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Cognitive neuroscience treats space and time as our brain’s representation of our sensory inputs.  In this 

view, our perceptual reality is only a distant and convenient mapping of the physical processes causing the sen-
sory inputs.  Sound is a mapping of auditory inputs, and space is a representation of visual inputs.  Any limita-
tion in the chain of sensing has a specific manifestation on the cognitive representation that is our reality.  One 
physical limitation of our visual sensing is the finite speed of light, which manifests itself as a basic property of 
our space-time.  In this article, we look at the consequences of the limited speed of our perception, namely the 
speed of light, and show that they are remarkably similar to the coordinate transformation in special relativity.  
From this observation, and inspired by the notion that space is merely a cognitive model created out of light 
signal inputs, we examine the implications of treating special relativity theory as a formalism for describing the 
perceptual effects due to the finite speed of light.  Using this framework, we show that we can unify and explain 
a wide array of seemingly unrelated astrophysical and cosmological phenomena.  Once we identify the manifes-
tations of the limitations in our perception and cognitive representation, we can understand the consequent 
constraints on our space and time, leading to a new understanding of astrophysics and cosmology.   
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1.  Introduction 
Our reality is a mental picture that our brain creates, starting 

from our sensory inputs [1].  Although this cognitive map is of-
ten assumed to be a faithful image of the physical causes behind 
the sensing process, the causes themselves are entirely different 
from the perceptual experience of sensing.  The difference be-
tween the cognitive representation and their physical causes is 
not immediately obvious when we consider our primary sense of 
sight.  But, we can appreciate the difference by looking at the 
olfactory and auditory senses because we can use our cognitive 
model based on sight in order to understand the workings of the 
‘lesser’ senses.  Odors, which may appear to be a property of the 
air we breathe, are in fact our brain’s representation of the 
chemical signatures that our noses sense.  Similarly, sound is not 
an intrinsic property of a vibrating body, but our brain’s mecha-
nism to represent the pressure waves in the air that our ears 
sense.  Table I shows the chain from the physical causes of the 
sensory input to the final reality as the brain creates it.  Although 
the physical causes can be identified for the olfactory and audi-
tory chains, they are not easily discerned for visual process.  
Since sight is the most powerful sense we possess, we are obliged 
to accept our brain’s representation of visual inputs as the fun-
damental reality. 

While our visual reality provides an excellent framework for 
physical sciences, it is important to realize that the reality itself is 
a model with potential physical or physiological limitations and 
distortions.  The tight integration between the physiology of per-
ception and its representation in the brain was proven recently in 
a clever experiment using the tactile funneling illusion [2].  This 
illusion results in a single tactile sensation at the focal point at 
the center of a stimulus pattern even though no stimulation is 

applied at that site.  In the experiment, the brain activation re-
gion corresponded to the focal point where the sensation was 
perceived, rather than the points where the stimuli were applied, 
proving that the brain registered perceptions, not the physical 
causes of the perceived reality.  In other words, for the brain, 
there is no difference between applying the pattern of the stimuli 
and applying only one stimulus at the center of the pattern.  The 
brain maps the sensory inputs to regions that correspond to their 
perception, rather than the regions that physiologically corre-
spond to the sensory stimuli. 

Sense
modality:

Olfactory

Auditory

Visual

     

Physical
cause:

Chemicals

Vibrat ions

Unknown

     

 

Sensed
signal:

Chemical
react ions
Pressure
waves 
Light

     

Brain’s
model:

Smells

Sounds

Space, t ime
reality

 

Table I:  The brain’s representation of different sensory in-
puts.  Odors are a representation of chemical compositions 
and concentration our nose senses.  Sounds are a mapping of 
the air pressure waves produced by a vibrating object.  In 
sight, we do not know the physical reality, our representation 
is space, and possibly time. 

The neurological localization of different aspects of reality 
has been established in neuroscience by lesion studies.  The per-
ception of motion (and the consequent basis of our sense of 
time), for instance, is so localized that a tiny lesion can erase it 
completely.  Cases of patients with such specific loss of a part of 
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reality [1] illustrate the fact that our experience of reality, every 
aspect of it, is indeed a creation of the brain.  Space and time are 
aspects of the cognitive representation in our brain. 

Space is a perceptual experience much like sound.  Compari-
sons between the auditory and visual modes of sensing can be 
useful in understanding the limitations of their representations in 
the brain.  One limitation is the input ranges of the sensory or-
gans.  Ears are sensitive in the frequency range 20Hz–20kHz, and 
eyes are limited to the visible spectrum.  Another limitation, 
which may exist in specific individuals, is an inadequate repre-
sentation of the inputs.  Such a limitation can lead to tone-
deafness and color-blindness, for instance.  The speed of the 
sense modality also introduces an effect, such as the time lag 
between seeing an event and hearing the corresponding sound.  
For visual perception, a consequence of the finite speed of light is 
called a Light Travel Time (LTT) effect.  LLT offers one possible 
interpretation for the observed superluminal motion in certain 
celestial objects [3,4]: when an object approaches the observer at 
a shallow angle, it may appear to move much faster than reality 
[5] due to LTT. 

Other consequences of the LTT effects in our perception are 
remarkably similar to the coordinate transformation of the spe-
cial relativity theory (SRT).  These consequences include an ap-
parent contraction of a receding object along its direction of mo-
tion and a time dilation effect.  Furthermore, a receding object 
can never appear to be going faster than the speed of light, even if 
its real speed is superluminal.  While SRT does not explicitly 
forbid it, superluminality is understood to lead to time travel and 
the consequent violations of causality.  An apparent violation of 
causality is one of the consequences of LTT, when the superlu-
minal object is approaching the observer.  All these LTT effects 
are remarkably similar to effects predicted by SRT, and are cur-
rently taken as ‘confirmation’ that space-time obeys SRT.  But 
instead, space-time may have a deeper structure that, when fil-
tered through LTT effects, results in our perception that space-
time obeys SRT.   

Once we accept the neuroscience view of reality as a repre-
sentation of our sensory inputs, we can understand why the 
speed of light figures so prominently in our physical theories.  
The theories of physics are a description of reality.  Reality is 
created out of the readings from our senses, especially our eyes.  
They work at the speed of light.  Thus the sanctity accorded to 
the speed of light is a feature only of our reality, not the absolute, 
ultimate reality that our senses are striving to perceive.  When it 
comes to physics that describes phenomena well beyond our 
sensory ranges, we really have to take into account the role that 
our perception and cognition play in seeing them.  The Universe 
as we see it is only a cognitive model created out of the photons 
falling on our retina or on the photo-sensors of the Hubble tele-
scope.  Because of the finite speed of the information carrier 
(namely photons), our perception is distorted in such a way as to 
give us the impression that space and time obey SRT.  They do, 
but space and time are not the absolute reality.  “Space and time 
are modes by which we think and not conditions in which we 
live,” as Einstein himself put it.  Treating our perceived reality as 
our brain’s representation of our visual inputs (filtered through 
the LTT effect), we will see that all the strange effects of the co-

ordinate transformation in SRT can be understood as the mani-
festations of the finite speed of our senses in our space and time. 

Furthermore, we will show that this line of thinking leads to 
natural explanations for two classes of astrophysical phenomena:  
Gamma Ray Bursts, which are very brief, but intense flashes of γ 
rays, currently believed to emanate from cataclysmic stellar col-
lapses, and Radio Sources, which are typically symmetric and 
seem associated with galactic cores, currently considered mani-
festations of space-time singularities or neutron stars.  These two 
astrophysical phenomena appear distinct and unrelated, but they 
can be unified and explained using LTT effects.  This article pre-
sents such a unified quantitative model.  It will also show that 
the cognitive limitations to reality due to LTT effects can provide 
qualitative explanations for such cosmological features as the 
apparent expansion of the Universe and the Cosmic Microwave 
Background Radiation (CMBR).  Both these phenomena can be 
understood as related to our perception of superluminal objects.  
It is the unification of these seemingly distinct phenomena at 
vastly different length and time scales, along with its conceptual 
simplicity, that we hold as the indicators of validity of this 
framework. 

