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Preface 

This book is devoted to two separate, but related, topics: (1) the synthesis and 
simplification of switching and logic circuits, and (2) the theory of Boolean algebras. 

Those people whose primary interest is in switching and logic circuits can read 
Chapter 4 immediately after a quick perusal of Chapter 1. We have confined our 
treatment of switching and logic circuits to combinational circuits, i.e. circuits in 
which the outputs at a given time depend only on the present value of the inputs and 
not upon the previous values of the inputs. The extensive theory of sequential circuits, 
in which the outputs depend also upon the history of the inputs, may be pursued by 
the reader in Introduction to Switching Theory and Logical Design by F. J. Hill and 
G. R. Peterson (reference 34, page 202), Zntroduction to Switching and Automata 
Theory by M. A. Harrison (ref. 33, page 202), and other textbooks on switching theory. 

The treatment of Boolean algebras is somewhat deeper than in most elementary 
texts. It can serve as an introduction to graduate-level books such as Boolean Algebras 
by R. Sikorski (ref. 148, page 207) and Lectures on Boolean Algebras by P. R. Halmos 
(ref. 116, page 207). 

There is no prerequisite for the reading of this book. Each chapter begins with 
clear statements of pertinent definitions, principles and theorems together with illus- 
trative and other descriptive material. This is followed by graded sets of solved and 
supplementary problems. The solved problems serve to illustrate and amplify the 
theory, bring into sharp focus those fine points without which the student continually 
feels himself on unsafe ground, and provide the repetition of basic principles so vital 
to effective learning. A few problems which involve modern algebra or point-set 
topology are clearly labeled. The supplementary problems serve as a complete review 
of the material of each chapter. Difficult problems are identified by a superscript D 
following the problem number. 

The extensive bibliography at the end of the book is divided into two parts, the 
first on Switching Circuits, Logic Circuits and Minimization, and the second on 
Boolean Algebras and Related Topics. It was designed for browsing. We have listed 
many articles and books not explicitly referred to in the body of the text in order to 
give the reader the opportunity to delve further into the literature on his own. 

Queens College 
July 1970 

ELLIOTT MENDELSON 
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Chapter 1 

The Algebra of logic 
1.1 TRUTH-FUNCTIONAL OPERATIONS 

There are many ways of operating on propositions to form new propositions. We shall 
limit ourselves to those operations on propositions which are most relevant to mathematics 
and science, namely, to truth-functional operations. An operation is said to be truth- 
functional if the truth value (truth or falsity) of the resulting proposition is determined 
by the truth values of the propositions from which it is constructed. The investigation of 
truth-functional operations is called the propositional calculus, or, in old-fashioned 
terminology, the algebra of logic, although its subject matter forms only a small and 
atypically simple branch of modern mathematical logic. 

Negation 

Negation is the simplest common example of a truth-functional operation. If A is a 
proposition, then its denial, not-A, is true when A is false and false when A is true. We shall 
use a special sign 1 to stand for negation. Thus, 1 A is the proposition which asserts the 
denial of A. The relation between the truth values of 1 A and A can be made explicit by a 
diagram called a truth table. 

A IlA 

T F 

l- F T 

Fig. l-l 

In this truth table, the column under A gives the two possible truth values T (truth) 
and F (falsity) of A. Each entry in the column under 1 A gives the truth value of 1 A 
corresponding to the truth value of A in the same row. 

Con junction 

Another truth-functional operation about which little discussion is necessary is con- 
junction. We shall use A & B to stand for the conjunction (A and B). The truth table 
for & is 

A 1 B 1 A&l 

T T T 

F T F 

T F F 

F F F 

Fig. 1-2 

1 
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There are four possible assignments of truth values to A and B. Hence there are four rows 
in the truth table. The only row in which A & B has the value T is the first row, where each 
of A and B is true. 

Disjunction 

The use of the word “or” in English is ambiguous. Sometimes, “A or B”t means that 
at least one of A and B is true, but that both A and B may be true. This is the inclusive 
usage of “or”. Thus to explain someone’s success one might say “he is very smart or he 
is very lucky”, and this clearly does not exclude the possibility that he is both smart and 
lucky. The inclusive usage of “or” is often rendered in legal documents by the expression 
“and/or”. 

Sometimes the word “or” is used in an exclusive sense. For example, “Either I will go 
skating this afternoon or I will stay at home to study this afternoon” clearly means that I 
will not both go skating and stay home to study this afternoon. Whether the exclusive usage 
is intended by the speaker or is merely inferred by the listener is often difficult to determine 
from the sentence itself. 

