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Our main aim is to apply the theory of regularly varying functions to the asymptotical anal-
ysis at infinity of solutions of Friedmann cosmological equations. A new constant C is
introduced related to the Friedmann cosmological equations. Determining the values of
C we obtain the asymptotical behavior of the solutions, i.e. of the expansion scale factor
aðtÞ of a universe. The instance C < 1

4 is appropriate for both cases, the spatially flat and
open universe, and gives a sufficient and necessary condition for the solutions to be regu-
larly varying. This property of Friedmann equations is formulated as the generalized power
law principle. From the theory of regular variation it follows that the solutions under usual
assumptions include a multiplicative term which is a slowly varying function.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In this paper1 we describe conditions under which the Friedmann equations [5] have regularly varying solutions. Strictly
speaking, we found a necessary and sufficient condition for Friedmann equations, expressed by the values of a constant C,
to have regularly varying solutions. We formulate this description as the generalized power law principle for Friedmanns equation.
The physical formulation of this condition is that a certain form of the equation of state p � wqc2 must hold. Hence, our dis-
cussion is mainly about a universe filled with the perfect fluid with constant barotropic equation of state p ¼ wqc2. The suffi-
ciency of this condition is well known, e.g. Liddle and Lyth [9], Coles and Lucchin [4], Narlikar [16] and Islam [8]. However, we
have not found in the literature the necessity part of the power law principle.

It appears that the mentioned constant C related to the Friedmann acceleration equation plays the crucial role in this
analysis. Its values determine the asymptotical behavior of the solutions of the Friedmann equations, i.e. of the scale factor
aðtÞ as time t tends to 1. Our solution is also valid for non-zero cosmological constant K if the pressureless spatially flat
universe is assumed. This was possible due to a formula of Carroll et al. [3] for the predicted age of the universe. In the course
of this analysis, mathematical singularities appearing in the solutions are classified and are clearly distinguished from those
arising from the physical constrains. All solutions we found are in agreement with the results widely found in the literature
on standard cosmological model.

The background for our analysis is the theory of regularly varying functions which could be considered as the mathemat-
ical counterpart of the general form of the power law, the term often used in physics. A good presentation of this subject can
be found in Bingham et al. [2] and Seneta [17]. Another tool we used is the theory of regularly varying solutions of differ-
ential equations. A good source for this theory is Marić [13]. The theory of regular variation provides additional means in
the asymptotical analysis of the solutions of the second order linear differential equations as (3), but it seems it has not been
. All rights reserved.
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much applied in cosmology and in astrophysics. There are few such applications, e.g. Molchanov et al. [15], Stern [18] and
Mijajlović et al. [14].

By R we denote the set of real numbers. As usually, for two real functions f and g; f ðxÞ � gðxÞ (or f � g) means that
limx!1f ðxÞ=gðxÞ ¼ 1.

The paper is organized as follows. In the first section the history of the problem is explained and physical (Friedmann
equations) and mathematical (regular variation) background is given. The main results of the paper are presented in Sections
2 and 3.

1.1. Friedmann equations

The scale factor aðtÞ is defined by Friedmann–Lemaître–Robertson–Walker (FLRW) metric. The FLRW 4-dimensional line
element in spherical comoving coordinates is given by
ds2 ¼ �dt2 þ a2ðtÞ dr2

1� kr2 þ r2ðdh2 þ sin2 hdu2Þ
" #

: ð1Þ
This metric is an exact solution of Einstein’s field equations of general relativity and it describes a homogeneous, isotropic
expanding or contracting universe. In this paper we shall discuss only the expanding universe. The scale factor aðtÞ is a solu-
tion of the Friedmann equations. These equations are derived from the Einstein field equations; they are the following three
differential equations. The term Friedmann equation is usually reserved for the first one.
_a
a

� �2

¼ 8pG
3

q� kc2

a2 : ð2Þ
The Friedmann acceleration equation is
€a
a
¼ �4pG

3
qþ 3p

c2

� �
ð3Þ
while the fluid equation is
_qþ 3
_a
a

qþ p
c2

� �
¼ 0: ð4Þ
The solutions of these equations are three fundamental parameters, the scale factor a ¼ aðtÞ, the energy density q ¼ qðtÞ
and p ¼ pðtÞ, the pressure of the material in the universe. Here k is the curvature index with possible values �1 (elliptic
geometry), 0 (spatially flat geometry) and 1 (hyperbolic geometry). The symbol G denotes the gravitational constant and
c is the speed of light. Eqs. (2)–(4) are not independent. Eq. (3) follows from (2) and (4), while Eqs. (2) and (3) yield (4).

We shall use Karamata theory of regularly varying functions, as applied to differential equations in Maric and Tomic [12]
and Marić [13]. This theory generalizes the power law in physics and we shall use it to obtain the asymptotic analysis of
solutions of Friedmann equations.

In our study of the asymptotical solutions of Friedmann equations, the acceleration equation will have the central point
for several reasons. First, it does not contain explicitly the curvature index k. Secondly, the theory of regularly varying solu-
tions of such type of equations can be applied successfully, regardless if the cosmological constant K is added in (2) and (3):
_a
a

� �2

¼ 8pG
3

q� kc2

a2 þ
K
3
;

€a
a
¼ �4pG

3
qþ 3p

c2

� �
þK

3
: ð5Þ
Namely, under the transformations q0 ¼ qþ K=ð8pGÞ; p0 ¼ p�K=ð8pGÞ Eqs. (5) yield (2) and (3), but now with respect to
the parameters q0 and p0. The fluid equation is not affected by the parameter K. Therefore, our discussion will be concen-
trated further on the solutions of the Friedmann equations in their basic form (2)–(4) if it is not otherwise stated.

From now on, we shall assume that the functions aðtÞ; pðtÞ and qðtÞ satisfy all three Friedmann equations. We shall also
assume that all appearing functions are continuous in their domains and have the sufficient number of derivatives, at least
that they have the continuous second derivative.

