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Preface

The study of groups arose early in the nineteenth century in connection with the solu-
tion of equations. Originally a group was a set of permutations with the property that
the combination of any two permutations again belongs to the set. Subsequently this
definition was generalized to the concept of an abstract group, which was defined to be a
set, not necessarily of permutations, together with a method of combining its elements
that is subject to a few simple laws.

The theory of abstract groups plays an important part in present day mathematics
and science. Groups arise in a bewildering number of apparently unconnected subjects.
Thus they appear in crystallography and quantum mechanics, in geometry and topology, in
analysis and algebra, in physics, chemistry and even in biology.

One of the most important intuitive ideas in mathematics and science is symmetry.
Groups can describe symmetry; indeed many of the groups that arose in mathematics and
science were encountered in the study of symmetry. This explains to some extent why
groups arise so frequently.

Although groups arose in connection with other disciplines, the study of groups is in
itself exciting. Currently there is vigorous research in the subject, and it attracts the
energies and imagination of a great many mathematicians.

This book is designed for a first course in group theory. It is mainly intended for
college and first year graduate students. It is complete in itself and can be used for
self-study or as a text for a formal course. Moreover, it could with advantage be used
as a supplement to courses in group theorv and modern algebra. Little prior knowledge is
assumed. The reader should know the beginnings of elementary number theory, a summary
of which appears in Appendix A. An acquaintance with complex numbers is needed for
some problems. In short, a knowledge of high school mathematics should be a sufficient
prerequisite, and highly motivated and bright high school students will be able to under-
stand much of this book.

The aim of this book is to make the study of group theory easier. Each chapter begins
with a preview and ends with a summary, so that the reader may see the ideas as a whole.
Each main idea appears in a section of its own, is motivated, is explained in great detail,
and is made concrete by solved problems.

Chapter 1 presents the rudiments of set theory and the concept of binary operation,
which are fundamental to the whole subject. Chapter 2, on groupoids, further explores
the concept of binary operation. In most courses on group theory the concept of groupoid
is usually treated briefly if at all. We have chosen to treat it more fully for the following
reasons: (a) A thorough understanding of binary compositions is thereby obtained. (b) The
important ideas of homomorphism, isomorphism and Cayley’s theorem occur both in the
chapter on groupoids and in the chapters on groups, and the repetition ensures familiarity.

Chapter 8 shows that the concept of group is natural by producing a large number of
examples of groups that arise in different fields. Here are discussed groups of real and
complex numbers, the symmetric groups, symmetry groups, dihedral groups, the group of
Moébius transformations, automorphism groups of groupoids and fields, groups of matrices,
and the full linear group.

Chapter 4 is concerned with the homomorphism theorems and cyclic groups. The
concept of homomorphism is fundamental, and thus the theorems of this chapter are
indispensable for further study.



Chapter 5 is on finite groups. The Sylow theorems are proved, the concept of external
direct product is introduced, and groups up to order 15 are classified. The chapter con-
cludes with the Jordan-Holder theorem and a proof that most alternating groups are simple.

Chapter 6 is on abelian groups. Two important classes of abelian groups are treated:
finitely generated and divisible groups. Undergraduates will probably find their needs
are met by the material through Section 6.3. Graduate students will certainly want to
continue.

Chapter 7 is on permutational representations and extensions. Chapter 8 is on free
groups and presentations. Those who would like to study the theory of groups more
deeply will find a guide to the literature at the end of the book.

Chapters 1-4 must be read in order, although, if desired, only the first three sections of
Chapter 3 need be read at first (the other sections of Chapter 3 may be studied when they
are needed). The order of reading Chapters 5-8 can be varied, although part of Chapter 7
is required for the last sections of Chapter 8.

The reader need not work all the solved problems; he should decide for himself how
much practice he needs. Some of the problems are designed to clarify the immediately
preceding text, and the reader will find that the solutions may overcome some of his
obstacles. On the whole, however, it is advisable to attempt the problems before reading
their solutions. The numerous supplementary problems, some of which are very difficult,
serve as a review of the material of each chapter.

We thank Prof. Gilbert Baumslag for giving us access to several chapters of unpub-
lished notes and for many useful suggestions. We thank Sister Weiss for reading two
chapters of an early draft, Harold Brown for much helpful advice, Henry Hayden for
typographical arrangement and art work, and Louise Baggot for the typing. Finally we
express our appreciation to Daniel Schaum and Nicola Monti for their unfailing editorial
cooperation.

B. BAUMSLAG
B. CHANDLER

June 1968
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Chapter 1

Sets, Mappings and Binary Operations

Preview of Chapter 1

This chapter begins with a few remarks about sets. A set is a collection of objects.
For example, the real numbers form a set, the objects being the numbers.

The real numbers have an operation called addition. Addition essentially involves two
numbers, for the addition of a single number is meaningless, while the addition of three
or more numbers is repeated addition of two numbers. Because addition involves two
numbers it is called a binary operation.

The main object of this chapter is to define precisely the notion of a binary operation.
The concept of binary operation is required to define the concept of group.

We introduce the important ideas of cartesian product and mapping. Welding them
together gives rise to an explicit definition of a binary operation. Another important idea
is that of equivalence relation, which is a generalization of the idea of equality. The reader
will also pick up much useful notation.

1.1 SETS
a. Basic notions

Set is synonymous with collection. The objects in a set are termed the elements of
the set. Usually we denote sets by capital Latin letters, for example, B, G, T. We shall
denote

(i) the set of positive integers 1,2,3, ... by P

(ii) the set of nonnegative integers 0,1,2, ... by N

(iii) the set of all integers by Z

(iv) the set of rational numbers by @

(v) the set of real numbers by E

(vi) the set of complex numbers by C.

The elements of a set will usually be denoted by small Latin letters such as s, ¢, u, etc.
By s €S we mean “s is an element of S” or “s belongs to $”. In particular, 2€ P. If s
is not an element of S, we write s € S and read this as “s is not an element of S” or “s does
not belong to S” or “s is not in S”. For example, —1 & P.

In dealing with sets it is advantageous to abbreviate the phrase “the set whose elements
are” by using braces. Thus, for example, we write {1,2} for the set whose elements are 1
and 2 and similarly we write {—1,0,1,2, ...} for the set whose elements are —1,0,1,2, . ...
A variation of this notation is useful to describe a set in terms of a property which singles
out its elements. Thus we write {z | z has the property P} for the set of all those elements
x which have the property . Here P stands for some ‘‘understandable” property; to
illustrate: {« |« is a real number} is R, the set of real numbers. (P here is the property of
being a real number.) Notice that we read {z|z is a real number} as the set of all those
elements # which have the property that z is a real number, or the set of all those elements
z such that z is a real number.
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We can now introduce some useful notation.

(i) If ¢ and b are real numbers and a < b, then the open interval (a,b) is defined by
(@,b) = {z| x €R and a <z <b).

(ii) Again if ¢ and b are real numbers and a < b, then the closed interval [a, b] is defined
by [a,b] = {z|x € R and a=x=b)}.

(iii) In coordinate geometry (0, 0) denotes the origin,
(0,1) the point A, and (1,0) the point B. In W4
general, if a,b are any two elements of a set,
(a,b) is called the ordered pair formed from a
and b. We will say (a,b) =(c,d) if and only
if a=c and b=4d. (a,b) is called an ordered
pair because the order of ¢ and b matters; (a, b)
is not the same as (b, a) if a  b.

This idea enables us to define the Euclidean plane as {p| p = (¢, y) where 2,y € R},
where the distance between (x,¥) and (®1,¥:) is defined by V(z —z1)2 + (¥ —y1)2. We
write R*= {p|p=(x,y) with z,y € R}. R? is not the Euclidean plane we normally
think of. Rather it can be interpreted as the set of coordinates of the Euclidean plane.
Having defined the Euclidean plane it is easy to define, for example, circles and discs.

(iv) 4 circle with radius r and center at the origin is defined by {»| » = (x,¥) € R* and
22+ y? =12},

(v) The disc with radius » and center at the origin is defined by {»| » = (z,y) € R* and
22+ y? =2},

We say that two sets S and T are equal, and write S =T, if every element of S belongs
to T and every element of T belongs to S. Thus {2,2,3,3} = {2,3} = {3,2}.

If every element of the set S is also an element of the set T, we say S is a subset of T and
express this briefly by writing SC7. SCT means SCT but S=T. Thus PCN and
PCN.

We can use the notion of subset to give a criterion for the equality of sets.

Proposition 1.1: Set S is equal to set T if and only if SCT and T CS.

Proof: SCT and T CS expresses in symbols “every element of S belongs to I' and

every element of T belongs to S”.

Him

Problems
1.1. Are the following statements true?
i 2€{2 (iv) a & {a,b} (vii) V2EQ
i) 3€{2,4) . (v) BEP (viii) (YV-1)2€2
(i) 2@ {a,b}, 2z a and z# b (vi) 3€P x) (/-12€P
Solution:
(i) True (iv) False (vii) False, since V2 is not a rational number.
(ii) False (v) True (viit) True, for (V—=1)2 = —1 and —1 is an integer.
(iii) True (vi) False (ix) False, since —1 & P.

1.2 Check the truth of the following assertions.

(i) {2} is a subset of {2}. (v PcC@ (ix) C@

(ii) If S is any set, S CS. (vi) ZcC@Q (x) {3,a,b,¢} ={3.a,b,3,¢,b}
(iii) {a} Cc{a,b}, a# b (viii QCR

(iv) {2,3} ={3,4} (viii) RcC

Solution:

(i) True. The only element of {2} is 2, and 2 € {2}.
(ii) True. Any element in S is an element in S.
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(iii) True. «a is the only element of {a} and « € {a,b}. But b€ {a,b} and b & {a}. Conse-
quently {a} # {a, b}.

(iv) False. 2€ {2,383} and 2 €& {3,4}.

(v) True. Any positive integer is a rational number but not all rational numnbers are positive
integers.

(vi) True. AIl integers are rational numbers.

(vii) True. All rational numbers are real numbers but R 5 Q.

(viii) True. Forif a €R, then a =a+0i€C. But V-1&R implies R + C.

(ix) False. Q@ = Q.

(x True. 3, a, b and ¢ are the only elements of {3,a,b,3,¢,b}. Therefore the sets are equal.
1.3. Are the following statements true?

(i) Z = {x| xisreal and xz > 0}

(i) N = {#]| x€Q and z = 0}

(ili) @ = {x| « = a/b, where b # 0 and a,b € Z}

(iv) P = {x| x €N and =2 =1}

(v) € = {x] x =u+1iv, where u,v € B and 2 = —1}

(vi) Z = {x| xisrealand x? € P}

Solution:

(i) TFalse. {x! xis real and x > 0} has no negative elements.

(i) False. }€{x| € Q and z =0} but 3 & N. Hence the sets are not equal.

(iii) True. A rational number is defined as the set of all numbers of the form a/b where b 0
and a,b € Z.

(iv) True. For if « € P, then « €N and 22=1, Thus 2 €{x| t €N and «2=1}. Now if
xEN and 22=1, ie. xE{x| *x EN and «2=1}, then x + 0. Hence x € P, as the only
element in N which is not in P is zero.

(v)  True. The property that z =u+1iv where w,v €ER and @ = —1 is the defining property
for complex numbers.

(vi) False. x2€ P implies « 0. But 0 € Z.

b. Union and intersection

Let S and T be sets. Then the union of S and T, written SUT and read “S union T”, is
defined as the set whose elements are either in S or in T (or in both S and 7). For example,
{1,2,3} U {2,5,6} = {1,2,8,5,6}) and PU{0} = N. Clearly, SCSUT and TCSUT.
Indeed it follows from the definition of SUT that any set containing both S and T contains
SUT, so we say SUT is the smallest set containing S and 7.

Similarly if {S,7,U ...} is any set of sets, we define SUTUUU - - -, the union of S and

T and U and . . ., to be the set whose elements are the elements that belong to at least one of
the sets S, 7, U, . ...

SUTUUU. .. is said to be the smallest set containing the sets S, T, U, ... . To illustrate,
{1,2yuU {3,4)U{5,63U--- = P,

If S and T are sets, we may consider the common part or intersection of S and T. The
intersection is denoted by SNT and read as “S intersection 7”’. For example, suppose
S={1,2,83) and T=1{2,5,6). Then SNT = {2}). Repeating the definition, SNT is the
set of those elements which belong simultaneously to S and to T. Here the possibility arises
that there are no elements of S which belong also to 7. We shall agree to the convention
that there is a set, which we denote by @, with no elements. Again we shall agree to the
convention that the empty set ) is a subset of every set. Two sets are termed disjoint if
they have an empty intersection. Thus {1,2} and {3,4} are disjoint. This notion of inter-
section can be generalized to any number of sets in the same way that the notion of union
was generalized from two to any number. To be precise, the intersection of sets S, T, U, .. .,
written SNTNUN - - -, is the set of all those elements which belong simultaneously to S,
toT,to U, .... Notice that SNT can be thought of as the largest subset of S which is also
a subset of T. Similarly SNTNUN--- is the largest subset of S which is contained in
TandinUandin ...
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If SCT we define T — S, the difference between T and S, by
T-8S = {z|2€T and z € S}
Thus if T=1{1,2,3,4} and S={1,2}, then T—-S={3,4). For any sets T and S such
that 7D S,
T—(T-S) =8 (1.1)

We prove equation (1.7) by showing that
right side of equation (7.7) C left side of equation (1.1)
and left side of equation (7.1) C right side of equation (1.1)

To do this suppose * € S. Then clearly * €T but x€&€T—-S8. So 2€T—-(T-19); in
other words, the right side of equation (1.1) is contained in the left side of equation (1.1).
The reverse inclusion is obtained similarly. Suppose zx € T—(T—S). Then €T and
2 & T—S. Therefore t €T and z €S, ie. 2 €S. So the left side is contained in the
right side and we have proved equation (7.1) by virtue of Proposition 1.1.

Problems

14. Check that the following statements are correct:
(i {1,2}u{1,2,3,4} = {1,2,3,4}

i) {a,e} U{e,f}U{g,h} = {a,e,f,9,h}

(

i) {...,—2,-1,00uv{0,1,2,...} = Z

(iv) If a<b, ¢,b € R, then [a,b] = (a,b) U {a} U {b}.

vy Plp=(yER, 2+y2="73U{p|p=(x,y) ER?, 22+y2 <7} = {p| p=(x,9) ER?

22+ y2 = 72}, (In other words, the union of the circle of radius 7 and the disc of radius 7
without its boundary, is the disc of radius 7 itself.)

Solution:

(iv) Let « € [a,b]. By definition, a =« =0b. If a<ax<b, we have x€(a,b). If 2=a or
x =b, then % € {a} or x € {b} respectively, Therefore [a,b] C {(a,b) U {a} U {d}. Now for
any x € (a,b) U {a} U {b}, either x € (a,b), x € {a}, or x € {b}; and in each case a =2 =b.
Hence (a,b) U {a} U {b} C [a,b]. The equality follows from Proposition 1.1.

(v) If p={(x,y) is any element of the disc, then x2+y2=172, »2+42 <72 implies p € disc
without its boundary; and «2+ %2 = 72 implies p € boundary. Thus the disc C boundary U
dise without its boundary. The reverse inclusion can be checked similarly. Proposition 1.1
then implies the sets are equal.

1.5. Check the following statements:
i) {1,2}n{1,2,8,4} = {1,2,8}
(i) {a,e} n{e,f} n{g,h} = @ where a,e,f,9,h are distinct.
Gi) {...,—2,-1,0}n{0,1,2,...} = {0}
(iv) If a<b, a,b ER, then {a,b] N {a,b} = {a} U {b}.
Solution:
(i) False. 8€{1,2,3,4} but 3 & {1,2}.
(i) True. The three sets {a,e}, {e,f}, g, } have no elements in common.
(iii) True, since 0 is the only element in the intersection and 0 is the only element in {0}.

(iv) True. « and b are the only elements of [a,b] N {a,b} and a,b € {a} U {b}. Furthermore,
a and b are the only elements of {a}U{b}.

1.6. Check that the following statements are correct:
(1) {1,2,3,4} —{1,2} = {3,4}
(i) {1,2,8,4} —{1,2,8,4} = @
(iii) If @,6 ER and o < b, then [a,b] —(a,b) = {a,b].
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1.7.

1.8.

If S,
()
(ii)
(iid)
(iv)
)
(vi)

(vii)
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T and U are any three sets, prove the following:

SuT =TuS (viii) SNnS =S8
SNT =TnS (ix) Su(TulU)=8SuTulU
ScSuUT and SCTuS x) Sn(TnU)=EnT)nU

SNTcS and TNSC S (xi) SU(TNU) =@ uT)n(Sul)
Sup =8 (xii) S—S =90

SN =0 (xiii) S—(S—8) =S

SuS =S

Solution:

(i)

(i)

(iif)

(iv)

(vi)
(vii)

(viii)

(ix)

(xi)

(xii)

Let x € SUT. By the definition of union of sets, * €S or € T. Hence x € TUS and
SUT c TuS. Similarly if « € TuS, it follows that TUS C SUT. Consequently SUT —
TUS by Proposition 1.1.

If x € SNT, then, by the definition of intersection, x €S and z € T. z is therefore an ele-
ment of TNS and SNT C TnNS. The reverse inclusion, TNS C SNT, is established in the
same manner. The equality follows from Proposition 1.1.

By the definition of union, SUT contains all elements of S and of 7. So x €S implies
€ SUT and S C SUT. Using (i) above, we also have S C TUS.

r€SNT implies * €S and xz € T. In particular, x €S. Thus SNT C S. Part (ii) allows
us to write TnS C S.

SCSu@ by (iil). If x€SUP, then x €S, for x & @ by definition. Therefore SUQY C S.
Hence by Proposition 1.1, Su@ = S.

By (iv), SNn® c ®. But we know that () is a subset of any set and, in particular, @ C SNQ.
Hence SN = @.

S c SuUS, using (iii). Now, x € SUS implies x &€ S. Hence SUS CS and the equality
follows.

By (iv), SNScS. But x €S implies x € SNS. Thus S CSNS and the equality follows.

Let € SU(TuU). Then €8S or x €TuU. Thus €S or x €T or € U. Conse-
quently € SUTUU. Hence SU(TUU) c SUTUU. If € SUTUU, then x €S or x€T
or z€U. If €8, x€SU(TUl). If x€TorU, 2€SU(TUU). Hence SUTUU C
SuU(TuU). The result follows.

2€SN(TNU) implies x €S and x &€ (T'nU), which in turn implies « €T and xz € U.
From €S and x € T it follows that x € (SNT) and, as € U, 2 € (SNT)NnU. There-
fore SN(TNU) c(SNT)nU. Similarly (SNT)nU c SN(TnU).

Su(TnU) c(SUT)n(SUU). For, if € SU(TNU), then x€S or € TNU. Now, €S
implies x € SUT, x € SUU, and consequently « € (SUT)N(SUU). If x€TnU, then x €T
and « € U; hence x € SUT, x € SUU and, as before, x € (SUT)NESUVT). SUT)NESUVU) C
SN(TuUU) is established in a similar manner.

If S—S contains an element z, then *x €S and &S which is impossible. Hence S—S
must be empty.

(xiii) S—S = @ from (xii), Thus S—(S—S8) = S—@ and clearly S— @ = S.

Prove the following statements:

(1)
(ii)
(iii)
(iv)
(v)

(vi)

If Sc T and U is any set, then SUU Cc TuU.
If ScT and U is any set, then SNU ¢ TnU.
If SCT and TC U, then SCU.

ScT ifand onlyif SNT =S8.

TcS ifandonlyif S =TuUS.

If T¢S, then (S—T)uT = 8.

Solution:

]

Let t€SUU. Then €S or € U. If «€S then €T since SC T, and conse-
quently x € TUU. If x€ U, then € TUU. Thus SUU c TuU.
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(i) z€SNU implies x €S and 2€ U. As SC T, we also have 2 € T. Therefore x € TNnU
and SNUCTnU.

(ili) S C T means that if €S, then € 7T; and since T C U, this in turn implies z € U.
Hence S c U.

(iv) First, assume SNT = S. The equality implies any element x in S belongs to SNT. But
€ SNT implies * €T. Hence x €T and SCT. Secondly,let SCT. If « €S, then
2€T and so x € SNT. Therefore S CSNT. The reverse inclusion SNT C S is true by
Problem 1.7(iv). By Proposition 1.1, S =SnT.

(v) Assume S =TUS. If €T, then « € TUS and, since S=TuUS, x€S. Hence T CS.
On the other hand if we assume 7 C S, then € TUS implies that x € S. Consequently
TuS C S. By Problem 1.7(iii) we have S ¢ TuS. Thus TuS = S.

(vi) It follows from the definition that (S—T) ¢ S. Using (i) above, (S—T)UT Cc SUT. But by
(v), TCS implies §=7TuUS, and we have (S—T)UT cS. To show SC(S—T)UT, let
xE€S. Either €T or 2&7T. If €T, then € (S—T)uUT. If & 7T, then z€S—-T
and we also have « € (S—T)UT. Thus S ¢ (S—T)UT. The equality follows by Proposition 1.1,

1.2 CARTESIAN PRODUCTS

a. Definition

The plane R? (see Section 1.1a) consists of all pairs (z,y) of real numbers x and y. We
shall also denote E? by B X R; thus R X R is defined as the set of all ordered pairs (z, ) with
xE€R and y € R.

There is a natural extension of this notation to any two sets, S and T
SXT = (p|p=(s,t), sES, tET)

For example,
(1,2} x {1,2,3}) = {(1,1),(L,2), (1,3), (2,1), (2,2), (2,3)}

In words, S X T is defined to be the set of all ordered pairs of elements (s, ¢), the first mem-
ber of each pair always belonging to S and the second member always belonging to 7. We
term S X T the cartesian product of S and T. It is worth pointing out that, just as in R2,
two elements of S X T are equal iff (if and only if) they are identical, i.e. (s,t) = (s’,#) if and
onlyif s=¢9" and ¢t =1¢. If either S=@ or T =, we interpret SX T as Q.

One defines similarly the cartesian product S; X Sz X - -+ X S, of the n sets S1,Ss2,...,S8»
(n < =) as the set of all n-tuples (si, Sz, ...,8.) With $:1 €81, 82:€Ss, ..., 8. ESa.  As with
the cartesian product of two sets, (s, S, .. .,8:) = (81,83, ...,81) iff 81=51,8: =83, ..., S =5r.
For example,

(1,2} X (2,3} X {4,5} = {(1,2,4),(1,2,5), (1,3,4), (1,3,5),
2,2,4), (2,2,5), (2,3,4), (2,3,5)}

If any one of the sets S1, S, ...,S.» = @, then we shall interpret S1 X Sz X - -- X S, to be @.
If each S; =S, then S; X S2 X .- X 8, is denoted by S

We often are interested in certain subsets of S X 7. For example, in elementary analytic
geometry one investigates lines, circles (see Section 1.1a), ellipses and other figures in the
plane; these are subsets of R2.

Problems

1.9. Let S=1{1,2,3}, T = {1,5}. Verify the following statements:
(iy SXT ={1,1),@1,5),(2,1),(25),(3,1),(3,5)}
) TS ={11,(5,1),(1,2),(5,2),(1,8), (5,3)}
(ili) SXT # T'XS
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1.10.

(iv)

(v)
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S25# T2 (S2=8SxS and T2=TXT7T)
(SXTYXS % SX(TXS)

Solution:

(i)
(ii)
(iii)
(iv)

(v)

Clearly these are the only ordered pairs (x,y) with x €S and y € T.

As in (i), these are the only ordered pairs (x,y) with « € T and y € S.

Looking at (i) and (ii), we find (5,1) €E T XS and (5,1) €S X T. Hence SXT # T XS,
(3,3) €52 but (3,3) & T2

An element (x,y) of (SXT)X S has * €ESXT and y € S. Thus ((1,1),5) € (SX T) X S. But
((1,1),5) € S X(T'X 8S), since (1,1) & S.

Let S, T and U be any three sets. Prove the following:

(i)
(i)
(i)

(iv)

SXT =TxXS iff either S =T or at least one of the two is empty.

If (x,y) €S2, then (y,x) € S2.

SXT =8XU iff either T=U or S = 0.

(SXT)XU=8X(TXU) iff at least one of the sets S, T, U is empty.

Selution:

(1)

(iv)

(@)

(i)

(iii)

(iv)

S=T implies SXT=T2=T7TXS8; and S=@ or T = implies, by the definition of the
cartesian product of any set and the empty set, SX T = @ =T X S. Therefore SXT =TXS
whenever S=T7T, S=@, or T = @®. To prove the converse, assume SX T =T X S. We may
also assume S>> @ and T+ @. Let t&€T and s€ S (such elements exist since S @
and T ). Then (s,t) ESXT and,as SXT=TXS, (s,t) € TXS. It follows, from the
definition of T X S, that t€ S and s € T. Therefore T CS and S C T. We conclude, using
Proposition 1.1, S =T.

(2,¥y) € S? means x €S and y €S. Hence (y,x) € S2

Clearly if T=U or S=@, we have SXT =8XU. Conversely, let SXT =SXU and
S+#@ (if S=¢ we have nothing to prove). If T @, let t&€ T. Then (s,)€SXT for
any s€S; and,as SXT=SXU, (s,) ESXU. But (s,t) ESX U means t€ U. Hence
TcU. A similar argument gives U CT, and we conclude I'=U. If T =¢, then
SXT=¢@ and SXU=@. U=0@ follows from SX U =@; for if U+ @, then SXU
would not be empty, by virtue of our assumption S @. Thus both T @ and T = @ give
T="U.

If either S, T or U is empty, (SX T)X U = @ = S X (T X U). Conversely, assume (SX T)X U =
SX(TxU). If S#@, T+* @ and U +* @, there is at least one element (z,y) in (SXT) X U,
x€SXT and y € U. But (x,y) must also be an element of S X (T X U). Hence x € S. This
is a contradiction, for x cannot be both an element of S and an element of S X T. Therefore
the assumption that S+ @, T+ @ and U #* @ must be false and so either S, T or U is empty.

If A={p|p=(2,9) €EP2 and x < y} (recall that P is the set of positive integers), prove
that:

(@) (x,2) &€ A for every x € P.

(b) if (x,y) €A andif (y,2) € A, then (z,2) € A.

Let B = {p| p = (x,y) € P2, « = y}.

(@) Show that (x,x) € B for every « € P.

(b) Prove that if (x,y) € B and if (y,2) € B, then (x,2) € B,
(¢) If (x,y) € B, whenis (y,x) € B?

Let 4 = {p| p = (x,y) € Z2 with x — y divisible by 8}. Prove:
(a) (x,x) €A forall x € Z.

(b) If (x,y) €A, then (y,z) € A.

(¢) If (x,y) €A and (y,2) € A, then (x,2) € A.

Let U be the points of the plane R2 on or above Y

the X axis and let L be the points below the X axis.

Put V = U2UL2. Notice that V C B2 X B2, Prove: U

(@) If (a,e) € R2X R2, then (a,a) € V. X
(b) If (a,B) €V, then (8,0) €EV.

(¢) If (,,B)EV and (B,v) €V, then (a,y)E V. L

(dy V # R2X R2,
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Solution:
(i) (a) (x,x) € A for every x € P, since x is not less than z.
(b) (x,y) €A implies <y, and (y,2) €A implies y <z Now <y and y <z imply
x <z, since x,y, z € P. By definition of set A, we have (x,2) € A.
(i) (a) « =2 forall x €P. Hence (x,x) € B.

(b) (x,y) €B and (y,z) €B imply x =y and y = z respectively. It follows that z = z
and, by definition of set B, (x,z) € B.

(¢) (yx)eB if x=y. For if (x,y) €B, x=y; and if (y,2)€B, y=x. But =y
and y =x iff x=y.
(iii} (@) For any x € Z, x —x = 0, and zero is divisible by 3. Consequently (x,z) € A.
(b) (x,y) €EA means x—y is divisible by 3, i.e. *x —y = 3¢ where q is some integer. Now
y—x = —(x—y) = —3¢q = 3(—q). Therefore y —x is divisible by 3 and (y,x) € A.
(¢) (x,y) €A means xz—y = 3q for some integer ¢, and (¥,2) €A means y—=z = 3r for
some integer r. Thus
x—z = (x—y)+y—=2) = 3¢g+3r = 3(q+7r
and so « — z is divisible by 3 and (x,2) € A.
(iv) (a) (a,a) € RZX R2 implies o« € R%2, which means « €U or o« € L. Hence (a,a) € U2 or
(a,0) EL2, and (a,e¢) € U20L2=1V.
(0) If (a,8) €V, then (a,8) € U? or (a,8) € L? and by Problem 1.10(ii), (8,«) € U? or
(B,¢) € L2. Hence (B,a) € V.

(¢) (a,8) €V implies either «,8 € U or e,8€ L, but not both, since UnL = @. Now
B,y) EV implies B,yE Uor L. If B,y€ U, then o 8€ U since 8 cannot be an
element of both U and L, and hence (a,y) € U2. Similarly if B8,y € L, we have (a,y) € L2
Therefore (a,v) € U20L2 =1V,

(d) et « €U and BE L. Then (o, 8) €E R2XR2 but (o, 8) & V.

b. Equivalence relations

Similarity of triangles is an example of an equivalence relation. This means that if
s, t and u are any triangles, the following three conditions hold:

(i) sissimilar tos.
(ii) If sis similar to ¢, then ¢ is similar to s.
(iii) If s is similar to ¢, and ¢ is similar to u, then s is similar to «.

Another example of an equivalence relation is congruence of triangles since (i), (ii) and
(iii) above hold also if “similar” is replaced by “congruent”. Continuing in this vein, if X
is any non-empty set and R is a “relation on X”, i.e. if for any pair of elements z,y € X
either z is related to y by R (written 2Ry and read “z is related to y by R”) or not, then
R is termed an equivalence relation in X if;

(i) xRz forall z € X.
(ii) If xRy, then yRz.
(iii) If xRy and yRz, then zRz.

One objection to this definition of equivalence relation is that “relation on X” is vaguely
defined. We shall therefore define the idea of equivalence relation by means of sets and
subsets.

Let us consider again the notion of similarity of triangles. Let T be the set of all
triangles. Let S be the subset of T X T defined by (s,t) €S iff s is similar to £. If fis a
triangle, ¢ is similar to itself, so (¢,f) € S. If (s,t) and (¢,u) €S, then s and ¢ are similar
and t and u are similar. Thus s and u are similar. Hence (s,u) € S. Similarly if (s,t) €S,
it is clear that (¢,s) € 8.

Consequently, discarding our informal approach, we have the following
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Definition: Let X be a non-empty set and let R be a subset of X2 Then R is called an
equivalence (or an equivalence relation) in X if the following conditions are
satisfied.

(i) (z,x2) €R forall x € X (reflexive property).
(i) If («,y) €R, then (y,z) € R (symmetric property).
(iii) If (x,y) € R and (y,2) € R, then (x,2) € R (transitive property).

Problem
1.12. Examine Problem 1.11 for equivalence relations.
Solution:
(i) A is not an equivalence relation in P, as (x,x) € A for all x.

(ii) B is not an equivalence relation in P, as we know (x,y) €B and (y,x) € B occurs only if
« = y. Thus though (1,2) € B, (2,1) € B.

(iii) A is an equivalence relation in Z2 as A C Z2 and the reflexive, symmetric and transitive
properties hold.

(iv) V C R2 X R? and the reflexive, symmetric and transitive properties hold, so V is an equivalence
in R2,

¢. Partitions and equivalence relations

Suppose E is an equivalence relation in X. We say x is R-related to ¥, or z is related to
y by R, if (x,y) €R. If (x,y) € R we shall sometimes write xRy. To illustrate let
X =1{1,2,3,4} and let

B = {(1,1),(22),(3,3),(4,4), (1,3), (3,1), (3,4), (1,4), 4,3), (4, 1)} (1.2)
Then it is easy to check that R satisfies the three necessary conditions for it to be an

equivalence relation. Now 3R4 since (3,4) € R, but 2R4 is an incorrect assertion since
2,4) € R.

Note that we have used a notation that fits in with the notation of Section 1.2b where
we informally introduced an equivalence relation.

An equivalence relation in X is intimately connected with a partition of X, i.e. a decom-
position of X into disjoint subsets of X such that every element of X belongs to some subset.
Examples of partitions of {1,2,3,4,5} are

{1}, (2,3}, {4,5}
and {1; 37 4}, {2}) {5}
On the other hand {1,2}, {2}, {8,4,5} is not a partition of {1,2,38,4,5}.

If R is the equivalence relation (1.2) in {1,2, 3,4}, then all the elements of {1,3,4} are
R-related to 1, i.e.,

1R1, 1R3, 1R4

This suggests a means of getting a partition of a set X. In order to explain, we need some
additional notation. Let R be an equivalence relation in a set X. If z € X, we define
2R ={y|y€ X and (x,y) €R}. zR is thus a certain subset of X. This subset zR is
called the R-class of x, or the R-equivalence class of x, or the R-block of x. A subset of X
will be called an R-class or R-block if it is the R-class or R-block of some element z € X.
To illustrate these terms, consider the equivalence relation R given by (1.2). Here

1R = (1,3,4), 2R = {2}, and 3R=4R = 1R

Thus the R-classes here are simply {1, 3,4} and {2}. Notice that these R-classes constitute
a partition of {1,2,3,4)}.

More generally, we have the following
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Theorem 1.2: Let X be a non-empty set and let R be an equivalence relation in X. Then
(i) if eRNa’R +* ), then zR = 2'R,
(ii) x € 2R for every z € X.

Thus the R-classes constitute a partition of X, for (i) guarantees that dis-
tinet R-classes are disjoint, while (ii) shows that every element of X
appears in at least one of the R-classes.

Proof: First, we verify (i). Suppose zRNz’R +* (3. Then there is an element y € 2R
which lies also in a’R, i.e. (x,¥) € R and (z’,y) € R. As R is an equivalence, it follows from
the symmetric property that (y,2’) € R. But (z,y) € R and (y,x’) € R imply, by the
transitive property, (x,2’) € B. Now if z € #’R, then (x/,2) € R; and hence by the transi-
tive property applied to (x,2’) and (2’,2), we find (x,2) € E. This means, by the very
definition of R, that z € zR. Since z was any element of 2’R, we have proved 2’R C zR.
The reverse inequality follows by a similar argument. Hence z’R = xR as required.

The verification of (ii) is trivial since (x,2) € R means x € xE. This completes the
proof of Theorem 1.2.

Problems

1.13. (i) Prove that E = {(0,0), (1,1), (2,2), (3,3), (0,2), (1,3), (2,0), (3,1)} is an equivalence relation in
S =1{0,1,2,3}.

(ii) Find the E-equivalence blocks (a) OFE, (b) 1E, (c) 2E, (d) 3E.

Solution:

(i) The reflexive property holds, i.e. (x,2) € E for all « €S, since (0,0), (1,1), (2,2), (3,3) € E.
To show that E is symmetric, let us examine all pairs (x,y) where « # y. There are only four,
namely (0,2), (1,3), (2,0), (8,1). Clearly if (x,y) is any one of the four, so is (y,%). When
x=1y, (x,y) = (y,2). Thus (x,y) € E implies (y,x) € E. E is also transitive. Let (x,y) €E
and (y,2) € E. Suppose « > y. Then (z,¥) can be (0,2), (1,3), (2,0) or (3,1). If (x,%) = (0,2),
then (y,2) = (2,0) or (2,2) and (x,z) = (0,0) or (0,2) respectively. Hence (x,2) € E. Sim-
ilarly if (x,%) = (1,3), (2,0) or (3,1), it can be shown that (x,2) EE. When x =1y, (y,2) €E
means (x,2) € E. Therefore for any (x,y) €E and (y,z) €E, we have (x,2) €E and E
is transitive.

(i) (a) OE = {0,2}, (b) 1E = {1,8}, (c) 2E = {2,0}, (d) 3E = {3,1}. Observe that OE = 2E and
1E = 3E.

114, Let A={p| p=(x,y) €Z2 with x —y divisible by 3}. Prove that A is an equivalence relation
in Z and find the R-equivalence classes.

Solution:

It was shown in Problem 1.11(jii), page 7, that A satisfies the three conditions of an
equivalence relation. The R-equivalance classes are:
(1) 0A ={3¢q| q € Z}; forif (0,2) €A, 0 —x = —x is divisible by 3. Also, (0,3¢) € A.

(2 1A={1-3¢| q€2); for if (1,x) €A, 1—x =3¢ and hence x =1—38¢. If z=1-3gq,
1 —« is divisible by 3; hence (1,x) € 14.

(8) 24 =1{2—8q| g€ 2Z); forif (2,2)€A, 2—x =3¢ andso x =2—3¢. If 0 =2—-3¢q, 2—x
is divisible by 3; hence (2,x) € A.

0A,14,2A are the only R-blocks, for any integer can be written as 3¢, 1—3¢q, or 2 —3gq.
Consequently 0AU1AU24 = Z.

1.15. Let Z* be the set of nonzero integers and let S = Z X Z*. (Recall that Z is the set of all integers.)
Let E ={p| p = ((r,s), (t,u)) € S? with ru = st}. Prove that E is an equivalence relation in S.
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Solution:

E is reflexive, for (r,s) € S implies ((r,s), (r,s)) € S2; and since rs = sr, ((r,s), (+,s)) € E.
The symmetric property of E is established by noticing ((r, s), (¢, w)) € E means (r, s) and (f, w) € S2,
and rw = st. But rw = st can be rewritten as ts = wr. Hence ((t,w), (r,s)) € E. To show E is
transitive, let ((r,s), ({,u)) € E and ((t,u), (v,w)) € E. Then ru =st and tw = vu. Since u # 0,
stw _ 5tw = ﬁvu =sv. Thus rw =sv and so ((r,s), (v,w)) € E. Hence E is
transitive. Therefore E is an equivalence relation.

st
r=— and rw =
U

1.16. Prove that S X S is an equivalence relation in S.

Solution:

S X S is reflexive since (z,2) €S XS for all x€S8. If (x,y)) €S XS, then zandy €S
and, by definition of S XS, (y,2) €ESXS. Hence SXS is symmetric. Now (x,y)€ S and
¥,2) €S imply x,yandz&€ S. But then (x,2) €S XS and SXS is transitive. Thus S X S is
an equivalence relation on S.

1.17. Prove that a set X is infinite if and only if there are infinitely many equivalences in X. (Hard.)

Solution:

Assume there are an infinite number of equivalences in X. If X is finite, then there are at most
a finite number of distinct subsets of X2. Therefore when X is finite there are at most a finite
number of equivalences in X, which contradicts our hypothesis. Hence X must be infinite. Con-
versely, assume X is infinite. We exhibit an infinite number of equivalences in X as follows: For
each pair a,b € R, a #+ b, we define

Ripy = {p| »p= (x,4) € X%, where either & =y, (,9) = (a,b) or (v,%) = (b,a)}

Now Ry,b) = Ree,q) if and only if {a,d} = {¢,d}. Therefore since X is infinite, we can find an
infinite number of different pairs a,b € X each of which gives a distinct set B, ;). Furthermore,
each R, ;) is an equivalence. To prove that R, p, satisfies the three conditions of an equivalence
relation, we first notice (x,#) € R(q,p) for all x € X, by the very definition of R, ;). Secondly,
Ry, py is symmetric since (x,¥) € Ra,») means (x,y) = (a,b) or (b,a), in which case (y,&) =
(b, a) or (a, b) respectively, or x =y and then (x,y) = (y,x). Thirdly, if (x,y) and (v,2) € R, v,
then (x,z) € R,,p). To see this, notice that (x,y) can only be (a,b), (b,a) or (x,z). (x,y) = (a,b)
implies (y,2) = (b, a) or (b, b); hence (x,2) = (a,a)or (a,b), which are both elements of Ry p).

Similarly, (x,y) = (b,a) implies (x,2) € R, Finally, (z,y) = (x,2) means (x,2) =
(y: z) € R(a,b)'

d. The division notation

We find it useful to introduce a notation for the R-classes of an equivalence relation R
in a set X, namely X/R.

Problems
1.18. What is S/E in Problem 1.13?
~ Solution: S/E = {0E, 1E}.

1.19. What is Z/A in Problem 1.14?
Solution: Z/A = {0A,14,24}.

1.3 MAPPINGS
a. Definition of mapping

Assign to each even integer the value 1, and to each odd integer the value —1. Let us
give the name « to this assignment; thus « assigns to each even element in Z, the set of all
integers, the unique element +1 in the set {1,—1} and to each odd element in Z the unique
element —1 in {1,—1}. In less detailed terms « assigns to each element in Z a unique ele-
ment in {1,—1}. Such an assignment is termed a mapping from Z into {1,—1} or a map
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from Z into {1,—1}. More generally, if S and T are any two non-empty sets, a mapping or
a map from S into T is an assignment of a unique element of T to each element of S. For
the most part we shall denote mappings by lower case Greek letters such as «, 3, v. Ifaisa
mapping from S into T, we shall express this fact more briefly by writing «:S - T; this is
read “« is a mapping from S into 7. We call S the domain and T the codomain of a.

We find it useful to provide further notation and definitions. Suppose that «:S- T.
If « assigns to s in S the element ¢ in T, we write «:s—>¢ and read this as “« sends s into
t”. We call t the image of s (under o) if «:s-t. It is convenient to have a number of
notations for the image of an element s in S under a mapping «: S - T; thus we shall write
Sa or 8% or even «(s) for the image of s under . For the most part we use the first notation.
If t€T and s«=1t, we call s a preimage of {. By Sa we mean {sa|s & S}. We call S«
the range of a.

Problems
1.20. Suppose «: P — P is defined by
(i) a:m->mn? forall n€P (iv) a: n—=>1 forall n € P
(ii) a:mn—>n+1 forall n€P (v) a:1->2, n—->1 forall n€P, n>1

(ili) a: n—=>2n forall nE€ P

Note: In (i)-(v) above, the mapping a is defined by describing its “action” on every element of
P. For example, in (i), la =12 =1, 20 = 4, 3¢ = 9, ... . Note that each element of P has a unique
element assigned to it.
In each case determine: (a) 2q, 5a,6a; (b) a preimage (under «) of 2,5, 6, 27. (¢) Is every element
of P an image of some element of P in (i)-(v)? How many preimages (under a) does 2 have in (v)?
How many preimages does 1 have in (iv)? in (v)?
Solution:
(i) (@) 2a =4; ba = 25; 6a = 36.

(b) There is no preimage of 2, 5, 6 or 27.

(¢) Not every element of P is an image, e.g. 2 is not an image.
(ii) (a) 2a =3; ba=6; 6a="1T.

(b) 1la =2; 4a = 5; Ba = 6; 260 = 27. Hence 1, 4, 5, 26 are the required preimages.

(¢) The only element of P which has no preimage is 1.
(iii) (@) 2a = 4; Ba = 10; 6a = 12.

(b) 1 is a preimage of 2; 5 has no preimage; 3 is the preimage of 6; 27 has no preimage.

(¢) 1 has no preimage, so not every element of P is an image.

(iv) (@) 2¢=1; Ba = 1; 6a = 1.
(b) 2,5,6 and 27 have no preimages.
(¢) 1 has every element of P as a preimage and no other element of P has a preimage.

vy (a) 2¢a=1; 5a =1; 6a = 1.
(b) 1 is a preimage of 2; 5, 6 and 7 have no preimages.
(¢) 2 has one preimage, namely 1. 1 has an infinite number of preimages. In fact any ele-
ment of P not equal to 1 is mapped onto 1. 1 and 2 are the only elements of P which have
preimages.

1.21. Let S =1{1,2,3}, T = {1,4,5}.
(i) Write down a mapping of S into T.

(ii) Let «:S—T be defined by la =4, 2a =5, 3a = 4. Is every element of T an image of some
element in S under «? Is every element of T the image of more than one element in S?
Give preimages of 1 and 4.

Solution:

(i) For example, «: S > T defined by la =1, 2« = 4, 8a = 5.

(ii) Not every element of T is an image, for 1 has no preimage. Only 4 is an image of more than
one element in S. 1 has no preimage, and 4 has preimages 1 and 3.
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1.22. Suppose «: P — C is defined by
(i) a: x-—ax? v) a:x—-ix+1
(ii) a: - 2x+ 27 _)ix+1

(iii) a: 2 > 2z where 2 € C is such that 22 = zx. =1

(vi) a: x

(iv) @: x— 2z where z € C is such that 23 = x — 1. (vii) a: @ = logyw
(@) Do all of these descriptions really define mappings of P into C?

(b) Is every element in C a preimage of some element of P in (i), (ii), (v), (vi), (vii)?

Solution:

() (i) and (ii) define mappings since every » € P has a unique image. (iii) does not define a map-
ping; for example, either 2 or —2 could be taken as 4a. Similarly (iv) is not a mapping, since
there are three complex cube roots of x —1, so that each x has three different images. (v), (vi)
and (vii) define mappings.

(6) In (i), (ii), (v) and (vii), © has no preimage: for (i) { = &2 implies « = V7€ P; (i) 22+ 27 =i

implies = :¥ EP; (vyizx+1=1 gives x =1+i&P; (vii) if logx =1, then 10i =g
and thus « &€ P. In (vi) 1 has no preimage because % =1 implies 1 = —1.
1.23.  What is Pa in each of the cases in Problem 1.20?
Solution:
(i) Pa is the set of squares {1,4,9,16, ...}. (iv) Pa = {1}
(i) Pa =1{2,8,4,5,...} (v) Pa=1{1,2}

(iii)) Pe = {2,4,6,8, ...}, ie. all the even integers.

b. Formal definition of mapping

The reader may ask whether our definition of mapping is precise. After all, it depends
upon an English word, assignment, a word that is used in many different ways.

A comparison with Section 1.2b is valuable. In Section 1.2b we introduced the concept
of equivalence relation in X, but as we felt uneasy about it, we redefined it in terms of a
subset of X2, Here too we feel uneasy about our definition of mapping and so we shall
redefine it in terms of sets.

A subset o of S X T is called a mapping of S into T if (s, t:) and (s, {2) € « occurs only if
t1 = t2, and for each s € S there exists an element (s,?) € «. S is called the domain and T
the codomain of «. If « is a mapping of S into T (written briefly as «: S—>T) and (s,t) € q,
we call ¢ the image of s under « and write «:s->t. We also write ¢ = se.

It is easy to see the relationship between the old definition and the new. In the old
definition the elements of S were assigned unique elements of 7.

Consider the subset of S X T consisting of the pairs (s,t) where ¢ is assigned to s. The
two conditions of the new definition are satisfied by this subset.

In the sequel we will use the definition of Section 1.3a, being confident that if necessary
we could justify our arguments using the definition of a mapping in terms of a subset.

¢. Types of mappings

We have talked of mappings without defining what is meant by the equality of two
mappings. We will now remedy this. Suppose «: S~ T and g:S8 = T’. Then we define
a=p ifandonlyif S=S’, T =T, and, for every element s €S, sa = sa’. In other words,
two mappings are equal if and only if they have the same domain, the same codomain, and
the same “action” on each element of S. For example, let S={1,2,8,4}, T = {4,5,6}.
Let «: S~ T be defined by la=4, 2a=5, 3« =6, da=4; let f:S—>T be defined by
18=4, 28=5, 33=6, 43 =5. Then «#* 8 since 4a 4.
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It is important to distinguish certain types of mappings. Thus suppose «: S—=>T. Then
we say « is a mapping from S onto T (notice that into has now been replaced by onto) if every
element in T has at least one preimage in S, i.e. if for every t € T there is at least one
element s €S for which se = £; in this case we call « an onto mapping.

On the other hand we say « is one-to-one if sa = s’ implies s = ¢/, i.e. distinct elements
of S have distinct images in 7 (under «). Finally, we say « is a matching of S and T or that
o matches S with T or « is a bijection if « is both onto and one-to-one. Two sets are termed
equipotent or of the same cardinality if there exists a matching of the one with the other.
If S is finite and « matches T, then we say S and T have the same number of elements. We
denote the number of elements in a set S by |S|. If S is infinite this definition no longer
makes sense unless one takes from all the sets which match S a single fixed set which we
then term |S|, the cardinality of St. A set which matches P is called enumerable, countable,
or countably infinite. Important results are that the set of rational numbers is enumerable
and the set of real numbers is nott.

We require one further definition. Suppose «:S->T and suppose S’ CS. Then we
define a mapping from S’ into T by simply restricting the domain of « to S’; this mapping is
denoted by « g (read « restricted to S’) and is called the restriction of « to S’. To be quite
explicit,

ag:S"=> T is defined by «g4 :s~>sa forall s €8

Problems
1.24.  Which of the mappings defined in Problems 1.20-1.22 are (a) onto, (b) one-to-one, (¢) matchings?

Solution:

(@) None of the mappings defined in Problems 1.20 and 1.22 is onto by the solution already given to
these problems. The mapping defined in Problem 1.21(ii) is hot onto, since 1 has no preimage.

(b) Problems 1.20(i), (ii), and (iii) define one-to-one mappings: for in (i), if ne = ma, then n? = m?2
and so n = m, since there is only one positive square root of an element in P; in (ii), na = ma
gives n+1=m+1 or n=m; and in (iii), na = ma implies 2rn = 2m or = = m. Clearly
Problems 1.20(iv) and (v) do not define one-to-one mappings. The mapping « in Problem 1.21(ii)
is not one-to-one since la = 3a. All the mappings defined in Problem 1.22 are one-to-one: for in
(i), za = #’a means %2 = x’> and, since x,x' € P, x = x'; in (ii), 2« = 2’a implies 2x + 27 =
22"+ 27 or x = «'; in (v), xa = '« implies 4z+1=1dix'+1 or = =x'; (vi) ¥a = ¥'a means
e+l e’ +1
x—1" dx' —1
hence 10v = 2 = «’. (Note that (iii) and (iv) are not mappings.)

or 2ix = 2ix’ or x =x'; in (vii), xa = 2’a gives log;ox = log;p %’ =y and

(¢) None of the mappings defined in Problems 1.20-1.22 is a matching, since none of them is onto.

1.25. Which mappings in Problems 1.20-1.22 are equal?

Solution:
None. Problem 1.20 features a: P - P; Problem 1.21, a: S - T; and Problem 1.22, a«: P - C.
Hence we need only compare the mappings in each exercise.

1.26. Let a: P~ Z be defined by ne = —n for all n € P. Is « onto? One-to-one? A matching?

Solution:
« is neither onto nor a matching, since 1 has no preimage. « is one-to-one, for if na = na,
then —n = —n/ and hence = = »/.

TFor more details see, for example, G. Birkhoff and S. MacLane, A Survey of Modern Algebra, Macmillan,
1953.
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1.27.

1.28.

1.29.

1.30.

1.31.

Suppose m is a fixed positive integer. Every integer m can be written uniquely in the form
n = gm + r where the remainder + is an element of the set {0,1,...,m—1}. For example, if
m =4, then every integer can be expressed in precisely one of the following forms:
4k, dk+1,4k+ 2,4k + 3. Let o: Z —{0,1,...,m—1} be defined by na =1, if n = gm+7r where
re{0,1,...,m—1}. Prove:

(@) ais onto {0,1, ..., m—1}.
(b) If ny,my are any two integers, then (nyny)a = (v anma)a.

Solution:
{(a) a is onto because 0,1, ..., m—1 have preimages 0,1, ..., m — 1 respectively.

(b) Let ny = gym + 9, and ny, = gym + 7. Then
nny = (gm+ r)(gem +75) = qigem® + rigem + ragym + riry = (qgem + 71gs T Togy)m + 71y

Now letting 77y = gym + 73, we obtain (rny)a = 73 = (riry)a = (njanga)a.

Check which of the following mappings are onto, one-to-one, bijections:
(i) a:C— R defined by a: a+1ib > a2+ b2

(ii) a:Z—-> P defined by a: n—>n2+1

(iii) a: P> Q defined by a: n—

n
2n+1°
Solution:
(i) « is neither onto nor one-to-one, because a2+ b2 =0, for any a,b €ER, and —1la = la = 1.
Hence « is not a bijection.
(ii) As 3 has no preimage, « is neither onto nor a bijection. Also a is not one-to-one, since 1la = 2
and —la = 2.

(iii) 1 has no preimage, since = 1 implies n = —1 & P. Therefore « is not onto and hence

"
2n+1
not a bijection. na = n'a means

4

n_ _ n
2n+1 2n' +1
Thus each image has a unique preimage and « is one-to-one.

or 2n’'n +n = 2n'n + n'; hence n = n'.

Let S be the set of open intervals (@, b) on the real line and let T be the set of closed intervals
[@,b]. Define «:S—T by {(a,b)a = [a,b]. Is « one-to-one? Onto?

Solution:

The mapping is one-to-one and onto. For, if (a,b)a = (a’,b)a then [a,d] =[a’,b’]. But this
equality holds iff @ = ¢’ and b = b’. « is therefore one-to-one. « is also onto since a closed interval
[a, b] has a preimage (a, b).

How many mappings are there from {1,2} into itself? From {1, 2,3} into itself? In each case,
how many of these mappings are one-to-one? Onto?

Solution:

There are four mappings of {1,2} into itself, namely: «; defined by 1a; =1 and 2¢; = 2; ay
defined by la, =1 and 2a; = 1; a3 defined by laz =2 and 2a3 =1; a4 defined by legy =2 and
2a4 = 2. Only o, and a; are one-to-one and onto.

To find the number of mappings of {1,2,3} into itself, we proceed as follows: 1 may have
any of three images under such a mapping, i.e. 1 >10or1—->2 or 1 - 3. Also, 2 may have any of 3
images, either 1, 2 or 3. So we have in all 3 X 8 possibilities for the actions of mappings on 1 and
2. Then 3 can be sent into 1, 2 or 3, giving 3 X 3 X 3 = 27 possible mappings of {1,2, 3} into itself.
There are 3 X2 X1 =6 possible one-to-one and onto mappings; for when we once choose an image
for 1 there are only two possible images for 2, and then the image of 3 is uniquely determined.

Let S ={1,2,8}, T = {8,4,5}, U ={4,5,6}, and let «:S—> T be defined by «:1->3,2->3,3~-5,
Let 8 and y be the mappings from T into U given by 8:3->4,4~6,5->4, y:3—->4,4—>4,5—>4,
ComPUte (la)ﬂ, (2&),3, (3(1),8, (1(1')]/, (20{)')/, (30‘)7

Solution:
(la)=3B=4; 2)B=388=4; (Ba)B=58=4; (la)y=8y=4; (2a)y=3y=4; (Ba)y=5by=4.
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1.32.

1.33.

1.35.

1.36.

1.37.
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Let a, 8, v be the mappings of @ into @ defined by a:xﬁ%, B:rx—~>x+1, y:x—>x—1. Prove that
x+1

if 2 is any element of @, then ((xy)a)8 = 5 What is ¢, ? a,? Is ap = alz?
Solution:
x—1 —1 —14+2 +1 . .
(xy)a)B = (x—Da)B = ——B = xz +1 =12 s = oc2 . @ is a mapping of P

into Q. @y is a mapping of Z into Q. o * a since the domain of a, is not the same as the

P
domain of g .

If S is a non-empty set, prove that S is infinite if and only if there are infinitely many mappings
of S into S.

Solution:

First we show that if there are infinitely many mappings of S into S, then S is infinite. Assume,
on the contrary, that S is finite and |S| = n. Now each of the n elements can be mapped onto at
most »n images. Hence there are at most n* different mappings of S into S. This contradicts our
assumption that there is an infinite number of such mappings. Hence S is infinite. Conversely, let
S be infinite. We define, for each s € S, the mapping «,: S—S by a;:x—s for all x€S.
{ag]| 8 € S} is an infinite set since a, = @, if and only if s =s’, and we assumed S to be infinite.
Therefore we have found an infinite number of mappings of S into S.

If S is any non-empty set, verify that S matches S.

Solution:
Define the mapping «: S—=>S by a:s—s for each s€ S. « is clearly one-to-one and onto.
Hence « is a matching.

If S matches T, prove that T matches S.

Solution:
If S matches T, then there is a mapping «: S — T which is one-to-one and onto.

Define @: T — S as follows. Let ¢t € T. Then there is an s € S such that sa = . The image
of ¢ under @ is defined to be s.

We now show & is a matching. In the first place, @ is a mapping. For if ta =s and ta =3¢/,
for some t € T, then by definition of @, se =t and s« = t. But « is one-to-one, so that sa = s’a
implies s = s’. Thus the image of an element under a is unique. Secondly, a is one-to-one, because
ta =t'a =8 implies sa =t and sa =t, which in turn implies, since « is a mapping, ¢ =1{¢"
Thirdly, if s€ S, then sa =t for some t &€ T. By definition of @, ta& = s. Hence every element
of S has a preimage under @ and a is onto.

If S matches T and if T matches U, prove that S matches U. (Hard.)

Solution:

Let «:S—=T and B:T—- U Dbe matchings. Then &: S~ U, defined by sa = (se)B, is a
matching. @ is a mapping of S into U; for sz € U, and if sa = u; and sa = u, then (sa)f = u,
and (sa)B = uy, which implies u#; = u, since sa has a unique image under 8. & is one-to-one, for
s = s'a implies (sa)f = (s'a)B. But @ and B8 are one-to-one, so that sa = s’¢« and s = s’. @ is also
onto, for if # € U then there is a t € T such that £8 = u. Now t has a preimage s €S under
a. Thus sa@ = (sa)B = t8 = u.

Let « be the mapping of S =1{1,2,3,4,5,6,7,8,9,10} into itself given by «:1—>3,2->4,3->35,
4-7,56—>96—>10,7—>1,8->3,9—>4,10—> 5, Then there is a useful alternative way of describing
a: we list the elements of S on one line (in any order) and on the following line we place under
each element of S its image under a, enclosing the entire description in parentheses as follows.

1 2 3 4 b 6 7 8 9 10
<34579101345

Describe the following mappings of S into S, using this notation.
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i) £:1-22-238-24-25-26-537-48->4,9-410-5.
(i) v:1>6,2->17,38-8,4-95-10,6-1,7-1,8>1,9-1,10- 1.

Use these descriptions to decide whether (iii) 8 = v, (iv) 8 is one-to-one, (v) y is onto.

Solution:
) 1 2 3 4 5 6 7 8 9 10
2 2 2 2 2 3 4 4 4 5 >
(i) 1 2 3 4 5 6 7 8 9 10
ii
6 7 8 9 101 1 1 1 1 >

(iii) By since 18 =2 and 1y = 6. It is only necessary to compare the bottom rows.
(iv) B is not one-to-one, e.g. 18 =28 =2. It is only necessary to find a repetition on the bottom row.

(v) v is not onto, e.g. 2 has no preimage. It is only necessary to check whether all the integers
1,2,...,10 appear in the bottom row.

14 COMPOSITION OF MAPPINGS

Definition

Let «:S->T, B:T—->U. Because se €T, we can compute (se)3. This suggests
“composing the mappings « and g, i.e. defining a mapping of S into U by performing «
and B in succession on each of the elements in S. More precisely we define «of, the com-
position of « with 8 (in this order) as a mapping of S into U defined by

s(aof) = (sa)B, forallsin S

(Some authors use exactly the opposite order, so that their «og is our Soa.) For example,

let
S ={1,2), T = {8,4,5}, U = {6,7}

and let «: S—>T, g: T - U be defined by
«: 128, 2>5, p:3-6,4->7,5->6

Then LaoB) = (la)8 = 38 = 6
2(a0f) = (208 = 58 = 6

Hence «op: {1,2} > {6,7} is defined by
aof3: 1>6,2->6

This notion of the composition of two mappings is of tremendous importance; hence we
give the following drill problems.

Problems
1.38. Let «: P —C be defined by na =in+1 and let B: C—> P be defined by g: a+ib —> b2, where
2 = —1. What do ¢°8, (¢°f8)°a, and «°(8°a) map n € P to? Why is aof #* Bf°a?

Solution:

Let n € P. Then n(aoB) = ma)8 = (in+1) = n2. Now n{(a°B)oa) = (n(a°B))a = n2a =
m2+1 and n(eo(B°a)) = Ma)(Boa) = ((n+1)B)a = n2a = m2+1. Hence (a°B)°a=a°(Bf%a).
aofB:P—~>P while Boca:C—>C. Hence a°g8 % %a.

139. Let «: Q> Q be defined by a: a—>a2+2 and let B:Q > @ be defined by 8: a > 1a—2. Com-
pute ¢° B8, Boa. Are these mappings equal? Compute («¢°g8)°a, a°(8°a).
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1.42,

1.43.

1.44.

1.45.
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Solution:

Let ¢ €Q. a(a°p) = (aa)B = (a2 +2) = L(a®+2) — 2 = La? 1. a(B°a) = (af)a = (}a — 2)a =
(Ja —2)2+ 2. Clearly a°B 5 goa. Furthermore, a((a®°B)ea) = (ala°B)a = ($a2—1a =
(Ja2 =12+ 2 and ala°(Boa)) = (aa)(B%a) = (@®+ 2)Boa = ((a® + 2)B)a = (({(a? + 2) — 2)a =
(éaz—l)2 + 2. Note then that (a°f)ca = a°(B2a).
Employing the notation of Problem 1.37, compute the following:
/1 2 8 4 5 1 2 3 4 5 .../1 2 3 4 5 1 2 8 4 5
(i) ° (ii1) °

2 3 1 5 4 1 2 4 5 3 2 4 5 3 1 1 2 4 3 5
/1 2 3 4 5 1 2 3 4 5 ., /1 2 3 4 5 1 2 3 4 5
(11) ° (iv) °

2 1 4 3 5 2 3 4 5 1 1 2 3 4 5 2 5 3 41
Solution:

3

S(L 234y L1284 g (L2841
<1<24135> ll<32541> (m<23541> lV<25

Let «:S~>T, B:T->U, y: U->V. Provethat (eoB8)oy =ac(Boy). (Hard.)

4 5
4 1

(]

Solution:

If s€8, then s((a°B)oy) = (sfa°B))y = (sa)B)y and s(ec(Bey)) = (sa)(B°vy)
Consequently (a°B)oy = ac(B8oy).

i

((sa)B)y.

Prove that if «: S—>T and B: T - U and «©pg is onto, then g3 is onto. Is « onto? (Hard.)

Solution:

Let w € U. As a©f is onto, we can find a preimage of # under a© 8. Let s €S be a preimage
of 4 under a©p, i.e. s(ea°B8) =u. Thus s(a°B) = (sa)8 =u and se is a preimage of u under B.
Hence f2 is onto. « need not be onto, e.g. let S = {1}, T ={1,2}, U = {1}. Define «:S->T by
le =1, and B8:T—->U by 18 =28 = 1. a° g is onto but « is not.

Prove that if «:S—>T, B: T~ U and «°f is one-to-one, then « is one-to-one. Is B one-to-one?
(Hard.)

Solution:

Let 5,8 €8S and sja = sya. 8§ = sya implies (s10)B = (sy¢)B and, by definition of a° g,
$;a°f T sya© B. But w© g is one-to-one, so that s, = s,. Hence a is one-to-one. B is not necessarily
one-to-one, eg. let S={1}, T={1,2} and U =1{1}. Define «:S->T by la=1, and
B:T—->U by 18=1 and 28 =1. ¢og is one-to-one but 8 is not one-to-one.

Prove that g: T —> U (T # (@) is one-to-one if and only if for every set S and every pair of map-
pings a:S—>T and &« :S—>T, aof =a'°f implies o« = «'. (Hard.)
Solution:

First assume that for every set S and every pair of mappings «:S-=T and & :S-T,
a°f =a'°f implies « = «’. Under this hypothesis suppose 8 is not one-to-one. Then we can find
t,t' €T (t#1t) suchthat i =t'8=u€U. Let S=1{1,2}, let a:S—>T be defined by la=1¢
and 2« =1#, and let «': S—>T be defined by 1o’ =t and 2« =%t Now aof =da °p, since
laoB=Qa)B =t =u, 2208 = 2a)B=tB=u, la’'of = (1a)8 =t/8 =u, and 24'°8 = (2a")B8 =
t3 = u. But « # o’. Hence the assumption that g is not one-to-one is false and 8 must be one-to-one.

To prove the converse, let 8 be one-to-one. Say we can find a set S and a pair of mappings «
and «' of S into T such that aof8 =0a'°f and « # o’. So there exists s €S such that sa #* sa'.
a°f =a' o8 means that s(eoB) =s(a’°B). Hence (sa)8 = (sa’)8. As B is one-to-one, sa = so’.
Therefore we have a contradiction and « must be equal to <.

Prove that «: S—=T (T # ) is onto iff for every set U and every pair of mappings g: T ->U
and B': T—>U such that a«of = aopg’, it follows that g = g’. (Hard.)
Solution:

Let us assume that for every set U and every pair of mappings 8 and g8’ of T into U such that
aofB = aop’, it follows that B = B’. Say « is not onto, and ¢, is an element of T which has no
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preimage under «. Let U = {1,2} and define the mappings 8 and g8’ of T into U as follows: t8 =1
for all t€ T, ¢t/ =1 forall t+#¢ in T and {8 =2. Now if s€S, sa°8 =(sa)8 =1 and
sa° B’ = (sa)p’ =1, since sa+*t,, Hence a°f =acf and B+ . This contradicts the as-
sumption that «°f8 = aop’ implies 8 = B’. Thus « must be onto.

Conversely, assume « is onto and we can find a set U and two mappings, 8 and 8, of T into U
such that «°B8 = aop’ and B # g’. B 5 ' means there is a ¢t; € I' such that ¢,8 + ¢,8". Further-
more, since « is onto, we can find s € S such that sa = ¢;. But a°8 = a°p’ implies (sa)B = (sa)B’
or t;8=t,8’. Here we have a contradiction because we chose 8 7 t;8’. We therefore conclude

B=p.

1.5 BINARY OPERATIONS

a. Definition
The idea of a binary operation is illustrated by the usual operation of addition in Z,

which may be analyzed in the following way. For every pair of integers (m,n) there is
associated a unique integer m +n. We may therefore think of addition as being a brief
description of a mapping of Z X Z into Z where the image of (m,n) € Z X Z is denoted by
m+n. Any mapping 8 of S X S into S, where S is any non-empty set, is called a binary
operation in S. We shall sometimes write instead of (s, £}8 (the image of (s, ¢) under §8) one
of sof,s+¢,8t,s+¢ or s Xxt. We stress that in all these cases the meaning of the various
expressions sot, s+t, st, s+t and s X t is simply the image of (s, t) under the given mapping
B of SX S into S. These notations suppress the binary operation 8, so there is danger of
confusion. However, we will work with binary operations and the various notations so
frequently that the reader will become familiar with the pitfalls. Incidentally, we read

sot as “ess circle tee”

s+t as “ess dot tee” or “ess times tee”

st as “esstee” or “ess times tee”

s+t as “ess plus tee”

s X t as “ess times tee”.

The notation sot is called the circle notation, the notations s+t and st are termed multi-
plicative, and the notation s + t is termed additive. We sometimes refer to s+t or st as the
product of s and t, and s+t as the sum of s and ¢. The following problems will help to
make the various notations clear.

Problems
1.46. Convince yourself that the following mappings are binary operations in P.

(i) a«: PXP~—P defined by a: (4,5) > %, where (i,j) € P.

(ii) «: PXP—> P defined by «: (i,7) 2> 1+ 7, where (i,j) € P.

(iii) a: PXP —> P defined by a: (¢, §) =i X j (regular multiplication of integers), where (7,7) € P.
(iv) a: PXP—> P defined by «: (4,7) > 2i1+3j, (i,/)) € P XP,

(v) a! PXP->P defined by «: (4,5)>i+j+1, (i,j)€PXP.

1.47. Which of the following are binary operations in P (throughout (¢, j) € P2)?

i) a: @ity (iii) a: (3,§)=>1+7] (v) a: (3,7) =7
(i) a: (4,7)>i—7 (iv) a: (4,j) > i+j+12
Solution:

In (i), « is clearly a mapping from P X P into P. So « is a binary operation in P. (ii) and
(iii) do not define binary operations in P because not every element in P X P has an image in P:
eg. in (i), a: (1,2)»1—2=-1€P; and in (i), «: (1,2)>1+2=1&P. (iv) and (v) define
mappings from P X P into P. Hence they define binary operations in P.
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1.48.

1.49.

1.50.

1.51.

1.52.
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Interpret the following (abbreviated) definitions of binary operations in Z, where ¢ and j denote
arbitrary elements of Z.

(i) do0j = (i+7)2 (iti) 407 = ¢+ 3 (v) ixXj = @
(i) i+J5 = t—j5—(@EX7 (iv) ij = 1 —1iXj (vi) i+7 = i+ 27j
Solution:
Throughout, (i,7) € Z2.
(1) a: (54> @+j5)2 (iii) a: (G, )21+ 7 v) a: (4,5 —=>¥
(i) a: (4,921 —F— @X3J) (iv) a: (G —>1—1Xj (vi) a: (i,7) =1+ 275

Check that the following are binary operations in the plane R2.

(i) (x,y)o(x',¥’) = midpoint of the line joining the point (x,y) € R2 to the point (x’,y’) € R2
if (x,y) > (@,¥). If (x,y) = (,y), define (x,y)o(=’,y) = (z,y).

i) (z,y) +(,y) = (x+2',y+vy), where (x,y),(x',y’) € R2,

iii) (x,y)*(2',y") = (za’, yy'), where (x,¥),(z’,y') € R

(
(
(iv) (%,y) —(=,y) = (x—«', y—y’), where (z,y),(z',y") € k2
vy (z,p)o(x,y) = (x+ 2,2y +vy'), where (x,9), (z',y’) € R2.
(

Notice here how we have abbreviated the definitions of the binary operations considered.)

Solution:
(i) o is a binary operation since two points determine a unique line and each line has a unique
midpoint.

(i1)-(v) are binary operations because each has a unique image by virtue of the fact that addition,
multiplication and subtraction are binary operations in R.

Let S={1,2,3} and let « and 8 be the following binary operations in S:
a: (1,1)=1, (1,2) =1, (1,8) =2, (2,1) =2, (2,2)—3, (2,3) >3, (3,1) >3, (3,2) > 2, (3,3)>1;
B: (L, 1)~>1,(1,2)>1, (1,3)~>2, (2,1) =3, (2,2)~3, (2,3) >3, (3,1)~ 3, (3,2)~>1, (3,3) > 2.
(i) Is a=pg?
(ii) Compute ((1,1)a,1)8, ((1,1)8,1)e.
(iii) Compute ((1, 2)a, 3)a, (1, (2, 3)a)a, ((1,2)8,8)8, (1,(2,3)8)8.
Solution:
(i) a# B for (2,1)a =2 and (2,1)8 = 3.
(i) (L, De, =1, 1B=1; (1,1)8,1)a=(1,1)a =1.
(iii) ((1,2)a, 3)a = (1, 8)a = 2; ((1,2)8,8)8 = (1,3)8 = 2;
(1,(2,8)a)e = (1,3)a = 2; 1,(2,3)B)8 = (1,3)8 = 2.

Let S ={1,2,3} and let X be the set of all mappings of S into S.

(i) Compute |X|.

(ii) Verify that the composition o of mappings is a binary operation in X.
(iii) Is a°B8 = Boa for all elements o, € X?

Solution:

(i) |X] =27 (see Problem 1.30, page 15).

(i) The composition of mappings «:S—>S and g:8—S is again a mapping of S into S.
Therefore =:X2%2-> X, defined by (a,8)r =a°B, (a, B) € X2, is a binary operation.

(iii) No. For example, if «:S > S defined by sa =1 for all s€ S, and B:S—>S defined by
s =2 for all s € S, are two mappings of S into S, then s(a°pB) = (sa)8 =18 =2 and
sBoa = (sB)a =20 = 1. Hence a°B #* Boa.

Let @* be the set of nonzero rational numbers. Make sense of the remark that division (denoted as
usual by <) is a binary operation in @Q*. Check whether the following statements hold for all
a,b,c € Q*.

i) a=b=">b-+a. (iv) If a+~b = a+c¢, then b =c.

(i) (@+b)+c=a+(b=+e). (vy If b+a =c¢+a, then b=c.

(ill) (@a+bd)+¢)+~d =a-=(b=+(c+d).
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Solution:

Division is a binary operation in Q*; for if w/x € Q* and y/z € @Q* where w,x,y,2z are
integers, then w/x + y/z = wz/xy € @*. Hence + is a mapping of Q% X Q* — Q*,
(i) False;eg. 2 +3 # 3 =+ 2.

(i) False;eg. (2+1)+2 =1 and 2+ (1+2) =2+ 1 =4,
(iii) False;eg. (1+2)+2)+2 =1 and 1+(2+(2+2) = 4.

(ivy True. a =~ b = a +~ ¢ implies ac = ab and,as a+# 0, ¢ = b.
(v) True. b +~a = ¢+ a implies ab = ca. Hence b = ¢, since a # 0.

1.53. Let o be the binary operation in R defined by aob = a + b+ ab. Verify that:
(i) PForall a,b,c€ER, (acb)oc=ao(boc).
(ii) Forall a,b€ R, acb =boa.
(iii) Prove that if a +* —1, then aob =qoc¢ iff b =rc.
Solution:
(i) (aob)oc = (a+b+ab)oc = a+b+ab+c+ (a+b+ab)c
a+ b+ ¢+ be+ ab+ ac + abe
at+b+c+ be+ ald+c+ be)
= a+ b+ c+ be+ ab+ ac + abe
(i) acdb = a4+ b+ab = b+a+ba = boa
(iii) If b=¢, then aob=acc for any a. If aob=acc¢ and a# —1, then a+b+ab=
a+ ¢+ ac. Therefore b+ab=c+ac, b(1+a) = ¢(l+a) and, since a+* —1, b = c.

Il

ao(boe) = ao(b-+c-+ be)

154. Let o be the binary operation in R? defined by (x,y)o(x',¥') = (xx’ — yy’, y«’ + xy’). Verify that for
all (z,y), (',¥), (&",y") € R
i) @y, y) = @, y)e(,y)
(i) ((z,y) o,y o (", y") = (&) ° (=, y)o (", y")
Solution:
i) (@ye@,y) = (@' —yy, yo' +ay) = @z—yy, yotay) = (@, ¥)o(xy)
(i) (x,y)o@,y")) o (", y") = (xx' —yy', yx' + xy’) ° (2", y")
= ((wx’ —yy )" — (yo' + xy")y"’, (ya’' + 2y')e” + (w2’ — yy)y")
= (xx’x —yy'x" —yx'y’ —xy'y”’, y'x" + ey’ + xx'y"”’ — yy'y'"’)
(x,g)o((x,y) o (x",y")) = (x,y)o @' —y'y’, y's" +y'a')
= (@'s"” —y'y") —y@'e" +y'"), y@'x” —y'y") + xly'z"’ + y"'z’)
= (xx'x” —ay'y”’ —yy'x" —yy''2, yx'zc
(, g} o (&', ")) © (=", y")

IToalt P!t

—yy'y" +xy'e’ + xy''x’)

155. Let o be the binary operation in @ defined by

(@ aob = a—b-+ab, (b) aob = 2T otab atbd

2 1 ((') acb = 3

Determine which of the above binary operations satisfy
(i) (aob)oc=uao(boe) forall a,bcEQ
(ii) acb="boa forall a, b€ Q
Solution:
(i) (a) (@ob)oc#ao(boc) for some a,b,cE€EQ; eg. (200)62 = (2—0+0)02 = 202 =
2—2+4=4 and 20(002)=20(0—2+0)=20—2=2—(—2)—4=0.
(b) (@ob)ec*ao(boc) for some a,b,c€Q; eg. (1°0)o0 = Jo0 =1 and 10(0°0) =

100 =4,
(¢) (aob)oc*ac(boc) for some a,b,c€Q; eg. (100)00 = (o0 =1 and 10(000) =
100 =4,
(il) (@) aob+*boa since 10 =1 and 001 = —1,
(b) aob:a+b+ab:b+a+ba:b0a
2 2
(¢) aOb:u:b_'—a:bOa

3 3
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b. The multiplication table

So far we have introduced a number of definitions and notations and familiarized our-
selves with them. The object of this section is to introduce a “table” as a convenient way
of either defining a binary operation in a finite set S or tabulating the effect of a binary
operation in a set S. To explain this procedure, suppose S = {1,2,3} and let u be the binary
operation in S defined by

w: (1,1)=1,(1,2)>1, (1,3)>2, (2,1)> 2, (2,2) > 3,
2,3)-3,(3,1)~1, (3,2)~3, (3,8)>2

Then a table which sums up this description of . is
1 2 3

1 1 1 2

2 2 3 3

3 1 3 2

We put the number (2, 3). =3 in the square that is the intersection of the row facing
2 (on the left) and the column below 3 (on the top). More generally, in the (7, 7)th square,
i.e. the intersection of the ¢th row (the row labelled or faced by ¢) and the jth column (the
column labelled by 7), we put (¢, j)u.

A table of this kind is termed a multiplication table because it looks like the usual multi-
plication tables. One often calls p a multiplication itn S. Thus when we talk about a
multiplication . in a set S, we mean that . is a binary operation in S.

There is a reverse procedure to the one described above. For example, suppose we start

out with a table
1 2 3

1 1 1 2

2 2 3 3

3 1 3 2

Then there is a natural way of associating with this table a binary operation p in {1,2, 3}.
We simply define (¢, 7)u to be the entry in the (7, /)th place in the table. For example,

(LDu=1 (23u=3 (32u=3

We shall usually define multiplications in a finite set by means of such tables.

Problems

1.56. Write down the multiplication tables for the following binary operations in S = {1, 2,3}.
i) «: (1,1)-2,(1,2)~3, (1,3)~>1, (2,1)-3, (2,2)~>1, (2,3)~2, 3,1)~>1, (38,2)>2, (3,3) > 3.
(if) B:82- S defined by (i,7/)f =1 for all (i,j) € S
(i) y: Q,1)~-1, (2,2)~1, (8,3)~>1, (1,3)~2, (3,1)~>2, (2,3)~1, (3,2)~1, (2,1)~>3, (1,2) > 3.

Solution:
1 2 3 1 2 3 1 2 3
1 2 3 1 1 1 1 1 1 1 3 2
|
@ 2 |3 | 1] 2 gy 2 1)1 1 Gi) 2 [ 8| 1|1
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Does the following table define a binary operation in {1,2,3}? In {1,2,3,4}?

1 2 3

1 1 3 4

2 2 1 3

3 1 3 2

Solution:

The table does not give a binary operation in {1,2,3} since (1,3) >4 & {1,2,3}. The table

also does not define a binary operation in {1,2, 3,4}, because (1, 4), (2, 4), (3,4), etc., have no images.

Write down explicitly the binary operations in {1, 2, 3,4} defined by the following tables.

1 2 3 4 1 2 3 4 1 2 3 4
1 1 2 3 4 1 1 2 3 4 1 1 1 1 1
2 2 3 4 1 2 2 4 1 3 2 2 2 2 2
3 3 4 1 2 3 3 1 4 2 3 3 3 3 3
4 4 1 2 3 4 4 3 2 1 4 4 4 4 4

(i) (i) (iif)

Solution:

()

(i)

(iii)

LN->i(G=1234; GG~j (G=234); 2,203 2,3)>4 3,2)~>4 3,3 ~1
(3,4)>2; (4,3)~2; (4,49)~3 4.2)~>1; 2,491

LN~7 (G=1234); (,1)~>]j(G=234); (2,2)=>4 (2,3)~>1; (3,2)>1; (3,3)>4;
(3,422 (4,3)~>2; (2,4)~3; (4,2)~3; (4,9~ 1.

(4,)~>1(:=1,2,3,4 and j =1,2,3,4).

Rewrite the three binary operations in Problem 1.58, using

(@)
(6)
(c)

circle notation, i.e. write (4, /)8 as 107,
additive notation, i.e. write (4,7)8 as 1+ 7,

multiplicative notation, i.e. write (i,7)8 as i-j.

Solution:

(a)

(b)

(e)

Problem 1.68(i): 1loj=1j (j =1,2,3,4); jel=j (=1,2,3,4); 202 =3; 203 =802 =4;
303 =1; 304 =403=2; 404 =3; 402 =204 =1,

Problem 1.58(ii): 1loj=j (1 =1,2,8,4); jol =7 (1 =2,8,4); 202=4; 203 =802 = 1;
303 =4; 304 =403=2; 204 =402=3; 404 =1,

Problem 1.58(iii): iecj=1 (i=1,2,3,4 and j = 1,2,3,4).
Problem 1.58(i): 1+7i=34 (=1,2,8,4); §+1=7(j=1,2,8,4); 2+2=3; 2+8=8+2=4;
3+3=1;34+4=443=2; 44+4=3; 4+2=2+4=1,

Problem 1.58(ii): 1+j=jand j+1=3 (=1,2,3,4); 2+2=4; 2+3=3+2=1;
3+3=4; 34+4=4+3=2; 24+4=4+2=3; 4+4=1.

Problem 1.58(iii): i+j7=17(=1,2,3,4 and j =1,2,3,4).
Problem 1.58(1): 1+j = je1=37(=1,2234); 2:2=3; 2:3=3.2=4; 3-3=1;
3e4=4+3=292; 4+4=3; 4.2=2+4=1,

Problem 1.58(ii): 1+j=j and j*1 =7 (j =1,2,3,4);2:2=4; 2:3=38+2=1; 3+3 =4;
3:4=4:3=292; 2:4=4:2=23; 4-4=1.

Problem 1.58(iii): ¢+7 =1 ({=1,2,3,4 and j = 1,2,3,4).
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A look back at Chapter 1

We began with a few remarks about sets. We then introduced the idea of cartesian
products. This led to the idea of an equivalence relation on a set. Then the notion of a
mapping was defined, followed by the definition of a binary operation.

In this book we are mainly concerned with binary operations in sets. At this stage
the reader may wonder what one could possibly say about binary operations in a set.
Without some specialization we can say very little. In Chapter 2 we begin to place re-
strictions on binary operations.

Supplementary Problems

SETS
1.60. The sets S; (i =1,2,...,n) are such that S;CS;y; (i =1,2,...,n—1). Find S;nS;n---NS, and
S,US,U -+ US,.

161, Let E={n|n€Z and neven}, O ={n| n€Z and n odd}, T={n] n €Z and n divisible by
3},and F = {n| n € Z and n divisible by 4}. Find (i) ENnT, (ii) EVT, (iii) TNnFNENO, (iv) TUF,
(v) ONnF, (viy OnT.

1.62. Given A = {-3,-2,-1,0,{1,2,3,}} and B = {-3, —1, {1,3}}. Find AUB and ANB.
1.63. Prove SN(TuU) =(SNnTHu(SnU).

1.64. Let A = {—5,—4,-3,...,3,4,5}, B = {—4,-2,0,2,4}, C = {-5,-3,-1,1,8,5}, D = {—4,4},
E = {—3,—2,~1,0}, F = @. Which, if any, of these sets take the place of X if (i) X—C =0,
(i) XnB =C, (iii) XcC but X is not a subset of A, (iv) XCB and X is not a subset of E,
v) XnCcA, (vi) XuBnD)=A"?

165. Prove SCT if and only if (TNnC)US = T'N(CuUS) for every set C.

CARTESIAN PRODUCTS
1.66. Prove S X (TUW) = (SXTYU(S X W) for any sets S, T and W.

1.67. Let P be the set of positive integers and S = P2. Show that E = {p| p = ((r,s), (t, w)) €S2 and
r4+w = s+ 1t} is an equivalence relation on S. Find the E-class determined by (4, 7).

1.68. Find the equivalence relation, E, on Z: (i) if the equivalence classes of E are {n| n=4q for
q€Z}, {n|n=1+4q for g€ Z}, {nin=2+4+4q for q€Z}, and {n| n=3+4q for g€ Z};
(ii) if every equivalence class consists of a single integer; (iii) if the equivalence classes are
{q,—q} for each q € Z.

1.69. If E and F are equivalence relations on S, is (i) ENF, (ii) EUF an equivalence relation on S?

1.70. 'What is wrong with the following argument: E is a non-empty subset ¢f S2 which has the symmetric
and transitive properties. If (a,d) € E, then by the symmetric property, (b,a) € E. But by the
transitive property, (a,b) €E and (b,a) €E implies (a,a) € E. Therefore E is also reflexive.

1.71.  (a) If P is the set of positive integers, show that E = {(a,b)| (¢,b) € P2 and « divides b} is
reflexive and transitive but not symmetriec.
(b) Find an example of a subset E of P2 which is both symmetric and transitive but not reflexive.
(¢) Find an example of a subset E of P2 which is reflexive and symmetric but not transitive.
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MAPPINGS

1.72.

Show that the following define mappings of Z into Z.

x if x=0

0 if =0
(i) a: x - h || is the absolute value of «, i.e. |x| = .
—x if x <0

/x| if x+0

(i) B'w*{ 0 if x| =0or1

(=1)r if || # 0 or 1, and r is the number of distinct primes dividing x

-1 if <0
(iii) y: =« - 0 if x=0
1 if 2>0

(iv) §: x — sin2x + cos?x
Which of the mappings «, 8, v, 8 of the preceding problem are equal?

Find subsets S(#= @) and T( @) of the real numbers R such that the mappings (i) a: « - cosz,
(ii) B:x—~>sinx, and (iii) y:x — tanx are one-to-one mappings of S onto 7. Do a, 8, vy define
mappings of R into R?

Let E = {n| nE€P and n even}. Define «: E—~>E by na=mn for all n€E, and g: E->F
by #B8 =2n for all n € E. Find an infinite number of mappings «’,8" of P into P such that
a"E = a and B"E = 8.

Suppose « is a mapping of a set S into a set T and, for any subset W of S, Wa = {¢t| t €T and
t=sa for some s€ W}. If A and B are any subsets of S, show: (i) (AUB)a = AqUBa;
(i) (ANnB)aCAanBa; and (iii) A CB implies Aa C Ba.

Let S be a subset of a set T, and «: T > W. Prove: (i) a one-to-one implies « . is one-to-one;

(ii) @, onto implies « is onto.

1S
1S

COMPOSITION OF MAPPINGS

1.78.

1.79.

1.80.

Suppose «: S—=>T is onto and B8: T > U 1is onto. Show a°pf is an onto mapping.

Given «:S - T isone-to-oneand B: T~ U is one-to-one. Prove a° g is one-to-one.

(i) @: z — sin (x2), (ii) B:« —~ sin(sin (x)), and (iii) y: 2z > V1 — 22 define mappings of non-empty
subsets of the real numbers R into R. First, find an appropriate subset in each case. Secondly,
write «, 8 and y as the composition of two mappings, giving in each case the domain and codomain
of each mapping defined.

BINARY OPERATIONS

1.81.

1.83.

Let S be a set and f the set of all subsets of S, i.e. of = {A| A CS}. Show that intersection and
union define binary operations on of.

How many different binary operations can be defined on a set of 3 elements?

Consider the set, F', of mappings f;(i = 1,2,...,6) of BR— {0,1} into R defined for each x € R —{0,1}
x—1 1 x

1—_-;;', f32 x-—)—x—; f4Z x—>;; f51 x—)m; f6 x> 1—x. Show that

composition of mappings is a binary operation on F' and write a multiplication table for the operation.

by: fiix—>x forz—



Chapter 2

Groupoids

Preview of Chapter 2

In this chapter we define a set G together with a fixed binary operation o to be a groupoid.
As we remarked at the end of Chapter 1, there is little one can say about binary operations
without making restrictions.

The first restriction is that of associativity. A groupoid with set G and operation o is
said to be associative if gi0(g209s) = (g1092)0gs for all g1, 92,95 in G. Such a groupoid is
called a semigroup. In order of increasing specialization we have the concepts of groupoid,
semigroup, and group.

To define a group we need the concepts of identity and inverse. Hence we discuss these
ideas.

We introduce the semigroup Mx of mappings of X into X. The importance of Mx is
that, but for the names of the elements, each semigroup is contained in some Mx.

Two other important concepts we deal with are homomorphism and isomorphism.
Homomorphism is a more general concept than isomorphism. There is an isomorphism
between two groupoids if they are essentially the same but for the names of their elements.

21 GROUPOIDS
a. Definition of a groupoid

Congsider the set Z of integers. Z has two binary operations, addition (4+) and multi-
plication (X). The set Z is one thing, a binary operation in Z is another; the two together
constitute a groupoid. Repeating this definition in general terms.

Definition: A groupoid is a pair (G, p) consisting of a non-empty set G, called the carrier,
and a binary operation x in G.

We shall mostly use a multiplicative notation when dealing with groupoids. Thus we
write g+ & or simply gk for (g,h)s, 9,k € G. This notation has been used in Chapter 1
in our consideration of binary operation. As an example, let G = {1,2,3} and let x be the
binary operation in G defined by the following table.

1 2 3

1 1 3 2

2 2 1 1

3 3 2 3

Then the pair (G, ) is a groupoid. Suppose we use multiplicative notation - ; then

1-1=1, 1-2=3, 2:2=1, 3-2 =2, etc.

26
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These products look bizarre unless we recall that the notation employed is a shorthand

version of
(LD =1, (L2)x =3, (2,2 =1, (8,2 =2, etc.

If we use the expression “the groupoid G,” where G is a set, it is understood that we
have already been given a binary operation . in G, and that we have been talking about
the groupoid (G, p).

Suppose now that (G, u) is a groupoid. If we use the circle notation for u, i.e. we write
goh instead of (g, h)u, we shall sometimes write (G, o) to refer to the groupoid (G, x). Sim-
ilarly we write (G, "), (G, +), (G, X) if we employ g-h, g + k, g X h respectively for (g, h)u.

Example 1: Let G = {1,2} and let x be the binary operation in G defined as follows:
LDe=1, 1,2 =2, 2, )p=1, (2,2)p =2
If we use the circle notation, we have
1o1=1, 102=2, 201 =1, 202=2

The pair (G, x) or (G,°) is then a groupoid.

Example 2: Let S be the set of all mappings of {1,2,3} into {1,2,8}. Then (S,°) is a groupoid,
where © is interpreted as the usual composition of mappings. The composition
makes sense, for if «, 8 € S, then

a: {1,2,3)>{1,2,3) and B:{1,2,3} {123}

Therefore « © 8, the composition of a and B, is defined by aac g = (aa)8, a € {1,2,3},
and is once again a mapping of {1,2,3} into itself. (S,°) is indeed a groupoid.

Example 3: Let o be the binary operation in @, the rational numbers, defined by acb = a+
b+ ab. Then (@,°) is a groupoid, because for every pair of rational numbers
@ and b, a°b defines a unique rational number a + b + ab.

Example 4: Let R2 be the plane. Further, let there be a cartesian coordinate system in B2 and
let C be the disc of radius 1 with center at the point (2, 0) of the coordinate system.
Consider the region R2— C, the unshaded area in the diagram. We term any path
beginning and ending at O, which does not meet any point of C (i.e. it is entirely in
R2— (), a loop in R2—C. By a path we mean any line which can be traced out by
a pencil without raising the point from the paper. For example, I and m are
loops in R2—C. Let L be the set of all such loops in R2—C. Then there is a
natural binary operation in L which we denote by «; thus if I;,l, € L, then l;+ 1,
is the loop obtained by first tracing out I, followed by tracing l,. This type of
groupoid (L,*) is of considerable importance in modern topology.

@

1,0 (2,0
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Example 5: Let F' be the set of all mappings of E, the real numbers, into B. Consider two
elements o,8 € F. We define the mapping «a+g8: E> R by a(a+ 8) =aa+ag,
a € R. a+ g is clearly a unique mapping of R into R and hence is an element in F.
Therefore + is a binary operation in F' and (¥, +) is a groupoid. Notice that (F, +)
is not the groupoid with F' as the carrier and the composition of mappings as the
binary operation.

Problems

2.1,

2.2.

2.3.

Are the following groupoids?

(i) (S,o) where S =1{1,2,3,4} and i°j =1 for i and j elements of S.

(ii) (Z, ), the set of integers with the usual subtraction of integers as binary operation.
(iii) (P, —), the set of positive integers with the usual subtraction as binary operation.
(iv) (Q, +), the set of rational numbers with the usual binary operation of division.

(v) (Z, =), the set of integers with the usual binary operation of division.

Solution:

(i) (S,9) is a groupoid since © is clearly a binary operation in S.

(ii) (Z,—) is a groupoid; for if «,b € Z, then a — b is a unique element of Z.

(iif) (P,—) is not a groupoid since a—b &P for all a,b € P. Therefore — is not a binary
operation in P,

(iv) (@, ) is not a groupoid because a -+ 0 is not defined for any a € @ and hence =+ is not a binary
operation in Q.

(v) (Z,=) is not a groupoid since a+-b & Z for all a,b < Z, eg. 2+3 & Z. Therefore division
is not a binary operation in Z.

Is (Z,0) a groupoid if © is defined as (i) a°b = Va+ b, (ii) aob = (¢ +b)2, (iii) aob =a—b—ab,
(iv) acb =10, (v) acb =a?
Solution:

All but (i) define a binary operation in Z. Therefore (Z,°) is a groupoid in (ii) through (v).
The multiplication © in (i) does not define a binary operation in Z since ya + b is not always an
integer.

Let S be any non-empty set and T the set of all subsets of S. Are (T, Nn) and (T, U) groupoids?

Solution:
Both intersection N and union U are binary operations on T, for the intersection or union of
two subsets of S is again a unique subset of S. Thus (T, N) and (7, U) are groupoids.

b. Equality of groupoids

Two groupoids are equal if and only if they have the same carriers and the same binary

operation. Remember, a binary operation was defined as a mapping and two mappings
are equal if and only if they have the same domain and codomain, and the image of each
element is the same under both mappings. Thus the groupoids described in Examples 1-5
are all different.

Problems

24.

2.5.

Are any two of the groupoids in Problems 2.1-2.3 equal?

Solution: No.

Which of the following pairs define equal groupoids?

(i) (Z,+) and (Z, 1), where (a,b)p = a + b.

(ii) (Z,-) and (Z,°), where aob = a —b.

(iii) (Z,°) where a°b =¢a for all @ and b in Z, and (Z, X) where a Xb = b for all ¢ and b in Z.

Solution:
The groupoids in (i) are clearly the same. So too are the groupoids in (ii). In (iii) (Z, o) is not
the same as (Z, X); forif a+ b, aob# a X b.
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22 COMMUTATIVE AND ASSOCIATIVE GROUPOIDS

Definition of commutative and associative groupoids

Let (Z, +) be the groupoid of integers under the usual operation of addition.

a+b=>b+a
and (@+by+c¢c = a+ (b+¢)
forall a,b,c € Z.
Similarly if (Z,-) is the groupoid of integers under multiplication,
a*b =D>-a
and (a*d)+c = a-(b-c)
forall a,b,c € Z.
The analog of (2.7) and (2.3) in an arbitrary groupoid (G, o) is
gob = boa
for all a,b € G. Similarly the analog of (2.2) and (2.4) in (G,0) is
(@ob)oec = ao(boc)

Then

29

(2.1)
(2.2)

(2.3)
(2.4)

(2.5)

(2.6)

for all a,b,c € G. We term a groupoid satisfying (2.5) commutative or abelian, and a
groupoid satisfying (2.6) associative or a semigroup. Thus a semigroup is an associative
groupoid. Of course it is not clear that there are non-commutative groupoids, i.e. groupoids
which are definitely not commutative, and similarly it is not clear that there are non-
associative groupoids. We settle the issue now. Let G = {1,2} and let o be the following

binary operation in G:

1 2
1 1 1
2 2 1

Then (G, o) is a groupoid. Observe that 102 =1 but 201 =2, so G is not commutative.
Furthermore, (201)02=202=1 but 20(102)=(201) =2, so G is also non-associative,

i.e. G is not a semigroup.

For the most part we shall use the multiplicative notation for a groupoid (G,u) and
simply talk about the groupoid G. If the groupoid is commutative we will use the additive
notation instead of the multiplicative notation, since we are accustomed to addition as a

commutative binary operation, e.g. in the integers.

The order of a groupoid (G, ») is the number of elements in G and is denoted by |G;

(G, 1) is infinite if |G| is infinite, and finite if |G| is finite.

Problems
2.6. Which of the groupoids in Examples 1, 2, 3 and 5 are commutative and which are associative?
Solution:

The groupoid of Example 1 is not commutative, since 102 =2 and 201 = 1, but is associative.

To show (G, ©) is associative we must examine the following 8 cases:

(@ 1o(lol)=101=1, (lol)ol=101=1 (¢) 20(201)=201=1, (202)01 =201 =1
(b) 20(101)=201=1, (201)ol =101=1 (f) 20(102) =202=2, (201)02=102=2
(¢) 10(201)=101=1, (102)01 =201 =1 (g) 10(202) =102=2, (102)02=202=2

(d) 10(102) =102=2, (1ol)o2=102=2 (h) 20(202) =202 =2, (202)02=202=2
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The groupoid of Example 2 is not commutative; for if « is defined by 1la =1, 2« = 3 and 8a = 2,
and B is defined by 18 =2, 28 =1 and 38 =1, then le°of8 = (1) =18=2, 1B8ca = (18)a =
2¢ = 3. Hence a©°B # foa. Since the binary composition of mappings is an associative binary
operation (Problem 1.41, page 18}, (S,°) is an associative groupoid.

The groupoid in Example 8 is both commutative and associative. a°b=a+b+ab=b+a+
ba = boa, since addition and multiplication are commutative binary operations in Q. Also,
ac(boc) = ao(btec+be) = (a+-(b+ec+be)) +alb+c+be) = a+b+e+be+ab+actabe and
(@aob)oce = (a+b+ab)ee = a+b+ab+et+(at+bt+able = a+ b+ ab+ c+ ac+ be + abe.
Using the associative and commutative properties of addition and multiplication in the rationals,
we see ao(boc) = (aob)oc.

In Example 5 the groupoid (F,+) is commutative because ala+8) = aa + af = af + aa =
a(f+a), o, BEF and a € R (here we use the fact that aa,aB8 € B and addition is a commutative
binary operation in R). (F, +) is also a semigroup, for a((a +8)+7v) = ala+ B) + ay = aa +
(aB + ay) = aa + a(f + v) = ala + (8 + y)) (here we use the associativity of addition in R).

2.7, Construct an example of a commutative groupoid of order 3.

Solution:
Let S = {a,b,¢} and the binary operation © be defined by the multiplication table

a b c
72 o b ¢
b b o ¢
¢ ;W(ﬁ c «
(S, 0) is clearly a commutative groupoid.
2.8. Show that the set @* of nonzero rational numbers with binary operation the usual division of

rational numbers, is a groupoid. Is it commutative? Is it associative?

Solution:
a c a . c ad . . .
If 3 and 7 are any two elements of Q% then b Td " e s unique element in @*
(;ﬂ# 0 since a,b,e,d # 0 ). Therefore division is a binary operation in @*. However, division
c
is neither commutative (eg. 1+ 1 = 2 % 1 = 1+ 1) nor associative (eg. [+ (1 +3) =

tei=3#6=G=D+}.

2.9, Which of the groupoids in Examples 1-3, 5 and in Problems 2.7 and 2.8 are finite?

Solution:

The groupoid of Example 1 is clearly finite of order 3.

In Example 2 the set S of all mappings of {1, 2,3} into itself contains 27 elements, and so
is finite.

In Example 3, (@, ©) is not finite as there are an infinite number of rational numbers.

In Example 5 the set F' is infinite. To show that F is not finite we construct an infinite number
of mappings of R into R as follows. Let p;: R~ R (i =1,2,8,...) be defined by 7p; =7 for all
r#i1€ R and 4p; = 0. Clearly p, =p; iff i=j. Therefore we have found an infinite number of
different elements in F'. Notice the p; are not all the elements of F.

In Problem 2.7 the groupoid has only three elements and is therefore finite,
In Problem 2.8, since there is an infinite number of nonzero rational numbers, @* is not finite.

23 IDENTITIES AND INVERSES IN GROUPOIDS

a. The identity of a groupoid ;
Let G be a groupoid written multiplicatively. An element e in G is called an identity

element of G if ‘
eg = ge = g
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for every g € G. For example in the multiplicative groupoid Z of integers, 1 is an identity
element. A less natural example is the groupoid {1, 2,3} with multiplication table given by

1 2 3

1 2 3 1

2 3 1 2

3 1 2 3

The element 3 is an identity element of G since
31=1=1-3, 3-2=2=2-8, 3-3=3=3-3

One might ask whether or not a groupoid can have more than one identity element.
The following theorem settles this question.

Theorem 2.1: If a groupoid G has an identity element, it has precisely one identity
element. In other words if ¢ and ¢’ are identity elements of G, then e = e¢’.

Proof: Since ¢ is an identity element of G, ee’ = ¢’. But ¢’ is also an identity element
of G. Hence ee’ =e¢ and so e=2¢".

It is instructive to reformulate the proof of Theorem 2.1 in a different notation. Thus
we revert to the notation (G,p) and instead of the multiplicative notation gh we write
(9, h)r. Suppose e and ¢’ are identity elements. Then as e is an identity element, (e,€)p = ¢’.
But ¢’ is also an identity element. Hence (e, e’}u = ¢; and because the image of any element
under the mapping is unique, ¢ = ¢’,

Problem
210. Which of the following groupoids have identity elements?

(i) The groupoid (Z,+) under the usual operation of addition.

(ii) The groupoid of nonzero rational numbers under division.

(iii) The groupoid of complex numbers under multiplication.

(iv) The groupoid of all mappings of {1,2, 3,4} into itself under the composition of mappings.
(v} The groupoid with ecarrier {1,2} and multiplication table

12 12 12 1 2
1111 1|1 2 1|21 2 1 {1 ] 2

(a) (%) () (d)
2 | 1] 1 2 |1 ] 2 2 [ 1|1 2 | 2|1

Solution:
(i) (Z,+) has the identity element 0, since 0 +2z=2+0=2 forall z € Z.

(ii) If this groupoid had an identity element ¢, then e-+q =g¢q for all q in the groupoid. In
particular, e+¢=¢ andso e=1. But 1+2 =1/2 5 2. Hence there is no identity element.

(iii) Recall that a complex number is any number of the form a+ bi where a,b € R and
t1=+v—1. 14+ 0: is the identity element of this groupoid, since (e -+ bi)(1+07) = a + Oai +
0b2 + bi = a + bi = (1 + 04)(a+ bi).

(iv) The identity mapping ., defined by 7 =7, § € {1,2, 8,4}, is the identity element of the group-
oid since jlo°:) = (Jo)i = jo = (ji)o = j(:°0).

(v) Only (d) has an identity element, namely 1.

b. Inverses in a groupoid

If we use multiplicative notation for groupoids, we shall for the most part reserve the
symbol 1 for the identity element.
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In the multiplicative groupoid of nonzero rational numbers, one talks about inverses;
for example, 1 is the inverse of 2, the determining factor being 2xX£=1=4X2. In gen-
eral if G is any groupoid with an identity 1, we term h an inverse of g (h,9 € G) if

gh = 1 = hg

Clearly if k is an inverse of ¢, then ¢ is an inverse of k. Examples follow.

Example 6: Let G = {a,b,c¢} be the groupoid with multiplication table
a b ¢
a a b ¢

b b c a

c c a b

Then a is the identity element of G, as inspection of the table shows. Furthermore,
bc=0a =c¢b and aa = a = aa, so that ¢ is an inverse of b, b is an inverse of ¢,
and a is its own inverse. a, b and ¢ have no other inverses.

Example 7: Let G be the groupoid of mappings of {1,2, 3} into itself. Then the identity mapping
. defined by 7. =13 (j =1,2,8) is the identity element of the groupoid (see Prob-
lem 2.10(iv)). Now let ¢ € G be defined by 106 =2, 20 =3,3¢ =1. Then r€GQG,
defined by 1r =3, 2r =1, 3r = 2, is an inverse of ¢ because
loor=(lo)r =2r =1, 2007 = (20)7 =87 =2, 30°7 = Bo)r=1r = 3
which implies or =« Similarly, r¢ = ..
Unlike identities, inverses in groupoids are not always unique. For example, let
G =1{1,2,3,4} be the groupoid with multiplication table

1 2 3 4
1 2 3 4
2 2 1 1 1
3 3 1 1 4
4 4 2 3 4

Here 1 is the identity element in G. Moreover, 2:2=1=2-2 and 2:3=1=3-2; thus
2 has two inverses, 2 and 3. Notice that in this groupoid, 4 is not an inverse of 2 even
though 2-4 =1. The definition of an inverse requires both 2+4 and 4-2 to equal 1.

Problems
2.11. Consider the groupoids in Problem 2.10 which have identity elements. What elements in each of
the groupoids have inverses?

Solution:
(i) Any integer z has an additive inverse, namely —z; for z + (—2) = 0 = (—=2) + 2.

