.
Here FncL = {+,−, ·, }, RelL = {6}, ConstL = {0, 1}.
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Model theory: Terms and formulas

Terms and formulas of a first-order language L are special finite
sequences of the symbols of L and the logical symbols of the
first-order predicate calculus (which shall be abbreviated PR1).

Logical symbols of PR1 are logical connectives and quantifiers:

I ∧ – and, ∨ – or signs, ⇒ - implication, ⇔ – equivalence,

I ¬ – negation and the equality sign ≡,

I ∀ – universal quantifier and ∃ – existential quantifier.

Finally, we have an infinite sequence of variables v1, v2, . . ..

The unique readability of terms and formulas must be provided, so
some auxiliary symbols are used, the left and right parenthesis and
the comma sign: ( ) ,.

Metavariables are x , y , z , x0, y0, z0, . . ., and they may denote any
variable vi , i ∈ ω, i.e. the domain of metavariables is the set
Var = {v1, v2, . . .}. Metaequality is another important such sign
and it will be denoted by =.
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Model theory: Terms and formulas

Terms, or algebraic expressions of a language L can be described
inductively:

I Variables and constant symbols of L are terms.

I If F ∈ FncL is of the length n, and t1 . . . , tn are terms of L,
then F (t1, . . . , tn) is a term of L.

I Every term of L is obtained by a finite number of applications
of the previous two rules.

A somewhat more formal (recursive) definition of this notion is:

T0 = Var ∪ ConstL,

Tn+1 = Tn ∪ {F (t1, . . . , tk) : t1, . . . , tk ∈ Tn,F ∈ FnckL, k ∈ ω},

TermL =
∪

n∈ω Tn.

Then term of L is any element t of TermL.
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Model theory: Terms and formulas

Standard rules are applied on terms: rules about deleting
parenthesis, special notation for binary function symbols, possible
priority of function symbols, etc.

The complexity function co : TermL → ω of terms is a measure of
the complexity of the terms. It is defined in the following way:

If t ∈ T0 , then co(t) = 0.

If t ∈ Tn\Tn−1, then co(t) = n, n ∈ ω\{0}.

The complexity of terms can be visualized from the following
diagram. Letters F and G here are the binary function symbols.
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Model theory: Terms and formulas

Figure: Terms of a first order language L
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Model theory: Terms and formulas

Formulas of the first-order language L are defined in a similar
manner. First, the atomic formulas are defined:

A string φ is an atomic formula of a language L, if and only if φ
has one of the following forms:

u ≡ v , u, v are terms of L,

R(t1, . . . , tn), R ∈ RelnL and t1, . . . , tn are terms of L.

Let AtL denote the set of the atomic formulas of L. Then by the
previous definition we have

AtL = {u ≡ v : u, v ∈ TermL}∪
{R(t1, . . . , tn} : n ∈ ω,R ∈ RelnL, t1, . . . , tn ∈ TermL}.

Formulas of a language L are also defined inductively by the use of
an auxiliary sequence Fn, n ∈ ω, of sets of strings of L:
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Model theory: Terms and formulas

F0 = AtL,

Fn+1 = Fn ∪ {(φ ∧ ψ) : φ,ψ ∈ Fn}∪
{(φ ∨ ψ) : φ,ψ ∈ Fn}∪
{(¬φ) : φ ∈ Fn}∪
{(φ⇒ ψ) : φ,ψ ∈ Fn}∪
{(φ⇔ ψ) : φ,ψ ∈ Fn}∪
{(∀xφ) : x ∈ Var, φ ∈ Fn}∪
{(∃xφ) : x ∈ Var, φ ∈ Fn}, n ∈ ω,

ForL =
∪

n∈ω Fn

Then the elements of the set ForL are defined as formulas of the
language L. It is not difficult to see that the formulas satisfy the
following conditions:
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Model theory: Terms and formulas

I Atomic formulas are formulas.

I If φ and ψ are formulas of L , and x is a variable, then
(φ ∧ ψ), (φ ∨ ψ), (¬φ), (φ⇒ ψ), (φ⇔ ψ), (∃xφ), (∀xφ)
are also formulas of L.

I Every formula of L is obtained by a finite number of use of the
previous two rules,

In order to measure the complexity of formulas, we shall extend
the complexity function co to formulas as well. Therefore,
co : ForL → ω is defined inductively in the following way:

I If φ ∈ AtL, then co(φ) = 0,

I If φ ∈ Forn\Forn−1, n ∈ ω\{0}, then co(φ) = n.
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Model theory: Terms and formulas

As in the case of terms, we suppose that the reader is familiar with
the basic conventions about formulas: the use of rules on deleting
parenthesis, priority of logical connectives, universal quantifiers at
the outermost level can be omitted, etc.

In addition, we shall shrink blocks of quantifiers, for example
instead of ∀x0∀x1 . . . ∀xnφ we shall write ∀x0x1 . . . xnφ whenever
appropriate.

The notion of a free occurrence of variables allows us to
describe precisely the variables of a formula φ which are not in the
scope of the quantifiers.

Žarko Mijajlović, zarkom@matf.bg.ac.rs An introduction to Model theory with application in Computer science



Model theory: Terms and formulas

Definition The set Fv(φ) of variables which have free occurrences
in a formula φ of L is introduced inductively by the complexity of
φ in the following way:

I If φ ∈ AtL, then Fv(φ) is the set of variables which occur in
φ.

I Fv(¬φ) = Fv(φ).

I Fv(φ ∧ ψ) = Fv(φ ∨ ψ) = Fv(φ⇒ ψ) = Fv(φ⇔ ψ) =
Fv(φ) ∪ Fv(ψ),

I Fv(∃xφ) = Fv(∀xφ) = Fv(φ)\{x}.

The elements of the set Fv(φ) are called free variables of the
formula φ, while the other variables which occur in φ are called
bounded.

Example If φ = (¬x ≡ 0 ⇒ ∃y(x · y ≡ 1)) then Fv(φ) = {x}, so
x is a free variable of φ and y is a bounded variable of φ.
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Model theory: Terms and formulas

If φ ∈ ForL, then the notation φ(x0, . . . , xn), or φx0 . . . xn is used
to denote that free variables of φ are some of the variables
x0, . . . , xn.