1.2. Regular variation

In this section we shall review the basic notions related to the regular variation necessary for our analysis. In particular
we shall need properties of regularly varying solutions of the second order differential equation
€yþ f ðtÞy ¼ 0; f ðtÞ is continuous on ½a;1�: ð6Þ
Observe that the acceleration equation (3) has the form (6). In short, the notion of a regular variation is related to the
power law distributions, described by the following relationship between quantities F and t:
FðtÞ ¼ trðaþ oð1ÞÞ; a; r 2 R: ð7Þ
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It is said that two quantities y and tr satisfy the power law if they are related by a proportion,2 i.e. there is a constant a so
that y ¼ atr . This definition of power law can be naturally extended by use of the notion of slowly varying function.

A real positive continuous function3 LðtÞ defined for x > x0 which satisfies
2 Thi
3 Mo
LðktÞ
LðtÞ ! 1 as t !1; for each real k > 0 ð8Þ
is called a slowly varying function.

Definition. A physical quantity FðtÞ is said to satisfy the generalized power law if
FðtÞ ¼ trLðtÞ; ð9Þ
where LðtÞ is a slowly varying function and r is a real constant.
Examples of slowly varying functions are lnðxÞ and iterated logarithmic functions lnð. . . lnðxÞ . . .Þ. More complicated exam-

ples (cf. Marić [13]) are provided by:
L1ðxÞ ¼
1
x

Z x

a

dt
ln t

; L2ðxÞ ¼ expððln xÞ1=3 cosðln xÞ1=3Þ: ð10Þ
We note that L2ðxÞ varies infinitely between 0 and 1.
A positive continuous function F defined for t > t0, is the regularly varying function of the index r, if and only if it satisfies
FðktÞ
FðtÞ ! kr as t !1; for each k > 0: ð11Þ
It immediately follows that a regularly varying function FðtÞ has the form (9). So to say that FðtÞ is regularly varying is the
same as FðtÞ to satisfy the generalized power law. By Proposition 7 in [13], if a function FðxÞ is asymptotically equivalent to a
regularly varying function, it is a regularly varying function. Hence, we may define the generalized power law also by
FðxÞ � taLðtÞ; as t !1: ð12Þ
The class of regularly varying functions of index a we shall denote byRa. HenceR0 is the class of all slowly varying func-
tions. By Z0 we shall denote the class of zero functions at 1, i.e. e 2 Z0 if and only if limt!þ1eðtÞ ¼ 0.

Karamata introduced in [10] the concept of regularly varying functions continuing the works of G.H. Hardy, J.L. Littlewood
and E. Landau in the asymptotic analysis of real functions. The following two theorems describe fundamental properties of
this class of functions.

Theorem 1.1 ([10] Representation theorem). L 2 R0 if and only if there are measurable functions hðxÞ and e 2 Z0 and b 2 R so
that
LðxÞ ¼ hðxÞe
R x

b

eðtÞ
t dt
; x P b; ð13Þ
and hðxÞ ! h0 as x!1; h0 is a positive constant.
The function eðtÞ in the above theorem is not uniquely determined. If hðxÞ is a constant function, then LðxÞ is called nor-

malized. We denote byN the class of normalized slowly varying functions. We note the following important fact forN -func-
tions. If L 2 N and there is €L, then e in (13) has the first order derivative _e. This follows from the identity eðtÞ ¼ t _LðtÞ=LðtÞ.

There is also an appropriate definition of regular variation at 0 and 1 and various generalizations such as the rapidly
varying functions. Even if such solutions of Friedmann equation are possible, we will not discuss these types of solutions
in this article, so we omit these definitions.

For our study of Friedmann equations we need several results on solutions of (6). There are various conditions for f ðtÞ that
ensure that regularly varying solutions of €yþ f ðtÞy ¼ 0 exist. We shall particularly use the following result, see Howard and
Maric [7] and Marić [13] the Theorems 1.10 and 1.11:

Theorem 1.2. Let �1 < C < 1=4; and let a1 < a2 be two roots of the equation
x2 � xþ C ¼ 0: ð14Þ
Further let Li, i = 1,2 denote two normalized slowly varying functions. Then there are two linearly independent regularly varying
solutions of €yþ f ðtÞy ¼ 0 of the form
yiðtÞ ¼ tai LiðtÞ; i ¼ 1;2; ð15Þ
if and only if limx!1x
R1

x f ðtÞdt ¼ C. Moreover, L2ðtÞ � 1
ð1�2a1ÞL1ðtÞ

. h
s relation is usually denoted by y / tr .
re generally it may be assumed that LðtÞ is a measurable function, but in this article we are dealing only with continuous functions anyway.
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The limit of the integral in the theorem is not always easy to compute. As limt!1t2f ðtÞ ¼ C implies limx!1x
R1

x f ðtÞdt ¼ C,
we see that
lim
t!1

t2f ðtÞ ¼ C ð16Þ
gives a useful sufficient condition for the existence of regular solutions of the equation €yþ f ðtÞy ¼ 0 as described in the pre-
vious theorem.

2. Regularly varying solutions of acceleration equations

As noted, the acceleration equation obviously has the form (6) so under appropriate assumptions, i.e. that the functions
we encounter are continuously differentiable as many times as necessary, the analysis of the previous section, in particular
Theorem 1.2, can be applied to it. For this reason, we shall write from now on the acceleration equation (5) in the form
€aþ lðtÞ
t2 a ¼ 0; ð17Þ
where
lðtÞ ¼ 4pG
3

t2 qþ 3p
c2

� �
: ð18Þ
Our approach in the next analysis is as follows. Obviously l is a function of q and p. We assumed that q and p are solu-
tions of Friedmann equations, hence lðtÞ is a well-defined function. Under this assumption, the theory of regular variation
applied to Eq. (17) yields the asymptotic expansions of lðtÞ and aðtÞ and exact conditions on lðtÞ under which these expan-
sions exist. Using the identity (18) we will be able then to find the asymptotical expansions for q; p and other cosmological
parameters.

In the next the crucial role will play the following integral limit:
lim
x!1

x
Z 1

x

lðtÞ
t2 dt ¼ C: ð19Þ
Let us denote by MC the class of functions l that satisfy the integral condition (19). Further, let
M¼
[
r2R
Mr:
Marić introduced the integral condition (19) (cf. [13]), accordingly we shall call the class M also as Marić class of func-
tions. Obviously, M is a vector space over R and the map M! R defined by
MðuÞ ¼ lim
x!1

x
Z 1

x

uðtÞ
t2 dt
is a linear functional, i.e. Mðauþ bvÞ ¼ aMðuÞ þ bMðvÞ; a; b 2 R; u;v 2 M. It is easy to see that MðeÞ ¼ 0 for e 2 Z0. By the
note regarding (16), we immediately have

Proposition 2.1. If limt!1uðtÞ ¼ r then MðuÞ ¼ r.
Now we prove a useful representation theorem for Marić class of functions.