(iii) All nonzero elements in the groupoid of complex numbers under multiplication have inverses;
i.e. if @ + b7 (¢ and b not both zero) is any element in the groupoid, then

1 _ 1 a—bi\ _ e—bi _ a b i
a+ bi a+ bi/\a— bi a? + b2 a2+ b2  a® + b2
1

. . . 1 . _ . . .
is an element in the groupoid and m(a-l— bi) = 1 = (a+ bi) PRyl (0 + 07) has no in-
verse, since (0 + 07)(a + b)) = (0 + 04).
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212,

2.13.

(iv) Only mappings = which are one-to-one and onto have inverses. Say r is a one-to-one mapping
of {1,2,3,4} onto itself, defined by 1r =«, 2r = b, 3r = ¢ and 4r = d, where a,b,c,d are
the elements of {1,2,3,4}. We define the mapping ¢ which will be an inverse of , by aoc =1,
be =2, cco =3 and do = 4. o is a mapping of {1,2,3,4} onto {1,2,3,4}, since {a,b,c,d} =
{1,2,3,4}. lro0 =(lr)o =aoc — 1, 2190 = bo = 2, 3790 = co = 3, and 47°¢ = do = 4. Hence
o0 =« We must also show oor =1 Now aoc°or=1r =a, beor =2r =b, coo7 = 3r = ¢,
door=4r=d. As {a,b,¢,d} is {1,2,3,4}, oo7 = . If 7 is not one-to-one then there are at
least two elements, ¢ and b (a7 b) in {1,2,3,4} which are mapped onto the same element,
¢, by r,i.e. ar =¢ and br = ¢. Now if ¢ is an inverse of 7, then a(r°¢) = a and b(rco) = b
or (aryjos =co=a and (br)o =co =b; thus ¢coc=a and e¢s =b. But under a mapping
each element has a unique image. Hence we have a contradiction. So 7 has no inverse.

(v) Both 1 and 2 have inverses since 11 =1=1-1 and 2:2=1=2-2,

Find the identity of the groupoid (@,°) where aob = a + b + ab (see Example 3, page 27).
What elements have inverses?

Solution:

0 is the identity of (@, °), since 0ca = 0+ a+ 0a = ¢ and a0 = ¢+ 0+ 0a = a. To find
an inverse for an element a € Q, we must find an 2 € Q such that aocx =0 =2xz°a. Now
acx = g+ x + ax, so that x must satisfy the equation a + 2 +ax = 0. If a = —1, we obtain
—1+x—2« = —1 = 0; thusif a = —1, there is no x such that aocx = 0. If a # —1, the equa-

a thus @ o -—— = 0. Since (Q,°) is

1+a; 1+ta

. —a _ —a . _
commutative, 1—+_a° a = 0 so that 1+ g is an inverse of a. Hence all elements of @, except —1,

tion ¢+ x4+ axr = 0 can be solved, giving = = —

have inverses.

Find the identity of the groupoid (¥, +) in Example 5 and show that every element has an inverse.

Solution:

The mapping w: R—~> R defined by 70 =0 for all r € R, is the identity of (F,+). For
aleto)=aataw=a+0=ae=0+aa=avt+aa=alw+a) for all s €ER implies a+w=a=
o+ ea If Bis an inverse of ¢, then ¢« + 8 = & and al(a+B) = aw for all ¢« € B. But ala+ B) =
ae +af and aw =0. Thus aa+ag8 = 0 or —(aa) = af. Consequently if B is an inverse of «,
the image of ¢« € B under 8 must be the negative of the image of a under «. We therefore define

an inverse 8 for the mapping « by a8 = —(ae), a € B. B is a mapping of R into R, since —(aa) is
a unique element of K. Furthermore, ala+8) = aa+ af = aa+ (—(aa)) = 0 = aw implies
a+ B = w. (F,+)is a commutative groupoid. Hence « + 8 = & = 8 + « and 8 is an inverse of a.

24 SEMIGROUPS WITH AN IDENTITY ELEMENT

a.

Uniqueness of inverses
Suppose G is a groupoid with an identity 1 and suppose % is the inverse of g: gh =1 = hg.

It is tempting to employ the notation used when dealing with real numbers and write g—!
for an inverse of g. The trouble with this notation is that in a groupoid an element may
have more than one inverse, as we have already seen in Section 2.3b. However, the
associative law on a groupoid prohibits this as we see from

Theorem 2.2: Let G be a semigroup with an identity element 1. If g € G has an inverse,

it has precisely one; i.e. if £ and &’ are inverses of g, then h =/’.

Proof: h=nhnl (since A1 = h for all h € G)
= h(gh’) (gh’ =1, since I’ is an inverse of g)
= (hg)h’ (by associativity)
=1n (hg = 1, since & is an inverse of g)

=W
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Theorem 2.2 entitles us to denote the inverse of an element g in a semigroup, written
multiplicatively, by ¢~'. Note that if g and k have inverses, then gh has an inverse, namely
h~tg—1, (Notice the reversed order.) For,

(gh)(R™'g™Y) = ((gh)h~Ng~* = (g(hh™"))g™" = (g1)g™' = gg ' = 1
Similarly, (A 19 Y (gh) = 1.

Problems
214. Let G = {1,2,3,4}. The binary operations on G given by the following tables make G into a
groupoid.
1 2 3 4 1 2 3 4 1 2 3 4
1 1 2 3 4 1 1 2 3 4 1 1 1 1 1
2 2 4 2 4 2 2 1 4 3 2 2 2 2 2
(a) (b) (¢
3 3 2 1 4 3 3 4 1 2 3 3 3 3 3
4 4 4 4 4 4 L4 2 3 1 4 4 4 4 4

Which of the groupoids are semigroups? Which have an identity? Which elements have inverses?

Solution: .

(a) In order to see that in this case G is a semigroup, we must check associativity, i.e. we must
show a(bc) = (ab)c for every a,b,¢c € G. Notice that when either @, b or ¢ is 1, a(be) is
clearly equal to (ab)c; e.g. if ¢ =1, (ab)l = ab = a(bl). Since 49 = 4 = g4 for any g €QG,
then (ab)e = 4 = a(bc) if either a, b or ¢ is 4. Therefore we need only check the products when
a, b and ¢ have values 2 or 8. If two of the three elements a, b, ¢ are equal to 2 and the other
is equal to 2 or 8, then (ab)e = 4 = a(bc) because 2:2=4 and 2-3 =2 = 3+2. The follow-
ing caleulations take care of the remaining cases:

3(3+3)=8-1=83=1-3=(3:3)3 3(2+83)=3:2=2=2+3=(3:2)3
2(3+8)=2:1=2=2-3=(2:3)3 3(8+2)=8:2=2=(1+2) = (3-3)2

1 is the identity element of G. The only elements which have inverses are 1 and 3; these inverses
are unique.

(b) The associative law does not hold, since 4(2+3) =4+:4=1 and (4-2)3=2-3=14, 1 is the
identity, and 1, 2, 3 and 4 have inverses. Notice that the inverses are unique even though G is
not a semigroup.

(¢) G is a semigroup. Associativity follows from the fact that ab =a for all «,b € G; hence
(ab)e = @ = a(bc) for any a,b,c in G. G has no identity element; therefore no element has an
inverse.

215. Let G be the groupoid with carrier @, the set of rational numbers, and binary operation o defined by
a°ob = a+b—ab. Isthe groupoid (Q,°) a semigroup? Is there an identity element in (@, °)? Which
elements of the groupoid have inverses?

Solution:
Notice a + b —ab is a unique rational number, so that (Q,°) is a groupoid. Now if a,b,c are
any elements in (Q, ©),
(@eob)oe = (a+b—ab)oe = a+b—ab+c—(a+b—ab)e
=a+b+c—ab

ac — be + abe

and ao(boc) = ao(b+c—be) = a+b+e¢—bec—adb+c—be)

= a+b+c—bc—ab— ac+ abe
Hence (Q,°) is a semigroup. The identity of (Q,°) is 0 since #°0=a+0—a0 =a and 0ca =
0+ a—0a =a. Using an analysis similar to that in Problem 2.12, we find that for a # 1 the

and that o =1 has no inverse. To check that —=
a—1 a—1

inverse of « is

is the inverse of a,
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2.16.

2.17.

2.18.

219.

go—2— = a+v£’;-_,,a/ a > . a+—a(a—1) - 0
: a—1

Similarly, a% oa = 0.

Let G be the groupoid with carrier @ and binary operation o defined by aob =a—b+ ab. Is the
groupoid (@, ©) a semigroup? Is there an identity element in (Q,°)? Which elements of the groupoid
have inverses?

Solution:
(@,°) is clearly a groupoid.

ao(boc) = ao(b—c+be) = a—(b—~c+be)+ alb—ct+be) = a—b+¢— be+ ab— ac + abe
and
(aeb)oc = (a—b+ab)oe = a—b+ab—c+ (a—b+ab)e = a— b+ ab— ¢+ ac— be + abe

These two expressions are not the same for all values of a, b and ¢. For example, (000)cl =
001 =—1 while 00(0c1)=00—-1=1, Hence (@,°) is not a semigroup. Furthermore, (@Q,°)
has no identity element; for if ¢ were an identity, then ¢o1 =1 and eo0 =0, since 1,0 € Q.
But ecl=e¢e—1+e¢e=1 implies 2¢=2 or e¢e=1, and 0=¢e2c0=¢—0+0 implies e =0.
This is clearly impossible. Therefore (@, °) has no identity element.

If @ is replaced by Z, the integers, as the carrier for the groupoids in Problem 2.15, are the solutions
the same? (Hard.)

Solution:

(Z,°) with o defined as in Problem 2.15 is a semigroup with an identity, since the argu-
ment for the associativity depended only upon the associativity and commutativity of addition
and multiplication in Q. These laws also hold in Z. The same is true for the proof that 0 is the

identity of (Z,°). However, the inverse of an element a(1) € Z would be . f’_ i € Z. Our problem
then is: for which integers o # 1 is ?_1 an integer?
Let aﬁ =7 an integer. Then a = v(a —1). Clearly = =1 is impossible. (a) Assume first

that a > 1. Then r must be positive, and so » =2, Hence a =2(a—1) and thus 0=a—2,

Therefore ¢ = 2. If a = 2, then —(;—%I = 2 is an integer. (b) Now assume a = 0. If ¢ =0, then
a

a—1

0 = a— 2, which is impossible. Thus 0 and 2 are the only elements with inverses.

=0 is an integer. If @ < 0, » must be positive and = 2. Then a = r(a—1) = 2(a—1) and

Let G be the mappings of P, the positive integers, into P. Determine whether G is a semigroup
with an identity element if the binary operation in P is (i) the composition of mappings, (ii) the
addition of mappings, where « + 8 is defined by a(a+8) =aa+aB, ¢, EG and a € P.

Solution:

(i) The composition of mappings is an associative binary operation (see Problem 1.41, Page 18).
Then G with the binary operation of composition of mappings is a semigroup. The mapping
« defined by jo.=j for all j& P is the identity of G; for if € G, then j(to7r) = (j)r =
jr = () = j(r 01).

(ii) In Problem 2.6 we showed that the addition of mappings in the set F' of all mappings of R
into R is an associative binary operation. The argument here is similar., Thus G is a semigroup.

If @ were an identity element in G and if B E€ G, then «+ 8 = 8. Thus if j€ P, then

jla+B8) =ja+j8 =jB; hence ja=0. But « € G, a:P—>P and, since 0&P, this is a
contradiction, Thus (G, +) has no identity. (Compare with Problem 2.13.)

Let a, b, ¢ be three elements in a semigroup which have inverses. Prove that a(bc) has an inverse
and that this inverse is (¢c=1b" a1

Solution:
We need only verify that

{a(be)}{(c71b " Ha=1} = a{(be)[(c 107 Va"1} = a{[(bc)(c™1d " Y]a"1} = a{le"!} = aa"! =1

and similarly that {(c=1b-1)a~1}{a(bc)} = 1 to prove the result. Note our use of the associative law.
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b. The semigroup of mappings of a set into itself

A particularly important semigroup is the set Mx of all mappings of a given non-empty
set X into itself, where the binary operation is composition of mappings. We repeat the
definition of the composition of mappings in this special case. Suppose n:X~->X and
y: X=X, ie. pu,y € Mx. We define poy to be the mapping of X into X given by

2(woy) = (xp)y forall xe€ X

It is clear that o is a binary operation in Mx. We shall use the multiplicative notation w- v,
or simply uvy, instead of noy. We now show Mx is a semigroup with an identity.

Theorem 2.3: If X is any non-empty set, Mx is a semigroup with an identity element.

Proof: We begin by proving Mx is a semigroup. Let Wy p €EMx and let z € X.
Then using the definition of composition of mappings,

z(ulyp)) = (xp)lyp) = ((Zw)y)e = (@(py))e = z((py)p)

Since z is any element of X, (uy)p and p(yp) have the same effect on every element of X.
Thus (uy)p = n(yp), and so Mx is a semigroup.

To show that Mx has an identity element, let .: X > X be defined by z. =2« for all
z € X. Thenif u € Mx,

() = @Jp = xp = (@p)e = @(w)

Thus = p = e for all u € Mx; hence « is an identity element of Mx. The proof of the
theorem is complete.

Not every element in Mx necessarily has an inverse. For example, if X = {1,2,3} and
¢ € Mx is defined by 1lo =1, 206 =1, 3¢ =1, then o has no inverse; for if oy = we have
1=1.=1(oy) = (lo)y =1y and 2=2.=2(sy) = (20)y = 1y, so that 1 would have two dis-
tinet images under y, which contradicts the assumption that y is a mapping. The subset of
Mx consisting of all those elements which have inverses is very important. We characterize
these elements in the following theorem.

Theorem 2.4: An element in Mx has an inverse if and only if it is one-to-one and onto.

Proof: Suppose p has an inverse v; then p is onto. For if z € X, then z = 2. = 2(yn) =
(zy)p and zy € X is a preimage of . Moreover, p is one-to-one. For if zu = yu, then

(uw)y = a(py) = @ =2 and  (Yu)y = Y(py) = Yo = ¥
Therefore, since y is a mapping, «p = yu implies z = y; in other words, p is one-to-one.

To prove the converse, we assume pn is one-to-one and onto. Define y, which will be
shown to be an inverse of p, as follows: if * € X, we define zy =y where y is that element
of X which is the preimage of x under . To check that the definition of y is meaningful,
_observe that as . is onto there certainly is at least one element y € X such that yu ==.
But . is one-to-one, i.e. distinct elements have distinct images. So y is the unique element
such that yu = 2. To conclude we show y is the inverse of . Let * € X and zu=y.
Then z(py) = (xp)y = yy = = by the definition of y, and so py = ..

Since . is onto, each £ € X must have a preimage ¥ € X, i.e. yu=2. Then
a(yp) = F)yw) = (G = G = FJp = Up =

and so yu =. Thus y is the inverse of ;. and the proof of Theorem 2.4 is complete.
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¢. Notation for a mapping
When X is finite, say X = {ai, ...,a.}, there is a convenient way of denoting any

¢ € Mx, namely
B e ... Q
s =
(1/10' ano

That is, we place below each element a; of X (¢=1,2,...,%n) its image under o; e.g. if
X=1{1,2,8) and ¢ € X is defined by 1lo =1, 26 =1 and 80 =2, then ¢ is represented by

1 2 3
1 1 2

Notice that every element of X has a unique image under an element ¢ in Mx; therefore the

<(l1 az A3 ... Qn

top row will contain all the elements of X and under each element will

appear its unique image under o." All elements of X need not appear in the bottom row,
as we see from the example above.

Problems

2.20. (a) Write the element ¢ in My, X = {1,2,3,4,5,6}, in the notation introduced above, when ¢ is
defined by

(i) loe=1, 20=4, 30 =5, 40 =86, 506 =2, 66 = 6
(i) le=1, 20=1, 3¢6=1, 46=1, 50=1, 60=1
(i) 10 =6, 20 =5, 30 =4, 46=38, 50 =2, 60 =1
(b) What elements of My, X = {a, b, ¢,d, ¢}, are represented by the following?
o(piIED @@y w(t )
Solution:
(a)(i)<123456> (ii)<123456> (iii)<123456>
1 4 5 6 2 6 111111 6 5 4 3 2 1
(b) The mappings defined by
i) a-=>b,b~>a,c>c, d>d, e>e

(ii)) a—>a,b>e, c>d, d>c, e=>b

(iii) a—>e, b>a, c>¢c, d—>b, e>a

2.21. Exhibit all elements of Mx when (i) X = {1}, (ii) X = {1, 2}, (iii) X = {ay, as}.

Solution:
(i) There is only one element in M(l} , namely ::1-1, the identity mapping.

1 2 1 2 1 2 1 2
(i) The following are the elements of M, ,, : <1 2>, <1 1>,<2 1>,<2 2>.

a a a a a a
(iii) 12 , 1Tz , 1 % , G a2 are the only elements of M{a an
a; ap ay a; as g a5 ay 12 @2}

222, Write out the multiplication tables of the three semigroups in Problem 2.21(i) and (ii).

t

i i

1 2
(i) The identity of M{l,z) is ¢ = <1 2> .



38

2.23.

2.24.

2.25.

2.26.

GROUPOIDS

[CHAP. 2

1 2y S12N f12) o .
Let o, = <1 1 | ) and o = o) Then the multiplication table is
y SRy W2 ¢

The multiplication is calculated as follows., Since « is the identity,  leaves every element of
M{1,2} unchanged; hence the first row and first column are easily written down. Since jo; — 1,
7=1,2, andif e € M, , , then klooy) = (ke)o; = 1; thus ¢oy = ;. Hence the second column
consists of o;.

Similarly o¢o; = 04, so the last column consists of o;. We must still calculate o0y, 0909

and o405, Now each element of {1,2} is taken to 1 by oy, and 1 is taken to 2 by o4, S0 o0y
takes every element to 2; hence o0, = o035 Now logos = (low)ey = 200 =1 and 20509 =
(209)09 = 1oy = 2: hence o0, = . If j& {1,2} then joy; =2 and so jogo, = 20, = 1. Thus
0309 = 01.

Show that o has an inverse if and only if the bottom row in

V3 > ’n\

the representation of ¢ given on page 37, viz. | o 2 B contains every element of X once
Vo 2 ... Mo
and only once. : 7 /

Let X ={1,2,...,n} and ¢ € M.

Solution:
By Theorem 2.4, if ¢ has an inverse then ¢ is one-to-one and onto.

0 T T T

and the bottom row of { ) contains all elements of X once and only
Lo Zoo L. no )

once. Conversely if the bottom row of the representation has all the elements of X once and only

once, then each element in X has a unique image under o, namely the entry under that particular

element. Therefore o is one-to-one. ¢ is also onto, for if j € X it must be one of the elements in

the bottom row and j is then an image of the element of X appearing above it in the representation.

As ¢ i3 a one-to-one and onto mapping it has, by Theorem 2.4, an inverse.

Hence {1o,20,30,...,n0} =

{1,2,...,n}

List all elements of M,, ,, which have inverses.
(1,2}

Solution:
Problem 2.23 shows us that we must find all representations of elements of M{1,2} with bottom

1 2 1 2
row containing 1 and 2. Using the result of Problem 2.21(ii), we have <1 2> and <2 1> as the

only elements of M(I,Z} which have inverses. In the notation of Problem 2.22, : and o, are the only

elements which have inverses.

List all elements of M!1,2.3} which have inverses.

Solution:
The possible representations of elements of M(l.z,:}} which have inverses are

/123 VAR _ /1 2
”“<123> o132/ (21
12 3 12 3 /102
<231 31 2 <321

What are the inverses of the elements in Problem 2.257

w W w
D N

Solution:
Theorem 2.4 explains how to find the inverse of a mapping which is one-to-one and onto. For
example, to find the inverse of ¢;, we note o3 takes 1~ 2. Hence 03—1 :2->1, 03:3->3, hence

-1

03"1:3—>3. But then o; is its own inverse. Similarly 0;1 = oy, o;l = ay, 04"1 =05 o ! =0y

~-1=
-8 [+£: 8
6 6
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2.27.  Prove that the subset of elements of My which have inverses is a semigroup with identity under
the usual compositions of mappings.

Solution:

Let S be the elements of My which have inverses. Is o, the usual composition of mappings, a
binary operation in S? In other words, is (¢, ) > a°8 a mapping of SXS->8? If aopBES,
the answer is yes. So we ask: if a, 8 have inverses, does a°8? Note that (a0 g)o (8 1og~1) =
ao(BopB~ljog—l =qgo0,0a7 ! =, Hence aop has the inverse 8~1oa~1, As . is its own inverse,
t € S. As My satisfies the associative law, so does S. Hence S is a semigroup.

d. The order in a product

There is one way in which the associative law makes it easier to work in a semigroup
than in a non-associative groupoid. Suppose S is a semigroup and let ai, a2, a3 € S. There
are two ways in which one can multiply @, a: and as together (in this order): (aia:)as and
ai(azas). The point of the associative law is that these products coincide. Suppose now
a1,Qs a3,a4 € S. Then we can multiply @i, as, a5, a4 together (in this order) in the following
five ways:

01(02(304)), (2102)(aste), ((A102)as)0s, (@:(a203))as, a1((azas)cs)

It is conceivable that some of these products give rise to different elements of S. However,
the associative law, which of course involves products of only three elements, prohibits this.
To see this consider first (mas)(asas). By the associative law, (@1a2)(as@s) = ai(az(asaa));
hence the second product coincides with the first. In fact all of the products equal the
first. As a second illustration consider ((a:¢2)as)as. Here we have, as desired,

(@maz)as)as = (ai(@ams))as = ai((@285)00) = a1(ax(@s04))

In general, we have

Theorem 2.5: Let S be a semigroup and let ai, a2, ...,a,. € S. Then any two products of
@4, as, . ..,a, coincide, when the a; appears first in each product, a. sec-
ond, ..., and a, last.

Proof: Assume the contrary, that not all possible products of ay, ...,@. in that order

are equal. We may assume that n is the first integer for which two different products give
rise to different elements. Let x and y be these two different products. Now z = wuv and

¥ = uv; for some u,v and some u%;, vi. Suppose u is the product of the elements ay, ..., a-
and v the product of the elements a,+1, ..., an, while u; is the product of ai, ...,a; and v,
is the product of as+1,...,a.. Without loss of generality we may suppose that s=r. If

s=1r then u =wu; and v = v, since n is the first integer for which there exist two unequal
products of the same elements. If s < r, then u = (a:...as)(@s+1...a7) while v; =
(@s+1...a7)(@r+1...02). Hence z = uv = {(ai...as)(Us+1...0)HArr1...ax) While y = w1 =
(@1...0){(@s+1...0)(@r+1...aa)}. By the associative law for the three elements (ai...as),
(@s+1...a,) and (@r+1...as), we have z =1y, contradicting the assumption that not all
possible products are equal. Hence the result follows.

It follows from Theorem 2.5 that in a semigroup, if we are given the order of a product,
the bracketing is immaterial. Thus we write simply aiq2...a., without brackets, for the
product of a1, as, .. .,a, in this order. For example, if m is any positive integer, we write
a-a-----a for the product of m a’s; a useful abbreviation for such a product is a™. If n
is a second positive integer, then a™-a" = a™*" since a™-a" is simply the product of m +n
a’s. Similarly, (a™)* = am™n,
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For example, if S ={1,2,3} is the semigroup with binary operation given by the
following table, then 13 =3, 23 =38, 33 = 3.
1 2 3

1 2 3 1

2 3 1 2

3 1 2 3

2.5 HOMOMORPHISMS OF GROUPOIDS AND CAYLEY’S THEOREM

a. Definition of a homomorphism

Before we give the formal definition of a homomorphism of one groupoid into another,
we will give an example. Let (R, ) be the groupoid of positive real numbers with the binary
operation of ordinary multiplication. Let (R, +) be the groupoid of real numbers with
binary operation the usual addition inside R. Let us define a mapping 6: R—> R by
26 = logrox. Recall that log(ry) = logwx + logiy; hence (xy)d = 26 +y6. ¢ is an
example of a homomorphism. The formal definition is

Definition: A homomorphism from a groupoid (G, «) into a groupoid (H, 8) is a mapping
6: G~ H which satisfies the condition

(91, 92)a)8 = (916, 920)B
for all g4,9: in G.

Usually groupoids are written in multiplicative notation. The definition then takes the
form: A homomorphism of (G, *) into (H, ) is a mapping 6: G > H such that

(9192)8 = g10g26 2.7
for all g1,9: in G. (2.7) is often expressed as: “9 preserves multiplication.”

Problems

2.28. Let G be the semigroup of integers under the usual addition of integers and let H be the semigroup
of even integers under the usual addition. Verify that the mapping 6: G— H defined by
6:9—2¢g for all g € G is a homomorphism of G into H.

Solution:

First we must check to see if ¢ is a mapping. Since 2¢ is a unique integer, ¢ is clearly a
mapping. Let g¢,,9,€G. Then g0+ g,6 = 2g, + 2g, = 2(g, + g5) = (g, + g)6. Therefore ¢
preserves multiplication and is 2 homomorphism.

2.29. Let G be the semigroup of integers under the usual multiplication of integers, and let H be the
semigroup of even integers under the usual multiplication. Is ¢: G- H defined by o¢:9 —>2¢
for all ¢ € G a homomorphism of G into H?

Solution:
As in the preceding problem, o is a mapping. But ¢ is not a homomorphism; for if g,9,€ G,
then (g:95)0 = 29,9, and g 09,0 = 29,29, = 4g,9,. Hence (g:9:)0 # (9,0)(gse) for all g,, g9, € G.

230. Let (G,+) and (H,+) be the semigroups of Problem 2.28. Find a homomorphism of (G,+) into
(H, +) which is not equal to 6.

Solution:
Define 7,: G~ H by r,:g—ng where n is a fixed even integer. r, is a mapping of G into H,
since ng € H for any even integer n and ng is unique. For each =, 7, is a homomorphism because
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231,

2.32.

2.33.

2.34.

2.35.

91,92 € G implies (g, + go)r, = nl(gy+9gy) = ngy + ngs = gyrp + gorp. 7, % 6, since 16 # 1r, if
n % 2. Therefore there is an infinite number of different homomorphisms between (G, +) and (H, +).
Notice 7, is an onto mapping if » = 2, because any element in H is of the form 2q, ¢ an integer,
and qr, = 2¢g. But when = ¥ 2, 7, is not onto since 2 has no preimage under r. For if ¢r, =2,
qEG, then ng=2 or ¢ =2/n (if n+#0) and 2/n €& G.

Let G and H be as in Problem 2.28. Verify that the mapping o: G > H defined by o: g — g2, for
all g € G, is not a homomorphism.
Solution:

Let ¢1,9,€G. Then (914950 = (9:+922 = g2+ g2+ 29,9, and gyo + goo = g1+ 95
Hence o is not a homomorphism for (g,+ gs)0 ¥ g0 + goe for all g,,9, € G.

Is the mapping ¢ of G into H, G and H as in Problem 2.28, defined by go =0 for all g€ G, a
homomorphism?
Solution:

If 94,9, € G, then (9, +g5)0 =0 and g0+ 9,0 =040 =0. Hence o is a homomorphism.

Let G be the semigroup of positive integers P under the usual addition, and let H be the semigroup
of positive integers P under the usual multiplication. Show that the mapping 5: G = H defined by
gn = 29 for all g € G is a homomorphism.

Solution:

7 is clearly a mapping. Let g,,9, € G. Then (g9, + 92)n = 29179 — 99199 — 4 ngon. Hence 5 is
y 2 1
a homomorphism.

Let G =({1,2,8},a) and H = ({a, b, c}, 8) be the groupoids with binary operations « and 8 defined
by the multiplication tables

2 3 a b ¢

1 1 2 3 a c a b

a: 2 2 3 1 B: b b b a
-3 3 1 2 c c a b

Which of the following mappings are homomorphisms?

(@) 1»a, 2>b, 3>¢c (d 1->b,2-¢ 3¢
%) 1-a,2->a, 3=a (¢) 1-b,2-b,3-b
(¢) 1-a, 2->b,3->0b (f) 12¢,2-0a,3-b
Solution:

We use o to indicate the mapping in each case.

(@) 1020 =ab =a and (1+*2)c =20 =b. ¢ is not a homomorphism. (b) 1620 =aa =c¢ and
(1+2)0 = 20 = a. o is not a homomorphism. (¢) 16206 =ab =a and (1+2)0 = b. o is not a homo-
morphism. (d) 1680 = bc =a and (1+8)c = 80 = ¢. ¢ is not a homomorphism. (e) o is a homomor-
phism since the image of 1, 2 and 3 is b, so that (ij)o = b for any 4,7 € {1,2,3}, and 4ojo = bb = b.
(f) 1620 = ca = ¢ and (1+2)0 = 20 = @. ¢ is not a homomorphism.

Let G be the semigroup of positive integers under the usual addition. Determine which mappings
of G into G are homomorphisms:

(i) o: m>2n+1, (ii) o: n—>2n2 (iii) ¢: n>1,

Solution:

i) (my+n)de = 2ny+m)+1 and ne+neo = 2y +142n,+1 = 2(n;+n,) +2. Hence
(ny + ng)o = nio + meo, and so o is not a homomorphism.

(i) (ny + ny)o = 2(n; + ny)2 = Zn% + 2n§ + dnn,. Mo + noe = 2nf + 2n§. Then no + nyge #*
(ny + ny)o, and so ¢ is not a homomorphism.

(iif) (my+my)o =1. no+meo =1+ 1 = 2. Thus ne + ny0 ¥ (n;+ ny)e and hence o is not a
homomorphism.
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Epimorphism, monomorphism, and isomorphism

Three special types of homomorphism arise naturally.

A homomorphism of groupoid G into groupoid H may be an onto mapping.

A homomorphism of a groupoid G into a groupoid H may be a one-to-one mapping.

A homomorphism of a groupoid G into a groupoid H may be both onto and one-to-one.

We give these three types of homomorphisms special names.

Definition: Let 4 be a homomorphism of a groupoid G into a groupoid H. Then

1. 4 is called an epimorphism if § maps the carrier of G onto the carrier of
H,ie. G§—=H. (See Section 1.3a, page 12, for the definition of G4.)

2. ¢ is called a monomorphism if ¢ is a one-to-one mapping of the carrier of
G into the carrier of H.

3. 4 is called a isomorphism if 6 is both an epimorphism and a monomorphism,
i.e. § is one-to-one and onto.

If there is an isomorphism from groupoid G onto the groupoid H, then we say G and

H are isomorphic, or G is isomorphic to H, and write G = H.

Problems

2.36.

2.37.

2.38.

Let G be the groupoid of integers with addition as binary operation, and H the even integers with
addition as the binary operation. Let r, for n an even integer be the homomorphism (Problem 2.30)
defined by g+, = ng, for g € G. When is r, an isomorphism, monomorphism or epimorphism?

Solution:
If n+# 0, r,is one-to-one since gr, = ¢g'r, implies ng = ng’ and so g = g’. =, is not one-to-

‘one, s0 it is not a monomorphism. If r, is onto, there exists g € G such that gr, = ng = 2. Then

9 =2/n and n = =2. Hence r., are the only epimorphisms. Thus r., are isomorphisms and r,
is 2 monomorphism when 7 % 0.

G and H are finite groupoids and |G| # |H|. Show that G cannot be isomorphic to H.

Solution:
Let 6: G- H be an isomorphism and let g,,...,g, be the (distinct) elements of G. Then
918, 946, - .., g6 are distinet (since ¢ is one-to-one) and are all the elements of H (since ¢ is onto).

Hence |H| =mn, which contradicts |G| # |H|. Thus there exists no isomorphism ¢: G - H.

Prove that if G, H, K are groupoids, then: (i) G = G; (ii) if G=H, then H=G; (iii)if G=H
and H = K, then G = K. In other words “=" is an equivalence relation. (Hard.)

Solution:
(i) Let :: G- G be the mapping defined by g. =g for all g € G. . is a one-to-one epimorphism.
Hence it is an isomorphism, and so G = G.

(ii) Let a =G — H be an isomorphism. Then we define a mapping B8: H — G as follows: Let
h &€ H, As « is one-to-one and onto, there exists a unique g € G such that go == h. Put
hB = g. Note that hBa = h.
Now g is onto G, for if ¢ €G, ge =h &€ H and hg =g by definition. Also 8 is one-to-
one; for if h,;8 = h,8, then h;Ba = hyBa and so hy = k.
Finally 2 is a homomorphism. Let k, hy € H. Suppose gja = hy, gsa = hy. Then
hiB =gy, hoB = g,. Note that (g,9.)e = gia9s0 = hihy. Hence (hiho)8 = 9192 = hBhyp.

(iii) Let o«: G- H and g:H - K be isomorphisms. Let y = aBf. We shall prove that y is an
isomorphism. First, vy: G - K. Secondly, y is onto; because if k € K, there exists h€ H
such that kg8 =k, and there exists g € G such that ga=h, so g(aB8) = hf = k. Next vy
is one-to-one; for if g:y = g3y, (910)B = (952)8, and as B is one-to-one, gia = goe, Wwhich
implies, since a is one-to-one, g, = g,. Finally, we must show that y is a homomorphism.
(91927 = (9192))B = (¢10920)8 = (910)B(920)8 = 91(aB)gs(af) = g1Y9sy. Hence G =K.
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2.39.

2.40.

2.41.

2.42.

243.

(a) Is the semigroup of integers under the usual addition isomorphic to the multiplicative groupoid
of nonzero real numbers? (Hint: The integers and the reals are not equipotent.)

(b) Is the groupoid of nonzere rational numbers under division isomorphic to the groupoid of
nonzero rational numbers under multiplication?

(¢) Is the semigroup of integers under the usual addition isomorphic to the semigroup of rational
numbers under the usual addition? (Hint: Snow that under any homomorphism 6 of the
integers under addition into the rationals under addition, re = 2(16).)

Solution:

(@) No. Because if the integers were isomorphiv to the reals, the isomorphism between them would
constitute a mateching and hence the reals and the integers would be equipotent.

(b) Let a: (@%, +)—={Q% *) be a homomorphism hetween the nonzero rationals under division and
the nonzero rationals under multiplication. Now I =1+ 1. Thus la=(1-+1)a =le*le and
s0 le = =1. Now =1 = ia == (2+ Zja = 20240 and so 20 = *x1. Similarly, 3« = *1. Hence «
is not one-to-one. In particular, o is noit an isomorphism. Thus there is no isomorphism
between the two groupoids.

(¢) Let 6: (Z,+)— (Q,+) be any homomorphism. Let 16 == q. We shall show by induction on
rthat r¢ = rq forall » €N, Now g =162 {0+ 1 =0s+19 =00+ ¢q and so 06 = 0. Sup-
pose r8 =rq for r =wn. Consider » =nu-+1., (n+1)§ =n6+1e =nqg-+q=(n+1)q. Hence
r¢ =rq for all » € N, by induction. If » &€ Z and r is negative, then —r € N. Then since
0=(r+—186 =20+ (—1)8 =26+ {—r)q, r6 = rg. Hence 76 =rq for all r € Z.

If ¢ =0, 6 is not onto. If ¢ == m/n, with m,n integers and m,n ¥ 0, then 1/2n€ Q.
Has 1/2n a pre-image? If » were an integer such that »¢ = 1/2n, then »rq = 1/2n and so
r =1/2m. But 1/2m is not an integer. Thus 6 is not an epimorphism and there is no
isomorphism,

Let (Z,°) be the groupoid with binary operation © defined by
aob = a -+ b ab
and let (Z, *) be the groupoid with binary operation # defined by

b = a+b—ab
Is (Z,9) = (Z,4)? i ! ¢

Solution:

Let o: (Z,0) > (Z,%) be defined by a¢ = —a for a € Z. ¢ is clearly a mapping. (a°b)e =
(@at+b+ab)g = —(a+b+ab) and ac*bs = —ax—b = (—a)+ (=b) — (—a)(—b) = —(a+ b+ ab).
Hence ¢ is a homomorphism. o is onte, for if a € (Z,*), then —a € (Z,°) and (—a)s = a. Now
ac = bo implies —a = —b and a = b. Therefore ¢ is one-to-one and (Z,0) = (Z, *).

Is M, ’:VM{LQ}? Is M, = M, 3) ?
Solution:
]Mm] =1 and ]M,LZ}E =4 (see Problem 2.21, page 37). Therefore, by Problem 2.37, M,

cannot be isomorphic to ]1/[;]_2. . From Problem 2.25, the subset of elements in M{1’2’3} which have

inverses has 6 elements. Thus |[M,, ,, | is less then the order of M, , , , and so M, ,, is not iso-

morphic to M(l,z,:;; .

Give an example of two groupoids of order two which are not isomorphiec.

Solution: a b c d
a a a ¢ c d
b [ a d d ¢

These two groupoids are not isomorphie, since there are only two one-to-one mappings, namely
6: a~>¢c,b>d and y¢: a—~>d,b—>¢c. Now 6 is not an isomorphism, for (ab)s = ag =c¢ while
adbs = ed = d. y is not an isomorphism, for (aa)y = ay = d while ayay = dd = c.

Prove that the mapping ¢: a +ib - a—ib is an isomorphism from the groupoid C of complex
numbers under addition with itself,
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Solution:

6 is onto; for if v € C, x =a+1ib. Now (a+i(—b))6 = a+ib = x. Also 6 is one-to-one, since
(a; +1b1)8 = (ay + iby)6 implies @, —iby = ay —ib, and hence a; = ay and b, = b,.

Finally ¢ is a homomorphism, for

(@ +iby) + (ay +ib)]0 = (a;+ap) — i(by+by) = (a+1ib)6 + (ag + iby)e

2.44. Is the homomorphism ¢ of the groupoid C of complex numbers under the usual multiplication of
complex numbers to the groupoid of real numbers under the usual multiplication defined by

6: o+ 1ib = |a+ib] = + Va2 + b2
an epimorphism or monomorphism?

Solution:
It is well known that if x{,x, are two complex numbers, then |®%,] = |2||xy/. The calcula-

tions are
lay + b, |ay + by = V(@@ + B2)(ad T b2)
= V{ayas — b1by)? + (byay + byay)?
= 'ajag — byby + Ubias + byay)|
= (@ + iby)(ay + iby)|

Then (x,;%5)8 = 218256 and so ¢ is a homomorphism. On the other hand (a -+ ib)¢ = (—a —ib)s,
s0 6 is not one-to-one. Finally 6 is not onto, for it is always the case that |#| = 0, and thus there
exists no « such that x¢ = —1.

2.45. Let (P,*) be the groupoid P under the usual multiplication of positive integers and (R, +) the group-
oid R under the usual addition of real numbers. Is the mapping 6 of (P,*) into (R, +) defined by
6: a—~logyy @ an epimorphism, monomorphism or isomorphism?

Solution:

As in Section 2.5a, 6 is a homomorphism. If a6 = bg, then logya =log;yb and hence a = b.
Thus ¢ is a monomorphism. Since 0 = log,;, 1 < log;, 2 < logyy 3 < +-+, there is no integer such
that log,; * = —1. Hence ¢ is not onto. Therefore ¢ is a monomorphism but not an epimorphism
nor an isomorphism.

c. Properties of epimorphisms

We will show in this section that if ¢ is an epimorphism from the groupoid G to the
groupoid H, then H shares some of the properties of G.

Theorem 2.6: Let 6 be an epimorphism from the groupoid G to the groupoid H. Then

(@) if G is a groupoid with an identity 1, so is H and 19 is the identity of
H. Furthermore if f is an inverse of ¢ in G, then f0 is an inverse of
g6 in H.

(b) if G is commutative, so is H.
(¢) if G is a semigroup, so is H.
Proof:

(a) Let h € H. We shall prove 19 is the identity of H, i.e. h-10 =h=10-h. As ¢ is
an epimorphism, ¢ is onto and we can find an element ¢ in G such that gd = h. Then

h+16 = ¢g6+160 = (g-1)6 = g0 = h
and 10-h = 10-99 = (1-9)0 = g0 = h
Thus 16 is the identity of H and H is a groupoid with an identity.
Now suppose ¢ € G has an inverse f. Then gf =1=fg. Therefore
9079 = (90 = 160 = (f9)6 = fo-90
which means f¢ is the inverse of ¢¢ in H.
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(b) Suppose G is commutative. We show H is commutative. To this end let &, 7" € H.
Because ¢ is onto, we can find ¢,¢9’ € G for which g =h and g’6 = h’. Hence

hiy = 909’0 = (g-9")0 = (97-9)0 = g'0-96 = I'h
and so H is commutative as claimed.

(¢) To show H is a semigroup, we must prove that multiplication is associative in H.
Let h,k’,h”” € H. Then we can find g¢,9’,9” € G such that g =nh, ¢’ =k’ and
g”’0 = k. Since G is associative we have, as required,

(RRR” = (96-9'0)9"0 = [(99")0]9"0 = ((997)9")0
— (g(g/gu))g — ga[(g/gn)gl — g&(q’&‘g”@) — h(h/hn)

d. Naming and isomorphisms

In our study of groupoids we will take isomorphic groupoids to be essentially the same.
To explain why, we will describe a “naming process,” beginning with an example.

Let G be the groupoid with binary operation -, elements 1 and a, and multiplication table

1 a
1 1 a
a a 1

We define a new groupoid G by relabeling the elements of G. Let G consist of the elements
o, 8 and have multiplication table

a B
a a B8
B B a

What we have done is to call the elements of G by different names.

In general if G is any groupoid, we can form a new groupoid G by renaming the elements
of G. Thus for each g € G we take a new element §, ensuring only that = g if f+#g, i.e.
d_on’t use the same name twice. If fg =h, then we define multiplication of elements of
Gby fod =h. Itis easy to prove that G is a groupoid with this multiplication.

We are not interested in distinguishing between groupoids which differ only because
their elements have different names. Considering groupoids to be the same if they are
isomorphic overcomes this snag. To see this we will show that the G constructed from G
above by renaming is isomorphic with G. We must find a one-to-one onto homomorphism
6. Define g6 = g, i.e. the image of g under ¢ is the new name of g. 4 is one-to-one onto,
as one and only one § corresponds to each g. Also (fg)d =k where fg =h. But foogd =
fog="rh, by definition of the multiplication of G. Hence (f9)d = foog0, and G is iso-
morphic with G. Thus isomorphism gets rid of the difficulty of obtaining a new groupoid
on simply renaming.

We look at the problem from another point of view. Suppose F and G are two iso-
morphic groupoids, and that ¢ is an isomorphism between F and G. Then we will apply
our renaming process to show that G and F, F suitably renamed, cannot be distinguished
either as regards their elements or the way they multiply.

Let us as before rename each element f €F, f. But we shall choose f to be f. This is
a proper renaming since f=§ means that f0 = g0, and, as ¢ is one-to-one, f=g. So we
have not used the same name twice. As before, if fg =h we define fod to be k. Thus
F becomes a groupoid with respect to the binary operation o.
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How does F' compare with G? F has the same elements as G. But do these elements
multiply the same way? Suppose f: and f. are two elements Qf IZ’ T_hen f1 was previously
called fy, and f» was called f.. If f,fs = f;, then we defined fiof: = fs.

Now fi, f» are also elements of G: in fact, fi=fi0, f» = f-6. The product fif: in G is
therefore fi0f20 = (f1f2)0 = fs0 = fs, since ¢ is a homomorphism. Hence the product fiof.
of two elements in F is the same element as the product f,f: inside G.

Thus a groupoid isomorphic with a groupoid F' is indistinguishable from a suitable
renaming of F' as far as the elements and the way they multiply are concerned. For this
reason we do not distinguish between groupoids that are isomorphic.

e. Mx and semigroups

The importance of Mx is explained by the following theorem, which says that an iso-
morphic copy of any semigroup S is contained in some Mx.

Theorem 2.7: (Cayley’s Theorem): Let S be a semigroup with identity. Then there is
a monomorphism of S into M,. (The semigroup S is an abbreviation for
the semigroup (S, 1) where is a binary operation. M, is the semigroup of
all mappings of the set S into itself, with binary operation the composition
of mappings.)

Proof: Let s€ S and let p :S—>S be defined by wxp, =as, v €S. Here xs is the
product of ¥ and s in S, i.e. (x,5). It is clear that p_is a mapping of S into S, i.e. p, € M,.

Let 4: S~ M, be defined by s6 = . We shall show that ¢ is a monomorphism. First
we have to check that 0 is a homomorphism. Let s,¢" € S.

(887)0 = p,, and 088 = p p.

Now if x €S, xp.p, = (xp)p, = (¥8)p,, = (x8)s' = xp,.. As this is true for all z €S, p,. =
p.p,- Hence (ss')§ = sfs’f.

Secondly we must show that ¢ is one-to-one. Suppose s§ =s¢; then p =p.. In
particular, if 1 is the identity of S, 1p = 1p.. But then 1lp, =1l:s=s=1:p, =18 =¢
and so s =8 and ¢ is a monomorphism. This completes the proof of Theorem 2.7.

As an illustration of the proof, let S = {ai, a»,as} be the semigroup given by the follow-
ing multiplication table:

y s 3
a; oy ay % ag
3 ) Rt ay
a3 3 @y az

Notice that a; is the identity element of S and that S is a semigroup. Now
_ ay Az ds . a; QA2 a3 . ar 02 Qs
Pop T \ay @ as)’ P T \a az ar)’  Pes as a1 Q2

The mapping ¢ is defined by @0 = p, , @,0 = p,,, ¢;6 =p, . It can be checked directly that
0 is a monomorphism. |
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Let S¢ = {s6| s €S} where ¢ is the monomorphism of Theorem 2.7; then S =S¢ and
hence Ms contains an isomorphic copy of S. In Section 2.5d we pointed out that, but for
naming, S and an isomorphic copy were the same. Thus we see that in a rough way every
semigroup with identity appears in some Mx. Hence the importance of Mx.

A look back at Chapter 2

We defined a groupoid, associative groupoid (called a semigroup), and commutative
groupoid.

We showed that in a groupoid the identity is unique, while inverses are unique in a
semigroup.

We defined a mapping 6: (G,a) = (G, 8) to be a homomorphism if [(g1, 92)a]ld =
[(918, 920)]8. If 6 is one-to-one and onto, we called it an isomorphism of (G,«) onto (G, B).
We proved Cayley’s theorem, that each semigroup has an isomorphic copy in Mx for some
suitable X.

Supplementary Problems

GROUPOIDS
246. Let G ={1,—-1}. Is (G,*) a groupoid if * is the usual multiplication of integers?

247. Show that (G,*) is a groupoid when G = {1,—1,%,—}, ¢=V—1, and ° is the usual multiplication
of complex numbers.

248. Suppose G, is the set of all integers divisible by the integer n. For which = is (G,, *), with the usual
multiplication of integers, a groupoid?

249, Let f,1=1,2,3,4,5,6, be the set G of mappings of R — {0,1} into R defined for each » € R —{0,1}

1 x—1 1
=7 f3;x—>——x_; I e f5:x—>xi1; fe:x—=>1—w. Suppose G;; =

{fi, f;} and that o is the composition of mappings. Determine which of the following are groupoids:
(i) (Gy,2,9), (i) (Gy,3°), (i) (Gy40°), (V) (G50, (V) (G169, (Vi) (Gs6°)-

by firx—ox forx—

250. Let F = {f,fs,f3} and H = {fy,fs,f4,f¢} Wwhere f; are the mappings defined in Problem 2.49.
Prove (F,°) is a groupoid while (H,©) is not a groupoid (o is the composition of mappings).

COMMUTATIVE AND ASSOCIATIVE GROUPOIDS

251, Let R* be the set of nonzero real numbers. Define the binary operation © on B* by a°b = |a|b for
a,b € R*. Prove (R* ) is an associative groupoid but not a commutative groupoid. Hint:
la] 16| = ladl.

252. Define the binary operation * on G =R XRE as (a,b)*(¢c,d) = (ac, be+d). Is (G,*) a commuta-
tive or an associative groupoid?



2.54.

2.56.
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The binary operation « on R is defined by «: (a,b) > Ja—bl for a,b € R. Show that (R,a) is
commutative but not associative.

Suppose we define a binary operation + on R by a -+ b = the minimum of @ and b (a,b € R). Show
that (R, +) is both associative and commutative.

Let G=1{a| a: R~ R}, For a8 € G define the mapping a%8 = a9 — B°a where © is the
usual composition of mappings and x(a°f — B°a) = 2(a°B8) —x(B8°a) for all x €R. Prove:
(i) (G, *) is a groupoid; (ii) (G, #) is neither associative nor commutative; (iii) (a * 8) *a = a * (8 * @)
for all «,8 € G; (iv) a* B = (—fB) *a where —8 is the element of G defined by —g: x - — (xB) for
all x € R. (Hard.)

a°f + Boa

Let G be the set in Problem 2.65. For «,8 € G define a*p = where o is the usual

2
ao’e—;'goa :x(aOB)-;-x(,Boa) for all =€ R. Prove: (i) (G,*)

is a groupoid; (ii) (G,+) is commutative but not associative; (iii) (a*B)*a=a*(8°a) for all
a, B € G.

composition of mappings and =«

INVERSES IN GROUPOIDS

2.57.

2.58,

2.59.

2.60.

2.61.

2.62.

2.63.

Let BT be the set of all non-negative real numbers. Define a*b = +va2+ b2 for all a,bE Rt
(Va?+ b2 is the positive square root). Find an identity in (R*, #*). What elements have inverses?

For all o, € G = {«| a: Z > Z}, let @« X 8 be the mapping defined by (e X 8) = za+2f where
x € Z and ¢ is the usual multiplication of integers. Is (G, X) a groupoid? Does it have an identity?
What elements have inverses?

Let G ={a| a:Z ~ Q, @ the rational numbers}. Define o X 8 as in the preceding problem. Does
(G, X) have an identity? What elements have inverses?

Which of the groupoids in Problems 2.57, 2.58 and 2.59 are commutative and which are associative?

Define the following binary operation + in Rt, the non-negative real numbers: ¢ + b = the maximum
of @ and b, a,b € R+*. Does (R*,+) have an identity? What elements have inverses?

Let (G, ) be the groupoid of Problem 2.56. What is the identity of (G, *)? Find an infinite number
of elements which have inverses.

Show that (G, *), the groupoid of Problem 2.55 has no identity.

SEMIGROUPS WITH AN IDENTITY

2.64.

2.65.

2.66.

2.67.

Which elements of (G, *), where G = {1,—1,17,—i}, i =V —1, and + the usual multiplication of com-
plex numbers, have inverses?

Let G = {fy,fs,fs, f4s[5 f6} of Problem 2.49. Prove that G with the binary operation © of com-
position of mappings, is a semigroup with an identity. Find the inverse of each element in (G, ©).

Let G = {(a,b,¢,d)| a,b,¢,d € Z}. Define
(a,b,¢,d) (a/, b, ¢',d) = (aa’+ ¢b’, ba’ 4 db’, ac’ -+ ¢d’, be’ + dd')
Show that (G, ») is a semigroup with an identity. Show that the subsets H = {(1,0,0,1), (—1,0,0,—1)}

and F = {(1,0,¢,1)| ¢ € Z}, with the binary operation of (G, *) restricted to H and F respectively,
are semigroups with an identity. Find the inverses of the elements of H and F.

Let G = {a| a a mapping of {1,2,3,4,5} into {1,2}}. For «,8 € G, let a°p be the usual com-
position of mappings. Is (G, ©) a semigroup with an identity?
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2.68.

For a,BEG = {a]| a:{1,2,8,4,5} > {1,—1}}, define the mapping a« X8 by n(aXp) = na+*ng,
where 7 € {1,2,3,4,5} and * the usual multiplication of integers. Is (G, X) a semigroup with an
identity? If so, what elements have inverses?

HOMOMORPHISMS OF GROUPOIDS AND CAYLEY’S THEOREM

2.69.

2.70.

2.71.

2.72.

2.73.

2.74.

Let H = {(1,0,0,1),(—1,0,0,—1)} be the groupoid defined in Problem 2.66. Show that H is
isomorphic to the groupoid (G,*) where G = {1,—1} and - is the usual multiplication of integers.

If F={(1,0,¢,1)| cEZ} is the groupoid defined in Problem 2.66 and (Z, +) the groupoid of integers
under addition, prove the two groupoids are isomorphic.

Which of the groupoids of Problem 2.49 are isomorphic?

Let G ={fy,fo f3, 14, f5 s} be the groupoid of Problem 2.65, (H,+) the groupoid with H = {1,-1}
and + the usual multiplication of integers. Find all possible homomorphisms of G into H. Show
that there is no homomorphism of (G, °) into (F,°) where F = {f,f, f3} and ° the usual composi-
tion of mappings. (Hard.)

Can the groupoid (G, *) of Problem 2.55 be a homomorphic image of the groupoid (Mg, °) where ©
is the usual composition of mappings?

Suppose G = {a| @:Z > Z}, X the binary operation defined in Problem 2.58 and o the usual com-
position of mappings. Show that ¥: (G, X) > (G,°) defined by ¥:a—> e« is not a homomorphism.
(See Theorem 2.6, page 44.)



Chapter 3

Groups and Subgroups

Preview of Chapter 3

We define a group as a semigroup with an identity in which every element has an inverse.
The object of this chapter is to show that the concept of a group is natural. This is done
by providing illustrations of groups which arise in various branches of mathematics. The
most important concepts of this chapter are group and subgroup.

3.1 GROUPS
Definition

As we remarked in the preview, a semigroup with an identity in which every element
has an inverse is termed a group. We repeat the definition in more detail:

Definition: A non-empty set S together with a binary operation in S is called a group if

(i) there exists an identity element (usually denoted by) 1€S; in other

words, a1 =a =1-a forall a€S

Recall that the identity is unique by Theorem 2.1, page 31.
(ii) for every choice of the elements a,b,c € S,
(@*d):ec =a-(b-c)
Thus (i) and (ii) are the conditions for (S,¢) to be a semigroup with
identity.
(iii) every element ¢ € S has an inverse in S, i.e. there is an element b € S
such that a'b=1=ba
This element b is often denoted by ¢~!. The inverse is unique by Theorem
2.2, page 33.
Whenever we define a group we shall follow the pattern:
I. Define a set S (= @).
II. Define a binary operation in S.
III. Verify that the groupoid (S, ) contains an identity element.
IV. Verify that the groupoid (S,-) is a semigroup, i.e. is associative.
V. Verify that every element of S has an inverse.
The number of elements of S, |S|, is called the order of the group. (Compare Section 2.2,

page 29.) We will exhibit groups of infinite and finite order. (See following examples and
problems.)

50
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Examples of groups of numbers
Example 1: The additive group of integers.
I. Let Z be the set of integers.
II. Let + be the binary operation of addition in Z.
III. n+0=n=0+n for every n € Z. Thus (Z,-+) has an identity element.

IV. If I, m,n are integers,
(I+m)+n = 1+ (m+n)
ie. (Z,+) is a semigroup.

V. If n€Z, then —n in Z has the property
nt+(—n) = 0 = (~n) +n
i.e. —n is an inverse of n in (Z, +).

Thus we have shown that the groupoid (Z, +) is a group. This group is usually
referred to as the additive group of integers.

Example 2: The additive group of rationals.
I.  Let @ be the set of rational numbers.
II. Let 4 be the binary operation of addition in Q.
III. a+0=a=0+a forevery a €Q, so 0 is an identity element for (@, +).
IV. If a,b,c€Q, then (a+b)+¢c = a+ (b+c).
V. If a €@, then —a in @ has the property a + (—a) = 0 = (—a) + a.

Example 3: The additive group of complex numbers.

The description of this group is left to the reader.

Example 4: The multiplicative group of nonzero rationals.
I. Let @* be the set of nonzero rational numbers.

II. Let * be the binary operation of multiplication, i.e. the usual multiplication of
rational numbers.

II1. The rational number 1 is clearly an identity in the groupoid (Q%,+).
IV. If a,b,c € Q*, then
(a*b)*¢c = a+(bre)

V. If z€ Q*, soisl/a and
1 1

a*— =1 = =+q
a a

Thus every element of @* has an inverse.

Example 5: The multiplicative group of nonzero complex numbers.
This group is very similar to that in Example 4. 'We shall go through the usual
five stages in setting up and describing the group.

I. Let C* be the set of all nonzero complex numbers. Thus
C* = {x]| # =a-+ib where x + 0+ 10 and a,b € R}
Recall that 2 = -1,
II. We define multiplication of complex numbers as follows:
(a4 ib)}c+id) = (ac— bd) + i(ad -+ be)

This is a binary operation in C* since (ac— bd) + i(ad + be) is a unique ele-
ment in C* (not both ac — bd and ad + be can be zero).

III. 1 +i0=1 & C* and it is clearly an identity in (C*,*).
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IV. Suppose a-+ib,c+id, e+ if € C*. Then
[{a + b} (e +id)](e +if) = [(ac— bd) + i(bc+ ad)|(e + if)
= [{ac— bd)e — (be+ ad)f] + i[(bc+ ad)e + (ac — bd)f]
On the other hand,
(@ +ib)[(c +id) e+ if)] = (a+ib)[(ce — df) + i(de + cf)]
= [a{ce —df) — b(de + ¢f)] + i[b(ce —df) + alde + ¢f)]
It follows from these two computations that
(@ +b)[(c+ id{e +if)] = [(a+ ib)(c+ id)|(e+ if)
V. We have to check the existence of inverses. Thus suppose a+ ib € C¥; then
not both a and b are zero. Hence a2+ b2 0 and so
[ . b
aZ + b2 ‘gz b2 €«
Moreover,
a ) . _ _ . a . b
<a2 T iay b2>(a+1b) = 1 = (a+1b) <a2 T laE T b2>
Thus we have proved (C*%,*) is a group and we term this group the multiplicative
group of nonzero complex numbers.
Problems
3.1. Is (S,0) a group if
(1) S =Z and o is the usual multiplication of integers?
(ii) S = @ and ©is the usual multiplication in @?
(ili) S={¢| ¢€Q and q > 0} and - is the usual multiplication of rational numbers?
(iv) S={2] 2€Z and z=1V2} and o is the usual multiplication in Z?
(v) S =R and © is the usual addition of real numbers?
(vi) S=2Z and o is defined by acb =0 foralla,bin Z?
Solutions:
(i) The identity element is the integer 1. (S,°) is not a group because 5 & Z but there is no
integer z in Z such that zo5 =5ocz =1,
(i1) Again the identity is the number 1. There is no ¢ € @ such that ¢o0 =1. Hence (S,0) is
not a group.
(iii) (S,*) is a group. Clearly S+ @ and - is a binary operation on S. g*1=1-9 =¢ for all
g € S; hence 1 is an identity. Multiplication of rational numbers is associative and every
element in S has an inverse; for if ¢ € S, then %E S and %- g=1=gq i—
(iv) S = (@ since V2 & Z. Therefore (S,°) is not a group.
(v) (8,0)is a group. S # () and addition is an associative binary operationon S. r+0=0+7r =1
and r+(—r) =0=(—r)+7r forall rES.
(vi) (S,°) is not a group because there is no identity element in S.
3.2, Let S be the set of even integers. Show that S is a group under addition of integers.
Solution:

Let a =2a, and b = 2b; be any two elements in S. a+ b = 2(a; + b;) is a unique element
in S; thus addition is a binary operation on S. Associativity of addition in S follows from the as-
sociativity of addition in Z. 0 = 2+0 is an identity element in S. If a € S, then —a €S since
a = 2a; implies —a = 2(—a,). Hence a has an inverse in S, as a+ (—a) = (—a) + a = 0.

3.3. Let S be the set of real numbers of the form a + by2 where a,b € Q and are not simultaneously

zero. Show that S becomes a group under the usual multiplication of real numbers.
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34.

3.5.

3.6.

Solution:
(@+bV2)(c+dV2) = (ac+2bd) + (cb+ ad)V2. If neither a + byZ nor ¢ + dV2 is zero, i.e.
(0+ 0v2), then their product cannot be zero., Hence the product of elements in S belongs to S.

1 a— b/2

1 =1+ 0\/5 is an identity for S. Multiplying by , we obtain
a+ b2 a— b2
1 . a— b2 B a b B
atova | @2 T @ (@) VE

Hence € S. The associativity holds because it is true for multiplication of real numbers.

a+b\/§

Let S be the set of complex numbers of the form a + byV/—5 where «,b < Q and are not both
simultaneously zero. Show that S becomes a group under the usual multiplication of complex
numbers.
Solution:

(a+bV—>5)c+dV—5) = (ac—5bd) + (bc+ ad)yV—5 and cannot be zero if its factors are
not zero; hence the product of two elements of S belongs to S. 1 =140y —5 is an identity for S.

is certainly an inverse for a + by —5. Multiplying top and bottom by a — by —5, we get
1 a—by-—5 o

—b
eio/ s | @FsE  wrae a@eseV

a+ by—5

and so € S. The associativity of multiplication in S follows from associativity of multi-

1
a+ by/—5
plication of complex numbers.

Let m be any fixed positive integer and let S = {0,1,2,...,m —1}. Define a binary operation in

b
S by acb =a+tb if atb<m

acb =79 if a+b=m+r, 0=r<m
Prove that (S,°) is a group of order m. (Hard.)

Solution:

If a,b €S, then aob is uniquely defined and belongs to S. ¢20 = 0ca = a, so 0 is an identity.
Note that aob =a+b—3m where § is 0 or 1, for any «, b ES. So boec=>b+c¢—38m where
S§;is0or 1. ao(boec) =a+(boc)— 8ym where §,is 0 or 1. Then ao(boc) =a+b+e—(8;+ 8)m
where both §; and §, could be 0 or 1. Hence

ao(boe) = a+b+c—ym where n;is0orlor2
Similarly (aeb)oc = a+b+c—gym where 7,is0or1or?2

Now 0 =aco(boe) <m and 0= (acb)oc <m. Suppose 7y > 35; then
ao(boe) = at+tb+tc—(p+lym = at+b+c—ngm—m

because 7; is at least no+1. But 0 =a+b+c¢—9ym <m and the above equation implies that
ao(boc) < 0; this contradicts 0 = ao(boe¢). Hence u; = ny. 75 > 5; leads in a similar way to a
contradiction. Thus 75, = »n, and ac(boc) = (aob)oce. If a €S, then m—a €S and
ao(m—a) = (m—a)oa = 0; hence m — a is an inverse to a. Thus S is a group.

Let S C C (C the set of complex numbers) be the set of all mth roots of unity, where m is a fixed
positive integer. Prove that under the usual multiplication of complex numbers, S becomes a group

of order m.

Solution:
Recall that a complex number x is an mth root of unity if a#m = 1 and that there are exactly
m distinet roots of unity, viz. ei277/m =12 ..., m; also, ei"™ = cosx + isinx. If a,bES,

then ab is uniquely defined. Since (ab)™ = ambm =1, ab is an mth root of unity and hence ab € S.
l*a=a+1=a, solis an identity. Associativity is true, since it is true for\;omplex numbers in
general, If a €S, then (1/a)m = 1/am = 1; thus 1/a € S and 1/a is the inverse of a.



54 GROUPS AND SUBGROUPS [CHAP. 3

3.7. Let SCC (C the set of complex numbers) be the set of all roots of unity. Describe one way of
making S into a group.

Solution:

Use as binary operation the usual multiplication of complex numbers. If a,b €S and e is an
mth root of unity, b an nth root of unity, then ab is an mnth root of unity because (ab)mn = gmnpmn =
(am)n(bmym = 1n1m = 1, Hence ab € S and is, of course, uniquely defined. 1 €S and acts as an
identity. 1/a € S and is the inverse of a. Associativity holds for multiplication of complex numbers.
Thus S is a group with respect to the usual multiplication of complex numbers.

3.8. The following table defines a binary operation. Is the resultant groupoid a group?
1 2
1 1 2
2 2 1
Solution:

We need to check only (a) associativity, (b) existence of identity and inverse.

(a) To check associativity, we have the following possible questions:

(@) Does 1-(1+1) equal (1-1)+17 (¢) Does 2+ (1+1) equal (2+1) 17
(b) Does 1+(1+2) equal (i-1)- (f) Does 2+ (1+2) equal (2+1) -
(¢) Does 1+ (2-1) equal (1+7) - (9) Does 2+ (2+2) equal (2+2)
(d) Does 1+(2+2) equal (1-2) - (h) Does 2+ (2+1) equal (2+2)

Checking all these products, we see that associativity holds.

(b) 1 acts as an identity. The inverse of 1 is 1, the inverse of 2 is 2. Hence the table defines a group.

3.9. ‘Write the multiplication table for the group of Problem 3.5 with m =3 and m = 4.

Solution:
If m = 3, the multiplication table is

If m = 4, the multiplication table is

3.2 SUBGROUPS
Definition

Let (G,-) be a group with binary operation - and let H be a non-empty subset of G.
Then we say H is a subgroup of G if the operation - restricted to H is a binary operation in
H which makes H into a group.
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For example, if G is the group with m =4 of Problem 3.9, then the subset H = {0,2}
is a subgroup of G. For when the operation o in G, as defined in the multiplication table
for G, is restricted to H, it is a binary operation in H, ie. 000=0& H, 0:2=2€H,
200=2€H, and 20.2=0€ H. H is a group because: H =+ (); 0, the identity, is in H;
the operation o restricted to H is an associative binary operation (since the operation in
G is associative); and every element in H has an inverse in H.

The following lemma facilitates proving a subset of a group is a subgroup.

Lemma 3.1: Let (G,*) be a group. Then a subset H of G is a subgroup of G iff
(i) H+@ and (i) if a,b€ H, then «b '€ H

Proof: 1f H satisfies these conditions, then H is a group with respect to the binary op-
eration. For if H +# (), then there exists a« € H. Hence aa '=1 € H. Also, if b€EH
then 1b-'=b"' € H. Hence a,b € H implies a(b~')"!=ab € H. Associativity is true
in H, as it is true in G. Thus - is an associative binary operation on H, 1 € H, and the
inverse of every element of H is an element of H. Therefore (H,-) is a subgroup.

Conversely if H is a group with respect to -, then clearly H satisfies conditions (i) and
(ii) above.

Problems
3.10. Let (@, +) be the additive group of rationals. Is Z a subgroup of @? Is P a subgroup of @?

Solution:

Clearly Z# @, and ZCQ. If a,b € (Q,+) then the binary operation is -+, and the inverse
of b is —b. So,if @,b &€ Z, we ask in accordance with Lemma 3.1, whether a+ (—b) =a—b € Z.
It is, and so Z is a subgroup of (Q,+). Clearly P+« ¢ and PCQ. If ¢, b€P, is a+(-b) =
a—b & P? No, for P does not contain negative numbers; and if ¢ =1 and b =2, then a—b is
negative.

3.11. Is @ a subgroup of (C, +), the additive group of complex numbers?
Solution:

Q+=0. QCC; forif a€Q, a=a+0€C. If a,b€Q, then a+(—b) =a—b & Q. Hence
@ is a subgroup of (C, +).

3.12. Is Z— {0} a subgroup of (@*,*), the multiplicative group of nonzero rational numbers?

Solution:
1 is the identity. 3 € Z— {0}, but 3 has no inverse in Z— {0}. Therefore Z — {0} is not a
subgroup of (Q*,*).

3.13. Is Q*, as above, a subgroup of (C*,+), the multiplicative group of nonzeroc complex numbers?

Solution:
Q* # @. a,b € Q* implies ab—1! is a nonzero rational. Thus @* is a subgroup of (C*,¢).

3.14. Is Q* a subgroup of the group of real numbers of the form a+ bV2, a,b € Q@ and a, b not simul-
taneously zero, under multiplication?
Solution:
Q%= . If a €Q* then ¢« = a+ 0v2 € {a+bV2 | a,b € Q and not both zero}, since a # 0.
Thus Q*C {¢+ b2 | a,b € Q and not both 0}. @, b €& Q% implies ab~! is a nonzero rational.
Hence @Q* is a subgroup.

3.15. Prove that the intersection of two subgroups H and K of a group G is a subgroup.

Solution:

1€ H, for as H is not empty, there is an element h € H. But then H contains hh~1 =1, the
identity of G. Similarly, 1€ K. Hence 1€HNK and HnK=@. If g,h€ HNK, then
9, h€H and gh-1€ H. Also, gh~1 € K. Thus gh—-'€ HNK and HnK is a s%bgroup of G.
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3.16. By considering the group of Problem 3.5 with m = 6, show that the union of two subgroups is
not necessarily a subgroup.

Solution:

That {0,3} and {0,2,4} are subgroups is easily verified. But U = {0,2, 3,4} = {0,3}U{0,2,4}
is not a subgroup as 3¢4 =1 & U. Therefore © is not a binary operation in U.

3.3 THE SYMMETRIC AND ALTERNATING GROUPS
a. The symmetric group on X

Let X be any non-empty set. A very important group arises from the set Sx of all
one-to-one mappings of X onto X, called the symmetric group on X. We describe this group
in the usual five steps.

I. Sxis the set of all matchings of the non-empty set X with itself. Clearly, Sx C Mx
(see Section 2.4b, page 36).

II. If o, €Sx, then we define ¢7 to be the composition of the mappings ¢ and .
Here we must verify that o7 is a matching of X with itself. Suppose x € X; then
as r is onto, we can find 2#”” € X such that 2”7 = . But ¢ is also onto, so we can
find 2’ € X such that z’¢ = 2”’. Consequently

x'(O'T) = (x'tr)'r =x'r =

and hence o7 is onto. If x(o7) = y(or), then (2¢)r = (yo)r by the definition of the
composition of mappings; this means, since - is one-to-one, that «¢ = yo. This in
turn implies, since ¢ is one-to-one, that # = y. Therefore o is also one-to-one.
Thus composition of mappings is a binary operation in Sx.

III. Clearly the identity mapping .: 2~ « is in Sx and is an identity element of Sx.

IV. The groupoid (Sx,*) is a semigroup, since composition of mappings is associative.
(Theorem 2.3, page 36.)

V. Let o € Sx. Since ¢ is one-to-one and onto, Theorem 2.4, page 36, implies ¢ has an
inverse, r, in Mx. Now, ¢r =.= 1¢ means ¢ is an inverse of ., By Theorem 2.4
the only elements in Mx which have inverses are those which are one-to-one onto
mappings. Therefore € Sx and r is the required inverse of ¢. The proof that
Sx is a group is complete.

We will call an element of Sx a permutation of X, or, for short, a permutation.

In the particular case where X = {1,2,...,n}, we write Sx=S8.. S. is called the
symmetric group of degree n.

|Sx| is calculated as follows. If o € S., then lo can be one of n elements. 2¢ can be
one of n —1 elements, as lo has been chosen and ¢ must be one-to-one; so 2¢ 7 lo.
3¢ can be one of n — 2 elements, as 1¢ and 2¢ have been chosen and ¢ must be one-to-one;
S0 3¢ is not equal to 20 or 1¢. Continuing in this way, we conclude that there are

ne(n—1)n—-2) --- +2:1 = n!
elements of Sy, i.e. |Si| =n!

The elements of Ss, for example, are
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/1 2 3 1 2 3 1 2 38
7\ 2 8 % =\3 1 2 =18 2 1

_ {1 2 3 {1 2 3 {1 2 3
T2 31 T 3 2 T \2 1 3
Here we are using the notation of Section 2.4¢, page 87. To find the multiplication
table, we must compute the products. As an example, we calculate o,r,.

o, T = 1 2 3 1 2 3 = <1 2 3> - T
11 lo,r, 20,7, 807, 2r, 8r, 1r, 3 2 1 2

To do this calculation mentally, we think as follows:

1-2 (ln 01), 2->3 (11’1 Tl)

[

Write down < 1 2 3>
3

2-3 (ing,), 32 (in7,). Put 2 beneath 2 to get

537

Only one other number can appear, namely 1. Thus

_ (1 2 3\ _
T\ 2 1) T T

The multiplication table for Ss is

¢ .51 [:23 Ty Tg T3
[ t ay gy Ty To Tg
gy oy o2 t Ty T3 71
[:2) oy t oy T3 Ty Ty
Ty Ty T3 Ty [ -5} oy .
Ty Ty Ty T3 oy t ay
T3 T3 Ty Ty 09 0y t

The reader should check some of the entries. Note that or, =r, and 7,0, =7, so that
o7, # 7,0,. Hence S, is not commutative.

Problems
3.17.  Calculate a8, Ba, 271, 871, (aB8)~1, and (Ba)~! if

/123 456 4 go/t23 4556
“'(236541 an ﬁ—<135624
Soluti 1234586 123456
10n: = =
o o 35 4 61>’B°‘ <264135

To find «—!, we note that z(ae—1) = x and hence «—! must carry xa to . Now we determine
which z is taken onto 1. 6a =1, so we must have 1la—1 =6. Next, since la=2, 2a—1=1.
Proceeding in this way, we obtain

1 2 3 45 6
a1l =
612543)

[\
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3.18.

3.19.

3.20.
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An easy method of calculating the answer mechanically follows. Take
_ 1 2 8 4 5 6
“ 7T \2 365 41
2 3 6 5 4 1
1 2 3 4 5 6>
Rearrange the columns so that the top row reads 12345 6,

1 2 3 4 5 6
e”l =
<612543>

This method is conceptually the same as the first. To find 81, interchange the rows to obtain

1 3 6 6 2 4
<1 2 3 4 5 6>
and rearrange to get

123456 123456 12345 6
-1 = -1 = -1 —
A <152634>' (af) <641 25>’ () (415362>

Interchange the rows,

w

Verify that a(8y) = (aB)y where

_(r28 45 /12345 /123 45
“_<31245> “ 82151 Y—43152>

. /1 2 8 4 5\/1 28 45\, /12345
Solution: By = <1 325 4><4 31 5 2> = <4 13 2 5>
Gy = (L 2345y 2845y _ /12345
"‘BY“<31245><13425>_41325

Is the subset R = {i, 01,05} a subgroup of S3? (For this notation see above.)

Solution:
R # (0. From the multiplication table of Ss, page 57, the product of any two elements in R is

again in RB. Since al‘l = 0 and 02_1 = g;, it follows that zy—1&€ R for any =x,y € R. Hence

R is a subgroup of S;.

Find all elements of S; and S, and exhibit multiplication tables for these groups.

Solution: .
S, contains one element . = < 1> .o E! is a multiplication table for S;. There are two ele-

1 2 1 2
ments in S,: « = < 1 2> and g8 = <2 1> . The multiplication table for S, is
¢ B
¢ [ B

B | B ¢
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3.21. Find the elements of S,.
Solution:

/1 2 3 4 /1 2 3 4 /1 2 38 4 /1 2 38 4
“1234) "6*<3142> 73_<3241> “1_<2134>
/1 2 3 ¢4 /1 2 3 4 /1 2 8 4 _ /1 2 3 4
"‘“<2341 ”7_<3421> T““<4213> a2_<3214>
/1 2 38 4 /1 2 3 4 /1 2 38 4 /1 2 38 4
"2_<3412> "8_<2143> 75*<2431> “3”<231>
/1 2 3 4 /1 2 3 4 /1 2 38 4 2 3 4
03_<4123> 09_<4312> TG_<4132> <324>
/1 2 3 4 /1 2 3 4 /1 2 38 4 2 3 4

oy = T = T =
<2 4 1 3> <1 3 4 2> (2 3 1 4) < 4 3 2)
/1 2 3 4 /1 2 3 4 /1 2 3 4 1 2 3 4
"5_4321> 72_<1423> 78“<3124> e <1243>
We give the multiplication table for future reference.
THE SYMMETRIC GROUP OF DEGREE 4
t o0y 0Oy 03 04 O35 Og O7 Og 09 Ty Tg Ty 74 T5 Tg 77 Tg @1 Qg a3 ag as ag
{ L 01 02 0’3 04 0’5 06 07 (] [of+) 1 T9 T3 T4 T5 TG T7 T8 (23] X9 oz3 ay Cl5 (XG
01 gy (5] g3 i 76 23] T T4 41 T8 a7 ag Oy ay 09 Q4 g Qg T1 ag T7 ‘T3 g5 T5
(3] 09 a3 t g1 [£73 og g ay a5 g T4 T7 T8 T1 T8 T3 T2 T5 07 ay 06 0'4 23] 69
O3 g3 L 01 02 T3 [£451 T7 7'1 D)) T5 0(1 0'6 oy 0'7 g 0’4 ag 09 T4 a5 T9 T6 08 T8
gy g4 T8 g T1 0'5 0'6 i Te [e 7 T3 (23] a9 ay (<51 (73 Qg a7 as T9 Ts 08 02 T4 T7
g5 o5 (15 ag (23] Og L 04 g 0'2 (5] Ts T3 T T8 7'1 T7 76 T4 09 g3 [ a3 (71 07
06 176 T4 a4 75 [ 04 05 T7 ag T9 03 ay 09 2451 [} o7 (XG gy T3 T1 0'2 08 7'8 TG
07 07 76 g T7 T1 23] ’7“4 08 Og L g ay (73 ay 06 a2 221 04 o9 T T8 T5 T3 05
ag ag Qg 05 05 ag (72 oy 09 L a7 T8 T8 T7 T5 T4 T2 T3 T1 ag 01 0’4 06 03 al
09 09 T9 23] T3 7'8 016 75 { ar ag g4 (£33 a5 Og (7} (71 U3 ag 0’5 7’6 Tl ‘1'4 T7 (72
Tl T 0'4 T8 ag 25} T4 g7 [¢3)] 75 o3 T [ (72 T6 T7 05 ag T3 01 0'6 (79 (16 ay a5
T2 T2 aq T3 0’9 01 Tg [23)) Jg T7 0(3 i 7'1 T8 05 og 74 75 02 04 ar ag s 213 oy
7'3 T3 Ug To a1 115 T7 03 (74 T8 ay J5 Ts T4 t 02 T8 T1 ag gg g a9 Ul (77 ag
T4 T4 a4 T5 06 o7 'rl 0[1 a5 T8 01 T7 02 i 7'3 T9 08 0'5 T o3 a3 QG 0'9 a4 az
Ts5 ’T5 0'6 T4 a4 0'9 ’T8 C(G (73 Ty (2D} T3 o5 US T7 Tg L ()] T9 ay 0'4 5} a7 a3 01
T6 Te (16 7'7 07 (2D} T2 0'1 a4 T3 0'4 08 T8 T1 02 t Ts T4 o5 ag U'Q (15 (‘73 A Us
T7 7'7 0'7 Ts (16 0'3 T3 015 CY3 7'2 (76 (72 T4 T5 og 0'5 Tl T8 [ 271 041 0'1 (12 09 04
T8 T8 a3 '7'1 0’4 (XG 7'5 0'9 01 T4 Cls TG (78 0'5 T2 T3 (72 t 7'7 (22} e 7] 07 Cll Us 03
oy ay T3 Og T2 T4 o7 T1 g5 ag 09 Og o3 <5} 04 ag 211 Qg 271 [ Ty Ty T8 76 ag
ag a9 05 a5 08 7'2 (71 7'6 7'5 0'3 T1 Ug 04 ﬂ3 CYG a7 06 a4 @y T8 t 7'3 7'7 0'2 7'4
ag | @3 Ty 04 Tg O3 @4 Og Tg O T7 O O7 ag & Q5 @ Og O3 Tg T4 t 05 75 ""ﬂ“‘
ay Q4 Ts5 gg T4 0’8 a3 0'2 7'3 04 Te 221 g 0'7 (73 (53 09 ay CYZ T7 T8 05 t 71 7'2
[44:4 LY5 ag 23] 0'5 T7 03 T3 T8 o1 T4 g ay 06 09 23] (13 g4 (4 Ts (-5} Tg T2 [ Tl
&g g T7 0’7 Tg 7'5 09 T8 02 251 05 agq as 02 ag a4 03 0'1 Jg 0'8 7'3 T4 T1 T2 t
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b. Even and odd permutations

We are interested in a special subgroup of S,, the alternating group of degree n, usually
denoted by A.. This subgroup A. is obtained from S, by singling out certain elements.

To begin with, consider S;. Let ¢ = <1 2 3>. Then

2 31
20—10 36 —10c 80¢—20 _ 3-2 1—-2 1-3 1
2—-1 3-1 3—-2 ~ 2-1 3-1 3-2
{1 2 3
If 'r—<3 9 1>, then
2r =17 8r—1r 3r—2r 2-3 1-3 1—2 _1
2-1 38-1 3-2 ~ 2-—-13-1 3-2
We say ¢ is even and -+ is odd.
More generally, let us call ¢ € S, even (or an even permutation) if
20—10.30—10.30—20...._no—la"na—za..”.no—(’n—l)o' -1
2-1 3—-1 38-2 n—1 n— 2 n—n-—-1
On the other hand, we call ¢ € S, odd (or an odd permutation) if
20'—10'.30'—10'_30'—20..“.’I’La——lo'.no'—zo'.“..’no*-(n-—l)a -1
2-1 3-1 3-2 n—1 n—2 n—(n-—1)
The definition of even or odd is written more briefly as
o is even if HkU—_J—UI 1
i<k k—1
. . ch_’l:cr_
ois odd if | — = —1
i<k k—-@
ko — io

We shall show that an element in S, is either even or odd, i.e. LL = =1,

k—1

Corresponding to each factor ¥ — ¢ in the denominator, we will find a factor in the
numerator which is either ¥ —17 or —(k—19). As ¢ is a permutation, there exist unique
integers I,m such that lo =k, mo=4. If 1> m, the factor le —moc=k—1¢ appears in
the numerator. If I <m, the factor mo¢—1lo = —(k—1) appears in the numerator. The
l"k‘_”;"’ or m,;’ - 7 is thus =1. Note that distinct factors k—i, &’ —# in the
denominator give rise to distinct associated factors =+(lo —mos), =(I'c —m’c) in the numera-
tor. Forif I=U,m=m', wehave k=Fk and i=1".

quotient

Thus regrouping the factors in the numerator, the product becomes the product of
factors =1 and hence is itself =1. Therefore every permutation of S, is either even or odd.

There is an easy way of determining whether a permutation ¢ is even or odd. If we
are given a row of integers, we call the number of integers in the row smaller than the
first integer, the number of inversions. Thus for example the number of inversions in the
row 7,4,3,2,1,6,8 is 5. We will use this concept of inversion to find out if a given

permutation
. 1 2 ... n
T = le 2¢ . No

is even or odd.
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To do this we must calculate 1I<Ik <ka_ w> Much of the calculation is redundant

k—1
as we have proved that the result is always 1 or —~1. We must only determine the sign.
In the denominator we always have positive numbers. In the numerator a negative number
ko —1io arises if ic > ke. For fixed ¢ and varying k, the number of negative factors that
arise is the number of k& >1¢ for which i¢ > ko. But this is the number of inversions in the
row io, (i+1)a, ...,n0. The total number of negative factors is the number of inversions
in 10,20, ...,n0 + the number of inversions in 2¢, 30, ...,%¢ + the number of inversions
in (n—1)o, no. Let this total be I. The product of I negative numbers is positive if I is
even, and negative if I is odd. So o is even or odd according as I is even or odd.

E le 6: I -(1 23 dd?
xample 6: s 0= {4 4 o) evenor odd?

The number of inversions in 3,1,2 is 2. The number of inversions in 1,2 is 0.
Thus the total number of inversions is 2, and hence ¢ is even.

Problem
3.22. Is o even or odd?
(i)a:<1234> (iv)a:<1234567>
2 1 4 3 4 31 2 6 7 5
. 1 2 3 4 5 1 2 3 4 5 6\/1 2 3 4 5 6
(")”:<53241> <V)":<314625><416325>
(i 1 2 3 4 5 6
“‘)"=<3 5 2 1 6 4>
Solution:
(i) Number of inversions in 2143 =1
143 = 0
43 =1
Total number of inversions _2_
Hence o is even.
(ii) Number of inversions in 53241 = 4
3241 = 2
241 =1
41 = 1
Total number of inversions —8_

Hence o is even.

(iii) Odd. (iv) 0dd. (v) Even.
¢. The alternating groups
We shall show that the set of even permutations forms a subgroup of S..

1. Let A, be the set of even permutations in S.. Then A4, +#* @, since the identity permuta-

tion . € A, leu — e b—
igck—i - KHck—i =1

2. If o and - € 8,, then
H k(ar) — t(or) _ H k(o) — 1 O‘T) ko — io

i<k k—1 i<k k—1 ko — io

(3.1)
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i that
We will prove tha (ko)r = (io)r b —mz
- m<l l —m

(3.2)

1<k ko — io

To do this we will show that each of the factors l—;: :ZT corresponds to one and only

— (i Ir — )
M. Corresponding to each of the factors . in the
ko — io l—m
right-hand side of (3.2), there exists, since ¢ is a permutation, unique integers p, ¢ such
that po =1 and qo =m. If p > ¢, then a factor

one of the factors

(pa')r — (QU)':' - I+ —mr

Po — Qo l—m
appears on the left-hand side of (3.2). If p < g, then a factor

((]0’)7‘ - (po)'r _ (prr)r — ((]U)T N lr —mr

Qo — Do Do — Qo l—m

l —
appears on the left-hand side of (3.2). We associate with the factor s

l —
(po)r — (qo)r (0)7 = (po)r if p<gq. It is
o — Qo qo — Do
easy to see that each of the factors of the right-hand side of (3.2) corresponds in this
way to one and only one of the (equal) factors of the left-hand side of (3.2). Hence (3.2)
holds. From (3.1) we therefore obtain

the (equal)

factor if p>gq, and the (equal) factor

k(or) — i(or) lr —me . ko — ic
i<k“]¢__§@ = ,Hl 1= m 11;],; E—1 (3.3)

It follows from (3.3) and the rules for multiplying +1 and —1, that we have

Lemma 3.2: The product of

or

(i) two even permutations is even

(ii) two odd permutations is even

(iii) an odd permutation and an even permutation is odd
(

iv) an even permutation and an odd permutation is odd.

Accordingly if ¢ is even, then 07! is even too, since ¢o~!=. is even. Thus if ¢,r € 4,,
le A,. A, is therefore a subgroup of S,. It is called the alternating group of degree n.

As an illustration let us find the multiplication table for As. From the list of elements

of S. given in Problem 3.21 we determine that the even permutations are

/12 3 4 /1 2 3 4 /1 2 3 4 /1
“{12 38 4 %~ 12 1 4 3 BTl 2 4 1 s \a

/1 2 3 4 /1 2 3 4 /1 2 3 4 2! 4
“ i3 4 2 T i1 8 4 2 W] 1 8 77 \l2 3 1 4

Il
o
[ISQE
oW N
N oo

— N

3 4
3 2

[\V]
o

-t
[\

= DN
w W

4 /1 2 38 4 /1 4 /1 2 3 4
T, — Ty Ty T
1 2 11 4 2 3 > 2 1 8 18 1 2 4

The multiplication table is easily written down from the multiplication table of Problem

3.21.
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Problems
Write out a multiplication table for (i) A, (ii) 4,, (iii) 4.

3.23.

3.24.

3.25.
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()] (5] t og a5 T4 T7 T8 T T8 T3 Ty T5

g5 (41 ag i a9 Ts T3 To T8 T T7 Te T4

ag ag as 5] 1 T8 76 T7 T5 T4 To T3 T1

T1 T1 T8 T4 T5 To t Oy Tg T7 a5 og T3

T2 | T2 T3 Te T7 t Ty T8 05 Og T4 T5 O

T3 T3 Ty T7 Tg a5 Ts5 T4 t ) T Tt og

T4 T4 Ty Ty T8 T7 gy 13 T3 T9 ag (41 76

Ts TS T4 T8 Ty T3 g5 Og T7 T6 t o9 T

Tg T8 T7 Tg T3 og T8 71 (D] [4 Ts T4 a5

Ty T7 T T3 T ()] T4 75 ag [ T1 T8 t

T8 T8 T Ts T4 T og as Ty T3 Og t T7

Solution:

(i)

(ii)

(iii)

1
There is only one element in S;, namely . = < 1) , and it is an even permutation. Hence a
t

multiplication table for 4, is D Notice A4, is the same group as S,.

o = (12 12> 12y . tation and [+ 2) ; a .
2 — 1 2/'\2 1 . 1 2 1S an even permutation an 2 1 18 an o permuta-

1
1 2
tion, Therefore A, = 1z and ;D where = > is a multiplication table
for A,. 12 12

S3 contains six elements (see example in Section 3.3a). The elements ¢, ¢y and o, are the even
permutations, and a multiplication table for 4, is

¢ oy ag
¢ [ oy oo

oy oy gy t

oy o9 [ oy

Prove A, = S, implies n =1.

Solution:

If »>1, S, must contain a permutation which interchanges 1 and 2 and leaves everything

else fixed, ie. 1r=2,2r=1, and &r=7(1=3,...,n). r&A,, since 7 is an odd permutation,
and therefore A, +# S,. By Problem 8.23(i), 4, =S,. Hence A, =S, implies n=1.

Show that the set S = {i, 05, 05,03} is a subgroup of 4,. (For notation see page 62.)

Solution:

If we look at the multiplication table for A,, we see that the product of any two elements in

S is again in S. It is clear that oj0, €S implies o,-a;l €S8 because o; = aj‘l (j =2,5,8).
Hence S is a subgroup of A,.
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d. The order of A,

We now count the elements of A,. Suppose that n =2. Let r be the following element
of S.:

70 122,2->1,3->3, ...,n>n
We claim r is odd because
2r —1r 3r—1r 3r—2:  mr—1r  wr—(m—1)r _ 1
2-1 38-1 3-2 n—1 n—(n—1)
Now let ¢, ¢,, . . ., ¢ be the even permutations (i.e. elements of A,). Then
€T €Ty « v oy T (3.4)

are all odd; moreover, if ¢ =¢r, then

€ = €L = ei(rr_l) = (EiT)T_l = (e].'r)r"1 = EJ-(TT>1) = gt = g

Notice that this means there are at least as many odd permutations as even ones. Indeed
there are exactly the same number of each; for if » is odd, then

®w = (u)T)T

since 72 =. Since or is even by Lemma 3.2, every odd permutation is listed in (3.4). Thus
there are precisely the same number of even permutations as odd ones.

Consequently, as & is the number of even permutations, the number of odd permutations
is also k, and the number of odd and even permutations is 2k. But every permutation of
S» is either even or odd, and |S.| =n! Therefore k =n!/2.

Putting our results together, we have proved

Theorem 3.3: If n is any positive integer > 1, then S. is of order !, and A, is of order n!/2.

Problem
3.26.  Check to see whether |A;| (f = 2,3,4) agrees with Theorem 3.3.

Solution:
|As] =1 by Problem 38.23, and 2!/2 =1,

|[A3] =3 by Problem 3.23, and 3!/2 = 3.
|A,] =12 by Section 3.3¢, and 41/2 = 12.

34 GROUPS OF ISOMETRIES
a. Isometries of the line

We begin with certain subgroups of Sg, the symmetric group on R, the set of real num-
bers. We think of the elements of R arranged as points on the real line. Then if a,b €R
it is clear what we mean by the distance between a and b, namely the absolute value, |a — b,
of a—b. We denote the distance between a and b by d(a, b).

We define a group I(R), the group of isometries of R, as a subgroup of Sk in the follow-
ing way.

1. Let I(R) be the set of all elements of Srg which preserve distance. The elements of this
set will be called isometries of B. To put this definition more explicitly, an element
o € Sr is termed an isometry if and only if

d(a,b) = d(as, be)
for every pair of elements a,b € R. Since the identity mapping . € I(R), I(R) + Q.
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2. Suppose o € I(R). Then of course ¢! € Sk. We claim ¢! € I(R). To see this, sup-
pose a,b € R. Then
d(ae™!, be™Y) = d((as™ Ve, (ba~ o) = d(a, b)
as ¢ is an isometry. Hence
d(a, b) = d(ac™?, boe™1)

which is precisely what we need. Thus o~ ! € I(R). Suppose o, € I(R); then ~! € I(R)

and
d(a(ar_l), b(a"r_l)) = d(((la')r_l, (ba)r_l) = d(ao', bo) = d(a, b)

Thus o7~ ! € I(R) and I(R) is a subgroup of Sg. Considered as a group in its own right,
I(R) is called the group of isometries of R.

Problems
3.27. Is o an isometry? (In the following, = € R.)

(1) o: x>ax+2. (ii) ¢: x> nx, naninteger * 1 or —1. (iii) o: x =22 (iv) o: 2> —z.

Solution:

(i) First note that ¢ € Sz. ¢ is an isometry, since d(x,z’) = | — 2’| and

d(zo, 2'0) = dx+2,2'+2) = [(x+2)— (&' +2)] = |x— |
(if) ¢ is not an isometry, since d(z,z’) = |x —2'| and
d(xo, 2'0) = d(nz, nz') = |n(z— ")
so that, for x» # «’, d(x,2’) # d(xo,%’s), eg. « = 2, ' = 1 implies d(z,2’) = 1 and

d(xa, x'0) = |n|.

(iii) o is not an isometry, since d(x,2’) = |x —x’| and
d(xe, £'c) = d(x2, x%) = |a2 — %'
so that, for = # a’, d(x, 2") # d(wo, 2'0), eg. 2 =2, ' = 0.
(iv) o is an isometry, since o € S; and

d(xo, x'0) = d(—=, —2') = |~z — (—2)] = |-z +a'| = |z — | = d(z, z")

328. Set 10=2,20=1 and 2o =x for all x € R excepting 1 and 2. Is ¢ an isometry?

Solution:
No, since d(1,3) =|83—1] =2 and d(le,30) = d(2,3) = 1.

b. Two points determine an isometry

The following lemma gives us a method of determining whether the two isometries are
the same.

Lemma 3.4: If ¢,r € I(R) have the same effect on two distinct real numbers a and b, i.e.
do =ar and be = bT, then o = 1.

Proof: Let c be any element of B. Then
d(c,a) = d(co,a0) = |co—as| = d(cr,ar) = |cr— a7
and hence co — aoc = x(cr—ar)
Assume co #* cr. Since @ = ar, ¢oc — aoc = +(¢cr—ar) implies co—c¢r = asc —ar = 0, ie.
¢o = ¢r, contrary to our assumption. Therefore
co —ac = —(¢cr—ar) = —cr+ar, ie. co+cr = 2(ao)
Similarly, ce + ¢ = 2(bs). Hence 2ac =2bs and ae = be. But ¢ is a permutation. Con-

sequently a = b, contrary to the hypothesis that a and b are distinct real numbers. We
conclude that ¢o = ¢r and, since ¢ is any element in R, ¢ = r.



66 GROUPS AND SUBGROUPS [CHAP. 3

Using this lemma it is possible to describe the elements of I(R). Let o € I(R) and let
0o =a. Now d(0s,1lo) = d(a,1e) = |a — 1| = d(0,1) = 1. Hence

a—1e = =1 or lo =a=x1
(i) le=a+1 and Oc =a. Let o* be the member of I(R) defined by mapping r € R to
r+a. o*is clearly an isometry. Then ¢* and ¢ agree on 0 and 1. Hence o = o*.
(ii) le=a—1 and Oc=a. Let o* be the member of I(R) defined by mapping r € R to
—r+a. Then ¢ and o* agree on 0 and 1. Hence ¢ = o*.
Thus if o € I(R), re = er + 0c where ¢ is either 1 or —1.

Geometrically, if ro = r +a, it “moves” the real line a units to the right. If r¢ = —r+a,
the real line is inverted about the origin and then moved a units to the right.

We come now to an interesting subset of I = I{R) which we will prove is a subgroup.
Let (I:Z)={o| o€I, no €Z whenever n€Z}. Let o,r€([:Z). Let Oc=a, 0r=2>.
a and b must be integers. The effects of ¢ and + are

re = er+a where ¢=1 or —1
r7 = 97 +b where 5=1 or —1

Let p:7->49r—nb. Then p = 71 for »(ru) = (yr+b)u = n(yr+b) —9b = r and sim-
ilarly »(ur) = r. Hence 7(ocr7!) = (ep)r + g(a—b). Clearly ey is =1, and g5(a—0b) € Z.
Thus if 7 is an integer, n(sr~!) € Z. Therefore or~1 € (I: Z) and (I: Z) is a subgroup of I.

Problem
3.29. Determine whether the following sets of mappings, with composition as the binary operation, are
groups.

(i) The set of all mappings of the plane of the form
7q: (€,9) > (x+a,y+a) with (x,y) ER? a€R
Notice that 7, is defined for each real number a.
(ii) The set of all 7, with o € Z.
(iii) The set of all 7, with a € Q.

(iv) The set of all mappings of real numbers of the form
do: ®>ax with a+#0, a€Q

(v) The set of all mappings of the plane B2 of the form
4o (x,9) > (ox,ay) with e€Q

(vi) The set of mappings of (v) but with a € @*, ie. a # 0.

Solution:
(i) We show first that r, is a permutation of R2. 7, is a matching of R2— R2, for if (x,y)r, =
(%1, ¥1)7q, then (z,%) = (xy,9y). If (x,y) € B2, there exists (x—a,y—a) ER2 and (x—a,
—a)‘ra = (x, y). Hence r, is a one-to-one onto mapplng and so ‘ra is a permutation of R2
7—q = 771 The set of all 7, is not empty, and TaTy ! = TaT_p = T4—p Since (z, Yrgry b =
(2, y)'ra'r_b =(x+a,yt+tayr_p=(x+a—>b,y+a—>b) = (x,y)rq—p,. Thus the set of all 7, is
a subgroup of Sz: and so it constitutes a group.

(ii) Using (i), we need only consider whether TaTb_l = r,_p belongs to the given set, which it
clearly does.

(iii) This follows by arguing as in (ii).

(iv) It is easy to verify that each g, is a permutation of R. Also, pcy/4) = (#s)~1. Now Haby 1=
Hal1/b = posp- Hence the set of all g, a0, a €Q, constitutes a subgroup of the group of all
permutations of B and itself forms a group.
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(v) The set of p, is not a group, as y, has no inverse. For p; maps all points onto the point (0,0), and
by Theorem 2.4, page 36, the only elements of My, which have an inverse are the one-to-one
and onto mappings.

(vi) The set of all x4, in this case forms a group. The set is non-empty. If u, is an element, then

Blja = u;l because («, ¥)(uatt1/0) = (@, @iy, = (x,y) and (v, ¥) (148, = (x,y). By Theorem
2.4 u, is a one-to-one onto mapping and thus g, is a permutation of B2, Now ,ua,u.b—] = pabisp =

tasp Since (z, y)pa,ub_l = (aw, ay)p,? :<%x,%y> = (&, Y)uq,- Hence the set of all g, is a sub-
group of Sge.

c. Isometries of the plane

Let E be the set R2=RXR. If (xa,ya)= A, (xs,ys) =B are two elements of E, we
define the distance between A and B as

WA - 8)% + (Ya — ¥8)?
and denote it by d(A, B). Recall that if we interpret A and B as points of the Euclidean
plane with coordinates (x4, ¥4) and (zs, ys) relative to a given cartesian coordinate system,
then the formula for d(4, B) is the ordinary distance between A and B. The interpretation
of E as the Euclidean plane is not an essential part of our argument. Logically we do
without it and work abstractly with the ordered pairs (z, ).

o € Sg, the symmetric group on E, is called an isometry if for any A, B points of E,
d(A, B) = d(Av, Bo).

Theorem 3.5: The set I of all isometries of E forms a subgroup of Sg.

Proof: I is not empty, since the identity mapping is an isometry. We need to show
only that or=' € whenever o, € 1. Consider the effect of r=!. As r € Sg, there exist,
for each pair of points A,B€ E, A’,B’ € £ such that A’r= A, B’r = B. Then

d(4’, B’) = d(A’+, B'7r) = d(4, B)
since 7 is an isometry. But Ar"'= A’, B! = B’. Hence
d(A-=', Br~Y) = d(A, B)
and 7! is an isometry. Consequently
d(Aor~1, Bor™') = d(Ao, Bs) = d(A, B)
and so o' € I. Hence I is a subgroup of Sg.

In the next four paragraphs we shall argue informally.

Let us imagine that the Euclidean plane E is covered by an infinite rigid metal lamina
S. If we move S so that it still covers E, we can define an isometry induced by that move-
ment. Let the points of E be denoted P, Q, R, ... and the points of S be denoted 4, B,C, ....

In the initial position suppose that A lies on top of P, Bontopof @, Contopof R, ....
After the sheet S is moved, the point A is on top of another point of E, say P:; the point B
is on top of, say, the point Q,; C is on top of, say, Ri;....

,:1 .B g s~ Metal lamina — A B g
P Q R “2_gyclidean plane—> f" Q R Py Q1 R,
(a) Initial position. (b) After a movement.

Fig.1l. The isometry induced by a movement.
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Let 9: E~>E be defined by Pd=P,, Q0 =@, R§=R;, .... Then we assert 4 is an
isometry. For if P,Q are any two points of E, with, in the initial position, A of S on top
of P, and B of S on top of @, then we have d(4,B) = d(P,q). After S is moved, 4 lies on
top of, say, Pi, and B on top of Q. Hence d(A4,B)=d(P,,Q:) and so d(Pi, Qi) = d(P, Q).

Using this informal approach, we now describe three particular isometries:

1. Rotation about a point. Let O be any point of S. Rotate S about O through an angle
¥. Then the isometry induced by this movement of S is called the rotation about O
through an angle ¥.

Aontopof P
~_ f s Metal lamina
~ S Euclidean plane =,/
(@) Initial position. (b) A rotation through an angle .

Fig.2

2. Reflection in a line. Let us choose a line in E and turn S over this line and back to E.
The isometry obtained in this way is called the reflection in XY,

Metal lamina

N P QR B, P,

P QR

(ay Initial position. (b) Rotating about XY. (¢) Final position,
Fig.3. A reflection in line XY.

3. Let us choose a line XY. Let 6 be an isometry corresponding to a movement of S for
which X4Y9, the line joining X6 and Y9, is parallel to XY. Then 4 is called a translation.

We now describe formally these three types of isometries. As a simplification we
deseribe only rotations about the origin and reflections about the axis OX.

1. A translation r_, is the mapping defined by
(®, ¥)r,, = (x+a,y+b)

It can be shown that for each a,b, r_, is an isometry and that (-, ) '=r7_, _,. (See
Problem 3.30 for details.)

2. A counterclockwise rotation about the origin through an angle ¢ is the mapping p,
defined by . .

(x,y)p, = (xcosfd—ysing, xsind + y cos )

For each 0, p, is an isometry and (p,)~' =p_,. (See Problem 3.31 for proof. Problem

3.32 shows why p_ is called a rotation through 6.)
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3. Define a reflection in OX to be the map o, where

@, Yo, = (¥, —¥)

This is readily seen to be an isometry and it is easy to show that (¢)"!'=o¢, (Problem
3.33).

Since . is the product of two reflections, we call it a reflection. This is a convenience
which will simplify the statement of Theorem 3.8.

Problems

3.30. Show that 7, is an isometry and that (74 p)~1 = 7_4 _p.

Solution:

First we must show that r,, € Sp, so we must show that it is a one-to-one onto mapping.
(%, W7, = (@', y)7q,, clearly implies (x,y) = (#',y"). If (x,y) €E, then (x—a,y—br,, =
(%,¥) and so 7, is onto. Hence 74, € Sg. Is 7, an isometry? If A = (x4,y,4) and B = (x5,¥5),
then

d(4,B) = \/(xA —a5)? + (Wa —yp)? = d(Argp Brg)

and 74, is an isometry. (x,¥)ry p7—g, - = (@+a,y+br_, _, = (x,y). Hence 74,7 g -p =1t
Similarly, 7_q _p7qp =t and so (r5,p) 1 = 7_4 .

3.31. Show that o, is an isometry and that (pe)_l =0_,- (Hard.)

Solution:
We must show first that e, is an element of Sg. (x, y)p(9 = (x/, y’)pe implies

0os@ — ysine = a2’ cos6 — y sing
x cos Y Yy’ si (2.5)
xsing + ycosd = «' sing + y cose
Multiply the first equation by cos 6 and the second by sin ¢ and add to obtain
x(cos?2 8 + sin2¢) + (—y cos 6 sing + y cos ¢ sin 6)

= x'(cos® 0 + sin26) + (—y’ cos e sing + y’ cos ¢ sin §)

Since cos2¢ + sin2¢9 = 1, x = &’. Similarly by multiplying the first equation of (3.5) by sin ¢ and
the second by cos ¢ and subtracting the first from the second, we find ¥ = y’. Hence P, is one-one.

Is it onto? In other words, can we find (x,y) such that (w, y)pe = (a,b) for any (a,b) € R2?
That is, does there exist a solution to

xcosd — ysing a

(3.6)
xsine + ycose = b

for z,y € R? We solve these equations for « and ¥ using the same stratagem as above, i.e. multiply
the top equation by cos ¢ and the bottom by sin ¢ and add to obtain

x(cos26 + sin26) = acosé + bsing or =x = acosd + bsing

Multiply the first equation of (3.6) by sin ¢ and the second by cos ¢ and subtract the first from the
second to obtain

y = y(sin26 + cos29) = bcos¢ — asing

On substituting these values of x and y in (3.6), it is easily seen that they satisfy the equation.

cosg§ —sing
(The reader who knows that the condition for existence of a solution to (3.6) is

can verify the existence of a solution to (3.6) immediately.)