2.  Similarities between LTT Effects & SRT 
The coordinate transformation derived in Einstein’s original 

paper [6] is, in part, a manifestation of the LTT effects and the 
consequence of imposing the constancy of light speed in all iner-
tial frames.  This is most obvious in the first thought experiment, 
where observers moving with a rod find their clocks not syn-
chronized due to the difference in LTT’s along the length of the 
rod.  However, in the current interpretation of SRT, the coordi-
nate transformation is considered a basic property of space and 
time.  One difficulty that arises from this formulation is that the 
definition of the relative velocity between the two inertial frames 
becomes ambiguous.  If it is the velocity of the moving frame as 
measured by the observer, then the observed superluminal mo-
tion in radio jets starting from the core region becomes a viola-
tion of SRT.  If it is a velocity that we have to deduce by consid-
ering LTT effects, then we have to employ the extra ad-hoc as-
sumption that superluminality is forbidden.  These difficulties 
suggest that it may be better to disentangle the LTT effects from 
the rest of SRT.  Although not attempted in this paper, the pri-
mary motivation for SRT, namely the covariance of Maxwell’s 
equations, may be accomplished even without attributing LTT 
effects to the properties of space and time. 

In this Section, we will consider space and time as a part of 
the cognitive model created by the brain, and illustrate that SRT 
applies to the cognitive model.  The absolute reality (of which the 
SRT-like space-time is our perception) does not have to obey the 
restrictions of SRT.  In particular, objects are not restricted to 
subluminal speeds, even though they may appear to us as if they 
are restricted to subluminal speeds in our perception of space 
and time.  If we disentangle LTT effects from the rest of SRT, we 
can understand a wide array of phenomena, as shown in this 
article. 

SRT seeks a linear coordinate transformation between coor-
dinate systems in motion with respect to each other.  We can 
trace the origin of linearity to a hidden assumption on the nature 
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of space and time built into SRT, as stated by Einstein [6]: “In the 
first place it is clear that the equations must be linear on account 
of the properties of homogeneity which we attribute to space and 
time.”  Because of this assumption of linearity, the original deri-
vation of the transformation equations ignores the asymmetry 
between approaching and receding objects and concentrates on 
receding objects.  Both approaching and receding objects can be 
described by two coordinate systems that are always receding 
from each other.  For instance, if a system K is moving with re-
spect to another system k along the positive X axis of k, then an 
object at rest in K at a positive  x  is receding while another object 
at a negative  x  is approaching an observer at the origin of k.  
Unlike SRT, considerations based on LTT effects result in intrin-
sically different set of transformation laws for objects approach-
ing an observer and those receding from him.  More generally, 
the transformation depends on the angle between the velocity of 
the object and the observer’s line of sight.  Since the transforma-
tion equations based on LTT effects treat approaching and reced-
ing objects asymmetrically, they provide a natural solution to the 
twin paradox, for instance. 

2.1  First Order Perceptual Effects 

For approaching and receding objects, the relativistic effects 
are second order in speed β, and speed typically appears as 

 1 − β2 .  The LTT effects, on the other hand, are first order in 
speed.  The first order effects have been studied in the last fifty 
years in terms of the appearance of a relativistically moving ex-
tended body [7-15].  It has also been suggested that the relativis-
tic Doppler effect can be considered the geometric mean [16] of 
more basic calculations.  The current belief is that the first order 
effects are an optical illusion to be taken out of our perception of 
reality.  Once these effects are taken out or ‘deconvolved’ from 
the observations, the ‘real’ space and time are assumed to obey 
SRT.  Note that this assumption is impossible to verify because 
the deconvolution is an ill-posed problem — there are multiple 
solutions to the absolute reality that all result in the same percep-
tual picture.  Not all the solutions obey SRT. 

The notion that it is the absolute reality that obeys SRT ushers 
in a deeper philosophical problem.  This notion is tantamount to 
insisting that space and time are in fact ‘intuitions’ beyond sen-
sory perception rather than a cognitive picture created by our 
brain out of the sensory inputs it receives.  A formal critique of 
the Kantian intuitions of space and time is beyond the scope of 
this article.  Here, we take the position that it is our observed or 
perceived reality that obeys SRT and explore where it leads us.  
In other words, we assume that SRT is nothing but a formaliza-
tion of the perceptual effects.  These effects are not first order in 
speed when the object is not directly approaching (or receding 
from) the observer, as we will see later.  We will show in this 
article that a treatment of SRT as a perceptual effect will give us 
natural solution for astrophysical phenomena like gamma ray 
bursts and symmetric radio jets. 

2.2  Perception of Speed 

We first look at how the perception of motion is modulated 
by LTT effects.  As remarked earlier, the transformation equa-
tions of SRT treat only objects receding from the observer.  For 

this reason, we first consider a receding object, flying away from 
the observer at a speed β = v / c , where  c  is the speed of light.  
The apparent speed βO  of the object depends on the real speed β 

(as shown in Appendix A.1):  

 βO = β / (1 + β)    ,   
  
lim
β→∞

βO = 1  (1,2) 

Thus, due to LTT effects, an infinite real velocity gets mapped to 
an apparent velocity βO = 1 .  In other words, no object can ap-

pear to travel faster than the speed of light, entirely consistent 
with SRT. 

Physically, this apparent speed limit amounts to a mapping 
of c  to ∞, which is most obvious in its consequences.  For in-
stance, it takes an infinite amount of energy to accelerate an ob-
ject to an apparent speed βO = 1  because, in reality, we are ac-

celerating it to an infinite speed.  This infinite energy require-
ment can also be viewed as the relativistic mass changing with 
speed, reaching ∞ at βO = 1 .  Einstein explained this mapping as: 

“For velocities greater than that of light our deliberations become 
meaningless; we shall, however, find in what follows, that the 
velocity of light in our theory plays the part, physically, of an 
infinitely great velocity.” Thus, for objects receding from the ob-
server, the effects of LTT are almost identical to the consequences 
of SRT, in terms of the perception of speed. 

2.3  Time Dilation 

 LTT effects influence the way time at the moving object is 
perceived.  Imagine an object receding from the observer at a 
constant rate.  As it moves away, the successive photons emitted 
by the object take longer and longer to reach the observer be-
cause they are emitted at farther and farther away.  This travel 
time delay gives the observer the illusion that time is flowing 
slower for the moving object.  It can be easily shown (see Ap-
pendix A.2) that for an object receding from the observer, the 
time interval observed ∆tO  is related to the real time interval ∆t 

as:  

 ∆tO / ∆t = 1 / /(1 − βO )  (3) 

 

Figure 1:  Comparison between LTT effects and the predic-
tions of SRT.  The x -axis is the apparent speed and the y -

axis shows the relative time dilation or length contraction. 
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This observed time dilation is plotted in Fig. 1, where it is 
compared to the time dilation predicted in SRT.  Note that the 
time dilation due to LTT has a bigger magnitude than the one 
predicted in SRT.  However, the variation is similar, with both 
time dilations tending to ∞  as the observed speed tends to c . 

2.4  Length Contraction 

The length of an object in motion also appears different due 
to LTT effects.  It can be shown (see Appendix A.3) that observed 
length 

 
dO  is related to the real length  d  as:  

 
  dO / d = 1 − βO  (4) 

for an object receding from the observer with an apparent speed 
of 

 
βO .  This equation also is plotted in Fig. 1.  Note again that the 

LTT effects are stronger than the ones predicted in SRT. 
Fig. 1 illustrates that both time dilation and Lorentz contrac-

tion can be thought of as LTT effects.  While the actual magni-
tudes of LTT effects are larger than what SRT predicts, their 
qualitative dependence on speed is almost identical.  This simi-
larity is not surprising because the coordinate transformation in 
SRT is partly based on LTT effects.  If LTT effects are to be ap-
plied, as an optical illusion, on top of the consequences of SRT as 
currently believed, then the total observed length contraction 
and time dilation will be significantly more than the SRT predic-
tions. 