Formulas φ which do not contain free variables, i.e. Fv(φ) = 0,
are called sentences. The formulas

0 ≡ 1, ∀x(¬x ≡ 0 ⇒ ∃y(x · y ≡ 1))

are examples of sentences of the language L = {·, 0, 1}, where · is
a binary function symbol. The set of all sentences of L is denoted
by SentL. The cardinal number of ForL is denoted by ||L||,
therefore ||L|| = |ForL|. It is not difficult to see that for every
first-order language L we have

||L|| = max{|L|,ℵ0}. (0.3)
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Model theory: First-order theories

The definition of the notion of a first-order theory is simple:

A theory of a first order language L is any set of sentences of L.

Therefore, a set T is a theory of L iff T ⊆ SentL. In this case
elements of T are called axioms of T .

The main notion connected to the concept of a theory is the
notion of a proof in the first-order logic. There are several
approaches to the formalization of the notion of a proof. For
example, Gentzen’s systems are very useful for the analysis of the
proof-theoretical strength of mathematical theories. The emphasis
in Gentzen’s approach is on deduction rules, as distinct from
Hilbert-oriented systems, where the stress is on the axioms.

Hilbert style formal systems are more convenient in model
theory, so we shall confine our attention to them. We present the
logical axioms and rules of inference for a first order language L:
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Model theory: First-order theories

I Sentential axioms. These axioms are derived from
propositional tautologies by the simultaneous substitution of
propositional letters by formulas of L.

I Identity axioms. If φ ∈ ForL, t ∈ TermL, x ∈ Var, then
φ(t/x) denotes the formula obtained from φ by substituting
the term t for each free occurrence of x in φ. Sometimes, we
shall use the abridged form φ(t) or φt, instead of φ(t/x).
Now we shall list the identity axioms:

I x ≡ x . If t ∈ TermL an n ∈ ω, then
I x1 ≡ y1 ∧ . . . ∧ xn ≡ yn ⇒ tx1x2 . . . xn ≡ ty1y2 . . . yn,
I x1 ≡ y1 ∧ . . . ∧ xn ≡ yn ⇒ (φx1x2 . . . xn ⇔ φy1y2 . . . yn).

I Quantifier axioms. If φ ∈ ForL, t ∈ TermL, x ∈ Var then

∀xφx ⇒ φt, φt ⇒ ∃xφx ,
where φt is obtained from φx by freely substituting each free
occurrence of x in φx by the term t.
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Model theory: First-order theories

Rules of inferences. Let φ and ψ be formulas of L.

I Modus Ponens:
φ, φ⇒ ψ

ψ

I Generalization rules. Provided x is not free in φ and θ:

φ⇒ ψ

φ⇒ ∀xψ

φ⇒ θ

∃xφ⇒ θ

A proof of a sentence φ in a theory T of a language L is every
sequence ψ1, ψ2, . . . , ψn of formulas of the language L such that
φ = ψn and each formula ψi , i = 1, . . . , n, is a logical axiom, or an
axiom of T , or it is derived by inference rules from the preceding
members of the sequence.
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Model theory: First-order theories

If there exists a proof of φ in T , then φ is called a theorem of T ,
and in this case we use the notation T ⊢ φ. The relation ⊢
between theories and formulas of a language L is the provability
relation. If T = ∅, then we simply write ⊢ φ instead of ∅ ⊢ φ, and
φ is called a theorem of the first-order predicate calculus.

If φ is not a theorem of T , then we write ∼ T ⊢ φ or T ̸⊢ φ for
short.

Formulas of the form φ ∧ ¬φ are called contradictions.

A theory T is consistent if a contradiction is not provable in T ,
i.e. there is no contradiction ψ such that T ⊢ ψ.

Another important property which theories may have is
completeness. A theory T of a language L is complete if for each
sentence φ of L either T ⊢ φ or T ⊢ ¬φ.
Finally, T is deductively closed if T contains all its theorems.
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Model theory: First-order theories

There is a group of first-order notions which are related to the
effective computability. We shall suppose that the reader has some
basic ideas of the effective computability and arithmetical coding.

So, for this purpose, if φ ∈ ForL, then ⌈φ⌉ denotes the code of
formula φ. We remind that the code ⌈φ⌉ is a unique positive
integer assigned to φ A similar notation is applied to other
syntactical objects (terms, elements of L, etc.).

A first order language L is recursive, if the set ⌈L⌉ = {⌈s⌉ : s ∈ L}
is recursive. Similarly, L is recursively enumerable if ⌈L⌉ is a
recursively enumerable set.
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Model theory: First-order theories

A theory T of the language L is finitely axiomatizable, if T has a
finite set of axioms. A generalization of this notion is the concept
of an axiomatic theory.

A theory T is axiomatic or recursive if T i.e. {⌈φ⌉ : φ ∈ T} is
a recursive set of sentences.

The definitions of notions introduced in this way can be
broadened. Namely, two theories T and S of the same language L
are equivalent, if they have the same theorems. Then a theory T is
considered to be also finitely axiomatizable (axiomatic), if there is
a theory S equivalent to T which has a finite set of axioms.

It is interesting that the assumption of recursive enumerability does
not bring a generalization, as the following theorem shows.

Žarko Mijajlović, zarkom@matf.bg.ac.rs An introduction to Model theory with application in Computer science



Model theory: First-order theories

Theorem (Craig’s trick). Suppose T is a theory of a language L
with a recursively enumerable set of axioms. Then there is a
recursive theory S of the language L equivalent to T .
Proof Since T is recursively enumerable, there exists a map
τ : ω → SentL such that T = {τn : n ∈ ω} and f : n 7→ ⌈τn⌉ is a
recursive function.

Let ψ : ω → SentL be defined by

ψn = τ0 ∧ τ1 ∧ . . . ∧ τn, n ∈ ω

and S = {ψn : n ∈ ω}. Then T and S have the same theorems, i.e.
T and S are equivalent theories.
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Model theory: First-order theories

Furthermore, the mapping g : n 7→ ⌈ψn⌉ is also a recursive
function, because we may take, for example,

⌈ψn⌉ = 2⌈τ0⌉3⌈τ1⌉ · · · p⌈τn⌉n

where pn is the n-th prime.

