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Preface

In 1978 I wrote an introductory textbook on general relativity and cos-
mology, based on my lectures delivered to university audiences. The
book was well received and had been in use for about 15–20 years until
it went out of print. The present book has been written in response to
requests from students as well as teachers of relativity who have missed
the earlier text.

An Introduction to Relativity is therefore a fresh rewrite of the 1978
text, updated and perhaps a little enlarged. As I did for the earlier text, I
have adopted a simple style, keeping in view a mathematics or physics
undergraduate as the prospective reader. The topics covered are what I
consider as essential features of the theory of relativity that a beginner
ought to know. A more advanced text would be more exhaustive. I have
come across texts whose formal and rigorous style or enormous size
have been off-putting to a student wishing to know the A, B, C of the
subject.

Thus I offer no apology to a critic who may find the book lacking
in some of his/her favourite topics. I am sure the readers of this book
will be in a position to read and appreciate those topics after they have
completed this preliminary introduction.

Cambridge University Press published my book An Introduction to
Cosmology, which was written with a similar view and has been well
received. Although the present book contains chapters on cosmology,
they are necessarily brief and highlight the role of general relativity. The
reader may find it useful to treat the cosmology volume as a companion
volume. Indeed, in a few places in this text he/she is directed to this
companion volume for further details.

It is a pleasure to acknowledge the encouragement received from
Simon Mitton for writing this book. I also thank Vince Higgs, Lindsay
Barnes, Laura Clark and their colleagues at Cambridge University Press
for their advice and assistance in preparing the manuscript for publica-
tion. Help received from my colleagues in Pune, Prem Kumar for fig-
ures, Samir Dhurde and Arvind Paranjpye for images and Vyankatesh
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viii Preface

Samak for the typescript, has been invaluable. I do hope that teach-
ers and students of relativity will appreciate this rather unpretentious
offering!

Jayant V. Narlikar
IUCAA, Pune, India



Chapter 1

The special theory of relativity

1.1 Historical background

1905 is often described as Einstein’s annus mirabilis: a wonderful year
in which he came up with three remarkable ideas. These were the Brow-
nian motion in fluids, the photoelectric effect and the special theory of
relativity. Each of these was of a basic nature and also had a wide impact
on physics. In this chapter we will be concerned with special relativity,
which was arguably the most fundamental of the above three ideas.

It is perhaps a remarkable circumstance that, ever since the initia-
tion of modern science with the works of Galileo, Kepler and Newton,
there has emerged a feeling towards the end of each century that the end
of physics is near: that is, most in-depth fundamental discoveries have
been made and only detailed ‘scratching at the surface’ remains. This
feeling emerged towards the end of the eighteenth century, when Newto-
nian laws of motion and gravitation, the studies in optics and acoustics,
etc. had provided explanations of most observed phenomena. The nine-
teenth century saw the development of thermodynamics, the growth in
understanding of electrodynamics, wave motion, etc., none of which had
been expected in the previous century. So the feeling again grew that
the end of physics was nigh. As we know, the twentieth century saw the
emergence of two theories, fundamental but totally unexpected by the
stalwarts of the nineteenth century, viz., relativity and quantum theory.
Finally, the success of the attempt to unify electromagnetism with the
weak interaction led many twentieth-century physicists to announce that
the end of physics was not far off. That hope has not materialized even
though the twenty-first century has begun.
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2 The special theory of relativity

While the above feeling of euphoria comes from the successes of
the existing paradigm, the real hope of progress lies in those phenomena
that seem anomalous, i.e., those that cannot be explained by the current
paradigm. We begin our account with the notion of ‘ether’ or ‘aether’
(the extra ‘a’ for distinguishing the substance from the commonly used
chemical fluid). Although Newton had (wrongly) resisted the notion
that light travels as a wave, during the nineteenth century the concept
of light travelling as a wave had become experimentally established
through such phenomena as interference, diffraction and polarization.
However, this understanding raised the next question: in what medium
do these waves travel? For, conditioned by the mechanistic thinking of
the Newtonian paradigm, physicists needed a medium whose distur-
bance would lead to the wave phenomenon. Water waves travel in water,
sound waves propagate in a fluid, elastic waves move through an elastic
substance ... so light waves also need a medium called aether in which to
travel.

The fact that light seemed to propagate through almost a vacuum
suggested that the proposed medium must be extremely ‘non-intrusive’
and so difficult to detect. Indeed, many unsuccessful attempts were
made to detect it. The most important such experiment was conducted
by Michelson and Morley.

1.2 The Michelson and Morley experiment

The basic idea behind the experiment conducted by A. A. Michelson
and E. Morley in 1887 can be understood by invoking the example of a
person rowing a boat in a river. Figure 1.1 shows a schematic diagram of
a river flowing from left to right with speed v. A boatman who can row
his boat at speed c in still water is trying to row along and across the river
in different directions. In Figure 1.1(a) he rows in the direction of the
current and finds that his net speed in that direction is c + v. Likewise
(see Figure 1.1(b)), when he rows in the opposite direction his net speed
is reduced to c − v. What is his speed when he rows across the river in
the perpendicular direction as shown in Figure 1.1(c)? Clearly he must
row in an oblique direction so that his velocity has a component v in a
direction opposite to the current. This will compensate for the flow of
the river. The remaining component

√
c2 − v2 will take him across the

river in a perpendicular direction as shown in Figure 1.1(c).
Suppose now that he does this experiment of rowing down the river

a distance d and back the same distance and then rows the same distance
perpendicular to the current and back. What is the difference of time τ

between the two round trips? The above details lead to the answer that
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Fig. 1.1. The three cases of a
boat being rowed in a river
with an intrinsic speed c, the
river flowing (from left to
right) with speed v: (a) in the
direction of the river flow,
(b) opposite to that direction
and (c) in a direction
perpendicular to the flow of
the river.

the time for the first trip exceeds that for the second by

τ = d

c − v
+ d

c + v
− 2d√

(c2 − v2)
(1.1)

and, for small current speeds (v � c), we get the answer as

τ ∼= d

c
× v2

c2
. (1.2)

The Michelson–Morley experiment [1] used the Michelson interfer-
ometer and is schematically described by Figure 1.2. Light from a source
S is made to pass through an inclined glass plate cum mirror P. The plate
is inclined at an angle of 45◦ to the light path. Part of the light from the
source passes through the transparent part of the plate and, travelling a
distance d1, falls on a plane mirror A, where it is reflected back. It then
passes on to plate P and, getting reflected by the mirror part, it moves
towards the viewing telescope. A second ray from the source first gets
reflected by the mirror part of the plate P and then, after travelling a
distance d2, gets reflected again at the second mirror B. From there it
passes through P and gets into the viewing telescope.

Now consider the apparatus set up so that the first path (length d1) is
in the E–W direction. In a stationary aether the surface of the Earth will
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d1

Observing
equipment

P

Fig. 1.2. The schematic
arrangement of Michelson’s
interferometer, as described in
the text.

have a velocity approximately equal to its orbital velocity of 30 km/s.
Thus (v/c)2 is of the order of 10−8. In the actual experiment the apparatus
was turned by a right angle so that the E–W and N–S directions of the
arms were interchanged. So the calculation for the river-boat crossing
can be repeated for both cases and the two times added to give the
expected time difference as

τ ∼= d1 + d2

c
× v2

c2
. (1.3)

Although the effect expected looks very small, the actual sensitivity
of the instrument was very good and it was certainly capable of detecting
the effect if indeed it were present. The experiment was repeated several
times. In the case that the Earth was at rest relative to the aether at the
time of the experiment, six months later its velocity would be maximum
relative to the aether. But an experment performed six months later also
gave a null result.

The Michelson–Morley experiment generated a lot of discussion.
Did it imply that there was no medium like aether present after all?
Physicists not prepared to accept this radical conclusion came up with
novel ideas to explain the null result. The most popular of these was the
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notion of contraction proposed by George Fitzgerald and later worked
on by Hendrik Lorentz. Their conclusion as summarized by J. Larmour
in a contemporary (pre-relativity) text on electromagnetic theory reads
as follows:

. . . if the internal forces of a material system arise wholly from

electromagnetic actions between the systems of electrons which constitute

the atoms, then the effect of imparting to a steady material system a

uniform velocity [v] of translation is to produce a uniform contraction of

the system in the direction of motion, of amount (1 − v2/c2) . . .

It is clear that a factor of this kind would resolve the problem posed
by the Michelson–Morley experiment. For, by reducing the length trav-
elled in the E–W direction by the above factor, we arrive at the same
time of travel for both directions and hence a null result. Lorentz went
further to give an elaborate physical theory to explain why the Fitzgerald
contraction takes place.

The Michelson–Morley experiment was explained much more ele-
gantly when Einstein proposed his special theory of relativity. We will
return to this point after decribing what ideas led Einstein to propose
the theory. As we will see, the Michelson–Morley experiment played no
role whatsoever in leading him to relativity.

1.3 The invariance of Maxwell’s equations

We now turn to Einstein’s own approach to relativity [2], which was moti-
vated by considerations of symmetry of the basic equations of physics,
in particular the electromagnetic theory. For he discovered a conflict
between Newtonian ideas of space and time and Maxwell’s equations,
which, since the mid 1860s, had been regarded as the fundamental equa-
tions of the electromagnetic theory. An elegant conclusion derived from
them was that the electromagnetic fields propagated in space with the
speed of light, which we shall henceforth denote by c. It was how this
fundamental speed should transform, when seen by two observers in
uniform relative motion, that led to the conceptual problems.

The Newtonian dynamics, with all its successes on the Earth and
in the Cosmos, relied on what is known as the Galilean transformation
of space and time as measured by two inertial observers. Let us clarify
this notion further. Let O and O′ be two inertial observers, i.e., two
observers on whom no force acts. By Newton’s first law of motion both
are travelling with uniform velocites in straight lines. Let the speed of
O′ relative to O be v. Without losing the essential physical information
we take parallel Cartesian axes centred at O and O′ with the X, X ′ axes
parallel to the direction of v. We also assume that the respective time
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coordinates of the two observers were so set that t = t ′ = 0 when O and
O′ coincided.

Under these conditions the transformation law for spacetime vari-
ables for O and O′ is given by

t ′ = t, x ′ = x − vt, y′ = y, z′ = z. (1.4)

Since v is a constant, the frames of reference move uniformly relative
to each other. Laws of physics were expected to be invariant relative to
such frames of reference. For example, because of constancy of v, we
have equality of the accelerations ẍ and ẍ ′. Thus Newton’s second law of
motion is invariant under the Galilean transformation. Indeed, we may
state a general expectation that the basic laws of physics should turn out
to be invariant under the Galilean transformations. This may be called
the principle of relativity.

Paving the way to a mechanistic philosophy, Newtonian dynamics
nurtured the belief that the basic laws of physics will turn out to be
mechanics-based and as such the Galilean transformation would play a
key role in them. This belief seemed destined for a setback when applied
to Maxwell’s equations. Maxwell’s equations in Gaussian units and in
vacuum (with isolated charges and currents) may be written as follows:

∇ · B = 0; ∇ × E = −1

c

∂B

∂t
;

(1.5)

∇ · D = 4πρ; ∇ × H = 1

c

∂D

∂t
+ 4π

c
j.

Here the fields B, E, D and H have their usual meaning and ρ and
j are the charge and current density. We may set D = E and B = H in
this situation. Then we get by a simple manipulation, in the absence of
charges and currents,

∇ × ∇ × H ≡ ∇ ∇ · H − ∇2H

= 1

c

∂

∂t
∇ × E = − 1

c2

∂2H

∂t2
. (1.6)

From this we see that H satisfies the wave equation

�H = 0. (1.7)

Similarly E will also satisfy the wave equation, the operator � standing
for

� ≡ 1

c2

∂2

∂t2
− ∇2.
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The conclusion drawn from this derivation is this: Maxwell’s equa-
tions imply that the E and H fields propagate as waves with the speed c.
Unless explicitly stated otherwise, we shall take c = 1.1

However, this innocent-looking conclusion leads to problems when
we compare the experiences of two typical inertial observers, having
a uniform relative velocity v. Suppose observer O sends out a wave
towards observer O′ receding from him at velocity v directed along
OO′. Our understanding of Newtonian kinematics will convince us that
O′ will see the wave coming towards him with velocity c − v. But then
we run foul of the principle of relativity: that the basic laws of physics
are invariant under Galilean transformations. So Maxwell’s equations
should have the same formal structure for O and O′, with the conclusion
that both these observers should see their respective vectors E and H
propagate across space with speed c.

This was the problem Einstein worried about and to exacerbate it he
took up the imaginary example of an observer travelling with the speed
of the wave. What would such an observer see?

Let us look at the equations from a Galilean standpoint first. The
Galilean transformation is given by

r′ = r − vt, t ′ = t. (1.8)

Although the general transformation above can be handled, we will
take its simplifed version in which O′ is moving away from O along the
x-axis and O and O′ coincided when t ′ = t = 0. It is easy to see that the
partial derivatives are related as follows:

∂

∂x
= ∂

∂x ′ ,
∂

∂y
= ∂

∂y′ ,
∂

∂z
= ∂

∂z′ ,
∂

∂t
= ∂

∂t ′ − v
∂

∂x ′ .

If we apply these transformation formulae to the wave equation
(1.7), we find that the form of the equation is changed to

(
∂

∂t ′ − v
∂

∂x ′

)2

H − ∇′2H = 0. (1.9)

Clearly Maxwell’s equations are not invariant with respect to
Galilean transformation. Indeed, if we want the equations to be invariant
for all inertial observers, then we need, for example, the speed of light
to be invariant for them, as seen from the above example of the wave
equation. Can we think of some other transformation that will guarantee
the above invariances?

In particular, let us ask this question: what is the simplest modifi-
cation we can make to the Galilean transformation in order to preserve

1 In this book, as a rule, we will choose units such that the speed of light is unity when

measured in them.
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the form of the wave equation? We consider the answer to this question
for the situation of the two inertial observers O and O′ described above.
We try linear transformations between their respective space and time
coordinates (t, x, y, z) and (t ′, x ′, y′, z′) so as to get the desired answer.
So we begin with

t ′ = a00t + a01x, x ′ = a10t + a11x, y′ = y, z′ = z. (1.10)

With this transformation, it is not difficult to verify that the wave
operator � transforms as

� ≡
(

a00
∂

∂t ′ + a10
∂

∂x ′

)2

−
(

a01
∂

∂t ′ + a11
∂

∂x ′

)2

− ∂2

∂y′2 − ∂2

∂z′2 . (1.11)

A little algebra tells us that the right-hand side will reduce to the
wave operator in the primed coordinates, provided that

a2
00 − a2

01 = 1, a2
10 − a2

11 = −1, a11a01 = a10a00. (1.12)

Now, if we assume that the origin of the frame of reference of O′ is
moving with speed v with respect to the frame of O, then setting x ′ = 0
we get va11 = −a10. Then from (1.12) we get a01 = −va00. Finally we
get the solution to these equations as

a11 = γ, a10 = −vγ = a01, a00 = γ, (1.13)

where

γ = (1 − v2)−1/2. (1.14)

Thus the transformation that preserves the form of the wave equa-
tion is made up of the following relations between (t, x, y, z) and
(t ′, x ′, y′, z′), the coordinates of O and O′, respectively:

t ′ = γ (t − vx), x ′ = γ (x − vt), y′ = y, z′ = z. (1.15)

It is easy to invert these relations so as to express the unprimed
coordinates in terms of the primed ones. In that case we would find that
the relations look formally the same but with +v replacing −v:

t = γ (t ′ + vx ′), x = γ (x ′ + vt ′), y = y′, z = z′. (1.16)

Physically it means that, if O′ is moving with speed v relative to O,
then O is moving with speed −v relative to O′.

A more elaborate algebra will also show that the Maxwell equations
are also invariant under the above transformation.

Einstein arrived at this result while considering the hypothetical
observer travelling with the light wavefront. He found that such an
observer could not exist. (This can be seen in our example below by
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letting v go to c = 1.) In the process he arrived at the above transfor-
mation. As we will shortly see, this transformation has echoes of the
work Lorentz had done in his attempts to explain the null result of the
Michelson–Morley experiment. We will refer to such transformations
by the name Lorentz transformations, the name given by Henri Poincaré
to honour Lorentz for his original ideas in this field.

We also see that the space coordinates and the time coordinate get
mixed up in a Lorentz transformation. Thus, for a family of inertial
observers moving with different relative velocities, we cannot compart-
mentalize space and time as separate units. Rather they together form a
four-dimensional structure, which we will henceforth call ‘spacetime’.

Example 1.3.1 Consider (1.15) with the following definition of θ :

v = c tanh θ.

Then trigonometry leads us to the following transformation laws:

t ′ = t cosh θ − x sinh θ, x ′ = x cosh θ − t sinh θ, y′ = y,

z′ = z.

Compare the first two relations with the rotation of Cartesian axes x, y in

two (space) dimensions:

x ′ = x cos θ − y sin θ, y′ = y cos θ + x sin θ.

We may therefore consider the Lorentz transformation as a rotation through

an imaginary angle iθ , if we define an imaginary time coordinate as T = it .

1.4 The origin of special relativity
Einstein thus found himself at a crossroads: the Newtonian mechanics
was invariant under the Galilean transformation, whereas Maxwell’s
equations were invariant under the Lorentz transformation. One could
try to modify the Maxwell equations and look for invariance of the
new equations under the Galilean transformation. Alternatively, one
could modify the Newtonian mechanics and make it invariant under the
Lorentz transformation. Einstein chose the latter course. We will now
highlight his development of the special theory of relativity.

We begin with the introduction of a special class of observers, the
inertial observers in whose rest frame Newton’s first law of motion holds.
That is, these observers are under no forces and so move relative to one
another with uniform velocities. Notice that there is no explicitly defined
frame that could be considered as providing a frame of ‘absolute rest’.
Thus all inertial observers have equal status and so do their frames,



10 The special theory of relativity

which are the inertial frames. This is in contrast with the Newtonian
concept of absolute space, whose rest frame enjoyed a special status.
We will comment on it further in Chapter 18 when we discuss Mach’s
principle.

The principle of relativity states that all basic laws of physics are the
same for all inertial observers. Notice that this principle has not changed
from its Newtonian form; but the inertial observers are now linked by
Lorentz rather than Galilean transformations.

When applied to electricity and magnetism this principle tells us
that Maxwell’s equations are the same for all inertial observers: in par-
ticular, the speed of light c, which appears as the wave velocity in these
equations, must be the same in all inertial reference frames. We also see
that this requirement leads us to the Lorentz transformation. The trans-
formation described by the equations (1.15) is called a ‘special Lorentz
transformation’. It can be easily generalized to the case in which the
observer O′ moves with a constant velocity v in any arbitrary direction.
The relevant relations are

t ′ = γ [t − (v · r)], r′ = γ (r∗ − vt), (1.17)

where

r∗ = r/γ + (γ − 1)v(v · r)/γ v2. (1.18)

We next look at some of the observable effects of this transformation
on some measurements of events in space and time. For it is these effects
that tell us what the special theory of relativity is all about.

Example 1.4.1 Problem. Show that (1.17) reduces to (1.15) for a special

Lorentz transformation.

Solution. In the special Lorentz transformation, v is in the x-direction. So, if

e is a unit vector in that direction,

v · r = vx, r∗ = r
√

1 − v2 +
(

1√
1 − v2

− 1

)
v2x

1

γ v2
e,

where we have used (1.17) and (1.18). Thus t ′ = γ (t − vx), which is as per

(1.15). For the r′ relation, note that the y−y′ relation is y′ = y. Similarly we

have z′ = z. The x−x ′ relation is

x ′ = x + γ (γ − 1)v2x · 1

γ v2
− γ vt

= x(1 + γ − 1) − γ vt = γ (x − vt).

Thus we recover the special Lorentz transformation.
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1.5 The law of addition of velocities

First of all, we notice that the speed of light remains c for all inertial
observers. The Michelson–Morley experiment would therefore give zero
difference in time gap, not a finite one as was then calculated on the basis
of Newtonian kinematics. What does the Lorentz transformation do to
the law of addition of velocities?

Let us talk of three inertial observers O, O′ and O′′ with frames of
reference aligned so that they share the same x-direction while their
origins were coinciding at t = t ′ = t ′′ = 0. We are given that O′ is
moving in the x-direction with velocity v1 relative to O. Likewise, O′′

is moving with velocity v2 relative to O′. So, what is the velocity of O′′

relative to O? The Newtonian answer to this question would have been
v1 + v2. Here, however, the result is different.

The Lorentz transformation relating O′ to O is

x ′ = x − v1t√
1 − v2

1

, t ′ = t − v1x√
1 − v2

1

. (1.19)

Likewise, the Lorentz transformation linking O′′ to O′ is

x ′′ = x ′ − v2t ′√
1 − v2

2

, t ′ = t ′ − v2x ′√
1 − v2

2

. (1.20)

Our desired answer is found by combining equations (1.19) and
(1.20) so as to express the coordinates (t ′′, x ′′) in terms of (t, x). The
algebra is simple but a bit tedious and the answer is that O′′ moves
relative to O as an inertial observer whose velocity v in the x-direction
relative to O is given by

v = v1 + v2

1 + v1v2
. (1.21)

This is the law of addition of velocities. If the velocities are v1, v2

parallel in any general direction, the formula becomes

v = v1 + v2

1 + v1 · v2
. (1.22)

From (1.21) it is easy to see that, if one of the velocities is c = 1, the
resultant is also c. Thus, irrespective of whether a source of light is at
rest or moving relative to an observer, the light emitted by it will always
have the speed c as measured by the observer.

Example 1.5.1 Problem. Relate (1.21) to rotation of axes by imaginary

angles.

Solution. From Example 1.3.1, we have v1 = tanh θ1, v2 = tanh θ2, where

iθ1 and iθ2 are the rotation angles from frame O to O′ and from O′ to O′′,



12 The special theory of relativity

respectively. Thus the rotation angle from frame O to O′′ is simply i(θ1 + θ2).

The corresponding net velocity is

v = tanh(θ1 + θ2) = tanh θ1 + tanh θ2

1 + tanh θ1 tanh θ2
= v1 + v2

1 + v1v2
.

1.5.1 The Minkowski spacetime

It was Hermann Minkowski [3], one of Einstein’s teachers and a distin-
guished mathematician, who brought elegance into the above picture by
pointing out that it was wrong to think of time and space as two separate
entities; one should learn to look at the unity of the two. In his own
words,

The views of space and time which I wish to lay before you have sprung

from the soil of experimental physics, and therein lies their strength. They

are radical. Henceforth space by itself, time by itself, are doomed to fade

away into mere shadows and only a kind of union of the two will preserve

an independent reality.

Thus one is really dealing with ‘spacetime’ instead of with ‘space’
and ‘time’. We may use the notation advocated by Minkowski by replac-
ing the time t and the Cartesian space coordinates (x, y, z) by their
four-dimensional counterparts:

x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z. (1.23)

A Lorentz transformation may therefore be looked upon as a linear
spacetime coordinate transformation of the kind below:

x ′i =
∑

k

Ai
k xk = Ai

k xk . (1.24)

Here, in the last step, we have dropped the summation symbol in
summing over ‘k’. Our rule henceforth will be that any expression
containing an upper and lower index represented by the same Latin
letter is automatically summed for all four values of that letter. The
summation in this case is over all values of the index k, viz. 0, 1, 2, 3.

The condition that light has the same velocity in all inertial reference
frames may be translated into the invariance of (c2t2 − x2 − y2 − z2)
in the above transformation, and we may compare this situation with
the three-dimensional one where the length square (x2 + y2 + z2) is
preserved under coordinate transformation. It is customary to write the
above four-dimensional square of the distance from the origin in our
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new notation, as

ηik x ′i x ′k = ηik Ai
m xm Ak

n xn = ηmn xm xn,

which leads us to the general transformation laws of these frames. The
transformation coefficients must satisfy the rule given below:

Ai
m Ak

nηik = ηmn . (1.25)

The 4 × 4 array ηik is the key factor specifying the measurement of
distance in the four-dimensional spacetime and is called the Minkowski
metric. It has the simple form diag(+1, −1, −1, −1). The transforma-
tions which satisfy the above rule form a group called the Lorentz group
and denoted by O(1,3).

We define a vector Pi as a four-component entity that transforms
under the coordinate transformation (1.24) as follows:

P ′i = Ai
m × Pm . (1.26)

Likewise, a second-rank tensor Fik transforms according to the law

F ′ik = Ai
m Ak

n × Fmn . (1.27)

We may use the metric ηik to lower an upper index to a lower one, e.g.,

Ai × ηik ≡ Ak .

Likewise we take the inverse matrix of ||ηik || to be ||ηik || so that

ηikη
kl = δl

i .

Here the delta is the Kronecker delta, which is zero unless the upper
and lower index happen to be equal, when its value is unity. It is easy to
see that the inverse of the above index-lowering exercise is

Ai × ηik ≡ Ak .

In addition to vectors and tensors, we have scalars, which retain the same
value under all coordinate transformations. Thus ηik Pi Pk is a scalar, as
can be seen by subjecting it to a Lorentz transformation. A scalar does
not have any free index.

If a vector Ak is given we can make a scalar out of it by writing

A2 = ηik .A
i .Ak .

A is called the magnitude of the vector. If A2 > 0 the vector Ak is said
to be ‘timelike’. For A2 = 0 we have in Ak a ‘null’ vector, while for
A2 < 0 we have a ‘spacelike’ vector.

We will use this notation in an extended form (see Chapter 3) when
dealing with general relativity. In general we may say that any expres-
sion written in terms of vectors and tensors (and, of course, scalars) is
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guaranteed to be Lorentz invariant. Since the special theory of relativity
requires all physics to be the same for all inertial observers, we need all
basic physical equations to be Lorentz invariant also. Thus we expect all
fundamental physics to be expressed in terms of vectors and tensors.2

Example 1.5.2 A tensor is symmetric if any permutation of its indices

does not alter its value. Likewise an antisymmetric tensor reverses its value

for any odd permutation of its indices.

An example of the latter is εi jkl , defined by

εi jkl =




+1 if (i, j, k, l) is an even permutation of (1, 2, 3, 4)
−1 if (i, j, k, l) is an odd permutation of (1, 2, 3, 4)
0 otherwise.

We will encounter this tensor in Chapter 3 in the context of general coordinate

transformations.

1.6 Lorentz contraction and time dilatation

The Lorentz transformation generates several paradoxical situations
largely because one is normally and intuitively tuned to absolute space
measurements and absolute time measurements. We will describe some
examples next. For our discussion we will take the Lorentz transforma-
tion to be as given in Equations (1.15) and (1.16).

1.6.1 Length contraction

Let us consider the following experiment. Let O′ carry a rod of length l
as measured by him when the rod is at rest in his reference frame, that
is, the frame in which he is at rest. Suppose the rod is laid out along the
x ′-axis with front end B at x ′ = l and back end A at x ′ = 0 as shown in
Figure 1.3. Suppose that O sets up an experiment of timing when the two
ends A and B pass his origin x = 0. Evidently the expectation based on
Newtonian physics is that the two ends will pass the origin at an interval
of l/v. Let us see what the Lorentz transformation (1.15) gives.

When the end B passes the origin of O, as shown in Figure 1.3(a),
we have x ′ = l, x = 0 and the second of the equations listed in (1.15)
gives l = γ (x − vt), i.e., for x = 0 we get t = −l/(γ v). Likewise when
the end A passes the origin as shown in Figure 1.3(b), the time in the
frame of O is t = 0. The time interval between the passages of A and
B is therefore l/(γ v). Thus, knowing that O′ is moving with speed v

2 The inputs provided by quantum mechanics have led to the addition of spinors to this

list. We will not have any opportunity to discuss the role of spinors in this text.
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x′ = l

BA

BA

x′ = 0 x′ = l

x = 0

O
X

O
X

t = 0

(a)

(b)

t = −l/(γv)

x′ = 0

x = 0

Fig. 1.3. Two stages (a) and
(b) of the movement of the
rod AB as observed by O, as
per the arrangement
described in the text.

relative to him, O will conclude that the length of the rod is l/γ . Thus
the rod appears to him contracted by the factor

√
1 − v2.

While we may be tempted to identify this with the Fitzgerald–
Lorentz idea that an object moving with speed v relative to the aether
will contract by just this factor in its direction of motion, such an iden-
tification is wrong. The aether contraction was an absolute effect and
explained as such on the basis of certain assumptions about the atomic
structure of matter. Here the effect is relative. Moreover, to observer O′

a similar rod carried by O would appear contracted by the same factor.
In short, the effect is symmetric between the two inertial observers.
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t′ = 0

x′ = 0

t = 0

0 D

X
h

t′ = h/v

0 Dh
X

(a)

(b)

t′ = h/(γv)

Fig. 1.4. Two stages in the
passage of the moving clock
of O′ are shown above. As
described in the text, at stage
(a) O′ is passing the origin of
the stationary observer O
whereas in stage (b) this clock
is observed by another
stationary clock at D.

1.6.2 Time dilatation

Consider next another experiment in which a clock is taken by O′ at its
origin, and, as it passes the origin of O as well as another specified spot D
at x = h, say, the times in the clock are recorded. Also, O has stationed
clocks at the origin as well as at D. These clocks record their times as the
moving clock from O′ passes them by. Again our Newtonian expectation
is that the time interval recorded by the two clocks of O should equal
the time interval between the two readings by the clock of O′. Let us see
what the reality is. Figure 1.4 illustrates the experiment.

The clock of O′ has coordinate x ′ = 0. When it passes the origin
of O, with coordinate x = 0, we have from the Lorentz transformation
that t = t ′ = 0. This is shown in Figure 1.4(a). Similarly, as shown in
Figure 1.4(b), when the clock of O′ is at D, we have x ′ = 0, x = h so
that the times when these clocks meet are t = h/v and t ′ = (γ )−1h/v.
Thus we see that the interval recorded by the moving clock of O′ is short
by a factor

√
1 − v2 compared with the times recorded by the two clocks
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of O. So on the basis of this experiment O will conclude that the clock
kept by O′ is running slow compared with his clock. This effect is often
referred to as time dilatation.

However, this experiment could be performed with O′ using two
clocks and O using one, with the roles of the two observers interchanged.
Then O′ would find that the clock system used by O is running slow.
The experiment as such is not designed such that a symmetric role is
played by each inertial frame. Thus there is no paradox involved here.
Neither is it the case that one inertial frame is accorded a special status.
A look back at the length-contraction experiment described earlier will
likewise show that there too no special status is enjoyed by any inertial
frame.

1.6.3 Muon decay in cosmic-ray showers

A striking demonstration of time dilatation was given by observations
of the muon particles (µ) in cosmic-ray showers. The muon (earlier
called the µ meson) is very similar to the electron, except that it is 207
times heavier. The particle is normally unstable and in the laboratory
rest frame its decay time is as low as (2.09 ± 0.03) × 10−6 s. It decays
into the electron, a muon neutrino and an electron anti-neutrino.

In cosmic-ray showers the presence of muons would normally be
difficult to understand. For they are believed to have been produced at a
height of 10 km and, even if they travelled with the speed of light, they
could not travel more than a distance of some 600 m before decaying.
So how did they manage to survive long enough to be seen so close to
Earth’s surface?

The puzzle is explained by arguing that, if the muons are travelling
with very high speed, their natural clocks as seen by observers on the
Earth would run slow. At a speed of 0.995c the time-dilatation factor
γ is equal to 10. This makes the apparent lifetime of the muon relative
to an Earth-based laboratory ten times longer and thus it can travel up
to 6 km, instead of 600 m. Therefore in a normal statistical fluctuation
we should be able to see some muons coming from even 10 km above
sea-level.

1.6.4 Relativity of simultaneity

In Newtonian physics the absolute character of space and time enabled
one to give an absolute meaning to the simultaneity of two events at
different places. Thus, if event A took place at x = x1 and event B at
x = x2, both at time t , then they would be called simultaneous.
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In relativistic physics, the above statement needs to be modified. We
can describe the above simultaneity as that seen by an inertial observer
O. To another inertial observer O′ as defined earlier, the events would
not be simultaneous. For event A will occur at

t ′ = γ (t − x1v),

whereas event B will occur at

t ′ = γ (t − x2v).

So the events are not simultaneous in the reference frame of O′. As
seen by O′, A will occur before or after B depending on whether x1

exceeds or is less than x2.
These examples illustrate the tricks time can play with our intuitive

perception of physical events. There is another paradox, which we will
discuss towards the end of this chapter: the so-called clock paradox.
Before considering that, we need to discuss how Newtonian mechanics
has to be modified in order to accommodate Lorentz invariance, that is,
invariance with respect to Lorentz transformation.

1.7 Relativistic mechanics

Let us define the spacetime trajectory of a particle of mass m at rest,
denoting its coordinates xi ≡ (t, x, y, z). Such a trajectory is often called
the world line of the particle. The three space coordinates are usually
denoted by a space vector r. In Newtonian physics the three-dimensional
velocity of the particle of mass m is denoted by

dr

dt
= v.

Here, in relativity, we define a 4-velocity of the particle of mass m
by

ui = dxi

ds
. (1.28)

Here ds is the ‘proper distance’ between the two points (t, x, y, z)
and (t + dt, x + dx, y + dy, z + dz) on the spacetime trajectory of
the particle. Using the fact that

ds2 = dt2 − (dx2 + dy2 + dz2) = dt2(1 − v2) = dt2/γ 2 (1.29)

we get the following relationship between the Newtonian 3-velocity and
the relativistic 4-velocity:

ui = γ × [1, v]. (1.30)
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Notice that the identity (1.29) shows that the four components of ui are
related and so we have only three independent components. The identity
may be written as

ui ui = 1, i.e., ui × dui

ds
= 0. (1.31)

With this basic definition, we now consider Newton’s laws of motion.
The first law remains as it is. The second law needs some consideration
to make it Lorentz-invariant, i.e., invariant under Lorentz transforma-
tion. How should force and acceleration be related? In the rest frame of
the moving body, suppose its mass is m0. We assume that the difference
introduced by the Lorentz invariance would show up only at large veloc-
ities and so the second law should look the same as the Newtonian one
in the rest frame of the body. This may be written as

d

dt

(
m0

dr

dt

)
= F, (1.32)

where F is the measure of force in the rest frame of the body. Now,
we ask, what is the acceleration formula in a general Lorentz frame,
which reduces to the above in the rest frame? To this end we first convert
(1.32) into a set of four equations instead of three, by adding the fourth
component, and then replace dt by ds. Thus we have the second law as

d

ds

(
m0

dxi

ds

)
= Gi , (1.33)

where the 4-force Gi is related to the Newtonian force in the following
way. Take the spacelike components of the above equation. We get

dt ′

ds

d

dt ′

(
m0

dt ′

ds

dr′

dt ′

)
= G′,

say. Here we have assumed that the spacetime coordinates in the general
Lorentz frame are (t ′, r′). This looks like Newton’s second law with
minimal modification, if we write it as

d

dt ′

(
m

dr′

dt ′

)
= F′, (1.34)

where we define

m = m0
dt ′

ds
≡ m0√

1 − v2
= γ m0, G′ = γ F′. (1.35)

This then is the modified version of Newton’s second law of motion.
We can write it in the four-dimensional language of Minkowski as fol-
lows:

d

ds

(
m0

dxi

ds

)
= Gi , (1.36)
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where G1, G2, G3 are the spacelike components which we write as the
3-vector G and P = G0 is the timelike fourth component. From the
above equation we see that this ‘extra’ component of the relativistic
equations of motion implies

d

ds

(
m0

dt

ds

)
= P. (1.37)

We will next study its implication for the mass–energy relation.

1.7.1 The mass–energy relation

Let us re-examine the four-dimensional status given to the force. We
have three components in the form of the vector G defined above as Fγ .
We then have a fourth (time) component, P . Writing the 4-vector for
force as

Fi = [P, G],

we use the invariance of the expression

ηikui Fk = P
dt

ds
− G · dr

ds
. (1.38)

We note two things. First, from (1.31), we get the left-hand side of
(1.38) as zero. In the rest frame we therefore have P = 0. Secondly,
because (1.38) vanishes in one inertial frame, it must do so in all inertial
frames. Hence we get

P = G · v. (1.39)

This means that P/γ is F · v, which is the rate of working of the
force F. If we denote by W the energy generated in the particle by these
external forces, then

dW

ds
= dW

dt
× dt

ds
= P/γ × γ = P. (1.40)

However, because of the equation (1.37) satisfied by P , we can write
the above as

dW

ds
= d

ds
(γ m0), (1.41)

which, in view of Equation (1.35), integrates to

W = m + constant.

The energy generated by external forces being one of motion, we
interpret W as kinetic energy and so require it to be zero for the particle
at rest. Hence we adjust the constant such that

W = (m − m0)c2, (1.42)
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where we have restored c (which had been put equal to unity) so as to
remind ourselves of the difference in dimensionality of mass and energy.
Arguing that a particle of mass m0 at rest also possesses energy m0c2,
Einstein came up with the total energy of a moving particle as

E = mc2. (1.43)

This is perhaps the best-known equation of physics, especially if we take
lay non-physicists also into consideration! A useful application of this
result is found in the Sun. The core of the Sun has hot plasma in which
four protons (i.e., nuclei of hydrogen atoms) combine together to make
a helium nucleus, through the reaction

4 1H −→ 2He + 2ν + 2e+ + γ.

That is, the byproducts are neutrinos, positrons and radiation. The
mass of the four hydrogen nuclei exceeds the mass of the helium pro-
duced. The difference in mass 
m is not lost but is produced in the form
of energy 
m c2. Even after accounting for neutrinos and positrons,
the bulk of this energy appears as solar radiation. Thus the Sun shines
because of E = mc2!

1.7.2 The linear momentum

In terms of Minkowski’s four-dimensional framework, we can write
some of the above relations as follows. We start by defining the energy-
momentum 4-vector for a particle of rest mass m0 as

Pi =
(

m0
dt

ds
, m0

dr

ds

)
= (E, p), (1.44)

where p = mv is the Newtonian 3-momentum of the particle. Since the
Minkowski 4-velocity has unit magnitude, we have

E2 − p2 = m2
0, (1.45)

where we have put back the condition c = 1.
In general interactions between subatomic particles lead to decay,

scattering, etc. of particles and there the conservation of 4-momentum
generally holds. We will discuss a couple of examples from electrody-
namics to illustrate how the law operates.

But first we specify what happens to the photons, the particles of
light, vis-à-vis Equation (1.45). The photons always travel with the speed
of light and so one cannot really talk of their ‘rest’ mass. Nevertheless,
a common misnomer is that photons, or all those particles which travel
with the speed of light, have a ‘zero rest mass’. So if a photon γ of
frequency ν is travelling in a direction specified by a unit (spacelike)
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vector e its energy-momentum vector is defined as

Pγ = [hν, hνe]. (1.46)

It is easy to see that the magnitude of this momentum is zero, that
is Pγ · Pγ = 0. The photon therefore has ‘zero’ 4-momentum and it is
described by a null vector.

1.7.3 The centre-of-mass frame

Consider the situation in electrodynamics in which a particle–
antiparticle pair, such as an electron and a positron, is created from
radiation. Let us see whether we can create the pair from a single photon.

It is convenient to look at the problem from a special inertial frame:
one in which the total 3-momentum of all participating particles is zero.
Such a frame is called the centre-of-mass frame, because in this frame
the centre-of-mass is at rest. How to go from an arbitrary inertial frame
to a centre-of-mass frame is shown in the two solved problems at the
end of this subsection.

So we take the electron and positron each to have the same rest mass
m0 but equal and opposite 3-velocities ±v. Thus the 4-momenta for the
two particles are

electron e− : P− = γ m0 × [1, v]; positron e+ : P+ = γ m0 × [1, −v].

The factor γ has its usual meaning. But, when we add the two momenta,
we get the total momentum as

P− + P+ = 2γ m0 × [1, 0, 0, 0].

If this pair had to have come from just one light photon, the photon
must have had the above momentum. But this is impossible, since the
photon momentum is a null vector, whereas the above vector is timelike.
We can satisfy the above requirement of conservation of 4-momenta if
we have two photons to work with.

Example 1.7.1 Problem. Consider the reaction π+ + n → �0 + K+. The

rest masses of the four particles are, respectively, mπ , mn, m� and mK. The

neutron was at rest in the laboratory frame. Show that the total energy in

the centre-of-mass frame is (m2
π + m2

n + 2mn Eπ)1/2, where Eπ is the pion

energy.

Solution. The total 4-momentum is Pi , where

Pi = Pi
π + Pi

n = Pi
K + Pi

�.
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In the centre-of-mass frame, the total energy is ECM
total, and the total 3-

momentum is 0. Since Pi Pi is invariant in all frames, we may equate its

values in the lab frame and in the centre-of-mass frame. In the lab frame,

Pi Pi = (Pi
π + Pi

n )(Piπ + Pin)

= m2
π + m2

n + 2Pi
π Pin from (1.45).

Now Pi
π = (Eπ, pπ), Pi

n = (En, 0) and so Pi
π Pin = En Eπ . But En = mn

since the neutron is at rest. So in the lab frame Pi Pi = m2
π + m2

n + 2mn Eπ .

In the centre-of-mass frame the total 4-momentum is (ECM
total, 0).

Hence Pi Pi = (ECM
total)

2 = m2
π + m2

n + 2mn Eπ .

Example 1.7.2 Problem. Two particles of rest masses m1 and m2 collide.

Prior to collision the first particle was at rest while the second was approach-

ing it with speed v2. What is the energy of the system in the centre-of-mass

frame?

Solution. In the laboratory frame, the 3-momentum has only one component

γ2m2v2 in the direction of motion. The energy of the system in this frame is

m1 + γ2m2, where γ −1
2 =

√
1 − v2

2 .

Let the total energy in the centre-of-mass frame be E0. The total 3-

momentum is zero by definition. Equating Pi Pi in the two frames, we get

(m1 + γ2m2)2 − γ 2
2 m2

2v
2
2 = E2

0 ,

i.e., E2
0 = m2

1 + m2
2 + 2γ2m1m2.

1.7.4 Compton scattering

We look at another example from electrodynamics shown in Figure 1.5.
We have a photon of frequency ν1 incident on an electron at rest. The
electron acquires some momentum from this impact and moves with
speed u in a direction making an angle θ with the original direction of the
photon. The photon after the impact is scattered in the direction making
an angle −φ with its original direction of motion. We want to relate the
frequency ν2 of the scattered photon to the angle of its scattering.

It can be easily verified that the entire scenario is confined to a plane,
that determined by the paths of the original and scattered photons. Let m0

and m denote the rest mass and moving mass of the electron before and
after the impact. The 4-momenta of the various particles are as follows.

(1) Before scattering:

electron momentum Pe = m0 × [1, 0, 0, 0].

photon momentum Pγ = hν1 × [1, 1, 0, 0]
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e

frequency ν1

frequency ν
scattered photon

2

e

φ

θ
Direction of original

photon

scattered electron
Fig. 1.5. A schematic
diagram of Compton
scattering. The photon γ

coming from the left impacts
the stationary electron e− and
scatters it in the direction
making angle θ with the
original direction of γ. The
photon itself is scattered in
the direction making angle φ

with its original direction.

(2) After scattering:

electron momentum P ′
e = m × [1, u cos θ, u sin θ, 0]

photon momentum P ′
γ = hν2 × [1, cos φ,−sin φ, 0].

The law of conservation of 4-momenta then reduces to the following
three equations:

m0 + hν1 = m + hν2

hν1 = hν2 cos φ + mu cos θ (1.47)

0 = −hν2 sin φ + mu sin θ.

Upon eliminating θ from these relations, we get

m2u2 = h2[(ν1 − ν2 cos φ)2 + ν2
2 sin2 φ].

Using the relation m = m0/
√

1 − u2 and the first of the three equa-
tions in (1.47), we have finally the relation

1

ν2
− 1

ν1
= h

m0
(1 − cos φ).

That is, in terms of wavelengths,

λ2 − λ1 = h

m0
(1 − cos φ).

This is known as Compton scattering because the change of wave-
length of the photon on scattering was first measured by A. H. Compton
in 1923. The signature of the effect is that the change in wavelength does
not depend on the initial wavelength of the photon. It is dependent only
on the angle of scattering. The quantity h/(m0c) is usually referred to
as the Compton wavelength of the electron. Its value is 0.0024 nm.
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Particle–particle collisions, or decays, are phenomena that have been
used extensively to test the validity of the assumptions that lead to special
relativity. A few more cases are described in solved problems that follow
as well as in the exercises at the end of the chapter.

Example 1.7.3 Problem. A particle with rest mass m0 has 3-momentum

p. An observer with 3-velocity u looks at the particle: what energy would he

measure?

Solution. In the rest frame of the observer, u′0 = 1, u′µ = 0. Suppose he

measures the particle’s energy to be E ′. Suppose also that in his rest frame

the 4-momentum of the particle is P ′
i = (E ′, −p′), say. Thus P ′

i u′i = E ′.
Now evaluate the same invariant in the given laboratory frame. Then

the energy of the particle is P0 =
√

p2 + m2
0. The observer has 3-velocity

u. So his 4-velocity is γ (1, u), where γ −1 = √
1 − u2. We therefore have

Pi ui =
√

p2 + m2
0 × γ − γ p · u. Therefore the energy measured by the

observer is E ′ = γ (
√

p2
0 + m2

0 − p · u).

Example 1.7.4 Problem. A particle of rest mass m0 moving with velocity

v collides with a stationery particle of rest mass M and is absorbed by it.

Given that energy and momentum are conserved in the collision, find the

rest mass and velocity of the composite particle.

Solution. The 4-momentum of the moving particle is [m0γ, m0γ v, 0, 0],

where the direction of motion is chosen as the x-axis; γ −1 = √
1 − v2.

The 4-momentum of the stationary particle is [M, 0, 0, 0].

Thus the 4-momentum of the composite particle is [M + m0γ, m0γ v, 0, 0].

The mass of this particle is M0, say. Then

M2
0 = (M + m0γ )2 − m2

0γ
2v2 = M2 + 2m0 Mγ + m2

0γ
2(1 − v2)

= M2 + 2m0 Mγ + m2
0.

The velocity is given by m0γ v/(M + m0γ ).

1.8 A uniformly accelerated particle
Let us calculate the motion of a uniformly accelerated particle. That
means that the particle has a constant acceleration f0 in its rest frame.
Let us assume that the particle is moving in the x direction and starts
with rest at t = 0. In the general frame we assume the 4-velocity of the
particle to be ui and so its acceleration will be dui/ds ≡ ai , say. Now,
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from the general result

ηikui uk = 1 (1.48)

we get by differentiation with respect to s the result

ui
dui

ds
= 0. (1.49)

Hence, in the rest frame the acceleration cannot have any component
in the time direction, its sole component being f0 in the x direction. Thus
acceleration is a spacelike vector. From the invariance of its magnitude
in the general frame we will have components of dui/ds in the x and t
directions such that

ηik
dui

ds

duk

ds
= −f 2

0 . (1.50)

The negative sign indicates that the vector is spacelike. We have therefore

ui = γ × [1, −v, 0, 0];
dui

ds
= [a0, a1, 0, 0].

From Equations (1.49) and (1.50) we therefore have

a0 − va1 = 0, a2
0 − a2

1 = − f 2
0 .

On solving these, we get the result

f0 = d

dt

v√
1 − v2

.

This equation can be integrated to give

v = f0t√
1 + f 2

0 t2
, (1.51)

where we have used the boundary condition that at t = 0, v = 0. Now,
assuming that at the initial instant the particle was at the origin, we get
the integral of this equation as

x = 1

f0

(√
1 + f 2

0 t2 − 1
)
. (1.52)

For f0t � 1 we have the non-relativistic approximation giving the
familiar result from Newtonian dynamics: v(t) = f0t, x = f0t2/2.

The proper time of the particle is given by

τ =
∫ t

0

√
1 − v2 dt = 1

f0
sinh−1( f0t). (1.53)
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As t increases, this grows much more slowly than t . We will use this
result to discuss the celebrated ‘twin paradox’ next.

1.9 The twin paradox

In the early days of special relativity the time-dilatation effect of the kind
described earlier in Section 1.6 was considered puzzling and paradoxical
largely because one was then accustomed to the Newtonian absolute
time. The paradox arose because each of the two inertial observers could
apparently argue that the clock of the other was moving more slowly than
his. This was clearly logically impossible. However, the resolution of the
paradox lay in the fact that in each experiment one observer used two
clocks in his frame to compare with one clock of the other observer
moving relative to him. Thus there was no symmetry between the two
observers and there was no contradiction if one found the other’s clock
running slower.

A more sophisticated paradox was invented subsequently to counter
this asymmetry. Known as the twin paradox, it had two twin brothers,
A and B, say, of which B stays at rest in his inertial frame while A takes
off in a spacecraft attaining high speed. A goes far and returns after a
considerable time as measured by B. But, since A was moving relative
to B with high speed, A would be younger than B . . . because A’s watch
would run slower than B’s. Also, since A and B (unlike the clocks in
the earlier paradox) meet at the same place at the beginning and end of
the experiment, the effect must be real. For example, if A accelerates
and decelerates but has speed v = 4c/5 relative to B most of the time,
his watch would run at the rate

√
1 − v2 compared with B’s watch. That

is, if 40 years have elapsed as measured by B, only 24 years will have
elapsed for A. So A will be younger than B by 16 years!

The paradox is not here. It arises when you argue that, as seen by
A, his twin B has travelled away with high speed and come back to the
same spot at the same time. Then, by the same argument B should be
younger than B by 16 years. So what is the correct situation?

To resolve the paradox, we note that the situation between A and B
is not symmetric. B is in an inertial frame whereas A is accelerated and
decelerated over stretches of his journey. We can take a simple example
that A is uniformly accelerated over a period of 10 years at the end of
which he attains a speed of 4c/5. Then he decelerates uniformly and
comes to a halt after 10 years. He reverses his direction of travel and
follows the same acceleration/deceleration pattern. Thus he is back with
B after 40 years have elapsed by B’s watch. How long a time has elapsed
according to A’s watch?
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Using our formulae for uniform acceleration, we get the solution as
follows. First, at the end of t = 10 years, the speed attained is given by
formula (1.51):

v

c
= f0 × t/c√

1 + f 2
0 t2/c2

. (1.54)

Now setting v/c = 4/5, we get the solution as f0t/c = 4/3. The formula
(1.53) gives the elapse of proper time of A as

τ = c

f0
sinh−1( f0t/c) = 3

4
t sinh−1(4/3).

The total proper time of A for the entire journey works out at 32.96
years. Thus A will return to find himself younger than B by about
7 years.

At a deeper level, one may still raise the following question: of A
and B, who is entitled to claim the status of an inertial observer? If there
is no background to refer to, this may lead to an undecidable proposition.
We will come back to this issue towards the end of this book when we
discuss Mach’s principle.

1.10 Back to electrodynamics
Einstein was led to special relativity through Maxwell’s electromagnetic
theory. We close this chapter by highlighting a few issues that illustrate
the close relationship of electrodynamics, mechanics and special relativ-
ity. We begin with Minkowski’s four-dimensional view. In terms of the
four-dimensional notation, Maxwell’s equations become more compact.

Consider a 4-vector Ai as the 4-potential whose timelike component
serves as the electrostatic potential φ while the spacelike component
serves as the electromagnetic potential A. The electromagnetic fields
are then related to the tensor

Al;k − Ak;l = Fkl . (1.55)

Thus we have

[F01, F02, F03]

as the electric field and

[−F23, F13, −F12]

as the magnetic field.
The Maxwell equations then acquire an elegant structure:

Fik,l + Fkl,i + Fli,k ≡ 0, Fkl
,l = 4π j k, (1.56)
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where the 4-current vector j k has its zeroth component as the charge
density and the remaining three components as the 3-current density.
The subscript comma indicates the derivative with respect to the indexed
coordinate.

To supplement these equations, we add the four-dimensional version
of the Lorentz force equation describing the motion of an electric charge
in an electromagnetic field:

dui

ds
= e

m
Fi

kuk, (1.57)

m and e being the mass and charge of the particle.
We will not go into the details of this topic which is covered in detail

in graduate-level texts in electrodynamics. We mention one fact, though,
which will have relevance to our later work in general relativity. This is
the derivation of the above equations from a single action principle, the
action being (with c = 1)

A = − 1

16π

∫
V

Fik Fik d4x −
∑∫

�

eAi dxi −
∑∫

�

m ds. (1.58)

The action is defined over a spacetime region of volume V and the
particles like m are supposed to move across it along world lines �. The
variation of the field variables leads to the (Maxwell) field equations
while the variation of the particle world lines yields their equations of
motion. Later, in Chapter 7, we will generalize this result.

Finally, a plane-wave solution of Maxwell’s equation takes the simple
form

Am = am × exp(ikl · xl ), (1.59)

where the null vector kl has angular frequency ω as the timelike compo-
nent, the spacelike part being the wavenumber vector k whose magnitude
k is equal to ω/c and whose direction is that of the propagation of the
wave. Thus, if the frequency of the wave is ν, then ω = 2πν and we may
write in the old three-dimensional notation

kl · xl = 2πν(t − r · e/c),

where e is the unit vector in the direction of propagation of the wave.

1.10.1 The Doppler effect

Using the above notation, we can easily derive the formula for the rela-
tivistic Doppler effect, that is, the formula telling us how the frequency
(and direction of propagation) of a light source in motion relative to an
inertial observer depends on their relative motion. Using our two inertial
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observers, we wish to know how the frequency and direction of the wave
changes between O and O′.

We refer to Equation (1.59) above and note that the quantity in
the exponent is the phase of the wave and that this should be invariant
between two inertial observers.

Using Equations (1.17) for the Lorentz transformation we get

ν(t − e · r/c) = ν ′(t ′ − e′ · r′/c)

= ν ′γ [t − v · r/c + e′ · (r∗ − vt)/c]. (1.60)

By equating coefficients of t and r on both sides we get

ν = ν ′γ (1 − e′ · v/c),

e = e′∗ − v/c

1 − e′ · v/c
.

(1.61)

Here e′∗ is given in terms of e′ just as r∗ is given in terms of r by (1.18).
If we take without loss of generality the space components of these

vectors as v = (v, 0, 0), e = (cos θ, sin θ, 0), e′ = (cos θ ′, sin θ ′, 0), then
we can reduce Equations (1.61) to

ν = γ ν ′ × (1 − v cos θ ′/c) (1.62)

and

cos θ = cos θ ′ − v/c

1 − v cos θ ′/c
,

sin θ = sin θ ′

γ (1 − v cos θ ′/c)
.

(1.63)

In the case of radial motion away from the observer, we get the
answer as

ν = ν ′
√

c − v

c + v
. (1.64)

That is, the source of light has a reduced apparent frequency as seen by
the observer. This phenomenon is known as redshift, since in the visible
spectrum the red colour lies at the lowest-frequency end.

The formula (1.63) is used to explain the phenomenon of aberration
as seen in the example that follows.

Example 1.10.1 The formula (1.63) is useful in the measurement of the

change in the apparent direction of a light source when viewed from a moving

frame, with different velocities. The angle θ in one frame changes to θ ′ as

seen in the text. The change in the direction is called aberration.

In the case of the Earth, the direction of its motion changes to the

opposite after six months (half the orbit). So in (1.63) v changes to −v,



Exercises 31

leading to change in the direction (θ ) of the source. The net shift in direction,

∼v sin θ/c, is of the order of 10−4, but can be measured. The aberration of

the star γ Draconis was first measured in 1725 by James Bradley and this

was the first proof of Galileo’s firm belief that the Earth moves.

1.11 Conclusion

This brings us to the end of a ‘crash course’ on special relativity. The
reader may wish to study the subject at greater depth than dealt with
here and to this end the References [4, 5, 6] may be worth a look. We
have, however, built a framework from which to launch the study of a
more elaborate theory that deals with arbitrarily accelerated observers
and the modification of the Newtonian framework of gravitation. This
is the general theory of relativity which determines the main interest of
this book.

Exercises

1. Find whether the following vectors are timelike, spacelike or null.

(i) A0 = 4, A1 = 3, A2 = 2, A3 = 1.

(ii) The tangent to the circle x2 + y2 = 1, z = 0, t = 0.

(iii) The normal to the hyperboloid x2 + y2 + z2 − c2t2 = 1.

(iv) The tangent to the curve parametrized by λ, where x1 = ∫
r sin θ dλ, x2 =∫

r cos θ dλ, x3 = ∫
z dλ and x0 = ∫ √

r 2 + z2 dλ. The r, θ, z are arbitrary

functions of λ.

2. From the application of a special Lorentz transformation work out how the

electric and magnetic fields transform in vacuum.

3. A rod moves with velocity 3c/5 in a straight line relative to an inertial frame

S. In its rest frame the rod makes an angle of 60◦ with the forward direction

of its motion. Show that in the frame S the rod appears to make an angle

cot−1(4/(5
√

3)) with the direction of motion.

4. A mirror is moving with speed v in the x direction with its plane surface

normal to it. In this frame a photon travelling in the x–y plane is incident on the

mirror surface at angle θ to the normal. Show that, as seen from this frame, the

reflected photon makes an angle θ̄ with the normal to the mirror, where

cos θ̄ = cos θ + cos α

1 + cos θ cos α

and cos α = 2v/(1 + v2).
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5. In a Compton-scattering experiment, a photon was scattered in a direction

making an angle of 60◦ with its original direction. Show that the wavelength of

the photon will have increased by h/(2m0c).

6. Show that, for the Maxwell equations, the quantities B2 − E2 and B · E are

invarient under the Lorentz transformation.

7. Show that if E · B = 0 there is a Lorentz transformation that makes either E

or B equal to zero.

8. An electric charge q of mass m at rest moves in a circular orbit around a

magnetic field B perpendicular to the orbit. The charge takes time 2π/ω and the

radius of the orbit is R. Show that

B = mω

q
√

1 − v2
= mω

q
√

1 − ω2 R2
.

9. A source of light is moving towards an observer with speed v such that its

direction of motion makes an angle θ with the line of sight to the source. If there

is zero Doppler shift, find θ .

10. From the observation formula derived in the text show that a source viewed

from the Earth today and six months later will show a shift in direction equal

to 2v/c × sin θ , where θ is the angle the direction to the source makes with the

Earth’s motion. Estimate the order of magnitude of the effect.

11. Can an electron by itself absorb or emit a single photon? If the answer is

‘Yes’, show one example. If the answer is ‘No’, prove it.

12. A particle of rest mass M0 disintegrates into three particles of rest masses

M1, M2 and M3, respectively. If, in the rest frame of the original particle, the

particles of rest masses M2 and M3 move at right angles and have equal energies,

calculate the energy of each particle and show that the following inequalities

must be satisfied:

M2
1 <

1

2
(M0 − 2M2)2 + 1

2
(M0 − 2M3)2,

M2
2 + M2

3 <
1

2
(M0 − M1)2.

13. Two electrons are approaching each other, each with energy γ mc2 in the

laboratory frame. What is the energy of one electron as seen in the rest frame of

the other?

14. A traveller through interstellar space took off from the Earth at t = 0 with

constant acceleration f and, after t = t1, continued moving at the acquired

speed until t = t2. Then he decelerated with constant deceleration f , until he

came to rest at t = t2 + t1. He then reversed the trajectory to return to Earth at

t = 2(t1 + t2). What duration for this journey was registered on his own clock?

15. A speeding spaceship went through a red light at a traffic junction in inter-

stellar space. When stopped by cops, the driver said ‘But I saw only green lights’.
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Could he be telling the truth? If so, how will you estimate his approximate veloc-

ity?

16. A train 100 m long is approaching a tunnel 75 m long, at a speed of 0.8c.

The tunnel keeper has instructions to close both (entrance and exit) ends of the

tunnel simultaneously when the rear end of the train enters the tunnel. How long

after the tunnel is sealed does the engine strike the exit door of the tunnel? For

the engine driver, the tunnel appears shrunk to what length? Can the shrunken

tunnel accommodate the train? How do you resolve the contradiction between the

tunnel keeper’s and the engine driver’s version? (This example usually generates

considerable discussion.)

17. An electron at rest is hit by an approaching photon with energy equal to the

rest energy of the electron. Show that in the centre-of-mass frame of the system

the electron is moving with speed half that of light.



Chapter 2

From the special to the general theory
of relativity

2.1 Space, time and gravitation

The special theory of relativity reviewed in the last chapter marked a
major advance in physics. The basic assumption that the fundamental
laws of physics are invariant for all inertial observers looks at first sight a
reasonable premise. However, as we saw in Chapter 1, its application to
Maxwell’s equations of electromagnetic theory led to a drastic revision
of how such observers make and relate their measurements of space and
time. One consequence was that the Newtonian notions of absolute space
and absolute time had to be abandoned and replaced by a unified entity
of spacetime. The Galilean transformation relating the space and time
measurements of two inertial observers had to be replaced by the Lorentz
transformation. Strange and non-intuitive though the consequences of
this transformation were, as we saw in Chapter 1, several experiments
confirmed them.

In spite of these successes, Einstein felt that the special theory
addressed limited issues. For example, what was the nature of physical
laws when viewed not in the inertial frames of reference, but in an
accelerated one? Was there some more general principle that, when
applied to these laws, preserved their form? Intuitively Einstein felt that
some such situation must prevail. But that required a formalism more
general than that provided by the Lorentz transformation.

On another matter, of the two classical theories of physics known in
the first decade of the twentieth century, the electromagnetic theory had
played a major role in the genesis of special relativity. The invariance
of Maxwell’s equations under the Lorentz transformation is linked with

34
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the invariance of the speed of light for all inertial observers. The light
speed thus has a special status in spacetime and causality is preserved by
demanding that all physical interactions travel with speeds not exceed-
ing this speed. Nevertheless, this fiat was broken by the Newtonian
law of gravitation, the other known basic interaction. The gravitational
attraction seemed to be instantaneous across space: that is, it seemed
to propagate with infinite speed. Just as Newtonian dynamics had to be
adapted to suit the new rules of spacetime measurements, the Newtonian
law of gravitation also required a suitable adaptation.

Hermann Bondi had highlighted the conflict between the law of
gravitation and special relativity by the following example. Imagine that
by ‘some magic’ the Sun is removed from its place. How and when will
we on the Earth come to know of the event? Because sunlight takes about
500 seconds to reach us, we would come to know of the Sun’s absence
after that period. However, the disappearance of the Sun’s gravity will
be ‘instantaneous’ and the Earth would move off its usual trajectory
‘immediately’. Thus gravitational interaction would tell us of the event
500 seconds before light would do so. This thought experiment, though
physically impossible, illustrates the point.

One may think that it is relatively simple to adapt Newtonian gravi-
tation to suit special relativity. But the reality is different! For example,
consider the Laplace equation

∇2φ = 4πGρ, (2.1)

where φ is the gravitational potential and ρ is the mass density. If one
wishes to make the interaction travel with the speed of light, one may
change the ‘∇2’ operator on the left-hand side to the wave operator ‘�’.
This can be easily done. But look at the right-hand side. Since special
relativity teaches us that E = Mc2, we need to include in ρ all the energy
densities also. Now, Newtonian theory tells us that gravitation itself has
energy, and so we need to include it on the right-hand side. The energy
density of gravitation has a form something like

ρφ = −[(∇φ)2 − φ̇2]/(8πG). (2.2)

In other words the modified equation (2.1) has a (∇φ)2-dependent term
on the right-hand side. Thus the problem has become non-linear. One
may further ask whether the self-action from φ will not change its value
further. Indeed it will! In fact Equation (2.1) becomes even more com-
plicated. We will not get further into this issue here since our purpose, to
demonstrate that the original Newtonian law becomes non-linear if we
try to make it consistent with special relativity, has already been served.

While this example illustrates that the Newtonian law needs to be
modified in the presence of special relativity, the reverse is also true.
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We need to modify special relativity in the presence of gravity. For we
have looked at how special relativity functions in the framework of
inertial observers. As defined in Chapter 1, these observers are moving
under no force. Can one find such observers in reality? The answer is
‘Not in the presence of gravitation!’. For it is not possible to isolate
a finite-sized region inside which there is no gravitational force for a
finite time. What about astronauts in spaceships apparently floating in
a gravity-free region? Even there gravity is not altogether absent: for,
wherever there is matter, there is a gravitational effect, howsoever small
it may be. So we need a theory that allows for the ever-present gravity.
We will return to this issue shortly. The theory that Einstein came up
with to address this issue, the general theory of relativity, represents
perhaps the most remarkable flight of imagination in science.

Every major scientific theory carries its own mark of distinction. The
distinctive feature of Newtonian gravitation is the radial inverse-square
law. To those uninitiated in the laws of dynamics, the fact that a planet
goes around the Sun under a force of attraction towards the Sun comes
as a surprise. Yet this is a natural consequence of the inverse-square
law. The major achievement of Maxwell’s electromagnetic theory was
the unification of electricity and magnetism and the demonstration that
light itself is an electromagnetic wave. The unique place held by the
speed of light characterizes Einstein’s special theory of relativity, while
quantum mechanics can point to the uncertainty principle as the crucial
feature that sets it apart from classical mechanics.

To what distinctive feature can general relativity lay its own special
claim? A clue to the answer to this question is provided in the title of
this section.

Let us compare gravitation with electricity. We know that two unlike
electric charges attract each other through the Coulomb inverse-square
law, just as any two masses attract each other gravitationally by the
Newtonian inverse-square law. To this extent, electricity and gravitation
are similar. However, we can go no further! We also know that two like
electric charges repel each other and that this property seems to have no
parallel in gravitation. Every bit of matter attracts every other bit and,
as yet, we do not have any instance of gravitational repulsion.

We can express this difference between electricity and gravitation
in another, more practical way. The existence of repulsion as well as
attraction with positive and negative charges enables us to construct a
closed chamber whose interior is completely sealed from any outside
electrical or magnetic influence. Not so with gravitation! We cannot
point to any region of space as being totally free of external gravita-
tional influences. Gravitation is permanent: it cannot be switched off
at will.
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This ever-present nature of gravitation plays a key role in Einstein’s
general theory of relativity. Einstein argued that, because of its perma-
nence, gravitation must be related to some intrinsic feature of space and
time (which are also permanent!). With a master stroke of genius, he
identified this feature as the geometry of space and time. He suggested
that any effects we ascribe to gravitation actually arise because the
geometry of space and time is ‘unusual’. Let us now try to understand
what is meant by the word ‘unusual’ and how this property of space
and time leads to gravitational effects – for therein lies the distinctive
characteristic that sets general relativity apart from other physical
theories.

180A + B + C =

AC2 = AB2 + BC2
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Fig. 2.1. Some familiar results
of Euclid’s geometry: above,
the three angles of a trian-
gle add up to 180◦; below,
Pythagoras’ theorem that the
square of the hypotenuse of
a right-angled triangle equals
the sum of the squares of its
other two sides.

2.2 Non-Euclidean geometries
The ‘usual’ geometry of space, the geometry that we learn at school
and apply in so many ways, is the geometry whose foundations were
laid by the Greek mathematician Euclid c. 300 BC. Euclidean geometry
is a logical structure wherein theorems about triangles, parallelograms,
circles and so on are proved on the basis of postulates that are taken as
self-evident. Thus the results shown in Figure 2.1 follow as theorems in
Euclid’s geometry, being based on the original postulates of Euclid, and
the validity of these results appears to be borne out by measurements of
lengths and angles in physical space.

Postulates are assumptions that are regarded as self-evident and
are not expected to be ‘proved’. One such postulate is illustrated in
Figure 2.2. Here we have a straight line l with a point P outside it. How
many straight lines can we draw through P parallel to l? Our experience
suggests that the answer is ‘only one’. But can this expectation be further
proved? In Euclid’s geometry this is taken as a postulate (sometimes
known as the parallel postulate) and many of its theorems are based on
it. One such theorem is that the three angles of a triangle add up to two
right angles.

P l′

l

Fig. 2.2. The parallel postulate
of Euclid, described in the text.

It was only in the last century that mathematicians realized that there
is nothing sacrosanct about Euclid’s postulates. Provided that they are not
mutually contradictory, any new set of postulates can lead to a new and
consistent type of geometry. Indeed, as the work of such mathematicians
as Gauss (1777–1855), Bolyai (1802–1860), Lobatchevsky (1793–1856)
and Riemann (1826–1866) showed, a host of such new geometries can
be constructed. These are collectively called non-Euclidean geometries.
For instance, the parallel postulate can be changed: one may assume
that there is no straight line through P parallel to l, or one may assume
that several lines can be drawn through P parallel to l. Geometries using
these revised postulates will be non-Euclidean.
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Fig. 2.3. The two theorems
described in Figure 2.1
change for the geometry on
the surface of a sphere as
shown here.

In this sense, the geometry on the surface of a sphere is non-
Euclidean. If we define a straight line on the surface of a sphere as
the line of shortest distance between two points, it is easy to see that
these lines are arcs of great circles. Because any two great circles inter-
sect, there are no parallel lines in this geometry: no line can be drawn
through P parallel to l. Figure 2.3 demonstrates how the theorem about
the sum of the three angles of a triangle breaks down in this case.

We may also mention in passing that Euclidean straight lines such as
latitude lines drawn on a flat map of the Earth do not represent paths of
shortest distance. Rather such paths drawn on flat maps look curved. Air-
craft pilots choosing to fly along the shortest routes follow these paths.

We will now explore the possibility that Einstein advocated, namely
that the effect of gravity can be described not through the conventional
Newtonian interpretation of a force but by ascribing a non-Euclidean
character to the geometry of spacetime.

2.3 Gravity, geometry and dynamics

The Einsteinian concept of non-Euclidean geometry of space extended
to space and time or spacetime can be illustrated by an example in
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dynamics. Figure 2.4 shows the spacetime trajectory followed by a stone
thrown vertically upwards with an initial velocity v. Counting time t from
the instant of throw, the height y of the stone at any instant t is given by

y = vt − 1

2
gt2, (2.3)

where g is the acceleration due to gravity. This is a Newtonian equation
and may be interpreted as follows. If there were no gravity, the stone
would have continued to move in a straight line with uniform speed
v directed upwards, as indicated by the first term only on the right-
hand side of the above equation. In Figure 2.4 this trajectory is shown
by a dotted straight line. By contrast the actual trajectory is shown by
the parabolic continuous line. In the Newtonian framework, the dotted
trajectory illustrates the first law of motion, whereas the continuous one
arises from the second law of motion because of the application of the
force of gravity.

y = νt

y = νt − 12 gt2

t

y

Fig. 2.4. As explained in
the text, in the Newtonian
dynamics the dotted trajectory
describes straight-line motion
without acceleration. The
curved continuous line shows
the trajectory wherein accel-
eration is induced by gravity.
According to Einstein only this
trajectory has real status and it
describes uniform motion in a
straight line in the spacetime
‘curved’ by gravity.

According to Einstein, the interpretation of this phenomenon would
be as follows. First we have to recognize that the gravity of the Earth
has a permanent existence. It cannot be ‘turned on’ or ‘turned off’. So
we should not talk of the dotted trajectory, dealing as it does with a
possibility that cannot happen. The continuous trajectory is the only tra-
jectory that we have to interpret. Only we now assume that the geometry
of spacetime in which the stone is moving is non-Euclidean, being ren-
dered so by the presence of Earth’s gravity. So the apparently parabolic-
looking trajectory is actually describing ‘straight line motion with a
uniform velocity’ but in a non-Euclidean spacetime.

At this juncture a sceptic may argue that the continuous line of
Figure 2.4 clearly demonstrates a curved trajectory with a varying veloc-
ity. How can we call it a straight-line motion with uniform speed? The
answer is that, if the rules of geometry are changed, so are the defini-
tions of straight lines and measurements of velocities. In Figure 2.3, for
example, the apparently curved arcs on the sphere are in fact straight
lines in the spherical geometry. Similarly, in this case, the geometry of
spacetime is changed in such a way that the trajectory that is curved
in Euclidean geometry becomes straight! Recall the example of the flat
map of the Earth in the previous section. Similarly, the constancy of
velocity is to be determined not by the rules of Euclidean measurements
but by the prevailing non-Euclidean geometry.

To summarize, therefore, Einstein’s way of describing gravity is to
do away with the notion that it is a force. Rather the trick is to find
a suitably non-Euclidean spacetime geometry in which matter under
no force moves in ‘straight-line trajectories with uniform speed’ as
measured in terms of the rules of the new geometry.
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We need a mathematical apparatus to describe these ideas precisely.
Also, if spacetime is ‘curved’ because of its non-Euclidean geometry
we need suitable machinery to describe physics in it. For, as we just saw,
even the simple concept of velocity requires re-definition. So we will
begin our discussion of general relativity by setting up the framework
needed for these purposes. Chapter 3 accordingly starts the process.

Exercises
1. An optical photon has wavelength 500 nm. Estimate its gravitational mass.

2. Two airports exist on the same latitude θ but on longitudes differing by 180◦.

Show that an aircraft connecting them flying along the latitude θ will exceed the

shortest path by 2R[θ − πsin2θ/2]. R is the radius of the Earth.

3. A triangle on the spherical Earth has its vertices at specified latitude (l) and

longitude (L) as follows: vertex A at l = 45◦, L = 180◦; vertex B at l = 0◦,

L = 120◦ and vertex C at l = 0◦, L = 240◦. By what amount does the sum of

the three angles of the triangle ABC exceed 180◦?

4. Assuming that the Newtonian potential at an external point at distance R

from the centre of a spherical mass distribution is G M/R, estimate a correction

to it to first order using formula (2.2) for gravitational energy.

5. Consider a sphere of uniform density ρ and radius R. Calculate the Newtonian

gravitational potential φ for this sphere. Compare the gravitational energy source

(∇φ)2/(8πG) with ρ.

6. A projectile is ejected with vertical speed v from the surface of a planet of

mass M and radius R. Show that it comes to rest at a distance r from the centre

of the planet, where

r = R

1 − Rv2

2G M

,

provided that the denominator is positive. Put v = c in the above example and

deduce the condition between M and R such that the planet acts like a Newtonian

black hole.



Chapter 3

Vectors and tensors

3.1 The spacetime metric

The classical definition of ‘geometry’ is that it is a science of measure-
ments of distances and angles. Let us first recall a familiar result from
special relativity in the following form. Let (x, y, z) denote a Cartesian
coordinate system and t the time measured by an observer O at rest in an
inertial frame, that is by an observer who is acted on by no force. Let two
neighbouring events in space and time be labelled by the coordinates
(x, y, z, t) and (x + dx, y + dy, z + dz, t + dt). The resulting analogue
of the Pythagorean theorem is as follows. The square of the ‘distance’
between the two events is given by

ds2 = c2 dt2 − dx2 − dy2 − dz2. (3.1)

The distance ds is invariant under Lorentz transformation in the sense
that another inertial observer O′ using a different coordinate system
(x ′, y′, z′, t ′) to measure this distance will find the same answer.

However, when we make a transition from special to general rela-
tivity and quantify Einstein’s idea that the geometry of space and time
is unusual in the presence of gravitation, we abandon the simple form
of (3.1) in favour of a more complicated form. The more complicated
form is still quadratic, and we may state it formally as follows:

ds2 =
3∑

i,k=0

gik dxi dxk . (3.2)

Here we have modified the notation as follows. The coordinates are
now called xi , with i =1, 2, 3 representing the three space coordinates

41
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and i = 0 the time coordinate. The coefficients gik are functions of xi

with the property that the matrix ‖gik‖ has the signature −2.1

The expressions for ds2 are often referred to as the ‘line element’
or the ‘metric’. Thus we have the general expectation that the spacetime
metric has signature −2. We shall denote the determinant of the matrix
‖gik‖ by g and its inverse matrix by ‖gik‖. It is easy to verify that g is
negative.

Clearly, the geometry of spacetime in which the basic invariant dis-
tance is given by (3.2) instead of by (3.1) is going to be more complicated
to describe. Its properties will depend on the functions gik . But do these
complications arise simply because of a choice of coordinates, or do
they indicate a spacetime with a geometry genuinely different from that
used in special relativity?

Example 3.1.1 Consider for example the form

ds2 = c2 dt2 − [dr 2 + r 2(dθ 2 + sin2θ dφ2)],

which looks more complicated than (3.1). Does it describe some new geom-

etry? A little investigation will show that it is obtainable from (3.1) by the

coordinate transformation

x = r cos θ, y = r sin θ cos φ, z = r sin θ sin φ.

We do not expect that a fundamental change in the properties of space-

time, such as its geometry, should be brought about by such a change of

coordinates. However, consider another example.

Let us take the geometry on the surface of a sphere � of radius a. If

we consider the sphere as embedded in a three-dimensional space with the

Cartesian coordinates x, y, z, we may write the equation of the surface of

the sphere as
x2 + y2 + z2 = a2.