2.5  Doppler Shift 

The Doppler shift is one of the few dynamic properties of a 
celestial object that we can measure directly.  The measured red-
shift is easily translated to a speed, yielding a view of an expand-
ing Universe.  As shown in Appendix A.4, the redshift factor 
  1 + z  depends on the real and apparent speeds as follows:  

 
  
1 + z = 1 (1 + βO cos θ) = 1 − β cos θ  (4) 

where β  is the real speed of the object, and  βO  is its apparent 
speed.  For a receding object ( θ = π ) moving at subluminal 
speeds ( β < 1 ), if we (mistakenly) assume that the speed we ob-
serve is the real speed ( β = βO ), then we can rewrite Eq. (4) as:  

   1 + z = (1 + β ) (1 − β)  (5) 

This is the familiar relativistic Doppler shift formula.  Although 
setting 

 
βO = β  breaks down the derivation of these equations, it 

is interesting that we get the relativistic Doppler shift formula.  
This similarity in the form of the final equations is indicative of 
the common basis from which they originate. 

3  LTT Effects for Approaching Objects 

3.1  Asymmetric Effects 

One important feature of LTT effects is that they are asym-
metric in their dependence on speed; β  and 

 
βO  appear in odd 

power, so that the equations are odd.  More generally, there is a 

term involving the angle θ  between the object’s velocity and the 
observer’s line of sight.  In SRT, on the other hand, β  almost 

always appears as β2  and the equations are even.  SRT treats the 
effect of motion as a linear coordinate transformation, ignoring 
the angle.  Thus, in SRT, the effect is the same whether the object 
is approaching or receding from the observer.  As remarked be-
fore, this fundamental difference can be traced back to the as-
sumed homogeneity of space and time in SRT.  The asymmetry 
in LTT effects, on the other hand, provides convincing explana-
tions to apparent paradoxes: the twins paradox, the observed 
superluminal motion, the causality violation due to superluminal 
motion etc.  At the same time, the asymmetry makes it difficult to 
reconcile LTT effects and SRT completely. 

Time Contraction and Length Expansion 

The asymmetric consequences of LTT effects include an ap-
parent time contraction and length expansion.  When an object is 
approaching the observer, the time at the object seems to flow at 
an accelerated rate for the observer.  This effect is easy to under-
stand because, as the object is approaching the observer, the suc-
cessive photons are emitted at shorter and shorter distances and 
they take less and less time to reach the observer, creating an 
illusion of an accelerated time flow, or time contraction. 

By the same argument, the moving object appears elongated 
along the direction of motion as it is flying towards the observer.  
Appendices A.2 and A.3 show the mathematical details of how 
LTT effects result in an apparent time contraction and length 
expansion.  If ∆tO  is the apparent time duration as felt by the 
observer and ∆t  is the real time, then:  

 ∆tO / ∆t = 1 / (1 + βO )  (6) 

Similarly, an object of real length  d  appears to have an elon-
gated length dO  as given by:  

 dO / d = 1 + βO  (7) 

Note that SRT expressions for time dilation and length con-
traction are geometric means of LTT effects for receding and ap-
proaching coordinate systems.  The reason is that in SRT, the 
coordinate transformation in SRT is derived using the to and fro 
travel time of light.  In our calculations based on LTT, we con-
sider only one-way travel of light (from the moving object to the 
observer). 

3.3  Higher-Order Perceptual Effects 

As mentioned before, SRT seeks a linear transformation be-
tween the observer’s coordinate system and the system in mo-
tion.  By contrast, the LTT effects have a term involving the angle 
(θ) between the observer’s line of sight and the velocity vector of 
the moving object.  Due to the angle term, the equations for the 
apparent time and length are inherently non-linear.  It is impos-
sible to write them in the form of a transformation matrix as 

′x = Lx  where ′x  is the observed coordinates, x  the ‘real’ coor-
dinates in the rest frame of the moving object and L  is some 
transformation matrix. 
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We can demonstrate both the non-linearity and the higher 
order perceptual effects by looking at the LLT equation for time 
dilation (from Appendix A.2).   

 
  
∆tO / ∆t = 1 − β cos θ  (8) 

This can be rewritten as:  

 
  
∆tO / ∆t = 1 − β2tc / y − β4t 3c3 / 2y3 … (9) 

Similarly, the apparent length of an extended object is motion 
depends on the real length (Appendix A.3) can be rewritten as:  

 
  
∆dO / ∆d = 1 (1 − β2tc / y − β4t 3c3 / 2y3 ...)  (10) 

In these equations,  y  represents the distance of closest approach 
of the object to the observer.  If we think of the moving object in 
terms of a coordinate system in motion as in SRT, then the origin 
of this system in motion has the coordinates (  βtc, y, 0 ) in the 
observer’s system.  Thus the higher order dependence in the LTT 
effects comes from the terms involving  y .  In SRT, due to the 
assumption of linearity, the moving coordinate system is as-
sumed to have the origin (  βtc, 0, 0 ).  The higher order effects in 
SRT originate from the assumptions of constancy of the speed of 
light and the redefinition of simultaneity. 

Our argument in this article is that our perception of space 
and time is merely a cognitive representation.  As shown above, 
it is a fallacy to assume that the light LTT effects are merely first-
order effects that apply to an underlying space-time that obeys 
SRT.  They are not some optical effects that can be taken out, nor 
are they first order effects in speed.  The LTT effects are, in fact, 
the basic properties of space and time, for space and time are the 
end results of cognitive processes starting from our sensory in-
puts.  Given that over 70% of the sensors in our bodies are dedi-
cated to sight, it is fair to say that our reality is visual in nature, 
and that the LTT effects are the most critical property of our 
space and time. 

4.  Explanations Based on LTT Effects 
4.1  Twins Paradox 

The famous twins paradox in SRT exploits the symmetry in 
its coordinate transformation.  In this paradox, one twin goes 
away to a galaxy far away, accelerating to speeds close to c .  The 
other one stays back on Earth.  When the traveling twin comes 
back (again accelerating to almost c  on the way), he will be 
much younger than the twin that stays back, due to time dilation.  
But, in the traveling twin’s frame of reference, it is the other twin 
(along with the Earth) that is traveling at speeds close to c .  
Thus, time dilation should apply to the one that stays back.  This 
paradox is usually explained away by arguing that the traveling 
twin feels the tremendous acceleration and deceleration, and his 
frame of reference is not an inertial frame. 

In the LTT picture, the time dilation equation is asymmetric.  
Whatever time dilation one twin seems to feel on the way out is 
compensated by an exactly same amount of contraction on his 
way back.  Thus, to each of the twins, the other twin seems to be 
enjoying the benefits of time dilation and aging slower.  But, this 

time dilation happens only during the outward journey, when 
the twins are going away from each other.  On his way back, the 
traveling twin will see the other twin aging much faster.  At the 
same time, to the twin that stays back, the traveling twin will 
appear to be aging much faster.  When they meet again, there 
will not be any age difference. 

4.2  Superluminality and Causality 

Although superluminality is generally believed to lead to 
time travel and the consequent causality violations, SRT does not 
explicitly state this.  As quoted earlier, Einstein merely remarked 
that “our deliberations become meaningless” at superluminal 
speeds.  In any case, we saw that for a receding object, the appar-
ent speed could never be superluminal.  And SRT considers only 
receding frames of reference.  In our derivations of LTT effects on 
length contraction and time dilation, we did not impose the con-
dition that β < 1 . 

Using our Eq. (8) for time dilation, for an approaching object, 
θ = 0 .   
 ∆tO / ∆t = 1 − β  (11) 

Thus, if the object is flying to the observer, up to the speed of 
light ( 0 < β < 1 ), the time intervals appear shorter and shorter.  
When the speed of approach exceeds  c , the apparent time flows 
backwards.  This is because a photon emitted at a particular 
point along the trajectory reaches the observer before a photon 
emitted earlier and farther away.  The order in which photons 
emitted by the object reach the observer is reversed.  This rever-
sal of time flow will give rise to an apparent violation of causal-
ity.  This violation of causality is only an LTT effect (akin to a 
video clip playing backwards), not a fundamental property of 
space and time, as currently believed.  Note, however, that as-
trophysical causality violations may not be obvious.  For in-
stance, imagine a cataclysmic explosion of a star and a subse-
quent fireball.  This scenario played backwards would be an im-
ploding fireball and an appearance of a star.  We might think of it 
as the accretion of matter by an invisible massive object or the 
birth of a star, instead of an event showing causality violation. 