In any case, the ambiguity in usage of the word “or” is something that we cannot allow 
in a language intended for scientific applications. It is necessary to employ distinct symbols 
for the different meanings of “or”, and it turns out to be more convenient to introduce 
a special symbol for the inclusive usage, since this occurs more frequently in mathematical 
assertions.tt 

“A v B” shall stand for “A or B or both”. Thus in its truth table (Fig. 1-3) the only case 
where A v B is false is the case where both A and B are false. The expression A v B will be 
called a disjunction (of A and B). 

A B Avl 

T T T 

i-t 

F T T 

T F T 

F F F 

Fig. 1-3 

Conditionals 

In mathematics, expressions of the form “If A then B” occur so often that it is necessary 
to understand the corresponding truth-functional operation. It is obvious that, when A is T 
and B is F, “If A then B” must be F. But in natural languages (like English) there is no 
established usage in the other cases (when A is F, or when both A and B are T). In fact 
when the meanings of A and B are not related (such as in “If the price of milk is 2% per 
quart, then high tide is at 8:OO P.M. today”), the expression “If A then B” is not regarded 
as having any meaning at all. 

tstrictly speaking, we should employ quotation marks whenever we are talking about an expression 
rather than using it. However, this would sometimes get the reader lost in a sea of quotation marks, 
and we adopt instead the practice of omitting quotation marks whenever misunderstanding is improbable. 

ttIn some natural languages, there are different words for the inclusive and exclusive “or”. For example, 
in Latin, “vel” is used in the inclusive sense, while “aut” is used in the exclusive sense. 
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Thus if we wish to regard “If A then B” as truth-functional (i.e. the truth value must 
be determined by those of A and B), we shall have to go beyond ordinary usage. To this 
end we first introduce + as a symbol for the new operation. Thus we shall write “A + B” 
instead of “If A then B”. A + B is called a conditional with antecedent A and consequent B. 
The truth table for + contains so far only one entry, in the third row. 

A B A-B 

T T 

t 

F T 

T F F 
F F 

Fig. 1-4 

As a guideline for deciding how to fill in the rest of the truth table, we can turn to 
“If (C & D) then C”, which seems to be a proposition which should always be true. When 
C is T and D is F, (C & D) is F. Thus the second line of our truth table should be !I’(since 
(C & D) is F, C is T, and (If (C & D) then C) is T). Likewise when C is F and D is F, 
(C & D) is F. Hence the fourth line should be T. Finally, when C is T and D is T, (C & D) 
is T, and the first line should be T. We arrive at the following truth table: 

T F 

I I 

Ii 

F F T 

Fig. 1-5 

A + B is F when and only when A is T and B is F., 

To make the meaning of A --, B somewhat clearer, notice that A + B and (1 A) v B always 
have the same truth value. (J us consider each of the four possible assignments of truth t 
values to A and B.) Thus the intuitive meaning of A + B is “not-A or B”. This is precisely 
the meaning which is given to “If A then B” in contemporary mathematics. 

A proposition A --, B is T whenever A is F, irrespective of the truth value of B. Notice 
also that A + B is automatically T whenever B is T, without regard to the truth value of A. 
In these two cases, one sometimes says that A --, B is Ctivially true by virtue of the falsity 
of A or the truth of B. 

Example 1.1. 
The propositions 2 + 2 = 5 + 1 # 1 and 2 + 2 = 6 + 1 = 1 are both trivially true, since 2 + 2 = 6 

is false. 

Biconditionals 

At this time we shall introduce a special symbol for just one more truth-functional 
operation: A if and only if B. Let A c* B stand for “A if and only if B”, where we under- 
stand the latter expression to mean that A and B have the same truth value (i.e. if A is T, 
so is B, and vice versa). This gives rise to the truth table: 
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F T F 

T F F 

F F T 

Fig. l-6 

A proposition of the form A t, B is called a biconditional. Notice that A t) B always takes 
the same truth value as (A + B) & (B + A) ; this is reflected in the mathematical practice of 
deriving a biconditional A t) B by proving A + B and B + A separately. 

1.2 CONNECTIVES 

Up to this point, we have selected five truth-functional operations and introduced special 
symbols for them: 1, &, v, J, t). Of course if we limit ourselves only to two variables, 
then there are 24 = 16 different truth-functional operations. With two variables, a truth 
table has four rows: 

A B 

T T - 

t-t 

F T - 

T F - 

F F - 

Fig. l-7 

A truth-functional operation can have either T or F in each row. Hence there are 2 ??2 * 2 * 2 
possible binary truth-functional operations. 