Also, g is a monotonously increasing function, since n 6 m
obviously implies ⌈ψn⌉ 6 ⌈ψm⌉. Yet, from elementary recursion
theory, it is well known that the set of all values of a monotonous
increasing recursive function is a recursive set, therefore,

S = {gn : n ∈ ω} = {⌈ψn⌉ : n ∈ ω}

is a recursive set. �
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Model theory: First-order theories

A first-order theory T is decidable, if the set of all theorems of T
is decidable (i.e. recursive) set, otherwise T is undecidable. The
most interesting mathematical theories are undecidable. However,
the following proposition gives a test of decidability for certain
theories.

Theorem Suppose T is an axiomatic and complete theory of a
recursive language L. Then T is decidable.

Proof Let T ′ be the set of all the theorems of T . Since T is
complete, for each φ ∈ SentL we have φ ∈ T ′ or ¬φ ∈ T ′. If for
some sentence φ it holds that φ,¬φ ∈ T ′, then T ′ = SentL, and
since SentL is a recursive set, it follows T ′ is recursive as well.
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Model theory: First-order theories

Suppose the second, more interesting case holds, i.e. that T is a
consistent theory.

Since T is recursive, the set (of all the codes) of proofs may be
effectively listed. By the completeness of T , for each sentence φ of
L either φ or ¬φ should occur as the last member of a proof in the
list. In the first case, φ is a theorem of T , while in the second
case, φ is not a theorem of T by the consistency of T .

The just described property of T defines an algorithm for
decidability of T ⊢ φ, where φ ∈ SentL:

Generate all the proofs of T , and look at the end of each proof
until one of the formulas φ, ¬φ appears. If φ occurs then T ⊢ φ,
otherwise T ⊢ ¬φ.

This search will stop since either T ⊢ φ, or T ⊢ ¬φ. �
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Model theory: First-order theories

Here are several elementary, but important, theorems from logic
without proofs.

Deduction Theorem Suppose T is a theory of a language L and
T ⊢ φ where φ ∈ ForL. Then, there are sentences
θ0, θ1, . . . , θn ∈ T such that

⊢ θ0 ∧ θ1 ∧ . . . ∧ θn ⇒ φ.

As a consequence of this theorem we have that a first order theory
T is consistent iff every finite subset of T is consistent.

Lemma on the new constant Let T be a theory of a language L,
and assume c is a constant symbol not occurring in L. Then for
every formula φ(x) of L we have:

if T ⊢ φ(c), then T ⊢ ∀xφ(x).
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Model theory: First-order theories

The proof of this lemma is very easy:

If in the proof of φ(c) from T , the constant symbol c is replaced
by a variable y , which does not occur in that proof, then we shall
obtain a proof of φ(y) from T . By the inference rule of
generalization, the lemma then follows at once.

A formula φ of a first order language L is in a prenex normal
form, if φ is of the form Q1y1Q2y2 . . .Qnynψ, where ψ is a
formula without quantifiers, and Q1,Q2, . . . ,Qn are some of the
quantifiers ∀, ∃. In this case the formula ψ is called a matrix.

Prenex Normal Form Theorem (PNF Theorem) For every
formula φ of a first order language L, there exists a formula ψ of L
in a prenex normal form, such that T ⊢ φ⇔ ψ.
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Model theory: First-order theories

Another important notion is related to the last theorem. This is the
so-called proof-theoretical hierarchy of formulas of a language L.

Definition Let L be a first order language. Then:

I
∑0

0 =
∏o

0 = {φ ∈ ForL : φ does not contain quantifiers},
I

∑0
n+1 = {∃x1 . . . xkφ : k ∈ ω, φ ∈

∏
n },

I
∏0

n+1 =
{
∀x1 . . . xkφ : k ∈ ω, φ ∈

∑0
n

}
.

If φ ∈
∑0

n then φ is called a
∑0

n-formula, and if φ ∈
∏0

n, then φ is
a
∏0

n -formula.

If φ is a
∑0

1 -formula, then φ is also called an existential formula,
while if φ is a

∏0
1 -formula, then φ is called a universal formula.
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The sequences
∑0

n and
∏0

n formulas of L define a
proof-theoretical hierarchy of formulas of L.

By PNF Theorem every formula φ of L is equivalent to a formula
ψ such that either ψ ∈

∑0
n or ψ ∈

∏0
n. Then φ is called a∑0

n-formula and respectively
∏0

n - formula. If φ is a formula of L
and for some n ∈ ω there is a ψ ∈

∑0
n and a θ ∈

∏0
n both

equivalent to φ then φ is called a ∆0
n - formula.

The main properties of the proof-theoretical hierarchy are
described in the following diagram.

Theorem

Figure: Proof theoretical hierarchy of first-order formulas
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We shall give several examples of first-order theories. Most
examples are from working mathematics, and we shall consider
some cases in greater detail.

For every example, we shall exhibit explicitly the corresponding
language L in which the axioms of the theory are written down.

Example Pure predicate calculus with identity, J0. For this theory
we have: L = ∅, T = ∅.

Theorems of J0 are exactly the theorems of PR1 which contain
only logical symbols. Here are several interesting examples of
sentences which can be written in L:
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σ1 = ∃x1∀x(x ≡ x1),

σ2 = ∃x1x2(¬x1 ≡ x2 ∧ ∀x(x ≡ x1 ∨ x ≡ x2)),
...
σn = ∃x1 . . . xn((

∧
16i<j6n

(¬xi ≡ xj) ∧ ∀x
∨

16i6n

(x ≡ xi )).

τ1 = ∃x1(x1 = x1),

τ2 = ∃x1x2(¬x1 ≡ x2),
...
τn = ∃x1 . . . xn(

∧
i<j

(¬xi ≡ xj)).

σn – ”There are exactly n elements”.
τn – ”There are at least n elements”.
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Example The theory of linear ordering, LO. In this case we have:
LLO = {6}, 6 is a binary relation symbol. Axioms of T are:

LO.1 x 6 x , reflexivity,
LO.2 x 6 y ∧ y 6 z ⇒ x 6 z , transitivity,
LO.3 x 6 y ∧ y 6 y ⇒ x ≡ y , antisimetricity,
LO.4 x 6 y ∨ y 6 x , linearity.