4.3  Superluminal Motion 

We can measure the transverse velocity of a celestial object 
almost directly using angular measurements, which are trans-
lated to a speed using its known (or estimated) distance from us.  
In the past few decades, scientists have observed [3,4] objects 
moving at transverse velocities significantly higher than the 
speed of light.  Some such superluminal objects were detected 
within our own galaxy [17-20].  Even before the phenomenon 
was discovered, Rees [5] argued based on LTT effects that such 
observations would not disagree with SRT.  Note, however, that 
this observed superluminality requires ‘explanation’ only be-
cause the current interpretation of SRT as the absolute reality of 
space and time.  If SRT is instead interpreted as the result of a 
perceptual effect embedded our cognitive model of space and 
time, then the observed superluminality demands no explana-
tion.  This is the view proposed in this article, in its picture of 
SRT as a manifestation of LTT effects.  We do not need to impose 
the speed limit of c  in our picture of the absolute reality. 
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The distortion in the perception of speed, when the object is 
approaching the observer, is used to explain that the observed 
superluminal motion is an optical effect.  Figure 2 illustrates the 
explanation as described in the seminal paper by Rees [5].  In Fig. 
2, the object at S is expanding radially at constant speed 0.8 c , a 
highly relativistic speed.  The part of the object expanding along 
the direction 

  
V1 , close to the line of sight of the observer, will 

appear to be traveling much faster, resulting in an observed 
transverse velocity that is much larger. 

 

Figure 2:  Illustration of the traditional explanation for the 
observed superluminal motion.  An object expanding at a 
speed  β = 0.8 , starting from a single point S.  The solid circle 

represents the boundary one second later.  The observer is far 
away on the right hand side, O (x→∞).  The dashed ellipse is 
the apparent boundary of the object, as seen by the observer. 

Imagine an object in motion at a speed β.  To an observer, it 
appears to move with speed 

 βO .  The apparent speed βO  of the 
object depends on the real speed β  and the angle between its 
direction of motion and the observer’s line of sight, θ .  As shown 
in Appendix A.1,  

 
  βO = β / (1 − β cos θ)  (12) 

Fig. 2 is a representation of Eq. (12) as  cos θ  is varied over its 
range.  It is the locus of 

 
βO  for a constant  β = 0.8 , plotted 

against the angle θ .  The apparent speed is in complete agree-
ment with what was predicted in 1966 (Fig. 1 in the original arti-
cle, [5]). 

For a narrow range of θ , the transverse component of the 
apparent velocity (

  βO sin θ ) can appear superluminal, even if we 
restrict the real speed to be subluminal ( β < 1 ).  From Eq. (12), it 
is easy to find this range:  

 
 

1
2β

1 − 2β2 − 1





< cos θ <
1

2β
1 + 2β2 − 1





 (13) 

Thus, for appropriate values of  (β > 1 / 2 )  and θ  [as given in 
Eq. (13)], the transverse velocity of an object can seem superlu-
minal, even when the real speed is subluminal. 

While Eqs. (12) and (13) explain the observed transverse su-
perluminal motion, the difficulty arises in the recessional side.   

Along directions such as V2  in Fig. 2, the apparent velocity is 

always smaller than the real velocity.  It can be shown that the 
apparent velocity of the slower jet can never be more than the 
reciprocal of the faster jet, if the real speeds are to be subluminal.  
This calculation is shown in Appendix A.7.  Thus, superluminal-
ity can never be observed in both the jets of a radio source, which 
indeed has not been reported so far.  Near exact symmetry in 
extragalactic radio sources, including subluminal jets, is also 
qualitatively inconsistent with this explanation. 

4.4  Symmetric Radio Sources 

If we accept that SRT applies to our cognitive map of reality 
or the perceived space and time, and that the absolute reality, of 
which space and time are our perception, is free of the con-
straints of SRT, we can find elegant descriptions of symmetric 
radio sources and jets.  Different classes of such objects associ-
ated with Active Galactic Nuclei (AGN) were found in the last 
fifty years.  Fig. 3 shows the radio galaxy Cygnus A [21], an ex-
ample of such a radio source, and one of the brightest radio ob-
jects.  Many of its features are common to most extragalactic ra-
dio sources: the symmetric double lobes, an indication of a core, 
an appearance of jets feeding the lobes and the hotspots.  Refs. 
[22] & [23] have reported more detailed kinematical features, 
such as the proper motion of the hotspots in the lobes.  Here, we 
show that our perception of an object crossing our field of vision 
at a constant superluminal speed is remarkably similar to a pair 
of symmetric hotspots departing from a fixed point with a decel-
erating rate of angular separation. 

 

Figure 3:  The radio jet and lobes in the hyperluminous radio 
galaxy Cygnus A.  The hotspots in the two lobes, the core re-
gion and the jets are clearly visible.  (Reproduced from an 
image courtesy of NRAO/AUI.) 

Consider an object moving at a superluminal speed as shown 
in Fig. 4(a).  The point of closest approach is B.  At that point, the 
object is at a distance of y  from the observer at O.  Since the 
speed is superluminal, the light emitted by the object at some 
point B' (before the point of closest approach B) reaches the ob-
server before the light emitted at A_’.  This reversal creates an 
illusion of the object moving in the direction from B' to A_’, while 
in reality it is moving from A_’. to B’  This effect is better illus-
trated using animation [24]. 
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Figure 4:  The top panel (a) shows an object flying along 
A’_BA at a constant superluminal speed.  The observer is at 
O.  The object crosses B (the point of closest approach to O) at 
time   t = 0 .  The bottom panel (b) shows how the object is 
perceived by the observer at O.  It first appears at B', then 
splits into two.  The two apparent objects seem to go away 
from each other (along 

  
J 1  and 

  
J 2 ) as shown. 

We use the variable 
 tO  to denote the observer’s time.  Note 

that, by definition, the origin in the observer’s time axis is set 
when the object appears at B.  Angle ϕ  is observed with respect 
to the point of closest approach B.  The ϕ  is defined as θ − π / 2  
where θ  is the angle between the object’s velocity and the ob-
server’s line of sight.  The ϕ  is negative for negative time t . 

Appendix A.5 readily derives a relation between tO  and ϕ :   

 
  
tO = y tan(ϕ) / β + 1 / cos ϕ − 1   (14) 

Here, we have chosen units such that   c = 1 , so that  y  is also the 
time light takes to traverse BO.  The origin of the observer’s time 
is set when the observer sees the object at B, i.e., 

  
tO = 0  when the 

light from the point of closest approach B reaches the observer. 
The actual plot of ϕ  as a function of the observer’s time is 

given in Fig. 5 for different speeds β .  Note that for subluminal 
speeds, there is only one angular position for any given tO .  For 

subluminal objects, the observed angular position changes al-
most linearly with the observed time, while for superluminal 
objects, the change is parabolic.  The time axis scales with y . 

Eq. (14) can be approximated using a Taylor series expansion:  

 
  tO ≈ y(ϕ / β + ϕ2 / 2)  (15) 

From the quadratic Eq. (15), one can easily see that the minimum 

value of tO  is tO min = −y / 2β2  and it occurs at ϕ0 = −1 / β .  

Thus, to the observer, the object first appears (as though out of 
nowhere) at the position ϕ0  at time 

  
tO min .  Then it appears to 

stretch and split, rapidly at first, and slowing down later. 
The angular separation between the objects flying away from 

each other is:  

 Φ =
2
β

1 + tO 2β2 / y =
2
β

1 + βϕ( ) (16) 

And the rate at which the separation occurs is:  

 d Φ / dtO = 2 / ytage = 2β / y(1 + βϕ)  (17) 

where tage = tO − tO min , the apparent age of the symmetric ob-

ject.  (These equations are derived in Appendix A.5.) 
This discussion shows that a single object moving across our 

field of vision at superluminal speed creates an illusion of an 
object appearing at a certain point in time, stretching and split-
ting into two and then moving away from each other.  This time 
evolution of the two objects is given in Eq. (14), and illustrated in 
the bottom panel of Fig. 4(b).  Note that the apparent time tO  (as 

perceived by the observer) is reversed with respect to the real 
time t  in the region A’_ to B'.  An event that happens near B' 
appears to happen before an event near A’_.  Thus, the observer 
may see an apparent violation of causality, but it is only a part of 
the LTT effect. 

If there are multiple objects, moving as a group, at roughly 
constant superluminal speed along the same direction, they will 
appear as a series of objects materializing at the same angular 
position and moving away from each other sequentially, one 
after another.  The apparent knot in one of the jets always has a 
corresponding knot in the other jet.  In fact, the appearance of a 
superluminal knot in one of the jets with no counterpart in the 
opposite jet, or a clear movement in the angular position of the 
‘core’ (at point B’) will invalidate our model. 