# 0,

sin ¢ cos ¢

Finally, is p, an isometry? If A = (x4,y4) and B = (xp,yg), then
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3.33.

3.34.
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d(4p , Bp )

V(za cos & — y4 sin 6) — (x5 cos 6 — yp sin 6)]2 + [(x4 sin g + y, cos 6) — (xp sin § + yp cos 6)]2

Il

= V(s — %p) cos 8 — (y4 — yp) sin 62 + [(wg — xp) sine + (y4 — yp) cos 6]2

= V(x,—xp)2[cos? 6 + sin29] + (y, — yp)2[cos? 6 + sin2 g]

= \/(xA —xp)® + (ya—yp)? = d(A, B)

and thus p, is an isometry.

(x, y)pep_o = (xcosf—ysing, xsing +ycos€)pie
= [{x cos6 — y sin6) cos (—8) — (x sin 6 + y cos 6) sin (—9),
{(x cos 9 — y sin g) sin (—6) + (x siné + y cos ) cos (—6)]
= [xz(sin26 + cos?6), y(sin26 + cos26)] = (z,y)
and so pp_, =t Similarly p_, 0, =t

Show that (0, 0) is equidistant from (xz,y) and (x, y)pe, and that the smallest angle between the line
L, joining (x, y)po and (0,0), and the line L, joining (x,y) and (0,0), is ¢ when 0 =6 =4, or
27 — ¢ when 7 = ¢ = 27.
Solution:

As we have shown in Problem 3.31, d((0,0), (x,¥)) = d((0, O)po, (x, y)pe) = d((0, 0), (x, y)pe). We
remind the reader of the formula for calculating the angle between two lines meeting at the origin.
If the one line L; has end point (a,, b;) and the other L, has end point (as, by), then the cosine of

the angle between L, and L, is given by
¢y + bibs

(a2 + b3)(aZ + b2)

Put (a;, b)) = (%,¥), (as, by) = (z, ’_l/)pg. Then if y is the smallest angle between the lines L; and L.,

22+ y2) cos
cos u = _ @ty coss  _ cos 6

V(2?2 + y?)(x? + y?)

Hence p=¢ if 0=6=7, and pu=27r—0 if # =6 = 2r.

Show that o, is an isometry and that o> = ..
Solution:
If A=(xy,y4) and B = (xp,yp),
d(Aoy, Boy) = V(wa—op)? + (—ya—(—yp)? = d(4,B)

and so o, preserves distance. Obviously (x,¥)s, = (¢,y')o, implies (v,7) = (¢',y). And o, is
clearly onto, for (x, —y)o, = (x,y). Hence o, is an isometry. (x,y)oyoy = (¥, —y)o, = (x,7). Thus
2

O’U — &

Show that rotations about the origin form a subgroup of I.

Solution:
po, the rotation through zero degrees, is the identity; hence the set of rotations is not empty.

If PP, BTE two rotations, (p¢)_1 =P gy Put —¢ = ¥, as it is annoying to carry the minus sign.
-1 = ion?
Is e (pq’) p,Py @ rotation?
(2, y)pe Py = (¢ cos¢ —y sing, « sine + y cos G)p‘P

= ((xcosd —ysing)cos¥ — (x sin b + y cos §) sin ¥,
(x cos ¢ — y sing) sin¥ + (x sin g + y cos 8) cos ¥))

= (x(cos @ cos ¥ — sin ¢ sin ¥) — y(sin 6 cos ¥ + cos ¢ sin ¥),
x(cos 6 sin ¥ -+ sin ¢ cos ¥) + y(cos 6 cos ¥ — sin ¢ sin ¥))

= (wcos(6+¥) —ysin(¢+¥), 2 sin(6+¥) + y cos (6 + ¥))

= &), ,,

Hence 0Py and o, (p¢)_1 is a rotation. Thus the rotations form a subgroup of I.

T Plotuy’
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3.35. Show that the reflections about OX form a subgroup of I.

Solution: »

We have only two elements, for there are only the two reflections : and ¢,. Since we have shown
that o, = o 1, we quickly verify that the two possible products of a reflection and the inverse of a
reflection is again a reflection. Hence the set of reflections forms a subgroup of I and is of order 2.

3.36. Show that the set of translations forms a subgroup of I.
Solution:
Ta,0(Te,d) ™1 = Tg,0T—¢, —d = Ta—c,b—a 1S easily verified as
@ Pra,p7—c,—a = @ra,y+br_, 4 = te—cy+tbdb—d = (& Yra—c,b-4a

and thus the set of translations forms a subgroup of I.

3.37. Find an element of Sg that is not an isometry.
Solution:
Let o € Sg be defined by (z,y)o = (x,y) except that (0,0)¢ = (1,0) and (1,0)e = (0,0). It
is easy to verify that ¢ € Sg. Now if A =(0,0), B=(1,0) and C = (0,1), then 1=d(4,0).
d(Aes,Co) = d(B,C) = \/5 # d(A,C). Hence o is not an isometry.

d. Isometries are products of reflections, translations and rotations

We will prove in this section that an isometry is determined uniquely by its action on
any three points not all on a straight line. This enables us to prove that every isometry is
expressible as the product of a reflection, a translation and a rotation. (Note, however,
that there are isometries that are neither reflections, rotations, nor translations.)

Lemma 3.6: Let o €1. Let A, B and C be three noncollinear points in E. Let A¢ = A4’,
Bs =B’ and Co=C’. Then A’B’C’ is a triangle congruent to ABC.
Proof: d(A’,B’)=d(A,B), d(4’,C’")=d(A,C) and d(B’,C")=d(B,C). Thus we have
two triangles with corresponding sides equal, and so AABC is congruent to AA’B’C’,

Lemma 3.7: If ¢ and r, elements of I, have the same effect on three points 4, B, C which
do not lie on a straight line, then ¢ = 1.

Proof: Let D be any point of E. Let d(D,A)=ga, d(D,B)=b and d(D,C)=c. Let
A’=A¢=A+, B =Bo=Br and C’'=Co=Cr. Then the distance of D¢ from A’ is @,
from B’ is b, and from C’ is ¢. Similarly D- is a distance a from A’, b from B’, and ¢ from
C’. Geometrically it is possible to see that Ds = D, for both Do and Dr lie on the inter-
section of three circles: O; with center A’ and radius @; O: with center B’ and radius b;
and O; with center C’ and radius c.

Two circles intersect in two points at most. Hence O; and O: determine two points.

It is possible for De and D+ to be these two points. But we shall show that as De and Dr
must lie on O;, they must be the same point. If this is not so, then O,, O: and O; have two
points in common. We shall prove geometrically then that A, B,C must lie on the same
straight line.

Let three circles with centers A’, B’ and C’ inter-
sect in two points P and Q. Without loss of gen-
erality we may assume that B’ lies between A’ and
C’. A’P=A’QQ and B’P = B’Q; hence A’B’ lies on
the perpendicular bisector of PQ. Similarly B’C’
lies on the perpendicular bisector of PQ. Therefore
A’B’C’ is a straight line. But AABC is congruent
to AA’B’C’ by Lemma 3.6. Hence ABC lies in a
straight line. But we assumed this was not so.
This contradiction proves Lemma 3.7.
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Theorem 3.8: Every isometry of E is expressible as the product of a reflection, a rotation
and a translation,

We present an intuitive proof first. The formal proof below follows exactly the same
steps.

Intuitive proof: lLet o€l. Let A=(0,0), B=(1,0) and C=(0,1) as shown in
Fig. 1. Our idea is first to find ¢! as a product, ¥, of a translation, a rotation and a
reflection. It is easy then to prove ¢ is the product of a reflection, rotation and translation.
So we must find a ¥ which is the product of a translation, rotation and reflection such that
o¥ = To check that ¢% =. we need only prove that for the three noncollinear points
A, B, C the effect of . and o¥ is the same (Lemma 3.7). We build ¥ in three stages so that
we bring (@) Ao to A; (b) Bo to B; (¢} Coto C. Let Ao = (a,b).

Booe
A.
o
C+ (.76 ¢ Ba;_a,—-b =F i
/ B =
/0 B Bor_o, —pp—¢ x
0 A B X 0 Al=Aor_, _, X 0 Al=Aor_g, 4o,
*Cor_g,
"C‘"—a, —pp—g =C
Fig. 1 Fig. 2 Fig. 3

Apply the translation -__ _, which moves each point a distance d(A, As) parallel to the
line joining Ao and A, so that Aer_, ., = A. Let B’=Bor_, _,. Then B’A is at an angle
9, say, to OX and, since = and ¢ are isometries, is of length 1. See Flig. 2.

—a,—b
Apply the rotation through an angle of —¢ that takes B’ onto B. Let C’ = Cor_, _,p_,.
Then since ¢, 7_, _, and p__ are isometries, C’ is at a distance 1 from A and a distance

\/§ from B. Hence C’ is either as in Fig. 3, in which case let x be the reflection in OX, or
else C’'=C, in which case let n be the identity reflection. Let ¥ =p_, -»p_,u. Since
A, B and C are mapped to A, B and C by ¢¥, o¥ =. by Lemma 8.7. Hence, using our
remark on the inverse of a product in Section 2.4, page 34,

o =¥ = 7o ) Mg )TN = BpTae
and the theorem is true.

Formal proof: We follow the same three steps and use the same notation. Thus
A=(0,0), B=(,0), C=(0,1) and ¢ €.
(@) Suppose A¢ = (a,b). Then Aer_, _, =A.
(b) B’ = Bor_, _, must be a distance 1 from A, since 1=d(A,B) = d(Aor_o, 4, Bor_o ;) =
d(A, B’). Hence B’ is of the form (cos 6, sin ) for some angle 4. [This is a well known

fact of coordinate geometry. All we must check is that if B’ = (d,e) with d*+e*=1,
the equations cosf =d and sin6 =e can be solved for §.] Then

B’p_, = (cosb,sinf)p_,
= (cosf(cos —§) — sin g (sin —4), cosd sin(—4¢) + sin g cos (—0))
= (cos?f + sin?6, 0) = (1,0) = B
Also, Ap_, = A.
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(¢) C" = Cor_, ,p_, is a distance 1 from A and V2 from B, since Aor_, _,p_, = A,
Bor_o _4p_,= B, and or_, _,p__ is an isometry. Thus €’ =(0,1) or (0,—1). Let p be
the identity if €’ = (0,1), and let . be the reflection o, if C’ = (0,—1). Put
v = T b P g Then Ae¥ = A, Bo¥ =B and Co¥ =C. Hence ¥ =. by Lemma
3.7, and o =¥"1= BTg yPye

e. Symmetry groups

Given a figure in the Euclidean plane, we shall define a group which we will call the
symmetry group of the figure.

The word symmetry is not sufficiently precise for the needs of Chemistry and Physics;
so instead of talking about symmetry, we talk about symmetry groups. In comparing two
figures, it usually turns out that what one would normally think of as the more symmetrical
figure has a symmetry group of greater order than the less symmetrical figure. Also, the
symmetry group of what we would normally call a non-symmetrical figure usually turns
out to be of order 1. More generally, we will be concerned with subsets of the Euclidean
plane. (Clearly, a figure is a subset of the Euclidean plane.)

Theorem 3.9: Let S be any subset of the Euclidean plane. The set, denoted by Is, of all
o €1 such that (i) s €S implies s¢s €S and (ii) te €S implies ¢t €S,
forms a subgroup of I, called the symmetry group of S. (An element of Is,
therefore, is characterized by its mapping elements of S, and only elements
of S, into S.)

Proof: Is+ (3, as the identity mapping of the Euclidean plane into itself is in Is. If
o, E€1ls, is or 1 €Is? Wefirst prove - 1 €ls. If s€ S8, (sr™!)r=s € S. Because r €Is,
(ii) implies sr~!' € S. Thus r~! satisfies (i), i.e. s €S implies sr~ ! € S.

To show 1 also satisfies (ii), let ¢~ € S. Then (t—!)r =t € S, since r satisfies (i).
Hence 1 satisfies (ii), and 7! € Is.

Now we show or 1 €Is. Let s€ 8. Then sc €S and sor~! €S, since o and r~! are
in Is. Therefore or~! satisfies (i). If ter~ ! € S, since 7! satisfies (ii), we have to € S.
Furthermore, since ¢ € Is, (ii) implies t €S and consequently or~! also satisfies (ii).
Hence or=! € Is and Is forms a subgroup of I.

Problems
3.38. Find a plane figure S such that

U = {o| o€l andforall s€S, sc €S}
does not form a subgroup of I. (In other words, in Theorem 3.9 we cannot drop condition (ii).)
Solution:

Let S be the infinite half-line starting at (1,0), i.e. S = {(2,0)| « =1}, Then ;€ U. Now

'rl_(l] =7_19. But 7_; g moves (1,0) €S to (0,0) € S. Hence U is not a subgroup.

3.39. TFind the orders of the symmetry group of

¢ Y u |K
AF g : 1], )
3ﬂE 10 D __~.__4IQ_____X L
1 1 1
B 11 ] 1‘1 1 M V2 L
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(Hint: Use Theorem 3.8 and argue intuitively. A useful intuitive approach for this problem is to
cut a cardboard figure corresponding to each figure, label its vertices on both sides, and draw its
perimeter onto a sheet of paper. The isometries are obtained on moving each cardboard figure so
that it lies on the drawn perimeter.)

Solution:

(i)

(ii)

(iii)

Let S = ABCDEF. Let the images of A,B,C,D,E and F under ¢ € Ig be denoted by
A',B',C',D',E’ and F’. By Theorem 3.8 it is easy to see intuitively that the image of the plane
figure S will be the congruent figure A’ B'C’D'E’'F’, since Theorem 3.8 states that every element
of I is a product of a reflection, rotation and translation. But if a rigid body is rotated,
translated or reflected it retains the same shape. Now A’B’ must lie along AB, as all other
sides of S are either smaller or larger than d(4’,B’) = d(A,B), which means F’' must lie on
F and hence E’ on E, etc. Thus o must be the identity. Accordingly I, = {:} and is of order 1.

Let S = IJGH. Now |Ig| is at least 8, for we have as members of I:
s;: A reflection in the diagonal GI,
Gsy =G, Hs; =J, Is; = 1.
8. A reflection in the diagonal HJ,
Gsy, =1, Hsy = H, Isy = G.
s3: A reflection in OX,
Gsg =J, Hsy =1, Is; = H.
84: A reflection in OY,
Gsy =H, Hs, =G, Isy =J.
s5: A clockwise rotation about O of 0°,
Gss; =G, Hss = H, Is; =1
sg: A clockwise rotation about O of 90°,
Gsg=H, Hsg =1, Isg=J.
s7: A clockwise rotation about O of 180°,
Gs; =1, Hs; =J, Is; = G.
sg: A clockwise rotation about O of 270°,
GSS = J, HSS = G, 188 =H.
That all of these are distinct is clear. Could |Ig| be greater than 8?
Let s€lg. d(G,I) = d(Gs,Is) = V2. Only two pairs of points of S are a distance V2
apart, namely G,I and H,J. Therefore the line GsIs is one of the diagonals of S. Similarly

the line HsJs is a diagonal of S. As s is a permutation of S, distinct points of S are mapped
by s to distinet points. This means that at most the following possibilities arise:

(1) Gslsis GI, HsJs is HJ or JH
(2) Gslsis IG, HsJsis HJ or JH
(8) Gslsis JH, HsJs is GI or IG
(4) Gsls is HJ, HsJs is GI or IG

Since these represent eight distinet cases and each involves the movement of three points
not in a straight line, by Lemma 3.7 at most one isometry could correspond to any one case.
Then |Ig| = 8. But we have already exhibited eight elements of Ig. Hence |Ig| = 8.

Let S be the triangle KLM. Then Ig contains the following elements:
(a) o4, the identity mapping of I,
Koy = K, Loy =L, Mo, = M.
(b) oy, the reflection in KN,
Koy = K, Loy =M, Mo, = L.
Hence |Ig| = 2. Let o € Ig. Since d(M,L) = V2 and the only two points of KLM which are a
distance /2 apart are L and M, then either



Sec. 3.4] GROUPS OF ISOMETRIES 75

(¢) Mo = M, Lo = L. Then as K must be a distance 1 from both M and L, K¢ = K.
or
(b) Mo = L, Lo = M. Then as K must be a distance 1 from both Ms and Lo, i.e. from
M and L, and K is the only point of S which is a distance 1 from both L and M,
Ko = K. Hence !Ig] = 2, by Lemma 38.7. Therefore |Ig] = 2.

f. The dihedral groups

Let S be a regular n-gon, n > 2, e.g. one of the figures below. We will show that in
any isometry of S, vertices are taken to vertices. This will make it easy to determine the
order of the symmetry group of a regular n-gon, n > 2.

1 1 1

t ! 1 1
1

1

—

1

1

We will take the following geometrical lemma for granted.

Lemma 3.10: Every regular n-gon can be circumscribed by one and only one circle.

We call the center of the circumseribing circle of an n-gon its center.
Lemma 3.11: The center of a regular n-gon S is taken onto itself by any element of Is.

Proof: Since every point of S is within a distance r, say, from the center O, and o is
an isometry, then every element of So is within a distance » from O¢. Also, there are points
of S¢ which are exactly a distance » from Og, as there are points of S which are exactly a
distance » from O. But So = S. Hence the circle with radius 7 and center Oo¢ is a circum-

scribing circle of S. But by the previous lemma there is only one circumscribing circle of S.
Thus O¢ = O.

Lemma 3.12: If S is a regular n-gon and ¢ € Is, then vertices of S are taken onto ver-
tices of S by o.

Proof: If A is a vertex of S and O is the center of S, Oc =0 by Lemma 3.11.
d(Oc, Ao) = d(O, As) = d(0,A). Hence Ao is a distance r from O, where r is the radius of
the circumscribing circle C. The only points of S on the circumference of C are vertices.
But Ao is an element of S on the circumference of C. Thus A¢ is a vertex.

The symmetry group of the regular n-gon is called the dihedral group of degree n. We
can now calculate the orders of the dihedral groups.

Let the vertices of a regular n-gon S with center O be Ay ..., A4, (in a clockwise
direction). 1
Let o, 1= j=mn, rotate S about O in a clockwise direction through an angle —21(]_—)

radians < = ?% (7—-1) degrees> so that Ala]. = A].. As an example, the effect of o, on the

regular pentagon is shown below.
A, Aoy

As A, 4503 Aoy

o3

Ay Ay Ayoy Ajog
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Let = be the reflection about the line through A and O, so that A+=A, Ar=A4 .
The effect of r on the regular pentagon is shown.

Al AIT

A4 A3 A37- A47’

The following diagram illustrates the effect on a regular pentagon of the reflection + fol-
lowed by the rotation o,.

AT (Agr)og
Ayt (Agr)og (Ag7)og
%0 %0
o3
—
Ayr (Asr)og (A47)ag

The elements o, ...,0,, 70, ...,70, are all distinct. For certainly o; % j+*k, as

19; ta Alo j*k. If T0; = ak, then Al-m'J = AIO']. = A1°'k' Thus T6; = 0y implies j=k.

But ro; = o, implies 7 = ¢,, the identity, contrary to assumption. Finally, ¢, = 70, implies
0']- = O'k.

So there are at least 2n possible elements of the dihedral group of degree n. But we can
eagily show that there are no more than 2n. For if ¢ € Is, S the regular n-gon, then there
are n possibilities for A s. As vertices are taken to vertices, Ac is one of 4,...,4,.
A,o has only two possibilities once Ao is determined as d(A o0, A,0) = d(4,,A,), and A
must also be a vertex. Once A s and A, are determined, Ao, 1= 3,4, ...,n are also deter-
mined. Hence there are at most two elements o € I which map A s to A,. Thus there are
at most 2n elements of I, and so |[ | = 2n.

Let D denote the dihedral group of degree n.

Problems
3.40. Find D; and its multiplication table.

Solution:

The elements of D; are the o, 70; above. Note that o0y =0;4; if 1=7j=2, and o305, = 0;.
Also note that +—! = and oy = 7%0;7 = 7ro;7. Now roy7 = 0y, since oy is the identity; rosr = o3,
as Al'ra2'r = Alazr = A21' = A3; and A21'627' = A302'r = Al'r = Al' So 03T — TOg and TO3 = 09T, Ac-
cordingly the multiplication table is as follows:

oy oy a3 T Tog, TOg

oy oy ay a3 T Tog TOg

ay as a3 oy 703 T TOg
ag a3 oy gy TOg TOg T
T T Tog TOg oy oy o3
TGy TOg TO3 T ag ay )
Tog TOg T TGy a9 ag oy
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341. Show that the following are subgroups of Dy (i) {oy}, (ii) {0y, 09,03}, (iii) {709, 04}. (Notation is
the same as in the preceding problem.)

Solution:
It is only necessary to check in each case that the set is not empty and if g, 2 belong to the set,
gh—1 belongs to the set. It is easy to calculate gh—! from the multiplication table of Problem 3.40.

342, Find D, the symmetry group of the square, and its multiplication table.

Solution:

Notice that we have already found the elements of D, in Problem 3.39(ii). We will, however,
use the notation of Section 3.4f, ie. o5, 7 =1,2,3,4, for the rotations and = for the reflection.
Accordingly the elements of D, are ¢; and 705, 7 = 1,2,3,4. Now oj0p = 05,4 for 1=35=3,
0409 = gy, and o;0; = 0;0; for all i and j. Also +71 =17, o;r = 7707, and roy7 = oy,

We show 7097 = 04. Ajragr = Ajogr = Agr = Ay, Agrogr = Ayoer = Ajr = A, and Agroyr =
Agoyr = Ay = A,. Furthermore Ajo, = Ay, Agoy = Ay, and Ago, = A,. Since 7oy and o, have the
same effect on the three points A;, A, and A3, 70,7 = 04 by Lemma 3.7.

The following calculations facilitate the construction of a multiplication table for D,. og = o3
implies 7o = 'rog'r = (ro97)(ro97) = o‘% =03, and o4 = 030, implies 7047 = 7103097 = (7037)(r0o7) =
0304 = 05. Hence oyt = 77097 = 704, 037 = Tre3r = 703, and o4t = 77047 = 70,. It is now easy to
construct the table:

(3} (] o3 04 T TOy TO3 TO4
gy 51 09 o3 o4 T TO9 TO3 TO4
(4] gy og 04 o1 TO4 T TO9 TOg3
o3 g3 a4 [ 51 g9 TO3 TOY T TO9
o4 a4 oy (D] o3 TO9 TO3 T04 T
T T TOg TO3 TO4 oy (4] a3 04

TOy T0y TOg TOY T oy .81 oy o3
703 703 TOY T TOY o3 04 (51 ()]
TO4 TO4 T TO9 TO3 (5] ag o4 5]

35 THE GROUP OF MOBIUS TRANSFORMATIONS

a. Defining the group
The complex numbers can be represented as points of the Euclidean plane E, the com-
plex number z = x + 4y corresponds to the point with coordinates (z, ¥). Instead of inquiring
(as we did in Section 3.4¢c) what are the permutations of E that preserve distance, we inquire
what are the permutations of E that preserve both angles and their orientation. These are
called conformal mappings. It can be shown (see Ford, L. R., Automorphic Functions,
Chelsea, 1951) that the mappings az + b
o= o(a,b,c,d) M Asd m
where a, b, ¢, d are fixed complex numbers such that ad — be +# 0, preserve angles and their
orientation. But o(a, b, ¢, d) is not always a mapping of E to E. Two things can go wrong.
If ¢+ 0, then:
(i) 2o is not defined if z = —d/c, as then the denominator becomes 0.
(ii) There is no complex number that maps to a/c. For suppose zo =a/c, then az+b=
(cz+d)a/c and b—ad/c =0 and hence bc—ad =0, the very condition we assumed
did not hold.
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It seems as if we have been cheated in our efforts to argue analogously to Section 3.4c
in order to prove the ¢ for various a,b,c,d form a group, because not all the o are
permutations of E.

However, by adding an extra element « to E and forming EU{x} =E we can over-
come these difficulties. <« is any object outside E. It is customary to write « for historical
reasons. The reader is cautioned that just as the symbol x can have different meanings
(e.g. x is sometimes a number and sometimes an element of a group or a groupoid, ete.), so
© has different meanings. The « we introduce should not be confused with the « in such
expressions as lim 1_ 0; it is logically distinct.

T >

Our idea is to extend ¢ to E' in order to patch up the difficulties (i) and (ii) above so that
o € S;, the symmetric group on E.

az+b
cz+d

_az+b
(b) If ¢+ 0, put e

(a) If ¢=0, define zo = for any complex number z, and put «¢ = o,

(3.7)

for z s+ —d/¢, z € C, the complex numbers. Put
(—d/c)e = » and <«wo = a/c

In (a) we have no real problem. Having had to add an extra element, we just let it map
to itself. In (b) we neatly get rid of both difficulties (i) and (ii) above, for we have both
defined (—d/c)e and found an element to map to a/c.

M will denote the set of all mappings of E to E defined by (3.7). We will show that M
is a subgroup of S, leaving most of the checking of details to the problems.

First, each of the o(a, b, c,d) is a member of S; (Problem 3.45). Next, the inverse of
o(a, b, c, d) is given by «(—d, b, ¢, —a) (Problem 3.44). Finally,

a(al, b1, C1, dl) o(az, bz, Ce, dz) = 0(@3, bSy Cs, d3)

for some choice of as, bs, ¢3, ds (Problem 3.46). Note that ¢(1,0,0,1) is the identity mapping
(denoted by :). Hence the product of an element of M and the inverse of an element in M
belongs to M. Thus M is a subgroup of S;. It is called the group of Mobius transformations.

Problems
3.43. Determine the image of (i) 4, (ii) 1+ 2¢, (iii) =, and (iv) —1/3 under (2, 1, 3, 1).

Solutions:

2i+1 _ 7 1. B
3+1 10 10° (ifi) =o = 2/3
21+2)+1 _ 9 1

(11) (1+2i)cr = m = ﬁ—%l (IV) —1/3¢ = =

(i) o =

3.44. Show that o(—d, b,¢,—a) is the inverse of o(a, b, ¢, d), given ad — be = 0.

Solution:
Case (a): ¢ =0.

20(a,b,0,d) o(—d, b,0,—a) = [(‘”;b>(—d) + b} / (—a) = =

» g(a, b,0,d)o(—d, b,0,—a) = =o(—d,b0,—a) = =

Case (b): ¢ +# 0.

(i) z=-d/e.
za(a,b,¢,d)o(—d,b,¢,—a) = wo(—d,b,e,—a) = —dfc = =z
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3.45.

3.46.

(i) 2% —d/cor ». Then

zola b, e,d)o(—d,b, ¢, —a) = [<‘;:idb>(~d)+bJ/[CZ::_—s)c—a]

bez +bd —adz — bd _  (bc— ad)z

aze + be — acz — ad be — ad

©g(a,b,c,d) = a/ec and (a/¢)o(—d,b,e,—a) = =
Hence o{a,b,ec,d) o(—d,b,c,—a) = .
Similarly we can show that o(—d, b,¢c,—a)o(a,b,c,d) = ..

Hence o(—d, b, ¢, —a) = o(a, b,c,d)~1.

Prove o(a,b,c,d) € S for any choice of @, b, ¢,d such that ad — be # 0.

Solution:

In Problem 3.44 we have seen that each o{a, b,¢,d) has an inverse. By Theorem 2.4, page 36,
any mapping of a set into itself which has an inverse is a one-to-one onto mapping. Therefore
o{(a, b, ¢, d) is one-to-one and onto, and so o{a, b, ¢,d) is an element of Sg.

Show that
a(a'l’ bl: €1 dl) 0(0/2, b2’ Ca, d2) = ”(a'?w b3: C3, d3)
where ag = aja; + bycy, by = agh; + bod;, €3 = agey + dyey, and dy = byey + didy. Prove also that
agds — byes # 0. (Hint: This is very much an endurance test.)
Solution:
Let ofa,, by, ¢1,d1) = a4, olay, by, ¢y,ds) = 05, and o(ag, by, ¢3,d3) = 63. Note that

a3d3 - b303 = (alaz + bZCI)(bch -+ dle) - (b1a2 + b2d1)(0/102 + dzcl)

(a1dy — bier)agdy ~ (aydy — byey)byey = (aydy — byeg)(agdy — bocy) +* 0

I

Hence o3 is a Mobius transformation,
Now if 2z € E satisfies
(A) if ¢ #0, z+ —di/e¢;
(B) if ¢35 0, 2oy #* —dy/cy
(C) if e3# 0, 2% —dg/eg

(D) z+# =
a;z + by +b
then oz +d, 2T %2 (@105 + bye)z + (aghy + bydy) i
z — = = o
7192 a2 + by (ajcs + dycy)z + (bycy + didy) 3
——Cy + d2
€12 + dl

Thus except for restrictions (A), (B), (C) and (D), there is nothing more to prove. Since oy0, and
o3 are permutations, we may ignore one of these cases, say (D). This obtains because if for all com-
plex numbers z, zo,05 = 203, then = can only be mapped to one element of E by 0,0, and o5 Ac-
cordingly we shall not consider z = » in the following case by case analysis.

Case (a), ¢, = 0. We have two possibilities: (i) ¢ = 0, (ii) ¢; = 0.

(i) e;=0. Then c¢3 = as¢p +¢;dy = 0. Thus (A), (B) and (C) do not restrict z, and we can
conclude o405 = 03.

(i) eg #* 0. We first show z = —dsfeg if and only if 2oy = —dy/c,. z = —d3/e; implies

al(_d3/03) + bl —a1d3 -+ Cgbl _al(b102 + d1d2) + a/102b1 _ d2

Z = = = = -

o d c3dy a160d,; Cs
A simple computation shows that zoy = (a;z+ b;)/d; = —d,/c, implies z = —ds/c3. Now if
zoy = —dy/c,, then zojo; = (—dyfeg)oy = » and, as z = —dg/ez, 2oz = ©. z = —da/c3 implies

20y = —dy/e,. Thus zoj0o = » = zoz in this case, and so 0,05 = o3.
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Case (b), ¢; 0. Again there are two possibilities: (i) ¢; = 0, (ii) e5 0.

(i) ¢, =0. Then ¢3=c¢d, and, as aydy — c3by ¥ 0 implies dy # 0, it follows that c¢3+ 0.
Note also that —ds/e; = —dids/c;dy = —di/¢;. Hence we need consider only the possibility
z = —d,/¢;. If z= —d{/e,, then, as ¢, =0, 20y0y, = ©®0y = © while zo3 = «. Hence o,05 = 3.

(ii) ey # 0. e3=aicy+c;dy =0 if and only if a,/c; = —dy/cs.

(¢) ¢3=0. If 2= —dy/cy, then zojoy = ®gy = as/c, while
- (—di/easag + ¢1by) + (byay +diby) ay(—a;d; +byey)
: bicg + didy T eylbiey +dydy)
From aq/¢c; = —dy/c; we have dy = (—ay/¢))e, and
P ag(—ayd; + bycy) _ %
? oa(byey — aydy) €2
Now zo; = —dy/es = a;/c¢; only if z = =, and we need not consider this case. Hence ¢05 = 03,

(B) e3# 0. Then a/¢; # —dyfcy. If z=—d,/cy, zojos = ®0oy = as/cy.

d v = (ayag + byey)(—di/ey) + (aghy + body) ax(—aydy +bye)) %
-y = _ . X2

€1 (aye9 + doc)(—dy/cy) + (byes + didy) co{—aydy + b1ey) cy

Finally if 2oy = —dy/cs, then 2z = —ds/eg; for (az+ b))/ (cyz+dy) = —dy/e; implies aqcsz +
bicy = —cydoz —dydy.  Hence (ajeq +cidy)z = —(bjey +didy)  and, as  c3 = a6y + dyey # 0,
2 = —(byey + dydy)/(ayes + dyey) = —ds/es.  Therefore

ds dy ds

— 00y = — 0y = ® = ———g¢g
6312 cz2 633

Let o(a,b,¢,d) = 0y be a Mobius transformation and k& a nonzero complex number. Show that
a(a, b, e,d) = g(ka, kb, ke, kd).

Solution: e
Denote o(ka, kb, ke, kd) by 5. If z+# «» or —d/e¢ (if ¢ 0), then, as k+# 0, z0; = az - -
kaz + kb cz +

Teos T Rd = z5. To treat the special cases z = © or —d/¢ (when ¢+ 0), we first assume ¢ =0.

Then k¢ =0, and «¢; = ® = wg by definition. Secondly, if ¢+ 0, then ke +# 0. Therefore
wgy = %: IZ—Z: © & and _%01 = w = (—kd/ke)5. Thus for all possible choices of z, we have
2oy = 25 and hence ¢, = 7.

Show that the set of all Mébius transformations = {o(a, b,¢,d)| ad —be = 1}.

Solution:
Let M = {ola,b,c,d)| ad—bec=1}. If o =o(a,b,¢c,d) is any Mobius transformation, then,
a b c d
by definition, D = ad — b¢ = 0. From Problem 3.47 above we know that ¢ = o —, —,—,—(—= ).
<\/5’ VD' VD \/5>
e d_ b ¢ = ad — be = 1. Hence ¢ € M. Furthermore, any element of M is ob-
VD VD Vhyp = be ' ’

viously a Mébius transformation. Thus M is the set of all Mébius transformations.

Suppose ad — be # 0. Prove o(a,b,¢,d) = if a=d and b=c¢=0.

Solution:
If o(a,b,¢e,d) =, then 2z = zo(a,b,ec,d). Hence « = wg(a,b,¢,d) implies ¢ = 0.

0 = Oo(a, b,c,d) = b/d implies b = 0.
1 =1o(a,b,c,d) =1 '% implies « = d.

If a=d and ¢=0b =0, then, using the results of Problem 3.47, o(a,b,c¢,d) = d(a,0,0,a) =
(1,0,0,1) = .. -
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b. 2 X 2 matrices

In this section we will define the group of two by two matrices and indicate its relation-
ship to the group of Mobius transformations.

An array

a [
<b d> (3.8)

of complex numbers a, b, c,d is called a two by two (2 X 2) matrix. (Since we will only
deal with 2 X 2 matrices, we usually omit the adjective 2 x2.) a,b,c and d are called the
entries of matrix (3.8). Two matrices are equal if and only if their entries are the

same, i.e. <Z c> = <a’ §:> if and only if a=a’, b=, c=¢ and d=d’. We define

br
the product of two matrices as follows:
a c\fa ¢\ _ aa’ + ¢b” ac’ + ed’
b dN\Y d) ba’ +db” be + dd’

The product of two matrices is clearly a matrix. A calculation shows (Problem 3.51) matrix
multiplication is an associative binary operation.

The matrix I = < %) (1)> is the identity matrix, since
a c¢c\f1 0\  [fa+0 O+c\ _ fa ¢\ _ [1 0Va ¢
b dANO 1) — \b+0 O0+d/ — \b d/ — V0 1Ab d
In order to determine which matrices have inverses, we define the determinant of the matrix

A= <Z ;) to be the complex number D(A) = ad —be. It is easy to show D(A)D(B) =
D(AB) for any two matrices A and B (see Problem 3.52). If 4 = < a 2) and D(A) >0,

then b
d —c
D(4) D(4)
-b a
D(A) D(A)

is the inverse of A (see Problem 38.53(i)). If D(A) =0, then A has no inverse (see Problem
3.53(ii)).

We claim that the set
P { a ¢
- b d

with the operation of matrix multiplication is a group. For if A,B € M, then, as

a,b,c,d complex numbers, ad — be = 0}

D(A)D(B) = D(AB), D(AB)#0 and AB € &. The determinant of I = (}) g) is 1.

Hence the identity I is in &#. Furthermore if A € oM, then A~!' € M since D(A)D(A™?Y) =
D) =1 implies D(A~') 0. Therefore & is a group. We call oM the group of 2 X 2 mat-
rices over the complex numbers.

The relationship between the group of Mobius transformations and the group of 2 x 2
matrices is now evident. For in Problem 3.46 we found

(@1, by, €1, di) 0@z, bs, €3, d2) = o(as, bs, ¢3, ds)
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where as = a1a2 + bac1, bs = a2by + bedy, €3 = a1c2 + daci, and ds = bic: + dids. But by the def-
inition of multiplication,

a1 Ci \faz C2 _ a1y + C1be  a1C2 + ¢1d2 _ as cs

by di by do - bias + dibs  bics + didz - bs ds
This does not mean the group of 2 X2 matrices is identical with the group of Mobius
transformations. For we have seen in Problem 3.47 that o(a, b, ¢c,d) = o(ka, kb, ke, kd) for

' a c ka kc . _ .
any complex number k0. But <b d) e <kb kd)’ e.g.if k= —1. The precise rela-

tionship between the two groups will be given in Problem 4.81, page 120.

Problems

) ) 3 i\/i —1 1 e\/1 ¢ 0 1\/a ¢ a e\/0 1
3.50. (i) Multiply (a) <_2 4><5 2>, (b)<0 1><0 1>, (c)<1 0><b d>’ (d) <b d)(l 0>.

(i) Find the inverse of (a) <; _;) ®) G’ ;) © (; ?) @ <g ;)

Solution:
. 81 -3+ 27 1 2¢ b d c a
o (@ (20—2i 10 > ®) <0 1) (© <a c> @ <d b>
2 1
3 14+38i 14+3 0 1 —i 0 la —clad
wwl el @0 o )

14 +3i 14 + 34

3.51. Show that matrix multiplication is an associative binary operation,

Solution:

Let 4 =(% © ,B=<“2 cz>,c= o °3>. Then
b, d, by dy by dj

AB\C = a; ¢ \/a cz> ag c3\ _ [aapt eyby aget+ c1d2> a3 C3
( ) - bl dl < bz d2 b3 d3 - b1a2 + d1b2 b102 + d1d2 b3 d3
_ <(a1a2 + ¢1bg)ag + (ayey + c1da)by (@105 + ¢y bo)eg + (ageq + cldz)d3>
T\ (byay + dibglag + (byey + didy)bsy  (biay+ dibs)es + (byeg + dydo)ds
a; ¢ dotts + b3 ascs + cod
A(BC) = 1 1> 203+ Coby @sc3 + cady
by dy/\baag+ dyby byes + dody

ay(agas + cbg) + c1(bgag + dgbs) ai(ages + cads) + eq(bacz + d2d3)>
bl(a2a3 + 02b3) + dl(b2a3 + d2b3) bl(a'263 + 02d3) + dl(b203 + d2d3)

A check of entries shows (AB)C = A(BC).

3.52. Prove D(A) D(B) = D(AB) = D(B) D(A), for any two matrices A and B.

Solution: i
e ¢ a ¢ aa’ + ¢b’ ac’ + ed’
Let 4 = <b d>’ B = <b’ d'>‘ Then AB = <ba'+db’ bc’+dd’> and



Sec. 3.6]

3.53.

3.54.

SYMMETRIES OF AN ALGEBRAIC STRUCTURE 83

D(A)D(B) = (ad—be){a'd —b'e’y = aa’dd’ + bb’ce’ — adb’e’ — bea’d’
= (aa’ 4+ ¢b’)(be' + dd’) — (ba’ + db')(ac’ + ed’)
= D(AB)

Because multiplication of complex numbers is commutative, D(4)D(B) = D(B) D(A).

Let

(i)

(i)

a ¢ .
A= < > be a matrix. Prove:

b d
d —c
D(A) D(4)
If D(A) * 0, is the inverse of A.
—b a
D(A) D(4)

If D(A) =0, A has no inverse.

Solution:
d —c ad—be —ac+ ac d —c
0 <a c> D(4) D(A) D) DA 10 D(4) D(A) <a c>
1 = = =
L R bd—db —be+da <0 1> b a b d
D(4) D(A) D(4) D(4) DAY D(4)

(i)

If A’ is an inverse of 4, then D(A’) D(A) = D(I) where I is the identity matrix. But D(I) =1
and D(A) = 0. Since zero times any number is zero, A cannot have an inverse.

Show that the following sets of matrices are subgroups of the group <7 of 2 X 2 matrices.

(i)

(i)

(iii)

R = {(Z ;> a, b, ¢, d real numbers, ad——bcséo}

U = {<Z ;> a, b, ¢, d complex numbers, ad — bc = 1}

0 d

P = {<a c> a, d, ¢ complex numbers, ad 7 0}

Solution:

(1)

(i)

(iii)

/10 _ /e ¢ @ b e d
RCeM and I—<0 1>E‘R. If A—<b d>€7{ then, as D)’ D)’ DA’ DA)

are all real numbers, A—1&€ R and R is a subgroup of <¥, as it is easy to check that R is
closed with respect to products.

UCeuw and D) =1, so IEY. Let AEU. Then DA)DA-1) =D(I) =1 implies
D(A—-1) =1, Hence U is a subgroup of ¥, as it is easy to check that U is closed with respect
to products.

1€ %P. The i A= (%0 g (Y el g A-leP if
PCeMm and P. e inverse of = <0 d> is 0 1/d . ence S i

A € P. Thus P is a subgroup of ¥, as it is easily checked that P is closed with respect to
products.

3.6 SYMMETRIES OF AN ALGEBRAIC STRUCTURE

a.

Automorphisms of groupoids
We have discussed isometries of plane figures. The corresponding one-to-one onto

mapping of a groupoid is defined as follows.

Definition: Let G be a groupoid. Then an automorphism « of G is a one-to-one mapping

of G onto G such that (ab)a = aaba for all a,b € G.
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Note that isometries preserve distance whereas automorphisms of groupoids preserve
groupoid multiplication. As the analog to Theorem 3.5, page 67, we have

Theorem 3.13: The set A of all automorphisms of a groupoid & is a subgroup of Sq, the
symmetric group on G.

Proof:
I. 4, the identity mapping, belongs to A; hence A # .
II. If ,€ A and a,b € G then
(@b)(ap) = (@) = [(@a)(D)IB = [a(eB)][b(eB)]
Thus the composition of mappings is a binary operation in A.
III. The identity mapping is an automorphism, and so A contains an identity.
IV. (A,-) is associative.

V. If a€ A, let «7! be the inverse of «; sihce « € Sg, «~ ! makes sense. Let a,b €G and
choose a’,b’ € A so that a’'a =a, b’a =b. Then (a’b’)e = ab. Hence (ab)a™!=a’b’ =
(aa™Y(ba"Y). Thus 4 is a group, and hence a subgroup of Sg.

We call A the automorphism group of the groupoid G and sometimes denote it by
aut (G).

Problems
3.55. Find the automorphism group of (G,*) where G = {a,b} and ¢ is defined by the multiplication table

(a) a b (®) a b
a a b a a b
b b b b
a a |
Solution:

(@) i, the identity mapping, is the only automorphism for the only other possibility is the mapping
« defined by ae = b and ba = a. But (bb)a = ae = b and baba = aa = a; hence
(bb)a #* (ba) * (ba). Thus « is not an automorphism.

(b) Define « by aa = b and ba = a. Note that ay = y. Hence (2y)a = ya = (xa)(ya). The auto-
morphism group therefore contains the two elements « and «. Notice aa = .

3.56. Find the automorphism group of A;. (For table of A; see Problem 3.23(iii).)

Solution:

Theorem 2.6, page 44, showed that for any homomorphism « of a groupoid G into a groupoid
G', i.e. a mapping of G into G’ such that (g,95)a = giagse for all gy, 9, € G, the image of an
identity in G is an identity in G’ and the image of an inverse of g € G is an inverse of ga, i.e.
la =1’ (1 an identity of G and 1’ an identity of G') and if gh =1 = hg, gaha = 1’ = haga.

Now an automorphism of a group G is a one-to-one homomorphism of G onto G. Therefore if
« is an automorphism of Aj, 1w =1 Also g is either oy or oy, as a is a one-to-one onto mapping.
Hence there are at most two automorphisms of Ag.

Let I be the identity mapping, i.e. J =, o = 0y, 05 = 05. Let A be the mapping 4 =
014 = 05, 0A = 0;. On checking the homomorphism property, we see that I and A are automor-
phisms. Note that A2 = 1. Thus the multiplication table is

1 A

I I A

A A 1
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3.57.

3.58.

Let a be any element of a group G. Define the mapping p, of G into G by p,: g 2> a"lga. Prove
that p, is an automorphism of G and that p,p, = p,, Where p,p, is the usual multiplication of
mappings.

Solution:

py is clearly a mapping. If g,p, = g3pq, then a~lga =a"lgy,a and hence g; = g,. There-
fore p, is one-to-one. Also p, is onto, for if g € G, ¢ has as pre-image aga—1

(9192000 = @ 1(g190)a = a"lgaa~lgea = 9ip.92p,
and so p, is 2 homomorphism. Hence p, is an automorphism. Note that we have used the associative
law, so that our argument would not apply to a groupoid which is not a semigroup. If g € G,
9loapy) = (Goadry = (a~1ga)p, = b~ la~lgab = (ab)"1g(ad) = gpg

and thus pg, = pg0p-

Find the automorphism group of S;. (Hint: Use Problem 3.57 to find six automorphisms. Then
prove that there are no other automorphisms. This problem is difficult.)

Solution:

Refer to the multiplication table of S; given in Section 3.3(a). By Problem 3.57, P Pays Pays Orys
Prys Pry ATE all automorphisms of S;. We use the notation of Section 2.4(c), page 37, to denote the
effect of these mappings., We use the multiplication table of Section 3.3(a) to calculate the images
under the automorphisms.

_ Lt 01 02 Ty T9 T3 . t 0y 03 Ty Tg T3 _ Lt 0y 09 Ty Tg T3
p = P, = Pry =
t t Oy 09 Ty Ty T3 2 t 0y Oy Tg Ty Ta Lt 0y O Tg To Ty
_ 3 01 0y Ty To T3 _ t 01 09 Ty Ty T3 _ t 0y 03 Ty '7'2 T3
Py, = pr, = Pr, =
1 t 09 09 T9 T3 T3 t 09 Oy Ty T3 To 3 t 09 0y T9g Ty T3
If o were another automorphism, then ., = . Once o;p is given, oy is known as o9 = (0y04)p =

o1p0.p. Now a;p must be either o, or o,, for if say o0 = 7, then oy = ayp0p = 747y = ; but this
contradicts p a one-to-one mapping, since p = . Hence there are two possible choices for o;p.

Now 7,p must be one of =, 7, or 75 for if for example, 7,0 = o, then o = (ry7))p =016, = 05 = 4,
a contradiction. Hence there are 3 possible choices for r;p. But once ¢yp and r;p are known, the
effect of p on all the elements of S; is known, since

707 = 73 and Ti0g = To
So this means that there are at most six possible automorphisms.

To find the multiplication table we use the result of Problem 3.57, that p,py = pgp.

2 Pay Pagy Pty Py Prg
oy 23 Pay Poy Pty Py Org
Poy Pay Poy, oy Pry 1y Py
Pay Pay 3 Poy Pty Pry Pry
pry Pry Prg Pry [ Poy Pay
Pry Py Py Prg Poy Py Poy
Prg Prg Py Pry Pay Pay I
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b. Fields of complex numbers

The complex numbers C have customarily two binary operations, addition and multi-
plication. Notice that if «,b € C, then a—b € C; and if b+ 0, ab ' € C. We are often
interested in a subset of C that satisfies the same conditions. This leads us to a field of
complex numbers.

Definition: A subset F of C is called a field of complex numbers if
(@) 1€F.
(b) Whenever a,b € F, then also a—b € F.
(¢) Whenever a,b € F and b+ 0, then ab ' €F.

(The definition of field can be extended to sets which are not contained in the complex num-
bers. See, for example, Birkhoff and MacLane, A Survey of Modern Algebra, Macmillan, 1953.)

Of course the complex numbers themselves form a field. Let F' be a field.

Recall that the set of complex numbers is a group under the usual binary operation of
addition, denoted by (C, +), and that C* = C— {0} is a group (C*, X) under the usual multi-
plication of complex numbers (see Example 5, page 51). Therefore, using Lemma 3.1,
page 55, for a subset of a group to be a subgroup, parts (a) and (b) of the definition of a
field imply (F, +) is a subgroup of (C, +), and parts (e¢) and (¢) imply (F*, x), F'* = F — {0},
is a subgroup of (C*, X). In view of these remarks the definition of a field is equivalent to:
Lemma 3.14: A subset F' of C is a field of complex numbers if

(1) (F,+) is a subgroup of (C, +),

(2) (F'*, ) is a subgroup of (C*#, X) where F* =F— {0}, C* =C~— {0}.
Problems
3.59. Show that R and @ are fields of complex numbers.

Solution:

1€R. If a,bER, then a—b&ER and ab ! € R whenever b +# 0. The same argument
applies for Q.

3.60. Which of the following sets are fields?

i) F={a+b/2]|aebeqQ

(il) F={a+bi|ebeQ}, i=V-1

(iii) F = {a+bi | a,bEZ}, i=V—-1

Solution: :

i 1=14+0Y2€EF. Let a+5/2 and o' + b'V2 be two elements in F.

@+bV2) — (@ +bV2) = (@a—a)+ (b-b)V2 € F
and if o' + b'\/E?é 0,
_ aa’ — 2bb’ a’b — ab’
(@ + bV2)(a + bV2)-1 = + V2 € F

arZ _ 2b/2 a/? _ 2b/2

Therefore F is a field.

(ii) F is a field. 1+0i=1€F.
(@+b) — (@+b5) = (a—a)+ (b—b)i € F
and, if &' +b'15 0,

"By . a'b— ab’
(a+bi)a +bi)-1 = 2 %,

al2 + b/2 a/2 + b/2 t

€ F

(iii) F' is not a field, since 1+¢+#0,1+i€F but A1+ =1/2—-1/2t € F.
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¢. Automorphisms of fields

We have discussed isometries of the plane and automorphisms of groupoids. The cor-
responding one-to-one onto mapping of a field is defined as follows.

Definition: A one-to-one mapping « of a field F onto itself is termed an automorphism
if
(i) (@+Db)a = aa + ba for all a,b EF.
(ii) (ab)a = (aa)(be) for all a,b EF.

Note that the automorphisms of fields preserve both the operations of
addition and multiplication.

Theorem 3.15: The set A of automorphisms of a field F' forms a subgroup of the sym-
metric group Sr.

Proof: We must prove
I. A+ @; this is true since the identity mapping . € A.
II. If «,B€ A, then

@+b)(aB) = (e +D)a)f = (aa+ba)f = (aa)B + (be)f = a(apf) + b(ap)
and (@b)(@B) = ((ab)e)B = [(ae)(ba)]B = [(aa)B][(be)B] = [a(ap)][b(ap)]

for all a,b € F. Thus composition of mappings is a binary operation in A.
ITI. The identity mapping is in A and is an identity element.
IV. (4,-) is a semigroup, since composition of mappings is associative.

V. If «a €4, then o« € Sr the symmetric group on F. Let «~! be the inverse of «. We
claim o«7! € A and so « will have an inverse in A as desired. Let a,b € F. Then as
« is onto, we can find o’,b’ € F such that ¢ =a’a, b = b’a. Then ab = (a’b’)a and
a+b = (&/+b)e. Consequently (ab)a™! = a'b’ = (aa")(ba"1) and (e¢+b)a"?! =
& + b =aa '+ ba"l. Thus « ! € A as desired.

We have proved that the automorphisms of a field form a group. This group is ex-
tremely useful. For additional pertinent remarks and references, see Section 5.4a, page 158.

Problems
3.61. Find the automorphism group of Q.

Solution:

We will use the fact that (@, +) is a group and (@*, %), Q* = @ — {0}, is a group. Notice that
(@,X%)is a groupoid (not a group, since 0 has no inverse) and, because of part (ii) of the definition,
the automorphism of the field @ is also an epimorphism (see Section 2.5b, page 42) of groupoid (@, X)
onto (Q, X). Hence by Theorem 2.6, page 44, 1, the multiplicative identity of (@, X), is mapped onto
1 by any automorvhism of Q.

Let a be an auotmorphism of Q; then 1la = 1. Using mathematical induction we show na =n
for all positive integers n, la = 1. Assume ka =k for some integer k=1, Then (k+ 1l)a =
ko + la = k + 1, by the automorphism property of «. We conclude that na =n for all positive
integers n.

Now (Q,+) is a group and, by definition, any automorphism of @ is an epimorphism of the
group (@, +). Hence by Theorem 2.6, inverses are mapped onto inverses and the identity, 0, of (@, +)
is mapped onto 0. Therefore (—n)a = —n for all positive integers 7, since na =n and —n is the
additive inverse of n. Furthermore, 0« = 0. Hence 7ra = r for all integers. But the automorphism

« is also an epimorphism of the group (Q*, X) onto itself so that (*xr)~la = 4—_1;_ a = "'Lr for all posi-

tive integers r, because -l—is the inverse of . Collecting these facts we see that if % (n # 0) is any
element in @, then %‘a = m-% a = ’ma%a =m- % = % Therefore a is the identity mapping

and is the only possible automorphism of Q. The automorphism group of @ is of order one.
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3.62. Find the automorphism group of F = {a+ b\/§ | a, b€ QY.

Solution:

Any rational number ¢ is an element of F, since g+ 0v/2 = ¢q. If « is an automorphism of F,
then for any ¢ € Q, ga — ¢ arguing as in Problem 3.61. Now V2€ F and (\/5\/§)a =2a =2,
since 2 is an element of Q. But V2aVZ2a=(V2V2)a=2a=2, so that (V2a)2=2 or V2a= i\/é.
We conclude that V2 has only two possible images under an automorphism of F. Hence
@+ b/2)e = aa+ (3Y2)a = aa+ baV2a = a+ b(V2a). There are two possibilities: 1)
(a+bV/2)a = ¢+ by2, in which case « is the identity automorphism ¢ (2) (@ + V2)la=a+ b(—-\/é),
in which case we must check to see whether « is an automorphism. If a: a-+by2 - ¢—by2, then

{{a + bV/2 o' + b'V2)}a {aa’ + 2bb" + (a’b+ b'a)V2 Ya
= ad’ + 2bb — (a'b+ b'a)V/2

and (@+bV2)ala’ +b'V2)a = (a—bV2)a —b'V2)
= aa’ + 2bb" — (a’'b+ b'a)V/2
Hence {(a+bV2) e + b'V2)la = (a+bV2)ala' + b'V2)a
Also, {a+bV2) + (@ +bV2)a = {(a+a)+ (b+)W2}a
= a+a —(b+b)/2
and (@+b5V2)a+ (@ +b'V2)e = (a—by/2) + (@ —b'V/2)
= (a+a)— (b+b)V2
Hence {l@+bV2) + (@ +b'V2)}e = (a+bV2)a + (@ +b'V2)a

Thus « is an automorphism of F. The automorphism group of F has two elements : and
a:a+by2->a—b/2. Notice aa =

d. Vector spaces

In Physics we represent a force x by a straight line pointing in the direction the force
is acting and of length proportional to the magnitude of the force. We shall assume for
the moment that all the forces act on a fixed point O and act in the Euclidean plane FE.
It is then possible to represent a force by its endpoint, as we know it begins at O. Any
point of course can be represented by its coordinates, so a force can be represented by the
coordinates of its endpoint.

We can talk of increasing the force z in magnitude by a factor 3, say. The resultant
force is written as 3z. If x = (fi,f:), then 3z = (3f,3f:). Similarly if f is any real num-
ber, we define fx to be the force « increased in magnitude by a factor f and we can prove

fx = (ff1, ff2).

The sum of two forces x = (f1,f2:) and y = (g91,92) is a third force z computed by the
parallelogram law. Again it can be shown that z = (fi+ g1, f2+92). We write z=2+y.
The set of all 2-tuples (fi, f2) is called a vector space of dimension 2 over the field of real
numbers (because we can multiply the 2-tuples by real numbers).

We shall generalize the concept of two dimensional physical forces in two ways:

(i) We shall deal with arbitrary dimensions and not only 2 or 3. (We must therefore
relinquish our contact with the real world.)

(ii) We shall consider vectors that involve fields other than the real numbers.
Let F be any field. Let V = F" be the cartesian product of n copies of F. Then V
consists of the n-tuples (f1, f, . . ., fx) where fi € F.

If ©=(fy,...,fn) and y=1(gy,...,9») are two elements of V, and f E€F, we define
p:VXV->V (ie. pis a binary operation in V) and o: F XV >V by
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(x, Y)u = (fi+gu fatg2 ..., fntgn)
(f, )0 = (ff1, ..., ffx)

We denote (2, y)x by x +y, and (f, z)o by fz.

fl

V together with u and o is called the vector space of dimension n over the field F.
The elements of V are called vectors.

Problems

3.63. Find (i) (1,2,3) + (6,7,8), (ii) 4(6,—2,0, 3).

Solution:
i) 1+6,24+7,3+8) = (7,9,11)

(ii) (4+6,4+(—2),4°0,4-3) = (24, —8,0,12)

3.64. Prove that if «, ¥y and z are elements of a vector space of dimension n, then z+y =y + a2 and
x+y) +2z =2+ (y+2).

Solution:

If 2 = (f,....0/n, ¥ = @...,9,) and 2z = (hy,...,k;), then z2+y = y+ax =
(fi+91 .-« fut g9y, as addition is commutative in any field.

(@+y)+z=((fi+9) thy -.os fat g +hy) =2+ (+2) by associativity of addition.

3.65. Prove that if V is a vector space of dimension n, then the elements of V form an abelian group
under the operation u.

Solution:
V is an abelian groupoid by the preceding problem. (0,0,...,0) is the identity element. The
inverse of (fy, fa, ..., f) is (—fp,—far - - -» —Fa)

3.66. Prove that if e; =(1,0,...,0), eg =(0,1,0,...,0), ..., ¢, =(0,0,...,1), then every element z
of V can be represented uniquely in the form

x = fieg+ fog+ <o+ + fre,
Solution:
Suppose = (f;,...,fy). Then indeed x = fie;+ foeg+ +- + f,ep.

If v=ge;+gsea+ - -+gne, then (fy,....,f0) =(91,...,9,). Hence f1=gy fr=9, ...,
fn = 9, and the representation is unique.

e. Linear transformations. The full linear group

Let V be a vector space and «: V>V, Then « is said to be a linear transformation

of V if
(i) x+yae = zatye (i) (f2)e = f(xe), forall z,y€V and fEF

For example, let (f1, f2)a = (f2, f1). Then
{(fhfZ) + (gl,g2)}£¥ = (f2+92y fl+gl) = (f2)f1) + (g2yg1) = (fl’fz)a + (91,92)01

Also, {(f(f, f2)}e = (ffe, ff1) = F(fa 1) = f((F1, f2)e)

Note that linear transformations preserve both the additive and the multiplicative structures
of V.

Now we have the analog of Theorems 8.13 and 3.15. First let us define L.(V, F') to con-
sist of all one-to-one linear transformations of V, the vector space of dimension »n over F.

L.(V,F) C Sy, the symmetric group of V, clearly.
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Theorem 3.16: L.(V,F) is a subgroup of Sy,
Proof: « € La(V,F) as . preserves both addition and multiplication. Hence L.(V, F) = Q.

If «€L,(V,F), we ask whether «7' € L (V,F). «7!is one-to-one onto. Is it a linear
transformation? Let x,y €V and f € F. Since « is onto, there exists #, and y, such that
za=x and ya=y. Of course x, =%a™!, ¥, =% ' and (¥, +¥Y)a=Zatya=x+y.
Hence

(@, +y) = @, +Y)aa™' = (x+Y)a™!

and s0 Za'+ya ' =(x+y)a"t. Also, (fz)a=f(x,0)=fx; so ((fx)a)a™' = f2, = (fX)a”?,
ie. f(za~') = (fr)a~!. Accordingly « '€ L (V,F). Thusif o€ L (V,F), g* €L (V,F)
and we ask whether o' € L _(V,F). We have

@+yep™ = (+y)a)f™" = (@atya)p™
= @)+ (yo)B ' = x(efY) + (oY)

and (fr)eB™t = ((f2)a)B™' = (f(@a))B™" = f((x)B™") = f((«B™T))
and thus L _(V,F) is a subgroup of S,. L _(V,F) is called the full linear group of dimension n.

Problems

3.67. Show that if « is a linear transformation of V, a vector space of dimension =, then the effect of «
is uniquely determined by its effect on the elements ey, ..., ¢, of Problem 3.66.
Solution:

By Problem 3.66 each element of V is of the form x = fie;+ - + f,e,. Then xa =
fi(eq@) + - -+ + f,(e,a). Hence the effect of « is known once its effect on the elements e, ..., e, is
known.

3.68. Show that if « is any mapping of {e,...,e,} >V, then there exists a linear transformation
a: V>V such that e¢ja=¢@a, j=1,...,%n
Solution:

Each element of V is uniquely of the form fie; + *** + fpe,. Define @: V>V by
(fres+ - +freda = filega) + -+ + frlena)
Then @ is a linear transformation, since
{(frer+ -+ fnen) + (gre1+ - T gpe)}@ = (fitg)(eqe) + -+ + (Ffo+ gnene)
(frea+ -+ +freda + (grer + - tggen)a

and {(frex+ - T freta = (Ffilern) + -+ + (Ff)lene)
= f{(frex+ -+ + fren)al
369. Is e«€L,(V,F) if « is a linear transformation and eja=e, ea=¢3 ...,€,170¢4=¢, and
€ = el?
Solution:
Yes. All we must prove is that « is one-to-one and onto. An arbitrary element fie;+ --- + fre,

has foe; + fseg+ -+ + foen_y + fre, as a pre-image. Also,
(fiey+ o T frenda = (gre1+ -+ +gyen)a

implies f1=9,,fo=92 ..., fn =9, by Problem 3.66. Hence a is one-to-one. Thus « € L,(V,F).
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A look back at Chapter 3

We have met many important groups, including groups of real and complex numbers,
the symmetric group S, symmetry groups, the dihedral groups, the automorphism groups
of groupoids and fields, and the full linear group.

Groups thus arise in many different branches of mathematics, and hence general theo-
rems about groups can be useful in apparently unrelated topics.

In subsequent chapters we will derive general theorems for groups.

Supplementary Problems

GROUPS

3.70. Let n be any positive integer and let G, = {a + b\/Z| a,b € Z} where Z is the set of integers.
Prove that with respect to addition G, is a group. When does G, = Z?

3.71. Let n be any positive integer. Let G, = {a + ibvVn | @,b € Z} where i =V—1 and Z is the set of
integers. Is G, a group with respect to addition? Is G, a group with respect to multiplication of
complex numbers?

3.72. Let D=7ZX2Z, Z the set of integers. Define (a,b)o(c,d) = (a+ ¢, (—1)cb+ d). Prove that D is
a group with respect to this operation o.

3.73. Prove that the group D of Problem 3.72 is not abelian.

3.74. Let G =2ZX@Q, where Z is the set of integers and @ the set of rationals. Define (a,b)*(c,d) =
(a+e¢,2¢+d). Prove G is a group with respect to this operation *.

3.75. Is the group of Problem 3.74 abelian?

3.76. If we define (a,b)° (¢,d) = (a+e¢,27¢b+d), is G (of Problem 38.74) a group with respect to ©?
Is G a group with respect to the operation ¢+ defined by (a,b)+(¢c,d) = (e + ¢, 2¢b —d)?

377. Let B=1{6]|6:Z-2}. Let W=ZXB. We define a multiplication on W by (m,é)(n,¢) =
(m+n,y) where for each z € Z, 2y = (z—n)g +2¢4. Prove that W is a group. (Hard.)

SUBGROUPS
3.78. Let G be a group and G;CG,C -+ be subgroups of G. Show that G,UG,U--- is a subgroup of

G. Find a group G and two subgroups G; and G, of G such that G,UG; is not a subgroup of G.

3.79. Let G, Gy, ... be subgroups of G. Prove G;NGyN - is a subgroup of G.

3.80. Let G be an abelian group. Let H be a subgroup of G. Let S(H) = {x | x €G and zx € H}.
Prove that S(H) is a subgroup of G.

3.81. Let D be the group of Problem 8.72. Determine whether H = {(¢,0) | e €Z} and K = {(0,a)] e €2}
are subgroups of D.

3.82.  Let G be the group of Problem 3.74. Determine whether H = {(a,0)| ¢ €Z} and K = {(0,¢)| ¢ € Q}
are subgroups of G.
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3.83.

3.84,
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Let B be as in Problem 3.77. Let C = {¢| 6: Z > Z, z§ = z for all but a finite number of integers
2}. Let B = {&] x=(0,b), b€EB}, C’" = {x| z=1(0,¢), ¢c € C}. Prove that B’ is a subgroup of
W and C’ is a subgroup of B’. (Hard.)

Using the notation of the preceding problem, let WA = {x| x =(m,c), where mE€ Z and c€E€C}.
A
Prove W is a subgroup of W. (Hard.)

SYMMETRIC GROUPS AND ALTERNATING GROUPS

3.85.

3.86.

3.87.

3.88.

3.89.

3.90.

3.91.

3.92.

3.93.

Let a«:Z—>Z be defined by za =2+1 for all 2€Z. Let B:Z —>Z be defined by 2n8 = 2n,
(2n+1)8 = 2n+ 3 for all integers n. Let v: Z > Z be defined by 2ny =2(n+1), Cn+ 1)y =2n-+1
for all integers . Prove that «, 8,y € S, and show that ae = By = yB.

Let G = Sp, where P is the set of positive integers. Let §P ={6]| 6€Sp and 26 =z for all
A
but a finite number of z € P}. Prove that Sp is a subgroup of Sp.

Let G=§P. Let G, ={0]| 6€Sp and 20 =z for all z€ P such that z > n}. Prove that
G=GUGU -+,

Let H = {6]| 6 S5, 18 =1}. Prove that H is a subgroup of S;. What is its order? Let
K=1{6]6€8;5 16 =1 or 1¢ =2}. Prove that K is not a subgroup of S;.

Let n and r be positive integers. Let
H = {¢sliw6e{l,2,...,7r} forall i€ {1,2,...,7} and 6 €S,}
Prove that H is a subgroup of S, and find |H|.
Let X be a set and Y a proper subset of X. Let H = {¢| 6 €Sy and ys =y for all y €Y}
Let K = {6]| 6€Sx and yos €Y for all y € Y}. Prove that H and K are subgroups of Sy and
that KDH. Prove that if |Y]| =2, H +* K.
Let H = {6]| ¢ € A5, 16 = 1}. Prove that H is a subgroup of 45 and find its order.
Let A, B be sets with |A| = 1. Prove that S, x5 = Sg. (Hard.)

Prove that if |X| = Y|, Sx = Sy.

GROUPS OF ISOMETRIES

3.94.

3.95.

3.96.

3.97.

3.98.

3.99.

3.100.

Let S be the even integers and (I:S) = {¢| 6 €EI(R), 36 €S for all s€ S}. Prove (I:8) is a
subgroup of I(R).

Let (I:Q) = {6| 6 € I(R) and g6 € Q for all ¢ € Q}. Prove (I: Q) is a subgroup of I(R).
Find the symmetry group of the figure W.

Find the symmetry group of the figure 8.

What is the symmetry group of the graph of y = sin?

Determine the symmetry group of the circle.

Prove that if S is any subspace of the plane and S’ is a congruent figure, i.e. there is an isometry
6 such that S¢ = §8’, then Ig=I;. (Hard.)

THE GROUP OF MOBIUS TRANSFORMATIONS

3.101.

3.102.

Prove that if M is the group of Mébius transformations, then the only element m € M for which
mp=nm forall n€EM is m =.

Let o(a,b,c,d) be the Mobius transformation defined by o(a,b,c,d): 2~ Z: I:l Prove that
a(a,b,c,d) = o(a’,b',¢',d’) if and only if either a=a’, =0, ¢=¢', d=d’ or a=-—a’, b=-b,
c=—¢, d=—d', given ad —bec = a'd’—b’¢’ =1. (Hard.)
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3.103. Let N be the set of Mébius transformations o(a, b, ¢,d) with b = 0. Prove that N is a subgroup of

M, the group of all Mébius transformations.

3.104. Prove that if m € N (N defined as in Problem 3.103), then there exists s € N such that ss = m.

b
3.105. Let U be the set of all matrices <a d) , where a,b,c,d are integers such that ad—bc =1.
c

Find the set of all matrices such that
a b e b\ _ 1 0
e d/\e d/  \0o 1

SYMMETRIES OF AN ALGEBRAIC STRUCTURE
3.106. Prove that the automorphism group of a finite group is finite.

3.107. Find a finite groupoid G with |G| > 2, whose automorphism groupoid is of order 1.

3.108. Let G be a non-abelian group. Prove that the automorphism group of G is not of order 1.

3.109. Prove that the subset K of the symmetric group S, defined by

ko Jrr 234y /123 4y /12384
B 2134’<1243>’<2143"

is a subgroup of S,. Find the automorphism group of K. (Hard.)

3.110. Let F = {a+1ibV17| a,b rational numbers, where ¢ = /—1}. Verify that F is a field under the
usual operations of addition and multiplication of complex numbers. Determine the automorphism

group of F.

3.111. Let V be the vector space over the rationals of dimension n+ 1.

Let

S = {al aeLn+l(V’F); (1,0,...,0)0:(1,0,...,0)}

Prove that S is a subgroup of L, ;(V,F) and that S = L,(V, F).



Chapter 4

Isomorphism Theorems

Preview of Chapter 4

We say that two groups are isomorphic if they are isomorphic groupoids. Here we shall
prove three theorems which provide a means of determining whether two groups are
isomorphic. The main concepts that arise are those of subgroups generated by a set, cosets,
and normal subgroups. We find a structure theorem for cyclic groups. The contents of
this chapter are indispensable for any further understanding of group theory.

41 FUNDAMENTALS

a. Preliminary remarks

We begin by reminding the reader of our previous results. A group is a semigroup in

which every element has an inverse. Consequently we have the following.

(1) The identity is unique. (Theorem 2.1, page 31.)

(2) The inverse of an element is unique (Theorem 2.2, page 33), and if G is any group and
9,h €G, then (gh)"'=h"tg~ L.

(8) The product of n elements a4, ..., a, in that order, is independent of the bracketing
(Theorem 2.5, page 39).

(4) Homomorphisms, monomorphisms and isomorphisms for groups are defined as they are
for groupoids. (Section 2.5, page 40.)

(5) If G is a group, and 4 any homomorphism of G into a groupoid, then

GO = {x| x=g0, g €G}

is a group. For by Theorem 2.6, page 44, G6 has an identity, is associative, and each
element has an inverse. Note that § maps the identity of G to the identity of G¢ and
that (g9 = (94)~* for each g in G.

(6) If 6: G~ K is a homomorphism from the group G to the group K, and if H is a subgroup
of G, then H¢ is a subgroup of K. For 6, is a homomorphism of H into K and, by
(5), HY is a group.

(7) Isomorphic groups are roughly the same except for the names of their elements. (See
Section 2.5d, page 45.)
The following theorem is useful.
Theorem 4.1: If a and b are two elements of a group G, then there exist unique elements
2z and y such that ax =b and ya =b.

Proof: We consider first the solution of the equation ax =b. If we put z =a"1b,
then a(a~'b) = (ea~!)b = b. Hence the equation ax = b has a solution.

Suppose ax; = b and ax: = b; then ax: = ax:. Multiplying both sides of the equation
on the left by a=!, we have

e Yaxy) = a Y axz), (a7'a)rs = (e 'a)x: or X1 = X2

The argument for solving ya = b is similar; in fact y = ba~! is a solution. Also, if
a=>b and y:a = b, then yia = y.a. Multiplying both sides by a~! on the right, we get

(ye)a™ = y1 = (y@)a™' = ¥y

94
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Problems

41,

4.2,

Prove that the groups given by the following multiplication tables are isomorphiec.

-1 1 0 1
-1 1 -1 0 0 1

G H:
1 -1 1 1 1 0

Solution:

Let 9: G~ H be defined by 1¢ =0, —1¢ = 1; then ¢ is a one-to-one onto mapping. If it is
also a homomorphism it will be an isomorphism. We must check that (g,95)0 = g,69,6 for all pos-
sible choices of g, and g, in G, i.e. we must check

(i) (1+1)e = 1lels (iii) (—1+—1)¢8 = (—16)(—16)
(ii) (—=1-1)s = (—16)(16) (iv) (1«-1)8 = (16)*(—1s)

(i) to (iv) hold. (Thus for (i): 1+1 =1 by the multiplication table. 1¢ =0. 1616 =0:0 = 0.
Hence (i) holds.) Therefore G = H.

Of course ¢ had to be some mapping of G to H. How did we know which was the right mapping
to choose? Examining the multiplication table for G, it is obvious that 1 is the identity for G.
0 is the identity for H. We remarked that any homomorphism must map an identity to an identity.
Thus the choice for ¢ was quite clear.

Prove that S,, the symmetric group of degree 2, is isomorphic to G, where G is the group of Problem
3.5, page 53, with m = 2. Prove S; = D3 the dihedral group of degree 3, i.e. the symmetry group
of the equilateral triangle. (Difficult.)

Solution:
The multiplication table for G is 0 1
0 0 1
1 1 0

while the multiplication table for S, is (Problem 3.20, page 58):

i

3 t

B | B ¢

Let 6:S;—> G be defined by 6 =0, 8¢ =1. Then it can be checked that 4 is a homomorphism.
As it is one-to-one and onto, S, = G.

The multiplication table for S; is on page 57, that of D5 is in Problem 3.40, page 76. As we
have used the same Greek symbols for S; and Dj;, we face the risk of not knowing whether o, for
example, refers to an element of S3 or to an element of D3, To avoid such ambiguities, we will
rename the elements of Dj, replacing a ¢ by an s and a r by a t. The multiplication table then
becomes

8y 8y 83 t t8y tsg

N 8 8y 83 t tsy tsg

8y 8 83 8 tsg t 17:9
83 83 8 8y tsy tsg t
t t sy tsy 8y 8y 83
tsy tsy tsg t 83 84 8
tsg tsg t tsy 8y 83 8y
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44.
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Note that an element r;, j=1,2,3, satisfies 7;7; =. If ¢ is an isomorphism from S; to D, then
76 76 = (r;7,)6 = 0 = 8;. So ¢ can only map the 5, §=1,2,3, among the elements ¢, ts,, ts; since
these are the only non-identity elements of D3 which have the property that their squares are 8.
As ¢ must map . to s;, it maps oy, o, onto the elements s, s;.

If we know the effect of ¢ on oy, since o0, = 05, we know the effect of ¢ on o,. Also if we know

the effect of ¢ on 7y, then, because 7o = 7,0, and r3 = 7,0;, we know the effect of 4 on all the
elements of Sg.

So we have to experiment. A suitable mapping 6:S; > D; must satisfy 10 = 8, or 83 while
70 = t, tsy or iss.

We try the following definition. Let 1 =s;, 06 =8, and 7,6 =t. Then we must have
099 = 83, T30 = ts3, 7360 = ts, if # is to be an isomorphism.

To check whether this mapping is an isomorphism, we must check whether this mapping is a
homomorphism. As a mechanical procedure of doing this we use the following table.

t 51 09 T1 T T3
81 Sa 83 t tsg tsy
t
8y N S3 t tsy ts,
. 8y 83 8y tsy tsy t
1
8y S3 81 tsg ts, t
. 83 8y 8y tsy t tsy
2
s3 84 Sg tsy t tsg
t tsy ts; N 83 8y
71
t tsy tsg 8y 83 ER
tsy t tsy Sy 8y 83
T2
tsg t tsy L 8y 83
sy tsg t 83 Sy 8
T
3 tsy tsy t 83 So e

The entry in the second row and third column, for example, is calculated as follows: In the
bottom corner we place o46°0y6. In the top corner we place (oy05)6. If ¢ is a homomorphism,
(016)(026) = (0705)0. Hence these two entries should be the same in each square of the table.
Checking through this table, we see that the entries in each square are equal. Hence ¢ is a homo-
morphism and as it is one-to-one onto, ¢ is an isomorphism.

Prove that if ¢: F > G and ¢: G~ F are two homomorphisms such that 6¢ = identity mapping
on F and ¢¢ = identity mapping on G, then ¢ and ¢ are isomorphisms of F onto G and of G onto
F respectively.

Solution:
6 is one-to-one, for if x¢ = yo, then wxe¢p = yo4. But ¢ is the identity on F. Hence « = y.
Similarly ¢ is one-to-one.

Next let g € G; then g¢p €E F. g¢o = g; hence g is the image of an element of F under ¢ and
S0 ¢ is an onto mapping. Thus ¢ is an isomorphism. Similarly ¢ is an isomorphism.

Prove that if g,,9,,9; are elements of a group G, then the equation g;xg, = g3 has a unique
solution.
Solution:

If we put = = gl‘lg3y2"1, we find g,2g, = 9s. If g,%.95 = 91%295 = g3, then on multiplying by
g7 ! on the left and g, ! on the right we have g, '(9,2,95)9, ' = 97 1912290095 1 or @y = x5
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45. Prove that if G is a finite group and H is an infinite group, then G and H are not isomorphic.
Solution:

If G = H, there is a one-to-one mapping from G onto H. But this is not possible since G is
finite and H is infinite.

4.6. Prove that S, = S,, if and only if n = m.
Solution:

S, has order n! and S,, has order m! Now if S, = S,,, then there is a one-to-one mapping of
S, onto S,,. So S, and S,, have the same order, i.e. »! = m!, and this implies » = m. On the other
hand every group G is isomorphic to itself. In fact the identity mapping of G onto G is an iso-
morphism. Hence n =m implies S, = S,,.

4.7, Prove that if G = H, then H = G.
Solution:

Let ¢ be an isomorphism from G onto H. Then ¢! is an isomorphism from H to G, and so
H = G. (See Problem 2.38, page 42.)

4.8. Prove thatif G = H and H = K, then G = K.
Solution:

Suppose ¢ is an isomorphism from G to H and ¢ an isomorphism from H to K. Then ¢¢ is an
isomorphism from G to K, i.e. G = K. (See Problem 2.38, page 42.)

49. Prove that there are infinitely many groups, no two of which are isomorphic.
Solution:
Consider the symmetric groups S;,S,, .... Then by Problem 4.6, no pair of these groups is
isomorphic.

410. Prove that if G is a finite group and H is a subgroup of G, H # G, then G and H are not isomorphic.
Solution:

We observed in the solution of Problem 4.6 that if two finite groups are isomorphic, they have

the same order. Since the order of H is less than that of G, it follows that G and H are not
isomorphic.

b. More about subgroups
Let G=S, andlet X = {o,,7,} where

/1 2 3 4 1 /1 2 3 4
% T \l2 1 4 3 and = l2 3 1 4

(See Problem 3.21, page 59.) Suppose we wish to refer to a product such as o,r, or r,0.0,
1.—1

og7,05 'r7 17107t It will be convenient to have some general notation. We will write

or

€ €, .
zt!---xz", where ¢ ==*1, 2, € X

to represent the product of n elements chosen from X or the set of inverses of the elements
of X, where z} will mean z, and ;"' will mean the inverse of . For example, if ¢, =¢, =1,
g=¢g=¢=¢=—1,and ¥, =x, =2, =0, ¥, =2, =2, =1, then zaxParIrtelrs stands

—1,.—1_-1_-—1
for OgTy0g T, "T; "0g .

€ € —€ —€
Example 1: If g= xll -o-x”, then g7! =h where h=2 ™--- *, 1,
P'roof: € E, €, € €, € €
- 1... N ... po” 81 — 1 ... n—1eleqp n—1. €
gh ) Ty 2, * %y Tr—1 lew % %y
€ -
= = g1 g7 = 1

Similarly hg = 1. t
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We proved in Lemma 3.1, page 55, that if H is a subgroup of G and x,x, € H, then
z,x;' € H. We now generalize this and prove

Lemma 4.2: If H is a subgroup of G and X C H, then
H D (2! - 2| x, € X, ¢ = =1, n a positive integer}

Proof: Recall that as H is a group, . € H and z,y € H implies y '€ H, xy 1 € H,
and zy € H. We prove the lemma by induction on n. Let n=1. Then z;'€ H since
x#, €H. Hence z' € H. Assume, by induction, that x =2! --- 2" € H for n=Fk Let

i €k +1 =
z.,.,€X. Since z,zr%' € H where ¢,, =*I,

pEh = at o akit € H
Hence z;!---z» € H for all n. This proves the lemma.
Now if X is “large enough”, e.g. X = H, we may have
H = {2 - -z, | 2, € X, ¢ = %1, n a positive integer)
We ask what happens if X is not “large enough”, i.e. if X is a subset of H and
S = {x' - 2| x,€X, ¢==1, na positive integer}
is S a subgroup of G? (
Lemma 4.3: Let G be a group and let X be a non-empty subset of G. Let
S = {1 - -z | 2, €X, ¢ = %1, na positive integer}
Then S is a subgroup of G. If H is any subgroup containing X, H2 S.

Proof: We must prove that:
(i) S+ @; this is true because there exists z, € X as X is non-empty.
(if) If f,9 €S, then fg~' €S (Lemma 3.1, page 55).

f,9 €S means
f=al -z (¢=%*1) and ¢ = Yh -yt (g, =£1)

where z, and y, are elements of X. Hence g~'=y " -- y; ™ and

Sl = gy M T = 1L SRt ... gt
fg =%, T Y ™ Y, =% L' Tovt Toim
where ., =¥, .- %,,,, =¥, and ¢ ., =7, ...,¢,,, = —n, Therefore fg~' €S and

S is a subgroup of G. If HD X, we use the previous lemma to conclude H 2 S.
We denote S by gp(X) and call S the subgroup generated by X.
If a group can be generated by a finite set, we call it a finitely generated group.

Example 2: What is gp({1}) in the group of Problem 3.5, page 53, where m = 3? Recall that

the multiplication table is
0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

S = gp({1}) = {xil cee x;" | z; € {1}, ¢ = %=1, n a positive integer}
Now 1€ S and 2€S. Also, 12 = 0€ S. Hence gp({1}) is the whole group.
We remind the reader that, for example, in the multiplicative group of nonzero rationals
the inverse of @, which we have denoted in this section by a~1, is 1/a, i.e. in this case a¢!

has the meaning usually associated with it when a is a number. But in the additive group
of rationals a~! is —a.
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Problems

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

Let G = Z, the additive group of integers. What is gp({1})?

Solution:
gp({1})) D14+1+1+ -+ 4+1 (rn=1). Hence gp({1}) contains all positive integers.
n times
gp({1}) contains 1-1+1-1+4 ... +171 = 14 (=1)+ -+ +(—1) (n =1). Hence gp({1}) con-
n times n t;,mes

tains all negative integers.
Also, ¢gp({1}) contains 1+1-1=14(—1) =0.
Thus gp({1}) = Z.

Let G = @ the additive group of rationals. Find gp({1}).

Solution:

Exactly as in the last problem, gp({1}) = Z. Since no other elements can arise as sums or
differences of 1, gp({1}) # Q.

Find the subgroup of the multiplicative group of rationals generated by {2}.

Solution:
2-1 = 1. The elements of gp({2}) are either of the form 27 or 2=, n a positive integer.

Determine the subgroup H of S; generated by o; and =, of Section 3.3a, page 57.

Solution:

We use the multiplication table for S; shown in page 57. ¢, ! = 6,; hence H contains o, As
H contains 7, it contains 73 = r;0; and 7, = r;09. Thus H contains all the elements of S;, and so
H =S,

Determine the subgroup of the symmetry group of a square generated by those isometries that leave
two vertices fixed. (Hard.) (Hint: To see what is happening, cut out a square from a piece of card-
board and label the four vertices. Perform the isometries on the figure.)

Solution:

We refer to Problem 3.39(ii), page 73. 8 leaves G and I fixed; s, leaves H and J fixed; s5 leaves
all vertices fixed. Hence we require S = gp({s;, 85,8,}), and this must contain s,;, since s;8, = s7.
It is easy to prove s;s, = s;, for the effect of s; and s;s, is the same on three points not on a single
straight line and this is sufficient by Lemma 3.7, page 71. Note that the inverses of s,,s;,s; are
So, 81, 87 respectively.

Let T = {ss5,s7,89,8;}. We assert that T is a subgroup. All we must check is that t;,t, €T
implies t,t;1 € T. Since t& T implies t—1 = ¢, all we must check is that t;t, € T for t;,t, € T.
As s; is the identity, tt, € T if sy is either ¢, or ¢, If ¢, = ¢,, then ¢f, =s5 € T. Therefore
we need only consider the following cases: §,8, = 8,8 =8; € T; 8:8; = 8;8 = 8, € T. Finally,
8987 = 8783 = §; € T. Then T is a subgroup of the symmetry group of the square. But SO T, and
T D {s5,89,81}. Hence T D gp(ss,83,8) =S, by Lemma 4.3. Thus T =S.

Find the subgroup of M, the group of Mébius transformations (see Section 3.5a, page 78), generated
by

n:22>—2 (#* %), 5: ®>w

7:2=22+1 (z# ®), 7! ® o

(In the notation of Section 3.5a, » = ¢(—1,0,0,1) and r = ¢(1,1,0,1). This is a difficult problem.)

Solution:
Let o, ., be the mapping defined by z—>ez+n for z+ =, and « - =, where ¢=*1 and
n is any integer. In other words, o, ., = ole, n, 0,1).
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We will show that the subgroup generated by 7 and r consists of all o, ., n any integer,
e==*1. Let 2 = {0, | n any integer, ¢ = *1}. We claim gp(s,7) = Z. Any element of = is

of the form o ) Now z2r~1=2—1. Also, 2zr-*r=2+mn and zr—!---7+-!=z—mn for any
(n; € \

positive integer n. Hence for any arbitrary integer"n, %1y € 9P(n, 7). (V\yfle must check what hap-
pens to «, but this presents no difficulty.) Also, o, 137 = 0(_,, —1) € gp(n,7) and 50 o, , € = *1,
n any integer, belongs to gp(n, 7). Thus gp(y, 1) 2 =.

Note that y = o _;y and 7 =0 ;, belongsto 2. So we need only show that 2 is a subgroup
of the group of Mo6bius transformations to conclude that = 2 gp(y, 7). To show = is a subgroup, we
need only show that o, ol €3, §==1. But oy, =o_g.5, SiNCe 20, 5 0 5 o =

(8z+m)§ —om = §%2+ dm—dm = 822 = 2. Then zo(, "(_ml,a) = (2t m) 0 _gp 5 — €2+ n8— sm,

1 —
and we conclude that o, o, 00, 5y = T(ns5—sm, e5) € 2-

c. Exponents

We have seen in the previous section that we often are forced to consider the product of
m a’s (m>0), eg. a*----a. (Note that as we are dealing with groups, it is not necessary

to indicate in which order the multiplication is performed. See Section 4.1a.) It is con-
venient to introduce the notation a™ for the product of m a’s, m > 0. Then a™-a" is the
product of m a’s followed by = a’s, i.e. a™-a® =a™** (Section 2.4d, page 39). Our idea is
to extend the exponent notation in a sensible way to zero and negative exponents. We

would naturally like the law am-gr = qmtn (4.1)

to be true when m and n are arbitrary integers. Now if it were true that a’a™ = a™, then
multiplication by a° leaves a™ unchanged. Hence we have only one choice in extending the
exponent notation and retaining the law (4.7), namely putting e® =1, the identity. Now
if m=-n where n>0, m+n=0. Because we want (4.1) to be satisfied, we must have
am*r=q%=1, ie. we must put a™ = (a”)~!. Note that (a")~* = (a~')* =a " Thus we have
defined a™ to be

(i) the product of m a’s if m > 0,

(ii) 1if m=0,

(iii) the product of —m a~Vs if m <0,
hoping thus to satisfy (4.1) for all m and n.

(4.1) is true if m, n are both positive. If both are nonnegative, again by running through
the possible cases (4.1) holds. If both m and » are negative, then

amqr = (a—l)(~m) . (a—l)(—n) — (a-1)(——m+—n) — (a—l)—(m+n) = gm*tn

If m and n are nonpositive, again the result is easily verified. If m >0 and n <0, then
by checking the various possibilities m > —n, m=—n and m<-n, we find a™a"=
am(a—l)(—n) — am+n.

Another result which holds for exponents is

(am)n = gqmn (4.2)

We already know that (4.2) holds when »n = —1. If m,n are positive, (a™)" is the product of
n elements, each of which is the product of m a’s. Hence (a™)* is the product of mn a’s. ' If
m is negative, n positive,

@y = (@)™

(@)™ as ~m>0, n>0
= g™ as mn<O0

If now = is negative, (am)n — (am)(—l)(—n) — ((am)-—l)—n — (a—m)(—n)
= @¢~™ ¢ m (by our previous remarks)
— amn

Hence (4.2) is proved.
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In the study of groups there are two main notations for the binary operation. One is
the multiplicative notation we have employed up until now. The other is the additive nota-
tion. We denote the binary composition by + in this case. The identity is denoted by zero,
0, and the inverse of a by —a. The result of performing 7 > 0 compositions of the same
element, i.e. of taking ¢ + a + - - + ¢, we denote by na. The law (4.1) becomes

n

na +ma = (n+ma

while the law (4.2) becomes n(ma) = (nm)a

In other words, translation takes place according to the following dictionary:

Multiplicative notation Additive notation
ab a+b
1 0
a™! —a
a® na

It is immaterial which notation one uses. But additive notation is most often used for
a group in which the order of the composition of two elements is irrelevant, i.e. in which
a+b=20b+a forall a,b in the group. Such a group is called abelian, after the Norwegian
mathematician Niels Henrik Abel, or commutative (Section 2.2, page 29).

Problems
417. Find 13, 174 where 1 € @, the additive group of rationals.
Solution:

In the additive group of rationals the binary operation is the usual addition. Then 13 means
10101 where © is the binary operation in Q. Hence 13=1+4+1+41=23. Also 1-¢ means (1--1)%,
ie. 171017101~ 101-1 where © is the binary operation under discussion. Now 1-1= -4 in
(@,+). Thus 1—%=(=1)+(-1) + (—1) + (1) = —4.

4.18. Find 22, 2-3 where 2 € Q*, the multiplicative group of nonzero rationals.

Solution:
22=2+2=4 and 273= (2713 = (P =L

1 2 3 4

2 1 4 3> , an element of S,.

419. Find o3, o = (

Solution:
2=, and s0 o3 = w0 = 0.

420. Find ", where 7 is as defined in Problem 4.16.

Solution:
™ = 0¢y,1). See Problem 4.16.

42 CYCLIC GROUPS
a. Fundamentals of cyclic groups

If gp(X)=H, we say H is generated by X. To get an understanding of groups, a
good plan is to investigate the simpler groups first. So we begin by considering groups
which can be generated by a single element. We call such groups cyclic. Thus a group H
is cyclic if we can find an element x € H such that H = gp({z}). We will usually write

gp(x) instead of gp({z}).
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Lemma 4.4: gp(x) = {t|t=2a", ran integer}. Cyclic groups are abelian.
Proof: gp(x) = {2 |, € (&), ¢, = =1, n> 0}

— {xel...xenlei:tl,’n>0}
_ {(2)

= {z"| r any integer}

ei:il,’n>0}

If a,b € gp(x), then a =", b = x5, ab = x"xs = z"*5, ba = 52" = x"*s. Hence ab = ba for
any two elements of a cyclic group. Thus we have shown that cyclic groups are abelian.

Suppose now that H = gp(x) and |H|=m (m < «). Then we know that the elements
of H are of the form z” for various integers r. The zt cannot be distinet for all integers 7. Con-
sider z°=1,z,...,2!"! and suppose these are distinct but that z'=z* for some k <lI,
k=0; then zi(2*)'=zx"*=1. If k+0, m=I1l—k<l and 2™ is equal to z°. But we
assumed this was not so. Hence k=0 and z'=2z°=1.

We will show that S = {1,z,2% ...,2'"!} is actually H. This is easy. First notice
that as z' =1, every positive power of z is in S. Furthermore, #~!=z'~!. Hence every
negative power of z lies in S. But H = {z"| r any integer}. Therefore HCS and so
S = H as stated.

Thus we have proved

Lemma 4.5: Let G be cyclic of order m generated by the element . Then G = {«% 1«1, ...,
™1}, Furthermore x™ =1, and z™ is the least positive power of « that is 1.

We ask a simple question: do cyclic groups of order m exist for all finite integers
m>0? Yes! Let us consider in the symmetric group S, of degree m the element

/12 ... m—1 m
mo T \2 8 ... m 1
1 2 m—2 m—-1 m
Then o = <3 4 m o1 2>
m 1 2 m
Im = 1 2 m| ~—
and so the elements 4,0, ...,0™ ! are distinct and H = gp(s,,) is cyclic of order m. Hence

there exist cyclic groups of order m for each m > 0.

And now we ask another question: are there two essentially different cyclic groups of
order m? Rephrasing the question, we ask: are two cyclic groups of order m isomorphic?

Lemma 4.6: Let G = gp(x), H=gp(y) be each of order m. Then G = H.
Proof: G = {z%z,2%...,a™ Y}, H= {09, ...,y 1}. Let 6:G—-> H be defined by
g =9y (¢(=0,1,...,m—1)

Then 6 is one-to-one onto H. To prove it is an isomorphism we must show it is a homo-
morphism. Consider
P (@) = (@90
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Now 0=4,j=m—1. Then 0=¢+7=2m—1)=2m—2 and so 1+j=enm+r where
=r=m—1 and «e=0 or 1. Hence

(xi+.7')0 - (xem+r)0 — (xsmxr)o — (xr)a — yr
But (ng)(xje) — yiyj — yi+j — y€m+r — yemyr — yr

Hence ((z%)(2%))9 = (xi9)(«’9). Thus ¢ is a homomorphism and, as it is one-to-one onto, it
is an isomorphism.

We now ask the obvious question: are there any infinite cyclic groups and are two
infinite cyclic groups isomorphic?

Consider the element ¢ in the symmetric group Sz on Z, the set of integers, defined by
ze = 2+1, z€2Z

As zo"=2z+m, o™ =¢" implies m =mn. Then ¢gp(c) = H, say, has an infinite number of
elements and so H is an infinite cyclic group.

Recall that G = gp(x) = {2" | » any integer}. If there exists an integer m >0 such
that 2™ =1, then G will consist of only a finite number of elements (see the remarks pre-
ceding Lemma 4.5). Consequently if G is infinite, there exists no m - 0 for which z™ =1.
For we have already shown that there can exist no m >0 for which 2™ =1; while if
z»=1 for m <0, then ™™ =1 and (—m)>0. If z*=2" n++1l then 2"'=1. But
this contradicts the condition that there exists no m such that ™ =1. Hence the elements
of G are simply the powers z" of z, and two such powers z™ and 2" are equal if and only if
m=n.

Now we can easily prove that two infinite cyclic groups are isomorphic. Let G = gp(x),
H = gp(y) both be infinite cyclic groups. Then each element of G is uniquely of the form
z", n an integer, and each element of H is uniquely of the form ", n an integer. Define
(x™)8 = y. 6 is a one-to-one onto mapping. Furthermore, (z"z™)¢ = (z**™)§ = y"*™ and
(z"0)(x™0) = y"y™ = y»*™. Hence z"9x™9 = (x"x™)d. Therefore ¢ is an isomorphism and
G and H are isomorphic groups.

Collecting our results, we have proved

Theorem 4.7: There exist cyclic groups of all orders, finite and infinite. Any two cyclic
groups of the same order are isomorphic. (We therefore often talk about
the cyclic group of order m, or the infinite cyclic group, or sometimes the
infinite cycle.)

If x is an element of a group G, then we define the order of x as the order of gp(x). Note
that if z is of order m < «, then z™ =1 and m is the first positive integer » for which
zr=1. If z is of infinite order, then 2™ =1 implies m = 0. If z is of order m, m < =,
we say z is of finite order.

Lemma 4.8: Let x be of order m < «. If 2" =1, then m divides 7.

Proof: Put r=gm+s where 0 =s<m. Then 1= "= a2 =25 As m is the first
integer greater than 0 for which 2™ =1, s = 0. Hence m divides 7.

Problems
4.21. Prove that the additive group of integers is infinite cyclie.

Solution:
Z = gp(1). As Z is infinite, it is infinite cyclic.

4.22. Prove that the group of Problem 3.5, page 53, is cyclic of order m.

Solution:
The group is gp(1), and its order is m.
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4.23.

4.24.

4.25.

4.26.

4.27,

4.28.

4.29.
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Prove that (Z, +) and the subgroup of M, the group of Mdbius transformations, generated by the
mapping 7: 2> 2z+1, *yp = ©» are isomorphic.
Solution:

By Theorem 4.7 all we need prove is that gp(y) is infinite, as we know from Problem 4.21 that
(Z,+) is infinite cyclic. But since z3® = z+mn, »* = 9™ implies n = m. Thus gp(y) is infinite and
so gp(n) = (Z,+).

1 2 8 1 2
Find the order of (i) ¢ = < > € 83 (i) o = < 3 4> € S,, (iii) the map 3 of M

2 1 3 2 3 41
defined by 29 = —z, @y = o,
S.olutlo:é: o 12 3\/1 2 3y _ " P
i) o%: a =y 1 g)lag 1 3/=" ence o is of order 2.
(i1) o, o2, 03 are not ;, but ¢t = Thus ¢ is of order 4.

(iii) %2 = . and so ¢ is of order 2.

Let G be abelian. Let x,y € G be of orders 7, s respectively. Show that zy is of order rs if r and
s are co-prime, i.e. have no common prime divisors.

Solution:

Note that since G is abelian, (xy)" = x"yn for any integer n. Since (xy)rs = arsy*s =1, the
order of xy divides rs, by Lemma 4.8. If (xy)m =1, i.e. 2mym =1, then am = y—™ and 1 = (am)r =
y—mr, Therefore s, the order of v, divides —mr. Since s does not divide r, s must divide m. Similarly
we can show r divides m. Hence rs divides m. So if m is the order of xy, m is divisible by rs and
also m divides rs. Thus the order of xy is rs.

Show that if G is a cyclic group of order m < » and s is co-prime to m, then as = b5 (a,b € G)
implies o = b. Find a group G and a nonzero integer n such that there are two elements a,b € G
with a7 = b but a +# b.

Solution:

Since G is abelian, so (ab—1)s = a5(b~1)s = 1. Since G = gp(x) and the order of G is m, then
ab—1 = g7 for some r, and (x7)s = 1. Hence " =1 and m divides rs. But s and m are co-prime;
then m divides r, say r = gm. Now ab~1 =z =1 and so a = b.

1 2
In Sy, let a = 8 , b= 123 . Then a2 =b2=( but a + b.
2 1 3 1 3 2

Show that if G = ¢gp(x) and G is of finite order r and s is co-prime to 7, then gp(xs) = G.

Solution:

The distinct elements of gp(xS) are 1,xs,x2s,...,2("~1s where (x5)* =27 =1 and n is the
least such positive integer. Since 75 =1 and G is of order r, r divides ns. As r and s are co-prime,
r divides n. Hence there are at least » distinct elements in gp(xs). But as G D gp(x5) and G itself
has only r elements, gp(xs) = G.

Find a group which is not abelian. (Hint. Consider Sj.)

Solution:
See Section 3.3a, page 57, where we pointed out that o;7; # 70;. Hence S; is not abelian.

Prove that a subgroup H of S; is cyclic if H # Ss.

Solution:

A survey of the subgroups of Sy shows that if H is a subgroup of S; and H % S3, then H is
either cyclic of order 3 or cyclic of order 2 or cyclic of order 1. To obtain all the subgroups of Sj,
we refer to the multiplication table for S; in Section 3.3a, page 57, and list all the subsets of Sj.
Then we check which subsets are subgroups. Of course since a subgroup must contain the identity,
there is no need to go through the process of finding all subgroups quite so crudely. Nevertheless
this method will suffice.
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4.30.

4.31.

Prove that (@, +) is not cyclic.

Solution:

If (@, +) is cyclic, there exists ¢ = m/n, m and n» integers (n # 0), such that gp(m/n) = Q.
Of course m # 0. Each element (# 0) of @ would then be of the form ¢+ q+ -+ + g with some
;ﬂ____J

M
suitable choice of the positive integer r, or else of the form —g—q—---—q.
%—/

r

But 1/2n€Q. 1/2n=q+ ---+q implies 1/2n = rm/n, ie. 1= 2rm; then 1—2rm =0.
;ﬂ—/

T
But » and m are integers; hence the equation 1 —2rm = 0 is not true. If 1/2n = —q—q—q— -+ —gq,
r terms in all, a similar argument leads to a contradiction. Therefore (Q, +) is not cyclic.

Prove that an abelian group generated by a finite number of elements of finite order is finite.

Solution:
Let G = gp({zy, ...,2,}), » < ©, and suppose G is abelian. Then every element ¢ in G is of

the form
1., .

€
9 =z x; (xijGX, g = *1)

1"‘
Since G is abelian, we can rewrite g in the form

Y Y .
g = wll“'xn" (Y1 Y25 - - +» Yn integers) (4.8)

To see this we need only observe that if i, = ¢, for s <t in the first expression for g, then

€] €g+ €L

— €r
g = @i ;

-
s T
ie. we can always “collect” all occurrences of any # in a product. Now if z;,x,,...,%, are all of

finite order, then the number of distinct elements given by (4.8) is finite. For if k; is the order of =;,

. e ki—1
+=1,2,...,n, the distinct powers of x; are 1,x,, xiz, cexlt

ments given by (4.8) is at most k,k,...k,, and so G is finite.

Thus the number of distinct ele-

b. Subgroups of cyclic groups

(1)

Before beginning the study of a new section it is a good idea to list the natural ques-
tions.

If we want to know something about the subgroups of cyclic groups, we might ask:

Are subgroups of cyclic groups cyclic?

(ii) Does there exist a subgroup of any given order?
(iii) How many distinct subgroups of a cyclic group (less than or equal to the order of the

group) are there?

(iv) How many subgroups of a given order are there?

We tackle each of these questions.

Theorem 4.9: (i) Let H be a subgroup of G =gp(x). Then H is cyclic and either

H = gp(z') where 2! is the least positive power of # which lies in H or
else H = {1}. If the order of G is m < «, then l|m and the order of
H is m/l. If the order of G is infinite, H is infinite or H = {1}.

(ii) Conversely if [ is any positive integer dividing m, then S = gp(x') is
of order m/l. Consequently there is a subgroup of order ¢ for any ¢
that divides m.

(iii) The number of distinct subgroups of G is the same as the number of
distinet divisors of m = |G| < .

(iv) There is at most one subgroup of G of any given order for G finite.
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Proof:

(i) If H+# {1}, thereexists z" =1 € H. As H is a subgroup, =" € H. Now one of n, —n
is positive. Hence we can talk meaningfully about the smallest positive power z! € H.
Clearly, HDS = gp(xY). Suppose z" € H; then r=¢ql+s, 0=s <, and

() = € H
But #! is the least positive power of x that belongs to H. Thus $=0 and so r=gql
and (") = (#)* € S. Hence S=H.
If the order of G is m < =, then m =ql+s, 0=s<Il. Now
l=gm=gd*s=gis € H

andso #°€ H. Then s =0, as z!is the least positive power of x that lies in H. Hence
l divides m, and m =lq. Clearly (x')? =1, and q is the least positive integer for which

this occurs. Then, by Lemma 4.5, writing o = 2!, we have H = gp(e) = {a’,a}, ...,a%" !}
and hence |H| = q = m/l. If the order of G is infinite, all the powers of x are distinct,
and so 2, 2%, ... is an infinite set of distinct elements of H. Thus H is infinite.

(ii) Let I]m,1>0. Put m/l=q and 2'=a. Then S=gp@)={l,a,...,a°1}, as
a? = g™ is the least positive power of a which is 1 (for if a¥ =1, ¢’ <gq, then z'v =1
and l¢’ < m, contradicting the fact that x™ is the least positive power of x which is 1).
Thus S is a subgroup of order q. Consequently if we start out with a positive integer
g which divides m and we put I = m/q, then S is a subgroup of G of order q.

(iii) Let li, Ly, . . ., L be the distinct divisors of m. Then put H; = gp(x4), ..., H. = gp(z®).
We know |Hi = m/l. These are n distinct subgroups of G (because their orders are
different). Are there any more subgroups? By (i) any subgroup H of G will have to
be generated by «' where [ is a positive integer dividing m. Hence [ =1, say. There-
fore H = H;. Thus the subgroups of G are simply Hy, H,, . .., H,, as desired.

(iv) If H and K are two subgroups of G with |H| = |K|, then H and K are H; and H; of part
(iii) above, for some ¢ and j. But |Hi = m/l, |H;|=m/l; Since |H|=|K|, =1 and
therefore 1=j and H=H;=H;=K.