Theorem 2.2 (Representation theorem for M-functions). u 2 Mr if and only if there are e;g 2 Z0 such that
uðtÞ ¼ r � t _eðtÞ þ gðtÞ. If r < 1=4 then e is that one appearing in the representation (13) of aðtÞ, with hðtÞ constant.
Proof. ()) Suppose u 2 Mr , and r < 1
4. By Theorem 1.2 the equation €yþ uðtÞ

t2 y ¼ 0 has a solution aðtÞ ¼ taLðtÞwhere a is a root

of the equation x2 � xþ r ¼ 0 and L 2 N . By Theorem 1.1 there are a0; b 2 R and e 2 Z0 so that aðtÞ ¼ a0tae
R x

b

eðtÞ
t dt . As

_LðtÞ ¼ eðtÞ
t LðtÞ and r ¼ �aða� 1Þ, we have
€aðtÞ ¼ ð�r þ t _e� ð1� 2aÞeþ e2ÞLðtÞta�2:
Since � uðtÞ
t2 ¼

€aðtÞ
aðtÞ it follows uðtÞ ¼ r � t _eðtÞ þ gðtÞ where g ¼ e2 � ð1� 2aÞe.

Suppose r P 1
4. As Mð 1

8r uÞ ¼ 1
8, taking 1

8r u instead of u in the previous proof, we have 1
8r uðtÞ ¼ 1

8� t _eðtÞ þ gðtÞ for some
e;g 2 Z0, hence uðtÞ ¼ r � t _e1ðtÞ þ g1ðtÞ where e1 ¼ 8re and g1 ¼ 8rg.

(() Suppose uðtÞ ¼ r � t _eðtÞ þ gðtÞ where e;g 2 Z0. Then
MðuÞ ¼MðrÞ �Mðt _eÞ þMðgÞ ¼ r �Mðt _eÞ:

Zarko
Cross-Out

Zarko
Inserted Text
M: {\cal M} \to R
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Further, taking vðtÞ ¼ t _e,
Z 1

x

vðtÞ
t2 dt ¼

Z 1

x

de
t
¼ � e

x
þ
Z 1

x

e
t2 dt ¼ � e

x
þ o

1
x

� �
:

Hence, Mðt _eÞ ¼ limx!1x
R1

x
vðtÞ
t2 dt ¼ limx!1ð�eþ oð1ÞÞ ¼ 0, so MðuÞ ¼ r. h
Corollary 2.3. Assume u 2Mr . Then limt!1uðtÞ ¼ r if and only if limt!1t _eðtÞ ¼ 0 in above representation of u.
Example. Let eðtÞ ¼ sinðt3Þ
t . Then for
lðtÞ ¼ 1
8
� t _eðtÞ � eðtÞ ¼ 1

8
� 3t2 cosðt3Þ:
MðlÞ ¼ 1
8 and all ultimately positive solutions of (17) are regularly varying, but limt!1lðtÞ does not exist. Note that it follows

limx!1x
R1

x cosðt3Þdt ¼ 0. h

The next proposition will be useful in our further analysis. It also gives the e-representation of the logarithmic derivative
HðtÞ � _aðtÞ=aðtÞ of aðtÞ.

Proposition 2.4. Suppose l 2 M and C �MðlÞ < 1
4 holds for Eq. (17). Then any ultimately positive solution aðtÞ of (17) is a

normalized regularly varying function, i.e. there are L 2 N and a 2 R, so that aðtÞ ¼ taLðtÞ.
If LðtÞ has the e-representation as in Theorem 1.1, where hðtÞ is a positive constant, then HðtÞ ¼ a=t þ e=t.
Proof. Suppose aðtÞ is positive at 1. By Theorem 1.2 there are L1; L2 2 N and a1;a2 2 R so that
aðtÞ ¼ c1L1ta1 þ c2L2ta2 ; c1; c2 2 R; ð20Þ
where a1; a2 are the roots of Eq. (14). Since C < 1=4 we have a1 – a2, so we may assume a1 > a2. Suppose c1 – 0. Hence, the
term c1L1ta1 dominates c2L2ta2 , so there is t0 > 0 so that aðtÞ > 0 for t > t0. Let d ¼ a2 � a1; c0 ¼ c1=c2 and L0 ¼ L1=L2. Note
that L0 2 R0. By Representation Theorem 1.1 and as L1; L2 are normalized, there are constants h1; h2; b 2 R and e1; e2 2 Z0

so that
LiðxÞ ¼ hie
R x

b

ei ðtÞ
t dt
; x P b; i ¼ 1;2:
As _LiðtÞ ¼ eiðtÞ
t LiðtÞ, taking the logarithmic derivative HðtÞ � _aðtÞ

aðtÞ of aðtÞ and a � a1 we obtain
HðtÞ ¼ a
t
ð1þ e1=aÞ

1þ c0
a2þe2
a1þe1

L0ðtÞtd

1þ c0L0ðtÞtd :
Since L0 is slowly varying and d < 0, it follows L0td ! 0 as t ! 0. Hence, there is e 2 Z0 so that
HðtÞ ¼
_aðtÞ
aðtÞ ¼

a
t
þ eðtÞ

t
: ð21Þ
By integration of this relation we have immediately
aðxÞ ¼ a0e
R x

b

eðtÞ
t dt
; x P b; where b ¼ t0; a0 ¼ aðt0Þ:
Hence, by Theorem 1.1, aðtÞ is a normalized slowly varying function. h
3. Asymptotic solutions of Friedmann equations

We proceed to the analysis of solutions of Friedman equations taking into account the physical constraints. We remind
that besides the acceleration equation (17) with lðtÞ defined by (18), the scale factor aðtÞ also satisfies the other two Fried-
mann Eqs. (2) and (4). Note that aðtÞ is a function of time which represents the relative expansion of the universe. This func-
tion relates the proper distance between a pair of objects, e.g. two galaxies, moving with the Hubble flow in a FLWR universe
at any arbitrary time t to their distance at some reference time t0. Thus, dðtÞ ¼ aðtÞdðt0Þ where dðtÞ is the proper distance at
epoch t. Hence aðtÞ > 0. Therefore, we shall consider only positive solutions aðtÞ of Friedmann equations.