 

Figure 5:  The apparent angular positions of an object travel-
ing at different speeds at a distance  y  of one million light 
years from us.  The angular positions ( ϕ  in radians) are plot-

ted against the observer’s time 
 
tO  in years. 
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4.5  Redshifts of the Hotspots 

In the previous Section, we showed how a superluminal ob-
ject appears as two objects receding from a core.  Now we con-
sider the time evolution of the redshift of the two apparent ob-
jects (or hotspots).  Since the relativistic Doppler shift equation is 
not appropriate for our considerations, we need to work out 
from first principles the relationship between the redshift z  and 
the speed β .  This calculation is done in Appendix A.5:  

   1 + z =| 1 − β cos θ|  (18) 

   1 + z =| 1 + β sin ϕ|  (19) 

 
  
1 + z = 1 + β2t β2t 2 + y2  (20) 

Because β can be enormous in our model of extragalactic ra-
dio sources , we can explain the radio frequency spectra of the 
hotspots as extremely redshifted black body radiation.  Note that 
the limiting value of   | 1 + z |  is approximately equal to β , which 
gives an indication of the speeds required to push the black body 
radiation of a typical star to the RF region.  Since the β ’s in-
volved are typically extremely large, we can approximate the 
redshift as:  

 
  
1 + z ≈| βϕ| ≈ 1

2
| βΦ|  (21) 

Assuming the object to be a black body similar to the Sun, we can 
predict the ‘peak wavelength’ (the wavelength at which the lu-
minosity is a maximum) of the hotspots as:  

 
  
λmax ≈ (1 + z )480nm ≈ 1

2
| βΦ| 480nm  (22) 

where Φ is the angular separation between the two hotspots. 
Eq. (22) shows that the peak RF wavelength increases linearly 

with the angular separation.  If multiple hotspots can be located 
in a twin jet system, their peak wavelengths will depend only on 
their angular separation, and in a linear fashion.  Such a meas-
urement of the emission frequency as ϕ  increases along the jet is 
clearly seen in the photometry of the jet in 3C 273 [25].  Further-
more, if the measurement is done at a single wavelength, inten-
sity variation can be expected as the hotspot moves along the jet.  
In other words, measurements at higher wavelengths will find 
the peak intensities farther away from the core region, which is 
again consistent with observations. 

4.6  Gamma Ray Bursts 

The evolution of redshift of the thermal spectrum of a super-
luminal object also holds the explanation for gamma ray bursts 
(GRBs).  γ ray bursts are short and intense flashes of γ rays in the 
sky, lasting from a few milliseconds to several minutes [26].  The 
short flashes (the prompt emissions) are followed by an after-
glow of progressively softer energies.  Thus, the initial γ rays are 
promptly replaced by X-rays, light and even radio frequency 
waves.  This softening of the spectrum has been known for quite 
some time [27], and was first described using a hypernova (fire-
ball) model.  In this model, a relativistically expanding fireball 

produces the γ emission, and the spectrum softens as the fireball 
cools down [28].  The model calculates the energy released in the 

γ region as 1053–1054 ergs in a few seconds.  This energy output 
is similar to about 1000 times the total energy released by the sun 
over its entire lifetime. 

More recently, an inverse decay of the peak energy with 
varying time constant has been used to empirically fit the ob-
served time evolution of the peak energy [29,30] using a collap-
sar model.  According to this model, GRB’s are produced when 
the energy of highly relativistic flows in stellar collapses are dis-
sipated, with the resulting radiation jets angled properly with 
respect to our line of sight.  The collapsar model estimates a 
lower energy output because the energy released is not isotropic, 
but concentrated along the jets.  However, the rate of the collap-
sar events has to be corrected for the fraction of the solid angle 
within which the radiation jets can appear as GRB’s.  GRB’s are 
observed roughly at the rate of once a day.  Thus, the expected 
rate of the cataclysmic events powering the GRB’s is of the order 

of 104–106 per day.  Because of this inverse relationship between 
the rate and the estimated energy output, the total energy re-
leased per observed GRB remains the same. 

Symmetric radio sources (galactic or extragalactic) and GRB’s 
may appear to be completely distinct phenomena.  However, 
their cores show a similar time evolution in the peak energy, but 
with vastly different time constants.  The spectra of GRB’s rap-
idly evolve from γ  region to an optical or even RF after-glow, 
similar to the spectral evolution of the hotspots of a radio source 
as they move from the core to the lobes.  Other similarities have 
begun to attract attention in the recent years [31].  Treating GRB 
as a manifestation of the LTT results in a model that unifies these 
two phenomena and makes detailed predictions of their kinemat-
ics. 

The evolution of a GRB can be made quantitative because we 
know the dependence of the observer’s time tO  and the redshift 
1 + z  on the real time t  [Eqs. (14) and (20)].  From these two, we 
can deduce the observed time evolution of the redshift (see Ap-
pendix A.6).  We have plotted it parametrically in Fig. 6 that 
shows the variation of redshift as a function of the observer’s 
time ( tO ).  Fig. 6 shows that the observed spectrum of a super-

luminal object is expected to start at the observer’s time tO min  

with heavy (infinite) blue shift.  The spectrum of the object rap-
idly softens and soon evolves to zero redshift and on to higher 
values.  The rate of softening depends on the speed of the under-
lying superluminal object and its and distance from us.  The 
speed and the distance are the only two parameters that are dif-
ferent between GRB’s and symmetric radio sources in our model. 

Note that the x  axis in Fig. 6 scales with time.  We have plot-
ted the redshift ( 1 + z ) of an object with β = 300 and y =  ten 
million light years, with x  axis is 

 tO  in years.  It is also the 
variation of the redshift of an object at  y =  ten million light sec-
onds (or 116 light days) with  x  axis in seconds.  The former cor-
responds to symmetric jets and the latter to a GRB.  Thus, for a 
GRB, the spectral evolution takes place at a much faster pace.  
Different combinations of β  and  y  can be fitted to describe dif-
ferent GRB spectral evolutions. 
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Figure 6.  Time evolution of the redshift from a superluminal 
object.  It shows the redshifts expected from an object moving 
at  β = 300  at a distance of ten million light years from us.  
The  x  axis is the observer’s time in years.  (Since the x  axis 
scales with time, it is also the redshift from an object at 116 
light days –ten million light seconds– with the  X  axis repre-
senting 

 
tO  in seconds.) 

The observer sees no object before 
  tO min .  In other words, 

there is a definite point in the observer’s time when the GRB is 
‘born’, with no indication of its impending birth before that time.  
This birth does not correspond to any cataclysmic event (as 
would be required in the collapsar/hypernova or the ‘fireball’ 
model) at the distant object.  It is nothing but an artifact of our 
perception. 

In order to compare the time evolution of the GRB spectra to 
the ones reported in the literature, we need to get an analytical 
expression for the redshift (  1 + z ) as a function of the observer’s 
time (

 
tO ).  This can be done by eliminating  t  from the equations 

for 
 
tO  and   1 + z  [Eqs. (14) & (20)], with some algebraic manipu-

lations as shown in Appendix A.6.  The algebra can be made 
more manageable by defining   τ = y / β , a characteristic time 
scale for the GRB (or the radio source).  This is the time the object 
would take to reach us, if it were coming directly toward us.  We 
also define the age of the GRB (or radio source) as 

  
tage = tO − tO min .  This is simply the observer’s time ( tO ) shifted 

by the time at which the object first appears to him ( tO min ).  
With these notations (and for small values  t ), it is possible to 
write the time dependence of   1 + z  as:  

     
  
1 + z = 1 + β2 −τ ± 2βtage( ) βtage + τ / 2 2βtage + β2τ( ) (23) 

for small values of  t << τ . 
Since the peak energy of the spectrum is inversely propor-

tional to the redshift, it can be written as:  

 E pk (tage ) = E pk (tO min ) 1 + C1 tage / τ + C2tage / τ( ) (24) 

where C1  and C2  are coefficients to be estimated by the Taylor 

series expansion of Eq. (23) or by fitting. 
The authors of [32] have studied the evolution of the peak 

energy [ E pk (t ) ], and modeled it empirically as:  

 E pk (t ) = E pk,0 / (1 + t / τ)δ  (25) 

where t  is the time elapsed after the onset ( = tage  in our nota-

tion), τ  is a time constant and δ  is the hardness intensity corre-
lation (HIC).  Ryde and Svensson [32] reported seven fitted val-
ues of δ.  We calculate their average as δ = 1.038±0.014, with the 
individual values ranging from 0.4 to 1.1.  Although it may not 
rule out or validate either model within the statistics, the δ re-
ported may fit better to Eq. (24).  Furthermore, it is not an easy fit 
because there are too many unknowns.  However, the similarity 
between the shapes of Eqs. (24) and (25) is remarkable, and 
points to agreement between our model and the existing data. 