However, can we study the geometry on this surface without recourse

to the embedding space? For describing the geometry on the surface of

the sphere it is more convenient to use coordinates intrinsic to the sur-

face of the sphere. Such coordinates are available and are like the latitude

and longitude used by geographers to locate a point on the Earth. More

specifically,

x = a cos θ, y = a sin θ cos φ, z = a sin θ sin φ,

1 This means that, if at any spacetime point the quadratic form (3.2) is diagonalized, it

has one square term with a positive coefficient and three square terms with negative

coefficients. The signature equals the number of positive terms minus the number of

negative terms.
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so that for any (θ, φ) with 0 ≤ θ ≤ π and 0 ≤ φ < 2π we can locate a point

(x, y, z) on the surface of the sphere. Spherical trigonometry tells us how

to measure and relate the angles, sides and so on of triangles drawn on this

surface. The rules of Euclid’s geometry do not apply to these measurements.

In our above example, the square of the distance between two neigh-
bouring points (θ, φ) and (θ + dθ, φ + dφ) is given by

dσ 2 = [dx2 + dy2 + dz2]� = a2(dθ 2 + sin2θ dφ2). (3.3)

Thus we have here another example of gik that are not all constants. In
this as well as the previous example, this property is shared. However,
in the earlier case the geometry was Euclidean, whereas here it is not.
Simply having a coordinate-dependent gik does not therefore convey the
physical reality. So the mathematical formalism that we build up should
be such that it can distinguish between real effects and coordinate effects.
In a qualitative way we can see that the essential information must survive
even when we change from one coordinate system to another. In order
to extract such information, we must devise machinery that tells us
what things remain unchanged under coordinate transformations. Such
machinery is provided by the invariants, the vectors and the tensors,
which we shall now study.

3.2 Scalars and vectors
Let us first introduce the summation convention which was already used
in a limited way in Section 1.5.1. We will frequently encounter sums
like

3∑
i=0

Ai Bi ,

3∑
k=0

Aik Bk,

3∑
i,k=0

Pikξ
iξ k, . . .. (3.4)

It is convenient in such cases to drop the summation symbol
∑

and
write these quantities as

Ai Bi , Aik Bk, Pikξ
iξ k, . . ., (3.5)

the rule being that, whenever an index appears once as a subscript and
once as a superscript in the same expression, it is automatically summed
over all the values (from 0 to 3). Thus we can rewrite (3.2) in the more
compact form

ds2 = gik dxi dxk . (3.6)
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A note of caution is needed here: the summation convention does not
apply under any other circumstances. Thus it does not apply to quantities
like

Ai Bi , Aik Bi Ci , . . ., (3.7)

wherein repeated indices do not follow the rule of appearing only twice,
once up and once down. However, such expressions fortunately do not
arise in most relativistic calculations. Indeed, the appearance of such
‘monster’ expressions is a warning that we have made a mistake in
our index manipulation. At this stage the appearance of subscripts and
superscripts may seem somewhat arbitrary. We ask the reader to be
patient: they will be properly introduced into the formalism very shortly.

We will assume that the Latin indices i, j, k, . . . will run over all
four values 0, 1, 2, 3. On some (rather infrequent) occasions we may
want to refer to index values 1, 2, 3 only, which are usually reserved for
space components, and we will use Greek indices µ, ν, . . . to represent
these. Thus Aµ Bµ will equal A1 B1 + A2 B2 + A3 B3.

It is worth pointing out here that many other textbooks use the con-
vention of denoting the spacetime coordinates by Greek indices λ,µ, ν,
etc. and the space coordinates by Latin indices i, j, k, etc. Also many
authors prefer to write (3.1) with the opposite sign for the right-hand side.
In that case the signature of the metric is +2. Likewise, in some texts,
time is treated as coordinate number 4 instead of 0, as it is here. These
differences are of a ‘cosmetic’ nature and do not affect the ‘physics’
being described. We caution the reader to check these differences before
comparing expressions from different sources.

We now consider a simple example in two-dimensional Euclidean
space, i.e., in a space where Euclid’s geometry holds. Let, as in Figure 3.1,

x1

X1

x2

X ′2

x′2

x′1

X ′1

X2

O

A

a

a

Fig. 3.1. A change of
Cartesian coordinates changes
the components of a vector,
although the vector remains
unchanged. Here we see the
effect of rotation of axes
around the origin.
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OX1 and OX2 denote two Cartesian coordinate axes corresponding to
coordinates x1 and x2, respectively. Suppose we have a vector A with two
components A1 and A2 in these directions. We now change coordinates
by rotating the axes by an angle α. The new coordinates x ′

1 and x ′
2 are

given in terms of the old ones by the formulae

x ′
1 = x1 cos α + x2 sin α, x ′

2 = x2 cos α − x1 sin α. (3.8)

Notice that under this transformation the components of A also
transform in a similar fashion:

A′
1 = A1 cos α + A2 sin α, A′

2 = A2 cos α − A1 sin α. (3.9)

Now in the usual definition we associate a vector with a magnitude
and a direction. The above equations keep track of the direction of the
vector, ensuring that two different observers, one using the unprimed
coordinates and the other using the primed ones, are talking about the
same entity even though they are measuring different components rela-
tive to their axes. They also agree on the magnitude of the vector, since
it is easy to verify that

A2
1 + A2

2 = A′2
1 + A′2

2 . (3.10)

In short, these transformation laws preserve the physical essentials of
a vector, namely its magnitude and direction. We will be guided by
this simple example in generalizing the concept of a vector under any
coordinate transformation.

3.2.1 Scalars

We now introduce spacetime as a manifold M of 3 + 1 dimensions in
which a typical point P is specified by four coordinates xi . We shall in
general talk about geometrical entities of M or of physical quantities
defined in M, which are continuous and differentiable (at least twice)
with respect to xi . It is within this manifold that we now proceed to
describe our geometry–physics relationship. We begin with the simplest
physical notion.

A scalar or an invariant does not change under any change of
coordinates. Thus if φ (xi ) is a function of coordinates, then it is invariant
provided that it retains its value under a transformation from xi to new
coordinates x ′i :

φ(xi ) = φ[xi (x ′k)] = φ′(x ′k). (3.11)

Note that the form of the function may change, but its value does
not. Note further that the infinitesimal square of distance (3.6) is a
scalar quantity. In our example of vectors in two dimensions, we had
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encountered the property that the magnitude of a vector does not change
under the coordinate transformation representing rotation of axes. It is
therefore a scalar.

A
i

P

Fig. 3.2. The tangent to
the curve at P acts like a
contravariant vector.

3.2.2 Contravariant vectors

Suppose we are given a curve 
 in space and time, which is parametrized
by λ. (See Figure 3.2.) Thus, the points along the curve have coordinates

xi ≡ xi (λ), (3.12)

where xi are given functions of λ. The direction of the tangent to 
 at
any point P on it is given by a vector with four components,

Ai ≡ dxi

dλ
. (3.13)

Notice that the direction of a tangent to the curve is an invariant concept:
a change of coordinates should not alter this concept, although its four
components in the new coordinates will be different. Suppose the new
coordinates are x ′i and the new components are A′i . Then

A′i ≡ dx ′i

dλ
. (3.14)

As stated earlier, we will assume that the transformation functions

xi = xi (x ′k), x ′k = x ′k(xi ) (3.15)

are continuous and possess at least second derivatives. It is then easy to
see that A′i and Ai are related by the linear transformation

A′k = ∂x ′k

∂xi
Ai . (3.16)

We use (3.16) as the transformation law for any vector Ai . Quantities
in general that transform according to the above linear law are called
contravariant vectors. The four components of a contravariant vector
are specified by a superscript.

Example 3.2.1 Consider the curve parametrized by

x0 = constant, x1 = constant, x2 = λ, x3 = λ2.

The tangent to this curve is specified by the contravariant vector Ai with

components

A0 = 0, A1 = 0, A2 = 1, A3 = 2λ.
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A comparison with the two-dimensional Cartesian example will
show that the transformation law (3.16) used above is a generalization
of the law (3.9) used there. In that simple example the coordinate trans-
formation was linear and so the coefficients ∂x ′i/∂xk and ∂xk/∂x ′i were
constants, cos α, sin α, etc.

Bi

φ = constant

Q

Fig. 3.3. The normal to the
hypersurface at Q acts like a
covariant vector.

3.2.3 Covariant vectors

Consider next a scalar function φ(xk). The equation

φ(xk) = constant (3.17)

describes a hypersurface (that is, a surface of three dimensions) �,
whose normal at a typical point Q has the direction given by the four
quantities

Bi = ∂φ

∂xi
. (3.18)

(See Figure 3.3.) Again, the concept of a normal to a hypersurface
should be independent of the coordinates used. Under the coordinate
transformation (3.15), the new components are

B ′
i = ∂φ

∂x ′i .

It is easy to see that B ′
i ↔ Bi is a linear transformation:

B ′
k = ∂xi

∂x ′k Bi . (3.19)

Again, we generalize (3.19) as a transformation law of any vector
Bi . Quantities that transform according to this rule are called covariant
vectors.

Example 3.2.2 The normal to the unit sphere given by

φ ≡ (x1)2 + (x2)2 + (x3)2 = 1

has the covariant components

B0 = 0, B1 = 2x1, B2 = 2x2, B3 = 2x3.

Consider oblique coordinate axes OX1 and OX2 inclined at an acute
angle β in a two-dimensional Euclidean plane. Figure 3.4 illustrates the
situation. Let a vector A be shown by arrow OP. How do we specify
the two components of this vector? There are two obvious ways. One
is to draw straight lines through P parallel to the axes intersecting them
at R1 and R2, respectively. The lengths OR1 and OR2 then specify
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S1R1x1

X1

x2

R2
P

S2

O

X2

β

Fig. 3.4. If the axes are not
rectangular, even in Euclid’s
geometry the covariant and
contravariant components of
a vector are different, as seen
here. (See the text for details.)

the contravariant components of the vector. For these components are
in the directions tangential to the coordinate lines x2 = constant and
x1 = constant. The second way is to drop perpendiculars PS1 and PS2

from P on to the two coordinate axes. The lengths OS1 and OS2 then
represent the covariant components of the vector, since they are given by
the intercepts of normals to the coordinate axes. As will be appreciated,
the two ways of describing the vector coincide if we choose rectangular
Cartesian coordinates.

We will return to this example later.

3.3 Tensors

The concept of a vector can be generalized to that of a tensor. Imagine
a product of two contravariant vectors Ai and Bk . The 4 × 4 quantities
Ai Bk describe a tensor. Since we know from (3.16) how Ai and Bk trans-
form, we can work out how their product transforms, and apply the rule
to a general tensor with two contravariant indices. Thus a contravariant
tensor of rank 2 is characterized by the following transformation law:

T ′ik = ∂x ′i

∂xm

∂x ′k

∂xn
T mn . (3.20)

A covariant tensor of rank 2 is likewise characterized by the transforma-
tion law

T ′
ik = ∂xm

∂x ′i
∂xn

∂x ′k Tmn . (3.21)
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It is also possible to have mixed tensors. Thus T i
k is a mixed tensor

of rank 2, with one contravariant index and one covariant index. It
transforms as

T ′i
k = ∂x ′i

∂xm

∂xn

∂x ′k T m
n . (3.22)

Again, these concepts are easily generalized to tensors of rank higher
than 2. The rule is to introduce a transformation factor ∂x ′i/∂xm for each
contravariant index i and a factor ∂xn/∂x ′k for each covariant index k.
In general, a mixed tensor of rank r = p + q may have p contravariant
indices and q covariant indices.

Trivially, we may consider a scalar as a tensor of rank 0 and a vector
as a tensor of rank 1.

Example 3.3.1 The quantities gik transform as a covariant tensor. This

result follows from the assumption that ds2 as given by (3.6) is invariant.

For

ds2 = gik dxi dxk

= gik

(
∂xi

∂x ′m dx ′m
)(

∂xk

∂x ′n dx ′n
)

=
(

gik
∂xi

∂x ′m
∂xk

∂x ′n

)
dx ′m dx ′n

= g′
mn dx ′m dx ′n ;

that is,

g′
mn = ∂xi

∂x ′m
∂xk

∂x ′n gik .

Example. The Kronecker delta defined by

δi
k = 1 if i = k, otherwise δi

k = 0

is a mixed tensor of rank 2. This can be easily proved using (3.22) and the

identity
∂xi

∂xl
= δi

l .

Example. Define ‖gik‖ to be the inverse matrix of ‖gik‖, assuming that g is

the determinant of ‖gik‖ �= 0. Thus we have

gik gkl = δl
i .

We now show that gik transforms as a contravariant tensor of rank

2. We use the result just derived, namely that gik transforms as a covariant

tensor so that

g′
ik = ∂xm

∂x ′i
∂xn

∂x ′k · gmn .
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Now define
Fν

nµ

P

Fig. 3.5. An example of a
second-rank tensor. In the
example illustrated, the stress
tensor at P relates F ν , the stress
force at P, to the direction
nµ of the local normal to the
surface at P. In general the two
directions are not parallel.

B ′kl = g pq ∂x ′k

∂x p

∂x ′l

∂xq

and consider the product

g′
ik B ′kl = ∂xm

∂x ′i
∂xn

∂x ′k
∂x ′k

∂x p

∂x ′l

∂xq
g pq gmn

= gmn g pqδn
p

∂xm

∂x ′i
∂x ′l

∂xq

= gmpg pq ∂xm

∂x ′i
∂x ′l

∂xq

= δl
i .

In other words B ′kl is the inverse of the matrix g′
ik . This proves the result.

Example. A physical example for tensors is found in the three-dimensional

space, when discussing deformation of substances. Figure 3.5 illustrates the

surface � of such a substance, which has normal nµ at a typical point P. If

the surface is subjected to stress, the resulting force on an element of surface

around P will be Fν , different in direction from the normal nµ, but related to

it by the linear tensor relation

Fν = Tµνnµ,

where Tµν is the stress tensor. If the stress is isotropic, then

Tµν = pδµν,

where p is the pressure which produces a force normal to the

surface �. (Notice that we have not used the upper/lower indices since

we are discussing Cartesian tensors in three dimensions.)

Example. In dynamics we encounter the moment-of-inertia tensor Iµν of a

massive extended body, which is a second-rank tensor in three-dimensional

space. If ωµ is the angular velocity of the body then its angular momentum

is given by the vector Iµνωµ.

3.3.1 Contraction

The operation of contraction consists of identifying a lower index with
an upper index in a mixed tensor. This procedure reduces the rank of the
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tensor by 2, since the repeated index implies a sum over all of its four
values.

Thus Ai Bk is a tensor of rank 2 if Ai and Bk are vectors. The
identification i = k gives a scalar:

Ai Bi = A0 B0 + A1 B1 + A2 B2 + A3 B3.

As in special relativity, we define a vector Ai to be spacelike, timelike
or null according to

gik Ai Ak < 0, gik Ai Ak > 0, or gik Ai Ak = 0.

It is convenient to define associated tensors by the relations

Ai = gik Ak, Ak = gik Ai . (3.23)

Thus gik Ai Ak = Ak Ak . The operations embodied in (3.23) are called
lowering and raising the indices. We may frequently refer to Ai and Ai

as the same object.

Example 3.3.2 Let us go back to the example of oblique axes on a plane

given on page 48. We now use the coordinates as x1 and x2 to keep within

our general convention. We have the line element given by

ds2 = (dx1)2 + (dx2)2 + 2 cos β dx1 dx2.

(Although, being spacelike distances, all these terms should be negative, we

have omitted the negative signs everywhere to simplify the discussion, which

in any case is not affected by this change of sign.) From the above we have

the following components of the metric tensor and its inverse:

g11 = 1, g12 = cos β, g22 = 1;

g11 = cosec2β = g22, g12 = −cosec2β cos β.

From this it is easy to see that, if the contravariant components of a vector

are A1 and A2, respectively, then the covariant components are

A1 = A1 + A2 cos β, A2 = A2 + A1 cos β.

These are the same components as those we had derived from geometrical

considerations.
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Example 3.3.3 Problem. A curve is specified by the following coordinates

in terms of parameter t :

x0 =
√

3ct, x1 = ct, x2 = ct0 cos

(
t

t0

)
, x3 = ct0 sin

(
t

t0

)
.

Determine whether the tangent vector at a typical point is spacelike, timelike

or null. The spacetime is Minkowskian.

Solution. The tangent vector has components

A0 =
√

3c, A1 = c, A2 = −c sin

(
t

t0

)
, A3 = c cos

(
t

t0

)
.

Therefore

Ai Ai = (A0)2 − (A1)2 − (A2)2 − (A3)2

= 3c2 − c2 − c2 sin2

(
t

t0

)
− c2 cos2

(
t

t0

)

= c2 > 0.

So the tangent vector is timelike.

3.3.2 The quotient law

From the above manipulations of tensors it is clear (and can easily be
proved) that the product of two tensors is a tensor. A reverse result is
sometimes useful in deducing that a certain quantity is a tensor. This
result is known as the quotient law. It states that, if a relation such as

P Q = R (3.24)

holds in all coordinate frames, where P is an arbitrary tensor of rank m
and R a tensor of rank m + n, then Q is a tensor of rank n. The reader
may try to formulate a proof of this statement.

3.3.3 Symmetric and antisymmetric tensors

If tensors Sik and Aik satisfy the relations

Sik = Ski , Aik = −Aki , (3.25)

then they are respectively symmetric and antisymmetric tensors of rank
2. These ideas can be generalized to higher-rank tensors, and we will
encounter specific tensors having the properties of symmetry and anti-
symmetry with respect to some or all indices.
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Example 3.3.4 gik and gik are symmetric tensors.

Example. Consider the symbol εi jkl with the following properties:

εi jkl = +1 if (i jkl) is an even permutation of (0123),

εi jkl = −1 if (i jkl) is an odd permutation of (0123),

εi jkl = 0 otherwise.

We will now show that
ei jkl = √−gεi jkl

transforms as a tensor.

First take the determinant of the transformation law of gmn given in

Example 3.3.1. Let J denote the Jacobian |∂xi/∂x ′m |. Then, using the rule

that the determinant of a product of matrices is equal to the product of their

determinants, we get
g′ = J 2g.

However, we have from the algebraic definition of a determinant

εmnpq J = εi jkl
∂xi

∂x ′m
∂x j

∂x ′n
∂xk

∂x ′ p

∂xl

∂x ′q .

Just write out the full expansion of J as a sum of products of its elements and

this result will be clear! Using the above two relations, the result follows:

ei jkl is a tensor that is totally antisymmetric. Strictly speaking, however, ei jkl

is a pseudotensor, since it changes sign under transformations involving

reflection, such as x ′0 = −x0, x ′1 = x1, x ′2 = x2 and x ′3 = x3.

3.3.4 Totally symmetric and antisymmetric tensors

Consider a tensor Ti1i2...in of rank n. From this we construct a tensor

Si1 ...in = 1

n!

∑
P

TPi1 Pi2 ...Pin , (3.26)

where the sum is over all permutations P of (1, 2, . . ., n). Evidently, if
we permute the indices of S in any way, its value does not change. Such
a tensor is called a totally symmetric tensor.

Likewise, if we write (−1)P = +1 for an even permutation and
(−1)P = −1 for an odd permutation, then the sum

Ai1i2 ...in = 1

n!

∑
P

(−1)P TPi1 ...Pin (3.27)
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gives us a totally antisymmetric tensor. An odd permutation of
(i1, . . ., in) changes the sign of Ai1...in , whereas an even permutation
does not.

If Aik is any tensor we symmetrize it by writing

A(ik) = 1

2
(Aik + Aki ). (3.28)

Similarly, we antisymmetrize it by writing

A[ik] = 1

2
(Aik − Aki ). (3.29)

We can easily extend these concepts to tensors of higher rank as indicated
in (3.27) and (3.26). Note the convention of writing (ik) for symmetrizing
with respect to indices (i, k) and [ik] for antisymmetrizing.

Example 3.3.5 Problem. Using gik twice, construct totally symmetric and

totally antisymmetric tensors of rank 4.

Solution. Write Tiklm = gik glm .

Even permutations of iklm are

iklm, ilmk, imkl, lkmi, likm, lmik, kmli, klim, kiml, mkil, mlki, milk.

Odd permutations of iklm are likewise

kilm, limk, mikl, klmi, ilkm, mlik, mkli, lkim, ikml, kmil, lmki, imlk.

Thus the totally symmetric tensor is

Siklm = 1

24
[gik glm + gil gmk + gim gkl + glk gmi + gli gkm + glm gik

+ gkm gli + gkl gim + gki gml + gmk gil + gml gki + gmi glk]

+ 1

24
[gki glm + gli gmk + gmi gkl + gkl gmi + gil gkm + gml gik

+ gmk gli + glk gim + gik gml + gkm gil + glm gki + gim glk].

Using the symmetry gik = gki , we can simplify Siklm to

Siklm = 1

3
[gik glm + gil gmk + gim glk].

Insofar as the totally antisymmetric tensor is concerned, it will be the differ-

ence of the two expressions in square brackets given above for Siklm . This

difference is zero. So there is no totally antisymmetric tensor that can be

constructed this way!

Problem. If Fik is an antisymmetric tensor then show that

Zikl ≡ ∂ Fik

∂xl
+ ∂ Fkl

∂xi
+ ∂ Fli

∂xk

is a third-rank tensor.
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Solution. Consider the tensor transformation law for Fik below:

F ′
mn = ∂xi

∂x ′m
∂xk

∂x ′n Fik .

Differentiate with respect to xl , and use the relation

∂

∂xl
≡ ∂x ′p

∂xl

∂

∂x ′p .

Thus we get

∂x ′p

∂xl

∂ F ′
mn

∂x ′p = ∂xi

∂x ′m
∂xk

∂x ′n
∂ Fik

∂xl

+ ∂x ′p

∂xl

∂2xi

∂x ′p ∂x ′m
∂xk

∂x ′n Fik

+ ∂xi

∂x ′m
∂2xk

∂x ′p ∂x ′n
∂x ′p

∂xl
Fik .

Multiply both sides by ∂xl/∂x ′q and use the result ∂x ′p/∂x ′q = δ p
q . Then we

get

∂ F ′
mn

∂x ′q = ∂xl

∂x ′q
∂xi

∂x ′m
∂xk

∂x ′n
∂ Fik

∂xl
+ ∂2xi

∂x ′q ∂x ′m
∂xk

∂x ′n Fik

+ ∂2xk

∂x ′q ∂x ′n
∂xi

∂x ′m Fik .

We will have similar expressions from the second and third expressions on

the right-hand side of the relation for Zikl :

∂ F ′
nq

∂x ′m = ∂xi

∂x ′m
∂xk

∂x ′n
∂xl

∂x ′q
∂ Fkl

∂xi
+ ∂2xk

∂x ′m ∂x ′n
∂xl

∂x ′q Fkl

+ ∂2xl

∂x ′m∂x ′q
∂xk

∂x ′n Fkl .

∂ F ′
qm

∂x ′n = ∂xk

∂x ′n
∂xl

∂x ′q
∂xi

∂x ′m
∂ Fli

∂xk
+ ∂2xl

∂x ′n ∂x ′q
∂xi

∂x ′m Fli

+ ∂2xi

∂x ′n ∂x ′m
∂xl

∂x ′q Fli .

When all three equations are added the antisymmetry of Fik ensures that the

terms involving second derivatives cancel out and the result follows.

Problem. Prove that

εi jklεi jrs = 2(δk
rδ

l
s − δk

sδ
l
r ).

Solution. To prove this result we may resort to the properties of determinants.

It easy to verify that

εi jklεpqrs =

∣∣∣∣∣∣∣∣

δi
p δi

q δi
r δi

s

δ j
p δ j

q δ j
r δ j

s

δk
p δk

q δk
r δk

s

δl
p δl

q δl
r δl

s

∣∣∣∣∣∣∣∣
.
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Putting i = p, j = q gives

εi jklεi jrs =

∣∣∣∣∣∣∣∣

4 δi
j δi

r δi
s

δ
j
i 4 δ j

r δ j
s

δk
i δk

j δk
r δk

s

δl
i δl

j δl
r δl

s

∣∣∣∣∣∣∣∣
.

The result follows on evaluating the determinant. (It is simpler to use the

expansion formula in terms of products of 2 × 2 determinants in the top two

rows and the bottom two rows.)

3.4 Concluding remarks
We end this chapter with a note that the vectors and tensors described
here are definable in any coordinate frame. Thus we are not restricted to
inertial frames or to linear transformations between such frames. Clearly
this machinery will be useful to us in general relativity, where we aim
to describe physics and dynamics in any general reference frame.

However, we need to proceed further along this track before address-
ing those issues. We have to progress from the tensor algebra described
above to tensor calculus, since equations of physics and dynamics
require us to differentiate quantities with respect to space and time
coordinates. Having done that, we also have to describe the essential
features of a non-Euclidean spacetime. We will therefore first take up
the question of how to describe a physically meaningful derivative of a
tensor.

Exercises

1. Which of the following expressions are invalid with respect to the summation

convention: (a) Ai j B jk A jl , (b) gik gik , (c) Rik gik, (d) eiklmeiklm and (e) T ik gk
l ?

Simplify those expressions that are valid.

2. Aik is a tensor such that ‖Aik‖ is non-singular. Show that the components of

the inverse matrix transform as a tensor. (An example of this result is the tensor

gik .)

3. If Ai is a vector, show that Flm ≡ Am,l − Al,m is a second-rank tensor.

4. Show that ei jkl ei jkr = 6δl
r .

5. If ξ i is a vector field, deduce from first principles that

φmn = ξ i ∂gmn

∂xi
+ gmi

∂ξ i

∂xn
+ gni

∂ξ i

∂xm

is a tensor field.
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6. Find a coordinate transformation of the form

R = R(r, t), T = T (r, t),

which will transform the line element

ds2 = dt2 − S2(t)
[ dr 2

1 − kr 2
+ r 2(dθ 2 + sin2θ dφ2)

]
,

where S(t) is a function of t and k is a constant, to the form

ds2 = eν dT 2 − eλ dR2 − R2(dθ 2 + sin2θ dφ2).

Deduce that

e−λ = 1 − r 2
[

k +
(dS

dt

)2]
.

7. A surface of revolution is generated by rotating the parabola

y2 = 4ax

about the x-axis. By writing x = at2, y = 2at or otherwise, show that the line

element on this surface is given by

ds2 = 4a2[t2 dφ2 + (1 + t2)dt2].

8. In the Kerr spacetime, the line element is given by

ds2 =
( R2 − 2MGR + h2

R2 + h2 cos2θ

)
(dT − h sin θ dφ)2

− sin2θ

h2 cos2θ + R2
[(R2 + h2)dφ − h dT ]2

−
( R2 + h2 cos2θ

R2 − 2GMR + h2

)
dR2 − (r 2 + h2 cos2θ )dθ 2.

An observer in this spacetime has constant R, θ , φ coordinates. Show that the

world line of this observer has a timelike tangent, provided that

R > G M + (G2 M2 − h2 cos2θ )1/2.

9. Given that aik and bik are two symmetric tensors satisfying the relation

ai j bkl − ailb jk + a jkbil − aklbi j = 0,

show that ai j = ρbi j , where ρ is a scalar.

10. From an antisymmetric tensor Fik is constructed its dual

F∗lm = 1

2
eiklm Fik .

Show that the dual of F∗lm is Fik . Is this result valid for all types of tensors?

11. Show that the tensor θik = gik − Ui Uk when multiplied by any vector V k

projects it into a 3-surface orthogonal to the unit timelike vector Ui .
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12. Define V ∗
jkl = ei jkl V i . Then show that Vi V i = 1

6 V ∗
jkl V

∗ jkl .

13. Show that the proper volume element dV = √−g dx0 dx1 dx2 dx3 trans-

forms as a scalar under general coordinate transformations.

14. In Minkowski spacetime two focal points A and B are identified with Carte-

sian coordinates x = a, y = 0, z = 0 and x = −a, y = 0, z = 0, t being the

time coordinate. Let P be any point in space at t = constant and let r1 and r2

be the distances of P from A and B. Let ξ = 1
2 (r1 + r2) and η = 1

2 (r1 − r2).

Suppose the azimuthal coordinate for the plane PAB around the axis AB is φ.

Then the Minkowski line element in these coordinates is

ds2 = c2 dt2 − (ξ 2 − η2)
( dξ 2

ξ 2 − a2
+ dη2

a2 − η2

)
− (ξ 2 − a2)(a2 − η2)

a2
dφ2.

What surfaces do ξ = constant and η = constant represent?

15. Show by a coordinate transformation that the spacetime metric

ds2 = c2 dt2 − c2t2
[ dr 2

1 + r 2
+ r 2(dθ 2 + sin2θ dφ2)

]

represents the Minkowski spacetime.

16. Show that εiklmεlmpqε
pq

ik ≡ 0, but εiklmεlmpqε
pqrsεrsik = 96. Can you for-

mulate a general rule for the closed cycle of n such symbols multiplied together,

where n can be odd or even?



Chapter 4

Covariant differentiation

4.1 The concept of general covariance

We begin this chapter by introducing the idea of a field in physics (to
be distinguished from the ‘field’ in algebra that mathematicians talk
about). The idea was popularized by Michael Faraday in the context of
the electric and magnetic fields. Figure 4.1 shows what happens when
iron filings are sprinkled in the vicinity of a bar magnet. The filings
get distributed in a pattern somewhat like that in this figure. Faraday
called these curves lines of force. If we imagine a magnetic pole placed
anywhere on one of these lines, it will move along that line, being guided
by the magnetic force on it. The lines of force therefore represent the
‘magnetic field’ B both in strength and direction at any point in the
vicinity of the magnet. In short the magnet generates a ‘field’ of B-
vectors all around it, representing the force exerted by it on another
magnetic pole.1

We generalize the concept of a vector field by defining a vector
function of spacetime variables, so that at each point a vector is defined.
This idea may further be generalized by having tensor fields as functions
of spacetime coordinates. Thus we could argue that equations of physics
involve fields related by partial differential equations. If we additionally
require that these equations do not change their form under changes of
coordinates (thereby being the same for all observers), then they should
be represented by tensor fields. Thus general relativity assumes as a

1 In reality there is no magnetic pole existing in isolation. But the concept of a line of

force can nevertheless be explained this way.

59
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N

S

BB
Fig. 4.1. Lines of force of a
magnet obtained by
sprinkling iron filings. The
tangent to a line of force at
any point indicates the
direction of the magnetic field
B. The field strength is high
where such lines appear
crowded, as, for example,
near the poles of the magnet.

basic postulate that fundamental physics is described by such fields.
This premise is stated in the following form: the laws of physics are
generally covariant. This postulate greatly restricts the form of a physics
equation.

Example 4.1.1 Consider the differential equation

∂2φ

∂t2
= ∂2φ

∂x2
+ 2

∂2φ

∂y2
+ ∂φ

∂x

∂φ

∂z
.

This equation is not generally covariant; that is, it does not preserve the above

form under a change of coordinates. On the other hand, the wave equation

�φ = 0 preserves its form, which is why it is found in various branches of

physics.

The mathematical implication of general covariance for spacetime
geometry can be likewise understood. If we are to deal with non-
Euclidean geometry, we will at some stage encounter the concept of
curvature of spacetime. This is an example of the intrinsic properties
of spacetime that require description independently of the choice of
coordinates. Such concepts are best described in terms of vectors and
tensors.
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Thus, having established the need for tensors in formulating space-
time structure as well as the physics in it, we have to ensure that any
differential equations involving them should also be generally covariant,
i.e., not depending on any specific choice of coordinates. In short, they
also should be expressible as vectors and tensors. We will soon find that
this is a non-trivial requirement, for the partial derivative of a tensor
need not be a tensor.

4.2 Parallel transport

We begin the discussion of vector derivatives with the example of a
vector field. Let Bi (xk) be a covariant vector field whose four components
transform according to the rule in (3.19) at each point (xk) where it is
defined. Suppose Bi is a differentiable function of (xk). Do the partial
derivatives ∂ Bi/∂xk transform as a tensor?

We have already seen that the derivatives ∂φ/∂xk of a scalar trans-
form as a vector. So at first sight the answer to the above question might
be ‘yes’. Indeed, in special relativity we do encounter such results. For
example, if Ai is the 4-potential of the electromagnetic field (described
in the four-dimensional language of special relativity), then ∂ Ai/∂xk ,
for Cartesian coordinates (x, y, z) and the time t of (3.1), do transform
as a tensor. In our more general spacetime with an arbitrary coordinate
system, however, the answer to the above question is in the negative.

This result is easily verified by differentiating (3.19) with respect to
x ′m . We get (by writing ∂/∂x ′m as ∂xn/∂x ′m · ∂/∂xn)

∂ B
′
k

∂x ′m = ∂xi

∂x ′k
∂xn

∂x ′m
∂ Bi

∂xn
+ ∂2xi

∂x ′m ∂x ′k Bi . (4.1)

Thus, whereas the first term on the right-hand side does appear in
the right form to make ∂ Bi/∂xn a tensor, the second term spoils the
effect. It also gives a clue as to why this happens. The second derivative

∂2xi

∂x ′m ∂x ′k

is expected to be non-zero because, in general, the transformation coef-
ficients in Equation (3.19) vary with position in spacetime. When we
seek to construct the derivative ∂ Bi/∂xn , we have to define it as a limit:

∂ Bi

∂xn
= lim

δxn→0

[
Bi (xk + δxk) − Bi (xk)

δxn

]
.

However, the two terms in the numerator transform as vectors at two
different points, and because of the variation of the transformation coef-
ficients with position their difference is not expected to be a vector. (The
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difference of two vectors is a vector provided that both are so defined at
the same point.)

This situation is illustrated in Figure 4.2. P and Q are the two neigh-
bouring points (xk) and (xk + δxk), with the vectors Bi shown there with
continuous arrows. In order to describe the change in the vector from P
to Q, we must somehow measure the difference at the same point. How
can this be achieved?

Bi

Q (xk + δ xk)

P(xk)

+ δB i B i +B i d Bi

Fig. 4.2. The parallel trans-
port of the vector Bi at P to Q
shows, in general, different
components Bi + δBi at Q (see
the dotted vector). In the case
of a vector field, the compo-
nents specified at Q, namely
Bi + dBi , would be different
from those (at Q) obtained by
parallel transport.

This is achieved by a device known as parallel transport. Assume
that the vector Bi at P is moved from P to Q, parallel to itself, that is, as
if its magnitude and direction did not change. In Figure 4.2 this is shown
by a dotted vector at Q. The difference between the vector Bi (xk + δxk)
and this dotted vector is a vector at Q and this tells us the real physical
difference in the vector from P to Q. So we may after all be able to
define a process of differentiation of vectors, provided that we know
what happens to Bi during a parallel transport from P to Q.

First we have to note that the dotted vector at Q need not have the
same components as the undotted vector at P. It is only with Cartesian
coordinates that the components are the same.

Example 4.2.1 Consider the Euclidean plane with a polar coordinate sys-

tem. A vector A at a point P with coordinates (r, θ ) has components Ar

and Aθ in the radial and transverse directions. If we now move the vector

parallel to itself from P to a neighbouring point Q with polar coordinates

(r + δr, θ + δθ ), as shown in Figure 4.3, the radial and transverse directions

at Q will not be parallel to those at P. Hence after parallel transport of A from

P to Q its radial and transverse components at Q will be different from Ar and

Aθ .

A simple calculation using the geometry of infinitesimal rotation shows

that the components of A at Q are Ar + δθ Aθ and Aθ − δθ Ar .

Taking a cue from this example for our general case, we see that
the changes in the components of Bi through parallel transport will be
proportional to the original components Bi , and also to the displacement
δxk in position from P to Q. We may express the change as a linear
function of both these quantities and the most general form that we can
have for it is

δBi = �l
ik Bl δxk, (4.2)

where the coefficients �l
ik are, in general, functions of space and time.

These quantities are called the three-index symbols or the Christoffel
symbols.
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A θ

Ar

P(r, θ)

A r
A θ

A

θ = 0

Q(r +
 δr, θ

 + δθ)

A Fig. 4.3. The vector A at P is
parallely transported to Q; but
its components in the polar
coordinates (r , θ) are different
at P and Q. This is because
(unlike the Cartesian
coordinates) the local
directions of r = constant and
θ = constant change on going
from P to Q.

Notice that the introduction of (4.2) involves something new in addi-
tion to the introduction of the metric. The metric tells us how to measure
distance between neighbouring points, whereas �i

kl in (4.2) tells us how
to define parallel vectors at neighbouring points. This property of con-
necting neighbouring vectors through the concept of local parallelism is
often called the affine connection of spacetime.

The reader may be worried at this stage as to how parallelism can
be assumed when, as we saw in Chapter 2, the concept of parallel lines
in non-Euclidean geometries is non-trivial. So we clarify that we are
talking here of local parallelism, i.e., of parallelism over infinitesimal
distances. Indeed, as we will elaborate later in Chapter 5, the ‘local’
region in the neighbourhood of any observer can be approximated by
‘flat’ space or spacetime, where the concepts of Euclid’s geometry hold.

There is a practical way of describing parallel propagation in the
following fashion.

We take the example of a sphere. Suppose � is a curve drawn on
the spherical surface connecting points P1 and P2. The arrow shown in
Figure 4.4 represents in magnitude as well as direction a vector A1 at P1.
How do we transport it parallely to P2 along �? Imagine a plane touching
the sphere at P1, with the vector A1 mapped at the corresponding point Q1

on the plane. (By mapping, we mean that the magnitude and direction of
the original vector on the sphere and the mapped vector on the tangent
plane should match.) Let the vector in the plane be called Ã1. Now
carefully roll the sphere on the plane so that it keeps touching it along
the successive points of �. When you reach P2, stop there. Let the
corresponding point on the plane be Q2. Draw a vector Ã2 at Q2 parallel
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2

1

2

1

Tangent Plane

A

Γ

P

P

Q

Q

Fig. 4.4. A practical way of
finding the directions of a
vector A parallely transported
along a specified curve (�)
from P1 to P2 on a sphere.
(See the text for details.)

to the starting vector Ã1 on the plane at Q1. Next map this vector
onto vector A2 at P2 on the sphere. This will be the required parallely
transported vector at P2. This method can, in principle, be used for other
surfaces also.

4.3 The covariant derivative

Returning to (4.2), we see that the difference between the continuous
and the dotted vectors at Q is given by

Bi (x
k + δxk) − [Bi (x

k) + δBi ] =
(

∂ Bi

∂xk
− �l

ik Bl

)
δxk . (4.3)

We may accordingly redefine the physically meaningful derivative of a
vector by

Bi ;k ≡ ∂ Bi

∂xk
− �l

ik Bl ≡ Bi,k − �l
ik Bl . (4.4)

This derivative, by definition, must transform as a tensor. It is called the
covariant derivative and will be denoted by a semicolon, as against the
ordinary derivative, which will be denoted by a comma.

If Bi ;k must transform as a tensor, the coefficients �i
kl have to trans-

form according to the following law:

�′i
kl = ∂x ′i

∂xm

∂xn

∂x ′k
∂x p

∂x ′l �m
np + ∂2x p

∂x ′k ∂x ′l
∂x ′i

∂x p
. (4.5)

This result can be verified after some straightforward but tedious calcu-
lation.
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Example 4.3.1 Problem. �i
kl and �̃i

kl are two affine connections defined in

a spacetime with the same metric tensor. Show that �̃i
kl − �i

kl transforms as

a tensor.

Solution. Under a general transformation from xi to x ′i coordinates we have,

from Equation (4.5),

�′i
kl = ∂x ′i

∂xm

∂xn

∂x ′k
∂x p

∂x ′l �m
np + ∂2x p

∂x ′k ∂x ′l · ∂x ′i

∂x p

and also

�̃′i
kl = ∂x ′i

∂xm

∂xn

∂x ′k
∂x p

∂x ′l �̃m
np + ∂2x p

∂x ′k ∂x ′l · ∂x ′i

∂x p
.

On taking the difference of these two relations, we get

(�̃′i
kl − �′i

kl ) = ∂x ′i

∂xm

∂xn

∂x ′k
∂x p

∂x ′l (�̃m
np − �m

np).

This is the transformation law of a third-rank mixed tensor. Hence the result

follows.

A scalar, of course, does not change under parallel transport, which
is why ∂φ/∂xk transform as a vector. If we use this result we see that, for
any arbitrary vector fields Ai and Bi , (Ai Bi ),k is a vector. This property
enables us to construct the covariant derivative of a contravariant vector
Ai as follows.

We have (Ai Bi );k ≡ Ai
;k Bi + Ai Bi ;k = (Ai Bi ),k ≡ Ai

,k Bi + Ai Bi,k

and using (4.4) we get Ai
;k Bi = Ai

,k Bi + Ai�l
ik Bl . Since Bi is an arbitrary

vector, we must have

Ai
;k ≡ ∂ Ai

∂xk
+ �i

lk Al ≡ Ai
,k + �i

lk Al . (4.6)

The rule of covariant differentiation of a tensor of arbitrary rank is
easily obtained: we introduce a (+�) term for each contravariant index
as in (4.6) and a (−�) term for each covariant index as in (4.4). Thus,
for the metric tensor we have

gik;l = ∂gik

∂xl
− �

p
il gpk − �

p
kl gip. (4.7)

4.4 Riemannian geometry
Einstein used the non-Euclidean geometry developed by Riemann to
describe his theory of gravitation. The Riemannian geometry introduces
the additional specification that

�i
kl = �i

lk ; gik;l ≡ 0. (4.8)
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Note that, as defined in the previous section, the affine connec-
tion need not satisfy these conditions. Indeed, geometries for which the
above relations are not satisfied also exist. For the theory of relativity
and Riemannian geometry, however, these conditions are additionally
assumed.

Going back to (4.7) we see that gik;l = 0 gives us 40 linear equations
for the 40 unknowns �i

kl . These equations have a unique solution. For,
from (4.7) and (4.8), we get

�k|il + �i |kl = gik,l , (4.9)

where

�k|il = gpk�
p
il . (4.10)

Rotate the indices cyclically to obtain two more relations:

�l|ki + �k|li = gkl,i , �i |lk + �l|ik = gli,k .

Next use the symmetry condition in (4.8) to eliminate �l|ki = �l|ik and
�k|il = �k|li from the above three relations to get

2�i |kl = gik,l + gli,k − gkl,i .

On raising the index i we get the required solution:

�i
kl = 1

2
gim

(
∂gmk

∂xl
+ ∂glm

∂xk
− ∂gkl

∂xm

)
. (4.11)

In other words, once the metric tensor is known, the Christoffel
symbols are fully determined.

Example 4.4.1 Problem. Show that, if the metric gik is diagonal, then

�a
aa = ∂

∂xa
ln

√
|gaa |,

where the summation convention is suspended.

Solution. We have g = g00 · g11 · g22 · g33, and g00 = 1/g00, g11 = 1/g11,

etc.,

�a
aa = gaa�a|aa = 1

gaa
· 1

2

∂gaa

∂xa
= 1

2

1

gaa

∂gaa

∂xa
.

Taking g00 > 0, this gives

�0
00 = 1

2

1

g00

∂g00

∂x0
= ∂

∂x0
ln

√
g00.

For the spacelike case we have gµµ < 0 and we get similarly

�1
11 = 1

2

1

g11

∂g11

∂x1
= ∂

∂x1
ln

√−g11.

Hence the result follows.
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4.5 Some useful identities

We next consider some particular identities relating to the Christoffel
symbols, that are useful in various manipulations. If we differentiate the
determinant of the metric tensor we get

dg = ggik dgik . (4.12)

This relation is useful in expressing some combinations of �i
kl and

covariant derivatives in relatively simple forms. Thus, using (4.9) and
(4.10), it is possible to prove the following relations:

�l
il = 1√−g

∂

∂xi
(
√−g),

�l
ik gik = − 1√−g

∂

∂xm
(
√−ggml ),

(4.13)

Ai
;i = 1√−g

∂

∂xi
(
√−g Ai ),

Fik
;k = 1√−g

∂

∂xk
(
√−gFik) for Fik = −Fki .

(Here Ai and Fik are respectively vector and tensor fields.) For example,
to prove the first relation note that (4.11) gives, with k ≡ i ,

�i
il = 1

2
gim(gmi,l + glm,i − gil,m).

Since (glm,i − gil,m) is antisymmetric in (i, m), its product with the
symmetric gim vanishes. The result then follows when we recall (4.12).

Example 4.5.1 Problem. If a vector ξ i satisfies the relation ξ l
,m gln +

ξ l
,n glm + gmn,lξ

l = 0, show that ξi ;m + ξm;i = 0.

Solution. Consider ξ l
,m = ξ l

;m − �l
mpξ

p. We then have

gln(ξ l
;m − �l

mpξ
p) + (ξ l

;n − �l
npξ

p)glm + gmn,lξ
l = 0,

i.e.,
ξn;m + ξm;n + gmn,lξ

l − �n|mpξ
p − �m|npξ

p = 0.

Since �n|mp + �m|np ≡ gmn,p , the result follows.

Problem. Show that gim
,n = −gmk gil gkl,n and hence deduce that gim

;n ≡ 0.

Solution. Differentiate with respect to xn the identity gim gml = δi
l , to get

gim
,n gml + gim gml,n = 0.

Multiply by glk and use the identity gml glk = δk
m to get

gik
,n + gim glk gml,n = 0.

Change the index k to m, l to k and m to l to get the required answer.
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4.6 Locally inertial coordinate systems

The symmetry condition in (4.8) enables us to choose special coordinates
in which the Christoffel symbols all vanish at any given point. Suppose
we start with �m

np �= 0 in the coordinate system (xi ) at point P. Let
the coordinates of P be given xi

P. Now define new coordinates in the
neighbourhood of P by

x
′k = −1

2
�k

nm(xn − xn
P )(xm − xm

P ). (4.14)

Then we have at P

x ′i
P = 0,

∂x ′i

∂xm
= 0,

∂2x ′i

∂xn ∂xm
= −�i

nm,

with the result that from (4.5)

�′i
mn|P = 0.

Further, by a linear transformation we can arrange to have a coordi-
nate system with

gik = ηik = diag(+1, −1, −1, −1), �i
kl = 0 (4.15)

at our chosen point P. Such a coordinate system is called a locally iner-
tial coordinate system, for reasons that will become clear later. Apart
from its physical implications in general relativity, the locally inertial
coordinate system is often useful as a mathematical device for simpli-
fying calculations. We also warn the reader that the operative word is
‘local’: the simplifications implied in (4.15) cannot be achieved globally.
What prevents us from achieving a globally inertial coordinate system?
In seeking an answer to this question we encounter the most crucial
aspect in which a non-Euclidean geometry differs from its Euclidean
counterpart.

Exercises

1. Show that if �i
kl �= �i

lk the condition gik;l ≡ 0 implies that

�i
(kl) = 1

2
gim(gmk,l + gml,k − gkl,m) + gim gkn�

n
[lm]

+ gim gln�
n
[km].

2. Under a conformal transformation gik changes to e2σ gik , where σ is a

real twice-differentiable function of spacetime coordinates. Show that the new

Christoffel symbols are given by

�̃i
kl = �i

kl + δi
kσ,l + δi

tσ,k − gkl g
imσ,m .
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3. For a symmetric tensor field Aik show that

Ak
i ;k = 1√−g

∂

∂xk
(A k

i

√−g) − 1

2
Alk ∂glk

∂xi

= 1√−g

∂

∂xk
(A k

i

√−g) + 1

2
Alk

∂glk

∂xi
.

4. Show that, for a scalar field φ, the wave operator takes the form

�φ = gikφ;ik = 1√−g

∂

∂xk

(√
−ggik

∂φ

∂xi

)
.

5. Show that, to arrive at a locally inertial system, it is necessary to have

�i
kl = �i

lk .

6. Show that

∂gik

∂xl
= −�i

ml g
mk − �k

ml g
mi .

7. In polar coordinates (r, θ ), the radial and transverse accelerations are

(r̈ − r θ̇2) and r θ̈ + 2ṙ θ̇ . Try to relate these expressions to the notion of

covariant differentiation described in this chapter.

8. Set up equations of parallel propagation of a vector along a latitude line

θ = 60◦ on a unit sphere. By what angle has a vector initially directed along

the longitude line at zero longitude (φ) turned by the time it has gone half-way

round the latitude circle?

9. Show that Maxwell’s equations are invariant under the conformal transfor-

mation gik → gike2σ .

10. A vector is moved parallel to itself along the line t = constant on the

paraboloid of revolution whose metric is given by (see Exercise 7 of Chapter 3)

ds2 = 4a2[(1 + t2)dt2 + t2 dφ2].

Initially the vector was lying tangentially to the line t = constant. Show that on

moving round once from φ = 0 to φ = 2π the vector makes an angle 2π
√

t2 + 1

with its initial direction.



Chapter 5

Curvature of spacetime

5.1 Parallel propagation around finite curves

Figure 5.1 repeats the previous example of non-Euclidean geometry on
the surface of a sphere which we discussed in Section 2.2 of Chapter 2.
We have the triangle ABC of Figure 2.3 whose three angles are each 90◦.
Consider what happens to a vector (shown by a dotted arrow) as it is
parallely transported along the three sides of this triangle. As shown in
Figure 5.1, this vector is originally perpendicular to AB when it starts its
journey at A. When it reaches B it lies along CB; it keeps pointing along
this line as it moves from B to C. At C it is again perpendicular to AC. So,
as it moves along CA from C to A, it maintains this perpendicularity,
with the result that when it arrives at A it is pointing along AB. In
other words, one circuit around this triangle has resulted in a change of
direction of the vector by 90◦, although at each stage it was being moved
parallel to itself!

A similar experiment with a triangle drawn on a flat piece of paper
will tell us that there is no resulting change in the direction of the vector
when it moves parallel to itself around the triangle. So our spherical
triangle behaves differently from the flat Euclidean triangle.

The phenomenon illustrated in Figure 5.1 can also be described as
follows. If we had moved our vector from A to C along two different
routes – (i) along AC and (ii) along AB followed by BC – we would have
found it pointing in two different directions in the two cases. In fact, if
we had taken any arbitrary curves from A to C we would have found that
the outcome of parallel transport of a vector from A to C varies from
curve to curve; that is, the outcome depends on the path of transport
from A to C.

70
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A

B C

Fig. 5.1. A figure illustrating
the parallel-transport
problems on a spherical
surface described in the text.

Recall that we had introduced the concept of parallel transport with
the proviso that we would apply it to transport along an infinitesimal
path. We are now witnessing the consequence of breaking that fiat and
taking the concept to finite lengths. The above example shows that the
result of parallel transport is path-dependent.

This is one of the properties that distinguishes a curved space from
a flat space. Let us consider it in more general terms for our four-
dimensional spacetime. Let a vector Bi at P be transported parallely to
Q and let us ask for the condition that the answer should be independent
of the curve joining P to Q. (See Figure 5.2.) We have seen that, under
parallel transport from a point {xi } to a neighbouring point {xi + δxi },

Bi(Γ)

Bi(Γ )

Γ

Γ

P

Q

Fig. 5.2. A vector B at P,
transported along two curves
� and �′ to Q, ends up having
different directions at Q, as
shown here. The dotted vector
was obtained by moving
along � and the continuous
one by moving along �′.
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the components of the vector change according to (4.2). If it were pos-
sible to transport Bi from P to Q without the result depending on which
path is taken, then we would be able to generate a vector field Bi (xk)
satisfying the differential equation

∂ Bi

∂xk
= �l

ik Bl . (5.1)

So the answer to our question depends on whether we can find a non-
trivial solution to the system of four differential equations (5.1).

A necessary condition for the existence of a solution is easily derived.
We differentiate (5.1) with respect to xn to get

∂2 Bi

∂xn ∂xk
= ∂

∂xn
(�l

ik Bl ) = ∂�l
ik

∂xn
Bl + �l

ik

∂ Bl

∂xn

=
(

∂�m
ik

∂xn
+ �l

ik�
m
ln

)
Bm .

Here we have repeatedly used the relation (5.1) to eliminate derivatives
of Bi . We now interchange the order of differentiation with respect to
xn and xk and use the identity Bi,nk ≡ Bi,kn . We then get the required
necessary condition as

R m
i kn Bm = 0. (5.2)

Here the four-indexed symbol R, as defined in (5.3) below, is inde-
pendent of the vector Bm and so we conclude that the spacetime must
satisfy the condition

R m
i kn ≡ ∂�m

ik

∂xn
− ∂�m

in

∂xk
+ �l

ik�
m
ln − �l

in�
m
lk = 0. (5.3)

It is not obvious simply from the above expression that R m
i kn should

be a tensor. Yet our result, in order to be significant, must clearly hold
whatever coordinates we employ to derive it. So we do expect R m

i kn to
be a tensor. A simple calculation shows that, for any twice differentiable
vector field Bi ,

Bi ;nk − Bi ;kn ≡ R m
i kn Bm (5.4)

Since the left-hand side is a tensor, so is the right-hand side and, Bm

being an arbitrary vector, we have, by virtue of the quotient law stated
in Chapter 2, the result that R m

i kn are the components of a tensor.1

This tensor, known as the Riemann–Christoffel tensor (or, more com-
monly, the Riemann tensor, or the curvature tensor), plays an important
role in specifying the geometrical properties of spacetime. Although we

1 The quotient law requires the vector Bm to be arbitrary with respect to the left-hand side.

Isn’t Bi ;nk connected with Bm? The derivatives of Bi at any given point can be arbitrarily

specified, even if Bi at that point is known. Thus the condition of arbitrariness is met.
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have derived (5.4) as a necessary condition, a slightly more sophisticated
technique shows that (5.4) is also the sufficient condition that a vector
field Bi (xk) can be defined over the spacetime by parallel transport. We
will not, however, go into the detailed mathematical proof here. The
interested reader may look up Reference [7] listed at the end.

Spacetime is said to be flat if its Riemann tensor vanishes every-
where. Otherwise, it is said to be curved. In the curved spacetime the
identity (5.4) can be generalized to a tensor of any rank by including
a term containing the Riemann tensor for each free index of the given
tensor.

Example 5.1.1 Problem. A contravariant vector on the surface of a unit

2-sphere with polar coordinates θ , φ (θ = 0 being the north pole and θ =
π/2 the equator) is parallely transported along the equator from φ = 0 to

φ = π/2, then similarly transported along the meridian (φ = constant) from

θ = π/2 to θ = π/3 and then along the latitude (θ = constant) from φ =
π/2 to φ = 0. Finally, it is transported similarly along the meridian back

to the starting point θ = π/2, φ = 0. Show that, if the affine connection is

Riemannian, the vector now makes an angle π/4 with its initial direction.

(See Figure 5.3.)

, θ = π
2

θ = π
3

θ = π
2

1(u  , 2u  )

φ = 0

A

B

C
D

Fig. 5.3. The closed circuit described in the text is shown in this figure.
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Solution. On the unit sphere we have

ds2 = dθ 2 + sin2θ dφ2.

Thus with x1 = θ , x2 = φ we have g11 = 1, g22 = sin2θ . The non-zero

Christoffel symbols are �1|22 = −sin θ cos θ , �2|12 = sin θ cos θ , i.e., �1
22 =

−sin θ cos θ and �2
12 = cot θ.

Let a unit vector (u1, u2) be parallely transported along a curve θ = θ (λ),

φ = φ(λ), where λ is a parameter. Then the transport equations are

du1

dλ
+ �1

22u2 dφ

dλ
≡ du1

dλ
− sin θ cos θ

dφ

dλ
u2 = 0

and

du2

dλ
+ �2

12

(
u1 dφ

dλ
+ u2 dθ

dλ

)
= 0,

i.e.,

du2

dλ
+ cot θ

(
u1 dφ

dλ
+ u2 dθ

dλ

)
= 0.

The equator is given by θ = π/2. So along the equator du1/dλ = 0,

du2/dλ = 0, i.e., u1 = constant = u1
0 and u2 = u2

0, where (u1
0, u2

0) is the

starting value of the vector. Let us assume that it is a unit vector to start with.

Along the meridian φ = π/2, dφ/dλ = 0 so that u1 = constant = u1
0.

Also, du2/dλ + cot θ u2 dθ/dλ = 0, i.e., u2 sin θ = constant = u2
0. Thus the

vector at θ = π/3, φ = π/2 is (u1
0, u2

0 cosec(π/3)), i.e., (u1
0, (2/

√
3)u2

0).

Then along the latitude θ = π/3 we have dθ/dλ = 0 and the two trans-

port equations are

du1

dλ
−

√
3

4

dφ

dλ
u2 = 0,

du2

dλ
+ 1√

3
u1 dφ

dλ
= 0,

i.e.,
du1

dφ
=

√
3

4
u2,

du2

dφ
= − 1√

3
u1.

Differentiate the first with respect to φ and use the second equation:

d2u1

dφ2
=

√
3

4

du2

dφ
= −1

4
u1, i.e., u1 = A cos

(
φ

2

)
+ B sin

(
φ

2

)
,

where A and B are arbitrary constants.

Also, we have

u2 = 4√
3

du1

dφ
= − 2√

3
A sin

(
φ

2

)
+ 2√

3
B cos

(
φ

2

)
.

At φ = π/2, u1 = (1/
√

2)A + (1/
√

2)B, u2 =
√

2
3 B −

√
2
3 A.

Since this vector is (u1
0, (2/

√
3)u2

0), we have A + B = √
2u1

0, B − A =√
2u2

0. So A = (1/
√

2)(u1
0 − u2

0) and B = (1/
√

2)(u1
0 + u2

0). At φ = 0 the

vector is given by u1 = (u1
0 − u2

0)/
√

2, u2 =
√

2
3 (u1

0 + u2
0).
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For transport along φ = 0 the equations are u1 = constant,

u2 sin θ = constant. So we have u1 = (u1
0 − u2

0)/
√

2, u2 sin θ =
√

2
3 (u1

0 +
u2

0)(
√

3/2) = (u1
0 + u2

0)/
√

2. Thus at θ = π/2 we have u1 = (u1
0 − u2

0)/
√

2,

u2 = (u1
0 + u2

0)/
√

2. It can easily be verified that (u1, u2) is a unit vector.

The angle made by this vector with the initial vector (u1
0, u2

0) is given by ψ ,

where

cos ψ = g11u1
0u1 + g22u2

0u2 = u1
0u1 + u2

0u2

= 1√
2

{
u1

0(u1
0 − u2

0) + u2
0(u1

0 + u2
0)

}

= 1√
2
,

for (u1
0, u2

0) is a unit vector. Hence ψ = π/4.

5.1.1 Symmetries of Ri klm

It is more convenient to lower the second index of the Riemann tensor
to study its symmetry properties. Since the symmetry or antisymmetry
of a tensor does not depend on what coordinates are used, it is more
convenient to write (5.3) in the locally inertial coordinates (4.15). We
then get

Riklm = 1

2
(gkl,im + gim,kl − gkm,il − gil,km). (5.5)

From this expression the following symmetries are immediately obvious:

Riklm = −Rkilm = −Rikml = Rlmik . (5.6)

We also get relations of the following type:

Riklm + Rimkl + Rilmk ≡ 0. (5.7)

If we take all these symmetries into account, we find that of the 44 =
256 components of the Riemann tensor, only 20 at most are independent!
For, consider the first pair (i, k) in Riklm . It has altogether six independent
combinations, in view of the antisymmetry of Riklm with respect to
(i, k). Similarly the last pair (l, m) has six independent values. Since,
from (5.6), Riklm = Rlmik we have altogether 6 × 7/2 = 21 independent
components of this tensor. However, Equation (5.7) generates one more
constraint, reducing the above number to 20. Moreover, we will soon
see that there are identities linking their derivatives too.
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5.1.2 The Ricci and Einstein tensors

By the process of contraction we can construct lower-rank tensors from
Riklm . The tensor

Rin ≡ Ri
m

mn (5.8)

is called the Ricci tensor. If we use the locally inertial coordinate system,
we immediately see that Rin = Rni . In a general frame we get

Rin = ∂2 ln
√−g

∂xi ∂xn
− ∂�m

in

∂xm
+ �l

im�m
ln − �l

in

∂

∂xl
ln

√−g. (5.9)

Owing to the symmetries of (5.6) there are no other independent second-
rank tensors that can be constructed out of Riklm .

By further contraction we get a scalar:

R = gik Rik ≡ Rk
k . (5.10)

R is called the scalar curvature. The tensor

Gik ≡ Rik − 1

2
gik R (5.11)

will turn out to have a special role to play in Einstein’s general relativity.
This tensor is called the Einstein tensor.

Example 5.1.2 Problem. If Fik is an antisymmetric tensor, then Fik
;ik ≡ 0.

We have from antisymmetry

Fik
;ik = −Fki

;ik = −Fik
;ki .

However,

Fik
;ik − Fik

;ki = Ri
mki Fmk − Rk

mki Fim

= Rmk Fmk + Rmi Fim = 0.

Thus Fik
;ik = Fik

;ki . Hence the result follows.

Example 5.1.3 Problem. A two-dimensional space has a metric given by

ds2 = g11(dx1)2 + g22(dx2)2. Show that R11g22 = R22g11 and R12 = 0, and

that the Einstein tensor is identically zero.

Solution. We have g11 = 1/g11, g22 = 1/g22 and g = g11g22. The non-zero

Christoffel symbols are

�1
11 = g11,1

2g11
, �1

21 = g11,2

2g11
, �2

11 = − g11,2

2g22
, �2

12 = g22,1

2g22
,

�2
22 = g22,2

2g22
, �1

22 = − g22,1

2g11
.
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A simple but tedious calculation then gives R12 = 0 and

R11 = g22,11 + g11,22

2g22
− (g22,1)2

4g2
22

− (g11,2)2

4g11g22

− g11,2g22,2

4g2
22

− g11,1g22,1

4g11g22
.

On writing R11/g11 one can easily check by interchanging 1 and 2 that the

outcome equals R22/g22. Thus the required result follows.

5.1.3 Bianchi identities

The expression (5.5) suggests another symmetry for the components of
Riklm . This symmetry is not algebraic but involves calculus. In covariant
language we may express it as follows:

Riklm;n + Riknl;m + Rikmn;l ≡ 0. (5.12)

These relations are known as the Bianchi identities. Their proof is
most easily given in the locally inertial system as in (5.5). Simply write
the expressions for the three Rs in (5.12) in terms of the third derivatives
of the metric tensor.

But multiplying (5.12) by gim gkn and using (5.8)–(5.10), we can
deduce from these identities another that is of importance to relativity:

(
Rik − 1

2
gik R

)
;k

≡ 0. (5.13)

In other words, the Einstein tensor Gik has zero divergence identically.

Example 5.1.4 Problem. Show that, if Riklm = K (gil gkm − gim gkl ), then

K = constant.

Solution. We have Rkl = gim K (gil gkm − gim gkl ) = −3K gkl .

Therefore R = −12K and the Einstein tensor is

Gik = −3K gik + 6K gik = 3K gik

Since Gik
;k ≡ 0, we have

(3K gik);k = 0,

i.e.,
K,i = 0,

since gik
;k ≡ 0. Thus K = constant.
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5.2 Geodesics

So far we have talked about non-Euclidean geometries without men-
tioning whether, in general, they have the equivalents of straight lines in
Euclidean geometry. We now show how equivalent concepts do exist in
the Riemannian geometry under consideration here.

There are two properties of a straight line that can be generalized:
the property of ‘straightness’ and the property of ‘shortest distance’.
Straightness means that, as we move along the line, its direction does
not change. Let us see how we can generalize this concept first.

ui
1

1

2

λ

λ + δλ

u i
2

Fig. 5.4. The tangent vector
to a geodesic does not change
its direction. In the figure the
tangent vectors at points 1 and
2 are technically parallel, once
we take the non-Euclidean
geometry into account.

Let xi (λ) be the parametric representation of a curve in spacetime.
Its tangent vector is given by

ui = dxi

dλ
. (5.14)

Our straightness criterion demands that ui should not change as it moves
along the curve. (See Figure 5.4.) In going from λ to λ + δλ, the change
in ui is given by

�ui = dui

dλ
δλ + �i

klu
k δxl .

The second expression on the right-hand side arises from the change
produced by parallel transport through a coordinate displacement δxl .
However, since the displacement arises from λ changing to λ + δλ, we
have δxl = ul δλ. Therefore the condition of no change of direction ui

implies �ui = 0; that is,

dui

dλ
+ �i

klu
kul = 0. (5.15)

This is the condition that our curve must satisfy in order to be straight.
The second property of a straight line in Euclidean geometry is that

it is the curve of shortest distance between two points. Let us generalize
this property in the following way. Let the curve, parametrized by λ,
connect two points P1 and P2 of spacetime, with parameters λ1 and λ2,
respectively. Then the ‘distance’ of P2 from P1 is defined as

s(P2, P1) =
∫ λ2

λ1

(
gik

dxi

dλ

dxk

dλ

)1/2

dλ ≡
∫ λ2

λ1

L dλ, (5.16)

say. We now demand that s(P2, P1) be ‘stationary’ for small displace-
ments of the curve connecting P1 and P2, with these displacements
vanishing at P1 and P2. (See Figure 5.5.)

P1

2

x i
+ ξx i i

P

Fig. 5.5. For a geodesic
connecting P1 and P2, all
lines joining these points will
have the same length for small
displacement ξ i .
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This is a standard problem in the calculus of variations, and its
solution leads to the familiar Euler–Lagrange equations

d

dλ

(
∂L

∂ ẋ i

)
− ∂L

∂xi
= 0, (5.17)

where ẋ i ≡ dxi/dλ and L ≡ [gik(dxi/dλ)(dxk/dλ)]1/2 is a function of
xi and ẋ i . It is easy to see that (5.17) leads to

d

dλ

(
gik

1

L

dxk

dλ

)
− 1

2
gmn,i

1

L

dxm

dλ

dxn

dλ
= 0.

If we substitute

ds = L dλ (5.18)

and use (4.9), we get the above equation in the form

d2xi

ds2
+ �i

kl

dxk

ds

dxl

ds
= 0. (5.19)

There are a few loose ends to be sorted out in the above derivation. First,
L would be real only for timelike curves. Thus, if we want to use a real
parameter along the curve, then for spacelike curves we must replace ds
by

dσ = i ds, i = √−1. (5.20)

For null curves, L = 0. The above treatment therefore breaks down.
It is then more convenient to replace the integral (5.16) by another,
namely,

I =
∫ λ2

λ1

L2 dλ, (5.21)

and consider δI = 0. We can always choose a new parameter λ
′ = λ

′
(λ)

such that the equation of the curve takes the same form as (5.19), with
λ

′
replacing s.

It is easy to see that (5.19) is the same as (5.15). Although s in
(5.19) has the special meaning ‘length along the curve’ while λ in (5.15)
appears to be general, it is not difficult to see that, if (5.15) is satisfied,
λ must be a constant multiple of s. This is because (5.15) has the first
integral

gik
dxi

dλ

dxk

dλ
= C, C = constant. (5.22)

These curves of ‘stationary distance’ are called geodesics. For timelike
curves C > 0 and for spacelike curves C < 0, while for null curves
C = 0. λ is called an affine parameter.
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Example 5.2.1 Let us calculate the null geodesic from t = 0, r = 0 to the

point t = T , r = R, θ = θ1, φ = φ1 in the de Sitter spacetime

ds2 = c2 dt2 − e2Ht [dr 2 + r 2(dθ 2 + sin2θ dφ2)],

where H = constant. It is not difficult to verify that the θ and φ equations

of (5.19) are satisfied by θ = θ1, φ = φ1, both θ1 and φ1 being constants.

That is, our straight line moves in the fixed (θ, φ) direction. The t equation

simplifies to

d2t

dλ2
+ H

c2
e2Ht

(
dr

dλ

)2

= 0.

The first integral (5.22) gives, on the other hand, for ds = 0

c2

(
dt

dλ

)2

= e2Ht

(
dr

dλ

)2

.

The two equations can be easily solved to give

t = 1

H
ln

(
1 + λ

λ0

)
, r = c

H

λ

λ + λ0
,

where λ0 is determined from the boundary condition that when r = R, t =
T . Note that a solution is possible only if R and T are related by the condition

R = c

H
(1 − e−H T ).

5.3 Geodesic deviation

We end this chapter by describing another geometrical feature that distin-
guishes a flat spacetime from a curved one. Again we take the spherical
surface as illustrative of a curved space.

Imagine, as in Figure 5.6, longitude lines drawn between the poles
on a spherical Earth. We know and can verify by using Equation (5.19)
that the longitude lines are geodesics. Now consider two points P and
Q on two neighbouring lines of this set, located at the same distance
from the nearest pole. As both P and Q move away from the pole the
distance between them at first increases. However, the rate of increase is
not uniform; it is rapid at first but slows down until it is maximum when
P and Q are on the equator. Thereafter the distance PQ decreases to zero
as the other pole is reached.

O′

O

Q
P ν

Fig. 5.6. On a spherical
surface the separation PQ
between two neighbouring
longitudes increases on going
from pole O to the equator but
decreases as we move from the
equator to the other pole O′.

This behaviour is different from that for geodesics drawn on the flat
space of a Euclidean plane. Figure 5.7 shows straight lines drawn from a
point O with points P and Q on two neighbouring geodesics, i.e., straight
lines. In this case it is easy to verify that the distance PQ increases at a
uniform rate with respect to the distance of the pair from O.
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O
Q

P

ν

Fig. 5.7. On a flat surface
the separation PQ between
two geodesics (straight lines
as drawn here) increases
uniformly as P and Q move
further from the origin O of the
geodesics.

So one may say that the rate at which two neighbouring geodesics
deviate from each other gives us information on the curvature of space
and time. The general result valid for Riemannian geometries is derived
below.

Let a bundle of geodesics in a general Riemannian spacetime be
specified by a parameter µ, so that a typical point on the µ-geodesic
has the coordinates xk(λ, µ), λ being the affine parameter, as shown in
Figure 5.8. The vector νk = ∂xk/∂µ denotes the rate of deviation from
one geodesic to another across the bundle. We first show that

νk
;lu

l = uk
;lν

l , where uk = ∂xk/∂λ. (5.23)

The proof is simple from first principles. We have

νk
;lu

l = ∂νk

∂xl
ul + �k

lmνmul = ∂2xk

∂λ ∂µ
+ �k

lmνmul .

Similarly, we also have

uk
;lν

l = ∂uk

∂xl
νl + �k

lmumνl = ∂2xk

∂µ ∂λ
+ �k

lmumνl .

Since the order of partial differentiation with respect to λ and µ can be
interchanged and also because �k

lm = �k
ml , the result follows.

We next show that

d2νk/dλ2 + Rk
lmnulνmun = 0. (5.24)

In view of the equality proved above, the first term on the left-hand
side may be written as

(νk
;lu

l );mum = (uk
;lν

l ) ;mum = uk
;lmνlum + uk

;lν
l
;mum .

νκ

λ

µ

µ + δµ

Fig. 5.8. In the bundle of
geodesics the λ-parameter
increases as one moves to the
right on any geodesic. The
parameter µ increases in the
orthogonal direction. The
separation ν between two
neighbouring geodesics tells
us whether they are coming
closer or moving apart. See
the text for details.
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Using the identity (5.4), the first term on the right-hand side may be
replaced by

uk
;mlν

lum − Rk
ilmuiνlum .

Therefore we have

d2νk/dλ2 + Rk
ilmuiνlum = uk

;mlν
lum + uk

;lν
l
;mum . (5.25)

Consider the first term on the right-hand side of the above equation.
By interchanging the dummy indices l, m it can be rewritten as

uk
lmνmul = [uk

;lu
l ];mνm − uk

;lu
l
;mνm .

Now the first term on the right-hand side of the above equation vanishes
since uk is the tangent vector to a geodesic. In the second term use the
identity (5.23) to replace ul

;mνm by νl
;mum . This term then cancels out

the second term on the right-hand side of Equation (5.25). Thus we get
zero on the right-hand side. This is the equation of geodesic deviation.

The appearance of the Riemann tensor is an indication that we are
looking at the effect of curvature. We will have occasion to return to this
equation in the context of gravitational effects on motion.

5.4 Concluding remarks

This is our introduction to non-Euclidean geometries insofar as they
relate to general relativity. In the following chapter we will discuss
spacetime symmetries. It may be somewhat mathematical. Those impa-
tient for applications to physics may wish to skip it and go to Chapter 7.
The results derived in Chapter 6 do, however, have important applica-
tions to specific problems.

Exercises

1. The Ricci tensor of a four-dimensional spacetime manifold satisfies the

condition

Rik = f gik .

Deduce that f = constant.

2. A vector field ξi satisfies the equations

ξi ;k + ξk;i = 0.

Deduce that

ξl;ik = Rlikmξm .
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3. In the spacetime whose metric is given by

ds2 = eφ(dx4) − e−φ(x2)2(dx3)2 − eλ{(dx1)2 + (dx2)2},

where φ and λ are functions of x1 and x2 only, show that, provided Rik = 0, for

i = k = 0,

∂2φ

(∂x1)2
+ ∂2φ

(∂x2)2
+ 1

x2

∂φ

∂x2
= 0.

4. Write down the equations of a null geodesic in the spacetime given by the

line element

ds2 = dt2 − 2ex1
dt dx2 − (dx1)2 + 1

2
e2x1

(dx2)2 − (dx3)2

and show that the following is a first integral of them:

2x2 dx1

dλ
−

[
3 + 1

2
(x2)2e2x1

]
dx2

dλ
− [(x2)2ex1 + 2e−x1

]
dt

dλ
= constant,

where λ is an affine parameter.

5. Two metrics g(1)
ik and g(2)

ik on a given spacetime give the same geodesic

curves. Show that their respective Christoffel symbols �
(1)i

kl and �
(2)i

kl satisfy a

relation of the form

�
(1)i

kl − �
(2)i

kl = δ i
k Vl + δ i

l Vk,

where Vk are the components of a vector.

6. A vector is parallely propagated round a spherical triangle ABC. Show that,

at the end of the round, the vector makes an angle (A + B + C − π ) with its

original direction.

7. Consider the conformal transformation

g∗
ik = gike2σ .

Show that under such a tranformation the wave equation

�φ + 1

6
Rφ = 0

remains invariant. (Here R is the scalar curvature.)

8. Show that, under a conformal transformation, the Weyl tensor

Ciklm = Riklm − 1

2
(gik Rlm − gim Rkl − gkl Rim + glm Rik)

+ 1

6
(gil gkm − gim gkl )R

is invariant. Deduce that, if the metric is conformal to the flat spacetime metric,

the Weyl tensor vanishes.
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9. For the metric

ds2 = c2 dt2 − dr 2 − r 2(dθ 2 + sin2θ dϕ2)

verify that Riklm = 0.

10. Show that, if a geodesic is timelike over a finite part, then it is timelike

throughout.

11. Show that, if ḡik = gik exp ζ , then

R̄ik = Rik + 2(ζ;ik − ζ;iζik) + gik(�ζ + 2ζ;lζ
;l ).



Chapter 6

Spacetime symmetries

6.1 Introduction

In Euclidean geometry or in the pseudo-Euclidean spacetime of special
relativity, the geometrical properties are invariant under translations and
rotations. The same is not necessarily true of the non-Euclidean space-
times of general relativity. As we shall see in Chapter 8, the spacetime
geometry is intimately related to the distribution of gravitating matter
(and energy). A completely general spacetime arising from an arbi-
trary distribution of gravitating objects will not have any symmetries
at all. Such cases are difficult to solve as solutions of Einstein’s gravi-
tational equations. It is, however, easier to solve problems where mass
distributions have certain symmetries. For example, a point mass in an
otherwise empty space is expected to generate a solution that has spher-
ical symmetry about that point. Cases like these may be looked upon as
approximations to reality. A similar approach is adopted in Newtonian
gravitation. For example, as a first approximation the gravitating masses
in the Solar System (the Sun and the planets) are treated as spherical dis-
tributions. In this chapter we will look at certain symmetric spacetimes
that will be of use in solving specific problems in general relativity. The
main question that we shall begin with is that of how to identify a sym-
metry in a given spacetime. How do we discover an intrinsic property
like symmetry, when given the spacetime metric?

We will have occasion to use symmetric and antisymmetric tensors.
To facilitate their writing as well as recognition of the nature of their
symmetry we will write indices (ik) for a symmetric tensor and [ik] for

85
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an antisymmetric one. Thus, if Tik is any tensor,

Sik = 1

2
(Tik + Tki ) = T(ik); Aik = 1

2
(Tik − Tki ) = T[ik].

This notation was introduced in Chapter 3.

6.2 Displacement of spacetime

It is worth recalling here the stress put on circles as special curves by
the Greek philosopher Aristotle (384–322 BC). Aristotle argued that the
displacement symmetry displayed by circles was unique: no other curve
had it. By displacement symmetry, we mean the following. Take any
finite arc of the circle and move it so as to place it anywhere else on
the circle. It will lie congruently on the corresponding part of the circle.
Because of this symmetry Aristotle felt that circles had a special role to
play in the behaviour of natural phenomena.