The reader will perceive that our knowledge of the cyclic groups is in some ways quite
comprehensive. We know in the case of finite cyclic groups what the distinct subgroups
are, we know they are cyclic and we know which cyclic subgroups appear. In the case
of infinite cyclic groups we can easily prove there are an infinite number of subgroups.
We will distinguish between them in Theorem 4.24, page 126, using the concept of index
which will be introduced in Section 4.3b.

The reader might naturally be led to consider now groups generated by two elements,
hoping that similar powerful conclusions can be obtained, e.g. that every subgroup of a two
generator group is a two generator group. But in going from one to two generators we lose
control. It has been shown that every countable group is a subgroup of a two generator
group, so we can never hope for a simple account of two generator groups.

Problems

4.37. A subgroup H of a group G is called proper if H+# G and H # {1}. Let G be a cyclic group of
order a prime p. Prove that G has no proper subgroups.

Solution:

We know from Theorem 4.9 that the number of subgroups of G is the same as the number of
distinet divisors of p, which are p and 1. Hence the number of distinct subgroups of G is two. As
{1} and G itself are two distinet subgroups, the number of proper subgroups is zero.
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4.38. Prove that the only groups which have no proper subgroups are the cyclic groups of order p and
the group consisting of the identity alone.

Solution:

Let G be a group with no proper subgroups, G # {1}. Let g € G, g 1. Then S = gp(g) is a
subgroup by Lemma 4.3. Since ¢ €S, S =G as G has no proper subgroups. Hence @ is cyeclic.
If G is cyeclic of order mn, m,n ¥ 1, then, by Theorem 4.9, G has a subgroup of order m. But this
is a proper subgroup. Hence G is cyclic of prime order or else possibly infinite eyclic, say G =
gp(x) ={..., 72, 271,20, 21, 22, ...}, But H = gp(x?) is a subgroup not equal to {1}, and not
equal to G since « € H. Hence G can only be cyclic of order p, a prime.

439. Find a group with two distinct subgroups both of the same order. [Hint. Consider S;.]

Solution:

1 2 3 1 2 3
Let =3 = , T2 = . Th = -9
et 3 <2 1 3> Ty <1 3 2> en |gp(rs)| = |gplry)]

440. Find a group which is of infinite order but has a subgroup of finite order. (Hint. Try the group
of Mobius transformations, M, of Section 3.5, page 77.)

Solution:
Let 9:2—>1/2, » = ». Then gp(n) is of order 2, but M is infinite.

441. Let H be a subgroup of G. Let g € G. Prove that the set S ={g~1hg|h € H} is a subgroup
of G. Prove that ¢: H— S, defined by he = g—lhg, is an isomorphism of H onto S. If K is a
finite cyclic subgroup of G which contains both H and S, prove that H = S. (Hard.)

Solution:
Since H* @, S+* (. Let g~ lhyg,g 'hog €S. Then

(97 h9) (g~ theg)~1 = g~ lhigg~thylg = g Uhkzlg € S

because H is a subgroup implies hhz1€ H. Thus S is a subgroup. ¢ is an onto map, since
he = g—lhg. If h;6 = hys, then g¢g—1lh,g = g—lh,g. Pre-multiply by ¢ and post-multiply by
g7t g(g~hyg)g~1 = g(9'hyg)g—1. Hence hy =h, and so ¢ is one-to-one onto. We need only
check that ¢ is a homomorphism to conclude the proof:
hi6hot = g=lhig g~ lhog = g7 lhihog = (R4hy)6
Thus H and S are isomorphic.
If K is a finite cyclic subgroup containing H and S, then H and S are both of finite order; and

since they are isomorphic, |H| = |S|. But, by Theorem 4.9, K has only one subgroup of any given
order. Hence H = S.

43 COSETS
a. Introduction to the idea of coset

In this section we propose a natural question which introduces the idea of a coset.
Cosets are important for other reasons: (i) With cosets we can perform useful counting
arguments for finite groups. (ii) Cosets of a subgroup sometimes enable us to construct a
new group from an old. We can also see how a group G is built up from one of its
subgroups H and the group constructed from the cosets of H. (iii) The fundamental idea
of a homomorphism can be re-interpreted in terms of the idea of a group constructed from
cosets.

What is the natural question we ask? In Section 3.4c, page 67, and Section 3.4e,
page 73, we defined the group I of isometries of the plane E and the isometry group Is of
a given figure S in E. Recall that an isometry o of E belongs to Is if for each t € E,
te €S implies t € S, and s €S implies s¢ €S. Suppose ¢ € [ —Is. We ask: which ele-
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ments 6 of I are such that S =So¢? In the case
where S is an equilateral triangle we know that Se
is a congruent equilateral triangle by Lemma 3.6, S
page 71. So the question we are asking is this:
which other elements 6 of I send the equilateral \
triangle S onto the equilateral triangle So?

Let S0 = So. How are § and o related? If ¢
were equal to ¢, then ¢ ' =. If 6 and o were
widely different, we would expect §o—! to be any-
thing but .. Let ¢ =007!. We will show that ¢ is
an element of Is. To do so observe that ¢ is an
isometry of the plane E, since it is a product of
isometries of E. Now S =S¢ implies that for
each s € S thereisa t €S such that s§ = te, and
conversely. Therefore for each s € S,

8¢ = 860! = (to)oo' =t € 8

Suppose now that x € £ and z¢ € S. We must show that z €S to complete the
proof that ¢ € Is. Suppose z¢p =t €S, ie. x(do~!) =t. Now there exists an s € S such
that to = s6. Hence x6 = ((zf)e ')o =to =50 and so xf =sf. As ¢ is one-to-one, z =s.
Hence x € S. This means ¢ € Is.

We have of course 0 = ¢o. If we write I o = {r¢|r € Is}, we may put our deduction in
the form 6 € I,o. We have thus shown that every isometry ¢ of E satisfying S6 = So lies
in the set of isometries I,o. Conversely if 6 € I,o, then § = ¢o for some ¢ € Is; then
S6 = S¢o = Se. This meansthat I o consists of all the isometries 6 of E for which S6 = So.
Such a subset I o of the group I of all isometries of E associated with the subgroup Is of I
is called a right coset of Is in I. More generally we have the following

Definition: Let G be a group and H a subgroup of G. Then a right coset of H in G is a
subset of the form Hg = {x| 2 = hg, h € H} for some g in G. We define
a left coset of H in G to be a subset of the form gH = {x | x = gh, h € H}.

Note that a coset is a right or left coset according as the element g is on the right or’
the left of H.

In the case where the group G is written additively, i.e. + is used to denote the binary
operation, a right coset is written H+g. Of course, H+9g = {x | x=h+g, h € H}.

Problems
442. Let G be the cyclic group of order 4 generated by {a}. Let H = gp(a?). Find all right cosets of
H in G. Show that two cosets are either equal or else have no elements in common, and prove that
the union of these cosets is G.
Solution:
H-+1=H = {1,a2} is a right coset. Ha = {a,a3} is a right coset. Ha2 = {a?, a*} = {1,a2} = H.
Ha3 = {a3, a%} = {a3,a} = Ha. Thus the distinct cosets of H in G are H and Ha.
HnHa =@, and HUHa = {1,a%,a,a3} = G.

443. Let H be the trivial subgroup of a group G, i.e. H = {1}. Determine the distinct right cosets of
H in G.

Solution:
“If g€ G, Hyg = {1g} = {g9}. Thus the cosets are the sets consisting of single elements of G.
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4.44. Find the right cosets of H = gp(r3) in S; with the notation of Section 3.3a, page 57. What are
the right cosets of K = gp(oy) in S3?

Solution:
H = (,73), H = H, Hoy = {0}, 75}, Hoy = {05,741} These are all the cosets of H in S;.
K = {04,00,}. The cosets of K are K. = K and Kr; = {ry, 79, 75}.

445. Let A,B,C be subsets of a group G. If X and Y are subsets of G, we define XY = {g| g = ay,
x€X and y€Y}. Prove that A(BC) = (AB)C. Hence conclude that if H is a subset of G,
f,9 € G, then () (fg)H = f(gH), (i) H(fg) = (Hf)g, (iil) (fH)g = f(Hg).

Solution:

Let « € A(BC); then =z = ad where e« €A and d € BC. But d € BC implies d = be, where
b&e B and c€ C; hence z = a(be) = (ab)e € (AB)C and so A(BC)C(AB)C. Similarly (AB)C C
A(BC). Therefore A(BC) = (AB)C. (i), (ii) and (iii) follow immediately, e.g. (i) is the case where
A={f}), B={¢9} and C =H.

4.46. Let G be a group with a subset H. Show that fH = Hf implies f~1H = Hf~1,
Solution:
fH = Hf. Hence
f-UWH) = f~YHf), (HH = ("H)f and H=(f1HYf
Thus Hf~1= ((f~'H))f~1 = f~1H.

Note that we have used the “associative law” proved in Problem 4.45.

b. Cosets form a partition. Lagrange’s Theorem

In the problems above it is clear that any two right (or left) cosets are either disjoint or
exactly the same and that the union of all the right (or left) cosets of H in G is G. We recall
that a family of subsets of a set G is a partition of G if they are disjoint and their union is G.
The examples above point to the following:

Theorem 4.10: Let H be a subgroup of a group G. Then the right (left) cosets of H in &
form a partition of H in G, i.e. the union of all the right (left) cosets of
H in G is G itself and any pair of distinct cosets has empty intersection.

Proof: It is easy to show that each element of G occurs in at least one right coset.
(The proof for left cosets is similar and is not included here.) For if g € G, then g € Hg
since 1€ H and 1-¢g=g.

Suppose now that Ha and Hb are two cosets of H in G and that HaeNHb #* (), i.e. there
exists ¢ € HeNHb. Then g =ha=h"b, W',h” € H. Hence a =W "h"b=Hh"b, '’ € H,
since the product of two elements of H belongs to H. Therefore

Ha = {ha| h€H} = {(W"b)| h€H} C Hb as hh'"’b=hb, h€H
Similarly Hb CHa. Thus Ha — Hb and any two cosets are either disjoint or identical.

In Section 4.3a we mentioned in (i) that cosets are useful for counting arguments; this
follows from Theorem 4.10. If G is of finite order and H a subgroup of G, then, since
the cosets of H in G are disjoint, the order of G is the sum of the number of elements in
each coset. We use this fact in proving

Theorem 4.11 (Lagrange’s Theorem): The order of a subgroup H of a finite group G
divides the order of G.

Proof. Let the distinct cosets of H in G be Hgi,Hge, ...,Hgn. Since these form a
partition of G,
|G| = |Hgi| + [Hgs| + - -+ + [Hga| (4.4)
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What is |[Hg|? We will show that the mapping 6,: H > Hg defined by k8 = hg is a one-
to-one onto mapping and hence |H|=|Hg|. Clearly 6, is onto by the definition of right
coset. If hig = heg, then multiplying by ¢ —! on the right we conclude that #: = k2 and so
hi0g = h26, implies hi = hs. Therefore 6, is one-to-one and onto and |H|=|Hg|. Thus
for each ¢, |H|=|Hgi|. Hence |G|=n|H| by (4.4).
Corollary 4.12: Let G be a finite group and g an element of G of order. m. Then m
divides |G|.

Proof: The order of g is the order of gp(g) which is a subgroup of G. Then by Theorem

4.11, |gp(g)| divides |G|. But m = |gp(g)]. Hence m divides |G].

Corollary 4.13: If G is of finite order n, and ¢ € G, then g¢g"=1.

Proof: Every element of G must be of finite order. Let g € G be of order m. Then,
by the preceding corollary, m divides |G| and so |G| = qm. Hence g% =g = (gm)*=1
and the result follows.

Definition: Let the number of right cosets of H in G be called the index of H in G. Denote
it by [G: H].

Note that [G: H] is read as ‘“the index of H in G”, i.e. in the opposite order to which
G and H appear in [G: H].
Corollary 4.14: If G is a finite group, |G| = |H|-[G: H].

Proof: In the proof of Theorem 4.11 we conclude with “Hence |G|=n|H|...”. Since
n is the number of cosets of H in G, i.e. n =[G:H], we have |G| = |H|[G:H].

Problems

4.47. Show that: (i) S; has no subgroup of order 11; (ii) D, has no subgroup of order 3; (iii) if g € 45
and 97 =1, then g = .
Solution:

(i) S =T7T1=T7+654+3+2=7+5+32.2% If H were a subgroup of S; of order 11, then, by
Theorem 4.11, 11 divides |S;|. But in the prime decomposition of |S;| there is no 11. Hence
there is no subgroup of order 11.

(ii) |D4 = 8. Since 3 does not divide 8, Theorem 4.11 tells us there is no subgroup of order 3.

(iii) If g7 = then either g =: or g is of order 7, since g™ =1 implies that the order of g
divides m. As m =7 and is a prime, the only possibility if g . is that the order of g is 7.
Now by Corollary 4.12 it would follow that 7 divides |A;|, which is not true. Hence ¢ =.

4.48. Prove that if G is a group of prime order, then G is cyclic.

Solution:

If G = {1}, there is nothing to prove. If 1#g € G, gplg) = H is a subgroup of G. Hence
its order, by Theorem 4.11, divides the prime |G|. As |H|+ 1, |H| = |G| since the only divisors of
|G| are 1 and |G|. Thus H=G, as HCG and H and G have the same number of elements.

4.49. Give the right and left cosets of H = gp({n}) where » = ¢(0,1,1,0) is an element of M, the group
of Mébius transformations, Section 3.5a, page 77.

Solution:
If o(a,b,c,d) € M, then
Ho(a, b,c,d) = {i*ola,b,e d), nola,b,e,d)} = {o(a,b,c,d), o(d,a,d,c)}
by the rule for multiplication which is obtained in Problem 3.46, page 79.

Now ola,b,c,d)H = {o(a, b, ¢, d), o(c,d,a,b)}, as is easily checked. Thus we know what the
right and left cosets are in terms of a,b,¢,d.
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¢. Normal subgroups

We discussed left and right cosets of a subgroup H in G. Each gives rise to a partition
of G. How do these partitions compare? In particular, are they the same? Sometimes yes.
In Problem 4.43, the right cosets are just the elements of G; the left cosets can similarly
be shown to be just the elements of G. Sometimes no. In Problem 4.49 the right coset
containing o(a, b,c,d) also contains o(b,a,d,c). But the left coset containing «(a,b,c,d)
contains o(c,d,a,b). With a suitable choice of a,b,c,d we can ensure that o(b,a,d,c)+*
olc,d,a,b), eg. if a=b=c=1,d=0, then ¢(1,1,0,1)+ ¢(1,0,1,1). Thus the left and
right cosets of H in G do not coincide.

We ask: when do the right and left cosets of a subgroup H in a group G coincide?
Suppose every left coset of H is also a right coset of H in G. Let a € G. aH contains a,
as does Ha. Since the right cosets form a partition, the only right coset containing a is Ha.
But we have assumed that there is some right coset which is the same as aH. Hence it must
be Ha, and so a¢H = Ha. In other words if every left coset of H in G is a right coset, then
for every a € H we must have aH = Ha.

Proposition 4.15: A necessary and sufficient condition for the left cosets of H in G to
provide the same partition as the right is that for each a € G, aH = Ha.

Proof: We have proved above that if every left coset is a right coset, Ha =aH. Let
Ha=aH forall a €G. {Ha|a € G} is the set of all the right cosets of H in G. There-
fore every right coset of H in G is a left coset of H in G. Similarly every left coset of
H in G is a right coset of H in G. This completes the proof.

If Ha =aH for all a € G, then for each h € H, ha = ah: for some ki € H.” Hence
a~tha € H for each h € H. :

Conversely if a~'ha = ki, for some %, belonging to H, ha = ah;. Hence Ha CaH.
If ah € aH and assuming z 'hx € H for all x € G and all h € H, then ak = ah(a™'a) =
((a=Y"'ha Y)a € Ha. Accordingly HaDaH and aH = Ha. Thus we have

Proposition 4.16: oH = Ha for all ¢ € G if and only if ¢ 'ha € H for all h € H and
all ¢ €G.

Definition: A subgroup H of a group G is normal (also called invariant) in G if g~*hg €H
for all g €G and all h € H. We write H< G and read it as: “H is a
normal subgroup of G”.

By Proposition 4.16, H is normal in G if and only if Hg = gH for all g € G (equiva-
lently, g"'Hg = H).

In Section 4.3a we gave in (ii) and (iii) reasons for the importance of some cosets. The
cosets we had in mind are those arising from normal subgroups.

Problems
4.50. Prove that every subgroup of an abelian group is a normal subgroup.

Solution:

Let G be abelian and H any subgroup of G. Then if 9 € G and h € H, g—'hg = h; for since
G is abelian, gh = hg and hence multiplying by g~! on the left, & = g~lhg. Then if k€ H,
g~ lhg € H. Thus H is a normal subgroup of G.

451. Prove that A, < S, for each positive integer n.

Solution:

Let €A, 7€8, Is r~lor € A,? Now r is either odd or even. If 7 is even, then r and
r~1€ A, and so v~ lor €A,. If ris odd, then 71 is also odd, and hence r—1o is odd, for o € 4,
Since r~1s and 7 are odd, their product r—lor is even. Hence 77 lor € 4,. Note that we used
Lemma 3.2, page 62.
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4.52. Let H be a finite cyeclic subgroup of G, and let H < G. Let K be a proper subgroup of H. Prove
that K <1 G. (Hard.)

Solution:

Let K = ¢gp(y). Note that if y is of order m, and g € G, then g—lyg is also of order m, since
(g lyg)m =g~ lymg =1 and (¢ lyg) =1 implies g~ ly'g =1 and therefore y™ = 1. Hence m
divides 7, and the order of g—lyg is m. Since H < G, g—1lyg € H. Therefore gp(g—lyg) is a sub-
group of H of order m. Then by Theorem 4.9(iv), gp(¢9—1lyg) = K. In particular, g—lkg € K for
any k€ G. Hence K < G.

d. Commutator subgroups, centralizers, normalizers
We will now introduce some subgroups which are normal.

1. If G is a group, we define the center of G, denoted by Z(G), to be
{z| 2z€ G and forall g € G, gz = 29}
Z(G) turns out to be a normal subgroup of G (see problems below).
2. If Gisa group and z,¥ € G, then x~ 'y~ !xy is called the commutator of x and ¥ or, more
briefly, a commutator. We often write [z,y] for the commutator z~!'y~!zy. The sub-

group of G generated by all commutators is called the commutator subgroup (also called
the derived group) of G and is denoted by G’. Again G’ turns out to be normal in G.

Proceeding along somewhat different lines, let A be a subset of a group G.
1. The centralizer C(A) of A (in G) is defined by
C(A) = {c|c€G andforall a €A, ca =ac}
C(A) is a subgroup of G (see problems below). If A is an abelian subgroup, A is normal
in C(A) (see problems below).
2. The normalizer N(A) of A in G is defined by
N(A) = {n| n€G and An =nA}
N(A) is a subgroup of G and, if A is a subgroup of G, 4 is normal in N(4). Furthermore,

if A is a subgroup of G, A is normal in G if and only if N(A) = G. These facts will be
proved in the problems below.

The details concerning the groups Z(G), G’, C(A), N(A) appear in the problems below.
In Chapter 5 we will use the concepts we have just introduced.

Problems
4.53. Prove that the inverse of a commutator is a commutator,

Solution:
[2,y] =2~y ley = 2, say. So z71 =y lz~lyx = [y, «].

454. Prove that G’ is normal in G.

Solution:

We must show that if g€ G and RE G, then g~ lhg € G. If h is a commutator, say
h = 2~ 1y~ lzy, then

g7lhg = g-lx—lgg—ly~lgg-lzgg—lyg = = 'y; ‘wwy = [y, 9]
where x; — g~ lzg (consequently xl‘l =g~ tx—1g) and y, = g~ lyg.

Now any element h of G’ is a product of commutators and their inverses; and as an inverse of
a commutator is a commutator, every element h of G’ is a producte, - - - ¢, of commutators. Therefore

g thg = gHey v e)g = gTle1gg97 09 g ey = didy - d
where d; = g~ le;g. But we have just shown that d; is a commutator. Hence if h€EG', g~ lhg €G'.
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4.55.

4.56.

457,

4.58.

4.59.

4.60.

4.61,

Show that G is abelian if and only if G’ = {1}.

Solution:

Suppose G is abelian and that %,y € G. As x and y commute (i.e. xy = yx), [x,y] = c~ly Loy =
27 lx = 1. Then G’ is the subgroup of G generated by 1, and G’ = 1. Now if @ = {1},. then in
particular any commutator [x,y] = x~ly~laxy =1. Hence z(x—ly~laxy) =« and y(y lzy) = yzx,
i.e. xzy = 2y. Thus G is abelian.

Show that every element in 4; is a commutator of elements in S;. Hence show that S;: = A,

Solution:
We use the table of Section 3.3a, page 57. = =7 ! 7 lo lrie; = 700701 = 0301 = oo
7-1‘102_17-102 = 71017109 = 0905 = @1, 77 LTlrpe = Thus every element of A3 is a commutator of ele-

ments in S; (Aj is listed in Problem 3.23, page 63). If we can show that all commutators belong to
Ag, then Az = S; This is a matter of trying all possibilities, e.g. 71_17‘2—17172 = 11797179 = 0y. Hence
the result.

Show that the commutator subgroup of M of Section 3.5a, page 77, is infinite. [Hint. Find an in-
finite cyclic subgroup generated by a commutator.]

Solution:
[¢(2,0,0,1), 0(1,1,0,1)] = o(1,—1,0,1) = 0, say. Now gp(o) is infinite cyclic, as o* = (1,-n,0,1)
for each ». Since the commutator subgroup of M contains gp(s), it is infinite,

Prove that if G is any group, Z(G) is a normal subgroup of G.

Solution:

1€ Z(G), since 19 =gl for all g€ G. Consequently Z(G)+* @. If g,,9,€ Z(G) and
g €G, then glg19;") = (9919, = 91099, ") = 9,95 9 since gg, = g9 implies g, 1g = gg71. It
follows that Z(G) is a subgroup of G. If g € G and h € Z(G), then gh = hg and so h = g~ lhg.
Hence g—lhg € Z(G) for all g € G and all k € Z(G). Thus Z(G) is normal in G.

Show that C(4) is a subgroup of G and, if A is an abelian subgroup of G, A < C(4).

Solution:

1€C(A) and so CA)#* Q. If g,,9,€C(4), and a & A, then g,0 =ag, and hence
ayz_l = gz—la, ie. g7 €C(4). Now agg, ! = g9, = 919, 'a and so glgz"l € CA) if
91,92 € C(A). Therefore C(4) is a subgroup of G. If A is an abelian subgroup, then each a € A
belongs to C(4). Now if g € C(4A), then for each a € 4, ga = ag, ie. g~ lag =a € A. Accord-
ingly A < C(4).

Show that if A is a subset of G, then N(A) is a subgroup of G. Show that if A is a subgroup
of G, then A < G if and only if N(4) =G.

Solution:

N(A) > @, since 1€ N(4). Let f,g € N(A). Using the results of Problems 4.45 and 4.46,
gA =Ag and fA=Af implies (fg~1)A =f(g714) = flAg—Y) = (fA)g~ 1= (Aflg~1 = A(fg~ ).
Hence f,g € N(A) implies fg—! &€ N(A). Therefore N(A) is a subgroup of G. Clearly, if 4 is a
subgroup, A CN(4) and A < N(A).

If A is a subgroup and A < G, then for each g€ G, gA = Ag. Hence g € N(A) and so
G C N(A). Therefore G = N(4). If A is a subgroup and N(A) = G, then since 4 < N(4), A < G.

Find all normal subgroups of S;.

Solution:

We use the notation and multiplication table in page 57.

Clearly {:} and S; are both normal subgroups of S;. There are no normal subgroups of S; con-
taining elements of order 2 except S;. The elements of order 2 in S; are, as we readily check by
using the multiplication table for Sz, 74,7, and 3. Suppose for example that a normal subgroup
N of S3 contains 7y; then o l7i0; = apri09y =19 € N. Similarly 73 €N. Hence 773 =0y € N
and o2 = 0; € N, and so it follows in this way that N = S,
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We have shown that if N is a normal subgroup of S;, then if N contains elements of order 2,
N = §S;. Therefore if N # {}, then N must contain elements of order 3 (there are only elements
of order 1,2, or 3 in S3). Now o; and oy, = o% are the only elements of S; of order 3. In fact
{i, 01, 0o} is a normal subgroup of S;. For example, 7'1_11717'1 = 74037y = 05 € {y, 04,05}, Accordingly

S; has precisely three distinct normal subgroups. .

4.62. Show that if A is a subgroup of G and B < G, then AB is a subgroup of G, where
AB = {x| x=ab, a €A, bE B}

Solution:
AB+# (), as 1=1+1€ 4B, If g,,9,€ AB, then g, = a;b,, g3 = ayby where ;€A and
b,€EB. N —
: ow 91951 = a;bibylay ! = ajbsa; ' (where by € B)
= a1a2_1a2b3a2_1 = alaz”l(az_l)_lbg,(a;l)
= ab, say,
where ¢ =a,a;' €A, and b =axba; ' €B as B<JG. Thus g,9,' €AB and AB is a sub-
group of G.

4.63. Show that the intersection of two normal subgroups is a normal subgroup.

Solution:

We refer the reader to Problem 3.15, page 55, in which we proved that the intersection of two
subgroups is a subgroup. If H,K are normal subgroups of G, then HNK is a subgroup of G. If
¢cEHNK and g €G, then g-lcg € H as ¢c€H and H< G, and g-lcg€ K as c€ K and
K < G. Thus g—leg € HNK, and so HNK is normal in G.

e. Factor groups

In Section 4.3a we mentioned that the concept of a coset sometimes gives rise to a new
group. This occurs when, and only when, the group is normal.

Let G be a group and N < G. Let us denote by G/N (read as “G over N”, or “G factor
N”, or “the factor group of G by N”’) the set of right cosets of N in G. We turn G/N into a
groupoid by defining a binary operation as follows.

Define a product of two cosets Na and Nb to be the coset Nab. This definition of multi-
plication depends on @ and b. But it is conceivable that if Na = Na; and Nb = Nb,, that
Na,b; # Nab. In such case, what would “ve take for the “product” of the two cosets, Naib;
or Nab? What we must show is that the product of two cosets is uniquely defined by the
formula NaNb = Nab when N < G. If Na; = Na and Nb; = Nb, then a, = na for some
n €N and b, =mb for some m € N. Accordingly,

aiby = namb = n(ama Yab = lab
where l=n(ama~!). Since NG, ema'E€N and hence l€N. Thus a:b, € Nabd.

Since the cosets form a partition, it follows that Na:b; = Nab. But this is just what we
wanted to prove.

Thus G/N with this binary operation is a groupoid. Is it an associative groupoid?
(Na)(ND))(Ne) = (Nab)Ne¢ = N(ab)e = Na(be) (as G is associative)
= (Na)(Nbe) = (Ne)((ND)(Ne))
and so G/N is an associative groupoid.
Theorem 4.17: G/N is a group. The mapping v: G »> G/N defined by gv = Ng is a homo-
morphism of G onto G/N.

Proof: First, G/N is an associative groupoid. N1 =N is an identity, for Na-N1=
N(a*1)=Na and N-+Na=N(l-a)=Na. Next, each element Na has an inverse, for
NaNa~*= N{aa~') =N while Na~'Na = N(a~'a)=N. Thus G/N is a group.

Clearly v is a mapping of G onto G/N. Since (g9,9,)v = N(g,9,) and (g,)(9,v) =
Ng,Ng, = Ng.9,, (9,9,)v = (9,v)(9,v) and hence v is a homomorphism.
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v is called the natural homomorphism of G onto its factor group G/N.

Note that in the case where G is a group whose binary operation is +, as we remarked

at the end of Section 4.3a, the elements of G/N are of the form N +g¢g. Instead of using
" the multiplicative notation for G/N, we use additive notation. Our definition of the product
of two cosets is written as the sum: (N+g,) + (N +g2) = N + (g1 + g2).

Problems

4.64.

4.65.

4.66.

4.67.

Prove that Z/E = C,, where E is the set of even integers and C, is the eyclic group of order 2.

Solution:

As Z is abelian, E is a normal subgroup of Z and Z/E makes sense. A coset of E is of the
form E+ 2, 2€ Z. E + 0 consists of all the even integers, F + 1 of all the odd. Since an integer is
either odd or even, these are all the cosets. gp({(E + 1)}) contains E+1 and (E+1)+(E+1)=E,
and so gp({(F+1)}) = Z/E. Thus Z/E is cyclic of order 2. Hence the result.

Is Q/Z = @, where @ is the additive group of rationals? (Hint. Examine the order of the ele-
ments of Q/Z.)

Solution:

A coset of Z in Q is of the form Z+q, g€ Q. As g = m/n for some integers m,n, it follows
that ng € Z. Then
Z++Z+ay+ -+ (Z+g = Z

7 terms in all

and therefore Z + q is of finite order in @/Z. Thus every element of Q/Z is of finite order. On the
other hand no element other than 0 of @ is of finite order, for ng+0 if ¢+ 0 and n+0. It is
this fact that we will utilize to prove that @/Z is not isomorphic to Q. Suppose it were and that
6:Q/Z > Q was such an isomorphism. Choose ¢ € @ (¢ # 0); then there exists an element Z +r»
of Q/Z such that (Z+ )8 = q. Now Z + r is of finite order n, say. Then (n(Z + r))¢6 = ng and now
w(Z+r) =Z. Since Z is the identity of @/Z and ¢ is an isomorphism, 6 takes Z to the identity of
@, namely 0; hence ng =0. But ¢+ 0, so ng #* 0. This contradiction proves that there exists
no isomorphism of Q/Z onto Q.

Find Sg/S:;.

Solution:
From Problem 4.56, S;= Aj; Hence the cosets of S3/S; are Ay = Ay = {,0;,0,} and
Agry = {r{, 75, 73). Thus S3/S; consists of these two cosets. The multiplication table is

A3 A37'1

A3 Aj Agry

A37'1 Agry As

Prove that if G = H, then G’ = H’ and Z(G) = Z(H).

Solution:

Let ¢ be an isomorphism from G to H. Then ¥ = g|¢ is a monomorphism into H, since ¢ is
both one-to-one and a homomorphism.

What is G’'¥? The elements of G’ are products of commutators and their inverses. As the
inverse of a commutator is a commutator, each element of G’ is of the form ¢, -+ - ¢, where each
¢; is a commutator. Then the images of G’ under ¥ are of the form ¢, ¥ --- ¢, ¥. If

¢ = [a,b] = a~1b~lab, then ¥ = (a6)~1(bs) lasbs = [as, be]

Thus the ¢;¥ are commutators and so G'¥ C H'.
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4.68.

4.69.

4.70.
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To show G'¥ = H’, we need only show that all possible commutators [k, hy] are images under
¥. As 6 is onto, there exists g,, g, such that 9,6 = hy, 9,6 = hy. Hence [gy,g9,]¥ = [hy, hy]. There-
fore G'¥ = H’ and consequently G’ = H’.

Let ¢ = 6,z¢q)- Then ¢ is a monomorphism of Z(G) into H, and we need only show that it maps
onto Z(H) to prove Z(G) = Z(H). Let z € Z(G). For each h € H there exists g € G with g¢ = h.
Hence z0h = 2690 = (29)6 = (g2)6 = g626-= hz6 and so Z(G)pCZ(H). Let « € Z(H). As ¢ is onto,
there exists y € G with y¢ = x. Let g € G. Then (gy)e = goye = yoge = (yg)6. As ¢ is one-to-
one, gy — yg. Hence y € Z(G), and every element of Z(H) is an image of an element of Z(G). The
result follows.

(i) If A is abelian show that A/A’ = A.
(ii) Show that G/G’ is abelian.
(iii) Show that G/N abelian implies N D G'.

Solution:

(i) A’ is the subgroup generated by the commutators x~ly—lzy, 2,y € A. As A is abelian,
x 1y~ lgy =y~ lx—lxgy = y~lly =1 and A’ is the subgroup generated by 1. Since any prod-
uct of 1 and its inverse is again 1, A4’ = {1}. Let » be the natural homomorphism of 4 to
A/A’. To show » is an isomorphism we need only show that it is one-to-one. Suppose a;y = ay»,
ie. {1}a; = {1}a,, ie. {a,} = {a,}. Then of course @, = a,, so » is one-to-one. Thus » is an
isomorphism.

(ii) Let G'x and G’y be two elements of G/G’. Then G'zG’'y = G'xy while G'yG'x = G'yx. Now
(=)~ Yy 1)~ 1gx—1y—1l = gye—1ly—1 € G', and so G'yx contains the element ayx—ly—1-yx = ay.
But G'zy contains xzy; hence G'wy = G'yx. Therefore (G'z)(G'y) = (G'y)(G'z) and G/G’ is
abelian.

(iii) We need only show that N contains every commutator. For then N contains the subgroup
generated by the commutators, which is G’ by definition.

If G/N is abelian and x,y are any elements of G, (xy)N = xNyN = yNxzN = (yx)N. Hence
xy = yrxn where m € N. Multiplying on the left by y—! and then by 1, we obtain
27 ly—lxgy = n, ie. [x,y] € N.

Show that if H is a subgroup of G containing G’, then H < G. Show that if H is of index 2 in
G, then H < G and G/H is cyclic of order 2.

Solution:
Let h € H and consider g —lhg. Now g—lhgh—1 is a commutator, and hence belongs to G’ and
thus to H. Therefore g~ lhgh—l1+h=g lhg€ H and H < G.

If now H is of index 2, G = HUHg where HNHg =@. Let h€ H. If k€ G, then k=h,
or k= h,9 (hy € H). Hence

E~lhk = h7'mhy € H or k'hk = g~ 1h;‘hhyg = g lhyg

where h, € H. If g~ lhyg € H, we are through. Otherwise g—1lh,g € Hg, so that g—lhyg = h'yg
(" € H) and thus g~ 'h,=h'. Hence g = hysh~1€ H. But this contradicts the assumption
HnHg = (. Thus we are forced to conclude that k—1hk € H for every h € H and every k€ G,
i.e. that H < G. The two cosets of H in G are H and Hyg for some g € H. Accordingly gp(Hg) =
G/H and so G/H is cyclic of order 2.

Show by considering a suitable non-normal subgroup H of S; that the product of two cosets cannot
be defined as on page 114 without ambiguity.

Solution:

We use the notation of Section 3.3a, page 57, in dealing with the symmetric group S; of degree
3. Let us take H = gp(ry) = {1,7,}. Hoy = {0y, 73} = Hrg while Hoy = {0y, 75} = Hrs. In page 114
we defined the product of the coset Ho; and Ho, as Heyoy = H. However, the product of Hrz and
Hry, would be Hryry = Hoy; # H. This means that the product of cosets is not uniquely defined.
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44 HOMOMORPHISM THEOREMS
a. Homomorphisms and factor groups: The homomorphism theorem

We now consider the connection between homomorphisms and factor groups. We have
already established in Theorem 4.17 that corresponding to every factor group G/N there
is a homomorphism v: G- G/N such that Gv = G/N. What about the converse? Suppose
now that ¢ is a homomorphism of G into a group H.

We ask: is there a normal subgroup N of G such that G/N = G6? Let us define the
kernel of 0 (denoted Ker¢) by Kert = {g| g €G, gf =1}. We will show that Ker§ will
do the trick.

Theorem 4.18 (Homomorphism Theorem, also called the First Isomorphism Theorem):
If 6:G—>H is a homomorphism of a group G into a group H, then
N =Kerd is a normal subgroup of G, and »: g8 > Ng defines an isomor-
phism of G6 onto G/N.

Proof: First we will show that N is a subgroup. If g:,g: €N, then

(9,9; 10 = (910)(950) = (9:10)(920)7" = 11 =1
and so g19;' €N. Also 1€N, so N+ @, the empty set. Thus N is a subgroup of G.
To prove that it is a normal subgroup of G, let n € N and g € G. We must show that
g9~ 'ng € N; this will hold if (¢9~ng)d =1. But

(97'ng)0 = (90)"'(n6)(g8) = (96)'1(90) = (96)"98) = 1
Hence g~'ng € N and N is a normal subgroup of G.

Next we must show that 5: 96> Ng defines a mapping. It is conceivable that there
exist g1+ g: with g0 = g.0. We ask: is Ng;= Ng:? For if not, 5 is not a mapping as
it is not uniquely defined. Now g9, € N, for (gi19;")0 = (g10)(g20)"' =1 as g0 = g»0.
Hence ¢19;' € N and ¢: = ng. where n € N. Thus Ng; and Ng; have g: in common and,
as the right cosets form a partition, Ng, = Ng,. Consequently 5 is a well defined mapping.

Is it a homomorphism?
(910920)y = ((9192)0)n = N(g192) = NgiNg> = (916)n(g20)y
and so » is a homomorphism.

Finally, is 4 one-to-one? If (gi0)y = (920)y, then Ng; = Ng:. Then ng:.= g for some
n €N, and g.0 = (ng1)d =n6g.0 =1-g:0 = g:6. Thus 5 is one-to-one and hence is an
isomorphism.

Problems

4.71. Let ¢ be the homomorphism of Z into the multiplicative group of nonzero rational numbers defined
by z6 =1 if « is even, and x¢ = —1 if x is odd. Find the kernel of ¢ and examine the claim
G/(Ker ) = Go.
Solution:

Kerg = {x| 6 = 1} = {x | z iseven} and G/(Kers) = {Kerg, Kero + 1}, so Kero+1
generates G/(Ker ). We have (Kero+1) + (Kerg+1) = Kerg; hence Kerg + 1 is of order 2
and G/(Ker 6) is cyclic of order 2. Now Go¢ = {1,—1}. G¢ = gp({—1}) and, since (—1)+(-1) =1,
Goé is also cyclic of order 2. Therefore G/(Ker ¢) and G¢ are isomorphic by Theorem 4.7, page 103,

4.72. Check that the kernel of the natural homomorphism of the additive group of integers (Z,+) onto
Z/2Z is 2Z, where 2Z = {x | ®x = 2z, z € Z}, ie. 2Z is the set of even integers.

Solution:

The natural homomorphism » is defined by zr = 2Z + 2. The identity of Z/2Z is the coset 2Z.
Consequently z € Kery if and only if 2Z-+2z =2Z and hence if and only if z€ 2Z. Thus
Kery = 2Z.
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4.73.

4.74.

4.75.

4.76.
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Verify that if G is any group, the subgroup generated by the squares of the elements of G, i.e.
elements of the form gg = ¢2, is a normal subgroup of G.

Solution:

Let S denote the subgroup generated by the squares of the elements of G. Let 2 € S. Then %
is a product s;8, - - - 8, of elements of G each of which is a square or the inverse of a square. Since
the inverse of a square is also a square, we may assume each sy, ...,s; is a square. If g € G, then

g7lxg = g7 ls190 180 9T ISg = ity oty
where t; = g~1s,9. We assert that each ¢; is a square. Since s; = 'r‘f for some 7y,
t, = 9789 = g7inggTing = (971rg)?
and hence the t; are squares as asserted and ¢~ lzg € S. Thus S G.

Let o be the homomorphism of @*, the multiplicative group of nonzero rationals into Q* defined by
xzo = |z|. Find the kernel and image of o. Verify the homomorphism theorem directly ir this case.

Solution:
o is a homomorphism, since (xy)o = |xy| = |2| |y| = (xo)(yo).
Kero = {x| 2o =1} = {&| |z| =1} = {1,-1}.
Q% = {x| x=yo, y € Q*} = {x| x € Q*, x is positive}
Let » be the mapping of @*/(Ker o) into Q*¢ that takes
(Kero)g —» qo
Now (Kero)qg = {g,—q}, and so the only other “representation” for the coset (Ker o)q is (Ker ¢)(—q).
Hence the other possibility for » as far as (Ker o)q is concerned is that ((Kero)g)r = (—¢)s. But
(—q)s = |q]| = go. Thus » is a well defined mapping of G/Ker ¢ into Q*o. Since
[(Kero)g, * (Kero)gp]» = ((Kera)qi1gs)r = lg19s| = |a1]lgel
= ((Kero)gq)»* ((Ker ¢)g,)r
v is a homomorphism. Is » one-to-one? If (Kero)q;» = (Kero)gyy, then we have that g0 = gyo,

i.e. |q1] = |go]. Thus if q; % ¢, ¢4 = —¢s. Therefore (Kero)q, = (Ker a)g,. Hence » is one-to-one
and it follows that Q*/(Ker ¢) = Q%o.

Let G be the group of mappings of the real line R onto itself of the form «,,: * >ax+b, a < 0,
a,b real numbers, « € B. Prove that the map 6:ag,, > a4, is a homomorphism of G into G.
Find the kernel and the image of this homomorphism and exhibit the isomorphism described in the
homomorphism theorem.

Solution:
Note that g e g = @ perq Since %a, , =ax+b and (wa,,)e.q = c(ax+b) + d. Then
(g, b%,a)0 = (@, bot a0 = @ac 00 (g, 58)(@c,48) = ag 00,0 = agc,g» and so ¢ is a homomorphism. If
a,, € Kerg, we have a,,60 = a5 a8 a,, = the identity mapping. Hence {a; 4 | b any real
number} = Kers. The image of ¢ = {aq | @ any nonzero real number}.
A typical coset is
(Kero)a, ; = {e, | b any real number}a, 4

= {ac, pc+a | b any real number}

{ac,. | € any real number}

The isomorphism 5 between G/(Ker ¢) and Gé as given by the homomorphism theorem is the one that
takes the coset (Ker 6)a; 4 t0 a, q.

Prove that if G is cyclic of order n and p divides n, then there is a homomorphism of G onto a cyclic
group of order p. What is the kernel of this homomorphism?

Solution:
Let G = gp(x) and let » = pm. Let H be cyclic of order p, H = gp(y). We define 6 to be

the mappin . . .
pping ozxt._)yl’ =i=n—1
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4.77.

4.78.

4.79.

4.80.

6 is well defined as we established in Lemma 4.5 that the elements x!, 0 =7 =mn—1, are all the dis-
tinct elements of G. Now let 7 and j be less than n. We have (zixi)g = (xiti—<n)¢ where ¢ =10 if
i+7=n—1 while e=1 if ¢4+ 7 =xn. Then

(xixj)g _ yi+j*6n = yiyiyfen
Since the order of y divides n, y—¢* = 1, Hence (xiz/)¢ = yiyi = (x6)(x’¢) and so 6 is 2 homomor-
phism. The kernel of ¢ is the set of all »i such that xi¢ =1,0 =i=n—1. Since zi¥ =y' and
yt =1 if and only if p divides 4,

Kerg = {x'] p divides i} = {xr, 2?0, ..., a(m—Dpr} = gp(xP)

Let (R, *) be the multiplicative group of positive real numbers. Prove that the mapping of B+
into (R, +), the additive group of real numbers defined by ¢: « - log o, is a homomorphism. What
is the kernel of #? What is the image? Using the homomorphism theorem, prove that
(B*,+) = (R, +).
Solution:

6 is certainly a mapping of R* into B. Furthermore,

(xy)s = logya(xy) = logyz + logy = =6 + yo
and so 6 is a homomorphism.
Kero = {x| log;pe =0, x €ER*} = {1}

We assert that R+¢ = R. To see this observe that if x is any real number, then 10 € R+,
Moreover, log 10 = z. Then if y is any element of B, 10¥9 = log 10¥ = y and hence R*¢ = R,

The homomorphism theorem states that R+/(Ker6) = R+¢ = R. As Kero = {1}, all we must
do is show that R+/{1} = R+. We can indeed show this in general: if G is any group, G/{1} = G.
To do this we exhibit the isomorphism. Let » be the natural homomorphism of G onto G/{1}. Then
we need only show that » is one-to-one. Suppose g;» = g,», ie. {1}g; = {1}g,. Then {g,} = {g5}
and consequently g, = g,. Hence » is one-to-one and thus an isomorphism. Accordingly
R+ =R*+*/{1} =R and so R* =R.

Prove that the mapping 6: # = ¢* defines an isomorphism of (R, +) onto (R, *), the multiplicative
group of positive real numbers.
Solution:

(x+y)o = e=+¥ = e%e¥ = (26)(y6) and so ¢ is a homomorphism. If 26 = y6, then ¢* = ¢¥ and
e*~¥ =1, from which —y =0 and # =y, so ¢ is one-to-one. Is ¢ onto? Yes, for if y is any

positive real number, the equation e* = y has a solution x € R. Thus ¢ is an isomorphism between
(R,+) and (R*,").

Prove that [fg,a] = ¢~ 1[f,a] g[g,a] for any f, g and a in a given group. Suppose G'CZ(G), the
center of G. Let a be a fixed element of G. Prove that the mapping 6: g9 - [g,a] is a homomor-
phism of G into G. What is Ker ¢? (Difficult.)

Solution:
Observe that [fg,a] = g~ f~la~1fga. On the other hand,
g f,alglg,a] = g7Uf e Ya)g(g la"1ga)
= g~1f~la~1f(agg~la"Y)ga
= g7 la"fga = [fg,a]

If G'CZ(G), then [f,a] €2Z(G) and g~ lf,alg = [f,alg~lg = [f,a]. Therefore [fg,a] =
=1,

[f,e][g,a]. Hence (fg)s = fége and ¢ is a homomorphism of G into G. Kere = {g| [g,a]
g € G}. Thus Ker g = C(gp(a)), the centralizer in G of gp(a).
Prove that if ¢: G~ K is a homomorphism and |G| < «, then |Gg| divides |G].
Solution:
By the homomorphism theorem, G/(Ker¢) = G¢. By Lagrange’s theorem, |Ker 4| divides the

order of G. Therefore |G¢| = divides |G|.

G|
[Ker 8|
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481. Show that the group M of Mdobius transformations is a homomorphic image of the group

w =45 2)

Find the kernel of the homomorphism.

a, b, c,d complex numbers, ad — bc = 1}

Solution:
In Problem 3.48, page 80, we showed

M = {oa,b,c,d)| a,b,e,d complex numbers, ad — be = 1}

¢
We define the mapping px: U-> M by <: d> x = ofla,b,e,d). Clearly u is a mapping. Further-

more, using the results of Problem 3.46, page 79,

ay ¢\ /ay ¢ _ a1a5 + ¢1by  aycy + cdy
b, d, <b2 d2>]" biag+diby biey+dydy )
= a(ayag + €1y, biay + diby, 0165+ €1dy, byey + didy)
a ¢ ay ¢
= o(ay, by, €1, dy)olay, by, ¢o, dy) = <bi d1>#<b: dz>#
Thus 4 is a h hism. Kernel <1°> _10>b ac> (@, b, ¢,d)
omorphism. = , N a = » 0, C,
us p is a homomorphism. Kernel » 0 1 0 —1 ecause (. o )u o(a, b, c

and o(a,b,¢,d) = ¢(1,0,0,1) (the identity of M) if and only if a=d=1 and b=¢=0 or
a=d=-—1 and b =¢ =0, by Problem 3.49, page 80. Therefore

o= {5002}

b. Correspondence Theorem. Factor of a factor theorem

Let 6: G- K be a homomorphism of G onto K. If H is a subgroup of G, then H@ is a
subgroup of K. If H is normal in G, Hf is normal in K. (See Problem 4.82 below.)

What about the reverse of this procedure? Would the preimage of a subgroup S of K,
i.e. the set {g| g €G, g6 €S}, be a subgroup of G? We know that if S = {1}, then the
preimage of S is Ker 4, and this is indeed a subgroup of G. We generalize this result in
the following theorem.

~ Theorem 4.19 (Correspondence Theorem): Let 6:G > K be a homomorphism of G onto
K. The preimage H of any subgroup S of K is a subgroup of G containing
Kerg. If S< K, then H < G. Furthermore if H, is any other subgroup
of G containing Ker § such that H,§ = S, then H,= H.

Proof: H = {g| g9 €S}. Since 16 is the identity of K, and S contains the identity
of K,then 1 € H and so H # (), the empty set. Also, if g,h € H, (9h~1)0 = go(ho)~'. As
g0 €8S and ho €S, it follows that (gh~)9 € S. Hence gh~' € H and H is a subgroup of
G. Since Kerd={x|29=1} and 1€ S, Kerd CH.

If S< K, we must show that H < G. Let h € H, g € G; then (9 'hg)0 = (g6) " *(h8)(g96).
Now h8 €S, g6 €K, and S K implies (g 'hg)d €S. Then g 'hg € H and so H < G.

Let H; be a subgroup of G containing Ker § and suppose H:0 = S. We will show that
Hy=H. Let hi€ H;; then hi6 €S. Now H={g| g8 €S}. Therefore hi € H and
hence HiCH. On the other hand if h € H, then h§=s € S. Choose h € H, such that
hi9 =s. Then hh;' € Ker6 CH, and so h € H;, and HCH,. Thus H = H..
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Corollary 4.20: Let 6: G- K be an onto homomorphism. Let S be a subgroup of K of
index n < «. Let H be the preimage of S. Then H is of index # in G.

Proof: Let Sky, Sks, ...,Sk,, where k; € K, be the distinct cosets of S in K. As § is
an onto homomorphism, there are elements g, ..., ¢, of G such that g0 = k.. We claim that

Hgl, ..-,Hgn (4‘5)
are the distinct cosets of H in G.

Suppose that Hg: = Hg;; then g¢ig;' € H. Hence gif(g8)* €S, i.e. kk;'e S, from
which Sk; = Sk; and i=j. Thus we have shown that all the cosets in (4.5) are distinct.

Let g€ G. Then g8 € K and so g4 € Sk; for some integer <. Hence g4 = ski with
s €S. Consider z=gg;'. z0 = g68(9:0)"' = skiki '=5s. Consequently g9; ' is in the pre-
image of S, so that gg;' € H. This means that g € Hgi. We have thus shown that every
element of G is a member of one of the cosets in (4.5). It follows that (4.5) consists of all
the cosets of H in G.

Of course we can always reformulate results about homomorphisms with the aid of the
homomorphism theorem as results about factor groups. Thus we have

Corollary 4.21: Let N <0 G. Let L be a subgroup of G/N. Then we can write L = H/N
where H is a subgroup of G containing N. If L < G/N, then H < G.
If Hi/N = H/N where H, and H are subgroups of G containing N, then
H1 = H

Proof: Let v be the natural homomorphism of G—> G/N. Let H = {g| gv € L}. Then
by the correspondence theorem H is a subgroup of G; and if L <1 G/N, H<G. Also,
Hv=L. Since v:g-> Ng, Hv consists of all cosets Nh, h € H, Because HDON=ZKerv
by the correspondence theorem above, H/N makes sense and consists of all the cosets N#h,
h € H. Hence H/N =Hy= L.

Now if Hi2ON and H,/N = H/N, then Hyw = L. It then follows by the correspondence
theorem that H, = H.

(Problems 4.82-4.89 below may be studied before reading Theorem 4.22.)

The reader may very well wonder what happens when we take a factor group of a
factor group. For example, if N < G and G/N is a group containing a normal subgroup
M/N, then what is (G/N)/(M/N)? The next theorem tells us that this is isomorphic to a
single factor group, i.e. a factor G by one of its normal subgroups.

Theorem 4.22 (Factor of a Factor Theorem, also called the Third Isomorphism Theorem):
If in the factor group G/N there is a normal subgroup M/N, M DN, then

M G and
G/M = (G/N)/(M/N)

Proof: Let v:G - G/N be the natural homomorphism of G- G/N. Let p:G/N-
(G/N)/(M/N) be the natural homomorphism of G/N - (G/N)/(M/N). Put 6 =vp. Then ¢
is a homomorphism of G - (G/N)/(M/N); and since v is onto G/N and p is onto (G/N)/(M/N),
vp is onto (G/N)/(M/N). Therefore G/Ker (vp) = (G/N)/(M/N), by the homomorphism theorem.
If g€G, gv=Ng and (Ng)p = (M/N)(Ng); note that here (M/N)(Ng) is a coset of the
normal subgroup M/N in (G/N), i.e. an element in the group (G/N)/(M/N). Now the elements
of M/N are all the cosets Nm, m € M. The identity of (G/N)/(M/N) is (M/N). We ask,
what is the kernel of vp? It will be all ¢ € G such that gvp = (M/N)Ng = M/N. But in



122 ISOMORPHISM THEOREMS [CHAP. 4

that case Ng € M/N, ie. Ng=Nm for some m € M. Hence g =nm where n €N.
But MO N. Therefore g&€ M and so Kervp CM. Note that if m €M, m(vp) =
(M/N)Nm = M/N. Then Kervp =M. Thus M as a kernel of a homomorphism is normal
in G and G/M = (G/N)/(M/N), which is the required result.

Problems

4.82, Prove that if ¢: G > K is a homomorphism of G onto K, and H is a subgroup of G, then H¢ is a
subgroup of K. If H < G, prove that H¢ < K.

Solution:
Since 16 € Ho, Ho #*D. If ), x, € Hs, 2y = hy8, %y = hy8 for some hy, hy € H. Then

1= Rhyo(hoe)~t = hyohs o = (Rihy e = ho

where h = hlh;‘e H. Hence H¢ is a subgroup of K. If now H <1 G, then g—lhg € H for all
g€ G and all h € H. Now any element of K, say k, is of the form g6 for some ¢ € G; and any
element of He¢ is of the form ho. Is (g6)~'hege € H9? Yes, because (g8)—1(ho)ge = (9~ thg)e and
as g~ lhg € H, (96)~1(ho)g9s € Hs. Thus He < H.

0

483. Let G = D, = {0y,09,03, 04, 7,709,703, 704}. Let K — gp(b) be cyclic of order 2. Then 6: G- K
defined by ¢,6 =1, (r0;)6 = b, 1 = 1,2,3,4, is a homomorphism of G onto K. (Take this as a fact.)
Find all the subgroups of K and all their preimages. Check that the assertions of Theorem 4.19 and
Corollary 4.20 hold. (See Problem 3.42, page 77, for the multiplication table.)

Solution:
The subgroups of K are K; = K and K, = {1}. G; = the preimage of K, = {g| g6 € K} = G.
G, = the preimage of K, = {g| g6 =1} = {04, 09, 03, 04}.
(a) Gy, G, are subgroups of G containing Ker g = G,.
(b) K, and K, are normal in K, and G, and G, are normal in G.

(¢) The subgroups of G containing Ker ¢ are G; and G,. We note then that G, = G;¢ implies
i=j where 1=14, j=2,

(d) K,is of index 1 in K. G, is of index 1 in G. K, is of index 2 in K. G, is of index 2 in G, its
cosets being G, = {0y, 09, 05,04} and 7Ge = {7, 70y, 703, 704},

Thus (a), (b), (¢) and (d) agree with Theorem 4.19 and Corollary 4.20.

484. Let G = gp(a) be cyclic of order 12 and let K = gp(b) be cyclic of order 4. Let 6: G—> K be
defined by ail¢ = bi, 1 =0,1,2,...,11. Then ¢ is a homomorphism of G onto K. (Take this as
fact.) Find all the subgroups of K and all their preimages. Check that the assertions of Theorem
4.19 and Corollary 4.20 hold.

Solution:

The subgroups of K are K; = K, K, = {1,b?}, K; = {1}. G, = the preimage of K; =
{x| 6 € K} = G. G, = the preimageof K, = {x| ¢ = 1 or x6 =0b2}. Clearly 1€QG,.
a8 = b 7 b2, hence a &€ G, a% = b2, so a2 € G,. Continuing in this fashion we conclude
that G, = {1, a2, a%,ab, a8, ¢1%}. Finally, G; = the preimage of K3 = {x| z6 = 1} = {1, a%, a8}.

(@) G1, G, and Gy are all subgroups of G containing Ker ¢ = Gg.
(b) K,;,K, and K3 are normal in K, and G, G5 and G; are normal in G (trivially, as G is abelian).

(¢) The subgroups of G containing the kernel of ¢ are those containing a*. Hence the subgroups of
G containing Ker ¢ are G, G, and G3. Note G = G;8 implies i =7 (1 =4,§=3),

(d) K, isof index 1in K. G, is of index 1 in G. K, is of index 2 in K, its cosets being K, = {1, b2}
and Kyb = {b,b3}. G, is of index 2 in G, its cosets being G, = {1, a2, a4, a8, a8, a1%}, and
Goa = {a, a3, a5, a7,a% all}. K, is of index 4 in K. G; is of index 4 in G, the distinct cosets
being G3 = {1: a/4; as}’ G3a = {a’) a5’ ag}r G3a2 = {a2’ a6) alo}’ G3d3 = {a3, a77 all}'

Thus (a); (b), (¢) and (d) agree with Theorem 4.19 and Corollary 4.20.
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4.85.

4.86.

4.87.

4.88.

4.89.

4.90.

Let 6: G—> K be an onto homomorphism. Let K be cyclic of order 10. Prove that G has normal
subgroups of index 2 and 5 and 10.

Solution:

Let K = gp(k). Then the subgroups K, = {1}, Ky = gp(k5), K3 = gp(k?) are normal subgroups
of K of index 10, 5 and 2 respectively. Consequently their preimages, by Theorem 4.19 and
Corollary 4.20, are normal of index 10, 5 and 2 respectively. Hence the result.

Let N < G and suppose G/N is cyclic of order 6. Let G/N = gp(Nz). Find all the subgroups
of G/N and express them in the form of Corollary 4.21. (Hard.)

Solution:

Let G/N =K. Let K,={N}, K, ={N,N«3}, K; = {N,N22,Nx4} and K, =K. These are
all the subgroups of K. To find the corresponding subgroups of Corollary 4.21 we let »: G~ G/N
be the natural homomorphism, i.e. gr = Ng. Then let G, be the preimage of K;, i=1,2,3,4.

G, = {9l gr=N} = {g| Ng=N} = {9g| gEN} = N

Gy, = {9g| g9»=N or g=Nx3} = {g| Ng =N or Ng = Nx3} = NUNz3

Gs = {g] gv =N or g»r = N22 or gv = Nxt} = NUNz2UNgt

G, = {9] g9v€K} = G. Then G/N =K, for i=1,2,3,4.

Use the correspondence theorem to prove that if H is a subgroup of G containing G’ (the derived
group of G), then H < G (i.e. prove Problem 4.69 by another method).

Solution:

Let »: G > G/G’ be the natural homomorphism; then » is onto. G/G’ is abelian by Problem 4.68.
Any subgroup of G/G’ is therefore normal, and thus H» = S, say, is normal in G/G’. By the
correspondence theorem, H is the preimage of S. Hence using the correspondence theorem once
more, H is normal in G.

Let H be a subgroup of index n in G. Let 6: G- K be a homomorphism onto K. Prove that Hg¢ is
of index n in K if H D Keros.

Solution:

It is only necessary to prove that S = Hg is of finite index in K, for then the result follows
from Corollary 4.20. If Hy,, ..., Hg, are the cosets of H in G, then we claim that {S(g,9), ..., S(9,9)}
is the set of all the cosets of S in K. We need only show that if k€ K, then k & S(g;¢) for some
i=1,...,m. As ¢ is onto, there is a g € G such that go =k. Let g = hg,, Then k =gs =
he(g;8) € S(g;6). The result now follows from Corollary 4.20.

Alternatively we can show that S(g,6),...,S(g,8) are all distinct. Suppose S(g,6) = S(g;9)-
Then (g;6)(g;6) "1 = (y,-gj.‘l)o € S. Hence gigj.‘1 € H as H, by the correspondence theorem, is the
preimage of S. Accordingly i =j and the index of S in K is n.

Let G be a group and let N be a normal subgroup of G. Suppose further that L and M are sub-
groups of G/N. Then show that we can write L in the form H/N, and M in the form K/N, where
H and K are subgroups of G containing N. Show also that if LCM, HCK; andif L< M, H < K.
Show that if LCM and [M:L] = n < », then [K:H]=n.

Solution:

This is just an application of Corollary 4.21 to Corollary 4.20 and Theorem 4.19. That L = H/N
and M = K/N follows from Corollary 4.21. If » is the natural homomorphism, we recall that
H={g|gr€L} and K = {g| gr € M}. Hence if LCM, HCK follows immediately. Now if
L < M, we consider the homomorphism ¢: K — K/N defined by k¢ =kr for all k€K, ie.
6 = »rg. Clearly K¢ = K/N and the preimage of L is H, the preimage of M is K. We can then
conclude from the correspondence theorem that H < K.

Let G=D,. Let M = {04,035, 73,7}, N = {oy,03}. Then accept N<I G and M < G. Consider
G/N and M/N. Find (G/N)/(M/N) explicitly and check that it is isomorphic to G/M. In other
words, check agreement with the factor of a factor theorem. (Use table on page 77.)
Solution:

G/N consists of the cosets A; = N = {01,035}, Ay = 0aN = {09,04}, A3 = *N = {r, 703},
A, = (r09)N = {709,704}, Now M = {oy,04,705,7}, hence M/N consists of the elements A, 4,
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M/N <0 G/N. Therefore we can talk of (G/N)/(M/N). The elements of this group are the cosets of
(M/N) in (G/N). These cosets are B; = (M/N)A; = {A;,A3} and B, = (M/N)A, = {A4,,Az4,) =
{Ay, A} (AA,, for example, is calculated as follows: Agd, = (+N){ooN) = (ro9)N = A,) Multi-
plication in the group (G/N)/(M/N) is calculated in the usual way for cosets, e.g.,

ByBy = (M/N)Ay(M/N)A, = (M/N)(AA,) = (M/N)A, = B,

as Aod, = (0oN)(0yN) = 03N = N = A,. It is clear then that (G/M)/(M/N) = {By, By} is the cyclic
group of order 2 generated by B,.

Now let us decide what G/M is. The elements of G/M are the cosets C; = M = {0y, 03, 703, 7}
and C2 - MUZ = {02, 04, TO4, 7'0'2}. As C2Cz = M(72M02 - M(73 - M, G/IM = {CI! Cz} is the CyCliC
group of order 2. Therefore G/M = (G/N)/(M/N).

491. Let G be the cyclic group of order 12, say G = gp(a). Let M = gp(a2), N = gp(a®). Consider G/N
and M/N. Find (G/N)/(M/N) explicitly and check that it is isomorphic to G/M. In other words,
check agreement with the factor of a factor theorem. (Difficult.)

Solution:

G/N consists of the cosets A4; =N ={1,a8}, 4, = Na = {a,a7}, A3 = Na2 = {a?,a8}, Ay =
Na3 = {a3,a%}, A5 = Nat = {a%, a0}, A3 = Na5 = {a5, all}.

Now M = {1, a?, a?,ab, a8, al0}. Hence M/N consists of the elements A,,A; and A5. M/N < G/N,
and we can talk of (G/N)/(M/N). The elements of this group are the cosets of M/N in G/N. These

cosets are
By = (M/NYA; = {A,A3, A5} and By, = (M/N)A, = {A,y, Ay Ag}

Multiplication is calculated in the usual way,
By,By, = (M/N)A,(M/N)A, = (M/N)(A,A,)
Now the product of A, and A, is also the product of cosets. As A, = Na, AyA, = Na2 = A;. Hence
B,B, = (M/N)As = B;. It is clear then that (G/N)/(M/N) = {B{, By} = gp(B,) is a cyelic group of
order 2.
Now let us decide what G/M is. The elements of G/M are the cosets

C; = M = {1,a?,a%a5,a8,a®} and Cy, = Ma = {a,a? a5 a7, a9 all}

Clearly G/M = gp(C,) is cyelic of order 2. Hence G/M = (G/M)/(M/N).

492. Let G be any group. Let F;(G) be all possible nonisomorphie factor groups of G. Let F;,,(G) =
{All possible factor groups of the groups in F;(G)}. In the particular case that G is cyclic of
[}
order 25, find all nonisomorphic groups in _U1 F(@), ie. Fi(G)UF,(G)u---. (Hard.)
=

Solution:

It is sufficient to consider F;(G). For if L € Fy(G), L = M/N where M € F,(G). But then
M = G/K, by definition of F,(G). Thus L is a factor of a factor group. Hence by the factor of a
factor theorem it is isomorphic to a factor group of G.

We must therefore find the number of factor groups of G. All subgroups of G are known. G
has unique subgroups of orders 1,2,22, 23 24 and 25 by Theorem 4.9, page 105. The factor groups
will therefore be of orders 25,2%,23,22 2 and 1. In each case the factor groups will be cyclic. For
if G = gp(a) and N is a subgroup of G, gp(Na) = G/N. Hence the result.

¢. The subgroup isomorphism theorem

In the homomorphism theorem we were able to say that the image of a homomorphism
0: G- K was essentially a factor group of G. What can we say about the effect of § on
subgroups? Let H be a subgroup of G. Let 6; =0, i.e. 6; is the mapping of H to K de-
fined by h#:1=h#, h € H. Then 6, is a homomorphism of H-> K, and so H§, = Hf =
H/(Ker6:). Now if Kerd = N={x|2€G, 26 = 1}, then Ker6, = {x|x € H and
201 =29 =1} =HNN. So H6=Hf,=H/(HNN). On the other hand, we know H¢ is
a subset of G§ and G6 = G/N. .

Our question is: what has H/(HNN) got to do with G/N? It must be isomorphic to
some subgroup of G/N. But which? This is what the subgroup isomorphism theorem is
about.
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Theorem 4.23 (Subgroup Isomorphism Theorem, also called the Second Isomorphism
Theorem): ILet N <1 G and let H be a subgroup of G. Then HNN < H,
HN is a subgroup of G, and
H/(HNN) = HN/N
(HN = {hn| h € H, n € N})

Proof: If n€ HNN and h€H, then hm'nh €N as NG, and h-'nh€ H as
n € H. Therefore h-'nh € HNN and HNN < H.

HN is a subgroup, for it is not empty; and if z1, 22 € HN, then : = ki1, 2 = heme and
xmc;l - hmln;lh{l = hlnshg_l = hlhz—lhznghz_l = hng
where ns=nm, ' €N, hihs '=h € H and honshy '=ns €N as N < G. Hence xiz; ' € HN
and HN is a subgroup of G.

Let ¢: H—~> HN/N be defined by hé¢ = Nh. Then ¢ is clearly onto, i.e. Hp = HN/N. Also
¢ is a homomorphism: (hihs)¢ = N(hihs) = NhiNhe = hidph2é. By the homomorphism theo-
rem, H¢=H/(Kergy). Ker¢={x|x€H, a4 =1} ={x|x€H, Nx=N}. If Nx=N,
then lx=x € N; and if x € N, Ny =N. Therefore Ker¢ = {x| z€H, r€ N} =HNN.
Hence HN/N = H/(HNN).

Problems
493. Let @* be the multiplicative group of rationals. Let N = {1, —1}. Let H be the subgroup generated

by {}}. Find HN, HN/N and thereby verify the assertion of the subgroup isomorphism theorem
that HN/N = H/HNN.
Solution:
The elements of H are all of the form (})”, r various integers.
HN = {z|x=hn, h€EH,nEN} = {z| x=h or x = —h, h € H}
= {x| x = =(3)" for all integers r}

A coset of HN/N is of the form Nz = {1,—1}x = {x,—x} where « € HN. Now if x & HN,
# = *(1)". Hence each coset is of the form {(1)7, —(3)7}. Since N(F)*N(E)+:--*N() = N) and

(})" € N(})", each coset of HN/N is a power of N(1). Thus gp({N({)}) = HN/N; and since
(3)" €N for r+ 0, HN/N is the infinite cyclic group.

Now HNN = {x| « = (})* for some r and » = =1} = {1}. Hence H/(HNN)=H. But H is
infinite cyclic. Thus we have verified that H/(HNN) = HN/N.

494, Let o = (; ? 2 n> and H = gp({s}). Prove that HA, /A, is cyclic of order 2.
.on

Solution:

HA,/A, = H/HnA,). Now o is an odd permutation, hence o & A4,. Also H = {o,:}, so
HnA, = {J}. Therefore HA,/A, = H/{,} = H. But H is cyclic of order 2. Thus HA,/A, is cyclic
of order 2.

4.95. Let a group G contain two normal subgroups M and N. Let H be a subgroup of G. Prove that
HM/M = HN/N if HnM = HNnN.

Solution:
By the subgroup isomorphism theorem, HM/M = H/HNnM = H/HNN = HN/N. Hence
HN/N = HM/M by Problem 4.8, page 97.

4.96. If in the preceding problem we know that G/M has every element of order a power of 2, show that
H/(HNN) has every element a power of 2.

Solution:
H/(HNN) = H/(HnM) = HM/M C G/M. Hence the result.
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4.97. Let H and K be subgroups of G, N < G and HN = KN. Prove that H/(HNN) = K/(KnN).

Solution:
H/(HNN) = HN/N = KN/N = K/(KnN). Then by Problem 4.8, page 97, H/(HNN) = K/(KNN).

498. Let GOG,D>{1} and G; < G. Suppose G/G,; and G, are abelian and H is any subgroup of G.
Prove that there exists a subgroup H; of H such that H; < H, and H/H, and H, are abelian.
(Hard.)

Solution:

Let H, = HNG,. Then by the subgroup isomorphism theorem, H; <0 H, and H/H, = HG,/G,.
But HG,/G,C G/G, and G/G, is abelian, Therefore H/H, is abelian. As H, C G; and G, is abelian,
we conclude that H; is abelian.

499. Let GOG2Gy,2{1}. Let G; < G, Gy <1 G, and suppose G/G,, G;/G, and G, are abelian. Prove
that if H is any subgroup, then it has subgroups H; and H, such that H, < H, H, < H; and
H/H,, H/H, and H, are abelian. (Hard.)

Solution:
Let H;, = HNnG;. Then, as in Problem 4.95, H, << H and H/H, is abelian.

Now consider H, as a subgroup of G;. As G, < G, by the subgroup isomorphism theorem
H NG, <9 Hy and H,/(H NG, = H,G,/G,C G{/G,. Since G{/G, is abelian, so is H{/(H,nG,). Con-
sequently we put H, = H NG,

Finally as H; C G, and G, is abelian, so is H, and the result follows.

d. Homomorphisms of cyclic groups

We return now to study cyclic groups. In Section 4.2b we could state that in a finite
cyclic group there was at most one subgroup of any given order. An analogy for the infinite
cyclic group would have been awkward to formulate without the concept of index which we
have had at our disposal since Section 4.3a.

Recall that a subgroup H of a group G is of index » in G if there are exactly n distinct
right cosets of H in G. In the case of finite cyclic groups we have proved that there is one
and only one subgroup H of any order m dividing |G|. Since [G: H] = |G|/m, there is one
and only one subgroup of any given index dividing the order of G. This gives the clue to

Theorem 4.24: There is one and only one subgroup of any given finite index »n >0 in
the infinite cyclic group.

Proof: Let G = gp(x) where G is infinite cyclic. Let H, = gp(z"). Then H,= {a" |
all integers r}. Hence the cosets H., Hyz, . .., Hx" ! are all distinct and are all the cosets
of H, in G. Hence H, is of index n.

Next if H is a subgroup of index n, we already know that H is generated by the smallest
positive power 2" € H (Theorem 4.9, page 105), and this means H = H,. But H. is of index
r. Hence r=n and H,= H,. This concludes the proof.

With our knowledge of cyclic groups it is easy to apply the homomorphism theorem to
find all homomorphisms of cyclic groups.
Theorem 4.25: Let 4 be a homomorphism of a cyclic group G. Then G§ is cyclic; and
if |G| <, |GY| divides |G|.
Furthermore if H is any cyclic group such that |H| divides |G|, there
is a homomorphism of G onto H.
If G is infinite cyclic, there is a homomorphism of G onto any cyclic
group.
Proof: If G = gp(x), then G = {x"| all integers r}, and

Go = {x7¢ | allr} = {(z0)"| allT} = gp(x9)
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Thus G6 is cyclic. If |G| <, then by the homomorphism theorem G¢ = G/N for some
normal subgroup N of G. Hence |G§| = |G|/|N| (see Lagrange’s theorem) and |G6| divides |G|.

Suppose H is cyclic, H = gp(y), and the order m of H divides the order of G = gp(x).
Say, |G| =rm. Let N =gp(z™). Then N={1,a2™ ...,(2")"1}, IN|=7, and N is of index
m. Because G is abelian, G/N makes sense and is of order m. But G is cyclic and conse-
quently so is G/N. Hence G/N = H, and H is a homomorphic image of G. If G is infinite
cyclic, then, as we saw in the proof of Theorem 4.24, [G:G.]=n if G.=gp(z"). As
Gr. <1 G, G/Gy is of order n. But G/G, is the homomorphic image of a cyclic group; hence
it is cyclic. Thus G has as homomorphic image any cyclic group of order n, n > 0. Ob-
viously it also has the infinite cyclic group as a homomorphic image.

A look back at Chapter 4

In this chapter we have thoroughly investigated the simplest class of groups, the cyclic
groups. We know that there are cyclic groups of all orders, we know their subgroups, we
know that they have as homomorphic images only cyclic groups, and we know whether any
cyclic group G has as homomorphic image a given cyclic group. Furthermore the sub-
groups of cyclic groups are again cyclic.

We have also introduced the concept of coset. The cosets form a partition of the group.
Using this fact we obtained Lagrange’s theorem which states that the order of a subgroup
divides the order of a finite group. This enables us to eliminate certain groups as possible
subgroups of a given group. We will see later on that it also enables us to find more quickly
the groups of a given order.

Next we have introduced the idea of a normal subgroup. This gives rise to a new way
of looking at homomorphisms, namely as factor groups (see the homomorphism theorem).
The subgroup isomorphism theorem tells us that the subgroup corresponding to a given
subgroup H of G in a factor group G/N is isomorphic to a factor group of H itself, namely
H/(HNN).

The factor of a factor theorem tells us that a factor group of a factor group G/N is just
a factor group of G of the form G/M. Finally, the correspondence theorem associates with
each subgroup of the image of a homomorphism 6: G- K a unique subgroup of G itself.

Supplementary Problems

FUNDAMENTALS
4.100. Prove that if a and b are elements of a group G and if a—1b2a = ba, then b = a.

4.101. Suppose a and b are elements of a group G. If a2 =1 and a~1b%2a = b3, prove b5 =1. (Hard.)

4.102. Suppose ¢ and b are elements of a group G. If o~ 1b2a = b and b~ 1a2b = a3, prove a=1=20.
(Very hard.)

4103. Suppose G and H are groups. Suppose that G cannot be generated by two elements but that H can.
Prove G and H are not isomorphic.

4104, Let X be a non-empty set and let Y = {y} be disjoint from X. Prove Sy = Sx_y if and only if
X is infinite.
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CYCLIC GROUPS

4.105. Let G be a cyclic group. Prove that if N is a subgroup of G such that G/N = G, then N = {1}.
4106. Let G = Z X Z where Z is the set of integers. Define a binary operation © in G by
k,l)e(m,mn) = (k+m,1l+n)

where (k,1),(m,n) € G. G is a group with respect to this composition. Prove that G is not cyelic.

4107, Let Gy, Gy, ... be subgroups of a group G. If G;CG;:,, G;+* G,y for 1=1,2,..., prove that
G{UG,U - - is not a cyclic group. (Hard.)

4.108. Let G be a group and let ¢: G > F be a homomorphism. Let C be a cyclic subgroup of G. Let
¢6 € C for all ¢€ C. If H is any subgroup of C, prove that he € H for all h € H.

4.109. Let @ be the additive group of rationals with respect to addition. Prove that every two-generator
subgroup (¢ 0) of @ is infinite eyeclic.

COSETS

4110. Let H be a subgroup of G. Prove that ¢: Hg > ¢g—1H is a matching of the right cosets of
H in G with the left cosets of H in G.

4111, Let H and K be subgroups of a group G. Show that a coset of H intersection a coset of K is a coset
of HNK.

4.112. Let D be the group of Problem 3.72, page 91. Let N = {(0,2) | z € Z}. Prove that N <1 D and
D/N is infinite cyeclic.

4.113. Let G be the group of Problem 8.74, page 91. Let N = {(0,q) | ¢ € @}. Prove that N G and
G/N is infinite eyclic. Show that N is isomorphic with the additive group of rationals.

4.114. Let W be the group of Problem 3.77, page 91. Let M = {(0,b)] (0,b) € W}. Show that M 4 G
and that G/M is infinite eyclic.

4115, Let G be a group, let H be a subgroup of G, and let g be an element of G. Prove that if N(H) is the

normalizer of H and N(g—'Hg) the normalizer of g—1Hg, then g~ IN(H)g = N(g—1Hyg). ¢g—1Hg =
{o-thy | k€ H}.

HOMOMORPHISM THEOREMS

4.116.

4.117.

a,b,e,d € Z} . Prove that ¢ forms a group with respect to the operation +

a b L (™ b\ _ <a+a1 b+b1->
¢ d <61 d1> T \ete dtd,

a b
Let 6: G—> Z be defined by <c d> ¢ = a + d. Prove that ¢ is a homomorphism of G onto

o =4

defined by

the additive group of integers and find its kernel. Consider G/(Ker 6) and prove that in accordance
with the homomorphism theorem it is isomorphie with the additive group of integers.

o = {(2 )

6: G — R*, the nonzero real numbers, be defined by <a Z) 8 = ad — be. Prove that ¢ is a homo-
¢

ad—bc+# 0, a,b,c,dreal numbers} with operation matrix multiplication. Let

morphism from G onto the multiplicative group of nonzero real numbers and find its kernel. Prove
that G/(Ker ) = R* in accordance with the homomorphism theorem.
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4.118.

4.119.

4.120.

4.121.

4.122,

4.123.

4,124,

Let G be any subgroup of S,, the symmetric group of degree n. Let 6: G - {1,—1} be the mapping
defined by x¢ = 1 if x is an even permutation and x¢9 = —1 if x is an odd permutation. Prove that
¢ is a homomorphism of G into the group {1, —1} with operation multiplication of integers. Using
the homomorphism theorem, prove that the even permutations of G form a normal subgroup of G.

Let G be a group and N a normal subgroup of G. Suppose that H = G/N has a sequence of sub-
groups H = HDHy,D --- DH, where [H;:H; ;] =i+1, for i=1,2,...,n—1. Prove that
G has a sequence of subgroups G = G;2G,2 - 2 G, suchthat [G;: Gy =i+1,i=1,...,n—1.

Let M and N be normal subgroups of G with M D N. Prove that G/N is finite if G/M and M/N are
finite.

Let G be a group and N a normal subgroup of G. Suppose G/N has a factor group which is infinite
cyclic. Prove that G has a normal subgroup of index n for each positive integer n.

Let G be a finite group with normal subgroups M and N. Let H be a subgroup of G. Suppose that
the orders of M and H and those of N and H are co-prime. Prove that HM/M = HN/N.

Let N, M be normal subgroups of G, N2 M. Suppose G/N is cyclic and |N/M| = 2. Prove that
G/M is abelian,

Find a group G with normal subgroups N and M, N2O M, G/N cyclic, N/M cyclic but G/M not
abelian.



Chapter 5

Finite Groups

Preview of Chapter 5

The most important result of this chapter is a theorem of Sylow which guarantees the
existence of subgroups of prime power order. We prove two other theorems of Sylow con-
cerning subgroups of prime power order and then examine groups of prime power order.
One result is that groups of prime power order always have non-trivial centers.

In order to construct a new group from any two groups G and H, we define a binary
operation on the cartesian product of G and H. The resultant group is called the direct
product of G and H. A simple condition enables us to conclude that a group is a direct
product.

The concept of direct product together with general theorems about subgroups, e.g. the
Sylow theorems, help us to classify finite groups. In this chapter we find all groups up to
order 15.

We study a class of groups called solvable groups. Solvable groups are used in Galois
theory to determine whether an equation is solvable in terms of nth roots.

An ambitious plan for studying finite groups is to find all simple groups, i.e. groups
without proper normal subgroups, and then see how groups are built from simple groups.
The Jordan-Holder theorem shows that in a sense a group is built from simple groups in
only one way. As yet the task of finding all simple groups is far from complete. We con-
clude the chapter by exhibiting a class of simple groups, namely A,, for »=25.

51 THE SYLOW THEOREMS

a. Statements of the Sylow Theorems

Lagrange’s theorem (Theorem 4.11, page 109) tells us that the order of a subgroup
divides the order of a finite group. Conversely one might ask: if G is a finite group and
n| |G|, is there always a subgroup of order n?

The answer to this question is no: Ay is of order 12 but has no subgroup of order 6 (see
Problem 5.1 below). The following important theorem, however, ensures the existence of
subgroups of prime power order. In the following p will denote a prime.

Theorem 5.1 (First Sylow Theorem):
Let G be a finite group, p a prime, and p” the highest power of p dividing the
order of G. Then there is a subgroup of G of order p".

Suppose H is a subgroup of G of order a power of a prime p, and |H| is the highest power
of p that divides |G|. Then H is called a Sylow p-subgroup of G. By Theorem 5.1 every
finite group has a Sylow p-subgroup.

In general a group of order a power of the prime p is called a p-group. A Sylow p-sub-
group H of a group G is a maximal p-group in G, i.e. if HCF CG where F is a p-group,
then F = H (see Problem 5.4).

120
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As an illustration we find the Sylow p-subgroups of the symmetric group S; on {1, 2,3},
for p =2 and 3. The elements of Ss given in Section 3.3a, page 57, are

/1 3 /1 2 3 /1 2 3
T 3 %27 \g 1 2 T l3 2 1
/1 3 /1 2 3 /1 2 3
7t 7 g 1 Tl 8 9 T l2 1 3

The order of any Sylow 2-subgroup is 2 and the order of any Sylow 38-subgroup is 3, since
IS,/ =6=2-3. Now r}=r;=+3=. so the sets {,,}, {;,7,} and {i,r,} are all subgroups
of order 2 and therefore, by definition, Sylow 2-subgroups of S,. There are no other Sylow
2-subgroups of S, because of = o, o2 =, implies S, has no other elements of order 2.
{1, 0,,0,} is the only subgroup of order three in S, so it is the only Sylow 3-subgroup of S,.

[V \VIR \VI V]

Theorem 5.2 (Second Sylow Theorem):

If H is a subgroup of a finite group G and H is a p-group, then H is contained
in a Sylow p-subgroup of G.

Two subgroups S and T of a group G are called conjugate if there is a g € G such that
97'Sg=T. Recall g7'Sg = {97 'sg | s € S}.

Theorem 5.3 (Third Sylow Theorem):

Any two Sylow p-subgroups of a finite group G are conjugate. The number
sp, of distinet Sylow p-subgroups of G is congruent to 1 modulo p and s,
divides |G|. (s, is congruent to 1 modulo p if s, = 1+ kp for some integer %.)

Before proving the Sylow theorems, we will use them to show that, up to isomorphism,
there is one and only one group of order 15. If |G|=15 then, by Theorem 5.1, G has at
least one subgroup of order 3 and at least one of order 5. Now Theorem 5.3 implies that
there are s; =1+ 3k subgroups of order 3 and ss| |G|. But (1+38k)| 15 implies k= 0.
Therefore G has one and only one subgroup of order 8. Similarly G has one and only one
subgroup of order 5. These subgroups must be cyclic (Problem 4.48, page 110). Let
H, = {1,a,a*} be the subgroup of order 8 and H. = {1,b, b2, b3, b*} the subgroup of order 5.
HiNnH; = {1}, because an element +#1 cannot have order 38 and 5 simultaneously. We look
at the order of ab in G which must be either 1, 8,5 or 15. If the order of ab is 1, then
ab =1 and a=b"! which is impossible, for HiNH; = {1}. If the order of ab is 3, then
gp(ad) = H,, since H; is unique. In this case ab =a! (1=0,10r2) and b =a'"' which is
impossible. If the order of ab is 5, gp(ab) = H,. Hence ab=1>b* (1=0,1,2,30r4) and
a = bi~1 which is impossible. Therefore the order of ab is 15 and G is the cyclic group of
order 15 generated by ab.

Further applications of the Sylow theorems are given in the problems below and in
Section 5.3.

Problems
5.1. Show that the alternating group A, has no subgroup of order 6.

Solution:
The elements of A, were given in Section 3.3c, page 62. We repeat them here for convenience:

1234> 12 3 4 123 4 /12 3 4
= = = o, =
‘ 12 3 4 ™T\8 2 41 e <4132> *T\3 41 2
/12 3 4 _ /12 3 4 _ /12 3 4 _/1 2 3 4
Ty, = T4 = 7T T 95 —

138 4 2 4213 <2314 43 21
_<1234 [t 2384 - /1234 - (123 1
vy = = = =
2 14 2 3 5 2 4 38 1 s 31 2 4 ’ 2 1 4 3
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5.2

5.3.

54.

5.5.

5.6.
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Suppose that A, has a subgroup H of order 6. a§ = a§ =0 =1 so0 a;, o5 and og are of order 2.
Also 7; is of order 3 for j=1,2,...,8. Hence the elements of order 2 are oy, 05 and o3, and the
elements of order 3 are 7,,75,...,75. Now H is of order 6, so it contains a subgroup of order 3,
by Theorem 5.1. Therefore r; € H for some i, say r; € H; then z,rl,rf =19 € H. H must also
contain an element of order 2, by Theorem 5.1. Hence H contains a o;, say H contains ¢,. Because
ooty = 74 and 7405 — 75, if H contains o, it also contains 7, Ti = 73,73 and 7g = 7, This would
mean H has at least 8 distinct elements, which contradicts the assumption that |H| =6. Thus
oo € H. A similar argument shows o5 and ¢y € H. This means that H does not contain subgroups
of order 2, contradicting Theorem 5.1. Therefore our initial assumption is invalid and 4, does not
contain a subgroup of order 6.

Find all Sylow p-subgroups of A, for p =2 and 3.

Solution:

The elements of A, are given in Problem 5.1. The order of a Sylow 2-subgroup is 4, since
22 is the highest power of two dividing 12, the order of A,. Consequently by Lagrange’s theorem
none of the 7’s can be elements of a Sylow 2-subgroup because they are all of order 3 (see Problem 5.1)
and 3 does not divide 4. Now o0;0; = 0, where 1,5,k € {2,5,8} and 17? =, for 1=2,5,8. Hence
P = {, 09, 05,04} is a subgroup of A, of order 4. P is the only possible Sylow 2-subgroup as there
are only four elements having order dividing 4, viz. 4 ¢, 05,04, and these elements are in P. The
order of a Sylow 3-subgroup is 3. The sets {,, 1,73}, {1, 75, 2}, {4, 75,72} and {i, 77,72} are all sub-
groups of order 3. These are all the possible Sylow 3-subgroups, as they include all the elements of
order 3.

Alternately we may use Theorem 5.3: s3 = 1+ 3k must divide 12. Clearly k ¥ 0 (we already
have four subgroups); and if &k > 1, s3 does not divide 12, Hence k¥ =1 and there are exactly four
Sylow 3-subgroups.

.

If H is a subset of a group G and ¢ € G, then |g~1Hg| = |H|, where g—1Hg = {¢g~lhg | h € H}.

Solution:

We define a matching «: H—> g~ 'Hg by a:h—->g~lhg for hE€ H. a is clearly an onto
mapping. To show « is also one-to-one, we must prove h; = hy, (hy, hy € H) if and only if g—lhg =
9 lhyg. Let hy = h,. Then by multiplying on the left by g—! and on the right by g we get
g~ lhyg = g~ lhyg. Similarly g—lh;g = g—lh,g implies h; = h,. Hence « is a matching and
lg—1Hg| = |H]|.

Let |Gl=pm (r=1 and p/) m) and let P be a Sylow p-subgroup of G. Prove that if H is a .
p-group such that PCHCG, then H =P,

Solution:
Suppose |H| =pt, t = 0. By Lagrange’s theorem, pt| prm. Since pfm, t=r. But PCcH
and |P| = p". Hence t=1r and |P|=|H|, and so P =H.

If H is a Sylow p-subgroup of G, then g—1Hyg is also a Sylow p-subgroup of G.

Solution:

Suppose |G| = p'm (r =0 and p Y m); then |H|=p". But |g—1Hg| = |H| by Problem 5.3.
Hence g—1Hyg is a Sylow p-subgroup of G if it is a subgroup. To prove g—1Hg is a subgroup, observe
that (97 1h9)(g~lheg) 1 = g—lhlhz—lg € g—1Hg. From Lemma 3.1, page 55, g—1Hg is therefore a
subgroup.

Prove that a finite group G is a p-group if and only if every element of G has order a power of ».

Solution:

If |G| = pT then, as every element of G must have order dividing the order of the group,
every element has order a power of p. To prove the converse let every element of G have order a
power of p and assume the order of G is not a power of p. Then there is some prime ¢, ¢+ p,
such that ¢| |G|. But by the first Sylow theorem, G has a subgroup H of order a nonzero power of
q. So H contains an element g ¥ 1. By Lagrange’s theorem, the order of g is a nonzero power of
g and hence the order of g is not a power of p. This contradicts the assumption that all elements
have order a power of p. Hence |G| = pr for some r =0,
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5.7.

5.8.

5.9.

5.10.

If G has only one Sylow p-subgroup H, then H < G.

Solution:

If g€ G, g—'Hg is a Sylow p-subgroup by Problem 5.5. But G has only one Sylow
p-subgroup. Thus g-1Hg = H forall g€ G and HQ G.

If |G| = pq, where p and q primes and p < ¢, then G has one and only one subgroup of order gq.
Furthermore if ¢ # 1+ kp for any integer k, then G is the cyclic group of order pq.

Solution:

By Theorem 5.3 G has s, = 1+kq Sylow g-subgroups of order g, with &k =0. Also 1+kq
divides pq. There can only be four possibilities for 1+ kq as the expression of pq as a product of
primes is unique: 1+k¢=q or 1+kg=p or 1+kq=pg or 1+kgq=1. As q does not divide
1+ kq, we are left with the possibilities that 1+ kg =p or 1+kg=1. Since ¢>p, 1+kg+*p
and hence k = 0. Thus there is only one subgroup of order ¢, say H.

There are s, =1-+kp subgroups of order p. Again we have the possibilities 1+kp =1,
1+kp=p, 1+kp=4q, or 1+kp=pq as s, divides |G|. Clearly p does not divide 1+ kp, so
14+kp =1 or 14+ kp = q. The last is not true by assumption, so again there is only one subgroup
K of order p.

It follows from Problem 5.7 that H < G, K < G. Also HNK = {1} as the nonunit elements of
H are of order ¢ and those of K are of order p. If h€ H and k€K (h # 1, k+ 1), then

R~ 1hk = hYWk-lhk)€H as HQ G

(h~k-h)k € K as K< G
Hence h—'k—1hk =1 and h and k commute. By Lagrange’s theorem, the order of hk is p, q or pq.
But (hk)? = hvk? as h and k commute, so (hk)? = h? = 1. Similarly (hk)? = k2 1. Therefore

hk is of order pg, and so G is cyclic.

Instead of the argument of the last paragraph, we note that H = {1,h,R2, ...,h2"1}, K =
{1,k,k2,...,kp—1}, Now hk is an element of order 1,p,q or pg. If hk is of order p, since there is
only one subgroup of order p, gp(hk) =K, ie. hk = ki for some i, =4i=p—1. But then

h € K, which contradicts HNK = {1}. Similarly gp(hk) is not of order ¢, nor of order 1. Thus
gp(hk) is of order pq, and so G is cyclic.

Show that if ¢ =1+ kp in Problem 5.8, G is not necessarily cyclic.

Solution:
Consider S;, the symmetric group on {1,2,8}. |S3/ =6=3+2, 83 =1+1+2 and S; is not a
cyclic group.

If |G| =2p, p an odd prime, then G has one and only one subgroup of order p and either G has
exactly p subgroups of order 2 or it has exactly one subgroup of order 2.

Solution:

From Problem 5.8 we know G has one and only one Sylow p-subgroup. Because p is itself the
highest power of p dividing |G|, the Sylow p-subgroup of G is of order p. Thus there is precisely
one subgroup of G of order p. The number of Sylow 2-subgroups of G is s, =1+ k2 for some
integer k. Again 1+2k =1,2,p or 2p. As 2 does not divide 1+ 2k, then 1+2k=1 or 1+2k=1p
and the number of Sylow 2-subgroups is either 1 or p.

b. Two lemmas used in the proof of the Sylow theorems

Lemmas 5.4 and 5.6 will provide the tools for proving the Sylow theorems (see

Section 5.1c).

Throughout this section G will be a fixed group and H a subgroup of G. As usual we

denote subsets of G by A, B, C, etc.

A generalization of the concept of normalizer as defined in Section 4.3d, page 112, will

be essential. We point out once more that if A is a non-empty subset of a group G and
g €G, then g 'Ag={g~'ag | a € A}.

Definition: Let A be a non-empty subset of a group G. The set {h| h"'Ah = A, h € H}

is called the normalizer of A in H and is written Nu(A).
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It is easy to prove that Nu(A) is a subgroup of H (Problem 5.11}. When H = G, N¢(A)

is the normalizer of A as defined in Chapter 4.

Definition: Let A and B be non-empty subsets of G. B is said to be an H-conjugate of A
if h~'Ah =B for some h € H. (Note that if H = (G, then A and B are con-
jugate as defined in Section 5.1a.)

The next lemma gives us a formula for calculating the number of distinct subsets of G

which are H-conjugates of A.

Lemma 5.4: If G is a finite group with subgroup H and non-empty subset 4, the number of
distinct H-conjugates of A is the index of Nx(4) in H, i.e. [H: Nu(A)).

Proof: Since [H: Nu(A)] is the number of distinct right cosets of Nu(A) in H, we need
only define a one-to-one mapping, «, of the right cosets of Nu(4) in H onto the distinct

H-conjugates of A. Let « be defined by

a: Ny(A)h - h='AL (h € H)
To show that « is a one-to-one mapping, we must prove that for ki, ke € H,
Nu(A)hi = Nu(A)h, if and only if hy'Ahy = hs '‘Ah

(i) Let hi'Ahy=hs;'Ahs. Then A = hihs'Ahshi = (hohi )~'A(hshi'). Hence hhi' €
Nu(A) and so hes € Ng(A)hi. Since two right cosets are equal or disjoint, we conclude
Nu(A)h; = Nu(A)hs. Thus hi'Ahy = hy'Ahs implies Nu(A)hi = Nu(A)he.

(i) If Nu(A)h: = Nu(A)he, then hi € Nu(A)hs, ie. hi = nhy for some = € Nu(A).
Therefore hi'Ahy = (nhs)~'Anhs = hy'm~Anh, = h;'Ah,

because n~!'An = A by definition of Nu(A). Hence Nu(A)hi = Nu(A)h, implies
hi 'Ahy = h;'Ahs. ais clearly onto, so the proof is complete.

Most of our arguments are concerned with sets whose elements are subsets of G. We
denote such sets by script letters <4, B, etc.

For example, let G be the cyclic group of order 6, G = {1,a,...,a°}. Subsets of G are,
for example, A = {1,a}, B = {a% a3 ¢}, C = {a}. An example of a set whose elements are
subsets of G is the set whose elements are A and B. We write ¢4 = {4, B}. Another such
set would be B = {A, B, C}.

Proposition 5.5: Let <4 be a set of subsets of G. We define for A, B&€c4, A~B if Bis
an H-conjugate of A (i.e. if there exists an element 2 € H such that
h~*Ah = B). Then ~ is an equivalence relation on ¢4 (see Problem 5.16
for the proof).

We will make a few observations about ~, which follow because it is an equivalence
relation on c¢4. Recall that if A €cd, A~ ={X| X €A and X ~ A}, ie. A~ is the
equivalence class containing A (see Section 1.2c, page 9). Recall that the distinct equiva-
lence classes are disjoint and that their union is ¢4 (Theorem 1.2, page 10).

By a set of representatives of the equivalence classes we mean a set R which contains
one and only one element from each of the distinet equivalence classes. It follows that
oA is the disjoint union of the sets R~, R € R. Hence |4|= 2 |R ~|. We are now in
a position to prove our main lemma, €R

Lemma 5.6: Let <4 (@) be a set of subsets of G. Suppose that for each A €c4 and
each h € H, h='Ah € c4. Let ~ denote the equivalence relation defined by
A ~ B if B is an H-conjugate of A. Let R be a set of representatives of the
equivalence classes. Then
led] = X [H:Nu(R)

RER
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Proof: We know from the remarks above that

] = ¥ B~
REeR
But R~ = {X| X=h"'Rh for some h € H} since h 'Rh €4 for every hE€ H. So
R ~ is the set of H-conjugates of B. The number of such H-conjugates is, by Lemma 5.4,
[H: Nu(R)]. Hence |e4] = D [H: Nu(R)], as claimed.
RER

Corollary 5.7: Let P (+ () be a subset of G. Let ¢4 = {9g7'Pg| g € G}. Let R, H and ~
be as in Lemma 5.6. Then

A = 3 [H:Nu(R)] = [G:Nc(P)]
RER
Proof: Clearly |c4| is the number of G-conjugates of P, and the result follows from
Lemma 5.4.

Corollary 5.8: Let <4 = {A]| A is a subset of G and A has precisely one element}. Let
~ be the equivalence relation in <4 when H =G, and let R be a set of
representatives of the equivalence classes. Let R* = {R| RNZ(G) =0,

R € ®R}. Then
Gl = 2@+ T [G:Na(®)

(We remind the reader that Z(G) = (x| xg = gx for all g € G})
Proof: Clearly |e4| = |G]; hence
|G| = Y [G:No(R)] (5.1)

RER

If z € Z(G), then {2} € ¢4 and the number of G-conjugates of {2} is one, namely {z} itself.
Consequently {z} € R for each z € Z(G). Note that Nqg({z}) =G if z € Z(G). Hence
adding first the contribution made by all R € ® with RNZ(G)# @ 1in (5.1), we obtain
|Z(G)| and the result follows.

Note that as R = {r},
Ne¢(R) = {9]| 9 €G and g 'rg € R}
= {9]|9€G and g7'rg =1}
= C(R)
(For the definition of C(R), the centralizer of R in G, see Section 4.3d, page 112.)
Hence Corollary 5.8 takes the form
Gl = 1Z@)] + 3 [G:CR)] (5.2)
RER*

(5.2) is called the class equation of G.

Problems
5.11. If A is a non-empty subset and H a subgroup of a group G, then Ny(A) is a subgroup of G.

Solution:

Ny(A) is clearly a subset of G. Ny(A) # ), since 1€ H and 17141 = A implies 1 & Ny(A).
Let n € Ny(A). n~1An=A implies ndn—1=A4, or (n~1)~1An—1 = A. Furthermore n~1€ H,
since H is a subgroup; hence n~! € Ny(A). If m,n € Ny(4), (mn)"'A(mn) = n~l(m—Amn =
n~1An = A; hence mn € Ny(A). Accordingly Ny(A) is a subgroup of G.
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512,

5.13.

5.14.

5.15.

5.16.

5.17.

FINITE GROUPS [CHAP. 5

~

Check Lemma 5.4 by direct computation when G = S; and (using the notation of Section 3.3a,
page 57) A = {r;}, H = {,, 75}-
Solution:

The H-conjugates of A are ~1{r} = {r}, 72_1{71}7-2 = {r3}. Thus the number of H-conjugates
of A is 2. Lemma 5.4 requires that 2 = [H: Ny(4)]. But Ny(A) = {#| x €H and 2z 1Ax =
A} = {i}. Hence [H:Ny(A)] =2, as required.

Check Corollary 5.7 when G = Dy, the dihedral group of degree 8 (G = {bi, abi,0 = i < 8}, where
a2 = b8 = 1 and e~ 1ba = b~1; see page 75, with a = 7, b = 0,), given P = {a} and
H = {1, b2, b4, b6}.
Solution:
e4 of Corollary 5.7 is given by c4 = {9~ Pg | g € G} = {Py,P,y,P;,P,; where P, = {a},

P, = {ab?}, P; = {ab?}, P, = {ab®}; thus |ec4| = 4. Using the equivalence relation ~ of the
corollary,

Py~ = {h71Ph | hE€EH} = {Py,P3}

Py~ = {(h~Pyh | hE€ H} = {Py, Py

For ® choose one representative from each of the equivalence classes, e.g. choose R = {P;, P,}.
Then Lemma 5.6 claims that [c4| = 4 = [H: Ny(Py)] + [H: Ny(Py)]. Now Ny(Pg) = {1,b4} =
Ny(P,). Hence [H:Nyx(Py)] = [H: Ny(Py)] =2 and the required equation of Corollary 5.7 holds.
We must also show that [G: Ng(P)] = 4. As

Ne(P) = {x] *€ G and x~1Px = P}
= {z]| x € G and " lax = a}
= {1,a, b abt}
the index of N¢(P) in G is 4, the required number.

Check Corollary 5.8 when G = S; Use the notation of page 57.

Solution:

%4 (Of COrOllary 5.8) = {Pl’ P2, P3, P4, PS’ PG} where Pl = {t}, P2 = {01}1 P3 = {02}) P4 = {TI},
Py = {7y}, Pg = {r3}. Let ~ be as in Corollary 5.8. Consequently P;~ = {P;}, Py~ = {P,, P3},
Py~ = {P,,P;5,Pg}. To define ®, we choose one element from each of these equivalence classes.
Let us take R = {P,P,;,Py}. As Z(G) = {}, P;nZ(G) = @ except for j = 1. Therefore
R* = {Py, P,}. Now N¢(Py) = {y,01,0.} and Ng(P,) = {i, 7). Hence, as required,

IZ(G) + [G: NgPy)] + [G:NgPy)] = 1+2+3 = 6 = |5

Show that Nyj(A) = Ng(A)NH for any non-empty subset A and subgroup H of a group G.

Solution:

Let n € Ny(A); then n € H and n 'An =A. But HCG, so that n € G and by definition
n € Ng(A). Consequently Ny(A)CNg(A)nH. If n€ Ng(A)nH, then n~1An=A and n€H.
Thus Ng(A)NH C Ny(4) and the equality follows.

Prove Proposition 5.5, page 134.

Solution:

As H is a subgroup of G, H contains the identity, so A =1-141 and thus A ~ A. If A ~ B,
then there is an element 2 € H such that h~1Ah = B. Consequently (A~1)~1B(h~1)=A and
B~ A. Finally,if A ~B and B ~ C, then there exist h,g € H such that A~1Ah =B and
g9~ 1Bg = C. It follows that hg € H and (hg)~1A(hg) = g~ 1(h~1Ah)g = g~ 1Bg = C, and so
A ~ C. Hence ~ is an equivalence relation on cA4.

Let A, B be subsets of G. Suppose B is an H-conjugate of A, where H is a subgroup of G. Prove
that [H: Ng(A)] = [H: Ny(B)].

Solution:

Let ¢4 = {X|X = g~'Adg or X = g~1Bg for some g € G}. We use Proposition 5.5.
A ~ =B ~, as B is an H-conjugate of A. |A ~| is therefore the number of H-conjugates of 4,
and also the number of H-conjugates of B. By Lemma 5.4, [H: Ny(A4)] = [H: Nyx(B)}.
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¢. Proofs of the Sylow theorems
First we prove a weak form of the first Sylow theorem.

Proposition 5.9: If G is a finite abelian group and p is a prime dividing the order of G,
then G has an element of order p.

Proof: We will prove the proposition by induction on the order of G. If |G| =1, there
is nothing to prove. Assume the proposition is true for all groups of order less than =,
the order of G, where 7 > 1. Recall from Section 4.2b, page 105, that if G is cyclic there
is a subgroup of order any integer that divides |G|. Thus if G is cyclic the theorem holds,
and we may therefore assume G is not cyclic. If n is a prime, G is cyclic; hence 7 is not a
prime.

Suppose h(#1) € G, h of order m. Clearly m <n. Let H be the cyclic group gen-
erated by . H is a proper subgroup of G. Now if p|m, by the induction assumption, H
has an element of order p. If p/tm, form the factor group G/H (every subgroup of an
abelian group is a normal subgroup so H < G). Since |H|>1, |G/H|<|G|. As |G/H|=
|G|//|H|, p||G|/|H|. Therefore by the induction assumption, G/H has an element § of order p.

Let v: G- G/H Dbe the natural homomorphism of a group onto its factor group (see
Theorem 4.17, page 114) and ¢ be a preimage of § under v. Now (g?)v = §® = the identity
of G/H, so g € H. As H is of order m, (9™)* = (¢9?)» = 1. Therefore g™ has order p or
gn=1, If g»=1, then g™v =gm=1. Since § has order p this implies p divides m, con-
trary to our assumption. Therefore g™ is an element of G of order p.

We are now in a position to prove the Sylow theorems. For convenience we repeat
the statement of each theorem.

The First Sylow Theorem: Let G be a finite group, » a prime and p* the highest power
of p dividing the order of G. Then there is a subgroup of G
of order p.

Proof: We will prove the theorem by induction on the order n of G. For |G|=1 the
theorem is trivial. Assume 7 > 1 and that the theorem is true for groups of order <=.
Suppose |Z(G)] = c. We have two possibilities: (i) p| ¢ or (ii) » Ve.