3.1. Cosmological parameters

The Hubble parameter HðtÞ and the deceleration parameter qðtÞ are defined in Cosmology by
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HðtÞ ¼
_aðtÞ
aðtÞ ; qðtÞ ¼ �

€aðtÞ
aðtÞ �

1

HðtÞ2
ð22Þ
where aðtÞ is the scale factor. Then obviously we have the following identity.
lðtÞ ¼ qðtÞðHðtÞtÞ2: ð23Þ
Observe that lðtÞ is a dimensionless parameter. We shall assume that lðtÞ is continuous. From the physical point of view,
it means that scenarios such as Big Crunch, or Big Rip are not included in our analysis. That is, in finite time t, aðtÞ – 0, neither
aðtÞ becomes infinite. If lðtÞ is an M-function then the real constant C is defined by C ¼ MðlÞ.

Let us remind that the density parameter XðtÞ and the density parameter for the cosmological constant K are defined by
X ¼ XðtÞ ¼ qðtÞ
qc

; XK ¼ XKðtÞ ¼
K

3HðtÞ2
;

where qc is the critical density.

Proposition 3.1. If the limit H1 ¼ limt!1HðtÞ exists, then
C ¼ lim
t!1

t ðHðtÞ � H1Þ �
Z 1

t
HðtÞ2dt

� �
:

Proof. As lðtÞ ¼ � €a
a t2 by use of partial integration we have:
Z lðtÞ
t2 dt ¼ �

_a
a
�
Z

_a2

a2 dt ¼ �HðtÞ �
Z

HðtÞ2dt
and the statement follows as C ¼ limx!1x
R1

x
lðtÞ
t2 dt. h

Therefore, if the limit (19) exists then C depends solely on the behavior of the Hubble parameter HðtÞ at 1.
The next theorem describes the main property of the scale factor aðtÞ for the non-oscillatory universe. Namely, it gives the

necessary and sufficient condition for aðtÞ to satisfy the generalized power law.

Theorem 3.2 (Generalized power law for the scale factor aðtÞ). Let aðtÞ be the scale factor, a solution of Friedmann equations, and
a 2 R. Then

1. If l 2 MC and C < 1=4 then there is L 2 N so that aðtÞ ¼ taLðtÞ, where a is a root of the polynomial x2 � xþ C.
2. If there is L 2 N so that aðtÞ ¼ taLðtÞ then l 2 MC; a2 � aþ C ¼ 0 and C 6 1=4.
Proof

1. This assertion follows immediately from Proposition 2.4.
2. The next proof follows the ideas presented in [13, Section 1.4]. So, suppose aðtÞ ¼ taLðtÞ; L 2 N . By Representation theo-

rem 1.1 there is e 2 Z0 so that _L ¼ e
t L, hence
t
_aðtÞ
aðtÞ ¼ eðtÞ þ a; t

_aðtÞ
aðtÞ

� �2

¼ gðtÞ þ a2; g 2 Z0: ð24Þ
Using €a
a ¼ �

l
t2 and by integration of the identity €a

a ¼
_a
a

� �0 þ _a
a

� �2
we obtain after multiplying by x

Z 1 � �2 Z 1

�x

_aðxÞ
aðxÞ þ x

x
t

_aðtÞ
aðtÞ t�2dt þ x

x

lðtÞ
t2 dt ¼ 0:
By (24), the last identity and applying x!1, we infer a2 � aþ C ¼ 0. Since a is a real number, for the discriminant
D ¼ 1� 4C of the polynomial x2 � xþ C must be D P 0, i.e. C 6 1=4. h
Remark. Under certain conditions Theorem 3.2.1 also holds for C ¼ 1=4, i.e. a ¼ 1=2. This case will be discussed in Section 3.4.
Theorem 3.3. Assume l 2MC where C < 1=4. Let aðtÞ ¼ taLðtÞ be the corresponding scale factor, where a – 0 and L 2 N , with L
having the e-representation as in Theorem 1.1, where hðtÞ is a positive constant. Then
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1. The possible values of the curvature index k are 0 and �1, i.e. the Friedmann model of the universe is non-oscillatory.
2. The Hubble parameter HðtÞ has the following representation
HðtÞ ¼ a
t
þ e

t
: ð25Þ
3. The deceleration parameter qðtÞ has the following representations
qðtÞ ¼ lðtÞ
a2 ð1þ gÞ; ð26Þ

qðtÞ ¼ 1� a
a
� t _e

a2 ð1þ gÞ þ s; g; s 2 Z0: ð27Þ

qðtÞ ¼ 1� a
a
� t _nþ f; n; f 2 Z0 ð28Þ
Proof

1. N -functions belong to so called Zygmund class (Bojanić and Karamata, see [2]), hence, since a – 0, the scale factor aðtÞ is
ultimately monotonous function. Thus, the universe is non-oscilatory, hence k ¼ 0 or k ¼ �1.

2. The representation (25) follows from Proposition 2.4
3. qðtÞ ¼ � €a

a � 1
H2 ¼ l

t2 � 1
a=tþe=tð Þ2

¼ l
a2 ð1þ e=aÞ�2 ¼ lðtÞ

a2 ð1þ gðtÞÞ for some g 2 Z0, i.e. (26) holds.Further, by e-representation for

lðtÞ, Theorem 2.2, there is d 2 Z0 so that qðtÞ ¼ ðC� t _eþ dÞð1þ gÞ=a2. As C ¼ að1� aÞ we obtain (27) taking

s ¼ Cg=a2 þ dð1þ gÞ=a2.

Finally we show that q 2 Mð1�aÞ=a. According to Theorem 2.2 this will prove the representation (28). So, we have
qðtÞ ¼ l
a2 ð1þ e=aÞ�2 ¼ C� t _eþ d

a2 ð1þ e=aÞ�2
;

hence for vðtÞ ¼ ð1þ eðtÞ=aÞ2 we have
MðqÞ ¼ C
a2 M 1=vð Þ � 1

a2 M t _e=vð Þ þ 1
a2 M d=vð Þ:
Further, M 1=vð Þ ¼ 1 since x
R1

x
1

ð1þe=aÞ2
� dt

t2 ! 1 as x!1.

