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Abstract

Two experiments were performed to measure the internal consistency of observers’ colin-
earity and bisection judgments.  In the colinearity task, observers were presented with two pairs
of stakes on a visible ground surface to define the endpoints of two line segments in perceptual
space. They were asked to adjust a 5th stake so that it appeared at the point of intersection be-
tween these two line segments.  Although the observers’ settings were systematically distorted
relative to the true intersection points in physical space, they satisfied a basic theorem of projec-
tive geometry first proved by Pappus around 340 AD.  In the bisection task, observers were pre-
sented with a single pair of stakes on a visible ground surface to define a single line segment in
perceptual space, and were asked to adjust a 3rd stake so that it appeared to bisect that line seg-
ment.  These judgments were also systematically distorted relative to the true bisection points in
physical space, but they satisfied a basic theorem of affine geometry that was first introduced by
Pierre Varignon around 1700.  These findings suggest that perceptual space has an internally
consistent affine and projective geometry.

A fundamental problem for the study of human perception is to identify the data structures
by which visible objects in the natural environment are perceptually represented.  It is important
to keep in mind when evaluating this issue that there are many possible attributes of an object’s
structure, which could, in principle, form the primitive components of an observer’s perceptual
knowledge.  There is at present no general consensus about the relative perceptual salience of
these attributes, nor is there even a clear formulation of the space of possibilities that needs to be
considered.

One important factor in evaluating potential primitives for the perceptual representation of
3D form is their relative stability.  When an object is transformed in the natural environment, it is
generally the case that only some of its properties will be altered, while others remain invariant.
Consider, for example, some possible transformations of a right triangle.  If a triangle is moved
rigidly from one location to another, its position changes, but its size and shape remain invariant.
If the triangle is expanded in a uniform manner, its size will change but its shape will not.  If a
shadow of the triangle is projected onto a planar surface, the resulting image will still be a trian-
gle though not necessarily a right triangle.  If the shadow is projected onto a curved surface, then
each edge will lie along a geodesic of that surface that covers the shortest distance between two
vertices, but the sum of the angles will no longer equal 180 degrees.

While considering the phenomenon of invariance under change, it is interesting to note its
historical importance to the development of modern geometry.  In 1872, the German mathemati-
cian Felix Klein gave a lecture at Erlangen University, in which he outlined a general principle



for constructing different geometries that is now known as the Erlanger Programm.  His basic
idea was to consider arbitrary groups of transformations, and to investigate the properties of ob-
jects they leave invariant.  Using this principle, it is possible to build a hierarchy of geometries
(i.e., Euclidean, affine, projective, etc.) in which structural properties can be stratified with re-
spect to their stability in a formally precise way.

The research described in the present article was designed to investigate whether a similar
type of stratification might also be useful for understanding the geometry of perceived space.  It
is important to recognize when evaluating this issue that the “geometry” of perceived space can
be construed in two different ways.  One possibility is to consider the extrinsic structure of ob-
servers’ perceptions relative to the physical environment.  From an extrinsic point of view, the
structure of perceptual space (Ψ) is determined by its formal relation to physical space (Φ), such
that Ψ = f(Φ).  Within this context, the geometry of perceived space is defined by the particular
set of properties that are invariant over the transformation f(Φ).  Thus, if observers could make
veridical judgments about projective properties, such as colinearity, then their perceptions would
be extrinsically projective, and if they could make accurate judgments about affine properties,
such as parallelism or bisection, then their perceptions would be extrinsically affine (see
Koenderink & van Doorn, 1991; Todd & Bressan, 1990).