A theory PO whose axioms are LO.l-3 is called a theory of partial
ordering.
The binary relation symbol < is introduced by the definition
axiom: x < y ⇔ x 6 y ∧ x ̸≡ y .
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Example The theory of dense linear ordering without endpoints,
DLO. The language of this theory is the same as in the case of LO,
while the axioms DLO are the axioms of LO plus the following
sentences:

∃x∃y x ̸≡ y , ∀x∃y x < y , ∀x∃y y < x ,

∀x∀y∃z (x < y ⇒ x < z ∧ z < y).

It is not difficult to see that for each n ∈ ω\{0}, DLO ⊢ τn, where
τn is the sentence from Example J0.
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Example The theory of Abelian groups, Ab. In this case we have:
RelAb = ∅, FncL = {+,−}, where + is a binary function symbol,
and − is a unary function symbol. Further, ConstL = {0}. The
axioms of Ab are the following formulas:

Ab.1 (x + y) + z ≡ x + (y + z), associative identity,
Ab.2 x + y ≡ y + x , commutative identity,
Ab.3 x + 0 ≡ x , identity of a neutral element,
Ab.4 x + (−x) ≡ 0, identity of an inverse element.

It is easy to prove by induction on the complexity of terms:
If t ∈ TermL, then there is k ∈ ω and integers m1,m2, . . . ,mk

such that

Ab ⊢ tx ≡ m1x1 + . . .+mkxk , where x1, x2, . . . , xk are variables.
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Example Field theory, F. The language of this theory is the
language of Abelian groups plus some additional symbols, i.e.
LF = LAb ∪ {·, l} where · is a binary function symbol and 1 is a
constant symbol. Axioms of F are those of Ab plus the following
sentences:

(x · y) · z ≡ x · (y · z), x · y ≡ y · x ,
x ̸≡ 0 ⇒ ∃y x · y = 1, x · (y + z) ≡ (x · y) + (x · z),

x · 1 ≡ x 0 ̸≡ 1,

It is possible to introduce a new function symbol −1 in the theory
F by the following defining axiom:

∀xy(x ̸≡ 0 ⇒ (x · y ≡ 1 ⇔ y ≡ x−1)).

Then F proves: ∀x (x ̸≡ 0 ⇒ x · x−1 ≡ 1).

An important extension of F is the theory of closed fields, CF. It
is obtained from F by adding an infinite set of axioms which say
that every polynomial of positive degree has a root.
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Example The theory of ordered fields, FO. The language of this
theory is LFO = LLO ∪ LF, while the axioms are the axioms of
theory F plus the following formulas:

x 6 y ⇒ x + z 6 y + z , x 6 y ∧ 0 6 z ⇒ x · z 6 y · z .

We note that the formula

x21 + . . .+ x2n = 0 ⇒ x1 ≡ 0 ∧ . . . ∧ xn ≡ 0

is a theorem of the theory FO.

An important extension of FO is the theory of ordered real closed
fields, RCF. It is obtained from FO by adding an axiom which says
that every positive element has a root and an infinite set of axioms
which say that every polynomial of odd degree has a root.
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Example The theory of Boolean algebras, BA. The language is
LBA = {+, ·,′ ,6, 0, 1}, where + and · are binary function symbols,
’ is a unary function symbol, 6 is a binary relation symbol, while
0, 1 are constant symbols. The axioms of BA:

1. (x + y) + z ≡ x + (y + z), 1′. (x · y) · z ≡ x · (y · z),
2. x + y ≡ y + x , 2′. x · y ≡ y · x ,
3. x + 0 ≡ x , 3′. x · 1 ≡ x , ,
4. x + x ′ ≡ 1, 4′. x · x ′ ≡ 0,
5. x + (x · y) ≡ x , 5′. x · (x + y) ≡ x ,
6. x + (y · z) ≡ (x + y) · (x + z), 6′. x · (y + z) ≡ (x · y) + (x · z),
7. 0 ̸≡ 1, 7′. x 6 y ⇔ x ≡ x · y .
The following notation is also used for Boolean operations.
Namely, the symbols ∨ and ∧ are often used for + and ·
respectively. The sign ′ is used unchanged, but x̄ is also used for ′.
For example, the term (x ′ · y) + z in the new notation may be
written as (x̄ ∧ y) ∨ z .
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It is easy to infer in BA the axioms of partial order in respect to
the relation symbol 6. We have the following important theorems
of the theory BA:

I Let sup and inf denote the order supremum and infimum in
respect to 6. Then the next identities are theorems of BA:

sup{x1, x2, . . . , xn} ≡
∑
i6n

xi , inf{x1, x2, . . . , xn} ≡
∏
i6n

xi .

I For each t ∈ TermLBA ,

BA ⊢ t(x0, . . . , xn−1) ≡
∑
α∈2n

t(α0, . . . , αn−1)x
α0
0 . . . x

αn−1

n−1

where 2n = {α|α : n → 2} and x0 = x ′, x1 = x . This
property of Boolean terms is proved by induction on the
complexity of terms.
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Example Peano arithmetic, PA. This theory has the same
language as theory BA, i.e. LPA = LBA. Axioms of PA are the
following formulas:

1. x ̸≡ 0, 6. x ′y ≡ xy + y ,
2. x ′ ≡ y ′ ⇒ x ≡ y , 7. ¬(x < 0),
3. x + 0 ≡ x , 8. x < y ′ ⇒ x < y ∨ x ≡ y ,
4. x + y ′ ≡ (x + y)′, 9. x < y ∨ x ≡ y ∨ y < x ,
5. x · 0 ≡ 0, 10. 1 ≡ 0′.

Induction scheme (I). Let φxy1y2 . . . yn be a formula of LPA.
Then the universal closure of

φ0y1y2 . . . yn ∧∀x(φxy1y2 . . . yn ⇒ φx ′y1y2 . . . yn) ⇒ ∀xφxy1y2 . . . yn

is an axiom of PA.
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This theory is also called the formal arithmetic. It contains several
interesting subtheories. At this moment we shall mention two of
them.

The first theory is P−. This theory consists of the axioms 1–10.
Therefore, PA = P− + (I ).