Corresponding to any truth-functional operation (i.e. to any truth table) we can introduce 
a special symbol, called a connective, to indicate that operation. Thus the symbols 
1, &, V, +, tj are connectives. These five connectives will suffice for all practical purposes. 

Example 1.2. 
The operation corresponding to the exclusive usage of “or” could be designated by a connective + , 

having as its truth table: 
A B AtB 

T T F 

i-t 

F T T 

T F T 

F F F 

Fig. l-8 

1.3 STATEMENT FORMS 

To study the properties of truth-functional operations we introduce the following notions. 

By a statement form (in the connectives 1, &, v, +, H) we mean any expression built 
up from the statement letters A, B, C, . . ., Al, B1, Cl, . . . by a finite number of applications 
of the connectives 1, &, V, +, c) . More precisely, an expression is a statement form if it 
can shown to be one by means of the following two rules: 
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(1) All statement letters (with or without positive integral subscripts) are statement 
forms. 

(2) If A and B are statement forms, so are (1 A), (A & B), (A v B), (A + B), and (At, B).t 

Example 1.3. 

Examples of statement forms: 

(i) (A + (B v (C & (TA)))); (ii) (l(A e (lB,))); (iii) (( l( IA,)) + (A2 + A,)). 

Clearly we can talk about statement forms in any given set of connectives (instead of 
just 1, &, V, +, e) by using the given connectives in clause (2) of the definition. 

1.4 PARENTHESES 

The need for parentheses in writing statement forms seems obvious. An expression 
such as A v B & C might mean either ((A v B) & C) or (A v (B & C)), and these two statement 
forms are not, in any sense, equivalent. 

While parentheses are necessary, there are many cases in which some parentheses may 
be conveniently and unambiguously omitted. For that purpose, we adopt the following 
conventions for omission of parentheses. 

(1) Every statement form other than a statement letter has an outer pair of parentheses. 
We may omit this outer pair without any danger of ambiguity. Thus instead of 
((A v B) 4% (1 C)), we write (A v B) & (1 C). 

(2) We omit the pair of parentheses around a denial (1 A). Thus instead of (1 A) v C, we 

write 1 A v C. This cannot be confused with 1 (A v C), since the parentheses will not 
be dropped from the latter. As another example consider (A &B) v (l(l(1 B))). This 
becomes (A &B) v 111 B. 

(3) For any binary connective, we adopt the principle of association to the left. For 
example, A & B & C will stand for (A & B) & C, and A + B + C will stand for (A + B) + C. 

Example 1.4. 

Applying (l)-(3) above, the statement forms in the column on the left below are reduced to the equiva- 
lent expressions on the right. 

((l(l@&C))) v (1‘4)) ll(A&C)v 1A 

((A v ( -9) 81 (C 8~ ( 1A))) (Av IB) & (C&z -IA) 

(((A v t-14) 8~ C) & (1A)) (Av-IB)&C& 1A 

((1A) + (B -+ t-164 v C)))) lA+(B+ l(AvC)) 

More far-reaching conventions for omitting parentheses are presented in Appendix A. 
In addition, Appendix B contains a method of rewriting statement forms so that no 
parentheses are required at all. 

tAn even more rigorous definition is: B is a statement form if and only if there is a finite sequence A,, . . ., 
A,, such that 

(1) A,, is B; 
(2) if 1 L i f 72, then either Ai is a statement letter or there exist j, k < i such that Ai is (1Aj) 

or Ai is (Aj Jz Ak) or Ai is (Ajv Ak) or Ai is (Aj + Ak) or Ai is (Ajt)Ak). 
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1.5 TRUTH TABLES 

Every statement form A defines a truth-function: for every assignment of truth values 
to the statement letters in A, we can calculate the corresponding truth value of A itself. 
This calculation can be exhibited by means of a truth table. 

Example 1.5. 

The statement form (1A v B) * A has the truth table 

~ 

Fig. 1-9 

Each row corresponds to an assignment of truth values to the statement letters. The columns give the 
corresponding truth values for the statement forms occurring in the step-by-step construction of the 
given statement form. 

Example 1.6. 

The statement form (A v (B & C)) + B has the truth table 

B 
- 

T 

T 

F 

F 

T 

T 

F 

F 

C - 
T 

T 

T 

T 
F 

F 

F 

F 

B&C 

T 

T 

F 

F 

F 

F 

F 

F 

A v (B Kz C) 

T 

T 

T 

F 

T 

F 

T 

F 

Fig. l-10 

(A v (B 13% C)) + B 

T 

T 

F 

T 

T 

T 
F 

T 

When there are three statement letters, notice that the truth table has eight rows. In 
general, when there are n statement letters, there are 2% rows in the truth table, since 
there are two possibilities, T or F, for each statement letter. 