It is also possible, however, to investigate the intrinsic geometry of perceptual space, with-
out making any comparisons at all to the corresponding structure of the external environment. To
better appreciate the distinction between intrinsic and extrinsic geometry, it is useful to consider
how an intelligent ant might determine whether the surface on which it lives is a plane or a
sphere.  One possibility, originally devised by the Greek mathematician Eratosthenes around 200
BC, would be to measure the angle of the sun at different locations at the same moment in time.
If the surface were planar, then the angle of the sun would be the same at all locations, but if it
were curved, then the angle would vary as a function of position.  Suppose, on the other hand,
that there were no external landmarks available.  Could the ant still determine the curvature of its
environment using only intrinsic measures?  As it turns out, there are several different proce-
dures by which this could be accomplished.  Let us assume that our intelligent ant has access to a
long piece of string, which can be securely anchored to points on the surface.  One possible pro-
cedure would be to pull the string tightly around three anchor points to form a triangle, and then
measure the three angles. If the surface were planar, then the sum of the three angles would be
180°; if it were spherical then the sum would be greater than 180°; and if it were saddle-shaped
then the sum would be less than 180°.  An alternative procedure would be to anchor a string of
length (r) at a single pivot point, and then pace off the circumference of a circle around that
point.  If the surface were planar, then the circumference should equal 2πr.  It would be less than
2πr for a spherical surface and greater than 2πr for a saddle shaped surface. The key thing to note
in both of these examples is that it is possible to measure the geometry of a space without having
to make use of any entity that is outside the space.

In the study of human vision, there have been numerous attempts to measure the intrinsic
geometry of perceived space using procedures similar to the ones described above.  One of the
earliest experiments to address this issue was performed by Blumenfeld (1913).  He asked ob-
servers to perform two tasks: one in which they aligned rows of lights in depth so that they ap-
peared parallel, and another in which they aligned the lights so that the corresponding positions
in each row would all appear to be separated by the same distance.  If the intrinsic geometry of
perceptual space were Euclidean, then these tasks should have been identical to one another.



The empirical results revealed, however, that parallel alleys were consistently constructed so that
they diverged away from the equidistant alleys at greater and greater distances.  Because this is
the pattern of results that would be expected on a saddle-shaped surface, this finding was inter-
preted by Luneberg (1947) and his followers (e.g., Blank, 1958, 1961) as evidence that percep-
tual space has a negatively curved non-Euclidean distance metric.  Several other procedures have
also been performed to measure the intrinsic curvature of perceived space (e.g., see Battro, Netto
& Rozenstraten, 1976; Norman, Todd, Perotti & Tittle, 1996).  However, the results of these ex-
periments have often been inconsistent with one another, and there can be large variations among
different observers and different viewing contexts.

An implicit assumption of all of these studies is that distances between visible points are the
primary component of perceived 3D structure, and that the central issue that needs to be ad-
dressed in the study of visual space perception is to determine the distance metric.  Given the in-
consistency of the results, however, it might be reasonable to question the validity of these as-
sumptions (cf. Foley, 1964, 1972).  An important insight from the Klein Erlanger Programm is
that coherent geometries can be constructed without necessarily introducing the concept of dis-
tance.  Perhaps it might be possible therefore to investigate the geometry of perceived space us-
ing other more basic geometric primitives.   In the present article we will describe two different
procedures by which this can be accomplished:  One based entirely on colinearity judgments to
measure the intrinsic projective structure of perceived space, and another based entirely on bi-
section judgments to measure the intrinsic affine structure.

In order to investigate the internal consistency of observers’ colinearity judgments, it is use-
ful to employ a theorem first introduced by Pappus of Alexandria around 340 AD.  Let points P1,
P2 and P3 be colinear on one line and points Q1, Q2 and Q3 be colinear on a different line.  Con-
sider a point R1 at the intersection of P1Q2 with P2Q1, a point R2 at the intersection of P1Q3 with
P3Q1, and a point R3 at the intersection of P2Q3 with P3Q2.  According to the Pappus theorem, the
points R1, R2 and R3 must be colinear (see Figure 1).
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Figure 1 --  A pappus configuration similar to those used in the present
experiments to investigate the projective structure of perceptual space.