Another example is the Presburger arithmetic. It consists of those
axioms of PA which are expressed in the language {+,′ , 0} , i.e. in
the language LPA without the symbols ·,6, 1.
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All the examples we have listed are axiomatic theories, i.e. with
recursive sets of axioms. Also, all except the last example, are
finitely axiomatizable theories.

Theories J0, LO, DLO, Ab, BA are decidable, while F, FO and PA
are not. PA is certainly the most famous example of an
undecidable theory.

The Pressburger arithmetic is also decidable and a complete
theory. The first example of a program not dealing with numbers
but with the symbols only was the implementation of the decision
procedure for Presburger arithmetic (Martin Davis, around 1955).
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We have dealt in the previous sections mainly with syntactical
notions. On the other hand, the most important concept in model
theory is the idea of an operational-relational structure, or simply a
model of a first-order language L.

Customary mathematical structures such as groups, fields, ordered
fields, and the structure of natural numbers, are examples of
models. When studying the properties of models, a distinctively
important role is played by the concept of formal language used to
make precise the set of symbols and rules used to build formulas
and sentences.

The main reason for introducing formulas is to describe properties
of models. Therefore, it is not astonishing that some properties of
models are often consequences of the structure of sentences or
classes of sentences. The proofs of such features of models are
usually called model-theoretical proofs.
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Using the methods of model theory many open mathematical
problems have been solved. One such famous problem is the
consistent foundation of Leibnitz Analysis, a problem which stood
open for 300 years. Abraham Robinson gave a simple but ingenious
solution, and thanks to him there is now a whole new methodology
which is equally well applied to topology, algebra, probability
theory, and practically to all mathematical fields where infinite
objects appear.

Definition A model is every structure A = (A,F ,R, C) where A is
a nonempty set (the domain of A), F is a family of operations over
A, R is a set of relations over A and C is a set of constants of A.

By this definition of a model we have.
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If F ∈ F , then there is an n ∈ ω such that F : An → A, i.e. F is an
n-ary operation over A. The length of F is denoted by ar(F ).

If R ∈ R, then there is n ∈ ω, such that R ⊆ An, i.e. R is a
relation over A of a length n. The length of R is denoted by ar(R).

Finally, C ⊆ A.

If R, F , C are finite sets, for example

F = {F1,F2, . . . ,Fm}, R = {R1,R2, . . . ,Rn}, C = {a1, a2, . . . , ak},

then A may be denoted as

A = (A,F1,F2, . . . ,Fm,R1,R2, . . . ,Rn, a1, a2, . . . , ak).

If these sets are indexed, i.e. F = ⟨Fi : i ∈ I ⟩, R = ⟨Rj : j ∈ J⟩,
C = ⟨ak : k ∈ K ⟩, we can also use the notation:

A = (A,Fi ,Rj , ak)i∈I ,j∈J,k∈K .
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Example.

1. The ordered field of real numbers: R = (R,+, ·,−,6, 0, l).
Here, F = {+, ·,−}, R = {6}, ar(6) = 2,
ar(+) = ar(·) = 2, ar(−) = 1 and C = {0, l}.

2. The structure of natural numbers: N = (N,+, ·,′ ,6, 0).
3. The field of all subsets of a set X :

P(X ) = (P(X ),∪,∩, c ,⊆,X ), where P(X ) = {Y : Y ⊆ X},
and for Y ∈ P(X ), Y c = X\Y .
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Models are interpretations of first-order languages. Let L be a
first-order language and A a non-empty set. An interpretation of
L into the domain A is every mapping I defined on L, and with
values determined as follows:

If F ∈ FncL, then I (F ) is an operation of A with the length ar(F ).
If R ∈ RelL, then I (R) is a relation of A with the length ar(R).
If c ∈ ConstL then I (c) ∈ A.

Therefore, every interpretation I of a language L into a domain A
determines a unique model A = (A, I (RelL), I (FncL), I (ConstL)).

For so introduced notion of a model we write simply

A = (A, I ), or A = (A, sA)s∈L,

where for s ∈ L, sA = I (s).
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We see that in the last example R is a model of the language of
ordered fields, while N is a model of the language of Peano
arithmetic and finally P(X ) is a model of the language of the
theory of Boolean algebras.

From now on the letters A, B, C, . . . will be reserved for models
and A, B, C , . . . for their domains.

If L is a language and A is a model of L, then s ∈ L and sA denote
objects of a different nature. However, if the context allows, we
shall use the same sign to denote a symbol of L and its
interpretation in A. Therefor the superscript A will be often
omitted from sA. The circumstance under which s appears will
determine if s ∈ L or s is in fact an interpretation of a symbol of L.
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Very often a structure A is introduced without explicit mention of
the related language. But, from the definition of the structure A it
will be clear what is the corresponding language and in that case
we shall denote the language in question by LA and it will be called
the language of the model A.

A similar situation may appear for a theory T ; the corresponding
language will be denoted by LT and it will be called the language
of the theory T .

Assume L ⊆ L′ are first-order languages, and let A be a model of
L′. Omitting sA for s ∈ L′\L from the model A, we obtain a new
model B of L with the domain B = A. In this case, A is called an
expansion of the model B, while B is called a reduct of the
model A. If I and I ′ are interpretations which determine B and A,
respectively, we see that I = I ′|L.
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Definition Let A and B be models of a language L. Then B is a
submodel of A, if and only if:

I if B ⊆ A and R ∈ RelkL then RB = RA ∩ Bk ,

I if F ∈ FnckL then FB = FA|Bk ,

I if c ∈ ConstL then cB = cA.

The fact that B is a submodel of A, we shall denote by B ⊆ A.
For example (N,+, ·,6,O, l) ⊆ (R,+, ·,6,O, l), but for Y ⊂ X ,
Y ̸= X , it is not true that

(P(Y ),∪,∩, c , ∅,Y ) ⊆ (P(X ),∪,∩, c , ∅,X ).

Algebras are special types of models; they are models of a
languages L with RelL = ∅. As in the case of algebras, it is
possible to introduce notions of a homomorphism and an
isomorphism for models, too.
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Definition. Let A and B be models of a language L, and
f : A → B. The map f is a homomorphism from A into B, what is
denoted by f : A → B, if and only if:

I For F ∈ FnckL , for all a1, a2, . . . , ak ∈ A,

f (FA(a1, a2, . . . , ak)) = FB(fa1, fa2, . . . , fak).