4.7  Expansion of the Universe 

Our perception of superluminal motion also leads to the ap-
pearance of an expanding Universe.  The expansion of the Uni-
verse is inferred by the redshift measurements of recessional 
speeds.  The apparent recessional speed is the longitudinal com-
ponent of βO  is βO| | = βO cos θ .  From Eq. (12), we can see that  

 βO| | = βO cos θ = β cos θ / (1 − β cos θ)  (26) 

 
β→±∞
lim βO| | = −1  (27) 

The apparent recessional speed tends to  c  (or, βO| | → −1 ), when 

the real speed is highly superluminal.  This limiting value of 
βO| |  is independent of the actual direction of motion of the ob-

ject θ .  Thus, whether a superluminal object is receding or ap-
proaching (or, in fact, moving in any other direction), its appear-
ance from our perspective will be that of an object receding from 
us roughly at the speed of light. 

The recessional speeds are measured using redshifts that, by 
Eq. (29), tend to large values as 

  
βO| | → −1 .   

 1 + z = 1 / (1 + βO cos θ)  (28) 

or 1 + z = 1 / (1 + βO| | )  (29) 

Thus, the appearance of all (possibly superluminal) objects reced-
ing from us at strictly subluminal speeds is an artifact of our per-
ception, rather than the true Nature of the Universe. 

4.8  Cosmic Microwave Background Radiation 

The red shift of celestial objects 1+z also has an interesting 
limiting value at large angles, and for superluminal speeds.   
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   1 + z =| 1 + β sin ϕ|  (30) 

 
  ϕ→±π /2

lim 1 + z =| 1 + β| ≈ β  (31) 

Thus, if we picture our Universe as a large number of superlu-
minal or hyperluminal objects moving around in random direc-
tions, there will be a significant amount of low energy isotropic 
electromagnetic radiation.  A low energy isotropic spectrum is 
remarkably similar to the cosmic microwave background radia-
tion (CMBR).  Thus, CMBR can be explained if we think of our 
visual reality as being limited by the LTT effects.  Note than it is 
not only our perception that gets fooled by the LTT effects, our 
measurement instruments also work at the speed of light and are 
subject to the same constraints. 

5  Conclusions 
In this article, we started with an insight from cognitive neu-

roscience about the nature of reality.  Reality is a convenient rep-
resentation that our brain creates out of our sensory inputs.  This 
representation, though convenient, is an incredibly distant expe-
riential mapping of the actual physical causes that make up the 
inputs to our senses.  Furthermore, limitations in the chain of 
sensing and perception map to measurable and predictable 
manifestations to the reality we perceive.  One such fundamental 
constraint to our perceived reality is the speed of light, and the 
corresponding manifestations, LTT effects.  Because space and 
time are a part of a reality created out of light inputs to our eyes, 
some of their properties are manifestations of LTT effects, espe-
cially on our perception of motion.  The absolute, physical reality 
generating the light inputs does not obey the properties we as-
cribe to our perceived space and time.  We showed that LTT ef-
fects are qualitatively identical to those of SRT, noting that SRT 
only considers frames of reference receding from each other.  
This similarity is not surprising because the coordinate transfor-
mation in SRT is derived based partly on LTT effects, and partly 
on the assumption that light travels at the same speed with re-
spect to all inertial frames.  In treating it as a manifestation of 
LTT, we did not address the primary motivation of SRT, which is 
a covariant formulation of Maxwell’s equations, as evidenced by 
the opening statements of Einstein’s original paper [6].  It may be 
possible to disentangle the covariance of electrodynamics from 
the coordinate transformation, although it is not attempted in 
this article. 

Unlike SRT, LTT effects are asymmetric.  This asymmetry 
provides a resolution to the twin paradox and an interpretation 
of the assumed causality violations associated with superlu-
minality.  Furthermore, the perception of superluminality is 
modulated by LTT effects, and explains γ ray bursts and sym-
metric jets.  As we showed in the article, perception of superlu-
minal motion also holds an explanation for cosmological phe-
nomena like the expansion of the Universe and cosmic micro-
wave background radiation.  LTT effects should be considered as 
a fundamental constraint in our perception, and consequently in 
physics, rather than as a convenient explanation for isolated 
phenomena.  Given that our perception is filtered through LTT 
effects, we have to deconvolute them from our perceived reality 
in order to understand the nature of the absolute, physical real-

ity.  This deconvolution, however, results in multiple solutions.  
Thus, the absolute, physical reality is beyond our grasp, and any 
assumed properties of the absolute reality can only be validated 
through how well the resultant perceived reality agrees with our 
observations.  In this article, we assumed that the absolute reality 
obeys our intuitively obvious classical mechanics and asked the 
question how such a reality would be perceived when filtered 
through LTT effects.  We demonstrated that this particular 
treatment could explain certain astrophysical and cosmological 
phenomena that we observe.  The distinction between the differ-
ent notions of velocity, including the proper velocity and the 
Einsteinian velocity, was the subject matter of a recent issue of 
this journal [33].  

The coordinate transformation in SRT should be viewed as a 
redefinition of space and time (or, more generally, reality) in 
order to accommodate the distortions in our perception of mo-
tion due to LTT effects.  The absolute reality behind our percep-
tion is not subject to restrictions of SRT.  One may be tempted to 
argue that SRT applies to the ‘real’ space and time, not our per-
ception.  This line of argument begs the question, what is real?  
Reality is nothing but a cognitive model created in our brain 
starting from our sensory inputs, visual inputs being the most 
significant.  Space itself is a part of this cognitive model.  The 
properties of space are a mapping of the constraints of our per-
ception.  We have no access to a reality beyond our perception.  
The choice of accepting our perception as a true image of reality 
and redefining space and time as described in SRT indeed 
amounts to a philosophical choice.  The alternative presented in 
the article is prompted by the view in modern neuroscience that 
reality is a cognitive model in the brain based on our sensory 
inputs.  Adopting this alternative reduces us to guessing the na-
ture of the absolute reality and comparing its predicted projec-
tion to our real perception.  It may simplify and elucidate some 
theories in physics and explain some puzzling phenomena in our 
Universe.  However, this option is yet another philosophical 
stance against the unknowable absolute reality. 

Appendices on Mathematical Details 

A.1  Perception of Speed 

In this Section, we derive how the perception of speed is dis-
torted due to the LTT effects.  We will show that the apparent 
speed is limited to the speed of light when the object is receding 
from us. 

In Fig. 7, there is an observer at O.  An object is flying by at a 
high speed v = βc  along the horizontal line BAA'.  With no loss 
of generality, we can assume that   t = 0  when the object is at B, 
the point of closest approach.  It passes A at time t .  The photon 
emitted at time t = 0  reaches the observer at time t = tO , and the 

photon emitted at A' (at time  t = ′t ) reaches him at time t = ′tO .  