(i) Suppose p|c. Z(G) is an abelian group. By Proposition 5.9, Z(G) has an element of
order p. Let N be a cyclic subgroup of Z(G) generated by an element of order p. N 1 G,
since any subgroup of Z(G) is normal in G. Consider G/N. Then |G/N|=n/p by
Corollary 4.14, page 110. Hence by our induction assumption, G/N has a subgroup H
of order p7—1.

By Corollary 4.21, page 121, there exists a subgroup H of G such that H/N = H.
As p~'=|H|= |H|/|N|= [H|/p, we conclude that |H|=p". Thus in this case, G has
a subgroup of order p'.

(ii) Suppose p } c. The class equation for G is (see Equation (5.2) of Corollary 5.8, page 135)
G| = [Z(G)] + 2 [G: C(R)]

Since p| |G| and » ¥'¢, we have » ) D [G:C(R)]. Therefore for at least one R € R*,
RER*

py[G:C(R)]. But |G]=][G:C(R)]|C(R)| by Corollary 4.14 to Lagrange’s theorem,
page 110. Hence p'||C(R)|, since p"||G|. Now |C(R)|+|G|; for if |C(R)| =G|,
then C(R)=G and RNZ(G)= R, contrary to the assumption that RNZ(G) = Q.
Thus by the induction assumption, C(R) has a subgroup H of order p. Consequently so
does G.

In either case we have found a subgroup H of order p*. The proof is complete.
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The following gives a simple formula for the normalizer of a Sylow p-subgroup P in a
subgroup H of G, where |H| is a power of p. It will be used in the proof of the second
Sylow theorem.

Lemma 5.10: If G is a finite group, P a Sylow p-subgroup of G, and H is a subgroup of G

of order a power of p, then
Nuy(P) = HNnP

Proof: PNHC Ng(P), as conjugation by an element of P gends P to itself. We show
Nu(P)CPNH. Nu(P)CNc(P) and P < Ng(P) (see Problem 5.15 and Problem 4.60,
page 113), so that by the subgroup isomorphism theorem (Theorem 4.23, page 125) we
have: Nu(P)P is a subgroup of G and

Nu(P)P/P = Nu(P)/Nu(P)NP

Consequently [Nu(P)P:P] = [Nu(P): Nu(P)NP]. But Nu(P) is a p-group, i.e. a group of
order a power of p, since it is a subgroup of the p-group H. Thus [Nu(P): Na(P)NP] is a
power of p. [Nu(P)P: P] is therefore also a power of p and, as P is a p-group, |Nu(P)P)|
is a power of p. Accordingly, Nu(P)P is a p-group. But P CNgx(P)P and P is a Sylow
p-subgroup. Hence P = Ng(P)P, for P cannot be a proper subgroup of any other p-sub-
group of G (see Problem 5.4, page 132). Ny(P) is therefore a subgroup of P. As Nx(P)CH,
we conclude Nyx(P)C HNP.

The Second Sylow Theorem: Let H be a subgroup of a finite group G, and let P be a
Sylow p-subgroup of G. If H is a p-group, then H is con-
tained in a G-conjugate of P.

Proof: We apply Corollary 5.7, page 135, to ¢4 = {9 'Pg | g € G} to conclude
leA| = RE [H: Nu(R)] = [G:Na(P)]

€R
By Lemma 5.10, Nug(R) = HNR for each R €<R. Hence
[G:Ne(P)] = Y [H: HNR) (5.9

RER
If HNR+ H for all R € R, as H is a p-group, the right-hand side of equation (5.3) is
divisible by p. Hence [G: N¢(P)] is divisible by p. But P C N¢(P), so that p does not divide
[G: N¢(P)]. This contradiction implies that HNR = H for at least one R € R. But as
R € c4, R is a G-conjugate of P. The result follows.

The Third Sylow Theorem: (i) Any two Sylow p-subgroups of a finite group G are G-con-
jugate. (ii) The number s, of distinct Sylow p-subgroups of
G is congruent to 1 modulo p. (iii) sp| |G|.
Proof:
(i) Let P and P’ be two Sylow p-subgroups of G. By the second Sylow theorem, P’, as a
p-group, is contained in some G-conjugate R of P. But |P’|=|R|, by Problem 5.3,
page 132. Hence P’ =R and P’ is conjugate to P under G.

(ii) Let P be any Sylow p-subgroup of G. Since any other Sylow p-subgroup is conjugate
to P and any conjugate of a Sylow p-subgroup is a Sylow p-subgroup (Problem 5.5,
page 132), we conclude by Lemma 5.4 that

sp = [G: No(P)]
But on putting P = H in Equation (5.3), we have

s, = 3 [P:PNR)
RER
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Now for exactly one R € R, R = P; for the only P-conjugate of P is P itself and so
P is the only possible representative of its equivalence class. In all other cases,
PNR +» P. Therefore [P: PNR] is a power of p for all R € R except one, and for

this one [P: PNR]=1. Hence
Sp = 1+ kp

(iif) By Corollary 4.14 to Lagrange’s theorem, |G| = [G:N¢(P)]|N¢(P)l. Since s, =
[G: Nc(P)], s»]||G].

52 THEORY OF p-GROUPS
a. The importance of p-groups in finite groups

Suppose that G is a finite group. In Section 5.1a we saw that G has a Sylow p-subgroup
for any prime p. (p will be a prime throughout this section.) One reason why the study
of p-groups (groups of order a power of p) is so important is that the structure of the
Sylow p-subgroups of G partly determines the structure of G. One instance is the follow-
ing theorem: If G is a finite group whose Sylow p-subgroups are all cyclic, then G has a
normal subgroup N such that G/N and N are both cyclic. (M. Hall, Jr., The Theory of
Groups, Macmillan, 1959, Theorem 9.4.3, page 146.)

In this section we shall determine some of the elementary properties of p-groups.

b. The center of a p-group
A very important property of finite p-groups is given by

Theorem 5.11: If G +# {1} and G is a finite p-group, then Z(G), the center of G, is not of
order 1.

Proof: We make use of the class equation (equation (5.2), page 135)
Gl = 12@)] + 3 [G:C(R)] (5.2)
RER*

It follows immediately from the definition of C(R) and Z(G) that C(R)= G if and only if
R CZ(G). Because the sum on the right side of (5.2) is taken over all KB such that
RNZ(G) = @ and because |G| =p", p|[G: C(R)] forall R € R*. Hence p| > [G:C(R)].
Since p||G|, we can conclude that p||Z(G)|, which means Z(G) + {1}. *¢%

Corollary 5.12: If G is a group of order p’, r=1, then G has a normal subgroup of
order p™~1, :

Proof: The proof is by induction on r. The statement is clearly true for r=1. Sup-
pose the corollary is true for all kX <r where r>1. By Theorem 5.11, Z(G)+ {1}.
Because p | |Z(G)|, Proposition 5.9 implies Z(G) has an element g of order p. Let N = gp(g).
N < G, since any subgroup of Z(G) is normal in G. Consider G/N. |G/N|=p™~*. There-
fore by the induction assumption, G/N has a normal subgroup H of order p 2. By Corol-
lary 4.21, page 121, there exists a subgroup H of G which contains N and such that
H/N = H. Then |H| =pr~1. Furthermore, again by Corollary 421, H < G. Thus &G
has a normal subgroup of order p"~! and the proof is complete.

Clearly we could repeat this argument until we obtain a sequence of subgroups of G
{1}:H0gH1g---nglgHT:G (5—4-)
where Hi < Hi+1 (¢=0,1,...,7r—1) and |[Hi| =9 2=0,1,2,...,7).
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Problems
5.18. Suppose G is a group with S a subgroup of the center Z(G). Prove G is abelian if G/S is cyclic.

5.19.

5.20.

5.21.

Solution:

Suppose G/S is cyclic. Then we can find ¢ € G such that every element of G/S is a power of

aS. Then if g,h € G, .
g = alz, h = a2/

for a suitable choice of the integers ¢ and j, with z and 2’ in S. Then
gh = aizalz’ = dlafzz’ = diaiz’z = WiZ’aiz = hg

Thus every pair of elements of G commute. Hence G is abelian.

Prove that a group of order p? is abelian (p a prime).

Solution:

Let G be of order p2 and let Z be the center of G. By Theorem 511, Z < {1}. If Z=G, G is
abelian. Suppose Z #* G; then |G/Z| = p, so G/Z is cyclic. By Problem 5.18, it follows that G
is abelian.

Let A ={0,1,...,p—1}, where p is a prime. Then under addition modulo p, A is an abelian

group. Let
G = {(a,b,¢) ] a,b,c € A}

be the set of all triples (a, b, ¢) of elements of A. Define
(a,b,¢)*(a/,b",¢Y = (a+a, b+b, ct+c —ba)
Prove that with respect to this binary operation, G is a non-abelian group of order p3.
Solution:
It is clear that |G] = p3. To prove that G is a group, we check first the associative law:
((a, b, e}, b, ¢eN) = (@', b",¢"y = (a+a,b+ b, e+ —ba')a”,b", ¢
= (a+a"+a",b+b +b",c+c +c"—ba—(b+ b))
On the other hand,
(a, b, c)((a/, b, c")(a, b, "))

(a,b,c)(a’ + (L”, b+ b", ¢+’ — b’a”)
(a+a’"+a’,b+b +b",¢ct+c'+c”"—ba”—bla+a))

We check that
ct+e +e¢"—bad —(d+b) = c+ +c"—ba’ — bl +a)

which is true. Thus G is a semigroup. Now
(a,b,¢)*(0,0,0) = (a,b,¢) = (0,0,0)+(a,d,c)
and so (0,0,0) is the unit element of G. Finally,
(a,b,¢)*(—a, =b, —¢—ba) = (0,0,0) = (—a, —b, —c—ba)(a,b,c)
and hence every element of G has an inverse.
Our last task is to prove that G is non-abelian. Now
(1,0,0)(0,1,0) = (1,1,0), (0,1,0)(1,0,0) = (1,1,-1)
and thus (1,0,0)(0,1,0) = (0,1,0)(1,0,0).

Let A be the additive group of integers modulo p, A = {0,1,...,p—1}; and let B be the additive
group of integers modulo p2, B ={0,1,...,p2—1}. Let G be the set of all pairs (i, j), i€ A4,
4 € B. Prove that under the binary operation

(i,7) = (@,§) = @+, 7+ +ii'p)
G is a non-abelian group of order pd.

Solution:
Clearly G is of order p3. We check that G is a semigroup.
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5.22.

5.23.

5.24.

(G DIV, 37) = @+, 5+ 7+ D), )
(i+i+3, §+ 7+ + 5D+ G+ 5+ D)D)

(6@, NE 7)) = G+, 5+ 57+ 57 p)
= @+ 4+, i+ +i"+7p+ i +1)p)
To prove that the binary operation in G is associative, we need check only that
WP+ G+ iR = §p + i+ )P
Since p2 = 0 in B, this equality is readily verified.
The identity element of G is (0,0). The inverse of (4,j) is (—i, —j + jip). Thus G is a group.

Finally, (1,0)0,1) = (1,1), (0,1)(1,0) = (1,1+p)

and therefore G is non-abelian.

Prove that the group G in Problem 5.20 has the property that for all g € G, g? =1 (i.e. (0,0,0)) if
p is odd. Is this true if p = 2?

Solution:
Let (a,b,¢) € G. Then
(a,b,¢)2 = (a,b,c)(a,b,e) = (2a, 2b, 2¢ — ba)
Continuing, we find
(a,b,¢)3 = (a,b,¢)2(a,b,¢) = (2a, 2b, 2¢ — ba)(a, b, ¢)
(3a, 8b, 3¢ — ba — 2ba)

By induction it follows that
(a,b,¢)» = (pa, pb, pc—ba—2ba~— -+ —(p—1)ba)
But pa =0, pb =0, p¢c =0. Finally,
ba + 2ba+ -+ + (p—1)ba = Q(L;—Bba
since 1+2+ -+ +p—1=4p(p—1). If p is odd, p—1 is even. Therefore ip(p —1) is an integer
divisible by p. Hence ip(p —1)ba = 0. Thus we have (a,b,c)? = 1.

If p =2, then
(a,b,¢)2 = (2a, 2b,2¢ —ba) = (0,0, —ba)

In particular if e =1, b=1 and ¢ =0, we have (1,1,0)2 = (0,0,—1). Thus not every element
of G is of order 2. This result could have been observed by noting that a group G satisfying g2 =1
for all ¢ in G is abelian. To see this let g,k € G. Then as (gh)2 =1,

gh = (gh)~1 = h~1g—1 = h2h—1g2g~! = hg

and so G is abelian. But as G is not abelian, not every element is of order 2.

If p is odd, does the group G of Problem 5.21 satisfy g7 =1 (i.e. (0,0)) for all g € G?

Solution:
No, since (0,1)2 = (0,1)(0,1) = (0,2). Inductively, (0,1)? = (0,p) # (0, 0).

Prove that if G is a group such that g =1 for all g € G, then every homomorphic image H
has the same property, i.e. h# =1 for all h € H.

Solution:
Let ¢ be a homomorphism of G onto H. Then if h € H, we can find g € G such that g¢ = h.
Therefore h? = (g8)? = (gP)6 = 18 = 1.
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5.25. Prove that if p is an odd prime, then the groups in Problems 5.20 and 5.21 are not isomorphiec.

Solution:

Let G be the group defined in Problem 5.20 and let H be the group defined in Problem 5.21, for
p an odd prime. Then by Problem 5.22,if g€ G, g? =1. Butif G = H, it follows from Problem
5.24 that kv =1 for all h € H. But by Problem 5.23, (0,1)? # 1. Therefore G is not isomorphic
to H.

5.26. Prove that a non-abelian group G of order p3 has a center of order p (p a prime).

Solution:

Let Z be the center of G. By Theorem 5.11, Z # {1}, Also, Z # G since G is non-abelian.
Now if |Z| = p?, then |G/Z| = p. Therefore G/Z would be cyclic and hence, by Problem 5.18, G
would be abelian, a contradiction. Thus |Z] = p.

¢. The upper central series
Suppose & is a group. We shall define a series
1} = Zo C Zy C
of subgroups Zo, Z1, ... of G, called the upper central series of G. We begin by defining
Zo—= {1}, and Z; to be the center of G. Next we define Z;. We look at G/Z,. Since every
subgroup of G/Z, is uniquely of the form H/Z, where H is a subgroup of G containing Z,,
the center of G/Z, is of the form Z»/Z, (we are using Corollary 4.21, page 121). Notice that

as the center of a group is a normal subgroup, Z2/Z; is a normal subgroup of G/Z,. There-
fore by Corollary 4.21, Z, is a normal subgroup of G.

In general, once Z; has been defined and proved to be a normal subgroup of G, we define
Zi+1/Z; to be the center of G/Z;,. By Corollary 4.21 it follows that Zi+1 < G.

We shall call a group G nilpotent if its upper central series ascends to G in a finite
number of steps.

Our objective in this section is to prove
Theorem 5.13: A finite p-group G is nilpotent.

Proof: If G = {1}, there is nothing to prove. If G {1}, then Z,+# {1} by Theorem
5.11. If G/Z, is not the identity, the center of G/Z1= Z2:/Z, + Z:/Z,, again by Theorem 5.11.
Notice that if Z;# G, then Z,+ Z,. Similarly if G +# Z;, Zs + Z>. By induction we can
show that if Zi#= G, Zi+1+# Z; and thus

1=Z,C Z, C -+ C Z; C Zi+1
Since G is finite, Zx = G for some k. Therefore G is nilpotent.

Problems
5.27.  Prove that if a non-abelian group G is of order p3, then Z, = G.

Solution:

Z,+ {1} by Theorem 5.11. Soif Z,#* G, then G/Z, is of order p or p2. Since G/Z; is cyclic
only if Z; = G (Problem 5.18), we find G/Z, is of order p2 and hence abelian (Problem 5.19). There-
fore Z,/Z; = G/Z,, ie. Zy, = G.

5.28. Let D, be the dihedral group of order 2n. Prove that D, is nilpotent if » is a power of 2.

Solution:

D, has the property that it contains two elements ¢ and b such that a2 =1, b =1, a~1ba = b~!
and every element of D, is uniquely expressible in the form ab/ where 7=0,1 and j7=0,1,
...,m—1. (See Section 3.4f, page 75, where a =+ and b = o,.)
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-1
Method 1. Suppose n-= 2m. Then p?" is of order 2. Hence

015" g = (a‘lba)zm_1 = (b—1)2m_1 = p2" !

- - -1
So 2" ! commutes with a; clearly p2" ! commutes with b. Therefore b2 = commutes with every
-1
element of G, and so 2" e Zy If m =1, then Z, = D,; otherwise a & Z,.

What other elements can be in the center? If aibi € Z,, then clearly a~aibi)e = aibi. On

the other hand, a—1(aibi)a = aila—1bia = aib—i. Hence bi = b~J and (bi)2 =1, ie. bi= b2m—1. Thus
-1 -1 -1

the only possible element in the center other than b2 s ab?” . But as = Z,, this

implies @ € Z;, which is not so. Consequently Z, = {1, b2 3.

s »
Similarly Z, consists of the powers of p2" , «..» Z; consists of the powers of 52" "', Therefore

Z,, 1 consists of the powers of b2 Now this means |G/Z, ;| =4, and so G/Z,_, is abelian.
Thus Z, = G and G is nilpotent.

Method 2. |D,| = some power of 2. Hence we can apply Theorem 5.13.

5.29.  Prove that 4, is not nilpotent.

Solution:
Z, = {1} in A, as a direct check shows. Hence Z;,=Z,="--+-, and thus Z, 4, for every n.

53 DIRECT PRODUCTS AND GROUPS OF LOW ORDER
a. Direct products of groups

In Chapter 1 we defined the cartesian product H X K of two sets H and K as the set of
all ordered pairs (2, k), h € H and k€ K. If H and K are groups, we can define a multi-
plication of elements of H X K as follows. Let (1, k1), (ke, k2) € HX K and define

(h1, kl) ° (hz, kz) = (hlhz, k1k2) (55)

where hihs and kiks are the products in the groups H and K respectively. The multiplica-

tion defined in (5.5) is clearly a binary operation. The set H X K with binary operation

(5.5) is a group. To see that H X K is a group, let (h, k1), (he, ko), (hs, ks) € H X K. Then
)

(R, k1) (ha, o)) * (R, Fos) = (Raha, Keakes) + (hs, Ks)
(Raha)hs, (leuea)kes)
(
(

i

ha(hahs), ki(kaks))
hi, k1) * (hohs, kalks)
(hl, k1) * [(hz, kz) * (h3, ks)]

Multiplication is therefore an associative binary operation on H X K. If 1 stands simulta-
neously for the identity element of H and of K and (h,k) € HXK,

(1, 1)h, k) = (R, k) = (B, E)(1,1)

so that (1,1) is an identity of H X K. It is clear that if (h,k) € HxX K, then (™%, k71) is
its inverse, for (h,k)(h~', k1) = (k=Y kk~') = (1,1). The group H X K with binary opera-
tion (5.5) is called the external direct product of the groups H and K. We often refer to
H X K as just the direct product. We define the internal direct product after Proposition
5.19. If H and K are finite groups, then it is clear that

IH X K| = |H| K|

If Hs {1} and K » {1} are finite groups, then H X K ig neither isomorphic to H nor
to K, because |HX K|+ |H| and |H X K|+ |K|. Therefore the direct product gives us a
simple way of constructing new finite groups. For example, let C; be the cyclic group of

order 2 generated by g.
C:xCe = {(9,1),(9,9), (1,9), (1,1)}
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Now |C:Xx Cy| =4, so we have (as we shall soon see) two non-isomorphic groups of order
4, namely: the cyclic group of order 4, C.= {1,b,b%b%} where b*=1, and the group
Cs % Co.

The multiplication table for Cs X C: is
(1,1) Lg) (9.1 (9,9
Ly 1LYy  Lg (0l (99
1,g) | L,y A1) (9,90 (9,1)
.1 | ¢, 1) (9,90 (1,1 1,9)
@9 | @9 (@1 Lg 11

Note that all the elements of C: X C; are of order 2. Hence C: is not isomorphic to Cz X Co.
C2 X Cs is called the Klein four group, or simply the four group.

Theorem 5.14: If G = H XK is the direct product of the groups H and K, then the sets

H = {(h,1)| h € H, 1the identity of H}
R = {(1,k)| k €K, 1 the identity of K}

are subgroups of G. Furthermore H = H K K, and if acH and
b EK ab= ba Finally, G = R and HNER = {(1,1)}, the identity
subgroup of G.
Proof: 1If (hl, 1), (ks 1)Eﬁ then (hi, 1)(he, 1)t = (b, 1)(hz 1) = (Rikz 1) € ﬁ
since h;'e H. His clearly non-empty. Therefore His a subgroup of G. Similarly R
is a subgroup of G. The mapping « of H onto H defined by

«: h>(h1), heH

A

is cleixrly an isomorphism. Similarly K and K are isomorphic. Now let a= (h,1) € H
and b = (1,k) €K; then

ab = (1)1, k) = (b k) = (L k)(h1) = ba

Now HnK = {(1,1)}. Any element (k, k) of G can be written as (h, 1)(1, k), so G c AR.
Clearly HK CG. Hence G = AR and Theorem 5.14 follows.

Corollary 5.15: Let G=HXK and ﬁ,I? be as in Theorem 5.14. Then every g €G
can be written uniquely as a product hk where h € H, k€ K.

Proof: If g=(h,k), then g = (h,1)(1,k) is an expression for g as the product of an
element in A by an element in R. If we also have § = (h1, 1)(1, k1), then clearly hi=nh
and k, = k. Thus the expression is unique.

As a converse we have

Theorem 5.16: Let G be a group with subgroups H and K such that HNK = {1}, the
elements of H commute with those of K, and HK =G. Then G =H XK.

Proof: We first show that any element g € G can be written uniquely in the form
g=nhk where h€ H and k€ K. Since G=HK, g=hk for some h€ H and k€ K.
Suppose ¢ = hiki and g = h:k: where hi,hs € H and ki, k: € K. hiki = hsk: implies
hs'hi=kski'. But HNK = (1}, and so hs; ki =1 and k.k;'=1. Hence hi=h: and
k1 = kz

We define the mapping «: G> H XK by go = (h,k) where g =hk € G. « is a one-to-
one mapping, for we have shown that there is one and only one way of writing g in the form
g = hk, and the elements of H X K are of the unique form (k, k). To prove « is a homo-
morphism we must demonstrate that if g¢: = kik: and g: = hok, are any two elements in
G, then
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(9.9)e = giag,0  or (R Rk)e = (hk)a(hh,)e

Now  (hkhk)e = (Rhkk)e = (hh,kk) = (h k) k) = (hk)a(kk,)a

177177272 277172 22 771772
Hence « is a homomorphism and the result follows.

Note that if H, K are normal subgroups of a group G with HNK = ’{1}, then H and K
commute elementwise. For if h€ H, k € K,

hkthk = (R hk €K = h'(k'hk) € H

Therefore h~'k~hk € HNK = {1}, and so H and K commute elementwise. Clearly
G = HK and H and K commute elementwise implies H and K are normal in G.
Consequently Theorem 5.16 can be stated as follows:
Corollary 5.17: Let G be a group with normal subgroups H and K, and suppose HNK = {1},
and HK = G. Then G = H XK.

The hypothesis of Theorem 5.16 asserts G must equal HK. But if G is a finite group
and |[HK| = |G|, we can conclude, since HK C G, that HK = G. It is useful to be able to
count the number of elements in HK. We therefore prove the following proposition.

Proposition 5.18: If G is a finite group with subgroups H and K, then

H| - K]
IHN K|

HK| =

Proof: Let I=HNK. I is a subgroup of G and, since I CK, I is a subgroup of K.
Let Ik, Iks, ..., Ik, be the n distinct cosets of I in K. Thus

K = IkUlk,U ---UIlk,
and, by Corollary 4.14, page 110, n = |K|/|I| = |[K|//|[HNK]|.

We claim now that
HK = HkiUHkU ---UHE,

For if hk € HK, then k =1k; for some 1€, j an integer between 1 and n. Hence
hk = (hl)k; = Wk; where R’ € H, as both h,lbelong to H. Thus HK = Hk,UHk,U - - - UHE,.

Now suppose HkiNHk; = @ for some integers 7 and j. Then hki=h’k; for some
h,w € H. Consequently R~k =k’ so kiki'€ I=HNK. But kiki'€I implies
that k; € Iki. Since two cosets are either equal or disjoint, Ik; =Iki. Hence k;=1k;
Thus HkiNHEk; =@ for i+ j and

|HK| = |Hki| + |Hks| + - -+ + |Hkd|
Now |Hki| = |H|, because hiki = hqk; if and only if h: = he. Therefore

H| K|
HNK]|

HK| = n|H| =
since n = |K|/[HNK|.

To illustrate the use of Proposition 5.18, let G be a group of order 28 and H: ar}d H,
subgroups of G of orders 7 and 4 respectively. HiNH>= {1}, because an element in H,
and also in H; must have order dividing 7 and 4. Accordingly,

\Hi| |Hs|

|H1H2| = —_—IHlﬂHﬂ

= 28 = |G|
and G = H:H,.
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Using Proposition 5.18, we can replace Theorem 5.16 in the case of finite groups by
Theorem 5.16": Let G be a finite group with normal subgroups H and K where |H| |K| = |G|.
If either (i) HNK = {1} or (ii) HK =G, then G = H XK.
Proof:
(i) HNK = {1} and |H||K| = |G| implies, by Proposition 5.18, |HK| = |H||K|/|(HNK| = |G|.
Since HK CG, we can conclude HK = G. But then the hypotheses of Corollary 5.17
are fulfilled and G = HX K,
(i) If HK = G, then |HK|=|G|. Therefore
H| K]
HN K]
But |H||K| = |G| by hypothesis. Hence HNK = {1} and, by Corollary 5.17, G = H X K.

G| = |HK| = HNK[|G] = [H]| K]

The concept of direct product can easily be generalized to the direct product of a
finite number of groups, G1,Gs, ...,G, (R =2). Let G =G X G2X -+ X G, be the cartesian
product of n groups. Define a multiplication in G by (91,92 ...,9:)(91,95, ...,97) =
(9191, 9297, - . ., gag#) for (91,92 ...,9x),(91, 93, ....9%) €G. G is then a group (see Problem
5n.30 below) called the (external) direct product of the groups Gi, Gs, . ..,G.. We denote G by

H Gi.
i=1
In Chapter 6 we will define the direct product of an infinite number of groups dif-
ferently. Proposition 5.19 below and Corollary 5.15 will provide a link between the two
definitions.
Proposition 5.19: Let H and K be subgroups of a group G. If
(i) hk=kh forall h€H and k€K
and
(ii) every element g € G is a unique product of an element in H
and an element in K, (i.e.g = hk, h € H, k € K; and if g = hik4,
hi€H, Ity €K, then h="h, and k=1L,
then G = H XK.

Proof: We need only prove HNK = {1} to fulfill the hypotheses of Theorem 5.16.
Suppose g € HNK. Then g=h+1=1-k for some R H and k€ K. But condition
(i) implies =1 and k=1. Therefore g =1 and HNK = {1}.

If G is a group with subgroups H and K satisfying conditions (i) and (ii), G is said to be
the internal direct product of H and K, and we write G = H® K. By Proposition 5.19,
H®K=HXK.

Problems
530, Let G=G;XGyX ---XG, bethe cartesian product of n groups. Define a multiplication in G by

(91,92 -+ 9O, 95 -+, 97) = (9191, 9295, - - -» InF2)
for (91,92 -, 9n),(91,92, -+ .,9,) € G. Show that G is a group.
Solution:
The multiplication is clearly an associative binary operation in G, since multiplication is associa-
tive in each G,. If 1 stands simultaneously for the identity of G;, ¢ =1,2,...,n, then (1,1,...,1)
is clearly the identity of G. If ¢ = (94,95 ...,9,) € G, then (gl_l,gz_l, .. .,gn_l) is the inverse
of g in G.

531. If H=H and K = K, where H, H, K and K are groups, then H X K = HxK.

Solution: 3
If «: H->H and ,B:K—)I? are isomorphisms, we define y:HXK»ﬁXK by v: (hk)~
(ha,kB), h € H, k € K. v is a one-to-one mapping, for (ha,kB) = (W', k’'B) if and only if ha = h'e
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5.32.

5.33.

5.34.

5.35.

5.36.

and kB = k'B. Since « and 8 are one-to-one mappings, he = h'a and kg = k’'g if and only if
h=h" and k =K. To show y is a homomorphism, let (k,k),(r',k’) € HX K. Then

[(h, k) (W, KNy = (R, EE)y = ((Rh))a, (KK)B) = (hal'e, kBK'B)
= (ha, k) (Ko, k'B) = (h, k)y(W, K)y

Finally, it is clear that vy is an onto mapping.

Show that G = H X K is an abelian group if and only if H and K are both abelian groups.

Solution:
Suppose H and K are abelian groups. Letting (&, k), (R, k') € G,
(R k)« (R',E") = (RW, kK'Y = (R'h, k') = (W, k") (h, k)
and so G is abelian.
Conversely, suppose G is abelian. Let h,h’ € H. Then if 1 is the identity of K, (kh,1){(F',1) =
(', 1)h, 1) or (hh',1) = (R’R,1). But this implies hh’ = h’h. Hence H is abelian. Similarly we
can show K is abelian,

Consider the groups C; X Ky, C4y X Cy, C5 where C, is the cyclic group of order n and K, the four
group, i.e. the non-cyelic group of order 4, described above. Are any two of these groups isomorphic?
Is any one non-abelian?

Solution:

Let C, = gp(a), Cy = gp(b), and Cg = gp(g). We look at the set of elements of order 2 in
each group. Since every isomorphism maps elements of order 2 onto elements of order 2, if there
are more elements of order 2 in one group than in another, these groups cannot be isomorphic. Every
element (# 1) of Cy X K, is of order 2, for (¢, k)2 = (¢2, k%) = (1,1) and (1,k)2 = (1,k2) = (1,1) for
any k € K,. Cg on the other hand has only one element of order 2, namely g4, because (99)2+1 if
1# 4, 0 ={=17 Now C, X C, has at least one element of order 4, (b,1), and at least two elements
of order 2, (b2, @) and (1,a). Therefore no two of the groups are isomorphic. As C,, C,, K, and Cg
are abelian, Problem 5.32 implies Cy X K4, C, X Cy and Cy are also abelian. Thus we have exhibited
three non-isomorphic abelian groups of order 8.

If C, and C,, are the cyclic groups of order n and m respectively and (n,m) =1, then
C,xC, = C,,, the cyclic group of order nm.

Solution:

Say C, =gp(g) and C,, = gp(h). Consider the order of the element (g,k) in C, X C,. We
claim that the order of (g, k) is nm. If (g,h)c = (1,1) for some k, then (g%, h*) = (1,1) and so
g¥ =1 and hk = 1. Since the order of g is = and the order of h is m, m|k and n| k. Hence k
is divisible by nm. On the other hand, (g, k)™ = (g"m, hnm) = 1 and so the order is nm. Accordingly,
C,x C,, = gpl(g, k). Therefore C,XC,, =C,,, since all cyclic groups of the same order are
isomorphic (Theorem 4.7, page 103).

Show that C,2 is not isomorphic to C, X C, (where C, is the cyclic group of order =), for any
integer s > 1.

Solution:

Since C,2 is a cyclic group it has, by Theorem 4.9, page 105, one and only one subgroup of order
s. But C X C, has two subgroups of order s, namely gp((1, g)) and g»((g, 1)), where g is the generator
of C,. Since subgroups of a given order are mapped onto subgroups of the same order by any iso-
morphism, Cg2 cannot be isomorphic to C; X C,.

Show that for any prime p there are exactly two non-isomorphic groups of order p2.

Solution:

By Problem 5.19, page 140, we know that any group of order p?2 is abelian. C,2, the cyclic group
of order p2, and C, X C,, where C, is the cyclic group of order p, are two non-isomorphic groups of
order p2? (Problem 5.35). To see that these are the only possible groups of order p2, consider a
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subgroup H of order p in G, a group of order p2. Such a subgroup exists by Corollary 5.12. H is
cyclic, since p is a prime. Let a« € H. The order of a is either p or p2. If the order of a is p2, G
is a cyclic group generated by «. If |gp(a)l =p, then gpla)nH = {1}, for b (1) € gp(e)nH
implies H = gp(b) and gp(a) = gp(b), since a group of prime order has no proper subgroups.
Also |gp(a)||H| = p? and, as G is abelian (Problem 5.19), gp(a) < G and H < G. Therefore, using
Theorem 5.16', we conclude G = gp(a) X H. But gp(a) XH = C, X C, by Problem 5.31. Hence
G = C, X C,,.

Show (H, X Hy) X Hy = H, X Hy X Hy,.
Solution:

Define ¥: (Hy X Hy) X Hy > Hy X Hy X Hg by ¥: ((hy, hy), k) = (hy, ko, hg) for hy € H, hy € Hy
and hy € Hy. Clearly ¥ is an onto mapping. If ((ky,hs), h)¥ = ((hy, ho), Rg)¥, then (hy, ho, hg) =
(Ry, ko, kg) and consequently hy =Ry, hy = hy and hy; = hy; Therefore ¥ is one-to-one. To show
¥ is a homomorphism, let ((hy, ko), g} and ((Ry, ko), ky) € (Hy X Hy) X Hs. Then

(R, ho), ha) (R, o), R)[¥ = ((hy, ho)(hy, o), Raha)¥ = ((Ryhy, hohy), hahy)¥
= (hthy, hoho, hshy) = (hy, ho, hg)(Ry, Ry, Bg)

. . = ((hly h2)) hs)ql((ﬁlr ’-'/2): 53)‘1,
and so ¥ is an isomorphism.

b. Groups of small order: orders p and 2p

As an application of the Sylow theorems and the theorems of Section 5.3a we will find,

up to isomorphism, all groups of order less than 16. We will use C. to denote the cyclic
group of order n, and K. to denote the four group. Reecall that K, is defined to be Cz X Cb.
We refer to the notation of Section 5.3a. Let us put 1=(1,1), x=(1,9), ¥y =(9,1) and
z=(g,9). The multiplication table for Ky is

1 x Y z

1 1 x v z

x x 1 z Y

v Y z 1 x

z z Yy x 1

We note that 2y =2z, zz =y and yz = x. Notice that the multiplication table is sym-

metric in #, y and z. If we put z =a and y = b, then z =ab and we can write the multi-
plication table in the form

1 a b ab

1 1 a b ab

a a 1 ab b

b b ab 1 a

ab ab b a 1

There is, up to isomorphism, clearly only one group of order 1.
If p is a prime, any group of order p is cyclic (Problem 4.48, page 110). Up to isomor-

phism, there is one and only one cyclic group of order p (see Theorem 4.7, page 103). Thus
there is one and only one group of order p, p a prime. In particular, the only groups of
order 2, 3,5, 7, 11 and 13 are cyclic.

There are precisely two non-isomorphic groups of order 4, namely C, and K. (Section

5.3a and Problem 5.36).
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Next we show there are precisely two groups in each case of order 6, 10 or 14. Note
that 6 =2-3, 10=2-5 and 14 =27, so these groups are of order 2p for some prime
p# 2. Let G be a group of order 2p, p an odd prime. By Problem 5.10, G has exactly one
subgroup K of order p, and either

(i) exactly one subgroup H of order 2
or
(ii) precisely p subgroups of order 2.

(i) In this case the group G is a cyclic group of order 2p. To see this notice that H is a
unique Sylow 2-group and K is a unique Sylow p-subgroup; so, by Problem 5.7, page
133, HA G and K < G. Furthermore HNK = {1}, for any element common to H
and K must have order dividing 2 and p and hence is the identity. Clearly |H||K|=
2p = |G|. Therefore by Theorem 5.16’, G = H x K. But H and K are cyclic groups of
order 2 and p respectively. Thus by Problem 5.34, G is cyclic of order 2p.

(ii) Let K = gp(a) where a* = 1. Since K is the only subgroup of order p, b € K implies
b2=1. Clearly, G=KUbK. Hence G consists of the distinct elements

l,a,a% ...,a”"%, b, ba,ba? ..., ba*"! (5.6)
Nowif ¢=0,1,...,p—1, then
(ba))> = 1 and ba’® = a*"ib 5.7)

since ba' & K and each element of G outside K is of order 2. Also
(ba’)? = (ba¥)(ba’) = 1 implies ba' = (ba))™! = (a)~"b! = a?~ib
Now if G is any group of order 2p, then it is either of type (i) or (ii). If G is of type
(i), then by our analysis it must be a cyclic group of order 2p. By Theorem 4.7, page 103,

cyclic groups of the same order are isomorphic. Hence all groups of order 2p having
property (i) are isomorphic.

Suppose G is of type (ii). Then, arguing as above, G has a subgroup K = gp(@) of order
p and an element b of order 2 such that

G = {,a,...,a.,b,0ba,...,ba 1}
where for ¢ =0,1,...,p—1,
(b@)* =1 and ba = @b (5.8)
The mapping «: G > G defined by
a: ¢*=>a@, a:b->b, «:bai>Dbd (¢any integer)

is an isomorphism. First, o is a mapping; for if a' = o/, p divides 1—j and hence a*= @'
Consequently « is well defined on ai. If ba'= ba’, then a'=a’ and so p divides t—J and
@ = d/. Hence a is well defined on the ba'. As a«:ai-d, bai->bd (¢=0,1,...,p - 1), «
is one-to-one and onto. « is also a homomorphism, for g, 9: € G implies ¢ = bia’ and
g: = bsa! for some choice of j,s€ {0,1} and i,t€ {0,1,2,...,p—1}. Using equations
(6.7) and (5.8), we obtain, when s =0,

(9,9)2 = [(Pa)(@)]a = (blai*)a = biatt = baat = (ba)e(a)e = g,af,e
and when s=1,
(9192)0‘ - [(biai)(bat)]a = (bibaP~a)a = (bitlgr itNa = pitige—i+t — Bipar—igt
= bia'bat = (Va)a(ba)e = g,a0,e

Therefore any two groups of order 2p of type (ii) are isomorphic.
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So far we have shown that up to isomorphism there are at most two possible groups of
order 2p, p a prime. This does not mean that there exist two non-isomorphic groups of
order 2p, for each prime p. But from Theorem 4.7, page 103, we know that for each positive
integer n there exists a cyclic group of order n, and from Section 3.4f, page 75, we know
that for each » the order of the dihedral group D, is 2n and D, is not cyclic for n > 2 (it is
not even abelian). There are therefore, up to isomorphism, exactly two groups of order
2p for each prime p = 2: one a cyclic group and the other D,. In particular there are
exactly two non-isomorphic groups of order ¢, ¢ = 6, 10, 14.

It is worthwhile summarizing our method of finding all groups of order 2p. We first
showed that if a group had order 2p it had to be isomorphic to one of two possible groups.
The isomorphism in case (ii) was shown by using the fact that the elements of such a group
had to satisfy equations (5.7) and (5.8). (As those equations determine the group up to
isomorphism, they are usually called defining relations for the groups; they will be discussed
in detail in Chapter 8.) After demonstrating the isomorphism, we proved that each of the
possible groups exists by exhibiting a group of each type.

c. Groups of small order: orders 8 and 9

Let G be a group of order 8. There are at least three non-isomorphic abelian groups of
order 8: Cs,C: X Cy and C: X K4 (see Problem 5.33). We show that if G is abelian it is
isomorphic to one of these three groups.

If G has an element of order 8, G is cyclic. If G has no element of order 8 but has an
element a of order 4, let H =gp(a). Let b € G—H. If b is of order 4, b* is an element
of order 2 and lies in H (since the coset decomposition of G is HUbH). As o’ is the only
element of H of order 2, b*>=¢® Hence (ab)?=a?b?=a%?=1. Since ab & H, we may
assume that there exists an element * € G—H of order 2 (x =b if b is of order 2 or else
x =ab). Let X =gp(x). XNH={1}. Therefore by Theorem 5.16’, G =X X H. Since
X =C: and H = C,, we conclude G = C:XC,.

If G has no elements of order 4 or 8, all its non-identity elements are of order 2. Let
a, b be distinct elements of order 2 in G. Let A = gp(a), B = gp(b). Then AB is a group
by Problem 4.62, page 114. Now ANB = {1} and |A||B|=|AB|. So, by Theorem 5.16’,
AB = AXB and consequently AB=C:XC,. Let ¢&€G—AB and C =gp(c); then
CNAB = {1}. Thus G = (C:XC2) X C2= K4 X Ch.

We conclude that there are, up to isomorphism, exactly three abelian groups of order 8.

Assume G is a non-abelian group of order 8. G has an element of order 4 and no elements
of order 8; for if g € G is of order 8, G = Cs. On the other hand if all elements of G are of
order 2, then (ab)?=1 for any a,b € G and consequently

ba = a*bab® = a(abab)b = ab

contrary to our assumption that G is non-abelian. Let @ € G be an element of order 4,
and put H = gp(a). Then G=HUHD for some b €G. Also H < G, as it is of index 2
(Problem 4.69, page 116). b2 € H; for if not, the cosets H, Hb, Hb*> would be distinct, and
this would contradict [G: H] =2. We have four possibilities for b% (i) b> =a, (i) b*>=@?,
(ifi) b? = @?, or (iv) b2=1.

If (i) or (iii) occurs, clearly G = gp(b), contrary to our assumption. Thus (ii) and (iv)
are the only possibilities.

(i) b2 =¢% Since H < G, b~'ab € H. Asais of order 4, so is b~'ab. Thus b~ 'ab =0
orad. If b~lab=a, then ab = ba. But every element of G can be written as a'b or a' for
some integer %, since G = HUHb. Hence ab = ba implies G is abelian, contrary to our

assumption. Thus b~ lab = a® or
ab = ba? (5.9)



Sec. 5.3] DIRECT PRODUCTS AND GROUPS OF LOW ORDER 151

Since G = HUHD, the elements of G can be expressed as 1, a, a2, a3, b, ab, a2b, a®b. If a
group of this type actually exists, then equation (5.9), b>=¢a* and a*=1 provide us with
enough information to construct its multiplication table.

1 a a? a3 b ab a%b a3b

1 1 a a? a3 b ab ab a3b
a a a2 ad 1 ab a?b a3b b

a? a? ad 1 a azb a3b b ab

a? ad 1 a a? a3b b ab azb
b b asb a?b ab a? a 1 a3
ab ab b a3b a?b a? a? a 1
a?b a?b ab b a3b 1 ad a? a
a3b a3b a?b ab b a 1 a?® a?

Table 5.1

To calculate the products in the table, we used the fact that ab = ba® and b?>=q?
imply ba = a3 since a®b = a*(ba®) = b%a® = b(a%a?®) = ba.

If G is another nor_l-abelian group of order 8 with an element @ of order 4 and an element
b & gp(@) such that b%=@? then as in our argument above,

G = {1,d,az a,b, a, ab, ab®)
with the elements satisfying the equations
at=1, @=2=0 ab=D>ba
from which we find a multiplication table for G which is identical to Table 5.1 except that

@ is substituted for @ and b for b. The mapping «:G -G defined by «:a—a and
a:ab->ab,1=0,1,2,8, is clearly an isomorphism.

Table 5.1 also shows that a group of order 8 of this type actually does exist, for the
table defines a group. To see this, notice that the product of any two elements is again an
element, i.e. the table defines a binary operation, 1 is an identity element, and every element
has an inverse. The only difficulty is checking that the binary operation is associative.
This involves much calculation (the reader should check some of the calculations himself).
We shall give another description of this group in Problem 5.40. This group is called the
Quaternion group and has the interesting property that all its subgroups are normal and
yet it itself is not abelian (Problem 5.43).

We now move on to a discussion of (iv).

(iv) b2=1. Let K=gp(b); then HNK={1} and G=HK. Now H< G so that
b~lab € H and, since a is of order 4, we have b~ 'ab =a ora®. Asin (ii), b~'ab =a implies
G is abelian. Hence b~lab = a3 which leads to

ba = a®b (5.10)

The elements 1, a, a2, a3, b, ab, a®b, a®b are the distinct elements of G. Equation (5.10),
b2=1 and a*=1 enable us to construct the following multiplication table.
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1 a a? a3 b ab a2b a3b

1 1 a a? al b ab a2b a3b
a a a? a3 1 ab ab a3b b

a? a? a? 1 a a?b adb b ab

a3 a’ 1 a a2 a3b b ab a?b
b b a3b a?b ab 1 ad a? a
ab ab b a3b a2b a 1 a? a?
a?b a?b ab b adb a? a 1 a3
a’b a3b azdb ab b a3 a? a 1

Table £.2

As in part (ii), any non-abelian group of order 8 having property (iv) is isomorphic to G.
Such a group exists, for Table 5.2 also defines a group. This group is isomorphic to the
dihedral group D, the group of symmetries of a square (see Problem 5.38).

The two groups given in Tables 5.1 and 5.2 are not isomorphic because the group of
Table 5.1 has exactly one element a2 of order 2, whereas the group of Table 5.2 has five
elements of order 2: a?, b, ab, a?b and a3b. Thus we have shown that there are exactly two
non-isomorphic non-abelian groups of order 8.

To summarize, there are five non-isomorphic groups of order 8, three abelian and two
non-abelian.

ance 9 = 32, we know by Problem 5.36 that there are two and only two non-isomorphic
.groups of order 9, namely Cy and Cs X Cs.

d. Groups of small order: orders 12 and 15

To complete our list of all groups up to order 15, we must find all possible groups of
order 12 and 15. Because 12 =3-22, we know that a group G of order 12 has at least
one Sylow 2-subgroup of order 22 and at least one Sylow 8-subgroup of order 3. The third
Sylow theorem tells us that the number of Sylow 2-subgroups is congruent to one modulo 2
(i.e. s2=1+2Fk for some integer ¥) and s. divides |G|. When k=0, s;=1; and when
k=1, 8=38. If k>1 itis clear that 1+ 2k does not divide 12. We therefore have two
possibilities: G has exactly one Sylow 2-subgroup or G has exactly three Sylow 2-subgroups.
A similar argument shows that G has exactly one Sylow 3-subgroup or G has exactly four
Sylow 3-subgroups. Therefore we have four possibilities:

(i) s2=1 and s3=1
(ii) s2=1 and ss=4
(iii) 82=38 and ss=1
(iv) s2=38 and ss=4

Notice that because the Sylow 2-subgroup has order 4 it must be isomorphic to Cs or
K4, and the Sylow 3-subgroup must be isomorphic to Cs (Section 5.3b). We treat each case
separately.
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(i) Let F be the Sylow 2-subgroup and T the Sylow 3-subgroup of G. Then F < G and
T < G, since a Sylow p-subgroup is a normal subgroup if it is unique (Problem 5.7,
page 133). Furthermore, FFNT = {1} since any element in the intersection must have
order dividing 3 and 4 and so must be the identity. Moreover, |F||T|=12. Hence by
Theorem 5.16’, G = F X T. We have two possibilities for F: (a) F = C, or (b) F =K,
Thus G =CysXC3=Cy2 (by Problem 5.34) or G = K.XCs; both these groups are
abelian.

These are the only abelian groups of order 12, for if G is abelian any two conjugate
subgroups are equal. Hence by Theorem 5.3, page 131, s; =s3=1.

In cases (ii) through (iv) we assume G is a non-abelian group. Furthermore, let F' be
any Sylow 2-subgroup of G and T any Sylow 3-subgroup of G. Then FNT = {1} and, by
Proposition 5.18, page 145, |FT|= |F||T//[IFNT|=|F||T|=|G|. Thus G=FT. If ft=1tf
forall fEF and t €T, then G is abelian since ¢, 9> € G implies ¢: = fit; and gz = fals
for some fi,f €F and t,5: € T. Now as F and T are both abelian groups,

9192 = filifats = fatofits = gagn

Hence we also assume if F ig any Sylow 2-subgroup of G and T any Sylow 3-subgroup of G,
that it is not the case that ft =tf forall f€F and t&€T.

(ii) s2=1 and ss=4. Let F be the (unique) Sylow 2-subgroup and T be a Sylow 3-sub-
group. There are two possibilities: (a) F = C, and (b) F = Ks. We treat each case
separately.

(a) Let F = {1,a,0%0a®} where a*=1, and T = {1,b,b?} where b*=1. s:=1 im-
plies F<1G. Thus b~ lab€F. If b~ lab=a, then ab=ba. But this implies
every element of F' commutes with every element of T, contrary to our assumption.
Therefore since a has order 4, b~lab*a? and b~ lab<1 so that b 'ab=a® or
ab = ba®. We show that under these assumptions g¢gp(ba)=G. (ba)?=b(ab)a =
b*a* = b% So (ba)® = (ba)*ba = b%*ba = a. Hence gp(ba) contains ¢ and b and thus
coincides with G. Then G is cyclic, contrary to assumption. There is therefore
no non-abelian group of order 12 with ss =1, ss=4 and Sylow 2-subgroup iso-
morphic to C..

(b) Let F = {1,z,y,2} be the four group as given in Section 5.3b, and T = {1, ¢, c*}
where ¢ =1. As in part (¢), F < G so that ¢ !fc € F for all f€F. Now by
assumption ¢ !fe =« f for at least one f € F. Suppose ¢ !zc # x (the other cases
are similar). We may assume c !zc =y. (The other case, ¢ 'zc =z, is argued
similarly.) Let us, as in Section 5.3b, put x =a, ¥y =b and z=ab. Then ac=c¢b,
which implies @ = cbe™l. Now ¢ lbec+*a, for ¢ 'bc=a implies ¢ 'be = cbe™?
or b=c?bc2 Then,as c2=c¢™! and ¢ 2=¢, b =c 'be. Hence a =05, a contra-
diction. Similarly ¢ bec+=b and ¢ be+1. Then ¢ 'bc=ab and c (ab)c=

(¢ 'ac)(c'bec) = bab = b%*a = a. Consequently ,thﬁ equations

. A B

Q. 4,46 - ‘ -
ac=cb, be=-cab, ;abc=ca, a2=0b>=1, =1, ab="ba (5.11)
L -
hold in G. Now 1, ¢, ¢? determine distinct cosets of F in G. Therefore the elements
of G are

1, ¢, c2, a, b, ab, ca, ¢b, cab, ca, c¢*b, c*ab

Using equations (5.11), we can write down the multiplication table for G, as shown
in Table 5.3 below.
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1 ¢ c2 a b ab ca 2] cab c2a c2b  c2ab

1 1 ¢ c2 @ b ab ca cb cab  c2a b c2ab
c ¢ c2 1 ca ¢b cab c2a ¢2b  c2ab a b ab
c? c? 1 c cZa c¢2b  c%ab a b ab ca ¢b cab
a a cb c2ab 1 ab b cab c ca c2b c2a c?
b b cab  c%a ab 1 o cb ca ¢ c2 c2ab  c2b
ab ab ca c2b b a 1 ¢ cab 27 cZab c2 c2a
ca ca c%b ab ¢ cab cb c2ab c? cZa b a 1
¢b 2 cZab a cab ¢ ca c2b c2a c? 1 ab b
cab | cab % b cb ca ¢ c? czab  c2b ab 1 a
c2a cZa b cab c? czab  ¢%b ab 1 a 2] ca c
c%b c2b ab ca  c2ab c2 c2a b a 1 ¢ cab cb
c¢2ab | cZab a cb ¢%b c2a c? 1 ab b cab ¢ ca

Table 5.3

By a similar argument to that used in the discussion of the non-abelian groups of

order 8, any group of order 12 with s =1 and s; =3 is isomorphic to G. Moreover,
Table 5.3 defines a group: the table defines a binary operation, the identity is 1, and
every element clearly has an inverse. The associativity of the operation must also be
checked, an even more tedious task than in the case of a group of order 8. The alter-
nating group A. is a group of this type (Problem 5.38).

(iii) 2 =3 and ss=1. Let F be a Sylow 2-subgroup and T = {1,¢,¢?} (¢®*=1) be the

Sylow 3-subgroup. Again we have two possibilities: (a) F = {1,a,0%a¢*} =C, and
by F={1,z,y,2} = K.

(@) T, being a unique Sylow 3-subgroup, is normal in G and so a ‘ca € T. We may

assume a~lca # ¢, otherwise the group is abelian. Hence a~ca = ¢2 and ca = ac?.
Also, c?a = cac® = ac* = ac. The equations,which determine a multiplication table
for this group are A

ca=ac? ca=ac, c2=1, at=1 (5.12)

The distinct elements of G are then
1, a, a%, a? ¢, ¢, ac, a’c, a’c, ac?, a3c?, a’c?

and we obtain Table 5.4 below.

We conclude, by an argument similar to that used in the discussion of the non-
abelian groups of order 8, that any group of order 12 with s2=38, s3=1 and in
which the Sylow 2-subgroups are cyclic of order 4, is isomorphic to the group G
defined in the table. Again it can be checked that the table defines a group, so that
a group of this type exists. We have as yet not encountered an example of this
type of group, but in Problem 5.41 we show that there is a group of 2 by 2 matrices
which is isomorphic to G.
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1 a a? a3 ¢ c? ac a2e adc ac2  a2¢2  ad¢?
1 1 a a? al ¢ c? ac a2c adc ac?  a2¢2  ad¢?
a a a? a’ 1 ac ac? aZe ade ¢ a2¢2  ad¢? c2 i
a? a? a3 1 a a?c a2¢?2 adc c ac a3c¢? c? ac?
a3 a3 1 a a? adc  aBc¢? ¢ ac a?c c? ac?  a2c?
c ¢ ac? a2 a3c? c2 1 a a?¢? al ac a? ade
c? c? ac a2  adc 1 c ac? a? a3c? a aZc as
ac ac a2¢? ade c2 ac? a a2 adc? 1 aZe ad ¢
a2 | a?c adc? c ac2 a2 a2 ad c? a ade 1 ac
adc | ad¢ c2 ac  a2¢? a3c? ad 1 ac? a? ¢ a aZe
ac? | acz2 a2c a3c? c a ac a2? a3 c2 a? adc 1
a2c? | a2 adc c? ac a2 a?c  adc? 1 ac? a3 c a
a3c? | ade? c ac? a2¢ a3 ade c? a a2¢? 1 ac a?
Table 5.4

(b) F={1,z,9,2}) and T = {1,¢,¢?}. Since T < G, we have f~i¢f €T forall fEF.

By assumption, for at least one f € F, f~'ef =« ¢. We may therefore assume, with-
out loss of generality, that x~!ex = ¢2. Again, as in Section 5.3b, put x =a, y =05
and z=ab. Then ca =ac%. Note that c%a = c(ca)= c(ac?) = (ca)c* = ac’c* = ac,
i.e. c®a = ac.

We claim that S = {1,¢,¢%a,ca,c?e} is a subgroup. We leave to the reader
the task of checking that the product of any two elements in S is again in S
(ca = ac* and c% = ac make this task easy). The identity 1 is in S, and on inspec-
tion we find every element in S has an inverse in S: ¢ '=¢% () !'=¢ al=a,
(ca)~* = ca, (c*a)~! = c?2a. Hence S is a subgroup of G. |S|=6 for ca=¢ (i=1
or2; and 7=20,10r2) implies ¢ € T, a contradiction; cia =a (i =1 or 2) implies
¢t = 1, a contradiction; and ca = c?a¢ implies ¢ = 1, a contradiction. S is
non-abelian (ac = ¢%a is not equal to ca) and hence is isomorphic to D3 since
there is only one non-abelian group of order 6 (up to isomorphism). Now
[G:S]=2 implies S< G (by Problem 4.69, page 116). Hence b !cb €8.
As b7 cb is an element of order 3, it is either ¢ or ¢?, as all other elements of
S are of order 2. We shall now choose an element R E€F, h &S, such that
h~ch=¢. If b cb=c¢, let h="0. If on the other hand b~'cb =¢? let h = ab.
Recall that a~lca =c2%. Then (ab) lc(ad)=>b"Y(a 'ca)b=">b"1c?b=>"1cb-b7'cb =
¢?+ ¢® = c. Hence there exists an element 2 & S inF (i.e. b or ab) such that h~'ch =c.
Consider H = gp(h). Clearly SNH = {1}, S and H commute elementwise, and
IS||[H| = |G|, and so G =SxH by Theorem 5.16. But S=D; and H=C, We
therefore conclude that any group G with s2=3, s3=1 and Sylow 2-subgroup
isomorphic to K, is isomorphic to D3 X C;. The dihedral group Ds is a group of this
type (Problem 5.38).

(iv) s2=3, 83 = 4. Since distinct cyclic groups of order 3 intersect in the identity element,
the four Sylow 3-subgroups have together 9 distinct elements. A Sylow 2-subgroup
is of order 4. Since the intersection of a group of order 4 and a group of order 3 can
only be the identity, it follows that the number of distinct elements in the 4 3-Sylow
subgroups and a single 2-Sylow subgroup is 12.

But |G| =12, so there cannot be another distinct Sylow 2-subgroup. Thus there

is no group of type (iv).
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To summarize, we have shown that there are up to isomorphism exactly three non-abelian
groups of order 12. They are the groups
(ii) (b) with s2=1. ss =4 and the Sylow 2-subgroup = K,; see Table 5.3. (Such a group
is isomorphic to A4.)
(iii) (@) with s; =3, s3 =1 and the Sylow 2-subgroup = Cj; see Table 5.4. (Such a group
is isomorphic to a group of 2 by 2 matrices given in Problem 5.41.)
(b) with s; =3, ss =1 and the Sylow 2-subgroup = K,. (Such a group is isomorphic
to D3 X C, which is isomorphic to Ds. See Problem 5.38.)
Clearly no two of these groups are isomorphic. The abelian groups of order 12 are K4 X C;
and Cia. Thus including the abelian groups, there are five non-isomorphic groups of order 12.

If G is of order 15, we have seen that G is cyclic (Section 5.1a). The following table
gives the number of non-isomorphic groups of order 1 through 15.

Order of group | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of groups 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1

The reader will agree that finding all groups of a given order is difficult. Indeed there
is not even a general method of determining how many non-isomorphic groups of a given
order there can be.

Problems
5.38. Show that
(i) The dihedral group D, is a group of order 8 isomorphic to the group given in Table 5.2,
page 152.

(ii) The alternating group A, is isomorphic to the group given in Table 5.3.
(iii) The dihedral group Dy is isomorphic to D3 X C,.

Solution:

(i) D, is a non-abelian group of order 8 and as such is isomorphic to one of the groups given in
Section 5.3¢, Tables 5.1 and 5.2. A check of Table 5.1 shows that there is only one element of
order 2, namely a2. But D, is the symmetry group of the square (Section 3.4f, page 75). A
reflection 7 is of order 2 and if ¢ is a rotation of 90°, 7o is of order 2 as can be seen in the
discussion of these groups in Chapter 3. Therefore D, must be isomorphic to the group given
in Table 5.2.

(ii) A, is a non-abelian group of order 12. Hence it is either isomorphic to the group of Table 5.3
or 5.4 or to D3 X Cy (see page 155). As can be seen from the multiplication table for A, given
in Chapter 38, page 63, A, has exactly three elements of order 2, namely oy, 05 and og. Now the
group of Table 5.4 has only one element a2 of order 2, so that it could not be isomorphic to 4,.
We have shown in Problem 5.1, page 131, that A, has no subgroup of order 6 and Dj is iso-
morphic to a subgroup of D3 X C, by Theorem 5.14, Hence A, is not isomorphic to D3 X C,.
Thus it must be isomorphic to the group given in Table 5.3.

(iii) Dg is of order 12, and is not abelian. Dy is the symmetry group of the hexagon and therefore
has a subgroup of order 6, namely the rotation of 60° about the center. So it is not the case
that Dg = A,, and hence D4 cannot be isomorphie to the group of Table 5.3. Also, a reflection
followed by a rotation is an element of order 2. Since there are six such elements in Dy, it
cannot be isomorphic to the group of Table 5.4 as this group has only one element of order 2.
The only other possibility is that Dg == D3 X C,.

5.39. Find a cyclic subgroup of order 6 in D3 X C,.

Solution:

Let a € D; be of order 3 and b(#1) € C,. Consider the element (a,b) € Dy X Cy. (a,b)2 =
(a2,1), {(a,b)® = (1,b), (a, b)t = (a,1), (a,b)’ = (a2, b), and (@, d)® = (1,1). Hence gp((a, b)) is a cyclic
subgroup of D3 X C, of order 6.
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5.40.

5.41.

0 1 01 X
Consider the matrices A = <i 0> and B = (_1 0> where 71=V—1. A and B have nonzero

determinants and thus are elements in the group of all 2 X 2 matrices with nonzero determinants.
Show that gp(A, B) is a group of order 8 which is isomorphic to the quaternion group (Table 5.1,
page 151).
Solution:

By direct calculation we find

A2 — -1 0 A3 = 9_1 4¢ = (1 0y - I, (identity matrix)
0 —1 -t 0 0 1
_ /=1 0
N0 z>

-1 0 4 wop o (10
< 0 —1> B < ~\0 —i>
B?A = A3, BSA = AB and A3B = BA

Let G = {I,A%,A3,B,AB,A2B,A3B}. We claim that G = {I,A,A2 A3, B,AB,A2B,A3B} =
gp(A, B). Clearly, G Cgp(4,B). To show G = gp(4,B), we need only show G is a group, as
A,B € G. Note G is a subset of the group of 2 X 2 matrices with nonzero determinant. Hence the
elements of G satisfy the associative law. By direct calculation we can show that G is closed under
matrix multiplication; the equation BA = A3B simplifies the calculations, e.g.,

(A2B)(A3B) = A2(BA)A2B = A2A8BA2?B — AASBAB = A3B? = A

B2 A2B

It
TN
= o

|
S
N

Furthermore every element of G has an inverse in G, e.g. using B34 = AB we have
(A3B)"1 = B-1A-3 = B34 = AB

Checking all these details enables us to conclude that G is a group of order 8 and G = gp(4, B).
G is non-abelian, since AB # BA, so G is either isomorphic to the group of Table 5.1 or Table 5.2.
Because G has only one element of order 2, it cannot be isomorphic to the group of Table 5.2. Thus
G is isomorphic to the quaternion group of Table 5.1.

. . 0 1 e 0
Consider the matrices A = { . and B =
t 0 0 &2

plex cube root of 3 (so, in particular, e =1 and e+ 1). A and B have nonzero determinants and
thus are elements in the group of all 2 X 2 matrices with nonzero determinants (see Section 3.5b,
page 81). Show that gp(A,B) is a group of order 12 which is isomorphic to the group given in
Table 5.4, page 155.

> , where i =Vv—1 and ¢ is a nonreal com-

Solution:
We find by direct calculation that
-1 0 e 0 —e 0 — 0
2 = 2 = 2 = 2R2 —
4 < 0 —1> B <0 e> A*B < 0 —e2> A’B ( 0 —e)

0 —i 1 0 0 —ie2 0 —ie
A3 = B = 3Sgp = 3g2 —
(= %) b 1) #r=(07) #r=(37)
1 0 0 i 0 e
A4 = = 2 =
<0 1> AB <i€ 0 ) AB <i62 0>

Let H = {A, A2 A3,A4 B,B2 AB,A2B,A3B,AB?, A2B2, A3B2}. We claim H = gp(A4, B). Clearly
H cgp(A,B). To prove H = gp(A,B) we need only show H is a group, as A,B € H. Note that
H is a subset of the 2 X 2 matrices with nonzero determinant. Hence the elements of H satisfy the

associative law. To check that H is closed under matrix multiplication, first note that A—1BA = B2,
Then, for example,

(A2B)(A3B)

]

A24 - (A—1BA)A2B = A3B2A2B = A4A-1BA)(A—1BA)AB
= B2B2AB = BAB = AA-1BAB = AB’B = A
Also the inverse of, for example, (A3B) is given by

(A%B)~1 = B24A = AA-1B2A = A(A-1BA)A-1BA) = AB2B2 = AB € H
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Checking all these details enables us to conclude that H is a group of order 12 and H = gp(4, B).
The mapping a:a—> A, and ¢—> B is an isomorphism of the group of Table 5.4 and H. This
obtains because H satisfies the equations

BA = AB?, B24A = AB, B3 =1 A*t=1]

(I the identity matrix). These are the exact counterparts of equations (5.12), page 154. Con-
sequently the multiplication table for H is obtained from that for the group of Table 5.4 by renaming
via a.

5.42. Show that a group G of order 48 has a normal subgroup # {1} or G. (Very difficult.)

Solution:

By the first Sylow theorem, G has a Sylow 2-subgroup of order 16. By the third Sylow theorem,
85 =1+ k2 for some integer k and s,| 48. The only odd divisor of 48 is 3, hence s, =1 or3. If
8o = 1, then the Sylow 2-subgroup is unique and therefore normal (Problem 5.7, page 133). Suppose
8, = 8. Let H and K be two of the Sylow 2-subgroups. As HNK is a proper subgroup of H,
IHNK||16. Then |HNK|=8; for if |[HNK| =4, then, by Proposition 5.18, page 145, [HK|=
|H| |K|//\HNK| = 16 X 16/4 = 64, which contradicts our assumption that |G| = 48. Since both H
and K are of order 16, HNK, as a subgroup of index 2, is normal in both H and K (Problem 4.69,
page 116). Hence HCNGHNK) and K C N (HNK). Letting N = Ng(HNK), we have HKCN.
Thus |N| = |HK| = |H| |[K|/|HnK| = 82. As |N| divides 48 and |[N| =32, [N| =48 and so N=G.
Because a group is normal in its normalizer, we have HNK < G.

5.43. Show that all subgroups of the quaternion group G are normal subgroups. (G is given in Table 5.1,
page 151.)
Solution:

It is sufficient to check that the cyclic groups are normal in G. For if S is any subgroup,
sE€S, and 2 € G, then xlsx € gp(s) implies xz—1lsx € S.

Using the multiplication table we can check that for *x =aor b and any s € S, z—1sx € gp(s).
(We leave this check to the reader.)

This is sufficient to prove the result, for every element of G is of the form aid or a' for
1=90,1,2,38.

54 SOLVABLE GROUPS
a. Definition of solvable groups
To introduce our concepts we will begin with an example. If P is a group of order p~
where p is a prime, then we showed that P has a series of subgroups P; with
(1} =PobCcPrC -+ CP, =P (6.13)
where each P; < Pi+; and [Pi+1: P =p for each integer i=0,...,7—1 (see equation
(5.4), page 139).
Let G be a group and suppose it has a series of subgroups
{1}=G0QG1Q"'QG12G (514)
If each Gi< Gi+: for 1=1,...,7—1, then (5.14) is called a subnormal series of (for) G.
With this definition, (5.18) is a subnormal series of P.

If (5.14) is a subnormal series for G and [Gi+1: Gi] is some prime (dependent on %), for
i=0,...,7—1, G is called a solvable group and (5.14) is called a solvable series for G.
Accordingly we conclude that P is solvable and that (5.13) is a solvable series for P.

If (5.14) is a subnormal series for G and Gi+1/G: is simple, i.e. Gi+1/Gi has no normal sub-
groups other than Gi+i/G: and the identity, for ¢ =0, ...,r—1, then (5.14) is said to be a
composition series for G. To see that (5.13) is a composition series for P, note that Pi+./P;
is a cyclic group of order p and hence is simple. We call the factor groups Gi/Gi+1 of the
subnormal series (5.14) the factors of (5.14).
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We shall discuss composition series in greater detail in Section 5.5. We remark that
not all groups have a composition series but finite groups do (Section 5.5a). Our main con-
cern in this section is the concept of solvable group.

Historically, solvable groups arose in the attempt to find a formula for the roots of an
nth degree polynomial

f(x) = @uk" + Qu—gx® 1+ - + @z + ao (515)
in terms of the coefficients a;. The formula sought was one which involved the coefficients
ay, . . .,0, of the polynomial, integers, and the operations addition, subtraction, multiplica-

tion and division, and a finite number of extraction of roots. For example, if n =2, then

—a; = yai—4
r = — 2‘;’ 929 is a formula giving the roots of (5.15). If the roots of f(x) can be
2

obtained by such a formula, we say f(x) =0 is solvable by radicals.

From the Fundamental Theorem of Algebra we know that an nth degree polynomial
with complex coefficients has n complex roots. Let F be the “smallest” field (see Section
3.6b, page 86, for a definition of field) of complex numbers containing the coefficients a; of
f(x). By saying F is the smallest field we mean that if H is a field containing the coefficients
ai, then F CH. Let E be the smallest field containing F' and the roots of f(x). Now the
set of automorphisms of E forms a group under the composition of mappings (see Theorem
3.15, page 87). The automorphisms of E which map every element f € F' onto itself is a
subgroup G of the group of all automorphisms of E. The group G is called the Galois group
of the polynomial f(x). In the beginning of the 19th century, the French mathematician
E. Galois proved (essentially) the following extraordinary theorem: An equation f(x) =10
is solvable by radicals if and only if the Galois group of f(x) is solvable. It turns out that
not all equations of degree =5 are solvable by radicals because the symmetric group S»
is not solvable for n=5. (For details see Birkhoff and MacLane, 4 Survey of Modern
Algebra, Macmillan, 1953.) In Section 5.5e we will prove that S, is not solvable.

Problems
544, Show that the symmetric group S, is solvable for » =1,2,3.

Solution:
S; = {i}; then S; has the solvable series {} CS; and is therefore solvable.

1 2 1 2
Sy = {(1 2>’<2 1>}

then {.} CS, is a solvable series for S, and so S, is solvable.
/1 2 3 /1 2 3 /1 23
T\ 2 o3 "2‘<3 2> T \3 21
/12 3 /1 23 /123
"1_<z31 T A1 8 2 ™7 \2 13

Now H = {i,0;,05} is a cyclic subgroup of S;. Also, [S3: H] = 2. Hence by Problem 4.69, page

116, H <9 S;. Thus {} CHCS; is a solvable series for Sy, since [H:{}] =3 and [S;:H| =2,
and so S; is solvable.

Let S3 = {L, 01,092, 71,79, 7'3} where

W DN N
N NN

5.45. Show that S, is solvable.

Solution:

The alternating group A, is a subgroup of order 12 in S,. Then [S;: 4, =2 and A, S,
by Problem 4.69, page 116. We have seen in Problem 5.1, page 131, that A, has no subgroup of order
6. Now A, is a group with a unique Sylow 2-subgroup F of order 4 and F = K,, the four group
(see Problem 5.38(ii), page 156, and Section 5.3d, page 153). Since F is a unique Sylow 2-subgroup,
F A, and [A,: F] = 8. F, being a four group, has a normal subgroup K of order 2. Accordingly,
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{1y c K C F c 4, ¢ S,

is a subnormal series for S;. As [K:{1}] =2, [F: K] =2,[A,: F] =3 and [S,;: A4] =2, S is a
solvable group.

b. Properties of, and alternative definition for, solvable groups
An important property of solvable groups is given in

Theorem 5.20: If G is a finite group and N <1 G is such that N and G/N are solvable
groups, then G is also solvable.

Proof: Let {N}YCH,CH.C:---CH. = G/N be a subnormal series for G/N with
[I?.:H: I?i] = p;, pi a prime. By the correspondence theorem (Theorem 4.19, page 120, and
Corollaries 4.20 and_4.21), there are subgroups H; in G such that H; < Hi+y, Hi/N = H; and
|Hi+1: H]) = [Hi+1: H] =p: ({=0,1,...,k—1). Therefore

N=Hy,CcH C --- C H.=G (5.16)

is a series of subgroups of G with H: << Hi+; and [Hi+1: Hi) = pi. Now N is also a solvable
group. Hence N has a series

(1) =Ky CEKiCKiC - CKi=N (5.17)

where [Ki+:: Ki] is a prime number (i = 1,2, ...,l—1). Putting the series (5.16) and (5.17)
together, we obtain

{1y = KeCKyC---CKiCHiCH:C---CH: = G
which is a solvable series for G. The proof is complete.

Note. In contrast to Theorem 5.20, it is not always true that a group G has a property
if both a normal subgroup N and G/N have the property; for example, the four group K,
has a normal cyclic subgroup N of order 2 which is cyclic and K«/N is cyclic, but K, itself
is not cyclic.

Corollary 5.21: If G is a finite abelian group, G is solvable.

Proof: We use induction on the order n of G. If |G|=2, the result holds trivially.
Assume that any abelian group of order less then n is solvable. Suppose p|n for some
prime p. Then by Proposition 5.9, page 137, G has an element of order p. Let @ be such an
element. If p+#mn, then |gp(a)] < |G| so that gp(a) is solvable by the induction assumption.
Furthermore, since G is abelian, gp(a) is a normal subgroup of G and |G/gp(a)| < |G|
Hence G/gp(a) is solvable by our induction assumption, and so, by Theorem 5.20, G is
solvable. If p=mn, then {1} CG is a solvable series and G is therefore solvable in this
case too.

The following theorem leads to an alternative definition of solvability.

Theorem 5.22: G is a solvable group if and only if G is finite and has a subnormal series
where K;+i/K; is abelian (1 =0,1,...,n—1).

Proof: Let G be a solvable group. Then G has a subnormal series with factors of
prime order and hence cyclic. Since a cyclic group is -abelian, the solvable series of G is a
series of type (5.18). Conversely, assume G has a subnormal series (5.18) with Ki+i/K;
abelian. We prove that G is solvable by induction on #, the length of the subnormal series
(5.18). If n=1, then G is abelian since G = K;/K, which is abelian by assumption.
Hence by Corollary 5.21, G is solvable. Assume that any finite group which has a subnormal
series of length less than » in which the factor groups of consecutive terms of the series are
abelian, is solvable. Let G have subnormal series (5.18) of length n. Then K.-: has a
subnormal series of length » — 1, namely
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K() Q Kl Q Q Kn—Z (_: Kn—l

with K;+1/K; abelian for i=0,1,...,n—2. Hence by the induction assumption, K.—: is
solvable. But G/K.-: is abelian and hence solvable. Using Theorem 5.20, we conclude G
is solvable.

In the theory of infinite groups one usually defines a group G to be solvable if it has a
subnormal series (5.18) with K;+i/K; an abelian group (i =0,1,...,n—1). By Theorem 5.22
this is equivalent to our original definition for finite groups. Since this formulation of
solvability is more general, we shall henceforth use it as our definition of solvability.
Note that the infinite cyclic group is an example of a group that does not fit the old
definition but does fit the new.

Using this new definition we prove

Theorem 5.23: Let G be a solvable group. Then (i) any subgroup of G is solvable and
(i) if N < G then G/N is solvable.

Proof:

(i) Let {1}=HoCH:C---CH.,=G be a subnormal series of G with H;../H; abelian
for i=0,1,...,n—1. We show that if K is a subgroup of G,

{1} = (KNnHoy) C (KNHy) C --- ¢ (KNH,) = K (5.19)

is a subnormal series with KNH;,i/KNH; abelian. First we notice that KNH; =
(KNHi+)NH; (i = 0,1,...,n—1) and that KNnH, = K. Now H;< Hi+;, and
KnNH;+is a subgroup of H;+1. Applying the subgroup isomorphism theorem (Theorem
4.23, page 125) inside the group Hi+: with subgroup KNH;+: and normal subgroup

H;, we obtain (KNHi)NH 9 KNHivy
and (KNHiw)/(KNHi+y)NH) = (KNHi+)H)/H:
Since (KNH;+))NH; = KNH,, it follows that KNH; 1 KNH;+; and
(KNH;)/(KNH) = (KN H;i+)H)/H;
But (KNHi+1)Hi C Hivy, so that we have
(KN Hi+1)H; C Hivy
H; = H
Now H;+1/H; is abelian by assumption and hence so is (KN H;+1)Hi/H;. Therefore (5.19)

KNH;+,
KnNnH;

is a subnormal series for K with abelian factors and consequently K is

solvable.
(ii) Let G have subnormal series
{1y =Hy ¢ HH CH, C --- C H. =G
where H;:i/H; is abelian. Now N < (. Consider the natural homomorphism
v: G>G/N
Any subgroup of G is mapped by v onto a subgroup of G/N. In particular let I?li =Hpy.

We assert H: < Hiyi. But this follows from Problem 4.82, page 122 (with 6 = vy, ,
and Hi+1 = G)

Next we assert that Hi+y/H: is abelian. Let &=av, §=yv (z,¥ € Hi+1) be two
elements of H;+;. Then since H;:+/H; is abelian, zy = yxd where d € H;. Thus

(@y)y = (2v)(yv) = (yv)(axv)(dv)
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But dv € H.. Consequently
tHgH: = 2§H; = (zy)vHi = () (@v)dvH: = (p)(av)H: = §H&H,
Therefore H;.1/H; is abelian. Thus
(Ny=Hy<x H < - < H, = GIN
is a subnormal series of G/N with abelian factors, and so G/N is solvable.

Now that we have a definition of solvable group that applies to infinite groups, we will
extend Theorem 5.20 to infinite groups.

Theorem 5.24: If N < G and G/N and N are solvable groups, then so is G.

Proof: Let {N}=H.CH:CH.C--- CH.=G/N be a subnormal series for G/N in
which H;:,/H; is abelian, 1=0,...,k—1.

By Corollgry 4.21, page 121, there are subgroups H; in G such that H; <1 H;+1
and Hi/N=H, (i=0,...,k). By the factor of a factor theorem (Theorem 4.22, page
121), Hi+1/H; = (Hi+1/N)/(Hi/N) = H;+1/H:. Hence the factors H;:i/H; are abelian. Also,
N has a series

{1} =Ky C Ky C Ky ¢ -+ CKi=N
with K;; /K, abelian for ¢=0,1,...,1—1. Therefore
is a subnormal series whose factors are abelian. Thus G is solvable.
Problems
5.46. Show that all groups G of order p%, pq or p2q, where p and ¢ are distinct primes, are solvable,
(Hard.)
Solution:

If |G| = p?% then G is abelian (Problem 5.19, page 140) and G is solvable.

If |G| = pg then from Problem 5.8, page 133, if p < ¢, G has one and only one subgroup H
of order g. By Problem 5.7, page 133, H << G. Now |G/H| = p, hence G/H is abelian. As H is of
order g, it is abelian. Therefore we have the subnormal series

{1y c Hc G
with abelian factors and so G is solvable,

If |G| =p%¢ then s, =1+ kp divides p?q, and so the prime factors of 1+ kp must be p or g.
Clearly p does not divide 14+ kp. Therefore 1+kp =1 orq. If 14 kp =1, then the Sylow p-sub-
group H is normal in G (Problem 5.7). As H is of order p2, H is abelian (Problem 5.19). Thus we
have a subnormal series ) c H c @

with G/H abelian (|G/H| = q) and H/{1} abelian. Hence G is solvable.

Suppose, however, that 1+ kp = ¢q; then ¢q > p. Let K be a Sylow ¢g-subgroup of G. The num-
ber of such Sylow g-subgroups is 1+ Ilg. Again 1 + lq is not divisible by ¢, and so 1+1lg = 1, p or p2
But as ¢ > p, the only possibilities are 1+ 1Ig =1 or p2.

Case (i): 1+1lg = 1. In this case there is only one Sylow g¢-subgroup K and (by Problem 5.7)
K< G. |K|=4q and |G/K| = p2 Hence K is abelian and G/K is abelian (Problem 5.19), and it

follows that G is solvable.

Case (ii): 1+ 1q = p2 We will show that this case does not arise by showing that G would
contain too many elements. We have assumed that G has ¢ Sylow p-subgroups (of order p2) and
p2 Sylow g-subgroups (of order q). Any two distinct subgroups of order ¢ intersect in the identity,
so there are p2(q— 1) = p2q — p2 distinct elements of order ¢ in G. Also, G has at least 2 Sylow
p-subgroups and hence there are at least p2 distinct elements in G of order p or p2. In the above
calculations we have not counted the identity, so in all G has at least p2¢—p2+p2+1=1p2q+1
elements, which is absurd, and we conclude that case (ii) does not arise.
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5.47. Show that every nilpotent group is solvable.

Solution:
Consider the upper central series

By =22, Cc2,¢C - C2Z,=¢G

of G, a given nilpotent group. Z;.; is defined by the fact that Z;,/Z; is the center of G/Z; and
of course this implies Z;;,/Z; is abelian. Hence G is solvable.

5.48. Prove that the converse of Problem 5.47 is false, i.e. not all solvable groups are nilpotent.

Solution:

The symmetric group S; is solvable (Problem 5.44). A check of the multiplication table for S;
on page 57 shows that the center of S; is just the identity {.}. But this implies that the upper
central series for G never ascends to G. Thus S; is not nilpotent.

5.49. Let G be any group and let G be defined for all positive integers ¢ by G = G’, the derived
group of G, and GU+D = (GW), Prove that G is solvable if and only if G™ = {1} for some
integer n.

Solution:

Let G = {1}. Then

{1} = GM c ... C G C G

is a subnormal series for G and G?/G¢+1D is abelian. Hence G is solvable.

Now let G be solvable. Then there exists a subnormal series

(1} =H,C - CHy =G

with H,/H;,, abelian.

By Problem 4.68, page 116, H;/H,; . abelian implies H;.,2H;. We prove, by induction on i,
that H;DG®, i=1,2,...,7. For i=1 this is true since H,2H;= G’ = G, Suppose our
assertion is true for i=mn, ie. H,2G®. Then H,2(GM™W) =Gn+D, But H,,,2H,, so

H,,;2G®+D, Therefore H;D G for all i. In particular then, {1} = H,D G(. Accordingly,
G = {1} and the result follows.

5.5 COMPOSITION SERIES AND SIMPLE GROUPS
a. The Jordan-Holder Theorem

In Section 5.4a we introduced the idea of a composition series for a finite group G.
We recall that a series of subgroups of G

{1}=GOQG1Q"'(;G1¢:G (5.20)

is a composition series for G if G; < Gi+1 for 1=0,1,...,k—1 and Gi+/G; is simple, i.e.
has precisely two different normal subgroups. This latter statement carries with it the
implication that G:+# Gi+1 for i =0,...,k—1.

We observe first that every finite group G has a composition series. The easiest way to
see this is by induction on the order, |G|, of G. If |G|=1, then G has precisely one
composition series:

{1} = Gy = G

Suppose then that |G| 1 and that every group of order less than |G| has a composition
series. Now if G is simple, then
{1} = Go C G =G

is the only composition series for G. If G is not simple, let N be a normal subgroup of G,
N + {1}, N+ G. We may suppose that N is the largest normal subgroup of G, that is, if
M < G and MG, then |M|=|N|. By induction, N has a composition series

(1} =NeC N, C -+ CN =N
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We claim that

{1} =Ny CN,C - CN CG
is a composition series for G and note that to prove this we need only show that G/N; is
simple. But if G/N: is not simple, it has a non-trivial normal subgroup. By the corollary
to the correspondence theorem this subgroup is of the form K/N, where K is a normal
subgroup of G. But as K DN, this means that |K|>|N|| which contradicts the choice
of N.. Therefore every finite group has a composition series.

This proof does not suggest that if a group has two composition series then they are
related. Surprisingly they are. In order to explain this relationship we associate with the
composition series (5.20) two notions. First we term k the length of the series. Second
we call the factor groups Gi+1/Gi the composition factors of the series (5.20). The relation-
ship between composition series is given by

Theorem 5.25 (Jordan-Hoélder): Every finite group G has at least one composition series.
The lengths of all composition series for G are equal.
Finally if
1}y = Go C -+ C G, =G

and {1y =Hyc --- Cc H. = G

are a pair of composition series for G, then their respec-
tive composition factors can be paired off in such a way
that paired factors are isomorphic.

We have already proved the first statement of Theorem 5.25. Before illustrating
Theorem 5.25 we restate its last assertion as follows: There is a permutation ~» of {1, ..., k}

such that
Gi+ /G = HvvalHr1ym—1
for t=0,...,k—1.

Example 1: Suppose that S; is the symmetric group on {1,2,3}. Then the series

o {3IDCI00 e

is a composition series for S;. Notice that the composition factors are of orders
3 and 2. This is actually the only composition series for S;, since

1 2 3> 1 2 3 1 2 3
12 3/°\2 38 1/°\38 1 2
is the only normal subgroup of S3 which is neither S; nor the identity subgroup.

Problem

5.50. Let n be a positive integer. What relevance does the Jordan-Héolder theorem have to the factoriza- -
tion of » into a product of primes? (Hint: Let G be the additive group of integers modulo n
(n >1).)

Solution: .
Let {1, = Gy, c G, c --- Cc G, =G

be a composition series for G. Each composition factor G, ,/G; (i =0,...,I—1) is simple. As
G, is abelian, each factor G;.,/G; is abelian. Hence if G;,/G; has any proper subgroup, it would
not be simple. So G;.,/G; has no proper subgroups. In particular it has no cyclic proper subgroups,
so0 it must be cyclic of order a prime. The number ! is therefore the total number of primes (allowing
for repetitions) dividing n. By Theorem 5.25, ! is uniquely determined. So, as we well know, the
total number of prime divisors of » is a constant. Moreover, the uniqueness of the composition
factors (asserted in Theorem 5.25) simply means that these prime divisors themselves are unique.
Putting these two facts together gives the well-known fact that every integer n > 1 can be written
uniquely as a product of primes, if the order in which it is written is disregarded.
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Example 2: Let S, be the symmetric group on = letters, n = 5. Then
{1} c 4, ¢ S,

is a composition series for S,. For we shall show that 4, is simple (in Section 5.5e,
Theorem 5.34). But 4, < S, and S,/A, is cyclic of order two. Hence this series
is indeed a composition series.

b. Proof of Jordan-Hé6lder theorem

Suppose G is a finite group and suppose
1 =Gy C Gy C Gy = G (5.21)
and l1=HcH C ---CH=¢G (5.22)

(!

are two composition series for G. We have to prove that k¥ =1 and that the composition
factors Gi+1/Gi of (5.21) can be paired off with the composition factors Hi+/H; of (5.22) so
that paired composition factors are isomorphic.

The proof is by induction on the order |G| of G. If |G| =1, then both assertions are
clear. Thus we assume that |G| >1 and that the theorem holds for all groups of order less
than |G|. It is useful to observe that if k=1, then G is simple. Hence I=1 also, and
again the desired conclusion holds. So we assume, in addition to |G| > 1, that k> 1 (and
hence 1> 1).

There are two cases to consider: Gk—1 = Hi-1 and Gix-1# Hi-1.

Casel: Gy-1=H;,_.
It is then clear that 1 =Go C -+ C Gg—1 (5.23)
and 1 =H, C C H-1 = Gk (524)

are composition series for Gi-1. But |Gx-i| <|G|. Hence by our induction assumption,
the composition series (5.23) and (5.24) have the same length, iie. k—1=1-1, and so
k =1. Furthermore the composition factors of (5.23) can be paired with the composition
factors of (5.24) so that paired factors are isomorphic. But the composition factors of
(5.21) are those of (5.23) together with G/Gr—:. Similarly the composition factors of (5.22)
are those of (5.24) together with G/Gx-1. Thus it is clear then that the composition factors
of (5.21) can be paired off with the composition factors of (5.22) so that paired factors are
isomorphic. This coneludes the proof of Case 1.

Case 2: Gi-1+ Hi1.

Our method of proof is to produce a composition series, (5.26), which has isomorphic
composition factors to those of (5.21) (by Case 1) and a composition series, (5.27), which has
isomorphic composition factors to those of (5.22) (by Case 1). We will then show that
(5.26) and (5.27) have isomorphic factors and this will be sufficient to prove the result.

First we will show that Gi—1H;—1 = G. Observe that both Gx—: and H;,—; are normal
subgroups of G, and so Gx—1H,;~1 is also a normal subgroup of G. Obviously Gix—1H;—, con-
tains Gy—: properly, so Gx—1Hi—1/Gx—1 is a non-trivial normal subgroup of G/Gkx-1 by the
correspondence theorem. But G/Gk-: is simple, so Gi-1H;—1/Gx-1 = G/Gx—-1. This means

that
Gi-1Hi-1 = G (5.25)
We now put F = Gx—1NH;—; and note that F < G. Let

be a composition series for F. Then we claim that
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{1} = Fo

n
N

Fm Q Gk—l

N

G (5.26)
and {1y =Fe C -+ CFn CH-1 C G (5.27)

are both composition series for G. The only facts that need be verified are that Gx—1/F» and
H,_\/Fy are simple. Now Fn=Gr-1NHi—; and by (5.25), G = Gr—1H;-1. Therefore by
the subgroup isomorphism theorem (Theorem 4.23, page 125),

G/Gr-1 = Ge—1Hi—1/Gr-1 = Hi—1/(H-1NGr—1) = Hi—y/Fn (5.28)
and similarly
G/Hi-1 = Gik-1Hi-1/Hi—1 = Gi—t/(Hi-1NGk-1) = Gi-1/Fn (5.29)

Since both G/Gy-1 and G/H,—, are simple, it follows that H;,—;/F,, and Gi-1/F+ are also both
simple.

Let us compare the composition series (5.21) and (5.26). By Case 1 it follows that they
have the same length and their composition factors can be paired off so that paired factors
are isomorphic. Similarly for the composition series (5.22) and (5.27). Let us now compare
the composition series (5.26) and (5.27). They obviously have the same length, m +2. Thus
the series (5.21) and (5.22) have the same length. What are the composition factors of the
series (5.26) and (5.27)? The composition factors of (5.26) are

Fi/Fo, ..., FulFu—1, Ge—t/Fm, G/Gr—x
while those of (5.27) are

FI/FO, “ sy Fm/Fm-l, Hl—l/Fm, G/Hl—l

Now by (5.28), Hi—1/Fm = G/Gx-1; and by (5.29), Gx—1/Fm = G/H;_1. Thus the composition
factors of (5.26) and (5.27) can be paired off so that paired factors are isomorphic. It fol-
lows that the composition factors of (5.21) and (5.22) can be paired off so that paired factors
are isomorphic, since the factors of (5.21) can be so paired off with those of (5.26) and the

factors of (5.22) can similarly be paired off with those of (5.27). This completes the proof
of the Jordan-Holder theorem.

From the Jordan-Ho6lder theorem we know that the length of a composition series and
its factors are uniquely determined for the group. This suggests the following scheme for
studying groups which have a composition series. First, find the structure of all groups
with composition series of length 1. These are all the simple groups. Assuming now that

we know all about groups with a composition series of length n, let G be a group with com-
position series of length n+1. Let

{1} =Go CG1 C ++ C Gu C Gut1 =G

be a composition series for G. If F is a group with a normal subgroup N and F/N =H,
we say that F is an extension of N by H. In this language then, G is an extension of a
group with a composition series of length n, viz. G., by a simple group. Hence what we

must know is how the structure of a group which is an extension of one group by another
is determined.

In the next few sections we shall prove that if n > 5, A, is simple. The groups 4. are
not all the simple groups and indeed there is no classification of simple groups as yet.
This is one of the basic problems of finite group theory.

The question of how a group G is built from H and K if G is an extension of H by K, is
considered in Chapter 7. Here too our knowledge is far from complete.

Problem

5.51. If two groups have the same composition factors, are they isomorphic?
Solution:

‘No. There is a cyeclic group G of order 6 and a non-abelian group H of order 6. They have the
same composition factors, but they are not isomorphic.
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¢. Cycles and products of cycles

We begin with an example of a new notation. Let us consider Se. Let § €S¢ be
defined by

Note that the effect of 9 is to take 35, 5>4, 4> 6 and 6- 3, and to leave the elements
1, 2 unaltered. ¢ is called a cycle. We denote it by (3,5, 4, 6).

More generally, consider S,. If ai...,an are distinct integers in {1,2,...,n},
(a1,as, ...,an) stands for the permutation that maps. each integer in {1,2,...,n} —
{as, ...,an} to itself, and maps

1> 2, A2> A3, ..., Apu—1">0m, Am > 01

We call such a permutation a eycle of length m. As a convention take a cycle of length 1 to
denote the identity element. A cycle of length 2 is called a transposition.

The inverse of the cycle « = (ay, ...,an) is the cycle 8= (am,m-1, ..., 0as, a1), since
afef) = (@) = a, B =a if i+m

while aaf = (a0 = af = a

If 7€{1,2,...,0)— {ay,...,an},
iaB) = (ja)B = jB =i
Hence «f =. Similarly Be =..

It is clear that not every permutation is a cycle. Nor is the product of two cycles
1 2 3 4
2 1 4 3

An obvious question is: can we express every element of S, as a product of cycles? The
following theorem answers this question.

necessarily a cycle; for example, in Si, (1,2)(3,4) =< > which is not a cycle.

Theorem 5.26: Every element of S, can be written as the product of disjoint cycles.
(Cycles (ay, . . .,an) and (by, . . ., bx) are disjoint if the a; and b; are distinct,
ie. if {a,...,an} N {by, .. .,bk} = Q)

Proof: Let = €8S,. Wesay that i€ {1,...,n) is fixed by = if ir =4, and we say it is
moved if ix 1.

We shall argue by induction on the number of integers moved by the permutation .
If = moves none of the integers {1,2, ...,n}, then r is the identity permutation. But then
7 = (1), as the l-cycles are all the identity permutation.

Hence we have a basis for induction. So let = . and suppose that every element of
S. which moves fewer integers than =, can be written as the product of disjoint cycles.

Now suppose a, € {1,...,n} and that a,r++a,, Let us define a,a, ... by a,=am,
a=am, ...,a.=a_,m .... Let m be the first integer such that a_»=a, for some
integer ¢ with 1=7¢<m. (As the images of = belong to {1,2,...,n}, the terms of the
sequence a,,a,, ... cannot all be different.) We shall prove, using the minimality of m,

that ¢=1. Suppose to the contrary that ¢ 1. Then ¢,=a,_,= and e,r=a,=a,_, -
As 7 is a one-to-one mapping, a,_, = a_. But this contradicts the choice of the integer m.
Hence i=1 and a,r=a,, We consider now the cycle (a,...,a,) and note that m > 1.

Let
T = (al, .. .,am)_l'n'
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r is a permutation that leaves a,...,a, fixed, since afa,...,a,) 'r=a_ == a, for
i1, while a(a,...,a ) = a,r=a,. Alsoif j€(1,2,...,n}, then jr->j implies
jr 7, forif jE€{a,...,a )}, j-=j. Hence j & {a,...,a,} and so jr=j(a,...,a,) ==

jm= # 3. It follows that - moves fewer integers than . Therefore inductively r can be written
as the product of disjoint cycles, say

=1
Now if -, involves an @, @, =ar=a(rr, - r)=ar,. Hence 7, = (@) =. Let
Tiys Tigs + o os Ty (i<t - <'ix)
be those ; which do not involve any of the integers a,...,a,. Clearly
T = Til’l'i2 ...Tik or T=1

If =4 = =(a,...,a,) and we have proved that = is actually a cycle. Otherwise
T=(a,...,0 ) . "+ 7, and = has been expressed as the product of disjoint cycles. Hence
the result.
Corollary 527: If €S, and a,a,, ...,a, are chosen as in the proof of the theorem

(i.e. a,=am, ..., and a,==a, and a,...,a,, distinct), then

T = (al, .. .,am)'r
where ar=ar if a & {a,...,a,}, while ar=a;, for j=1,...,m.

Proof: This is precisely what we showed in the proof of Theorem 5.26.

This corollary provides us with a method of computing the decomposition of an element
« € S, into the product of disjoint cycles. For example, let us write

{1 2 38 4 5 6 7 8 9 1011 12
T T \38 421 8 7 9111210 5 6

as the product of disjoint cycles. Since 1z 1, we may take 1 for a;. Then a; =1, az =3,
a:=2,a,=4,as=1. So m =4. Hence by the corollary,

123456789101112>

T o= (1,3»2’4)<1 2 3 487 91112105 6

Here the second factor - on the right is obtained from = by letting it leave 1, 2, 8, 4 unchanged,
and letting it act as = does on the remaining integers. Applying the same technique to -,
we find r = (5,8,11)(6,7,9,12). Hence

= = (1,8,2,4)(5,8,11)(6,7,9,12)

In practice it is not necessary to use the corollary rigorously. We need only find the disjoint
cycles by choosing a, such that ar+#a, and then taking the cycle (a,...,a,) where
a,, =am ar=a, and the a,...,a, are distinct. Then we choose b, € {1,2,...,%} —
{a,...,a,} where br+b, and find the cycle (b,...,b,) with b,,,=bx, bxr=0>b and
b,...,b, distinct, and so on.

Not only is every element of S, a product of cycles, but each element can also be ex-
pressed as the product of transpositions, as can be seen from the following proposition.

Proposition 5.28: Every cycle is a product of transpositions.

Proof: We assert
(a1, @2, . ..,aK) = (a1, @2)(a1,as) - - - (A1, Qx)

For if a is an integer not in {ay, . . ., ax}, both the left-hand side and the right-hand side leave
it unchanged.
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If ¢+« k, then aiay, ...,ax) = ai+: while

a,-(al, ag)(al,as) s (a1, ak) = ai(al, ai)(al, i+ 1) tee (a1, ak)
. = Gi+1(a1, CGi+2) * - - (al, ak) = Qi+1
If i=1Fk, then aw(ai,...,a) =a; while
ax(@1, a2) « + - (A, ax) = ar(@, ax) = a;

Thus the effect of the left-hand side and the right-hand side is the same, and so the permuta-
tions are equal.

Problems
552. In S, compute « = (1,2,8,4)(2,5) and B8 =(1,2,3,4)-12,5).
Solution:
1 = (1(1,2,8,4))(2,5) = 2(2,5) = 5.
1 2
ta=1+1ifi=2,8;, da=1; 5a=2; 6a=6. Hence a = <5 3

NS
-
o ot
o o
~—

1,2,8,4)-t = (4,8,2,1). Then B8 = (4,8,2,1)(2,5).
1 2 3 4
18 =4, 28=1, 38=5, 48 =3, 68 =2, 68 =6. Hence B=<4 1 5 6).

5.53. Express a« and 8 of Problem 5.52 as products of disjoint cycles.

Solution:
We note that 1a =5, 5ba = 2, 20 = 3, 8a == 4, 4¢ = 1. Hence « = (1,5,2,3,4).

Since 18=4,48=238,38=5 and 58=2, 28=1, g=(1,4,3,5,2).

Wri /1 2 38 4 5 6 7 8 9 10 11 12 13 14 b q ¢ disiol ]
5.54. rite a = 29 4 6 8 101214 1 8 5 7 9 11 13 as the product of disjoint cycles.

Solution:
la=2,20=4,40=8,8x=1. 8¢a=6, 6a=12, 124 =9, 9a =3. Ba =10, 10a = 5. Ta = 14,
140 = 18, 13« = 11, 11a = 7. Hence

a = (1,2,4,8)(3,6,12,9)(5,10)(7,14,13,11)

555. If «,BES, are such that ix+ ¢ implies both (ie)8 =ia and i =14, and iB # ¢ implies
(i8)a = 18, then a and B commute. Hence prove that disjoint cycles commute.
Solution:
Let 1€{1,2,...,n}. If ia+1 then i(aB) = (ia)8 = ia while i(8a) = (if)a = ta. If da =74,
then iaf = i8 while .
(iBa = B if B+
= ia iIfig=1
=1
Hence af = Ba. Now if ¢ and g are disjoint cycles, then ix # i implies @ moves ¢ and iz and hence

B does not move either ¢ or ia, and so i3 =i and (ie)8 = da. Similarly if i8 #* ¢, B moves ¢ and
18, and so (iB)e = i8. Thus a and B8 commute.

556. Express o of Problem 5.54 as the product of transpositions. Is the expression of an element of S,
as a product of transpositions unique?

Solution: a = (1,2,4,8)(3,6,12,9)(5,10)(7, 14,13, 11)
= (1,2)(1, 4)(1, 8)(3, 6)(3, 12)(8, 9)(5, 10)(7, 14)(7, 13)(7, 11)
As (1,2)1,2) =, if a = ajay - a, is the expression of « as a product of transpositions,

then & = (aje5 ** - @,)(1,2)(1,2) is another expression of « as a product of transpositions. Thus
the expression as a product of transpositions is not unique.
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5.57. Find the order of the cycle (o, ...,a,). (Hard.)

Solution:

If we write a4, ...,a, in a circle, as shown on the right, it is clear that
a=(a,,...,a,) moves each a; one place clockwise, o> moves each a; two places °* .
further, and in general o moves each a,; j-places further. Hence o™ moves each
a; m-places further, i.e. ™ moves each a; back to itself. To put this more
formally, define ap, 1 = @y, Cpuig =10y, ..., Cpym = &, We will prove by ¢
induction on j that for 0 =j=m, & maps a; to a5 1=1,2,...,m. For
=0, of = and the result is true. If the result is true for 7 =r, consider j=7r+4+1=m. Then
aa™tl = (g aMNa =a; 0. If i+7r<m, a,y,0=a;4,+1 by the action of a. If i+r=m, a,a=
O = Q1 = 04,41 If i+7r>m, then a4, = 0;4,_, and t+r—m<m (as 1=¢=m and
r<m). Hence @is,a= @1, ma= Gisrom+1 = Gisrs1e

In particular, o™ = . On the other hand, @ =a;,,+# a; for 1=3s < m. Therefore m is
the smallest power of a that yields the identity. Accordingly m is the order of a.

d. Transpositions, and even and odd permutations

In this section we will produce another way of deciding whether a permutation is even
or odd. (See the definition in Section 3.3b, page 60.) By Proposition 5.28 and Theorem
5.26 every permutation is the product of transpositions. However, this decomposition is
not unique (Problem 5.56). What we shall show is that a permutation » is a product of an
even number of transpositions if » is even, and the product of an odd number of trans-
positions if =~ is odd.

Our first task is to show that any transposition is odd. We have already noted that
(1,2) is odd (Section 3.3d, page 64). We will use the following lemma.

Lemma 5.29: Let 6 €S, and let (a1, ...,an) be a cycle. Then
7Yy, .. .,an)8 = (aif,...,0nd)
Proof: Let z€(1,2,...,n}). If x=ad for some a,
207 (ay, ...,an}0 = @807 (ay, ...,0am)d
= aiay, ..., am)d
= @+16 if i#m
= af if i=m
If x+#af for some a;, 267 & {as,...,am}. Then
20 e, ...,0n)8 = (6719 = «
Thus 0 Yay, ...,en)0 = (a6, .. ., and).

Theorem 5.30: All transpositions are odd. If ¢ is an even permutation and is written as
the product of transpositions, the number of transpositions is even. If 4
is odd and is written as the product of transpositions, the number of trans-
positions is odd.

Proof: Let (a,b) be any transposition. We know that (1,2) is odd. Let 6 be any per-
mutation such that 14 = a, 26 = b. Then, by Lemma 5.29,

(a,b) = 6-1(1,2)

If ¢ is even, 9! is even, 471(1,2) is odd, and so 671(1,2)4 is odd (Lemma 3.2, page 62). If
0 is odd, - is odd, 67%(1,2) is even, and hence 67%(1,2)6 is odd (again by Lemma 3.2).
Therefore (a, b) is odd.

Now let 6 be a permutation and let ¢ =«, ---«_ be the product of transpositions.

1 m

Then by Lemma 8.2, ¢ is even if and only if m is even, while ¢ is odd if and only if m is odd.
This proves the theorem.
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Problems

5.58.

5.59.

5.60.

5.61.

5.62.

Determine whether « and 8 of Problem 5.52 are odd or even, using Theorem 5.30.

Solution:
a=(1,5,2,3,4) = (1,5)(1, 2)(1, 3)(1,4). Since a is expressed as the product of an even number
of transpositions, « is even.

B =(1,4,8,5,2) = (1,4)(1,3)(1,5)(1,2), and so B is even.

Determine whether « of Problem 5.54 is even by using Theorem 5.30.

Solution:
e = (1,2,4,8)(8,6,12,9)(5,10)(7,14,13,11)

= {(1,2)(1, 4)(1, 8)}{(3, 6)(3, 12)(3, 9)}{(5, 10)}{(7, 14)(7, 13)(7, 11)}

Thus « is even.

Determine whether (a4, ..., a,) is even or odd.
Solution:

(@y, - ..y ap) = (2y,a0)(ay,ay) -+ - (ay,a,,), so (ay,...,a,) is the product of m — 1 transpositions.
Thus (a,, ..., a,,) is even or odd according as m is odd or even.

Let (ay, ...,ay), (by,...,b,) be two cycles of S,. Prove that there exists ¢ €S, such that
6 Yay, ...,ap)0 = (by, ..., b,).

Solution:
Let 6 be defined by:

(1) ap=0b; for i=1,...,m;

(2) if {eg, .. v p-my={1,2,...,my—{ay,...,a,} and if {dy,...,d,_n} ={1,2,...,n}—
{by ..., bn}, put co=4d; for i=1,...,n—m.

Then ¢ € S,, and by Lemma 5.29, ¢~ 1(ay, ..., 8,)0 = (by, ..., b,).

If G is a group, the set of all elements conjugate to x is called the conjugacy class containing 2.
Write down the conjugacy classes of S, using cycle notation. (Hard.)