In this case we say that f is concurrent with operations FA

and FB.
I For R ∈ RelkL and for all a1, a2, . . . , ak ∈ A,

RA(a1, a2, . . . , ak) implies RB(fa1, fa2, . . . , fak).

In this case we say that f is concurrent with relations RA and
RB.

I For c ∈ ConstL, f (c
A) = cB.
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Similarly to the case of algebraic structures, we have the following
classification of homomorphisms.

I f is an embedding, if f is 1–1.

I f is an onto-homomorphism (or epimorphism), if f is onto.

I f is a strong homomorphism, if for every R ∈ RelkL, and
a1, a2, . . . , ak ∈ A,

RA(a1, a2, . . . , ak) holds iff RB(fa1, fa2, . . . , fak) holds.

I f is an isomorphism, if f is 1-1 and a strong epimorphism.

I f is an automorphism, if f is an isomorphism and A = B.

The set of all the automorphisms of a model A is denoted by
AutA. It is not difficult to see that AutA is a group under
function multiplication; this group will be denoted by AutA.
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Suppose f : A → B is a homomorphism. Then we shall use the
following conventions:

I If f is an embedding, we shall say that A is embedded into B.

I If f is an onto map, we shall say that B is a homomorphic
image of A, and we shall occasionally denote this fact by
B = f (A).

I If f is an isomorphism between models A and B, then we shall
write f : A ≈ B. The notation A ≈ B is used to indicate that
there is an isomorphism f : A ≈ B, and in this case we shall
say that A and B are isomorphic.

The set of all automorphisms of a countable model has the
following interesting property.

Theorem (Kueker) Let A be a countable model. Then
|AutA| > ℵ0 implies |AutA| = 2ℵ0 .
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When introducing syntactical objects of PR1, as the terms,
formulas and sentences are, we had in mind certain meanings
related to these notions. Alfred Tarski’s definition of the
satisfaction relation |= determines these ideas precisely.

The introduction of this relation also solves the problem of
mathematical truth. Namely, a sentence φ will be true in a
structure A, if A |= φ. Finally, this formalization of the
mathematical truth enables a mathematical analysis of
metamathematical notions.

We shall first define the values of the terms in models. Let A be a
model of a first-order language L. A valuation or an assignment of
the domain A is every map µ : Var → A. Hence, valuations assign
values to variables. The value of a term u(x0, . . . , xn) ∈ TermL in
a model A, denoted by uA[µ], is defined by induction on the
complexity of terms, assuming that µ(vi ) = ai , i ∈ ω.
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Value of a term u ∈ TermL. If co(u) = 0, then we distinguish
two cases:

I If u is a variable vi , then uA[µ] = ai .

I If u is a constant symbol c, then uA[µ] = cA.

Suppose now co(u) = n + 1, and assume that the values of the
terms of the complexity 6 n are determined. Then there is
F ∈ FnckL such that u = F (u1, u2, . . . , uk) where u1, u2, . . . , uk are
terms of complexity 6 n. Then, by definition,

uA[µ] = FA(uA1 [µ], u
A
2 [µ], . . . , u

A
k [µ]).

Instead of uA[µ], it is common to write uA[a1, a2, . . . , ar ] or
u[a1, a2, . . . , ar ], or u(a1, a2, . . . , ar ), if it is clear which model is in
question. Here, r is the number of distinct variables appearing in u.
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If A is a model of a language L, an operation F of domain A is
derived if there is t(x1, x2, . . . , xn) ∈ TermL such that

F (a1, a2, . . . , an) = tA(a1, a2, . . . , an), a1, a2, . . . , an ∈ A.

The following proposition says that homomorphisms of a model
remain concurrent with respect to the derived operations.

Theorem. Let A and B be models of a language L, and h : A → B
a homomorphism. Then for every term u(x1, x2, . . . , xn) of L and
all a1, a2, . . . , an ∈ A the following holds:

h(uA[a1, a2, . . . , an]) = uB[ha1, ha2, . . . , han].
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Proof The proof is done by induction on the complexity of terms.
So, let u ∈ TermL, and suppose that the variables v0, v1, . . . have
the values a0, a1, . . . under valuation µ. First assume co(u) = 0,
We have two cases:

I u ∈ ConstL. Then: h(u
A[µ]) = h(uA) = uB = uB[µ].

I u is a variable xi , Then:
h(uA[µ]) = h(ai ) = uB[ha1, ha2, . . . , han].

Now suppose the statement is true for some fixed n ∈ ω, and let
co(u) = n + l . Then there is an F ∈ FnckL of and there are some
terms u1, u2, . . . , uk such that u = F (u1, u2, . . . , uk). Then the
terms ui are of complexity 6 n and hence, by the inductive
hypothesis, we have
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h(uA[µ]) = hFA(uA1 [µ], . . . , u
A
k [µ])

= FB(huA1 [µ], . . . , hu
A
k [µ])

= FB(uB1 [hµ], . . . , u
B
k [hµ]). �

Figure: Homomorphism theorem for terms

Note. This theorem can be obviously restated as follows: For
every valuation µ : Var → A the displayed diagram commutes, i.e.

huA[µ] = uB[hµ].
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An algebraic identity of a language L is every formula u ≡ v , where
u, v ,∈ TermL. We say that an algebra of L satisfies the identity
u ≡ v , if and only if for all a1, a2, . . . , an ∈ A,
uA[a1, a2, . . . , an] = vA[a1, a2, . . . , an].

Corollary Let A and B be algebras of a language L, and assume
that B is a homomorphic image of A. Then every identity true in
A also holds in B.

Proof Let h : A → B be onto, and suppose an identity u = v holds
in A. Then, for arbitrary b1, b2, . . . , bn ∈ B, there are
a1, a2, . . . , an ∈ A such that ha1 = b1, . . . , han = bn, So

uB[b1, b2, . . . , bn] = uB[ha1, ha2, . . . , han] = huA[a1, a2, . . . , an]
= hvA[a1, a2, . . . , an] = vB[ha1, ha2, . . . , han]
= vB[b1, b2, . . . , bn]. �

Žarko Mijajlović, zarkom@matf.bg.ac.rs An introduction to Model theory with application in Computer science



Model theory: Satisfaction relation

This corollary is an example of a preservation theorem. Namely,
it says that some properties are preserved under homomorphisms
and in this case these properties are those which can be described
by identities.