M t _e=vð Þ ¼ 0 since x
R1

x
t _e
v � dt

t2 ¼ �xa
R1

x
1
t d 1

1þe=a ¼ a
1þeðxÞ=a� xa

R1
x

1
1þe=a � 1

t2 dt ¼ a
1þeðxÞ=a� aþ oð1Þ ! 0 as x!1.

M d=vð Þ ¼ 0 since dðtÞð1þ eðtÞ=aÞ�2 is a Z0-function.
Therefore MðqÞ ¼ C=a2 ¼ ð1� aÞ=a. h

Now we introduce a new constant w related to the scale factor aðtÞwhich satisfy the generalized power law. It will appear
that w is in fact the equation of state parameter. So assume aðtÞ ¼ taLðtÞ; L 2 N and a – 0. We define w by
w � wa ¼
2

3a
� 1 ðequation of state parameterÞ: ð29Þ
Note that w – � 1. As C ¼ að1� aÞ, we have the following statement:

Proposition 3.4

1. C ¼ 2
9 � 1þ3w
ð1þwÞ2

.

2. w ¼ 1�3Cþra
ffiffiffiffiffiffiffiffiffi
1�4C
p

3C , where ra 2 f1;�1g.

The sign ra is determined as follows. Suppose C – 1=4. Then the polynomial x2 � xþ C has two different roots a; b. As
aþ b ¼ 1, we see that a > b if and only if a > 1=2. Since w in decreasing in a we have:

Case a > 1=2. Then: if 1=4 > C > 0 then ra ¼ �1; if C < 0 then ra ¼ þ1.
Case a < 1=2. Then: if 1=4 > C > 0 then ra ¼ þ1; if C < 0 then ra ¼ �1.

According to Theorem 3.3 we have also the following statement.
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Theorem 3.5. Under the assumptions of Theorem 3.3 there are the following relations
a ¼ 2
3ð1þwÞ ; aðtÞ ¼ a0LðtÞt

2
3ð1þwÞ; HðtÞ � 2

3ð1þwÞt ; MðqÞ ¼ 1þ 3w
2

: ð30Þ
For determination of energy density qðtÞ and pressure pðtÞmore information on the geometry of the universe are needed.
We proceed to study cosmological parameters of the universe with the specific curvature index k.
3.2. Asymptotic solution for universe with curvature index k ¼ 0

In this subsection we shall discuss cosmological parameters for spatially flat universe. Hence k ¼ 0 where k is the curva-
ture index. We also assume that the scale factor aðtÞ satisfies the generalized power law. This allows us to estimate at 1
parameters q ¼ qðtÞ and p ¼ pðtÞ. The symbol w denotes the equation of state parameter as defined in the previous
subsection.

Theorem 3.6. Assume l 2MC where C < 1=4. Let aðtÞ ¼ taLðtÞ be the corresponding scale factor, where a – 0 and L 2 N , with L
having the e-representation as in Theorem 1.1. Then

1. q ¼ 1
6pGð1þwÞ2t2 þ

g
t2, g 2 Z0. 2. M p

qc2

� �
¼ w.

Proof

1. As k ¼ 0, the Friedmann equation (2) becomes H2 ¼ 8pGq=3. As HðtÞ ¼ a=t þ e=t and w ¼ 2
3a� 1, the statement follows

if g ¼ 3ð2eþe2Þ
8pG .

2. By (18), Theorem 2.2 and the above representation of q, we have
p
qc2 ¼

2l
3a2ð1þ e=aÞ2

� 1
3
; l ¼ C� t _eþ g; g 2 Z0:
Let us take vðtÞ ¼ ð1þ eðtÞ=aÞ2. Then
M p=qc2� �
¼ 2C

3a2 M 1=vð Þ � 2
3a2 M t _e=vð Þ þM g=vð Þ � 1

3
:

As in the proof of Theorem 3.3.3, we have Mð1=vÞ ¼ 1; M t _e=vð Þ ¼ 0 and M g=vð Þ ¼ 0. Hence, M p=qc2
� �

¼ 2C=3a2 � 1=3 ¼
2=3a� 1=3 ¼ w. h
Corollary 3.7. Under assumptions of Theorem 3.6 there are n; f 2 Z0 so that p ¼ ŵqc2, where ŵðtÞ ¼ w� t _nþ f.
Hence, the assumption that the scale factor aðtÞ satisfies the generalized power law implies a certain form of equation of

state, p ¼ ŵqc2. If C ¼ limt!1lðtÞ exists, then MðlÞ ¼ C and by the proof of Theorem 3.6 it follows ŵ ¼ w, i.e. the classical
form of the equation of state is valid. In the next subsection we shall see that the assumption of the existence of
C ¼ limt!1lðtÞ leads to the classical formulas for cosmological parameters.

3.3. Solution for lðtÞ constant at 1

In this section we shall discuss conditions under which the parameter lðtÞ introduced by (23) is constant at1 and how
this relates to the solutions of the Friedmann equations. Therefore we assume limt!1lðtÞ ¼ C. Hence, by Proposition 2.1,
MðlÞ ¼ C. So, all up to now derived properties of cosmological parameters related to the scale factor aðtÞ which satisfies
the generalized power law are valid. By Theorem 3.2 this will be the case if C < 1=4 and under under additional assumptions
if C ¼ 1=4. In this subsection we shall assume C < 1=4.

3.3.1. Case k ¼ 0, spatially flat universe
By Corollary 2.3 limt!1lðtÞ ¼ C if and only if limt!1t _e ¼ 0 in e-representation of aðtÞ described by Theorem 1.1. Hence,

according to Theorems 3.3, 3.5, and 3.6 we immediately obtain:
a ¼ 2
3ð1þwÞ ; aðtÞ ¼ a0LaðtÞt

2
3ð1þwÞ; qðtÞ � 1

6pGð1þwÞ2t2
; pðtÞ � wc2q; HðtÞ � 2

3ð1þwÞt ; qðtÞ � 1þ 3w
2

ð31Þ
and Eqs. (3), (4) and (2) are satisfied.
First we suppose that a is greater of the roots of the polynomial x2 � xþ C, hence a > 1=2. Then by (31) immediately fol-

lows 1
3 > w > �1, hence the set of admissible values of w is the interval
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Ia ¼ �1;1=3ð Þ: ð32Þ
The value w ¼ �1 yields singularity; for such w there is no corresponding a neither C. If p ¼ �qc2 is anyway assumed,
then by fluid equation we have _q ¼ 0, i.e q is constant. This case corresponds to the cosmological constant, so
q ¼ qK ¼ K

8pG. The constant K has a negative effective pressure, and as the universe expands, work is done on the cosmolog-
ical constant fluid. Hence energy density remains constant in spite of the fact that universe expands.