We will adopt a similar criterion in our specification of the symmetry
of the a spacetime manifold. Suppose xi are the coordinates and gik are
the components of the metric tensor specifying a spacetime manifold
M. Let P be a typical point with coordinates xk

P. We may make a ‘copy’
of M, called M′, and imagine that M is placed congruently on M′.

Imagine now an infinitesimal displacement of M so that each point
moves over to a new place. Such a displacement may be described by
the relation

xi → xi + ξ i , (6.1)

where ξ i is an infinitesimal vector field. Equation (6.1) implies that the
point P with coordinate xi

P now moves over to a position that is occupied
by a point P′ in the manifoldM′ with coordinates xi

P + ξ i (xi
P). Figure 6.1

illustrates this move.

P′
P

Fig. 6.1. In the shift described
in the text the point P of M
falls on P′ of M′.
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A simple example of such a displacement is an infinitesimal trans-
lation or a rotation. In the three-dimensional Euclidean space we can
consider the rotation of a spherical surface about its centre. In Figure
6.2, the point P after rotation moves over to P′. However, under such a
displacement the new surface is indistinguishable from the old one. We
now ask the following question: what should be the condition on ξ i for
this to happen in the displacement given by Equation (6.1)?

N

S

P P′

Fig. 6.2. A rotation of the
sphere about the NS polar axis
takes point P to P′.

To find this condition let us consider the two spacetimes in the
above problem. The point P′ of M′ coincides with the point P of M
(see Figure 6.1). Since the coordinate system was carried along when P
was displaced to its new position, P continues to have coordinates xi

p in
M. P′, on the other hand, has coordinates xi

P + ξ i (xi
P) in M′. Suppose

in M′ we now introduce a new coordinate system given by

x ′i = xi − ξ i . (6.2)

Under this transformation P′ in M′ will have coordinates x ′i = xi
P, the

same as the coordinates of P in M; and this must be true for all the
coinciding points of M and M′. But what about the spacetime metric
at the corresponding points?

The metric tensor at P in M is gik(xl
P). The metric tensor at P′ in the

old coordinate system was gik(xl
P + ξ l

P), where ξ l
P = ξ l(xi

P). In the new
coordinate system this is transformed to

g′
mn =

[
∂xi

∂x ′m
∂xk

∂x ′n

]
P′

gik(xl
P + ξ l

P). (6.3)

Since ξ i is infinitesimal we can use the following approximations which
ignore errors of second and higher order in ξ i and its derivatives:

∂xi

∂x ′m

∣∣∣
P′

∼= δi
m + ξ i

P,m,

gik(xl + ξ l
P) ∼= gik(xl ) + ξ l

Pgik,l (x
l
p).

Then it is easy to see that, to first order in ξ i ,

g′
mn(P′) = gmn(P) + [ξ l gmn,l + ξ l

,m gln + ξ l
,n glm]P. (6.4)

From Equation (6.4) we see that M and M′ become geometrically
indistinguishable at the coinciding points P and P′ if the expression in
square brackets vanishes. Since P is any typical point of M this relation
must hold everywhere. Thus ξ i must satisfy the set of equations

ξ l gmn,l + ξ l
,m gln + ξ l

,n glm = 0. (6.5)
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Using the Riemannian affine connection, these equations can be rewrit-
ten as

ξm;n + ξn;m = 0. (6.6)

Equations (6.5) or (6.6) are known as Killing’s equations and the
vector field ξ i is known as a Killing vector field. In general, for a
heterogeneous spacetime a non-trivial solution of (6.6) will not exist.

If the spacetime does admit a Killing vector field we can consider its
displacement under (6.1). Then, as shown above, the displaced space-
time is indistinguishable from its original state (vide the example of
the sphere under rotation). The existence of such a displacement is an
indicator of symmetry. A displacement of this type is often referred to
as an isometry. Aristotle had precisely this concept in mind in his choice
of circles.

Example 6.2.1 In terms of the spherical polar coordinates θ , φ the line

element on the surface of a unit sphere is given by

ds2 = dθ 2 + sin2θ dφ2.

The Killing vector ξ i = (ξ θ , ξφ) satisfies Equations (6.5) above, which are

explicitly as follows:

(i)
∂ξθ

∂θ
= 0, (ii)

∂ξθ

∂φ
+ sin2θ

∂ξφ

∂θ
= 0, (iii)

∂ξφ

∂φ
+ cot θ ξ θ = 0.

From (i) we get ξ θ = f (φ), where f is an arbitrary function of φ. Then

(ii) gives

sin2θ
∂ξφ

∂θ
= − f ′(φ), i.e., ξφ = f ′(φ)cot θ + g(φ),

where f ′(φ) ≡ d f/dφ and g(φ) is an arbitrary function of φ. On substituting

for ξ θ and ξφ in (iii) we get

g′(φ) + [ f ′′(φ)cot θ + f (φ)cot θ ] = 0.

Since this must hold for all θ and φ, we have

g′(φ) = 0, f ′′(φ) + f (φ) = 0.

Thus the most general solution of the Killing equations in this case is

f (φ) = A sin φ + B cos φ, g(φ) = C ;

ξ θ = A sin φ + B cos φ, ξφ = (A cos φ − B sin φ)cot θ + C,

where A, B and C are arbitrary constants. Thus there are three linearly

independent Killing vectors.
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6.3 Some properties of Killing vectors

We now discuss some general properties of the Killing equation and its
solutions.

Integrability. Using the formulae (5.4) and (5.6), we at once deduce
a simple consequence of Equation (6.6):

2ξm;np ≡ (ξm;np − ξm;pn) + (ξp;nm − ξp;mn) + (ξn;pm − ξn;mp),

i.e.,

ξm;np = −Rl
pmnξl . (6.7)

From Equation (6.7) we see that, if ξl and its derivatives ξl;m are known
at a typical point P, we can determine all higher derivatives of ξl at
P and hence the entire function ξl in a neighbourhood of P, by Taylor
expansion. Thus, provided that Equations (6.6) and (6.7) have a solution,
we can formally write it in the form

ξm(xl ) = An
m(X, P)ξn(P) + B pq

m (X, P)ξp;q (P), (6.8)

where X is a general point and the quantities An
m and B pq

m depend on the
global properties of spacetime, i.e., on gmn , and on the points P and X. By
virtue of Equation (6.6), B pq

m = −B qp
m . In a spacetime of n dimensions

there are up to n independent quantities ξn(P) and up to 1
2 n(n − 1)

independent quantities ξp;q (P) because of the antisymmetry implied
by the Killing equations. Thus there are in general up to n + 1

2 n(n −
1) = 1

2 n(n + 1) linearly independent Killing vectors in a spacetime of n
dimensions.

What are the conditions for Equation (6.7) to be integrable? From
Equation (6.7) we get

−ξm;npq = Rl
pmn;qξl + Rl

pmnξl;q ,

−ξm;nqp = Rl
qmn;pξl + Rl

qmnξl;p.

Taking the difference of these and using Equation (5.4), we get

ξm;npq − ξm;nqp = Rl
mpqξl;n + Rl

npqξm;l .

From this follows the result

ξl (Rl
qmn;p − Rl

pmn;q ) + Rl
qmnξl;p − Rl

pmnξl;q

− Rl
mpqξl;n − Rl

npqξm;l = 0. (6.9)

These are the conditions for integrability, which by relating ξl and ξl;m

impose restrictions on how many Killing vectors can exist at a given
point of spacetime.
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Example 6.3.1 Problem. ξ i is a timelike Killing vector and ui = φξ i with

φ so chosen that ui is a unit vector. Show that

ui uk;i = ∂

∂xk
(ln φ).

Solution. On writing ξi = uiφ
−1, we get ξi ;k = ui ;kφ

−1 − uiφ,kφ
−2. From

the Killing equations we get for the above relation

φ(ui ;k + uk;i ) − (uiφ,k + ukφ,i ) = 0.

Multiply by ui and use ui ui = 1 and ui ui ;k = 0. Then

φui uk;i = φ,k + ui ukφ,i .

Multiply by uk and use ukuk;i = 0 to get uiφ,i = 0. Hence the above equation

becomes
φui uk;i = φ,k .

The result to be proved follows.

Problem. If ξ i is a Killing vector field and T ik is a symmetric tensor satisfying

the condition T ik
;k = 0, then the vector pi = T ikξk has zero divergence.

Solution. We have that pi
;i = T ik

;i ξk + T ikξk;i = T ikξk;i = 1
2 (ξk;i + ξi ;k)T ik =

0 by virtue of the symmetry of T ik and the Killing equations. We have used

the property that T ik Aik ≡ 0 if T ik is symmetric and Aik is antisymmetric.

Finite displacement. The above analysis of Killing vectors relates
to infinitesimal displacement. In a special case it is possible to talk of
a finite displacement. This is the case when all gik are independent
of a particular coordinate, say x0. Then direct substitution into (6.5)
immediately shows that

ξ i = (0, 0, 0, ε), (6.10)

where ε is an infinitesimal constant, is a solution. This means that a
displacement of the form

x0 → x0 + ε, xµ → xµ (6.11)

leaves the spacetime invariant.
If x0 is a timelike coordinate we say that the spacetime is static.

When Equations (6.10) and (6.11) hold, we need not restrict ε to be
infinitesimal. As is obvious, by a superposition of a series of infinitesimal
displacements we can make up a finite displacement that leaves the
spacetime invariant.
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Relation to geodesics. If ui is a tangent vector to a geodesic ζ and
ξi is a Killing vector, then

ξi u
i = constant along ζ. (6.12)

The proof follows from the use of the geodesic equation (5.19) and the
Killing equation (6.6):

ui (ξkuk);i = ξkui uk
;i + ukuiξk;i = 0.

We shall use this result in later work. Equation (6.12) represents a first
integral of the geodesic equations.

Example 6.3.2 Problem. In the line element

ds2 = eν dT 2 − eλ dR2 − R2(dθ 2 + sin2θ dφ2)

show that the timelike geodesic has the first integrals

eν dT

ds
= constant; R2 sin θ

dφ

ds
= constant.

Here ν and λ are functions of R only.

Solution. Since the metric is independent of T and φ, we deduce that

the spacetime has Killing vectors ξ i(1) = (1, 0, 0, 0) and ξ i(2) = (0, 0, 0, 1),

where xi ≡ (T, R, θ, φ). Hence we have two first integrals of the geodesic

equations:
ξ i(1)ui = constant; ξ i(2)ui = constant.

The first one gives u0 = constant. Since u0 = dT/ds, we get eν dT/ds = con-

stant. The second relation likewise gives u3 = constant. With u3 = dφ/ds,

we get R2 sin θ dφ/ds = constant.

6.4 Homogeneity and isotropy
The physicist often refers to the above two properties of space and time.
Of these, homogeneity implies the fact that the physical quantity he
measures is the same at any two points P and Q in spacetime. Isotropy at
a given point P implies invariance with respect to a change of direction
at P. With the help of Killing vectors it is possible to express these
properties more formally and precisely than the above statements. Since
we might not always want the entire spacetime M to be homogeneous
and/or isotropic, I shall consider below these properties in a spacetime
Mn of n dimensions that is a subspace of M.

Homogeneity. The spacetime Mn is said to be homogeneous if there
are infinitesimal isometries that carry a typical point P to any point P′

in its immediate neighbourhood. This means that the Killing vectors
at P can take all possible values, and we can choose, at P, n linearly
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independent Killing vectors. By a suitable choice, we can therefore have
a basis of n Killing vector fields ξ

(k)
l (X, P) at a general point X in the

neighbourhood of P such that

lim
X→P

ξ
(k)
i (X, P) = δk

i , (k = 1, . . ., n). (6.13)

Clearly, by a succession of infinitesimal displacements we can take P to
any distant point P′.

Example 6.4.1 The surface of the unit sphere is homogeneous because

at each point it has two linearly independent Killing vectors. As shown in

Example 6.2.1, there are three Killing vector fields on this surface, so at a

general point we can choose any two of them.

Isotropy. The spacetimeMn is said to be isotropic at a given point P if
there are Killing vectors ξi in the neighbourhood of P such that ξi (P) = 0
and ξi ;k(P) span the space of antisymmetric second-rank tensors at P.
Thus we need 1

2 n(n − 1) linearly independent ξi ;k at P. In an isotropic
spacetime at P we can choose coordinates in the neighbourhood of P
such that there are 1

2 n(n − 1) Killing vector fields ξ
[pq]
i (X, P) with the

properties

ξ
[pq]
i (X, P) = −ξ

[qp]
i (X, P),

ξ
[pq]
i (P, P) = 0, (6.14)

ξ
[pq]
i ;k (P, P) ≡ [ξ [pq]

i ;k (X, P)]X=P = δ
p
i δq

k − δ
q
i δ

p
k

(p, q = 1, . . .; n).

Example 6.4.2 Consider the same example of the surface of the unit

sphere. In this case n = 2, i.e., n(n − 1)/2 = 1. Since we have seen that this

surface is homogeneous, we can take P to be the pole (θ = 0) without loss

of generality. At this point the Killing vector field ξ θ = 0, ξφ = 1 shows

isotropy. The coordinates are x1 ∼= θ sin φ, x2 ∼= θ cos φ near the pole

(where sin θ ∼= θ ). In these coordinates the Killing vector field has covariant

components

ξ
[12]
1 = x2, ξ

[12]
2 = −x1.

We may define ξ
[21]
i = −ξ

[12]
i . Then Equation (6.14) follows.

Theorem. Any Mn that is isotropic about every point is also homo-
geneous.

Consider Killing vectors ξ
[pq]
i (X, P) and ξ

[pq]
i (X, Q) that satisfy

(6.14) at two neighbouring points P and Q, respectively. At point
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X, ξ
[pq]
i (X, Q) − ξ

[pq]
i (X, P) is also a Killing vector. On writing the

coordinates of P and Q, respectively, as xi
P and xi

P + δxi
P, we see that

lim
δxk

P→0

1

δxk
P

{ξ [pq]
i (X, Q) − ξ

[pq]
i (X, P)} = ∂ξ

[pq]
i (X, P)

∂xk
P

(6.15)

is also a Killing vector at X. However, we also have, from Equation
(6.14),

ξ
[pq]
i ;k (P, P) = lim

δxk
P→0

1

δxk
P

ξ
[pq]
i (Q, P)

= δ
p
i δ

q
k − δ

q
i δ

p
k .

On putting X = Q in (6.15) we get as Q → P

∂ξ
[pq]
i (X, P)

∂xk
P

∣∣∣
X=P

= −δ
p
i δ

q
k + δ

q
i δ

p
k . (6.16)

The Killing vectors (6.16) obviously span the space of vectors at P. For,
if αi is any arbitrary vector at P, we can construct a general vector field
in the neighbourhood of P:

ξi (X) = αl

n − 1

∂ξ
[lk]
i (X, P)

∂xk
p

,

which is such that ξi (P) = αi (arbitrary constants). This follows from
Equation (6.16):

ξi (P) = αl

n − 1
(δl

i δ
k
k − δk

i δ
l
k) = αi .

Thus any vector at any arbitrary point P can be expressed in terms of the
Killing vector fields at P. This proves the result.

Maximally symmetric spacetime. If Mn is homogeneous and
isotropic, it is said to be maximally symmetric. From the above theo-
rem, if Mn is isotropic at every point, it is maximally symmetric.

A maximally symmetric space has 1
2 n(n + 1) different Killing vector

fields. To see this we consider the set of vector fields ξ
(k)
i (X, P) and

ξ
[pq]
i (X, P). Suppose they satisfy a linear relation

αkξ
(k)
i (X, P) + β[pq]ξ

[pq]
i (X, P) ≡ 0,

at all points X where the αs and βs are constants. On setting X = P and
using Equation (6.14) we get

αkδ
k
i = αi = 0.

Next, by differentiating with respect to xk and setting X = P, we get

β[pq](δ
p
i δ

q
k − δ

q
i δ

p
k ) = 2β[ik] = 0.
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Hence these Killing vectors are linearly independent and the result fol-
lows. The maximally symmetric space has n Killing vectors for homo-
geneity and 1

2 n(n − 1) Killing vectors for isotropy.

6.5 Spacetime of constant curvature

We now obtain an important result for maximally symmetric spaces,
which makes their explicit determination possible. In Equation (6.9) we
have the general integrability condition. On applying it to the vectors
ξ

[pq]
i (X, P) at P we get, using Equation (6.14),

(δ p
iδ

q
k − δ

q
i δ

p
k )[δk

r δ
i
l Rl

tmn − δi
l δ

k
t Rl

rmn − δi
l δ

k
n Rl

mrt − δi
l δ

k
m Rl

nrt ] = 0.

The above equation can be simplified further. We get

R p
tmnδ

q
r − R p

rmnδ
q
t − R p

mrtδ
q
n − Rq

nrtδ
p
m

= Rq
tmnδ

p
r − Rq

rmnδ
p
t − Rq

mrtδ
p
n − R p

nrtδ
q
m . (6.17)

If we now consider Equation (6.9) for the vectors ξ i (X, P) and use the
above relation at X =P, Equation (6.9) reduces to

Ri
qmn;p = Ri

pmn;q . (6.18)

On putting q = r in Equation (6.17) and using the symmetry properties
of Riklm , we get

Rptmn = 1

n − 1
(Rnt gpm − Rmt gpn). (6.19)

On multiplying further by gtn we get

Rpm = R

n
gpm . (6.20)

(In these reductions we have to use the relation gm
m = n. For the four-

dimensional spacetime we have n = 4.)
A spacetime satisfying Equation (6.20) is called an Einstein space.

The maximally symmetric space, on the other hand, has more symme-
tries than in the Einstein space. Substitution of Equation (6.20) into
Equation (6.19) gives

Rptmn = R

n(n − 1)
(gnt gpm − gmt gpn). (6.21)

By taking the divergence of Equation (6.21) and using Equation (5.13)
(for n-dimensional spacetime), we see that for n ≥ 3

R = constant = n(n − 1)K (say), (6.22)
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where K is a constant. Equation (6.22) then tells us that the spacetime
Riemann tensor has the form

Rptmn = K (gnt gpm − gmt gpn). (6.23)

In differential geometry this is known as the curvature tensor for a space
of constant curvature K .

In the case n = 2, Equation (6.19) can be used to arrive at the same
conclusion.

It can be shown that spaces of constant curvature are essentially
unique. In other words, if we have two spacetimes Mn and M′

n, with
Equation (6.23) holding in Mn and

R′
ptmn = K (g′

nt g
′
pm − g′

mt g
′
pn) (6.24)

holding in M′
n with the metric tensor g′

ik , then there exists a coordinate
transformation xi → x ′i for Mn → M′

n that will take gik to g′
ik in the

usual manner of tensor transformations.
The proof of this result will not be given here, for want of space

(see Reference [7] for details). Using this result, however, it becomes
easy to identify maximally symmetric spacetimes in n dimensions. The
essential difference is in the sign of K , since the magnitude of K can be
scaled by a suitable scale transformation of ds. We shall, later on, need
the cases for which all the n dimensions are spacelike. In this case we
have the following three line elements:

ds2 = −K −1
{

(dx)2 + (x · dx)2

1 − x2

}
(K > 0), (6.25)

ds2 = +K −1
{

(dx)2 + (x · dx)2

1 + x2

}
(K < 0), (6.26)

ds2 = −(dx)2 (K = 0). (6.27)

Here x = (x1, . . ., xn) is the coordinate vector and x2 is the square of
its magnitude. It can be verified that these spaces do satisfy Equation
(6.23) so that, by virtue of the uniqueness theorem, they contain all the
required information about homogeneous and isotropic spaces.

Example 6.5.1 In two dimensions, for K > 0 we have

ds2 = − 1

K

{
(dx1)2 + (dx2)2 + (x1 dx1 + x2 dx2)2

1 − (x1)2 − (x2)2

}
.

Put x1 = sin θ cos φ, x2 = sin θ sin φ. Then this becomes

ds2 = − 1

K
[dθ 2 + sin2θ dφ2].

This is the surface of a sphere of radius K −1/2.
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6.6 Symmetric subspaces

In general the entire spacetime might not have many symmetries, but
it may have subspaces with more symmetries. In particular it may have
maximally symmetric subspaces. Although our eventual application will
be to the (3 +1)-dimensional spacetime we will continue to discuss
m-dimensional subspaces in an n-dimensional (n ≥ m) spacetime Mn .

Suppose {ϕm} is a collection of subspaces within Mn . We will
choose a coordinate system xi such that x1, . . ., xm denote different
points on the same ϕm , while the remaining coordinates xm+1, . . ., xn for
these points are the same. In other words, the variation of (xm+1, . . ., xn)
denotes different numbers of {ϕm} while the variation of x1, . . ., xm

represents the variation on a given ϕm .
We say that the spaces ϕm are homogeneous in Mn if there exist

at least m linearly independent Killing vectors that take any point P on
ϕm into any other given point P′ on ϕm while leaving ϕm as a whole
invariant.

Example 6.6.1 The rotation of the 2-sphere about its centre in the (3 + 1)-

dimensional spacetime of special relativity. Here φ2 is the surface of the

sphere.

A similar definition can be given for isotropy of ϕm . Of particular
interest is the case in which ϕm is maximally symmetric. In this case there
exist 1

2 m(m + 1) independent Killing vectors, each with the following
property. For an infinitesimal displacement of the type

xi → xi + ξ i , i = 1, . . ., m,
(6.28)

xi → xi , i > m,

the whole space Mn is unchanged. The ξ i therefore have zero compo-
nents for i > m, although they can be functions of all xi . The linear
independence of all the 1

2 m(m + 1) different ξ i implies therefore that
there is no linear relation among them with coefficients depending on
x1, . . ., xm .

It can be then be shown (see Reference [7] for proof) that the line
element of Mn can be written down in the form

ds2 = f (xm+1, . . ., xn)
∑
i,k≤m

hik(x1, . . ., xm)dxi dxk

(6.29)
+

∑
i,k>m

gik(xm+1, . . ., xn)dxi dxk .

We will consider two special cases of the above result applicable to the
(3 + 1)-dimensional spacetime.
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Spherically symmetric spacetime. In this case there are two-
dimensional surfaces ϕ2 of constant positive curvature, concentric about
a fixed point O at all times. We may choose x1 = θ , x2 = φ to denote the
coordinates on ϕ2, and x3 = r , x4 = t , to denote the variation among
the {ϕ2} family. Then, from the above result (6.29), the line element has
the form

ds2 = A(r, t)dt2 + 2H (r, t)dt dr + B(r, t)dr 2

(6.30)
+ F(r, t){dθ2 + sin2θ dφ2},

where A, H , B and F are general functions. We shall need this spacetime
in later work to describe the gravitational field of a spherically symmetric
distribution of matter and energy.

Cosmological spacetimes. In this situation, there is a family of three-
dimensional maximally symmetric spacelike subspaces {ϕ3}. We choose
x0 = t and use x1, x2, x3 to denote points on any ϕ3. On ϕ3 we use the
metric (6.25)–(6.27) depending on the sign of K . All three cases can be
represented by a compact line element:

ds2 = dt2 − S2(t)
[ dr 2

1 − kr 2
+ r 2(dθ 2 + sin2θ dφ2)

]
, k = 0, +1. (6.31)

Note that the function g00 in Equation (6.31) can be made unity in this
case because it can be absorbed in a pure time transformation t → t ′.
Thus, if we start with t ′, then we can choose t such that

g00(t ′)dt ′2 = dt2.

The parameter k represents the sign of the curvature. A comparison with
Equations (6.25)−(6.27) shows that

K = k

S2(t)
. (6.32)

In applications to cosmology we will discuss the physical signifi-
cance of the time coordinate t and of the subspaces t =constant.

Example 6.6.2 Problem. Show that the de Sitter line element

ds2 = dt2 − e2Ht (dr 2 + r 2 dθ2 + r 2 sin2θ dφ2)

has a timelike Killing vector.

Solution. Consider the Killing equations

ξ l gmn,l + ξ l
,m gln + ξ l

,n glm = 0.

We will use coordinates xi ≡ (t, r, θ, φ) and will look for a solution in which

ξ 2 = 0, ξ 3 = 0. Then we get the following equations:

∂ξ 0

∂t
= 0,

∂ξ 0

∂r
= ∂ξ 1

∂t
e2Ht ,

∂ξ 1

∂r
+ Hξ 0 = 0.



98 Spacetime symmetries

It is easy to verify that a solution to these equations is given by

ξ 0 = 1, ξ 1 = −Hr.

The fact that ξ 0 �= 0 suggests that a symmetry with translation in the time

direction is possible. The vector ξ i is timelike for H 2r 2e2Ht < 1.

Exercises
1. Show that the Gödel universe given by the line element

ds2 = (dx0)2 + 2ex1
dx0 dx2 − (dx1)2 + 1

2
e2x1

(dx2)2 − (dx3)2

has the following Killing vector fields ξ i :

(1, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, −x2, 0),

(−4e−x1
, 2x2, −(x2)2 + 2e−2x1

, 0).

Is this spacetime (i) homogeneous, (ii) isotropic and (iii) stationary?

2. Show that the subspaces t = constant of the Heckmann–Schücking spacetime

ds2 = dt2 + 2ex1
dt dx2 − c11(t){(dx1)2 + αe2x1

(dx2)2}
− 2c12(t)ex1

dx1 dx2 − c33(t)(dx3)2

are its homogeneous subspaces.

3. Show that the integrability condition (6.9) can be written in the form

ξm Ri jkl;m = ξm;l Rm
ki j − ξm;k Rm

li j − ξm;i Rm
jkl + ξm; j Rm

ikl .

Deduce, by multiplication by gik or otherwise, that

ξm Ril;m = −ξm;l R m
i + ξm;i R m

l .

4. Find ten independent Killing vectors for the Minkowski spacetime.

5. Show that any Killing vector ξ i satisfies the equation

�ξ i + Ri
kξ

k = 0.

6. If T ik is the energy momentum tensor and ξ i is a timelike Killing vector,

show that the integral ∫
T i

kξ
k d


over the whole spacelike hypersurface is independent of the choice of the hyper-

surface.

7. Show that the line element (6.31) for k = +1 is manifestly conformal to the

Minkowski line element through the following series of transformations (due to
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L. Infeld and A. Schild):

r = sin R, T =
∫ t du

S(u)
; ζ = 1

2
(T + R), η = 1

2
(T − R);

X = tan ζ, Y = tan η; τ = 1

2
(X + Y ), ρ = 1

2
(X − Y ).

What transformations will do the same for the case k = −1?



Chapter 7

Physics in curved spacetime

7.1 Introduction

Having acquainted ourselves with the trials and tribulations of working
in non-Euclidean spacetimes we are now prepared for the next step, that
of describing physics in such curved spacetimes. For we recall from
Chapter 2 that the Einstein programme for general relativity consists
of replacing the Newtonian perception of gravitation as a force by the
notion that its effect makes the geometry of spacetime ‘suitably non-
Euclidean’. What we mean by ‘suitably’ will be clear in the next two
chapters. But given that the geometry is non-Euclidean we first need to
know how the rest of physics is described in it.

For example, how do we describe the motion of a particle under
a non-gravitational force? How do we write Maxwell’s equations?
What is the role of energy-momentum tensors? Can a dynamical action
principle be written in curved spacetime? Such questions need our
attention before we turn to the basic issue of how gravity actually leads
to curved spacetime.

To this end we will introduce a concept that Einstein took as a basic
principle in formulating general relativity. It is known as the principle
of equivalence.

7.2 The principle of equivalence

Let us go back to the purely mathematical result embodied in the
relations shown in Section 4.6 and attempt to describe their physical
meaning. These relations tell us that special (locally inertial) coordinates

100
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that behave like the coordinates (t, x, y, z) of special relativity exist in
the neighbourhood of any point P in spacetime. Physically, these coordi-
nates imply a frame of reference in which a momentary illusion is created
at P and in a small neighbourhood of P that the geometry is of special
relativity. The illusion is momentary and local to P because we have seen
that the relations of (4.15) cannot be made to hold everywhere and at all
times.

In view of the assertion made in Section 2.1 that gravitation mani-
fests itself as non-Euclidean geometry, we would have to argue that in
the above locally inertial frame gravitation has been transformed away
momentarily and in a small neighbourhood of P. How does this happen
in practice? Consider Einstein’s celebrated example of the freely falling
lift. A person inside such a lift feels weightless. The accelerated frame of
reference of the lift provides the locally inertial frame in the small neigh-
bourhood of the falling person. Similarly, a spacecraft circling around
Earth is in fact freely falling in the Earth’s gravity, and the astronauts
inside it feel weightless. (See Figure 7.1 showing an astronaut floating
in space.)

Fig. 7.1. A floating astronaut
in the micro-gravity
environment of a space
shuttle. Photograph by
courtesy of NASA.
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It should be emphasized that this feeling of weightlessness in a
falling lift or a spacecraft is limited to local regions: there is no universal
frame that transforms away Earth’s gravity everywhere, at all times. If
we demand that the relations of (4.15) hold at all points of spacetime,
we would need to have ∂�i

kl/∂xm = 0 everywhere, leading to Ri
klm = 0,

that is, to a flat spacetime. Thus a curved spacetime with a non-vanishing
Riemann tensor is necessary to describe genuine effects of gravitation.

The weak principle of equivalence states that effects of gravitation
can be transformed away locally and over small intervals of time by
using suitably accelerated frames of reference. Thus it is the physical
statement of the mathematical relations given by (4.15). It is possi-
ble, however, to go from here to a much stronger statement, the so-
called strong principle of equivalence, which states that any physical
interaction (other than gravitation, which has now been identified with
geometry) behaves in a locally inertial frame as if gravitation were
absent. For example, Maxwell’s equations will have their familiar form
in a locally inertial frame. Thus an observer performing a local experi-
ment in a freely falling lift would measure the speed of light to be c.

The strong principle of equivalence enables us to extend any physical
law that is expressed in the covariant language of special relativity to
the more general form it would have in the presence of gravitation. The
law is usually expressed in terms of vectors, tensors, or spinors in the
Minkowski spacetime of special relativity. All we have to do is to write
it in terms of the corresponding entities which are covariant in curved
spacetime. Thus, in the flat spacetime of special relativity, the Maxwell
electromagnetic field tensor Fik is related to the current vector j k by

Fik
,i = 4π j k . (7.1)

In curved spacetime the ordinary derivative is replaced by the covariant
derivative:

Fik
;i = 4π j k . (7.2)

Notice that the effect of gravitation enters through the �i
kl terms that

are present in (7.2). This generalization of (7.1) to (7.2) is called the
minimal coupling of the field with gravitation, since it is the simplest
one possible.

So, in order to describe how other interactions behave in the presence
of gravitation, we use the covariance under the general coordinate trans-
formation as the criterion to be satisfied by their underlying equations.
Thus, it is immediately clear from the example of the electromagnetic
field that a light ray describes a null geodesic.

In the same vein we can now describe a moving object that is acted
on by no other interaction except gravitation – for example, a probe
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moving in the gravitational field of the Earth. In the absence of gravity,
this object would move in a straight line with uniform velocity; that is,
with the equation of motion

dui

ds
= 0, (7.3)

where ui is the 4-velocity. In the presence of gravity, (7.3) is modified
to our geodesic equation (5.19).

7.3 A uniformly accelerated frame

We now describe another example that provides a clue about how grav-
itational effects show up in spacetime geometry according to general
relativity. Consider the Minkowski spacetime with the standard line ele-
ment

ds2 = c2 dt2 − dx2 − dy2 − dz2. (7.4)

If we make the coordinate transformation for a constant g,

x = c2

g

(
cosh

(
gt ′

c

)
− 1

)
+ x ′cosh

(
gt ′

c

)
, (7.5)

where

y = y′,

z = z′,

t = c

g
sinh

(
gt ′

c

)
+ x ′

c
sinh

(
gt ′

c

)
.

This leads to the line element

ds2 =
(

1 + gx ′

c2

)2

dt ′2 − dx ′2 − dy′2 − dz′2. (7.6)

What interpretation can we give to (7.6)? The origin of the (x ′, y′, z′)
system has a world line whose parametric form in the old coordinates is
given by

x = c2

g

(
cosh

(
gt ′

c

)
− 1

)
, y = 0, z = 0, t = c

g
sinh

(
gt ′

c

)
. (7.7)

Using the kinematics of special relativity described in Section 1.8
of Chapter 1, it can be easily seen that (7.7) describes the motion of
a point that has a uniform acceleration g in the x direction, a point
that is momentarily at rest at the origin of (x, y, z) at t = 0. We
may interpret the line element (7.6) and the new coordinate system as
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describing the spacetime in the rest frame of the uniformly accelerated
observer.

Direct calculation shows that not all �i
kl are zero in (7.6) at x ′ = 0,

y′ = 0, z′ = 0. The frame is therefore non-inertial. For the neighbour-
hood of the origin, the metric component

g00
∼= 1 + 2gx ′

c2
= 1 + 2φ

c2
, (7.8)

where φ is the Newtonian gravitational potential for a uniform gravita-
tional field that induces an acceleration due to gravity of −g. We have
here the reverse situation to that of the falling lift: we seem to have gen-
erated a pseudo-gravitational field by choosing a suitably accelerated
observer. The prefix ‘pseudo-’ is used because the gravitational field is
not real – it is an illusory effect arising from the choice of coordinates.
The Riemann tensor for the metric is zero, thus confirming the above
statement.

An example of an accelerated frame is provided by a bus or an
aircraft starting off from rest. All passengers facing in the forward
direction feel a force pressing their backs to their seats. This force
‘attracting’ them to the seats is illusory and momentary, lasting only so
long as the acceleration persists. Astronauts taking off in rocket-driven
spaceships feel their weight increase several times at the time of lift off,
again because of the initial acceleration. All these examples tell us how
intimately related the accelerated frames are to gravity.

Nevertheless the relation (7.8) is also suggestive of the real grav-
itational field, as we shall see in the following example and later in
Chapter 8.

Example 7.3.1 Consider a particle held at rest at the origin x = 0, y =
0, z = 0 in the manifestly Minkowski frame (7.4). What is its trajectory in

the uniformly accelerated frame (7.6)?

On setting x = 0 in Equation (7.5), we get,

x ′ = c2

g

(
sech

(
gt ′

c

)
− 1

)
,

which, for small t ′, i.e., for t ′ � c/g, approximates to

x ′ = −1

2
gt ′2.

Thus to an observer at rest in the accelerated frame, the particle will

appear to have a ‘free fall’ in the negative x ′ direction, and the observer will

ascribe this to gravity in that direction.
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Example 7.3.2 Problem. A particle of unit rest mass is uniformly accel-

erated as described in Section 7.3. Show that, at time t , its energy has grown

to γ (t)c2, where

γ (t) =
(

1 + g2t2

c2

)1/2

.

Solution. Without loss of generality we take the particle at x ′ = 0. Using

(7.7) we get dt/ds = cosh(gt ′/c). We may identify dt/ds with the energy

of motion per unit mass. That is, γ (t) = cosh(gt ′/c). Using (7.7) again to

relate t ′ to t , we get

cosh2

(
gt ′

c

)
= 1 + sinh2

(
gt ′

c

)
= 1 +

(
gt

c

)2

.

From this we get the required result

γ (t) =
(

1 + g2t2

c2

)1/2

.

7.4 The action principle and the
energy-momentum tensors

Let us now see how we can write the laws of physics in the covari-
ant language in a Riemannian spacetime using the strong principle of
equivalence. We take the familiar example of charged particles interact-
ing with the electromagnetic field. The physical laws can be derived from
an action principle. First we write the action in Minkowski spacetime:

A = −
∑

a

cma

∫
dsa − 1

16πc

∫
Fik Fik d4x −

∑
a

ea

c

∫
Ai dx i

a . (7.9)

Here we assume that the action describes physics in a volume V of
spacetime bound by surface �. All variations of physical quantities are
supposed to vanish on �. Ai are the components of the 4-potential,
which are related to the field tensor Fik by

Ak,i − Ai,k = Fik, (7.10)

while ea and ma are the charge and rest mass of particle a, whose
coordinates are given by xi

a and the proper time by sa with

ds2
a = ηik dx i

a dx k
a . (7.11)

How do we generalize (7.9) to Riemannian spacetime? First, we note
that ηik in (7.11) are replaced by gik . Next, starting from the covariant
vector Ai , we generate Fik by the covariant generalization of (7.10):

Ak;i − Ai ;k = Fik . (7.12)
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However, since the expression (7.12) is antisymmetric in (i, k), the extra
terms involving the Christoffel symbols cancel out and we are back to
(7.10)! The volume integral in (7.9) is modified to

∫
Fik Fik√−g d4x . (7.13)

The extra factor
√−g has crept in because the combination

√−g dx1 dx2 dx3 dx0 = 1

24
ei jkl dxi dx j dxk dxl (7.14)

acts as a scalar. (Refer to Example 3.3.4.) We therefore have the following
generalized form of (7.9):

A =−
∑

a

cma

∫
dsa − 1

16πc

∫
Fik Fik√−g d4x −

∑ ea

c

∫
Ai dx i

a . (7.15)

The variation of the world line of particle a gives its equation of motion

d2x i
a

ds2
a

+ �i
kl

dx k
a

dsa

dx l
a

dsa
= ea

ma
Fi

l

dal

dsa
, (7.16)

while the variation of Ai gives the field equations (7.2).
We summarize the situation by stating a general rule. Whatever

variables we introduce to specify the dynamics of the observed situation,
we apply the principle of stationarity of action for small variations of
these variables so that we end up knowing the ‘equations of motion’ that
specify how these variables change over space and time.

7.5 Variation of the metric tensor
The transition from (7.9) to (7.15) has, however, introduced an additional
independent feature into the action, besides the particle world lines and
the potential vector. The new feature is the spacetime geometry typified
by the metric tensor gik . We argue, quite plausibly, that the entire problem
is specified not just by the dynamical and field variables, but also by the
spacetime geometry. What will happen if we demand that the gik are
also dynamical variables and that the action A remains stationary for
small variations of the type

gik → gik + δgik? (7.17)

From the generalized action principle, should we not expect to get the
equations that determine the gik , and through them the spacetime geom-
etry? Let us investigate.

A glance at the action (7.15) shows that the last term does not
contribute anything under (7.17) if we keep the world lines and Ai fixed
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in spacetime. The first two terms, however, do make contributions. Let
us consider them in that order. First note that

δ(ds2
a ) = δgik dx i

a dx k
a ,

that is,

δ(dsa) = 1

2
δgik

dx i
a

dsa

dx k
a

dsa
dsa .

Therefore,

δ
∑

a

cma

∫
dsa = 1

2

∑
a

c

∫
ma

dx i
a

dsa

dx k
a

dsa
dsa δgik . (7.18)

Let us consider this variation in a small 4-volume V near a point P.
If we look at a locally inertial coordinate system near P we can identify
the above expression in a more familiar form. Let us first identify

pi
(a) = cma

dx i
a

dsa

as the 4-momentum of particle a. Then cp0
(a) = Ea is the energy of the

particle, and we get

1

2
cma

dx i
a

dsa

dx k
a

dsa
dsa = c2

2Ea
pi

(a) pk
(a) dta = c

2Ea
pi

(a) pk
(a) dx0

a .

Figure 7.2 shows the volume V as a shaded region in the neighbour-
hood of P, t being the local time coordinate and xµ (µ = 1, 2, 3) the
local rectangular space coordinates. We will shortly discuss the various
cases described in Figure 7.2. The expression (7.18) can then be looked
upon as a volume integral over V of the form

δ
∑

a

cma

∫
dsa = 1

2c

∫
V

δgik T ik
(m) d4x, (7.19)

where T ik
(m) is the sum of the expressions like

c2

Ea
pi

(a) pk
(a)

for each particle a that crosses a unit volume of the shaded region near
P. We now interpret this sum under various conditions. In each case
the trick is to look at the problem in the locally inertial frame and then
transform to a general frame.

7.5.1 The energy tensor of matter

This expression for Tik is none other than the usual expression for the
energy tensor of matter (also called the energy-momentum tensor or the
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(a)

(b)

(c)

t

t

t

x µ

x µ

x µ

a
b

dc e f g

a b c d e f g

a b c d e f g

Fig. 7.2. In (a) we have
matter particles moving along
parallel worldlines, with no
collisions and very little
relative motion. In (b) we see
particles moving relativistically
in random directions, while in
(c) we have an intermediate
situation wherein particles
have small, random, relative
motions.

stress energy tensor). Since we will need this tensor frequently, it is
derived below for three different types of matter.

Dust
This is the simplest situation, in which all of the particle world lines
going through the shaded region in Figure 7.2(a) are more or less parallel,
indicating that the particles of matter are moving without any relative
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motion in the neighbourhood of P. Writing the typical 4-velocity as ui

and using a Lorentz transformation to make ui = (1, 0, 0, 0) (that is,
transforming to the rest frame of the dust), the only non-zero component
of the energy tensor is

T 00 =
∑

a

mac2 = ρ0c2,

where the summation is over a unit volume in the neighbourhood of P.
Here ρ0 is the rest mass density of dust. In any other Lorentz frame we
get

T
(m)

ik = ρ0c2ui uk, (7.20)

an expression that is easily generalized to any (non-Lorentzian) reference
system.

Relativistic particles
This situation, described in Figure 7.2(b), represents the opposite
extreme. Here we have highly relativistic particles moving at random
through V . The 4-momentum of a typical particle is then approximated
to the form

pi =
(

E

c
, P

)
, E2 = c2| P |2 + m2c4 ∼= c2 P2, P = |P|.

Here m is the rest mass of a typical particle. In the highly relativistic
approximation we have |P| � mc.

Using the fact that the particles are moving randomly, we find that
the energy tensor has pressure components also:

T 00 =
∑

a

Ea = ε,

T 11 = T 22 = T 33 =
∑

a

P2c2

3Ea

∼=
∑ 1

3
Ea .

(7.21)

The factor 1/3 comes from randomizing in all directions. These are the
only non-zero pressure components. Here ε is the energy density. Thus
for highly relativistic particles we get

T
(m)

ik = diag(ε, ε/3, ε/3, ε/3). (7.22)

This form is applicable to randomly moving neutrinos or photons.

Fluid
This situation is illustrated in Figure 7.2(c) and consists of a collection
of particles with small (non-relativistic) random motions. If we choose
the locally inertial frame in which the fluid as a whole is at rest as the



110 Physics in curved spacetime

frame of reference, we can evaluate the components of T ik
(m) as follows.

Let a typical particle have the 4-momentum vector given by

p0 = mc2√
1 − v2

c2

, pµ = mv√
1 − v2

c2

(µ = 1, 2, 3). (7.23)

Then

T 00 =
∑

mc2

(
1 − v2

c2

)−1/2

∼=
∑

mc2

(
1 + v2

2c2

)
= ρc2,

T 11 = T 22 = T 33 = 1

3

∑
mv2

(
1 − v2

c2

)−1/2

∼= p. (7.24)

Here ρ and p are the density and pressure of the fluid. In a frame of
reference in which the fluid as a whole has a 4-velocity ui , the energy
tensor becomes

T
(m)

ik = (p + ρc2)ui uk − pηik . (7.25)

The generally covariant form of (7.25) is obviously

T
(m)

ik = (p + ρc2)ui uk − pgik . (7.26)

Note that ρ is not just the rest-mass density, but also includes the energy
density of internal motion, as seen in (7.24).

We may now relax our restriction to the locally inertial coordinate
system at P. The generalized form of (7.19) is then

δ
∑

a

cma

∫
dsa = 1

2c

∫
T
(m)

ik√−g δgik d4x . (7.27)

7.5.2 The energy tensor of the electromagnetic field

We next consider the variation of the second term of (7.9). If we keep
Ai fixed, the Fik , as given by (7.12) or (7.10), remain unchanged under
the variation of gik . Hence

δ(Fik Fik√−g) = Fik Flm δ(gil gkm√−g).

From the basic definition we get

δgik gkl = −gik δgkl ,

that is,

δgik = −gim gkn δgmn . (7.28)



7.5 Variation of the metric tensor 111

Also, from (4.12) we have

δ
√−g = 1

2
gik√−g δgik . (7.29)

Substituting these expressions into the variation of the second term of
the action gives

δ
1

16πc

∫
V

Fik Fik√−g d4x = 1

2c

∫
V

T
(em)

ik√−g δgik d4x, (7.30)

with the electromagnetic energy tensor given by

T(m)
ik = 1

4π

(1

4
Fmn Fmn gik − Fi

l Flk
)
. (7.31)

The above two examples can be generalized to any field 
 that is
described by an action

A
 =
∫

L


√−g d4x . (7.32)

Here L
 is the Lagrangian density of 
. The variation of A
 may be
written as

δA
 = − 1

2c

∫
T
(
)

ik√−g δgik d4x . (7.33)

This may be taken as a formal definition of T ik , the energy-momentum
tensor.

In theories defined only in Minkowski spacetime the appearance of
energy tensors is somewhat ad hoc. They do not enter explicitly into any
dynamic or field equations. They appear only through their divergences,
the typical rule for conservation of energy and momentum being given
by T ik

,k = 0. In our curved spacetime framework the T ik find a natural
expression through the variation of gik . Moreover, as we shall show next,
the above derivation of the T ik leads to the zero-divergence equation as
an automatic consequence.

7.5.3 Conservation of energy and momentum

We begin with the observation that L
 in the action leading to (7.32) is
a scalar quantity, so any change of coordinates does not change it. Using
this result, we make an infinitesimal change of coordinates:

x ′i = xi + ξ i , (7.34)

where the ξs are infinitesimally small. Clearly, for such a coordinate
change, the change δA
 in the action will be zero. But we can express
the change in another way. The coordinate change introduces a change of
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metric tensor implying that for the same geometry there will in general
be a non-zero δgik . So we will get the change of action as in (7.33). We
will therefore evaluate it first. For brevity we will denote ∂ξ l/∂xk by ξ l

k .
Tensor transformation law will give

∂xl

∂x ′i ≈ δl
i − ξ l

i ,

so we get

g′
ik(xi + ξ i ) = (δl

i − ξ l
i )(δ

m
k − ξm

k ) × glm .

Expand the left-hand side by Taylor expansion around xi retaining only
up to the first-order term in ξ i . On the right-hand side likewise retain
terms of that order only to get

δgik ≡ g′
ik(xi ) − g ik(xi ) = −gimξm

k − glkξ
l
i − gik,lξ

l .

Now convert the ordinary derivatives of ξ into covariant derivatives
by adding the terms with Christoffel symbols and use the identities of
Section 4.5 to express the derivative gik,l in terms of the same symbols. A
simple manipulation along these lines leads to a result somewhat similar
to that of Chapter 6 (see Equation (6.6) there):

δgik = −[ξi ;k + ξk;i ]. (7.35)

We therefore get the change in action, using Equation (7.33), as

δA
 = 1

2c

∫
T
(
)

ik√−g δgik d4x (7.36)

= − 1

2c

∫
T
(
)

ik√−g [ξi ;k + ξk;i ]d
4x . (7.37)

Since Tik is a symmetric tensor, this expression can be further simplified
and rewritten (after suppressing the suffix 
) as

δA
 = −1

c

∫
[(T ikξi );k − ξi T

ik
;k]

√−g d4x . (7.38)

Of the two terms inside the square brackets, the first gets transformed
to a surface integral by Green’s theorem and, since in the variational
process changes like ξi are supposed to vanish on the boundary, we
are left with the second term only. Since we expect δA
 to vanish for
arbitrary ξi , we conclude that

T ik
;k ≡ 0, (7.39)

i.e., the energy-momentum tensor is conserved.
Notice that this result was deduced from the scalar property of the

action, that is, from its invariance with respect to coordinate transfor-
mation. This is a ‘symmetry’ property of the action and the above result
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may be seen as an example of the general theorem due to Emily Noether,
which states that for every symmetry of the action there is a conservation
law. We encounter several examples of Noether’s theorem in theoretical
physics.

Example 7.5.1 Problem. For a scalar field with Lagrangian density

L = 1

2
φ,iφ,k gik

derive the energy-momentum tensor.

Solution. By performing the variation of gik , gik , etc. we get

δAφ = δ

∫
1

2
φ,iφ,k gik√−g d4x = 1

2

∫
φ,iφ,k δ(gik√−g) d4x .

Using the result

δ(gik√−g) = δgik√−g + gik δ
√−g

= δgik√−g − 1

2

√−ggpq δg pq gik

we get

δAφ = 1

2

∫
φ,iφ,k

[
δgik√−g − 1

2

√−ggpq δg pq gik

]
d4x

= 1

2

∫
Tik δgik√−gd4x,

where

Tik = φ,iφ,k − 1

2
gikφ

,lφ,l .

This is the required energy-momentum tensor for the scalar field.

Problem. Show that, if the Lagrangian density L of a field explicitly depends

on gik and gik,l , then the corresponding energy tensor is given by

T ik = 2

[(
∂L

∂gik,l

)
,l

+ 1

2

∂L

∂gik,l
gmn gmn,l − ∂L

∂gik
− 1

2
Lgik

]
.

Solution. We have, from (7.33) and (7.29),

δ(L
√−g) =

[
∂L

∂gik
δgik + ∂L

∂gik,l
δgik,l

]√−g + 1

2
L
√−ggik δgik .

However, δgik,l may be written as (δgik),l and one can use the divergence

theorem to get∫
V

∂L

∂gik,l
δgik,l

√−g d4x = −
∫

ϑ

{
∂L

∂gik,l

√−g

}
,l

δgik d4x .
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Here we have used the fact that the variations δgik vanish on the boundary of

V , so that the surface integral on the right-hand side vanishes. Hence from

(7.33) we get

T ik = 2

[
1√−g

{
∂L

∂gik,l

√−g

}
,l

− ∂L

∂gik
− 1

2
Lgik

]
.

The stated answer follows when we recall that the first term on the right-hand

side contains
√−g, and it gives (−g),l = 1

2

√−ggmn gmn,l .

It was this variation of the metric tensor that led Hilbert to derive the
field equations of general relativity shortly after Einstein had proposed
them from heuristic considerations. We now turn our attention to this
topic in the following chapter.

Exercises

1. Calculate the energy-momentum tensor for the scalar field φ given by the

action integral ∫
(φ;iφ;k gik + m2φ2)

√−g d4x,

where m = constant. (m is usually identified with the mass of the field.)

2. Fluid with isotropic pressure p and density ρ fills a spherically symmetric

region with the line element

ds2 = eν dt2 − eλ dr 2 − eµ(dθ 2 + sin2θ dφ2),

where λ, µ and ν depend on r and t only. From the conservation law deduce the

relations

∂

∂t
(λ + 2µ) = − 2

p + ρ

∂ρ

∂t
;

∂ν

∂r
= − 2

p + ρ

∂p

∂r
.

(The velocity of light is unity.)

3. Dust of density ρ(t) and radiation of density u(t) fill the spacetime given by

the line element

ds2 = dt2 − S2(t)
[ dr 2

1 − kr 2
+ r 2(dθ 2 + sin2θ dφ2)

]
,

where k = 1, 0 or −1. From the conservation law deduce that

1

S3

∂

∂t
(ρS3) + 1

S4

∂

∂t
(uS4) = 0.

(The velocity of light is unity.)

4. Verify by direct calculation that the divergence of the electromagnetic energy-

momentum tensor vanishes everywhere except at the location of the charged
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particles. By a suitable limiting process deduce the equations of motion of the

electric charge by evaluating

T ik
;k(m)

+ T ik
;k(em)

at the particle.

5. The action A
 is conformally invariant, i.e., it does not change when the

spacetime metric gik is changed to �2gik , where � is a well-behaved function of

xi and 0 < � < ∞. Show that the trace of T
(
)

ik vanishes identically. (The trace

of a tensor Aik is gik Aik .)

6. Show that for dust T ik = ρui uk conservation means that ui follows a

geodesic.

7. Suppose that in a specific coordinate system the metric gik is independent of

x1. Show that the conservation law T i
1;i = 0 for the energy-momentum tensor

becomes expressible as

1√−g

∂

∂xi
(
√−gT i

1) = 0.

(Both T i
k and gik are assumed diagonal.)

8. Show by direct calculation that Maxwell’s equations are conformally invari-

ant. Work out how masses of electric charges must transform if the Maxwell–

Lorentz equation of motion also is conformally invariant.

9. Calculate the form of the energy-momentum tensor for a plane electromag-

netic wave in Minkowski spacetime.

10. Write down Poynting’s theorem in the older three-dimensional form of the

electromagnetic theory. Work out its form in the four-dimensional notation of

special relativity and generalize it to curved spacetime.



Chapter 8

Einstein’s equations

8.1 A heuristic approach

The preceding chapter showed that the variation of the action A with
respect to gik leads us to the energy tensor of various interactions. We still
do not have dynamical equations that tell us how to determine the gik in
terms of the distribution of matter and energy. It was Einstein’s conjecture
that the energy tensors should act as the ‘sources’ of gravity. Thus what
we have so far achieved is identification of sources of gravitation. But
we further need the basic variables whose sources are these Tik . Einstein
felt that the variables are not to be found in physics but in the geometry
of spacetime. We have already seen that the basic measurements of the
geometry are carried out through the gik , the concept of parallelism is
expressed through the �i

kl while spacetime curvature appears through
the Riemann tensor Riklm . Einstein reasoned in a heuristic way to arrive
at equations linking these quantities to the energy-momentum tensors.
Below we capture the reasoning he used.

Following the general trend of nineteenth-century physics, especially
the Maxwell equations, Einstein looked for an expression that would act
like a wave equation for gik , with Tik as the source. It is immediately
clear that the standard wave equation in the covariant form

gmn gik;mn = κTik, (8.1)

where κ is a constant, will not do, for the left-hand side vanishes iden-
tically. In fact any covariant linear combination of the first and second
derivatives of the metric tensor will be expressed in terms of their covari-
ant derivatives and will vanish because of the identity gik;l ≡ 0. However,

116
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if we go to covariant non-linear expressions involving ordinary deriva-
tives, this need not be so.

Is there a second-rank tensor symmetric in its indices (like the Tik)
that involves second derivatives of gik in a non-linear form? Does such
a tensor appear naturally when one studies the geometry of spacetime?
Clearly, if the tensor is to bring out the special feature of curvature of
spacetime, it must be related to the Riemann tensor. Einstein first tried
Rik , writing his equations as

Rik = constant × Tik . (8.2)

In order to ensure that energy and momentum are conserved, he had
to impose the additional requirement that the right-hand side of these
equations have a zero divergence. However, after some trial and error
he improved on this conjecture, finally arriving at the tensor Gik of
(5.11). His field equations of general relativity, published in 1915 (see
Reference [8]), took the form

Rik − 1

2
gik R ≡ Gik = −κTik . (8.3)

The constant κ is to be determined by the requirement that the above
equations resemble Newton’s when describing slow motion (v � c) in
a weak gravitational field. We will return to this problem in Section 8.3.

These equations have the added advantage that in view of the Bianchi
identities in (5.13) all solutions of these equations must satisfy the
condition

T ik
;k ≡ 0. (8.4)

That is, the law of conservation of energy and momentum follows natu-
rally from (8.3).

Although there are ten Einstein equations for ten unknown gik ,
the divergence condition of (8.4) reduces the number of independent
equations to six. This underdeterminacy of the problem can be related
to the general covariance of the theory: if gik is a solution, then so is
any tensor transform of gik obtained through a change of coordinates.
In short, there is a degeneracy of solutions: several apparently different
solutions represent the same physical reality. One solution in this set can
be obtained from another by a suitable coordinate transformation.

The expression (8.4) follows for any T ik obtained from an action
principle by the variation of gik as found in the last chapter. As men-
tioned there, this result is an example of Noether’s theorem, which relates
a conservation law to a basic symmetry. In this particular case the sym-
metry is that of coordinate invariance. It is therefore pertinent to ask
whether the Einstein tensor can also be obtained naturally by deriving
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Equations (8.3) from an action principle. This problem was solved by
Hilbert [9] soon after Einstein proposed his equations of gravitation.

8.2 The Hilbert action principle
If we wish to derive the Einstein tensor from an action principle, we
naturally look for a scalar of geometrical origin that contains up to first
derivatives of gik . No such scalar exists! However, if we go to second
derivatives, then the simplest scalar is R. It was therefore taken as the
starting point by Hilbert for his action principle.

Hilbert’s problem can be posed as follows. Consider the variation of
the term defined over a spacetime volume V ,∫

V

R
√−g d4x (8.5)

for gik → gik + δgik with the restriction that δgik and δgik
,l vanish on

the boundary of V . We now show that

δ

∫
V

R
√−g d4x =

∫
V

δgik

(
Rik − 1

2
gik R

)√−g d4x

= −
∫
V

δgik

(
Rik − 1

2
gik R

)√−g d4x . (8.6)

To show this, first note that, under the variation gik → gik + δgik ,
the variation δ�i

kl transforms as a tensor. This follows on applying the
transformation formula (4.5) to both �i

kl and �i
kl + δ�i

kl and taking
the difference. The second ‘gamma-independent’ terms on the right-
hand side of both the formulae are cancelled out, leaving a pure tensor
transformation law.

Coming now to the main result, we write

R = Rik gik

so that

δR = δRik + Rik δgik .

Thus we can deduce (8.6) provided we can show that∫
V δRik gik√−g d4x = 0. To prove this result, use a locally inertial

coordinate system to deduce that Equation (5.9) leads to
√−ggik δRik = −√−g[(gik δ�l

ik),l − (gil δ�k
ik),l ] = √−gwl

;l ,

where we write

wl = gik δ�l
ik − gil δ�k

ik .
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Here wk is seen to be a vector since it involves terms like δ�i
kl that

are tensors. Then use Green’s theorem over the specified volume to
show that, since the variations of gammas are supposed to vanish on
the boundary, the variation part δRik in the above expression leads to
zero. Note that, because locally the � symbols are zero, we can write
wl

,l = wl
;l .

Caution. There has been a subtle departure from the usual variational
procedure here! Normally the Lagrangian in the action is limited to first
derivatives of any dynamical variable, so the variations of that variable
(and not its derivative) are assumed to vanish on the boundary. Here the
Lagrangian contains second derivatives of the metric tensor, so we need
both δgik,l and δgik to vanish on the boundary. In short, we are dealing
here with a variational problem involving derivatives one level higher
than in the standard Euler–Lagrange variational problem.

One way of avoiding having second derivatives in the action is to
replace R by

gil (�k
il�

n
kn − �n

im�m
ln)

in the integral (8.5). One can show that the modified action also leads
to the same Einstein equations. However, the modified integrand suffers
from one defect: it is not a scalar!

Ignoring these hiccups, it follows that Einstein’s equations can be
derived from an action principle if we add to A the term

Agravitation = 1

2κc

∫
V

R
√−g d4x . (8.7)

Further, if to the scalar R we add a constant (2λ, say) that is trivially
a scalar, we get a modified set of field equations:

Rik − 1

2
gik R + λgik = −κTik . (8.8)

We may consider this equation as representing the variation of action
(8.7) in a spacetime region of prescribed volume, with λ playing
the role of a Lagrangian undetermined multiplier. We will consider
these equations only when we discuss cosmology, since the extra term
(the λ-term) has cosmological significance. λ is often referred to as the
‘cosmological constant’. For the time being we move on to (8.3) and
relate κ to known physical constants.

8.3 The Newtonian approximation

The important question of the magnitude of κ can be settled by
examining the relationship between general relativity and Newtonian
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gravitation. The first hint of a connection between Newtonian grav-
itation and the present theory was provided by (7.8), where we saw
that, provided g00 did not differ significantly from unity, the difference
(g00 − 1) is proportional to the Newtonian gravitation potential. We
now seek to formalize this relationship and thereby determine κ . We
will show that in the so-called slow-motion +weak-field approximation,
general relativity reduces to Newtonian gravitation.

This approximation is quantified by the following assumptions.

1. The motions of particles are non-relativistic: v � c. In this case we are back

to Newtonian mechanics.

2. The gravitational fields are weak in the sense that

gik = ηik + hik, |hik | � 1. (8.9)

The inequality suggests that we ignore powers of |hik| higher than 2 in the

action principle and higher than 1 in the field equations. We expect this to

lead to a spacetime geometry not very different from Euclid’s.

3. The fields change slowly with time. This means we ignore time derivatives

in comparison with space derivatives. This assumption asks us to ignore

possible effects of gravitational waves. In a sense, this approximation brings

us back to the Newtonian concept of instantaneous action at a distance.

Let us now see how the action is simplified under these approxima-
tions. First note that, with x0 = ct ,

ds2 = (ηik + hik)dxi dxk ≈ (1 + h00)c2 dt2 − v2 dt2,

that is,

ds ≈
(√

1 + h00 − v2

c2

)
c dt ≈

(
1 + 1

2
h00 − v2

2c2

)
c dt. (8.10)

We next look at the term involving the scalar curvature. The linearized
expression for the Riemann tensor (see (5.5)) is

Riklm ≈ 1

2
(hkl,im + him,kl − hkm,il − hil,km). (8.11)

The corresponding values of Rik and R can also be calculated. However,
care is needed if we are to look at the action principle rather than the field
equations in this approximation, for we expect quadratic expressions in
the hik to appear in the geometrical term (8.7).

Item 3 above eliminates time derivatives altogether. Further, the
ratios of typical space and time displacements are δxµ/δx0 = vµ/c,
where vµ are typical Newtonian velocities. Thus h00 is more important
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than any other hik , at least by the factor (c/v). We will henceforth ignore
all other hik in comparison with h00. We then get

g00 ≈ 1 − h00, (8.12)

√−g ≈ 1 + 1

2
h00 (8.13)

and

R
√−g ≈ −

(
1 − 1

2
h00

)
∇2h00. (8.14)

Using these relations, we finally get the approximate action as

A ≈ − 1

2κ

∫ ∫ (
1 − 1

2
h00

)
∇2h00 d3x dt −

∑ 1

2
mc2

∫
h00 dt

+
∑ 1

2
m

∫
v2 dt + constant. (8.15)

The constant represents path-independent terms that can be ignored in

a variational problem. Here we have switched over to Newtonian three-
dimensional notation, dropping particle labels a, b, . . . and using the
3-vector x to denote xµ (µ = 1, 2, 3). We can use Green’s theorem and
ignore surface terms. Thus, in the three-dimensional spatial volume,
we get

∫
3-volume

(
1 − 1

2
h00

)
∇2h00 d3x =

∫
2-surface

(
1 − 1

2
h00

)
∇h00 dS

= 1

2

∫
3-volume

(∇h00)2 d3x.

Since we are dynamically interested only in the 3-volume term, we

ignore the surface term. Hence

A ≈ − 1

4κ

∫∫
(∇hoo)2 d3x dt −

∑1

2
mc2

∫
h00 dt +

∑1

2
m

∫
v2 dt. (8.16)

Now compare this with the Newtonian action

AN ≈ − 1

8πG

∫ ∫
(∇φ)2 d3x dt −

∑
m

∫
φ dt +

∑ 1

2
m

∫
v2 dt, (8.17)

with φ as the gravitational potential. Clearly, (8.16) becomes the same

as (8.17) if we put

φ = 1

2
c2h00, κ = 8πG

c4
. (8.18)
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Example 8.3.1 Problem. Show by a direct Newtonian approximation of

Einstein’s field equations and geodesic equations that the result of (8.18)

follows.

Solution. First note that the contraction of field equation gives R = κT ,

where T = gik T ik . Hence the equations may be rewritten as

Rik = −κ

[
Tik − 1

2
gik T

]
.

From (8.11) we get, with h = ηikhik ,

Rik
∼= 1

2
�hik + 1

2
{h,ik − hl

i,lk − hl
k,li }.

Again ignoring time derivatives and retaining only h00 from all hik , we get

R00
∼= −1

2
∇2h00.

Likewise, for dust of density ρ,

−κ

[
T00 − 1

2
g00T

]
= −κρ/2.

Therefore the (00) component of the field equations gives

∇2h00 = κρ. (A)

Next consider the µ components of the geodesic equations. We write in the

present approximation
dxi

ds
∼= (1, v)

with the 3-velocity v of a particle being small in magnitude compared with

c = 1. The only relevant �i
kl is

�
µ

00
∼= 1

2
h00,µ,

so we get, from the geodesic equations

d2xµ

ds2
+ �

µ

kl

dxk

ds

dxl

ds
= 0,

the ‘Newtonian’ equations of motion

dv

dt
= −1

2
∇h00. (B)

These will exactly correspond to the Newtonian equations if we define the

potential φ by h00 = 2φ/c2 = 2φ for c = 1. Equation (A) then becomes the

familiar Poisson equation

∇2φ = 4πGρ,

provided that we define κ = 8πG (=8πG/c4). Thus the match with New-

tonian physics is complete.
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Problem. Show that, for a spacetime of constant curvature K satisfying

Einstein’s field equations with energy-momentum tensor Tik ,

K = −2πG

3
T,

where T is the trace of Tik .

Solution. We have for the given spacetime

Riklm = K [gil gkm − gim gkl ].

This leads to Rkl = −3K gkl and R = −12K . Therefore

Rik − 1

2
gik R = −3K gik + 6K gik = 3K gik .

By equating this to −8πGTik (c = 1), we get

3K gik = −8πGTik .

Hence on multiplication by gik we get

12K = −8πGT,

from which the result follows.

Problem. In a spacetime containing pure isotropic radiation, show that a

positive cosmological constant is needed in order to have a positive scalar

curvature for the spacetime.

Solution. The field equations with λ are

Rik − 1

2
gik R + λgik = −κTik .

Take the trace of these equations, recalling that, for pure isotropic radiation,

T = 0. Hence we get

R − 2R + 4λ = −κT = 0,

i.e.,

λ = 1

4
R.

Thus, for R > 0, we need λ > 0.

Thus we have completed our project of evaluating κ and relating
the relativistic framework to Newtonian gravitation. Assumptions 1 to
3 above are known as the Newtonian approximation. It leads to the lin-
ear gravitation theory of Newton, which has wide applications, ranging
from the tidal phenomenon of the Earth’s oceans to motions of planets
of the Solar System and of stars and galaxies in clusters. Provided that
these three assumptions hold, general relativity does not add anything
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new. If assumption 3 is dropped but assumptions 1 and 2 are retained,
we are in the domain of the weak-field theory of gravitational radi-
ation. For, in the weak-field limit, it is seen that spacetime-curvature
effects propagate as waves with the speed of light. We shall discuss this
intriguing phenomenon in detail in Chapter 11. To get the full effects of
general relativity, however, we must drop all three assumptions and face
the non-linear equations of (8.3) in their most general form. Naturally
this is a complicated task, and after nearly a century of this theory there
are only a handful of exact solutions of direct physical relevance. We
will discuss the earliest, simplest and most important of these solutions
in the following chapter.

Exercises
1. Assume that �i

kl are not explicitly related to gik in the expression for R,

which is as given in Chapter 5. Determine the form of �i
kl by requiring that

δ

∫
R
√−g d4x = 0

for �i
kl → �i

kl + δ�i
kl while the coordinates and the metric tensor remain

unchanged. Show that this method, known as the Palatini method, leads to

the familiar Riemannian affine connection.

2. Verify that Einstein’s equations can be obtained if instead of the term∫
R
√−g d4x we have the following term in the action:

∫
gil (�k

il�
n
kn − �n

im�m
ln)

√−g d4x .

Notice that this term does not contain second derivatives of gik . However, it is

not an invariant.

3. Show that, if the gravitational equations are obtained from an action principle,

subject to the restriction that the 4-volume of the region V in question,
∫
V

√−g d4x,

remains unchanged, the Einstein tensor is replaced by

Rik − 1

2
gik R + λgik,

where λ is a Lagrange multiplier.

4. Show from the linearized form of Riklm that G00 and G0µ do not contain

time derivatives (of any hik) of order two. The equations G0i = κT0i are called

constraint equations, which must be satisfied by any initial data specified for

solving the problem.
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5. Derive the Newtonian approximation of Einstein’s field equations with the

cosmological constant.

6. Show that, in Newtonian gravitation with the cosmological term, two masses

can stay in equilibrium at a specific distance. Is this equilibrium stable, unstable

or neutral?

7. In a given volumeV of spacetime the Ricci scalar R is expected to be positive.

Why?

8. To avoid having to demand the surface condition δgik,l = 0 in the Hilbert

action problem, Gibbons and Hawking suggested adding an extra term to the

action in the form of a surface integral:

AGH = 1

8πG

∫
∂V

ni ;k(gik − eni nk)
√−h d3x,

where ∂V is the surface of the volume V over which the Hilbert term was

defined, ni is the unit normal to ∂V and hi
k = gi

k − eni nk . The quantity e = +1

for timelike ni and e = −1 for spacelike ni , with ni ni = e. Show that the surface

variational term in the Hilbert action is now cancelled out by the variation of the

above surface integral.



Chapter 9

The Schwarzschild solution

9.1 The exterior solution

Shortly after Einstein published his equations of general relativity, Karl
Schwarzschild solved them to find the geometry in the empty spacetime
outside a spherical distribution of matter of mass M (see Reference
[10]). As we know, this is the simplest finite source of matter that gives
rise to gravitational effects. The corresponding problem in Newtonian
gravitation yields the solution for the gravitational potential as

φ = − G M

r
, (9.1)

r being the distance from the centre of the spherical distribution. Per-
haps it is worth commenting that this ‘simplest’ problem took Newton
many years to solve to his satisfaction. The above solution was seen
as the correct one for a point mass. Yet, was it the same for a finite
spherically symmetric distribution of matter? Since Newton wanted to
apply his theory to planets and the Moon, all extended spherical objects,
he wanted to be clear on this issue. For example, the solution, if correct,
does not carry any information about the size or radial inhomogeneity
of the source. For an inverse square law of force, this happens to be cor-
rect, as Newton eventually proved to himself. Today we can prove this
result by solving the Laplace equation for a finite spherically symmetric
source.

Let us now look at the relativistic counterpart of this solution. We
have to determine the spacetime metric for the non-Euclidean geometry
outside the source. At a large distance from the centre, we expect the
gravitational field to be weak. So under the Newtonian approximation

126
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we expect

g00 ∼ 1 − 2G M

c2r
. (9.2)

We will now show how the Schwarzschild solution is obtained and how
this exact solution relates to the above asymptotic form.

The problem is simplified by making use of symmetry arguments.
If the spacetime outside such a spherical distribution is empty, then its
geometry should be spherically symmetric about the centre O of the
distribution. So we start with the most general form of the line element
that satisfies this requirement of spherical symmetry.

It can be shown, using arguments from Chapter 6, that the most
general form of such a line element is given by Equation (6.30). We
recall the form of (6.30) here as

ds2 = A(r, t)dt2 + 2H (r, t)dt dr + B(r, t)dr 2 + F(r, t)(dθ2 + sin2θ dφ2).

(9.3)

We now redefine the radial coordinate as r ′ by setting r ′2 = F(r, t).
This would lead to changes in the forms of A, B and H . However, as can
easily be verified, the choice of a new time coordinate t ′ can be made
such that the cross-product dt ′ dr ′ disappears from the expression for
ds2. Writing the coefficients of c2 dt ′2 and dr ′2 as eν and eλ, respectively,
and dropping the primes on the coordinates t ′ and r ′, the line element
may be rewritten as

ds2 = eνc2 dt2 − eλ dr 2 − r 2(dθ 2 + sin2 θ dφ2), (9.4)

where ν and λ are functions of r and t . The advantage of the exponential
form is that, for real ν and λ, g00 > 0 and g11 < 0 as required by the
timelike coordinate t and spacelike coordinate r . If ν = λ = 0, we get
the Minkowski line element in spherical polar space coordinates. The
non-Euclidean effects are therefore contained in the functions λ and ν.
Although in this case r ceases to measure the radial distance from O, it
still has the meaning that the spherical surface r = constant = r0 (for
example) has the surface area 4πr2

0 .
Given the line element (9.4), the next step is to calculate gik,

√−g
and �kl

i . We then calculate the components of Rkl , which are given by
(5.9) and are expressible in the form

Rkl = −∂�i
kl

∂xi
+ ∂2(ln

√−g)

∂xk ∂xl
+ �m

kn�
n
lm − ∂

∂xn
(ln

√−g)�n
kl . (9.5)

Since the space outside the distribution is empty, it has Tkl = 0. There-
fore the contraction of the field equations (8.3) gives R = 0, and these
equations reduce to

Rkl = 0. (9.6)
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We now proceed to carry out these steps of calculation. The non-zero
components of gik and �i

kl are given below, using the coordinates
defined by x0 = t, x1 = r, x2 = θ, x3 = φ:

g00 = eν, g11 = −eλ, g22 = −r 2, g33 = −r 2 sin2θ,

g00 = e−ν, g11 = −e−λ, g22 = −r−2, g33 = −r−2 cosec2θ,

�0|00 = 1

2
eν ν̇, �1|00 = −1

2
eν ν ′,

�0|01 = 1

2
eνν ′,

�1|01 = −1

2
eλ λ̇, �0|11 = 1

2
eλ λ̇, �1|11 = −1

2
eλ λ′,

�2|12 = −r, �3|13 = −r sin2θ,

�1|22 = r, �3|23 = −r 2 sin θ cos θ,

�1|33 = r sin2θ, �2|33 = r 2 sin θ cos θ,

�0
00 = 1

2
ν̇, �1

00 = 1

2
eν−λ ν ′,

�0
01 = 1

2
ν ′, �1

01 = 1

2
λ̇, �0

11 = 1

2
eλ−ν λ̇, �1

11 = 1

2
λ′,

�2
12 = �3

13 = 1

r
, �1

22 = −re−λ,

�3
23 = cot θ, �1

33 = −re−λ sin2θ, �2
33 = −sin θ cos θ.

(Here a prime denotes differentiation with respect to r , and an overdot
denotes differentiation with respect to t .) We next compute the various
components of the Ricci tensor. The (00) and (11) components of (9.6)
give, after some manipulation, the following equations:

e−λ

(
λ′

r
− 1

r 2

)
+ 1

r 2
= 0. (9.7)

−e−λ

(
ν ′

r
+ 1

r 2

)
+ 1

r 2
= 0. (9.8)

From these we get, by subtracting (9.8) from (9.7),

ν ′ + λ′ = 0,

that is,

ν + λ = f (t).

The arbitrary function f (t) can, however, be set to equal zero since we
still have an arbitrary time tranformation

t = g(t̄)
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at our disposal, which changes ν to

ν̄ = ν + 2 ln

(
dg

dt̄

)

and preserves the form of the line element (9.4). Therefore we can take,
without loss of generality,

ν + λ = 0. (9.9)

However, we also have, from R01 = 0,

λ̇ = 0. (9.10)

Thus both λ and ν (=−λ) are functions of r only. Equations (9.7) and
(9.8) then yield the solution

eν = e−λ = 1 − A

r
, A = constant.

However, if we are given that the mass of the object is M , we may use
the boundary condition (9.2) as r → ∞ to set A = 2G M/c2. Thus we
get our required solution as the line element

ds2 =
(

1 − 2G M

c2r

)
c2 dt2 −

(
1 − 2G M

c2r

)−1

dr 2 − r 2(dθ 2 + sin2θ dφ2).

(9.11)

This is known as the Schwarzschild line element. It turns out that because
of the symmetries of the problem the other field equations are automat-
ically satisfied: we need only the (11), (00) and (01) components in
order to arrive at the solution. One may notice that the metric behaves
strangely for small r , namely for r ≤ Rs, where

Rs = 2G M

c2
. (9.12)

This quantity is called the Schwarzschild radius of the mass. It is easy
to verify that this is an extremely small ‘radius’ and most known objects
have a radius exceeding it by a large factor. For the Sun, for example, the
Schwarzschild radius is about 3 km, whereas its actual radius is nearly
700 000 km. Idealized objects whose radius equals their Schwarzschild
radius are known as black holes. We shall return to a discussion of black
holes in Chapter 13.

The Schwarzschild solution, as derived above, is manifestly static.
Thus there is no scope for a dynamical solution such as one involving
gravitational radiation, even if our spherical source is expanding, con-
tracting, or oscillating. This remarkable result is known as Birkhoff’s
theorem.
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Example 9.1.1 Problem. Find a coordinate transformation r = f (R) that

will transform the Schwarzschild exterior line element to a manifestly

isotropic form:

ds2 = eµ dt2 − eσ [dR2 + R2(dθ 2 + sin2θ dφ2)].

Find µ and σ.

Solution. On comparing the two line elements, we find

r 2 = R2eσ and eλ dr 2 = eσ dR2.

By eliminating the unknown σ we get

eλ dr 2

r 2
= dR2

R2
, i.e., ln R =

∫ (
1 − 2G M

r

)−1/2
dr

r
.

This can easily be integrated to give R = 1
2 [r − G M +

√
r (r − 2G M)].

Some simple algebra then yields r − G M = R + G2 M2/(4R). This corre-

sponds to the transformation

r = R

[
1 + G M

2R

]2

.