Abbreviated Truth Tables 

By the principal connective of a statement form (other than a statement letter), we mean 
the last connective used in the construction of the statement form. For example, (A v B) + C 
has --* as its principal connective, A v (B + C) has v as its principal connective, and 1 (A v B) 
has 1 as its principal connective. 

There is a way of abbreviating truth tables so as to make the computations shorter. 
We just write down the given statement form once, and, instead of devoting a separate 
column to each statement form forming a part of the given statement form, we write the 
truth value of every such part under the principal connective of that part. 

Example 1.7. 

Abbreviated truth table for (1A v B) f, A. We begin with Fig. l-11. Notice that each occurrence 
of a statement letter requires a repetition of the truth assignment for that letter. 
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(IA v B) t) A 

T T T 

F T F 

T F T 

F F F 

Fig. l-11 

Then the negation is handled: 
(1A v B) - A 

FT T T 

TF T F 

FT F T 

TF F F 

followed by the disjunction 

and, finally, the biconditional 

(-iA v B) t) A 

FTTT T 

TF TT F 

FT FF T 

TFTF F 

(1AvB) *A 

FTTT T T 

TFTT F F 

FTFF F T 

TFTF F F 

Of course our use of four separate diagrams was only for the sake of illustration. In practice all the 
work can be carried out in one diagram. 

1.6 TAUTOLOGIES AND CONTRADICTIONS 

A statement form A is said to be a tautology if it takes the value T for all assignments 
of truth values to its statement letters. Clearly A is a tautology if and only if the column 
under A in its truth table contains only T’s. 

Example 1.8. A + A is a tautology. 
A A-+A 

t 

T T 

F T 

Fig. 1-12 

Example 1.9. A v IA is a tautology. 

,-j-yy 

Fig. 1-13 
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Example 1.10. (A v B) H (B v A) is a tautology. 

B 

T I- T 

F 

F 

AvB BvA 

T 

T 

T 

F 

Fig. 1-14 

Example 1.11. [A & (B v C)] c) [(A &B) v (A &C)] is a tauto1ogy.t 

B 
- 

T 

T 

F 

F 

T 

T 

F 

F 

C - 
T 

T 

T 

T 

F 

F 

F 

F 

A 

BvC 

T 

T 

T 

T 

T 

T 

F 

F 

A & (B v C) 

T 

F 

T 

F 
T 

F 

F 

F 

A&B A&C 

T 

F 

T 

F 

F 

F 

F 

F 

(A&B)v(A&C) 

T 

F 

T 

F 

T 

F 

F 

F 

Fig. 1-15 

Theorem 1.1. If K is a tautology, and statement forms A, B, C, . . . are substituted for the 
statement letters A, B, C, . . . of K (the same statement form replacing all 
occurrences of a statement letter), then the resulting statement form K# is 
a tautology. 

Example 1.12. 

(A v B) * (B v A) is a tautology. Replace A by (B v C) and simultaneously replace B by A. The 
new statement form [(B v C) v A] t) [A v (B v C)] is a tautology. 

Proof of Theorem 1 .l. K determines a truth-function f(A, B, C, . . .) which always takes 
the value T no matter what the truth values of A, B, C, . . . may be. Let gl, g2, g3, . . . be the 
truth-functions determined by A, B, C, . . . . Then the truth-function determined by K# 
must have the form f# = f(gl(. . .),g2(. . .),g3(. . .), . . .), and, since f always takes the value 
T, f# also always takes the value T. ) 

A contradiction is a statement form which always takes the value F. Hence A is a 
contradiction if and only if 1 A is a tautology, and A is a tautology if and only if 1 A is a 
contradiction. 

Example 1.13. A & 1A is a contradiction. 

r 

Fig. 1-16 

*In writing this statement form, we have replaced some parentheses by brackets to improve legibility. 
For the same purpose, we also shall use t-aces. 
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Example 1.14. A * 1A is a contradiction. 

Fig. 1-17 

Example 1.15. (A v B) & 1A & 1 B is a contradiction. 

/B 1 1AI -II? i IAvRj&e.A t (AvR\&IA&-IR 

Fig. 1-18 

1.7 LOGICAL IMPLICATION AND EQUIVALENCE 

We say that a statement form A logically implies a statement form B if and only if every 
assignment of truth values making A true also makes B true. 