If w ¼ 1=3 then a ¼ b ¼ 1=2; C ¼ 1=4 and in this case (20) is not the general solution for Friedmann equations. This case
will be discussed later.

If w ¼ �1=3, then a ¼ 1; C ¼ 0 and the acceleration equation reduces to €a � 0. If q is computed using the acceleration
equation, assuming the asymptotic value for aðtÞ in (31), then the following asymptotic formula for q holds, except for
w ¼ �1=3,
q � 3C
4pGð1þ 3wÞ �

1
t2 :
Hence, w ¼ �1=3 is a kind of singularity, but not the proper one, as it can be replaced by the second formula for q in (31).
Let us take into account the physical constraints on the parameters occurring in our calculations. For example, the uni-

verse is decelerating if and only if q > 0 hence, by (27), this is equivalent to a < 1. On the other hand, a < 1 is equivalent to
w > � 1

3 by definition (29) of w. Therefore,

1
2
< a < 1 if and only if � 1

3
< w <

1
3

ð33Þ
and the universe decelerates in all cases. From p � wc2q we see that the pressure p > 0 if and only if w > 0. Hence, using (29),
we see that p > 0 if and only if a < 2

3 and the interval for a in (33) reduces to 1
2 < a < 2

3.
Let us consider the second fundamental solution in (20) of the acceleration equation with the index b � a2 < 1=2. First we

introduce the constant wb by
wb ¼
2� 3b

3b
: ð34Þ
Then as aþ b ¼ 1 and the following symmetric identity holds:

wa þwb þ 3wawb ¼ 1: ð35Þ
Let (31b) be the set of parameters obtained from (31) by replacing wð¼ waÞ by wb. Using (35) one can show that bðtÞ satisfies
all three Eqs. (3), (4) and (2). Now having b < 1

2 we can extend the interval for w in (33). As b < 1
2 we find from (34) that

w � wb >
1
3 or w � wb < �1. Therefore, by (31b) the set of admissible values for w ¼ wb is the set
Ib ¼ �1;�1ð Þ [ 1
3
;þ1

� �
: ð36Þ
Putting together (32) and (36) we see that the set of all admissible values for w corresponding to all possible solutions of
Eqs. (3), (4) and (2) is the set
I ¼ R n �1;
1
3

	 

; R is these to f real numbers: ð37Þ
The physical constraints on physical parameters for b < 1
2 give the narrower bound for wb. By (31b) the adiabatic sound speed

v s ¼ @p
@q

� �1=2
¼ wbc2, hence wb < 1 and so b > 1

3. Therefore, including also our previous discussion on physical constraints for

a > 1
2, we have the following bounds for a and w:
1
3
< a <

2
3

and 0 < w < 1 ðZel0dovich intervalÞ: ð38Þ
3.3.2. Case k ¼ �1, spatially open universe
We shall only briefly discuss this case. We remind that if we assume C ¼ limt!1lðtÞ exists and C < 1=4, then t _eðtÞ ! 0 as

t !1.

Lemma 3.8. Let aðtÞ ¼ taLðtÞ be a solution of Friedmann equations, L 2 N , with e-representation (13) and k ¼ �1 the spatial
index. Then

2 �2 2
p
qc2 ¼

2
3
� aþ eþ kc a t � t _e
ðaþ eÞ2 þ kc2a�2t2

� 1: ð39Þ
Proof. Taking the logarithmic derivative of q using (2) we obtain
_q
q
¼ 2 � H

_H � kc2 _aa�3

H2 þ kc2a�2
:
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Using _a ¼ Ha and by (25), _H ¼ _e=t � ðaþ eÞ=t2, we get
_q
q
¼ �2H � aþ eþ kc2a�2t2 � t _e

ðaþ eÞ2 þ kc2a�2t2
: ð40Þ
By fluid equation (4) we have p=qc2 ¼ � 1
3H �

_q
q� 1, hence (39) follows. h
Corollary 3.9. Suppose k ¼ �1 and a < 1. Then p=qc2 ! �1=3 as t !1.
Proof. As a < 1 and L is slowly varying, we have a�2t2 ¼ LðtÞt2ð1�aÞ ! 1 as t !1. Since also e; t _e! 0 as t !1, by (39) the
assertion follows. h
Theorem 3.10. Suppose C ¼ limt!1lðtÞ exists, C < 1=4, and aðtÞ ¼ taLðtÞ; a – 0, is a corresponding scale factor for an open uni-
verse (i.e. k ¼ �1). Then a ¼ 1 and w ¼ �1=3.
Proof. Suppose a ¼ 1. Then it easy to see that in this case, by (39),
p
qc2 ¼

2
3
� 1þ eþ kc2L�2 � t _e
ð1þ eÞ2 þ kc2L�2

� 1! �1
3
; as t !1:
Assume a < 1. Then, by Corollary 3.9, we have p=qc2 ! �1=3, as t !1. Further, as a�2t2 !1 for t !1, by (40) it fol-
lows _q=q! �2H, as t !1. Then by (25) it follows qðtÞ ¼ L1t�2a for some L1 2 N . By (25), Friedman equation (2), some con-
stants c1; c2 and L2 2 N ; L2 ¼ L�2, it follows
ðaþ eÞ2 ¼ ðc1L1 þ c2L2Þt2ð1�aÞ: ð41Þ
Since 2ð1� aÞ > 0 and L1; L2 are slowly varying, it follows
L1t2ð1�aÞ; L2t2ð1�aÞ ! 1 as t !1;
contradicting the identity (41), as ðaþ eÞ2 ! a2 for t !1. Thus, a P 1.
Suppose a > 1 and t !1. Then for the second fundamental solution ub we would have b < 1 as aþ b ¼ 1. But this

solution is impossible as it was just proved in the previous case a < 1.
Therefore a ¼ 1. h

Hence, if the power law is assumed for the scale factor aðtÞ for an open universe, then aðtÞ � a0t as t !1. Also, C ¼ 0
since C ¼ að1� aÞ. Our analysis in this subsection leads to the following conclusions.