The corresponding eµ and eσ are

eµ =


1 − G M

2R

1 + G M

2R




2

, eσ =
(

1 + G M

2R

)4

.

We end this section with another observation. Suppose we have a
point mass in Newtonian gravitation and we wanted to solve the Laplace
equation to determine the potential. We could do so by invoking the
delta function δ(x) which vanishes for any non-zero x but has an integral
equal to unity over any interval containing the point x = 0. In the three-
dimensional case under consideration the point mass M is represented
by the density

ρ = M × δ(r )

4π r 2
. (9.13)

The integration of the Laplace equation then leads us to the solution
(9.1). In the relativistic version, however, we cannot do so! For we have
a problem of singularity at r = 0. The metric diverges, so defining a
point mass is not possible. What we have done therefore is to determine
the constant in eν by appealing to the Newtonian limit at large distances.
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We can, of course, avoid this issue by appealing to the finite size
of any mass. So we next consider the extension of the Schwarzschild
solution to a finite distribution of matter.

9.2 The interior solution
Let us assume that the source in the above problem is not a point mass but
a spherical distribution of matter confined to a coordinate radius r = R0.
Let Tik denote the energy-momentum tensor of the interior matter. Then
Equations (9.7) and (9.8) get modified to

e−λ

(
λ′

r
− 1

r 2

)
+ 1

r 2
= 8πGT0

0, (9.14)

−e−λ

(
ν ′

r
+ 1

r 2

)
+ 1

r 2
= 8πGT1

1. (9.15)

Schwarzschild had investigated a special solution in which the inte-
rior is an incompressible fluid of constant density ρ and (variable)
pressure p. Thus the energy tensor was taken to be

T ik = (ρ + p)ui uk − pgik, (9.16)

where ui ≡ (u0, 0, 0, 0) is the flow vector of the fluid at rest. Since
ui ui = 1, we get (u0)2eν = 1, i.e., u0 = e−ν/2. Therefore, T0

0 = ρ,
T1

1 = −p.
Equation (9.14) can easily be integrated. We have

e−λ = 1 − 8πGρ

3
r 2 = 1 − αr 2, (9.17)

say, where α = 8πGρ/3 = constant. We have set λ = 0 at r = 0.
Next consider the energy-conservation equation Ti

k
;k = 0, for i = 1.

From (9.16) we get T0
0 = ρ and T 1

1 = T 2
2 = T 3

3 = −p, so

0 = T k
1 ;k = 1√−g

∂

∂xk
(
√−gT k

1 ) − �l
1k T k

l

= 1

r 2
e−(ν+λ)/2 ∂

∂r

(
r 2e(λ+ν)/2T 1

1

)
− �0

10T 0
0 − (�1

11 + �2
12 + �3

13)T 1
1

= −
[2

r
+ 1

2
(ν ′ + λ′)

]
p − ∂p

∂r
− 1

2
ν ′ρ +

(1

2
λ′ + 2

r

)
p

= −1

2
ν ′(p + ρ) − ∂p

∂r
,

i.e.,

∂p

∂r
= −1

2
(p + ρ)ν ′. (9.18)
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Returning to (9.15), we have ν ′ given in terms of eλ, r and p by

ν ′ = −1

r
+ eλ

r
+ 8πGpreλ. (9.19)

Substitute (9.19) for ν ′ in (9.18), then use the definition of α and the
expression (9.17) for e−λ to arrive at the following differential equation:

dp

dr
= −4πG(p + ρ)r

1 − αr 2

(
p + 1

3
ρ

)
. (9.20)

Assuming that p = 0 at the surface r = R0, we can integrate (9.20). A
straightforward but tedious integration gives

p = ρ

{ √
1 − αr 2 −

√
1 − αR 2

0

3
√

1 − αR 2
0 − √

1 − αr 2

}
. (9.21)

Finally, the equation for eν leads to

eν = 1

4

{
3
√

1 − αR2
0 −

√
1 − αr 2

}2

. (9.22)

This is known as the Schwarzschild interior solution.
The pressure p can be arbitrarily high, even exceeding ρ. The largest

value of p is at the centre (r = 0) and it reaches the limit p → ∞ when
αR2

0 = 8/9, i.e., when

R0 =
√

1

3πGρ
. (9.23)

The interior solution should match the exterior solution obtained ear-
lier in Section 9.1 across the boundary r = R0. We see that, across this
boundary, g22 and g33 are continuous. What about g11 and g00? We expect
that an observer moving across the boundary with a clock should not
notice any discontinuity of time measurement. That is, eν should be con-
tinuous. From (9.22) we have at r = R0 that eν = 1 − αR2

0. The exterior
solution has eν = 1 − 2G M/R0 = 1 − 2G × (4π/3)R2

0ρ = 1 − αR2
0 .

Thus the continuity of eν is maintained. What about eλ? We find that it is
continuous also. In general this need not be the case. For, in measuring
ds in the radial direction, we are using the exterior solution for r > R0

and the interior solution for r < R0. So the prescription for measuring
dr need not be the same in the two regions.

Example 9.2.1 Problem. From equations set up to describe a spherically

symmetric situation show that in general ν + λ < 0 at any finite r if the

spacetime is asymptotically flat.
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Solution. We have the two equations

e−λ

(
ν ′

r
+ 1

r 2

)
− 1

r 2
= −8πGT 1

1 ,

e−λ

(
1

r 2
− λ′

r

)
− 1

r 2
= −8πGT 0

0 .

On subtracting the second equation from the first we get

e−λ(ν ′ + λ′)
r

= 8πG(T 0
0 − T 1

1 ).

Now, for most physically relevant T i
k , we have T 0

0 > 0, T 1
1 < 0. For

example, for a fluid T 0
0 = ρ > 0, T 1

1 = −p < 0. Thus we have, from the

above equation, ν ′ + λ′ > 0, i.e., (ν + λ) at a finite value of r = r0 equals

(ν + λ)∞ − ∫ ∞
r0

(ν ′ + λ′)dr.

But, assuming spacetime to be asymptotically flat, i.e., that of special rel-

ativity, (ν + λ)∞ = 0. Since the integral itself is positive, the above equation

gives that (ν + λ) at r = r0 is negative.

Problem. For a spherical object in equilibrium under gravitation and its fluid

pressures, show that

dp

dr
= −4πGr (p + ρ)

1 − 2Gm(r )

r

·
{

p + m(r )

4πr 3

}
,

where m(r ) = ∫ r

0
4πr 2

1 ρ(r1)dr1.

Solution. From Equations (9.14), (9.15) and (9.18) we get a series of results

that lead to the desired answer as follows. On writing T 0
0 = ρ, we get from

(9.14)

e−λ = 1 − 2Gm(r )

r
, m(r ) as defined. (A)

From (9.18) we get
dp

dr
= −1

2
(p + ρ)ν ′, (B)

while from (9.15) we have

ν ′ = 8πGpreλ + eλ

r
− 1

r
. (C)

We substitute for eλ from (A) in the above equation to get

ν ′ = −1

r
+ 1

1 − 2Gm

r

{
1

r
+ 8πGpr

}

= 1

1 − 2Gm

r

{
1

r
+ 8πGpr − 1

r

(
1 − 2Gm

r

)}
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= 1

1 − 2Gm

r

{
2Gm

r 2
+ 8πGpr

}

= 8πGr

1 − 2Gm

r

{
p + m

4πr 3

}
.

Use this value ν ′ in Equation (B) to get the required result.

We will discuss in Chapter 12 situations more general than the
somewhat artificial one assumed in Schwarzschild’s interior solution.
Here we will return to the exterior solution and consider its dynam-
ical and geometrical consequences. These turn out to have bearing
on realistic tests that can be designed to test the validity of general
relativity.

9.3 Motion of a test particle

Imagine a test particle moving in the spacetime of Schwarzschild’s exte-
rior solution. By a ‘test’ particle we mean a particle that is subjected to
the gravitational influence of the central mass M , but which does not
in turn contribute to any gravitational effects of its own mass. Thus we
have introduced an artificiality into the picture, which can be justified
only if the mass of our moving particle is negligibly small compared
with M . In this case we use the result that our test particle follows a
timelike geodesic.

Writing its equations in the standard form

d2xi

ds2
+ �i

kl

dxk

ds

dxl

ds
= 0, (9.24)

with x0 = t , x1 = r , x2 = θ , x3 = φ, we get, for i = 0,

d2t

ds2
+ �0

i j

dxi

ds

dx j

ds
= 0. (9.25)

From our earlier computations on page 128, we have the only non-zero
�0

i j as �0
01 = ν ′/2. So we get for (9.25)

d2t

ds2
+ dt

ds

dr

ds
ν ′ = 0. (9.26)

This easily integrates to

eν dt

ds
= constant = γ (say). (9.27)
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Likewise we get, for i = 3, the following first integral:

r 2 sin θ
dφ

ds
= constant = h (say). (9.28)

We may identify γ as the energy per unit mass and h as the angular
momentum per unit mass. The i = 2 (theta) equation reduces to

d2θ

ds2
+ 2

r

dθ

ds

dr

ds
− sin θ cos θ

(dφ

ds

)2

= 0. (9.29)

This somewhat complicated-looking equation has a simple solution:

θ = constant = π

2
. (9.30)

It may be easily verified that, provided we ‘start’ the particle mov-
ing in the θ = π/2 plane, it will continue to move in that plane. In
a spherically symmetric spacetime any plane through the centre may
be chosen as a reference plane, without any loss of generality. Taking
the θ = π/2 plane as the chosen case, we see that the solution to the
geodesic equations is

dt

ds
= γ e−ν , r 2 dφ

ds
= constant = h and θ = π

2
. (9.31)

Since the metric itself is a first integral of the geodesic equations,
we get

1 = eν

( dt

ds

)2

− e−ν

(dr

ds

)2

− r 2
(dφ

ds

)2

,

where eν = 1 − 2G M/r. By substituting from (9.31), we can transform
this equation to

(
dr

ds

)2

= γ 2 −
(

1 − 2G M

r

)(
1 + h2

r 2

)
≡ γ 2 − V 2(r ), (9.32)

where

V 2(r ) =
(

1 − 2G M

r

)(
1 + h2

r 2

)
(9.33)

is the ‘effective potential’. For motion to be possible we need V 2(r ) ≤
γ 2.

(i) The Newtonian approximation
In this case,

|γ − 1| � 1, r 	 2G M and h � r. (9.34)

The first inequality tells us that the total energy γ c2 is not much dif-
ferent from the rest-mass energy, as is the case in a slow-motion approx-
imation. The r 	 2G M inequality relates to Schwarzschild’s solution,
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identifying a weak-field approximation. The last inequality tells us that
the transverse velocity h/r is small compared with c (=1).

In this case we have

V 2 ∼= 1 + 2VN, (9.35)

where

VN = h2

2r 2
− G M

r
(9.36)

is the effective Newtonian potential for radial motion:

1

2

(dr

dt

)2

+ VN = γ 2 − 1

2
= EN (9.37)

(say).
In Figure 9.1, VN is plotted against r to illustrate the typical New-

tonian situation. Notice that VN drops from an infinite value to zero as

V N

R
PARABOLIC  ORBIT  (E   = 0)

h = 0

HYPERBOLIC ORBIT (E   > 0)

ELLIPTIC  ORBIT  (E    < 0)

b

a

c

N

N

N

Fig. 9.1. The ‘Newtonian’
approximation of motion in
the empty exterior
Schwarzschild solution is
described by the
potential–distance plot
shown. The dotted curve
represents radial motion. See
the text for interpretation of
the curves E N <,=, > 0.
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r increases from zero to a finite value rp = h2/(2G M). Thereafter it
continues to decrease as r increases. As r approaches 2rp = h2/(G M),
VN reaches a negative minimum. Beyond 2rp, as r increases to infinity,
VN increases but stays negative. It asymptotically approaches zero.

Against this background we have three lines a, b and c drawn hori-
zontally, corresponding to three values of EN, the ‘total’ energy of the
particle. Line a corresponds to EN = 0 and to motion in a parabolic tra-
jectory. Line b has EN > 0 and describes a hyperbolic trajectory. Line
c with EN < 0 describes the elliptical orbits typically followed by plan-
ets around the Sun. Notice that, because the kinetic energy has to be
positive, the condition to be satisfied by the trajectory is VN ≤ EN.

(ii) The relativistic orbits
We now turn to orbits that might not satisfy (9.34). In this case we
have to use the full equation (9.32). To facilitate the algebra, define
dimensionless parameters

x = r/(G M), η = h/(G M), σ = s/(G M). (9.38)

We then have (9.32) written as

( dx

dσ

)2

= γ 2 − V 2, (9.39)

where

V 2 =
(

1 − 2

x

)(
1 + η2

x2

)
. (9.40)

The function V (x) has a maximum Vmax at x = xmax and a minimum
Vmin at x = xmin. Both xmin and xmax are given by the equation ∂V 2/∂x =
0, i.e., by the quadratic equation

x2 − η2x + 3η2 = 0. (9.41)

We therefore have

xmax = 1

2

{
η2 − η

√
η2 − 12

}
, xmin = 1

2

{
η2 + η

√
η2 − 12

}
. (9.42)

The maxima and minima coincide for η2 = 12, i.e., for

h = 2
√

3G M, xmin = xmax = 6. (9.43)

From the considerations of stability of orbits we deduce that circular
orbits at x = xmax are unstable, whereas those at x = xmin are stable.
From (9.43) we see that stable circular orbits are possible for r ≥ 6G M ,
the smallest such orbit having radius 6G M . If η → ∞, xmin → ∞ but
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V 2

3

1

X
2 6

η > 4

η = 4

η = 2

Fig. 9.2. The square of the
effective potential for
relativistic motion is plotted
against distance scaled to the
size of half the Schwarzschild
radius. See the text for a
discussion of the various
curves shown here.

xmax → 3. Thus r = 3G M is the lower limit to the size of circular orbits
all of which are unstable. Figure 9.2 illustrates these features.

Another point of interest is the value of η for which Vmax = 1. This
happens at η = 4, xmax = 4.

In Figure 9.2, V 2 is plotted against x for various values of η. We note
that, for η < 2

√
3, V 2 has no real turning points and it increases from

V 2 = 0 at x = 2 to V 2 = 1 at x → ∞. Thus an incoming particle with
γ > 1 will fall in without a bounce. The same conclusion applies to an
incoming particle with γ > V to start with. For 2

√
3 < η < 4 there are

bound orbits like the Newtonian ellipses, provided that γ < Vmax < 1.
For γ > Vmax the incoming particle falls in to be sucked into the object.

For η > 4 there are three types of orbits. Those with γ > Vmax rep-
resent particles that, if coming in, fall into the object. Incoming particles
with 1 < γ < Vmax bounce at the potential barrier (at some minimum
r ) and then move out again like the hyperbolic orbits. Similarly, for
γ < 1 < Vmax the orbits are bound as for Newtonian ellipses.
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Example 9.3.1 Problem. Calculate the Schwarzschild time and the proper

time elapsed when a particle moves once round a circular path of size r = a.

What happens when r → 3G M?

Solution. For travel along a circular path dr/ds = 0, d2r/ds2 = 0. From

Equation (9.32) we have by differentiation

d2r

ds2
= −1

2

d

dr
V 2(r ).

Hence, at r = a we require

γ 2 = V 2(a) and
d

dr
V 2(r )|r=a = 0.

So we have two equations:

γ 2 =
(

1 − 2G M

a

)(
1 + h2

a2

)
(A)

and
2G M

a2

(
1 + h2

a2

)
− 2h2

a3

(
1 − 2G M

a

)
= 0. (B)

From (B) we get

h2 = a2G M

a − 3G M
, 1 + h2

a2
= a − 2G M

a − 3G M
.

Hence from (A) we get

γ 2 = e2ν a

a − 3G M
.

Let T be the time taken by one revolution, as measured by the t time

coordinate. Then

T
dφ

dt
= 2π.

However, r 2 dφ/ds = h, i.e., for r = a we have

h = a2 dφ

dt
· dt

ds
.

Since eν(dt/ds) = γ , we have dt/ds = γ e−ν =
√

a/(a − 3G M). We there-

fore have

dφ

dt
= h

a2

√
a − 3G M

a
= 1

a

√
G M

a − 3G M
·
√

a − 3G M

a

= 1

a

√
G M

a
.

Therefore

T = 2πa3/2

(G M)1/2
.
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Since
dt

ds
=

√
a

a − 3G M
,

the time taken as measured by the proper time of the observer is

τ =
√

a − 3G M

a
· 2πa3/2

(G M)1/2

= 2πa

√
a − 3G M

G M
.

As a → 3G M this shrinks to zero since the observer tends to have a null

geodesic.

9.4 Trajectories of photons
The null geodesics describe trajectories of photons and, following our
earlier work (vide Section 5.2) and analogously to Equation (9.31), we
set up their equations as follows:

eν dt

dλ
= constant = 1

b
, r 2 dθ

dλ
= 1, θ = π

2
. (9.44)

We have taken λ to be an affine parameter and scaled it so that the second
of the above equations has unity on the right-hand side. Likewise it is
convenient to write the constant in the first equation as 1/b, rather
than γ .

The first integral of the geodesic equation then becomes

( dr

dλ

)2

+ V 2(r ) = 1

b2
, V 2(r ) = 1

r 2

(
1 − 2G M

r

)
. (9.45)

Figure 9.3 shows a plot of V 2 against the dimensionless ‘distance’,
x = r/(G M). Starting at zero value for x = 2 , V 2 rises to a maximum
value of (27G2 M2)−1 at x = xmax = 3 and then falls off to zero as
x → ∞. What does this potential behaviour imply for an incoming
photon?

If the photon travels with b < 3
√

3G M , then it has 1/b2 >

(27G2 M2)−1 and such a photon cannot bounce at a potential wall and
go out again: it drops into the object. A photon with b > 3

√
3G M will

bounce and go out. What about b = 3
√

3G M? At this value the line
touches the peak of the potential curve and the point of contact corre-
sponds to a circular trajectory with radius x = 3 (r = 3G M). However,
this trajectory is unstable and the photon, on slight disturbance, either
falls in or spirals out to r = ∞.
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V 2

27G2M 2
1

0 X
2

b < 3 3GM

b > 3 3GM

Fig. 9.3. The curve similar to
Figure 9.2 is drawn here for
describing the motion of
photons in Schwarzschild’s
spacetime. See the text for a
discussion of the various
horizontal levels here.

These considerations make an important point: that gravitation
affects the path of light. Isaac Newton had wondered about this effect,
when he wrote

Do not bodies act upon light at a distance? And by their action bend its

Rays: and is not this action [caeteris paribus] strongest at the least

distance?

Optics: Query 1.

Einstein’s general relativity returns an affirmative reply to the ques-
tion ‘Does gravitation affect the light track?’. Is this reply in conformity
with reality? To find out, we move to the next chapter to discuss the
experimental tests of general relativity.

Exercises

1. By considering the isometries of the spherically symmetric spacetime deduce

that, with the notation used in the text,

T 2
2 = T 3

3

and that all components of T i
k with i �= k, except T 1

0 , are zero.

2. Calculate the non-zero components of Riklm in the Schwarzschild spacetime.

Verify that Riklm Riklm is finite at the Schwarzschild radius.

3. Show that there exists a path of the light ray in the form of a terminating

spiral given by

1

r
= − 1

6G M
+ 1

2G M
tanh2

(
φ

2

)

in the gravitational field of a spherical object of mass M .
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4. Show that the gravitational mass of a static spherical star of perfect fluid is

given by

M =
∫ R0

0

(ρ + 3p)e(ν+λ)/2 · 4πr 2 dr,

with the notation used in the text.

5. Show that a spherical distribution of perfect fluid satisfying p = kρ in hydro-

static equilibrium cannot have a bounding surface r = Rb < ∞ at which p = 0.

6. Show that in the interior Schwarzschild solution the central redshift zc is

related to the surface redshift zs by the relation

1 + zc = 2

2 − zs
(1 + zs).

As zs → 2, zc → ∞. (For a definition of gravitational redshift see Chapter 10,

Section 10.3.)

7. Write down the equation of geodesic deviation for test particles falling freely

along radial trajectories onto the central gravitating point mass M . Interpret the

two cases in which the initial deviation is in (i) the φ-coordinate and (ii) the

T -coordinate. Compare your results with the Newtonian theory.

8. Show that a freely and radially falling tachyon (described by a spacelike

geodesic) bounces at a finite Schwarzschild T -coordinate in the gravitational

field of a central gravitating mass M .

9. Show that the test particles experience no gravitational forces inside a self-

gravitating hollow spherical shell.

10. Give dynamical arguments to show that the orbit r = 3G M is unstable,

whereas r = 6G M is stable.



Chapter 10

Experimental tests of general relativity

10.1 Introduction

The general theory of relativity, like any other physical theory, must
submit itself for experimental verification. It started with a disadvantage
in that it was competing with a well-established paradigm, viz. the New-
tonian laws of motion and gravitation. Any test that could be designed
for testing general relativity had at the same time to show ways of distin-
guishing its predictions from those of the Newtonian framework. Here
the situation has been different from the case of special relativity. Many
laboratory tests have been designed (see some in the opening chapter)
to study the dynamics of fast-moving particles. For, in this case, the
crucial factor γ , distinguishing relativity from Newtonian dynamics, is
significantly different from unity. For really testing general relativity we
need situations of strong gravitational fields that cannot be arranged in
a terrestrial laboratory. The differences from Newtonian predictions can
and do exist in relatively weak fields, however, provided that we look
at astronomical situations. Therefore astronomical tests have figured
prominently in establishing the general theory.

In the early days Einstein proposed three tests, which are known as
the classical tests of general relativity. More tests emerged in later years,
although their number is still small. In this chapter we will disuss both
classes of tests. All except one require an astronomical setting.

To place matters in proper perspective, let us see how ‘strong’ or
‘weak’ the Earth’s gravitational field is at its maximum, i.e., on the
surface of the Earth. Putting in the numbers for M and R, the mass and

143
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the radius of the Earth, we get the dimensionless parameter

η ≡ 2G M

c2 R
∼= 1.2 × 10−9. (10.1)

This ratio is close to 4 × 10−6 when evaluated for the Sun on the solar
surface and to 2 × 10−8 when evaluated at a typical point on the Earth’s
orbit around the Sun. The smallness of these numbers conveys the chal-
lenge facing an experimenter attempting to distinguish between the pre-
dictions of Newton and Einstein. For, to detect any effect characteristic of
non-Euclidean geometry as expected in general relativity, these numbers
should be closer to unity.

The physicist cannot help making another comparison. For testing
the electromagnetic theory, both in its classical and in its quantum ver-
sion, a large number of experiments could be performed. The more
experimental checks there are the greater the confidence inspired by a
physical theory. Because of its somewhat esoteric nature the general the-
ory falls far short in such a comparison. This was reportedly one reason
why Einstein was not given Nobel Prizes for the special and general
theories of relativity: apparently the experts were not convinced that
enough experimental proofs had been provided for these theories. This
was somewhat surprising, at least in the case of special relativity; for the
discoverers of other effects (such as the Compton effect) involving the
dynamics of special relativity were awarded the Nobel Prize.

We mention these perspectives so that the reader will appreciate the
few tests that there are!

10.2 The PPN parameters
Most of the present tests of general relativity are based on the
Schwarzschild solution, and they seek to measure the fine differences
between the predictions of Newtonian gravitation and those of general
relativity. These form the main part of this chapter.

Before confronting the experimental situation, however, it is neces-
sary to clarify how to attach meanings to measurements in a spacetime
that is non-Euclidean. We have already seen that coordinates have no
absolute status, hence blindly relying on them might lead to incorrect
results. The Schwarzschild metric (vide Chapter 9) can be used to illus-
trate the concept of measurement as seen in the example below.

Example 10.2.1 Suppose that an observer is located at a point with r =
constant, θ = constant, φ = constant. How does he relate the time τ kept

by his watch to the coordinate t? From the principle of equivalence we

know that, since dτ = ds/c measures the observer’s proper time in a locally
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inertial frame, being a scalar, it does so in all frames. For our observer,

dr = 0, dθ = 0, dφ = 0; so from (9.11) we get

dτ =
(

1 − 2G M

c2r

)1/2

dt.

This gives the required answer.

The experimental tests mostly revolve around the Schwarzschild
line element as applied to objects in the Solar System. However, beyond
comparing the relativistic predictions with the corresponding Newtonian
ones, there has also been interest in other theories of gravitation. Some
of these, such as the Brans–Dicke theory, will be discussed in Chapter
18. These theories use a spacetime metric as in relativity, but come
up with line elements different from Schwarzschild’s. All these can be
simultaneously looked at in their weak-field limits and by comparing
their predictions in the various experiments. A series of parameters can
be used to specify the various components of the metric with reference
to these tests. Since we are looking at a level of approximation one
step beyond the Newtonian limit, the procedure is called parametrized
post-Newtonian approximation or simply the PPN approximation. The
parameters are denoted by γ , β, ξ , α1, α2, α3, and ζ1, ζ2, ζ3, ζ4. We
will not discuss the details of how these parameters are derived in a
particular theory (see Table 10.1 from Reference [18], a review by
C. M. Will, which is given at the end of this chapter), except to identify
the first two, which have values of unity in general relativity and occur
explicitly in the classical tests of this theory. The rest have value zero in
relativity.

To identify β and γ , we express the Schwarzschild line element in
the isotropic form, in which the spatial part of the metric is the Euclidean
one multiplied by a radial function:

ds2 = eµc2 dt2 − eη[dR2 + R2(dθ 2 + sin2θ dφ2)], (10.2)

where µ and η are functions of the new radial coordinate R (see Example
9.1.1). By expanding these in powers of (M/R) we get

eµ = 1 − 2
G M

C2 R
+ 2β

( G M

C2 R

)2

, eη = 1 + 2γ
G M

C2 R
, (10.3)

where, as mentioned earlier for general relativity, both β and γ are unity.
For some other theories they may have different values. We will later
summarize the present status of the measured values of these parameters.
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10.3 The gravitational redshift

Imagine two observers A and B moving in spacetime exchanging
light signals with each other. In the general situation illustrated in
Figure 10.1, we have B transmitting two successive wavefronts at instants
B1 and B2 corresponding to successive peaks of intensity. The proper
time elapsed between these instants as measured by B is, say, 
B. To B,
these measurements bring the information that the wavelength of light
just released by him is 
B × c, where c is the speed of light.

In the corresponding geometrical optics we may argue that these
wavefronts reach A along null rays ζ1 and ζ2, reaching points A1 and A2

on the world line of A. To A the proper time gap between the receipts of
these two wave peaks is 
A. To him therefore the wavelength received
will appear to be 
A × c. Denoting the wavelengths emitted (by B) and
received (by A) as λB and λA, respectively, we define the spectral shift by

z = [λA − λB]

λB
= λA − λB

λB
. (10.4)

In the optical spectrum, the red colour is towards the long-wavelength
end and the blue/violet colour is at the short-wavelength end. Hence,
if in optical astronomy the observer finds that z > 0, the result is
described as redshift. Likewise, if z < 0, the result is called blueshift.

We will encounter various applications of this result under different
physical conditions. The application most physicists are familiar with
is that due to pure motion, known as the Doppler effect. As described in

∆ B

B 1

A 1

1

∆ A

B 2

B

A 2

A

2ζ

ζ

Fig. 10.1. Signal
communication between two
observers A and B, in a
general spacetime with an
inhomogeneous gravitational
field.
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Chapter 1, this arises when there is relative motion between A and B. In
a later chapter we will consider the cosmological redshift arising from
an overall expansion of the Universe. Here we describe the spectral
shift arising from passage of light between static inhomogeneous
gravitational fields.

10.3.1 The gravitational spectral redshift

Consider any static line element – that is, one in which gik do not depend
on x0 ≡ ct . Suppose we have two observers A and B with world lines

xµ = constant = aµ, bµ, (10.5)

respectively. Let ζ1 be a null geodesic from B to A, with parametric
equations given by

xi = xi (λ), (10.6)

with xµ(0) = bµ, xµ(1) = aµ, x0(0) = ctB, x0(1) = ctA. What does our
geodesic correspond to in physical terms?

It describes a light ray leaving observer B at time tB and reaching
observer A at time tA. Because of the static nature of the line element,
we also have another null geodesic solution given by

xµ = xµ(λ), µ = 1, 2, 3, (10.7)

x0 = x0(λ) + 
c, 
 = constant.

This describes a light ray ζ2 leaving B at tB + 
 and reaching A at
tA + 
. Figure 10.2 illustrates this result.

x 0

B 1

B 2

A 2

A 1

x 0

x
0x µ

B A

ζ2

ζ1

+ ∆

Fig. 10.2. Signal
communication in a static
spacetime. If B is in a stronger
gravitational field than A, the
signals from B to A will show a
redshift.
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Now, in the rest frame of B, the time interval 
 corresponds to a
proper time interval (measured by B) of

δτB = 
[g00(bµ)]1/2.

If n light waves have left B in this time interval, then the frequency of
these waves as measured by B is

νB = n



[g00(bµ)]−1/2.

Since the same number of waves is received by A in the corresponding
proper time interval δτA, we get the ratio of frequencies measured by B
and A as

νB

νA
=

[ g00(aµ)

g00(bµ)

]1/2

. (10.8)

This is also the ratio of the wavelengths λA : λB measured by A and B,
respectively.

If in the Schwarzschild solution B is an observer located on the
surface of a star, at r = rs, say, and A is a distant observer with r �
2G M/c2, we get

λA

λB

∼=
(

1 − 2G M

c2rs

)−1/2

. (10.9)

Thus spectral lines from a massive compact star should be redshifted.
For 2G M/(c2rs) small compared with unity, the redshift

z = λA − λB

λB
≈ G M

c2rs
. (10.10)

White dwarf stars like Sirius B and 40 Eridani B do show redshifts in
the range of 10−4 to 10−5, which are of the right order of magnitude.
More reliable and quantitatively accurate measurements, however, are
possible only in a terrestrial experiment.

10.3.2 The Pound–Rebka experiment

In the first such laboratory experiment, which was carried out in 1960,
R. V. Pound and G. A. Rebka measured the change in the frequency
of a gamma-ray photon emitted by an excited cobalt nucleus as it fell
from a height of 60–70 feet. For details of their experiment, see Refer-
ence [11]. Figure 10.3 gives a schematic description. As such a photon
falls through a height H , the Newtonian potential energy per unit mass
increases by gH , where g is the acceleration due to gravity on the
Earth’s surface. Because of this increase of energy, the photon should
undergo a blueshift; that is, its frequency increases by a fraction gH/c2.
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Fig. 10.3. A schematic
diagram describing the
Pound–Rebka experiment on
the measurement of
gravitational spectral shift. The
upward arrow indicates the
alignment of the iron nucleus
to receive the gamma ray
coming from above.

Although this fraction is as small as 10−15, it can be measured by modern
laboratory techniques.

The trick is to have an iron nucleus as the absorber at the bottom.
By moving the nucleus at a suitable speed away from the approaching
gamma-ray photon falling from above, one can effectively reduce its
apparent relative frequency with respect to the iron nucleus. When the
frequency matches the energy gap between the cobalt and iron nuclei
absorption occurs. The speed of the iron nucleus then tells us what
blueshift the gamma ray had.

This experiment had been thought of much earlier, but ensuring
that there would be no recoil problems with the absorbing nucleus had
proved to be difficult, until the discovery of the Mössbauer effect. The
nucleus could then be held in a crystal. The recoil was largely borne by
the holder as per the Mössbauer effect.

The Pound–Rebka experiment and later work have confirmed the
gravitational redshift effect to a high level of accuracy.

Notice, however, that we used Newtonian gravity applied to the pho-
ton to derive the expected result. We could have also used the relativistic
formula (10.8) with the approximation on the surface of the Earth, with
the same result. Thus a defender of Newtonian gravity could argue that
the formula (10.10) does not uniquely confirm general relativity. So we
now turn to two other tests, which do precisely that.
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10.4 The precession of the perihelion of Mercury

An outstanding mystery in planetary astronomy at the beginning of the
twentieth century had been the anomalous behaviour of the orbit of the
planet Mercury. It had been found that, slowly but surely, there was a
secular motion of the perihelion of Mercury’s orbit. The effect can be
described as follows.

If we denote the polar coordinates on a plane by (r, φ), then, in the
Newtonian approximation, the planet describes an ellipse given by its
polar equation

l

r
= 1 + e cos(φ − φ0). (10.11)

Here l is the semi latus rectum, e the eccentricity and φ0 the direction in
which its perihelion (point of closest approach to the Sun) lies.

Observations of the orbit of the planet Mercury had revealed that
φ0 is not a constant. Rather the perihelion precesses steadily at a small
but perceptible rate of 5600 ± 0.401 arcseconds per century. Of this,
∼5025 arcseconds per century could be explained by the fact that the
observations from the Earth are in its non-inertial frame of reference –
the Earth spins about an axis and also goes round the Sun. Thus there
was a remaining amount of about 575 arcseconds to explain. Of this,
all but 43 arcseconds per century could be accounted for by the pertur-
bation of Mercury’s orbit by the Newtonian gravitational effect of other
planets. How should one account for the remaining 43 arcseconds per
century? Notice that the amount to be explained is minuscule: it works
out that Mercury’s perihelion is seen to advance by about a 35 000th
part of a degree at the end of one orbit (see Figure 10.4). The fact that

P
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S

P

3

2

1

Fig. 10.4. A grossly
exaggerated picture of the
advance of the perihelion of
Mercury. The actual effect as
described in the text is minute
but significant.
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this discrepancy was a matter for worry shows the high expectations
scientists (astronomers and physicists) had of the Newtonian paradigm.

Indeed in the 1860s, when the discrepancy became a matter of
concern, U. J. J. Leverrier in Paris had offered a solution to the problem
on the basis of his experience two decades earlier when a discrepancy
had been noticed in the orbit of Uranus. At that time Leverrier had
suggested that the orbit of Uranus was being perturbed by a new planet
in the vicinity. (A similar prediction had been made by John Couch
Adams.) The explanation had worked and a new planet, later called
Neptune, was identified as the cause of the discrepancy. This time,
Leverrier suggested a similar explanation: look for an intramercurial
planet as the perturber of Mercury’s orbit. He even named the new planet
V ulcan. Alas, no such planet was found despite exhaustive searches.
So the discrepancy remained a possible demonstration of a failure of
Newton’s laws of gravitation and motion.

This was taken as a challenge by proponents of the general theory
of relativity. Taking the Sun as the source mass M in the Schwarzschild
solution and Mercury as a test particle, one can work out the orbit of
Mercury. Following the treatment of the problem given in Section 9.3,
we arrive at the following equation for a planetary orbit:

1

r 4

(
dr

dφ

)2

= γ 2

h2
−

(
1 − 2G M

r

)(
1

h2
+ 1

r 2

)
. (10.12)

We simplify this by writing u = 1/r :

(
du

dφ

)2

= γ 2 − 1

h2
− u2 + 2G Mu

h2
+ 2G Mu3. (10.13)

Differentiate this relation with respect to φ. After taking out the
common factor du/dφ, we get the equation as

d2u

dφ2
+ u = G M

h2
+ 3G Mu2. (10.14)

A comparison with Newtonian orbital dynamics will reveal that
here we have an extra term on the right-hand side. In the Newtonian
framework such a term would have arisen from an extra force obeying
an inverse fourth-power (r−4) law. The extra force is small compared
with the Newtonian force. Thus its effect on the Newtonian orbit would
be small. We will try to estimate it with the problem of Mercury in view.

Let us write the solution of the purely Newtonian equation (i.e.,
without the last term) as

u0 = 1

l
[1 + e cos(φ − φ0)], l = h2

G M
. (10.15)
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Next we try a perturbative approach to solve Equation (10.14) by
substituting for u the above solution for the (small) second term on the
right-hand side of the equation. Thus we write

d2u

dφ2
+ u = G M

h2
+ 3G M

l2
[1 + 2e cos(φ − φ0) + e2 cos2(φ − φ0)]. (10.16)

Try a solution of this equation in the following form:

u = u0 + u1 + u2, (10.17)

where

d2u1

dφ2
+ u1 = 6G M

l2
e cos(φ − φ0),

d2u2

dφ2
+ u2 = 3G M

l2
[1 + e2 cos2(φ − φ0)].

The complementary functions for these equations are cos φ and sin
φ. The right-hand side of the second of the above two equations does
not contain any of these functions, so we will get a bounded oscillatory
solution from this equation. Such a solution will not explain a secular
behaviour like that shown by the perihelion of Mercury.

The other equation, namely the first of the above two equations, does
have these functions on the right-hand side, so we do expect a secular
solution here. Indeed, a particular integral of the differential equation is

u1 = 3G Me

l2
φ sin(φ − φ0). (10.18)

On adding this to the Newtonian solution, we get the approximate
secular solution as

u ∼= u0 + u1 = 1

l

[
1 + e

(
cos(φ − φ0) + 3G M

l
φ sin(φ − φ0)

)]

∼= 1

l
[1 + e cos (φ − φ0 − ε)],

where we have assumed that

ε = 3G M

l
× φ (10.19)

is a small quantity so that cos ε is taken as unity and sin ε is approximated
by ε. Thus we see that the direction to the perihelion is not constant at
the value φ0, but changes its magnitude at a steady rate as illustrated.
This precession of perihelion at a rate computed over a period T of one
orbit (when φ changes by 2π ) around the Sun (M = M�) is given by

n = 6πG M�
lT c2

. (10.20)
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On putting in the values l = 5.53 × 1012 cm and G M� = 1.475 × 105

cm and one century = 415T , we get n as 43.03 arcseconds (per century).
This was an excellent resolution of a long-standing anomaly and it went
a long way towards establishing the credibility of general relativity in
the minds of physicists and astronomers. The value of n is largest for
Mercury, which of all the planets has the orbit which is most eccentric
and closest to the Sun. Given the same major axis, the latus rectum
l in the denominator of formula (10.20) is small for an orbit of high
eccentricity.

10.4.1 The binary pulsar

In the late 1970s, a more dramatic example of such a precession was
observed for the periastron of the binary star system that houses the pul-
sar PSR 1913+16. Here the gravitational effects are stronger than in the
Sun–Mercury system, and the precession rate is as high as 4.23 degrees
per year – about 3.6 × 104 times the value for Mercury. (See Reference
[12].) We should caution the reader, however, that, unlike in the Sun–
Mercury case where, because of the large disparity of their masses, the
Sun could be considered at rest and Mercury moving around it as a ‘test’
particle, in the binary pulsar case the two stars have comparable masses
and hence the Schwarzschild solution is not strictly applicable. Ideally
one should solve the relativistic two-body problem. This has not been
possible so far, so only an approximate extrapolation of the Sun–Mercury
problem is generally used for the above theoretical comparison.

10.5 The bending of light
The perihelion precession of Mercury was the best of the three tests of
general relativity in establishing a clear stamp of the theory. However,
in terms of a popular impact, the test to be described now played a key
role in establishing the superiority of general relativity over Newtonian
gravity and making Einstein a celebrity.

Does gravity affect light by bending its direction? When Newton
described his law of gravitation as universal, he meant it to be applicable
to all forms of matter, large and small. But what about light? Did the
universality extend to light rays also? Newton was not sure. We have
mentioned his query on this issue in Section 9.4.

Nevertheless, if we take some liberties with the Newtonian concept,
we can get an affirmative reply to this query. Imagine light made of
particles, e.g., photons. A photon of frequency ν would have an energy
hν and hence a mass equivalent of hν/c2. Let such a particle approach
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a mass M from infinity such that its asymptotic direction of motion
passes it at a distance b. Assume that the particle had velocity c at
infinity and it travelled like a typical particle in Newtonian dynamics.
What will be the final direction of the particle as it recedes from M at
infinity? The bending angle works out as 2G M/(c2 R), where R is the
distance of closest approach of the particle. In what we will refer to as
the ‘Newtonian prediction’ we imply this value.

While developing the general theory of relativity, Einstein had an
earlier version that gave exactly this answer. In 1911 he put it up for
testing should a suitable opportunity arise. The way to test the result is
explained in Figure 10.5. The source of light, say a star S, is viewed
from the Earth, E, on two occasions, once when the Sun is grazing its
line of sight as shown in the figure and once when the Sun is nowhere
near the line ES. As shown in Figure 10.5, the light ray from the star
approaches the Sun at a closest point P on its surface. Although the ray
is said to be bent by gravity, as we know, it is really following a null
geodesic in the curved spacetime produced by the Sun’s gravity. Clearly,
under normal circumstances it is not possible to sight the star with the
Sun in the foreground. The exceptional situation when we can see the
star is when the Sun is totally eclipsed. If one measures the direction of
the star at this stage and compares it with the direction under normal
circumstances (when the Sun is nowhere near) one should find a small
difference, corresponding to the bending angle predicted in Figure 10.5.

Y′

SUN

S

E Y

S′

P

Fig. 10.5. The direction from
the Earth (E) to the star (S)
is changed because of the
‘bending’ of light by gravity.
The star image accordingly
is shifted (to S′). This shift, in
reality, is quite small and is
shown in an exaggerated form
in this figure.

There was an eclipse due in 1914 that would be visible from Russia
and a team of scientists from Germany went to observe it and to perform
this experiment. But World War I broke out and the team members were
interned as aliens from an enemy country. This turned out to be fortunate
for Einstein, in a way; for in 1915, when he arrived at the final form of
relativity, which we are studying here, he found that under it the correct
answer was twice what he had got earlier. In short, his prediction of the
bending angle had changed. It would have been embarrassing for him
had the 1914 expedition gone ahead and found a result that disagreed
with his then prediction. Meanwhile, amongst the few astronomers who
understood what relativity was all about was Arthur Stanley Eddington
at Cambridge. Eddington proposed an eclipse expedition that would test
Einstein’s claim after the war had ended. A total solar eclipse in 1919,
visible from a band in the southern hemisphere, was of sufficiently
long duration to attempt the observations. Fortunately the war ended
in 1918 and a financial grant of one thousand pounds from the British
Government enabled Eddington to execute his plans.

The trials and tribulations of the experiment and its report to the
joint meeting of the Royal Society and the Royal Astronomical Society
on 6 November 1919 have been described in a very absorbing account
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by Peter Coles [13]. We will next carry out a brief calculation of the
expected result.

Just as timelike geodesics determine the tracks of planets, we can
calculate the track of a light ray by solving the equations of its null
geodesic. These equations were written down in general and solved in
the case of the Schwarzschild exterior spacetime geometry in the last
chapter: vide Equations (9.44). These can be combined to form a single
equation given by

1

r 4

(
dr

dφ

)2

+ 1

r 2
− 2G M

r 3
= 1

b2
. (10.21)

In terms of u = 1/r this equation takes the form

(
du

dφ

)2

+ u2 = 1

b2
+ 2G Mu3. (10.22)

Differentiation with respect to φ gives

d2u

dφ2
+ u = 3G Mu2. (10.23)

We will solve this non-linear equation in a perturbative fashion
as we did in the case of Mercury’s orbit. Looking at Figure 10.5,
we first represent the tangential straight line YPY′ as the zeroth-order
(no bending) approximation:

u0 = 1

R0
cos φ. (10.24)

Here P is the point of closest approach to the Sun and it is given by
the maximum value of u0, i.e., by φ = 0. R0, the closest distance, is,
ideally, the Sun’s radius. On substituting this solution into the right-hand
side of Equation (10.23) we get the next approximation satisfying

d2u

dφ2
+ u = 3G M

R2
0

cos2φ, (10.25)

which has the solution

u = 1

R0
cos φ + G M

R2
0

(2 − cos2φ). (10.26)

Now, looking at Figure 10.5, we see that the above equation describes
the curve EPS, the asymptotes of which are denoted by u = 0, φ = ±φ0,
where

φ0 =
{

π

2
+ 2G M

R0

}
(10.27)
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since we expect 2G M/R0 to be small compared with unity. The net
deflection of the light ray is therefore given by


φ = 4G M

R0c2
= 1.75 arcseconds, (10.28)

when we substitute the values for the Sun. To enable the numerical
computation we have restored the speed of light c to its proper place.

In his report to the scientific meeting in November 1919, Edding-
ton compared his values of 
φ with the theoretical predictions of 1.75
arcseconds (Einstein) and 0.875 arcsecond (Newton). He had measure-
ments from two places, from Sobral in Brazil and Principe in Guinea. His
conclusion was in favour of Einstein. This observational confirmation,
besides its high impact on the media, went a long way towards estab-
lishing the credibility of general relativity in the eyes of the physicists.

Yet, looking back at those results in a dispassionate way, one could
point to several uncertainties that might have weakened that conclusion!
The experiment itself was not performed under the best of conditions
and the equipment used had room for improvement. The positions of the
stars when the Sun was not in the vicinity could not be measured from
the same location, thus introducing a possible source of error. Also, the
optical refraction effects in the upper layers of the solar atmosphere were
not adequately estimated. Thus there was a strong reason for repeating
the experiment whenever the eclipse opportunity presented itself.

10.5.1 Measurement at longer wavelengths

Subsequent attempts by optical astronomers yielded somewhat incon-
clusive results, largely because of the limited sensitivity of the measuring
equipment and the uncertain nature of systematic errors. In the 1970s,
however, measurements with microwaves confirmed the above bending
angle much more precisely with only about 5% experimental error. Pio-
neering measurements were made by Counselman and others in 1974
(see Reference [14]) and by E. B. Fomalont and R. A. Sramek [15] in
1975. The technique used was to observe the quasar 3C-279, whose line
of sight intersects the Sun every October. Since the Sun is not a pow-
erful radiator of energy at these wavelengths, there is no need to wait
for a solar eclipse in order to make the measurements. The direction to
another source, 3C-273, was used as a reference point for measuring the
shift in angle.

This technology has subsequently been improved to reduce the error
bars further, as can be seen in Table 10.1 at the end of this chapter.
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10.6 Radar echo delay

P

K

E

R 1

R 2

R 0

SUN

Fig. 10.6. The echo of a radar
signal bounced off a Solar-
System body K may arrive late
if the signal path goes close
to the Sun. This, as explained
in the text, happens because
of the geometry of curved
spacetime near the Sun.

Just as the direction of a light ray is altered by the Sun’s gravity, so is
its apparent travel time. This effect, which was first highlighted by L.
I. Schiff, can also be calculated in a straightforward manner. We first
derive the result and then discuss how it is put to test. We again refer to
the null-geodesic equations (9.44) in the Schwarzschild spacetime. From
these we get, by eliminating the independent variable λ, the following
equation:

(
dr

dt

)2

=
(

1 − 2G M

r

)2

− b2

r 2

(
1 − 2G M

r

)3

. (10.29)

Let KPE denote a null-geodesic track from a planet K to Earth
E, grazing the Sun’s surface at P as shown in Figure 10.6. The radial
Schwarzschild coordinate r is measured from the Sun’s centre. At P, the
conditions are r = R0, the Sun’s radius, while the ‘shortest-distance’
requirement means dr/dt = 0 at P. Let r = R1 at K and r = R2 at E.
What is the time taken by light to travel the path KPE?

We break the answer into two bits, the time T taken by light to go
from K to P and the time taken from P to E:

T = f (R1, R0) + f (R0, R2), (10.30)

where the f functions are formally similar and defined by the integrals

f (R1, R0) =
∫ R1

R0

dr

(1 − 2G M/r )

{
1 − b2

r 2

(
1 − 2G M

r

)}−1/2

(10.31)

and

f (R0, R2) =
∫ R2

R0

dr

(1 − 2G M/r )

{
1 − b2

r 2

(
1 − 2G M

r

)}−1/2

. (10.32)

Consider the first integral and let D(r ) denote the denominator in it.
Requiring that dr/dt = 0 at P means that the function D(r ) vanishes at
r = R0. This determines b and we have

D(r ) =
(

1 − 2G M

r

){
1 − R2

0

r 2

(
1 − 2G M

r

)}1/2

. (10.33)

We now implement the weak-field approximation by using the fact
that r > R0 � 2G M . Some straightforward but tedious algebra then
leads us to

D(r ) ∼=
(

1 − R2
0

r 2

)1/2 {
1 − G M R0

r (r + R0)
− 2G M

r

}
. (10.34)
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Therefore, we have

f (R1, R0) ∼=
∫ R1

R0

(
1 − R2

0

r 2

)−1/2 {
1 + G M R0

r (r + R0)
+ 2G M

r

}
dr. (10.35)

In the absence of any local gravitational field we would have got the
simple expression of Euclidean geometry for f (R1, R0):

f (R1, R0) ∼=
∫ R1

R0

(
1 − R2

0

r 2

)−1/2

dr. (10.36)

We thus see that the time taken by light to travel is increased in the
presence of local gravitational sources. In principle we could measure
this effect by bouncing a radar signal from a planet when it is in superior
conjunction with respect to the Sun and the Earth; that is, when the radar
signal to and from the planet grazes the Sun. By comparing the to and fro
time for the signal with the radar time taken when the Sun is nowhere near
the signal path one can test the above prediction. The estimated effect
for Mercury is the highest and close to 200 µs. However, in practice
there are several sources of errors in this procedure. The distance of the
planet must be known to an accuracy of 1.5 km or so to ensure that the
error of the travel time does not exceed 10 µs. Also the bounce region
on the surface of the planet should be relatively small to minimize the
spread in the arrival of the return signal.

In the 1970s, the first serious measurements were made by bouncing
radar signals emitted from the spacecraft Mariner 6 and 7 off the surface
of the Earth as the signals grazed the solar limb. The expected delays of
the order of 200 µs were observed within 3% error bars [16]. This test
has also been made more accurate with time and Table 10.1 gives the
updated information. However, the experiment performed by the Cassini
spacecraft on 10 October 2003 during its mission to Saturn improved
the accuracy of the experiment so as to reduce the error bars to 0.002%
[17]. Here signals were bounced between the spacecraft and the Earth
as they grazed the Sun in between.

10.7 The equality of inertial and
gravitational mass
An important consequence of the principle of equivalence is the equality
of inertial and gravitational mass. A little thought will convince us that
Galileo’s experiment from the Leaning Tower of Pisa, which demon-
strated that all bodies fall freely with equal rapidity, is an essential part
of Einstein’s thought experiment involving the freely falling lift. Both
experiments are possible because the same quantity enters the law of
motion as inertial mass and the law of gravitation as gravitational mass.
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Experiments with lunar laser ranging have been successful in mea-
suring the distance of the Moon from the Earth to within a few centime-
tres. Such experiments also demonstrate that the Moon moves around
the Earth as predicted by the equations of general relativity. In particular,
these experiments ruled out certain alternative theories of gravitation,
like the Brans–Dicke theory, that allow for the variation of the inertial
mass of a moving object as a function of its distance from another mass.

Laboratory experiments of the torsion-balance type have been con-
ducted very accurately with various materials to establish this equality
with high sensitivity. Such experiments place stringent upper limits on
the possible presence of a ‘fifth force’ operating at a range of a few
metres. For a review of the measured accuracy of the principle of equiv-
alence, see the article by C. M. Will [18].

10.8 Precession of a gyroscope
Although the Schwarzschild solution describes the gravitational effects
of the Sun or the Earth with great accuracy, there is scope for further
improvement. For instance, a rotating mass would introduce a dφ dt term
into the metric. Although the effects of such terms are very small for the
Earth or the Sun, modern technology should be able to measure them.

A proposed experiment that can measure the effect of a rotating
mass makes use of gyroscopes. The axis of a gyroscope sent on an
equatorial orbit around the Earth will slowly precess. An estimated rate
of precession of ∼7 arcseconds per year can be detected with present
technology, and such an experiment has been on the drawing board for
four decades, but not yet performed. The Gravity Probe B mission at
present in space has promised a result by the year of writing of this
account (2009).

Table 10.1 gives the measured values of the PPN parameters or,
rather, the limits set on their deviation from the predictions of general
relativity. Although the experiments described go beyond what we have
outlined above, it is clear from the entries of Table 10.1 that the theory
of relativity comes out with flying colours.

Exercises
1. A photon of energy 1 MeV travels from the Earth to the Moon. By looking

up physical data on the Earth and the Moon, calculate its energy upon arrival at

the Moon.

2. Use formula (10.20) to calculate the perihelion precession of Pluto, for e ∼=
0.25, perihelion distance 29.7 AU, aphelion distance 49.1 AU and orbital period

248 years.
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Table 10.1. Limits on the measured values of the PPN parameters
(based on data reviewed by C. M. Will)

Parameter Effect Limit Remarks

γ − 1 Time delay 2 × 10−3 Viking ranging

Light deflection 3 × 10−4 VLBI

β − 1 Perihelion shift 3 × 10−3 J2 = 10−7 from helioseismology

Nordtvedt effect 6 × 10−4 η = 4β − γ − 3 assumed

ξ Earth tides 10−3 Gravimeter data

α1 Orbital polarization 4 × 10−4 Lunar laser ranging

2 × 10−4 PSR J2317 + 1439

α2 Spin precession 4 × 10−7 Solar alignment with ecliptic

α3 Pulsar acceleration 2 × 10−20 Pulsar Ṗ statistics

η Nordtvedt effect1 10−3 Lunar laser ranging

ζ1 – 2 × 10−2 Combined PPN bounds

ζ2 Binary acceleration 4 × 10−5 P̈p for PSR 1913+16

ζ3 Newton’s third law 10−8 Lunar acceleration

ζ4 – – Not independent

1 Here η = 4β − γ − 3 − 10ξ/3 − α1 − 2α2/3 − 2ζ1/3 − ζ2/3.

N.B. The general theory of relativity predicts that all entries in this table are

zero.

3. The Newtonian escape velocity of a massive star is v. Show that it bends light

by an angle of 2v2/c2.

4. An equilateral triangle is described by the space-tracks of light rays grazing a

spherical object of mass M and Schwarzschild coordinate radius R0. Show that

the sum of the three angles of this triangle exceeds π by an amount

21
√

3

4

G M

R0c2

in the approximation 2G M � R0c2.

5. A source of light moves in a circular orbit of Schwarzschild coordinate radius

2G M/ζ about a spherical mass M in an otherwise empty space. It emits light

in the forward direction of its motion, of frequency ν0 in its rest frame. This is

received by a remote observer located at rest at a Schwarzschild coordinate radius

R � 2G M , with a frequency ν in its rest frame. Show that, for ζ approaching
2
3 from below,

ν

ν0
= (1 − 3

2 ζ )(2 − 2ζ )1/2

(2 − 2ζ )1/2 − ζ 1/2
.
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6. The Newtonian potential for an oblate sun has the form

φ = G M�
R

{
1 − J

( R�
R

)2

P2(cos θ )
}

where J is the quadrupole-moment parameter. Show that this produces a per-

ihelion precession (of purely Newtonian origin) of a planet with orbital latus

rectum 2l by an angle

3π R 2
�

l2
J

per orbit (R� is the radius of the Sun). Estimate this effect for Mercury in terms

of J . (The present estimate of J is J � 2.5 × 10−5.)

7. Assume Newtonian physics and imagine a particle sent towards a spherical

mass M with velocity c along a direction such that the perpendicular distance

of the centre of the mass from that line of motion is R. If G M � c2 R, find

the distance R0 of closest approach of the particle to M and show that the

particle will eventually be moving away from the gravitating mass in a direction

asymptotically making an angle 2G M/(c2 R0) with the original direction of

motion. (Note that this is half the value predicted by general relativity.)



Chapter 11

Gravitational radiation

11.1 Introduction

Do Einstein’s equations permit the existence of gravitational waves? As
in the case of electromagnetism, where Maxwell’s field equations led to
the important deduction of electromagnetic waves carrying energy and
momentum with the speed of light, one expects the relativistic equations
to imply the existence of gravitational waves that do the same. How-
ever, several issues intervene to make the answer to our question non-
trivial.

The first problem is posed by the non-linearity of the Einstein
field equations. In the wave motion discussed in electromagnetic the-
ory, acoustics, elastic media, etc. the basic equations are linear and a
superposition principle holds. There is no corresponding situation in
general relativity. Secondly, there is no corresponding vector or tensor
in relativity that plays the role of the Poynting vector in the transport of
electromagnetic energy.

A third difficulty arises from the general covariance of the field
equations. With the facility available to use any coordinate system as
per convenience, it is not clear whether a particular ‘wavelike’ solution
is a real physical effect or a pure coordinate effect. Thus one has to be on
guard against solutions that describe coordinate waves that may travel
‘with the speed of thought’.

Even during Einstein’s lifetime, the above question did not receive an
unequivocal answer. His long-time coworker Leopold Infeld has narrated
one incident when Einstein thought that he had a proof that disproved the
existence of gravitational waves, only to find at the last moment before
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he was to give a seminar on this finding that his proof broke down in a
tautology.

In the post-Einstein years, however, relativists like Hermann Bondi,
Ivor Robinson, Felix Pirani and Roger Penrose were able to sort out
real physics from the coordinate effects and generate confidence that
gravitational waves exist. Still, the general non-linear description of a
wave is too complicated for this elementary treatise and we will study
only the linearized version in this chapter. It is this version that is relevant
to the practical issue of detecting gravitational waves passing through a
man-made receiver.

11.2 Linearized approximation

We return to the ‘weak-field’ approximation discussed in Chapter 8; but
this time we drop the restriction of ‘slow motion’ and retain all time
derivatives. Then we have

Riklm
∼= 1

2
[him,kl + hkl,im − hkm,il − hil,km]. (11.1)

There is, however, a freedom of coordinate transformation still avail-
able. This allows us to choose certain auxiliary conditions as follows.
Define

ψ k
i = hk

i − 1

2
hδi

k, h = hk
k (11.2)

and choose coordinates such that

ψ k
i,k = 0. (11.3)

In analogy to a similar transformation of the electromagnetic poten-
tials Ak , which ensures that Ak,k = 0, this transformation is called a
gauge transformation and the ψk

i are called gravitational potentials. The
conditions (11.3) are called the gauge equations. We still have a free-
dom of coordinates available. Thus, if we try a coordinate transformation
given by

x ′i = xi + ξ i ; �ξ i = 0, (11.4)

we still satisfy (11.3) for the primed coordinates. We shall have occasion
to use this facility later.

With (11.3) holding, we get for the various relevant tensors

Rik
∼= 1

2
�hik, R ∼= 1

2
�h,

Rik − 1

2
ηik R ∼= 1

2
�ψik .
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The wave operator of course relates to the Minkowski spacetime
of special relativity. From Einstein’s field equations, the above relation
leads to

�ψik = −16πGTik . (11.5)

We can write a formal solution to this equation, assuming that the
sources (Tik) are confined to a bounded compact 3-volume V :

ψik(t, r) = 4G

∫
V

Tik(t − |r − R|)
|r − R | d3R. (11.6)

What type of sources does one talk about? We shall return to this
important issue shortly.

11.2.1 Plane waves

A different type of solution to that given by a compact source is one of
plane waves. (Compare this case with that of a plane electromagnetic
wave.)

Take a coordinate system as x0 = t , x1 = x , x2 = y, x3 = z, with,
as usual in this discussion, c = 1. For the present problem we assume
that apart from the wave the space is empty. So the equations (11.5)
yield

�hik = 0. (11.7)

For a plane wave travelling in the x direction all hik are functions of
(t − x) only. Hence the gauge conditions become

0 = ∂ψ1
i

∂x
+ ∂ψ0

i

∂t
= −∂ψ1

i

∂t
+ ∂ψ0

i

∂t
. (11.8)

so that [ψ0
i − ψ1

i ] is a function of x only. However, if we are admitting
only wave-type physical functions, then this may be set equal to zero.
Thus we have ψ0

i = ψ1
i .

Next, using the freedom provided by Equation (11.4), we can use
the arbitrary ξ i as a function of (t − x) to make the following quantities
vanish:

ψ0
1 , ψ0

2 , ψ0
3 , ψ2

2 + ψ3
3 .

Since ψ0
i = ψ1

i , we also have zero values for ψ1
1 , ψ1

2 and ψ1
3 . Further,

ψ0
0 = ψ1

0 = −ψ0
1 = 0. Hence ψ i

i = 0 and we have hik = ψik . In short,
the only quantities that cannot be rendered zero are ψ3

2 and ψ2
2 − ψ3

3 . In
terms of the hik , we can say that the plane wave is characterized by two
functions,

h22 = −h33 and h23.
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This is the most elementary plane-wave solution. It may be compared
with the plane electromagnetic wave travelling in the x direction having
an electric field E2 in the y direction and a magnetic field B3 in the z
direction, with |E2| = |B3|.

What is the energy flux in such a wave, analogous to the Poynting
vector

� = c

4π
(E × B)

for the electromagnetic case? In Newtonian gravitation one can define
an energy density of gravitational field in terms of the potential φ as
follows:

ε = − (∇φ)2

8πG
.

The notion of gravitational energy in general relativity has been a
subject of a lot of discussion and controversy, especially since relativity
discards the notion of force in the context of gravity. Nevertheless, a
limited meaning can be attached to the concept of gravitational energy
density and flux of that energy in a wave. Since a detailed description of
the topic would lead us into technical details away from the main theme
we are describing, we will simply quote the result, leaving the reader
to look up advanced texts such as References [19, 20]. In the case of
the plane wave described above, the energy flux of a plane gravitational
wave is given by

F = c2

16πG
×

[
ḣ2

23 + 1

4
(ḣ22 − ḣ33)2

]
. (11.9)

The over dot denotes differentiation with respect to t . Thus we have
a well-defined expression for the energy carried by a gravitational wave
as it travels with the speed of light in vacuum. We will next look at
sources that can produce gravitational waves and the way they can be
detected.

11.3 Radiation of gravitational waves
Again we refer the reader to advanced texts (e.g., References [20, 21])
for the somewhat intricate manipulation needed to derive an apparently
simple result, which we just state below. Assuming that we have a com-
pact time-dependent source confined to a 3-volume V , the gravitational
wave emerging from it will appear to a remote observer as a plane wave
passing by him. Using local coordinates in which the x-axis is along
the direction of propagation of the wave, we can use the results of the
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previous section. Calculations give, for a source located at distance R0,

h23 = 2G

3R0

...

D23, h22 − h33 = 2G

3R0
(

...

D22 −
...

D33), (11.10)

where we define the quadrupole-moment tensor of the source by the
standard formula:

Dαβ =
∫

ρ(3xαxβ − δαβr 2)dV . (11.11)

Here the coordinates xα are Cartesian and r denotes the Euclidean
distance from the origin of a point with these coordinates.

As in the case of the oscillating electric dipole radiating electro-
magnetic waves, we can work out the net loss of energy by the source
above through gravitational radiation. The answer comes out to be

P = G

45c5

...

D
2

αβ . (11.12)

ThusP is the power radiated by the source leading to its energy reservoir
being depleted.

We have deliberately restored the velocity of light to its rightful place
in the above formula. Its high power (5) serves to tell us that, unless the
third time derivative of the quadrupole moment is enormously high, the
power radiated is insignificant.

Let us estimate the energy radiated by a laboratory source that is in
the form of two masses of M kg each, going round each other with a
period of a millisecond, the overall length scale of the apparatus being
L metres. A crude estimate of the quadrupole moment of this system is

D ∼= M × L2 × 107 g cm2,

while the triple time derivative of it would be as high as M L2 × 1016

c.g.s. units. Now multiply by the coefficient G/(45c5), which is approx-
imately 5 × 10−62. Thus we get a minuscule power of ∼ 5 × 10−24 erg
per second for M = 10 and L = 10, say. Clearly it is very unlikely that a
terrestrial technology can in the near future produce a laboratory-based
source of gravity waves of any practical significance.

11.4 Cosmic sources of gravitational waves

Given the above calculation, it is clear that we need to look to the cosmos
for sources strong enough to be noticed. We outline some that are likely
to play a significant role in gravitational-radiation astronomy.
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11.4.1 Coalescing binaries

Consider a binary star system of two stars with masses m1 and m2

moving round one another. As is well known, the Newtonian equations
of motion are given by

m1r̈1 = Gm1m2
(r2 − r1)

|r2 − r1|3 ,

m2r̈2 = Gm1m2
(r1 − r2)

|r2 − r1|3 ,

These are solved by going to the barycentric frame of reference. The
centre of mass has coordinates

R = m1r1 + m2r2

m1 + m2
, (11.13)

and it satisfies the condition Ṙ = constant. Since gravitational radiation
involves the third time derivative of the quadrupole moment (vide Equa-
tion (11.12)), without loss of generality we may set R as constant. We
also have, from (11.13),

r1 = R +
( m2

m1 + m2

)
r,

r2 = R −
( m1

m1 + m2

)
r.

As shown in Figure 11.1, r is the vector (r1 − r2). A general solution for
this vector is the same as for a particle of reduced mass m1m2/(m1 + m2)
moving under the gravitational field of a single mass (m1 + m2). Such
a particle can describe a bound (elliptical) or unbound (parabolic or
hyperbolic) orbit. For a binary star the former type of orbit is relevant.
We take the special case of a circular orbit. Assuming an angular speed
of ω and orbital radius r , we get the rectangular coordinates of the two

m 1

A

B

C

m 2
Fig. 11.1. This figure shows
stars A and B following their
elliptical orbits while their
centre of mass C remains
stationary. Such a system
emits gravitational waves.
With loss of energy, the orbits
shrink. A and B come closer
and closer and ultimately
coalesce. BA is the vector r.
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stars respectively as

x1 = r cos(ωt), y1 = r sin(ωt),

x2 = −r cos(ωt), y2 = −r sin(ωt).

Using these coordinates and taking note of the above transformations
we get for the two masses

|
...

D11| = 24
m1m2

m1 + m2
r 2ω3|sin(2ωt)|;

|
...

D22| = 24
m1m2

m1 + m2
r 2ω3|sin(2ωt)| (11.14)

so that, averaged over a period, the value of
...

D
2

αβ is

288
( m1m2

m1 + m2

)2

r 4ω6.

Thus the radiation rate is

P = 32G

5c5

( m1m2

m1 + m2

)2

r 4ω6. (11.15)

Now the energy of the binary is given by

E = − Gm1m2

2r
. (11.16)

We also have the third Kepler law from orbital dynamics:

r 3ω2 = G(m1 + m2). (11.17)

So, with the loss of energy through gravitational radiation, the mag-
nitude of E increases and this means that r decreases. From the relations
derived above we have

−dE
dt

= P

and a little manipulation leads to the rate of shrinkage of the orbit as

ṙ = −64G3m1m2(m1 + m2)

5c5r 3
(11.18)

and this in turn tells us that the period P of the binary is reduced at the
rate

Ṗ = −192πG2.5(m1 + m2)1/2m1m2

5c5r 2.5
. (11.19)

This phenomenon becomes more dramatic as the binary stars get
closer and move faster and faster. The radiation rate also increases and
becomes dramatically large when the stars finally coalesce. Needless
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to say, those looking for evidence for gravitational radiation opt for
coalescing binaries as their most favoured option.

Although an example of this kind is still to come, the above result
was strikingly but indirectly verified when observations were made of
the binary pulsar PSR 1913+16. This is a pulsar that forms a pair
with another neutron star. The above result was applied to this binary
system. Studies by J. H. Taylor and J. M. Weisberg in 1984 led to the
conclusion that the period of this binary system was decreasing at the
rate of 2.4 picoseconds per second [22]. Such a tiny measurement was
possible because pulsars are good timekeepers. The observations of the
relative positioning of the two members in the binary system give further
information on the shrinking of the orbit. It was shown that the result was
consistent with the general relativistic theory of gravitational radiation
and did not give such a good fit to some of the alternative theories of
gravitation.

11.4.2 Explosive sources

More dramatic than binaries are sources like supernovae, active galactic
nuclei, mini-creation events (predicted by an alternative cosmology as
mentioned in Chapter 18), etc. in which a large mass undergoes a rapid
redistribution over a substantial volume. Recalling the formula (11.12),
we carry out a crude order-of-magnitude calculation as follows.

Let M be the mass involved and R its characteristic linear size. Then
the quadrupole moment of the distribution will be of the order of ηM R2.
Here η is a dimensionless number, which also includes information on
the anisotropy of the matter distribution. For example, a spherically
symmetric matter distribution will have η = 0. Further, let T denote the
characteristic time scale for change of the system. Then the third time
derivative of the quadrupole moment is given by

...

D ∼= ηM R2

T 3

and formula (11.12) gives the radiation rate as

P ∼= G

45c5
× (ηM R2)2

T 6
. (11.20)

Let us take a supernova and set M = 10M�, R ∼= 1012 cm and
T ∼= 104 s. With η ∼= 10−1 the above formula gives

P ∼= 2.4 × 1029 erg s−1.

Compared with the Sun’s luminosity, this is a fraction as small as
10−4. It may of course be possible that in a particular frequency band
over a short time scale the emission may be much higher than the average
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calculated above. This now brings up the question of detectors: how are
we to detect the signals, which may be very weak astronomically?

11.5 Experimental detection of
gravitational waves

time

space

A BV l

Fig. 11.2. The world lines
of two particles A and B are
shown. If a gravitational wave
passes by, the separation vec-
tor V l of these world lines
would change.

How do we detect gravitational waves passing through space in our
neighbourhood? As in the case of any wave motion, we need an inter-
acting substance to ‘respond’ to the passing wave in such a way that
we can spot and measure the response. In this case the clue is given by
the equation of geodesic deviation derived in Chapter 5. Equation (5.24)
may be rewritten in a slightly different notation, as

δ2V i

δu2
= Ri

klmU k V lU m . (11.21)

To recapitulate, as shown in Figure 11.2, two neighbouring geodesics
�A and �B, describing two free test particles A and B separated by
a small separation vector V l , come closer or move apart depending
on the nature of the ambient spacetime geometry. The above equation
shows the variation of V l with respect to the affine parameter, u, as the
particles move along their geodesics. The passage of a wave will change
the geometry and hence the value of the driving term Ri

klm . So the
mechanical movement of A and B will indicate the presence of the wave.

The practical problem which a detector has to handle is how to trans-
late the acceleration produced by (11.21) so that it can be measured, given
that it is a very small effect amidst other environmental and hence noisy
effects of larger magnitudes. Since the early 1960s mechanical detectors
have been designed to capture the small and elusive gravitational waves.
We describe three major attempts.

11.5.1 Bar detectors

Joseph Weber played a pioneering role in designing a detector and using
it for measurements. He used cylindrical bars, each with length 153
cm, diameter 66 cm and weight 1.4 tons. Each bar was suspended by
a wire in vacuum and mechanically decoupled from its surroundings.
Ideally the bar should be completely isolated from its surroundings. The
bar has a fundamental frequency of 1660 Hz for lengthwise oscillation.
Figure 11.3 shows a bar detector.

The bar has piezoelectric strain transducers. When a gravitational
wave passes through the cylinder, different parts of it feel the acceleration
and the tendency to be displaced from their normal positions causes them
to be strained. The strain transducers respond to these strains and produce
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Fig. 11.3. A bar detector of
gravitational waves located in
Frascati near Rome.

corresponding electric fields. Measurements of these fields lead to the
estimate of the intensity of the gravitational wave. Because of resonance
at 1660 Hz, the detector is most sensitive to waves of frequencies near
this value.

Weber had sited a detector in the University of Maryland and another
in the Argonne National Laboraotory near Chicago. If the source of
gravitational radiation were a distant cosmic one, it would affect both
detectors in the same way. Thus Weber took as significant only those
results which had the two detectors responding simultaneously. The rest
could be dismissed as part of local noise.

Even so, judging by the level of effects he got as significant, their
sources had to be much more powerful than those we have looked at
here. In short, the gravitational-wave community doubted, despite the
care taken with the measurements, that real gravitational waves had
been detected. Of course, had there been another detector with a dif-
ferent technology also reporting positively, the results would have been
accepted. The controversies relating to the reality of Weber’s finding
remained unsettled throughout his lifetime, despite the high regard he
was held in by his peers.

Nevertheless, although bar detectors exist in at least six laboratories
now, it was generally felt that new technology was needed to improve
the sensitivity and to reduce background noise. We next describe the
interferometer technology that has been employed in several present-
generation detectors.
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11.5.2 Laser interferometers

We encountered Michelson’s interferometer in Chapter 1 while dis-
cussing the Michelson–Morley experiment. It creates two paths into
which a beam of light splits. After following the paths, the two beams
recombine. At that stage there will be interference between the waves
and how they combine will depend on their phases. If there is a slight
difference in the lengths of the two paths followed by the waves, that
difference will determine the outcome of interference.

Since an interferometer is very sensitive to small changes in path-
lengths, it is ideal for measurements of gravitational waves. The idea
is that, as a gravitational wave crosses the interferometer, it causes
changes in pathlengths because of the changes in geometry (vide Equa-
tion (11.21)). If the effect can be measured, the intensity of the original
wave can be estimated.

The layout of the most ambitious of these detectors, the Laser Inter-
ferometric Gravitational Observatory (LIGO) is shown in Figure 11.4.
The two paths, shown there at 90◦, form the letter L. A partially
reflecting/transmitting mirror serves as a ‘beam splitter’ at the vertex
of L. The light beam is in the form of a laser. The arms of the L are each
of length 4 km and the beams are allowed to make several rounds along
the two paths. To keep the laser beams focussed, and not dispersed, it is
desirable to make them travel through vacuum. The higher the level of
vacuum, the less the dispersion of the laser waves and the sharper their
tracks.

If the two split beams meet with the same phase, they are allowed
to continue making the round of the interferometer. If there is a path

Fig. 11.4. The LIGO detector
(photograph by courtesy of
the LIGO team).
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difference, a part is diverted to a photomultiplier and measured. The
chances are that what is collected there arises from the passage of grav-
itational waves. In a way, the interferometer measures the gravitational
signals through their conversion to electrical ones, just as a microphone
converts sound waves into electrical disturbances. How large are the
expected signals?

We may express the answer in the form of the magnitude of hik gen-
erated by a typical source. For typical ‘strong’ sources the magnitudes
are about 10−20. Thus, for a pathlength of 10 km, the length fluctua-
tions to be measured are about 10−14 cm. A typical optical wavelength
is 500 nm, i.e., 5 × 10−7 cm. This puts into perspective the precision
needed in these measurements.

At present LIGO is functioning and taking routine observations. It
has two identical detectors, one in Washington state and the other in
New Orleans; thus they form a long baseline in the SE–NW direction of
the mainland USA. It is hoped that simultaneous detection of signals by
both the instruments would lend credibility to the finding. It is believed
that LIGO’s sensitivity is just below the threshold for detection and
upgrading of its capabilities is going on. There are other similar but
smaller detectors in three other places, two in Europe and one in Japan.

In short, there is considerable interest in the campaign to detect grav-
itational waves. The question is whether current technology is capable of
doing so. Perhaps this thought has prompted scientists to be even more
ambitious and think of space as the place of detection. We will look at
this possibility next.

11.5.3 LISA from space

A major problem with terrestrial detectors is that of ‘noise’, which
includes seismic disturbances and disturbances produced by terrestrial
sources. Because the signal to be expected is very small, these noises
have to be minimized and/or accounted for by sophisticated techniques
of data analysis. Indeed, data-analysis techniques have played a major
‘software’ role in the case of terrestrial detectors.

Nevertheless, to minimize the noise, it is now proposed to have a
space-based mission called the Laser Interferometric Space Antenna
(LISA). As shown in Figure 11.5, it is made up of a trio of spacecraft
forming an equilateral triangle, which follows at a distance of 20◦ behind
the Earth on the same orbit. Its plane will make an angle of 60◦ with the
Earth’s orbit and the triangle will face the Sun. Like the Earth, it will
take one year to orbit the Sun.

The vertices of the triangle will carry two mirror reflectors each for
reflecting laser rays so that they describe the equilateral triangle. The
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Fig. 11.5. A schematic
picture of the LISA project
(photograph by courtesy of
NASA and the ESA).

arrival of a gravitational wave will modify the geometry in the vicinity
of the triangle, which will be detected through the laser interferometry.

This ambitious project is currently scheduled for completion in 2016,
if funding is made available. It has been initiated by NASA and the
ESA, although other space organizations are expected to join to make it
a ‘world project’.

11.6 Concluding remarks

Gravitational waves pose a challenge to human intellect and technical
achievements. If general relativity is right, one can find support for it
in the detection of gravitational waves emitted by cosmic sources. Yet,
the task is not an easy one, as we saw. The minute effects to be found
and measured require the present technology to be pushed beyond its
cutting edge.

Exercises

1. Using formula (11.19), estimate the rate of decrease of the period of a close

binary star system with component stars of masses M� and 2M�, moving in a

circular orbit with separation 1015 cm.

2. A supernova core starts to collapse at t = 0 while retaining its ellipsoidal

shape with its axes maintaining the same ratio. The starting values of the principal
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quadrupole moments of the core were (5, 4, 3) in units of M� R2
�. During collapse

all dimensions of the core homologously shrink ∝ (t0 − t)1/3 with t0 = 100 s.

Calculate the gravitational radiation emitted by the core per second when its

linear size is half its starting value.