Solution:

The conjugacy class containing an element ¢ is the set of all conjugates of 4. Our first task
is to express each element of S, as the product of disjoint cycles, and then to take all distinct con-
jugates of each element. We obtain the following classes:

(i) {(1)}. (As (1) =, there are no other conjugates of (1)).

(ii) What conjugates of (1,2) are there? We know that 6—1(1,2)s = (1¢,26). As ¢ runs through
S,, 16,26 run through all distinct pairs (a,b). As (a,b) = (b,a), the conjugacy class con-

taining (1, 2) is
g2 (1,2), (1,3), (1,4), (2,3), 2,9), (3,4}
(iii) What conjugates of (1,2,3) are there? As 61(1,2,3)s = (14,29, 36), we will get all possible
3-cycles. Hence the conjugacy class containing (1, 2, 3) is
{1,2,8),(1,2,4),(1,8,2), (1,3,4), (1,4,2), (1,4,3), (2,3,4), (2,4,3)}

(iv) What is the conjugacy class containing (1, 2)(3,4)?
0-1(1,2)(3,4)s = 6-1(1,2)96-1(3,4)8 = (16,26)(36,46)
As ¢ runs through S,, we will obtain the product of all pairs of disjoint cycles. We recall that

disjoint cycles commute; for example, (1,2)(3,4) = (3,4)(1,2). Thus the distinct elements in
the required conjugacy class are

{(1,2)(3,4), (1,38)(2,4), (1,4)(2,3)}
(v) What is the conjugacy class containing (1,2,8,4)? Again we see that we shall obtain all
4-cycles. Hence the required conjugacy class will be
{(1,2,3,4),(1,2,4,3),(1,3,2,4), (1,8,4,2),(1,4,2,3), (1,4,3,2)}
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e. The simplicity of A,, n =25,

In this section we aim to prove that A, is simple for n =5, What we must do is to show
that if H < A, and H + {i}, then H = A,. Although the proof involves much calculation,
the ideas are easy.

Lemma 5.31: Every element of A, is the product of 3-cyecles, n = 5.

Proof: Every transposition (a1, a2) = (e, a1)(e, a2)(e, @1) where ¢, ar, a2 are distinet. Now
every element of A, is the product of an even number of transpositions, and therefore the
product of products of pairs of transpositions. So it is enough to prove that a product of
two transpositions is a product of 3-cycles. Consider (ai,az)(bi, bs). We may assume that
the four integers a1, as, by, b2 are distinct, for otherwise (ai, a2)(by, b2) is either the identity
or is itself a 3-cycle. As n =05, there exists an integer ¢ such that 1=e=n and
a1, a2, by, b2, e are all distinet. Hence

(a1, @2)(b1, b2) = (e, a1)(e, az)(e, as)(e, bi)(e, ba)(e, bi)
= {(e,a1)(e, a2)} {(e, ai)(e, b1)} {(e, b2)(e, b))} = (e, a1, a2){e, i, bi)(e, bz, by)
Lemma 5.32: Let H < A.. If H contains a 3-cycle, then H = A,.
Proof: Let (a,b,c¢) € H. Then if z,y, 2z are distinct elements of {1,2,...,n} and § is an
element of S, that sends a to z, b to ¥ and c to 2, we have 67(a, b, ¢)0 = (x, ¥, 2) by Lemma 5.29,

page 170. If 6 is even, (x,y,2) € H as H <1 A,. If 9 is odd, then there exists e, f distinct
from a,b,c as n=05. Therefore ¥ = (¢, ) is even.

v a,b,e)¥ = 07 e, f)(a,b,c)(e f)I
= 6 ' (a,b,0)0 = (x,9,2)
Hence by normality, (x,¥,2) € H. Thus H contains all 3-cycles of S,; and by Lemma 5.31,
H=A,.
Lemma 5.33: Let H < A.. If H contains the product of two disjoint transpositions, then
H=A..

Proof: Let a=(ai,a:)(as,as) € H. Since n>=5, there exists e € {1,...,n} distinct

from a,, as, a3, a4. Let 6 = (a1, a5, ¢); then 6 € A,.

07l = (as,e){as, as)
a0 %l = (a1, a2)(as, a4)(az, €)(as, aq)
= (a1, a:{{a2, ) = (a1, €, a2)
Thus H contains a 3-cycle, and the result follows from Lemma 5.32.
Theorem 5.34: A, is simple for n = 5.
Proof: Let H< A, H+ {}. Then thereexists « €EH, a#« Let a=gqa, - ¢ where

a, ..., are disjoint cycles. We may suppose without loss of generality that a«, ..., q
are arranged so that the length of « =lengthofa, , for i=1,...,k—1, as the a,, ..., e,
commute by Problem 5.55, page 169.
Case 1: v
Suppose «, = (@, ...,a,) with m>38. Let o¢=(a,a,a,). Clearly c€A4,. Alsoo

commutes with a,, ..., as they move different integers. As ¢'€A, and HJA,
B=alo7'ac € H. Note that

o lac = (ag, a,a, Qy, .. .,am)a%' Cray
and so B = a7l a(0,a,0,0,...,0 )0

= o] Ya, 0,0,0, ...,a,)

= (e, 0, ,...,¢)@,0,a,0,...,0,)

= (a,a,a,)

Since g € H, the result follows from Lemma 5.32.
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Case 2:
Suppose m =3, and a, is also a 8-cycle. Let « = (a,a,a,) and e, = (a,a,a,). Let
o= (ay,a,a) € A,. Then H contains
0'_1
Thus H contains

a lo7lage = a

ac = (0_10410)(0'_10(20') te (o_laka) = (a_lala)(a_lazo)a3a4 o

l‘lvzz_l v cz;:l(o'_10110')(0-—larza')az3 ey

oy lay Yo ' 0) (0 ta0) = o leyYa,, a,,0,)(a, a,, ;)

Il

(a’3’ @, a’l)(as’ a, a’4)(a1’ @, a4) ((12, a a’e) = (ax’ ay, Qo Ay, a’s)

and the result follows from Case 1.

Case 3:
Suppose m =3 and a,, ...,q, are transpositions. Let « =(a,a,a,). Then
2 = e -
o = (a,0a,a)ea, afa,,a,,a)ea, o,
= 2,202 ... g2 = 2 =
= (ay, @y, @) afa] o = (a,8,0)" = (a;,0,0a,)

and the result follows from Lemma 5.32.

Case 4:
Suppose all the «, are of length 2. Then m is even, and o, = (a,,a,), «, = (a,,a,). Put
o = (aya,a,). Then H contains
o lac = (al, aa)(a4, a2)a3a4 cec
Thus H contains o laca™! = (a,,a,)(a,,a,)
and the result follows by Lemma 5.33.

Corollary 5.35: The symmetric group S, is not solvable for n=25.

Proof: A, <1 S, and {.} CA,CS., is a composition series of S, for n =5 (Example 2,
page 165). By the Jordan-Holder theorem this is, up to isomorphism, the only possible com-
position series. Now |A.| =n!/2, which is even for n=4. Hence [4.: {:}] is not a prime.
But if any subnormal series of S, with factors of prime order existed, it would be a com-
position series. Therefore S, is not solvable.

Problems .
5.63. Prove that if G = A,, » = 5, then the derived group G’ of G is G.

Solution:

We know that G’ < G. Hence G' =G or else G' = {} as G is simple by Theorem 5.34.
If G'={}, G is abelian. But A, is not abelian for n = 5; for example,

123456 ...mn
12,906,485 = <2 415 36 ... 'n>
1234586 ...mn
but 4 »2,8) =
" ®.4,5(1,23) 2 34516 'n)

Therefore G’ = G.

564. If G=A, and n =5, prove that Z(G) = {i}.

Solution:

As Z(G)Q G, Z(G) =G or Z(G) ={J}. As Z(G) is abelian but G is not (see Problem 5.63),
Z(G) * G.
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A

5.65. Without using Theorem 5.34, prove that G’ =G = A, for n =5, where G = S,.

Solution:
We use Lemma 5.33. Let a=(2,3,4), ¢ = (1,2,3). 8 =a"lo~lac = (1,4)(2,3) € G’. Hence
as G' < G, the result follows from Lemma 5.33.

5.66. Are any of A;, A, Az, A, simple?
Solution:

Both A, and A, are of order 1, so they are not simple. Aj is of order 3, so A; is cyclic of prime
order and therefore simple since groups of prime order are simple. Finally A, is of order 12. We
have already seen that a group of order 12 is solvable. Indeed we saw in Problem 5.45 that its com-
position factors have orders 8,2, 2 respectively. Hence A, is not simple.

5.67. Prove that S, has no non-trivial element in its center for » = 3. (Hard.)

Solution:
Let « €S, a7t Let a = ay-*+ a;, be the decomposition of a into disjoint non-identity cycles.
Let a; =(ay,...,ay,). If m =3, let B =(a;,a). Then a~18a = (a1a, asa) = (ay, a3) # B. Hence

e @Z(S,). If m=2, let 8= (ay,aya;). Then a~1Ba = (aa, Gga, @3a) = (0, a;,b) Where b = aza
and b is an integer different from a, and a,. No matter what b is, ¢~ 18a # 8 since a,8 = a3 but
aya~1B8a = a,.- Hence o & Z(S,). Thus no non-trivial element of S, belongs to Z(S,).

5.68. Prove that A,, S, and {;} are the only normal subgroups of S, for » = 5. (Hard.)

Solution:
Let H< S,. Then HNA, < A,. Hence A,NnH = A, orelse A,NH = {1}, as 4, is simple
by Theorem 5.34. If A,NnH =A,, then A,CH. If H+ A, as A, is of index21in S,, H=S,.

If A,nH ={, suppose H+= {}. If € H and 6+, ¢ is odd. As 62 is even, §2€ HNA4,
and so 62 =. Let r€ H, r # . Then = is odd, and as #r is even, r =61 = 9. Hence H consists
of only two elements, « and 6. As S, has no center (Problem 5.67), there exists p € S, such that
u~lép 6. But u—lep € H, as H < S,; and since H = {;, 6}, this is impossible. This contradicts
the assumption that H = {/}.

5.69. Prove that S, = A, for n = 5.

Solution:

As S,/A, is abelian (cyclic of order 2 in fact), 4,2 S, (Problem 4.68(iii), page 116). As S, is
not abelian, S, # {}. But S, < S,. Hence S, = A, by Problem 5.68. Alternatively, S, 24, = 4,
by Problem 5.63 or 5.65.

A look back at Chapter 5.

In this chapter we proved the three Sylow theorems. The first gives the existence of
Sylow p-subgroups; the second states that a subgroup of prime power order is a subset of
one of the Sylow p-subgroups; and the third states that all the Sylow p-subgroups are
conjugate.

The proofs of the Sylow theorems used a standard technique of finite group theory:
induction on the order of the group. It is also worth noting our counting arguments, e.g.
in the proof of the class equation.

Using the class equation we proved that a group of prime power order has a non-trivial
center. Then we proved as a consequence that a group of order »” (where p is a prime)
has a normal subgroup of order p~1. By repeatedly taking the center of factor groups, we
defined the upper central series of a group. A group is nilpotent if a term of the upper
central series is the group itself.

Next we gave a method of constructing a group from the cartesian product of two given
groups H and K. This group had isomorphic copies I?I,I? of H and K respectively which
satisfied AR =G and AnK= {1}. Reversing this analysis we showed that if a group
G had normal subgroups H and K with HK =G and HNK = {1}, then G = H XK. Using

this result and the Sylow theorems, we classified groups of orders 1,2,...,15 up to
isomorphism.
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Then we defined solvable groups, so called because they led to a criterion for the solv-
ability of equations. We noted that our first definition involving a subnormal series with
factors of prime order did not extend to infinite groups. So we chose a criterion involving
subnormal series with abelian factors for our definition of solvability. We showed that sub-
groups and factor groups of solvable groups were solvable, and an extension of a solvable
group by a solvable group was solvable.

We next considered composition series (subnormal series with simple factors) and
proved that every finite group has a composition series. In the Jordan-Hoélder theorem we
showed that a composition series has a unique length and unique factors up to isomorphism.

In our final section we proved that the groups 4, for » =5 are simple. To do this we
needed to express permutations as products of disjoint cycles. This led to a method of
determining whether a permutation was even or odd. As a consequence of the fact that
A, is simple, we concluded that S, is not solvable for n =25,

Supplementary Problems

SYLOW THEOREMS
5.70. Prove that the Sylow 17-subgroup is normal in a group of order 255 = 3+5+17.

5.71. Prove that the Sylow 13-subgroup is normal in a group of order 2+5-13.
572. Let A = {0,1} be the set of integers modulo 2, B = {0,1,...,64} be the set of integers modulo 65,
and G be the set of all pairs (a,b), a €A and b € B. Define the multiplication
(a3, by)(ag, by) = (a;+ay, (—1)%2by + by)
for (ay, by), (a9, by) € G. Prove that G is a group of order 2+ 5+13 with respect to this multiplication.
Is a Sylow 2-subgroup normal?

5.73.  Verify the class equation (i.e. equation (5.2), page 135) for the group in Problem 5.72.

5.74. Prove that the Sylow p-subgroup is always normal in a group of order 4p, where p is a prime = 5.
Is this true when p = 3?

5.75. Prove that the normalizer of a Sylow p-subgroup coincides with its own normalizer.

5.76. Let |G|=n and |H| =m where H is a subgroup of G. If Hng~'Hg = {1} for all g€ G—H,
then there are precisely n/m — 1 elements in G which are not in any conjugate of H. (Hint:
Examine Ng(H).)

THEORY OF p-GROUPS
5.77. Show that every subgroup of index p in a finite p-group is a normal subgroup.

5.78. Let G be a finite p-group and H be a proper subgroup of G. Show that Ng(H) + H.
5.79. Prove that if G is nilpotent and G/G’ is cyclic, then G’ = {1}. (G’ is the derived group of G).
5.80. Use Problem 5.79 to show that elements of co-prime order commute in a nilpotent group.

5.81. Find an example of a group G with a normal subgroup N such that G/N and N are nilpotent but
G is not.
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5.82,
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Let G4, = G and Gy.qy, = gp{{[9, 2] | 9 €G,, and « € G}). The sequence of subgroups
G, 202G 2+ DGy 2 -+ is called the lower central series of G. Prove that a group G is

nilpotent if and only if G(,, = {1} for some positive integer n.

Find the lower central series for Dy for positive integers n. (See Problem 5.82 for the definition of
lower central series.)

DIRECT PRODUCTS AND GROUPS OF LOW ORDER

5.84.

5.85.

5.86.

5.87.

5.88.

5.89.

Prove that a finite niipotent group is isomorphic to a direct product of any one of its Sylow p-sub-
groups and some other subgroup.

Employ the results of Problem 5.70 to prove that a group of order 255 is isomorphic to a direct
product of its Sylow 17-subgroup and another of its subgroups. Thereby show that a group of order
255 is cyclic.

Show that the direct product of two nilpotent groups is a nilpotent group.

01 0 1
Let G = g¢gp << > , < >> . Show that |G| = 8. Which group of order 8 is isomorphic
to G? -1 0/7A1 0

0 1 0 .
Show that D, is isomorphic to G = gp <<1 O> , <:) _1>> where ¢ = e2mi/n,
€

Suppose G is a finite group with all its Sylow p-subgroups normal. Show that G is nilpotent.

SOLVABLE GROUPS

5.90.

5.91.

5.92.

5.93.

5.94.

Prove that a group of order pqr is solvable when p, ¢, r are primes and » > pq.
Show that the direct product of two solvable groups is solvable.
Prove that a group of order 4p, p a prime, is solvable.

In Problem 5.49, page 163, we showed that a group G is solvable if and only if G = {1} for some
integer n. Use this fact to give alternate proofs of Theorems 5.23, page 161, and 5.24, page 162.

Show that D, is solvable for all positive integers n.

COMPOSITION SERIES AND SIMPLE GROUPS

5.95.

5.96.

5.97.

5.98.

5.99.

Find the composition factors of a finite p-group.
Show that there is no simple group of order p™m, where p is a prime and m < p.

Prove S, is not solvable for = =5, without using the fact that A, is simple. (Hint. Consider
all 3-cycles of S,.)

Find a composition series for the quaternion group.

Show that, except for groups of prime order, there are no simple groups of order < 60. (Hint. A
difficult case occurs for order 36. See Problem 5.43, page 158.)



Chapter 6

Abelian Groups

Preview of Chapter 6
A group G with binary operation - is abelian if, for all g,h€ G, g-h=h-g.

It is customary to use “+” for the binary operdtion in abelian groups. We will begin
this chapter with a preliminary section in which we restate some of our results and defini-
tions in additive notation.

One of the concepts which we will reformulate additively and generalize is the concept
of “direct product” considered in Chapter 5. In abelian groups it is customary to talk about

“direct sum” instead of “direct product”. We note that the direct sum of abelian groups is
again abelian.

We call direct sums of infinite eyclic groups free abelian groups. Direct sums satisfy
an important homomorphism property which gives rise to the important fact that every
abelian group is a homomorphic image of a free abelian group.

We then congider classifying abelian groups according to the orders of their elements.
An abelian group G which has every element of finite order can be expressed as a direct
sum of p-groups, i.e. groups every element of which is of order a power of the prime p.
An important p-group that we shall introduce here is the p-Priifer group.

At this point we have three types of abelian groups:
(e) the cyclic groups, (b) the additive group Q of rationals, (c) the p-Priifer groups.

The rest of the chapter is devoted to showing that many abelian groups are direct sums
of these groups.

Recall that a group G is finitely generated if it contains a finite subset X with G = gp(X).
We show that every finitely generated abelian group is a direct sum of cyclic groups.
Furthermore we associate a set of integers to each finitely generated abelian group. This
set of integers, which we call the type of the abelian group, completely classifies finitely
generated abelian groups; in other words, two finitely generated abelian groups are
isomorphic if and only if they have the same type. This theorem is of great importance
in many branches of mathematics.

The additive group of rationals @ has the property that if ¢ € @ and = is any nonzero
integer, then there exists f € Q such that nf =g. We express this by saying that Q is
divisible. The p-Priifer groups are also divisible. Note that these are not the only divisible
groups, e.g. the additive group of reals is also divisible. We obtain the pleasing result that
if A is any divisible abelian group, then 4 is a direct sum of p-Priifer groups and groups
isomorphic to the additive group of rationals.

Note. Any reader who would like a briefer account of abelian groups may refer to Sec-
tions 6.1a, 6.1c and 6.3. This will bring him quickly to the fundamental theorem of
abelian groups, i.e. every finitely generated abelian group is the direct sum of cyclic groups.

177
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6.1 PRELIMINARIES
Here we will practice expressing our ideas in additive notation.

a. Additive notation and finite direct sums

In this chapter all groups will be abelian, and we will use additive notation throughout.
In terms of additive notation an abelian group is a non-empty set G together with a binary
operation + such that

(i) (@a+d)y+c=a+(b+c) forall a,b,c €G.
(i) a+b=b+a

(iii) There exists an identity element, denoted by 0, such that a+0 =a for all « € G. The
identity element 0 is often termed the zero of G.

(iv) Corresponding to each ¢ € G there exists an element b such that a+b=0. This b
is unique and is denoted by —a. The element —a is often termed the negative of a.

Standard abbreviations are as follows:
(i) g+ (—h) is written as g —h.

(ii) If n is a positive integer we write ng for g+ -+ +¢ (n times). If n =0 we write ng
for 0. If » <0 we write ng for —g+ -- - + —g (—n times).

If G is an abelian group and H is a subgroup, then automatically H <« G and we may
talk of the factor group G/H. (Warning: Some authors write G — H for G/H.) Note that,
in additive notation, a coset is simply a set of the form g + H. .Instead of talking of multi-
plication of cosets, we talk of addition of cosets. Thus the sum of two cosets g: + H and
g2+ H is, by definition,

(91+H)+ (g:+H) = (g1+92) + H

The following table is useful in “translating” multiplicative notation into additive nota-
tion. a and b are elements of a group G, and H and K are subgroups of G.

Multiplicative ab a1 1 ar ab—1 HK aH

Additive a+b —a 0 na a—2b H+ K a+H

In Section 5.3a, page 146, we defined the internal direct product of two groups H and
K. Now, in additive terminology, we speak of a direct sum rather than a direct product.
Instead of writing H ® K, we write HO K. If G=H® K, H is called a direct summand
of G. Here we are interested in extending the concept of direct sum from two subgroups
to a finite number of subgroups.

Definition: An abelian group G is said to be the direct sum of its subgroups G, ..., G, if
each g € G can be expressed uniquely in the form
9=+ -+
where ¢; € G, i = i, ...,n. In this case, we write G=G1® --- ® G, or
If n=2 we obtain the same definition of internal direct product that we gave in

Chapter 5. (The condition (i) of Proposition 5.19, page 146, falls away, as all groups
studied here are abelian.)
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If G=G1® --- ® Gy, then GiNG; = {0} for i+ j. For otherwise if # € GiNG; and

z# 0, then
xr = gl‘+‘“‘+gn

with g1=-+- =¢i-1=¢is1=+--=g.=0 and ¢g;==x, and also with g, = --- =g;-1 =
gi+1= - =¢g,=0 and g; =x. But this contradicts the definition of direct sum.
Note thatif G=H®K and H=L®M, then G=L®M ® K (see Problem 6.15).

The following theorem provides a simple criterion for determining when a group is the
direct sum of its subgroups.

Theorem 6.1: Let Gy, ...,G. be subgroups of a group G and suppose each element of G
can be expressed as the sum of elements from the subgroups Gy, ..., Gx.
Suppose algo that an equation

0= gl++gn

with ¢g; € G; for i=1,...,n, holdsonlyif gi=¢g2=--- =9g.=0. Then
G is the direct sum of the subgroups Gy, ..., Ga.

Proof: If g € G, then
g =gt +gn
with g:€G;, i=1,...,n. We need only show that this expression is unique. Suppose
g=gi+-+gi
is another such expression. Then

0= (g1—05)+ -+ +(ga—97%)

By our hypothesis, (gl—g’f) = (gz—g’é‘) = -+ = (gn—gn) = 0. Hence g¢g: = gi  for
1=1,...,n and the two expressions for g are identical.
The question arises: if Gi,...,G, are abelian groups, does there exist a group G

which is the direct sum of isomorphic copies of the groups Gi? This question is answered
in the following theorem.

Theorem 6.2: Let Gy, ..., Gn be abelian groups. Then there exists a group G which is the
direct sum of isomorphic copies of Gy, ..., Gn.

Proof: The proof follows closely the argument of Problem 5.80, page 146, so we will be
brief. Here we will use additive notation. Let G be the cartesian product Gi X G2 X -+ + X Gn.
If (91,...,92) and (B4, ..., k) € G, define (g1, ...,92) + (B, ..., hn) = (91 + M1, ..., gn+ ).

. 7 components
A

Then G is a group. Furthermore, let @iz (i), Y/ P | .,6) | g: € Gi}. Then @l is a
subgroup of G, and @,- =G for 1=1,...,n. It is clear that every element (g1, ...,9x) of
G is uniquely of the form (¢,0,...,0)+(0,950,...,0)+ --- +(0,0,...,0,9,). Hence
G=G,@® - @ G, and the result follows.

An important result which we will prove in Section 6.1c states that if G is the direct
sum of Gy, ..., G, and H is the direct sum of Hy,...,H,and Gi=H; for i=1,...,n, then
G=H.

In Section 6.1b we will define the concept of an indexed family Gi, i € I. The reader
who studies Section 6.1c without reading Section 6.1b may take I={1,...,n} and G;,

i €1 as shorthand for Gy, ...,Gn. Then Y Giis simply Y G.
i=1

i€l



180 ABELIAN GROUPS [CHAP. 6
Problems
6.1. Prove that the negative of a + b is —a —b.
Solution:
(@a+b) + (—a—b) = (a+b) + [(—a) + (=b)] = [(a+b) + (—a)] + (—b)
= [a+ (b + (—a)] + (=b) = [a+ (—a) + b)] + (—b)
= [(a+(~a)) +b]+(=b) = 0O+b)+(~b) = b+(-b) =0
6.2 Prove that if G is abelian and H is a subgroup of G, then G/H is abelian.
Solution:
(f+H)+@+H) = (f+9y+H = @+H+H = (g+H) +(+H
6.3. Let H be a subset of an abelian group G. Prove that H is a subgroup of G if and only if f,g €H
implies f—g € H.
Solution:
This is exactly the same argument as in Lemma 3.1, page 55.
6.4. Let n be an integer and G an abelian group. Prove that if g,h € G, then n(g+h) = ng + nh.
Solution:
If n=0, n(g+h) =0 by definition. Furthermore ng+nh=04+0=0. Thus n(g+h) =
ng + nh when n = 0.
If >0, let n=m+ 1. Then m = 0. Inductively we may assume that m(g + h) = mg + mh.
Keeping this in mind,
nlg+h) = m+1)g+h) = m(g+h)+(g+h) = mg+mh+g+h
= mg+g+mh+h = (m+l)g+ (m+1h = ng + nh
Finally if n <0, n = —m for m > 0, and so
ng+h) = m(—(g+h) = m((—g) + (—h)) = m(—g) + m(~h) = ng +nh
6.5. Let n be any integer and G an abelian group. Prove that the mapping ¢ which sends g to ng for
each g in G is a homomorphism.
Solution:
Now, in additive notation, to say that ¢ is a homomorphism means that (g + h)s = g8 + he
for all g,k € G. But, by Problem 6.4, (g + k)9 = n(g+h) = ng+nh = go+ he.
6.6. Let G be any abelian group and let XC G (X+# @). Prove that
gpX) = {y| y =rm +ramp+ o+, €2, 5, €X) (6.1)
In particular then gp(x) = {rx| r € Z}.
Solution:
Let H be the right-hand side of (6.1). Then H is a subgroup of G, for H #* (. Moreover if
h=rz+---+rw, and k=s,y,+---+sy, belong to H (r,s;,€Z and x,y;E€X), then
learl
clearly h—k:7’1-’171+"'+7'nxn+(“31)1/1+"'+(_sp)yp e H
Thus H is a subgroup of G. It follows from the definition of H that X c H. Since gp(X) is the
smallest subgroup of G containing X, we have then gp(X)CH. But if 2;,...,2,€ X, then
ri®y+ o0 +r.x, € gp(X) for every choice of r; € Z. Hence gp(X)DH, and so gp(X)=H.
When X = {x}, then gp(X) is, by (6.1), the set of all multiples of =.
6.7. Let H and K be subgroups of G. Prove that H+ K is a subgroup of G. If HNK = {0} and

G=H+K, provethat G=H®K. (H+K = {h+k| h€H and k€ K}.

Solution:

H+ K+ (@ since both H+* @ and K+ @. So we have to prove that if u,v € H+ K, then
u—vE€H+K., Now w = h+k, v =h+Ek ((hWEH, kke€K). Thus u—v = (h—h)+
(k— k') € H+ K since H and K are subgroups of G. If HNnK = {0} and if we consider two expres-
sions hy-+k; = hy+k, where h;,hy €EH and k) k, €K, then z = h,—hy =Fky—k; belongs to
both H and K. Therefore =0 and hy = hy, k; = ks, Hence the expression of an element in the
form h+ k is unique. Since G = H+ K, it follows that G = H @ K.
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6.8.

6.9.

6.10.

6.11.

6.12

6.13.

Let G have a subgroup H and suppose that G/H is infinite cyclic. Prove that H is a direct summand
of G.

Solution:

Let G/H = gp(g + H) where g €G and let S = gp(g). Consider x € SNH. Then x = ng
for some nE€Z. As x€ H, n(g +H) = ng+H = H. But g + H is of infinite order in G/H.
Thus = =0 and so SNH ={0}. If 2 €G, xEng+H, ie. x=ng+h for some nE€ Z and
h € H. Hence G =S+ H. Therefore, by Problem 6.7, G =S @ H and H is a direct summand of G.

Let G =A@ B and let H be a subgroup containing A. Prove that H = A & (BnH).

Solutior:

As every element of G is uniquely of the form e+ b where ¢« €A and b€ B, A+ (BnH) =
A @ (BNH). What we must prove then is that A + (BnH) = H. If h€ H, h=a+b where
a€A and b€ B. Hence b=h—~a. But,as ACH, h—a&€H. Thus b€BnH and HCA +
(BnH). But HDOA and HOBNH. Hence H = A @ (BNH).

Let G be abelian and let « € G be of order n, b € G of order m. Show that the order of a+b
divides the least common multiple ! of m and n.

Solution:

Since both m and = divide [, let I = gm = rn for some integers q and ». Then la+ b) = la +
b =qma+rnb=0+0=0. Thus the order of a+ b divides I.

Let G =H® K. Prove that G/H = K.

Solution:

G = H+ K. Then by the subgroup isomorphism theorem (Theorem 4.23, page 125), G/H =
(H+ K)/H = K/(KnH). Now HnK = {0}, and so G/H = K as required.

Prove that if G is an abelian group, then the set S of elements of G of order a power of a fixed
prime p is a subgroup. Deduce that a finite abelian group has one Sylow p-subgroup for each
prime p dividing |G|.

Solution:

If ¢ and b are of order a power of p, then —b is of order a power of p. So, by Problem 6.10,
a — b is of order a power of p since the least common multiple of two powers of a prime p is a power
of p. Hence S is a subgroup.

If G is finite, then S is the Sylow p-subgroup of G. For if P is any subgroup of G of order a
power of p, by the definition of S, PCS. So every Sylow p-subgroup of G is contained in 8. S
itself is of order a power of p (Problem 5.6, page 132). Since the order of a Sylow p-subgroup is
the maximal power of p dividing the order of G, every Sylow p-subgroup of G must coincide with
S. Thus, for each prime p, there is precisely one Sylow p-subgroup of G.

Let G be an abelian group of order 36. Prove that:
(i) If g € G, then g = g, + g, where the order of g, divides 4 and the order of g, divides 9;
(i) G=A @ B where A is the Sylow 2-subgroup and B is the Sylow 3-subgroup of G.

Solution:
(i) Let g be of order 2t3s. Put 2t =m and 35 = n. Then, since (m,n) =1, there exist integers
a,b such that am + bn = 1. Hence
g = (em+bnlg = (am)g + (bn)g = g1+ g» say

Now since ng; = n{am)g = a(nm)g = 0, and similarly mg, = 0, (i) is proved.

(ii) Clearly ANB=1{0}, so A+B=A®B. Nowif g €G, then, by (i), g9 =g+ 9, where g,
is of order dividing 4 and g, is of order dividing 9. By the preceding problem, the set of all
elements of order a power of 2 is the Sylow 2-subgroup 4, and so g, € A. Similarly g, € B.
Hence g € A+ B and we conclude that G = A @ B.
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6.14. Show that the group C of complex numbers is with respect to addition the direct sum of the sub-
group consisting of all the reals and the subgroup consisting of all the pure imaginary numbers.

Solution:

Let R = {a+1i0 | a an arbitrary real number}, and let I = {0+ ib| b an arbitrary real num-
ber} (here 2 = —1). Then clearly R and I are subgroups of C, RnI = {0}, and, if e+ibEC,
a+1ib = (e +10) 4+ (0 + ib) belongs to R+1. Thus C=R P L.

615, Let G=H®K and H=L P M. Provethat G=LO M PK.

Solution:

Every element g of G can be expressed in the form g = h+k where h€ H and k€ K. But
h=14+m where €L and m€ M. Hence g =Il+m+k Nowif g=1+m;+k; with €L,
m €M and k€K, put ly-+m; = h €EH. Then g =h-+k=~h;+k; and consequently h = hy
and k=Fk. As h=1l+m=1+my, L =1, and m = m;. Hence the result.

b. Infinite direct sums (See MNote on page 177.)

It is convenient to label the subsets of a set X with the elements of a second set. We
are already familiar with such a device, e.g. in labeling a collection of sets A;, A., ... we
have labeled with I =Z. In general, if I is an arbitrary set we shall denote by A;, 1 €I,
such a collection of labeled sets. A collection of labeled sets A;, i €1, is called an indexed
family. More formally, let 6:I > X be an onto mapping. Then ¢ is said to be an indexing
with the elements of I of the set X. We will denote the image of 7 by X;, i.e. X;=10. The
collection X;, ¢ € I, is then called a family of indexed sets.

We generalize our definition of direct sum to apply to the direct sum of an infinite
number of subgroups. .

Definition: An abelian group G is said to be the direct sum of its subgroups G;, ¢ €1, if
for each g € G, g # 0, there is a unique expression (but for order) for g

of the form
g = g1+ -+ gk

where g; € Gy, 7=1,...,k, with 1,2, ...,k distinct elements of I and no
gi is zero.
Note that as G is abelian,
gL+ - +g9x = gt g1+ -+ o1

for example; hence the uniqueness of the expression is understood to be without
regard to the order of the elements g, ...,gx. We write G= G

i€l

If I is finite, it is easy to see that a group which is the direct sum in the sense of the
above definition is also the direct sum in the sense of the definition of Section 6.1la, and
conversely. Usually we will use the definition of Section 6.1a whenever I is finite.

We note that if G = > G; and 4,j €I, i+j, then GiNnG;={0}. For if z € GiNG;
i€1
and x % 0, then x is expressible as
x=¢1 where g1 €G;

and z=gs where g:€G;

But this contradicts the definition of direct sum.
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The analog of Theorem 6.1 is the following:

Theorem 6.1’: Let Gi, ¢ € be subgroups of the abelian group G. Suppose each element
of G can be expressed as the sum of elements of the subgroups Gi. Suppose

also that if 17,2/, ..., k’ are distinct elements of I and that the equation
0 =g1+ - + 9
where g; € Gy holds if and only if g1 =¢:= ++- =g« =0. Then G = Gu.
i€l

As the proof is similar to that of Theorem 6.1, we omit it.

Again, as in Section 6.1a, the question arises: if Gi;, 1 €I is an indexed family of
abelian groups, does there exist a group G which is the direct sum of isomorphic copies of
the groups G:? This question is answered in the following theorem:

Theorem 6.3: Let Gi, i €I be an indexed family of abelian groups. Then there exists
an abelian group G which is the direct sum of groups isomorphic to Gi.

Proof: let G = {0] g:1- iLGJIGi, 19 € G; for all ¢ €1, and 4 is the zero element of

G; for all but a finite number of < € I}. If 9,6 €G, define ¥ =60+¢ by ¥ =10 +1ig.
We assert that G is a group.

First, if 9,¢ € G, then 6 + ¢ is clearly a mapping of I into Y, G: and 9 + ¢ maps all but

a finite number of the elements of I onto zero elements. Hence 6+ ¢ € G. Note that
6+¢=¢+0 sothat G is abelian.

Next, G is associative. For if ¢,¢,¢, €G, and if 1 €1,
(¢, +by) + ) = U, +dy) +idy = U, +igp, +ip, = i, + (igp, + i)

= 1“!’1 + ’L(‘f’z + ¢3) = 7’(¢'1 + (4’2 + ¢3))
Hence (¢, +¢,) + ¢, = ¢, + (¢, + ;).
The mapping 5: - 0 € G; for all {in I is the identity of G. For if 4 € G, then for all
1inl, i(n+6) =in+1i0 =0+ =19 so that »+ ¢ =240.
Finally, if 6 € G, define ¢:i~> —(i6). Then i(+¢)=16+1ip =10+ (—(i8)) = 0 = in.
Thus 6+ ¢ =17 and ¢ is the inverse of G.

Now we prove that if G1 ={0] ¢ €G and :/0 is the zero of G; for all j in I with perhaps
the exception of 9}, then G Gi. Note that G is a subgroup of G; for if 6,4 € G, then
on putting ¥ =6—¢ we note that if j+=<4, je€l, y\If—]f)—qu—O 0=0. Thus \IrEGs

Next, let v, G = G, be defined by v, =14, 6 € G Clearly v, is a mapping of G into

G,. To see that v, is one-to-one, suppose 6,¢ € G and fv, = ¢v,. Thls means that i = i¢.
But j0=3p=0 forevery jel, j+#1i andso ¢ —qS Next we prove v, is onto. Let a € G,

and define 4: I - Y, G, by i =a and j6 =0 if j+#4i. Then ()EG and 6v,=a, and so
v, is one-to-one and onto. v, is a homomorphism; for if 6,¢ € G and ¥ =6+¢, then

(0+<;[>)vi = Yy, = W = 0 +ip = Hvi + ¢v,
Therefore v, defines an isomorphism.

Finally we show that G = Y Gi. We already noted that G is abelian. We need to show

i€l
thatif 6 € G, § =681+ - - - + 6 where each §; belongs to one of the subgroups G If 9 €@,
then 74 is not the zero of G, for only a finite number of elements of I, say %1, ...,%. Let

9 € Gil be such that 6, =140, 6: € Gi, be such that i:0: =426, ..., 6x € Gy, be such that
10k = 0. It is clear that
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6 = 61+ - 46k
Now suppose that », the zero of G, is of the form
n = 61+ -+ + b
where 6; € @,-' and 1/,2/, ...,k are distinct elements of I. Then for 1=j=kF,
9 =0 = (014 ---+&) = 76;
(since 17,2/, ..., k’ are distinct) from which 6; =y for every j=1,...,k. Thus
G = 2 éi
i€lr

(Remark: Problem 6.17 shows how the mappings of this proof link up with cartesian
products.)

The existence of direct sums is a very powerful result, and we will use it repeatedly.
We note the important result that: given G;= H; for each ¢ €I, then if G is the

direct sum of its subgroups G; and H is the direct sum of its subgroups H;, we can conclude
G = H (Section 6.1c).

Problems
6.16. Let G be an abelian group with subgroups G;, 1 €I1. Suppose that G = gp< U Gi> and that
i€1

G;ngp 'LerGi> = {0} for each j € I. Prove that G is the direct sum of its subgroups G;,, i€ I.
P
Solution:

We need only show that if
0 =g+ +g¢

where g; € G;, and 1/,2', ...,k are distinct elements of I, then
g1 =92 = 0 =4 =0
Suppose, if possible, that some g; is not zero, say g, # 0. Then

—gy = go+ -+ gy

But —g, €Gy, say, and gyt ---+g € gp<iLEJIGi> . By hypothesis then, —g; =0. Hence

i%£1
g1 =9y ="'+ =g, =0 and the result follows. !

6.17. Compare the construction of a direct product involving cartesian products with the construction
involving mappings by showing that an ordered pair can be thought of as a mapping. Hence show
that the two groups obtained are isomorphie.

Solution:

An ordered pair can be thought of as a mapping from {1,2}. The image of 1 gives the entry
in the first position, the image of 2 gives the entry in the second position. Let G = G; X G, and let
G be the group as constructed in Theorem 6.3 with I =1{1,2}. Let v»:G—> G be defined by
6» = (16,26) for any ¢ € G. Then » is clearly a one-to-one and onto mapping.

Also v is a homomorphism. For if ¥ = ¢+ ¢,

(0+¢)y = ¥y = (1¥,2¥%) = (16 + 1¢, 20 + 2¢)
(16,26) + (1¢,2¢) = 6v + ¢»

i

6.18. Let 7 be the ratio of the circumference of a circle to its diameter. Let G be the subgroup of the
additive group of the real numbers generated by the numbers =,72,73,.... Let G;= gp(z¥,
i=1,2,.... Prove that G = ¥ G; where P is the set of positive integers. Use the fact that

i€EP

« is not the root of any polynomial with integer coefficients.

Solution:
Clearly each element of G is of the form g, + -+ + g, where each g; belongs to one of the
groups G,, Gy, .... Then we need only show that 0 =g, + --- +g, implies that g; =g, =--+ =
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9, =0 where the g; € G;,, with 1/,...,%’ distinct elements of {1,2,...}. Now g, = 27’ where
2,€7Z and i=1,...,n. Then , ,
0 = zywl' + 2972 + -+« + 27"

If not all 2; are zero, = is the root of a polynomial with integer coefficients, contrary to the statement
in the problem. Hence the result.

¢. The homomorphic property of direct sums and free abelian groups

Let G=A®B and let H be a group W_hiclz contains isomorphic copies A and 1? of _A
and B respectively. Suppose that H=A+B (but not necessarily that H = A @ B).
What connection, if any, is there between G and H?

It turns out that H is a homomorphic image of G. This follows from Theorem 6.4.
This theorem when applied to particular cases leads also to important results: (1) Theorem
6.5 and (2) the concept of a free abelian group.

Theorem 6.4: Let G=A@® B and let H be any group. Let 6,¢ be homomorphisms of
A into H and B into H respectively. Then there exists a homomorphism
(:G~>H suchthat ¢ ,=6, { ,=¢.

Proof: If g €G, then g =a+b uniquely where a € A, b € B. Define g¢g¢ = af + bé.
¢ is uniquely defined and so is a mapping of G to H. Note that if ¢g;=a:i+ b, where ;€ A
and b; € B (i =1,2), then

(9,+9,¢ = ((@,+b,)) + (a,+b,))¢ = ((a, ta,) + (b, +b,))
(a,+a)0 + (b, +b,)p = af +a,0+Ddbo+ Db

= (1,19 + bl(i> + a20 + b2¢ = (a’1 + bl)g + (az + b2)€ - 915 + ggé
Hence ¢ is the required homomorphism as ¢, =6,  , = ¢.

In exactly the same way we can prove that if G = >, G; and if foreach ¢ €1, 0:: Gi> H
iel

is a homomorphism of G; to H, then there exists a homomorphism §4:G—-> H such that

6 ¢, = 6;. We shall often say that § extends the mappings 6;, or that ¢ is an extension of the

mappings 4;.
We use this result to prove:

Theorem 6.5: Let Gi=H; i €1l. If G is the direct sum of its subgroups G: and H is
the direct sum of its subgroups H;, then G = H.

Proof: Let 6;: Gi> H; be an isomorphism for all ¢ € I. Then by Theorem 6.4 there
exists a homomorphism 6: G- H such that 6, = 6:; for each i €1. To prove ¢ is an
isomorphism, we need only show that its kernel is trivial since ¢ is clearly onto. If g €G,
then g = g:+ -+ +¢g» where g; belongs to the subgroup G; with 1,2/, ...,n’ distinct ele-
ments of I. Thus

g0 = gibr + +-- + gubpy = hi+ -+- + hy, where h; € Hy
Then gd =0 only if each h; =0, since H is the direct sum of its subgroups H;. Since
h; = ¢9;6; and 6 is an isomorphism, we have ¢; =0 and g =0. Thus Kergd = {0}, and so
G=H.

We will now apply Theorem 6.4 when each G; is infinite cyclic. To begin with, let
C = gp(c) be infinite cyclic and H any abelian group. Note that if ¢ is a mapping of {c}
into H, then there exists a homomorphism ¢:C~>H such that 6, =¢. The homo-
morphism ¢ is simply defined by putting (rc)d = r(c¢) for each r € Z. It is readily seen
that this does define a homomorphism.
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Now let each G be infinite cyclic, Gi=gp(c:), i€l. Let X={c;|71€I}. If §: X>H

where H is any abelian group, then there exists a homomorphism 6*: 2 Gi~ H such that
1€1

6% x = 0. For, corresponding to each Gi, we know from the remark above that there exists

a homomorphism 6;: Gi~> H such that c¢i6; = ¢;#. Hence it follows by Theorem 6.4 that

there exists a homomorphism 6*: > Gi-> H which agrees with 6; on Gi. So we have the

required result. vl

Corollary 6.6: The direct sum G = > G; satisfies the following condition: for every
iel

mapping 6:X—->H, H any abelian group, there exists a homomor-
phism 6*:G —> H such that 6%y = 4.

A group G which contains a subset X such that

i) G=gpX),

(ii) for every mapping 6: X > H, H any abelian group, there exists a homomorphism
0*. G~ H such that 0*IX = 0,

is called a free abelian group. G is said to be freely generated by X and X is called a basis
for G.

We have shown that the direct sum of infinite cyclic groups is a free abehan group.
Conversely we have the following

Theorem 6.7: If G is a free abelian group freely generated by a set X = {x:| i €I},
then G is the direct sum of its subgroups G;= gp(x;) and each G; is in-
finite cyclic for all 7 € 1.

Proof: This theorem is proved by showing that G is isomorphic to a direct sum of in-
finite cyclic groups. To this end let H be the direct sum of its subgroups H;,
= > H;
iel
where H;= gp(hi) is an infinite cyclic group generated by k. (We know such a direct sum
exists by Theorem 6.3.) Let 6:X > H be the mapping defined by i = hi. Then § can
be extended to a homomorphism ¢0* of G into H, by the definition of a free abelian group.

On the other hand H is the direct sum of the infinite cyclic groups H;. Thus by Corollary
6.6, the mapping ¢: {hi| ¢ € I} > X defined by hip = 2: can be extended to a homomorphism
¢* of H into G. Actually ¢* and §* are inverse isomorphisms. To see this, suppose g € G.
Then ¢ =wmxv+ -+ +n2r where 1,..., 7 &I and ni,...,0 € Z. Accordingly,

(90%)¢* = [ni(x10%) + - -+ + ne(xr0%)]p* = (ihr + - -+ + Whr)p*
= mhre) + - +nlbrg) = maxr + -0 02y = g
and so *¢* is the identity mapping on G. Similarly ¢*9* is the identity mapping on H.
This implies that 6% is a one-to-one mapping of G onto H. For if g,¢9’ € G, then g¢g8* = g'6*
implies that (g6*)¢* = (9'0%)¢*. Since (96*)¢* =¢ and (9’6%)¢* =g’, we have g =g’
Furthermore if & € H, then h = (h¢*)§*. Thus 6* is one-to-one and onto.
Note that each G; is infinite cyclic, since #* is an isomorphism and Gi##* = H;. Finally

we show that G is the direct sum of its subgroups Gi. If 17,2/, ...,7 are distinct elements
of I and g,, ..., ¢, are nonzero elements of Gy, ..., Gy respectively, then if
g1+ - +g- =0 (6.2)

it follows that g.0*+ --- +g.0* =0. But then, as ¢:#* € Hr and g:#* =0, we have
a contradiction as H = 2 H;. Hence (6.2) does not hold. Finally gp(G:i|i€I)=G, and
so G =3 G il

i€rI
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Corollary 6.8: Every abelian group is the homomorphic image of some free abelian group.

Proof: 1f G is an arbitrary group whose elements are gi, ¢ €I, and gp(x:), 1 €I, is
infinite cyclic, then as we have seen, F = 2 gp(x) is free abelian and the mapping
iel

§:x - g; extends to a homomorphism of F' onto G.

Problems
6.19. If |gp(a)) =m, |gp(d)| =n and (m,n) =1, then G = gp(a) D gp(b) is cyclic of order mn.
Solution:
We show that G = gp(a+b). If I is the order of a+ b, then Ila-+b) =la+1b =0 implies

la = 1b = 0, by the definition of a direct sum. Consequently [ is divisible by the order of ¢ and the
order of b. Since (m,n) =1, mn|! and we conclude mn =1, so that G = gp(a +b).

6.20. Find |G| where G is the direct sum of » cyclic groups of order 3.

Solution:
Let Gy, ..., G, be subgroups of G and suppose G =G, P -+ @ G,, where each G, is of order
3. Each expression of the form g, + g, + -+ 4 g,, where g¢; € G;, gives rise to unique elements

of G. There are 8 different possible choices for g,, 3 for g,, etc. Hence the total number of possible
choices is 3+8+.--+3 = 37, Hence |G| = 3n.

6.21. Prove that A is a direct summand of G if and only if there exists a homomorphism ¢ of G onto A
such that ¢4 is the identity on A. (Hint. Use K = Kers4. Also consider g — g6 to prove
g€ A+K)

Solution:
Suppose that G = A €@ B. Then the identity homomorphism on A and the trivial homomorphism
on B extend to a homomorphism 6: G— A which satisfies the required conditions (Theorem 6.4).

Conversely, if such a homomorphism exists, let K = Ker¢ and let x €EANK. Then x = x9,
as 6|, = identity on A. But x6 =0, since z € Kers. Hence ANK = {0} and so gp(4,K)=
A @ K. Now letting ¢ €G, g6 =a for some a €A. Then (g—a)s =g —a9 =a—a =0 and
g—a€K. Thus g€ ADK and G=A D K.

6.22, A group G is said to be of exponent n if x € G implies nxe =0 and » is the smallest positive
integer with this property. Let H be the direct sum of two eyclic groups of order m, generated by
x; and «, respectively. Put X = {x,#,}. Prove that if G is any group of exponent » and ¢ is a
mapping of X into G, then there exists a homomorphism ¢* of H into G such that ¢* x = ¢. -

Solution:

Let H, = gp(x,) and H, = gp(x,). There is a homomorphism ¢,: H, > G satisfying
2,68, = x,8, for gp(x6) is cyclic and is of order dividing ». Similarly there is a homomorphism
6,: Hy > G satisfying 2469 = x,6. Thus there is a homomorphism ¢*: H, @ H, > G such that
o* H, = 61 and ¢* IH, = 62 by Theorem 6.4. The result follows.

6.23. Let G be freely generated by a finite set X, |X| = n. Prove that every element of G is uniquely of

the form myz, + - -- + m,x,, where m; € Z and x; € X.
Solution:

Let G; = gp(x;). Now by the theorem on free abelian groups we know that G =G, @ -+ @ Gy,
and each G, is infinite cyclic. Then each element of G is uniquely of the form g, + ::: + g, where
9; € G;. But we know from the theory of infinite cyclic groups that g; = m;x; uniquely. The result
follows.

6.24. Let G be the direct sum of cyclic groups G; of order 2 where i€ P, the set of positive integers.
Let E denote the set of even positive integers. Then H = gp(G;| i € E) is clearly a proper sub-
group of G. Prove that H = G.

Solution:
Let 6;: G,—> Gy for all i€ P be an isomorphism. (Such an isomorphism exists, since all the
G; are cyclic of order 2.) We apply Theorem 6.5 to obtain the result.
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6.25. Let G =A @ B where A is cyclic of order 32 and B is eyclic of order 52. Prove that aut(G) =
aut (4) @ aut (B) (hard) and hence compute |aut(G)l. (aut(G) is the automorphism group of G
(see Section 3.6a, page 83).)

Solution:

If o€ aut(A4), then a can be used to form an element of aut(G) by letting it act as the
identity on B. (Theorem 6.4 states that a extends to a homomorphism. We must check that it
is one-to-one and onto.) Similarly for elements 8 of aut(B). We use the symbols a«*, B8* to
represent corresponding automorphisms of G. Note that

(¢ + b)a*B* = (aa+b)B* = aa+ bB = (a+ b)B*a*
from which «*B* = f*a*. Note that o* = g8* implies o* = 8* =, the identity automorphism.

The mapping &« = «* is an isomorphism of aut (4) into a subgroup of aut (G). The mapping g - 8*
is an isomorphism of aut(B) into a subgroup of aut(G). As (aut(4))*n(aut(B))* = {}, and as
the elements of (aut (4))* commute with the elements of (aut (B))*, we have (aut (4))* + (aut (B))* =
(aut (A))* @ (aut (B))*, by Theorem 5.16, page 144. Now let 6 € aut(G). ¢, induces an auto-
morphism 4, on A, for A¢ must go into a subgroup of order 9 and by Sylow’s theorem there is only
one subgroup of order 9 (as G is abelian). Similarly ¢, induces an automorphism ¢z on B. Then

(a+b)esey = (ao+b)ey = ao + be = (a+b)e
from which 0:0; =¢. Thus aut(G) = (aut (4))* @ (aut (B))* and, by Theorem 6.5,
aut (G) = aut(4) @ aut(B)

To compute [aut(G)] we must compute |aut(A)| and |aut(B)]. Let o« & aut(4) and let
A = gp(a). « must take a onto an element of order 9; so if aa = a’, (r,3) = 1. Hence the pos-
sibilities are r = 1,2,4,5,7,8. Each of these gives rise to an automorphism of 4, as can be checked.
Thus [aut (A)| = 6. Similarly [aut (B)| = 20. Accordingly, |aut(G)| =6 X 20 = 120.

6.2 SIMPLE CLASSIFICATION OF ABELIAN GROUPS,
AND STRUCTURE OF TORSION GROUPS

a. Tentative classifications: torsion, torsion-free, and mixed

Consider the following three examples of abelian groups: @, the additive group of
rationals; @Q/Z the factor group of the additive group of the rationals by the integers;
C, the multiplicative group of complex numbers. Each of these groups is not isomorphic
to the others, but how would we prove that? One way is to examine the orders of the
elements of the groups. Now every element of @ except 0 is of infinite order and every
element of Q/Z is of finite order. For if r € Q, r=m/n where m,n are two integers.
Thus n{r+2)=nr+Z =m+Z = Z. Let us, to avoid confusion, continue to use the multi-
plicative notation for C. We assert that C has elements of infinite order and also elements
of finite order. Recall that the identity of C is 1. Note that (—1)2=1 implies that —1 is
of order 2 and 8" =1 if and only if r = 0. Hence —1 is of finite order and 3 is of infinite
order. Summarizing, we have
(i) @ has every element but the identity of infinite order.

(ii) Q/Z has every element of finite order.
(iii) C has elements of finite order and elements of infinite order.

It is then easy to see that the three groups are not isomorphiec.

If G is a group in which every element other than the identity is of infinite order, G is
said to be torsion-free. If G is a group in which every element is of finite order, G is said
to be a torsion group. If G has both an element of infinite order and an element (not equal
to the identity) of finite order, G is said to be mized. These three concepts provide us with
a rough classification of abelian groups and, as we have seen above, distinguish between
Q, Q/Z and C.
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Problems
6.26. Let G be the direct sum of torsion groups. Prove that G is a torsion group.
Solution:
Let G = E G. If g€G, g =2+ -+, for some integer » and «; belongs to some G;.
If the order of 19061- Iis p;, then
(Pre Py = (pyo - opog+ e Pyt P, = 0+ +0 =0

6.27. Prove that Q/Z and G, the direct sum of groups G; (1€ Z) where each G; is cyeclic of order 2, are
not isomorphic.

Solution:
Following the method of Problem 6.26, it is easy to prove that every nonzero element of G
is of order 2. Since 1+ Z is of order 3, @/Z and G are not isomorphic.

6.28. Prove that Q/Z and G, the direct sum of groups G; (€ Z) where each G; is cyclic of order 3i, are
not isomorphiec.

Solution:
G is easily shown to have every element of order some power of 3 by following the method
of Problem 6.26. Since 1+ Z is of order 4 in Q/Z, G and Q/Z are not isomorphiec.

b. The torsion subgroup

In Section 6.2a we introduced a tentative classification of abelian groups into torsion-
free, torsion and mixed groups. In this section we consider the question of whether it
would not be possible to split a mixed group into a torsion-free group and a torsion group.
This would provide the following program for investigating abelian groups:

(1) Investigate torsion-free groups.

(2) Investigate torsion groups.

(8) Investigate how they may be put together to form mixed groups.

Such a program is found to be too difficult to accomplish completely, but it does lead
to some significant results.

Let T(G) be the set of all elements of G of finite order. Then T(G) is a subgroup of G,
as we show in the following

Theorem 6.9: T(G) is a subgroup of G (termed the torsion subgroup of G). G/T(G) is
torsion-free.

Proof: Let a,b € G be of order m,n respectively. Then
mn(a —b) = mna —mnb = 0—-0 =0
Thus if a,b € T(G), a—b € T(G) and T(G) is a subgroup of G.

Now consider G/T(G). Assume g+ T(G) is of finite order n, ie. n(g +7T(G)) = ng +
T(G) = T(G). It follows that ng € T(G). As T(G) consists of all the elements of G of
finite order, there exists m such that m(ng) = 0. Then g is of finite order and g € T(G);
hence ¢+ T(G) = T(G). Therefore the only element of finite order in G/T(G) is the zero
T(G). Thus G/T(G) is torsion-free.

Problems
6.29. Prove that if G is a group and H a subgroup of G such that G/H is torsion-free, then H contains
the torsion subgroup of G.

Solution:

Let g in G be of finite order. Then g + H is of finite order in G/H. Since G/H is torsion-free,
g+ H = H. This means g € H, and so every element of finite order in G is contained in H, i.e.
the torsion subgroup of G is contained in H.
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6.30. Is the set consisting of 0 and of all elements of infinite order of a group automatically a subgroup?

Solution:

No. For example, let G = H@ K where H = gp (k) is infinite cyclic, and K = gp (k) is of
order 2, Now h+k and —h are both of infinite order. However (h+k)+ (—h) = k is of finite
order.

6.31. Prove that if the set consisting of 0 and the elements of infinite order of a group G constitutes a
subgroup, then G is either a torsion-free group or a torsion group.
Solution:

Suppose G is mixed and H = {h| h € G and h is either 0 or of infinite order}. Since G is
mixed, we have g € G of infinite order and g'(#0) € G of finite order. Now ¢’ — g is of infinite
order so that (9’ —g) € H. But as H is a subgroup, (9’ —g)+ g = ¢’ € H. Therefore g’ is 0 or an
element of infinite order, contradicting the choice of g’. Hence G is not mixed.

6.32. Prove that if T is the torsion subgroup of G, then TNH is the torsion subgroup of any given
subgroup H of G.
Solution:

If a € H is of finite order, then a € T. Hence a € TNH, and so the torsion subgroup of H
is contained in TNH. Conversely TN H consists of elements of finite order, and so TN H is contained
in the torsion subgroup of H. Thus we have proved that TN H is the torsion subgroup of H.

6.33. Find the torsion subgroup of R/Z where R is the group of real numbers under addition and Z is
the subgroup of integers.
Solution:

Suppose r + Z is of finite order (r € R). Then for some nonzero integer n, n(r +2Z) = Z. But
nir+Z)=nr+Z, and so nr € Z. This means that r is a rational number. Thus T(R/Z)C Q/Z,
where @ is the subgroup of rational numbers. On the other hand, if o+ Z € Q/Z, then a = m/n
where m,n € Z and n# 0. So

nle+2) = nim/n+2) = nim/n)+Z = m+2Z = Z
Hence a + Z is of finite order and Q/Z C T(R/Z). Thus we have proved that Q/Z = T(R/Z).

¢. Structure of torsion groups. Priifer groups

A group G is called a p-group or a p-primary group for some prime p if every element
of G is of order a power of p. (If G is finite, it follows that the order of G is a power of p;
see Problem 5.6, page 132. The definition of p-group given here thus coincides with that
of Chapter 5 when the p-group is finite.) In this section we show that a torsion group is
built out of p-groups. Thus the study of torsion groups becomes essentially the study of
p-groups.

Theorem 6.10: Let G be any torsion group and let G, = {g| g has order a power of p},
p any prime. Then if II is the set of all primes,

G = 3G,

pEI
Proof: We let the reader show that each G, is a subgroup of G.

Suppose that g € G and is of order p D2 D, Py, ..., Dn distinet primes and 7y, ..., 7a
positive integers. Let ¢ =p}'--- p;"_‘ll; then (g,p,”) =1. Thus there exist integers a and
b such that ag+bp»=1. It follows that g = aqg +bp,"g. Now agg is of order p,*, and so
aqg € Gp,. bp g is of order q. Since q is less then the order of g, we may assume inductively
that bp)"g is the sum of elements belonging to Gv,_,,Go,_,, ..., Gr;. Thus every element
of G can be expressed as the sum of elements belonging to the G,, i.e. G is generated by the

subgroups G,.
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To show that G= Y G,, we must prove that g:+ -+ +g.=0 (where g: € Gp, and
p €I
P1, . .., Pn are distinct primes) occurs only for g1 =gs= .- =g.=0.

We proceed by induction on n. For n =1 it is certainly true. If true for n, consider
g1+ -+ guer =0
and let g.+1 be of order p;,,. Then
Prer91+Drigg2t+ oo+ D5 gner = 0
and Prloggri+ - +07 0. =0

By the inductive hypothesis, we have

Prs191 = Dpeyf2 = 0 = Ppygfn = 0
Now p;,,91 =0 implies g1 = 0 as g: is of order some power of p; and p: # Pn+1. Arguing
similarly for g2, ...,9., we have g1 =¢ga= - = ¢, =0. Hence also ¢g.+1 =0 and we con-
clude that G = Y G,.
p €ETII

The subgroups G, are called the p-components of G.

Example 1: Let us apply this theorem to Q/Z, i.e. the additive group of rationals modulo the
integers. Q/Z is clearly a torsion group.
Q/Z), = {x+Z| ®+ Z of order a powerof p} = {x+Z| px € Z}
= {m/p"+ Z | for various integers » and 0 = m < p7*4}
By the theorem, Q/Z = I (Q/2),.
p €I
(Q/Z), is called the p-Priifer group (also called a group of type p=). In Section
6.4 the p-Priifer groups will be fundamental. Note that the p-Priifer group
2]
Q/Z), = LJ1 C, where C,=gp(l/p"+2), since (Q/Z), = {m/p" + Z | for vari-
r= -]
ous integers r and 0 = m < pr—1}, Clearly (Q/2),2C, and (Q/Z),C U C,. The
result follows. =1

We now have at our disposal cyclic groups of all orders, the additive group of rationals,
and the p-Priifer groups, together with all their direct sums. These, as we shall prove,
constitute a large class of abelian groups.

Problems

6.34. Use Theorem 6.10 to prove that an abelian group of order pq, where p and ¢ are different primes,
is the direct sum of a cyclic group of order p and a cyclic group of order q.

Solution:

Let G be of order pg. Then by Theorem 6.10, G = G, @ G,; for if r is any prime other than
por q, G,={0}. Why does G, = {0}? If g €G,, then, as G is of order pg, pqy = 0. Hence r
divides pg, which is not the case. Note that G, {0}, G, {0} by Proposition 5.9, page 137.
|G| divides pg. Since G, # {0}, |G,| = p or g. As the elements of G, are of order a power of p,
it follows that |G,| = p. Similarly |G, = q. Hence, as the only group of prime order is cyclic,
we have the result.

6.35. Show that a direct sum of p-groups is again a p-group.
Solution:
Let G = 21 G; where each G; is a p-group. Let g €G. Then g =g;+ -+ +g, where each
i €

]
9;€ Gy, 1,2, ...,n €1. Let p” be the maximum order of the g;; Then p'g = 0. Thus the order
of g is a power of p, and so G is a p-group.
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6.36. Show that if G is a p-Priifer group, for each integer k = 0 and each element g € G there exists
an element h € G such that kh = g. (We shall call a group with this property divisible.)
Solution:

Let g€ G. Then g = m/p" + Z where 0 = m < p’. Let k = psl where p and [l are co-prime,
and let hy = m/p7+s + Z. Then pshy = g. Asl and p"*s are co-prime, there exist integers a and &
such that al + bprts = 1. Therefore

hy = (al+bp™ts)hy = alhy + bp™+sh; = alhy

Put h = ah;. Then
kh = pslh = pslah, = pshy = ¢

o0
637. Let G= 3 G; where G; is a cyclic group of order p; and p;,p, ... are the primes in ascending
i=1
order of magnitude. Let H be a p-Priifer group for any prime p. Prove that G is not isomorphic
to H.
Solution:

Let p; be a prime different from p. Then the p;th component Gpj # {0} but Hpj = {0}. Thus
@G is not isomorphic to H.

d. Independence and rank

We introduce here an important concept in abelian group theory, the concept of rank.

Let G be an abelian group. A subset X of G is called independent if whenever i, ..., %
are distinct elements of X and ny, ..., n, are integers such that
L+ o+, = 0 (6.3)
then nx; = -+ = n.2, = 0.

Note that if G is torsion-free and X is independent, then equation (6.3) implies n: =
fe=---=n,=0. Suppose X = {xi|t €I} and xi+#*x; for i+#j. Then if X is an in-
dependent set, it follows readily that gp(X) = 3 gp(xy).

iel

We need one further definition. An element x in a group G is dependent on a subset

Xof Gif
ne+mr+ - e = 0

for some choice of zy, ...,z € X, n and n; € Z and nx = 0. In other words, x is dependent
on the subset X if there is an integer n with nz 0 and nx € gp(X). Wesay YCG is
dependent on X C G if every element of Y is dependent on X. Observe also that if G is
torsion-free with subsets X, Y and W and if X is dependent on Y and Y is dependent on W,
then X is dependent on W. For if 2 € X, then for some integer =+ 0, and integers
N, ooy Ny, BT = WY1+ -+ +19Y- (¥i €Y). Since Y is dependent on W we can find integers
m1#0, ..., m 70 such that my: € gp(W) for ¢=1,...,r. Put m=my---m. Then
clearly mny; € gp(W) for ¢=1,...,r, and consequently mnxz € gp(W). Furthermore,
since G is torsion-free, mnx + 0. Thus every element of X depends on W.

The main result that we shall now prove is called the Steinitz Exchange Theorem.

Theorem 6.11: Let G be torsion-free and let A = {a1,...,an} be an independent subset
of G. Suppose B = {bi,...,bs} is another subset of G such that 4 is
dependent on B. Then n=m and B depends on A UC where C is a subset
of Band |C|=n—m.

Proof: We will use induction on m. For m =1 it is clear that n = m. Now a; depends
on B means that there exist integers z, ..., 2, such that 2+ 0,

201+ 21Dy + v+ + Zabn = 0
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and thus for some integer 7, 2;# 0, 1 =7 =n. Hence B depends on {a:}U(B — {b;}). Thus
the result holds for m =1, with C = B — {b;}.

Next we assume that the result holds for m =, and consider the case m =r+1. Then

by the inductive hypothesis, n=r. Now {a,...,a,} depends on B, and so inductively B
depends on {ai,...,a;}UD where DCB and |D|=n—r. But {a.+1} depends on B and
Bdependson {a,...,a.} UD. Then by our remarks above, {a,:+1} dependson {ai,...,a:} UD.
Thus we can find integers y+#0, ¥y, ..., ¥, 21, ..., 2s such that

Yorr1 = Y101+ <+ Yty + 22ds + -0 +2sds,  dy,...,ds €ED
Suppose, if possible, that z; =2:= --- = 2,=0. Then ya.+1 = y1¢1+ - -+ + y-a, implies that
the elements a;, ..., a,+1 are not independent. So some 2z;+ 0. Let C =D —{d;}. Then it

is clear that {ai,...,a.}UD depends on {ai...,a,+1}UC. Since B depends on
{ai, ...,a;} UD, then B depends on {ai,...,a+:}UC. Finally CCB and |C|=|D|—1.
Thus ICl = m—71—-1=n—-(r+1) =n—m
as desired, and the proof of Steinitz’s theorem is complete.

Let us call a subset S of a torsion-free abelian group G a maximal independent set
(i} if Sis independent and
(ii) if g €G and g € S, then SU{g} is not an independent set.

Suppose now that G, a torsion-free abelian group, has a maximal independent set S
that is finite. Let T be any other finite maximal independent set. By the Steinitz exchange
theorem, |S|=|T|. Also by the same theorem, |T|=|S|. Hence we can without ambiguity
define the rank of a torsion-free abelian group G which has a finite maximal independent
set S to be |S|. If G does not have a finite maximal independent set S, we shall say G is of
infinite rank.

It is eagy to see that if G and H are isomorphic groups, then they have equal ranks.
As a consequence of these remarks we obtain a result concerning free abelian groups.

If F is free abelian with a finite set of free generators X, then X is a maximal in-
dependent set of F (see Problem 6.41 below). Hence the rank of F' is |X|. Similarly if
F is also freely generated by a finite set Y, then rank of F =|Y|. Hence |Y|=|X|. Thus
we have

Corollary 6.12: If F is a group freely generated by two finite sets X and Y, then |X|=|Y]|.

We have as yet not proved that all abelian groups have maximal independent sets. To
do so we need a result called Zorn’s lemma. Before stating the lemma, we consider the
following examples:

(a) Let P = (A, B,C,D}, where A= (0,1}, B={1,2}, C= (0,2}, D= {0,1,2,3)}.

We inquire: does P have a largest element, i.e. one that contains all the elements of
?? Clearly it does, for DDA, DoB, DOC and D2D. Thus D is a largest element.

(b) Let ¢ = {A,B,C,E}, where A, B, C are as in (a), and E = {1,2,3}. Now there is no
largest element of . We search for some concept replacing that of a largest element.
Note that although E is not a largest element, no element other than itself contains it.
Then E is called a maximal element. Similarly C and A are maximal elements, whereas
B is not.

(¢) If |P| is finite, then it i clear that P has maximal elements. For we choose any element
A, of P. If there is an element of P that contains A; properly, we call it A,. If there
is an element of P that contains A. properly, we call it As. Continuing in this way we
get a chain of elements of P, A;CAsC---CAiC---. As P has only a finite number
of elements, this chain ends at A,, say. Clearly A. is a maximal element.
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(d) On the other hand, not all sets P of sets have maximal elements. For example, let
A,={0,1,...,n} for n=1,2,.... Let P = {Ai| i€ P, the positive integers}. Then
P has no maximal element. For if X € ¢, then X = A; for some ¢, and X C 4;+1, but
X~ A1

Zorn’s lemma establishes a criterion for determining whether a set P of sets has a
maximal element. What one needs is some condition for handling an ascending sequence
of sets such as the A; in (d). To state the criterion we need some definitions.

(1) We define A to be a maximal set in P if for each X € P, XD A implies X = A.

(2) Let ( be a subset of ¢ with the property that if X,Y € , then either X CY or
Y CX. Then ( is called a chain in ¢ (in (d) above, ® itself is a chain).

We are now in a position to state Zorn’s lemma: Let ¢ be a set of sets. Suppose that
for every chain ( in P, XL€JC X is an element of . Then P has a maximal element.

We will not prove Zorn’s lemma. We take it as an axiom. We could assume a more
innocent sounding axiom instead, namely the axiom of choice, which says that an element
from each set may be chosen from a collection of sets. The proof of Zorn’s lemma can be
derived from the axiom of choice (see Problem 6.42 for a sketch of the proof).

Using Zorn’s lemma we prove
Theorem 6.13: Let G be any abelian group. Then G has a maximal independent set.

Proof: Let ? = {X|XCG and X an independent set}. Let ( be any chain in ?P.
Let ¢ = {Xi| ¢ €I}. To apply Zorn’s lemma we must show that U = Y, X; € P, Clearly
U CG. Is U an independent set? If not, U is a dependent set. This means that it is pos-
sible to find distinet elements u., ..., . € U and integers ri, ..., 7, such that

UL+ - + Talln = 0

with at least one ru; 0. As U= Y, X;, w1 € X1, us € X»- where 1/, 2’ are elements of
I. Then since ( is a chain, either X CX> or Xs CX,. Thus u,, u: both belong to some
element of . Continuing the argument in this way we find that w,, ..., u. all belong to
some X; € C. But this is a contradiction, since every element of ( is independent. So U
is independent and U € . We conclude, using Zorn’s lemma, that ¢ has a maximal ele-
ment and this is precisely the maximal independent set required. Hence the result follows.

From Theorem 6.18 we conclude that if G is of infinite rank, then G has an infinite
maximal independent subset.

Problems
6.38. Find the rank of the additive group @ of rationals.

Solution:
If m,/n; and my/n, are elements of @, my, my, 1y, Ny integers, then

(man)(my/ny) + (—myng)(me/ng) = 0

Thus every set of two elements is dependent. Accordingly the rank of @ is 1.

6.39. Show that the p-Priifer group has no independent set consisting of two elements.

Solution:

Let %, y be elements of G, a p-Priifer group, # < 0, ¥y # 0. Then =z,y € C,, say, for some r
(see Example 1, page 191, for the notation C,). Let C, = gp(g) and let gp(x) be of order pt. Since
pr—tg is of order p!, gp(pT—tg) = gp(x). Thus gp(x) = gp(plg) and gp(y) = gp(p’g) for some i, j.
If i=7j, it follows that gp(y) 2 gp{x). (If i=j, we merely reverse the roles of # and y.) Con-
sequently « = ry for some integer 0 < r < order of y. Thus (—r)y +1+x = 0 and x,y are not
independent.
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6.40.

6.41.

6.42.

Prove that if H and K are torsion-free groups of finite rank m and n respectively, then G = H® K
is of rank m -+ n. (Difficult.)

Solution: .

Let hy, ..., h,, be a set of independent elements of H, and ky,...,k, a set of independent ele-
ments of K. Then the set hy, ..., h,, kg, ..., k, is independent. For if »hy + -+ + rph, + sk +
oo+ 8.k, = 0, then

. rihy o b, = —siky - = gk
But HNnK = {0}, and so

riby+ s rghy, = —8iky— o — 8k, = 0
Thus, by the independence of hy, ..., h, and ky, ..., k,,
Ty = Tg = 0 =Ty = 8§ = 8 = =8, =0
Now suppose that {hy, ...,k Ky, ..., k,} is not maximal; say, there exists an element h + k where
h€H and k€ K such that {hy,...,hy,ky, ..., ky B+ Kk} is independent. Since {hy, ..., Ry, k} is
not independent, there exist integers ¢, ..., ¢y, t not all zero such that
tihy+ oo 4 tphy +th = 0

If ¢t =0 we have a contradiction to {%, ..., k,,} being independent, as then at least one of ¢, ..., ¢,

is nonzero. Hence t # 0.
Next, {k,k,,...,k,} is not independent, i.e. there exist s,s;,...,8,, not all zero, such that
sk+sky+ -+ + sk, = 0. Hence arguing as above, it follows that s # 0. Thus
stihy + - + styh, + st(h+ k) + tsky + -+ ts kK,
= s(th+tihy+ -+t hy) + tsk+ sk + - +s8,k,) = 0

But as st £ 0, {hy, ho, ..., Ry, Ky, ..., Ky, B+ Kk} is not independent. Thus {hy, ko, .. .5 B, Ky, - -, Ky}
is a maximal independent set and rank H § K = m+ n.

(@) If F is free abelian with a finite set of free generators X, prove that the rank of F is |X|.
(b) Prove that F' cannot be generated by fewer than |X| elements.

Solution:
() Let X = {x{,...,%,}. By Theorem 6.7, page 186,

G = gp(x;) O gpxy) © -+ D gpwy,)

We proceed by induction on n. For n = 1, G is infinite cyclic, and the rank of G is clearly 1.
If true for n =17, suppose n=r+1. Then gp(x,) P --+ D gp(x,) is of rank r, and G is
the direct sum of a torsion-free group of rank » and a group of rank 1. By Problem 6.40, G is
thus of rank » + 1, and the result follows by induection for all n.

(b) Let G =gpl9y,...,9,). X is an independent set. Then by the Steinitz exchange theorem
(Theorem 6.11), as X is dependent on {9y, ...,9,}, n = r. Thus we obtain the result.

Let X be a set and P a collection of subsets of X. Suppose that if A4 € P, all subsets of A belong
to P.

() Prove that if A € P is not a maximal element, there exists a set A* = {4,2} € P with
s & A.

(b) Assume that A* = A if A is maximal, otherwise that A* has been defined equal to {A,«} with
x & A as stated in (a). Let C be a chain in ¢. Suppose that if C;,, ¢ €I, is a family of elements
in C, then U C;€ (. Suppose also that if A€ (, A* € (. Prove that P has a maximal
element. ¢!

Solution:
(@) If A € P is not maximal, there exists a set B € P such that B# 4 and B2 A. Hence there
exists * € B— A. Since {4, x} is a subset of B, {4,x} € P.

(b) Let M= (U C. Then ME€(, and so M*€ (. But M*DOM. However, M contains every
CEC
element of (; in particular, it contains M*, Therefore M = M* and we conclude that M is a
maximal element of P.

Remarks. (1) In assuming that A* can be defined we used implicitly the axiom of choice.
(2) The proof of Zorn’s lemma requires converting the theorem into this problem. For details
see P. R. Halmos, Naive Set Theory, Van Nostrand, 1960.
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6.43. Let G be an arbitrary non-abelian group. Prove that G has a maximal abelian subgroup (i.e. one
that is not properly contained in an abelian subgroup of G).
Solution:

We use multiplicative notation for G since it is not abelian. Let ¢ be the set of all abelian
subgroups of G. Let  be a chain in P and let U = UCX. Then U is a subgroup of G. For if
X €

g,h €U andif g belongs to X, €(C and h to X, € (, then as either X, CX, or X,CX,, it fol-
lows that g, 2 belong to some element X of (. Hence gh~!€ X as X is a subgroup, and gh—1& U.
Also, gh = hg as X is an abelian subgroup of G. Consequently U is abelian. Hence U € . By
Zorn’s lemma, ¢ has a maximal element M, say. M is the maximal abelian group sought.

6.3 FINITELY GENERATED ABELIAN GROUPS
a. Lemmas for finitely generated free abelian groups

In Section 6.3b we will show that all finitely generated abelian groups are direct sums
of cyclic groups. We will do this by using a lemma (Lemma 6.15) about subgroups of free
abelian groups. The relationship between Lemma 6.15 and finitely generated abelian
groups is easily obtained by noting that all abelian groups are factor groups of free abelian
groups.

Lemma 6.14: Let G = gp(a) ® --- © gp(a.) be the direct sum of infinite cyclic groups.
If bi=a1+7r02+ -+ +r.an, where re, ...,7r, are any integers, then
G = gp(b:) © gp(az) © - -+ D gp(an)

Proof: As gp(bi, as, ...,ax) = gp(ay, ...,as) = G, we must only show that if s, ..., 8n

are any integers, then
S1b1 + 822+ -+ + Suln, = 0 (6.4)

implies all s; are 0.
Substituting b, = a; + a2+ - - - + 7xax into (6.4) and collecting terms, we obtain
S$1a1+ (Se+s1r2)ae + -+ - + (Sn+S1M)an = 0
As G={a:1} ® --- @ {a.},

St = 82+ 8112 = -+ = Sp+81r, =0
Thus s; =8 = -+ =8, =0 and the proof is complete.
The next lemma is a crucial one. We recall that a basis ¢y, . . ., ¢, for a finitely generated

free abelian group G is a set of elements such that G = gp(c:)) @ --- @ gp(c.) (see Section
6.1c).

Lemma 6.15: Let G be free abelian, the direct sum of n cyclic groups. Let H be a subgroup
of G. Then there exists a basis ¢1,...,¢, of G and integers i, ..., %, such
that H = gp{uiC1, UsCs, . . ., UnCh).

Proof: We use a,b,c to denote basis elements of G, h,k,1 to denote elements of H,
q,7,8,t,u,v to denote integers. We prove the result by induction on n. For n=1, G is
eyclic and the result is a consequence of Theorem 4.9, page 105. Assume the result is true
for free abelian groups of rank less than n where n > 1. Let G be free abelian of rank n.
We assume also that H < {0}. For if H = {0}, we may take an arbitrary basis ¢i, ..., ¢
for G. Then H = gp(uicy, ..., UnCn) Where u; = -+ =uy = 0.

To every basis we associate an integer, called its size (with respect to H). Let {ai, ..., an}
be a basis for G and let ¢ be the smallest nonnegative integer such that there exists h € H
with

h = qai+ qa0z + -+ + Qulln, Qo, ..., qn integers (6.5)
Then ¢ is termed the size of the basis {ai, as, .. ., ax}.
Assume {ay, . ..,a,} is a basis of smallest size, i.e. if {b1, ..., ba} is a basis of G, then the

size of {by, ..., bn} is not less than gq.
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Let & be as in equation (6.5). We show that ¢ divides ¢, ...,qn». From the division
algorithm, if ¢; is not divisible by q, ¢: = r.q +3s; where 0 <s; <q. Hence

h/ = q((h +/ria/i) + .- + 8 + e+ Qnly

But if we put by =ai, ba=as, ..., bi=a1+7ra;, ..., bn = 0., we obtain a basis by Lemma
6.14. Furthermore this basis is of smaller size than the size of {as, ..., a.}, contrary to our
assumption. Thus s; =0 and ¢q divides ¢; for 71 =2,...,n. Let ¢;=7i¢q. Then

h’ = (I(al +7'2a2 + - +/rnan)
Let ¢1=a;+ 72+ -+ +7ruan. Then, by Lemma 6.14, {¢1, as, ..., a.} is a basis for G. Also
ho= qe (6.6)

If k=tai+ -+ +tw, € H, it follows that ¢, is divisible by q. For if ¢ = ug +v with
=9 < q, then Il =k—uh € H has v as its coefficient of a;.. As v < g, by the minimality

of q, v =0. Therefore
Il = kE—uh € gplas, ...,a)

Hence I € gp(as, ...,an)NH =L, say. From this we conclude that if k¥ € H, then

k= uh+1 (6.7)
where [ € L.

By the inductive hypothesis there exist a basis ¢, ..., c, and integers us, ..., %. such
that L is generated by wuecs, ...,u.cn. Hence by (6.7) every element of H belongs to
gp(h, uscs, . . ., Uncn). On the other hand, H contains k,uscs, . . ., Uncn. Thus

H = gp(h, U2Cy, . . ., Uncn)
Put 4, =4q. By (6.6),
H = gp(uicy, UsCs, . . ., UnCn)

Algo, ¢1, ...,¢s is a basis for G. Hence the result follows.

Note that if any u; is negative, we can replace ¢; by its inverse —¢;. In this manner we
can assume that the u; are nonnegative.

Lemma 6.16: Suppose G=A®B. Let A B: be subgroups with A, CA, BiCB and
N=A,+B;. Then G/N = A/A, ® B/B,.

Proof: Let K = A/A, ® B/B;, and let 6: A> A/A, and ¢: B> B/B; be the natural
homomorphisms. 6, ¢ extend to a homomorphism ¥ of G into K. Then Ker ¥ D Kerd = 4,
and Ker¥DKer¢ =B;. Thus Ker¥v D A;+B;. Now let x €Ker¥. Then x=a+b,
a€A beB. z¥ = (a+ A1)+ (b+Bs) and this is the identity element only if a € A,
and b € B;.. Hence x € A1+ B;, and so Ker¥ = A;+ B;. By the homomorphism theorem
(Theorem 4.18, page 117) G/N = K and the result follows.

Corollary 6.17: Let G be free abelian with basis ¢i,...,¢.. Let H = gp(ucy, . . ., UnCx)

where ui, . . ., U, are nonnegative integers. Then G/H is the direct sum of
cyclic groups of orders w1, . .., un where ui = u; if %+ 0 and % =« if
Ui = 0.

Proof: The result follows by repeated application of Lemma 6.16.

b. Fundamental theorem of abelian groups
The following theorem is called the fundamental theorem of abelian groups.

Theorem 6.18: Let G be a finitely generated abelian group. Then G is the direct sum of a
finite number of cyclic groups.
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Proof: G = F/H where F is a finitely generated free abelian group (Section 6.1¢). By
Lemma 6.15, F' has a basis ¢y, . . ., ¢, such that H = gp(uscy, . . ., uacs) for some nonnegative
integers u, ..., %,. We now apply Corollary 6.17 to conclude that G = F/H is the direct
sum of cyclic groups.

Corollary 6.19: If G is finitely generated, it is the direct sum of a finite number of infinite
cyclic groups and cyclic groups of prime power order.

Proof. 1t is only necessary to show that a cyclic group of composite order is the direct
sum of cyclic groups of prime power order. This we have already done in Problem 6.19,
page 187.

Corollary 6.20: If GG is a group with no elements of finite order and G is finitely generated,
then G is free abelian.

Proof: G is the direct sum of a finite number of cyclic groups each of which must be
infinite cyclic as G has no elements of finite order. Thus the result follows.

Problems
6.44. Prove that every finitely generated torsion group is finite,
Solution:
By the fundamental theorem of finitely generated abelian grcups, if G is finitely generated it is

the direct sum of a finite number of cyclic groups. If G is a torsion group, then it is the direct sum
of a finite number of finite cyclic groups. Hence G is finite. (Compare with Problem 4.31, page 105.)

o0
645. Let G = X G; where G; is a cyclic group of order 2 for i=1,2,.... Prove that G is not
i=1
finitely generated.

Solution:

Every element in G is of finite order, for if g(1)E G, 9 =g,+9,+ '+ g, 9; € G; (i € Z),
and 29 = 2g;+ - +2g, = 0+ .- +0 = 0. Thus G is a torsion group. If G were finitely gen-
erated. G would be finite by the preceding problem. But G is clearly infinite. Therefore G cannot
be finitely generated.

¢. The type of a finitely generated abelian group

In Section 6.3b we proved that a finitely generated abelian group is a direct sum of
cyclic groups. However, such a decomposition is not unique: first, the direct summands
are not unique (see Problem 6.46 below); moreover, the number of direct summands can
vary (see Problem 6.19, page 187).

We say that two decompositions are of the same kind if they have the same number
of summands of each order. For example, two decompositions of a group into the direct sum
of three cyclic groups of order 4 and two cyclic groups of infinite order are said to be of
the same kind. A concrete example of two decompositions of the same kind is given in
Problem 6.46.

As we remarked in Corollary 6.19, every finitely generated group can be decomposed
into the direct sum of a finite number of cyclic groups of prime power or else infinite order.

Our aim is to prove

Theorem 6.21: Any two decompositions of a group G into the direct sum of a finite num-
ber of cyclic groups which are either of prime power order (+ 1) or of in-
finite order, are of the same kind.

Proof: We shall separate the proof into four cases: (1) both decompositions involve only
infinite cyclic groups, (2) both decompositions involve only cyclic groups of order a power
of fixed prime p, (3) both decompositions involve no infinite cyclic groups, and (4) the
general case.
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Case 1. G=1L& - 0L =1 -l
where I, ?i for j=1,...,k and i=1,...,1l respectively, are infinite cyclic groups.

From Corollary 6.12, page 193, we conclude that k =1. (Alternatively we may
proceed as in Problem 6.52.)

Case 2.

Both decompositions involve only cyclic groups of order a power of a fixed prime p.
We shall write for any integer n, nG = {ng| g € G}. If G is a group, nG is a subgroup
(Problem 6.53). To prove case 2 we will need the following lemma.

Lemma 6.22: Let G=A® B. If nis any integer, then nG = nA © nB.

Proof: As nANnuB CANB = {0}, gp(nd,nB)=nA ®nB. If g €nG, there exists
he€ G such that nh=¢9. Let h=a+b,a €A and b €B. Then g = nh=na+nb.
Accordingly nG CndA ®nB CnG and so nG =nd © nB.

Corollary 6.23: Let G=A,:® - -+ ® Ax. Let n be an integer. Then
nG = nA:® - ® nAx

Proof: We apply Lemma 6.22 to one direct summand at a time. Then the result
follows.

Corollary 6.24: Let G be expressed as the direct sum of k; cyclic groups of order pi,
1=1¢=1r. Then pG is expressible as the direct sum of k; cyclic groups
of order pi~! where 2 =1 =1,

Proof: This is an immediate consequence of Corollary 6.23 and the fact that if A
is cyclic of order p?, pA is cyclic of order pi~1. Hence the corollary follows.

We are now in a position to prove case 2. We proceed by induction on the order of
G. If |G]=1orp, then the result is immediate. If the result is assumed true for all
groups of order less than n that satisfy the conditions of case 2, then let |G| =n. Sup-
pose G is expressed as the direct sum of k; cyclic groups of order pi for 1 =¢=7, and
also as l; eyclic groups of order p? for 1=j7=3s. Then pG is expressible (by Corollary
6.24) as the direct sum of k: cyclic groups of order pi~! for 2=14 =1 on the one hand,
and as the direct sum of I cyclic groups of order pi-! for 2=1i{=3s on the other. As
|pG| < |G|, it follows by the induction assumption that r =s and ki=1U for 2=1i=r.
Now we must still prove that ki =14L. But |G| = p*(p?* - (p7)e = pu(p?e - - (p7),
and so 1 = k. Thus we have proved both decompositions are of the same kind, as
required.

Case 3.

G is expressed in two ways as the direct sum of a finite number of cyclic groups of
prime power order.

We have dealt with the case where only one prime is involved. We proceed by in-
duction on the number of primes involved. Let » be one of the primes involved. Let
A, ..., An be all the direct summands of order a power of p in the one decomposition,
By, ..., B, the other direct summands involved, so that

G=A4,9 --- DA, OB, ® --- ®B,
Putting A=A, ®--- ®An and B=B;® -.-- & B, it follows that G=A ® B.

Let X3, ..., Xk« be all the direct summands of order a power of p in the second de-
composition, Y, ..., Y; the remaining direct summands, so that

G = X1® @Xkanl@ A @Yl

Xi® - -®X),, Y=Y,1®:---®Y. Then G=X®Y. Weclaim that A =X
Y.

Put X
and B
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ILet g€ A. Then g=2x2+y where x €X and y €Y. Now the order of any
nonzero element of Y is coprime to p. As ¢ is of order a power of p, ¥y =0 (Problem
6.54). Hence g€ X, and so ACX. Similarly XCA and we conclude that A = X.
By a similar argument B=Y.

Thus A1® - -  OAn=X:1P ---®X, and Bi® -- - ®B,=Y:®D --- DY, By the
induction hypothesis, 4:® --- @4, and X, D - - - ® X, onthe one hand, and B1® - - - ® B,
and Y: @ - - - @ Y, on the other, are of the same kind. Hence the two decompositions are
of the same kind and the result follows.

Case 4.
Let G be expressed as the direct sum of cyclic groups of prime power order or of
infinite order in two ways, say
G=1& ®[,O6F® - OF, =L6 - 0LoFo - 0F
where I,-,?i are infinite cyclic groups and F, ﬁ',- are groups of prime power order.

Let T(G) be the set of all elements of finite order (see Theorem 6.9, page 189). Then
T(G) is the direct sum of the direct summands of finite order in both cases (Problem

6.55). Thus " N
TG) = F.¢ - - @ F, = F,® - @ F,

Hence by case 8, F1® --- & F,, and I”-\'l D---D ﬁz are of the same kind.

Also G/IT(G)=1,® -+ - ©In= fl D ---D fk (by Problem 6.11, page 181). By Prob-
lem 6.56, I; ® - -+ @ I, is the direct sum of k infinite cyclic groups. Then k =m by
case 1. Therefore we have proved that [, ®1,® - @ In®F, ® --- ©F, and 1, ®1, ®
R ) ?k 57 ﬁl ®-.--D f’l are of the same kind. This completes the proof of the theorem.

If a finitely generated group G is the direct sum of cyclic groups of orders pt,...,p*
and s infinite cyclic groups, where p,, ..., px are primes, p1=ps=::-=pi, 71, ...,7c POSi-
tive integers with =711 if pi=pi+1, then the ordered k+ 1-tuple (p(l,...,pk;s) is
called the type of G. (The definition of type differs slightly from book to book. Usually it
is applied only to p-groups.) By Theorem 6.21 the type of G is uniquely defined. We can
now give a criterion for the isomorphism of two finitely generated abelian groups.

Theorem 6.25: If F and G are two finitely generated groups, then they are isomorphic if
and only if they have the same type.

Proof: Let F=A,®--- ®Ac. If ¢:F~>G is an isomorphism, then G = A4 D
--- @ Ax¢ (Problem 6.56). As A;¢p = A, it follows that F' and G have the same type.
Conversely, if F and G have the same type they are clearly isomorphic (Theorem 6.5,
page 185).

Problems

646. Let G=A @B where A and B are cyclic of order 2. Find C and D such that G=C® D
where C and D are cyclic of order 2 and C+# A and C #* B.

Solution:
Let A = {0,a}, B ={0,b}. Put C ={0,a+ b}. Then C is cyclic of order 2. Also put D = B.
Then C+D ={0,a+b,b,a+b+b=a}, andso C+D =G. Also CnD = {0}. Thus G=C@ D.

6.47.  If the tyve of F is (fy, ..., fx; f) and that of G is {9y, ..., 9,5 g) Where f;= le, fo :pgz, e Tk = p:k,
91= qil, e = q:l and p, < q;, where the p; and g; are primes, find the type of F @ G.

Solution:
Wehave p; =py = - =p, < ¢, = --+ = q;. Hence the type of F O G is

oo s fio 10,95 F+9)
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6.48.

6.49.

6.50.

6.51.

6.52.

6.53.

If F, G and H are finitely generated abelian groups, show that F @ G = F @ H implies that
G=H.

Solution:

Express F, G and H as direct sums of cyclic groups of prime power and infinite orders. If the
type of F'is (fy, ..., fr; f), and that of G is (9y, ..., 9 g) while that of H is (hy, ..., hy; k), then the
type of F @ G is (ay, ..., a4 f+9) where @y, ...,a, ;18 fy, ..., [k, 91, - - -, 9; in some order, while
the type of F @ H is (by, ..., bx 1y f+ k) where by, ..., bx 4 is fq, ..., fio by, - - +s By in some order.
For two abelian groups to be isomorphic we require that (by Theorem 6.25) their types are the same.
Accordingly the types of G and H are the same and G = H.

Find up to isomorphism all abelian groups cf order 1800.

Solution:

Observe that 1800 = 233252, So an abelian group of order 1800 is a direct sum of a group of
order 23, a group of order 32 and a group of order 52. The possible types of a group of order 23
are (23;0), (22,2;0), (2,2,2; 0). Thus there are precisely 3 groups of order 8 The possible types
of a group of order 32 are (32; 0) and (3, 3; 0), so there are 2 non-isomorphic groups of order 9.
Similarly there are 2 non-isomorphic groups of order 25. Then the total number of non-isomorphic
groups of order 1800 is 3 X 2X 2 =12,

Compare the ease with which we solve this problem with the effort required to find all the
groups (non-abelian as well as abelian) of order 8 which we have considered in Chapter 5.

Let p be any prime and let m be any integer. Prove that the number of groups of order p™ is equal

to the number of ways of writing m =r;+ --- +7, where r,...,7r, are positive integers and
TIETZE o E/’vk.
Solution:

A group of order p™ has all its elements of order a power of p. Hence its type will be of
the form (p"1,p™2,...,p"*;0) with 7, =7, = ..« =p . Since G is of order p™, and

|G| = pTip™2 .- pk = p1T T F T

we conclude that 7+ +r, =m.

Prove that a cyclic group of order p», where p is a prime, is not expressible as the direct sum of
nontrivial subgroups by the following two methods: (1) directly, (2) by using Theorem 6.21.

Solution:

(1) Suppose G =A @ B where A, B are nontrivial subgroups of G. Clearly [A|=pr~1 and
|B] = pr—1 as |G| =pn Let G=gp(g). Then g=a+b, a €A, and bEB. As prlg=
pn—lg 4 pn—1p = 0, g is of order less than pn»—1. But gp(g) = G and is ef order p®. Thus we
have a contradiction.

(2) Since G is cyclic of order p», the type of G is (p"; 0). Hence by Theorem 6.21, only one of the
direct summands is nonzero, i.e. G cannot be expressed as a direct sum of more than one non-
trivial group.

Prove, by considering the direct sum of cyclic groups of order 2, that if G is the direct sum of %
infinite cyeclic groups and also the direct sum of ! infinite cyclic groups, then k =L

Solution:

Let G = gp(x,) B --- @ gp(x). Let H = gp(2z,,...,2%;). Then by Corollary 6.17, G/H
is the direct sum of k cyclic groups of order 2. Thus |G/H| = 2k. Clearly H C2G. Also if g €G,
g =rx+ - +rx, Then 2¢ = r(2x) + - -+ +7r(22;) € H, from which 2Gc H. Thus H = 2G.

Now by a similar argument we conclude that if G is the direct sum of [ infinite cyclic groups,
IG/2G| = 2!, Thus l=k.

Prove that nG is a subgroup of G where n is a given integer.

Solution:
If h,kenG, h=mnf, k=ng where f,g €G. Hence h—k =n(f—g) €EnG, and so nG is
a subgroup.
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6.54. Let G be an abelian group, G=X@PY. Let € X, yE€Y. Prove that (1) if x and y are of
finite order, then the order of =+ v is the least common multiple (lem) of the orders of = and y;
(2) if x is of infinite order, x + y is of infinite order.
Solution:

(1) Let I =1lcm of the orders of x and y. Then lxz+y) =Ix+1ly = 0. Now if m = order of 2+ y,
then m(x +y) =mx+my =0 implies mae =0 and my = 0. This in turn implies that the
order of x divides m and the order of y divides m. Thus we have the result.

(2) If x is of infinite order and m(x + y) = 0, then mx + my = 0. But by the uniqueness of such
expressions in direct sums, mx = my = 0. Since z is of infinite order, m = 0.

655. Let G=1,--- DI, DF, D - ©F, where each I; is torsion-free and each F; finite. Let
T(G) be the set of all elements of finite order. Prove that

G =F D - @F,

Solution:
Clearly T(G)2F, @ --- @ F,. If g€T@G), 9=t + - +ip,+fi+---+f, where iy, ...,ip,
are elements of I, ...,I, respectively, and f,,...,f, are elements of F,,...,F, respectively. As

g is of finite order r, say,
rg = rigFrig+ o Frigtorfy+ oo +rf, =0

By definition of the direct sum, it follows that
ryy =Ty = v =gl = rfy = 00 = rf, =0

tp=0. Thus g€F, @ --- PF, and

Since I, ...,I,, are torsion-free, we have i, =i, = ---
the result follows.

656. If F=A, D --- P A, and ¢: F > G is an isomorphism, then G=A;¢6 P - D Ayo.
Solution:

We must show that every element of G is uniquely of the form a¢ + - -: +a, ¢ where a4, ...,a;
belong to A,, ..., A, respectively. Now if g € G, there exists fEF such that f¢ =g. But
f=a;+:--+a.andso g=ap+- - +ae If g+ - -tap=apt-- + azg, then

(@ —ape+ - + (@—aps = 0
Let h=a;—aj+ -+ +a,~—@a;. h belongs to Kerg. Since ¢ is an isomorphism, h = 0.
By the uniqueness of expression of direct sums,
al—a{ = ag—aé = . = ak—a,'c =0

so that a; = af, a3 = a3, ..., @, = aj. Therefore each element of G is expressible in the form
a;¢+ ++- + ai ¢ in one and only one way.

d. Subgroups of finitely generated abelian groups

The purpose of this section is to decide which groups (up to isomorphism) can appear
as subgroups of finitely generated abelian groups. We begin with

Theorem 6.26: Let G be free abelian of rank n. Then any subgroup H of G is free abelian
of rank less than or equal to «.

Proof: By Lemma 6.15, page 196, there exist a basis ¢, ...,¢, of G and integers
U1, ..., %, such that H = gp(uicy, ..., unCs). If uy, ..., % are nonzero, and %i+1 = Wi+2 =
©+» =%, =0, then
gp(Uicy, . . ., UnCn) = gP(UiC1) @ - - - D gp(uicy)

(See Problem 6.57.) Hence the result.

Corollary 6.27: Let A be a finitely generated abelian group. Then every subgroup of A
is finitely generated.

Proof: As A is a finitely generated abelian group, it is isomorphic to some factor group
of a finitely generated free abelian group G, say A = G/N. The subgroups of G/N are of
the form H/N where H is a subgroup of G. By Theorem 6.26, H is finitely generated and
therefore so is H/N. Consequently every subgroup of A is finitely generated.
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From this corollary we see that only finitely generated abelian groups can occur as
subgroups of finitely generated abelian groups.

Theorem 6.28: Let G be a finitely generated group and H a subgroup of G. Let G and H
be expressed as direct sums of infinite cyclic groups and cyclic groups of
prime power order. If the number of infinite cyclic groups in these decom-
positions for G and H are m and k respectively, then k = m.

Proof: Let
G=5L& - - 0I,0F,®. .. -®OF, H=To . oLofe . .of

where the Ii,fi are infinite cyclic groups and the F;, f‘i are cyclic groups of prime power
order. Let T(G) and T(H) be the torsion subgroups of G and H respectively, i.e. the re-
spective sets of elements of finite order (Theorem 6.9, page 189). Then T(H) = HNT(G).
Now G/T(G)=1:® --- © I, by Problem 6.11, page 181. Thus the rank of G/T(G) is m.
(See the remarks following Theorem 6.11, page 192.) Since (H + T(G))/T(G)CG/T(G),
(H + T(G))/T(G) is free abelian of rank less than m, by Theorem 6.26. But

(H+T(G)/T(G) = H/HNTG) = H/T(H)

by the subgroup isomorphism theorem (Theorem 4.23, page 125). It follows as before
that H/TH)=1,® --- ® .. Thus k=m.

Again let G be finitely generated and H a subgroup of G. (Recall that if F is any abelian
group and p a prime, F, = {f|f € F and of order a power of p}.) G,, as a subgroup of a
finitely generated abelian group, is finitely generated (Corollary 6.27) and so is H,. Clearly
Gp, 2 H,. Thus we are led to inquire what groups can occur as subgroups of finitely gen-
erated p-groups. Of course a finitely generated p-group is finite (Problem 6.44).

We first require a lemma.

Lemma 6.29: Let G have type (p™,...,p™; 0). Then the number of elements of order p
inGisp~—1.

Proof: Let G=C1® --- ®C, where each Ci= gp(c;) and the order of ¢; is p". If
x €G is of order p, and z =tici+ - -+ +tucn, where t, € Z, then p"i~! divides t.. Hence
the elements of order p are a subset of H, where

H = p'rlcl @S- D pnTIC,

On the other hand every element (= 0) of H is of order p, so H — {0} is the set of all elements
of order p. Accordingly, as |H| = p", the number of elements of order p in G is p—1.

Theorem 6.30: Let G be a group with type (»1,p™,...,p™;0). Let H be any subgroup.
If the type of H is (p®, ...,p*»;0),thenn=m and 0 <s;i =7, 1=1,...,%

Proof: We proceed by induction on |G|. If |G| =1orp, the result is trivial. Hence
assume |G| > p, and the result holds for groups of order less than |G|. Now H has type
(®°1,p%, ...,p*; 0), and so the number of elements of order p in H is, by Lemma 6.29,
p*—1. Similarly, the number of elements of order p in G is, by Lemma 6.29, p™—1.
Clearly p"—1=p™—1 and consequently n = m.

Now [pG|<|G|. We can therefore assume the result holds by induction for pG and
its subgroup pH.

At this point we experience a minor notational inconvenience. If for example 7= >1,
pG is of type (pm17%,...,p™"10). However, if rm»=1 and rm-1>1, pG is of type
(17, ..., p"m-17%0). Therefore we need additional notation. Define m* =m if rn > 1;
otherwise define m* to be an integer such that rm«> 1, but 7rme+1=1. 1As Py = =

Tl"

Tme > 1 and, if m* %< m, Pme+1= -+ =rm =1, then pG is of type (p* ', ...,p™ % 0).
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Similarly, let us define n* =n if s, > 1; otherwise define n* to be an integer such that
8.+ > 1 but s,:4+; = 1. Arguing as in the paragraph above, pH is of type (psl—l, e DT 0).
Then by the inductive hypothesis we have

n*—1=m*—-1 and s —-1=rn—1 fori=1,...,n*
If n* =n, the result follows immediately. If n* s n, then s,..;=---=s,=1. Hence
Tore1 = 8nt+1, ooy Yn=8n. Thus s;=r for i=1,...,n.

With Theorems 6.28 and 6.30 it is easy to determine, knowing the type of a given finitely
generated abelian group G, the possible types of subgroups of G. (See Problem 6.60.)

It can be shown (Problems 6.62-65) that every factor group of a finite abelian group G
is isomorphic to a subgroup of G. Therefore we know the types of homomorphic images
of finite abelian groups.

Problems

657. Let G=A @B and let C,D be subgroups of A,B respectively. Show that C+D=C@ D.
(This can obviously be generalized to the direct sum of any number of groups.)

Solution:
As {0} =AnBOCND, wehave CND = {0}. Thus C+D =CO D.

6.58. Let G have type (le, .. .,p;"; 8). Suppose that for some ¢ = j
D= DPis1= " =P Pim1 AP and Py Py
Put p = p;. Show that the type of G, is (»"i, ..., p"; 0).

Solution:

Decompose G into the direct sum of infinite cyclic groups and groups of prime power order.
Clearly G=A, D --- © 4; D B where 4, is of order p'k for i =k =3j and R is the direct sum
of the cyclic groups which are not of order a power of this prime p in the given decomposition of
G. Then G,2A4;@ --- @ A;. On the other hand, as any nonzero element of finite order from R
is of order coprime to that of p, G,CA; D --- DA, Thus G,=A4;D -+ G A;, and the result
follows.

6.59. Let G be of type (0’1, ...,p"™; u). Show that G has subgroups of type (p°!, ..., p°n; v) where n = m
and 1=g=7;, for 1=7=mn and v = u.
Solution:
Let G=A, D - BA,PI, P --- ®I, where A; is cyclic of order p"i, and I;,...,I, are
infinite cyclic groups. Now each A; has a subgroup B; of order p%, 1 =4 =n. By repeated applica-
tion of Problem 6.57,
B,+:---+B,+1,+:-+1, =B, --- DB, L, D --- DI,

This is then a subgroup of G of type (p°l, ..., p"; v), as required.

6.60. Let G be of type (33,82,52,73; 1). Determine whether G has a subgroup H of type
(@) (3,8,7%,7;1), (b) (8,3,5,7;2), (e) (3%3%5%730), (d) (3,3,7;1).

Solution:

(a) No, as then G; is of type (73; 0) whereas H; is of type (72,7; 0) by Problem 6.58. This is a con-
tradiction to Theorem 6.30.