1� The values of the equation of state parameter w. Let us discuss the values of the parameter w excluded by (37). In the
following we shall use the relation (35). We see that w ¼ �1 leads to the singularities in (31). Also, wa ¼ �1 if and only if
wb ¼ �1 and in this case there is no corresponding C. This case corresponds to cosmic inflation. The value w ¼ � 1

3 yields a
kind of singularity in (31), while the relation (35) is inconsistent. In this case wb does not exists and the symmetry between
wa and wb is broken. Also C ¼ 0 and the corresponding w ¼ � 1

3 appears in the solution for the open universe. If w ¼ 1
3, then

C ¼ 1
4 ; wa ¼ wb and a ¼ b. This case will be analyzed in the next subsection. Finally, let us consider the cases w ¼ 0;1, the

values that appear as limits in (38). If w ¼ 0, then a ¼ 2
3 and from the definition of w we see that p ¼ 0 (the matter dom-

inated universe). If w ¼ 1, then a ¼ 1
3 and this value of w corresponds to the universe with the mixture of dust and radiation.

This is possible only if the integration constant c2 in (20) of the dominant fundamental solution is equal to 0.
2� By discussion in this subsection and the remarks in 1� we arrive to the following conclusion: For the spatially flat uni-
verse the assumption that lðtÞ is constant at 1 leads to the classic solution of the Friedmann equation.
3� For the sake of completeness we give a rather short derivation of solution for the spatially flat universe assuming the
equation of state p ¼ wc2q, w is nonsingular. Under this assumption the acceleration equation is reduced to
€a
a ¼ � 4pG

3 ð1þ 3wÞq, while the Friedmann equation becomes _a
a

� �2 ¼ 8pG
3 q. Dividing the acceleration equation by the Fried-

mann equation, we obtain €a
a ¼ k _a2

a2 where k ¼ � 1þ3w
2 . Hence d _a

_a ¼ k da
a , i.e. log _a ¼ logðc0akÞ and so a1�k

1�k ¼ c0t þ c1, where c0; c1

are the integration constants. Taking að0Þ ¼ 0, we find aðtÞ ¼ a0t
1

1�k ¼ a0t
2

3ð1þwÞ for some constant a0.
4� Generalized power law principle. Putting together all results presented up to now, we see that the following are
equivalent:
a. The integral limit C in (19) exists and C < 1
4.

b. The solutions aðtÞ of the Friedmann equation satisfy the generalized power law with index a – 1=2.
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c. The equation of state holds at1 as described by Corollary 3.7, w – � 1; 1
3. If lðtÞ is constant at1 then p � wc2q, as

t !1.
5� Power law principle and cosmological constant K. If K – 0 is assumed, all the asymptotic formulas (31) for the cos-
mological parameters are valid, except for w ¼ �1. This follows from the fact that by the appropriate substitutions the
Friedmann equations with the parameter K transform to their basic form (2)–(4).

3.4. Case C ¼ 1
4, adjacent case

In this subsection we shall assume C ¼ 1
4 in the limit (19). Then the polynomial x2 � x� 1

4 has the double root a ¼ 1
2. In

discussion of the acceleration equation (17) for this case we shall use the following criterion, see Marić [13, p. 37] and Kusano
and Marić [11, Theorem 2.2]:

Theorem 3.11. Let /ðxÞ ¼ x
R1

x
lðtÞ
t2 dt � 1

4, let the integral
wðxÞ ¼
Z 1

x

j/ðtÞj
t

dt; x > x0 > 0; converge ð42Þ
and assume
Z 1

x

wðtÞ
t

dt <1; x > x0: ð43Þ
Further, let L1; L2 denote two normalized slowly varying functions. Then there exist two fundamental solutions of the acceleration
equation (17):
uðtÞ ¼ t
1
2L1ðtÞ vðtÞ ¼ t

1
2 logðtÞL2ðtÞ ð44Þ
if and only if the condition (19) holds (for C ¼ 1
4). Also L1; L2 tend to a constant as t !1 and L2ðtÞ � 1=L1ðtÞ. h

As logðtÞL2ðtÞ is also a slowly varying, we see that both fundamental solutions uðtÞ and vðtÞ satisfy the general form of
power law. Hence, each solution aðtÞ ¼ c1uðtÞ þ c2vðtÞ of the acceleration equation is regularly varying of index 1

2. By the re-
sults in the previous subsection when C < 1

4 was assumed, we see, if the conditions (42) and (43) are satisfied, that aðtÞ is
regularly varying of index 1

2 if and only if w � 1
3 as t !1, i.e. p � 1

3 c2q holds asymptotically. This is the second classic cos-
mological solution.

3.5. Asymptotic solution for spatially flat universe with matter-dominated evolution

We have seen that the constant C ¼MðlÞ determine the asymptotical behavior at the 1 of the scale factor aðtÞ. If the
matter-dominated evolution of the universe is assumed, i.e. dominated by some form of pressureless material after the cer-
tain time moment t0 then it appears that the expression HðtÞt depends solely on the parameter X. In this case we are able to
estimate possible values of C. We shall discuss also the status of the constant C and the related asymptotic behavior of aðtÞ
for the spatially flat universe including the cosmological constant K. Therefore, in this section we discuss asymptotic solu-
tions and Friedmann equations, the related parameter lðtÞ, and the constant C assuming the pressureless spatially flat uni-
verse with the cosmological constant K.

Using the formula for the age of the spatially flat universe with the cosmological constant K Carroll et al. [3], see also
Liddle and Lyth [9] and Narlikar [16], the expression HðtÞt in this case is given by
Fig. 1. Graph of �lðXÞ.
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HðtÞt ¼ 2
3
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�X
p ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�X
p
ffiffiffiffi
X
p

 !
; ð45Þ
while the deceleration parameter qðtÞ is given by
qðtÞ ¼ X
2
�XK: ð46Þ
In the model of the spatially flat universe we have XþXK ¼ 1 hence, qðtÞ ¼ 3X
2 � 1. Therefore, by (23) and (45) it follows
lðtÞ ¼ 2
9
� 3X� 2

1�X
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�X
p
ffiffiffiffi
X
p

 ! !2

; ð47Þ
where X ¼ XðtÞ. We see that the parameter lðtÞ in the model for the pressureless spatially flat universe depends solely on X.
The graph of the parameter lðtÞ is presented in Fig. 1, as a function of X.