3. Assuming that the rate of radiation of gravitational waves by a source of

quadrupole moment D∝β is proportional to |
···
D∝β |2, deduce formula (11.12)

except for its numerical coefficient, using dimensional analysis.

4. A cylinder of length L , cross-sectional radius R and uniform density ρ is

made to spin at rate ω about an axis perpendicular to the length of the cylinder

and passing through its midpoint. Show that it radiates gravity waves at the rate

2G M2 L4ω6/(45c5), where M is the mass of the cylinder. Estimate this rate for

R = 1 m, L = 20 m, ρ = 7.8 g cm−3 and ω = 28 radians s−1. (For an iron

cylinder a spin rate of ω = 28 rad s−1 is the maximum spin that can be borne

by its tensile strength.) (This problem has been taken from Gravitation by C. W.

Misner, K. S. Thorne and J. A. Wheeler, Freeman (1970).)

5. From (11.18) estimate the time within which the binary stars will coalesce.



Chapter 12

Relativistic astrophysics

12.1 Strong gravitational fields

So far we have been concerned with gravitational effects that are weak,
even when we were talking of effects requiring post-Newtonian approx-
imation. To give the example of Schwarzschild’s solution, in the term

eλ =
(

1 − 2G M

c2 R

)

we assume that the departure from unity is small. Even for the compact
white dwarf stars the difference |eλ − 1| is less than 10−3. Thus we have
been able to ‘get away with’ linearizing Einstein’s equations. While this
has served our purpose in the limited applications of the theory, we
have not been confronted with its inherent non-linearity. One reason
why physicists and mathematicians studying relativity did not get into
such confrontations for many years after the inception of the theory
was because nature did not present a scenario where the full non-linear
impact of the theory could be felt. However, one may look upon the
year 1963 as a watershed when nature did oblige the relativist with such
examples.

In 1963, thanks to the cooperation between optical and radio
astronomers, the so-called quasi-stellar objects (QSOs or quasars in
brief) were discovered. These are compact-looking sources emitting
optical and radio radiation. The first two quasars to be discovered, 3C273
and 3C48, were at first mistaken for stars in our Galaxy.1 Later studies

1 3C273 is the 273rd source in the third Cambridge catalogue of radio sources.

176
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revealed features that did not fit in with this interpretation and led to
the conclusion that they are extragalactic, located far away like some of
the most distant galaxies. Here we emphasize their role as radiators of
huge amounts of energy from within a compact region. What ‘energy
machine’ led a quasar to generate so much radiation from within a
compact volume?

Prior to this discovery, theoreticians such as Fred Hoyle and William
A. Fowler had conjectured about the existence of very massive stars.
Supermassive objects, as they came to be known, had masses in the
range 106–1010 solar masses. M� is the symbol for a solar mass and it
serves as a mass unit in astrophysics: M� ∼= 2 × 1033 g. These authors
had realized that such massive stars, if they exist, cannot sustain a
luminous phase for long, since their nuclear resources would be unable
to generate enough pressure to withstand the self-gravity of the ‘star’.
For a Sunlike star the equilibrium can be sustained for a long time
because the pressures generated by the nuclear reservoir can effectively
counter the gravitational contraction. However, if we increase the mass
in the calculation, the nuclear reservoir grows at a rate proportional to
star-mass M , whereas the gravitational energy grows as M2. Clearly
such supermassive stars would evolve fast and consume their nuclear
energy in a matter of a few thousand years. Being unable to maintain a
steady volume, such a supermassive star would shrink and shrink, until
its gravitational environment became very powerful. Hoyle and Fowler
suggested that the contraction of these objects would be very rapid and
the energy so generated (which was gravitational in origin) would be
radiated by the star [23].

In the early months after the discovery of quasars, astrophysicists
realized that a follow-up of the Hoyle–Fowler idea would lead them into
territory they had never trod before, viz., an environment of a strong
gravitational field that demanded the full application of general relativity.
Thus there was convened an international conference on ‘Relativistic
Astrophysics’, to which general relativists as well as theoretical and
observational astronomers were invited. This meeting, held in Dallas,
Texas, was to be the first of a biennial series of meetings known as ‘Texas
Symposia’. The name recalls the early association of Texas with these
meetings, which have since been held in different parts of the world.
Quasars such as 3C273 (see Figure 12.1) dominated the discussion of
the first Texas meeting, although the scope of relativistic astrophysics
has since expanded and widened.

We now look at some aspects of supermassive objects to demonstrate
how relativity makes a significant difference to the evolution of a massive
system, compared with the Newtonian theory.
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Fig. 12.1. A photograph of
the optical image of the
quasar 3C273. A sign of the
unusual nature of the source is
the jet seen emerging from
the source. (Photograph by
courtesy of NASA and the
ESA.)

12.2 Equilibrium of massive spherical objects

To see how relativity makes a difference, we first look at the Newtonian
equations describing the equilibrium of a spherical star of mass M and
radius Rb.

We choose radial coordinate r indicating distance from the centre,
and denote by m(r ) the mass contained within a concentric sphere of
radius r . We denote by p(r ) the pressure at distance r and by ρ(r ) the
density at that distance from the centre. We expect these quantities to
decrease monotonically from the centre outwards, with pressure vanish-
ing at the boundary given by r = Rb.

We then have the mass–density relation for r < Rb, which is purely
geometrical:

dm(r )

dr
= 4πr 2ρ(r ), (12.1)

The second equation is of hydrostatic equilibrium. At any interior point
with radial coordinate r , the mass within, m(r ), pulls (gravitationally)
any material at r inwards, whereas the pressure gradient at r seeks to
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prevent this. The balance is described by the differential equation

dp

dr
= −ρ(r )

Gm(r )

r 2
. (12.2)

These equations have to be supplemented by an equation of state
relating pressure p to density ρ. For example, if the star can be approx-
imated by a ‘polytrope’ of index n, the relation is

p ∝ ρ1+1/n . (12.3)

Usually, for an ordinary star, n = 3 is a good approximation. For
details of stellar structure see, for example, References [24, 25]. For the
relativistic discussion we will follow Fowler [26].

In the relativistic case, we start with the Schwarzschild coordinates
with the line element written as

ds2 = eν dt2 − eλ dr 2 − r 2(dθ 2 + sin2θ dφ2), (12.4)

where λ and ν are functions of r only in a static situation. Given the
energy tensor of a perfect fluid with bulk velocity ui , pressure p and
density ρ,

T ik = (p + ρ)ui uk − pgik, (12.5)

we get the following solution of the Einstein equations for λ in the
interior of the supermassive star as defined by 0 < r < Rb:

e−λ(r ) = 1 − 2Gm(r )

r
, (12.6)

where, for any R satisfying 0 < R ≤ Rb,

m(R) =
∫ R

0

4πr 2ρ dr. (12.7)

Note that the integrand above includes the term T 0
0, which in this

case is ρ. Thus our equation (12.7) above finds an echo in the New-
tonian equation (12.1). We also have M = m(Rb) as the gravitational
mass of the star. The Newtonian equation of hydrostatic equilibrium has
a more complicated relativistic counterpart, however. For writing the
energy-conservation equations T ik

;k = 0 for i = 1 gives the following
relationship between the pressure gradient and mass:

dp

dr
= −4πGr (p + ρ)

1 − 2Gm(r )

r

×
(

p + m(r )

4πr 3

)
. (12.8)

This equation is exact and in the ‘Newtonian limit’ of p � ρ and
Gm(r ) � r it does reduce to Equation (12.2). Of course, as in the
Newtonian case, we still need an equation of state if we are to be able to
solve these equations.
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The Schwarzschild interior solution (see Chapter 9) may be seen
as an extreme example of this approach since it supposes that ρ =
constant. Sometimes this is considered an example of the hard-core
nucleon density. The core is incompressible and therefore has a constant
density. We will take it as a limiting case in what follows.

12.3 Gravitational binding energy
The notion of binding energy, as it exists in the Newtonian framework,
can be defined in relativity also. This leads to the definitions of two
masses: the nucleonic mass Mn and the gravitational mass M . We have
already come across M as the value m(Rb)

To understand the relationship of these notions, imagine the super-
massive star to be broken into its basic constituents, the nucleons (pro-
tons and neutrons), which are then transported to ‘infinity’. To this end,
work has to be done against the gravitational force of the star. The mass
of the star in this infinitely dispersed state includes the energy equivalent
of this work and will therefore be greater than the mass in the compact
bound state. The mass at infinity is simply the sum of the masses of all
nucleons in it. (Strictly speaking, we should include electrons also in
this count; but their contribution is negligible (about 5 × 10−4).) This is
defined to be the quantity Mn mentioned before.

The quantity

B = Mn − M (12.9)

is the binding energy of the star, and this is the work done in distributing
it to infinity. Thus, for a bound object, B > 0 and it tends to zero in
the infinitely dispersed state of the object. We may define Mn more
concretely by the integral

Mn = 4π

∫ Rb

0

ρ0 R2eλ/2 dr, (12.10)

where ρ0 is the rest-mass density (see Chapter 7): that is, in a unit
proper volume, count the number of nucleons and multiply it by their
rest masses before adding up. The volume element multiplying ρ0 in
the integral above is the proper volume at constant t of a spherical shell
sandwiched between coordinates r and r + dr . Assuming that there is
no change in the number of nucleons as the object expands or contracts,
we take Mn to be constant.

12.3.1 The Schwarzschild interior solution revisited

Let us apply these concepts to the Schwarzschild interior solution derived
in Chapter 9. Using the notation of Chapter 9, we have the inequality
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(because ρ0 ≤ ρ)

Mn ≤
∫ Rb

0

4πρr 2eλ/2 dr

= 2πρ

α3/2

[
sin−1

(
αR2

0

) −
√

αR2
0

√
1 − αR2

0

]
. (12.11)

For the limiting case of infinite pressure at the centre given by (9.23)
we have the maximum of the right-hand side and hence, for that case,

Mn ≤ 2πρ

α3/2

(
sin−1

√
8

9
− 8

9

)
. (12.12)

Taking the case of the hard-core nucleon potential, we set the con-
stant density ρ equal to the nuclear density ∼1015 g cm−3. Then the
above inequality will give

M0 ≤ 3M�. (12.13)

This means that the maximum mass that can be supported in this way
is no more than three solar masses. Hence we get a perspective on how
difficult it is for supermassive stars with masses millions of times the
solar mass to remain in equilibrium after their nuclear resources have
been exhausted. We consider such stars next.

12.3.2 Supermassive stars

We follow the discussion given by Fowler [26] and write the difference
between actual and rest-mass densities as the internal (thermal) energy
density

u = ρ − ρ0. (12.14)

Then the binding energy is given by

B =
∫ Rb

0

4πr 2eλ/2(ρ − u)dr −
∫ Rb

0

4πr 2ρ dr

=
∫ Rb

0

4πr 2ρ




(√
1 − 2Gm(r )

r

)−1

− 1


dr

−
∫ Rb

0

4πr 2u

(√
1 − 2Gm(r )

r

)−1

dr. (12.15)

These relations apply for the static case when the object is in equi-
librium. Let us consider the Newtonian situation first. In the Newtonian
approximation of the above expressions we assume that u � ρ and
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neglect the term Gm(r )/r in the second integral but not the first:

B =
∫ Rb

0

Gm(r )

r
ρ · 4πr 2dr −

∫ Rb

0

4πr 2u dr. (12.16)

The first integral is the gravitational binding energy, which for a
polytrope of index n is given by (see Reference [25])

� = 3G M2

(5 − n)Rb
. (12.17)

On writing u = 3εp, the second of the above integrals becomes (for
a constant ε)

−
∫ Rb

0

4πr 2u dr = −
∫ Rb

0

4πr 2 × 3εp dr =
∫ Rb

0

4πεr 3 dp

dr
dr.

Using (12.2), the equation of hydrostatic equilibrium, we get

−
∫ Rb

0

4πr 2u dr = −
∫ Rb

0

4π
Gm(r )

r 2
· r 3ρε dr

= −
∫ Rb

0

ε
Gm(r )

r
ρ · 4πr 2 dr = −ε�.

When the coefficient ε varies within the star, we may replace the constant
ε by an average value 〈ε〉. Then, from Equation (12.16) and the above
relation, we get the binding energy as

B = −(〈ε〉 − 1)�. (12.18)

If B > 0, the star has negative total energy, relative to the case of infinite
separation. If B < 0, the star has positive total energy, which normally
should come from the star’s nuclear reactions. If the star cannot supply
this energy, it cannot be in equilibrium: it will contract.

12.3.3 The post-Newtonian approximation

Let us now look at the same problem from the next level of approxi-
mation, viz. the post-Newtonian approximation. In this case Equation
(12.8) becomes

(
1 + Gm(r )

r

)
dp

dr
∼= −ρ(r )

Gm(r )

r 2

(
1 + p

ρ
+ 4πpr 3

m(r )
+ 3Gm(r )

r

)
.

(12.19)

Using this relation together with (12.1), which remains unchanged in the
relativistic case, we get back to the two integrals of Equation (12.16). In
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analogy to Equation (12.18), we get

B = −(〈ε〉 − 1)� − 8πG〈ε〉
∫ Rb

0

pm(r )r dr

− 12πG2

(
〈ε〉 − 1

2

)∫ Rb

0

[m(r )]2 dr.

Here the average 〈ε〉 is with weights different from those in the Newto-
nian case discussed earlier.

For supermassive stars, i.e., for stars of a million times the solar
mass (or even more), we use the convective-polytrope approximation.
This implies that the energy transport from the centre to outer layers
of the star is through convection and the index is n = 3. In such a case
ε − 1 is constant in the star and small compared with unity. Writing it as
β/2, after some manipulation we get the above equation in the following
form:

B

M
= 3

4
β

G M

Rb
− 5.1

G2 M2

R2
b

. (12.20)

Suppose we express the right-hand side of this equation in terms of
the Schwarzschild radius Rs = 2G M introduced in Chapter 9:

B

M
= 3

8
β

Rs

Rb
− 1.3

(
Rs

Rb

)2

. (12.21)

How high is the average density of the object? A short calculation
leads to the result

〈ρ〉 ∼= 1.8 × 1016

(
M�
M

)2(
Rs

Rb

)3

. (12.22)

Thus, for a star with mass 108 M�, we have a density comparable to that
of water even for Rb ∼ Rs. Also, from Equation (12.21) we see that the
post-Newtonian term is comparable to the Newtonian one in magnitude
when

3

8
β

Rs

Rb
= 1.3

(
Rs

Rb

)2

,

that is, when Rb
∼= 0.35β−1 Rs. The parameter β is estimated to be

about 10−3 for stars as massive as those with M = 108 M�. Then our
calculation above tells us that, for Rb

∼= 350Rs, the general relativistic
contribution becomes significant. In short, one does not have to wait
until Rb becomes comparable to Rs for general relativity to become
relevant.
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It is convenient to use the central temperature Tc instead of the stellar
radius and we refer to [24] for the polytropic-model formula:

Rb = 5.83 × 1018

Tc

(
M

M�

)1/2

cm. (12.23)

For the n = 3 polytrope considered here, the formula (12.21) for the
binding energy becomes

B

M
∼= 1.6 × 10−13Tc − 3.3 × 10−27

(
M

M�

)
T 2

c . (12.24)

Note that the binding energy has a maximum at a temperature

Tc
∼= 2.5 × 1013

(
M�
M

)
K. (12.25)

Figure 12.2 shows the variation of binding energy with Tc. The
binding energy becomes zero at T 0

c
∼= 5 × 1013(M�/M) K and then

turns negative as the temperature is further increased. This means that
stars centrally hotter than this value need to have an energy source to
keep an overall positive energy.

Normally about 10−3 M energy is available for nuclear fusion, pro-
vided that the central temperature is adequate to trigger these reactions.
Assuming that the second term of (12.24) dominates at high enough Tc,

Post-
Newtonian

B
M

(Not drawn
to scale)

106M
107M

5 6 7 8
log Tc

Newtonian

108M

Fig. 12.2. Variation of
binding energy per unit mass
of supermassive stars, with
their central temperatures.
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the energy requirement is

B

M
∼ 3.3 × 10−27

(
M

M�

)
T 2

c ≤ 10−3. (12.26)

The central temperature is as high as 8 × 107 K at the densities
involved in the central region. On setting this value in the above relation,
we get the upper limit on the mass:

M ≤∼108 M�. (12.27)

What does this mean? For supermassive objects with masses greater
than this value, nuclear reactions are not able to provide sufficient energy
for hydrostatic support. Even for stars of masses below the above limit,
when the nuclear reactions have exhausted all nuclear fuel, they too can
no longer sustain equilibrium.

The equilibrium configurations need to be analysed from the stability
point of view before they can be considered credible. S. Chandrasekhar
carried out the small-oscillations analysis near the equilibrium states. He
found that the models become unstable long before Rb becomes close
to Rs (vide Reference [28]).

Figure 12.2 demonstrates why it is more difficult for a supermassive
star to remain in equilibrium in the post-Newtonian relativistic regime.
If there is an inadequate supply of energy, the star cannot maintain
equilibrium and will start shrinking. As the central temperature rises
with shrinking of the star because of its gravity, its binding energy sinks
further and this makes it more difficult for the star to supply the required
energy. So the star shrinks even faster. This leads to what is commonly
called gravitational collapse.

Thus we see that supermassive stars take us to regions of strong
gravity, where general relativity will apply in full. As seen here, we first
encounter the post-Newtonian phase wherein additional terms are taken
from relativity to supplement the Newtonian discussion. If we follow
the path of gravitational collapse we should encounter even stronger
gravitational fields and would need not a post-Newtonian approximation
but the full use of general relativity. We will consider this phase in the
following chapter.

As part of relativistic astrophysics we must also consider the effect
of gravity on light. That gravity affects light was demonstrated by the
eclipse experiment of Chapter 10. How does the interaction manifest
itself in nature?

12.4 The first gravitational lens

The bending of light rays due to the gravity of a massive object gives
rise to a variety of phenomena now known as gravitational lensing. The
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lensing is caused by gravity rather than by the refraction of light passing
through an inhomogeneous medium. We will discuss this topic next,
since it has played a major role in astronomy since 1979.

A brief historical description of the path that led in 1979 to the
discovery of the first gravitational lens involving quasars may be in
order.

The first paper [29] on the subject, entitled ‘Nebulae as gravitational
lenses’, was published by Fritz Zwicky in 1937. He clearly stressed the
role of galaxies as light-deflecting objects that could produce multiple
images of background sources. He pointed out the possibility of ring-
shaped images, of flux amplification and of the use of this phenomenon
for understanding the large-scale structure of the Universe [29]. Zwicky
was ahead of his time in assuming that the nebulae (i.e., galaxies) would
be several hundred billion times as massive as the Sun and, in another
paper, he also estimated the probability of lensing occurring in extra-
galactic astronomy [30].

In the 1960s and 1970s, S. Refsdal, J. M. Barnothy, R. K. Sachs,
R. Kantowski, C. C. Dyer, R. C. Roeder, N. Sanitt and several others
published papers highlighting various aspects of gravitational lensing,
ranging from purely theoretical investigations in general relativity to
observational predictions in astronomy. We refer the reader to the book
by Schneider, Ehlers and Falco [31] for further details.

In a different context, Chitre and Narlikar [32] invoked the gravita-
tional bending of radio waves from the VLBI components of a quasar
by an intervening galaxy to explain the apparent superluminal separa-
tion of these components. If the galaxy is suitably located (i.e., close
to the critical point of the lensing system) the apparent magnification
of the separation between two components due to the lensing can be
enormous and can convert a real subluminal speed into a superluminal
one (see Figure 12.3). (However, the generally accepted interpretation
of superluminal motion involves relativistic beaming.)

The quasars, galaxies etc. entering our discussion in the rest of
this chapter are far-away objects located well beyond our Galaxy. Such
objects, as will be discussed in detail in Chapters 14–17, participate in
the expansion of the Universe. One important consequence of this is that
their spectra show redshift that increases in proportion to their distance
from us. Thus, in what follows, we will have occasion to refer to such
cosmological redshifts as indicators of distance. The reader unfamiliar
with cosmology may wish to familiarize himself with cosmological
redshifts by taking a quick look at Chapters 14 and 15.

Intervening
Matter

A B B′A′

Observer

Fig. 12.3. The magnification
produced by gravitational
lensing is shown in the figure
as the increase in the linear
separation of a radio source
from AB to A′ B′. Very-long-
baseline interferometry (VLBI)
of quasars shows A′ B′ increas-
ing at speeds many times the
speed of light. In reality the
source AB may not increase at
superluminal rate, however.

The real stimulus to the work on gravitational lensing came from
the discovery of the first lens involving the quasars 0957+561 A and B
by Walsh, Carswell and Weymann [33]. The quasars A and B showed
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Fig. 12.4. A photograph of
the twin quasar images
0957+561 A and B in which
the image of one component
is ‘subtracted’ from the other.
The balance reveals the image
of a galaxy, G, that is believed
to have acted as a lens
producing the two images of
a single source. (From
Stockton A. 1980, Ap. J., Part
2, Letters to the Editor, 242,
pp. L141–L144.)

very similar features and spectra at a redshift of ∼1.4. Their angular
separation was ∼6 arcsec. Although the existence of two quasars with
very similar features at close separation cannot be ruled out, the cir-
cumstantial evidence indicated a gravitational lens doubly imaging one
source. The discovery of a lensing galaxy at a redshift of ∼0.36 later
lent further credibility to this scenario. The quasars and lensing galaxy
are shown in Figure 12.4, while a ray diagram of the bending of light by
the lens is shown in Figure 12.5.

The basic features of a gravitational-lens system are described in
the following section. By now there are several known lens systems and
probable candidates, as listed in Table 12.1. The original expectations
of Zwicky have been fully borne out.

12.5 The basic features of a gravitational lens

Figure 12.6 is a schematic diagram of a lens system wherein S is the
source, a spherical mass M provides the deflector lens d and O is the
observer. (We deplore the notation of denoting the lens by d as it is

Earth
Lensing
Galaxy

B

Q

A Fig. 12.5. The ray diagram
showing how gravitational
bending by lensing a galaxy
can produce two images A
and B of a single source Q.
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Table 12.1. A partial list of interesting cases of gravitational lenses

Maximum separation

System No. of images Lens redshift Image redshift (arcsec)a,b

Quasar images

0957+561 2 0.36 1.41 6.1

0142−100 2 0.49 2.72 2.2

0023+171 3 ? 0.946 5.9

2016+112 3 1.01 3.27 3.8

0414+053 4 0.468c 2.63 3.0

1115+080 4 0.29 1.722 2.3

1413+117 4 1.4c 2.55 1.1

2237+0305 4 0.0394 1.695 1.8

Arcs

Abell 370 0.374 0.725

Abell 545 0.154 ?

Abell 963 0.206 0.77

Abell 2390 0.231 0.913

Abell 2218 0.171 0.702

Cl0024+16 0.391 0.9

Cl0302+17 0.42 0.9

Cl0500−24 0.316 0.913

Cl2244−02 0.331 2.237

Rings

MG1131+0456 ? ? 2.2

0218+357 ? ? 0.3

MG1549+3047 0.11 ? 1.8

MG1654+1346 0.25 1.75 2.1

1830−211 ? ? 1.0

a For arcs the maximum separation is the diameter of the corresponding Einstein ring.
b For rings this corresponds to the diameter of the ring.
cAssumed or still to be confirmed.

a symbol normally reserved for distance, but adopt it here because it
has become common in the gravitational-lens literature.) The distance
between the source and the observer is denoted by Ds, that between the
source and the lens by Dds and that between the lens and the observer
by Dd.

The condition that the ray from the source passing outside the deflec-
tor at a distance ξ reaches the observer as shown in Figure 12.6 is given
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ξ

S

M

O

β

D

D

D

s

ds

d

θ

α

S
Fig. 12.6. A schematic
diagram of a gravitational
lens. For details, refer to the
text.

by the rules of projection:

β Ds = Ds

Dd
ξ − 2rS

ξ
Dds. (12.28)

Here rS = 2G M/c2 is the Schwarzschild radius of the deflector mass.
We have tacitly assumed that the gravitational bending of light is small
and so the angles β and α (the bending angle of the original ray) are
both small compared with unity. Also, when applying this relation over
cosmological distances, we have to take due note of the non-Euclidean
measures of redshift-related distance. Thus in general Dds 	= Ds − Dd.
The deflected ray in Figure 12.6 makes an angle θ with the line OM.
Hence, with our small-angle approximation, θ Dd = ξ . Therefore the
above equation becomes

β = θ − 2rS Dds

Dd Ds
θ−1. (12.29)

This equation can be generalized to a full three-dimensional case in
which the vectors β and θ lie in different planes. We will continue with
the two-dimensional simplification.

It is convenient to define an angle α0 and a length ξ0 by

α0 =
√

2rS Dds

Dd Ds
, ξ0 = α0 Dd. (12.30)
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With these definitions the basic equation (12.29) reduces to the
quadratic

θ 2 − βθ − α2
0 = 0. (12.31)

This tells us that there are two roots, i.e., there are two possible
locations of images, whose angular separation is given by

�θ =
√

4α2
0 + β2. (12.32)

Note that the two values of the roots θ1 and θ2 are of opposite signs,
implying that the two images are located on the opposite sides of the
source. Note also that, if the source, lens and observer are collinear, then
the angle β = 0 and there is no preferred plane for the rays to take. The
geometry is then axisymmetric about the line SO. Thus we get a ring-
like distribution of images with an angular separation from the source
of θ = α0. What we have described is, of course, a highly symmetric
situation involving a symmetric matter distribution, a point source and a
special alignment. In practice these conditions are not fully satisfied, but
we may still get approximately ring-shaped images of extended sources,
which are called Einstein rings in the literature.

A general lens is more difficult to quantify. However, we may make
a few statements that can be proved using detailed mathematics, which
the reader may look up in books or monographs specializing in grav-
itational lensing, e.g., Reference [31]. A general theorem proves that
any transparent matter distribution with a finite total mass and weak
gravitational field produces an odd number of images. Sometimes a few
images are too faint to be seen, and we see an even number of images. In
our simple case described above, we get two images. In this case, if the
gravitating object is a point mass (black hole), the possibility exists that
the incident rays would have small impact parameters, thus violating the
weak-field condition. If the lens were a transparent sphere of matter, the
theorem would still apply.

12.6 The magnification and amplification
of images

Consider a simple example in Euclidean geometry of a spherical source
of radius a and luminosity L located at a distance D. The flux of radiation
received from the source is given by

f = L

4π D2
, (12.33)
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while the solid angle subtended by the source at the observer is

� = πa2

D2
. (12.34)

The surface brightness of the source is given by

σ = L

4πa2
. (12.35)

It is easy to verify from these results that

f = �σ/π. (12.36)

In other words, the surface brightness is proportional to the ratio of
the flux to the solid angle subtended. Since gravitational bending does
not introduce any additional spectral shift, we may assume this result
to be valid for lensed sources. Since the surface brightness of a small
source is not changed by lensing, the ratio of the flux of an image to that
of the source (in the absence of lensing) would simply equal the ratio of
their solid angles:

µ = �/�0, (12.37)

the zero suffix standing for the unlensed situation. This is valid for
cases in which the images and sources are not extended so that one may
use a constant surface brightness. For extended sources one integrates
over the source with suitable weighting of the surface brightness at the
point.

Returning to the small source, if 
β, the source position, is related to

θ by a generalization of Equation (12.29) to the full three-dimensional
case, we have the angular magnification given by the Jacobian

�0

�
= J [β; θ ] ≡ det

∥∥∥∥∂β

∂θ

∥∥∥∥. (12.38)

Thus the amplification of the flux is given by the reciprocal of the above
Jacobian.

The Jacobian has great significance in the lensing calculations. The
parity of the image is decided by the sign of the Jacobian for that image.
If it is positive, the sense of its curves (i.e., clockwise or anticlockwise)
is preserved with respect to the source. For negative parity it is reversed.
Thus regions of opposite parity are separated in the lens plane. The
critical curves separating them are those on which the factor µ diverges.
This is, however, an idealization since the sources are in general extended
and infinite amplification of image brightness does not take place. These
critical curves in the source plane are called caustics. It can be shown that
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the number of images changes by two if and only if the source position is
changed in such a way that it crosses a caustic. If the locations of caustics
are known, then, for a given source position, the number of images can
be determined using this property. Another result that is useful in this
respect is that for any transparent distribution of matter with finite mass
the number of images of a point source sufficiently misaligned with the
lens is unity.

Even though we do not in practice have enormously bright images
(µ tending to infinity), another theorem guarantees that, for a transparent
lens, there is one image with positive parity having an amplification
factor not less than unity (i.e., the image is at least as bright as the
source). Thus lensing may mislead the observer into thinking that he or
she has found a very bright source.

Exercises
1. A quasar shows time variation on the scale T . Assuming that special rela-

tivistic causality limits the size of its diameter, show that the maximum mass the

quasar can have is c3T/(4G). Express the answer in units of solar masses when

T is expressed in hours.

2. Assuming an interior Schwarzschild solution to apply for the hard-core

nucleon potential, estimate the maximum redshift from the surface of such

an object.

3. Explain why nuclear energy generation cannot effectively support super-

massive stars beyond a limiting mass. Compare this limit with the way the

Chandrasekhar limit operates for white dwarfs.

4. Using the following definitions given by H. Bondi, derive the equations of

Section 12.2 in the form given below:

Definitions:

u = m(r )

r
, w = 4πr 2 p(r ).

Results to prove:

r
dν

dr
= 2(u + w)

1 − 2u
,

dp

dr
= −1

2
(p + ρ)

dν

dr
,

r
du

dr
= H

(1 − 2u)
(dw

du
− α

) , ρ = u

4πr 2

(dw

du
− β

)(dw

du
− α

)−1

,

where

H = 2w − (u2 + 6uw + w2), α = − u + w

1 − 2u
, β = −w

u

z − 5u − w

1 − 2u
.
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5. Show that in the interior Schwarzschild solution the central redshift zc is

related to the surface redshift zs by the relation

1 + zc = 2

2 − zs
(1 + zs).

As zs → 2, zc → ∞.

6. Show that the interior Schwarzschild solution is conformally flat.

7. Show that a star located exactly along the line of sight from the Earth to

the Sun can under certain circumstances be seen as an Einstein ring of radius

4G M�/(c2 R�).



Chapter 13

Black holes

13.1 Introduction

We found in the previous chapter that, if a massive star runs out of
nuclear fuel, it would lose its equilibrium and begin to shrink. Even
when nuclear fuel is available to the star, it may be insufficient to meet
the demands for the star’s equilibrium. In the early 1930s the young
astrophysicist Subrahmanyan Chandrasekhar had encountered a some-
what similar situation when discussing the state of stars like the Sun,
after they run out of their nuclear fuel. He found that the star can still
sustain equilibrium if its internal matter can attain the degenerate state.
Degeneracy can arise if the density of matter is so high that all available
energy levels of atoms are filled up, up to some low energy. In such a
situation further compression of matter is not possible and gravity is held
at bay. This is an excellent example of a macroscopic effect of quantum
mechanics: a star as massive as the Sun feels an effect whose origin is
in quantum mechanics. We cannot describe it in detail since that would
take us farther away from our present interest.

The early work on degenerate matter by R. H. Fowler had shown
that every star on sufficient compression attains degeneracy, thereby
ensuring that the star would rest in peace in a state of very high density
and small radius. It was felt that white dwarf stars are precisely the
stars which are in this state. They are faint and very compact stars with
radius typically 1% of the solar radius.

Chandrasekhar, however, introduced a modification into the Fowler
calculation. He noticed that, for large-mass stars, the filled levels are so
high in energy that the electrons occupying them would be relativistic

194
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and this would alter the degeneracy criteria. With his modification
Chandrasekhar [27] found an upper limit to the mass of a star exist-
ing as a white dwarf. This limit, known as the Chandrasekhar limit, is
1.44M�. This result means that stars more massive than this limit would
have central temperatures so high that the electrons there will not have
become degenerate. Without the degeneracy pressure the star cannot
remain in a state of equilibrium.

This conclusion implies that white dwarfs should not be found with
mass greater than the Chandrasekhar limit. So far this result has held
firm. The concept of relativistic degeneracy has become accepted and
astrophysicists have extended it to the neutron stars also. There neu-
trons are tightly packed in a small volume and become degenerate,
again provided that the mass of the star does not exceed a limit close
to 2M�.

Nevertheless, in the early days Chandrasekhar faced considerable
opposition to his result. His main opponent was no less a person than
Arthur Stanley Eddington, who had played a pioneering role in stellar
astrophysics. Eddington castigated Chandrasekhar’s use of relativistic
degeneracy in the following words:

[If Chandrasekhar is right, then . . . ] the star has to go on radiating and

radiating until, I suppose, it gets down to a few km. radius, when gravity

becomes strong enough to hold in the radiation, and the star can at last

find peace [. . . ] I think there should be a law of Nature to prevent a star

from behaving in this absurd way . . .

Eddington was visualizing a situation in which a star finds itself
without any counterforce to its own gravity, which makes it con-
tract and continue to contract with ever increasing force. For, with
its ‘inverse-square behaviour’, gravity grows stronger as the object
shrinks, with the result that the contraction enters a run-away mode.
This phenomenon is called gravitational collapse. It is ironic that the
reductio ad absurdum-type argument used by Eddington against the
continued contraction of a massive star can be turned round to pre-
dict the existence of a new genre of objects. An object of this type
develops a gravitational force so strong that it pulls back even the
light originating in the object, thus rendering it invisible to external
observers.

Such an object is called a black hole today. We will spend this
chapter summarizing the properties of black holes within the framework
of general relativity. We begin with a discussion of gravitational col-
lapse, the phenomenon that is supposed to lead to the formation of a
black hole.
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13.2 Gravitational collapse

Before taking up the general relativistic problem, we briefly outline
its Newtonian counterpart. For we will find it of interest to compare
and contrast the descriptions of the phenomenon by these two leading
theories of gravity.

13.2.1 The Newtonian problem

Let us consider a ball of matter of mass M and radius R having a
spherical symmetry in its physical parameters such as density ρ and
pressure p. Suppose that it is undergoing a gravitational collapse, i.e.,
continued and ever-increasingly fast contraction. We ignore the effect of
pressure as an opposing agency to gravitation and write the equation of
motion as

R̈ = − G M

R2
. (13.1)

This equation represents the acceleration of a test particle on the
surface of the ball, and it can be easily solved with the initial conditions
R = R0, Ṙ = 0 at t = 0. We find that the time taken for R to reach
zero is

t0 = π

2

√
R3

0

2G M
. (13.2)

For a Sun-like star this works out at 29 minutes! The short time scale
indicates how powerful the collapse phenomenon can be. The above time
scale can be written in terms of the starting density as follows:

t0 = π

2
√

α
, α = 8πGρ0

3
. (13.3)

We will now look at the relativistic problem, which leads to a sur-
prisingly similar answer.

Example 13.2.1 Problem. In the above example let m(r ) denote the mass

of the ball within radius r . Imagine the star as made of layers of different

densities and find the condition that the layers do not cross as the ball

collapses.

Solution. From (13.2) we see that the collapse time for m(r ) is

t = π

2

√
r 3

0

2Gm(r )
,

where we assume that initially the value of r was r0. For ‘no crossing’,

m(r ) = m(r0) and we expect t to be an increasing function of r0. (Thus the
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outer layers collapse later.) So the condition is that r 3/m(r ) should increase

with r. On defining by ρ̄(r ) the average density of m(r ), we have

r 3

m(r )
= 3

4π
ρ̄(r )−1.

Hence our requirement for no crossing is that ρ̄(r ) should decrease with

r ; i.e., there is no density inversion in the ball. The density should steadily

decrease outwards.

13.2.2 The general relativistic problem

We begin with a discussion of spherically symmetric collapse since this
is the only case that has been dealt with exactly. The line element for the
spacetime is given by

ds2 = eν dt2 − eω dr 2 − eµ(dθ 2 + sin2θ dφ2). (13.4)

Here ν, ω and µ are functions of r and t . The energy-momentum tensor
for the ball made of perfect fluid will be as given in (7.26):

T ik = (p + ρ)ui uk − pgik . (13.5)

The energy-conservation relations T ik
;k = 0 then lead to two

equations:

ω̇ + 2µ̇ = − 2

p + ρ
ρ̇ (13.6)

and

∂ν

∂r
= − 2

p + ρ

∂p

∂r
. (13.7)

We next simplify the problem by assuming that pressures are unim-
portant during collapse. Thus, ignoring the pressure gradient in Equation
(13.7), we get ν independent of r and therefore a function of t only. A
time/time transformation can then be used to set ν = 0. We have used
this trick before. Ignoring pressure reduces the problem to that of ‘dust’
and allows the coordinates to be given a ‘comoving’ interpretation. Thus
we assume that a comoving observer falling in with the collapsing ball
has constant coordinate values for r , θ and φ. Thus such an observer has
t as his proper time.

We next consider the field equations and look at the R14 component.
It reduces to the equation

2µ̇′ + µ̇µ′ − ω̇µ′ = 0. (13.8)
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This integrates to

eω = eµµ′2

4(1 + g)
, (13.9)

where g is an arbitrary function of r only. Next, the (1, 1) component of
the field equations becomes

1

4
µ′2e−ω −

(
µ̈ + 3

4
µ̇2

)
− e−µ = 0. (13.10)

Using (13.9) this can be integrated to

µ̇2 = 4g(r )e−µ + 4F(r )e−3µ/2. (13.11)

Here F(r ) is a function of r only. Finally, from Equations (13.9) and the
(0, 0) component of the field equations, we find that

F ′(r ) = 4π

3
Gρe3µ/2µ′. (13.12)

Now suppose that the dust ball was of uniform density ρ0 at t = 0
and that it was at rest then. Thus we assume that at that initial moment
the time derivatives of ω and µ were zero. We can still choose the r
coordinate and do so at that initial moment by requiring that a sphere of
constant r has the surface area 4πr2. This requirement leads to

eµ(0,r ) = r 2. (13.13)

We will specify the extent of the collapsing mass by requiring that it
is limited by r ≤ rb. For r > rb we may assume that the space is empty
and describable by the Schwarzschild solution.

By applying (13.12) to the situation at t = 0, we get

F(r ) = 8πGρ0

3
r 3 = αr 3, (13.14)

say. There is an arbitrary constant of integration that corresponds to a
point mass at r = 0, which we set equal to zero. Also, from Equation
(13.11), at t = 0, µ̇ = 0 we get

g(r ) = −1

r
F(r ) = −αr 2. (13.15)

For t > 0 we get a solution for eµ by writing

eµ/2 = r S(t) (13.16)

and using (13.11), (13.14) and (13.15), we get

Ṡ2 = α

(
1 − S

S

)
. (13.17)

The initial conditions are S(0) = 1, ˙S(0) = 0. A comparison with
the Newtonian problem that we briefly looked at earlier shows that,
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b

t s

S

1

t0
t 0

Fig. 13.1. A plot of the scale
factor S(t) of a supermassive
dust ball undergoing
gravitational collapse. The
time ts when the outer surface
of the ball crosses the
Schwarzschild radius is shown
by a dotted line.

had we written there R = S(t)R0, we would have got exactly the same
equation for S(t) as (13.17). The solution also matches the Newtonian
one when we get the time of collapse to S = 0 as

t0 = π

2
√

α
. (13.18)

Equation (13.9) determines the function eω in terms of the above
quantities as

eω = S2(t)

1 − αr 2
. (13.19)

The line element inside the dust ball thus takes the form

ds2 = dt2 − S2(t)

[
dr 2

1 − αr 2
+ r 2(dθ 2 + sin2θ dφ2)

]
. (13.20)

We have encountered this line element in Chapter 6 as an example
of a maximally symmetric space of three spatial dimensions. We will
encounter it again in Chapter 14 as a cosmological spacetime metric.

Figure 13.1 shows the function S(t) plotted between t = 0 and t = t0.
We can match it to an exterior Schwarzschild solution for a mass

M = 4πr 3
b ρ0/3. (13.21)

For, at t = 0, the proper radius of the ball is rb and its density is
ρ0. As the ball contracts by a factor S(t), its density goes up by a factor
S(t)−3, compensating for the reduction of its proper volume. Thus its
mass remains the same during collapse.
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For an external observer at a constant radial Schwarzschild coordi-
nate, the collapsing object would have an effective radius Rb = rbS(t).
It will become equal to the Schwarzschild radius when S = αr2

b . This
radius is crossed in a finite time as measured on the t-scale. This is when
the object has become a black hole.

At this stage, we would like to emphasize that the technique used
here to solve the collapse problem is the one used by B. Datt [34]
from Kolkata in 1938. The same problem was solved a year later by
Oppenheimer and Snyder [35]. Because it was published in a higher-
profile journal the latter work received greater publicity than did the
earlier one by Datt. Thus the collapse problem is commonly called
the ‘Oppenheimer–Snyder problem’. We will refer to it as the ‘Datt–
Oppenheimer–Snyder problem’ or simply the ‘DOS problem’.

13.2.3 Collapse viewed from outside

Let us look at the DOS problem from the vantage point of the external
Schwarzschild observer. The line element outside the object is, of course,

ds2 =
(

1 − 2G M

R

)
dT 2 − dR2(

1 − 2G M

R

) − R2(dθ 2 + sin2θ dφ2).

(13.22)

Note that we have departed from our earlier notation by changing
the coordinates (t, r ) to (T, R) since we want to relate this line element
to the one considered for the collapsing dust ball. Thus the line element
(13.22) has to be matched to the line element (13.20) at the boundary
r = rb of the collapsing object. So we need at the boundary the condition

R = rb S(t). (13.23)

Next consider a test particle at the boundary. It is falling freely and so
follows a timelike geodesic. From our general solution of the geodesics
in Schwarzschild’s spacetime we use Equation (9.27) to deduce that for
radial free fall

dT

ds

(
1 − 2G M

R

)
= constant. (13.24)

However, from the same geodesic equation for spacetime given by
the line element (13.20) we have

dt

ds
= 1. (13.25)
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Hence on the surface we must have

dT

dt

(
1 − 2G M

R

)
= constant = γ (13.26)

(say). Since the line element is a first integral of the geodesic equations,
we use Equation (13.22) together with the above to get

(
dR

dt

)2

= γ 2 − 1 + 2G M

R
. (13.27)

On the boundary, R = rbS(t), this equation becomes

(
dS

dt

)2

= γ 2 − 1

r 2
b

+ 2G M

r 3
b S(t)

. (13.28)

A comparison with Equations (13.17) and (13.21) gives

2G M = αr 3
b , γ 2 = 1 − αr 2

b . (13.29)

We had arrived at this value of M from earlier discussions of gravitational
collapse.

Consider now a radially outward light signal from an observer B on
the boundary of the body at R = R1 leaving him at time T1 and reaching
another Schwarzschild observer A located at fixed R = R2 at time T2.
Notice that R1 decreases as the object collapses.

The radial null geodesic equation then yields

T2 − T1 =
∫ R2

R1

(1 − 2G M R)−1 dR (13.30)

This integral diverges as R1 → 2G M (= Rs). Let, at t = ts, Rs =
rbS(ts). Then, as t → ts, T1 → ∞. In short, the observer A at R2 has to
wait for ever for the signal sent out by B at ts.

Figure 13.2 shows the signal propagation from B to A on the con-
tracting object. If A has a means of measuring wavelength, he will
find that light waves from B are increasingly redshifted. The shift is
gravitational as well as Doppler.

We may liken the signal exchanges between A and B to a correspon-
dence between an Applicant and a Bureaucrat. The applicant may think
that the bureaucrat is being very dilatory . . . but this is really the trick
played by curved spacetime! The time flows at different rates for the two
protagonists.

It is clear that as B approaches Rs his signals begin to be more and
more difficult to receive, both because of their redshift and owing to
their faintness.
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Fig. 13.2. A schematic
diagram showing signal
exchanges between observers
A and B. For details, refer to
the text.

Example 13.2.2 Problem. Show that the time measured by the comoving

observer riding on the surface of the gravitationally collapsing dust ball

registers a finite value as he crosses the Schwarzschild barrier.

Solution. Using the calculations in the text, we find that the time measured

by B is given by t and Equation (13.17) describes the rate of collapse. The

Schwarzschild barrier is crossed when S = αr 2
b .

To solve (13.17) write S = cos2θ . Then Equation (13.17) becomes

2 cos2θ θ̇ = √
α.

This integrates to
θ + sin θ cos θ = √

αt

so that, at t = 0, θ = 0 and S = 1. The state S = 0 is reached when θ = π/2.

At the Schwarzschild barrier the observer B will have cos2θ = αr 2
b so that

the corresponding time is

tS = 1√
α

(
cos−1

√
αr 2

b +
√

αr 2
b (1 − αr 2

b )
)

.

This is finite and less than π/
(

2
√

α
)

.
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Problem. Estimate α and rb for a homogeneous dust ball with the Sun’s mass

and radius as the starting values for the DOS problem.

Solution. For the Sun M� = 2 × 1033 g and R� = 7 × 1010 cm are the mass

and radius. So rb = R� = 7 × 1010 cm.

The starting density is ρ0 = 3M�/(4π R3
�) ∼= 1.4 g cm−3. The formula

for α then gives

α = 8πρ0G

3
∼= 7.7 × 10−7 s−2.

The barrier at Rs is thus a one-way membrane. Having crossed
it, B will continue to receive signals from A, but his own mes-
sages will not be able to cross the barrier, let alone reach A. This
Schwarzschild barrier marks the boundary of what is called a black
hole. It is also usual to refer to the boundary R = Rs as the ‘event
horizon’. We will refer to this aspect more specifically later in this
chapter.

The external observer does not see what happened to B after B has
crossed this barrier. B’s fate is not very pleasant. Besides any tidal effects
that may tear him apart, at t = t0 he hits the state described by S = 0.
This is a state wherein the entire space ‘shrinks’ to zero volume with
the density going to infinity. Parameters describing spacetime geometry
diverge and there is no way of describing what is happening mathe-
matically or physically. This extreme state of space, time and matter is
called singularity. We will refer back to this strange aspect of spacetime
geometry in Chapter 18.

13.3 The Schwarzschild solution in other
coordinate systems
The line element (13.22) is somewhat inconvenient for discussing
regions containing the Schwarzschild barrier. For example, we find that
the metric components g00 and g11 become respectively zero and infinity
at R = 2G M . Also, inside the barrier the coordinates T, R interchange
their time/spacelike character. It is sometimes preferable to use other
coordinates, which behave normally in this region. We have already
seen that the comoving coordinates used for discussing collapse do not
throw up any problem at R = Rs. However, they are not so convenient
for relating to an external observer. We describe some other coordinate
systems that have been found useful for connecting across the barrier
at R = Rs.
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13.3.1 Eddington coordinates

In these coordinates, the Schwarzschild coordinate T is replaced by the
‘null’ coordinate

V = T + R + 2G M ln

∣∣∣∣ R

2G M
− 1

∣∣∣∣ . (13.31)

It can be seen via a simple manipulation that V = V0 (constant) describes
a null geodesic corresponding to a radial null ray going in from outside.
Also, the line element (13.22) is transformed to

ds2 =
(

1 − 2G M

R

)
dV 2 − 2 dV dR − R2(dθ 2 + sin2θ dφ2). (13.32)

This coordinate was used by Eddington [36] to connect observers
A and B, A outside the barrier and B inside, with light rays coming
from A to B.

13.3.2 Kruskal–Szekeres coordinates

These coordinates were independently discovered in 1960 by M. D.
Kruskal and G. Szekeres [37, 38]. We give the transformations from
the Schwarzschild coordinates below. It will be clear that they carry the
Eddington coordinates a step further in using null tracks.

The coordinate system involves a changeover from T, R coordi-
nates to u, v coordinates while leaving the other two coordinates θ, φ

unchanged. The transformations relate to four different but connected
regions of spacetime, which we will denote by I, II, III and IV. Briefly,
we have the following.

Region I: R ≥ 2G M , u ≥ 0:

u =
(

R

2G M
− 1

)1/2

exp

(
R

4G M

)
cosh

(
T

4G M

)
,

v =
(

R

2G M
− 1

)1/2

exp

(
R

4G M

)
sinh

(
T

4G M

)
.

Region II: R ≤ 2G M , v ≥ 0:

u =
(

1 − R

2G M

)1/2

exp

(
R

4G M

)
sinh

(
T

4G M

)
,

v =
(

1 − R

2G M

)1/2

exp

(
R

4G M

)
cosh

(
T

4G M

)
.
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Region III: R ≥ 2G M , u ≤ 0:

u = −
(

R

2G M
− 1

)1/2

exp

(
R

4G M

)
cosh

(
T

4G M

)
,

v = −
(

R

2G M
− 1

)1/2

exp

(
R

4G M

)
sinh

(
T

4G M

)
.

Region IV: R ≤ 2G M , v ≤ 0:

u = −
(

1 − R

2G M

)1/2

exp

(
R

4G M

)
sinh

(
T

4G M

)
,

v = −
(

1 − R

2G M

)1/2

exp

(
R

4G M

)
cosh

(
T

4G M

)
.

For all four regions, the line element is, however, the same:

ds2 = 32G3 M3

R
exp

(
− R

2G M

)
· (du2 − dv2) − R2(dθ 2 + sin2θ dφ2).

(13.33)

The coordinates are thus u, v, θ, φ and we may look upon R in the above
line element as a function of (u, v) given implicitly by

(
R

2G M
− 1

)
exp

(
R

2G M

)
= u2 − v2. (13.34)

As can be seen from Equation (13.33), the line element is well
behaved at R = Rs. Figure 13.3 is the so-called Kruskal–Szekeres dia-
gram showing a radial constant θ, φ section with some important lines
marked. The lines R = constant are rectangular hyperbolae in the u–v

plane. The lines R = 2G M form a cross with one arm (SW to NE)
having T = ∞ while the other arm (SE to NW) has T = −∞. The four
regions I, II, III and IV are within the sectors defined by the radial lines
u2 − v2 = 0.

The collapsing object has the outer boundary shown in Figure 13.3
by a dotted line. The collapse starts in Region I and ends in Region II.
The boundary point hits the singularity shown by the hyperbola R = 0.
The same trajectory can be continued as in the figure from Region
I to Region IV. What does it represent? It represents the time-reversed
version of collapse: an eruption out of the singularity in Region IV, which
is sometimes called a white hole. We will describe a white hole later.

The Kruskal–Szekeres diagram demonstrates the incompleteness of
the Schwarzschild coordinate system, besides explaining the difference
between a black hole and a white hole.
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(u, v) to the Schwarzschild
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the incompleteness of the
latter.

13.4 Non-spherical gravitational collapse
The only problem of gravitational collapse we could discuss in some
detail was one of spherical symmetry. One could argue that stars are by
and large spherical and will start their collapse in that state. Although
they would have pressures, these may be neglected in the ‘run-away’ state
of collapse, as mentioned earlier. The formalism developed by Datt can
deal with any inhomogeneous (but spherically symmetric) initial state.

Nature, however, might not be so obliging always in giving us spher-
ical symmetry as an initial condition. The departure from spherical sym-
metry complicates the problem enormously. Attempts are being made
to solve the partial differential equations of collapse numerically on a
large computer.
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Nevertheless, if one sticks to ‘small’ departures from spherical sym-
metry, one can make progress, as R. H. Price’s work has shown. The spirit
of this work (not the details) is conveyed in the following paragraphs of
this section.

Suppose the collapsing body generates an external physical field

, which can be characterized by an integral spin s and zero rest mass
(so as to be of long range). Thus an electromagnetic disturbance is
characterized by s = 1, whereas a gravitational one has s = 2. These
disturbances may be treated as small, first-order, perturbations on an
external Schwarzschild solution, which is assumed to be left unchanged
at ‘zeroth order’.

Suppose the external field is written as a power-series expansion
over spherical harmonics:


 =
∑

n,s

1

R
A(s)

n Sn(θ, φ). (13.35)

The coefficients A(s)
n are functions of R and T . When the time

development of these coefficients is carried out, most of them die away
as the object collapses. What does remain at the end?

Price found that all harmonics of order n ≥ s are radiated away and
only those with n < s remain. Thus nothing survives from a scalar
field (s = 0), only the electric charge survives as a source in the s = 1
electromagnetic case, while mass (n = 0) and angular momentum
(n = 1) are left as sources in the s = 2 gravitational case.

This analysis is limited to small departures from spherical symme-
try. However, if we stretch our belief to larger departures away from
spherical symmetry, it tells us that if we are limited to gravitational and
electromagnetic interactions only (these are the only long-range basic
interactions known today) then the end point of gravitational collapse for
an external observer is a black hole with mass (M), electric charge (Q)
and angular momentum (H ). It is therefore of interest to know whether
such black holes exist and how they are described.

13.5 The Reissner–Nordström solution

H. Reissner in 1916 and G. Nordström in 1918 independently arrived at a
solution for the metric exterior to a spherically symmetric distribution of
charged matter with total mass M and electric charge Q. (See References
[39, 40].) We will briefly show how the problem is solved and discuss
the nature of the solution.

We start with a spherically symmetric line element as in the
Schwarzschild case:

ds2 = eν dT 2 − eλ dR2 − R2(dθ 2 + sin2θ dφ2). (13.36)
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The only difference is that we have a Coulomb field Fik , generated
by the charge Q at the origin, that has an energy-momentum tensor
given by

Tik = − 1

4π

[
F m

i Fkm − 1

4
Flm Flm gik

]
. (13.37)

Recall from Section 7.5.2 that this is the general expression for the
energy-momentum tensor of the electromagnetic field.

From the condition that the source is static, we assume that the
solution of the electromagnetic field as well as the spacetime geometry
will be static too. Thus we try the solution for the 4-potential as Ai ≡
[ψ(R), 0, 0, 0]. Then, for the only non-zero field components F01 =
−F10, we have

F01 = −ψ ′, F01√−g = e− 1
2 (λ+ν) R2 sin θ × ψ ′.

The condition for a point charge at the origin is that the covariant diver-
gence of Fik should vanish everywhere except at R = 0. From the
above relation

∂ F01√−g

∂ R
= 0 ⇒ ψ ′ = E

R2
e

1
2 (λ+ν),

where E is a constant of integration. On substituting into the expression
(13.37) for T ik we get the non-zero components as

T 0
0 = T 1

1 = −T 2
2 = T 3

3 = 1

4π
e− 1

2 (λ+ν)ψ ′2. (13.38)

We now substitute −8πGT i
k on the right-hand side of the Ein-

stein equations written out for the above metric. Referring back to the
Schwarzschild solution of Chapter 9, we again see that the equations with
i = k = 0 and i = k = 1 taken together give as before λ′ + ν ′ = 0. As
on that occasion, we can again simplify the solution by having λ = −ν.
So we are left with only one independent equation:

eν(1 + Rν ′) − 1 = − G E2

R2
. (13.39)

This simple differential equation can be solved and we get the solu-
tion as

eν = 1 − B

R
+ G E2

R2
.

Here B is a constant of integration. If we look at the asymptotic
form of the line element at large R and demand that it look like that
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R +

R −

Fig. 13.4. A schematic view
of the Reissner–Nordström
solution. It has two spheres on
which horizon-like properties
are found.

for mass M at the origin, then we get B = 2G M . Likewise, if we
ascribe a magnitude Q to the charge at the origin, then its asymptotic
Coulomb field in Gaussian units would be Q/R2. A comparison with our
solution enables us to set E = Q. Thus we have the following Reissner–
Nordström line element to describe a spacetime around a spherical mass
M and charge Q:

ds2 =
(

1 − 2G M

R
+ G Q2

R2

)
dT 2 −

(
1 − 2G M

R
+ G Q2

R2

)−1

dR2

− R2(dθ 2 + sin2θ dφ2). (13.40)

It is easy to see that there is an apparent problem where eν vanishes,
i.e., at two values of R at

R± = G M ±
√

G2 M2 − G Q2. (13.41)

We have not one but two surfaces where eν vanishes. The outer one
(R = R+) plays effectively the role of an event horizon of the black hole
just as the R = Rs surface does for a charge-free body. See Figure 13.4
for a schematic description of the Reissner–Nordström black hole.

13.6 The Kerr solution

In 1963 Roy Kerr obtained what may arguably be the most important
exact solution of Einstein’s field equations since the Schwarzschild solu-
tion. It describes the spacetime outside a spinning mass. Specifically, the
line element for the empty spacetime outside a mass M having an angular
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momentum H is given by

ds2 = 


ρ2
(dT − h sin2θ dφ)2 − ρ2



dR2 − ρ2 dθ2

− sin2θ

ρ2
[(R2 + h2)dφ − h dT ]2, (13.42)

where we define

h ≡ H/M = angular momentum per unit mass as measured about the
polar axis (θ = 0; θ = π ),


 ≡ R2 − 2G M R + h2,

ρ2 ≡ R2 + h2 cos2θ.

For details on how this line element was derived, see Kerr’s origi-
nal paper [41]. We will look at some important properties of the Kerr
solution.

13.6.1 The static limit

As we go closer and closer to the Kerr black hole, we notice the effect
of rotation in various ways. As we notice from the Earth, because of its
spin, we see stars rise in the East and set in the West. If we desire to
see the stars stationary as they really are, in the frame of reference in
which the distant stellar background is at rest, we need to counteract the
Earth’s spin by travelling in a fast aircraft or in a space station from East
to West.

The same would happen for the Kerr solution, but up to a limit. The
coordinates (R, θ, φ) are constant for distant stars and, if an observer
wishes to stay at rest in such a frame, he will encounter greater and
greater difficulty as he approaches the object. He will be required to
exert stronger and stronger force to stay in the same place relative to
distant stars. Thus the line element shows that a world line having a
constant (R, θ, φ) will be timelike provided that

R > R(θ ) = G M +
√

G2 M2 − h2 cos2θ. (13.43)

For R ≤ R(θ ) the observer will be dragged along past the constant
R, θ, φ framework in the direction in which the mass is spinning. Even
if the observer employs rocket power to counter this drag, it will be to
no avail. This surface R = R(θ ) is called the ‘static limit’.
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13.6.2 The ergosphere

Just as we have horizons for the Schwarzschild and the Reissner–
Nordström black holes, here too we have an event horizon, provided,
of course, that the object itself is not larger than it. The Kerr horizon is
located at 
 = 0, i.e., at

R = R+ = G M +
√

G2 M2 − h2. (13.44)

It can be easily verified that, as in the Schwarzschild case, light rays
may enter the horizon from outside (R > R+), but they cannot emerge
outwards from inside the horizon.

The surface signifying the static limit is larger than the above hori-
zon. As shown in Figures 13.5(a) and (b), the two surfaces touch each
other at the poles (θ = 0, θ = π ); otherwise the static limit is strictly
outside the horizon. The volume between the two surfaces, shown filled
by dots, has been named ‘the ergosphere’. The reason for the name is
that the compulsive spin imposed on any piece of matter entering the
ergosphere enbles us to ‘extract’ energy from the spinning black hole.
The black hole thereby loses some of its rotational energy. The rapidly
rotating piece will carry that energy away, if it is enabled to emerge from
the ergosphere.
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Fig. 13.5. In (a) we see a
‘constant-latitude’ section
of the Kerr black hole. The
portion between the horizon
and the static limit belongs
to the ergosphere. In (b) the
section along a longitude great
circle shows the location of
the ‘poles’ at θ = 0, π and
the section of the ergosphere
(marked with dots).

13.6.3 The Kerr–Newman black hole

Ted Newman and his colleagues at Pittsburgh University combined the
Reissner–Nordström solution with the Kerr solution and generated the
spacetime geometry for a charged spinning mass. Thus the line element
for a mass M with angular momentum H and electric charge Q is given
by Equation (13.42), but with the quantity 
 redefined as


 = R2 − 2G M R + h2 + G Q2. (13.45)

Like the Kerr solution, this solution also exhibits the properties of
a horizon, a static limit and the ergosphere. Further, if we set h = 0, we
come back to the Reissner–Nordström black hole. This solution has one
special significance.

As we saw in Section 13.4, Price’s theorem indicates (but does not
prove in the most general collapse case) that a black hole forming by
gravitational collapse under the classical long-range forces of electro-
magnetism and gravitation will at most exhibit mass, electric charge
and angular momentum. This state is precisely described by the Kerr–
Newman black hole with its three parameters M, H and Q.



212 Black holes

We will now look at the general physical properties of black holes,
drawing analogies with the laws of thermodynamics. While illustrating
them quantitatively, we will use the Kerr–Newman black hole or the
simpler Kerr black hole as the typical example of a black hole.

13.7 Black-hole physics

It has been noticed that the rules describing the dynamical properties of
black holes bear a striking resemblence to the laws of thermodynamics.

Following the analogy with the laws of thermodynamics, we begin
by stating the first law of black-hole physics:

In any process involving a black hole and other objects, the total energy,

momentum, angular momentum and electric charge are conserved.

This simply means, for example, that, if a Schwarzschild black hole
gobbles up a mass having total energy E , its mass will grow from the
earlier value M to M + E .

This raises the question, can the process be reversed? That is, can
we extract energy from the black hole and reduce its mass? The answer
is given by the second law of black-hole physics:

In any physical interaction, the surface area of a black hole can never

decrease.

The wording has a distinct similarity to the second law of thermo-
dynamics, with the ‘surface area’ playing the role of entropy. Let us
examine this law and also seek an answer to the question raised above.

The surface area of a black hole is the area of its horizon surface. For
the Schwarzschild black hole, the horizon is given by R = Rs = 2G M ,
so the surface area of the black hole is simply

A = 4π R2
s = 16πG2 M2. (13.46)

With this definition, A cannot decrease and so M cannot decrease. This
in turn implies that we cannot extract energy from this black hole since
such a process would tend to reduce rather than increase M . However,
not all is lost! For, if we have a spinning black hole, we note from
Equation (13.41) that the horizon is at R = R+. From the line element
we see that at T = constant and R = constant any surface described by
[θ, θ + dθ ] × [φ, φ + dφ] has area

ρ dθ
√

R2+ + h2 × sin θ

ρ
dφ =

√
R2+ + h2 × sin θ dθ dφ.
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By integrating over θ, φ, we get the surface area of the Kerr–
Newman black hole as

A = 4π (R2
+ + h2) = 4π [2G2 M2 − G Q2 + 2G M

√
G2 M2 − G Q2 − h2].

(13.47)

We now take the differential of the above expression, using the
fact that the variables to change are A, M , Q and H . Since H has
directionality like a vector, we should write it as a three-dimensional
spatial vector H. The same applies to h. Thus, after some manipulation,
we get

δA

8πG
= 1√

G2 M2 − G Q2 − h2
× [(R2

+ + h2)δM − R+ Q δQ − h · δH].

(13.48)

As in thermodynamics, we assume that the most efficient way of
running a process is to ensure that it is running reversibly, insofar as the
area is concerned. In short, we set δA as zero and simplify the above
expression to

δM = R+ Q δQ

R2+ + h2
+ h · δH

R2+ + h2
. (13.49)

Is it possible to reduce the mass of a black hole? For that is the only
way we can extract energy from it. The above equation tells us that if we
reduce the electric charge or the angular momentum of the black hole
we can achieve this feat. The Penrose mechanism described below is a
way to do this.

13.7.1 The Penrose process

The process proposed by Penrose is in fact a thought experiment
designed to extract energy from the rotating Kerr black hole by using the
properties of the ergosphere discussed in the text. As shown in Figure
13.6, the process involves dropping a mass into the ergosphere, arrang-
ing for it to split into two bits, with one bit falling inside the horizon and
the other escaping outside the ergosphere.

What happens here is that the mass entering the ergosphere is made
to rotate along with the black hole, as discussed in the text. It therefore
acquires energy as well as angular momentum from the black hole.
When it splits and part of it falls into the black hole, it loses a fraction
of the acquired energy and angular momentum back to the black hole.
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HORIZON
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Fig. 13.6. A schematic
illustration of the Penrose
process. See the text for
details.

The escaping portion can, however, emerge with so much energy that it
exceeds the energy of the total original mass.

13.7.2 Surface gravity

The analogy with thermodynamics can be pushed further by comparing
the standard relation in thermodynamics,

dE = T dS − P dV, (13.50)

with Equation (13.48) rewritten as

δM = κ
δA

8πG
+ h · δH

h2 + R2+
+ R+ Q δQ

h2 + R2+
, (13.51)

where the function κ is defined by

κ =
√

G2 M2 − G Q2 − h2

h2 + R2+
. (13.52)

What is this function supposed to represent? It is known as the
surface gravity of the black hole. If we do a naive Newtonian calculation
for a Schwarzschild black hole of mass M , its radius at the horizon is
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2G M . The Newtonian acceleration due to gravity at this distance is

κ = G × M

(2G M)2
= 1/(4G M).

The expression above reduces to this value for the Schwarzschild
case. Thus κ in Equation (13.51) measures surface gravity and in our
analogy with thermodynamics it plays the role of temperature. Just as in
equilibrium temperature is constant, we have the corresponding ‘zeroth
law’ of black-hole physics telling us of the existence of surface gravity,
which happens to be constant over the horizon. This law was proposed
by Bardeen, Carter and Hawking [42], whereas the second law was
proposed by Hawking [43].

The analogy with thermodynamics was carried a step further by
Bardeen et al. when they argued that it is impossible to reduce κ to zero
by any finite set of operations. This statement matches the third law of
thermodynamics.

Consider the Kerr black hole. What is the maximum angular momen-
tum it can have for a given mass M? Since R+ must be real, we need
to have h ≤ G M , i.e., H ≤ G M2. The state in which H = G M2

describes what is called an extreme Kerr black hole. Notice that it has
zero surface gravity and, by virtue of the theorem of Bardeen, Carter and
Hawking, such a state cannot be attained in nature by any finite sequence
of operations. It corresponds to the state of absolute zero temperature of
thermodynamics.

With the help of the laws of black-hole physics we can understand
the limitations on the Penrose process. Note that, as we reduce the mass
and the angular momentum of the black hole, we can at best keep its
area A constant. In general we see that if we travel along a constant-area
curve we finally end with the Schwarzschild black hole of zero angular
momentum. If the third law of black-hole physics holds, then we can
at best start this process when the Kerr black hole is in what is known
as the extreme state (when its surface gravity is zero). Here its angular
momentum is so large that h = G M . Let us denote by M0 the starting
mass of the black hole in this extreme state. Then its surface area is (by
the formula given in the text)

A0 = 2π R2
+ = 8π

G2 M2
0

c4
.

In the final state its mass is Mi, say. The area of a Schwarzschild black
hole of this mass is

Ai = 16π
G2 M2

i

c4
.
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By the second law of black-hole physics Ai cannot be less than A0.
At best we may equate A0 to Ai, giving

Mi = M0√
2
.

Thus the Penrose process can at most extract (M0 − M0/
√

2)c2 of the
original mass energy M0c2. The available fraction of energy is there-
fore (

√
2 − 1)/

√
2, i.e., nearly 30% of the total energy. (In con-

trast, the hydrogen-fusion process yields only ∼0.7% of the total
energy.)

The mass Mi is known as the irreducible mass of the Kerr black
hole.

So, in principle, we can extract energy from a Kerr–Newman black
hole until it reaches the state of no charge (Q = 0) and no angular
momentum (H = 0). This state is that of the Schwarzschild black
hole and it is characterized by its mass only. We call it irreducible
mass since henceforth the second law prohibits any energy extraction.
Since, in reaching this state, we have not changed the surface area
(vide the condition δA = 0), we can relate the final irreducible mass
to the area of the black hole. Thus we have the irreducible mass Mi as
given by

4G2 M2
i = h2 + R2

+,

i.e.,

M2 =
(

Mir + Q2

4G Mi

)2

+ H 2

4G2 M2
i

. (13.53)

Evidently this is the ‘most efficient scenario’! If there is any irre-
versibility in the energy-extraction process, the irreducible mass would
increase.

We next consider the problem of interest to astronomers, viz. how
to detect black holes.

13.8 Detection of black holes
Given the fact that a black hole cannot be seen by detecting any form
of light, how does one know that a black hole is located in some spec-
ified region? The answer is indicated by the following thought exper-
iment. Suppose the Sun becomes a black hole. It will no longer be
visible from the Earth. Nevertheless, we on the Earth would be able
to deduce from the orbit of the Earth that there exists a source of
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attraction at the location of the Sun, with the mass of the Sun. This
is because the black hole continues to exert gravitational force even if
not seen.

Following this example, an ideal scenario for the detection of a
black hole is if it has a companion that is easily visible. For exam-
ple, if the black hole is a member of a binary star system, then by
watching its companion move we can deduce the presence of an invis-
ible mass. If from the dynamics of the system we are able to place
a lower limit on the mass of the invisible object, and it exceeds, say,
3M�, then we can assert that the object is a black hole. (Vide the limits
placed on stellar masses existing as white dwarfs or neutron stars, in
Chapter 12.)

The first strong case for a black hole in a binary system was that
of Cygnus X-1, an X-ray source. (See Reference [44].) Figure 13.7
illustrates the typical binary X-ray-source scenario. Here we have a
supergiant star and a black hole going round their common barycentre.
The black hole exerts an attractive force strong enough to pull the loosely
attached outer layers of plasma from the companion. The plasma goes
round and round the black hole as it spirals in and ultimately falls in
across the horizon. The infalling material, because of its viscosity, gets
heated and radiates through the process known as bremsstrahlung. At
the high temperature of about a million degrees, this radiation is in the
form of X-rays. Cygnus X-1, which was first found in the mid 1970s,
proved to be typical of several similar examples of X-ray binaries in
which the companion was invisible. However, a large fraction of these
turned out to be neutron stars rather than black holes, since their masses
did not exceed 2M�. The invisible star in Cygnus X-1, in contrast, has
mass more than 8M�.

During the mid 1980s, observers of galaxies began reporting
massive black holes (of (108 − 109)M�) in the centres of galaxies

SUPERGIANT
STAR

X-RAYS

BLACK HOLE

Fig. 13.7. The binary X-ray
scenario which in the case of
the X-ray source Cygnus X-1
provides indirect evidence for
its invisible component being
a black hole (shown in the
figure as a dark sphere).
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Fig. 13.8. M87
photographed with its nucleus
that is believed to house a
black hole. An indication of
violent activity in the nucleus
is the emergence of the jet
seen. (Photograph by courtesy
of NASA.)

like M87 (see Figure 13.8). The presence of such massive black
holes is inferred from the large dynamical activity of nearby stars
as indicated by their large spectral shifts, or by the abnormal rise
in luminosity of the region. The latter effect arises because of the
concentration of stars near the black hole, which is brought about by
its powerful attraction. The latter fact may appear paradoxical in the
sense that the black hole itself is rendered invisible because of its strong
attraction!

We end this chapter with a brief description of a white hole, which
in some sense is the opposite of a black hole.

13.9 White holes

We arrived at the notion of a black hole through the phenomenon of
gravitational collapse of a dust ball. Following the 1975 analysis by
Narlikar, Appa Rao and Dadhich [45], we now consider a time-reversed
solution generated by changing the coordinate t to −t in Section 13.2.
Thus the line element is

ds2 = dt2 − S2(t)

[
dr 2

1 − αr 2
+ r 2(dθ 2 + sin2θ dφ2)

]
(13.54)
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with the function S(t) satisfying the differential equation

Ṡ2 = α

(
1 − S

S

)
(13.55)

and the boundary conditions S = 0 at t = −t0 and S = 1, Ṡ = 0 at
t = 0. Instead of gravitationally collapsing, the dust ball erupts as an
explosive event at t = −t0. While the behaviours of the collapsing
ball and expanding ball can be related through time symmetry in the
t-coordinate, the two solutions look asymmetrically different from the
vantage point of a distant Schwarzschild observer. The collapsing ball
is seen to disappear slowly into the event horizon of the black hole. Let
us now see how the exploding ball looks from outside.

We consider a radial signal leaving the surface of the expanding ball
at the Schwarzschild time T1 and reaching a distant observer at constant
Schwarzschild R = R2 coordinate at time T2. The relation between these
quantities is

∫ R2

R1

(
1 − 2G M

R

)−1

dR = T2 − T1. (13.56)

R1 is (as before) the changing value of the Schwarzschild coordinate of
the white-hole surface.

Next consider a signal sent out a short time 
T1 later, arriving at
the observer at T2 + 
T2. During this period R2 has not changed, but
R1 has. Since R1 = rbS(t), we can write


T2 − 
T1 = − rb Ṡ(t1)
t1

1 − 2G M

R1

. (13.57)

From Equations (13.26) and (13.29) we can deduce that


T1 =
√

1 − αr 2
b

1 − 2G M

R1


t1. (13.58)

Therefore, we have from the above two relations the result


T2


t1
=

√
1 − αr 2

b − rb Ṡ(t1)

1 − 2G M

R1

. (13.59)

At R2 � 2G M we may treat T2 as the proper time of the observer
at R2. Hence a light wave sent from the surface of the expanding ball
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undergoes a spectral shift z given by

(1 + z)−1 =
1 − 2G M

R1√
1 − αr 2

b − rb Ṡ(t1)
. (13.60)

This expression is well behaved outside the Schwarzschild horizon.
However, it comes as a surprise to find that it is well behaved on the
horizon and inside too! On expressing Ṡ(t1) in terms of S, we get, after
a limiting process,

(1 + z)−1 =
√

1 − αr 2
b +

√
αr 2

b

(
1

S
− 1

)
. (13.61)

The value of this ratio at the event horizon is 2
√

1 − αr2
b .

On looking at the Kruskal–Szekeres diagram (Figure 13.3), we see
that such rays are coming from Region IV into Region I. The T -
coordinate behaves strangely, but the t and u, v coordinates are well
behaved. The result in the above equation is finite. Since we have used
‘bad’ coordinates (R, T ) we have arrived at two infinite integrals whose
difference is finite. If we had used the (u, v) coordinates we could have
got the result without subtraction of infinities.

From Equation (13.61) we see that signals not only come out from
within the R = 2G M surface but also can be blueshifted for

S(t1) <
1

2

(
1 +

√
1 − αr 2

b

)
. (13.62)

Thus our dust ball, at least during the early stages of expansion,
resembles a very shiny object with high-energy radiation coming out.
Hence such objects are called white holes.

Compared with black holes, the white holes enjoy certain advantages
and also suffer from disadvantages. The advantages are that they are
readily visible, are exceptionally bright and may have an appearance
that varies rapidly with time. The disadvantage is that a white hole as
described here originates in a singularity and physicists are in general
not happy with systems whose origin they cannot understand. (A major
exception to this statement is the Universe as a whole, whose most
popular model, the big-bang model, also originates in a singularity, vide
Chapter 15.) One could advance a white hole as a source behind transient
explosive phenomena like the gamma-ray bursts. A signature of white
holes is that the frequency of their radiation declines with time: the
factor 1 + z increases. The softening of radiation from a gamma-ray
burst indicates just that effect.



Exercises 221

Exercises

1. By considering a test particle on the surface of the collapsing dust ball

discussed in the text as falling freely in the external Schwarzschild spacetime,

deduce the relation of Equation (13.17).

2. Consider a more general solution of Equation (13.11). Define eµ/2 = R(r, t).

Then this equation becomes

Ṙ2 = F(r )

r

( r

R
− 1

)
.

Solve this by writing R = r cos2�. Show that the general solution includes

cases wherein the radial displacements diverge while the transverse ones shrink.

In all cases show that the typical proper volume element converges to zero.

3. A collapsing dust ball emits radiation radially outwards from its surface.

Show that as its surface approaches the Schwarzschild barrier the redshift z of the

radiation received by a distant Schwarzschild observer using the T -coordinate

increases as

1 + z ∝ exp[T/(4G M)],

where M is the mass of the collapsing dust ball.

4. In the Eddington coordinates, the Schwarzschild T -coordinate is replaced by

V = T + R + 2G M ln
∣∣∣ R

2G M
− 1

∣∣∣.
Show that V = constant describes an ‘ingoing’ radial null geodesic and that the

Schwarzschild line element is transformed to

ds2 =
(

1 − 2G M

R

)
dV 2 − 2 dV dR − R2(dθ 2 + sin2θ dθ 2).

Construct the ‘outgoing’ Eddington coordinates along the same lines.

5. Show that the following metric describes Schwarzschild’s spacetime:

ds2 = dt2 − 4

9

[
9G M

2(r − t)

]2/3

dr 2

+
[

9G M

2
(r − t)2

]2/3

(dθ 2 + sin2θ dφ2).

This metric arises on solving the exterior solution for a dust ball collapsing from

a state of rest at infinite dispersion.

6. Show that, in the Kerr–Newman black hole, for R < R0(θ ) no physical

observer can have constant R, θ , φ. If an observer has a constant R and θ
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then he must have an angular velocity

dφ

dT
>

h sin θ − √



(R2 + h2)sin θ − √

h sin2θ

.