Example 1.16. A logically implies A. 

Example 1.17. A logically implies A v B. For, whenever A is true, A v B also must be true. 

Example 1.18. A & B logically implies A. 

Theorem 1.2. A logically implies B if and only if A + B is a tautology. 

Proof. A logically implies B if and only if, whenever A is true, B must also be true. 
Therefore A logically implies B if and only if it is never the case that A is true and B is 
false. But the latter assertion means that A + B is never false, i.e. that A + B is a tautology. ) 

Since we can ‘effectively determine by a truth table whether a given statement form is a 
tautology, Theorem 1.2 provides us with an effective procedure for checking whether A 
logically implies B. 

Example 1.19. Show that (A + B) + A logically implies A. 

Proof. Fig. 1-19 shows that ((A + B) + A) --f A is a tautology. 

..iA~i(A~~i((‘~B)~A 

Fig. 1-19 

Statement forms A and B are called logically equivalent if and only if A and B always 
take the same truth value for any truth assignment to the statement letters. Clearly this 
means that A and B have the same entries in the last column of their truth tables. 
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Example 1.20. A ++I3 is logically equivalent to (A + B) & (B + A). 

~ 

Fig. l-20 

Theorem 1.3. A and B are logically equivalent if and only if A t) B is a tautology. 

Proof. A t) B is T when and only when A and B have the same truth value. Hence 
A e B is a tautology (i.e. always takes the value T) if and only if A and B always have the 
same truth value (i.e. are logically equivalent). ) 

Example 1.21. A + (I? + C) is logically equivalent to (A t&B) + C. 

Proof. [A + (B + C)] e [(A &B) + C] is a tautology as shown in Fig. 1-21. 

B 
- 
T 

T 
F 
F 
T 
T 
F 
F 

A 4 (B + C) A&B 1 (A&B)+C 
I 

T T 
F T 
F T 
F T 
T F 
F T 
F T 
F T 

Fig. 1-21 

[A + (B + C)] t) [(A &B) -+ C] 

Corollary 1.4. If A and B are logically equivalent and we replace statement letters in A 
and B by statement forms (all occurrences of the same statement letter being 
replaced in both A and B by the same statement form), then the resulting 
statement forms are also logically equivalent. 

Proof. This is a direct consequence of Theorems 1.3 and 1.1. ) 

Example 1.22. 
A + (B + C) and (A &B) + C are logically equivalent. Hence so are (Cv A) + (B + (A v B)) and 

((Cv A) & B) + (A v B) (and, in general, so are A + (B + C) and (A&B) + C for any statement forms 
A, B, C). 

Theorem 1.5 (Replacement). If B and C are logically equivalent and if, within a statement 
form A, we replace one or more occurrences of B by C, then the resulting 
statement form A% is logically equivalent to A. 

Proof. In the calculation of the truth values of A and A%, the distinction between B 
and C is unimportant, since B and C always take the same truth value. ) 

Example 1.23. 
Let A be (A v B) + C. Since A v B is logically equivalent to B v A, A is logically equivalent to 

(Bv A) + C. 
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The following examples of logically equivalent pairs of statement forms will be extremely 
useful in the rest of this book, for the purpose of finding, for a given statement form, 
logically equivalent statement forms which are simpler or have a particularly revealing 
structure. We leave verification of their logical equivalence as an exercise. 

Example 1.24. 77AandA (Law of Double Negation) 

Example 1.25. (a) A&A and A 

(b) A v A and A 
(Idempotence) 

Example 1.26. (a) A & B and B&A 

(b) A v B and B v A 
(Commutativity) 

Example 1.27. (a) (A&B) &C and A& (B&C) 

(b) (A v B) v C and A v (B v C) (Associativity) 

As a result of the associative laws, we can leave out parentheses in conjunctions or dis- 
junctions, if we do not distinguish between logically equivalent statement forms. For 
example, A v B v C v D stands for ((A v B) v C) v D, but the statement forms (A v (B v C)) v D, 
Av((BvC)vD), (AvB)v(CvD) and Av(Bv(CVD)) are logically equivalent to it. 

Terminology: In A1 v A2 v - - . v A,, the statement forms Ai are called disjuncts, while 
in AI & AB & . . . & A,, the statement forms Ai are called conjuncts. 
Example 1.28. De Morgan’s Laws. 

(a) l(AvB) and lA& 1B 

(b) l(A&B) and 1Av 1B 

Example 1.29. Distributive Laws (or Factoring-out Laws). 