(b) No. A direct contradiction to Theorem 6.28.

(¢) No. Compare G5 and Hj as in (a).

(d) Yes.

6.61. Give an infinite number of examples of an abelian p-group that contains exactly p + 1 subgroups of
order p.

Seolution:

If G is a group with p + 1 subgroups of order p, each of them contributes p — 1 distinct elements
(the identity is common to all) of order ». Hence in all there are (p—1)(p+1) =p2—1 elements
of order p.
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6.62.

6.63.

6.64.

6.65.

By Lemma 6.29 a p-group with p2— 1 distinct elements of order p contains p? summands which
are cyclic groups of order a power of p. Let 1 =1, where ¢=1,...,p% be integers. Then any
group of type (p!, ..., 2'P; u) where u is a nonnegative integer, has exactly p?— 1 elements of order
p and thus exactly p + 1 subgroups of order p.

Let G be a p-group. Suppose G = gp(a) @ B. Prove that G = gp(a+b) @ B where bEB is
of order less than or equal to the order of a.

Solution:

If x € gp(a+b)NB, then z=17r(a+bd)=">b, where b; €B and r is an integer. Thus
ra = b, —rb. Since gp(a)nB = {0}, ra = 0. Then » is divisible by the power of p which is the
order of a. Consequently rb = 0. Hence b; =0 and x = 0. Clearly gp(a+b)+ B = G and the
result follows.

Let G be a finite p-group. Prove that if ¢ € G and g is of order p, g appears as an element of
a cyclic direct summand of G.

Solution:

G is the direct sum of cyclic groups, say G = gp(cy) B -+ & gplc,). If g =0, the result
follows immediately. Otherwise, without loss of generality, suppose that

g = rp¥le; + 0 + rpptme,

where (r;,p) =1, rp¥ic; =0 and w; = wy = .-+ =w,. Put re¢, =e¢;. Clearly gp(cl) = gpley).
Then g = p*t(cj +d) where d € gples, ...,c,). As g is of order p and p*l¢; # 0, the order of d
is less than or equal to the order of ¢;. By Problem 6.62, on putting ¢ = ¢; + d, we obtain

G = gplc) D gpley, .- .,¢,)
Since g € gp(c), the result follows.

Let G be a finite p-group. Let N = gp(g) be of order p. Prove that G/N is isomorphic to a sub-
group of G.

Solution:

By Problem 6.63, G = gp(c) @ B where ¢ € gp(c). Then G/N = (gp(¢)/N) P B (Lemma
6.16, page 197). But clearly ¢gp(pc) = gp(c)/N. Thus gp(pc, B) = G/N.

Let G be a finite group. Prove by induction on |G| that if N is a subgroup of G, G/N is isomorphic
to a subgroup of G.

Solution:

Assume the result is true for all groups of order less than . Let |G| =» and let N be a sub-
group of G. If N = {0}, G/N = @ and there is nothing to prove. If N is of order a prime p,
G=G,DE where G, is the p-component of G, and NCG, Then G/N=(G,/N)DE by
Lemma 6.16. Now G,/N = H, a subgroup of G,, by the preceding problem. Hence G/N=HQ@ E
and H @ E is a subgroup of G. If N is not of order a prime, there is an element ny of N of order a
prime p by Proposition 5.9, page 137. Let N, = gp(ny). Then (G/Ny)/(N/Ng) = G/N. As
|G/Ny| < |G|, G/Ngy has a subgroup H/N,= G/N. H #* G, since otherwise N = N, which is not
true. Thus [H| < |G| and by induction it has a subgroup K such that K = H/N,= G/N. The
result follows.

64 DIVISIBLE GROUPS
a. p-Priufer groups. Divisible subgroups

A group G is said to be divisible if for each integer 7 # 0 and each element g € G

there exists & € G such that nh =¢g. Both the additive group of rationals and p-Priifer
groups are divisible in this sense (Problem 6.66 below).

If the groups Gi, i €I, are divisible, then Y G; is divisible. For if n =0 is any
t€]
integer and ¢ € E G;, then g=g¢g:1+ ---+gr, say. So there exist ki, ..., such that
i€l

€
nhi= ¢, ..., nhx = gx. Then

nhit+---+h) = g1+ - +9c =9
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It follows that direct sums of p-Priifer groups and copies of the additive group of ra-
tionals are also divisible. We show that in fact this exhausts all divisible groups.

To prove this we need several facts.
First we remark that a homomorphic image of a divisible group is divisible. For sup-
pose G is divisible and H is a subgroup of G. Let g+ HEG/H (9 €G) and let n be a

positive integer. Then there exists g’ € G such that ng’ =g¢. Accordingly =n(¢’+H) =
g+ H, and so G/H is divisible.

Secondly we remark that if G =H® K and G is divisible, so also are H and K, since
H = G/K (Problem 6.11, page 181) is a homomorphic image of a divisible group. Similarly
K ig divisible.
Next we need the following theorem which classifies p-Priifer groups.
Theorem 6.31 (Main Theorem on p-Priifer Groups): Let p be a prime. Let G be a group
which is the union of an ascending sequence of subgroups C;CC,C:--

where C, is cyclic of order p" for »r=1,2,.... Then G is isomorphic to the
p-Priifer group.

Proof: We may suppose that C. = gp(e:) and that pe,+1 = ¢, for r = 1,2, ... (see Problem
6.67 for the details). Define 6: G~ (Q/Z), by (me,)§ = m/p™ + Z for all integers m. We
must prove that 6 is an isomorphism. We are however not even certain that ¢ is a mapping.
The snag is this:

If g =me, and if also g =ncs, is g8 = m/p"+Z oris g6 = w/p*+Z?
We will show that m/p” + Z = n/p° + Z, thus proving that 4 is uniquely defined.
Assume without loss of generality that r =s. It follows that p™%¢, = ¢;. Then
mer = np*%¢, from which (m—np™%c. = 0

As ¢, is of order p", m —np'—*=kp” for some integer k. Thus m =np s+ kp” from
which m/p"=np~s+k. We therefore conclude that m/p"+ Z = n/p*+ Z. Thus 6 is a
mapping.

Next we show that 9 is a homomorphism. If ¢,h € G, then g,h € C, for some integer
r, so that g = s¢,, h = te,, with s,t € Z. Then
(g+h)o = ((8+t)e)d = (s+t)/p"+Z = (s/p™+2Z) + (t/p"+Z) = gf + ho
Finally ¢ is one-to-one as
Kerg = {g|g6=2}
= {sc-| s an integer, r a positive integer and (sc.)8 = s/p" + Z = Z}
= {se,| s/pr€Z} = {sc.| s divisible by p'} = {0}
Thus the result follows.
In the future we will call any group isomorphic to (Q/Z), a p-Priifer group.
The following result is not only the main tool in Section 6.4b, but is also of interest in
itself.

Theorem 6.32: Let G contain a divisible subgroup D. Then there exists a subgroup K
of G such that G = D ® K, i.e. a divisible subgroup is a direct summand.

Proof: We accomplish this proof by Zorn’s lemma. Let P be the collection of all sub-
groups L of G such that LND = {0}. (Our idea is to pick a maximal subgroup K which
meets D in {0}. Then D+ K =D ® K and we need only show that D+ K =G which will
turn out to be true because of the maximality of K.) Can we apply Zorn’s lemma to P?
Suppose {L:|i €I} is a chainin . Is U Liin P? We require
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(i) Dn U L; = {0}.

iel

(ii) iLeJILi is a subgroup of G.

Part (i) is true because DN Y, Li # (0} implies DNL;-+ {0} for some L;.

To prove (ii) we must show that if g,k € Y, L, then g—h € Y, L. Now g,h € Y, L;
implies g € L; and h € L,. Either L. D L; or L;D Ly, so without loss of generality as-
sume that L, D L;. Then since L is a subgroup of G, g —h € Lx. Therefore g—h € iLEJIL,-
and (ii) holds. So ¢ has a maximal element, say K, which satisfies DNK = {0}. Thus
D+K=D®K.

Suppose now that D+ K= G. Then G/(D® K) is nonzero. We prove first that
G/(D © K) is a torsion group. Suppose the contrary. Then we can find z € G such that
9p(x + (D ® K)) is of infinite order in G/(D ® K). Now z &€ K. If we put K= gp(K,x),
it consists of all elements of the form nx + k, where n is an integer and k is an element of
K. If nx+k€D, then nx € (K+D). So n=0 is the only possibility. But KNnD = {0}.
So k=0 follows also. Therefore DNK; = {0}. This contradicts the maximality of K.
Thus we have proved that G/(K © D) is a torsion group.

Let x € G, x € K® D. Then gp(x + (K & D)) is a subgroup of G/(K © D) of finite order.
Suppose that  + (K ® D) is of order w. It follows then that wx € K@® D, but re KD D
for 0 <r<w. Suppose wx =k+d. Since D is divisible, we can find d: €D so that
wdi=d. Put zi=2—di. Then wxi=wr—wdi=k+d—d==%k. Notice that =z, ¢ K
but wx, € K. Put K= gp(x;, K). Then

Ky = {rw;+k| r=0,1,...,w—~1, andall k € K}
We claim that K;nD = {0}. Forif rex+k €D, r€{0,1,...,w—1}, and k € K, then’
DO K =rze; +(DBK) = r(x:1 + (D D K))
Since #1+ (D@ K) =z + (D®K), we must have r=0. So k€D and thus k=0.
Therefore KiND = {0}. But K is maximal. This contradiction shows that our original
assumption, i.e. G = D @ K, is false, thus proving the theorem.

Problems

6.66. Use a proof different from that of Problem 6.36, page 192, to prove that a p-Priifer group is divisible.

Solution:
As Q is divisible, so is Q/Z. But as Q/Z = 3 (Q/Z),, each (Q/Z), is itself divisible, since
PEN

every direct summand of a divisible group is divisible,

6.67. Let G be as defined in Theorem 6.31. Prove that we can choose elements ¢, such that C, = gp(c,)
and pe,py=¢, r=1,2,....

Solution:
Assume by induction that ¢,,...,c¢, have been chosen with pc,. 3 =¢, for r=1,...,n—1
and C;=gplc), 1=1,...,n. Let C,iy; = gp(c). Then gp(pc) is a cyclic group of order p» and,

since cyclic groups have only one subgroup of any given order, gp (pc) = C,. Hence r(pc) = ¢,
for some integer . As ¢, is of order p», r and p are coprime. Thus gp(re) = C,+;. Now put
¢p+1 =rc. Then pec,,; = ¢, and it is possible to choose the elements ¢, ¢5, ..., as required.

6.68. A p-group G is a p-Priifer group if and only if it has the following two properties:
(1) every proper subgroup of G is cyeclic,
(2) there is a cyclic subgroup of G of order pé for every i =1,2,.... (Hard.)
Solution:
First we shall prove that if G satisfies (1) and (2), it is a p-Priifer group.
Let C;CcCyC--- be a sequence of subgroups of G where each C; is a cyclic group of order pi
o0
If the sequence is infinite, D = U C; is a p-Priifer group (Theorem 6.31). Hence it is divisible and
i=1

G =D @ K by Theorem 6.32. However, if K 5= {0}, G has a subgroup which is the direct sum of
two cyclic p-groups, and hence is not cyclic, contrary to the hypothesis. Accordingly, G =D is a
p-Priifer group.
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6.69.

6.70.

6.71.

6.72.
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Suppose now that C,CCyC -+ CC, is a sequence of subgroups, each C; cyclic of order pi,
and there exists no subgroup C,.,2C, where C,,, is of order p»*1, Let C, = gp(a). We know
that there exists a subgroup B = gp(b) of order pn*!, Consider gp(a, b). As a finitely generated
abelian group, it is the direct sum of cyclic groups. If it is the direct sum of two or more cyclic
groups, it is not cyclic (Theorem 6.21). Thus gp(a, b) is cyclic, and as G is a p-group, gp(a,b) is
cyclic of order p™ where m = n+ 1. But then gp(a,b) contains a cyclic subgroup of order pn+!
containing C,, contrary to the hypothesis. The result follows.

Next we note that the p-Priifer group satisfies condition (2). As for condition (1), let H be a
subgroup of (Q/Z),. If H + {Z}, then let x €H, x#*0+Z. Let x =m/p"+Z where m is an
integer between 1 and p” — 1. Clearly gp(x) = gp(1/p”+ Z). If there is no integer n for which
Ypr+Z & H for r=mn, then H = (Q/Z),. If there exists such an integer n, H C gp(1/p"+ 2).
Thus H is cyclic as required.

Show that if U is the subgroup of the multiplicative group of the complex numbers consisting of
all the nth roots of unity, then U = Q/Z.

Solution:

U = 2 U, by Theorem 6.10, page 190. Now U, is the union of cyclic groups of order pf,
pe
namely U, is the unlon of C;=gp ({x| x is a pith root of unity}). But C, is cyclic of order pi. Then
by Theorem 6.31, (Q/Z),J Thus, as Q/Z = 3 Q/Z), (by Theorem 6.10), Q/Z=U by
I

Theorem 6.5, page 185. pe

Show that the additive group of rationals is the union of an ascending sequence of infinite cyelic
groups.
Solution: "
Let @, = gp(1/n!). Then @,,,2Q, and U1 @, = Q the additive group of rationals.
n=

Show that if G is a p-Priifer group and H, K are subgroups of G, then either HD K or KD H.

Solution:

If one of H or K is G, the result is true. Assume both H and K are proper subgroups. Then
by Problem 6.68, H and K are both finite cyclic groups. Suppose p” = |H| = |K| = p5. Then H con-
tains a subgroup of order |K|, say H;. Now both H; and K are contained in some cyclic subgroup
of G, as G is the union of cyclic subgroups. But then it follows that H, = K, as there is one and
only one subgroup of order ps in a cyclic p-group of order exceeding ps. Therefore H D K.

Let G be an ascending union of infinite cyclic groups C; such that C; = gp(c;) and (i+1)ciyq = ¢

for 1 =1,2,.... Prove that G is isomorphic to the additive group of rationals. (Hard.)
Solution:
Let Q denote the additive group of rationals and let @Q; = gp(1/i!), i=1,2,.... Clearly,

@;+10Q; and U @; = Q. We shall prove that 6 below defines a mapping of G to Q. Define
(zc;)0 = 2/i! where 2z € Z. We must prove that ¢ is uniquely defined.

Suppose z6; = 25¢;, 25,25 and 1,j integers. If {=j, then ¢; = (j!/iY)c;, Hence z;¢;=
21(j1/il)e; = 29¢;. Since C;j is infinite cyclic, 2z,(j!/il)c; = zo¢; implies that z,(j!/i!) = z,.

To prove that ¢ is well defined, we must show that =z,/i! = 2,/5!, i.e. zl(j'/z") = 2,. But this is

what we have just shown. Since Ci¢ = @; = gp (1/i}), it follows that G¢ 2 U Q; = Q. Henceos is
an onto mapping.

Is 6 a homomorphism? Let f,g € G, We may as well suppose that f,g € C; for some integer <.
Hence f = zi¢;, g = 25¢;, say. f+9 = (21 +2)¢;. Then
= (2 + 22) ry

1 %1 |, %2
ft+ge = (zl+z2)i—' and fo + g6 =F+F
Thus ¢ is a homomorphism. ) ’

Finally, to show that ¢ is an isomorphism, it is sufficient to show that Ker ¢ = {0}. Suppose f
is such that fo = 0. We have that f = z¢; for some integers z and 7. Then fo = z/i! =0 only if

= (0. Hence f =0 and the result follows. ,
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b. Decomposition theorem for divisible groups

The results of Section 6.4a enable us to deduce the following decomposition theorem
for divisible groups.

Theorem 6.33: A divisible group is the direct sum of p-Priifer groups and copies of the
additive group of rationals. (e e, ek, headadd

Proof. Let G be divisible and let T be the torsion subgroup of G. Now for any integer
n and element ¢ € T, there exists an element g € G such that ng = ¢t. Since ¢ is of finite
order, so is g, and hence g € T. Thus T is itself divisible. A divisible subgroup is a direct
summand (Theorem 6.32); so G=T® F. Since TN{F} =0, F=(TSF)/T; hence F is
torsion-free by Theorem 6.9, page 189. Moreover, as F is a direct summand, F is itself
divisible. We now consider F' and T separately.
(a) F. 3 q - ‘L.oc,l}n \r—-é a \ e = - 7;‘\ Q\\ | :;z . ’:) i)Z .

We show that F' is a direct sum of copies of the additive group of rationals. To this
end let S be a maximal independent set (Theorem 6.13, page 194). For each s €S we
shall define a subgroup C; of F. Let 7, ,=s. For a given s €S and positive integer
1, there exists by the divisibility of F' an element 7;.; . € F such that (¢4 )71, = 7i,s.
We put Cs=gp(ris|¢=1,2,...). It follows then from Problem 6.72 that C; is iso-
morphic to the additive group of rational numbers. Note that if z € Cs, x5 0, then
there is a nonzero multiple of x which is also a multiple of s, as s+ 0. (This is true for
any two nonzero rational numbers.)

We claim that F is actually the direct sum of these subgroups C; as s ranges over S.
To prove this, suppose that s, sz, . . ., 8, are distinct elements of S and that ci+c2+ -
+¢. =0, where ¢;€Cs;, ¢;+0 (j=1,...,n).

As we remarked above, there exists a nonzero multiple k; of each ¢; which is then a
multiple of s;, Hence there exists a nonzero integer k, namely ki - - - k., such that
kec; = lis;, where l; is a nonzero integer. As key+ ---+ke.=0 is a consequence of
ci+cz+ - +¢, =0, we find therefore, on substituting for the elements kc; the elements
l;s;, that lisi+ -+ + 1.8, = 0. But the elements si,...,s. are independent. From this
contradiction it follows that the C generate the direct sum

C = gp(C:|s€S) = Y C;
sES
But C is divisible sinece each summand C; is divisible. Hence C is a direct summand
(Theorem 6.32), i.e. F=C® D, say. If D+ {0}, then let d €D (d+#0). Clearly
the set SU{d} is definitely larger than S since d € S (d does not even lie in C) and
SuU{d} is independent. This is a contradiction as S is a maximal independent set. So
F = (C is a direct sum of copies of the rationals.
(b) T.
First of all T = > T, by Theorem 6.10. Since T is divisible, so also are the

pPEIl
summands T',. It is sufficient then to assume that T is a divisible p-group and to prove

that T is a direct sum of p-Priifer groups.

Let P be the set of elements of T of order at most p. P is clearly a subgroup. Let
S be a maximal independent subset of P (Theorem 6.13). For each s € S define
€15, Co,5r - - - inductively as follows: (a) pey =358, (b) PCiyys=¢ys for i=1,2,....
This is possible since T is divisible. Clearly g¢p(c, ;) Cgp(cs,,)C ---. Since gp(c;,) is
cyclic of order pit!, C,=gp(c,,, €2 ...) is an ascending union of cyclic groups of
order -p%, one for each 1=1,2,.... Accordingly by Theorem 6.31, C; is a p-Priifer
group. Then C = gp(C;| s € 8) is divisible. By Theorem 6.32, C is a direct summand
of T,ie. T=C®D. If D+ {0}, there is an element of d € D of order p. Since
SCC, SU{d} is an independent subset of P larger then S, and so we must have D = {0}
by the maximality of S. Thus T = C.
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It remains only to prove that C = 2 C;. If 81,8, ...,S, are distinct elements of
sE€ES

S, and ¢i+ec:+---+¢.=0 where c;€Cs;, for i=1,...,n, then, similarly to (a)
above, we arrive at a dependent relation between 81, ...,8,, unless ¢c1=¢ce= - =¢, =0
(Problem 6.78).

The proof of the theorem is complete.

Problems
6.73. Prove that (a) every free abelian group is isomorphic to a subgroup of a divisible abelian group,
and (b) every abelian group is isomorphic to a subgroup of a divisible group.
Solution:
(a) A free abelian group F is a direct sum of infinite cyclic groups C; (€1I): F = 21 C;,. Now
i'€
we choose one copy of the rationals @; for each i€ l. Let K = 2 Q; and let d;+* 0 be

chosen in each @,;. F is clearly isomorphic to gp({d;| i € I}). But 2 Q; is divisible since each
@, is divisible. The result follows.

(b) If G is any group, G = F/N for some free abelian group F and some subgroup N.

Now in (a) we have proved that there exists a divisible group D containing F. Hence D
contains N, and so D/N contains as a subgroup F/N, i.e. G. Now D/N is divisible since a
homomorphic image of a divisible group is divisible. Thus the result follows.

6.74. Suppose G has the property that if H is any group such that H2 G, then G is a direct summand
of H. Prove that G is divisible.

Solution:

G is a subgroup of some divisible group D by Problem 6.73. Thus D = G & T. But every direct
summand of a divisible group is divisible. Therefore G is divisible.

6.75. Let G be an infinite group whose proper subgroups are all finite. Prove that G is a p-Priifer group
by using the theorem which states: if G is a group such that for some integer = # 0, nG = {0},
then G is a direct sum of cyclic groups (of finite order). (This theorem is not proved in this text.)

Solution:

Consider the subgroups nG for all positive integers n. If nG = G for all such », then G is
divisible, and so G is the direct sum of p-Priifer groups and copies of the additive group of rationals.
As all the proper subgroups of G are finite and the additive group of rationals has an infinite cyclic
group as a proper subgroup, only p-Priifer groups are involved. Since each p-Priifer group is
infinite, G must in fact be a p-Priifer group.

If on the other hand nG is a proper subgroup of G for some n, then nG is a finite group of order
m, say, and so mnG = {0}. Using the theorem quoted in the statement of the problem, G is the
direct sum of finite cyclic groups. As G is infinite, it must be the direct sum of an infinite number

of cyclic groups C;. But then the subgroup generated by all but one of the C; must be infinite. This
contradiction proves the result.

6.76. (a) Let G be any group and let S be the subgroup generated by all the divisible subgroups of G.
Prove that S is divisible.

(b) Prove that G is the direct sum of a divisible group and a group which has no divisible subgroups
other than the identity subgroup {0}.

Solution: ‘
(@) Let s€S. Then s ="hy+hy+ -+ +h, where each k; belongs to a divisible subgroup H; of G.
Thus if z> 0 is any integer, there exist k; € H; such that zk; = h,. As SD2H; for each
€1,
¢ ky+ky+ - +ky, €S and e+ +k) =
Hence S is divisible.
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(b) Since S is divisible, we can apply our direct summand theorem for divisible subgroups
(Theorem 6.32) to find that G =S @ T. As T contains no divisible subgroup other than {0},
the result follows.

6.77. (a) Prove that the additive group of rationals @ has a proper subgroup which is not free abelian.

(b) Let G be a torsion-free group, every proper subgroup of which is free abelian. Prove that G
is free abelian.

Solution:

(a) Consider the subgroup H generated by 1/2,1/4,1/8,...,1/2i, ... in the additive group of ra-
tionals. H is of rank 1 as @ is of rank 1 (Problem 6.38, page 194). So if H is free abelian, it
must be infinite cyclic. But H is not infinite eyclic; for if it were, H = gp(2/2i)) for some inte-
gers z and 4. But then 1/2i*1€ H and 1/2i*t! & gp(2/2i). We have only to prove that H is
not G. This is obvious since 1/3 & H.

(b) Suppose that nG = G for all positive integers n. Then G is divisible and is the direct sum
of copies of the additive group of rationals. (As G is torsion-free, no p-Priifer group is involved.)
But by (a) above, G will have a non-free subgroup. Thus for some 7 # 0, nG # @, and nG is
free abelian.

Now 6:g—->ng is a homomorphism of G onto nG. Kere¢ = {g| ng =0} = {0} as G is
torsion-free. Hence ¢ is an isomorphism, and so G is free abelian.

6.78.  Prove the result stated at the end of the proof of Theorem 6.33, i.e. prove that if ¢;+ ---+¢, =0,

then ¢y =¢y=---=¢,=0.
Solution:

Assume the contrary. As the order of ¢, ..., c, is immaterial, we may assume that ¢; ¥ 0 and
¢; is of highest order. Say c¢; is of order p!. Then p'—le¢; = m;s; where m,; is an integer, ¢=1,2,...,n.

Thus we obtain
(e + -o-tey) = mysyHmesy + 00+ mys,

Since m;s; # 0, we have a contradiction to the fact that S is an independent set.

A look back at Chapter 6

This chapter was mainly concerned with the structure of divisible and finitely gen-
erated abelian groups.

Direct sums of groups were discussed. Given a family A; (i €I) of groups, there is
always a group which is the direct sum of groups isomorphic to each of the groups 4.
Any homomorphism of the direct summands of a group extends to a homomorphism of the
whole group. From this it follows that if two groups are direct sums of isomorphic sub-
groups, they are isomorphic. Direct sums of infinite eyclic groups are all the free abelian
groups. An important fact is that every abelian group is a homomorphic image of a free
abelian group.

The torsion group T(G) of a group G was defined, and it was shown that G/T(G) is tor-
sion-free. It was proved that if G is a torsion group, it is the direct sum of its p-components.
This led to the definition of the p-Priifer group as the p-component of Q/Z.

An application of Zorn’s lemma proves every group has a maximal independent subset.
The rank of a group was defined and proved an invariant of the group by the Steinitz
exchange theorem.

) In the fundamental theorem of abelian groups, finitely generated abelian groups were
shown to be expressible as the direct sum of cyclic groups. Two finitely generated abelian
groups were shown to be isomorphic if and only if they have the same type. Finally, the
type of a subgroup of a group was shown to be, roughly speaking, “less than” the type of
the group.
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Divisible groups were discussed. Any group which is the union of cyclic groups of
order a power of p turns out to be a p-Priifer group. Any divisible subgroup of a group
is also a direct summand. This led to the proof that every divisible group is the direct sum
of isomorphic copies of the additive group of rationals and p-Priifer groups.

Supplementary Problems

DIRECT SUMS AND FREE ABELIAN GROUPS

6.79. If the mapping a — a~1, ¢ € G, is an automorphism of the group G, prove G is abelian.

6.80. Suppose that G is a finite group, « € aut(G), « is of order 2, and ga+# g for all g (*1) €QG.
Show that G is an abelian group. (Hint: First prove G = {9~ 1(g9a) | ¢ € G} and then use Problem
6.79.)

6.81. Denote the set of all homomorphism of an abelian group @G into an abelian group H by Hom (G, H).
If ¢,¥ € Hom (G, H), we define ¢ + ¥ by

gle+¥) = go+ g¥ (1)
for all ¢ € G. Show that Hom (G, H) with the operation defined by (Z) is an abelian group.

6.82. If A is an abelian group and Z is the group of integers under addition, prove that Hom (Z,A4) = A.
6.83. Prove that the group of rationals under addition is not the direct sum of cyclic groups.

6.84. If G is the direct sum of cyclic subgroups, show that a factor group of G is not necessarily a direct
sum of cyclic subgroups. (Hint: Use the preceding problem and free abelian groups.)

€85. Let N be a normal subgroup of G. Prove that if G/N is free abelian, N is a direct summand.

TORSION GROUP AND RANK

6.86. If G is a finite group, show that aut(G) = [] aut (G,), where 7 is the set of all primes.
pPET

6.87. Prove the first Sylow theorem, page 130, for abelian groups using the p-components.

6.88. Let G denote the group of rotations of the plane (see Section 3.4c, page 68). As G is an abelian group

we may use additive notation. Thus the rotation Po, followed by rotation P, is Po, + P, = P +0,"
Let ® = {pe | 8 = 27m/n radians where m,n are integers, »n > 0}. Prove that (a) R is a subgroup
of G; (b) every element of R has finite order; (c) if R, denotes the p component of R for any prime

p, then R, = {po | @ = 2am/p" radians where m and r are integers} and R, = the p-Priifer group.

6.89. Let a,b be elements of an abelian group. Let the order of a plus the order of b be n. Prove by
induction on % .that a + b is of order the least common multiple of the orders of ¢ and b.

6.90. Let G be an abelian group. Suppose every element of G is of order less than some fixed integer »
and there are elements of order n in G. Prove that the elements of order n generate G.
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FUNDAMENTAL THEOREM FOR FINITELY GENERATED ABELIAN GROUPS

6.91.

6.92.

6.93.

6.94.

6.95.

6.96.

6.97.

Prove that if G is a finitely generated abelian group,then G =1, --- @I, P C, P --- @ C, where
I; is an infinite cyclic group (7 =1,...,m), C; is a finite cyclic group of order v; ((=1,...,%),
and v; divides v;,q for ¢ =1,...,n—1. (Hint: Use the fundamental theorem and then first look
at the highest power of each different prime in the decomposition.)

Prove that the automorphism group of a finitely generated abelian group is finite if and only if
there is at most one infinite eyclic summand in a cyclic decomposition of G.

Find the type of the additive group of integers modulo m for any integer m > 0.

Let G be a non-cyclic finite abelian group. Show that G has a subgroup of type (p,p; 0) for some
prime p.

Prove that the automorphism group of a finite non-cyclic abelian group G is non-abelian, (Hint: Use
Problem 6.91 to find suitable elements a,b € G such that the order of a divides the order of b.
Then look at the mappings «a;: asbht - asttbt; ay: asht - awb—t and ay: a’bt - aths where s and ¢
are integers.)

Let G be a finite abelian group. Suppose that for each divisor d of G there are at most d ele-
ments in G of order d. Prove that G is eyclic.

Let G be a finitely generated abelian group. Prove by induction on the number of generators of G
that every subgroup of G is finitely generated.

DIVISIBLE GROUPS

6.98.

6.99.

6.100.

6.101.

6.102.

6.103.

6.104.

Show that a divisible abelian group has no subgroup of finite index.

If G is a nondivisible abelian group, then G has a subgroup of prime index. (Hint: Use the fol-
lowing theorem (not proved in this book): An abelian group G for which nG = {0}, n # 0, is the
direct sum of cyelic groups.)

Prove that the additive group of the real numbers is the direct sum of isomorphic copies of
the additive group of rationals.

(@) Let G = Hom (A,B) (see Problem 6.81) where B is a torsion-free divisible group. Prove that
G is the direct sum of copies of the additive group of rationals.

(b) Let G be as in (a) but with B a divisible p-group. Prove that if A is finite, G is the direct sum
of p-Priifer groups.

A subgroup H of an abelian group A is a pure subgroup of A if whenever na = h € H for some
a € A, then there is an k' € H such that nh’ = h. Prove that (a) a direct summand of an abelian
group is a pure subgroup, and (b) the torsion subgroup of an abelian group is a pure subgroup.

Prove that all the subgroups of a group in which every element has square-free order is pure.

Let H be a pure subgroup of an abelian group G. Prove that if g+ A € G/A, there is an element
JE€ G such that g+ A4 =g+ A and the order of § is equal to the order of g + A.



Chapter 7

Permutational Representations

Preview of Chapter 7

There are three main divisions of this chapter. In the first we generalize Cayley’s
theorem, that every group is isomorphic to a permutation group. As consequences of this
generalization we prove the following theorems for G, a group generated by a finite number
of elements: (1) A subgroup of finite index in G is itself finitely generated. (2) The number
of subgroups of fixed finite index in G is finite. (8) If the subgroups of finite index of G
intersect in the identity, then every homomorphism of G onto G is an automorphism.

The second main division of this chapter appears in Section 7.7. We call a group G
an extension of a group H by a group K if there is a normal subgroup H of G such that
G/H=K and H=H. We examine G to see how it is built up from H and K. The most
general case is complicated and we restrict ourselves to a special extension called ‘“the
splitting extension.”

Reversing our analysis, we are able to build a group G that is the splitting extension of
a given group H by a given group K. A particular example of a splitting extension is the
direct product, used in Chapter 5.

Our third division, which begins in Section 7.8, defines a homomorphism of a
group into one of its abelian subgroups. This homomorphism is called the transfer. We
use it to show that a group G with center of finite index has finite derived group.

7.1 CAYLEY’S THEOREM
a. Another proof of Cayley’s theorem

We saw in Chapter 2 that every groupoid is isomorphic to a groupoid of mappings.
In particular, every group is isomorphic to a group of permutations. The consequences
of this theorem are important. We repeat the proof here for the case of groups alone.

Theorem 7.1 (Cayley): Every group is isomorphic to a group of permutations.

Proof: Let G be a group. Let p be the mapping which assigns to each element g in G
‘the following mapping of G into G:

x>xg foreach z€G

Thus the image of g in G under , is, by definition, gp where
gp: x> zg (TEQG)
The definition of p is unambiguous. To prove that p defines an isomorphism of G onto
a subgroup of S, we have to check that:
(i) gp is a permutation of G for every g € G;
(ii) p is a homomorphism, i.e. if g,k € G, then (gh)p = gp* hp;
(iii) p is also an isomorphism, i.e. p is one-to-one.

214
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We deal first with (i). Thus we must prove gp is a one-to-one mapping of G onto G.
If x(g9p) = y(gp), then xg =yg. So, multiplying by g~! on the right, we find z =y. Next
we prove gp is a mapping of G onto G. Suppose x € G; then (xg~')(gp) = (xg~ )9 =z and
80 gp is onto.

Secondly we prove (ii). For z € G,
z((gh)p) = =z(gh) = (xg)h = (x(9p))(hp) = x(gphp)
Since (gh)p and gphp have precisely the same effect on every element of G, (gh)p = gphp (by
the definition of equality of mappings).
It remains to prove (iii), i.e. p is one-to-one. Suppose gp = hp; then if 1 is the
identity element of G, g = 1(gp) = 1(hp) = h, i.e. g =h. Therefore p is one-to-one.

(Note: In the proof of Cayley’s theorem p is a mapping of G into S¢, so that gp is itself
a mapping of G to G. Caution and patience are required to avoid confusion in some of our
subsequent equations.)

b. Cayley’s theorem and exampies of groups

Cayley’s theorem tells us that there is an isomorphic image of every group among the per-
mutation groups of suitably chosen sets. If one demands that a permutation group satisfy
further conditions, one frequently comes across interesting groups (see Chapter 3). His-
torically many important groups arose in precisely this way.

Problem

7.1. Describe in detail the isomorphisms given by Cayley’s theorem for (i) a eyclic group of order 2,
(ii) a cyclic group of order n (n = 38), (iii) the symmetric group on three letters.

Solution:
(i) Let G be cyclic of order 2. Then G consists of two elements, 1 and a, where a2=1 and
lea=a=a-*1l. Letp be as in Theorem 7.1.

1p is the mapping lp: 1->1,a—a
and ap is the mapping given by ap: 12>a,a~1

Clearly p is one-to-one, as ap # 1p.

(ii) Let G be cyclic of order n. Then G consists of n elements 1,a,a2,...,a""1, say (see Lemma

4.5, page 102). Then
1p: 1-1, ea-a, ... ar"1->gn—1
ap: 1-a, a—>a? ..., a*" 11
ap: 1-a2, a-—ad ..., a" 21, ar~1>g
ar~lp: 1-an~1, g-1, ..., a*"1->qgn—2

(iii) The symmetric group on the set {1, 2, 3} consists of the permutations

p: 1-1,2-2 3-8 pe: 1-2 2-1, 3-8
py: 1-1,2-3 3-2 ps: 1-3,2-2 3-1
ps: 122, 2-3, 383-1 pg: 1—3,2-1, 3->2
Then P1p: Py~ P1, P2 P2 D3> Ps Ps~ P4y Ps ™ D5, De = Pg

Pop: P17 D3 P2 Py P37 Ps, Py Pe Ps = Ps, Pe ™ Py
Psp: P17 P3 P2~> Py P33 Pe Py~ D5 P5 > P2 Pe ™ P1
Pap: P17 Py P2 P3 P3P P4~ P1, Ps > Ps Pe ™ Ps
Psp:  P1>Ps, Py>Pe P3Py, Py D3 P57 P1, Pg™ Po
Pep: P17 Pg P2 D5 P3 > P1, Py~ P2 P5s > Py Ps ™ P3

It is worth checking (pip)(pjp) = (piw;)p for some i and j between 1 and 6.
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7.2 PERMUTATIONAL REPRESENTATIONS
Definition of a permutational representation

A homomorphism of a group G into the symmetric group on the set X is called a per-
mutational representation of G on X.

So if p is the isomorphism provided by Cayley’s theorem for the group G, then p is a
permutational representation of G on G.

Repeating the definition of a permutational representation of a group G in detail, we
say that a mapping p of G into the symmetric group on some set X is a permutational
representation of G if

(gh)p = guhu
for all g and & in G. The permutational representation provided by Cayley’s theorem is

called the right-regular representation (the adjective right is used because the representa-
tion is obtained by multiplication on the right).

Example 1: (i) Let G be the symmetric group on {1,2,8}, and let p be as in the solution to

Problem 7.1(iii). Then p itself is a representation of G as a permutation group
on six elements.

(ii) There is another representation of the symmetric group G on {1, 2, 3}, the most
natural one. This is the identity isomorphism, for G is itself a permutation
group on {1, 2, 3}.

(ili) Let G be the cyclic group of order 2 and let X be the set of all integers
...,—1,0,1,.... Let a be the permutation of X defined by

a: 20->2i+1, 2i+1->2i for i=20,=*1,...

Thus a sends an even integer to the succeeding odd integer and an odd integer
to the preceding even integer. Let : denote the identity permutation. Then .
and a together constitute a subgroup I of the symmetric group on X since

2

a® =i a— at—«a

Now suppose G consists of the elements 1 and a. Then the mapping p:a— a,
1 - is actually an isomorphism since both G and T are cyclic of order two.
So u is a permutational representation.

(iv) Suppose n is a positive integer and that G is the cyclic group of order =,
G = {1,a,a?,...,a7" 1}
Let « be the permutation of X = Z the integers defined by
a: m2jn+l, in+l->m+2, ..., n+tn—1)->in (G=0=1,...)
In particular we have
O0a=1, 1a=2, ..., m—1a=0
Note that « cyclically permutes the integers taken in blocks of =.

It is not difficult to see that « is of order n. First of all, 0a2=2,
0e3 =38, ..., 0a®~1 =n—1. This means that the permutations i, a,a2, ...,a?"!
are all distinct since they act differently on 0.

If j is any integer, jo® =j. So o®* = and {,a,a2, ...,a""1} is a cyclic
group I' of order n. Hence the mapping ¢ of G into I' defined by

12, a2ea, ..., a"1ogn—1

*y

is an isomorphism and therefore a permutational representation of G.
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(v) Suppose that G is the dihedral group of degree 4. G is the group of sym-
metries of the square

A B

D C

Let ¢ € G. By Lemma 3.12, page 75, g takes each vertex of ABCD to a
vertex. Since g is one-to-one, Ag,Bg,Cg and Dg are distinct vertices. If we
define X = {A,B,C,D} and y, by xy, =xg for all x € X, then y,€ Sx.
Let ¢:G - Sx be defined by g6 =y, Then if € X, g,h € G,

a(gh)e = wygn = x(gh) = (@gh = (@vdvn = #(ygvn) = *(g6)(ho)

Thus (gh)e = gohe, and so ¢ is a permutational representation of G. If ge¢
is the identity permutation of X, then g leaves every vertex of ABCD un-
changed. But by Lemma 3.7, page 71, g =. Hence Ker¢ ={} and ¢ is
actually an isomorphism.

73 DEGREE OF A REPRESENTATION AND FAITHFUL REPRESENTATIONS

a.

Degree of a representation

Definition: The degree of a permutational representation on X (more briefly referred to

as a representation) is the number of elements in X.

Example 2: We inspect Example 1(i)-(v).
(i} This representation is of degree 6.
(ii) This representation is of degree 3.

Notice that in (i) and (ii) we have two representations of the same group,
namely the symmetric group on {1, 2, 3}, of different degrees.

(iii) This representation is of infinite degree. Notice that here G is cyclic of order
2. Hence there are representations of finite groups which are of infinite degree.

(iv) This representation is of infinite degree.

(v) This representation is of degree 4.

Problems

7.2,

Find a representation of degree 3 for a cyclic group of order 2.

Solution:

Let G be the cyclic group of order 2, say G = {1,a}. Let X = {1,2,3}. Then there are several
possible representations of G on X. First of all there is the rather trivial representation

7: 124 a—>.

where . is as usual the identity permutation. r is clearly a representation. For no matter which
elements g, h in G we choose,

(ghyr = ¢+ and (gn)(hr) = v =
from which (gh)r = (gr)(hr). Another representation of G involves choosing a different homomor-
phism. Now observe that if x is a homomorphism of G into the symmetric group Sy, then either
g =17 or Guis of order 2. Note also that Gx must be a subgroup. So in deciding on a choice of
1, we need subgroups of Sy of order 2. There are actually 3 of them. To see this let

a: 122 251,853 ap: 153,252 3>1 ag: 1-1,2-3 32
Then {;, a1}, {; @3}, {1, a3} are subgroups of Sy of order two, since o2 = for ¢=1,2,3. Thus the
mappings w124 a0 p: 12, a—a p3: 12>, a > ag

are representations of G on X.
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The proof that there are precisely three subgroups of order 2 follows from an inspection of
all the subgroups of Sx. Since we have no real need for such proof here, we leave the details to the
reader.

The upshot of these considerations is that we have produced 4 representations of G of degree 3.

Find representations of degree 10 and 15 respectively of the cyclic group of order 5.

Solution:
Let G be cyclic of order 5. Then we can find a € G such that G = {1, q, a? a3, at}. Let

X ={1,2,...,10y Y = {1,2,...,15}
and let a0 1-2 23, 83—>4, 45, 5~1, 67, 78, 8->9, 910, 10—~ 6
ag: 122, 2->3, 3-4, 45, 51, j—>j4, for j>5
It follows from a direct calculation that both oy and «, are of order 5. Then
Iﬂl = {L; 1, 0‘%: a:;: a‘li} 1‘2 = {l, a9, a;; ag’ ag}
are subgroups of order 5 of Sx and Sy respectively. Thus
p: 124 a=ay, ..., at~>al
and gt 1=, a=ay, ..., a4->a§

are both representations of G. The first is of degree 10 and the second is of degree 15.

b. Faithful representations

Definition: A representation is termed faithful if it is one-to-one. Both faithful and

non-faithful representations are useful, as we shall see later.

Problems

7.4.

7.5.

Are the representations in Example 1, page 216, faithful?

Solution:
(i) p is faithful.

(i1) The identity isomorphism is one-to-one, so this representation is also faithful. Notice that (i)
and (ii) provide examples of faithful representations of the same group which are of different
degrees.

(iii) u is faithful.
(iv) u is faithful.

(v) The representation is faithful.

Inspect the representations of (a) Problem 7.2 and (b) Problem 7.3 for faithfulness.

Solution:
(a) 7 is not faithful since a * 1 and ar = i.e. 7 is not one-to-one. However u;, us, ug are faithful.

(b) p; and p, are both faithful.

74 PERMUTATIONAL REPRESENTATIONS ON COSETS
Definition: Suppose that G is a group and that H is a subgroup of G. Then the right

cosets of H in G are
Hxl, sz, e (7.1)
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If H consists of the identity element alone, then (7.1) is simply an enumeration of the ele-
ments of G. Here we will show how to obtain a permutational representation of G' using
the cosets (7.1) which coincides with the regular representation when H = {1}.

To describe our representation, let us choose a complete system X of representatives of
the right cosets Hg of H in G, with 1 the representative of H. In other words, we select
in each coset Hg an element which we term the representative of the coset, with 1 the rep-
resentative of H. X is then simply the set of chosen representatives. We call such a set
X a right transversal of H in G.

Given a right transversal X of H in G, we denote the representative of the coset Hg by
g. Thus ¢ is an element of X. Since two right cosets are either identical or disjoint, it
follows that Hg = Hj because § € Hg. Notice that if A€ H, then hg=4g since
Hg =Hj = Hhg = Hhyg. '

For example, if G is cyclic of order 4, say G = {1,qa,0% ¢*}, and if H = {1,a?} is a sub-
group of order 2 of G, then {1,a} is a right transversal of H in G. We take X = (1,a}
and note that 1=1, a=a, @2=1, a* = a.

With each element g in G we associate a mapping v, of X into X, where y, is defined by
7,0 2> %9 (x € X) (7.2)

In fact y, is a permutation of X. To prove this we first show that if g1,9: € G, then
0102 = §19:. For §:1g: is the representative of the coset Hgig., while 19> is the representa-
tive of the coset Hfig.. But Hg: = Hgi, and so

Hg.g: = Hgwg: = H§ig»

Thus J192 = §192 forall g,9: € G (7.3)

We use (7.3) to prove that the mapping y, 18 a permutation. First we prove y, is one-to-one.
Assume zy, = yy, (x,y € X). Then zg =7%9, and so xgg~!=ygg~'. Using (7.3), we find
that Zgg—'= x99 1= % = 2 and similarly 99! =y, from which 2 = y. Finally we prove
v, is onto. Suppose z € X; then xzg~*€ X and

xgly, = 2979 = xglg =«
Hence every element of X is an image. Thus v, is a permutation.

We now define a mapping = of G into Sx. = assigns to ¢ in G the mapping v, so that g~
is the permutation of X defined by (7.2). The aim of the discussion in this section is to
prove that this mapping = is a permutational representation of G on X. We have only to
verify that it is a homomorphism, ie. if g,9, €G, then (g9.9,)r = (9,7)(g,7). Note that
(9,9,)= is a permutation of X. To prove (9,9,)r = (9,7)(g,7) we must show that
the effect of the mapping (g,9,) is the same as the effect of the mapping (9,7)(g,m). (Note
that (g,7)(g,m) is the product of two mappings, i.e. the result of first performing the mapping
(9,7) and then (g,7).) If x € X, using (7.3) we find

2((9,9,)7) = (9,9,) = 9,9, = (@(9,7)(97) = 2((g,7)(9,m))
Hence (g,9,)= = (9,7)(9,7) as claimed.

We shall refer to = as a coset representation of G (with respect to H). Of course =
depends on H, G and X. In a sense = is independent of the choice of the transversal X
(see Problem 7.10).

e

%
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Problems

7.6.

PERMUTATIONAL REPRESENTATIONS [CHAP. 7

Choose right transversals for (a) the center Z in the dihedral group D of degree 4, and (b) the
center Z in the quaternion group .4 of order 8 (see Table 5.1, page 151).

Solution:

(a) The dihedral group D = {1, a,, ay, a3, a4, as, @5, a7} is most easily described by its multiplication
table:

1 a, ay ag a0y as 273 az
1 1 ay ay as ay as ag aq
ay ay gy a3 1 ay ag ay oy
ay ay ag 1 a, ag ag ay as
as ag 1 ay [ az ay as ag
ay ay a; ag as 1 as as aq
as as ay a; ag a, 1 ag as
ag ag as ay ar ay a, 1 as
ay aq Qg as ay as as ay 1

(0)

(Here a; corresponds to a rotation of 90°, while a, corresponds to a reflection.) The center Z
of G is given by Z = {1,a,}. This can be checked by verifying that a, commutes with every
element of D (and no element other than 1 and a, has this property).

Finally Z,Za,,Za,, Zas are the cosets of Z in G. Thus

X = {1,a;,a4, 05}
is a right transversal of Z in G.

The quaternion group J{ of order 8, with elements 1, a,, a,, a;, a4, as, ag, a7, is given by the fol-
lowing multiplication table:

1 ay ay as ay as ag as
1 1 a; ay ay ay as ag ag
aq a, ay as 1 as ag az ay
as ay ag 1 a; ag ag ay as
ag ag 1 aq ay aq ay as ag
ay ay ay ag as as ay 1 ag
as as ay a; ag ag ay a; 1
ag ag ay ay a; 1 ag ay a,
a; a; ag as ay a; 1 a3 o,

(Comparing with Table 5.1, we have the following correspondence: 1 -1, a - @, a2 ~ a,, a® - ag,
b = a4, ab > a5, a?b > ag, a3b > a,.) The center Z of ¢{ is given by Z = {1, a,}. One has only to
check this from the multiplication table.

The cosets of Z in g{ are Z,Za,, Za,, Zas. This again can be checked directly from the
multiplication table. Thus

X = {1,(11,0/4,(1/5}
is a right transversal of Z in 4.
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7.7

7.8.

7.9.

Find a coset representation of (a) D of Problem 7.6(a) with respect to Z, and (b) _4{ of Problem
7.6(b) with respect to Z.

Solution:

(a) We work out a coset representation r using the right transversal X given in Problem 7.6. Thus
we must find the permutations of X that » assigns to each element of D. We will calculate in
detail the permutation a;z. Now X ={1,a,,a,,a5}). Then 1+a; =a,, and so 1l(a;7z) = a,.
a;a; =1 since Zaf =Z =171, and so a,(ay7) = 1. #a, = a5 since Zasa, = Za; = Zas, and
so ay(aym) = as. Finally @za; = a4 since Z(asa,) = Zay, and so ag(a7) = a4. Therefore

ar: 1=a, a1, ay—>as a5 ay
Similarly the other permutations are
1r: 1-21, a —a), ag—> a4 a5~ a;
agr: 1-1, ay—>ay, a4 ay a5 a;
agr: l-ay, a; =21, a4 —>a; a5 ay
agm: 1l-=ay ay—>as a;—-1, a5 0y
ast: l—>as a;—>ay ag> 0y, a5—>1
agr: l—ay, ay—2as a1, a5—a
am: l—=as, a;=>ay, a0y, a5—>1

It is instructive to check directly that this mapping » is a homomorphism of D into the per-
mutation group on {1, a,, a,, as}.

(b) Again we must find the permutations that » assigns to each element of 4/. The argument
follows closely that of (a) above, using the set X = {1,a,a4,a;}. Here we give only the
result which the reader is urged to check.

1r: 1-1, a2 ay, a4~ ay, a5 as
ar: l=ay, a1, ay—a;5 a5—>ay
agr: 1-21, ay—>ay, a4 a4 a5 ay
agr: l1-ay, o211, a3—=>a; a5~ a,
am: 1-a4 a1—2a5 0,21, a5—a
ast: l1—as a>ay ag—>ay, a5—>1
agr: l1—ay ay—>as a1, a5—=>a

am: l-as ap>ay a4 ay, a5—>1

1 2 1 2
Consider the permutation group S{l,z}- Its elements are ¢, = <1 2> and ¢, = <2 1>. Con-

. . a b a b
sider now the permutation group S{a)b}. Its elements are ¥, = o b/’ Yy = b o) ¥; and

¢1, ¥5 and ¢, are essentially the same except for the elements they act on. Give a definition which
will make this idea of “essentially the same” precise.

Solution:

Let F be a permutation group on a set X and let G be a permutation group on a set Y. We say
that F and G are isomorphic as permutation groups if there exists a one-to-one onto correspondence
a: XY and an onto mapping 6:F - G such that for all x in X and fE€F, (xf)a = (za)(f0).
(In this problem e:1—-a,2->b and 6: ¢ > ¥y, ¢g > ¥y.)

Prove that if F and G are isomorphic as permutation groups, then they are isomorphic as groups.
(Hard.)

Solution:
The ¢ of the solution of Problem 7.8 provides the isomorphism. First we show that it is a
homomorphism. Let f;,fo € F. For any z € X,

xa)((f1f2)8) = (@(fif))a = ((xf)fz)e (by the definition of composition of mappings)
= ((xfpa)fa8) = ((xa)(f16))(f28) = (xa)((f16)(f26))
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Since « is a mapping onto Y, it follows that as x ranges over X, xa ranges over Y. Hence as (f;f5)¢
and (f,6)(f,9) are permutations, f,6f,0 = (f16)(f»8). Thus ¢ is a homomorphism.

Next we must show that ¢ is one-to-one. Suppose that f,0 = f,¢; then if x € X, (za)(f16) =
(xa)(f96). Thus

: (@f)a = (2fs)a

Since « is one-to-one, xf; = xf, from which f; = f,. Hence ¢ is an isomorphism,

710. Let G be any group and H a subgroup of G. Let X, be a transversal for H in G and =; the cor-
responding coset representation, ¢ =1,2, Prove that Gz, and Gr, are isomorphic as permutation
groups. (Hard.)

Solution:

Since X; and X, contain one and only one element in each coset of H in G, we define «: X; > X, |
by sending «; € X, to x,€ X, if Hxy = Hx,. o is then a one-to-one correspondence. We define
w: Gry = Gry by (gw)p = gmy. It is easy to check that p is a mapping. Let gmy =8, gre = y. We
need only verify that (z8)a = (za)y for each x € X. Now by definition of 8 and a,

Hzg = H(xB) = H((xB)a)
Also, Hrg = H(xa)g = H((xa)y)

Hence (xa)y = (xB8)a as they are elements of X, that belong to the same coset, i.e. Hxg. The result
follows.

7.5 FROBENIUS’ VARIATION OF CAYLEY’S THEOREM
a. The kernel of a coset representation

Is a coset representation = of a group G with respect to a subgroup H ever faithful?
We know that the answer is yes if H = {1}. The object now is to find the kernel of =.

Theorem 7.2: Let G be a group and H a subgroup of G. Let = be a coset representation of
G with respect to H. Then the kernel of = is the largest normal subgroup
of G contained in H, ie. if NG and HDON, then N CKern.

Before proving Theorem 7.2, it should be noted that from this theorem it follows that «
is faithful if the only normal subgroup of G which is contained in H is the identity subgroup.
This implies, for example, that if G is a simple group and H +# G, = is automatically faith-
ful. For then, by definition, the only normal subgroups of G are G and the identity subgroup.
This observation has been useful in the theory of finite groups.

Proof: Let X be the right transversal of H in G from which » was defined. First we
prove that if K is the kernel of =, i.e. the set of all elements g of G such that g= = the
identity mapping of X onto itself, then K is contained in H.

If a€K and z€ X, then ar=. ie. z=w=x(ar)=7%a. In particular on putting
2=1, 1=ad. Hence a € H. This means that K is contained in H. Of course K, as the
kernel of the homomorphism =, is a normal subgroup of G. To complete the proof of the
theorem, we must show that K is the largest normal subgroup of G contained in H. To do
this it is sufficient to prove that if N is any normal subgroup of G contained in H, then
Nz = {.).

Suppose that a € N. If x € X, then
Hxa = Hzxax 'z

Since N is normal, zax—! € N. But N is contained in H, and so xzax~! € H. Accordingly
Hxa = Hz. Thus Za = « which means

z(ar) =2 forall x € X

Hence ar =. and N C K as required.
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Problems

711,

7.12.

Let G be the symmetric group on {1,2,3}. Let ¢:1—>2,2->3,8->1, and let r:1-22,2->1,
83 = 3. Then the elements of G are 0,02, 7,0r,02r. Let (¢) H = gplo) = {,0,02} and (b) H=
gp(ry = {,,7}. In each case find a coset representation of G with respect to H. Find also the kernels
of both representations. )

Solution:

(@) A right transversal of H in G is {i,7}. Notice that r—ler = 0~1 =2 So H is normal in G.
Hence by Theorem 7.2, every coset representation has kernel precisely H. The coset representa-
tion = associated with the right transversal {i, r} is given by

rl 12, T>T TT. LT, T
oF: 1L, TOT (er)r: 1= 7 T
27 >y, T (7). c=r, 72

Clearly Kerr = {, 0, 02}.

(b) Let X = {,0,02}. Since G = HUHosUHo?, X is a right transversal of H in G. The associated
permutational representation r is

w: >y o—=>a, 02— o2 Trl o2, o0=02 0220
or: 10, o—>0a2, 02 (or)7: 102 020, 02,
o2r: =02 o>, o220 (e27)7: 1=>0, 021, 0202

It follows immediately that = is faithful, since the only element mapped to the identity permuta-
tion of X is «. Hence the kernel of = = {i}.

Let G be the alternating group of degree 4 and let H be the subgroup consisting of the permutations
1 2 3 4 1 2 3 4 1 2 3 4
"(2143’ 3412/ \43 21
Find an associated coset representation of G with respect to H. Is this representation faithful?

Solution:

/1 2 38 4 _1234 /1 2 8 4 Th o =
Let71—2143,72—3412,13—4321. en if o =

1 2 38 4 .
<2 3 1 4>, G consists of the elements

4, 0, 62, Ty, 710, 7102, Ty, To0, To02, T3, T30, T302
It follows immediately that a right transversal of H in G is X = {.,0,02}. Let » be the associated
coset representation. It is easy to check directly that H is normal in G. Then Kerz = H by
Theorem 7.2, and so = is not faithful. Finally we list the permutations g» with g in G:

w: 1>, o0, 02— a2 Tom: (>, >0, 02> o2
or: 1~ 0, 002 a2, (re0)7: 1= 0, 002 o2,
o?r: 1202, 0>, o2-¢ (r90%)7: 1= a2, 0>y, o2-¢
T 1>, o—ag, o2—>g2 Taw: 1>, g>0, 02->g2
(rp@)r: t=> 0, 02 o2, (rgo)r: 1= 0, d>02 o2
(ri0%)7: 1> 0% 0>, o0 (rg0®)r: 1> a2, 021, o020

b. Frobenius’ theorem

Let H be a subgroup of G, X a transversal and « the associated coset representation.

p denote the right regular representation of G. Our idea is to express p in terms of .

If r€X and g € G, we have
x(gp) = zg
Of course zg need not lie in X.

Let
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We know, however, that xg belongs to the same coset as £g. Hence xzg = axg where
a € H. Now a is clearly dependent on x and g, and we denote it by a.,,. Substituting ¢z,

for a, we have _
29 = Qz,9%g (7.4)

or 2(9p) = Qu.g2(gm) (7.5)

Now any element of G can be expressed in the form hx for h € H and x € X. Therefore
(hx)(gp) = hxg = h{(x(gp)) = has,q 2(gn), i.e.

(hx)(g9p) = (Rtz,q)(x(97)) (7.6)

This equation suggests that the effect of gp on an element hx of G can be explained by
what happens to % (it goes to the element ha.., of H) and what happens to = (it goes to
z(gr)).

We express this formally in the following theorem which is due (essentially) to Frobenius.

Theorem 7.3: Let G be a group and H a subgroup of G. Let X be a right transversal of
H in G. Then there is a faithful representation # of G as a group of per-
mutations of H X X (the cartesian product of H and X) defined by

(h, 2)(g8) = (RGs,q, 2(g™))

Proof: The proof is an adaptation of the discussion of the last few paragraphs. First
let = be the coset representation with respect to H with right-transversal X. For each
g € G the permutation g gives rise to a permutation gr of H X X which is defined as

follows: (ha)gr) = (h,a(gn)), (hEH, z€X) (7.7)
Note that g\ is a permutation of H X X. For if

(k,z)(gr) = (B, 27)(9))
then (h, 2(g=)) = (K, 2’(97))

Since gr is a permutation of X, it follows from z(g=) = #’(g=) that x = 2’. Hence we have
proved that g is one-to-one. But ga is also onto since g is onto X. Clearly g is then a
permutation of H X X.

Now as we saw in (7.5), if g € G, then
L9 = Ozo(2(g7)), (@20 € H)
For each g € G define (h, x)go = (RGz.q,T)
We verify that go is a permutation of H X X. Suppose (kh,x) € Hx X. Then
(haz;, )90 = (Raz50s.q, ) = (B, )

Thus go is a mapping of H X X onto H x X. It remains to verify that go is one-to-one. Sup-
pose that (&, z)go = (k’,2’)gs. This means that

(haz.q, ) = (W@x,q, x’)

and therefore we find x =2’ and hazy = h'@z,¢ from which h=A4" and (h,x)= (F,2’).
Hence go is a permutation of H X X.

Finally we compute gogA.
(h,x)(gagr) = ((h,x)go)gr = (hasq, x)gh = (hQaz,g, T(gT)) (7.8)
Thus (go)(gr) = go (7.9)
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As both go and gx are permutations of H x X, g9 is a permutation of H X X.

Let ¢,9, € G. We must show that
(9,9)(9,0) = (9,9,)0 (7.10)

(Note that the left-hand side of (7.10) is the product of two permutations.) To facilitate
the proof of (7.10) we introduce the following notation:

ay = glﬂ'y A, - 9277: e 2 = (9192)77, a = gm (7‘11)
where ¢ is an element of G.

Equations (7.8), (7.9) and (7.11) yield

(h,2)g0 = (hGx.q,%a) (7.12)
Note that as = is a homomorphism, (g,7)(9,7) = (9,9,)= so that
e, = a (7.13)

Applying (7.12) twice and (7.13) once, we have
(R, 2)(9,09,0) = ((h, 2)9,0)9,0 = (Rzg,, Ta)g,0 = (RGxg Csay.q,, (Ta))a,)
= (R, Ca,,0 T,a,)) = (RO, 0zay.gy, Xas)  (7.14)
On the other hand, again on using (7.12), we have
(h, )(9,9,)0 = (ROzg,g,, Ta,) (7.15)

To prove that ¢ is a homomorphism, we must show that the right-hand side of (7.14) is
equal to the right-hand side of (7.15), i.e. we must show that

Qz,9.0zay,99 = Oz,g,9, (7.16)

To accomplish this we use equations (7.5) and (7.6) and obtain

2(9,9,) = Oz.o0,(2ay) (7.17)
Also (29,)9, = (Az.9,(%a))g, = Qz.9,0z0;.9,((Ta))a,) = Qz,0,0ze;,9,(Tex;)
from (7.13). This means (9,)9, = Qz,9,0za,,q,(¥ax;) (7.18)

Since x(9,9,) = (x9,)9,, the right-hand sides of (7.17) and (7.18) are equal. Thus (7.16)
follows and therefore ¢ is a homomorphism.

It only remains to show that ¢ is one-to-one. Assume g¢.0=g,0. Then (h, x)g,0 =
(h,x)g,0 for all pairs (h,x) € HX X; and in particular, if (k,2) =(1,1),

(@16, Hgm) = (@14, 1(g,m))
from which @14, = O1g, and 1(g,7) = 1(g,m) (7.19)
Using equation (7.5) with =1, we see that
9, = Ugyp) = 01,0, (Mg.7), 9, = 1(gyp) = @14,(1(g,7))
Using (7.19) we conclude that g, =g,. Thus 4 is one-to-one.
This completes the proof of Theorem 7.3.

We call the homomorphism 4 of Theorem 7.8 a Frobenius representation (with respect
to H). Of course 9 depends on X as well, but it can be shown that in a sense this dependence
does not matter.
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Problems
7.13. Describe in detail a Frobenius representation for the symmetric group on {1, 2, 8} relative to the sub-
groups given in Problem 7.11(a) and (b).
Solution:
(@) The set X = {i,7} is a right transversdl of H = {i,0,02} in G. Let 6 be the faithful rep-
resentation of G on H X X described above. The elements of G are
i, o, 02, T, oT, 021
VTVe use the formula xg = a,,%g to calculate az,4. Note that 1=,7 =, 2=, 7F=1,0F =1,
g°Tr = T.
As an illustration of the procedure we calculate ¢r,c. Now 70 = ar,070. Since 7o = o27,
we have 76 =7 and ar¢ = ror = 02. Similar calculations lead to
Ge =t Qv T GBr,e =t Ar,r =t
a,, =0 G,or = 0 ;s = o Gror = 02
@02 = o2 @, 027 = 02 U2 = © Qro2r = O
We use the definition of ¢ given in the statement of Theorem 7.3. The effect of » on ¢ is
given in the solution of Problem 7.11(a). The results, repeated here for convenience, are
aw=or =(e7r: (=, 77T
mr = (or)r = (e®r)7r . 1= 7, T
We can now calculate the effect of g¢ for each g in G. In particular,
(h,)o8 = (ha, g, om)) = (ho,))
and (h,7Ya0 = (ha, g t(o7)) = (ho?,7) forall hEH
We list the effect of the permutations g¢ for the elements of G.
w: (hyx) > (h,x) (heH, x€X)
o6: (h,0) = (ho,t), (h,7)—> (he? 1) (h € H)
o26: (h,1) = (ho?, ), (h,7)~ (ho,T) (h € H)
re: (R, = (h,7), (B,7)—> (k) (h € H)
(or)8: (h,)) = (ha,7), (h,7) > (ho2,)) (h € H)
(627)0:  (h,) = (ho2,7), (h,7) = (ha,s) (h € H)
One could check that ¢ is a homomorphism by inspecting (g,6)(g9,6) and (g,9,)8, where (g.95 € G).
The above description of ¢ immediately shows that ¢ is one-to-one.
(b) Here H = {1,7}; X, a right transversal of H in G, is given by X = {i,0,02}. The Frobenius
representation ¢ is then given by
w: (h,x)>(h,z) (hEH, z€X)
o0: (k) = (h,0), (R,0)—(h,a®), (h,0%) —(h,) (h € H)
o26: (h,0) > (h,02), (h,o)~>(h,)), (R,0%) = (h,0) (h € H)
70: (h,0) = (kr,0), (h,0) > (hr,0%), (h,0%) > (hr,0) (R € H)
(o7)8: (k1) = (hr,02), (h,0) = (h7,0), (h,o%) = (k7,1 (h € H)
(621 : (k1) = (hr,0), (h,0) > (h1,)), (h,0%) - (hr,e®) (b€ H)
7.14. Describe in detail the Frobenius representations for the alternating group of degree 4 relative to

the subgroup H given in Problem 7.12.

Solution:
Here G consists of 9 . 2 2
ty 0, 0% T1, T10y T10% T9, ToO, T90%, T3, T30, T30

and H = {i,7y,79,73). A right transversal of H in G is X = {;,0,02}. The Frobenius representa-
tion 6 is then described as follows:



Sec. 7.6] APPLICATIONS TO FINITELY GENERATED GROUPS 227

8: (hz)~(h,2), (hEH, x€X)

08: (h) = (ho), (ho)- (ho?), (ka2 > (k0 (h € H)
o2 (h,) = (ho?), (ho)= (), (k0% > (ko) (h € H)
8 (h) = (hry, 0, (hy0) = (hrgy0), (h,02) = (hrs,02) (k€ H)
(r)6: (R ) = (hry,0), (k) = (hry,0?), (h,0%) = (hry,) (k€ H)
(r102)8: (R, ) = (hry, 0%, (h,0) = (Rry,0), (R, 0%) = (hr3,0) (b € H)
01 (R0 (hry, 0, (By0) > (hrg,0), (h,o?) > (hry,0?) (R € H)
(rs0)8:  (B,0) > (hry,0), (hy0) = (hrg,02), (h,a2) - (kry,)  (h € H)
(rg02)0: (k) = (hrg,02), (h,0) = (hrg,)), (h,0%) = (hr,0) (k€ H)
300 (h,) > (hrg, ), (hy0) = (hry,0), (h,02) = (hry,02)  (h € H)
(rg)o: (k) = (kg 0), (h,0) = (hry,0?), (ho?) = (hry,) (k€ H)
(r502)0:  (h, ) > (hrg, 02), (h,0) = (hry,0), (k0% = (hrs0) (b € H)

7.6 APPLICATIONS TO FINITELY GENERATED GROUPS
a. Subgroups of finite index

Frobenius’ representation, although only a variation of Cayley’s, is very useful. Here
we shall give one application of this representation. First we recall a definition given in
Chapter 4.

Definition: A group G is finitely generated if it can be generated by a finite set, i.e. if there
is a finite subset S (+# @) of G such that for each g € G there are elements
8,8, -..,5, €S and integers ¢, ...,¢, (¢ ==1) such that

12 ®as FEARE
€ €

— 1.,.. n

g—.S’1 S,

Theorem 7.4 (O. Schreier): A subgroup of finite index in a finitely generated group is
finitely generated.

Proof: Let G be a finitely generated group. Let S be a finite set of generators of G,
with |S|=m. Suppose H is a subgroup of finite index in G. Choose a right transversal
X={z,...,2) of H in G, with z, the identity. Notice that j <~ by assumption. Let
6 be a Frobenius representation of G with respect to H given in Theorem 7.3. If h € H,

then =1 and @i, = h so that we have (1,1)(k6) = (k,1). But h can be written as
h o= st -8 (¢==1)
with s,...,s,€8. Put ¢ = s, i = 1,...,m; then h =t ---t. Since ¢ is a
homomorphism,
(1, 1)(R8) = (1, 1)(E,0)(E,0) - - - (2,6)

Let tr=a,7=1,...,n. By repeated applications of the definition of the action of g4 in
H x X (see Theorem 7.3) we have
(1, 1)(h9) = (al,tl, 1&1)(t26) M (tnﬂ) = (al,tl alal,tz, l(alaz))(tsﬂ) tre (tnO) =
= (al,tlalal,tzalalaz,ts o alal- YT 1(0‘1 e an)) = (h’ 1)
Hence h=a11 Gty " Cia, .ap_pt,- SiNCE @, ...,a, €Sy, e - o) €EX for each
i, 1=1i=n. In other words we have expressed i as the product of elements of the form
az: where x € X, and t = s*! where s€ S

As |[X| =7 and |S|=m, the number of such elements is at most 2mj. This means that H
is finitely generated.
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b. Remarks about the proof of Theorem 7.4

We have actually proved that if G can be generated by m elements and H is of index
J in G, then H can be generated by 2jm elements. However, it is not difficult to reduce
this number to jm. To do so observe that we have proved that the elements a.,: generate H,
where x is an element of a right transversal X of H in G. We recall that if § denotes the
representative of the coset Hg, then a,, is defined by

g = Qz,¢Zg
(equation (7.4), page 224). This means that
Uzg = Xg(TG)*

Therefore the elements wt(xf)~' generate H, with t=s or t=s"!, where s €S. Note
that

x871ls = xs7ls = & = 2

by equation (7.8), page 219. Let y = xs~!; then ¥3 =2z and

a;i—l = 28 szl = ys(B)"! = @y,
i.e. @ s~1 is the inverse of a,,. Thus H is actually generated by the elements a,,, £ € X
and s €S. The number of these elements is jm. (In fact one can lower this bound and
prove that H can be generated by 1+ (m —1)j elements. For a proof of this result see
Theorem 8.13, page 264.)

Note that in Section 7.6a we have actually proved that H is generated by a,., * € X,
s € S, without the assumption that |X| and |S| are finite. '

Problems

7.15. Let G be the symmetric group of degree 3 and let H be a subgroup of index 2 in G. Find the set
of generators of H described above.

Solution:

We use the description of G in Problem 7.11(a). Now a subgroup of index 2 in any group is
normal. Thus if H is of index 2 in G, H is normal in G. Moreover, |H|=3. Hence H = {;, 0,02},
since this is the only subgroup of order 3 in G. A right transversal of H in G is X = {, r}.
Clearly G can be generated by o and =, and so H is generated by

o, =051 =o oy = 70(f6) "1 = 70771 = o2

a,; =771 =, Ur .y = 7o(FF) 71 = 72

3

Thus we find that ., 0, 02 generate H. Of course H is actually generated by o alone.

7.16. Let G be any group and let H be a subgroup of G of index 2. Prove that if G can be generated by
two elements, then H can be generated by three elements.

Selution:

Suppose that G is a group generated by ¢ and d and that H is a subgroup of index 2 in G. If
both ¢ and d are in H, then H DG and H is not of index 2 as initially assumed. Without loss of
generality we may suppose that ¢ € H. Then the cosets of H in G are H and He. Thus every ele-
ment of G can be written in the form hc or & (h € H). This means that {1, ¢} is a right transversal
of H in G. Therefore G is generated by the elements

a1, = le(le)™1 = cec™! = 1, ay,4, G¢,cr e g

Hence H is generated by the three elements a;,q4, a.,. and a. g.
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7.17.

7.18.

7.19.

7.20.

Let G be generated by a and b and suppose that N is a normal subgroup of G such that G/N is
generated by Na and G/N is infinite cyclic. Find a set of generators for N in terms of a and b.
(Hard.)

Solution:

It is clear that X = {1,a*1,a%*2, ...} is a right transversal of N in G. If b & N then since
Nb = (Na)? for some integer w, ba—w EN. Put ¢ =ba~%. On the other hand if b & N, put
¢ =0b. Clearly gp(a,c) = G. We therefore take S = {a,c}. The generators of N are the elements

a,s = xs(x8)"1 (x€X, s€S)

If x=¢a and s =gq, a, s = da{aia)”l = dig(ait)=1 = 1
If x=a and s=c¢, a, s = die(aie)”! = alea™!
Hence the elements {...,a"1ca, ¢, aca—1, ...} are a set of generators for N. Since either ¢ = ba—w

or ¢ = b, we can restate this set of generators in terms of @ and b thereby obtaining a set of gen-
erators of G of the desired kind.

Let G be generated by a and b. Find generators for all possible subgroups of index 2. Hence show
G has at most three subgroups of index 2.

Solution:
Let H be a subgroup of index 2 in G. Then we may have
(1) a¢H bEH, (2 a€H begH, (3 a€H, beH.

In case (1) take X = {1,a} and S = {a,b}. Then generators of H are the a,, (* €X and
s € S). Thus H is generated by b, a2 and aba—1.

In case (2), proceeding as in (1) with X = {1,b}, H is generated by «, b2 and bab—1.

In case (3), ab=c€ H. Take X ={1,a}, and S = {a,¢}. Then H is generated by ¢, aca—!
and a2.

So the possible subgroups of index 2 are:

(1) gpd,aba~1,a?), (2) gpla,bad=1,02), (3) gplab,a®ba~?,a?)

Let G = gp(a,b,c) and let N be a normal subgroup of G of index 3 with G/N = gp(Na). Suppose
N contains b and ¢. Find a set of generators for N in terms of a, b and ¢.
Solution:

Choose S = {@,b,¢} and X = {1,a,a?}. Then the elements a,,,, with 2 €X and s €S, gen-
erate N. Thus N is generated by a3, b, ¢, aba—1, aca—1, a2ba—2, a2ca—2.

Prove that if a group G contains a subgroup H of index 2 which is cyclic, then every subgroup of
G of index 2 can be generated by two elements. (Hard.)

Solution:

Let H be generated by b and suppose that a € H. It follows that G = gp(ae,b). From Problem
7.18 the possible subgroups of index 2 are

(1) gp(b,aba=1,a?) = Hy, (2) gp(a,bab—1,b2) = H,, (3) gplab,a?ba~1,a%) = Hj
Clearly b & H, or Hj, as then each of them would actually be equal to G. Thus H = H;. Since
H is the cyclic group generated by b, aba—1 = b" and a2 = bs for some integers r and s. We have
ba = a—1b7 (7.20)

and a? = bs (7.21)
The generators of H, are a, bab—! and b2. bab—1 = (ba)b—1 = a—1b7—1 from (7.20), and so HZ is
generated by a,b7—1,b2. But gp(b71,b2) is cyclic generated by ¢, say, as it is a subgroup of a
cyclic group. Thus H, can be generated by two elements.

The generators of Hy are ab, a?ba—! and a2, Hence ab, a2ba—1(ab) and a2 are generators for

H;. Using (7.21) we conclude that ab, bs+2 and bs are generators for H;. But gp(bs+2,bs) is cyclic
generated by ¢, say; so Hj is generated by two elements and the proof is complete.
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¢. Marshall Hall’s theorem

The second application of permutational representations is due to Marshall Hall.

Theorem 7.5: The number of subgroups of finite index j in a finitely generated group is
finite.

This theorem may be restated as follows: Let G be a group which is generated by a4, ..., an
where n < . Suppose j is a fixed positive integer. Then the number of subgroups of G
of index j is finite.

Proof: Let S, be the symmetric group on 1, ...,7. For each subgroup H of index j in
the finitely generated group G choose a right transversal X, (we emphasize that X, contains
the identity of G). To avoid confusion between the number 1 and the identity of G, we
shall write the identity (for this proof alone) as e. Thus we have e € X,. Let =, be the
coset representation of G with respect to the transversal X, (see Section 7.4). Then =, is a
homomorphism of G into SXH' Since |X,|=7, it is easy to prove that there exists an iso-
morphism ¢, : Sx,, = S; such that ¢ € Sx, moves e or leaves it fixed according as to
whether 64, moves 1 or leaves it fixed (see Problems 7.21 and 7.22 below).

Note that ¥, = =,4,: G~ S, is a homomorphism of G into S, since it is the composition
of two homomorphisms. Note also that if H and K are two subgroups of index j and
H + K, then ¥, + ¥,, for there exists an element ¢ € H but g € K (or vice versa). Then
e(gm,) =e for e(gn,) =eg=e as g € H (see Section 7.4). Accordingly 1¥,=1. On
the other hand, as ¢ € K, e(gn,)+ e and hence 1¥,+#1. Thus ¥, 6+ ¥,  if H+K.

We have therefore found that the number of subgroups of index 7 in G is certainly not
greater than the number of homomorphisms of G into S,. This is where the fact that G is
finitely generated comes in. For suppose G is generated by a,,...,a,. If ¢, are homo-
morphisms of G into S, such that ap =af for ¢=1,...,n, then ¢ =¢. To prove this,
observe that if ¢ € G, then

g:a;‘---a:kl ei:il,ijE{l,...,n}

€k

and g = (ai1<i>)l "'(aik¢)€k = (ai19)1 e (ayd)” = 9o

Since ¢ and ¢ agree on every element of G, ¢ = 6. This means that the number of homo-
morphisms of G into S is finite since the number of possible images of the generators of
G is finite (at most (71)?).

This completes the proof of the theorem.

d. One consequence of Theorem 7.5

Let G be a finite group and 4 a homomorphism of G onto G. It follows that ¢ is an iso-
morphism, for |G| =|G6| = |G/Ker§| and hence Kerd = {1}. If G is not finite, is it pos-
sible to have a homomorphism § of G onto G with 6 not an isomorphism? For example, if
P is a p-Priifer group (see Section 6.2¢c, page 191), let 6: P > P be defined by z6 = px, x € P.
Then P§ = P; but as P has an element of order p, 6 is not an isomorphism.

In the following theorem we prove a result which tells us that for a special class of
groups every onto homomorphism is an isomorphism.

Theorem 7.6 (A. I. Mal’cev): Let G be any finitely generated group whose subgroups of
finite index have intersection 1. Then every homomor-
phism ¢ of G onto G is an automorphism.
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Proof: Let K be the kernel of ¢ and let L be any subgroup of finite index in G. If L
is of index j, then the number of subgroups of G of index j is finite. Let these subgroups be

L = LI,L2,...,Lk

Now, by Theorem 4.18, page 117,
G = G = G/K

and so the number of subgroups of index 7 in G/K is precisely k, the number of subgroups
of index j in G. Let MK, ...,M/K be these subgroups of index 7 in G/K. Then
M, ..., My are k distinct subgroups of index j in G, by Corollary 4.20, page 121. Thus the
Ms are simply a rearrangement of the L;. Therefore every L; is an M; and so contains K.
In particular

LOK

This means that every subgroup of finite index contains K. Hence K is contained in the
intersection of the subgroups of finite index. By hypothesis, this intersection is 1. So
K =1. Accordingly ¢ is one-to-one, and ¢ is an automorphism.

This theorem is important in current research in group theory.

Problems
7.21. Prove that there exists an isomorphism p between S{xp’”z} and S, such that if ¢ € S{$11x2} and
x;0 = x;, then i(6p) = j. (Hint: see Problems 7.8 and 7.9, page 221.)

Solution:
Let o: {x;, 2} > {1,2} be defined by ;o =j, j =1,2. Let pu be defined by

Xy Ko _ 1 2 X1 Ko . 1 2
Xy %o # 1 2 ’ Lo Xy # 2 1
Then «, ¢ define a permutation isomorphism (see Problems 7.8 and 7.9) and therefore » is an isomor-

phism with the required effect.

7.22.  Prove that in general there exists an isomorphism p between S(xr---’ z, and S, such that if
6 € S{Il’ L) and x;9 = w;, then i(ep) = j. (Use Problems 7.8 and 7.9.)

Solution:

Let a:{®y,...,2,0 »{1,2,...,n} be defined by za=1 If 4 € S{rv Lz define ¢p € S,
to be the mapping that sends ¢—j if x6 = x; (as ¢ is a permutation of {x;,...,x,}, 6x is a per-
mutation of {1,2,...,n}). It is clear then that u is onto S,, and hence @, u provide an isomorphism

of permutation groups. Thus p is the required isomorphism.

7.23. Prove that if H and K are subgroups of G, then each coset of H intersects a coset of K either in the
empty set or in a coset of HNK. Hence prove that if H and K are of finite index in G, so is HNK.

Solution:

If a coset of H and a coset of K have an element g in common, then the two cosets are Hg and
Kg. x € HgnKg if and only if x = hg = kg, for some h€ H and k<€ K. But hg = kg if and
only if h=1Fk, i.e. h€ HNK. Thus x € HgnKg if and only if « € (HnK)g. Then HgnKg =
(HNnK)g and the two cosets meet in a coset of HNK.

If H is of index n and K is of index m, at most nm cosets can be found as intersections of a
coset of H with a coset of K. Furthermore these are all the cosets of HN K, for any coset (HNnK)g =
HgnKg and so is the intersection of a coset of H by a coset of K. Therefore HNK is of finite
index in G if both H and K are.
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7.24. Let G be finitely generated with a subgroup of index j. Prove that the intersection of all subgroups
of index j in G is a normal subgroup of finite index. (Hard.)
Solution:

By Theorem 7.5, G has only a finite number of subgroups, M, ..., M, say, of index j. Now if

M is any subgroup of index j, it is easy to prove that xz—1Mx = M is also of index j. (If the cosets
of M are My, ..., My;, then the cosets of M are Mx~lg,x, Mz gy, ..., Mx—1g;x. For if g€ G,
x~1gx € Mg;, for some i, implies that g € x~Mxz~—1g,x = Mx—1gx.) Hence M NnMyn---NM, =K
is a normal subgroup of ‘G, for if g€ K and z€ G, 7 1lgx € 2~ Mz, x~ My, ...,z 1M 2. But
x IMx, ..., 27 1M x are n distinct subgroups of index j. Hence they must be all the subgroups of
index j (perhaps in a different order). Thus z~lgx € K and so K < G. K is of finite index by
repeated application of Problem 7.23.

7.25. Let G and H be two groups and suppose that G satisfies the conditions of Theorem 7.6. Let
6:G—>H and ¢: H- G be epimorphisms. Prove that G = H.
Solution:
8¢ is an epimorphism of G to itself and so by Theorem 7.6, §¢ is an isomorphism. Then if

g1, g€ G, gl6¢) 1 and thus g¢ 5= 1. Therefore ¢ is one-to-one and ¢ is an isomorphism of
Gto H.

7.26. Let N and M be unequal normal subgroups of a finitely generated group G, M D> N. Suppose the
intersection of the subgroups of finite index in G/N is the identity. Prove that G/M is not isomorphic
with G/N.
Solution:
Let ¢: G/M -» G/N be such an isomorphism. Let u: G/N > G/M be defined by Ng - Mg.
It is easy to verify that u is an epimorphism. Then x6 is a homomorphism of G/N onto itself. By
Theorem 7.6, u6 is an isomorphism. Now if g E M — N, (Ng)(u8) = Mg is the identity of G/N.
Thus w6 is not an isomorphism. This contradiction yields the required result.

7.7 EXTENSIONS
a. General extension

Suppose G is a group with a normal subgroup H and that G/H = K. Then, using the
terminology introduced in Chapter 5, G is an extension of H by K. It is convenient to gen-
e_ralize this concept and to say that G is an extension of H by K if G has a subgroup H with
H=H and G/H=K. It is our aim to investigate how a group is built as an extension
of one group by another.

In this section let G be a fixed group and H a normal subgroup of G. Let ¢ be an iso-
morphism of G/H onto K. Let X be a left transversal of H in G, i.e. a set of elements of
G containing one and only one element from each left coset of H in G with 1 € X.

If g€ G, g=2xh for some z € X and some h € H. It is easy to see that this expres-
sion for g is unique. Let ¢ € G, x € X; then gz belongs to some coset of H in G, say the
coset yH where y € X. Therefore

gx = yh

for some k € H. Now h is uniquely determined by ¢ and z; we denote 2 by m,,.. Thus
gr = YMg,x (722)

The elements m,,. correspond to the elements a.,, introduced in Section 7.5b. (We use my,«
instead of a.., because here we are dealing with left instead of right cosets. We will explain
in Section 7.7c the minor reason why we use left cosets here.)

Note that ¢, the isomorphism of G/H onto K, is a one-to-one mapping of the set of left
cosets of H onto K. Therefore we can unambiguously denote the representative of the coset
9H by x if (9H)¢ = k. In particular then, z; = 1. With this notation,

X = {a| k €K}
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Notice that as (xxewH)¢ = {(xxH) (2w H)}¢ = (xxH)p(2xrH)p = kk’ where k, k' € K, the rep-
resentative of the coset xxxw'H is #w. Then, from (7.22) we have

Tk = Tk Ma,z,, where Mz, € H
We suppress the x’s and write m, for Mz .z,,. Thus,
XX = Tk Mi,kr  Where k, k' € K, mu,r € H (7.23)
Every element g in G can be written uniquely in the form xxh where 2. € X, h € H.

To express the product of two elements xxh and xx-h’ as the product of an element of X

by an element of H, we proceed as follows: .

—1 -1
xkh'xk'h' = XXy’ * Ty’ h:ck'h’ = Xk Mk, LTk’ hxk'h' (724)

Observe that ax'haw € H since H is a normal subgroup of G. So 2w €X and

My e®w’ hawh’ € H. The right-hand-side of (7.24) looks less complicated if we introduce the

notation &* for ax' hax-; then -
axh e = Toe i B R (7.25)

It appears from equation (7.25) that the extension G of H by K that we have been in-
specting is determined by the mu » and by the images £* of the elements & obtained by con-
jugation by the zx, i.e. by forming @x haw. One may conveniently think of the elements
Mk, in H as the images of a function m of two variables (coming from K) with values in H.
In other words, we may think of m as a mapping from the cartesian product K X K into H,
where we use mu,x to denote the image of (k,%’) € KX K under this mapping m. Con-
tinuing with this analysis, let us turn to the elements k*. For each k¥ € K we have a
mapping, ke say, of H into H, namely the mapping which sends ah element % in H to the
element 2. In a way then the group G is made up of two mappings:

(1) a mapping m from K X K into H,

(2) a mapping « of K into a set of mappings of H into H. (The effect of ka is to map
h to hk.) )

Indeed m and « determine G up to isomorphism (see Problem 7.27). If we add enough con-
ditions to these mappings, one can reverse the procedure we have been outlining and con-
struct from H, K and the mappings m and « an extension G of H by K. (See A. G. Kurosh,
The Theory of Groups, Vol. I, Chelsea, 1960, translated by K. A. Hirsch, for details.) We
will not tackle the general problem but we will consider only a particular case (in
Section 7.7c).

Problems

7.26. Let G be the dihedral group of degree 3. G is an extension of a cyclic group of order 3 by a cyclic
group of order 2. After choosing a suitable left transversal, find the mappings m and a introduced
above.

Solution:

Using the notation of Section 3.4f, page 75, let H = {0y, 05,03}. Then, as can be easily checked,
H < G. Since |G| =6, G/H is of order 2 and thus a cyclic group of order 2. Let {i, 7} be a left
transversal for H in G. Then

My, = My, =7, My =T, Mgz =1

w is the identity mapping of H onto H, while ra sends o, to oy, 0y to 0, and o3 to o3.
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7.27. Let G, G be two groups, both extensions of H by K. Assume that H is actually a subgroup of both
G and G. Let X, X be transversals of H in G, G respectively. Let m, 7 and «, & be the mappings ob-
tained above. Prove that if m = and « = &, then G = G.

Solution:

The elements of G are uniquely of the form z.h, where =z, € X, h € H, while the elements of
G are uniquely of the form & h, where %, € X. Let 9: G—> G be defined by (x.h)6 = &h. Then
6 is a one-to-one onto mapping. To prove ¢ is a homomorphism, we consider the product of two
elements of G.

(wihayh)o = (xkk’mk,k'hk e = (@ my, i R(k'a)R)8 = Epge my i R(K )R

Frp My, - KDL = &phdt b’ = (xh)o(x h')e

Thus G = G.

b. The splitting extension

Suppose G is as in Section 7.7a. Consider the particular case where m.. =1 for all
z,2’ € X. By examining equation (7.22) xx’ = «”, i.e. the product of two elements in X
is again in X. Furthermore, we have 1€ X. Let x € X, and let ¥y € X be such that
2 1H = yH,; then 2y € H. Accordingly

2y = lm.y where m., E€H

However m., =1, and so 2y = 1. Thus z has an inverse in X, and so X is a subgroup of
G. Since H < G, XH is a subgroup (Theorem 4.23, page 125). But every element of G
is of the form zh, vr € X, h € H. Hence XH = G. Since distinct elements of X lie in
distinct cosets of H in G and 1 € H, we have

XNH = {1}

Since X and H are subgroups of G with XH=G, HnX = {1} and H G, G is said to
split over H. X is called a complement of H.

Note that if G splits over H, we can choose any complement X of H as a transversal for
H in G, since two distinct elements of X belong to distinct cosets of H. Now X is a sub-
group of G, and it follows that if we define m,,. as in Section 7.7a with X as transversal,
then M. =1 for all z,2” in X.

If G splits over H and X is a complement of H, then
G/H = HX/H = X/HNnX = X

In other words, G is an extension of H by X; that is, if G splits over H, G/H is isomorphic
with any complement of H.

It is convenient to introduce the following definition. We say that a group G is a
splitting extension of H; by X, if there exists a normal subgroup H of G isomorphic to Hy
such that G splits over H and G/H = X,.

Problems

7.28.  Prove that the dihedral group D of order 8 is a splitting extension of a cyeclic group of order 4 by
a cyclic group of order 2.

Solution:

We use the multiplication table for D given in Problem 7.6(a), page 220. Let H = {1,a,, a,, as};
then H is cyclic of order 4 since
= a3, ai‘ =1

2 3
al = Qg, al
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7.29.

7.30.

7.31.

Moreover H is a normal subgroup of G. This can be verified either by direct calculation, checking
that if d€ D and h € H then d—1hd € H, or by noting that H is of index 2 in D. Now letting
X ={1, a4}, ai =1 and so X is a subgroup of D. Since a, &€ H, it follows that the cosets H, a,H

are disjoint. Therefore, as there are 8 elements in HUa,H,
D = HuaH or D = XH

Finally ; - HnX = {1}
So D is a splitting extension of H by X as required.

Prove that neither the dihedral group of order 8 nor the quaternion group of order 8 is a splitting
extension of a group of order 2 by a group of order 4.

Solution:

Let E stand for either the dihedral group of order 8 or the quaternion group of order 8 Suppose
E is a splitting extension of a subgroup H of order 2 with complement X of order 4. Then H is a
normal subgroup of G. Now suppose H = {1,h}. If e& E, then e~ lhe& H. Since h+#1,
¢ lhe+# 1. Thus e—lhe =h for all e € E. In particular if v € X, then z—thx = h. Now
E = XH. Since X is of order 4, X is abelian (see Problem 5.19, page 140).

Now suppose e,f € E; then
e =g'h, f=ux"h" (0" €X, M,k € H)
Recall that every element of H commutes with every element of X and that X is abelian; then
ef = w'h ~x"h" = x'x"Wh’ = x"x'h'h = xhz'h’ = fe
Thus E is abelian. But neither the dihedral group of order 8 nor the quaternion group of order 8

is abelian. Hence we have a contradiction to the assumption that either of these groups is a
splitting extension of the type described.

Alternate proof: If E is a splitting extension of H by X of order 2 and 4 respectively, since
HnX ={1}, HA E and X < E (as X is of index 2), it follows that E = X X H, the direct product
of X and H by Corollary 5.17, page 145. From this it again follows that E is abelian, thus producing
a contradiction.

Prove that the quaternion group of order 8 is an extension of a group of order 4 by a group of order
2, but is not a splitting extension.

Solution:

We use the multiplication table for 4{, the quaternion group of order 8 given in Problem 7.6(b),
page 220.

First let K = gp(az). Then K is of order 4 and therefore of index 2. Thus K is a normal sub-
group of J{, and it follows that 9[ is an extension of K by (/K. Clearly (/K is cyclic of order 2,
and so 4 is an extension of a group of order 4 by a group of order 2.

Now suppose J{ splits over any subgroup K of order 4. Then ¢{/K is of order 2 and hence
abelian. Therefore K contains the commutator subgroup of ¢/ by Problem 4.68, page 116. In
particular, K contains a, since 1 =1 '
Ay = @y "G7 Q407
Now we must check that if x is any element except 1 and a, of 4{, then « is of order 4. This can be
done directly, using the multiplication table for ¢4{. Suppose now, if possible, that 4/ is a splitting
extension of K by X. Then the subgroup X is of order 2, say X = {1,x}. But as we saw above, X
is of order 4 since x # 1, x 7 a,. So the subgroup X is not of order 2. This is a contradiction and
so the desired result follows.

Alternate proof: If J{ is a splitting extension of a subgroup K of order 4 by a subgroup X of
order 2, then KNX = {1} and K < 9{. But every subgroup of the quaternion group is normal
(Problem 5.43, page 158). Therefore X < _¢{. It follows, by Theorem 5.16', page 146, that ¢/ =
K X X. This implies 4{ is abelian, which is a contradiction.

Is the alternating group of degree 4 a splitting extension of a group of order 6 by a group of
order 27

Solution:
By Problem 5.1, page 131, the alternating group of degree 4 does not contain a subgroup of order
6. Thus the result follows.
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¢. An analysis of splitting extensions

Suppose now that G is a splitting extension of H by K with complement X. Then by
Section 7.7b, we may use X as a transversal for H in G, and .. =1 for all x,2’ € X.
Consequently each element ¢ € G is uniquely expressible in the form

g = xxh where k€K, h€ H (7.26)
and equation (7.25) becomes wchaw b = e B R (7.27)
For each k& € K the mapping h—h* (h€H) (7.28)

is an automorphism of H, for H < G and h* = 2; 'har imply, by Problem 3.57, page 85,
that the mapping k- k* (h € H) is an automorphism of H.

Finally we remark that if we let « be the mapping which assigns to each element k € K

the automorphism
ka: h>h* (b€ H)

of H, then « is itself a homomorphism of K into the group of automorphisms of H. (This
explains why we used a left transversal in Section 7.7(a), namely so that the mapping « be
a homomorphism.) We have only to prove that

(kk')a = kalt'a (7.29)

To verify (7.29), let us take an arbitrary element 7 € H and apply the automorphism
(kK'Y to h:

h[(kk)e] = T it = (@xxe) " h(xeae)  since we = axw by (7.27)
= (xo' @6 Y(ere) = xe (2n" hae)ae
= ' [(ka)]xw = [h(ka)](k)
= h[(ke)(k’«)] by the definition of the product of two automorphisms
Thus we have (ke = (ka)(K'a)

We now replace &* by h(k’e) in (7.27). Then (7.27) becomes
Zrhe b = e s (K Q)R (7.80)

What is the situation we have arrived at? We started from a group G which splits over H.
Then we chose a subgroup X of G such that G = XH and XNH = {1}. We were given an
implicit isomorphism ¢ of G/H with K and we denoted the element in X which corresponds
to k in K by xx. Then we observed that the elements of G were uniquely expressible in the
form ah with k€ K, h € H. The way in which elements of G are multiplied was then
computed by making use of the existence of a homomorphism « of K into the automorphism
group of H and by applying (7.30). Therefore we may suspect that if we are given

(@) a group H,

(b) a group K,

(¢) a homomorphism « of K into the automorphism group of H,

then we can create a splitting extension of H by K.

Indeed this is the case. All we have to do is to reverse the process we have described.
To be precise, starting with the data (a), (b) and (c), we let G be the cartesian product of

Kand H,ie.
G = KxH = {(k,h)| k€K, h € H}
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We define a binary operation in G according to the formula
(k, R)(k’, ) = (k' (K’ &)R") (7.31)
The reader will note the strong similarity between (7.30) and (7.31).

Before verifying that G is a group and a splitting extension of H by K, we will make the
similarity of equations (7.30) and (7.31) even more evident. Let x. = (k,1) and h= (1, ),
and define ke by h(ke) = (1, R(ka)). Then from (7.31) obtain

xchxih’ = xurh(k a)h’
This equation resembles equation (7.30) even more closely than (7.31) does.

We will now prove that G is a group and that it is a splitting extension of H by K.
(i) We note first that (7.31) defines a binary operation in G.

(ii) The binary operation defined by (7.31) is associative:
((k, RY(K', K", ) = (kk', R(E'Q)RYE, ")
= ((klk”, {{[ME )] (K" o)} 1) (7.32)
= (KRR, {[((k'a))(k"a)] B (" a)] )
Now we work out
(k, R)((K, W)(K”, W7)) = (K, R)(K'E”, B/ (K" o))
= (k(K'E”), [M(Ek'E")a][W (K" a)h"])
By (¢) above, « is a homomorphism, and so (k¥’k"')a = k’a* k”’«. Thus
(ks (7, Y7, 1)) = (k(kR), [0 (B e))] [ (7))
= ((kE)k”, [((K ) (k7 a)] [ (k") "))

(7.33)

The associative law immediately yields the equality of (7.32) and (7.33). Therefore
(7.81) is an associative operation.

(iii) There exists an identity in G: (1,1). Notice, of course, that the left-hand 1 in (1,1) is
the identity of K while the right-hand 1 of (1,1) is the identity of H. To check that
(1,1) is an identity, let (k, ) € G. Then

(1, 1)k, k) = (k,1(ka)h) = (k, h)
since ko is an automorphism of H, and so maps the 1 of H to itself. Similarly
(k,R)(1,1) = (k,h(1a)1) = (k, k)
since la is the identity automorphism of H, and so leaves H identically fixed.
(iv) Finally we must check that every element of G has an inverse. Let (k,h) €G. We
claim that (=1, h=(k~1a))
ig the inverse of (k, ). To prove this, we simply observe that
(k, A) (k™ R (k7 ) = (L, [T a)][R7H (K )]) = (1, (RAT)(Ka))
since k!« is an automorphism of H. Thus
(k, )k~ Rk ) = (1,1)
Similarly (=L, =Yk ))(k, h) = (1,1)
We have thus verified that (k~!, h~'(k~!a)) is the inverse of (k, h).
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(i), (i), (iii) and (iv) above establish in every detail the proof that G is a group.

Next we verify that G is a splitting extension of H by K. To accomplish this, put
H=(Lkh|heH and K = {(k1)|kEK)
Then it is easy to prove that H and K are subgroups of G and that
k->1,h) and k- (k1)
are isomorphisms of H onto H and K onto K respectively.
Now to prove that H is a normal subgroup of G, observe again that if ¢ € G, then

g = (kh) = (k1)1
If (1,%’) € H, then

97 (1, kg = (k, k)7L, K)(K, h)
((k, 1)(1, R))~X(1, h)((%, 1)(1, h))

= [(1, B)7'(k, 1)71(1, R7) (K, 1)(1, R))

Since (k,1)"'=(k"%,1), we have (k, 1)"%1, R}k, 1)=(1, ' (ke)). Thus
g 1,9 = (LY@, K (ke))(1, k) € H

since the product of elements of H belongs to HA. Hence H is normal in G as claimed.
Clearly HNK = {(1,1)} and _

G = KH
as we saw earlier, since (%, k) = (k,1)(1, k). Consequently we have constructed from the
data (a), (b) and (c) a splitting extension G of H with complement K. Therefore G is a split-
ting extension of H by K.

The group G that we have constructed is called the splitting extension of H by K via «.

We emphasize the importance of the above discussion and the related problems which
follow.

Problems

7.32. Construct a non-abelian group of order 6 as a splitting extension of a group of order 3 by a group
of order 2.
Solution:

Recall that if we are given (a) a group H, (b) a group K, (¢) a homomorphism « of K into the
automorphism group of H, then we can construct a group from this data as follows. Consider the
set G of all the pairs (k,h) (k € K, h € H) and define a binary operation in G by

(k, YK, B = (KK, h(K'a)h')

Then G becomes a group which is a splitting extension of H by K. So in the case at hand, we have
the group H (the cyclic group of order 3) and the group K (the cyclic group of order 2). We need
the homomorphism a. This means in the first place that we need to know more about the automor-
phism group of H, the cyclic group of order 3. Now if H is generated by k, then

H = {1,h,h%}

The mapping which sends each element of an abelian group into its inverse is an automorphism
(check this). So if 5: H = H is this automorphism,

7 1-1, h>h=1=h2, k2> h-2=h
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7.33.

7.34.

7.35.

7.36.

Now %2 =, and so gp(y) is cyclic of order 2. Thus the groups K and g¢gp(y) are isomorphic, and
accordingly we can take o to be the isomorphism of K onto gp(n). Let G be the splitting extension
of H by K via a. To see how some of the elements of G combine, let K = {1,k}. Then

(&, W)(k, 1) = (k% h(ka)1) = (1, R?)

Now (k, 1)k, h) = (K2, L{ka)h) = (1, k), and so (k, h)(k,1) # (k,1)(k, k). Thus G is non-abelian and
is an extension of H by K.

Are there non-abelian groups of order 2 X 7777

Solution:

There are non-abelian groups of order 2 X 777. To produce one such group, let H be cyclic of
order 777. Then H has an automorphism 7 of order 2, namely the mapping » which sends every
element of H to its inverse. So there is a homomorphism « of K, the cyclic group on k, of order 2,
into the automorphism group of H, namely the one which sends k to r. Let G be the splitting exten-
sion of H by K via «. Then @G is the required group.

Construct two non-isomorphic non-abelian groups of order 168.

Solution:

Let H, = gp(hy) be cyclic of order 84 and K; = gp(k;) cyclic of order 2. Let a be the homo-
morphism of K, into the automorphism group of H, defined by ka: hy = h{ ‘. Then Gy, the split-
ting extension of H; by K, is of order 168. The center Z, of G, is of order 2, consisting of (1,1)
and (1, h‘iz) which can be easily checked by direct calculation.

Now we construct a second group of order 168. Here we take H, = gp(hy) to be of order 42
and K, = gp(ky) to be cyclic of order 4.

As usual, H, has an automorphism of order 2, i.e. the mapping defined by
rhe ksl i=0,1,...,42
Let B be the homomorphism of K, onto gp(r) defined by
ke = o, j=0,1,23

Thus kg,B = . Let G, be the splitting extension of H, by K, via 8. Then, as the reader may check
by direct calculation, the center Z, of G, consists of (1,1), (1, hgl), (%2, 1), (kg, hgl) and is therefore
of order 4.

Now both G; and G, are non-abelian since |Z;| =2, |Z,| = 4. Moreover if G; and G, are iso-
morphic groups, they have isomorphic centers. Therefore G; and G, are not isomorphie.

Construct all possible groups of order 80 which are extensions of a cyclic group of order 10 by a
eyclic group of order 3.

Solution:
The solution of this problem requires knowledge of the automorphism group of the cyclic group
H = gp(h) of order 10, If = is an automorphism of H, then hr is of order 10. The possibilities for

h
7 are therefore hr = k3, hr = K7, hr = k9

Let 7; be the automorphisms defined by the possibilities listed above (i =1,2,8). Now 'r% =1, ’T; =1,
r‘é = 1; thus none of the automorphisms of H is of order 3. So the only possible homomorphism «
of a cyclic group K of order 3 into the automorphism group of H is the one which sends every ele-
ment of K onto the identity automorphism. The resultant splitting extension of H by K is then
abelian (indeed it is isomorphic to the cyclic group of order 30).

Construct a non-abelian group of order 222 by using splitting extensions.

Solution:

Form a splitting extension of a cyclic group H of order 111 by a group K = gp(k) of order 2
via the homomorphism taking k to the automorphism which sends every element of H into its inverse.
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7.37. Construct a non-abelian group of order p3 for each prime p by using splitting extensions. (Hard.)

Solution:
Let H be the direct product of a cyclic group gp(a) of order p with a cyclic group gp(b) of order
p. Each element of H is uniquely of the form
arbs with 0 =r <p, 0=s<p

Let 7:a™ds - arbst7. We will show that 7 is an automorphism of H of order p. First let m and n
be any integers. We claim that
(ambn),. = gmpmtn
Let m=m'+qp, n=n"+sp where 0 =m' <p, 0 =n"<p. Then
(ambmyr = g™ BTV = amp™p" = gmbmbn = gmpm+in

To verify that r is a homomorphism, observe that

(a,mlbnl . am2 b"2)~r — am1+m2bm1+m2+n1+n2

= MMM 22T = (M) (2" )

Clearly Kerr = {1}, and so 7 is one-to-one. It is easy to check that r is also onto. Thus 7 is an

automorphism. Note that ar? = ab? = @, so that 7P acts as the identity on a and b, which form a
set of generators of H. Hence r is of order p.