We have recently performed a series of experiments to investigate whether observers’
colinearity judgments satisfy this theorem.  The procedure was as follows:  On each trial, ob-
servers were presented with two pairs of stakes on a stereoscopically defined bumpy ground sur-
face to define the endpoints of two line segments in perceptual space. They were asked to adjust
a 5 th stake so that it appeared at the point of intersection between these two line segments.  The
positions of the points corresponding to P1, P3, Q1 and Q3 were fixed prior to the experiment, but
all other points in the configuration were obtained from observers’ settings.  They first marked a
point P2 that appeared to be colinear with P1 and P3, and an additional point pair that was not part
of the Pappus configuration.  The location of Q2 was determined in a similar manner.  Next the
observers made settings for the points R1, R2 and R3 so that they appeared to lie at the appropri-
ate intersections.  Finally we tested whether the points R1, R2 and R3 appeared to be colinear with
one another.  This was accomplished by having observers mark a point T1 at the intersection of
R1R3 with Q1P3, and a point T2 at the intersection of R1R3 with P1Q3.  For observers’ judgments
to satisfy the Pappus Theorem, the points R2, T1 and T2 must all be coincident within measure-
ment error.

Six naïve observers participated in the experiment. Each observer made judgments for four
different Pappus configurations, and each point within these configurations was judged on 10
separate trials.  Two representative patterns of responses are shown in Figure 2.  The lines in this
figure show the actual Pappus configuration in physical space, with depth represented in the ver-
tical direction.  The small ellipses mark the mean positions of the observers’ settings, and the
axis lengths of these ellipses in different directions are six times the standard error.  (They were
made that large so that the ellipses would be visible.)  The three ellipses in the center of the con-
figuration show the judged positions of R2, T1 and T2, respectively.  Note in each case that the
observers’ judgments are systematically distorted relative to the true intersection point in physi-
cal space.  Nevertheless, the fact that R2, T1 and T2 overlap one another indicates that the Pappus
theorem is satisfied despite these distortions.
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Figure 2 -- A representative pattern of results from a series of line intersection
judgments.  The left and right configurations show data for two different observers.



We also performed a second experiment to evaluate the internal consistency of observers’
bisection judgments, based on a theorem that was first proven by Pierre Varignon around 1700.
Let P1, P2, P3 and P4 be arbitrarily selected points.  Consider a point Q1 that bisects P1P2, a point
Q2 that bisects P2P3, a point Q3 that bisects P3P4, and a point Q4 that bisects P4P1.  Now consider
the point T1 that bisects Q1Q3, and the point T2 that bisects Q2Q4. In an affine space, the points T1

and T2 must be coincident with one another (see Figure 3).

Our experimental procedure was as follows: On each trial, an observer was presented with a
single pair of stakes on a stereoscopically defined bumpy ground surface, and was asked to ad-
just a 3rd stake so that it appeared to bisect the other two.  The positions of the points corre-
sponding to P1, P2, P3 and P4 were fixed prior to the experiment, but all other points in the con-
figuration were obtained from observers’ settings.  In the first phase of the experiment they were
required to mark the apparent locations of Q1, Q2, Q3 and Q4, and these settings were then used
in a second phase to determine the apparent locations of T1 and T2.

Six naïve observers participated in the experiment. Each observer made judgments for four
different configurations, and each point within these configurations was judged on 10 separate
trials.  Two representative patterns of responses are shown in Figure 4. The lines in this figure
show the actual Varignon configuration in physical space, with depth represented in the vertical
direction.  The small ellipses mark the mean positions of the observers’ settings, and the axis
lengths of these ellipses in different directions are six times the standard error.  The two ellipses
in the center of the configuration show the judged positions of T1 and T2, respectively.  Note in
each case that the observers’ judgments are systematically distorted relative to the actual bisec-
tions in physical space.  Nevertheless, the fact that T1 and T2 overlap one another indicates that
the pattern of perceived bisections are internally consistent with one another.

To summarize, the research described in the present paper has examined the structure of
perceptual space at a more primitive geometric level than has previously been investigated.  As
in many previous studies, the results reveal that the extrinsic mapping between physical and per-
ceived space is non-veridical, such that curved lines in the environment can appear perceptually
to be straight. The results also indicate, however, that the intrinsic structure of perceptual space
has an internally consistent affine and projective geometry.
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Figure 3 -- A Varignon configuration similar to those used in the present
experiments to investigate the affine structure of perceptual space.
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Figure 4 -- A representative pattern of results from a series of bisection judgments.  The
left and right configurations show data from two different observers.