7. An ‘extreme’ Kerr–Newman black hole is defined by the relation G2 M2 =
G Q2 + h2. If G2 M2 < G Q2 + h2, there is no horizon (since 
 = 0 has no real

roots). Show that, if a black hole is initially in the extreme form, it cannot evolve

into a state of no horizon under the usual laws of black-hole physics.



Chapter 14

The expanding Universe

14.1 Historical background

In 1915 Einstein put the finishing touches to the general theory of rel-
ativity. The Schwarzschild solution described in Chapter 9 was the first
physically significant solution of the field equations of general relativity.
It showed how spacetime is curved around a spherically symmetric dis-
tribution of matter. The problem solved by Schwarzschild was basically
a local problem, in the sense that the deviations of spacetime geometry
from the Minkowski geometry of special relativity gradually dimin-
ish to zero as we move further and further away from the gravitating
sphere. This result can be easily verified from the Schwarzschild line
element by letting the radial coordinate go to infinity. In technical jar-
gon a spacetime satisfying this property is called asymptotically flat.
In general any spacetime geometry generated by a local distribution of
matter is expected to have this property. Even from Newtonian grav-
ity we expect an analogous result: that the gravitational field of a local
distribution of matter will die away at a large distance from the dis-
tribution. Can the Universe be approximated by a local distribution of
matter?

Einstein rightly felt that the answer to the above question would
be in the negative. Rather, he expected the Universe to be filled with
matter, howsoever far we are able to probe it. A Schwarzschild-type
solution cannot therefore provide the correct spacetime geometry of such
a distribution of matter. Since we can never get away from gravitating
matter, the concept of asymptotic flatness must break down. A new type
of solution was therefore needed to describe a Universe filled everywhere

223
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with matter. Einstein published such a solution (cf. Ref. [46]) in 1917.
It was to launch the subject of theoretical cosmology, that is, a subject
dealing with theoretical modelling of the Universe in the large.

14.1.1 The Einstein universe

It is evident from the field equations of general relativity that their
solution in the most general form – the solution of an interlinked set of
non-linear partial differential equations – is beyond the present range of
techniques available to applied mathematics. It is necessary to impose
simplifying symmetry assumptions in order to make any progress
towards a solution. Just as Schwarzschild assumed spherical symmetry
in his local solution, Einstein assumed homogeneity and isotropy in
his cosmological problem. He further assumed, like Schwarzschild, that
spacetime is static. This enabled him to choose a time coordinate t such
that the line element of spacetime could be described by

ds2 = c2 dt2 − αµν dxµ dxν, (14.1)

where αµν are functions of space coordinates xµ (µ, ν = 1, 2, 3) only.
Note that the constraint of homogeneity implies that the coefficient

of dt2 can only be a constant, which we have normalized to c2. We
may further assume as hitherto that c = 1. Similarly, the condition of
isotropy tells us that there should be no terms of the form dt dxµ in
the line element. This can be seen easily in the following way. If we
had terms like g0µ dt dxµ in the line element, then spatial displace-
ments dxµ and −dxµ would contribute oppositely to ds2 over a small
time interval dt , and such directional variation would be observable
and would be inconsistent with isotropy. Can we say anything more
about αµν?

We go back to Chapter 6, where we discussed spacetime symme-
tries in general. Referring to the maximally symmetric spaces of three
dimensions, to which the homogeneous and isotropic model of Einstein
belonged, we can write down the most general line element for such
spaces, vide Equation (6.31). However, Einstein felt that the matter-
filled Universe will have a positive curvature, which will make it close
onto itself. Thus, of the three alternatives for the curvature parameter k,
he opted for k = 1, and so the line element of his spacetime became

ds2 = c2 dt2 − S2
[ dr 2

1 − r 2
+ r 2(dθ 2 + sin2θ dφ2)

]
. (14.2)

Given this line element, it is now straightforward to compute
Christoffel symbols and the Ricci tensor. The calculation leads to the
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following non-zero components of the Einstein tensor:

R0
0 − 1

2
R = − 3

S2
, (14.3)

R1
1 − 1

2
R = R2

2 − 1

2
R = R3

3 − 1

2
R = − 1

S2
. (14.4)

To complete the field equations, Einstein used the energy tensor for
dust derived in (7.20). For dust at rest in the above frame of reference ui

has only one component, the time component, non-zero. We therefore get

T 0
0 = ρ0c2,

T 1
1 = T 2

2 = T 3
3 = 0. (14.5)

Thus the two equations (14.3) and (14.4) lead to two independent
equations:

− 3

S2
= −8πG

c2
ρ0, − 1

S2
= 0. (14.6)

Clearly no sensible solution is possible from these equations, thus sug-
gesting that no static homogeneous isotropic and dense model of the Uni-
verse is possible under the regime of Einstein equations as stated in (8.3).

This was a setback, for it indicated that either Einstein’s assumptions
about the Universe (homogeneous, isotropic and static) were wrong or
that his set of basic equations was incomplete. The option to get out
of the conundrum that Einstein adopted was the latter. He modified his
field equations, by introducing the so-called ‘λ-term’, to the form

Rik − 1

2
gik R + λgi k = κTik . (14.7)

We briefly discussed this modification in Chapter 8. The constant
λ needed for cosmology turns out to be very small, of the order of
10−56 cm−2. It therefore does not affect the observational checks on the
theory from the Solar-System data. It makes a difference in cosmology,
however, as we will find in the following chapter.

The additional term in the field equations now led Einstein to the
following modified equations for his static model:

λ − 3

S2
= −8πG

c2
ρ0 (14.8)

and

λ − 1

S2
= 0. (14.9)

He now did have a sensible solution. He got

S =
√

1

λ
= c

2
√

πGρ0
. (14.10)
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Einstein considered this solution as justifying his conjecture that
with sufficiently high density it should be possible to ‘close’ the Uni-
verse. See Reference [46] for the Einstein paper on this topic. In (14.10)
we have the radius S of the Universe as given by the matter density ρ0,
with the result that the larger the value of ρ0, the smaller the value of
S. However, if λ is a given universal constant like G, both ρ0 and S are
determined in terms of λ (as well as G and c). How big is λ?

In 1917 very little information was available about ρ0, from which
λ could be determined. The value of

S ≈ 1026−1027 cm

quoted in those days is therefore only of historical interest. If we take
ρ0 ∼ 10−31 g cm−3 as a rough estimate of the mass density in the form
of galaxies, we get S ≈ 1029 cm and λ ≈ 10−58 cm−2.

The λ-term introduces a force of repulsion between two bodies that
increases in proportion to the distance between them. The attractive force
of gravity decreases with distance, whereas the above force of repulsion
increases with distance. Therefore at a specific distance the two would
balance and provide a static universe. Later it turned out that the model
was unstable and would either collapse or expand to infinity, depending
on which of these two forces dominated. Theoretical objections like
this apart, this model did not survive much longer than a decade, for
observational reasons discussed in the next section.

Example 14.1.1 Consider a two-body problem in which a small mass m

moves under the influence of a large mass M . Ignoring the motion of M and

assuming that m is held at rest at a distance r from M , we have the net force

on m as

F ≡
(

− G M

r 2
+ λrc2

)
m.

For equilibrium F must vanish, thus giving a static distance of separation as

r0 =
(

G M

λc2

)1/3

.

(Note that we have introduced c2 manifestly to preserve the correct dimen-

sionality.) If, however, the small mass were slightly displaced, F will be

non-zero. Writing the displacement away from M as δr , we get

δF =
(

2G M

r 3
+ λc2

)
m δr.

So, if δr > 0, δF > 0, resulting in m moving further away from M . Likewise,

if δr < 0, δF < 0, thus telling us that m will move towards M . These
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movements are indicative of instability, since in neither case does m return

to its original position of rest.

This example gives an intuitive feel for why the Einstein model is

unstable.

14.1.2 The de Sitter Universe

Einstein was initially very satified by this solution, for it reinforced his
belief that the Universe would essentially be unique in having a definitive
spacetime geometry determined by the matter distribution. To this end
his model showed how its radius was determined by its matter density.

However, his expectation that general relativity can yield only such
matter-filled spacetimes as solutions of the field equations was proved
wrong shortly after the publication of his paper in 1917. For, a few
months later in the same year, W. de Sitter [47] published another solution
of the field equations (14.7) with the line element given by

ds2 = c2
(

1 − H 2 R2

c2

)
dT 2 − dR2(

1 − H 2 R2

c2

) − R2(dθ 2 + sin2θ dφ2),

(14.11)

where H is a constant related to λ by

λ = 3H 2

c2
. (14.12)

The remarkable feature of the de Sitter universe is that it is empty.
Moreover, although the above coordinates give the impression that the
universe is static, it is possible to find a new set of coordinates (t, r, θ, φ)
in terms of which the line element (14.11) takes the manifestly dynamic
form

ds2 = c2 dt2 − e2Ht [dr 2 + r 2(dθ 2 + sin2θ dφ2)]. (14.13)

It is easy to verify that test particles with constant values of (r, θ, φ)
follow timelike goedesics in this model. Thus the proper separation
between any two particles measured at a given time t increases with time
as eHt . That is, these particles are all moving apart from one another.

However, these particles have no material status. They have no
masses and they do not influence the geometry of spacetime. In the
dynamic sense the universe is empty, although in the kinematic sense it
is expanding. As Eddington once put it, the de Sitter universe has motion
without matter, in contrast to the Einstein universe, which has matter
without motion.
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14.2 The expanding Universe

Although de Sitter’s universe was of academic interest because it con-
tained no matter, it possessed a feature that turned out to have contact
with reality, as was discovered a few years later, namely the fact that the
Universe is expanding.

In 1929 Edwin Hubble published a paper in the Proceedings of the
National Academy of Sciences [48] that turned out to be the trend-setter
of modern cosmology. Just as Einstein’s model marked the beginning
of theoretical cosmology, so did Hubble’s findings launch observational
cosmology, the subject dealing with the observational studies of the
large-scale Universe.

Hubble’s conclusions were based on a long series of observations that
had started with V. M. Slipher in 1912 and to which several astronomers
had contributed, including Hubble himself and his coworker Milton
Humason. These observations typically looked at the spectra of nearby
nebulae, which were believed to be galaxies of stars in their own right
just like the Milky Way. Barring very few exceptions, which included the
great galaxy in Andromeda, the majority of spectra showed absorption
lines that were shifted to the red end. This is another instance of a class
of astronomical objects showing redshift.

Although one may use the relativistic Doppler-shift formula (1.64)
derived in Chapter 1, because the redshifts are very small (of the order
of a few parts in a thousand) one may use the simpler Newtonian limit of
that formula for |v| � 1, and write the speed of recession of a galaxy of
redshift z as

v = c × z. (14.14)

Going beyond this result, however, Hubble found that the velocities
so computed were increasing in proportion to the distances D of the
galaxies from us. Figure 14.1 is based on Hubble’s early data.

Hubble’s findings can be written in the following form:

v = H × D. (14.15)

Thus, in whichever direction we look, we find galaxies moving radially
away from us. Does that mean that we are in a special position in the
Universe? Rather the opposite! If we sit on any other galaxy and observe
the Universe from there, we would see exactly the same picture: namely
the other galaxies, including the Milky Way, are receding from us.

How can we express this phenomenon in the language of general
relativity? Can we generate models of the Universe that combine de
Sitter’s notion of expansion with Einstein’s notion of non-emptiness?
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Fig. 14.1. Hubble’s
redshift–distance relation
showing that for larger
distances (D) the galaxies’
radial velocities (v) are
proportionately larger. The
velocity of a galaxy is
proportional to its redshift.

This was the challenge to theoretical cosmologists. For, with this large-
scale radial expansion, it became impossible to maintain the myth of
a static universe. Models of an expanding universe were needed. The
Friedmann models to be discussed shortly do just that, and were in fact
obtained by Alexander Friedmann between 1922 and 1924, seven years
before Hubble’s data became well known [49]. Later Abbé Lemaı̂tre in
1927 [50] also independently obtained models similar to Friedmann’s.
However, until the impact of Hubble’s observations of 1929, these mod-
els remained largely unrecognized.

14.3 Basic assumptions of cosmology

Once we decide to generalize from a static to a non-static model of the
Universe, our task becomes more complicated. Figure 14.2(a) shows a
spacetime diagram with a swarm of world lines representing particles
moving in arbitrary ways. There is no order in this picture, and where
two world lines intersect we have colliding particles. It would indeed
be very difficult to solve the Einstein field equations for such a mess of
gravitating matter. Fortunately, the real Universe does not appear to be
so messy.

Hubble’s observations indicate that the Universe is (or at least seems
to be) an orderly structure in which the galaxies, considered as basic
units, are moving apart from one another in a systematic manner. Thus
Figure 14.2(b) represents a typical spacetime section of the Universe in
which the world lines represent the histories of galaxies. These world
lines, unlike those of Figure 14.2(a), are non-intersecting and form a
funnel-like structure in which the separation between any two world
lines is steadily increasing. One may compare Figure 14.2(b) with the
disciplined march of an army unit, and Figure 14.2(a) with a jostling
mob after a rowdy football match.
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Fig. 14.2. In (a) we have
world lines with no set
pattern, intersecting one
another on some occasions
and in general describing
arbitrary motions of particles.
In (b) we see world lines
showing systematic motion
with each spatial point
identified with a unique
member of the set. The Weyl
postulate stipulates that
large-scale motions of galaxies
come close to (b).

14.3.1 Weyl’s postulate

This intuitive picture of regularity is often expressed formally as the Weyl
postulate, after the early work of the mathematician Hermann Weyl. The
postulate states that the world lines of galaxies form a 3-bundle of non-
intersecting geodesics orthogonal to a series of spacelike hypersurfaces.

To appreciate the full significance of Weyl’s postulate, let us try to
express it in terms of the coordinates and metric of spacetime. Accord-
ingly we use three spacelike coordinates xµ (µ = 1, 2, 3) to label a
typical world line in the 3-bundle of galaxy world lines. Further, let the
coordinate x0 label a typical member of the series of spacelike hyper-
surfaces mentioned above. Thus

x0 = constant
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is a typical spacelike hypersurface orthogonal to the typical world line
given by

xµ = constant.

Although in practice the galaxies form a discrete set, we can extend
the discrete set (xµ) to a continuum by the smooth-fluid approximation.
This approximation is none other than the widely used device of going
over from a discrete distribution of particles to a continuum density
distribution. In this case we can treat the quantities xµ as forming a
continuum along with x0 and use them as the four coordinates xi to
describe space and time.

It is worth emphasizing the importance of the non-intersecting world
lines. If two galaxy world lines did intersect, our coordinate system above
would break down, for we would then have two different values of xµ

specifying the same spacetime point (the point of intersection). In the
next chapter we will, however, encounter an exceptional situation in
which all world lines intersect at one singular point!

Let the metric in terms of these coordinates be given by the tensor
gik . What can we assert about this metric tensor on the basis of the Weyl
postulate? The orthogonality condition tells us that

g0µ = 0. (14.16)

Further, the fact that the line xµ = constant is a geodesic tells us that
the geodesic equations

d2xi

dx2
+ 	i

kl

dxk

ds

dxl

ds
= 0 (14.17)

are satisfied for xi = constant, i = 1, 2, 3. Therefore

	
µ

00 = 0, µ = 1, 2, 3. (14.18)

From (14.16) and (14.18) we therefore get

∂g00

∂xµ
= 0, µ = 1, 2, 3. (14.19)

Thus g00 depends on x0 only. Following the trick used earlier, we can
therefore replace x0 by a suitable function of x0 to make g00 constant.
Hence we take, without loss of generality,

g00 = 1. (14.20)

The line element therefore becomes

ds2 = (dx0)2 + gµν dxµ dxν

= c2 dt2 + gµν dxµ dxν, (14.21)
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where we have put ct = x0. This time coordinate is called the cosmic
time. It is easily seen that the spacelike hypersurfaces in Weyl’s pos-
tulate are the surfaces of simultaneity with respect to the cosmic time.
Moreover, t is the proper time kept by any galaxy.

Example 14.3.1 Problem. Suppose we retain the homogeneity assumption

of the Weyl postulate but give up isotropy. This allows g0µ terms. Show that

g0µ are independent of time (µ = 1, 2, 3).

Solution. We still have xµ =constant as a geodesic. So

d2x0

ds2
+ 	0

i j

dxi

ds

dx j

ds
= 0,

d2xµ

ds2
+ 	

µ

i j

dxi

ds

dx j

ds
= 0.

Since xµ = constant, dxµ/ds = 0, d2xµ/ds2 = 0. The above equations

therefore give

	i
00

(
dx0

ds

)2

= 0.

Hence 	
µ

00 = 0 ⇒ 	µ|00 = gµ0	
0
00 + gµν	

ν
00 = gµ0	

0
00 = 0. This implies

∂g0µ/∂t = 0.

14.3.2 The cosmological principle

The second important assumption of cosmology is embodied in the
cosmological principle. This principle states that, at any given cosmic
time, the Universe is homogeneous and isotropic. In practical terms it
means that, if you are blindfolded and taken to any part of the Universe,
then, on the removal of the eye-cover, you would, on the basis of your
observations, be able neither to say where you are nor to identify the
direction in which you are looking.

We have already come across such spaces in Chapter 6, under the
category of maximally symmetric spaces. As seen in Equation (6.31),
we are able to write the line element of such spaces in the form

dσ 2 = S2
[ dr 2

1 − kr 2
+ r 2(dθ 2 + sin2θ dφ2)

]
. (14.22)

The parameter k = 0,−1, or +1 and the factor S is spatially constant.
It could, however, be a function of cosmic time t without affecting any
of the symmetries above. Thus the most general line element satisfying
the Weyl postulate and the cosmological principle is given by

ds2 = c2 dt2 − S2(t)
[ dr 2

1 − kr 2
+ r 2(dθ 2 + sin2θ dφ2)

]
, (14.23)

where the 3-spaces t = constant are Euclidean, or flat, for k = 0, closed
with positive curvature for k = +1, and open with negative curvature



14.4 Hubble’s law 233

for k = −1. For reasons that will become clearer later, the scale factor
S(t) is often called the expansion factor.

The line element (14.23) that we have obtained was rigorously
derived in the 1930s by H. P. Robertson and A. G. Walker, indepen-
dently [51, 52]. It is often referred to as the Robertson–Walker line
element.

The Robertson–Walker line element is sometimes expressed in a
slightly different form with the help of the following radial coordinate
transformation:

r̄ = 2r

1 + √
1 − kr 2

. (14.24)

We then get the line element as

ds2 = c2 dt2 − S2(t)(
1 + kr 2

4

)2 [dr̄ 2 + r̄ 2(dθ 2 + sin2θ dφ2)]. (14.25)

This line element is manifestly isotropic in r̄ , θ, φ. We will, however,
continue to use (14.23).

Notice how the simplifying postulates of cosmology have reduced
the number of unknowns in the metric tensor from 10 to the single func-
tion S(t) (of only one independent variable) and the discrete parameter
k that characterize the Robertson–Walker metric. To determine these
unknowns we need to solve the Einstein field equations, as was done by
Friedmann and Lemaı̂tre. We will defer this exercise to the following
chapter.

14.4 Hubble’s law
Let us first try to understand how the nebular redshift found by Hubble
and Humason is accounted for by the Robertson–Walker model. We
begin by recalling that the basic units of Weyl’s postulate are galaxies
with constant coordinates xµ. We readily identify the xµ with the (r, θ, φ)
of Robertson–Walker spacetime. Thus each galaxy has a constant set of
coordinates (r, θ, φ). This coordinate frame is often referred to as the
cosmological rest frame. As observers we are located in our Galaxy,
which also has constant (r, θ, φ) coordinates. Without loss of generality
we can take r = 0 for our Galaxy. Although this assumption suggests that
we are placing ourselves at the centre of the Universe, it does not confer
any special status on us. Because of the assumption of homogeneity,
any galaxy could be chosen to have its radial coordinate r = 0. Our
particular choice is simply dictated by convenience.
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14.4.1 Redshift

Consider a galaxy G1 at (r1, θ1, φ1) emitting light waves towards us. Let
us denote by t0 the present epoch of observation. At what time should
a light wave have left G1 in order to arrive at r = 0 at the present time
t = t0? To find the answer to this question, we need to know the path
of the wave from G1 to us. Since light travels along null geodesics, we
need to calculate the null geodesic from G1 to us.

From the symmetry of a spacetime we can guess that a null geodesic
from r = 0 to r = r1 will maintain a constant spatial direction. That is,
we expect to have θ = θ1, φ = φ1 all along the null geodesic. This guess
proves to be correct when we substitute these values into the geodesic
equations. Accordingly we will assume that only r and t change along
the null geodesic. Next we recall that a first integral of the null geodesic
equation is simply ds = 0. For the Robertson–Walker line element this
gives us

c dt = ± S dr√
1 − kr 2

. (14.26)

Since r decreases as t increases along this null geodesic, we should take
the minus sign in the above relation. Suppose the null geodesic left G1

at time t1. Then we get from the above relation∫ t0

t1

c dt

S(t)
=

∫ r1

0

dr√
1 − kr 2

. (14.27)

Thus, if we know S(t) and k, we know the answer to our question.
However, consider what happens to successive wave crests emitted

by G1. Suppose the wave crests were emitted at t1 and t1 + �t1 and
received by us at t0 and t0 + �t0, respectively. Then, similarly to (14.27),
we have ∫ t0+�t0

t1+�t1

c dt

S(t)
=

∫ r1

0

dr√
1 − kr 2

. (14.28)

If S(t) is a slowly varying function, so that it effectively remains
unchanged over the small intervals �t0 and �t1, we get by subtrac-
tion of (14.27) from (14.28)

c �t0

S(t0)
− c �t1

S(t1)
= 0,

that is,

c �t0

c �t1
= S(t0)

S(t1)
≡ 1 + z. (14.29)

It is not difficult to see that the quantity z defined above is the redshift.
The term c �t1 is, evidently, the wavelength λ1 measured by an observer
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at rest in the galaxy G1, while c �t0 is the wavelength λ0 measured by an
observer at rest in our Galaxy, since in the Robertson–Walker spacetime
the cosmic time measures the proper time kept by any galaxy. Thus
the wavelength of the light wave increases by a fraction z during the
transmission from G1 to us, provided that S(t0) > S(t1). In other words,
Hubble’s observations of redshift are explained if we assume S(t) to
be an increasing function of time. We will refer to this redshift as the
cosmological redshift. Let us view it in comparison with the two other
types of redshifts we have so far encountered.

Our derivation above shows that the cosmological redshift arises
from the passage of light through an expanding non-Euclidean space-
time. Although in the early days of its discovery it was considered
a manifestation of the Doppler effect, the correct general-relativistic
treatment shows that it does not arise from the Doppler effect, since
in our coordinate frame all galaxies have constant (r, θ, φ) coordinates.
Further, in a non-Euclidean spacetime it is not possible to attach an
unambiguous meaning to the relative velocity of two objects separated
by a great distance. People are often tempted to relate z to velocity by
the special-relativistic relation

1 + z =
√

1 + v/c

1 − v/c
. (14.30)

Such an interpretation is not valid in our present framework because,
as we saw in Chapter 5, special relativity applies only in a locally flat
region of spacetime.

It is also necessary to contrast (14.29) with the gravitational redshift
described in Chapter 9. The gravitational redshift is characterized by the
fact that, if light travelling from object B to object A is redshifted, the
light travelling from A to B is blueshifted. In the present case, if light
travelling from galaxy A to galaxy B is redshifted, that travelling from
B to A will also be redshifted, provided that S(t) is increasing during the
transmission of light.

In conclusion, we also consider the oft-expressed confusion at the
existence of objects with redshifts greater than 1. Normally the Doppler
shift z is interpreted as arising from a source receding from us with the
speed c × z. How, then, it is asked, is it that we have objects travelling
faster than light in spite of the light-speed limit imposed by special
relativity? This way of looking at things is wrong on at least two counts.
The formula used to compute velocity is Newtonian and needs to be
replaced if one is applying special relativity. The special-relativistic
formula above gives |v| < c for all z howsoever large. Secondly, in the
cosmological case, the correct formula is not (14.30) but (14.29). The
latter simply tells us that the light from the redshifted object left it when
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the scale factor was (1 + z)−1 of its present value. In an expanding
Universe this may well be possible. Since we are dealing with curved
spacetime, there is no justification in invoking formulae and results from
special relativity, which does not apply here.

14.4.2 The velocity–distance relation

With the framework developed so far, we can derive Hubble’s law for
low-redshift galaxies. The largest redshift in Hubble’s 1929 paper was
z ∼= 0.003. At these small redshifts we can use the Taylor expansion to
derive a simple linear relation for the distance D1 of a galaxy G1 of
redshift z1 � 1. We define the distance at the present epoch t0 as

D1 = r1 S(t0). (14.31)

We also get, by the Taylor expansion of (14.29),

∫ r1

0

dr√
1 − kr 2

≈ r1, (14.32)

∫ t0

t1

c dt

S(t)
≈ c(t0 − t1)

S(t0)
(14.33)

S(t1) ≈ S(t0) − (t0 − t1) ·
( Ṡ

S

)
t0

S(t0), (14.34)

S(t1) = S(t0)

1 + z
≈ S(t0)(1 − z). (14.35)

From these relations we get

D1 ≈ r1 S(t0) ≈ c(t0 − t1)

≈
[( Ṡ

S

)
t0

]−1

cz, (14.36)

which can be expressed in the form

cz = H0 D1, (14.37)

with H0, the Hubble constant, given by

H0 =
( Ṡ

S

)
t=t0

. (14.38)

From a Doppler-shift point of view, cz may be identified with the
velocity of recession at small z. In this form (14.37) we have Hubble’s
velocity–distance relation. Expressed as part of the velocity–distance
relation, the Hubble constant has the unit of velocity per unit distance,
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the most common unit in usage being kilometres per second per mega-
parsec.1 In many calculations of observational and physical cosmology
we shall use

H0 = h0 × 100 km s−1 Mpc−1. (14.39)

Although Hubble originally obtained h0 ∼ 5.3, the present estimate of h0

is much lower. It is still uncertain, and, until recently, was believed to lie in
the range 0.5 ≤ h0 ≤ 1. Observations with the Hubble Space Telescope
(HST) and some ground-based telescopes have narrowed down this
range, to around 0.55–0.75. Many cosmologists, however, believe that
h0 ≈ 0.7.

Another useful way of expressing H0 is in units of reciprocal time;
that is, by expressing

τ0 = H−1
0 (14.40)

in units of time. A good time unit for τ0 is the gigayear (Gyr). The present
estimate of τ0 is in the range of approximately 13–18 Gyr, depending
upon the value chosen for H0. We may refer to τ0 as the Hubble time
scale.

14.5 The luminosity distance
The distance D1 = r1S(t0) we have defined above may be called the
metric distance. From the Robertson–Walker metric we deduce that this
is the present radius of the sphere centred on us, on which the galaxy
is located, the total surface area of the sphere being 4π D2

1. Using the
practice prevailing in galactic astronomy, we may be tempted to argue
that, if L is the luminosity of the galaxy G1, its apparent flux of radiation
crossing unit area normally at r = 0 will be simply

l = L

4π D2
1

.

This conclusion would, however, be wrong in the expanding Universe.
Let us do the calculation correctly.

Let L be the total energy emitted by the galaxy G1 in unit time at
the epoch t1 when light left it in order to reach us at the present epoch
t0. The redshift z of the galaxy is therefore given by (14.29). It is now
necessary to specify the wavelength range of observation. To fix ideas,

1 To those unfamiliar with the parsec as a distance unit, we add that it equals 3.0856 × 1018

cm or 3.26 light years. This unit naturally arose from the stellar astronomer’s attempts

to measure distances of stars using the parallax method.
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Fig. 14.3. The distribution of
light emitted by galaxy G1 is
assumed isotropic, i.e.,
distributed uniformly across
the surface of the sphere
centred on G1.

suppose that the intensity distribution of G1 over wavelengths λ is given
by the normalized function I (λ). Thus

dL = L I (λ)dλ (14.41)

is the energy emitted by G1 per unit time over the bandwidth (λ, λ + dλ).
If instead of wavelengths we wanted to use frequencies, the correspond-
ing intensity function J (ν) is related to I (λ) by

cJ (ν) = λ2 I (λ). (14.42)

Both J (ν) and I (λ) are used by the astronomer, depending on conve-
nience.

In the case of isotropic light emission by G1, by the time its light
reaches us it is distributed uniformly across a sphere of coordinate radius
r1 centred on G1 (see Figure 14.3). We have already seen that, in the
Robertson–Walker line element, the area is 4π D2

1. We now need to
know how much light is received per unit time by us across unit proper
area held perpendicular to the line of sight to G1, over a bandwidth
(λ0, λ0 + �λ0). Denote this quantity by F(λ0)�λ0. Now two effects
intervene to make the answer different from that expected from Galactic
astronomy.

Note first that because of redshift the arriving light with wavelengths
in the range (λ0, λ0 + �λ0) left G1 in the wavelength range

(
λ0

1 + z
,

λ0 + �λ0

1 + z

)
.
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Now the total amount of energy that leaves G1 between the epochs t1
and t1 + �t1 in the above frequency range is

L I
(

λ0

1 + z

)
· �λ0

1 + z
· �t1.

How many photons carry the above quantity of energy? For a small
enough bandwidth, we may assume that a typical photon had, at emis-
sion, the wavelength λ0/(1 + z), a frequency (1 + z)c/λ0, and hence an
energy equal to (1 + z)ch/λ0, where h is Planck’s constant. Therefore
the required number of photons is

δN = L I
(

λ0

1 + z

)
�λ0

1 + z

�t1

(1 + z)ch/λ0

= Lλ0

ch
· 1

(1 + z)2 · I
(

λ0

1 + z

)
�λ0 �t1.

At the epoch of reception, these photons are distributed across a surface
area of 4πr2

1 S2(t0) and are received over a time interval (t0, t0 + �t0).
Thus the number of photons received by us per unit area held normal to
the line of sight and per unit time is given by

Lλ0

ch
· 1

(1 + z)2
I
(

λ0

1 + z

)
�λ0 · �t1

�t0
· 1

4π r 2
1 S2(t0)

.

At this epoch, because of a scaling down of its frequency by redshift, each
photon has been degraded in energy by the factor (1 + z)−1. Thus each
photon now has the energy ch/λ0. If we multiply the above expression
by this factor, we get the quantity we were after:

F(λ0)�λ0 = L
1

(1 + z)2
· �t1

�t0
· I

(
λ0

1 + z

)
· 1

4π r 2
1 S2(t0)

· �λ0.

However, we note from (14.29) that �t1/�t0 gives us another factor
(1 + z)−1 in the denominator. Thus finally we get

F(λ0) = L I (λ0/1 + z)

(1 + z)34π r 2
1 S2(t0)

. (14.43)

Thus the two effects coming in because of the expansion of the
Universe are (1) the reduction by the factor (1 + z)−1 of energy emitted
per quantum and (2) the time-dilatation at the receiving end by the factor
(1 + z).

In terms of frequencies the result is quoted as flux density,

S(ν0) = L J (ν0(1 + z))

(1 + z) 4π r 2
1 S2(t0)

. (14.44)

Here S(ν0)�ν0 is the amount of radiation received perpendicular to unit
area in unit time across a frequency range (ν0, ν0 + �ν0).
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The optical astronomer uses this result in the form (14.43), while the
radio astronomer uses it in the form (14.44). The X-ray astronomer uses
energies instead of frequencies, so (14.44) is scaled by h. Astronomers
have occasion to use these expressions when looking at the various
observational tests of cosmology. We will end this section by deriving a
few results of interest to optical astronomy.

The expression (14.43) integrated over all wavelengths gives

Fbol = Lbol

4π r 2
1 S2(t0)(1 + z)2

. (14.45)

where Lbol (= L) is the absolute bolometric luminosity of G1. Fbol is
correspondingly the apparent bolometric luminosity of G1. On the log-
arithmic scale of magnitudes familiar to the optical astronomer, (14.45)
becomes

mbol = −2.5 log
(Fbol

F0

)
,

Mbol = −2.5 log
( Lbol

L�

)
+ 4.75, (14.46)

mbol − Mbol = 5 log D1 − 5,

where

F0 = 2.48 × 10−5 erg cm−2 s−1,

L� = solar luminosity = 4 × 1033 erg s−1, (14.47)

D1 = r1 S(t0)(1 + z).

D1 is called the luminosity distance of G1. If we are interested in a magni-
tude defined for a particular waveband around λ0, say, we may similarly
use (14.43) in the logarithmic form with the apparent magnitude defined
by

m(λ0) = −2.5 logF(λ0) + constant,

the constant depending on the filter used to select that waveband. It
is customary to indicate the filter by a suffix attached to m. Thus mpg

stands for photographic magnitude, mv for visual magnitude, mb for
blue magnitude, and so on.

Note, however, that, when using a specific filter, because of redshift
the astronomer has to apply a correction to include the effect of the
term I (λ0/1 + z). Thus an astronomer using a red filter may actually be
receiving the photons that originated in the blue part of the spectrum
of G1 if z ≈ 1. This correction, which is crucial to many cosmological
observations, is called the K-correction.
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Example 14.5.1 Problem. Calculate the luminosity distance for the de

Sitter universe.

Solution. With the notation used in the text we have

S(t) = eHt , S(t0)/S(t1) = eH (t0−t1) = 1 + z.

The epochs t0 and t1 are related by the result (14.27) with k = 0. Thus simple

integration yields

r1 = c

H

(
e−Ht1 − e−Ht0

)
.

Hence the luminosity distance is

D1 = r1 S(t0)(1 + z) = c

H
eHt0 (e−Ht1 − e−Ht0 )(1 + z)

= c

H
z(1 + z).

14.6 The Olbers paradox
In 1826, Heinrich Olbers, a physician from Germany, carried out a
simple calculation which led to a paradoxical answer. His paradox can
be phrased as this question: ‘Why is the sky dark at night?’ What the
Olbers calculation shows is that whether we are facing the Sun or not
makes no difference: the total radiation received from all stars in the
Universe is infinite. This paradox and its resolution have cosmological
implications, so it is appropriate to discuss them here.

Olbers assumed that (1) the Universe is homogeneous, isotropic
and static, (2) it is infinite in extent and (3) it is filled with radiating
objects, each with a constant luminosity. In those days the only geometry
recognized was Euclid’s, so Olbers did his calculation in its framework.

Take any point in this Universe as the observing post, denoted by the
point O. We wish to calculate the total radiation received at O from all the
stars in the Universe. To this end, divide the Universe into thin concentric
shells centred at O. The volume of a typical shell of radii R and R + dR is

4π R2 dR

and, if the number density of radiating sources is N , the number of such
sources in the shell is

4π R2 N dR.

Suppose that each source has luminosity L . At a distance R the
source would have a radiation flux of

L

4π R2
,
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so the total contribution of all radiating sources in the shell is to generate
a flux at O of

4π R2 dR × N × L

4π R2
= N L dR.

The total flux from all shells is therefore

F =
∫ ∞

0

L N dR = ∞. (14.48)

This was the conclusion of Olbers’ calculation. Can its drastic nature
be moderated? For clearly the night sky is dark and not infinitely bright.

One possible way out was to note that the typical radiator is of a
finite size, so that beyond a certain distance from O the foreground
objects would block the radiation of the background population. (In a
forest thickly populated with trees we see only the foreground trees.) If
a typical radiator is a ball of radius a, then from a distance R it subtends
a solid angle at O of

πa2

R2

so that the total solid angle subtended by the sources in our shell is

πa2

R2
× 4π R2 N dR = 4π × πa2 N dR.

We integrate this expression to a distance D where it equals the total
solid angle 4π of the whole sky. Thus, the whole sky will be covered at
a distance

D = 1

πa2 N
. (14.49)

If we take our integral only up to this distance, we have a finite answer:

F = N L D ∼ L

πa2
. (14.50)

However, the expression we have arrived at is four times the surface
brightness of the typical source. So, if the typical source is like the Sun,
the sky should be shining like the solar disc! The above calculation
supposes that the solid angles from different shells do not overlap. A
more exact calculation can be done taking into account the overlap, but
our conclusion is not substantially altered.

To resolve the paradox we can adopt any of the following arguments.

1. The Universe is of finite extent.

2. The Universe is of finite age. If the age is T , say, then we can argue that

radiation reaching O today could not have come from distances beyond

c × T .
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3. Each radiating source lasts only a finite time. This effectively limits the total

light reaching O.

4. The Universe is expanding. This is the most dramatic explanation, for it

invokes the dimming of radiation by the factor (1 + z)−2 as found in formula

(14.45). A calculation using this effect usually yields a finite and low value

for sky brightness even for infinitely old models.

We will leave the Olbers paradox here as an example of a simple
question calling for profound ideas for an answer and turn our attention
next to actual models of the real Universe.

Exercises

1. Taking ρ0 = 10−31 g cm−3, calculate the radius of the Einstein universe and

its total mass in spherical space.

2. By calculating the 3-volume of space within the coordinate region r = con-

stant in the spaces with the spatial line element

dσ 2 = S2
[ dr 2

1 − kr 2
+ r 2(dθ 2 + sin2θ dφ2)

]
, k = 0, 1, −1.

develop the three-dimensional analogue of the experiment of covering the sur-

faces of zero, positive and negative curvature by a plane sheet of paper. (In this

experiment the paper exactly covers a surface of zero curvature; it gets wrinkled

while covering a surface of positive curvature and it gets torn while covering the

surface of negative curvature.)

3. Determine the affine parameter for the radial null geodesic from galaxy G1

to the origin r = 0 in Robertson–Walker spacetime.

4. A particle of mass m is fired today from our galaxy at t = t0 with a linear

momentum P0. Show that the momentum of the particle when it reaches another

galaxy at a later epoch t (as measured in the rest frame of that galaxy) is given

by

P = P0
S(t0)

S(t)
.

Compare this result with the cosmological redshift for photons.

5. Take a galaxy G1 at (r1, θ, φ) as a fundamental observer and write uk
1 as its

velocity vector in the Robertson–Walker frame. Consider parallel propagation

of this vector along the null ray connecting the galaxy to the observer O at the

origin at the present epoch t0 of observation. Let this vector be vk
1 at O. This

represents the radial velocity of G1 relative to the cosmological rest frame at O.

Use the Doppler effect to work out the redshift for this motion and show that it

is none other than z as given by the formula (14.29). You can do this exercise for

the Schwarzschild line element and you can show that the gravitational redshift
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can also be understood as a Doppler effect for the parallely transported velocity

vector of the source along the null geodesic to the observer. Try to generalize

these results.

6. In a universe with S(t) ∝ t2/3 and k = 0, a galaxy is observed to have a

redshift z = 1.25. How long has light taken to travel from that galaxy to us?

Express your answer in units of τ0.

7. Work out the formula (14.45) for the universe with S ∝ t2/3 and k = 0, and

compare this with the result for the de Sitter universe. In which model is the

galaxy apparently brighter?

8. Why is the ‘expanding-universe’ solution preferable as a solution to the

Olbers paradox, rather than ‘a finite universe’ or ‘a finitely old’ universe?



Chapter 15

Friedmann models

15.1 Introduction

The work covered in Chapter 14 did not tell us two important items of
information about the Universe: (1) the rate at which it expands as given
by the function S(t); and (2) whether its spatial sections t = constant
are open or closed as indicated by the parameter k. To find answers to
these questions, it is necessary to go beyond the Weyl postulate and the
cosmological principle. We require a dynamical theory that tells us how
the scale factor and curvature are determined by the matter/radiation
contents of the universe.

A comparison of Newton’s law of gravitation with the general the-
ory of relativity shows the latter as enjoying advantages both on the
theoretical and on the observational front. General relativity gets round
the criticism of Newtonian gravity of violating the light-speed limit. It
allows for the permanence of gravitation by identifying its effect with
the curvature of spacetime. Observationally it performs better vis-à-vis
the Solar-System tests and explains the shrinking of binaries through
gravitational radiation. It therefore generates greater confidence than
Newton’s approach does, especially for use in cosmology, where strong
gravitational fields are likely to be involved and where distances are so
large that the assumption of instantaneous action at a distance would
be misleading. Hence we will adopt general relativity as the underlying
theory for constructing models of the Universe.

We will now undertake that exercise by constructing the models
which Friedmann [49] in 1922–4 and Lemaı̂tre [50] in 1927 came up
with before Hubble’s results became known.

245
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15.2 Setting up the field equations

We begin with the Robertson–Walker line element:

ds2 = c2 dt2 − S2(t)
[ dr 2

1 − kr 2
+ r 2(dθ 2 + sin2θ dφ2)

]
. (15.1)

We use it first to compute the Einstein tensor and thereby formulate the
general-relativistic field equations. To solve them we will next require
the energy tensor of the material contents of the Universe.

Accordingly, we set

x0 = ct, x1 = r, x2 = θ, x3 = φ (15.2)

so that the non-zero components of gik and gik are

g00 = 1, g11 = − S2

1 − kr 2
, g22 = −S2r 2, g33 = −S2r 2 sin2θ,

g00 = 1, g11 = −1 − kr 2

S2
, g22 = − 1

S2r 2
, g33 = − 1

S2r 2 sin2θ
,

√−g = S3r 2 sin θ√
1 − kr 2

. (15.3)

The non-zero components of �i
kl are then as follows:

�1
01 = �2

02 = �3
03 = 1

c

Ṡ

S
,

�0
11 = SṠ

c(1 − kr 2)
, �0

22 = SṠr 2

c
, �0

33 = SṠr 2 sin2θ

c
,

�1
11 = kr

1 − kr 2 , �2
12 = �3

13 = 1

r
,

�1
22 = −r (1 − kr 2), �1

33 = −r (1 − kr 2)sin2θ,

�2
33 = −sin θ cos θ, �3

23 = cot θ.

Now we use the expression for the Ricci tensor (vide Equation (5.9)
in Chapter 5), which may be put in the following form:

Rik = ∂2ln
√−g

∂xi∂xk
− ∂�l

ik

∂xl
+ �m

in�
n
km − �l

ik

∂ln
√−g

∂xl
. (15.4)

Straightforward but tedious calculation then gives the following non-
zero components of Ri

k :

R0
0 = 3

c2

S̈

S
, (15.5)

R1
1 = R2

2 = R3
3 = 1

c2

( S̈

S
+ 2Ṡ2 + 2kc2

S2

)
. (15.6)
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From these we get

R = 6

c2

( S̈

S
+ Ṡ2 + kc2

S2

)
, (15.7)

and hence

G1
1 ≡ R1

1 − 1

2
R = − 1

c2

(
2

S̈

S
+ Ṡ2 + kc2

S2

)
= G2

2 = G3
3, (15.8)

G0
0 ≡ R0

0 − 1

2
R = − 3

c2

( Ṡ2 + kc2

S2

)
. (15.9)

We have gone through the details of the calculation to illustrate how
techniques of general relativity developed in earlier chapters can be
applied to the problem of cosmology. The reader may check that putting
S = constant = S0 and k = +1 gives us the formulae (14.3) and (14.4)
obtained for the Einstein universe in Chapter 14. As a general com-
ment we remark that, because we have spatial homogeneity, the tensor
components above (Equations (15.5)−(15.9)) do not contain any space
coordinates. Further, because of isotropy, we have the three space–space
components of the Einstein tensor equal. Recalling now the Einstein
equations, we get from (15.8) and (15.9) the only non-trivial equations
of the set as

2
S̈

S
+ Ṡ2 + kc2

S2
= 8πG

c2
T 1

1 = 8πG

c2
T 2

2 = 8πG

c2
T 3

3 , (15.10)

Ṡ2 + kc2

S2
= 8πG

3c2
T 0

0 . (15.11)

We next consider the energy tensor.

15.3 Energy tensors of the Universe
Before we consider specific forms of T i

k , it is worth noting that two prop-
erties must be satisfied by any energy tensor in the present framework
of cosmology. The first is obvious from (15.10):

T 1
1 = T 2

2 = T 3
3 = −p (15.12)

(say). The fact that these three components of T i
k are equal is hardly

surprising since we have already emphasized the condition of isotropy
imposed on the Universe. In the light of our discussion of Chapter 7,
we identify the quantity p with pressure. We further define the energy
density by

T 0
0 = ε. (15.13)

The second property is not quite so obvious, but is derivable from
(15.10) and (15.11). It relates the pressure to the energy density. We
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note that if we differentiate (15.11) with respect to t we can express the
resulting answer as a linear combination of (15.10) and (15.11). The
result is in fact equivalent to the following identity:

d

dt

[
S(Ṡ2 + kc2)

] ≡ Ṡ
[
2SS̈ + Ṡ2 + kc2

]
,

that is,
d

dS
(εS3) + 3pS2 = 0. (15.14)

It is not necessary, however, to write down the full field equations (15.10)
and (15.11) in order to arrive at (15.14). The above result is a direct
consequence of the conservation law implicit in the Einstein equations:

T i
k;i = 0. (15.15)

Recall that, from the Bianchi identities, (15.15) follows identically. We
now turn our attention to the specific forms of the energy tensor.

15.3.1 Pressure and random motion of galaxies

We have assumed via the Weyl postulate that the primary unit of the
Universe is a galaxy, which may be treated as a point particle. The
characteristic length scale of the Universe, now taken as c/H0, where
H0 is the Hubble constant at present, works out at ∼1028 cm, compared
with which the galactic length scale is ∼30 kpc ∼1023 cm. Thus the
galaxy in the Universe is like a bead of diameter 1 cm in a field of size
1 km. We may ideally visualize the ‘cosmological fluid’ as made of these
beads, flowing smoothly with negligible pressure.

The galaxies ideally should follow the Weyl postulate: in reality
they do so at best approximately. Random motions of galaxies in clus-
ters, typically of the order of v ∼ 300 km s−1, provide pressure to the
cosmological fluid of the order of ∼ρv2, ρ being the density of the fluid.
That is, the ratio p/ρ is as low as 10−6. So when we write the energy
tensor as

T ik = (p + ρ)ui uk − pgik (15.16)

we may justifiably approximate ui by [1, uµ], and ignore |uµ| in com-
parison with unity. But when is this approximation valid?

Example 15.3.1 Problem. How does random motion behave in an expand-

ing Universe?

Solution. Let us take the velocity vector of a typical galaxy as [1, uµ], where

|uµ| � 1. Since the galaxy follows a geodesic, we get

duµ

ds
+ �

µ

ik

dxi

ds

dxk

ds
= 0.
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Here we retain only the first-order terms. Using the Christoffel symbols of

Section 15.2 we get, for µ = 1, say

du1

ds
+ 2�1

01u1 = 0,

i.e.,
du1

dt
+ 2

Ṡ

S
u1 = 0 ⇒ u1 S2 = constant.

The same applies to µ = 2, 3. Since we are using comoving coordinates, the

physical motion vµ = Suµ. So we get vµS = constant. Thus, as the Universe

expands, the random motion decreases as S−1.

The solved example above shows that, in the Robertson–Walker
spacetime, the random velocity vµ varies as 1/S. Hence, in an expand-
ing Universe, the pressure was more important in the past, is not so
important now and will be even less important in the future. As we
turn towards the past epoch, we should find the galaxy motions becom-
ing more and more turbulent, since v was larger in the past. Thus, if
we use S ≈ 10−3S0 (S0 being the value of S at the present epoch),
the p-term would no longer be negligible in this epoch and prior
to it.

For such past epochs we have to abandon our simplified picture of
cosmology and ask whether galaxies existed as single units then. This
question leads us to cosmogony, the subject of the origin of the large-
scale structure of the Universe. Obviously, galaxies were formed at some
stage in the past and, in a proper theory of cosmology and cosmogony,
we have to say how and when they were formed. This topic, however,
does not fall within the ambit of this text. The reader is referred to [53],
which is the companion text to this one.

Returning to our discussion of energy tensors, we see that, if we
simply extrapolate v ∝ S−1 to very low values of S, v becomes compa-
rable to c and our approximation that led us to v ∝ S−1 breaks down.
The correct formula then tells us that the 3-momentum P goes as S−1.
In this relativistic domain galaxies have not yet formed and matter is in
the form of atomic particles moving very rapidly. Thus we have to use
the formula (7.22), and we set

p = 1

3
ε, (15.17)

where ε denotes the energy density of these fast-moving particles. Thus,
we may look upon a typical volume of these early epochs as containing
matter particles moving at random relativistically, but any such spherical
volume would have a centre of mass of all these particles at rest in the
Robertson–Walker frame. In this case the Weyl postulate is not satisfied
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for a typical particle, but it may still be applied to the centre of mass of
a typical spherical volume.

15.3.2 Matter versus radiation domination

So, if S continues to increase from very small values, then (15.17) would
hold for the early epochs, just as (15.16), with p ≈ 0, holds in the present
and relatively recent epochs. The transition between the two epochs was
through a rather messy phase when neither (15.16) nor (15.17) applied.

If (15.16) holds, then from (15.14) we get, with p = 0,

d

dS
(ρS3) = 0, (15.18)

which integrates to

ρ = ρ0
S3

0

S3
, (15.19)

ρ0 and S0 being the values of ρ and S in the present epoch.
Similarly, substitution of (15.17) into (15.14) leads to

d

dS
(εS4) = 0, (15.20)

giving

ε ∝ S−4. (15.21)

We therefore have the following picture. For a distribution of matter
(15.21) was applicable when S was very small compared with S0, while
(15.19) holds in the more recent epochs. If, however, on top of matter
we also have electromagnetic radiation present in the Universe, it too
will contribute to T i

k . For small S, (15.21) holds uniformly for matter
(moving relativistically) and for radiation. However, as S increases we
have to be more careful in distinguishing between the contributions of
matter and radiation to T i

k . For, as we shall see later, while matter and
radiation were in close interaction at small S, at later epochs they became
effectively decoupled from each other. We will go into these details more
fully in Chapter 16.

For the present discussion let us assume that, after a certain epoch
t = tdec when S was given by S = Sdec, radiation and matter decoupled
from each other, each going its own way. Thus we can write

T i
k = T i

k | matter + T i
k | radiation (15.22)

and assume that the divergence of each energy tensor separately vanishes.
Since for the radiation energy tensor we have (for µ = 1, 2, 3), say,

− T µ

µ | radiation = 1

3
T 0

0 | radiation = 1

3
ε (no sum over µ), (15.23)
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we get for S > Sdec

ε = ε0
S4

0

S4
. (15.24)

What is tdec? Why, if at all, should matter decouple from radiation?
What happened prior to t = tdec? We defer a discussion of these questions
to Chapter 16. There was, however, another important epoch in the past
history of the Universe, when the densities of matter and radiation were
equal. We will denote it by t = teq, when S was equal to Seq, say. It is
easy to estimate this scale as follows.

The present estimates of ε0 ≈ 4 × 10−13 erg cm−3 and of ρ0c2 ≥
3 × 10−10 erg cm−3 mean that the matter density is about 103 times
the radiation density. Thus ε0 � ρ0c2, and we may ignore the con-
tribution of radiation (in comparison with the contribution of matter)
to the field equations (15.10) and (15.11) at the present epoch, and for
S > S0. However, for the past epochs with S < S0, we have from (15.19)
and (15.21)

ε

ρc2
= ε0

ρ0c2
· S0

S
. (15.25)

and we cannot ignore the contribution of radiation for, say, S0/S ∼ 103.
This is the epoch teq. Indeed, prior to this epoch, that is for S < Seq, the
relative importance of radiation and matter was inverted: radiation was
the more dominant factor in deciding how S should vary with t .

From the above discussion we see that, at S = Seq ≈ 10−3S0, we
have a transition from a radiation-dominated Universe to a matter-
dominated one. Here we will limit ourselves to the matter-dominated
models with negligible pressure, leaving the discussion of the radiation-
dominated models to the following chapter. Equations (15.10) and
(15.11) are therefore to be solved with

T 1
1 = 0, T 0

0 = ρ0c2 S3
0

S3
. (15.26)

This simplification leads us to the classic models first considered by A.
Friedmann in 1922. Basically, these models ignore any contributions
of electromagnetic radiation to T i

k and suppose that the matter in the
Universe can be approximated by dust.

We also mention, in passing, that the above analysis ignores the
contribution of dark matter. A realistic assessment of dark matter will
push up the value of ρ0 by a factor ∼6–7.
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15.4 The Friedmann models

We will assume that the Universe is (as at present) dust-dominated. For
dust models, Equations (15.10) and (15.11) become

2
S̈

S
+ Ṡ2 + kc2

S2
= 0, (15.27)

Ṡ2 + kc2

S2
= 8πGρ0

3

S3
0

S3
. (15.28)

In view of the conservation law given in (15.14), the above two
differential equations are not independent, and only one of them is suffi-
cient to determine S(t). Since it is of lower order, we will choose (15.28)
for our solution, and consider the three cases k = 0, 1,−1 separately.

15.4.1 Euclidean sections (k = 0)

This is the simplest case and is also known as the Einstein–de Sitter
model, since it was given by Einstein and de Sitter in a joint paper [54]
in 1932. Equation (15.28) becomes

Ṡ2 = 8πGρ0

3

S3
0

S
. (15.29)

We now recall from Chapter 14 that the present value of Hubble’s con-
stant is given by

Ṡ

S

∣∣∣
t0

= H0. (15.30)

Hence, on applying (15.29) to the present epoch, we get

ρ0 = 3H 2
0

8πG
≡ ρc. (15.31)

For reasons that will become clear later, ρc is often called the closure
density. With the range of values of H0 quoted in Chapter 14, we have

ρc = 2 × 10−29h2
0 g cm−3. (15.32)

The value as estimated by using the current favourite value of h0 ∼ 0.7 is
considerably higher than the matter density actually observed at present.
We will return to this issue in Chapter 16.

Returning to (15.29), it is easy to verify that it has the solution

S = S0

( t

t0

)2/3

. (15.33)
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t
t = 0

S(t)P

C O B

H 0
−1

t = t 0

Fig. 15.1. The scale factor of
the Einstein–de Sitter model
(k = 0 in the case of the
simplest Friedmann models).

An arbitrary constant that arises from the integration of the differential
equation can be set equal to zero by assuming that S = 0 at t = 0. We
also get from Equation (15.30) the age of the Universe as the present
value of t :

t0 = 2

3H0
. (15.34)

The constant S0, the value of the scale factor at the present epoch, is not
determined. It has the dimensions of length, and it can be absorbed into
the unit of length chosen. Figure 15.1 illustrates this solution.

15.4.2 Closed sections (k = 1)

Equations (15.10) and (15.11) now take the form

2
S̈

S
+ Ṡ2 + c2

S2
= 0. (15.35)

Ṡ2 + c2

S2
− 8πGρ0 S3

0

3S3
= 0. (15.36)

It is convenient to introduce the quantities q(t) and H (t) through the
relations

S̈

S
= −q(t)[H (t)]2, H (t) = Ṡ

S
, (15.37)

with their present values denoted by q0 and H0. We have already come
across H0, the Hubble constant. The second parameter q0 is called the
deceleration parameter, and it is useful for expressing ρ0 in terms of the
closure density.
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With the above definitions, (15.35) and (15.36) take the following
forms when applied at the present epoch:

c2

S2
0

= (2q0 − 1) H 2
0 , (15.38)

ρ0 = 3

8πG

(
H 2

0 + c2

S2
0

)
= 3H 2

0

4πG
q0. (15.39)

The density ρ0 is often expressed in the following form:

ρ0 = ρc�0, (15.40)

so that from (15.38), (15.39) and (15.40) we get the density parameter

�0 = 2q0. (15.41)

Since the left-hand side of (15.38) is positive, we must have

q0 >
1

2
, �0 > 1. (15.42)

Thus our closed model has density exceeding the so-called closure
density ρc. This explains the name ‘closure density’. It is the value of
the universal density that must be exceeded if the model is to describe
a closed universe. We mention at this stage the result (to be proved
shortly) that for the open models (k = −1) the inequalities of (15.42)
are reversed.

Using (15.38) and (15.39) to eliminate S0 and ρ0, we get the follow-
ing differential equation:

Ṡ2 = c2
(

α

S
− 1

)
. (15.43)

with α given by

α = 2q0

(2q0 − 1)3/2

c

H0
. (15.44)

The parameter α has the dimensions of length. Thus the model is char-
acterized by the parameters H0 and q0 (or, alternatively, �0).

Equation (15.43) can be integrated as follows. We get

ct =
∫ √

S dS√
α − S

.

Make the substituition in terms of an auxiliary variable 
:

S = α sin2

(



2

)
= 1

2
α(1 − cos 
). (15.45)

Then the integral becomes

ct =
∫

α sin2

(



2

)
d
 = 1

2
α(
 − sin 
). (15.46)
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Again, as in the case k = 0 we have taken S = 0 at t = 0 (
 = 0). We
therefore get t = t0 by requiring that S = S0. From (15.38) and (15.44)
we see that S = S0 at 
 = 
0, where

S0 = 1

2
α(1 − cos 
0) = c

H0
(2q0 − 1)−1/2 = (2q0 − 1)

2q0
α,

that is,

cos 
0 = 1 − q0

q0
, sin 
0 =

√
2q0 − 1

q0
. (15.47)

We therefore get the age of the Universe as

t0 = α

2c
(
0 − sin 
0)

= q0

(2q0 − 1)3/2

[
cos−1

(
1 − q0

q0

)
−

√
2q0 − 1

q0

]
1

H0
. (15.48)

For example, for q0 = 1 we get

t0 =
(

π

2
− 1

)
H−1

0 . (15.49)

Note that S reaches a maximum value at 
 = π , when

S = Smax = α = 2q0

(2q0 − 1)3/2

c

H0
. (15.50)

Thus, for q0 = 1, the Universe expands to twice its present size.
In closed models, therefore, expansion is followed by contraction

and S decreases to zero. The value S = 0 is reached when 
 = 2π ; that
is, when

t = tL = πα

c
= 2πq0

(2q0 − 1)3/2

1

H0
. (15.51)

The quantity tL may be termed the lifespan of this universe. For q0 =
1, tL = 2π H−1

0 = 2π τo. Recall that τ0 is defined by the relation (14.40).
Figure 15.2 illustrates the function S(t) for the closed models for a

number of parameter values q0. All curves have been adjusted to have
the same value of H0 at point P. Notice that the value S = 0 is reached
sooner in the past as q0 is increased from just over 1/2.

15.4.3 Open sections (k = −1)

Equations (15.10) and (15.11) become in this case

2
S̈

S
+ Ṡ2 − c2

S2
= 0, (15.52)

Ṡ2 − c2

S2
− 8πGρ0 S3

0

3S3
= 0. (15.53)
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Fig. 15.2. The scale factors
for closed (k = +1) Friedmann
models are shown in the
diagram. The life span of the
Universe gets smaller for
larger values of the
deceleration parameter q0.

We again use the definitions of (15.37) and apply them at the present
epoch to get

c2

S2
0

= (1 − 2q0)H 2
0 , (15.54)

ρ0 = 3H 2
0

4πG
q0; �0 = 2q0. (15.55)

Thus instead of (15.42) we now have

0 ≤ q0 ≤ 1

2
, 0 ≤ �0 < 1, (15.56)

and in place of (15.43) we get

Ṡ2 = c2
(

β

S
+ 1

)
(15.57)

with

β = 2q0

(1 − 2q0)3/2

c

H0
. (15.58)

As in the k = +1 case, the solution of (15.57) may be expressed by a
parameter 
 with

S = 1

2
β(cosh 
 − 1), ct = 1

2
β(sinh 
 − 
). (15.59)

The present value of 
 is given by 
0, where

cosh 
0 = 1 − q0

q0
, sinh 
0 =

√
1 − 2q0

q0
. (15.60)
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Fig. 15.3. Three cases of the
temporal behaviour of the
scale factor S(t) for the open
Friedmann model
corresponding to q0 = 0, 0.1
and 0.2. The age of the
Universe is larger for smaller
q0. As shown in the figure, the
largest age is 1/H0,
corresponding to q0 = 0.

We have set t = 0 at S = 0, as in the two preceding cases. The present
value of t is given by

t0 = β

2c
(sinh 
0 − 
0)

= q0

(1 − 2q0)3/2

[√
1 − 2q0

q0
− ln

(
1 − q0 +

√
1 − 2q0

q0

)]
1

H0
.

(15.61)

Like the Einstein–de Sitter model, these models continue to
expand forever. The behaviour of S(t) in these models is illustrated in
Figure 15.3.

15.4.4 The Milne model

It is worth pointing out that the model with k = −1, q0 = 0, S(t) = ct
represents flat spacetime. In fact, by the following coordinate trans-
formation we can change the line element to a manifestly Minkowski
form:

R = ctr, T = t
√

1 + r 2,
(15.62)

ds2 = c2 dT 2 − dR2 − R2(dθ 2 + sin2θ dφ2).

This model arose naturally in Milne’s kinematic relativity [55], which
was a cosmological theory with foundations different from those of
general relativity. For this reason the above model is sometimes referred
to as the Milne model.

For a comparison, the three types of Friedmann models (k = 0,±1)
are shown together on the same plot in Figure 15.4. There is a unique
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‘flat’ model (the k = 0 case is often so described; but this can be mis-
leading insofar as the ‘flatness’ refers to the spatial sections t = constant,
not to spacetime as a whole), but a continuous range of k = ±1 models,
of which two representative ones are shown. The dots P, Q, R lie on a
typical curve H (t) = constant. Thus, for the same Hubble constant, the
open models give a larger age.

Figure 15.4 shows how all the Friedmann models have the common
feature of having S = 0 at a certain epoch (which we designate by
t = 0). As we approach S = 0, the Hubble constant increases rapidly,
becoming infinite at S = 0, except in the special case of the Milne model
k = −1, q0 = 0. This epoch therefore indicates violent activity and is
given the name big bang. It was Fred Hoyle who in the late 1940s gave
this name, largely in a sarcastic vein, as he was, and continued to be,
critical of the big-bang concept. We will discuss the reasons for this in
extenso in later chapters. For the time being we simply state that the
name has stuck and has been accepted by a large majority of workers in
cosmology. We also mention that the big bang is the singular state where
all the geodesics of the Weyl postulate meet.

15.4.5 Luminosity distance

A practical result we need is the luminosity distance described in Chapter
14, for it tells us the effective distance of a source at a given redshift,
the distance whose square we divide by in order to estimate the flux of
radiation received from the source normal to a unit area at our location.
If the light left the source at time t1 to reach us at time t0, its travel
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formula tells us that, for the k = +1 model,∫ r1

0

dr√
1 − r 2

=
∫ t0

t1

dt

S(t)
, (15.63)

where the source galaxy is located at r = r1. Using formulae (15.45)
and (15.46) we get

dt = 1

2
α[1 − cos 
]d
 = S(t)d
,

so that the above equation yields the simple solution

r1 = sin(
0 − 
1). (15.64)

Here we have identified the epoch t0 with the receiver and t1 with the
source. Using the fact that the redshift of the source is z, formulae
(14.29) and (15.45) give

1 + z = 1 − cos 
0

1 − cos 
1
,

which gives

cos 
1 = z + cos 
0

1 + z
. (15.65)

On putting together the values of cos 
1 and sin 
1 in Equation (15.64)
and using the corresponding values of the trigonometric functions of 
0

from Equations (15.47), we get

r1 =
√

2q0 − 1
[
q0z + (q0 − 1)(

√
1 + 2zq0 − 1)

]
q2

0 (1 + z)
. (15.66)

The luminosity distance is therefore given by

D1 = r1 S0(1 + z)

=
( c

H0

) 1

q2
0

[
q0z + (q0 − 1)(

√
1 + 2zq0 − 1)

]
. (15.67)

This formula was first derived by Mattig [56] in 1958.
The formula for the open universe can be similarly derived and leads

to exactly the same final answer. The case of the Einstein–de Sitter model
can be obtained by letting q0 tend to 1/2. Of course it is much simpler
to derive the result directly from the original formulae for that model.
We give the final answer for this case below:

D1 = 2c

H0

[
(1 + z) − (1 + z)1/2

]
. (15.68)

Although it is good to be able to derive these formulae analytically,
the facility of the computers has made the exercise rather unnecessary.
Nevertheless, the above exercise is useful in clarifying the roles of
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various expressions in cosmology, which otherwise remain hidden in
a computer programme. Figure 15.5 shows how D varies with z for
different q0.

15.5 The angular-size–redshift relation

We will next consider an unusual effect that arises because of the
non-Euclidean geometry of the typical Robertson–Walker spacetime. In
Figure 15.6 we have a spherical galaxy of diameter d at redshift 1 + z.
How will its angular size �θ depend on redshift? If we associate the

, )B(

, )A(

θ1∆ φ1θ1 +

φ1θ1

O d∆

r

r

θ1

1

1

Fig. 15.6. The angular size of
an extended source is the
angle it subtends at the
observer O as shown in the
figure.



15.5 The angular-size–redshift relation 261

redshift with distance, then we expect distant galaxies to look smaller,
i.e., to have progressively smaller �θ .

To decide the answer to this question, consider two neighbouring
null geodesics (representing light rays) from the two points A and B at
the two extremities of G1 directed towards our Solar System. Without
loss of generality we can choose our angular coordinates such that A
has the coordinates (θ1, φ1), while B has the coordinates (θ1 + �θ1, φ1).
(Although we have used homogeneity to take r = 0 at our location, we
can also use isotropy to choose any particular direction as the polar
axis θ = 0, θ = π .)

According to the Robertson–Walker line element, the proper dis-
tance between A and B is obtained by putting t = t1 = constant,
r = r1 = constant, φ = φ1 = constant and dθ = �θ1 in (15.1). We
then get

ds2 = −r 2
1 S2(t1)(�θ1)2 = −d2,

since in the rest frame of G1 the spacelike separation AB = d. Thus

�θ1 = d

r1 S(t1)
= d(1 + z)

r1 S(t0)
(15.69)

gives the answer to our question.
Notice that as r1 increases we are looking at more and more remote

galaxies, which must therefore be seen at earlier and earlier epochs t1.
However, in an expanding universe S(t1) was smaller at earlier epochs
t1, so it is not obvious that r1S(t1) should get progressively larger as we
look at more and more remote galaxies. In some cases, therefore, distant
objects may look bigger. The effect can be ascribed to ‘gravitational
bending or lensing’ of light as it passes through curved spacetime. (We
briefly discussed gravitational lensing in Chapter 12.) Clearly, we need to
know how fast S(t1) decreases as r1 increases. Although (15.69) provides
the answer in an implicit form, we still need to know S(t) in order to be
able to perform these integrations.

Let us take the different Friedmann models in this context. It is easy
to derive this result for q0 = 1/2. From (15.68) we get

�θ1 = d H0

2c

(1 + z)3/2

(1 + z)1/2 − 1
. (15.70)

Straightforward differentiation gives us the result that the minimum
value of �θ1 (=θmin, say) and the redshift z = zm at which it occurs are
given by

θmin = 3.375
d H0

c
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and

zm = 1.25. (15.71)

The cases q0 
= 1/2 are more involved. We illustrate the case
q0 > 1/2. Instead of using D1 as given by (15.67), it is more conve-
nient to use the parameter 
 introduced in (15.45) and (15.46) and the
relations (15.47). We then get

�θ1 = d

r1 S(t1)
= 2d

α
[(1 − cos 
1)sin(
0 − 
1)]−1. (15.72)

The constant α is defined by Equation (15.44). Differentiation with
respect to 
1 tells us that the minimum occurs when

sin 
1 sin(
0 − 
1) − (1 − cos 
1)cos(
0 − 
1) = 0,

that is,

sin
(

0 − 3
1

2

)
= 0,

thus giving


1 = 2
0

3
, 1 + zm = 1 − cos 
0

1 − cos(2
0/3)
. (15.73)

Using (15.69) we get


min = (2q0 − 1)3/2

q0

1(
1 − cos

(
2
0

3

))
sin

(

0
3

) d H0

c
. (15.74)

The corresponding result for q0 < 1/2 is


min = (1 − 2q0)3/2

q0

1(
cosh

(
2
0

3

)
− 1

)
sinh

(

0
3

) d H0

c
(15.75)

at the redshift zm given by

1 + zm = cosh 
0 − 1

cosh
(

2
0
3

)
− 1

. (15.76)

Figure 15.7 plots �θ1 as a function of z for different Friedmann models.
Notice how the curves all start with the near-Euclidean result �θ1 ∝ z−1

and then begin to differ from one another at larger z values. In principle
this effect might be used to decide which Friedmann model (if any!)
comes closest to the actual Universe.



15.6 Horizons and the Hubble radius 263

q0 = 5

q0 = 2

q0 = 1
q0 = 0.5

q0 = 0.1
q0 = 0

2.5

2.0

1.5

1.0

0.5

z = 0.1 z = 1.0 z = 10

Log  z

Lo
g

on
 a

rb
itr

ar
y 

sc
al

e
∆θ

1

Fig. 15.7. The
‘non-Euclidean’ behaviour of
angular size at large redshifts.

This non-Euclidean effect was first pointed out by R. C. Tolman [57]
and a way of using it as a cosmological test was first suggested by Fred
Hoyle [58].

15.6 Horizons and the Hubble radius
In cosmological discussions two kinds of horizons often crop up: the
particle horizon relates to limits on communication in the past, whereas
the event horizon relates to limits on communication in the future. We
will deal with these two concepts in that order.

15.6.1 The particle horizon

It is pertinent to ask the following question. What is the limit on the
proper distance up to which we are able to see sources of light? This
question is answered as follows. Going back to Equation (14.27) of the
preceding chapter, we may have a situation wherein the integral on the
left-hand side has a maximum value at the given epoch t0. This therefore
gives a maximum value rP for the radial coordinate r1. For a galaxy with
r1 > rP there is no communication with us in the above fashion.

First we calculate this limiting value rP of r1, which for the Fried-
mann models comes from setting the lower limit for the t-integral at
zero. The corresponding limiting proper distance is

RP = S0

∫ rP

0

dr√
1 − kr 2

.
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Fig. 15.8. The particle
horizon of P is contained in
the past null cone (dotted
lines) from P. Thus the particle
B can causally affect P, but not
particle A, which lies outside
the particle horizon of P.

It is then easy to verify that, for the various Friedmann models,

RP = c

H0
×




2 (k = 0, q0 = 1
2 )

2√
2q0 − 1

sin−1

√
2q0 − 1

2q0
(k = 1, q0 > 1

2 )

2√
1 − 2q0

sinh−1

√
1 − 2q0

2q0
(k = −1, q0 < 1

2 ).

(15.77)

The existence of a finite value of RP means that the Universe has a
particle horizon. Particles with S(t0)r1 > RP are not visible to us at
present, no matter how good our techniques of observation are.

Consider, for example, the Einstein–de Sitter model. The result
(15.77) gives, in this case, RP = 2c/H0. This means that at present
we are able to see only those galaxies whose proper distance from us
happens to be less than 2c/H0. See Figure 15.8.

15.6.2 The event horizon

The particle horizon sets a limit to communications from the past. Let
us now see how the event horizon sets a limit on communications to the
future. Let us ask the following question. A light source at r = r1, t = t0
sends a light signal to an observer at r = 0. Will the signal ever reach
its destination? Suppose it does and let t1 be the time of arrival. Then
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from (14.27) we get ∫ t1

t0

c dt

S(t)
=

∫ r1

0

dr√
1 − kr 2

.

This relation determines t1 for any given r1, provided that the integral
on the left is large enough to match that on the right. Now it may happen
that as t1 → ∞ the integral on the left converges to a finite value that
corresponds to a value of the integral on the right for r1 = rE, say. In
that case it is not possible to satisfy the above relation for r1 > rE. In
other words the signal from the light source at r1 > rE will never reach
the observer at r0. Thus no two observers can communicate beyond a
proper distance

RE = S0

∫ ∞

t0

c dt

S(t)
(15.78)

at t = t0.
This limit is called the event horizon. It does not exist for Friedmann

models but has the value c/H0 for the de Sitter model, as can be seen in
the following calculation.

Example 15.6.1 Consider the de Sitter model described in Chapter 14.

Here we have k = 0 and S = eHt . Then we get

RE = eHt0

∫ ∞

t0

ce−Ht dt = c

H0
.

That is, if any light source sends a ray of light from beyond this range

at time t0 towards the observer at r = 0, it will never reach the observer. See

Figure 15.9. The reader will immediately notice the similarity of the event

horizon here to that for a black hole (see Chapter 13).

Notice that both the event horizon and the particle horizon have
radii comparable to c/H0, which has led to an erroneous conclusion that
the length RH = c/H0 is of the size of the horizon in any cosmology.
Whether a horizon (particle or event) exists in a cosmological model
depends on the scale factor and how the relevant integral (discussed
above) behaves. Thus there are cosmological models that do not have any
horizon, and for such models the above length does not have any ‘signal-
limiting’ significance. In such cases, it is best to call this length RH, the
Hubble radius. The Hubble radius as defined here tells us only the char-
acteristic distance scale of the Universe at t = t0; it does not have any
causal significance unless it is shown to have horizon properties. We may
compare it with the Hubble time scale τ0 defined in the previous chapter.
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Fig. 15.9. Light rays from
sources within the event
horizon (shown by thick
vertical lines at a distance
c/H0) will reach the observer
P. Light rays from sources
outside will never reach P.

15.7 Source counts
The distribution of discrete luminous sources out to great distances may
give indications that spacetime geometry is non-Euclidean. How does
the number of galaxies up to coordinate distance r1 (that is, up to the
distance of galaxy G1) increase with r1? Let us suppose that at any epoch
t there are n(t) galaxies in a unit comoving coordinate volume (using
the r, θ, φ coordinates). The word ‘comoving’ indicates that, although
the galaxies individually retain the same coordinates (r, θ, φ), the proper
separation between them at any epoch increases with epoch according
to the scale factor S(t1). Thus the proper volume of any region bounded
by such galaxies increases as S3.
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When we observe galaxies at radial coordinates between r and r +
dr, we see them at times in the range t, t + dt , where, from (14.27),

∫ t0

t

c dt
′

S(t ′ )
=

∫ r

0

dr
′

√
1 − kr ′2

. (15.79)

The number of galaxies seen in this shell is therefore

dN = 4π r 2 dr√
1 − kr 2

· n(t), (15.80)

where t is related to r through (15.79). Thus the required number of
galaxies out to r = r1 is given by

N (r1) =
∫ r1

0

4πr 2n(t)dr√
1 − kr 2

. (15.81)

If no galaxies are created or destroyed between r = 0 and r = r1, we
may take n(t) = constant, and the integral can be explicitly evaluated.
Clearly, the answer must depend on the parameter k. If we draw a
sphere whose surface lies at a proper distance R from the centre in the
k = 0 (Euclidean) space, its volume will be 4π R3/3. However, a similar
sphere drawn in the k = +1 (closed) space will have a volume less than
4π R3/3, whereas a sphere drawn in the k = −1 (open) space will have
a volume exceeding this value.

We now apply the above formula to Friedmann models. It is more
convenient to use redshift as the distance parameter instead of r or t . As
an example, we will work with the case k = +1. From (15.64) and the
relations that follow it, we have

r = sin(
0 − 
1),

∣∣∣ dr√
1 − r 2

∣∣∣ = |d
1|, 1 + z =
sin2

(

0
2

)

sin2
(


1
2

) ,

∣∣∣ dz

1 + z

∣∣∣ = cot

(

1

2

)
|d
1| =

√
1 + 2q0z

2q0 − 1
|d
1|.

Therefore the number of astronomical sources with redshifts in the

range (z, z + dz) is given by

dN = 4π sin2(
0 − 
1) · n(t) ·
∣∣∣d
1

dz

∣∣∣dz.

Let us suppose that n(t) is specified as a function n(z) of z. Using (15.65)
and some algebraic manipulation, we get

dN = 4π · n(z)
(2q0 − 1)3/2

q4
0

[q0z + (q0 − 1)(
√

1 + 2zq0 − 1)]2dz√
1 + 2q0z(1 + z)3

. (15.82)
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Suppose n(z) is expressed in a slightly different form. We recall that
n was specified as the number of sources per unit coordinate volume,
in terms of the comoving (r, θ, φ) coordinates. What is the relationship
between n and the number of sources per unit proper volume? Denoting
the latter by n̄, we have

n = n̄ S3 = n̄ S3
0

(1 + z)3
. (15.83)

From (15.38) we get

n̄

(1 + z)3
= (2q0 − 1)3/2

( H0

c

)3

n. (15.84)

Substitution into (15.82) gives

dN = 4π

( c

H0

)3 [q0z + (q0 − 1)(
√

1 + 2zq0 − 1)]2n̄ dz

q4
0 (1 + z)6

√
1 + 2q0z

. (15.85)

In this form (15.85) is applicable to all Friedmann models, even though
our derivation assumed q0 > 1/2 and k = 1.

This formula played a big role in the early development of observa-
tional cosmology. In the 1930s Hubble expected to measure the curvature
effects in the counts of galaxies, assuming that galaxies are uniformly
distributed. He found out that the effect, if it exists, is too minute to
be measurable. Two decades later radio astronomers attempted a similar
study using powerful extragalactic radio sources. Here too the curva-
ture effects became dwarfed by other variables such as the spectrum of
luminosity of the sources, the evolution of density and luminosity with
epoch, possible large-scale inhomogeneity of radio-source distribution,
etc., etc.