Some examples are the associativity and the commutativity of
algebraic operations. This is probably one of the places where one
can see the algebraic nature of model theory.

Now we shall turn to the most important concept of model theory.
This is the notion of the satisfaction relation, or the definition of
the mathematical truth.

Definition Let A be a model of a language L. We define the
relation A |= φ[µ] for all formulas φ of L and all valuations
µ = ⟨ai : i ∈ ω⟩ of the domain A by induction on the complexity of
formulas φ:
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I If φ is u ≡ v , u, v ∈ TermL, then
A |= φ[µ] iff uA[µ] = vA[µ],

I If φ is R(u1, u2, . . . , un), R ∈ RelnL, u1, u2, . . . , un ∈ TermL,
then A |= φ[µ] iff (uA1 [µ], u

A
2 [µ], . . . , u

A
n [µ]) ∈ RA, i.e.

RA(uA1 [µ], u
A
2 [µ], . . . , u

A
n [µ]).

I If φ is ¬ψ, then A |= φ[µ] iff not A |= ψ[µ].

I If φ is ψ ∧ θ, then A |= φ[µ] iff A |= ψ[µ] and A |= θ[µ].

I If φ is ψ ∨ θ, then A |= φ[µ] iff A |= ψ[µ] or A |= θ[µ].
I If φ is ψ ⇒ θ, then

A |= φ[µ] iff not A |= ψ[µ] or A |= θ[µ].
I If φ is ψ ⇔ θ, then

A |= φ[µ] iff A |= ψ[µ] if and only if A |= θ[µ].
I If φ is ∃vkψ(v1, v2, . . . , vn), k 6 n, then

A |= φ[µ] iff exists a ∈ A so that A |= ψ[µ(k/a)].
I If φ is ∀vkψ(v1, v2, . . . , vn), k 6 n, then

A |= φ[µ] iff for all a ∈ A it is valid A |= ψ[µ(k/a)].
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By the definition of the satisfaction relation, we see that the value
of A |= φ[µ] depends only on the free variables which occur in φ.
A rigorous proof of this fact can be derived by induction on the
complexity of formulas.

This property enables us to introduce the following conventions.

If φ = φ(v0, . . . , vn) and µ = ⟨ai : i ∈ ω⟩, then we shall simply
write A |= φ[a0, . . . , an] instead of A |= φ[µ].

Sentences do not have free variables, so their values do not depend
on the choice of a valuation, i.e. if φ ∈ SentL and A |= φ[µ], then
for all valuations σ we have A |= φ[σ]. Thus, we shall use the
abbreviated form A |= φ instead of A |= φ[µ].

The theory of a model A of L:

ThA = {φ ∈ SentL : A |= φ}.
is another useful model-theoretic concept.
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It is easy to see that for each formula φ of L and every valuation µ
either A |= φ[µ] or A |= ¬φ[µ], thus, ThA is a complete theory.

For example, the theory of the structure of natural numbers, ThN,
is complete, and so it is called a complete arithmetic. As N is a
model of the theory PA, it follows that PA⊆ ThN.

On the other hand, the Gödel’s Second Incompleteness
Theorem states the set of theorems of PA is a proper subset of
ThN. Moreover, ThN is not an axiomatic theory, i.e. it does not
have a recursive set of axioms.

One of the tasks of model theory is to solve the problem whether a
given theory is axiomatic.
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Let T be a theory of a language L. A model A of L is a model of
the theory T , if every axiom of T holds in A, i.e. T ⊆ ThA. In
such a case, we write A |= T .

For example, every ordered field, like an ordered field of rational
numbers or real numbers, is a model of theory FO.

Similarly, every Boolean algebra is a model of theory BA.

Every model A of a language L satisfies all the axioms of the
first-order logic (predicate calculus) for L. Rules of inferences
(Modus Ponens and Generalization rules) are preserved by the
satisfaction relation, i.e. if µ is a valuation of domain A and
A |= φ1[µ], . . . , φn[µ], where φ1, φ2, . . . , φn ∈ ForL and ψ is
derived by applications of these rules, then A |= [mu].

Therefore, the following theorem is easily proved by induction on
the length of proofs in T.

Žarko Mijajlović, zarkom@matf.bg.ac.rs An introduction to Model theory with application in Computer science



Model theory: Satisfaction relation

Soundness theorem Assume A is a model of a language L and T
is a theory of L. If A |= T and T ⊢ φ, where φ ∈ SentL, then
A |= φ.

Two models A and B of a language L are elementary equivalent
if A and B satisfy the same sentences of L, i.e. ThA = ThB. This
relation between models is denoted by A ≡ B. It is also said that
A and B have the same first-order properties.

By induction on the complexity of formulas it is easy to show:

Theorem Let g : A ≈ B be an isomorphism of models A and B of
a language L. Then, for every formula φv0 . . . vn of L and every
valuation µ = ⟨ai : i ∈ ω⟩ of the domain A, the following holds:

A |= φ[a0, . . . , an] if and only if B |= φ[ga0, . . . , gan].

Since the value of a sentence in a model does not depend on the
choice of a valuation, we have the following consequence.
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Corollary If A and B are isomorphic models of a language L, then
A ≡ B.

Therefore isomorphisms preserve first-order properties.

Elementary embeddings of models are embeddings which
preserve first-order properties. Hence, an elementary embedding
between models A and B of a language L is every map g : A → B,
such that for all φ ∈ ForL, all valuations of domain A, it satisfies

A |= φ[a0, . . . , an] if and only if B |= φ[ga0, . . . , gan].

In this case we use the notation g : A
≺−→ B.

If A ⊆ B and the inclusion map iA : A → B, iA : x 7→ x , x ∈ A, is
elementary, then we write A ≺ B.
Observe that A ≺ B implies A ≡ B.
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A class of M of models of a language L is axiomatic if there is a
theory T of L such that M = {A : A |= T}. For example, the class
of all ordered fields is axiomatic and so is the class of all Boolean
algebras.

The class of all cyclic groups is not an axiomatic class.