The angle between the object’s velocity at A and the observer’s 
line of sight is θ .  We have the Pythagoras equations:  

 z 2 = x2 + y2  (32) 

 ′z 2 = ′x 2 + y2  (33) 
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⇒ _ x + ′x

z + ′z
=

z − ′z
x − ′x

 (34) 

If we assume that  x  and  z  (distances at time  t ) are not very 
different from  ′x  and  ′z  respectively (distances at time tO ), we 

can write,  

 
  
− cos θ = sin ϕ =

x
z

≈
′x + x
′z + z

=
′z − z
′x − x

 (35) 

We define the real speed of the object as:  

   v = βc = ( ′x − x) / ( ′t − t )  (36) 

But the speed it appears to have will depend on when the ob-
server senses the object at A and A'.  The apparent speed of the 
object is:  
 

  ′v = βOc = ( ′x − x) / ( ′tO − tO )  (37) 

We also have  
 

  tO = t + z / c  (38) 

 
  ′tO = ′t + ′z / c  (39) 

 
  ⇒ ′tO − tO = ′t − t + ( ′z − z ) / c  (40) 

Thus, 
  
β / βO = ( ′tO − tO ) / ( ′t − t )  (41) 

 
  
β / βO = 1 + ( ′z − z ) / c( ′t − t )  (42) 

 
  β / βO = 1 − cos θ(x − ′x ) / c( ′t − t )  (43) 

  
  
β / βO = 1 − β cos θ  (44) 

which gives,  
 

  βO = β / (1 − β cos θ)  (45) 

 
  
β = βO / (1 + βO cos θ)  (46) 

and,  
 

  
βO / β = 1 / (1 − β cos θ)  (47) 

 
  βO / β = 1 + βO cos θ  (48) 

 
  
βO / β = (1 + βO cos θ) / (1 − β cos θ)  (49) 

LTT effects modulate the way we perceive time at objects in 
motion.  Here we show that a receding object appears to have a 
dilated time flow.  From Fig. 7, we can see that θ = π  for an ob-
ject receding from the observer.  Thus, the apparent speed of a 
receding object is:  

 
  βO = β / (1 + β)  (50) 

 lim
β→±∞

βO = 1  (51) 

Thus, an object can never appear to be receding faster than the 
speed of light. 

 
Figure 7:  The object is flying along BAA', the observer is at O.  
The object crosses B (the point of closest approach) at time 
t =0 .  It reaches A at time  t .  A photon emitted at A reaches 

O at time tO , and a photon emitted at A' reaches O at time 

′tO . 

A.2  Time Dilation 

Referring to Fig. 7, we can see that the real time elapsed as 
the object moves from A to A' is:  

 ∆t = ′t − t  (52) 

This time period appears to the observer as:  

 ∆tO = ′tO − tO  (53) 

Using the definitions of the real and apparent speeds as in Eqs. 
(36) and (37), we can write:  

 ∆tO / ∆t = β / βO  (54) 

 ∆tO / ∆t = 1 − β cos θ  (55) 

 ∆tO / ∆t = 1 / (1 + βO cos θ)  (56) 

where we used the known relationship between β and βO  from 

Eq. (49). 
For an object receding from the observer, θ = π  and the equa-

tion becomes:  
 ∆tO / ∆t = 1 / (1 − βO )  (57) 

For an object approaching the observer, θ = 0  and the equa-
tion becomes:  
 ∆tO / ∆t = 1 / (1 + βO )  (58) 

This shows an LLT time contraction, instead of an SRT time dila-
tion. 
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A.3  Length Contraction 

The perceived length of an object in motion is subject to LTT 
effects.  In particular, a receding object appears shorter.  In Fig. 8, 
we have the object of real length  d .  The perceived length of the 
object is the distance between the leading edge and the trailing 
edge from which the photons reach the observer at the same in-
stant.  In Fig. 8, it is denoted by 

 
dO .  The photon emitted from 

the trailing edge of the object when it is at  x  reaches the ob-
server at O at time  tO .  At the same time, a photon from the lead-
ing edge at  ′x  reaches O.  But, when the leading edge is at ′x , 
the trailing edge is only at  ′′x = ′x − d , due to the motion. 

  
Figure 8:  The object has a real length of  d , and is shown as 
the shaded ellipse. To the observer at O, it appears to have a 
length of 

 
dO  due to LTT effects. 

Since the object’s speed is  v  and the time starts when the ob-
ject passes B, we can write:  

 
  
tO = x / v + z / c  (59) 

 
  tO = ′′x / v + ′z / c  (60) 

 
  
tO = ( ′x − d ) / v + ′z / c  (61) 

Using the equation for the apparent length of the object dO =  

 ′x − x , we can rewrite this as:  

   ( ′z − z ) / c = (x − ′x + d ) / v  (62) 

 
  ( ′z − z ) / c = (d − dO ) / v  (63) 

The approximation for  cos θ  in Eq. (35) is still valid, with the 
additional information that the apparent length of the object 

 
dO = ′x − x .   

 
  
− cos θ = ( ′z − z ) / dO  (64) 

Thus, Eq. (63) becomes:  

 
  −dO cos θ = (d − dO ) / β  (65) 

or, dO / d = 1 / (1 − β cos θ)  (66) 

 dO / d = 1 + βO cos θ  

 dO / d = βO / β  (67) 

For an object receding from the observer, θ = π  and the equation 
becomes:  
 dO / d == 1 − βO  (68) 

For an object approaching the observer,  θ = 0  and the equation 
becomes:  
 dO / d == 1 + βO  (69) 

which shows that the apparent length of the object is greater than 
its real length. 

A.4  Doppler Shift 

Redshift z  is defined by the relation:  

 1 + z = λO / λ  (70) 

where λO  is the measured wavelength and λ  is the known 

wavelength.  In Fig. 7, the number of wave cycles created in time 
′t − t  between A and A' is the same as the number of wave cycles 

sensed at O between ′tO  and 
 
tO .  Substituting the values, we get:  

 ( ′t − t )c / λ = ( ′tO − tO )c / λO  (71) 

Using Eqs. (36) and (37) for the real and apparent speeds, it is 
easy to get:  
 λO / λ = β / βO  (72) 

Using Eq. (49) for the relationship between the real speed β  and 
the apparent speed βO , we get:  

 1 + z = 1 / (1 + βO cos θ)  (73) 

  1 + z = 1 − β cos θ  (74) 

As expected, z  depends on the longitudinal component of the 
velocity of the object.  Since we allow superluminal speeds in this 
calculation, we need to generalize this equation for z , noting 
that the ratio of wavelengths is positive.  Taking this into ac-
count, we get:  
 1 + z = 1 / (1 + βO cos θ)  (75) 

 1 + z =| 1 − β cos θ|  (76) 

For a receding object θ = π .  If we consider only subluminal 
speeds, we can rewrite Eqs. (75) and (76) as:  

 1 + z = 1 / (1 − βO )  (77) 

 1 + z = 1 + β  (78) 
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(1 + z )2 = (1 + β) (1 − βO )  (79) 

or, 
  
1 + z = (1 + β) / (1 − βO )  (80) 

If we were to assume, mistakenly, that the speed we observe is 
the real speed, then Eq. (80) would become the relativistic Dop-
pler formula:  

   1 + z = (1 + β) / (1 − β)  (81) 

A.5  Kinematics of Superluminal Objects 

The derivation of the kinematics is based on Fig. 9.  Here, an 
object is moving at a superluminal speed along A_BA.  At the 
point of closest approach, B, the object is a distance of y  from 
the observer at O.  Since the speed is superluminal, the light 
emitted by the object at some point B' (before the point of closest 
approach B) reaches the observer before the light emitted at A_.  
This gives an illusion of the object moving in the direction from 
B' to A_, while in reality it is moving from A_ to B'. 

 

Figure 9.  An object flying along A_BA at a constant superlu-
minal speed.  The observer is at O.  The object crosses B (the 
point of closest approach to O) at time   t = 0 . 

Observed that aangle ϕ  is measured with respect to the point 
of closest approach B, and is defined as  θ − π / 2  where θ  is the 
angle between the object’s velocity and the observer’s line of 
sight.  The ϕ  is negative for negative time  t .  We choose units 
such that   c = 1  for simplicity, and denote the observer’s time by 

 tO .  Note that, by definition, the origin in the observer’s time, tO  

is set to the instant when the object appears at B. 
The real position of the object at any time  t  is:  

   x = y tan ϕ = βt  (82) 

or,   t = y tan ϕ / β  (83) 

A photon emitted by the object at A (at time  t ) will reach O after 
traversing the hypotenuse.  A photon emitted at B will reach the 
observer at  t = y , since we have chosen   c = 1 .  Since we define 
the observer’s time 

 
tO  such that the time of arrival is t = tO + y , 

we have:  
 

  
tO = t + y / cos ϕ − y  (84) 

which gives the relation between 
 
tO  and ϕ .   

 tO = y(tan φ / β + 1 / cos ϕ − 1)  (85) 

Expanding the equation for tO  to second order, we get:  

 tO = y(ϕ / β + ϕ2 / 2)  (86) 

The minimum value of tO  occurs at 
 
ϕ0 = −1 / β  and it is 

tO min = −y / 2β2 .  To the observer, the object first appears at the 
position ϕ = −1 / β .  Then it appears to stretch and split, rapidly 
at first, and slowing down later. 