(a) A&(BvC) and (A&B)v(A&C) 

(b) Av (B&C) and (AvB) &(AvC) 

Notice that there is a distributive law in arithmetic: a ?? (b + c) = (a. b) + (a- c); but 
the other distributive law, a + (b ??c) = (a + b) - (a + c) is false. (Take a = b = c = 1.) 

Example 1.36. Absorption Laws. 

(I) (a) A v (A&B) and A 

(b) A&(AvB) and A 

(II) (a) (A&B) v 1B and A v 1B 

(b) (AvB)& 1B and A& 1B 

(III) If T is a tautology and F is a contradiction, 

(a) (T&A) and A (c) (F&A) and F 

(b) (TV A) and 1 (d) (Fv A) and A 

We shall often have occasion to use the logical equivalence between (A & 1 B) v B and 
A v B, and between (A v 1 B) & B and A & B. We shall justify this by reference to Example 
1.30(11), since it amounts to substituting 1 B for B in Example 1.30(11) and then using 
Example 1.24. 

Example 1.31. A+B and 1B+lA (Contrapositive) 

Example 1.32. Elimination of conditionals. 

(a) A+B and 1Av B 

(b) A+B and l(A& 1B) 



12 THE ALGEBRA OF LOGIC [CHAP. 1 

Example 1.33. Elimination of biconditionals. 

(a) A-B and (A&B)v(lA&lB) 

(b) A-B and (lAvB)&(lBvA) 

Examples 1.32 and 1.33 enable us to transform any given statement form into a logically 
equivalent statement form which contains neither + nor e. 

1.8 DISJUNCTIVE NORMAL FORM 

By literals we mean the statement letters A, B, C, . . . and the denials of statement 
letters 1 A, lB, 1 C, . . . . By a fundamental conjunction we mean either (i) a literal or 
(ii) a conjunction of two or more literals no two of which involve the same statement letter. 
For instance, AZ, 1 B, A & B, 1 A1 & A & C are fundamental conjunctions, while 1 1 A, 
A & B & A, B & A & C & 1 B are not fundamental conjunctions. 

One fundamental conjunction A is said to be included in another B if all the literals of 
A are also literals of Bt. For example, A & B is included in A & B, B & (1 C) is included 
in (1 C) & B, B is included in A & B, and 1 C & A is included in A & B & 1 C, while B is 
not included in A & 1 B. 

A statement form A is said to be in disjunctive normal form (dnf) if either (i) A is a 
fundamental csiljunction, or (ii) A is a disjunction of two or more fundamental conjunctions, 
of which none is included in another. 

Example 1.34. The following statement forms are in dnf. 

(4 B 
(b) 1Cv C 

(c) A v (lB&C) 

(d) (A& 1B) v (-IA& lB&C) 

(e) (B& IA) v (IA& lB&D) v A v (B&C& 1D). 

Example 1.35. The following statement forms are not in dnf. 

(a) C& 1c 

(b) (CvD) &A 

(c) (C&A& -IB) v (-IC&A) v (Cc!& -IB). 

Replacing statement forms by logically equivalent ones, we can transform a statement 
form into one in disjunctive normal form. 

Example 1.36. (AvB)&(AvCv 1B) 

A v (B&(Cv 1B)) (Distributive Laws, Example 1.29) 

A v (B&C) (Absorption Law, Example 1.30(IIb)) 

Example 1.37. l(AvC)v (A-B) 

l(A v C) v (1A v B) (Example 1.32(u)) 

(1A & 1C) v 1A v B (Example 1.28(u), De Morgan’s Laws) 

1AvB (Example 1.30(Ia)) 

tMore precisely, if all literals of A which do not occur within another literal of A are also literals of B 
which do not occur within another literal of B. Thus B &A is not included in C&A & 1 B, and 1 B &A is 
not included in B &A. 
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Example 1.38. (A& 1B)o (BvA) 

[(A& lB)& (BvA)] v [l(A&lB) & l(BvA)] Example 1.33(a) 

Examples 1.27(a), 

I 

Examples 
1.3O(IIb) 1.28(b), 1.24 I I 

Example 1.33(u) 

[A & 1B &A] v [(lAvB)& (lB& lA)] 

Example 1.25 1 1 Example 1.30(IIb) 

[A&lB] v [(lA& lB)& lA] 

1 
Example 1.25(u) 

[A&lB] v [lA& TB] 

This is in disjunctive normal form. However, it is logically equivalent to 

(A v 1A) & 1B (Example 1.29(u)) 

1B (Example 1.30(IIIu)) 

This example shows that there are two logically equivalent statement forms, both of which are in 
disjunctive normal form. 