Also, if a theory T has infinitely many non-isomorphic finite
models, then the class of all finite models of T is not an axiomatic
class.

The class of all models of a theory T is denoted by M(T ). The
central theorem of model theory says:

For every consistent theory T , M(T ) ̸= ∅.
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Introduction of new linguistic constants is a dual procedure to the
process of interpretations. Namely, to every nonempty set A there
corresponds a certain language LA.

I If g is an n-ary operation over domain A, we can introduce a
function symbol g ∈ LA of arity k.

I If R is a k-ary relation over A, then let R be a relation symbol
of length k which belongs to LA.

I If a ∈ A then a ∈ ConstLA .

The symbols g , R, a are called names of g , R, a, respectively. We
have a natural interpretation of the language LA so defined:

If s ∈ LA, then sA = s.

In this way we have built a model A = (A,F ,R,C), where F is
the set of all operations with domain A, R is the set of all relations
over A, and C = A.
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It is not always necessary to consider the full expansion of set A.
For example, if A is any model of a language L, and
a1, a2, . . . , an ∈ A, then A′ = (A, a1, . . . , an) is a simple expansion
of A, and A′ is a model of the language L′ = L ∪ {a1, . . . , an}.
Note that φa1a2 . . . an is a sentence of L ∪ {a1, a2, . . . , an}.
The following proposition is interesting for two reasons. The first
one relates to the inductive nature of the satisfaction relation.
Secondly, this proposition shows that the satisfaction relation can
be defined only for sentences if the starting model is modified.

Theorem (Satisfaction relation theorem on sentences) Let A be a
model of a language L and φv0v1v2 . . . vn ∈ ForL Then, for all
a0, a1, a2, . . . , an ∈ A, we have

A |= φ[a0, a1, a2, . . . , an] iff

(A, a0, a1, a2, . . . , an) |= φ[a0, a1, a2, . . . , an]. (0.4)
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Proof of this theorem is simple, but long and tedious.

Step 1 If t(v0, v1, v2, . . . , vn) ∈ TermL, A
′ = (A, a0, a1, a2, . . . , an), by

induction on the complexity of the terms one proves:

tA
′
(a0, a1, a2, . . . , an) = tA[a0, a1, a2, . . . , an].

Step 2 By induction on the complexity of formulas one proves (0.4).

For example we prove the induction step φ = ∃viφ. We take i = 0,
φ = φv1v2 . . . vn and ψ = ψ(v0, v1, v2, . . . , vn). Then

A |= φ[a1, a2, . . . , an] iff for some b ∈ A, A |= ψ[b, a1, a2, . . . , an]
using inductive hypothesis

iff for some b ∈ A, (A′, b) |= ψba1a2 . . . an
iff for some b ∈ A, A′ |= θ[b]

where θx = ψxa1a2 . . . an, so
iff A′ |= ∃xθx
iff A′ |= φa1a2 . . . an
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We shall apply the previous proposition in the following theorem
which says that there is no quite satisfactory model theory for
finite structures. The reason is that the relation of elementary
equivalence and the isomorphisms of models coincide for finite
structures.

Theorem Let A and B be models of a language L. If A is finite
and A ≡ B, then A ≈ B.

Proof Assume |A| = n. Then A |= σn, where

σn = ”There are exactly n elements”.

But A and B are elementary equivalent, so B |= σn.

Therefore, A and B have the same number of elements.

Now prove the following fact:
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Claim If A and B are finite models and A ≡ B, then for each
a ∈ A there is a b ∈ B such that (A, a) ≡ (B, b).

Proof of Claim Fix a ∈ A and let B = {b1, b2, . . . , bn}. Assume
there is no b ∈ B such that (A, a) ≡ (B, b), and choose a constant
symbol c ̸∈ L, the so-called new constant symbol.

Then, for all i 6 n there is a formula φix of the language L and
there is bi ∈ B such that (A, a) |= φic and (B, bi ) |= ¬φic, where
c is interpreted by a in (A, a) and by bi in (B, bi ).

Hence, (A, a) |=
∧

j6n φjc , so A |= ∃x
∧

j6n φjx .
Since A ≡ B, we have B |= ∃x

∧
j6n φjx . Thus for some k 6 n,

B |=
∧

j6n φj [bk ]. By previous theorem it follows that
(B, bk) |=

∧
j6n φjbk , hence, (B, bk) |=

∧
j6n φjc if c is interpreted

by bk . This is a contradiction to the choice of the formula φk .
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By repeated use of Claim, we can find an enumeration
a1, a2, . . . , an of domain A, so that

I (A, a1, a2, . . . , an) ≡ (B, b1, b2, . . . , bn), where

I (A, a1, a2, . . . , an) and (B, b1, b2, . . . , bn) are models of a
language L ∪ {c1, c2, . . . , cn}.

Then the map f : A → B defined by f : ai 7→ bi , i 6 n, is an
isomorphism of models A and B. For example, if ∗ is a binary
operation symbol of L then:

If some ai , aj , ak ∈ A satisfy ak = ai ∗A aj then
(A, a1, a2, . . . , an) |= ak = ai ∗ aj , so
(B, b1, b2, . . . , bn) |= bk = bi ∗ bj . Hence bk = bi ∗B bj .

Therefore we proved f (ai ∗A aj) = f (ai ) ∗B f (aj), i.e. f is
concurrent in respect to the operations ∗A and ∗B.
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In a similar way one can show that f is concurrent with relations of
models A and B. Obviously, f is onto. This map is also 1–1, since

(A, a1, a2, . . . , an) |= ai ≡ aj iff (B, b1, b2, . . . , bn) |= bi ≡ bj .

Thus f : A ≈ B.

The idea of constructing an isomorphism as in the previous
theorem is often used in model theory. It is summarized as follows.

Theorem Let A and B be models of a language L,
A = {ai : i ∈ I}, B = {bi : i ∈ I}, and A′ = (A, ai )i∈I ,
B′ = (B, bi )i∈I be models of a language L ∪ {ci : i ∈ I} with ci
interpreted in A′ by ai and in B′ by bi . Then,

(B, bi )i∈I ≡ (B, bi )i∈I implies A ≈ B.

As expected, f : A ≈ B where f : ai 7→ bi , i ∈ I .
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