The quadratic Eq. (86) can be recast as:  

 1 + (2β2 / y)tO = (1 + βϕ)2  (87) 

which will be more useful later in the derivation. 
The angular separation between the objects flying away from 

each other is the difference between the roots of Eq. (86):  

 Φ = ϕ1 − ϕ2  (88) 

 Φ =
2
β

1 + (2β2 / y)tO  (89) 

 Φ = 2(1 + βϕ) / β  (90) 

making use of Eq. (87).  Thus, we have the angular separation 
either in terms of the observer’s time [

  Φ(tO ) ] or the angular po-
sition of the object [ Φ(ϕ) ] as illustrated in Fig. 10. 

 

Figure 10:  Illustration of how the angular separation is ex-
pressed either in terms of the observer’s time [ Φ(t0 ) ] or the 

angular position of the object [ Φ(ϕ) ]. 

The rate at which the angular separation occurs is:  

 d Φ / dtO = 2β y 1 + (2β2 / y)tO  (91) 

 d Φ / dtO = 2β / y(1 + βϕ)  (92) 
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Again, making use of Eq. (87).  Defining the apparent age of the 

radio source 
  
tage = tO − tO min  and knowing 

  
tO min = −y / 2β2 , 

we can write:  

 
  
d Φ / dtO = 2β y 1 + 2β2 / ytO  (93) 

 
  
d Φ / dtO = 2β y 1 − tO / tO min  (94) 

 
  
d Φ / dtO = (4β2 / y2 ) × [−tO min / (tO − tO min )]  (95) 

 
  
d Φ / dtO = 2 / ytage  (96) 

A.6  Time Evolution of the Redshift 

As shown before in Eq. (76), the redshift   1 + z  depends on 
the real speed β  as:  

   1 + z =| 1 − β cos θ| =| 1 + β sin ϕ|  (97) 

For any given time 
  
t0  for the observer, there are two solutions 

for ϕ  and   1 + z .  The 
 
ϕ1  and 

 
ϕ2  lie on either side of ϕ0 = 1 / β .  

For  sin ϕ > −1 / β , we get  

 
  
1 + z2 = 1 + β sin ϕ1  (98) 

and for  sin ϕ < −1 / β ,  

 
  
1 + z1 = −1 − β sin ϕ2  (99) 

Thus, we get the difference in the redshift between the two hot-
spots at 

 
ϕ1  and 

 
ϕ2  as:  

 
  
∆z ≈ 2 + β(ϕ1 + ϕ2 )  (100) 

We also have the mean of the solutions of the quadratic ( ϕ1  and 

 
ϕ2 ) equal to the position of the minimum (

 
ϕ0 ):  

 
 
1
2

(ϕ1 + ϕ2 ) = −1 / β  (101) 

Thus 
 
ϕ1 + ϕ2 = −2 / β , and hence   ∆z = 0 .  To second order in ϕ , 

the two hotspots will have identical redshifts  
As shown before [see Eq. (97)], the redshift  z  depends on the 

real speed β  through the relation:  

 
  
1 + z =| 1 + β sin ϕ| = 1 + β2t β2t 2 + y2  (102) 

Since we know  z  and 
 
tO  as functions of  t , we can plot their 

inter-dependence parametrically.  This is shown in Fig. 6 of the 
article. 

It is also possible to eliminate  t  and derive the dependence 
of   1 + z  on the apparent age of the object under consideration, 

  
tage = tO − tmin .  In order to do this, we first define a time con-

stant τ = y / β .  This is the time the object would take to reach us, 
if it were flying directly toward us.  Keeping in mind that the 

new variable is related to tage  through 
  
tO min = −y / 2β2 = −τ / β , 

let’s get an expression for t / τ :  

 tO = t + β2t 2 + y2 − y  (103) 

 tO = t + βτ 1 + t 2 / τ2 − βτ  (105) 

 tO ≈ t + βt 2 / 2τ  (106) 

 ⇒ t / τ = −1 ± 1 + 2βtage / τ





β  (107) 

Note that this is valid only for  t << τ .  Now we collect the terms 
in t / τ  in the equation for 1 + z :  

 tO = t + β2t 2 + y2 − y  (108) 

 ⇒ β2t 2 + y2 = tO − t + y  (109) 

 1 + z = 1 + β2t β2t 2 + y2  (110) 

 1 + z =| 1 + β2t / (tO − t + y)|  (111) 

 1 + z = 1 + β2t / τ (tage / τ − 1 / 2β − t / τ + β)  (112) 

As expected, the time variables always appear as ratios like 
t / τ , giving confidence that our choice of the characteristic time 
scale is probably right.  Finally, we can substitute t / τ  from Eqs. 
(107) in Eq. (112) to obtain:  

1 + z = 1 + β2 −τ ± 2βtage( ) βtage + τ / 2 2βtage + β2τ( ) (113) 

A.7  Estimating Real Speed from Apparent Speed 

In the traditional explanation of superluminality, superlu-
minal objects such as GRS 1915+105 are assumed to be two jets 
emanating from a core.  The axis of the jets makes an angle θ  
with respect to our line of sight (see Fig. 11).   

 
Figure 11.  Illustration of the real jet speeds βa  and βr , core 

distance , d  and the angles. 



NovemberDecember 2008 GALILEAN ELECTRODYNAMICS  117

The only direct kinematic measurements we have are the an-
gular velocities of features (or knots) in the jets.  We have two 
angular rates, 

 
µa  and 

 
µr , for the approaching and receding jets.  

The distance of the core from us ( d ) is not known.  Also un-
known are the real speeds of the jets 

 βa  and 
 βr , which are usu-

ally assumed to be the same β .  The apparent transverse speeds 

(
  β0⊥

a  and 
  β0⊥

r ) are different for the two jets.  Thus, we have the 

following definitions:  

 
  
µa = d ϕa / dtO  (114) 

 
  µr = d ϕr / dtO  (115) 

 
 βO⊥

a = µad  (116) 

  βO ⊥
r = µrd  (117) 

where 
 
tO  is our time.  Assuming the real jet speeds are the same 

(
 βa = βr = β ) and using the relationship between β  and βO  

from Eq. (49), we have the following equations:  

 
  
µad = β sin θ / (1 − β cos θ)  (118) 

 
  µrd = β sin θ / (1 + β cos θ)  (119) 

There are three unknowns ( β, θ  and  d ) and only two equations.  
Thus, it is always possible to impose the relativistic condition 
( β < 1 ) and compute corresponding limits on θ  and d .  The 
only way to estimate the real speed or the angle is to have an 
independent (and, hopefully, model-independent) measurement 
of  d . 

In order to find the limiting values of 
 βO⊥

a  and βO ⊥
r  under 

the relativistic constraint, we set  β → 1  in Eqs. (118) & (119).   

 
  βO ⊥

a = sin θ / (1 − cos θ)  (120) 

 
  βO⊥

r = sin θ / (1 + cos θ)  (121) 

or, 
  βO ⊥

a = sin θ / (1 − cos θ)  (122) 

 
  βO⊥

a = (1 − cos θ)(1 + cos θ) (1 − cos θ)  (123) 

 
  βO ⊥

a = (1 + cos θ) (1 − cos θ)  (124) 

 
  βO ⊥

a = (1 + cos θ) 1 − cos2 θ  (125) 

 
  βO ⊥

a = (1 + cos θ) / sin θ  (126) 

 
  βO⊥

a = 1 / βO ⊥
r  (127) 

Thus, if we assume that the real speeds are limited to β<1, the 

apparent transverse speed of the receding jet ( βO ⊥
  r ) is limited to 

the reciprocal of the apparent transverse speed of the approach-

ing jet ( βO ⊥
  a ).  As long as the measured angular speeds of the 

two jets are different, one can always find an estimated distance 
such that the reciprocal inequality holds because the system of 
equations is under-constrained.   
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