The fact illustrated in Examples 1.36-1.38 is codified in the following proposition. 

Theorem 1.6. Every statement form which is not a contradiction is logically equivalent 
to a statement form in disjunctive normal form. 

Proof. By Examples 1.32 and 1.33 we may find a logically equivalent statement form 
in the connectives 1, &, V, and then, by De Morgan’s Laws (Example 1.28) we can move the 
negation signs inward so that negation signs apply only to statement letters. Thus we may 
confine our attention to statement forms built up from literals by means of & and V. The 
proof proceeds by induction on the number n of the connectives & and v in the given state- 
ment form A. If n = 0, A is a literal, and every literal is already in dnf. Assume now 
that A contains k of the connectives & and V, and that the theorem is true for all natural 
numbers n < k. 

Case 1: A is B v C. By inductive hypothesis, B and C are logically equivalent to state- 
ment forms B# and C#, respectively, in dnf. Hence A is logically equivalent to B# v C#. 
Now if any disjuncts D, of B# or of C# are included in any other disjuncts DZ of B# or of 
C#, then we drop the disjuncts DP (by Example 1.30(Iu)). The resulting statement form is 
in dnf and is logically equivalent to A. 

Case 2: A is B & C. By inductive hypothesis, B and C are logically equivalent to state- 
ment forms B# and C#, respectively, in dnf. Hence A is logically equivalent to Be & C#. 
Let us assume that B# is (B1 v . . * v B,) and C# is (Cl v . . * v C,), where the Bi’s and C’s 
are fundamental conjunctions, and r A 1, s 2 1. Then B# & C# is 

(BI v - - - v B,) & (C, v . . - v C,) 

which by a Distributive Law (Example 1.29(b)) is logically equivalent to 

[(Bl v . - - v B,) & C,] v . . . v [(Bl v - -. v B,) & C,] 

and, again by a Distributive Law (Example 1.29(u)), each (BI v . . . v B7) & Cj is logically 
equivalent to (Bl& Cj) v * . . v (B, & Cj). Thus we obtain the disjunction of all Bi & Cj, where 
1 g i A r, 1 L j 4 S. Each Bi & Cj is a conjunction of literals. We can omit repeated literals 
in Bi & Cj (by Example 1.25(a)), and, if both a statement letter and its denial occur as con- 
juncts in Bi & Cj, then the latter is a contradiction and can be dropped (by Example 
1.30(IIId)). (Not all the Bi & Cj will be dropped, since, in that case, A would be logically 
equivalent to a disjunction of contradictions and hence, would be a contradiction itself.) The 
resulting disjunction is in dnf. ) 
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Remark (1) on Theorem 1.6. A statement form in dnf cannot be a contradiction. For, 
if 11 & . . . & Lk is one of its disjunctions, where each Li is a literal, then we assign to the 
statement letter appearing in Li the value T if Li is the statement letter itself, and the value 
F if Li is the denial of the statement letter. This assignment of truth values makes each Li 
true and hence L1 & . . . & Lk true, and therefore the whole disjunction must be true (since 
one of its disjuncts is true). Thus the disjunction cannot be a contradiction. 

Example 1.39. 

In (A & 1B & C) v ( 1A & 1B & C), if we make A true, B false and C true, then the first disjunct 
A & 1B & C is true (and, alternatively, if we make A false, B false and C true, then the second disjunct is true). 

Remark (2) on Theorem 1.6. From the proof it is clear that the logically equivalent 
statement form in dnf may be chosen so that its statement letters already occur in the given 
statement form, i.e. no new statement letters are introduced. 

There is a special type of dnf which will be very useful. A statement form A in dnf is 
said to be in full disjunctive normal form (with respect to the statement letters S1, . . . , Sk) if 

(i) any statement letter in A is one of the letters S1, . . . , Sk, and 
(ii) each disjunct in A contains all the letters S1, . . . , Sk. 

Example 1.40. 

Thestatementforms(A&B&lC)v(lA&B&C)v(A&lB&lC) and lB&A&lCareinfulldis- 
junctive normal form (with respect to A, B, C). However, (A &B) v (1A & B & C) and 1A v (A & 1 B & 1 C) 
are not in full disjunctive normal form with respect to A, B, C. 

Example 1.41. 

The statement form 1B is in full dnf with respect to B, but not with respect to A and B. The state- 
ment form (A & 1 B) v (A &B) is in full dnf with respect to A and B, but not with respect to any other 
collection of letters. 