Now let K = gp(k) be of order p. The mapping «: ki— +¢ is an isomorphism. Then we form
the splitting extension of H by K via a. This gives a group G of order p3. G is non-abelian since
(1,a)(k,1) = (k,ab), but (k,1)(1,a) = (k, a).

d. Direct product

Consider the special case of a splitting extension G of a group H by a group K via
a homomorphism « in which « takes K onto the identity group of automorphisms of
H. In this case G consists of the pairs (k, k) (h € H, k € K) with binary operation given
by (k, k)R, k') = (hh',kk’). So G is, in the terminology of Section 5.3a, page 143, simply
the external direct product of H and K. The obvious usefulness of this construction is that
we do not require any knowledge of the automorphism group of H to construct the direct
product. Notice that if H= {(1,h)| h € H} and K = {(k,1)| k € K}, then G is the in-
ternal direct product of its subgroups H and K, again in the sense of Chapter 5. We will
not pursue this concept of direct product here any further.

78 THE TRANSFER
a. Definition

Suppose G is a group with an abelian subgroup A of finite index. The transfer is a
special homomorphism of G into A. The use of such transfer homomorphisms has been
important in the theory of finite groups. Here we will examine one application of the
transfer and briefly mention another (at the end of Section 7.8d).

To define the transfer r of G into A, choose a right transversal X of G in A. We repeat
that A is an abelian subgroup of G of finite index n, say. Therefore |X| =n. Recall that
if g € G, then ¢ is the element of X in the coset Ag. ILet x1, %o, ..., 2. be the elements of
X; then if g € G, we define a mapping r of G into A by

gr = 219(T19) ' X29(T2g) "1 - -t Xag(Xng)
1t is clear that g+ € A since, as x;9 and Z:;g belong to the same coset of A,
xg(Tg)ted (t=1,...,n)

This mapping r is the homomorphism of G into A mentioned above; it is called the transfer
of G into A. There are two items to be verified: (1) r is a homomorphism and (2) r is
independent of the choice of the transversal X.
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b. Proof that r is a homomorphism
We compute (gh)-, where ¢,h € G:
(gh)r = (T1gh(z:19h)™7) * (X2gh(asgh) ™)+ - - -« (Xagh(xagh) ™)
(@:197(T1gh) Y) - (22gh(T2gh)7Y) * - - - + (@agh(Tagh) )
(since xigh = Z:gh by (7.3), page 219)

I

= (019(F19) " + TGh(EGH) ") - (220(T) " - Togh(Togh) 1) + -+
(20 (Fog) 1 + FGh(EGR) )

Now every one of the elements xig(T:g) ™!, x;9h(x;0k) ! lies in A; since A is abelian, they must
commute. So we can rewrite (¢gh)r in the form

(gh)r = [:19(F1g) '+ 220(Z2g) e -+ - 2ag(Tag) 7]

o e I (7.34)
" [Zigh(:gh) " » Tegh(Tagh) T e - o TG R(Tagh) ]
But observe that z>Tg (i=1,...,m)
is a permutation of X (Section 7.4a). This means that
mh(m)—l . mh(m)—l e Mh(m)—l
simply consists of the n elements x:h(x:h)~! (¢ =1, ...,n) multiplied together in some order.

Since A is abelian, the order of such a product is immaterial. Thus

Tigh(Zigh) !+ Togh(Zagh) ™1+ - - - ¢ Eagh(Tagh) ™! = 2ih(2:R) 1 wah(R2h) Ve - ¢ wuh(ZaR) T
hr, by definition

Then it follows from equation (7.34) that

(9h)r = (g7)(h7)
for all g,k in G. Thus r is a homomorphism.

¢c. Proof that - is independent of the choice of transversal
We now prove that - is independent of the choice of the transversal X.
The proof depends on an analysis of the product

g7 = 219(T19) 7' * 229(T20) ' - - - Xag(Tug) 7!

where again {zi, %2, ...,%.} = X 1is a right transversal of A in G. We recall from Section
7.4a that the mapping x;~> ;g is a permutation of X. Now every permutation of a finite
set can be written as a product of disjoint cycles (Theorem 5.26, page 167). So, after
relabeling the elements of X if necessary, we can assume that

X190 = X2, X2 = X3, .., Tk—19 = Tk, Tk = X1
Te+10 = Xr+2, Tke+2g = Te+3y - .oy LThti—1 = Tk+ly, Te+19 = Tic+1
Tn—m+19 = Tn—-m+2, Tn—m+20 = Ln—m+8, ..., In—-19 = Ln, Tngd — La—m+1

(Note that k+1+ .-+ +m =n, where n is the index of A in G.) Then
gr = (19(Z:g) 7" w29(F29) 10 - kg (Thg) )

(e +19(Te+10) 7 Xer29(Ter29) 1 -+ T g(Teg) Y - -
* (@nemt 19 Frmi10)  Zaemi2g(Fa—mez0) L 0 Ta(Tg) 7Y
= (219%y " agxg ' Tega; )
* (l‘k+1gx;i2 : xk+2gx;}r3 S kagx;l) :

-1 —1 -1
* (xn—m+lgxn——m+2 *n-m+2Xn—m+3° xngxn—m+l)
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and thus gr = (g7 (ks 19k t1) ¢ -t (Tnems 19 Enm+ 1) (7.85)

Note that zig*x;' = (219(Z:9)7 1) * (%20(Z29)") * - - - * (2xg(Txg) ™) € A, since it is the prod-
uct of factors z:g(%:g)~! which belong to A. Similarly, x+19'%x+1, - .., Ln-m+18 Tn-m+1 € A.

We are now able to prove

Lemma 7.7: Let A be an abelian subgroup of finite index in a group G and let X =
{21, %2, ..., %}, Y = {y1,Y2 ...,¥n} be two left transversals of A in G.
Furthermore let - and 7 be mappings of G into A defined respectively by

gr = T19(X1g9) 1 e 229 (T2g)" 1 -+ » Xng(Xag)”! (Where g € G)

~ ~~
and g7 = yig(i0) " y9(@=0) "1 -+ - Yyng(Yng) " (Where g € G)

where, if h € G, h denotes the element of X in the coset Ak and % denotes the
element of Y in the coset Ah. Then

r=7
Proof: We may assume on suitably reordering Y that
Yi = A% (ai = A)
Now if Z:ig = x;, then Ay; = Aajx; = Ax; = Axig = Aaixig = Ay,g. This means that

~
Yg = Yi
It follows therefore as in equation (7.35) that if g € G, then
97 = (g*y;t) - (yk+1gl?/;}r1) s (Ynem 19 Ym i m 1) (7.36)
But ¥ = aiz;, and we know that the elements 0"z, Ze+10'%Tk+1, - - -, Tn-m+19™Enom+1 lie
in the abelian subgroup A. Therefore
ngtyrt = a(xgkrr Vet = zgkal?
ykng‘yill = ak+1(xk+1g‘xﬁil)aﬁl = xk+1glx;i1
e ERRRERE LR RS RRREES ERRREERLEREEREE, e
Yn—m+ 1L Yn-m+1 = An-m+1(Lr-m+19™Cn-m+1)Un-m+1 = Ln-m+10 ™ Xn—m+1

Thus it follows from (7.35), (7.36) and the above remarks that g =g¢7~.

This lemma establishes that the transfer homomorphism - is independent of the choice
of transversal. Accordingly we may speak of the transfer of G into A.

d. A theorem of Schur
Using the transfer, we now prove the following important theorem of I. Schur.

Theorem 7.8: Let G be a group whose center A is of finite index. Then the derived group
G’ of G is finite.

Proof: Suppose |G/A|=n. Let X = {x1,...,2.} be a transversal of A in G and let
= be the transfer of G into A. Now if g € G, then by equation (7.35)

_ - -1
gr = mgkx;t mk+1glxk+l-1 s e Bn—m 19" S mr1
But zg*z;' € A and A is the center of G. So
mgtayt = (@t e = g

. . — —1
Similarly, Tk+19Cit1= 0% ..., Tn-m+19"Tn-m+1 = g™
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Thus, for each g €G, gr = g™

Notice that the image of G under r is a subgroup of A and is therefore abelian. Then
by Theorem 4.18, page 117, G/K is abelian, where K is the kernel of . But by Problem 4.68,
page 116, this implies G’ C K.

Now as G/A is finite, so is G’A/A. This means that G’/G’NA is also finite since by

Theorem 4.23, page 125, GA/A = G/G'NA (7.37)

Since G’/G’ N A is finite, G’ itself is finite if G’'N A is finite. Since gr = g" for every g € G,
every element of the kernel has finite order. It follows that the elements of G’'NA have
finite order. We will show that G'N A is finitely generated. Assuming this true for the
moment, it follows that G’'NA is finite (Problem 6.44, page 198). Thus G’ is also finite.
This completes the proof of Schur’s theorem but for the verification that G'NA is finitely
generated.

We accomplish this by showing first that G’ is finitely generated. If g,h € G, then
g =ax; and h = bx;, where a,b € A, z;,2; € X. Then since A is the center of G, we have

9 'hTgh = x;'alx; b taxby; = x; txy wwie labTh = xpla e

This means that there are at most n2? distinet commutators in G. Therefore G’ is finitely
generated since it is generated by commutators.

Finally G’ N A is finitely generated since it is of finite index in a finitely generated group
(Theorem 7.4, page 227). This completes the proof of Schur’s theorem.

It is worth noting one fact that emerged in this proof: the transfer into the center is
simply the mapping that takes each element g to g» where n is the index of the center in G.

We end our discussion of the transfer by mentioning that if all the Sylow subgroups of
a finite group G are cyclic, then G is metacyclic (i.e. an extension of a cyclic group by a cyclic
group). This theorem can be proved by using the transfer. The proof is not too complicated;
however, it is lengthy and will not be given here. Reference to a proof may be found in
Section 5.2a, page 139.

A look back at Chapter 7

We re-proved Cayley’s theorem, namely that every group is isomorphic to a group of
permutations. The ideas that arose from Cayley’s theorem were generalized. In particular
we called a homomorphism of a group G into the symmetric group on a set X a permutational
representation of G (on X). Permutational representations were roughly classified. We
explained an important permutational representation of a group G called a coset representa-
tion. This representation allowed us to provide a variation of Cayley’s theorem due to
Frobenius. Then we used Frobenius’ theorem and the coset representation to prove three
theorems: (1) a subgroup of finite index in a finitely generated group is finitely generated;
(2) the number of subgroups of fixed finite index in a finitely generated group is finite; (3) if
G is a finitely generated group whose subgroups of finite index have only the identity sub-
group in common, then every homomorphism of G onto itself is also one-to-one, i.e. an
automorphism. :

We called a group G an extension of a group H by K if there is a normal subgroup H
of G such that G/H =K and H=H. An analysis of this situation was made simpler
because of our discussion of both coset representations and Frobenius’ theorem. This
analysis of extensions was specialized to splitting extensions, where we provided a method
of constructing a splitting extension of two groups H and K.

Finally we defined a special kind of homomorphism of a group into an abelian

subgroup, called the transfer. We then used the transfer to prove that the derived group
of a group whose center is of finite index is finite.



244

PERMUTATIONAL REPRESENTATIONS [CHAP. 7

Supplementary Problems

PERMUTATION REPRESENTATIONS, COSET REPRESENTATIONS, FROBENIUS THEOREM

7.38. Let D, be the dihedral group of order 2n and let C, be its cyclic normal subgroup of order n. Find
explicitly
(1) the representation of D, onto itself given by Cayley’s theorem,
(2) a coset representation of D, using C, as the subgroup,
(3) the representation provided by the Frobenius theorem.

7.39. Give a permutation representation of A, of degree 2n.

740. Find a faithful representation of G X H on n+m letters if GCS,, HCS,,. .

EXTENSIONS .

7.41. Construct a non-abelian group which is an extension of an infinite cyclic group by a group of order 2.

7.42. Prove that if G is a non-abelian group with an infinite eyclic normal subgroup of index 2, then G
is a splitting extension of an infinite eyelic group by a group of order 2.

7.43. Prove that there are precisely three non-isomorphic extensions of an infinite cyeclic group by a group
of order 2.

7.44. Prove that an extension of a cyclic group of even order by a group of order 3 splits.

745. Construct a non-abelian group of order 36.

7.46. Construct five non-isomorphic groups of order 55 X 3.

7.47. Let D be the set of infinite sequences of integers, i.e. D consists of the sequences a = ...,
01,800, ... (;€EZ). If b= ...,b_1,by,by,..., define a+b=...,a_1+b_,,ap+by,a;+by,....
D is an abelian group under the operation of addition of sequences. For each integer = define a
mapping a, of D by putting ea, = ..., b_y, by, by, ..., where b; = a;_,. Prove that
(1) @, is an automorphism of D, (2) epan = aymins
(8) A ={e;| 1€ Z} is an infinite cyclic group generated by a;.

7.48. Let W be the splitting extension of D of Problem 7.47 by the infinite cyclic group C = gp(c) via the

mapping that sends ¢ to a;. Prove that W is a non-abelian group. Find a proper subgroup of W
which is isomorphic to W. Prove that W/W’ is infinite cyclic. (Hard.)

TRANSFER. MAL’CEV’S THEOREM, MARSHALL HALL’S THEOREM.

7.49.

7.50.

71.51.
7.52.

7.53.

7.55.

7.56.

7.57.

7.58.

Prove that if A is an abelian subgroup of finite index in a simple group G, then the transfer of G
into A sends G into 1.

Prove that if G is a finite group whose center Z has order co-prime to its index, then the transfer
of G into Z is onto. (Hard.)
Prove that an infinite group with a subgroup of finite index is not simple.

A group is said to be residually finite if the intersection of all its normal subgroups of finite index
is the identity. Prove that an extension of a residually finite group by a finite group is residually
finite. (Hint: The preceding problem gives a clue.)

Let G be a cyclic extension of a cyclic group N of order » by a cyclic group of order m. Let
N = gp(a) and G/N = gp(bN). Prove that b—lab = af, where j is co-prime to » and bm = ak
(where 7 and % are integers). Prove that jk =k modulo n.

Prove that a cyclic extension of a finitely generated residually finite group (defined in Problem 7.52)
is residually finite. (Hint: Use Marshall Hall’s theorem. Then use the fact that the automorphism
group of a finite group is finite.) (Hard.)

Prove that if G is a group and Gy, G,, ... are subgroups of G such that G; +* Gy, G;C Gy Gy # Gy,
G3CGg, ..., then UG, is a subgroup of G which is not finitely generated.

Let G be a residually finite group (defined in Problem 7.52) and suppose every subgroup of G is
finitely generated. Prove that if H is a subgroup of G such that H/N = G for some normal sub-
group N of G, then N = {1}. (Hint: Use Problem 7.55.)

G is a finitely generated group, every element of which has only a finite number of conjugates.

n
Prove that [G'| < . <Hint: N Clgy) = Z(G) if ¢4, -..,9, are the generators of G.>
i=1

G is a group in which every element has only a finite number of conjugates. Prove that every
element of G’ is of finite order. (Hint: Use Problem 7.57.)



Chapter 8

Free Groups and Presentations

Preview of Chapter 8

We begin with a property of the infinite cyclic group and generalize this property to
define free groups. We ask questions similar to those we asked in Chapter 4 concerning
cyclic groups:

(1) Do free groups exist?

(2) When are two free groups isomorphic?

(3) What are the homomorphisms of free groups?

(4) What are the subgroups of free groups?

In answering (3) we will learn that every group is a homomorphic image of a free

group. This provides a new way of describing a group, i.e. as a factor group of a free
group. Such a description of a group is called a presentation.

8.1 ELEMENTARY NOTIONS
a. Definition of a free group
Recall that if G is a group and X (+ () a subset of G,

gp(X) = (@) - x|z, €X, = *1}

If ' - -2, and ¥}' ---y)" are two products with z,y, € X and ¢ = *1, 5, = =1, then
they are said to be identical if n=m, x,=y, and ¢ =mn for i=1,...,m. Two products
are said to be different if they are not identical.

It is easy to see that two different products of the form ! - - - x;" can give rise to the

same element of G. TFor example, if X = {x,y), then xzy and xx 'zy are different products
of the form ;! - - - z* but they give rise to the same element of G, i.e. zy. To avoid re-
dundancy, we introduce the concept of a reduced product:
A product xi‘ -« 2", where ¢, = *1 and z, € X, is said to be a reduced X-product

it =, implies ¢+ —¢,,.

Synonyms for reduced X-product are reduced product (X being understood) and reduced
product in X.

(Examples of reduced products are easily given. Let X = {#,¥}; then zxy, x 'yxyx!
and z~'yyxy ! are reduced products. However, yryxxr~! and z yxyy~! are not reduced
products.)

Lemma 8.1: ¢p(X)= {w| w =1 or w = a reduced product in X}.
Proof: Let {w|w =1 or w= areduced productin X} = R. Clearly R Cgp(X). If
u € gp(X), then u =2z - -2* where #,€X and ¢ = =1.

We proceed to show that w € R. If k=1, u is a reduced product in X, and so u € R.
Assume then that any product «i'---az*€R for k=n-1. Suppose k=n. If
U= xil o x;’“ is a reduced product in X, then « € EB. If u is not a reduced product, there

245
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exists an integer 7 such that z =, 4, and ¢ = —¢_ ;. Suppose n>2; then we can delete
;' to obtain v as a product involving 7 — 2 elements of X. By the inductive hypothesis,
u then belongs to R. If n =2, then u = z'z;?, where z, =z, and ¢ = —¢, from which
u=1€R. Thus gp(X)CR and accordingly gp(X)=R.

Consider now the infinite cyclic group generated by the element x. The reduced products
in {x} are of two kinds:
x---x =2 or g lxgl-oe-xTl=g"

where 7 is a positive integer. From what has been said about the infinite cyclic group,
we know that if m and » are integers, z™ = z* implies that m — n. Thus different reduced
{x}-products give rise to different elements. (This is by no means the usual situation. For
example in a cyclic group of order 2 generated by ¥, we have yyyy = yy.) G is said to be
freely generated by {xz}. More generally we have the following definition:

A group G is said to be freely genemted by the set X G if X+ @, the empty
set, and

(i) gp(X)=G;
(ii) two different reduced X-products define two different nonunit elements of G.

Notice that it follows from (ii) that if x € X, =1 & X. For if not, there exist  and
Y, both elements of X, with y !=x. But then z and y~! are two different reduced
X-products which are equal. It also follows from (ii) that 1 € X.

A set X of generators of G satisfying (ii) is often called a free set of generators of G.
A group G is free if it is the identity group or if it possesses a free set of generators. G is
also said to be free on X. If G is a free group freely generated by X, then the study of G is
facilitated by the fact that we know exactly whether two X-products are equal. All we need
to do is to express each of the products in reduced product form. If the reduced products
are distinct the elements are not equal. This process of expressing an element as a reduced
X-product can be carried out in a finite number steps. To illustrate, let F' be freely gen-
erated by {z,y}. Are the products f=xyx 'y lzxzxz "y ® and g =xyy *°® equal? We
convert f to a reduced product by deleting inverse pairs (i.e. two adjacent inverse factors).
Thus f = zyxly ez )y )yt = ayx Ty ey = aya Ty wyy
Similarly ¢ = xyy. Hence as f and g are equal to different reduced products, they are not
equal. The fact that we can determine in a finite number of steps whether or not two
elements are equal is often expressed by saying that the word problem is decidable for
free groups. (The interested reader may find more details in, e.g., J. J. Rotman, The
Theory of Groups, Allyn and Bacon, 1965.)

Problems

8.1. Let G be freely generated by the set X = {«,y,2}. (¢) Write down three distinct elements of G. -
(b) Is wyz(yz)~! a reduced product? (¢) Is zyy 12— lyx equal to xz~lyzz—lx? (d) Express
x2y3(y3x2) 1y 3 and (x2y) lzzy? as reduced products.

Solation:

(@) Q) @, y,2 (2 z 23 (3)  zy, 22

In fact any three different reduced products in {z,y,z} are distinct elements of G.

(b) No, because it is not written in the required xil cee oc:" form, since it involves (yz)—1. However,
even if we replace (yz)~! by its equivalent z—1y—1 to get xyzz—1ly~—1, this, though in the form

€ € . . .
xll -++&,", is not a reduced product because of the inverse pair zz~L.



Sec. 8.1] ELEMENTARY NOTIONS 247

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

(¢} Yes, for on expressing each as a reduced product we get xz—1lyx.

d 2yS(y3a?)~ly=3 = aZyBxr—2y—8y~3 = gayyyx—lx~ly iy ly—ly—ly—ly—!
Y ¥y oy

(wzy)~laey? = y~lzTleTlwey? = yolemlzy? = yTly? =y

Prove that if G is a free group, G #* {1}, then the infinite cyclic group is a subgroup of G.

Solution:
Suppose G is freely generated by X. If x € X, consider gp({«z}). This is a cyclic group. Now
xeee - +x = 27, with r a positive integer, is a reduced product in X. Hence x" = x5, where r and

s are positive integers implies r = s. Thus gp({z}) is infinite and is infinite eyclic and the result
follows.

Prove that if G is freely generated by X, where X contains at least two elements, then G is not
abelian.

Solution:
There exist two distinct elements z,y of X. Now xy and yx are two different reduced products,
so xy ¥ yx. But this implies that G is not abelian.

Prove that a finite group G is not free if G # {1}.

Solution:

In Problem 8.2 we proved that except for the identity, every free group has as a subgroup the
infinite cyclic group. Consequently if G is free it must have the infinite cyclic group as a subgroup.
This is absurd.

The direct product of two infinite cyclic groups is not a free group.

Solution:

The direct product of two infinite cyclic groups is abelian. But we have proved in Problem 8.3
that a free group is not abelian if it is freely generated by a set X which contains at least two
elements. Hence if the direct product of two infinite cyclic groups is free, it is freely generated by
some set X = {x}, i.e. it is infinite cyclic. But a free abelian group of rank two is not cyclic. This
follows immediately either from the uniqueness of the type of an abelian group (Theorem 6.21,
page 197) or directly.

Prove that a free group freely generated by X with |X| = 2 has no center (i.e. its center consists
of the identity element). (Hard.)
Solution:

Suppose G has an element z+ 1 in its center. Let z be expressed as a reduced product

z= xfl ce. x;". Let y € X, y + x,. Consider

yz = ywlfl x;"
This is a reduced X-product. On the other hand
zy = xil cee x;"y
If x;"# ¥~1, then x:l e x:l"y is a reduced product and so clearly 2y # yz as yz begins as a

reduced product with y but zy begins with xfl #*y. If x;" = y~! then for n > 1 (for otherwise
2; =y contrary to the choice of y), .
€1 ... g1

= x84
= X .

and again it is clear that zy and yz are two different reduced products, so zy 7 yz. But as z is in
the center, we must have zy = yz. Therefore this contradicts the assumption that G has a center.

Generalize Problem 8.2 by showing that if F is freely generated by {x,, ...,x,} with »n > 1, then
{#y, ..., 2} freely generates F; = gp(xy,...,x) for i=1,2,...,n

Solution:

Put X; = {x;,...,;}. By definition, X, generates F;;, We have only to prove that two different
reduced X;-products define different elements of F;., But a reduced X;-product is obviocusly also a
reduced X-product and two different reduced X-products define different elements of F. Hence the
result follows immediately.
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b. Length of an element. Alternative description of a free group

Suppose F is freely generated by a set X. If fE€F, f#1, it can be expressed in one
and only one way as a reduced product xi‘ s x;". We define the length of f with respect
to this free set of generators X to be n. The length of the identity is defined conventionally
to be 0. For example, if F' is freely generated by X = {z,y}, then the length of x%*%x~!
is 5, because 02—l -1

il = zxyyx

A very useful technique in arguments involving free groups is to prove results by

induction on the length of elements (see, for example, Lemma 8.9, page 261).

Lemma 8.2: A group F is freely generated by a set X - (9, the empty set, if and only if
(@) gp(X) = F, and (b) no reduced X-product is equal to the identity element.

Proof: Assume first (¢) and (b) above. To show F is freely generated by X we must
show that two different reduced products in X are not equal and are not the identity. Let
z!l -z and Yyt - yom (where ¢ = =1, 5, = =1, and z,y, € X) be two different reduced
products. Suppose they are equal. We can assume without loss of generality that " = yoms
for if z»= y:’nm, le <o x;"_‘ll and y’l’l ~+-ym1 are two different reduced products. Since

€ € ... y™ and = ym, it follows that

1... —
xl xn—yl

xil PR x;n__ll —_ yzl o e y’:nm—_ll
If again 2! = yomt, we can delete them. But we cannot continue indefinitely this way
as xfl -+ x;* and y’l’l - -y are assumed to be different reduced products. So we may as-
sume x,"y,m. Tt follows then that ;' --- @y ™m ...y " is a reduced product equal to

1. But by (b) it is not 1. Hence we have a contradiction, and so it follows that F is freely
generated by X.

If on the other hand F is given freely generated by X, do (a) and (b) hold? Of course,
since this is entailed by the definition of a group freely generated by a set X.

Problem
8.8. Let F be freely generated by X = {«,y,z}. Determine the length of (i) 1, (ii) xzyz—!, and
(iii) f = o~ lyxe—2y2x32—1.
Solution:
(i) The length of 1 is taken to be 0. (This is just the convention mentioned earlier.)
(ii) The length of xzyz—1is 4.
(iili) The length of f is calculated by expressing it first in reduced form, that is,
f = 27 lyx lyyaxxxz—!
Hence the length of f is 9.

c. Ecxistence of free groups

An obvious question is: Do free groups exist? Up to now we have tacitly assumed that
they do.

Theorem 8.3: Let n be any positive integer. There exists a free group freely generated
by a set of n elements.

Proof: Since every group is isomorphic to a subgroup of the symmetric group of some
set, it is natural to look for a suitable subgroup of some symmetric group in order to find
a free group of rank n.
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Our plan is as follows: we shall introduce a set T consisting of certain ordered 1-tuples
of integers, ordered 2-tuples of integers, and so on. We then choose a set X = {64, ..., 0}
of permutations of T such that X freely generates gp(X).

The elements of T are the ordered m-tuples (r1,72, ...,7m) With 71 =0 and 7, ...,7m
nonzero integers with 7 +7r+1#0 for ¢=1,...,m—1. Thus (0,1,2,-3)€T but
(1,2)€ T and (0,1,2,-2) & T.

We define now for each integer ¢ = =*1,...,*n a permutation §; of T as follows. If
(ry, ...,rm) €T we define

1A (ry..orm)b = (11, ..., P, 1) if rm > —i,

(i) (ry, .., rm)bi = (11, ..oy Pme1) if rm = —i.
It is clear that ¢; is a well-defined mapping of T into T. Moreover 6:6—; =.= 6_;6; where

¢ is the identity permutation of T (Problem 8.9). Thus each ¢; is a permutation of T
(Theorem 2.4, page 36), i.e. 6; € Sy.

Let G =gp(X), where X = {61,...,0.). (As Sr is a group and X CSr, it makes
sense to talk of gp(X).) We prove that X freely generates G, thereby completing the proof
of the theorem.

We have only to verify that every reduced X-product is not .. Let then
f=6)--6" (wherel,...,m’ € (1,...,n} and ¢ = *1)

be any reduced X-product (so if 7" =(r+1), ¢ +¢,,#0). We compute the effect of f
on (0). Now ¢7'=¢_; and so 4! ==, Then
f = 0511' 0522’ e 6: m’

m

By the definition of the product of permutations, we have
0)f = (001 )b =~ b ) = (061000 Wbesr =+ feym')
Now if 1’ =2/, then ¢ +¢# 0 or ¢l + —¢2’. Therefore
(0,610, = (0,¢1",2")

It follows in this way that
(O)f = (0, ell', 522', ceey emm') = (0)

Thus f+ . since it does not leave (0) fixed. This completes the proof of the theorem.

Note: 1t is possible to prove similarly that there exist free groups freely generated by
sets of arbitrary cardinality. Since we have not introduced eardinal numbers, we cannot
prove this more general theorem here. The reader who has a knowledge of cardinal num-
bers may read the account in J. J. Rotman’s The Theory of Groups, Allyn and Bacon, 1965.

Problems
8.9. Prove that 6,6_;=: and 6_;8; =, where ¢; and . are as defined above.
Solution:

Let (ry,...,r,) € T. Suppose first that r, * —i; then

(Tl) .. ~’rm)ai0—i = (Tlr BERTY £ i)o'—i = (”'1, .. w’rm)
It ry =—1, Ty oo s )88y = (P4, oo, P05
Now if r,_., = —(—1i) =4, then (ry,...,7,) is of the form (r, ...,i, —%). Since such an element

does not belong to T, 7,,_; ¥ —(—1). Therefore
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(P ooy =18y = (P oo s P, =0 = (7g, -« 3 T)
and so (Piy oo s T80 —; = (rq, ..., 7y)
Thus 6;,6_; leaves all elements of T unchanged and hence ¢,6_; = . Similarly ¢_;9; =«

8.10. Prove that there exists a free group freely generated by a set Y such that there is a one-to-one
mapping of Y onto the positive integers.

Solution:

We proceed exactly as in the proof of Theorem 8.3 except that we define §; for all nonzero
integers ¢ and put Y = {6,65,...}. The mapping p: Y - Z*, the positive integers, defined by
(6;)p = i is a one-to-one onto mapping, for as none of the §; have the same effect on (0), they must
be distinet. If H = gp(Y), then H is freely generated by Y.

d. Homomorphisms of free groups

Now it is a fact (see Problem 8.11 below) that if a group G is generated by a set X,
then a homomorphism § is uniquely determined by its effect on X, because each element of
G is a product of elements and inverses of elements from X.

Consider conversely what would happen if we had a map 4 of X into a group H.
Could we find a homomorphism of the whole group G into H whose effect on X was the same
as that of 7 In general the answer is no (see Problem 8.12). However, we have the fol-
lowing result for free groups.

Theorem 8.4: Let F be freely generated by a set X, let H be any group, and let § be a
mapping of X into H. Then there exists a homomorphism 6 of F into H
such that § agrees with 6 on X. 7 is called an extension of 4.
Proof: Any nonunit element of F' is uniquely expressible as a reduced X-product
f=a - -z where z,€ X, ¢ ==1
and z, =, , implies ¢ # —¢, .

Define £ = (210)" (@:0)? - - - (z.0)™ and 19 =1 (the latter 1 being the identity of H).
Clearly 6 is a mapping of F into H agreeing with § on X. To conclude the proof we must
prove that 4 is a homomorphism.

To do this we shall show that if f =z --- 2 where z, € X and ¢ = =1, then

0 = (20) - -+ (@) .

whether or not x;! - - - 2" is a reduced product. If n =1, this is true by the definition o
6. Assume it is true for all positive integers n <k and consider f= xil x;" when

n = k. If this is a reduced product then f § = (2:16)" - - - (x.0)" by definition. If it is not a
reduced product, then there exists an integer ¢ such that z, =, , and ¢=—¢,,.

Consequently,
(210)" -+ - ()" = (210)1 - -+ (@) (ir10)FF < (2a)
= (@:0)" - (@i10) T (@i420) 142 - (Tal) "
SRCARREE AV
by our inductive hypothesis. Therefore
(@) - (@) = (@50 wi @R a0 = 8
Soif f=a---x and g=9' ---yIm, ¢==1, 9, =*1, x,y, € X, then
(fg)f;‘ = (@ gty y:vnm)é‘ = (210 + - - (@0 (@10)" - -+ (Ym)™
= [(@0)" - - @0 @O - Wut)™) = [0

Hence 4 is a homomorphism and the theorem follows.
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Corollary 85: Let G be any finitely generated group (i.e. there exists a finite set Y such
that gp(Y) = G). Then G is a homomorphic image of some free group.

Proof: Let G be finitely generated by a set {yi, ...,¥.}. There exists a free group F
freely generated by {zi, ...,2.}, say. Define a map 6 from {x1,...,2.} to G by z: =
for ¢=1,...,%n. By Theorem 8.4 there exists a homomorphism 4 of F into G which agrees
with 6 on each z;.. We know that F¢ is a subgroup of G. But as Fé contains o1, ..., ¥, it
contains gp(ys, ..., ¥s) = G. Therefore Fd =G, and so G is a homomorphic image of a
free group.

Note: The same result applies whether G is finitely generated or not. However, to
prove the more general result we must use some of the ideas involving cardinal numbers.
For this reason we have chosen only to consider the finitely generated case.

Our last theorem reveals the importance of free groups. As every group is a homo-
morphic image of a free group, from the knowledge of the properties of a free group we
may achieve some understanding of other groups.

Problems

811. Let ¢; and 9, be homomorphisms of G—> H. Let G = gp(X) and suppose B11x = O2)4- Prove that
8, = 6,.
Solution:

Let g€ G. Then g = xell cen x;" where ;€ X and ¢ = *1, and
g6y = (x101)51 Co (8)T = (169)1 - (80 = g0y

Thus ¢; and ¢, have the same effect on the elements of G, and so 6, = 6,.

8.12, Find an example of a group G g;\enerated by a se}\: X, a group H and a map 6: X - H, such that
there exists no homomorphism ¢ : G- H with ¢ ix = 6

Solution:

Let G be cyclic of order 2, G = gp({zx}). Put X = {x} and let IL= gp({y}) be infinite cyclic.
Define ¢: X > H by x6 = y. Suppose there exists a homomorphism ¢ : G - H, such that z¢ = y.
Then G§is a subgroup of H which contains gp(y) and hence G6=H. But G()i\, being the image of
a finite group, must be finite. Since H is infinite, this is clearly impossible.

8.13. Let H be the cyclic group of order 2, say H = {1,a}. Let F be freely generated by {x}. The map
6:2—>a gives rise to a homomorphism of F — H. Describe the effect of this homomorphism on
all elements of F. Check directly that it is a homomorphism, and find its kernel.

Solution:

The free group on a single generator is infinite cyclic. Its elements are uniquely of the form
x", n an integer. Now 3maps xn > an. If n is even, say n = 2r, a» = 1. Hence ?maps xn =1,
If » is odd, say »=2r+1, 6 maps z» to a.

To check that § is a homomorphism, consider whether (x"ac'")? = gn+m§, Now &n+ my is o if
n+m is odd, and is 1 if n;i— mis even. If n+m iS£dd, }hen one of the integers » and m is odd and
the other even. Hence z"¢x™ ¢ = a, as one of zn4,x™ ¢ is a while the other is 1. ’I\f n ,:I- m is even,
then either » and m are both even, or they are both odd; if n and m are both even, 2"gxmg =11 =1;
if both are odd, then an6xm8=a-a=1 Henceisa homomorphism,

The kernel of § = {«?7| all integers r}.

8.14. Find a free group that has as a homomorphic image S,, » any given positive integer.

Solution:
Let F be free on X where |X| =n!. Let ¢: XS, map Aeach element of X onto a distinct
element of S,. Then by Theorem 8.4 there is a homomorphism ¢ of F' onto S, that agrees with 4.
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8.15.

8.16.

8.17.

8.18.

8.19.

8.20.
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Prove that a group F' freely generated by » + 1 elements has as a homomorphic image a group G
freely generated by » elements, where n is any given positive integer and G is a subgroup of F.

Solution:

Let F' be freely generated by X where |X| =n+1. Let X = X,U{a} where |X,| =n. Then,
as we have shown before, gp(X,) = G is freely generated by X,. (Problem 8.7, page 247.) Let
6: X > G be defined as follows: If xr € X, x ¥ a, put x6 =z. If £ =a, put x¢ = 1, the identity.
Then there exists a homomorphism % of F onto G by Theorem 8.4.

Let F be a free group with free generating set {a,b}. Let G be the direct product of two infinite
cyclic groups generated by ¢ and d respectively. The map which takes @ to ¢ and b to d extends
to a homomorphism of F onto G (since G = gp({c,d})). Prove that the kernel of this homomorphism
is F”, the derived group of F.

Solution:

First we show that if ¢ is the homomorphism F — G for which a6 = ¢, bo = d, then F’ C Kero.

F’ is generated by the set of all commutators, so it is sufficient to show that each commutator
belongs to Ker 6. Now a commutator is of the form [fy,f,] = ff1f2_1f1f2 where fi,fy € F. Then
[f1,f2]6 = [f16,f26] = 1, as G is abelian. Hence F’CKeros.

Now every element of F' that does not belong to ¥’ is of the form a”bse where not both 7 and s
are zero and ¢ € F’, as F/F’ is abelian and aF’, bF’ genecrate it. Under ¢ such an element goes
onto ¢'ds and e¢7ds =1 only if both » and s are 0. Thus only the elements of F’ belong to Ker 4.
Therefore Kerg = F’.

Prove that a free group freely generated by n elements, » any positive integer, has a subgroup
of index m for each positive integer m.

Solution:

We will exploit the homomorphism property. Let C,, be the cyclic group of order m generated
by an element a, say. Let F be freely generated by X = {«,,...,2,}. Then there exists a homo-
morphism ¢ of F onto C,, for which z;6 =a, 1=1,....n. Hence by the homomorphism theorem
Th 418, 117),

(Theorem page ) F/Kers = C,

Since |Cp| = m, the number of cosets of Ker¢ in F' is m. Hence F has a subgroup of index m.

Let F be freely generated by X. Let Y be a subset of F' such that gp(Y) =F, and |X]|=1Y| < ».
Use Theorem 8.4 to find an epimorphism of F onto itself.

Solution:
Let 2y, ..., x, be the elements of X, and yy, ...,¥, the elements of Y. Define a homomorphism
6:F—>F by x6=y; where i=1,...,n, using Theorem 84. Since F¢ contains Y, F¢ =F.

Hence ¢ is an epimorphism of F onto itself.

Let ¢ be an isomorphism of F with G. Let F be freely generated by X. Prove that G is freely
generated by Xo.

Solution:
Let (,6)L - - + (,6)°" be a reduced product in Xs. Then we must show that this reduced product
is not the identity of G. Clearly
(xil con x:n)o = (xlo)‘l e (00"0)€"

and as F is freely generated by X and ¢ is an isomorphism, the result follows.

Let F be freely generated by X and G freely generated by Y. If ¢: X > Y is a one-to-one corre-
spondence, prove that F = G.

Solution:

Let % be the homomorphism of F into G which is an extension of ¢. (Theorem 8.4.) Clearly ?
is onto G. Let ¢:Y - X be the mapping such that 6¢ is the identity mapping on X and ¢¢ is the
identity mapping on Y. Let $ be the extension of ¢ to G — H. Then 33; is the identity on F' and
$$is the identity on G. It follows readily that %is an isomorphism of F with G.
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8.21, Let F be freely generated by a,b,c. Let N be the normal subgroup generated by ¢, i.e. the inter-
section of all normal subgroups of F' containing ¢. Prove that F/N is freely generated by aN and
bN. (Hard.)

Solution:

Let G be free on x,y. Let 8 be the homomorphism of F onto G defined by a6 = «x, bs =y and
¢o = 1. (Since F is free on a, b, ¢, such a homomorphism ¢ exists by Theorem 8.4.) Let K be the
kernel of 9. First we shall prove that K = N, the normal subgroup generated by ¢. Then we shall
prove that aN and bN freely generate F/N.

To see that K = N first observe that as ¢ = 1, N is contained in K (K is a normal subgroup
containing ¢). On the other hand, suppose f € F, f € N. Then f can be expressed in the form

f = fmn
where f; is a reduced {a, b}-product and n; € N. But then
foe = fi06

and f,6 is a reduced {x,y}-product. So f;6 %1, which means f6+# 1 and so f& K. Thus if
f &N, f & K which implies K is contained in N. Hence as we observed earlier that N is contained
in K, we find K = N as desired.

Now a, b, ¢ generate F. So aN, bN and ¢N generate F/N. Since ¢N = N, aN and bN generate

F/N. We want to prove that aN and bN freely generate F/N. Suppose (le)el <o (i N s a
reduced {aN, bN}-product.

Now ¢ gives rise to an isomorphism » of F/K with G, i.e. the mapping defined by (fK)» = fé (the
homomorphism theorem, Theorem 4.18, page 117).

Observe that (aK)» =« and (bK)» =y so that
(@)L - )Ty = gl -k
where (y;N)» = x; € {x,y}. The product xil x;’c is a reduced {x,y}-product. But {x,y} freely
generates G. Thus Poae SR w;k #* 1, Consequently

1
W) - N = N
and the proof is complete.

Instead of completing the proof this way we could refer to Problem 8.19 using the isomorphism
vt

8.2 PRESENTATIONS OF GROUPS
a. Definitions

We have shown (Theorem 8.4) that if F' is freely generated by X, then for every group
G and every mapping 6 of X into G there is a homomorphism of F into G which extends 4,
i.e. which agrees with 6 on X. This fact will enable us to “present” a given group in terms
of a free group. This idea of a presentation is especially important in topology and analysis
where groups arise in just this way, as the “groups of certain presentations”.

First we need a definition. If S is any subset of a group, then the normal closure of S
is defined to be the intersection of all normal subgroups of G containing S. Clearly the
normal closure of S is a normal subgroup of G containing S. Thus the normal closure of
S is often called the normal subgroup generated by S. It is easy to prove that the normal
closure of Sis gp(9~'sg| 9 € G and s €S) (see Problem 8.22 below).

A presentation is defined to be a pair (X;R) where X is a free set of generators of a
free group F' and R is a subset of F. The group of the presentation (X;R) is F/N where N
is the normal subgroup of F' generated by R; we usually denote the group of a presentation
(X;R) by |X;R|. Finally a presentation of a group G consists, by definition, of a presenta-
tion (X;R) and an isomorphism ¢ between |X;R| and G. A presentation (X;R) is finite if
both X and R are finite, and a group G is termed finitely presented if it has a finite presenta-
tion. Not all groups are finitely generated (a necessary prerequisite for being finitely
presented) and not all finitely generated groups are finitely presented. For a more detailed
discussion of these notions the reader may consult R. H. Crowell and R. H. Fox, An Intro-
duction to Knot Theory, Blaisdell, 1963.
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b. Illustrations of presentations

We shall work some examples to illustrate the definitions of Section 8.2a.

First of all, suppose F' is a free group freely generated by X = {a,b}. Then the
following

i) ({a,b};{a,b})
(il) ({a,b}; {a?b?,a®bs,a®bt, ...})
(iii) ({a,b}; {[a, b]})

are patently presentations (by the very definition). The presentations (i) and (iii) are
finite, but the presentation (ii) is not.

The obvious question is: what are the groups of these presentations?
Clearly the group of (i) is a group of order 1.

What about (ii)? Well, we are interested in F/N where N is the normal subgroup
generated by a?b? a®b%a*ht, .... We have, since o202 € N, a®:N =b"2N. Furthermore
a’N = b73N since a®b® € N. Thus it follows that a3N = a2aN = b—2aN = b—3N. Cancel-
ling 572N from both sides yields aN = b~IN. Hence ab € N. Indeed we would like to
prove that N is the normal subgroup generated by ab. ILet K be the normal subgroup gen-
erated by ab. Since ab € N, we have KCN. Now observe that aK = b~'K. Then

abK = (@K)(bK) = (b-K)(bK) = K

This implies that a'b' € K (1=2,3,...). Hence N is contained in K and so we have proved
that K = N. Therefore F/N is cyclic (because aN and bN clearly generate F/N; but
aN = b~'N). In fact F/N is infinite. To see this suppose G is an infinite cyclic group
generated by g. Let ¢ be the mapping of {a,b} into G defined by

ad = g, b = g?

Let 9 be the homomorphism of F 1nto G defined by § (Theorem 8.4). Clearly 9 is onto
and (ab)0 =1. So if L is the kernel of 0 LON. But as F/L =G, F/L is infinite cyclic.
Therefore F/N is also infinite cyclic since, as we have already noted, F/N is cyclic. (Actually,
N = L; however, we don’t need this fact here.)

Finally we come to (iii). In fact |{a,b}; {[a, b]}| is free abelian of rank 2. The reader
may attempt to prove this before we do so in a more general case. At this point we
simplify our notation. Instead of using our set-theoretic notation which encloses the ele-
ments of a given set in braces {}, we shall omit the braces in writing presentations. Thus
we write (a, b; [a, b]) for ({a,b}; {[a,b]}), |a, b; [a, b]| for |{a, b}; {[a, D]}, etec.

Let F be freely generated by a,, . ..,a,.. We shall prove that
| @1, @2, . .., Qn; [@i, ;] Where 1=i=j=n]
is free abelian of rank » (from which it follows that |a, b; [a, b]| is free abelian of rank 2).

To this end let H be the free abelian group of rank ». Then H is the direct product of
infinite cyclic groups generated by h, i=1,...,n, say. We define a homomorphism
6:F>H by af=nh. Now [a;0a;]0={ab,a] =[h,h]=1. Hence [a;a; € Kerd. Let
N be the normal subgroup generated by the [a;,a;], 1=i=j=mn. Clearly NCKerd. Note
that [a:N,;N] = [a;, ¢;]N = N. As the generators &:N of F/N commute, the elements f of

F are of the form . .
f=a'--ac where cEN

n
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and if f € N, at least one of the 7, 0. Henceas c8=1, f§ = Rite-- k.". Now as one of
the r,++ 0, f8 = 1. It follows that f &€ Kerd, and so N = Keré.

Therefore F'/N is the free abelian group of rank =, i.e.
’a1, RN s P54 [ai,aj] with 1 fié]'f’lﬂ
is the free abelian group of rank n.

Note that as N is generated as a normal subgroup by commutators, N C F’. But as
F/N is abelian, N D F’. Thus N = F’ and we therefore conclude that F/F” is free abelian
of rank n.

We state this fact as

Theorem 8.6: Let F be a free group freely generated by a set of » elements (n < ).
Then F/F” is a free abelian group of rank =.

Corollary 8.7: Let F be a free group. Suppose X and Y both freely generate F. If |X]| is
finite, then so is |Y| and |X| = |Y].

Proof: By Theorem 8.6 we know that F/F’ is a free abelian group of rank n = |X|.
If |Y| <, then F/F’ is free abelian of rank |Y|, again by Theorem 8.6. Consequently
|X} = Y| since the rank of an abelian group is unique (see Section 6.2d, page 193). It

remains only to prove that |Y| cannot be infinite. To do this, suppose %1, %2, ...,¥n+1 €Y.
Now in a free abelian group of rank n every n+1 elements are dependent. Hence there
exist integers my, ..., Mn+1, not all zero, such that

(?/J’")m1 cee (yn+1F’)m"“ = F
ie. yiF”, ..., yn+1F’ are dependent. Let A be the free abelian group on @i, ...,a¢:+1 and

let 6 be the homomorphism of F' to A defined by
yd=a; (i=1,...,n+1), yo=11if y€{yy,...,¥n+1} and yEY
The kernel K of 4 contains F” since F/K is abelian. Then
1= (b)) - Wrr6)"* = @t anri?

But A is free abelian on a4, ...,a.+1. Hence mi=my= --- = my+1 =0, a contradiction.
Thus |Y| <« and the corollary has been proved.

It follows from this corollary that if F is a finitely generated free group, then every pair
of sets which freely generate F' have the same number of elements. We define the rank of
F' to be this common number, i.e. the number of elements in any set which freely generates
F. Note that free groups of the same rank are isomorphic (Problem 8.20).

We can easily give a presentation of A, a free abelian group on ay, ..., as, with the
results we now have. Let F be free on i, ..., %, and let 6 be the isomorphism defined by
(z;F"Y0 —a; (7=1,...,n). Then

(@1, ..oy Xn; [5, 5] With 1 =1=j=mn)
together with 4 is a presentation of A.

In some of the following problems we will often be dealing with factor groups. A simple
convention makes the arguments simpler to follow.

Let G be a group and N a normal subgroup of G. If we use some phrase such as “let
us calculate modulo N,” then by G we mean the factor group G/N. We shall mean by
g =h that Ng = Nh. If we say let M be a subgroup of G, what we really mean is “let
M/N be a subgroup of G/N.” In other words, we must remember that we are talking of a
factor group and instead of writing the cosets, we will simply write the coset representative.
(See Problem 8.24 for an example.)
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Problems

8.22,

8.23.

8.24.

8.25.

8.26.

8.27.

8.28,

If G is a group, show that the normal closure of a subset B () of G is gp({g~lrg| g €G and
r € R)}).

Solution:

Clearly N =gp({g~lrg| g € G and r € R}) is a subgroup of G containing R. Also N is a
normal subgroup of G. Finally any normal subgroup containing B must contain N. Thus the result
follows.

Let G be a group with subgroups H and K and let [G: H| =n < » and [G: K] =n. Prove that
if HQK, then H =K.

Solution:

Let x, =1 and let the distinct cosets of H in G be H = Hx,,Hx,,...,Hx,. As HDK, it
follows that Kx,, Kx,, ..., Kz, are distinct. As [G: K] =2, G = Kx;UKx,U- - UKx,. If hEH,
then & € Kx; for some integer 4. If i1, HNKx; — () since HNHx; =@ for i+* 1. Hence
1i=1 and h € Kxy = K. Accordingly HCK and thus H =K.

Rewrite the first part of the argument of presentation (ii), page 254, using the modulo N convention
introduced above. Also calculate modulo K and stop after proving K = N.

Solution:

We are interested in F/N where N is the normal subgroup generated by a2b2, ab3, atb?,....
Let us calculate modulo N. Since a2b%2 =1, a2 = b—2, Furthermore a3 =53 since a3b3 =1.
Thus it follows that a3 = a?a = b—2a¢ = b—3, Cancelling b—2 from both sides yields a = b~!, and
so ab=1.

As we are calculating modulo N, this means that ab € N. Indeed we would like to prove that
N is the normal subgroup generated by ab. Let K be the normal subgroup generated by ab. Since
ab € N, we have KCN.

Now we calculate modulo K. ¢ = b1, and so aibi=>b—ibi=1 ({=2,8,...). This means as
we are calculating modulo K that aibi€ K (1 =2,3,...). Therefore we have proved that K = N.

Let G = |a; a?|. Prove that G is cyclic of order 2.

Solution:

The free group F generated by «a is infinite cyclic. Now gp(a?) is normal in F since F is abelian.
Hence gp(a?) is the normal subgroup generated by a2. It can be easily seen that gp(a)/gp(a2) is the
cyclic group of order 2. Thus G is cyclic of order 2.

Prove that G = |a;a”|, where n is any positive integer, is the eyclic group of order »n (again with
F freely generated by a).

Solution:

The free group F on a is infinite eyclic and N = gp(a®) is the normal subgroup generated by
a®. Therefore F/N = G is cyclic of order n (Theorem 4.9, page 105).

Prove that |a, b; a2, b2, [a, b]| is the direct product of two cyclic groups of order 2.

Solution:

Although it has not been stated, ¢ and b are (as usual) free generators of a free group F. Let
N be the normal subgroup generated by a2, b2 and [a, b]. In F/N, Na and Nb commute as [Na, Nb] =
N[a, b] = N, since [a,b] € N. Since F/N is generated by Na and Nb, it is therefore abelian. Also
(Na)2=N and (Nb)2=N. Let A ={N,Na} and B = {N,Nb}. As A is a normal subgroup of
F/N, AB is a subgroup of F/N which contains both Na¢ and Nb. It follows that AB = F/N. Thus
|F/N| = |A||B| =2+2=4. On the other hand there is a homomorphism ¢ of F onto the direct
product of two cyclic groups of order 2. Clearly Ker ¢ contains a2, b2 and [a, b]. Hence KergD N.
It follows that N = Ker ¢ (Problem 8.23). Thus F/N is the direct product of two cyclic groups of
order 2.

Find a presentation for S;. (Hard.)

Solution:

1 2 3 ‘
Let p = <2 1 3> and o = (; z i) Then o2 = <; f g) So p, po, po2 and 1, o, 02

are six distinet elements and hence the whole of S;. Now
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8.29.

8.30.

_1_123123123 123_2
""”‘(213(231213—312*”

Thus the equation p~lopc~2 =1 holds. Also p2=1 and o3 =1. We use only these equations
and hope that they will give rise to a presentation for S,.

Let F be the free group on ay,a, and let G = laj, ay; af, ag, oy 'asaiay . Furthermore let N
be the normal subgroup of F generated by afa alasa;a, % and let 6: F > S; be defined by
a8 =p and ay0 =g. Then N C Kers.

Now we calculate modulo N. We see that ¢} =1 and so a] 2

=a,. Since ¢j=1, a, ' =a}
a1_1a2a1a2'2 =1 from which aya, = alag. Now F is generated by a;,a,. Let M = gp(a,); then
M < F. 1t follows from Problem 4.62, page 114, that M{1, a,} is a subgroup of F and as it contains
a; and @y, M{1,a;} = F. Thus the elements of F are {1, a,, ag}{l, aq}, e 1, a,, ag, 0y, ally, augabl

(although we do not know if they are distinct).

It follows that |F/N|=6. But |F/Ker¢| =6 and N CKerg, and so Kero = N (Problem
8.23). Then

1

.2 3 —1 —2| -
lay, ags a3, a3, a; 'agaa, 1 = S,

under the isomorphism ¢ :a;N —>p, aoN 2> o (by the homomorphism theorem, Theorem 4.18,
page 117).

Prove that |a, b; a?, b®, a—1bab| is isomorphic to the dihedral group of order 2n.

Solution:

Let G be the dihedral group of order 2n. Then G is the symmetry group of the regular n-gon S
(see Section 3.4f, page 75). Recall that o, rotates S in a clockwise direction through an angle of
27/n. It follows that o, is of order n. Put o =o,. If 7 is the reflection about A,0, where A, is
any vertex of S, and O the center of S, then 72 = . Moreover every element of G can be written in
the form 7¢6%, where ¢=0,1 and § =0,1,...,2—1 (see Section 3.4f and note that ¢! =o; for
1 =1=n). Let ¢ be the homomorphism of the free group F, freely generated by a and b, onto G
defined by @9 =+ and b9 =¢. Then a?29 =1, b7¢ =1 and

(e~ 1lbab)e = 7 lore = o7 l0 =

Thus a2, b and a—'bab lie in the kernel K of 4. Then N, the normal subgroup of F generated by
a?,b" and a~1'bab, is contained in K. Moreover since ¢ is onto, F/K = G. If we can show that
N = K, then the proof follows.

We calculate (compare Problem 8.28) modulo N. We shall show that |F/N| = 2n. Since
|F/K| = 2n and K DN, this will establish that K = N by Problem 8.23. Modulo N, ¢~ 1lba = b1,
Let M = gp(b). Then M < F. Thus M{1,a} is a subgroup of F by Problem 4.62, page 114. As it
contains both @ and b, M{1,a} = F. The elements of M are 1,b, b2, ..., bn—1. Therefore the elements

of F' are
athd (¢=0,1, §=0,1,...,n—1)

Since we are calculating modulo N, F really stands for F/N. This implies [F'/N | = 2n. Thus the
proof is complete.

Prove that G = |a,b; a2, a~1bab| is infinite. (This group is called the infinite dihedral group.
Hint: Show that each dihedral group D, is a homomorphic image of G.)

Solution:

Let F' be the free group on a and b and let ¢,, be a homomorphism of F onto D, (as D, is a two
generator group (see, for example, Problem 8.29), we know such a homomorphism exists). Also
Ker 4, D {a?, a~1bab}. Thus Ker¢4,D N, the normal subgroup generated by a2,a—1bab. Therefore
G = F/N has each D, as a homomorphic image (D, = (F/N)/(Ker ¢,/N)). If G were finite of order
k, say, we would have a contradiction. For then Gg¢, as a homomorphic image of a group of order
k is of order = k. But G¢, = D, is of order 2k. This contradiction proves that G is of infinite
order.
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8.31.

8.32.

8.33.

8.34.
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Prove that every finitely generated group has a presentation.

Solution:

In Section 8.1d we proved that every finitely generated group is a factor group of a free group.
We will use this fact to prove that every finitely generated group has a presentation. Let G be
an arbitrary group. Let X be chosen so that X freely generates a free group F and, furthermore,
so that there is a mapping ¢ of X onto one of the finite sets of generators for G. Let ¢ be the homo-
morphism of F onto G such that ¢ agrees with ¢ on X and let N = Ker¢. Then (X;N) together
with the isomorphism u: fN - f¢ is a presentation of G.

Let G be a finite group with elements 1 = z,,w,, ...,x,. Suppose wx; = %; ;, Wwhere =z ; €
{x4, ..., 2.} (in other words (¢, 7} is an integer between 1 and n). Let F be the free group freely gen-
erated by a4, ...,a,, N be the normal subgroup of F generated by aiaja(_,-’lj) (1=4,7=mn), and ¢
be the homomorphism from

lay, ..., 6 a5, where 1=14, j=n|
to G defined by (@, N)8 = x,. Show that

(@1, « -y s aiajaalj) where 1 =14, j =n)
together with ¢ is a presentation of G.

Solution:

Since a;a;N = a(;,»N, every product of a’s in which there are no negative exponents is equal,
modulo N, to some a,. Now if xi‘l = x;, then zw; =z ; = %y, and so a0; = @; modulo N. But
Xy = %(q,1) = %3 Thus

a;0; = a; modulo N

This means that ¢, € N and so ai_l = a; modulo N. Therefore every product of the a; involving
both positive and negative exponents can be replaced, modulo N, by a product involving only
positive exponents. Accordingly every product of the o, and their inverses is equal, modulo N,

to an a;. It follows that
F/N| = n = |g]

Now let ¢ be the homomorphism from F to G defined by a;¢ = x; (for 1 =7=mn). Then
(@ajoG )¢ = w@pgl = 1
and so Ker ¢ includes a;a;0;",. Therefore Kerg 2 N. Since
|F/Ker ¢] = n (< ®)
and |F/N| = n, it follows by Problem 8.28 that N = Ker¢. Thus the mapping
6: apN = @

is indeed an isomorphism (Theorem 4.18, page 117).

Prove that |x,y; 2242, 42| = |z, y; 22, y2|.

Solution:
We have a free group F freely generated by « and y and two normal subgroups N and M
generated, as normal subgroups, respectively by x2y2 and ¥2, and 22 and y2. We must prove N = M.
Since N contains x2y2 and y2, it contains x2y?(y2)~! = 22, Thus N2> M. But M D {x2y2} since
M D {«2,42}. Hence MODN and M = N.

Show that a free group of rank n < « cannot be generated by n — 1 elements.

Solution:

Let G be free of rank n. Then by Theorem 8.6, G/G’ is free abelian of rank n. If G can be gen-
erated by n — 1 elements, G/G’ can be generated by » — 1 elements. But this contradicts Problem
6.41(b), page 195.
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83 THE SUBGROUP THEOREM FOR FREE GROUPS: AN EXAMPLE

The object of the next sections of this chapter is to prove that every subgroup of a free

group is a free group. This theorem is one of the more difficult in this book. So in order to
give the reader a chance to become accustomed to the ideas involved, we first work an
example.

Example 1: Let F be the free group freely generated by two elements ¢ and b. Consider the set
Y = {a~1ba,a"2ba?, ...}. Show that H = gp(Y) is freely generated by Y. (Thus
we see that a free group freely generated by two elements has a subgroup which is
freely generated by infinitely many elements.)

Proof: Let a—tbat =y, (i =0,1,2,...). Consider any Y-reduced product, where
Y={yli=01...}. Say f= ycll' cee y:'v‘, where 1/, ...,n’ are positive integers,
and y; = Y+ Implies ¢ # —e¢; 1. (Given, for example, y3y4_1y1y2, then 1’ =3,
22=4,83=1 and 4 =2; ¢ =1, ,=—1, =1 and ¢ =1) We will prove
that f+ 1 by induction on n, showing that H is freely generated by Y.

Our inductive hypothesis (on n, the number of y,’s that go into a given reduced
product f) is that f when expressed as a reduced product in {a,bd} ends in bra® .
(For example,

?/3?/4_1@1’.‘/2 = ag-3bad3ca—4b—lat-q1ba+a2ba2
= a~3ba"1b—ladba—1ba2
as a reduced product in {a, b}, and, as asserted, it ends in ba2.)
If n» =1 this is certainly true.
€; ’
If it is true for n =k, let n = k+ 1. Then y?» - yk'? ends in b*q* when ex-
€ € '
pressed as a reduced product in {a, b}, i.e. yllr ---ykkr = zb gk , where z is a re-
duced product in @ and b such that zb%a* is a reduced product (i.e. #z does not end
inb-1if ¢ =1 or,if ¢ = —1, z does not end in b). If now k' = (k+ 1), then,
as f is a reduced product, ¢, ¥ —e ;1. Since ¢, and ¢ ;; are the numbers 1 or —1,
€ — €41 Thus
€ , , ,
yg - Yarty = 2bkak gt pk+1gk+D
— zb‘kak'a_kr P+t — bk pik+1 gt 1)

Since ¢.4+q = ¢, this last expression is a reduced product in {a,b} and f ends in

bt 1g(k+ 1 If however k' # (k+ 1), then

Up eyt = kg gD Pk 1R = kg = Gt 1D b1 g Rt 1

Since k' —(k+ 1) # 0, the last expression is a reduced product and so f expressed
€ ’

as a reduced product, ends in b*71a**1", It follows therefore that in both situa-

tions f# 1. Thus Y freely generates H. Similar arguments will help to prove in

general that a subgroup of a free group is free.

Problems

8.35.

8.36.

Verify both the inductive assumption of the preceding example and that f 1 where
f =y s W

Solution:

f = a2b-1g2+a—-3b~1a3+*a—lba*a"1basa—3bad = a—2b—1la— b la2bba—2bad
Clearly f+ 1. The inductive assumption of the preceding example is that f when expressed as a
reduced product should end in ba3, which it does.

Given the existence of a free group freely generated by two elements, prove the existence of free
groups freely generated by any finite number of elements.

Solution:

In Example 1 we have proved that a free group freely generated by two elements has a subset
Y such that Y is infinite and H = gp(Y) is freely generated by Y. If » is any positive integer
let ¥4, ...,y, be n distinct elements of Y. Then gp({yy, ..., ¥,}) is easily shown to be freely gen-
erated by y,, ...,y,. Thus there exist free groups of rank n for each positive integer =.
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8.37. Let F be freely generated by a and b. Prove that the subgroup of F generated by aba® and a2b is
freely generated by aba® and a2?b. (Hard.)

Solution:
Let Y = {aba3, a2b} and let y, = abad, y, = a2b. Consider a reduced Y-product

. €1 €n "
f=uwy yw Fe{1,2))
Then j7 = (7 +1) implies ¢ #* —¢;41.
We will show by induction on % that if »n° = 1, then f ends in a3 if ¢, =1 and ends in b—1g~!
if ¢, = —1; whileif »' =2, then f ends in b if ¢, =1 and ends in b—1a=2 if ¢, = —1.

For n =1 this is certainly true.

If it is true for n = k, we must proceed case by case in proving it true for k& + 1.

(i K =1
(@) ¢ = 1. Then by the inductive hypothesis yi% s y,?f ends in a3. If now (k+1) =1, then
as f is a reduced product we must have ¢.,; =1 and f ends in a3+ abad = acaabaca.
Thus f ends in a3 as required. If (k+1) =2 and e, ., =1, then f ends in a&®+a2b, and
so f ends in b as required. If e,.; = —1, then f ends in a3+b~1a~2 and so f ends in
b—la—2 as required.
€ €
(b) ¢ = —1. Then by the inductive hypothesis yll' cee ykkr ends in b—1la~1. If now (k+1) =1,
then as f is a reduced product ¢,,; = —1 and f ends in
b—lg~leg-3p—lqg—1 = b—lg—4b—1g-1
Hence f ends in b~ la~! as required. If (k+1) =2 and e..y=1, then f ends in
b~ la"1a2b = b—lab, and so f ends in b as required. If (k+1)Y =2 and ¢.;=—1,
then f ends in b= 'a—1+* b~ 142 and so f ends in b~ la—2 as required.
(i) k¥ =2
€
(@) ¢ = 1. Then by our inductive hypothesis yllr y;ck ends in b. If (k+1) =1 and
e.+1 = 1, f ends in baba® and so f ends in a3 as required. If (k+1) =1 and ¢4; = —1,
then f ends in ba—3b—1a~1 and f ends in b~ 1a—! as required. If (k- 1) =2, then as f
is a reduced product ¢,y =1 and f ends in ba?b, and so f ends in b as required.

(b) ¢ = —1. Then by our inductive hypothesis y? y;'rc ends in b~ 1la=2 If (k+1) =1
and e +; =1, then f ends in b~ la~2aba® = b~ 1la—1ba?, and so f ends in a® as required.
If (k+1)Y =1 and ¢,4; =1, then fendsin b~ la= 2.0 830" la~l =b~1la~5 " 1la~1, and
so f ends in b~ 1g~1 as required. If (k+ 1)’ =2, then as f is a reduced product ¢, ., = —1.
Thus f ends in b= la—2-b-1¢~2 and so f ends in b~ la~2 as required.

Thus we have proved by induction that any reduced product always ends in one of a3,b-la—1,b
and b~ 1la~2. Hence f+ 1 and Y freely generates gp(Y).

84 PROOF OF THE SUBGROUP THEOREM FOR FREE GROUPS
a. Plan of the proof

The subgroup theorem for free groups (due to J. Nielsen and O. Schreier) may be stated
as follows.

Theorem 8.8: Every subgroup H of a free group F is free.

Suppose that F is freely generated by S. We know from Section 7.6b, page 228, that
if X is any right transversal of H in F, then the nonunit elements

azs = x8(Z5)"! (x € X, s€l)
(where, for f € F, f is the unique element of X in the coset Hf) generate H. Let
Y = {tzs| € X, sES, a5 * 1}

Then we shall prove that H is actually freely generated by Y provided X is chosen ap-
propriately. Thus there are two main steps in the proof:

(i) Choose X appropriately.

(ii) Prove that Y freely generates H.
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Step (ii) of the proof will be broken into two parts: the first part requires a careful look
at the elements a.,; and the second involves looking at the way in which products of these
a:,s and their inverses interact.

b. Schreier transversals

Suppose that X is a transversal for H in F, where F is freely generated by a set S.
Every element 2 (z # 1) in X may be expressed uniquely as a reduced S-product

= 0z a. (n=1)

where ¢; is an element of S or the inverse of an element of S. Recall that n is termed the
length of x and that the length of 1 is 0. We shall call the elements

o 1, ay, a1@s, ..., G102+ - QAn
initial segments of zx.

Definition: A right transversal X is called a right Schreier transversal if every initial
segment of an element in X is also in X.

Notice that it follows that if X is a right Schreier transversal, then 1 € X.
The main result of this section is the following.

Lemma 8.9: Suppose that F is a free group freely generated by S and that H is a subgroup
of F'. Then we can always find a right Schreier transversal X for H in F.

Proof: We say that a right coset Hf is of length » if there is an element in Hf of length
7 but no element of length less than n. We shall choose X inductively using the lengths of
the cosets of H in F.

First if Hf is of length 0, then 1 € Hf and so Hf = H. We choose 1 to be the repre-
sentative of H.

Suppose that # > 0 and that for each coset of length less than n, representatives have
already been chosen so that every initial segment of a representative is again a representa-
tive. We choose now representatives for the cosets of length n. Let Hf be a coset of length
n and let a1as - - - @, be an element in Hf of length n. The element a.a: - - - a,—1 is of length
n — 1. Thus the coset Haiaz -+ - 0n-1 is of length at most n — 1 (since @z --- tn—1 €
Hasas - - - an—1). This means that the representative of Haias - - - an—1 has already been
chosen, by our induction assumption. Suppose this representative is bib2 - - - bn. Now

H(b1b2 te bman) = (Hb1b2 tee bm)an = (Ha1a2 e an_l)an = Hai0z - Un
We select bibs - - - bua. to be the representative of the coset Haias - - - an. The initial seg-
ments of bibs -+« D, excluding bibs - - - bua,, are
1, b1, ceey bxbz"'bm

which we know have already been chosen as representatives. In the same way we select
suitable representatives for all the cosets of length n.

We have therefore verified the induction hypothesis and so we are able, in this way,
to complete the choice of a right Schreier transversal for H in F.

¢. A look at the elements a, s

Suppose that we have chosen a right Schreier transversal X for H in F. Consider a
nonunit element a. s where xr € X and s€S:

Ozs = 28(Z8)1
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Now let the reduced S-product for x be z =a:--- ax where a; or its inverse belongs to S.
We will allow k& = 0; this will be interpreted as = =1. Thus we may write

Qrs = Q102+ * - GS(@dz * - - QkS)~?

Let @7 -~ ax8 =by - - - b; where the right-hand side is a reduced S-product with b; or bi'e S,
1=1,...,I. We assert that a, --- axs and by - - - b;s~! are not elements of X. For suppose
ar---u8€X, then ar &S =a1 -+ axs and S0 a.s=1; whereas if b,-.--bis"! €X,
we utilize equation (7.3), page 219. and conclude that
(Gz,s)™! = ZTss7 ™! = Tss~Ywss™Y)"! = Zss~l(xssT1) !
= by bis7Hbr - b8) T = by bisT by bisT) T = 1

From this it follows that the reduced S-product for a.,, is a; -+ - axsb; ' --- b;'. For if

not, s cancels either with ax or with b; . But as every initial segment of an element of X

belongs to X, either a;---axs €X or b:---bs ! € X, which is a contradiction. Note
we have proved a.s+ 1 implies £ does not end in s~ and &3 does not end in s.

Let W={w|w €S or w ! €S}. Then we have the following

Lemma 810: Let e=1 or —1. Thenif a,.+#1,
aly = c1--- enwdny - dfl

where the right-hand side is a reduced product and both ¢; - - - emand ds - - - d»
are elements of X and both ¢; - - - ¢nw and d; - - - dyw ™1 lie outside X.

Proof: The lemma is an immediate consequence of the preceding remarks. We need
only note that

a;; = bl .. bls—la,k_l . al_l

for the case ¢= —1.

Corollary 8.11: Suppose ¢ = =1 and - i
a;’s = 01"'Cden ...dl

where the right-hand side is a reduced product, ¢i---em € X and
c1- - cmw & X. Then

(i) if weES, then e=1, x=¢1--:¢cn and s=w,
(i) if we& S, then e=~1, x=d1---d, and s=w™".
Proof: It follows immediately from the preceding argument.
Corollary 8.12; Let e==1, y==1, z,y € X, and s,t€S. If

-1 -1 — -
aly = Ci-+Cmwdn +--di’ and aj:; = c1---Cnwe, ' - e’

with the right-hand sides reduced products, and ¢ - -¢n € X but
c1-cnw &X, then e=9, =y and t=s.

Proof: It follows from Corollary 8.11.

d. The proof of the subgroup theorem

Suppose again that F' is a free group freely generated by S and that H is a subgroup of
F. Choose a right Schreier transversal X for H in /. Then

Y = {tes| € X, 8ES, azs#1}

generates H. It remains only to prove that Y freely generates H. For this it suffices to
prove that any reduced Y-product is not the identity (Lemma 8.2, page 248).
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Let g = aZLSl cee a;'T,sT (@1, ...,2- €X and s, ...,s €8) be a reduced Y-product. Let
af{wsr be expressed in the form of Lemma 8.10 as e1 - - - envf ' --- f{!, where v € W and

e1---en €X but e:---env € X. We will show that g ends in vf;* - -+ fT! by induction on
r, the case r =1 being of course proved in Lemma 8.10.

If the result is assumed true for r— 1 and a." ! is expressed as ¢ -+ - cwdy ' - - di

Tr—1-8r—1

in the form of Lemma 8.10 with ¢;--- ¢ €X but ¢+ cew € X (w € W), then a:;sl
a7} ends in wdi; ' ---di .

Tr—1.Sr—1

Consider the product

wdi‘l e d;lel e eTnvf;l PP fl_l
We can convert it into a reduced product by successively deleting inverse pairs. If m =1
and wd; ' ---di'ei - env =1, then by Corollary 8.12, a;::},sr_l = (a;", )~!, contrary to

the assumption that g is a reduced Y-product. If e; - - - emv is removed as a result of deleting
inverse pairs in the product d; ' ---d;'e; - -- env, then e, --: esv is an initial segment of
di - -d; and hence an element of X. But this is contrary to Lemma 8.10. Similarly
wd; ' ---d{' is not removed as a result of deleting inverse pairs in the product
wd;'---di'e; - en. Thus
wdi ' ditey emfIt o fTY = w e uf e

when expressed as a reduced product by deleting inverse pairs (the --- between w and v
represent the factors d; ' ---di'e; - - en left after deleting inverse pairs). Consequently
gendsin w---vf;'---f' and the inductive assertion follows. Therefore g 1, and
the result follows.

e. Subgroups of finite index

In Section 7.6b, page 228, we proved that a subgroup of index » in a group generated by
r elements is generated by nr elements. We shall now find the rank of a subgroup of index
7 in a free group. To find the rank of the subgroup we use the result of Section 8.4d, i.e.
the nonunit a.,; freely generate the subgroup.

Let F' be freely generated by si,...,s and let X = {2y, ...,2.} with z1=1 be a
Schreier transversal for a subgroup H of index n. Consider the elements
= 2:85(%i8;) 7!

Az, s

i=1,...,n and j=1,...,r. The number of such elements is nr. To find the rank of H,
we wish to determine how many of the a., s; are unit elements. By line 13, page 262:

(1) If z: ends in s;7!, then aq,s; = 1.
(2) If TS; ends in s, then r,s; = 1.

We show that (1) and (2) are mutually exclusive. Suppose that x; ends in s;*. Then
Xi= 1w Wms;' (where wi,...,wm € W) is a reduced product. Consequently wmn # s;
(for otherwise w1 - - - wms; ' is not a reduced product). As w; is in the Schreier transversal
X, w1+ - - wnm also belong to the Schreier transversal. Thus Z:8; = Wi+ - Wm = W1 " - Wm
and Z:S; does not end in s;. Therefore (1) and (2) are mutually exclusive.

Note that if neither z; ends in s;* nor Z:5; ends in s;, then @, = x:8;(T:8;)"1#1 as §;
remains when Uz s is expressed as a reduced product.

For fixed j, let o, = number of z, € X for which a.,;=1. Clearly o, =number of
x, € X for which z, ends in s; ! plus the number of z, for which Ts; ends in s;. As z, runs
through X, z;s, runs through X (z -~ TS, x € X, is a permutation, page 219). Thus the
number of x; such that Z3; ends in s, is the number of elements in X which end in s;. We
conclude «, = number of «, that end in s, or s;". So the total number (i.e. with j=1,...,7)
of @z,;=1 is o + -+ +a, =number of elements of X that end in s; 0r s;%, j=1,...,7

But except for 2, = 1, every element of X ends in some s, or s;*. Hence o, + -+ +o,=n—1.
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Thus there are exactly n — 1 unit elements among the 0z,s;, and we have proved

Theorem 8.13: Let F' be a free group of rank r and let H be a subgroup of index n. Then

H is a free group of rank =n(r—1) + 1.

Problems

8.38.

8.39.

8.40.

8.41.

Let F be freely generated by 8, ...,s,.. Let H be a subgroup of index 2 such that s; € H, but
;€ H for i =2,...,r. Find a set of free generators for H by using the method of Section 8.4d.
Verify that the number of free generators agrees with the number given by Theorem 8.13.

Solution:

We choose {1,s,} for the Schreier transversal. Then the nonunit elements among ay,5, and
5.5 U =1_,. ..,r) freely generate H. Now a5, = 1s;Is)-1 If j=1, @15 = 1. If j+1,
1,5 = 1sj(1s)~t=3s; as s, € H implies 5;,=1. Now

s, = 8,8(85)"1 = 8871 if j# 1 (for then s,5;€ Hsy)
=s2if j=1 (ass>=1)

Thus the subgroup H is freely generated by s%s,,...,s, and s;s8;%, ..., 8:8,8; . Thus H is of
rank 2(r—1) + 1, which agrees with Theorem 8.13.

Let F be freely generated by « and y. Find a set of free generators for ¥’, the derived group of F.

Solution:

Let X = {«"ys| r and s integers}. Then to show that X is a Schreier transversal we need only
show that (1) z"ys, 2'1y°1 belong to the same coset of F’ only if » =r;, s =s;, and (2) X is a set
of coset representatives. Both (1) and (2) follow easily on using the fact that F/F’ is free abelian
with basis xF’, yF’ (by Theorem 8.6, page 255). The free generators of F’ are the elements @ s .
and a,r.s ., which are nonunit. Now

ars . = xyse(xrySe)—1 = xrysp(xrtlys)—1 = grysgy—se~7-1 #* 1 for s+* 0
xTyS, z

On the other hand,

a:"‘ys,y —_ xrySy(xrys+1)—l =1

Thus a set of free generators for F’ are the elements arysxy—sx—7—1 for all integers » and all
integers s < 0.

Let F be a free group of rank » and H and K subgroups of index n. Prove that H = K.

Solution:
By Theorem 8.13, H and K are free of the same rank, Thus they are isomorphic.

Let F be a free group on generators « and y. Suppose that R F, y€ R and F/R = gp(zR)
is infinite cyclic. Prove that the group R/R’ is freely generated as an abelian group by the elements
x"yx—"R’, where n € Z. Then prove that for no integer n, is x*yx—"R’ in the center of F/R’.

Solution:

The method of Section 8.4d with X = {a"|n € Z} gives for the free generators of E the
elements am, = 2TYx~", N € Z. By an argument similar to Theorem 8.6 (which deals only with

free groups of finite rank), R/R’ is free abelian with basis x7yx— "R’ for all integers =.

Now as
(@R ) (xryz—*R')(xR')—1 = antlyg—(n+tDR' 5= gnyx—nR/

zryx~ "R’ does not belong to the center of F/R’.
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f. Intersection of finitely generated subgroups

We prove here that if H and K are subgroups of finite rank of a free group F, then
HNK is also a subgroup of finite rank. (This result is due to Howson.)

To simplify the problem we note that we may assume that F is finitely generated. For

if not, we could consider gp(H, K), which is certainly finitely generated (as H and K are),
instead of F.

However, as we have seen in Example 1, page 259, a free group of rank 2 has a subgroup
of infinite rank. Therefore we may as well assume that F is free of rank 2. Let F be
freely generated by a and b.

We say that a coset C is single-ended if every element of C when expressed as a reduced
product has the same last factor.

For example, if all the elements of C end in «, C is said to be single-ended. (We might
have for instance baaa € C.) But if C contains for example the elements ababab and
ab™1, then C is not single-ended.

A coset which is not single-ended is called double-ended.

The following lemma is erucial:

Lemma 8.14: A subgroup H of the group freely generated by a and b is of finite rank if
and only if it has a finite number of double-ended cosets.

Proof: Choose a Schreier transversal X for H in F. Put S = {a,b}.

(1) Let H be of finite rank. Then only a finite number of the elements a.. 1 (where
2 €X and s €S). But we proved in Section 8.4d that every element of H ended in the
form wd; ' --- d;' where wd; ' - - di is either s(xs)~! or s~ 'x~ 1, where a.s+=1. Thus
we concluded that all the elements of H end in the form wd; ' --- di ' where there are
only a finite number of wd; ' ---d:i' and di---dw-'&X although dy---d € X.

Let # € X. Then if Hx is double-ended, there exists an element % € H such that
in hz, x cancels completely. As % ends in some wd: ' ---di' and dy---dw ' & X, it
follows that if x cancels completely, # is an initial segment of di---d; (otherwise
wd; - - - d; is an initial segment of x and hence in X). It follows that as the number
of d; - - - d; that appear is finite, the number of initial segments is finite, and thus the
number of double-ended cosets is finite.

(2) Let H be of infinite rank. If a@.,= 2s(Z5)"!+# 1, it follows that x does not end in s7!
(line 13, page 262) and, of course, xs(¥S)"'€ H. The coset Hx contains z and
(xs(xs)~1)"'x = £8s~!. Now s~! appears in the reduced product for ¥ss—! (line 13, page
262). As z does not end in s7!, Hz is double-ended.

Now as there are an infinite number of z such that a.s> 1, there are an infinite
number of double-ended cosets.

Theorem 8.15: The intersection of two subgroups H and K of finite rank is again of
finite rank.

Proof: By Lemma 8.14, H has only a finite number of double-ended cosets, say
H,, ...,H,, and K has only a finite number of double-ended cosets, say Ki, ..., Kn. Now
the cosets of HNK are intersections of cosets of H and K (Problem 7.23, page 231). Also
the intersection of a single-ended coset of H with any coset of K is single-ended (and
vice versa). Thus the double-ended cosets of HNK are among the cosets H:NK;, i=1,...,n
and j=1,...,m. Therefore HNK has at most mn double-ended cosets and accordingly
HNK is of finite rank by Lemma 8.14.
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A look back at Chapter 8

We defined free groups and gave an alternative definition. The existence of free groups
was established and homomorphisms of free groups investigated. The main result was
that if F' is a free group freely generated by X, then for every group H and every mapping
g of X into H there is a homomorphism ¢ of F' into H which coincides on X with 4. As a
consequence every group is a homomorphic image of a free group.

We next discussed presentations of groups. The important notion of rank of a free
group then arose naturally.

We discussed and proved the subgroup theorem for free groups. Using this, the rank
of a subgroup of finite index was calculated. Finally we proved that the intersection of
two subgroups of finite rank in a free group is of finite rank.

Supplementary Problems

ELEMENTARY NOTIONS
8.42. Suppose F' is freely generated by a¢ and b. Find elements u,v € F so that « # a and

a~1b-1gb = u—lv~lyw

8.43. Prove that a free group of finite rank has only a finite number of elements of length = n for any
fixed integer n.

8.44. Prove thatif N < G and G/N is free, then G splits over N.

8.45. Let F be a free group freely generated by a and b. Let N = gp(...,a%ba"2, aba"1, b, a—1ba,
a"2ba?, ...). Prove N < F and verify that F' splits over N.

8.46. Using the notation of the preceding problem show that if N’ is the derived group of N, then
N’ < F. Verify that F/N’ is a splitting extension of N/N’ by an infinite cyclic group. Construct
an isomorphic copy of F/N’ directly as an extension of a free abelian group by an infinite eyclic

group.

PRESENTATIONS OF GROUPS

8.47. Prove that the group G = e, b; a~1ba = b2| is not free. (Hint: Prove that G/G’ is cyclic. So if
G is free it must be free cyclic. Then show G’ {1} by mapping G into a suitable factor group.)

848. Let G = |»,y; 22, y2|. Show that G is infinite. (Hint: Let F be the free group freely generated by
xand y. Let ¢:x - a, y— ab be a homomorphism onto the group of Problem 8.30, page 257.)

8.49. Let G = |a,b,¢,d;[a,c¢],[a,d],[b,c],[b,d]|. Prove G is the direct product of two free groups each
of rank 2.

850. Prove that if G =|w;, @5, ...; 205 =2y, ..., @+ 1)2;4; =%;, ...[, then G is isomorphic to the
additive group of rationals. (Hint: Note that G has the additive group of rationals as homomorphie
image. Also it is abelian. Use Problem 6.72, page 208.)

. . . — . —1 p -1 PO .
8.51.  Prove that if p is a prime and G = |z}, %y, .. .; @y, ah2; 1, ..., 20,271, ...], then G is isomorphic

to the p-Priifer group.
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8.52. What is the group |2, %y, ..., %, 2] !|?

THE SUBGROUP THEOREM FOR FREE GROUPS

8.53. Prove that if F is free on z,y,z then the elements xyz, 22222, x3y323, x4y42?, ... freely generate a
subgroup of F.

PROOF OF THE SUBGROUP THEOREM

8.54. Show that if am = b» where a and b are elements of a free group (mn # 0), then @ and b generate a
eyclic group.

8.55. Let N and M be nonidentity normal subgroups of G, a free group of rank greater than 1. Prove
that NnM = {1}.

8.56. Let F be a free group. Prove that there is no sequence of subgroups F;CF,C-:+ of F with
F;# F;;, and rank of F;=2. (Hint: Let G = UF,. Then G is a free group of infinite rank.
Consider G/G’ which is free abelian of infinite rank. Obtain a contradiction by showing that G/G’
is of finite rank.)

8.57. Find generators for F2 where F is a free group of rank two and F2 = gp(x2| x €F). (Note that
F/F? ig the Klein 4-group.)

8.58. Let F be a group which can be generated by two elements with a free subgroup of rank 3 which is
of index two. Prove F is free by comparing it with a free group of rank 2. (Hard.)

8.539. Let F,R be as in Problem 8.41, page 264. Prove that F/R’ has no element other than 1 in its center.



Appendix 4

Number Theory

In this book we assume the reader knows the following:

1. The meaning of a divides b, for which we use the notation a|b. The notation a [ b is
read as “a does not divide b”.

2. The definition of a prime, i.e. an integer not equal to 1 which is divisible only by 1 and
itself.

3. If a, b are integers, then there exist an integer ¢ and an integer r such that
a = bqg+r

where 0 = r < b.

4. The definitions of greatest common divisor of two numbers @ and b (the largest integer
which divides both @ and b) and lowest common multiple of ¢ and b (the smallest integer
divisible by both @ and b). We write the greatest common divisor of ¢ and b as (a, b),
the lowest common multiple of a and b as lLem.(a,b). If (a,b) =1, then a and b are
said to be co-prime.

5. Given integers a and b, there exist integers p and ¢ such that

(a,b) = pa+ qb

6. The fundamental theorem of arithmetic which says every integer is expressible in one
and only one way (ignoring order) as the product of primes.

7. a=Db modulo n means a—b is divisible by n. Also some of the simpler properties
suchas a=b and z =y implies a+2x=b+y and ax = by.

The reader who does not know this material can consult

(a) Niven, I, and H. S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, 1966.
(b) Upsensky, J. V., and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 1939.
(¢) Birkhoff, G., and S. MacLane, A Survey of Modern Algebra, Macmillan, 1953.
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Appendix B

A Guide to the Literature

Note: Numbers in brackets refer to the bibliography on pages 272 and 273.

General

Books which contain much of the material of this text (and frequently more) are, in the
order of complexity, [46], [15], [16]. Useful books in algebra are [47] and [23].

Chapter 1

The theory of sets was established by G. Cantor in the last quarter of the 19th century
[1]. A central notion in his work is that of cardinality — two sets have the same cardinality
if there is a one-to-one mapping from the one onto the other. This leads to the idea of a
transfinite number, and much of Cantor’s work was devoted to developing these transfinite
numbers (see [2] and [3]).

In the study of sets a number of paradoxes arose ([4] and [5]). This made it desirable
to put set theory on a firm axiomatic footing. Such axiomatic approaches have led to a
number of interesting developments ([4], [5] and [6]).

Recently a different approach to the foundations of mathematics has been originated
by Lawvere, which is based on the notion of category [44] (see [7] for the axioms of a
category).

Chapter 2

The study of groupoids arose in part from a desire to uriderstand more clearly the
axioms for group theory. The theory of groupoids can be subdivided into systems which
satisfy various “natural” conditions. Thus, for example, among the various classes of
groupoids one has semigroups, loops, groups and quasi-groups. Two major references are
[8] and [9].

Chapter 3

It is clear from this chapter that groups arise in a great many mathematical disciplines.
Groups arose initially from 19th century algebra, analysis and geometry. It was hoped
that much of geometry could be handled by associating a group with each geometrical
object. To some extent this aspect of group theory has been discussed in the section on
isometry groups (see also [10], [11], and [14]). For the applications to topology see [37]
and [39], and for knot theory see [40].

Groups arise also in quantum physics, crystallography [12] and chemistry [13]. This
omnipresence of groups is part of the reason for its importance.

In addition, the study of groups has been carried forward for its own sake (see e.g.
[15], [16], [17], [18], [19], [20], [21], [22], [43]). Finally we refer the reader to the study of
groups with a topology: [41], [42].
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Chapter 4
Chapter 4 is concerned mainly with cyclic groups and homomorphisms.

As we have dealt exhaustively with cyclic groups, there is not really any further informa-
tion available except perhaps for finding the automorphism group of a cyclic group. If
G is cyclic of order =, then the automorphism group of G is the group of integers co-prime
to n, with multiplication modulo #; see e.g. [43].

The concept of homomorphism is basic. One can define homomorphisms for other
algebraic concepts, such as rings. Factor rings can be defined and very similar theorems
obtained [23], [24], [25]. (Indeed, once the group theoretic ones are known, it is routine
'to obtain the others.)

Some work, prompted by algebraic topology, has been done on more complex interaction
of group homomorphisms [26].

Chapter 5

Much of this chapter is “arithmetical” in content, i.e. it deals with the order of a
finite group. Thus for example we have the theorem of Lagrange: The order of a sub-
group of a finite group divides the order of the group. There are a great number of
important theorems of this kind, embodying various generalizations of the Sylow theorems
(see [27], [17]). A very important result of a slightly different kind is the remarkable
theorem of W. Feit and J. Thompson, viz. a finite group of odd order is solvable [45].

The classification of groups of small order has not been too successful. This is due to
the extraordinary complexity of these groups. The reader might consult [21], [17] and
[28] for a discussion of this classification problem.

Today the study of finite groups has proceeded at an extraordinary pace. One of the
main aims of this study is the classification of finite simple groups. This classification is by
no means complete, but much progress has been made (see [29]).

Chapter 6

Our proof of the fundamental theorem of abelian groups is nonconstructive, i.e. we do
not have a definite procedure for finding a basis. Such procedures exist, e.g. [30].

There are also other criteria for deciding if an abelian group is a direct sum of cyclic
groups, e.g. if every element is of bounded order [31]. A more comprehensive result is
that of Kulikov [16].

In this chapter we found invariants for finitely generated abelian groups. The in-
variants for countable torsion groups are subtler and appear in Ulm’s theorem ([31], [32]).

Some of the theorems of abelian groups extend to wider classes of algebraic structures,
e.g. modules over rings ([31]). There has also been an attempt to prove theorems about
classes of groups that are quite close to abelian groups, e.g. solvable and nilpotent groups
([17], [19)).

Excellent sources for abelian groups appear in [16] and [31]; a more encyclopedic ac-
count appears in [32}.

Chapter 7

The aim of this chapter is to show how representing groups as permutation groups
leads to information about the groups themselves. There are other types of representation.
The most important of these is the representation of finite groups as n Xn matrices.
(These » X n matrices constitute a natural generalization of the 2 X2 matrices we have
discussed in Chapter 3.) The reader might consult [33], [34].
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In infinite group theory the permutational representation of Frobenius has led to
significant progress (§2 of Chapter 2, etec., of [35]).

The transfer has been used a great deal in finite group theory. A good source of in-
formation is [27]. See also [17].

Chapter 8

Our proof of the existence of free groups is really motivated by Cayley’s theorem, as
a glance at the usual proof will reveal [16].

The property of Theorem 8.4, i.e. the property of being able to extend a mapping of the
free generators to a homomorphism of the free group, is of great importance. Indeed, it is
often used as the definition of a free group. With this approach, the definition of free group
is analogous to the definition of free abelian group (Chapter 6). There are even further
generalizations and we can speak of the free group in a variety, where a variety is a collec-
tion of groups satisfying certain conditions. A detailed account appears in [35].

One can also regard a free group as being the free product of infinite cyclic groups.
The free product of two groups is a way of putting the groups together in, roughly speaking,
the freest way ([16], [17]).

Groups occur frequently as presentations. This is unfortunate as it is always difficult
to say what the group of a presentation is or what its properties are. Indeed, there is not
even a general and effective procedure for deciding whether the group of any given presenta-
tion is of order 1. All this is connected with the word problem, which is, roughly speaking,
to determine in a finite number of steps if two products in the generators of a given
presentation are equal. The word problem is unsolvable in general (see [15]).

An important concept which enables us to change from one bpresentation to another is
that of Tietze transformations [36].

There are many proofs of the subgroup theorem, including topological ones (e.g. [37]).
An important one is by Nielsen transformations ([16], [17], [36]). One of the advantages
of the method we used in Chapter 8 is that it extends readily to provide generators and

defining relations for subgroups of a group of a presentation [36].

More properties of free groups, free products and presentations of groups appear in
[36]. See also [38] for presentations.
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INDEX

Abelian group, 177-212
divisible, 205, 209
finitely generated, 196
free, 186
of type p* = p-Prifer group, 191, 206
primary = p-group, 190
rank of, 193

Abelian groupoid, 29

Additive notation, 19, 178

Alternating group, 62
simplicity, 172

Ascending central series = upper central series, 142

Associative groupoid, 29
Automorphism,

group, 84, 87

inner, = mapping p,, 85

of field, 87

of group = of groupoid, 83

Basis of free abelian group, 186

Basis theorem = fundamental theorem for
finitely generated abelian groups, 197

Bijection, 14

Binary operation, 19

Block, RE-, 9

Cardinality, 14
Carrier, 26
Cartesian product, 6
Cayley’s theorem, 46, 214
Center, 112
Centralizer of a subset, 112
Chain, 194
Circle, 2
Class, equation, 135

equivalence, 9

R- 9
Closed with respect to multiplication, i.e. product

of elements in the set belong to the set.

Codomain, 12, 13
Common part, 3
Commutative groupoid, 29
Commutator, 112
Commutator subgroup, 112
Commute: ¢ and b commute if ab = ba.
Complement, 234
Component, p-, 191
Composition factors, 164
Composition of maps, 17
Composition series, 158, 163
Congruence, 269
Conjugacy classes, 171
Conjugate, subgroups, 131
Conjugates, H-, 134

274

Correspondence theorem, 120
Coset, 108
double-ended, 265
representation, 219
representative, 219
Countable, 14
Countably infinite, 14
Cycles, 167
Cyeclic group, 101

Degree of permutational representation, 217
Dependent, 192
Derived subgroup, 112
Difference of sets, 4
Different products, 245
Dihedral group, 75

infinite, 257

of degree 4, Table 5.2, 152
Dimension of vector space, 89
Direct product, 143

external, 143

internal, 146
Direct summand, 178
Direct sums,

finite, 178

infinite, 182
Divisible group, 205, 209

Element, 1
order of, 103
Epimorphism, 42
Equivalence relation, 8
Extension of groups, 232-234
splitting, 234-238
Extension of mapping to homomorphism, 185, 250
Extension property,
free abelian groups, 185
free groups, 250

Factor groups, 114
Factor of a factor theorem (third isomorphism
theorem), 121
Factors of a subnormal series, 158
Faithful representation, 218
Family of indexed sets, 182
Fields of complex numbers, 86
Finitely generated abelian groups, 197
subgroups of, 202
factor groups of, 204
Finitely generated group, 98, 197, 227
Finitely presented, 253
Finite presentation, 253
Four group, 144, 148



Free abelian group, 186
rank of, 193
Free group, 246
intersections of finitely generated subgroups, 265
length of an element, 248
rank of, 255
subgroups, 260
subgroups of finite index, 264
Free on a set, 246
Free set of generators, 246
Freely generated, 186, 246
Frobenius’ representation, 225
Frobenius’ theorem, 224
Full linear group, 90
Fundamental theorem of arithmetic, 269
Fundamental theorem of finitely generated
abelian groups, 197

Galois group, 159
Generators, free set of, 246
Greatest common divisor, 269
Group,

abelian, 177-212

alternating, 62

automorphism, 83

commutative, 29

commutator, 112

cyelie, 101

definition of, 50

derived, 112

extension, 234, 238

finitely generated, 98, 197, 227

free, 246

isometry, 64, 67

linear, 90

matrices, 81

mixed, 188

Mébius transformations, 77

nilpotent, 142

number of groups of given order, 156

primary, = p-group, 190

Priifer groups, 191

quaternion, 151

simple, 158, 163

symmetric, 56

table, 22

torsion, 188

torsion-free, 188
Groupoid, 26

abelian, 29

associative, 29

commutative, 29

equality of, 28

finite, 29

identity, 30

infinite, 29

order, 29

table of, 22
Groups of order

p, 148

p2?, 147

2p, 149

8, 150
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Groups of order (cont.)
12, 152-156
15,131
Groups of small order, 148-156

Hamiltonian group = quaternion group, 151
Higher central series = upper central series, 142
Homomorphism, natural, 115
Homomorphism, of a groupoid, 40
of a group, 94
Homomorphism theorem (first isomorphism
theorem), 117

Identical products, 245
Identity, of a groupoid, 30
of a group, 50
Iff = if and only if
Image, 12, 13
Independence, independent, 192
Index of a subgroup, 110
Index 2, 116
Indexed family, 182
Indexing set, 182
Initial segments, 261
Inner automorphism (see Automorphism.)
Intersection, 3
Intersection, of normal subgroups, 114
of subgroups, 55
Invariant subgroup = normal subgroup, 111
Invariants of finitely generated abelian group =
type of abelian group, 200
Inverse, 32
Inverse pairs, 246
Inversion, 60
Isometries, of line, 64
of plane, 67
Isomorphism,
of group, 94
of groupoid, 42
Isomorphism theorems,
first, 117
second, 125
subgroup, 125
third, 121

Jordan-Hélder theorem, 164

Kernel, 117
Klein four group, 144, 148

Lagrange’s theorem, 109
Largest set, 3
Least common multiple = lowest common
multiple, 269
Length of,
composition series, 164
cycle, 167
element in free group, 248
Linear fractional transformation = Mobius
transformation, 77
Linear group, 90

Mal’cev’s theorem, 230
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Map or mapping,
bijection, 14
codomain, 12, 13
composition, 17
definition, 11, 13
domain, 12, 13
equality, 13
matching, 14
one-to-one, 14
onto, 14
restriction of, 14
Matching, 14
Matrices, 81
Matrices, groups of, 81
Maximal independent set, 193
Maximal set, 194
Metacyclie, 243
Mixed group, 188
Mobius transformations, 77
Monomorphism, 42
Multiplication in a set, 2
Multiplication table, 22

Natural homomorphism, 115

Negative, 178

Nielsen-Schreier theorem, 260

Nilpotent group, 142

Normal closure, 253

Normal subgroup, 111

Normal subgroup generated by a set, 253
Normalizer, 112, 133

Odd permutation, 60
One-to-one mapping, 14
Onto mapping, 14
Operation, binary, 19
Order

of a group, 50

of a groupoid, 29

of an element, 103
Ordered pair, 2

Partition, 9
p=, group of type = Priifer group, 191
p-component, 191
Periodic = torsion group, 188
Permutation, 56
even, 60
group — symmetric group, 56
odd, 60
Permutational representation, 216
degree of, 217
p-group, 139, 190
p-primary group = p-group, 190
p-Priifer group, 191
main theorem, 206
Preimage, 12, 120
Presentation, 253
finite, 253
finitely presented, 253
group of a, 253
of a group, 253
Primary component = p-component, 191

INDEX

Product,
cartesian, 6
direct, 143
reduced, 245
Products,
different, 245
identical, 245
of subsets of a group, 109
Proper subgroup, 106
Priifer group, 191
Quaternions = Hamiltonian groups, 151
Quotient group = factor group, 114

Range, 12
Rank,
free abelian group, 193
free group, 255
torsion-free abelian group, 193
R-block, 9
R-class, 9
Reduced product, 245
Reflection, 68, 69
Reflexive property, 9
Representation,
coset, 219
degree of, 217
Frobenius, 225
permutational, 216
right-regular, 216
Representative of a coset, 219

Representatives of the equivalence classes, 134

Right-regular representation, 216
Rotation, 68, 69

Schreier’s subgroup theorem, 260
Schreier transversal, 261

Schur’s theorem, 242

Semigroup, 29

Series,

ascending central, = upper central series, 142

composition, 1568
solvable, 158
subnormal, 158
Set, 1
Simple group, 158, 163, 172
Smallest set, 3
Solvable, group, 158, 161
by radicals, 159
series, 1568
word problem, 246
Split, 234
Splitting extension, 234, 238
Steinitz exchange theorem, 192
Subgroup,
commutator, 112
conjugate, 131
definition, 54
derived, 112
generated by a set, 98
invariant, = normal subgroup, 111

isomorphism theorem (second isomorphism

theorem), 125
normal, 111



Subgroup (cont.)
of index 2, 116
proper, 106
Sylow, 130
theorem for cyclic groups, 105, 126
theorem for free groups, 260
torsion, 189
Subnormal series, 158
factors of, 158
Subset, 2
subgroup generated by, 98
product of, 109
Sum, direct, 178
finite, 178
infinite, 182
Sum of vectors, 89
Sylow subgroup, 130
Sylow’s theorems,
first, 130
second and third, 131
Symmetric group,
definition, 56
of degree 4, 59
of degree 5 or more, 172
Symmetric property, 9
Symmetry groups, 73

INDEX
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Symmetry groups of an algebraic structure, 83

Table, multiplication, 22
Three-cycle, 172
Torsion group, 188
subgroup, 189
Torsion-free group, 188
Transfer, 240
Transitive property, 9
Translation, 68, 69
Transposition, 167
Transversal, 219
Schreier, 261
Type of a finitely generated abelian group, 200

Union, 3
Unit element = identity element, 30
Upper central series, 142

Vector space of dimension n, 89
Vector sum, 89

‘Word problem, 246

Zero element, 178
Zorn’s lemma, 194
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Symbols

aut (G) Automorphism group of G, 84
xg(xg) 1, 224
A, Alternating group of degree =, 61
C Complex numbers, 1
C*  Nonzero complex numbers, 51
C(A) Centralizer of A, 112
C, Cyeclic group of order =, 148
D, Dihedral group of degree n, 76
gp(X) Subgroup generated by X, 98
hk  Conjugation by z,, 233
I  Isometries of plane, 67
I(R) Group of isometries of R, 64
Ig Symmetry group of S, 73
(I:Z) Group of isometries of R that move integers to integers, 66
K, Klein four group, 148
Kers Kernel of ¢, 117
lem. (a,b) Lowest common multiple of ¢ and b, 269
L, (V,F) Fulllinear group of dimension =, 89
my , (g% lgx, 232
My, K mxk’xk" 233
M  Group of Mébius transformations, 78
M Group of 2 X 2 matrices over complex numbers, 81
My Semigroup of mappings of X to X, 36
N Nonnegative integers, 1
N(A) Normalizer of A, 112
Ng(A) Normalizer of A in H, 133
P Positive integers, 1
@ Rationals, 1
@Q* Nonzero rationals, 20
R Real numbers, 1
R+  Nonnegative real numbers, 48
R2?2 Euclidean plane, 2
R Set of representatives of the equivalence classes, 134
R* Representatives whose intersection with the center is the empty set, 135
R-class R-equivalence class, 9
Number of distinct Sylow p-subgroups, 131
S, Symmetric group of degree n, 56
Sx  Symmetry group on X, 56
T(G) Torsion subgroup of G, 189
W  Elements of S and their inverses, 262
x,,  Coset representative, 232
Z Integers, 1
Z(G@) Center of G, 112

278



Yo

{}
{13
()

xRy
xR
X/R

a:S->T

a, 8%, a(8)

Sa

IS}

a]s'

aof
got
8+t
s+t

st
sXt

G, »)

g—l

SYMBOLS AND NOTATIONS

Greek Symbols
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Mapping that sends x —» Zg, 219 o Mapping that sends x to xg, 214
Frobenius representation, 225 Py Rotation through angle ¢, 68
Identity mapping, 36, 56 o(a,b,¢,d) Mobius transformation, 77
Natural homomorphism, 114 a, Reflection, 69
Mapping that sends g - y,, 219 r Transfer, 240
Set of all primes, 190 Te,p Lranslation, 68
Notations
Is in, bel to, 1 e ' '
S 1, befongs o <a1 m > Notation for a mapping, 37
Is not in, does not belong to, 1 Ao Ao
Set, 1 = Isomorphie, 42
Set defined by a property, 1 a™ a to the power m, 100
Open interval, 2 Hg Right coset, 108
Closed interval, 2; also XY  Product of two subsets of a
Commutator, 112 group, 109
Ordered pair, 2; also Greatest common [G: H] Indexof Hin G, 110
divisor, 269 H<Aa G Hisnormal in G, 111
Is a subset, 2 [#,¥] Commutator of « and y, 112
Is a proper subset, 2 G’ Commutator subgroup of G, 112
Union, 3 G/N G over N, 114
Intersection, 3 ~  Equivalence relation by
conjugation, 134
Empty set, 3 .
A~ Equivalence class containing
Difference of sets, 4 A, 134
Cartesian product, 6 H X K External direct product, 143
Cartesian product of S n times, 6 H @ K Internal direct product, 146
. n
@ is related to y by R, 8 IT G; Direct product, 146
R-class of 2, 9, 11 =1
(a4, ...,a,) Cyecle of length m, 167
Set of R-classes, 11; also X .
over R, 114 H @K Direct sum of H and K, 178
n
Mapping from S into T, 12 > G, Finite direct sum, 178
i=1
Image of s under q«, 12 .
> G; Infinite direct sum, 182;
Range of «, 12 i€l see also 179
Number of elements of S, 14 G, p-component of G, 190
Restriction of « to §’, 14 (Q/Z), Priifer group, 191
Composition of mappings, 17; also Image (pzl, .. .,p;k; 8) Type of a group, 200
under a binary composition, 19 g Transversal element in same
coset as g, 219
Image under a binary composition, 19 (X;R) Presentation, 253
|X: R| Group of a presentation, 253
(@, b; [@,b]) Presentation, 254
Groupoid G with binary operation g, 26 (a,b) Greatest common divisor of

Identity of a groupoid, 31

Inverse of the element g, 34

a and b, 269
Congruent, 269
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