15.8 Cosmological models with the λ-term
Although our concern in this chapter was mainly with the simplest
Friedmann models, we now discuss briefly another class of models given
by the modified Einstein equations (14.7) – the equations containing the
cosmological constant λ. We have already discussed two special cases of
this class of solutions in the last chapter, namely the static Einstein model
and the empty de Sitter model. When Hubble’s observations established
the expanding-Universe picture, Einstein conceded that there was no
special need for the λ-term in his equations. In the post-Hubble-law era,
he dropped this term from his equations, and the Einstein–de Sitter model
discussed in this chapter was the outcome of Einstein’s collaboration
with de Sitter after abandoning the λ-term.

Nevertheless, in the 1930s eminent cosmologists such as A. S.
Eddington and Abbé Lemaı̂tre felt that the λ-term introduced certain
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attractive features into cosmology and that models based on it should
also be discussed at length. In modern cosmology the reception given to
the λ-term has varied from the hostile to the ecstatic. The term is quietly
forgotten if the observational situation does not demand models based
on it. It is resurrected if it is found that the standard Friedmann models
without this term are being severely constrained by observations. The
present compulsion for this term comes partly because of the observa-
tional constraints and partly because inputs from particle physics in the
very early stages of the Universe have provided a new interpretation for
the λ-term, which we shall discuss in Chapter 16.

Putting λ 
= 0, (15.10) and (15.11) are modified to the following:

2
S̈

S
+ Ṡ2 + kc2

S2
− λc2 = 8πG

c2
T 1

1 , (15.86)

Ṡ2 + kc2

S2
− 1

3
λc2 = 8πG

3c2
T 0

0 . (15.87)

The conservation laws discussed earlier are not affected by the λ-term.
If we restrict ourselves to dust only, (15.87) gives us the following
differential equation in place of (15.28):

Ṡ2 + kc2

S2
− 1

3
λc2 = 8πGρ0

3

S3
0

S3
. (15.88)

Similarly, (15.86) becomes

2
S̈

S
+ Ṡ2 + kc2

S2
− λc2 = 0. (15.89)

Let us first recover the static model of Einstein. By setting S = S0,
Ṡ = 0, S̈ = 0 in (15.88) and (15.89), we get

kc2

S2
0

− 1

3
λc2 = 8πGρ0

3
;

kc2

S2
0

= λc2.

From these relations it is not difficult to verify that k = +1, and we
recover the relations obtained in Chapter 14:

λ = 1

S2
0

≡ λc, (15.90)

ρ0 = λcc2

4πG
. (15.91)

We shall denote by λ = λc the critical value of λ for which a static
solution is possible. It was pointed out by Eddington that the Einstein
universe is unstable. A slight perturbation destroying the equilibrium
conditions (15.90) and (15.91) leads to either a collapse to singularity
(S → 0) or an expansion to infinity (S → ∞). Eddington and Lemaı̂tre
instead proposed a model in which λ exceeds λc by a small amount. In
this case the Universe erupts from S = 0 (the big bang) and slows down
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Fig. 15.10. Friedmann
models with k = +1, λ > 0 are
shown here. The scale factor
S(t) is plotted against the
cosmic time t.

near S = S0, staying thereabouts for a long time and then expanding away
to infinity. It was argued that the quasistationary phase of the Universe
would be suitable for the formation of galaxies. This model is illustrated
in Figure 15.10, which plots S(t) for a range of values of λ for k = +1.
The initial (explosive) phase of the Eddington–Lemaı̂tre model is shown
along the section OP of the curve OPQR, with PQ the quasistationary
phase and QR the final accelerated expansion. Notice that for λ < λc

the Universe contracts (as in the Friedmann case), whereas for λ > λc it
ultimately disperses to infinity, resembling the de Sitter universe.

Figure 15.10 also shows by a dashed line one of another series of
models that contract from infinity to a minimum value of S > 0 and then
expand back to S → ∞. These models are sometimes called oscillating
models of the second kind, to distinguish them from the models that start
from and shrink back to S = 0 and are called oscillating models of the
first kind. This terminology is, however, not quite apt, since there is no
repetition of phases in these models as implied by the word ‘oscillating’.

The models with k = 0 or k = −1 do not show these different types
of behaviour for λ > 0. We get from (15.88) a relation of the following
type:

Ṡ2 = −kc2 + 1

3
λc2 S2 + 8πGρ0 S3

0

3S
, (15.92)

wherein each term on the right-hand side is non-negative. Thus Ṡ does
not change sign, and we get ever-expanding models. For λ < 0, however,
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we can get universes that expand and then recontract as in the k = 1 case
for λ < λc.

This concludes our discussion of the general dynamical behaviour of
the λ-cosmologies. We end this section by writing (15.88) and (15.89)
at the present epoch in terms of H0 and q0. Thus in place of earlier
relations we have

H 2
0 + kc2

S2
0

− 1

3
λc2 = H 2

0 �0, (15.93)

(1 − 2q0)H 2
0 + kc2

S2
0

− λc2 = 0. (15.94)

From these we get

�0 = 2q0 + 2

3
λ

c2

H 2
0

. (15.95)

Now there is no unique relationship between q0 and �0: we have an
additional parameter entering the relation. Note also that it is possible
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to have negative q0, that is, an accelerating expansion, if λ > 0. This is
because the λ-term introduces a force of cosmic repulsion.

Finally, if the Universe is spatially flat, i.e., k = 0, then the following
rewrite of relation (15.93) can confirm the fact:

�0 + 1

3

λc2

H 2
0

= 1.

By writing

1

3

λc2

H 2
0

= �� (15.96)

the above relation is often expressed in the form

�0 + �� = 1. (15.97)

See Figure 15.11 showing these relationships in the �0−�� plane.
A comment is needed here to explain to the reader one reason why

the λ-containing models are preferred these days. The measurements of
Hubble’s constant and the estimates of ages of stars in globular clusters
suggest that the ages of the λ = 0 models are inadequate to accommodate
the stellar ages. As Figure 15.12 shows, by having a positive cosmolog-
ical constant, the age of the Universe can be increased. Therefore, the
age constraint can be relaxed if λ > 0.
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With these remarks we wind up our discussion of relativistic cos-
mological models dominated by dust. We will take up the radiation-
dominated models in the following chapter.

Exercises

1. Verify the expressions for the Ricci tensor and the Einstein tensor for the

Robertson–Walker line element.

2. Deduce Equation (15.14) from Equation (15.15).

3. Using the Einstein–de Sitter model, estimate the epoch at which the matter

and radiation densities in the Universe were equal. For this calculation take

ρ0 = 10−29 g cm−3 and ε0 = 10−13 erg cm−3, and express your answer as a

fraction of the age of the Universe.

4. A galaxy is observed with redshift 0.69. How long did light take to travel

from the galaxy to us if we assume that we live in the Einstein–de Sitter universe

with Hubble’s constant =70 km s−1 Mpc−1?

5. In the Friedmann universe with q0 = 1, a galaxy is seen with redshift z = 1.

How old was the universe at the time this galaxy emitted the light received

today? (Take H0 =100 km s−1 Mpc−1.)

6. A light ray is emitted at the present epoch in the closed Friedmann universe.

Discuss the possibility of this ray making a round of the universe and coming

back to its starting point.

7. Invert the formula (15.67) to express z as a function of x ≡ D1 H0/c. Show

that

z = q0x − (q0 − 1)
(√

1 + 2x − 1
)

.

Use this relation to show how the linear Hubble velocity–distance relation begins

to fan out for cosmological models with different values of q0.

8. Show why the Friedmann models with λ = 0 do not have event horizons.

9. The surface brightness of an astronomical object is defined as the flux

received from the object divided by the angular area subtended by the object at

the observation point. How does the surface brightness vary with redshift?

10. Show from first principles that the angular sizes of astronomical objects

of fixed linear size will have a minimum at z = 1.25 in the Einstein–de Sitter

model.

11. If in a Friedmann universe we have a fixed number of sources in a unit

comoving coordinate volume and each source emits line radiation of fixed total

intensity L0 at frequency ν̄, show that the radiation background produced by

such sources at the present epoch will have the frequency spectrum S(ν)dν,
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where S(ν) = 0, for ν > ν̄, whereas for ν < ν̄

S(ν) = c

H0
n̄0 L0

ν3/2

ν̄2
√

2q0 ν̄ − (2q0 − 1)ν
,

where n0 is the proper number density of sources at the present epoch.

12. Given that objects during the quasistationary phase of the Eddington–

Lemaı̂tre cosmology are now seen with the redshift z = 2, what can you say

about the value of λ?

13. Deduce that the scale factor in the λ-cosmology with k = 1 satisfies the

differential equation

Ṡ2 = c2
(1

3
λS2 − 1 + γ

S

)
,

where

γ =
2q0 + 2

3
λc2

H 2
0(

2q0 − 1 + λc2

H 2
0

)3/2

( c

H0

)
.

14. Write down an integral that gives the age of a big-bang universe for λ 
= 0.

Discuss qualitatively how the λ-term may be used to increase the age of the

universe.

15. In λ-cosmology, what is the lower limit on the value of λ given the value of

q0?

16. Compute the invariants R, Rik Rik and Riklm Riklm for the Friedmann models

and show that they all diverge as S → 0. Is there an exceptional case?

17. Give a general argument to show that, for sufficiently small S, the λ-force

is ineffective at preventing the spacetime singularity.

18. Identify the region on the �0−�� plane corresponding to accelerating

models of the Universe.

19. The steady-state model is described by the de Sitter line element and a

constant density at all epochs from t = −∞ to t = +∞. Does this model have

an infinite sky background as calculated by Olbers? Verify your answer by direct

calculation.

20. Show that the line element

ds2 = eν dT 2 − e−ν dR2 − R2(dθ 2 + sin2θ dφ2),

where eν = 1 − (2G M/R) − (λR2/3), describes a spherically symmetric dis-

tribution of matter of mass M in an otherwise empty, asymptotically de Sitter,

universe. Discuss the effect of the λ-term on the Solar-System tests of general

relativity.



Chapter 16

The early Universe

16.1 The radiation-dominated Universe

In the previous chapter we discussed simple cosmological models in
which the contents were described as ‘dust’, i.e., pressure-free matter.
We saw that the density ρ of the matter behaves as ∼ S−3. We also saw
briefly that, if radiation were present, its energy density would vary with
the scale factor as

ε ∝ 1

S4
.

At present the Universe is dust matter-dominated; but if we see the
different rates at which ρ and ε increased in the past, we find that there
was an epoch in the past when the two energy densities were equal. Let
us denote this epoch by its redshift zeq. This means that at this epoch the
scale factor was a fraction 1/(1 + zeq) of its present value. Figure 16.1
illustrates the relative variations of matter and radiation densities. We see
that, prior to this epoch, radiation dominated over matter in determining
the dynamics of the Universe through the Einstein field equations.

What about temperature? During the radiation-dominated era, the
temperature was determined by radiation and a simple calculation shows
how the temperature also might have been high. This calculation requires
the assumption that at present we have a radiation density u0 that is a
relic of an early hot era. With this assumption, the radiation energy
density at a past epoch S was given by (15.24):

ε = ε0
S4

0

S4
. (16.1)

275
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We may therefore assume that in the early epochs the dynamics of
expansion was determined by radiant energy rather than by matter in the
form of dust and that these were high-temperature epochs.

We illustrate the above ideas with a simplified calculation by assum-
ing that the radiation was in blackbody form with temperature T , so
that

ε = aT 4, (16.2)

where a is the radiation constant. This means that in the early stages of
the big-bang Universe

T 0
0 = aT 4, T 1

1 = T 2
2 = T 3

3 = −1

3
aT 4. (16.3)

We also anticipate that the space-curvature parameter k will not affect
the dynamics of the early Universe significantly, and set it equal to zero.
Thus, from (15.11),

Ṡ2

S2
= 8πGa

3c2
T 4. (16.4)

Further, from (16.2) and (16.1) we get

T = A

S
, A = constant. (16.5)

Substituting (16.5) into (16.4) gives a differential equation for S that can
easily be solved. Setting t = 0 at S = 0, we get

S = A
( 3c2

32πGa

)−1/4

t1/2 (16.6)
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and, more importantly,

T =
( 3c2

32πGa

)1/4

t−1/2. (16.7)

Notice that all the quantities inside the parentheses on the right-
hand side of the above equation are known physical quantities. Thus, by
substituting their values into (16.7), we can express the above result in
the following form:

Tkelvin = 1.52 × 1010t−1/2
second. (16.8)

In other words, about one second after the big bang the radiation temper-
ature of the Universe was 1.52 × 1010 K. The Universe at this stage was
certainly hot enough to have free neutrons and protons around, which,
as the Universe expanded, cooled down to facilitate the formation of
atomic nuclei. It was George Gamow who appreciated the significance
of the early hot era and conjectured that all chemical elements found in
the Universe were formed in a primordial nucleosynthesis process [59].
In short, the Universe acted as a fusion reactor.

The idea of a hot big bang, as the above picture is called, depends
therefore on the assumption that there is relic radiation present today.
Later in this chapter we will present the argument that the microwave
background discovered in 1965 by Arno Penzias and Robert Wilson
is that relic radiation. For the present we will accept this evidence as
confirming Gamow’s notion of the hot big bang and proceed further.

16.2 Primordial nucleosynthesis

This being a book primarily on general relativity, rather than on cos-
mology, we will rush through the description of how and when atomic
nuclei were synthesized. For details we refer the reader to the companion
volume on cosmology [53]. Here we summarize the important steps in
this process.

16.2.1 Distribution functions

Assuming an ideal-gas approximation and thermodynamic equilibrium,
it is possible to write down the distribution functions of any given species
of particles like neutrons, protons, photons, etc. Let us use the symbol A
to denote typical species A. Thus nA(P)dP denotes the number density
of species A in the momentum range (P, P + dP), where

nA(P) = gA

2π 2�3
P2

[
exp

( EA(P) − µA

kT

)
± 1

]−1

. (16.9)
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In the above formula T is the temperature of the distribution, gA the
number of spin states of the species and k the Boltzmann constant,
while the equation

E2
A = c2 P2 + m2

Ac4 (16.10)

relates the energy to the rest mass mA and momentum P of a typical par-
ticle of species A. Thus for the electron gA = 2, for the neutrino gA = 1,
mA = 0, and so on. The + sign in (16.9) applies to particles obeying
Fermi–Dirac statistics (these particles are called fermions), while the −
sign applies to particles obeying Bose–Einstein statistics (particles
known as bosons). For example, electrons and neutrinos are fermions,
whereas photons are bosons. The quantity µA is the chemical potential
of the species A. The number densities of these species are needed in
order to work out their chemical potentials. Since photons can be emit-
ted and absorbed in any amounts, it is normally assumed that µγ = 0.

Present observations suggest that for baryons (B) the ratio

NB

Nγ

= Number density of baryons

Number density of photons
∼ 10−8−10−10

is small compared with 1. The smallness of the baryon number density
suggests that the number densities of leptons may also be small compared
with Nγ, and it is usually assumed that this hypothesis provides a good
justification for taking µA = 0 for all species. We will assume that
µA = 0 for all species as a first approximation in our calculations to
follow. We will come back to this assumption at a later stage when it
may need modification.

We then get the following integrals for the number density (NA),
energy density (εA), pressure (pA) and entropy density (sA) of particle
A in thermal equilibrium:

NA = gA

2π 2�3

∫ ∞

0

P2 dP

exp[EA(P)/(kT )] ± 1
, (16.11)

εA = gA

2π 2�3

∫ ∞

0

P2 EA(P)dP

exp[EA(P)/(kT )] ± 1
, (16.12)

pA = gA

6π 2�3

∫ ∞

0

c2 P4[EA(P)]−1 dP

exp[EA(P)/(kT )] ± 1
, (16.13)

sA = (pA + εA)T . (16.14)

We can deduce a simple relation from these formulae to show that
the entropy in a given comoving volume is constant as the Universe
expands. Differentiate pA with respect to T to get

dpA

dT
= gA

6π 2�3

∫ ∞

0

c2 P4 exp[EA(P)/(kT )]dP

{exp[EA(P)/(kT )] ± 1}2kT 2
.
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Now integrate by parts to get for the above integral

gA

6π 2�3T

∫ ∞

0

[3P2
A EA + c2 P4 E−1

A ]dP

exp[EA(P)/(kT )] ± 1
= pA + εA

T
.

On defining the pressure, energy density and entropy density for a mix-
ture of such gases in thermodynamic equilibrium by

p =
∑

A

pA, ε =
∑

A

εA, s =
∑

A

sA, (16.15)

we have the following relation:

dp

dT
= p + ε

T
. (16.16)

We will apply this relation next in the expanding Universe. For we
shall see that as the Universe expands it cools adiabatically.

We first recall the conservation law satisfied by ε and p in the early
stages of the expanding Universe, the law given by (15.14),

d

dS
(εS3) + 3pS2 = 0, (16.17)

and use it in conjuction with Equation (16.16). A simple exercise in
calculus leads to the conclusion that the entropy in a given volume is
constant:

σ = S3
( p + ε

T

)
= constant. (16.18)

In general, the above expressions become simplified for particles
moving relativistically. In this case, the mean kinetic energy per particle
far exceeds the rest-mass energy of the particle, an inequality expressed
by

T � mAc2

k
≡ TA. (16.19)

This is called the high-temperature approximation, or the relativistic
limit.

The thermodynamic details for the various species of interest are
given in Table 16.1. The numbers are expressed in units of the quantities
for the photon (gA = 2; the symbol for the photon is γ):

Nγ = 2.404

π 2

( kT

c�

)3

, εγ = π 2(kT )4

15�3c3
= 3pγ, sγ = 4π 2k

45

( kT

c�

)3

.

(16.20)

Now consider a primordial mixture of bosons and fermions all mov-
ing relativistically. The effective energy-density–temperature relation-
ship for this mixture will be

ε = 1

2
gaT 4, (16.21)
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Table 16.1. Thermodynamic quantities for various particle species at
T � TA

Particle species A Symbol TA (K) gA NA/Nγ εA/εγ sA/sγ

Photon γ 0 2 1 1 1

Electron e− 5.93 × 109 2 3/4 7/8 7/8

Positron e+ 2 3/4 7/8 7/8

Muon µ− 1.22 × 1012 2 3/4 7/8 7/8

Antimuon µ+ 2 3/4 7/8 7/8

Muon and electron νµ, νe 0 1 3/8 7/16 7/16

neutrinos and their ν̄µ, ν̄e 1 3/8 7/16 7/16

antineutrinos

Pions π+ 1 1/2 1/2 1/2

π− 1.6 × 1012 1 1/2 1/2 1/2

π0 1 1/2 1/2 1/2

Proton p 1013 2 3/4 7/8 7/8

Neutron n Tn − Tp 2 3/4 7/8 7/8

∼ 1.5 × 1010

where the ‘g’ factor is related to the total bosonic internal degrees of
freedom gb and fermionic degrees of freedom gf by

g = gb + 7

8
gf . (16.22)

The reason becomes clear when we look at the last-but-one column
of Table 16.1. The fermionic energy densities carry an extra factor 7/8.

In this approximation consider the electrical potential energy of any
two electrons separated by distance r . This is given by

U = e2

r
.

Now the average inter-electron distance is given by N−1/3
e ∼ c�/(kT ).

Thus the average interaction energy is

〈U 〉 ∼ e2

�c
kT .

However, kT measures the energy of motion of electrons. Thus the
interaction energy is e2/(�c) ∼ 1/137 of the energy of motion. Since
the fraction is small, we are justified in treating the electrons as free gas.
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In contrast, at low temperatures T ≤ TA we have for all species with
mA 	= 0

NA = gA

�3

(mAkT

2π

)3

exp
(

− TA

T

)
,

εA = mA NA, pA = NAkT, sA = mA NA

T
c2.

(16.23)

Notice that with a fall in temperature all these quantities drop off rapidly.
We will often refer to this limit as the non-relativistic approximation. (For
the photon and a zero-rest-mass neutrino TA = 0 and this approximation
never applies.)

When applying these results to cosmology, the following consid-
erations usually count. First, the expansion of the Universe is con-
trolled by the species that are in the relativistic limit, for these are
the particles that are present in greater abundance. Heavier species
are reduced in number because of the exponential damping term of
Equation (16.23). Thus, as the temperature of the Universe drops with
expansion, the heavier species progressively diminish in dynamical
importance.

16.2.2 Decoupling of neutrinos

In general, our understanding of the early epochs of the Universe tells us
that there are two processes going on at any given time: the expansion
of the Universe with a characteristic rate given by the Hubble constant
H (t) = Ṡ/S and some process involving the interaction of its particle
species. If the latter is slower than the former, the process ceases to
have any important role in determining the physical properties of the
Universe. After the Universe has cooled through to a temperature of
∼1011 K, the first major event to occur because of such a reason is the
decoupling of neutrinos.

Using the properties of the weak interactions of physics, one can
show that the rate of interaction of neutrinos with leptons (electrons,
positrons, muons, neutrinos etc.) is of the order

η = G2
�

−7c−6(kT )5 exp
(

− Tµ

T

)
. (16.24)

Here G is the weak-interaction constant. We must now take note of
the other rate mentioned earlier, that is relevant to the maintenance of
equilibrium of neutrinos – the rate at which a typical volume enclosing
them expands. From Einstein’s equations we get

H 2 = Ṡ2

S2
= 8πG

3c2
ε ≈ 16π 3G

90�3c5
(kT )4. (16.25)
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H , the Hubble constant at the particular epoch, measures the rate of
expansion of the volume in question. Thus the ratio of the reaction rate
to the expansion rate is given by

η

H
∼ G−1/2

�
−11/2G2c−7/2(kT )3 exp

(
− Tµ

T

)
(16.26)

∼
( T

1010 K

)3

exp
(

− 1012 K

T

)

= T 3
10 exp

(
− 1

T12

)
. (16.27)

Here we have substituted the values of G, �,G, c, k and Tµ and arrived
at the above numerical expression. Further, we have written the tempera-
tures using the compact notation that Tn indicates temperature expressed
in units of 10n K, i.e.,

Tn = T

10n K
.

What does (16.27) tell us? As the temperature drops below 1012 K,
the exponential decreases rapidly. This means that the reactions involv-
ing neutrinos run at a slower rate than the expansion rate of the Universe.
The neutrinos then cease to interact with the rest of the matter and there-
fore drop out of thermal equilibrium as temperatures fall appreciably
below T12 = 1. How far below?

The original theory of weak interactions suggested that this tem-
perature may be about T11 = 1.3. In the late 1960s and early 1970s
successful attempts to unify the weak interaction with the electromag-
netic interaction led to additional (neutral-current) reactions that keep
neutrinos interacting with other matter at even lower temperatures. The
outcome of these investigations is that the neutrinos can remain in ther-
mal equilibrium down to temperatures of the order of T10 = 1.

However, even though neutrinos decouple themselves from the rest
of the matter, their distribution function still retains its original form with
the temperature dropping as T ∝ S−1. This is because as the Universe
expands the momentum and energy of each neutrino fall as S−1 and the
number density of neutrinos falls as S−3. Since the temperature of the
rest of the mixture also drops as S−1 and since the two temperatures
were equal when the neutrinos were coupled with the rest of the matter,
the two temperatures continue to remain equal even though neutrinos
and the rest of the matter are no longer in interaction with one another.
These remarks about neutrinos are meant to apply to all four species
νe, ν̄e,νµ and ν̄µ.
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16.2.3 Electron–positron annihilation

There is, however, another (later) epoch when the neutrino temperature
begins to differ from the temperature of the rest of the matter. First
consider the Universe in the temperature range T12 = 1 to T10 = 1.

In this phase we have the neutrinos, the electron–positron pairs and
the photons, each with distribution functions in the high-temperature
approximation (see Table 16.1). Thus, referring back to the formula
(16.21), we get

ε = 9

2
aT 4. (16.28)

Thus in this period the expansion equation is modified from our
simplified formula (16.4) (for photons only) to

Ṡ2

S2
= 12πG a

c2
T 4 (16.29)

and the relation (16.7) is changed to

T =
( c2

48πG a

)1/4

t−1/2, (16.30)

which we may rewrite as

T10 = 1.04 t−1/2
seconds. (16.31)

However, in the next phase the situation becomes complicated,
because, with the cooling of the Universe, the electron–positron pairs
are no longer relativistic. Thus the high-temperature approximation is
no longer valid for them. As they slow down, they annihilate each other.
We will not go into the details of this phase but instead jump across to its
end, when the pairs have annihilated, leaving only photons (and possibly
any excess electrons):

e− + e+ → γ + γ

Thus the energy, originally in e± and photons, is now vested only in
photons, raising their number and temperature. How can we evaluate
this change? It is here that Equation (16.18), telling us of the constancy
of σ , comes to our help.

In the relativistic phase (T9 > 5) of e± we have

σ = 4S3

3T

(
εe− + εe+ + εγ

)
= 11

3
a(ST )3. (16.32)

When the e± have annihilated and left only photons, we have the
photon temperature Tγ given by

σ = 4

3

S3

Tγ

εγ = 4

3
a(STγ)3. (16.33)
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We now use the result that the neutrino temperature always declines as
S−1. Let us write it as

Tν = B

S
, B = constant. (16.34)

Then (16.32) gives

σ = 11

3
aB3

( T

Tν

)3

. (16.35)

Similarly (16.33) gives

σ = 4

3
aB3

( Tγ

Tν

)3

. (16.36)

Now, in the pre-annihilation era T = Tν, so that (16.35) tells us
that σ = (11/3)aB3. After annihilation σ must have the same value, so
we may equate it to the value given by (16.36). Thus we arrive at the
conclusion that the photon temperature at the end of e± annihilation has
risen above the neutrino temperature by the factor

Tγ

Tν

=
(11

4

)1/3 ∼= 1.4. (16.37)

So the present-day neutrino temperature is lower than the photon tem-
perature by the factor (1.4)−1. If we take the latter to be ∼2.7 K, the
former is ∼1.9 K.

16.2.4 The neutron-to-proton number ratio

We have so far developed a picture of the early Universe that is best
expressed in the form of a time–temperature table of events, as shown in
Table 16.2 (see also Figure 16.2). We will now be interested in the last
entry of Table 16.2.

In our discussion so far we have not paid much attention to baryons –
the protons and neutrons that are also present in the mixture. In our
approximation of setting the chemical potentials to zero we took the
baryon number to be zero. The validity of the approximation depended
on the baryon number density being several orders (8 to 10) of magnitude
smaller than the photon density. Nevertheless, we must now take note
of the existence of baryons, howsoever small their number density; for
we need them in order to consider Gamow’s idea of nucleosynthesis in
the hot Universe. We also emphasize that the baryons at this stage of
the Universe (when nucleosynthesis could occur) are not playing any
significant role in determining the expansion of the Universe.

Insofar as chemical potentials are concerned, we will take explicit
note of them in the following section. However, first notice that the criti-
cal temperatures Tn and Tp of Table 16.1 are very high, so the neutron and
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Fig. 16.2. The time–
temperature relationship since
the Universe was aged about
10−4 s, until it became ∼103 s
old. After the annihilation of
e± pairs (when the Universe
was 1–10 s old) the photon
temperature went up above
the neutrino temperature by a
factor ∼1.4. That is why the
t–T curve splits into two parts.

Table 16.2. A time–temperature table of events preceding
nucleosynthesis in the early Universe

Time since Temperature

big bang (s) (K) Events

≤10−4 >1012 Baryons, mesons, leptons and photons in

thermal equilibrium.

10−4–10−2 1012–1011 µ+ begin to annihilate and disappear from the

mixture. Neutrinos begin to decouple from

the rest of the matter.

10−2–1 1011–1010 Neutrinos decouple completely.

e± pairs still relativistic.

1–10 1010–109 The e± pairs annihilate and disappear, raising

the photon-gas temperature to ∼1.4 times

the temperature of neutrinos.

10–180 109–108 Nucleosynthesis takes place.
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proton distribution functions follow the non-relativistic approximations
given by (16.23). Thus we get

Np = 2

�3

(mpkT

2π

)3/2

exp
(

− Tp

T

)
,

Nn = 2

�3

(mnkT

2π

)3/2

exp
(

− Tn

T

)
.

(16.38)

In this approximation the neutron-to-proton number ratio is given by

Nn

Np

∼= exp
( Tp − Tn

T

)
= exp

(
− 1.5

T10

)
. (16.39)

The ratio therefore drops with temperature, from near 1 : 1 at T ≥ 1012

K to about 5 : 6 at T = 1011 K, and to 3 : 5 at 3 × 1010 K (mp ≈ mn).
The thermodynamic equilibrium of these ‘heavy’ particles is main-

tained so long as their weak interaction with the light particles is signif-
icantly fast (compared with H (t)). Detailed calculations show that the
cross section of this interaction goes as T and the effective decoupling
temperature T∗ at which the reaction rate is just about equal to H is
<1010 K. Note that, if the Universe were expanding faster, T∗ would be
higher and the ratio Nn/Np at decoupling as given by (16.39) would be
higher. We will recall this point when relating the helium abundance to
the number of neutrino species.

Once the thermodynamic equilibrium ceases to be maintained, the
Nn/Np ratio is given not by (16.39) but by detailed consideration of
specific reactions involving the nucleons.

Thus the ratio of neutrons to protons is uniquely determined at the
time nucleosynthesis begins, once we know all the parameters of the
weak interaction. This is one good aspect of primordial nucleosynthesis
theory, which was first pointed out by Chushiro Hayashi in 1950 [60].
We now proceed to discuss its outcome.

16.3 The formation of light nuclei
The process of nucleosynthesis may be considered as a battle between
high-speed nuclei flying about in all directions and the strong nuclear
force of attraction trying to trap them and bind them together. Clearly,
at the higher temperatures the former win, whereas at lower tempera-
tures the latter prevails. This can be seen quantitatively in the following
way.

A typical nucleus Q is described by two quantities, A, the atomic
mass, and Z , the atomic number, and is written A

Z Q. This nucleus has
Z protons and (A − Z ) neutrons. If mQ is the mass of the nucleus, its
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binding energy is given by

BQ = [Zmp + (A − Z )mn − mQ]c2. (16.40)

Let us now consider a unit volume of cosmological medium con-
taining NN nucleons, bound or free. Since the masses of protons and
neutrons are nearly equal, we may denote the typical nucleon mass by
m. Thus mn ≈ mp = m. If there are Nn free neutrons and Np free protons
in the mixture, the ratios

Xn = Nn

NN
, Xp = Np

NN
(16.41)

will denote the fractions by mass of free neutrons and free protons. If a
typical bound nucleus Q has atomic mass A and there are NQ of them
in our unit volume, we may similarly denote the mass fraction of Q by

XQ = NQ A

NN
. (16.42)

Now, at very high temperatures (T � 1010 K), the nuclei are
expected to be in thermal equilibrium. However, because of their rela-
tively large masses, even at these tempereatures T � TQ and the non-
relativistic approximation holds. Further, since we are now concerned
with relative number densities, we can no longer ignore the chemical
potentials. Thus we have

NQ = gQ

(mQkT

2π�2

)3/2

exp
(

µQ − mQc2

kT

)
, (16.43)

where we have reinstated the chemical potentials µQ. Since chemical
potentials are conserved in nuclear reactions,

µQ = Zµp + (A − Z )µn, (16.44)

assuming that the nuclei were built out of neutrons and protons by
nuclear reactions.

Using Equation (16.44), the unknown chemical potentials can be
eliminated between (16.43) and similar relations for Np and Nn. The
result is expressed in this form:

XQ = 1

2
gQ A5/2 X Z

p X A−Z
n ξ A−1 exp

( BQ

kT

)
, (16.45)

where

ξ = 1

2
NN

( mkT

2π�2

)−3/2

. (16.46)

For an appreciable build-up of complex nuclei, T must drop to a low
enough value to make exp[BQ/(kT )] large enough to compensate for
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the smallness of ξ A−1. This happens for nucleus Q when T has dropped
down to

TQ ∼ BQ

k(A − 1)|ln ξ | . (16.47)

Let us consider what happens when we apply the above formula to
the nucleus of 4He. This nucleus is made by fusion of four nucleons, i.e.,
it requires a four-body encounter. The binding energy of this nucleus is
given approximately by 4.3 × 10−5 erg. If we substitute this value into
(16.47) and estimate NN from the currently observed value of nucleon
density of about 10−6 cm−3, we find that TQ is as low as ∼3 × 109 K.
However, at this low temperature the number densities of participating
nucleons are so low that four-body encounters leading to the formation
of 4He are extremely rare. Thus we need to proceed in a less ambitious
fashion in order to describe the build-up of complex nuclei.

Hence we try using two-body collisions (which are not so rare) to
describe the build-up of heavier nuclei. Thus deuterium (2H), tritium
(3H) and helium (3He, 4He) are built up in a sequence via reactions like

p + n ↔ 2H + γ,

2H + 2H ↔ 3He + n ↔ 3H + p, (16.48)

3H + 2H ↔ 4He + n.

Since formation of deuterium involves only two-body collisions, it
quickly reaches its equilibrium abundance as given by

Xd = 3√
2

Xp Xnξ exp
( Bd

kT

)
. (16.49)

However, the binding energy Bd of deuterium is low, so, unless T drops
to less than 109 K, Xd is not high enough to start further reactions
leading to 3H, 3He and 4He. In fact the reactions given in (16.48), with
the exception of the first one, do not proceed fast enough until the
temperature has dropped to ∼8 × 108 K.

Although at such temperatures nucleosynthesis does proceed rapidly
enough, it cannot go beyond 4He. This is because there are no stable
nuclei with A = 5 or 8, and nuclei heavier than 4He break up as soon
as they are made. Their primordial abundances are extremely small. So
the process effectively terminates there. Detailed calculations by several
authors have now established this result quite firmly.

So, starting with primordial neutrons and protons, we end up finally
with 4He nuclei and free protons. All neutrons have been gobbled up
by helium nuclei. Thus, if we consider the fraction by mass of primor-
dial helium, it is very simply related to the quantity Xn – the neutron
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concentration before nucleosynthesis began. Denoting the helium frac-
tion by mass by the symbol Y , we get

Y = 2Xn. (16.50)

In Figure 16.3 the cosmic mass fractions of 4He, 3He, 2H and other light
nuclei are plotted against a parameter η defined by

η =
(

ρ0

1.97 × 10−26g cm−3

)(2.7

T0

)3

. (16.51)

Thus η essentially measures the nucleon density in the early Universe
through the formula

ρ = ηT 3
9 , T9 < 3. (16.52)

We will shortly discuss the implications of this parameter for primordial
production of light nuclei.
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16.3.1 Helium abundance and the number
of neutrino species

Note that the 4He mass fraction is insensitive to the parameter η. This
is because, as we saw just now, it depended only on Xn, which in turn
depends more critically on the epoch when the rate of weak interactions
fell below the expansion rate. If we go back to (16.39), we see that in
the very early stages the neutron-to-proton ratio was determined by the
decoupling temperature T∗. A faster expansion rate implies that the ratio
became frozen at a higher temperature and so was higher, thus leading
to a higher 4He abundance.

To see the effect quantitatively, recall from (16.39) that there was
a ‘last epoch’ of temperature T∗ when the neutron-to-proton ratio was
determined from considerations of thermodynamic equilibrium:

x = Nn

Np
= exp

(
− 1.5

T∗10

)
. (16.53)

The temperature T∗ was determined by equating the Hubble constant H
to the reaction rate η for n ↔ p conversions. Now

H ∝ g1/2T 2
∗ and η ∝ T 4

∗

so that

T 2
∗ ∝ g1/2. (16.54)

Example 16.3.1 Problem. How does T∗ depend on the number of neutrino

species?

Solution. First we note that T∗ is obtained by equating H with η. Given the

relations above, we have
T∗ = βg1/4,

where β is a known constant.

Now suppose that there are r neutrino species, r ≥ 3. Taking the pri-

mordial brew to contain photons (γ) and electrons (e) and neutrinos as other

relativistic particles, we have gb = 2 and gf = 2 + 2r , where we also include

antineutrinos. Thus

g = 2 + 7

8
(2r + 2) = 7r

4
+ 15

4
.

Since the neutron-to-proton ratio is given by

x = exp

(
− 1.5

T∗10

)
= exp

(
− α

T∗

)
,
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say, with α = 1.5 × 1010, the above relations lead to

x = exp

[
− α

β

(
7r + 15

4

)−1/4]
.

For r = 3 we have x = 1/7, corresponding to Y = 1/4. Numerical calcu-

lations for r = 4 and r = 5 lead to Y = 0.27 and 0.29, respectively. Since

most estimates of primoridal helium put Y � 0.25, such higher values are

ruled out.

The calculation shown above tells us that an increase in the number
of neutrino species would result in an increase of Y .

This result is relevant to the question of how many different types
of neutrinos exist primordially. The formalisms used by particle physi-
cists allow for three or more neutrino types, νe,νµ and ντ. Having more
types of neutrinos existing forces the value of Y upwards. When we look
at observations, we discover that the present estimates of helium abun-
dance, Y ≤ 0.25, rule out the existence of more than three neutrino types.

It is also interesting that the result from particle-accelerator exper-
iments appear to lead to the same conclusion. A series of experiments
carried out in 1990 with the large electron–positron collider (LEP) at
CERN produced the intermediate Z0 boson [61] in large numbers. The
presence of these particles (which mediate in electro-weak interactions)
could be inferred by detecting resonance peaks in the energy-dependent
cross sections for producing hadrons and leptons. The width of the peak
measures the lifetime of the Z0 boson, and this in turn can be linked
to the number of neutrino species present. The estimate is very close
to 3, which is consistent with the above cosmological considerations.
This circumstance is considered a notable success of the enterprise of
bringing together cosmology and particle physics.

16.3.2 Deuterium abundance and
non-baryonic dark matter

In contrast to the behaviour of Y , which does not sensitively depend on
the parameter η, the abundances of other light nuclei do depend on η.
These abundances are very small compared with Y . The most interesting
situation exists for deuterium, whose abundance sharply drops as η rises
above 10−4 (see Figure 16.3). The present estimate of the deuterium
mass fraction is ∼2 × 10−5. From Figure 16.3, we have η ∼ 2 × 10−5

to understand the deuterium abundance. For T◦ = 2.7 K, this value of η

corresponds to a present nucleonic density of

ρ◦ ∼ 4 × 10−31 g cm−3. (16.55)
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On comparing this with (15.32) and (15.40), we see that h2
0	0 � 0.02

and hence q0 � 0.01. Therefore, if even such a small amount of deu-
terium believed to be primordial in origin were found, Friedmann models
of the closed variety would be ruled out. There is, however, a loophole
in this argument: we can still accommodate non-baryonic matter in the
Universe. Such matter does not affect the deuterium abundance, but
contributes to 	0. Matter of this kind will have to be dark.

To summarize, the process of primordial nucleosynthesis delivers
the right abundance of helium, if the parameter η is properly adjusted,
and of deuterium, if one allows for a substantial presence of non-baryonic
dark matter in the Universe. Apart from marginal production of other
light nuclei up to lithium, the pimordial process fails for the production
of all other nuclei. For these one has to invoke stellar nucleosynthesis,
which does produce the right amounts of these remaining (over 200)
isotopes [62]. One may be tempted to invoke Occam’s razor, and argue
that all isotopes were produced inside stars. Such an attempt, however,
has not succeeded so far: one gets an inadequate quantity of helium in
this way, and no deuterium at all. Interestingly, these two failure points of
stellar nucleosynthesis are precisely those where the primordial process
succeeds.

16.4 The microwave background

The era of nucleosynthesis took place when the temperature was about
109 K. The Universe in subsequent phases continued to cool as it
expanded, with the radiation temperature dropping as S−1. The pres-
ence of nuclei, free protons and electrons did not have much effect on
the dynamics of the Universe, which was still radiation-dominated. How-
ever, these particles, especially the lightest of them, the electrons, acted
as scattering centres for the ambient radiation and kept it thermalized.
The Universe was therefore quite opaque to start with.

However, as the Universe cooled, the electron–proton electrical
attraction began to assert itself. In detailed calculations performed by
P. J. E. Peebles [63], the mixture of electrons and protons and of hydro-
gen atoms was studied at varying temperatures. Because of Coulomb
attraction between the electron and the proton, the hydrogen atom has
a certain binding energy B. The problem of determining the relative
number densities of free electrons, free protons (that is, ions) and neu-
tral H atoms in thermal equilibrium is therefore analogous to that we
considered earlier in deriving (16.45) for the mixture of free and bound
nucleons. The only difference is that the binding to be considered now is
electrostatic rather than nuclear. Following the same method, we arrive
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at the formula relating the number densities of electrons (Ne), protons
(Np = Ne), and H atoms (NH) at a given temperature T :

N 2
e

NH
=

(mekT

2π�2

)3/2

exp
(

− B

kT

)
, (16.56)

where me is the electron mass. This equation is a particular case of
Saha’s ionization equation. In about 1920 Meghnad Saha had looked at
the problem of ionization in the context of stellar atmospheres and had
derived this equation [64].

Writing NB for the total baryon number density, we may express the
fraction of ionization by the ratio

x = Ne

NB
. (16.57)

Then, since NH = NB − Ne, we get from (16.56)

x2

1 − x
= 1

NB

(mekT

2π�2

)3/2

exp
(

− B

kT

)
. (16.58)

For the H atom, B = 13.59 eV. By substituting for various quantities on
the right-hand side of (16.58), we can solve for x as a function of T . The
results show that x drops sharply from 1 to near zero in the temperature
range of ∼5000 K to 2500 K, depending on the value of NB, that is, on
the parameter 	0h2

0. For example, for 	0h2
0 = 0.01, x = 0.003 at T =

3000 K.
Thus by this time most of the free electrons have been removed

from the cosmological brew, and as a result the main agent responsible
for the scattering of radiation disappears from the scene. The Universe
becomes effectively transparent to radiation. This epoch is often called
the recombination epoch, although the word ‘recombination’ is inappro-
priate since the electrons and protons are combining for the first time at
this epoch. It is more appropriate to call it the epoch of last scattering.

The transparency of the Universe means that a light photon can go
a long way (∼c/H ) without being absorbed or scattered. Therefore this
epoch signifies the beginning of the new phase when matter and radiation
became decoupled. This phase has lasted up to the present epoch. During
this phase, the frequency of each photon is redshifted according to the
rule

ν ∝ 1

S
(16.59)

while the number density of photons has fallen as

Nγ ∝ 1

S3
. (16.60)
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It is easy to see that under these conditions the photon distribution
function preserves the Planckian form with the temperature dropping as

T ∝ 1

S
. (16.61)

Does such a Planckian background exist in the Universe today? In
1942 A. McKellar reported that the populated upper levels of the CN
molecule in interstellar space led to the conclusion that there was a radi-
ation background of ∼2.3 K. This result [65] came during the Second
World War when the normal channels of communication between scien-
tists were closed. The result therefore went largely unnoticed. In 1948,
Ralph Alpher and Robert Herman, junior colleagues of George Gamow,
made the prediction that, since the hot Universe had cooled down, a
blackbody radiation background of temperature about 5 K should exist
now [66]. They made a guess of the present temperature, since it was not
possible to tie down the radiation temperature to the present epoch from
the physics of the early Universe. Since cosmology was considered a
highly speculative field by the physicists, this important prediction was
largely ignored.

This radiation background was subsequently found by Arno Penzias
and Robert Wilson, more or less serendipitously [67]. They had planned
using a 20-foot horn-shaped reflector antenna to study radiation in the
microwave range in the Milky Way. While testing the antenna, they
pointed it in various directions and used the wavelength 7.35 cm because
it did not attract much Galactic noise. These test measurements contained
an unaccounted-for component that was isotropic, i.e., one that could
not be ascribed to any specific Galactic or extragalactic source. It was
only when they compared notes with the Princeton group that they
could identify this radiation with the relic background. For, by 1964,
Jim Peebles and Robert Dicke at Princeton had walked along the trodden
path to arrive at the same conclusion as Alpher and Herman. To measure
the predicted radiation background, Dicke was in fact building a suitable
antenna in collaboration with his colleague David Wilkinson.

The Penzias–Wilson measurement at one wavelength, if interpreted
as blackbody radiation, gave the temperature 3.5 K. In Figure 16.4
we show the spectrum of the radiation as measured by the Cosmic
Background Explorer (COBE) satellite in 1990, with a temperature of
2.735 ± 0.06 K [68]. Besides, the background is extremely homoge-
neous and isotropic, far more so than the observed distribution of matter
in the Universe. The blackbody nature of the intensity–frequency curve
has gone a long way towards confirming in most cosmologists’ minds
the validity of the early hot-Universe picture discussed by Gamow.
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microwave background
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In the next chapter we will look at some of the observations in
cosmology and return to this topic: for the microwave background is
currently the most important evidence in favour of the hot-big-bang ori-
gin of the Universe. One aspect of the radiation that is still not explained
is its present temperature of 2.7 K. This is sometimes stated in the form
of the observed ratio of photons to baryons:

Nγ

NB
= 3.33 × 107

(
	0h2

0

)−1( T0

2.7

)3

. (16.62)

This ratio has been conserved since the time at which the Universe
became essentially transparent, although both Nγ and NB can be studied
theoretically at even earlier epochs. Why the above ratio and no other?
Many physicists feel that deeper ideas from particle physics are needed
to throw light on this mystery.

There are other fundamental issues to tackle too. Some are stated
below.

1. Did the big bang really happen?

2. Why does the Universe exhibit an apparent excess of matter over antimatter?

3. Prior to the neutrons, protons, etc. assumed to be present at primordial

nucleosynthesis, what existed in the Universe?

4. How did the large-scale structure of galaxies and clusters evolve from tiny

seeds?
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There are other issues linked with inflation, dark matter, dark energy,
etc. All these issues tempted the cosmologist to push his studies closer
and closer to the big-bang epoch in order to try to understand what went
on in those early moments. We will briefly describe this approach in the
remaining part of this chapter. For details the reader is referred to the
companion volume on cosmology [53].

16.5 The time–temperature relation

We will continue our discussions of the early Universe by going back
to the time–temperature relationship. We assume that our primordial
mixture contained both fermions and bosons with total effective degrees
of freedom gf and gb, respectively. Then we get the result that relates
the temperature of the Universe to its expansion rate as given by the
Einstein equation,

Ṡ2

S2
= 8πG

3
ρ. (16.63)

If there are bosons with a total gb of g-factors and fermions with a total
gf of g-factors, then the above equation has the solution

ρc2 = 1

2
gaT 4 (16.64)

with

g = gb + 7

8
gf . (16.65)

Thus we have for g = constant

S ∝ t1/2 (16.66)

with

t =
( 3c2

16πGa

)1/2

g−1/2T −2. (16.67)

Here t is the time since the big bang. This relation can be expressed as

tsecond = 2.4g−1/2T −2
MeV = 2.4 × 10−6g−1/2T −2

GeV, (16.68)

where we have used suitable conversion factors to write the temperature
in MeV/GeV units.

This equation gives us at a glance the average particle energy at any
given time – the earlier the epoch, the higher the energy. In short, by
going closer and closer to the big-bang epoch we get ever higher particle
energies.

This circumstance has prompted particle physicists with the idea
that collaboration with big-bang cosmologists will be a good venture.
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For in particle physics there is a general expectation that at sufficiently
high energies all basic physical interactions will be unified under the
banner of one master reaction. The unification of the electromagnetic
with the weak interaction in the late 1970s showed that the energies
required for unification were of the order of 100 GeV. The next step of
‘grand unification’ of the electroweak theory with the strong interaction
appears to require particle energies as high as 1015 GeV. Now the particle
accelerators at CERN and Fermilab do not go beyond particle energies of
the order of 1000 GeV. So it is not really possible to check experimentally
the claims of these grand unified theories (GUTs). However, if these
theories are considered to apply to the very early Universe, then we can
identify epochs when that happened. For example, setting TGeV = 1015

in Equation (16.68) gives, for g ∼= 100, t ∼= 2.4 × 10−37 s. It is arguable
whether any physical meaning can be attached to such a short time
scale. But if we do not worry about such operational issues, then in the
very early Universe we do have a natural particle accelerator capable of
reaching the GUT energies. From the realization that there is much to
be gained both by cosmologists and by high-energy particle physicists
from collaboration, the subject of astroparticle physics was created.

16.6 Some conceptual problems
Going from the present-day cosmological scales to those prevailing in
the very early Universe raises some conceptual difficulties, which we
highlight first.

16.6.1 The horizon problem

Let us suppose that the initial conditions for the Universe were set fairly
early on, at an epoch t in the radiation-dominated phase. From the
considerations of Chapter 15 adapted to the scale factor S ∝ t1/2, we
find that the proper radius of the particle horizon at that epoch was

RP = 2ct. (16.69)

Whatever physical processes operated at this epoch were limited in
range by RP. Hence we do not expect the homogeneity of physical quan-
tities to extend beyond the diameter 2RP, unless we make the somewhat
contrived assumption that the Universe was created homogeneous. In
other words, the causal limitations tell us that no region larger than 2RP

in size should be homogeneous.
When the initial conditions were so set, the Universe would expand

from them to a much larger size at the present epoch, the factor η by
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which it would grow being the ratio of scale factors

η = S(t0)

S(t)

at the present and initial epochs. How do we estimate η?
The simplest method is to compare the temperatures at t and t0,

since S ∝ T −1. Thus

η = T (t)

T (t0)
,

where T (t) is given by (16.67). It is convenient to express T0 also in
GeV:

T0 (GeV) = 2.3 × 10−13
( T0

2.7 K

)
. (16.70)

On combining (16.67) and (16.70) we get the present limit on a homo-
geneous region as

RHom(t0) = 2ct

= 6.2 × 1017 × T −1
GeVg−1/2 ×

(2.7 K

T0

)
cm. (16.71)

For TGeV
∼= 1015, g ∼= 100 and T0

∼= 2.7 K we get the surprisingly small
value of 62 cm! In other words, we have no reason to expect homogeneity
on a scale larger than, say, 1 m. The fact that the relic microwave back-
ground is homogeneous on the cosmological scale of ∼1028 cm tells us
that there is something seriously wrong with our reasoning above. Yet,
the standard model does not provide any loophole out of this so-called
horizon problem. Notice also that the further we go back in the past (in
our attempts to set the initial conditions) the larger will TGeV be and the
smaller will the value of RHom(t0) be. Figure 16.5 illustrates the horizon
problem.

16.6.2 The flatness problem

When discussing the early and the very early Universe we ignored the
kc2/S2 term in the field equations. Thus (16.63) should actually have
been

Ṡ2

S2
+ kc2

S2
= 8πGρ

3
. (16.72)

Our justification in ignoring that term was that, as S → 0, Ṡ2 → ∞
and, thus, the first term far exceeds the second term on the left-hand
side of (16.72). This argument is, however, scale-dependent. Thus, if we
write S = At1/2, then Ṡ2 = A2/(4t). Whether Ṡ2 exceeds c2 for k = ±1
would depend on A. A priori we do not know A, unless we link it with
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Particle horizon of A Particle horizon of B

t 0

t

0

A B

Growth by expansion

Present epoch

Early epoch

Big-bang epoch

Fig. 16.5. A and B are two
typical observers of the very
early Universe far enough
apart that their particle
horizons (shown by the past
light cones) do not overlap. If
the homogenization process
took place very early in the
Universe, then for causal
limitation it will be locally
limited to the respective light
cones of A and B. How then
could A and B achieve the
same physical conditions
around them today? If these
horizons did limit the global
homogenization process, then
today A and B cannot be
further apart than ∼60 cm.
Why then do we find the
Universe homogeneous on a
scale ∼1028 cm?

the present size of the Universe. It is more convenient to look at the
density parameter 	 instead.

Writing ρ = 	ρc as in (15.40), we have, at any general epoch when
S ∝ t1/2,

kc2

S2
= (	 − 1)

Ṡ2

S2
= 	 − 1

4t2
. (16.73)

For the present epoch, on the other hand,

kc2

S2
0

= (	0 − 1)H 2
0 . (16.74)

On dividing (16.73) by (16.74) and using S ∝ T −1 we get, for k = ±1,

	 − 1 = (	0 − 1) · 4H 2
0 t2 · T 2

T 2
0

.

Except for (	0 − 1) all quantities on the right-hand side are known.
Using (16.68) for t and (16.70) for T0, we get

(	 − 1) ∼= 4.3h2
0g−1 × 10−21T −2

GeV

(2.7 K

T0

)2

(	0 − 1). (16.75)

For TGeV = 1015 and g ∼= 100, we get for T0
∼= 2.7 K

	 − 1 ∼= 4.3h2
0 × 10−53(	0 − 1). (16.76)
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Fig. 16.6. The flatness
problem described by the
curves in the figure shows
that, unless the model was
initiated at the GUT epoch
within the shaded region,
today it would not exhibit a
matter density comparable to
what is observed. In short, it
had to be very finely tuned
around 	 = 1, to be
consistent with modern
studies; tuned to the extent of
1 part in 1053.

This expression epitomizes what has come to be known as the flat-
ness problem. Suppose that the initial conditions including the density
parameter 	 were set at the GUT epoch when T ∼= 1015 GeV. Then the
present value of (	0 − 1) is given by (16.76). Or, to invert the chain
of reasoning, suppose that the present observational uncertainty tells us
that |	0 − 1| ∼ O(1). Then, from (16.76), at the GUT epoch 	 differed
from unity by a fraction of the order of 10−53. In other words, the depar-
ture from the flat value of 	 (=1) at this stage had to be extremely small.
Any relaxation of this fine tuning would have led to a far wider range of
	0 at present than is permitted by observations.

So our neglect of the curvature term kc2/S2 is linked with an
extremely fine tuning of the Universe to the flat (k = 0) model. If this
tuning were not there, the Universe would either have gone into a col-
lapse (k = 1) or expanded to infinity (k = −1) on time scales of the
order of 10−35 s that were characteristic of the GUT era.

Figure 16.6 illustrates this conundrum. The shaded region denotes
the finely tuned set of Friedmann models that end up today within the
observed range |	0 − 1| ∼ O(1). The curves shown outside this region
are the characteristic models with time scales ∼10−35 s which should
normally have operated at the GUT stage. What made the Universe get
into the shaded region instead?

This problem was first highlighted by R. H. Dicke and P. J. E. Peebles
in 1979, who discussed it not at the GUT epoch but at t ∼ 1 s when the
neutrinos had decoupled and pair (e±) annihilation was to begin. Thus
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T ∼ 10−3 GeV, g ∼ 10, and we get ∼10−16 instead of 10−53 in (16.76).
It is clear that the further back in time and closer to t = 0 we go the finer
is the tuning required. For example, if we were to initialize the problem
at the Planck epoch, we would get 10−61 for the tuning range instead
of 10−53.

16.6.3 The entropy problem

This is a restatement of the flatness problem and the horizon problem
in a somewhat different form. The entropy in a given comoving volume
stays constant in an adiabatic expansion (see Section 16.2). The present
photonic entropy in the observable Universe of characteristic size R ≈
h−1

0 · 1028 cm is given by

� = 4π

3k
aT 3

0 R3 ≈ h−3
0 × 4.4 × 1087

( T0

2.7

)3

. (16.77)

Why such a large value? If the entropy were conserved, we would have
ST = constant. However, we found that in the flatness problem this
hypothesis led to fine tuning, whereas for the horizon problem it gave an
extremely small size of homogeneity. It therefore appears that the trouble
lies in � = constant: it could be resolved if the adiabatic assumption
were violated at some stage and � boosted to its present value by an
enormously large factor.

16.6.4 The monopole problem

In a grand unified theory, whenever there is a breakdown of symmetry
of a larger group like SU(5) to a subgroup like SU(3) × SU(2)L × U(1)
that contains the U(1) group, there inevitably arise particles that have the
characteristics of a magnetic monopole. This is a rigorous mathematical
conclusion in gauge field theories. Typically the mass of the monopole
(in energy units) is given by ∼1016 GeV. Monopoles are highly stable
particles and once created they are not destructible, so they would survive
as relics to the present epoch.

At the GUT epoch t , the horizon size being 2ct , we expect at least
one monopole per horizon-size sphere, i.e., a monopole mass density of

1016 GeV/c2

(4π/3)(2ct)3
.

At present this is diluted by the factor (T0/T )3. For T0 in GeV units,
given by (16.70) and T = 1015 GeV, we get the present monopole
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density as

ρM
∼= 3 × 10−13

( T0

2.7 K

)3

g cm−3. (16.78)

This is far in excess of the closure density ∼10−29 g cm−3, thus making
it a very awkard problem for the standard model to solve. Again, as in
the earlier cases, the discrepancy grows if, instead of the GUT epoch,
we use an even earlier epoch.

16.7 Inflation
The extrapolation to such short time scales has thus brought its prob-
lems. Four such problems have just been described. These problems are
addressed by the notion of ‘inflation’, a brainchild of three cosmologists,
D. Kazanas, A. Guth and K. Sato, who independently arrived at it while
working on astroparticle physics [69, 70, 71]. The scenario of inflation
has evolved a lot since its inception in 1980–81. Even today there is
no unique commonly accepted fully worked-out model of inflation. Yet
its consequences for the big-bang cosmology are attractive enough for
most workers to accept on trust a half-baked idea.

When the Universe cools down through the GUT epoch, a phase
transition occurs when the single system described by grand unified
theory splits into the electroweak and strong interaction. This phase
transition can release a lot of energy, which is dumped into the dynamics
of the Universe.

An analogy will be in order to illustrate the scenario. Suppose steam
is being cooled through the phase-transition temperature of 100 ◦C.
Normally we expect the steam to condense to water at this temperature.
However, it is possible to supercool the steam to temperatures below
100 ◦C, although it is then in an unstable state. The instability sets in
when certain parts of the steam condense to droplets of water, which
then coalesce, and eventually the condensation goes to completion. In the
supercooled state the steam still retains its latent heat, which is released
as the droplets form.

In the case of the Universe the ‘vacuum’ state is identified with
the state of lowest energy. However, the meaning of lowest energy
changes as the phase transition occurs. The water–steam analogy tells
us that the ‘true’ state of lower energy is that of water and the super-
cooled steam identifies a ‘false’ state that has higher energy. When the
steam condenses, the false state changes to the true state. Likewise, in
the case of the Universe, the phase transition may be delayed, leading to
the existence of a false vacuum. When the transition is complete the true
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vacuum state is attained. In the original Guth version (which had fatal
flaws) the switchover to true vacuum was through quantum tunnelling.

Whichever the mechanism of transition from false to true vacuum
(and that is specified by a potential function) the dumped energy leads to
a rapid expansion of the Universe. Denoting the extra energy density by
ε0, we find that it must have dynamical effects via the Einstein equation:

Ṡ2 + kc2

S2
= 8πG

3c2
(ε0 + εr). (16.79)

Here εr ∝ 1/S4 is the energy density of radiation and relativistic par-
ticles. Since εr falls as the Universe expands while ε0 stays constant,
the latter clearly dominates. Hence we ignore εr and solve (16.79). For
k = +1 we get, for example,

S =
( 3c4

8πGε0

)1/2

cosh
[(8πGε0

3c2

)1/2

t
]
. (16.80)

For k = −1 we get a similar expression with ‘cosh’ replaced by ‘sinh’.
The main point to note is that for

t �
( 3c2

8πGε0

)1/2

(16.81)

either solution approaches closely the k = 0 (flat) solution

S ∝ exp(at), a =
(8πGε0

3c2

)1/2

. (16.82)

This exponential expansion is reminiscent of the de Sitter model. Indeed,
the energy tensor of false vacuum simulates the λgik term of the Einstein
equations.

This rapid expansion in an exponential fashion continues until (in
the original Guth version) the tunnelling takes place and φ attains its
true vacuum value. The average time τ for the tunnelling to occur can
be computed quantum mechanically. It tells us the factor Z by which the
scale factor S increased while inflation lasted. One finds that

aτ ≈ 67, Z = exp(aτ ) ≈ 1029. (16.83)

In other words, the exponential expansion or inflation lasts long enough
for the scale factor to blow up by a large multiple ∼1029. Thus if we
had started with a curvature term (kc2/S2) comparable to the expansion
term (Ṡ2/S2) prior to inflation we would end up by having the former
reduced by Z2 ∼ 1058 while the latter stays constant. This large factor
Z not only takes care of the fine tuning in the flatness problem but also
resolves the horizon problem (by blowing up the homogeneous region by
a factor Z in linear dimensions) and the monopole problem (by reducing
the monopole density by the factor Z3).
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For these advantages and more so because inflation initiates the
structure formation in the Universe in a way that seems to lead to the
right mass distributions at the present epoch, inflation has been accepted
by cosmologists as a vital stage in the very early Universe. For the
general-relativity purist the model leaves much to be desired. It is an
approximate solution with no matching boundary conditions. That is,
one does not know how exactly the conditions change across the bubble
and its surroundings. Neither is the spatial extent of the initial bubble
specified. The potential function that distinguishes the true vacuum from
the false vacuum is also put in by hand rather than taken from some deep
theory.

We conclude our discussion of the early Universe here. At present
astroparticle physics is the most active area in theoretical cosmology.
Despite its speculative nature, its challenges invite theorists to try their
own prescription for how the Universe began. However, in the last analy-
sis, a scientific theory must pass the test of observations. We will discuss
a few important observations in the next chapter.

Exercises
1. Substitute the values of c, G and a into (16.7) and verify the numerical

coefficient in (16.8).

2. Taking the present-day temperature of the radiation background as 2.73 K and

the present baryon density as 10−6 cm−3, calculate the number ratio of photons

to baryons.

3. A primordial mixture of relativistic bosons and fermions in the early Universe

of temperature T has the total energy density given by the formula

ε = π 2

30�3c3
g∗(kT )4.

Show that g∗ = gb + (7/8)gf , where gb is the total spin degeneracy of all bosons

and gf is the total spin degeneracy of all fermions.

4. The binding energy of the 4He nucleus is B ∼= 4.3 × 10−5 erg. Show that

for the nucleus B/[k(A − 1)] ∼= 1011 K. Next assume that the present value of

the radiation temperature is 3 K and that of the nucleon density is 10−6 cm−3.

Using the result that NNT −3 = constant, show that (16.47) gives TQ for 4He

as ∼3.2 × 109 K.

5. If m is the mass of a nucleon and if 	0 is the density parameter, show that the

present number density of baryons is 3H 2
0 	0/(8πGm). Use this formula and

the present microwave background temperature T0 = 2.7 K to estimate NB in

(16.58). Solve the Saha equation for 	0 = 0.1, h0 = 1 to show that, at 3000 K,

x = 0.003.
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6. Using the Thomson-scattering cross section for the electrons, show that the

optical depth of the Universe at the present epoch would be given by 0.08	0h0

if all electrons in the Universe were free and equal in number to the baryons and

there were no non-baryonic matter.

7. Assuming that in the past the electron number density increased as (1 + z)3,

use the analysis of Exercise 6 to estimate the smallest redshift at which the

Einstein–de Sitter universe was opaque to radiation. (Take h0 = 1.) Comment

on the fact that your answer comes out very much lower than z ∼ 1000.

8. Give arguments to show that the neutrino temperature drops as S−1 after

neutrinos decouple from the rest of the matter.

9. Why is the present neutrino temperature expected to be lower than the photon

temperature? Derive the ratio of the two temperatures from considerations of

the early Universe.

10. Suppose we wish to apply flat-space statistical mechanics to the very early

Universe at epoch t . The locally flat region may be characterized by a linear

size L � αct , where α � 1. Estimate the number of relativistic species in this

region using a time–temperature relationship. Show that, while this number is

�1 for the primordial nucleosynthesis era (t ∼ 1−200 s), it is <1 for the GUT

era. Can flat-space statistical physics be applied at the GUT era?



Chapter 17

Observational cosmology

We will now take a look at some of the tests of the relativistic cos-
mological models discussed so far. We will confine ourselves to tests
that bring out the general-relativity part of the model, rather than other
aspects like astrophysics, particle physics, etc. For a more comprehensive
discussion see [53].

17.1 The redshift–magnitude relation
We saw in Chapter 14 that for small redshifts Hubble’s law holds. What
is the form of this relation when redshifts are not small compared with
unity? Formula (15.67) tells us the relationship between luminosity dis-
tance D and redshift z for Friedmann models without the cosmological
constant.

In the practical form in which this test is often presented, astronomers
use apparent magnitudes in place of distances. Thus the D–z relation
becomes

m − M = 5 log D − 5

= 5 log
( c

H0q2
0

)
− 5

+ 5 log[q0z + (q0 − 1)(
√

1 + 2q0z − 1)]. (17.1)

A. R. Sandage and his colleagues spent a number of years on this
cosmological test with the hope that the correct geometry of the Universe
would be revealed. Although in the 1960s Sandage often quoted a value
of q0 ≈ 1, it gradually became clear that a number of uncertainties

306
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Fig. 17.1. The
redshift–magnitude plot for
the galaxies which are the
brightest in their clusters. The
plot is based on the work of
Allan Sandage and his
colleagues (A. Sandage et al.
1978, Ap. J., 221, 383) who
showed that there is very little
variation in the luminosity of
brightest cluster members.
Theoretical curves for various
values of q0 are superposed on
the data points.

combine to make this test rather inconclusive. A typical z–m curve
obtained by Sandage is shown in Figure 17.1. The various errors and
uncertainties that arise in practical applications of this test are many.
Some of the issues have been understood and partially resolved; others
continue to be difficult to settle. For these reasons this test of spacetime
geometry fell into disfavour during the 1980s and early 1990s.

However, in the late 1990s a fresh attempt was made to revive this
test when it was realized that Type Ia supernovae can be used to estimate
m relatively unambiguously at redshifts as high as unity.

17.1.1 The Hubble diagram using Type Ia supernovae

During the 1980s, it was realized that Type Ia supernovae can serve as
standard candles in the following way. The light curve of such a super-
nova (cf. Figure 17.2) shows an approximately symmetric characteristic
rise and fall over ∼30 days, followed by a much slower decline. The
maximum luminosity of a Type Ia supernova shows an almost uniform
value for this population, the dispersion being no more than 0.3 mag-
nitude. Going beyond that, however, we now see that, because of their
high peak luminosity, they can be spotted in distant galaxies. Thus they
are suitable for determining the z–m relation, out to redshifts of ∼1 or
even more.
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Fig. 17.2. The rise and fall of
light intensity during the
explosion of a supernova of
Type Ia. The peak intensity is
expected to vary from one
supernova to another, but
within a rather narrow range.

In 1988 the Supernova Cosmology Project (SCP) was launched and a
systematic search for and observations of such supernovae were carried
out by several observatories round the world, using telescopes in the
4-m class. The Keck I and II telescopes were used for measurements of
redshifts and spectral identifications, as was the ESO 3.6-m telescope.
The database continues to grow.

In 1999 Perlmutter et al. [73] used 60 supernovae to draw up the
Hubble plot. Of these, 18 came from the work on nearby supernovae by
Reiss et al. [72]. These were used essentially to set the zero point of the
plot, with the remaining 42 coming from the SCP with redshifts starting
from 0.18 and going as far as 0.83.

Theoretical Friedmann models with λ = 0 can be applied to such
data using the formulae for D(z, q0) from Chapter 15. However, their
observational fits were not very satisfactory and the parameter space had
to be expanded to include the cosmological constant. We briefly discuss
the theoretical aspect of these models showing how the m–z relation can
be derived numerically. The dimensionless parameters in question are

�0 = 8πGρ0

3H 2
0

, �� = λc2

3H 2
0

, (17.2)

these being respectively the density parameter and the cosmological-
constant parameter.

Using the formulae of Chapter 15, we can write the following relation
between the radial Robertson–Walker coordinate r and redshift z:

r (z) =
∫ S(t0)

S(t0)/(1+z)

c dS

SṠ
. (17.3)
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It is not difficult to see that using Equation (15.92) we can write the
above in the flat case (k = 0) as

r (z) = c

S0 H0

∫ 1+z

1

dx√
�� + �0x3

. (17.4)

Example 17.1.1 Let us reduce (17.3) to (17.4) for the case k = 0. From

Equation (15.92) we get for k = 0

Ṡ2 = 1

3
λc2 S2 + 8πGρ0 S3

0

3S
.

Therefore

S2 Ṡ2 = 1

3
λc2 S4 + 8πG

3
ρ0 S3

0 S.

Using the definitions (15.40) and (15.96), we get

ρ0 = �0
3

8πG

(
Ṡ2

S2

)
0

, �� = λc2

3

(
Ṡ2

S2

)−1

0

.

Writing H0 = [Ṡ/S]0, we replace λ and ρ in our equation by �� and �0,

to get
Ṡ2 S2 = ��S4 H 2

0 + �0 H 2
0 S 3

0 S.

Using the relation S0/S = x we get

Ṡ2 S2 = �� H 2
0 S 4

0 x−4 + �0 H 2
0 S4

0 x−1.

Hence

c dS

SṠ
= − cS0 dx

x2
· 1

H0 S2
0

(
��x−4 + �0x−1

)−1/2

= − c

H0 S0

(
�� + �0x3

)−1/2
.

The r -integral therefore becomes

r (z) =
∫ 1+z

1

c dx

H0 S0

√
�� + �0x3

,

with the luminosity distance as

D(z) = r (z)S0(1 + z) = (1 + z)
c

H0

∫ 1+z

1

dx√
�� + �0x3

.

Now recall that the luminosity distance D = r S(t0)(1 + z) and we
can write down, in the first approximation, the following z–m relation:

m(z) = −2.5 log L + 5 log D + constant. (17.5)
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Fig. 17.3. The contours on
the �M −�� plot show the
probability of validity of a
model based on the
supernova data. It is argued
that the standard model is
consistent with the available
data, if not its best fit. (From
Perlmutter et al. 1999, Ap. J.,
517, 565.)

Of course, one has to correct this relation for the K correction and
for other possible effects mentioned before. L , as already pointed out,
contains a dispersion around the average standard-candle luminosity.
In fitting a best-fit curve through the data the dispersions in apparent
magnitudes have to be taken into consideration. Figure 17.3 shows how
well the various theoretical models match the observations. (Here �M

is the same as �0.)
Perlmutter et al. found that the simplest Friedmann model, namely

the flat Einstein–de Sitter model, does not give a statistically satisfactory
fit. The flat model, however, does fit well if a non-zero cosmological
constant is allowed. That is, consistently with (15.97), i.e.,

�� + �0 = 1,

the model with �0 = 0.28 gives the best fit. This implies that a non-zero
cosmological constant as high as ≈0.7 is needed. In other words, the
Universe has a negative q0 ≈ −0.6, if we use the relation (15.95). Thus
the Universe is accelerating.

Clearly, in view of the profound significance of such a finding,
careful follow-up is regularly being done. Several questions arise. How
sure are we that there is no evolution in supernovae that would spoil
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their standard-candle interpretation? Some four or five supernovae in
the data have to be left out of the curve-fitting exercise because they lie
far off from the best-fit curve: why? Could some other explanation rather
than the cosmological constant account for the extra dimming found in
the supernovae? The possible effect of dust in standard cosmology has
also been invoked by some. They argue that the dust causes the extra
dimming that is observed. We will discuss the role of intergalactic dust
in the context of the quasi-steady-state cosmology when we return to this
test in the final chapter. There we will also discuss how this test plays
a complementary role in the parameter space in relation to the cosmic
microwave background.

17.2 Number counts of extragalactic objects

The basic idea behind these tests is to find out whether the number
counts reveal the non-Euclidean nature of the spacetime geometry of the
Universe assumed by most models. We illustrate with a simple example
from radio astronomy. Suppose we have a class of radio sources that are
(1) uniformly distributed in space and (2) have the same luminosity L .
If we further assume that (3) the Universe is of Minkowski type, that is,
with Euclidean spatial geometry, the number of sources up to a given
distance R will go as

N ∝ R3, (17.6)

while the flux density from the faintest of the sources up to distance R
goes as

S ∝ R−2. (17.7)

By eliminating R between these relations, we get

N 2S3 = constant, that is
D log N

d log S = −1.5. (17.8)

Thus (17.8) tells us how N andS are related under our three assumptions
(1), (2) and (3). Under these assumptions N measures the volume and
S−1/2 the radius of a spherical region centred on the observer, and (17.8)
is simply the volume–radius relation in Euclidean geometry.

Given the Robertson–Walker models, we can work out the corre-
sponding relations in non-Euclidean geometries. It is therefore possible,
in principle, to test whether the observed relation agrees with one of
the various cosmological models. Unfortunately, as with the z–m test,
various uncertainties prevent us from drawing a clear-cut conclusion, as
we shall see with the counts of galaxies and radio sources below.
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17.2.1 Counts of galaxies

In 1936 Hubble attempted number counts of galaxies in order to dis-
tinguish between model universes. However, he had to abandon the test
because the number of galaxies to be counted is very large, and unless
one goes fairly deep in space one cannot detect any significant depar-
tures from Euclidean geometry. However, there is one difference from
the formula (17.8). Since the optical astronomer measures fluxes in mag-
nitudes, the corresponding relation describing the number N of galaxies
brighter than apparent magnitude m becomes

dlog N

dm
= 0.6. (17.9)

Any effect of non-Euclidean geometry will show up as a deviation
from this straight-line relation, but these differences become noticeable
only at redshifts as high as 0.5, say. By then one needs to identify and
count millions of galaxies, even in a small sector of the sky. Although
Hubble did not succeed, his programme was revived in recent years by
a number of workers, who now have at their disposal many electronic
and solid-state devices to facilitate galaxy counts to very faint magni-
tudes (m ∼ 24). For example, in 1979 J. A. Tyson and J. F. Jarvis first
used techniques of automated detection and classification of galaxies
on plates. Their main problem at faint magnitudes was to be able to
distinguish stars from galaxies.

Even though one may find ways round these practical problems, the
outcomes of such counts are hard to interpret as deviations caused by
geometry. Rather, evolutionary effects and inhomogeneities of sample
galaxy populations chosen for counting dominate the observations.

17.2.2 Counts of radio sources

In comparison with galaxy counts, counts of radio sources have the
advantage that the latter are not as numerous as galaxies. For this reason,
after Hubble’s galaxy-count programme had come to nothing and as radio
astronomy became established during the 1950s, it was felt that the time
was ripe to have a go at the radio-source-count test. Radio astronomers
also felt that strong radio sources could be seen at much further distances
than galaxies, and hence they would provide more stringent tests on the
large-scale geometry of the Universe. Also they are much rarer than
galaxies, so there are not many of them to count.

M. Ryle at Cambridge, B. Mills at Sydney and J. Bolton at Caltech
did pioneering work on the source-count programme. Since the radio
astronomer measures S over a specified bandwidth, he tends to plot
log N against log S, where S is the flux density, the flux S received
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over a frequency band divided by the bandwidth. The usual unit for
S is the jansky (Jy) (named after Karl G. Jansky, who did pioneering
work in radio astronomy in the 1930s), which equals 10−26 W m−2 Hz−1.
Similarly, the power of the radio source is defined as luminosity over
a unit frequency band per unit solid angle and is expressed in units of
watts per hertz per steradian (W Hz−1 Sr−1).

The early source counts led to considerable controversy and a lot
of discussions, largely because the problem of interpreting the observed
source counts was oversimplified. Several factors intervene to make a
simple conclusion elusive. Some of them are as follows.

1. Counts are affected by local large-scale inhomogeneities of the matter distri-

bution. For example, a local void near us would make the log N–log S curve

steeper than Euclidean.

2. There could be different types of sources, all mixed up in the survey. For

example, quasars and radio galaxies mixed together would give misleading

answers. These populations need to be counted separately.

3. Evolution in number density or luminosity of the source population will

easily mask any geometrical effect that is being looked for.

4. The luminosity function needs to be known before the source count can

be reliably made. This last point is important since, unlike the optical

astronomer, the radio astronomer cannot measure the redshift of the radio

source and so relies on the flux density to estimate its distance.

The surveys today are much more sophisticated and accurate than
the early pioneering radio surveys of 1955–65. (Figure 17.4 shows an
example.) But they have also brought the realization that distinguishing
between different geometries in this way is not possible.

17.3 The variation of angular size with distance
This test was briefly discussed in Chapter 15, where we saw that the
angular size of an object of fixed projected linear size does not steadily
decrease with its spatial distance from us. Figure 15.7 showed how the
angular size changes with the redshift of the object in various Friedmann
models. In 1958 F. Hoyle [58] first suggested that this property of non-
Euclidean geometries could in principle be tested by radio-astronomical
observations.