The limit value
X1 ¼ lim
t!1

XðtÞ ð48Þ
can be in principle any value in the interval ½0;1�. Let us introduce the parameter �lðXÞ by the expression on the right hand
side of (47). Hence lðtÞ ¼ �lðXðtÞÞ and
C ¼ lim
t!1

lðtÞ ¼ lim
X!X1

�lðXÞ: ð49Þ
We see that �lðXÞ is an increasing function in X and that its values lay in the interval ½�1; 2
9�, as limX!1�0 �lðXÞ ¼ 2

9. Hence
lðtÞ < 2

9. Suppose the limit C ¼ limt!1lðtÞ exists. Then C 6 2
9 <

1
4. Thus, assuming the pressureless spatially flat universe with

the cosmological constant, all possible values of C are less than 2=9, hence Theorem 3.2 can be applied. This analysis leads to
the following conclusions for the solutions of Friedmann equations for the pressureless spatially flat universe with the cos-
mological constant K.

1� The scale factor aðtÞ satisfies the generalized power law. More specifically, aðtÞ ¼ taLðtÞ where L 2 N and a is a root of
the polynomial x2 � xþ C.
2� Suppose X1 ¼ 1. By the identity XþXK ¼ 1 it follows XK � 0 as t !1 and C ¼ 2

9. Then Eq. (14) becomes x2 � xþ 2
9 ¼ 0

and it has the solutions a1 ¼ 1
3 ; a2 ¼ 2

3. According to the conclusion 1�, aðtÞ regularly varying of index 2
3 and by (45) and

(46), HðtÞt � 2
3 and q � 1

2 as t !1. This result corresponds to the classic solution of the Friedmann equation for the pres-
sureless spatially flat universe with the cosmological constant K ¼ 0.
3� The formula (47) for �l shows that the evolution of the expansion scale factor aðtÞ depends only on the evolution of the
density parameter X. The nature of this evolution is determined by the constant C but in all instances it satisfies the
power law represented by some regularly varying function. The introduction of the cosmological constant only changes
the index of the regular variation with respect to the model with K ¼ 0.
4� Let us consider the possible values of C. The value X0 ¼ 0:3 (e.g. [9]) for the present epoch is close to the value pre-
ferred by the observation. If we assume that the energy density q becomes lower as the age of the universe becomes
Fig. 2. Graph of �lðXÞ in the preferred interval.
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older, we may suppose that the possible range for the constant X1 is the interval ½0:3;1�, i.e. 0:3 6 X1 6 1. The graph of �l
for this interval is presented in Fig. 2. We see that C 6 2=9.
5� The solution aðtÞ is regularly varying of some index a, i.e. aðxtÞ=aðtÞ ! xa as t !1; x > 0. So for relatively large4 t0 with

respect to x > 0, we have aðxt0Þ � aðt0Þxa and we may take that the time instances t0 and xt0 belong to the same epoch in the
evolution of the universe. So, taking t ¼ xt0 and eliminating x from the last asymptotic relation, we find the asymptotic estima-
tion for aðtÞ for an epoch with respect to the initial value aðt0Þ:
4 Thi
For dev
theoret
aðtÞ � aðt0Þ
t
t0

� �a

: ð50Þ
Also, aðtÞ ¼ taLðtÞwhere LðtÞ is slowly varying. Hence LðtÞ � Lðt0Þ for an epoch, so it is hard to measure Lðt0Þ and the influence
of LðtÞ on aðtÞ. However, the influence of LðtÞ on the large scale might be substantial, particularly if a � 0, as the example (10)
shows.
3.6. Case C > 1
4

Assume C > 1
4 in the limit (19). Then the solution aðtÞ of the acceleration equation is oscillatory. This immediately follows

from Hille’s classical theorem (see Hille [6] and Marić [13, Theorem 1.8]). Therefore, for these values of C the expansion scale
factor aðtÞ of the universe does not satisfy the power law and the approach presented in the paper is not appropriate for this
case. Since aðtÞ has in this case (infinitely many) zeros, then there is t0 such that _aðt0Þ ¼ 0. So, from the Friedmann equation
(2) it follows that k > 0, i.e. the universe must be closed. This is obviously true even if the Friedmann equation is modified by
adding the cosmological constant K > 0.

We see that the constant 1/4 plays an important role as a possible value of C in the limit (19). This constant provides a
sharp ‘‘threshold,’’ or ‘‘cut-off point,’’ at which the oscillation of aðtÞ takes place.

4. Conclusion

It has been shown that a dimensionless constant C related to the Friedmann acceleration equation and the theory of reg-
ularly varying functions play the key role in the formulation of the power law principle for solutions aðtÞ of the Friedmann
equations. The constant C is defined by
C ¼ lim
x!1

x
Z 1

x

lðtÞ
t2 dt; ð51Þ
where lðtÞ ¼ qðtÞðHðtÞtÞ2 as t !1, qðtÞ is the deceleration parameter and HðtÞ is the Hubble parameter. We have shown that
the generalized power law principle for the scale factor aðtÞ holds if and only if the integral limit (51) exists and C < 1

4. The
cosmological constants were also discussed under relaxed condition limt!1lðtÞ ¼ C which implies (51), Under this condition
we have shown that the power law principle is equivalent to the equation of state p � wc2p; w – � 1;1=3. The values of C
determine the asymptotical behavior of the scale factor aðtÞ as time t tends to 1. The constant C also uniquely determines
other cosmological parameters such as the Hubble parameter and the equation of state parameter w. Particularly is dis-
cussed the pressureless spatially flat universe with non-zero cosmological constant. Further, the value of C determines
the type of the universe; for C < 1

4 the universe is spatially flat or open, while for C > 1
4 the universe is oscillatory. The bound-

ary case C ¼ 1
4 is also analyzed. All solutions we found are in agreement with the results found widely in the literature on

standard cosmological model. As power law functions are the most frequently occurring type of the solutions of the Fried-
mann equation, the study of the constant C and the related function lðtÞ might be of a particular interest.
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