Early attempts to look for this effect in galaxies at different redshifts
failed since it was not possible in the 1960s to carry out measurements
of angular sizes of galaxies so far away. After Hoyle’s proposal, several
radio astronomers took up the challenge. The typical radio source is a
linear structure and it is not so difficult to measure the angle subtended by
it. In the radio case, however, obtaining redshifts directly is not possible:
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Fig. 17.4. Two curves of source counts, one at 0.4 GHz and the other at 1.4 GHz.
�N are the numbers in a flux-density range (S, S + �S) while �N0 are the num-
bers in the same flux-density range in a static Euclidean spacetime. Notice that
the counts go down to millijansky (top curve) and microjansky (bottom curve),
respectively, compared with the early surveys which reached down to a few jan-
sky. It is, however, not possible to relate these curves to a specific spacetime
geometry.

one must optically identify the source and then measure the redshift of
the optical counterpart. After several studies in the radio no clear signal
emerged since there were other, more dominant, effects whose presence
would be significant. These effects included (1) a projection effect while
measuring the angle subtended by a linear structure at the observer;
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(2) dispersion in linear size, i.e., there is no standard yardstick to refer
to; and (3) the ubiquitous possibility of evolution that would introduce
z-dependent factors into the answer.

To eliminate or at least to minimize the evolutionary effect of the
intergalactic medium, Kellermann in 1993 suggested that the test be
applied to the very tiny inner components of quasars which are seen
through very-long-baseline interferometry. His preliminary studies gave
a result in broad agreement with the Einstein–de Sitter model. However,
a more thorough analysis of a sample of 256 ultracompact sources with
redshifts in the range 0.5 to 3.8 by J. C. Jackson and Marina Dodgson
showed that this model is in fact ruled out and that, for better fits, one
needs to invoke the cosmological constant. Figure 17.5 shows the θ–z
curves for three types of models fitted by them to the data. The points
shown represent median values of data divided into 16 bins.

To sum up, the θ–z test, to begin with, looked a simple and ele-
gant way of checking on spacetime geometry, but observational realities
turned out, once again, to be frustrating to the theorist!

17.4 The age of the Universe
The formulae in Chapter 15 give t0 as the age of the Universe accord-
ing to the various Friedmann models. These formulae depend on two
parameters, H0 and q0 (or �0), both of which have been discussed before.
Additionally we have the choice of including the cosmological constant.
We are now in a position to take a look at the question of whether the
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Friedmann age estimates are consistent with the various astrophysical
estimates of the age of the universe. Figure 15.12, reproduced here as
Figure 17.6, gives the range of values of the ages of the Friedmann mod-
els for various values of these parameters, for purposes of comparison.

At present there are two ways of estimating the ages of galaxies,
both of which have been applied to our Galaxy. A primary requirement
of consistency is, of course, that the age of the Universe in a Friedmann
model must exceed the age of any object in it.

17.4.1 Stellar evolution

This method, applied to globular clusters in our Galaxy, is based on the
principle that stars become redder and brighter when they leave the main
sequence to become red giants. Since the red giant phase in the star’s life
lasts a comparatively short time, say up to about 10% of the time the star
spends on the main sequence, the turning point from the main sequence
to the giant branch provides the cluster age to within 10% uncertainty.

Let the cluster age, the time when the stars turn off from the main
sequence, be denoted by tc × 109 years, and let Y and Z be the helium
and metal abundances in the star at this stage. The calculations of stellar
evolution then show that

log tc = 1.035 + 2.085(0.3 − Y ) − 0.03(log Z + 3). (17.10)
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Thus the age depends critically on the helium abundance Y . Y can be
estimated from a comparison of the time a star spends on the horizontal
branch with the time it spends on the red giant branch. If this ratio is R,
then calculations show that

Y = 0.3 − 0.39 log
( f

R

)
, (17.11)

where f = 2 if the stellar model takes account of semiconvection and
certain other effects, whereas f = 1 if these effects are not taken into
account. R can be estimated from the observed ratio of horizontal-branch
stars and red giant stars in the cluster.

Cluster ages deduced by this method fall in the range from ∼13 ×
109 to ∼18 × 109 years.

17.4.2 Nuclear cosmochronology

In 1960 F. Hoyle and W. A. Fowler first demonstrated how the relative
abundances of radioactive nuclei of long lifetimes can lead to estimates
of the age of our Galaxy. The method had already been used for esti-
mating the age of the Solar System. For example, current observations
of the abundance ratio 87Sr/86Sr plotted against 87Rb/86Sr in various
Solar-System materials (such as meteorites) give its age accurately as
tS � 4.54 × 109 years.

As illustrated in Figure 17.7, the method of nuclear cosmochronol-
ogy attempts to estimate the time elapsed before the Solar System was
formed. According to this method, we start our nuclear clock at t = 0
with the birth of the Galaxy. The stars evolve and the more massive ones
become supernovae, which manufacture long-lived radioactive nuclei
in the so-called r-process (the rapid absorption of neutrons by heavy
nuclei). The rate at which this process goes on is denoted by a function

∆T + ∆T +

Ts
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Fig. 17.7. Three time spans
need to be estimated in order
to estimate the age of the
Galaxy. First we need the time
T spent in the r-process to
manufacture long-lived
radioactive nuclei. Then one
needs the isolation time �,
which can be estimated
(together with T ) from data
on abundances of radioactive
isotopes. Finally ts is estimated
from radioactivity data of
Solar-System material.
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p(t), which declines to negligible value at t = T . Between this epoch
and the formation of the Solar System there occurs a short time gap �,
known as the isolation time, during which we may ignore nucleosynthe-
sis, in particular the r-process. Thus the total nuclear age of the Galaxy is

tG = T + � + tS. (17.12)

By techniques using data on radioactive isotopes and the observed
abundances of certain long-lived nuclei, one can estimate T and �.

The nuclear age so estimated lies in the range between 6 and
20 billion years, the width of this range indicating the span of
uncertainties in the various quantities used for determining the various
time intervals.

It is clear nevertheless, when these age estimates and the estimates
from globular clusters are compared with those of Figure 17.6, that mod-
els with h0 = 1 and �0 ≥ 1 will find it very difficult to accommodate
the above astrophysical estimates of the age of our Galaxy. In particular,
the original inflationary model without λ is ruled out because it predicts
�0 = 1 unequivocally. One needs the cosmological constant.

To make the problem easier for the conventional point of view,
attempts are being made to see whether the stellar and radioactive ages
can be brought down significantly. For example, if significant mass
loss occurs during the main-sequence stage of stellar evolution then
the time spent by the star on the main sequence is reduced. (For it
started with higher mass and evolved faster.) By arguing in this way
it may be possible to reduce the ages of globular clusters to values as
low as (7–10) × 109 years. Likewise W. A. Fowler and C. C. Meisl have
recalculated the nuclear age of the Galaxy using a time-dependent model
for nucleosynthesis in which an early ‘spike’ is followed by a uniform
rate of synthesis. They claim that the age then comes down to 11 ±
1.6 (1σ ) billion years. However, these efforts seem contrived at best.

Observationally also, M. Feast et al., working with the Hipparcos
data on stellar parallaxes, came up with a likely way of reducing stellar
ages. They argued that because of these revised measurements there
have been systematic increases in the revised stellar distances, so that
the stellar luminosities are increased and the evolutionary time scales
reduced. This could certainly help in reducing the gap between stellar
and cosmological ages, but it is doubtful that the discrepancy can be
completely eliminated in this way.

For these reasons, the resurrection of the cosmological constant has
helped the big-bang cosmology. For, as we saw in Chapter 15, the λ-term
can be suitably chosen to make the age of the Universe as long as we
please. Figure 17.6, for example, shows how the age of the flat Friedmann
model increases as the magnitude of the cosmological constant (�� as
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defined in Chapter 15) is increased. However, the introduction of this
constant increases the cosmological distances and thereby increases the
probability of a distant light source being gravitationally lensed. On the
basis of the frequency of lensed objects, upper limits have been placed on
the dimensionless parameter ��: it is generally agreed that �� cannot
much exceed 0.75.

17.5 Abundances of light nuclei
It is generally recognized that nuclei with relative atomic masses A ≥ 12
are synthesized in stars through various processes discussed in theories
of stellar evolution. The nuclei 6Li, 9Be, 10B and possibly 11B could be
produced in galactic cosmic rays by the break-up of heavy nuclei as they
travel through the interstellar gas. It is the lighter nuclei, in particular
2H, 3He, 4He and 7Li, that appear to pose difficulties of production in
stars in the amounts observed. Further, their abundances are such that
they could have been produced in the big-bang nucleosynthesis. We will
discuss here briefly the data on 4He and 2H, and what constraints they
place on standard cosmology.

17.5.1 4He

The observed helium abundances (always denoted by mass fraction Y )
in the Universe are quoted as lying in the broad range 0.13 ≤ Y ≤ 0.34.
The scatter is wide because of the uncertainities of various observational
estimates. Further, the estimate of primordial helium in the Sun at the
time the Solar System formed ∼4.54 × 109 years ago depends on the
solar model and hence cannot be uniquely fixed. M. Peimbert, S. Torres
Peimbert and J. F. Rayo have suggested that the break-down of Y at any
location is as follows:

Y = Y0 + �Y,

Y0 = 0.23 ± 0.02, (17.13)

�Y ∼= (2.5 ± 0.5) × Z ,

where Y0 is the primordial helium abundance, �Y the stellar helium
abundance and Z the abundance of heavy elements made by stars. Since
Z ≤ 0.02, �Y ≤ 0.06.

There are occasional reports of low values of helium abundance and
these need to be probed more deeply. For helium, once produced, is dif-
ficult to destroy. In this sense, the theoretical primordial value of Y men-
tioned in Chapter 16 is expected to be the lower bound of Y found today.

We note that in the primordial picture Y0 is relatively insensitive to
h0 and �0. However, the introduction of new light leptons would push
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up the neutron/proton ratio and hence the value of Y0. The following
formula due to R. V. Wagoner summarizes this result for the fraction η

defined in (16.51) exceeding ∼10−5:

Y0 = 0.333 + 0.0195 log η + 0.380 log ξ. (17.14)

Here the fraction ξ = 1 if no new particles except those considered in
Chapter 16 are assumed to be present in the early Universe. In terms
of our notation of Chapter 16, this implies g = 9. If there are more
particles, g → g + �g, where �g = �gb + (7/8)�gf , and

ξ 2 = 1 + �g

g
. (17.15)

For Y0 ≤ 0.25 and �0 = 0.01, only one new neutrino is allowed, the
so-called τ-neutrino. If, however, Y0 were as high as 0.28, up to four
new leptons would be permitted by this constraint, whereas a value as
low as 0.21 would land the standard big-bang model in real trouble. The
smallest value of Y0 allowed by the standard model is close to 0.236.
Results from the accelerator experiments based on measuring the decay
width of the Z0 boson suggest that the number of neutrino species is
3.01 ± 0.10. Thus there is a broad consistency between cosmology and
particle physics.

Observations of Y0 are therefore of great importance and they con-
tinue to be reported, as observers sharpen their spectroscopic diagnostics.
These estimates may be seen as indicative only in placing constraints on
the parameters of the standard cosmology.

17.5.2 2H

The deuterium abundance, which we will denote here by X (2H), was
first measured in 1973, mainly from the Lyman-series absorption lines
in the ultraviolet spectra of the bright stars observed with the Coperni-
cus satellite. There have been several measurements of this important
fraction. It is found that generally

9 × 10−6 ≤ X (2H) ≤ 3.5 × 10−5.

Although a mean interstellar value of X (2H) � 2 × 10−5 is often quoted,
there is considerable variation in its value from cloud to cloud. It is not
clear whether these variations are due to partial destruction of primordial
deuterium through various processes. It has to be destruction, since so
far no satisfactory stellar scenario for production of deuterium is known.
Thus the primordial value would correspond to the upper end of the range
of observations. At least we expect it to exceed ∼2 × 10−5. (Contrast this
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situation with that for 4He, for which there is no destruction mechanism
but processes of production exist in stars.)

Referring back to Figure 16.3, we see that a primordial abundance
X (2H) ≥ 2 × 10−5 implies that the baryonic density at present cannot
exceed 4 × 10−31 g cm−3, which in turn sets an upper limit on the present
baryon-density parameter (�B)0:

h2
0(�B)0 ≤ 0.02. (17.16)

It is interesting to note that in 1996, from measurements of deuterium
abundance in clouds around a high-redshift quasar, Tytler, Fan and Burles
placed limits on the baryon-density parameter:

h2
0(�B)0 ≈ 0.024 ± 0.006.

Thus, if matter in the Universe is predominantly made of baryons,
the Universe must be open. However, in modern thinking influenced by
inflation the condition � = 1 must be satisfied. So one invokes non-
baryonic dark matter and dark energy (a euphemism for the λ-term). If
all dark matter were baryonic, say distributed as black holes or burnt-
out cores of stars or brown dwarfs, etc., the currently favoured cos-
mological model fails, as mentioned in the concluding section of this
chapter.

There are, however, fine tunings involved here. For the restriction
on baryon density implies a relatively tight relation between density and
temperature, i.e., the constant of proportionality in the relation ρB ∝ T 3

in the relation (16.52) has to be correctly chosen for the model to give the
right answer. One may therefore question whether this can be claimed
as a deductive success of the big-bang cosmology.

17.6 The microwave background radiation
Measurements of the microwave background radiation (MBR) occupy
the centre stage of observational cosmology today. As mentioned in
Chapter 16, following the finding of the radiation background by Penzias
and Wilson, the background has been assumed to be a relic of the early
Universe. Following this interpretation, it has been probed by various
teams of observers to obtain its spectrum, polarization, anisotropy and
angular power spectrum. These observational details and the subtleties
of their interpretation within the framework of a ‘standard’ model of
the Universe are not appropriate in a text on general relativity. We will
therefore only briefly summarize some relevant studies.
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microwave background
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17.6.1 The spectrum

To check the true blackbody character of the radiation, it is necessary to
have detectors above the Earth’s atmosphere, since ground-based mea-
surements do not reach the peak wavelengths of the expected blackbody
curve due to atmospheric absorption. There were several early attempts
using balloons and rockets. Some of these reported departures from
the Planckian spectrum later turned out to be false alarms. The most
accurate and exhaustive study was carried out in 1990 by the satellite
COBE.

This satellite was launched in 1989 and obtained a beautiful
spectrum as shown in Figure 17.8. See Reference [68]. The COBE
measurements gave a very precise Planckian spectrum with a blackbody
temperature of

T0 = 2.735 ± 0.06 K. (17.17)

The overall sensitivity and accuracy of the experiment made it clear that
some of the earlier claims of significant departures from the Planckian
spectrum at high frequencies were erroneous. Indeed, even laboratory
experiments are not known to produce a Planckian spectrum of this
level of accuracy.
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17.6.2 The angular power spectrum

When we look at the distribution of a physical quantity across the celes-
tial sphere, its anisotropies can be best described with the help of spher-
ical harmonics. The physical quantity describing the anisotrophy of the
MBR is its temperature T (θ, φ), written as a function of two spherical
polar coordinates (such as declination and right ascension). We may
accordingly write

�T (θ, φ)

T
=

[ ∞∑
l=1

m=l∑
m=−l

almYlm(θ, φ)

]
. (17.18)

The sum over l begins with 1 instead of zero, for the zeroth perturbation
is isotropic over the whole sky, and can be absorbed into T . The l = 1
term is the so-called dipole-anisotropy term, which, as we shall see,
arises from the motion of the Earth relative to the rest frame of the
MBR. Henceforth we will not include this term also in the above series.
The next, l = 2, mode is the quadrupole mode.

The angular power spectrum is specified by quantities Cl defined by

Cl ≡ 〈|alm|2〉, (17.19)

where the averaging is with respect to all realizations of the sky and
summed over all m. Thus each Cl tells us the relative strength of the lth
harmonic in the overall distribution.

In general we will be interested in looking at �T/T over a certain
angular scale ϑ . Thus, if we take two directions denoted by unit vectors
e1 and e2 enclosing an angle ϑ between them, we get

e1· e2 = cos ϑ. (17.20)

Now we define the autocovariance function which tells us how
the temperature fluctuations compare over directions separated by the
angle ϑ :

C(ϑ) =
〈
�T (e1)

T
,

�T (e2)

T

〉
, (17.21)

which, for stationary fluctuations, can be expressed in the form

C(ϑ) = 1

4π

∞∑
l=2

(2l + 1)Cl Pl (cos ϑ). (17.22)

Suppose that, from observations of a single sky, we have obtained
the estimate of the autocovariance function as C(ϑ):

Ĉ(ϑ) = 1

4π

∞∑
l=2

|âlm|2 Pl (cos ϑ), (17.23)
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Fig. 17.9. The COBE map of
small-scale anisotropy of the
cosmic microwave
background radiation.

where the âlm are determined from a single observation of the sky. In
this case one needs to estimate the cosmic variance of the quantity C(ϑ).
This can be shown to be

〈|Ĉ(ϑ) − C(ϑ)|2〉 =
( 1

4π

)2 ∞∑
l=2

(2l + 1)C2
l P2

l (cos ϑ). (17.24)

The first evidence of small-scale anisotropy came with the COBE
satellite in 1992. (See Reference [74].) The COBE map of the sky is
shown in Figure 17.9.

Later a more detailed angular power spectrum along the above lines
was obtained by the Wilkinson Microwave Anisotropy Probe (WMAP)
satellite. A simplified WMAP power spectrum is shown in Figure 17.10.

In practice the details are considerably intricate when one attempts
to extract the signal from the actual sky data. We will not go into
those details here. We point out, however, that the Legendre polynomials

Fig. 17.10. The power
spectrum of anisotropies of
the radiation background.
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Pl (cos ϑ) contain the following information: the typical angular scale
of anisotropy corresponding to the index l is of the order of 180◦/(πl).

The value of these measurements lies in constraining the theories
of structure formation and through them the cosmological parameters.
It is too early to say what the final picture is going to be like. We will
content ourselves with listing a few possible causes of anisotropies of
the MBR so that their signals may be looked for in such measurements.
The smallness of angles implies that we are looking at higher harmonics
l in the range ∼10 to ∼104.

The Sachs–Wolfe effect measures the metric fluctuations near the
last-scattering surface. For example, if there is inhomogeneity of matter
(clumping/voids) in a given region, this would lead to fluctuation of gik

from the homogeneous Robertson–Walker form. In Newtonian terms we
may argue that the photons making up the radiation background come
out of different potential (ϕ) wells, and this would produce a change of
energy, and hence of T , given by

�T

T

∣∣∣
energy

= δϕ

c2
. (17.25)

In addition to this there is time dilatation, so that the photons emerging
from a potential well are delayed in relation to surface photons and
therefore encounter the scale factor S at a later epoch. For the Einstein–
de Sitter universe S ∝ t2/3 and the fluctuation in T is given by

�

T

∣∣∣
time delay

= −δS

S
= −2

3

δt

t
= −2

3

δϕ

c2
, (17.26)

because the gravitational redshift produces the above time delay. On
adding the two effects we get

�T

T
= �T

T

∣∣∣
energy

+ �T

T

∣∣∣
time delay

= 1

3

δϕ

c2
. (17.27)

In addition to this there can be tensor fluctuations, which will pro-
duce small contributions to �T/T . Since these fluctuations are associ-
ated with time-dependent changes in the metric tensor they are essen-
tially caused by gravitational waves. Some inflationary models predict
gravitational-wave-type fluctuations, which are potentially detectable.

The Sunyaev–Zel’dovich effect suggests that the photons of the MBR
entering a cluster with hot gas will be ‘kicked upstairs’ to higher (X-ray)
energy by the Thomson scattering from high-energy electrons. Thus, if
observed in the direction of the cluster, we should find a drop in the
intensity of radiation. A crude approximation modelling the cluster as
an isothermal sphere of radius Rc gives a fractional drop in the MBR
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temperature as

�T

T
= −4RcnekTeσT

mec2
, (17.28)

where ne is the electron density in the cluster, Te the electron temperature,
me the electron mass and σT the Thomson-scattering cross section. So
far there have been several claims of positive detection of this effect,
in clusters ranging up to redshifts �2. This not only shows that the
MBR extends that far, but also, by giving an estimate of Rc, enables a
determination of Hubble’s constant. The values of H0 determined in this
way are of the order of ≤40 km s−1 Mpc−1, i.e., much lower than their
standard measurements.

Clearly this effect, though not directly linked with the formation of
large-scale structure, is nevertheless a useful tool for cosmologists.

Sakharov oscillations constitute another measurable effect of MBR
anisotropy, through velocity effects from acoustic oscillations of pertur-
bations inside the horizon at the last scattering surface. These material
oscillations lead to fluctuations of photons and their temperature, both
being related to the wavelength of oscillations. So one may see periodic
behaviour, showing a peak in the Cl coefficients of the power spectrum
estimated at

lpeak ≈ 200�
− 1

2
0 . (17.29)

The announcement of the detection of such a peak (incongru-
ously called the ‘Doppler peak’, since oscillations of matter rather
than velocities are responsible for the effect) was made in 2000 by the
‘BOOMERANG’ (Balloon Observations Of Millimetric Extragalactic
Radiation ANd Geomagnetics) group of experimentalists. They found
a peak amplitude �T200 = (69 ± 8) µK at lpeak = (197 ± 6). The group
in fact measured the angular power spectrum at l =50 to 600.

Following COBE and WMAP, a more ambitious statellite-borne
experiment, viz. the PLANCK, has been in preparation. The ESA’s
Planck Surveyor will measure the radiation at frequencies in the range
30–100 GHz with the Low Frequency Instrument and in the range 100–
190 GHz with the High Frequency Instrument. The expected resolution
is ∼10 arcmin with sensitivity for �T/T ∼ 2 × 10−6.

The interest of cosmologists has now shifted towards understanding
more (smaller) peaks of the power-spectrum curve occurring at higher
frequencies, as well as the small degree of polarization found in the
radiation. The WMAP team was the first to report this feature and it is
hoped to measure it more accurately through later surveys.

To summarize, the MBR is being looked upon as a mine of informa-
tion by big-bang cosmologists. Since the MBR is regarded as a relic of
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the early Universe, at least dating back to the last-scattering surface, its
spectrum and anisotropies should contain valuable information about the
past developments of the Universe, much as the archaeological remains
at a site contain information about its past history.

17.7 Dark matter and dark energy

17.7.1 Spiral galaxies

rC S

v

Fig. 17.11. A disc-like
distribution as shown in
the figure fails to produce a
flat rotation curve as seen in
Figure 17.12(b).

The best handle on the mass contained in a typical spiral is given by its
rotation curve. Figure 17.11 illustrates the principle by means of a flat,
disc-shaped object representing a circular distribution of stars moving
round a common centre C. The rotation velocity v of a star S at a distance
r from C is related (in an equilibrium distribution) to the gravitational
force Fr acting on S towards the centre:

m
v2

r
= Fr . (17.30)

Therefore, if we have v as a function of r , we get Fr as a function
of r . Then, by Newton’s law of gravitation (which is applicable here
because the gravitational fields are weak), we can determine the mass
distribution. For example, if most of the mass were concentrated in the
nuclear region around C, we would have Fr ∝ r−2 and v ∝ r−1/2. The
light distribution across a spiral galaxy does suggest the above to be a
good approximation. However, in actual fact the rotation curve – the
function v(r ) – is flat for most galaxies. That is, after rising sharply
outside the nuclear region, v first declines slightly and then remains
constant, equal to v0 (say). Moreover, this relation extends well beyond
the visible disc. Figure 17.12 shows some examples.

The implication of this result is either that there is more mass in the
outer parts of the galaxy than is indicated by its luminosity distribution,
or that Newton’s laws of motion and the inverse-square law of gravitation
might not be valid over the Galactic distance range (a few kiloparsecs).
Taking the former (and less radical) view, astronomers have estimated
the masses of spirals. S. M. Faber and J. S. Gallagher have listed the
rotation velocities and masses contained within the Holmberg radius
(where the surface brightness drops to ∼26.5mpg arcsec−2) for 39 spi-
rals. Since the luminosities are also known, we can estimate the mean
value of η (the mass-to-light ratio in units of M
/L
) for this sample.
The result is

η ∼= (9 ± 1)h0. (17.31)
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M101

M31

M81

Fig. 17.12. The rotation
curve expected to be
produced by a galaxy (a) and
the observed ones (b), which
are flat over a long distance.

17.7.2 Clusters of galaxies

As early as 1933 F. Zwicky had pointed out what has now become well
known as the missing-mass problem in clusters. The problem can be
briefly stated as follows. If we estimate the mass of galaxies moving
in one another’s gravitational field in a cluster, then the virial theorem
gives the mass of the cluster in terms of the velocity dispersion and the
effective mean radius:

M = 〈v2〉 R

G
. (17.32)
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From observations of the velocity dispersion 〈v2〉1/2 we can therefore
estimate the total mass M in the cluster. This value comes out consid-
erably higher than that estimated on the basis of mass/light ratios ηG of
individual galaxies. That is, if we see n galaxies in the cluster and if the
total luminosity in the cluster is L , then the mass in the cluster is LηG.
Zwicky was the first to point out that

LηG � M. (17.33)

For the Coma cluster, for example, M/(LηG) ∼ 300 (see Exercise 7).
Typically one arrives at a cluster mass in the neighbourhood of

1015h−1
0 M
. Observations suggest that there are about 4000 large clus-

ters within a ‘local’ sphere of radius 600h−1
0 Mpc. This leads to a mean

density of matter in clusters of

ρ0cl ≈ 4 × 10−31h2
0 g cm−3. (17.34)

The density estimated for galaxies is of the same order, although not
all galaxies reside in clusters. The clusters have proportionately higher
mass than the galaxies contained in them because the M/L ratio for
them is as high as ∼300h0 × M
/L
, about ten times higher than that
for galaxies. This is why the clusters appear to require greater amounts
of dark matter for their virial equilibrium.

Observations of X-rays from clusters have indicated that the emis-
sion is through bremsstrahlung from hot gas, and the amount of baryonic
matter in the Coma cluster is not sufficient to account for the missing
mass estimated by application of the virial theorem. If the ratio of bary-
onic to total gravitating matter in the Coma is representative of the
universal value, then the total density parameter �0 is constrained by
the inequality

�0 ≤ 0.15h−1/2
0

1 + 0.55h3/2
0

. (17.35)

With this type of inequality, it is clear (i) that, if the deuterium in
the Universe were made primordially, then we cannot have the density
parameter attain the upper limit with baryons alone; and (ii) that the
Universe is open (k = −1), unless there is a large quantity of dark
matter residing outside the clusters. Already at this stage the known
baryonic content of the cluster mass (MB) as a fraction of the total cluster
mass (Mtot) threatens a contradiction with observations of deuterium
abundance. For example, for the Coma cluster, we have

MB

Mtot
≈ 0.01 + 0.05h−3/2

0 . (17.36)
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If this ratio were universal, it would lead to a conflict with the
deuterium-abundance constraint for �0 = 1. In fact, if h0 = 0.65, say,
then setting this ratio equal to 0.01h−2

0 , for consistency with the deu-
terium abundance, gives �0 ≈ 0.23. Thus, if the universal value of �0

were claimed to be unity (as originally required by inflation), then the
conclusion has to be that baryons are selectively located in clusters,
while the non-baryonic matter fills the intercluster space. This epicyclic
statement could be avoided, if one admits to a low-density Universe.

17.7.3 Dark energy

We have already referred to the Type Ia supernovae in high-redshift
galaxies providing a test of the Hubble relation. In section 17.1.1 we
found that Einstein’s cosmological constant λ had to be resurrected
in order to explain the observed redshift–magnitude relation. Later it
became apparent that this remedy was too simple and rather unsatisfac-
tory on two counts. Firstly, if one assumes (as is natural) that the value of
λ observed today is a relic of the inflationary era, then a major difficulty
arises. The inflation was driven by an effective λ, some 108 orders of
magnitude higher than the λ observed today. In short, we want today a
finely tuned relic λ of magnitude ∼10−108 of the primordial inflation-
ary λ. Secondly, a constant λ turns out to be inadequate to explain the
z–m curve for supernovae up to redshifts ∼1.6. One needs an epoch-
dependent λ, so an elaborate theoretical structure that goes well beyond
Einstein’s simple modification needs to be created.

Today this extra force is popularly known as dark energy and various
theoretical models for it are being investigated.

17.8 The standard model of cosmology
The studies during the first decade of the twenty-first century have con-
centrated largely on the microwave background and the observation of
redshifts and apparent magnitudes of Type Ia supernovae. These studies,
together with the constraints imposed by structure-formation scenarios,
the age of the Universe, the abundances of light nuclei, the density of
dark matter, etc., have led to the following breakdown of the matter–
energy contents of the most favoured or ‘standard’ model of cosmology:

�m = 0.04, �NBDM = 0.23, �� = 0.73. (17.37)

The fact that these parameters can be quoted with very small error
bars has led to the adjective ‘precision cosmology’ being applied to the
standard model. Also, because several constraints are satisfied by these
parameters, this approach is referred to as ‘concordance cosmology’.
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Complimentary though these adjectives are, the present confidence
of cosmologists in the standard model may turn out to be illusory. For, to
begin with, these ‘omega’ values are not determined directly. Neither are
the theoreticians able to identify the non-baryonic dark matter in terms of
any known particle. The dark-energy part also rests on highly speculative
physics, having moved away from the original cosmological constant of
Einstein. In fact, if we take the ‘last-scattering-surface’ interpretation
of the microwave background, we find that no event in the Universe,
prior to this epoch of redshift ∼1000, could be directly observed. Thus
we have to rely on indirect evidence in the form of relics of those early
epochs – and interpretation of relics can very often be controversial.
Certainly it is not unique.

Likewise, the high-energy physics on which the properties of the
early Universe rest has not been tested beyond energies of the order of
∼1000 GeV. Thus there is a big gap between what has been tested and
verified and what is uncritically assumed, the latter being twelve orders
of magnitude in energy above the former. A key feature of the standard
model, inflation, also rests in the speculative era. As mentioned earlier,
the inflationary model has not yet been obtained as an exact solution of
the field equations with matched boundary conditions, like the Kerr and
Schwarzswchild solutions are. When stellar astrophysicists were faced
with the possibility of stars existing as very compact balls filled with
neutrons, the so-called neutron stars, they spent considerable research
effort trying to understand the state of matter at densities ∼1015g cm−3.
Big-bang cosmologists have not spent any part of their time worrying
about matter densities as high as ∼1050 g cm−3, that existed at the GUT
epoch.

These are some of the reasons why one needs to be cautious
about any conclusions drawn from such early epochs. Before modelling
the Universe in such extreme conditions, there is a need to examine
the theoretical foundations of relativity, to get a feel for the quantum
theory of gravity and to clarify the uncertainties existing in some of the
phenomena observed in extragalactic astronomy. In the following, final,
chapter we discuss briefly some of these frontier areas.

Exercises
1. Suppose the intergalactic medium produces an absorption cross section κ(λ)

per unit mass at wavelength λ. Show that the increase in apparent magnitude

of a galaxy of redshift z1 in the steady-state Universe due to this process is

given by

�m = 2.5 log10e · τ (z1, λ0),
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where λ0 is the wavelength of observation and

τ (z1, λ0) = cρ0

H

∫ z1

0

κ

(
λ0

1 + z

) dz

1 + z
,

where ρ0 is the density of absorbing material. (For the steady-state Universe

assume the de Sitter line element and a constant density of matter.)

2. If the luminosity of a galaxy seen at the epoch t is related to the present epoch

t0 by the formula

L(t) = L(t0)
( t0

t

)a

,

where a = constant, calculate the change in the apparent magnitude produced

by this effect for a galaxy of redshift z in the Einstein–de Sitter cosmology.

3. In a globular cluster the metal content Z ∼ 10−3 and the ratio of horizontal-

branch stars to red giants is 0.9. Show that in the f = 1 model the age of the

globular cluster is about 11.9 × 109 years, whereas in the f = 2 model it is

increased to around 2.0 × 1010 years.

4. Show that in a disc-shaped galaxy with surface density σ (r ) ∝ r−1 one gets

flat rotation curves

v2 = 2πGrσ (r ) = constant.

5. Suppose I (λ) ∝ λ2 in the range 2500 Å < λ < 5000 Å. A galaxy of redshift

0.5 is being observed in a wavelength band centred on 5000 Å. Another galaxy

of redshift 0.7 is also observed at 5000 Å. Show that the K -terms for the two

galaxies will differ by ∼0.41m .

6. A radio galaxy of redshift z = 0.1 has a spectral function ∝ν−1 and a lumi-

nosity of 1044 erg s−1 over the frequency range 150 MHz ≤ ν ≤ 1500 MHz. For

h0 = 1 show that the flux density of the galaxy is ∼350 Jy at 1000 MHz and

∼1750 Jy at 200 MHz. (Neglect any cosmological effects.)

7. In the Coma cluster of galaxies the observed velocity dispersion is ∼861

km s−1, while the radius of the cluster is ∼4.6h−1
0 Mpc. Show that the cluster

mass given by the virial theorem is ∼1.5 × 1015h−1
0 M
. The total luminosity

of the cluster is estimated at ∼7.5 × 1012h−2
0 L
. Show that the mass/light-ratio

parameter η for the cluster is ∼300h0.

8. Let f (L)dL denote the number of radio sources per unit volume in the

luminosity range (L , L + dL). Suppose that for small redshifts the plot of log z

against log L follows a straight line of slope 1/2. Also assume that the number

of points in equal intervals of log z is found to be constant. Using Euclidean

geometry with distance ∝ z, deduce from these observations that f (L) ∝ L−2.5.

The survey is limited to sources with flux density exceeding S0.

9. The nucleus 87Rb decays to 87Sr with a half-life of τ = 4.7 × 1010 years. Let

X (t) and Y (t) denote the numbers of these nuclei in a meteorite at any time
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t , so that the quantity X (t) + Y (t) is conserved. Let t0 denote the epoch when

the Solar System was formed. Show that a plot of relative abundances X (t)/Z

against Y (t)/Z , where Z is the number of 86Sr nuclei (which remain unchanged),

leads to a straight line whose slope is given by

exp(λt0) − 1,

where λ = τ−1 ln 2.

10. The ratio of occupied levels for J = 1 and J = 0 states for the CN molecule

in the star ζ-Ophiuchi is 0.55 ± 0.05 and in the star ζ-Persei it is 0.48 ± 0.15.

The energy difference between the two levels is equal to kT, T = 5.47 K and the

occupation weights are g1/g0 = 3. Deduce that the temperatures of the incident

radiation lie in the respective ranges 3.22 ± 0.15 K and 3.00 ± 0.6 K.

11. Suppose nuclear physics tells us that the age of a galaxy of redshift z = 0.5

is 1010 years. Use this information to set a limit on a function of H0 and q0. If

H−1
0 = 1.8 × 1010 years, is q0 = 1 possible?

12. A radio source shows an angular separation of 1′ of arc from a galaxy of

redshift z = 0.44. Using the Einstein–de Sitter cosmology, estimate the linear

separation of the radio source from the galaxy, assuming that source and galaxy

are at the same redshift. (Use H−1
0 = 1.8 × 1010 years.)

13. Let σ (r ) denote the surface mass density at a point P located at distance r

from the centre of a thin, disc-shaped galaxy. Show that the gravitational force

Fr at P is directed towards the centre of the galaxy and is given by

Fr = G

∫ ∞

0

σ (r x)x dx

∫ 2π

0

(1 − x cos θ )dθ

(1 − 2x cos θ + x2)3/2
.



Chapter 18

Beyond relativity

We have come to the end of our account of the theories of relativity:
special and general. While the former was briefly reviewed in the first
chapter, we spent 16 chapters presenting the general theory from scratch.
After preparing the background of vectors and tensors in the curved
spacetime, we introduced the notions of parallel propagation, covari-
ant differentiation, spacetime curvature and symmetries of motion. We
then introduced physics through the notions of the action principle and
energy-momentum tensors.

This was the appropriate stage to introduce the basics of gen-
eral relativity: the principle of equivalence, Einstein’s field equations
and their Newtonian limit. Following these notions, we introduced the
Schwarzschild solution and the various tests of general relativity, largely
within the Solar System. We also discussed the budding field of grav-
itational radiation and the attempts to detect it coming from cosmic
sources. Our next topic was relativistic astrophysics, which deals with
compact massive objects such as supermassive stars and black holes. We
also briefly touched upon the very interesting topic of gravitational lens-
ing. This was followed by a discussion of some highlights of relativistic
cosmology.

This presentation is indicative of the scope of general relativity.
While it has created a niche for itself in theoretical physics as a remark-
able intellectual exercise, it has also justified its status as the most effec-
tive physical theory of gravitation by explaining and predicting several
gravitational phenomena. At the same time we need to look ahead and ask
whether the search for the ideal theory of gravitation ends here or whether
there is scope for further improvement in its framework. Certainly,

334
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Fig. 18.1. The Foucault
pendulum at the
Inter-University Centre for
Astronomy and Astrophysics
takes 75 hours to complete
one rotation round the vertical
axis. The suspended ball
slowly changes its direction of
oscillation as seen against the
background of the floral
design below.

despite the successes of general relativity, we are still a long way from
understanding gravity. When Newton was asked deep questions about
the nature of gravity he replied Non fingo hypotheses.1 Here we discuss
a few assorted ideas inspired by general relativity, or attempting to take
it further. They neither present the last word nor claim to be exhaustive.

18.1 Mach’s principle
There are two ways of measuring the Earth’s spin about its polar axis. By
observing the rising and setting of stars the astronomer can determine
the period of one revolution of the Earth around its axis: the period of
23h56m4s.1. The second method employs a Foucault pendulum whose
plane gradually rotates around a vertical axis as the pendulum swings
(see Figure 18.1). Knowing the latitude of the place of the pendulum,
it is possible to calculate the Earth’s spin period. The two methods give
the same answer.

At first sight this does not seem surprising. Since we are measuring
the same quantity, we should get the same answer regardless of the
method used. Closer examination, however, reveals why the issue is non-
trivial. The two methods are based on different assumptions. The first
method measures the Earth’s spin period against a background of distant
stars, whereas the second employs standard Newtonian mechanics in
a spinning frame of reference. In the latter case, we take note of how
Newton’s laws of motion are modified when their consequences are
measured in a frame of reference spinning relative to the ‘absolute
space’ in which these laws were assumed, by Newton, to hold.

1 I do not frame hypotheses.
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Thus, implicit in the assumption that equates the two methods is the
coincidence of absolute space with the background of distant stars. It
was Ernst Mach in the last century who pointed out that this coincidence
is non-trivial. He read something deeper in it, arguing that the postulate
of absolute space that allows one to write down the laws of motion
and arrive at the concept of inertia is somehow intimately related to the
background of distant parts of the Universe. This reasoning is known as
‘Mach’s principle’ and we will analyse it further.

When expressed in the framework of the absolute space, Newton’s
second law of motion takes the familar form

P = mf. (18.1)

This law states that a body of mass m subjected to an external force P
experiences an acceleration f. Let us denote by � the coordinate system
in which P and f are measured. This frame represents Newton’s absolute
space.

(a)

(b)

Fig. 18.2. A schematic
description of Newton’s
bucket experiment. The
stationary bucket (a) hanging
by a thread has the water
level in it flat (and horizontal).
However, if the bucket is
twisted round the thread and
let go, the twisted thread
unwinds and makes the bucket
spin. As the bucket spins
rapidly, the water level in it
becomes curved (b), rising
at the rim and dipping at the
centre. Newton argued that
this experiment demonstrated
rotation relative to absolute
space.

Newton was well aware that his second law has the simple form
(18.1) only with respect to � and those frames that are in uniform motion
relative to �. If we choose another frame �′ that has an acceleration a
relative to �, the law of motion measured in �′ becomes

P′ ≡ P − ma = mf ′. (18.2)

Although (18.2) outwardly looks the same as (18.1), with f ′ the
acceleration of the body in �′, something new has entered into the force
term. This is the term −ma, which has nothing to do with the external
force but depends solely on the mass m of the body and the acceleration
a of the reference frame relative to the absolute space. Realizing this
aspect of the additional force in (18.2), Newton termed it ‘inertial force’.
As this name implies, the additional force is proportional to the inertial
mass of the body. Newton discusses this force at length in his Principia,
citing the example of a rotating water-filled bucket (see Figure 18.2).

According to Mach, the Newtonian discussion was incomplete in
the sense that the existence of the absolute space was postulated arbi-
trarily and in an abstract manner with no reference to the distant stellar
background. Why does � have a special status in that it does not require
the inertial force? How can one physically identify � without recourse
to the second law of motion, which is based on it?

To Mach the answers to these questions were contained in the obser-
vation of distant parts of the Universe. It is the Universe that provides a
background reference frame that can be identified with Newton’s frame
�. Instead of saying that it is an accident that Earth’s rotation velocity
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relative to � agrees with that relative to the distant parts of the Uni-
verse, Mach took it as proof that the distant parts of the Universe must
somehow enter into the formulation of local laws of mechanics.

One way this could happen is by a direct connection between the
property of inertia and the existence of the universal background. To
see this point of view, imagine a single body in an otherwise empty
Universe. In the absence of any forces (18.1) becomes

mf = 0. (18.3)

What does this equation imply? Following Newton we would conclude
from (18.3) that f = 0, that is, the body moves with uniform velocity.
But we now no longer have a background against which to measure
velocities. Thus f = 0 has no operational significance. Rather, the lack
of any tangible background for measuring motion suggests that f should
be completely indeterminate. It is not difficult to see that such a result
follows naturally, provided that we come to the remarkable conclusion,
also possible from (18.3), that

m = 0. (18.4)

In other words, the measure of inertia depends on the existence of
the background in such a way that in the absence of the background the
measure vanishes! This aspect introduces a new feature into mechanics
not considered by Newton. The Newtonian view that inertia is a property
of matter has to be augmented to the statement that inertia is a property of
matter as well as of the background provided by the rest of the Universe.
This general idea can be identified with Mach’s principle.

Such a Machian viewpoint not only modifies local mechanics but
also introduces new elements into cosmology. For there is no basis
now for assuming that particle masses would necessarily stay fixed in
an evolving Universe. This is the reason for considering cosmological
models anew from the Machian viewpoint. Presented here are some
instances of how various physicists have given quantitative expression
to Mach’s principle and arrived at new cosmological models.

Although Einstein himself was initially impressed by Mach’s argu-
ments, he later came to discount them because they suggested action at
a distance. For a historical review of Mach’s principle see the collection
of articles edited by Barbour and Pfister [75].

Kurt Gödel demonstrated in 1949 that spinning universes in general
relativity do not subscribe to Mach’s principle. Gödel’s model had the
universe spinning so that the observer at rest in the local inertial frame of
such a universe would see the distant parts of the universe rotating. This
counter-example demonstrated that the basic argument on which Mach’s
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principle is formulated cannot itself be guaranteed by general relativ-
ity. Other such ‘anti-Machian’ solutions later emerged from relativistic
cosmology and it became clear that one has to go beyond relativity to
incorporate Mach’s principle.

We briefly recall the twin paradox of Chapter 1. If twins A and B
argue as to which of them is the inertial observer, we can now suggest a
practical way of resolving the argument. The one who remains unaccel-
erated relative to the frame provided by the distant parts of the universe
is the inertial observer.

18.2 The Brans–Dicke theory

There have been attempts by later scientists such as Sciama [76], Brans
and Dicke [77] and Hoyle and Narlikar [78, 79], which modified general
relativity and hence cosmology to give explicit quantitative expression
to Mach’s ideas. Of these we will refer to the Hoyle–Narlikar approach
in Section 18.4.1. The Brans–Dicke theory played a very interesting role
in offering alternative predictions of the Solar-System tests of gravity,
which prompted an upsurge of experimental techniques to make accurate
measurements for distinguishing between the predictions of this theory
and general relativity. The action principle of this theory is given by
replacing the Hilbert term in general relativity by

A = 1

16π

∫
V

(φR + ωφ−1φkφk)
√−g d4x .

The parameter ω distinguishes the Brans–Dicke theory from general
relativity, with the scalar field φ playing the role of G−1. By appropriate
scaling, one can show that this theory approaches general relativity as
ω → ∞. The Solar-System tests have placed a lower limit of the order
of ∼3000 on this parameter.

Nevertheless, the cosmological models emerging from the Brans–
Dicke theory can still be significantly different from standard cosmology
sufficiently early in the Universe. For example, the inflationary regime
can be different because of the additional terms in the action. The idea
seemed to solve some of the conceptual problems of the original infla-
tionary model but ran into trouble because the distortions it produced in
the cosmic microwave background were unacceptably high. Undeterred
by these setbacks, the inflation enthusiasts explored a variation on the
Brans–Dicke theme by adding higher-order couplings of the scalar field
with gravity, which led to the notion of ‘hyper-extended inflation’. (See
for example the paper by Mathiazhagan and Johri [80].) However, none
of these ideas seem to have received much following in later years.
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To summarize, considerations of the early and very early Universe
could possibly probe the differences between general relativity and the
Brans–Dicke theory further. Insofar as observations of relatively recent
epochs are concerned, however, because of the largeness of ω, for most
practical purposes the differences between the Brans–Dicke theory and
general relativity are insignificant.

18.3 Spacetime singularity and matter creation

When the Friedmann models were finally recognized as providing the
simplest models of the expanding Universe, one aspect of these models
was somewhat disturbing – their origin in a spacetime singularity. At
the beginning this was considered an anomaly; the choice of an excep-
tional symmetry of spacetime (the Weyl postulate and the cosmological
principle) was held responsible for the singularity. Thus, it was argued,
the introduction of anisotropy in the form of shear and spin in the Uni-
verse would remove the singularity. In this context, A. K. Raychaudhuri
obtained a simple but elegant result that was to have a far-reaching
effect on the issue of spacetime singularity [81]. Raychaudhuri showed,
with the help of an equation determining the evolution of a volume
element, that the introduction of spin goes towards removing the sin-
gularity, whereas shear has the opposite effect. The irony was that one
could obtain solutions with shear and no spin, but not with spin and no
shear. So a demonstration of the avoidance of singularity remained an
unattainable goal.

The Raychaudhuri equation arises in relativistic cosmology when we
look at the bundle of timelike geodesics defined by the Weyl postulate.
If ui is the unit tangent to the geodesic, we define the spin-vorticity
3-tensor for the cosmic fluid by ωµν = 1

2 (uµ;ν − uν;µ).
Writing the line element in the form

ds2 = dt2 + 2g0µ dt dxµ + gµν dxµ dxν, (18.5)

where the geodesics are specified by xµ = constant and t is the cosmic
time, the (0, 0) component of field equations in the case of dust of density
ρ then becomes

Q̈

Q
= 1

3
(2ω2 − 4πGρ − φ2), (18.6)

where Q6 = −g and

2ω2 = −gλµgστωλσ ωµτ ,

φ2 = 1

4
gµν ġνσ gσλ ġλµ − 1

3

(
∂

∂t
ln

√−g

)2

. (18.7)
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The φ term is identified with shear and it goes the opposite way (to
the spin term) through promoting singularity by helping the scale of the
cosmic volume, Q, approach zero. It vanishes when the expansion is
isotropic.

The Raychaudhuri equation can be stated in a slightly different form
as a focussing theorem. In this form it describes the effect of gravity
on a bundle of null geodesics spanning a finite cross section. Denoting
the cross section by A, we write the equation of the surface spanning
the geodesics as f = constant. Define the normal to the cross-sectional
surface by ki = ∂ f/∂xi . Figure 18.3 shows the geometry of the bundle.

A 0

ik

A

A

Fig. 18.3. The bundle of
geodesics focusses in the
future with its cross section A
decreasing to zero. This effect
was discussed in the context of
spacetime singularity by A. K.
Raychaudhuri.

By invoking the analogue of the hydrodynamic conservation law, we
deduce

kl A,l = [kl
;l ]A. (18.8)

Additionally we also have from the null geodesic condition

klki ;l = 0. (18.9)

Using a calculation similar to that which led to the geodetic deviation
equation in Chapter 5, we get the focussing equation as

1√
A

d2
√

A

dλ2
= 1

2
Rimki km − |σ |2, (18.10)

where

|σ |2 = 1

2
ki ;mki ;m − 1

4
[kn

;n]2. (18.11)

Equation (18.10) is similar to the Raychaudhuri equation with |σ |2
being the square of the magnitude of shear. With Einstein’s equations,
we can rewrite (18.10) as

1√
A

d2
√

A

dλ2
= −4πG

(
Tim − 1

2
gim T

)
ki km − |σ |2. (18.12)

For focussing of the bundle of rays we need A → 0, so the right-
hand side should be negative. This is helped by the shear term in the
above equation, just as Raychaudhuri had found. The first term on the
right-hand side of the focussing equation also has this property if

(
Tim − 1

2
gim T

)
ki km ≥ 0.

For dust we have Tim = ρui um and this condition is satisfied with
the left-hand side equalling ρ(ui ki )2. (Remember that ki is a null vector,
so gimki km = 0.) Thus the normal tendency of matter is to focus light
rays by gravity.
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The singularity theorems of Penrose and Hawking [82] use this basic
feature to state conditions that inevitably lead to a spacetime singularity.
The condition of the positivity of the Tik term in the equation above
plays a crucial role in general. We will not go into these details except
to highlight this work as a field deserving further research. In particular,
the positive-energy condition suggests that there may be non-singular
spacetimes if it is violated and there are negative energy fields. We will
now describe a line of thinking in which such fields are used to avoid
the initial (or any) singularity.

18.4 The quasi-steady-state cosmology
In the late 1940s, H. Bondi and T. Gold [83] and F. Hoyle [84] inde-
pendently proposed the steady-state cosmology as an alternative to the
standard cosmology. The cosmology envisaged the Universe as described
by the Robertson–Walker line element, with k = 0 and S(t) = exp(Ht),
where the Hubble constant H is strictly a constant. In fact the name
‘steady state’ implies that the spacetime has a timelike Killing vector,
and that physical conditions at any epoch t are the same. One con-
sequence of this requirement is that as the Universe expands there is
creation of matter to keep its density ρ constant, the rate of creation
per unit volume being 3Hρ. The cosmology thus has no singular epoch
and no hot past. Bondi and Gold believed that the entire dynamics and
physics of the Universe should follow from a single principle which they
enunciated as the perfect cosmological principle. This principle takes
the usual cosmological principle a stage further by additionally requiring
homogeneity of the Universe with time. For, the authors argued, without
such an invariance being guaranteed, one cannot be confident that the
laws of physics known today had the same form at all times past and
present. Without such a guarantee, one cannot interpret observations of
the distant Universe unambiguously. Bondi and Gold called this model
the steady-state model. Hoyle arrived at the same model by modifying
Einstein’s field equations by adding terms that allowed for creation of
matter. His approach had been more physical than philosophical and
dictated by the requirement to understand the origin of all the matter
observed in the Universe today.

In the 1950s and early 1960s, the steady-state cosmology provided a
stimulus to observers to stretch the limits of their observing technology
to test the predictions of this model and to distinguish it from the standard
cosmology. In the end most cosmological tests involving discrete source
populations turned out to be inconclusive, as it became clear that one
first needs to understand the various sources of observational errors as
well as the physical properties of the sources used for the tests before
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drawing unequivocal conclusions. Nevertheless, the steady-state theory
failed on two important counts, namely providing a setting for the origin
of light nuclei (especially deuterium and helium) and explaining the
origin of the microwave background.

The theory, which had been abandoned in the 1970s and 1980s,
was revived in a new form by F. Hoyle, G. Burbidge and J. V. Narlikar
in 1993 [85] and developed to some level of detail in a number of
papers. These details include the basic rationale and genesis of the idea,
its astrophysical and observational consequences, a formal theoretical
structure, cosmological models and a model for structure formation. (For
these details in one place, see Reference [86].) We briefly summarize
and assess this quasi-steady-state-cosmology (QSSC) model, since we
feel that, although it has not been studied in anything like the detail
one finds for the standard model, at present it is the only available
alternative to which the same observational and theoretical criteria for a
viable cosmology can be applied.

18.4.1 Broad features of the QSSC model

The theoretical structure of this cosmology and its relationship to obser-
vations are summarized below.

(1) The cosmology is based on the Machian theory of gravitation first
proposed by Hoyle and Narlikar in 1964 [78, 79]. The theory of Hoyle
and Narlikar starts with the premise that the inertial mass of any particle
is determined by the surrounding Universe. In field-theoretical language,
the inertia is a scalar field whose behaviour is determined by an action
principle. As shown later by Hoyle et al. [87], the theory permits broken
particle world lines, i.e., creation and destruction of matter. In the cos-
mological approximation of a well-filled Universe, the field equations
become.

Rik − 1
2 gik R + λgik = −8πG

c4
[Tik − f (Ci Ck − 1

4 gikClCl )], (18.13)

where C is the scalar field representing the inertial effect associated with
the creation of a new particle, and a consequence of Mach’s principle is
that the constants in these equations can be related to the fundamental
constants of microphysics and the large-scale features of the Universe.
Thus, restoring c for the sake of units, we have

G = 3�c

4πm2
P

, λ = − 3
(mP

N

)2

, f = 2

3
�c.

Here mP is the mass of the basic particle created and N the number of
such particles in the observable Universe. From the above it is easy to
identify mP with the Planck mass, which makes N of the order of 1060
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and λ of the order of 10−56 cm−2. Notice that its sign is negative, i.e.,
it represents an attractive rather than a repulsive force. The coupling
constant f is positive, thus requiring the C-field stress and energy
to act repulsively on matter and space because of the explicit minus
sign in the stress tensor. It is assumed that the creation of a particle of
mass mP is possible, provided that a ‘creation threshold’ is attained by
the ambient C-field, namely, ClCl = m2

P. At the time of creation the
momentum of the new particle is balanced by Ci . In such cases, we may
have situations with T ik

;k �= 0, although the divergence of the right-hand
side overall is zero.

(2) The cosmological models in this theory are driven by the cre-
ation process, and it is argued that the creation process does not occur
uniformly everywhere, but preferentially near massive objects that have
collapsed to something close to the state of a black hole. This is because
the gravitational field in the neighbourhood of such an object is high and
permits the local value of ClCl to rise high enough to reach the creation
threshold. The Planck particle so created is assumed to be unstable, how-
ever, and decays, within a time scale of the order of 10−43 s, into baryons,
leptons, pions, etc. along with the release of a substantial amount of
energy. The creation of matter is compensated for by the creation of the
C-field, and, as the strength of the field rises, its repulsive effect makes
the space expand rapidly (as in the inflationary scenario), thus causing
an explosive ejection of matter and energy. The origin and outpouring of
very high energy in quasars, active galactic nuclei, etc. are claimed by
the QSSC to be phenomena representing minicreation events like these.

In a typical minicreation event, the central object itself may break up
as its gravitational binding is loosened by the growth of the negatively
coupled C-field. Thus it may also happen that the central object may eject
a coherent piece along the line of least resistance. The QSSC authors
argue that some of the ‘anomalous redshift’ cases (see [88, 89]) can be
explained by invoking this phenomenon. What are these cases? Typically
in such a case one sees two objects, e.g. a quasar and a galaxy, say, very
close to each other but with very different redshifts. The probability of
their being projected close to each other by chance is very low. Are they
near neighbours? If so, their different redshifts violate Hubble’s law. Two
cases of such anomalous redshifts are shown in Figure 18.4.

(3) The cosmological solutions are driven by the minicreation events,
each of which produce local expansions of space. The averaged effect
of a large number of such events over a cosmological volume can be
approximated by a homogeneous and isotropic solution of the field
equations. As in the standard cosmology, the Robertson–Walker line
element can be used to describe such a spacetime. The work of Sachs
et al. [90] has shown that the generic solution for all three cases,
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(a) (b)

Fig. 18.4. Two typical cases
of anomalous redshifts. In
(a) we have two quasars of
redshifts 0.4 and 0.65 aligned
across an NGC galaxy of
redshift 0.002. The precise
alignment and close proximity
suggest ejection of quasars,
which are X-ray sources, by
the galaxy which also houses
an X-ray source. In (b) we
have a big galaxy, NGC 7603,
apparently connected by a
filament to a companion
galaxy. The redshifts of the
two galaxies are 0.029 and
0.056, respectively. In either
of cases (a) and (b), for
maintaining consistency with
Hubble’s law one has to
assume all these
configurations to be
projection effects with
probabilities as low as 10−4.

k = +1, 0,−1, has a long-term steady expansion interspersed with
short-term oscillations. For example, the scale factor for k = 0 is given
by

S(t) = exp(t/P)[1 + η cos τ (t)],

where 0 < η < 1, so that S oscillates between two finite values and
τ (t) is almost like t during most of the oscillatory cycle, differing from
it mostly during the stage when S is close to the minimum value. The
period of oscillation Q is small compared with P . The QSSC is therefore
characterized by the following parameters: P , Q, η and zmax, the max-
imum redshift seen by the present observer in the current cycle. Sachs
et al. [90] took P = 20Q, Q = 4.4 × 1010 years, η = 0.8 and zmax = 5
as an indicative set of values. The QSSC workers have argued that the
cosmology is by no means tightly constrained around these values by
the various cosmological tests. Figure 18.5 illustrates one such case.

(4) How is the cosmic microwave background (CMB) produced in
this model? The QSSC oscillations are finite, with the maximum redshift
observable in the present cycle at ∼5–6. Thus each cycle is matter-
dominated. The radiation background is, however, maintained from one
cycle to next. Thus, from the minimum scale phase of one cycle to
next, its energy density is expected to fall by a factor exp(−4Q/P).
This drop is made up by the thermalization of starlight produced during
the cycle. Thus, if ε is the energy density of starlight generated in a
cycle and umax is the energy density of the CMB at the start of a cycle,
then ε ∼= 4umax Q/P . If the cycle minimum occurred at redshift zmax,
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Fig. 18.5. The scale factor of
a typical model of the
quasi-steady-state cosmology.
See the text for details.

then the present CMB energy density would be Pε/[4Q(1 + zmax)4]. By
substituting the values of ε, P , zmax and Q we can estimate the present-
day energy density of the CMB and the result agrees well with the
observed value of ∼4 × 10−13 erg cm−3 corresponding to a temperature
∼2.7 K.

How is the starlight thermalized? Consider the following scenario.
The cooling of metallic vapours produces whisker-like particles of
lengths ∼0.5–1.0 mm, which convert optical radiation into millimetre-
wave radiation. Such whiskers typically form in the neighbourhood of
supernovae (which synthesize and eject metals), and are subsequently
pushed out of the galaxy through the pressure of shock waves. It can
be shown that a density of ∼10−35 g cm−3 of such whiskers close to the
minimum of the oscillatory phase would suffice for thermalization of
starlight.

While the thermalized radiation from previous cycles will be very
smoothly distributed, a tiny fraction (∼10−5) will reflect anisotropies on
the scales of rich clusters of galaxies in the present cycle. The angu-
lar scales for this anisotropy will be of the order of ∼1/100,−1/250
for clusters and superclusters, corresponding to l-values ∼100−200.
A recent comparison with the WMAP data shows an acceptable fit to
observations of the power spectrum of CMB fluctuations [91].

(5) In a recent paper Burbidge and Hoyle [92] argued that a case
may be made for all isotopes having been made in stars, including
the light ones generally assumed to be of primordial origin. They
showed that possible stellar scenarios exist for production of these
nuclei.

(6) The QSSC has been applied to the redshift–magnitude relation
obtained by using Type Ia supernovae. Narlikar et al. [93] have reexam-
ined the problem in the context of the QSSC for the data used for fitting
the standard models, with or without the cosmological constant. As we
have seen, the QSSC requires intergalactic dust in the form of metallic
whiskers. This whisker population acts to produce further absorption in
the light from distant galaxies and supernovae therein. Taking this effect
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into account, the QSSC model can be fitted to data by taking the dust
density as a free parameter. The optimized fit turns out to be quite sat-
isfactory. Also the optimum whisker density turns out to be in the right
range for thermalization of starlight into the microwave background.
Thus there is an overall consistency in the parameters used.

(7) Preliminary work on structure formation has shown that the pat-
tern of filaments and voids for clusters can be generated by minicreation
events. Assuming that creation of new galaxies takes place selectively
near highly dense regions, and that too at the maximum density phase
of a typical QSSC cycle, one can simulate the resulting distribution for
105–106 galaxies on a computer. It is observed that an initial random
distribution changes over into a supercluster–void distribution after a
few cycles. The two-point correlation function of the galaxies created
also tends to a power-law form with the index −1.8, as observed.
See Reference [86].

While the various physical and astrophysical aspects of the QSSC
have not been studied in anything like the depth to which the standard
cosmology has been probed, these preliminary studies suggest that the
cosmology, certainly as an alternative to the currently favoured option,
deserves more critical attention than it has so far received.

18.5 Quantum gravity

Experience in the rest of physics (except gravity) shows that the classical
equations of fields and particles break down at the microscopic level, to
be replaced by the notions of quantum theory. When does one make a
transition from the classical to the quantum version? A ‘rule of thumb’ is
to evaluate the action A over the characteristic 4-volume for the problem
and compare with �. If the ratio A/� is much larger than unity then the
problem can be adequately handled by classical physics. If the ratio
is comparable to unity then we need the quantum version to solve the
problem.

How does this prescription work for gravity? A look at the action
principle (8.7) shows that the limit sought above can be obtained by
equating the gravitational action

Ag = c3

16πG

∫
V

R
√−g d4x (18.14)

to Planck’s constant. For Ag 	 � we can trust our classical description
of spacetime geometry, whereas for Ag 
 � a quantum description of
cosmology is indispensable. But to evaluate Ag we need V , the 4-volume
of the spacetime manifold.
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In the big-bang model we take V as the 4-volume enclosed by the
particle horizon and bounded by the time span of the Universe. Thus at
any epoch t for k = 0, S ∝ t1/2, the particle horizon is defined by

r S = 2ct.

For S ∝ t1/2, R = 0 and so Ag = 0. However, this happens because
the trace of T i

k is zero in the early Universe. As an order of magnitude
estimate we may take R0

0 instead of R in the computation of Ag : R0
0

gives us an idea of how the geometrical part of the action changes with
time. For S ∝ t1/2, R0

0 = 3/4(c2t2). Thus up to the epoch t

Ag ∼ c4

16πG

∫ t

0

3

4c2t2
1

4π

3
(2ct1)3 dt1 = c5

4G
t2.

By equating Ag to � we get

t = 2tP = 2

√
G�

c5
∼= 10−43 s. (18.15)

This time span is called the Planck time. No classical discussion of
gravity can be pushed to time scales t < tP. We have already encountered
very short time scales of the order of 10−38 s in Chapter 16 when GUTs
operated. The above quantum-gravity time scale corresponds to an even
higher energy of E ∼1019 GeV. This energy, as seen from (18.15), is
simply ∼�/tP.

Thus the present discussions of GUTs and cosmology already take
us right up to the Planck epoch. Whether the Universe did indeed have
a spacetime singularity at t = 0 should be determined not by classical
general relativity but by an appropriate theory of quantum gravity.

There are several conceptual and operational problems on the way to
a quantum theory of gravity, if we are to look for a quantized version of
general relativity. To begin with, the non-linearity of relativity makes the
methods which work for standard ‘flat-space field theories’ inapplicable
here. Secondly, in relativity spacetime geometry and gravity are inextri-
cably mixed and so one is not sure what is to be quantized. Thirdly, in
flat-space quantizations, inclusion of the dynamical nature of geometry
is not required: here it is an essential feature of the problem.

It is not surprising therefore that the quantized version of general
relativity has not yet emerged. At present the goal of having a working
theory of quantum gravity seems far away. The different approaches that
have been tried in order to quantize gravity do not agree on the answer
to the following question: did the Universe have a singular epoch? A
simple approach based on conformal fluctuations suggests that, if we
include quantum fluctuations of homogeneous and isotropic universes,
then the spacetime singularity would ‘most probably’ be averted. The
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probability here is in the sense of quantum mechanics. An event is most
probable if the quantum probability of its not happening has measure
zero. The result can in fact be stated in a more general form proved by this
author, namely that, if one considers most general quantum conformal
fluctuations of a classical singular cosmological solution, then, most
probably, singularity is not present in these fluctuations [94].

18.5.1 Radiating black holes

The quantum theory of gravity being recognized as a long-term
project, work has been proceeding in the meantime on a simpler notion,
that of field-theory quantization in curved spacetime; and it is producing
some interesting (and unexpected) results. Here we present in brief the
original example of this approach applied to black-hole physics.

As the name ‘black hole’ implies, we do not expect any radiation to
come out of such an object. For a spherical object of mass M , the black-
hole condition is reached when its surface area equals 4π R2

s , where Rs,
the Schwarzschild radius, is given by

Rs = 2G M

c2
. (18.16)

No material particle or light signal emitted from R ≤ Rs can go into the
region R > Rs: at least, this is what classical general relativity tells us.

We saw in Chapter 13 that the behaviour of black holes is in many
ways analogous to thermodynamics. Thus the area of the horizon is like
entropy and surface gravity like temperature. Can this analogy be pushed
further, closer to becoming reality? If so, temperature implies radiation
and the black hole is expected to radiate. This seemed a very unlikely
conclusion given the physical nature of black holes.

Nevertheless, in 1974 Stephen Hawking [95] made the remarkable
suggestion that a black hole can radiate. Hawking’s calculation went
beyond classical physics: it considered what happens when any field (for
example, the electromagnetic field) is quantized in the spacetime con-
taining a black hole. As we have already seen, the quantum-mechanical
description of vacuum is much more involved than the classical descrip-
tion, which simply states that a vacuum is empty. According to quantum
field theory, the vacuum is seething with virtual particles and antiparti-
cles whose presence cannot be detected directly. Their interference with
physical processes in spacetime can, however, lead to detectable results.
Hawking found that one such result when considered in the spacetime
outside a black hole is that an observer at infinity sees a flux of particles
coming out from the vicinity of a black hole. We will not go through
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Fig. 18.6. The event horizon
of a black hole is shown in the
midst of the vacuum
containing virtual
particle–antiparticle pairs. In
some cases one member of
the pair with negative energy
(case III) is gobbled up by the
black hole. The other member
with positive energy is set free
and gives the impression that
the black hole has emitted it.

the calculations leading to this result; we will simply study the conse-
quences of such a process in the early Universe. Figure 18.6 provides
a qualitative description of how the Hawking process operates. Not all
aspects of the Hawking process have been worked out yet. An important
issue still unresolved, for example, is that of back reaction: how the
emission of particles by the black hole affects and alters the geometry
of spacetime outside and what effect this change has on the process of
radiation by the black hole.

The idea we shall use here is that a spherical black hole of mass M
ejects particles in a thermal spectrum of temperature T given by

kT = �c3

8πG M
∼ 1026 M−1

g , (18.17)

where Mg = M expressed in grams. The emission of particles by the
black hole as per the rules of blackbody radiation leads to a mass-loss
rate given by

dMg

dt
∼ −1026 M−2

g s−1. (18.18)

The ∼ implies that a numerical constant of the order of 1 appears on
the right-hand side to take account of the number of particle species
emitted. If we integrate (18.18) we find that the entire mass of the black
hole is radiated away in a time τ given by

τ ∼ 3 × 10−27 M3
g s. (18.19)
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Thus a black hole created soon after the big bang with a mass exceeding
∼5 × 1014g would just about last until the present day.

The process described above is slow to start with, when a black hole
is massive and cold. However, as M decreases T rises and the mass-
loss rate increases until finally it reaches a catastrophically high level.
This final stage is often called evaporation or explosion of a black hole.
As seen above, a stellar-mass black hole (Mg ≥ 1033) is hardly likely
to explode within the lifetime of the Universe! Since the black holes
considered in various astrophysical scenarios are at least as massive as
2M
, for them the Hawking process is only of academic interest.

However, it is claimed that there are scenarios in the very early
Universe that could lead to the formation of primordial black holes
(PBHs) of masses much lower than M
. Bernard Carr in 1975 was
the first to discuss their consequences at length. Carr investigated PBH
formation and evaporation in order to see whether the currently observed
nucleon density as well as the microwave background can be explained
in terms of emission of baryons, leptons, photons and so on by low-mass
black holes. These concepts are highly speculative, and have not been
suitably integrated with the other (equally speculative!) scenarios of the
very early Universe.

The interesting aspect of this approach is that PBHs act as sources of
various particles that need somehow to be created in the Universe. The
suggestion that PBHs evaporating today might account for the observed
γ-ray bursts, however, does not seem to be correct, since the spectrum
of γ-rays emitted by a PBH is not like the spectrum observed in burst
events.

There are several loose ends still to be sorted out in the PBH sce-
nario. At the deepest level one has to understand how they can form in
the first place, since the usual process of gravitational collapse that is
supposed to lead to stellar or more-massive black holes cannot apply
here. Next one needs to express the concepts of thermodynamics and
statistical mechanics in highly curved spacetime in order to give pre-
cise meaning to the notions of temperature and blackbody spectrum:
the formulae (18.17) and (18.18) merely use a naive extrapolation of
flat-spacetime thermodynamics. Further, the problem of back reaction
still remains unresolved. Finally, on the observational front, this bizarre
concept still awaits a befitting application in the real Universe.

18.6 Concluding remarks

This brings us to the end of this chapter as well as this book. We have
tried to cover the theory of relativity at an elementary level. The present
chapter gives some glimpses into concepts not covered in the book.
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Since the 1960s general relativity has added several new feathers to its
cap, both in applications to observations (e.g., relativistic astrophysics,
gravitational radiation, gravitational lensing) and purely in theory (e.g.,
spacetime singularity, field quantization in curved spacetime). It has
inspired further intellectual developments such as the loop theory of
quantum gravity [96] and string theory [97]. We have kept away from
both these descriptions since definitive and observable conclusions have
still to emerge from these very interesting approaches.

In the end, we close by quoting a short verse by Jack C. Rossetter
that was inspired in 1950 by the popular belief that general relativity is
a very difficult-to-understand type of theory:

To Einstein, hair and violin

We give our final nod,

Though understood by just two folks,

Himself – and sometimes God.
[From The Mathematics Teacher,
November 1950, p. 341]

Most of that mystique round general relativity has by now dissi-
pated and it is seen today as an intellectual achievement par excellence,
enriching, rather than isolated from, the rest of physics.

Exercises
1. In Newtonian gravity an oblate Sun will generate a gravitational potential

φ = G M

r

[
1 − J

( R

r

)2

P2(cos θ )
]
,

where J is the quadrupole-moment parameter and P2 is the second Legendre

polynomial. Show that the orbit of a planet precesses because of the above

gravitational effect at the rate 3π R2

 J/ l2, where l is the semi latus rectum of

the orbit. Estimate the precession rate for Mercury for J = 2.5 × 10−5. What

significance does this calculation have for the Brans–Dicke theory?

2. The Brans–Dicke theory can be re-expressed as a theory in which G =
constant but the particle masses change with epoch. Show that this is achieved

by a conformal transformation

ḡik = φ

φ̄
gik, φ̄ = constant.

The field equations then become (in the new metric)

R̄ik − 1

2
ḡik R = −κ T̄ik,
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where κ is constant. Although these look like Einstein’s equations, the T̄ik contain

φ and its derivatives. Show from the new field equations that

�ln φ = 8πG

(2ω + 3)c4
T̄

with G =constant. This form of the theory was obtained by Dicke in 1962. The

particle masses in this version vary as

m̄ = m

√
φ̄

φ
, m = constant.

3. Show that the deceleration parameter for the steady-state universe is equal to

−1 at all epochs.

4. Discuss the validity of the following statement: ‘Of the various ways of

resolving Olbers’ paradox, the only way open to the steady-state model is that

of the expansion of the Universe’.

5. Write down the expression for the angle subtended at the observer by a

spherical cluster of radius R at z = zmax in the QSSC. Relate this expression to

the angular scale of anisotropy of the microwave background in the QSSC.

6. Explain why the QSSC does not have an Olbers-type problem of darkness of

the night sky.

7. Assuming that our Galaxy has been radiating at the rate of 4 × 1043 erg s−1

for a time 3 × 1017 s and that this energy is derived from conversion of hydrogen

to helium, estimate how much helium is formed in this way. (Energy of 6 ×
1018 erg g−1 is released when hydrogen is converted to helium.) Comment on

this answer in relation to the primordial mass fraction of helium obtained in

Chapter 16.

8. Compute Ag(t) for the closed Friedmann model with given values of q0 and

h0, taking the time interval as (0, t) and the spatial extent covering the whole

(spherical) space. Estimate the epoch at which Ag = �. Why do you get an

answer different from tP?

9. Show that, at the Planck epoch, the Schwarzschild radius of a primordial

black hole just filling the particle horizon is of the same order as the Compton

wavelength of the black hole.
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Poincaré, Henri 9

PPN parameters 144–145, 160

Price, R. H. 207

Price’s theorem 207

principle of equivalence 100–103

strong and weak 102

principle of relativity 6–7, 10

quantum gravity 346–348

via loop theory 351

Planck time 347

singularity avoidance in conformal framework 347–348

via string theory 351

quantum theory 1

quasars (quasi-stellar objects or QSOs) 176–177

quasi-steady-state cosmology (QSSC) 341–346

minicreation events in 343–344

microwave background in 344–345

production of light nuclei in 345

scale factor of 344

structure formation in 346

Type 1A supernovae in 345–346

quotient law 52

radiation-dominated universe 275–277

time–temperature relationship in 277, 285, 296–297

Raychaudhuri’s equation 339–340

recombination epoch 293



362 Index

redshift 30

Doppler 30–31

redshift–magnitude relation 306–311

for brightest galaxies in clusters 307

for Type 1a supernovae 307–311

Reiss A. 308

Reissner, H. 207

Reissner–Nordström black hole 207–209

relativistic mechanics 18–23

centre of mass frame 22–23

mass–energy relation 20–21

4-momentum 21–22

Ricci tensor 76

Riemann 37

Riemann tensor 72

number of independent components of 75

symmetries of 75

Riemann–Christoffel tensor: see Riemann tensor

Riemannian geometry 65–66

Robertson, H. P. 233

Robertson–Walker line element 233

field equations in 246–247

Hubble’s velocity–distance relation in 236–237

redshift in 234–236

Rossetter, Jack C. 351

Ryle, Martin 312

Saha, Meghnad 293

Saha’s equation 293

Sandage, A. R. 306–307

Sato, K. 302

scalar 45–46

scalar curvature 76

scale factor or expansion factor 233

Schwarzschild, Karl 126

Schwarzschild exterior solution 126–131

in isotropic coordinates 130, 145

motion of a test particle in 134–140

Newtonian limit of 135–137

relativistic limit of 137–140

motion of photon in 140–141

in other coordinate systems: see specific systems

Schwarzschild barrier 203

Schwarzschild radius 129

stable and unstable circular orbits in 137–139

Schwarzschild interior solution 131–134,

180–181

redshifts in 142

singularity 231, 339–341

avoidance through negative energy fields 341

theorems on 341

Slipher, V. M. 228

Snyder, H. 200

solar oblateness and perihelion of Mercury 161

source counts 266–268

spacetime 12, 34

curved 40

de Sitter 80

metric: see metric

symmetries of: see symmetries of spacetime

special relativity 1–31

aberration in 30–31

addition of velocities in 11–12

corrections to because of gravity 36

Doppler effect in 29–31

electrodynamics in 28–29

mechanics in 18–23: see also relativistic mechanics

origin of 9–10

spectral shift 146–147

spherically symmetric spacetime 97

spinors 14

standard model of cosmology 330–331

concordance cosmology 330

precision cosmology 330–331

steady-state cosmology 341

strong gravitational fields 176–177

summation convention 12–13, 43–44

supermassive stars 177

binding energy of 180–185

equilibrium of 178–185

small oscillations of 185

supernovae of Type 1a 307–311

Supernova Cosmology Project 308

surface gravity of a black hole: see black hole

surface of last scattering 293, 331

symmetric and antisymmetric tensors 14, 52–54, 85–86

symmetries of spacetime 85–98

displacement of spacetime 86–88

maximally symmetric spacetime 93–94

spacetime of constant curvature 94–95

symmetric subspaces 96–98

Szekeres, G. 204

Szekeres coordinate system 204–206

tensor 48–54

contraction of 51

covariant, contravariant and mixed 48–49

inertia tensor 50

metric tensor 50

rank of 49

stress tensor 49–50

trace of 115



Index 363

Texas symposium on relativistic astrophysics 177

Thomson scattering 305

three-index symbols: see Christoffel symbols

time–temperature relationship: see radiation-dominated

universe

twin paradox: see clock paradox

uniformly accelerated particle 25–27

frame of 103–105

vector

contravariant 46–47

covariant 47–48

velocity–distance relation: see Hubble’s law

Walker, A. G. 233

Weber, Joseph 170–171

Weyl, Hermann 230

Weyl tensor 83

Weyl’s postulate 229–232

white hole 218–220

relation to gamma-ray bursts 220

Wilkinson, David 294

Wilson, Robert 294

world line 18

X-ray data in clusters 329

Zwicky, Fritz 186, 328