Theorem 1.7. Every non-contradictory statement form A containing S1, . . . , Sk as its 
statement letters is logically equivalent to a statement form in full dnf (with 
respect to sl, . . . , Sk). 

Proof. A is known by Theorem 1.6 to be logically equivalent to a statement form B in 
dnf, and the statement letters of B already occur in A. Now assume that some statement 
letter Si is missing from a disjunct Dj of B. However, Dj is logically equivalent to 
Dj & (Si v 1 S) (by Example 1.30(IIIa)), which in turn is logically equivalent to (Dj& Si) v 
(Dj & 1 Si) (by Example 1.29(a)). Hence we replace Dj by (Dj& Si) v (Dj & 1 Si). In this way 
we can introduce the letters S, . . . , Sk into any of the disjuncts from which they are missing. 
The final result is in full dnf with respect to S1, . . ., Sk. ) 

Example 1.42. 

(A & 1B) v B v (1A & 1 B & 1C) is in dnf, but not in full dnf with respect to A, B, C. We obtain 
a logically equivalent full dnf as follows: 

(A&lB&C) v (A&-IB&IC) v B v (lA&lB&lC) 

(A&lB&C) v (A&lB&lC) v (B&A) v (B&-IA) v (lA& -IB& 1C) 

(A&-lB&C) v (A&lB&lC) v (B&A&C) v (B&A&lC) v (B&lA&C) 

v (B&-IA& -iC) v (lA& lB& -IC) 
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In general, the method indicated in Theorem 1.7 can be summarized in the following 
way. If letters Sj,, . . ., Sjr are missing from a disjunct Dj, we add as conjuncts to Di all of 
the 2’ possible combinations of Sj,, . . . , Sjr or their denials. For example, to obtain a state- 
ment form in full dnf (with respect to A, B, C) logically equivalent to 1 B, we construct 

(-lB&A&C) v (lB&A&lC) v (lB&lA&C)v(-lB&lA&lC) 

1.9 ADEQUATE SYSTEMS OF CONNECTIVES 

As we have remarked earlier, every statement form determines a truth function, and 
this truth function may be exhibited by means of a truth table. The converse problem 
suggests itself: For any given truth function, is there a statement form determining it? 

There are 2’*“’ truth functions of n variables. For, there are 2% truth assignments to 
the n variables, and, to each of these assignments, the truth function can associate the value 
T or the value F. 

Example 1.43. 

The four truth functions of one variable are 

nisi Av~ i A&~ 

Fig. 1-22 

Example 1.44. 

The sixteen truth functions of two variables are 

A B -IA 1B Av -IA A&lA AvB A&B 

T T F F T F T T 

F T T F T F T F 

T F F T T F T F 

F F T T T F F F 

A+B 1 A-B 1 -I(A++B) 1 B+A 1 IA&-IB I 1AvlB 1 l(1 ? + A) -t(A+ B) 

F F F 

T T F 

T F T 

T F F 

Fig. 1-23 

Theorem 1.8. Every truth function is determined by a statement form in the connectives 
1, &, v. 

Proof. The given truth function f(xl, . . . , z,) can be exhibited as a “truth table”: 
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Xl x2 . . . X73 fh x2, . . *, x,) 

T T . . . T 

F T . . . T 

T F . . . T 

F F . . . T 

. . . . 

Fig. l-24 

There are 2” rows in the table. In each row, the last column indicates the corresponding 
value f(xl, . . . , xn). In constructing an appropriate statement form, we shall associate the 
letters AI, . . . , A, with the variables x1, . . . , x,,. 

Case 1: The last column contains only F’s. Then the statement form (AI & 1 A) v * . . v 
(A, & 1 A,) determines f. (Of course, any contradiction also determines f.) 

Case 2: There are some T’s in the last column. For 14 i A n and 14 k 6 2”, let 

Aik = 
{ 

Ai if Ai takes the value T in the kth row 
1 Ai if Ai takes the value F in the kth row 

Let Dk stand for the fundamental conjunction Alk & A2k & . . . & Ank. In an obvious way, 
Dk is associated with the kth row of the truth table. For, Dk is T under the truth assignment 
given in the kth row (where Ai is assigned the value given to Xi), and Dk is F under the truth 
assignment given in any other row. (Notice that, in any other row, say the jth, some Ai 
will be assigned a value different from its value in the kth row, Hence under the truth 
assignment corresponding to the jth row, Aik will receive the value F and hence Dr will also 
receive the value F.) Now let kl, . . . , k, be the rows in which the truth function f has the 
value T. Let A be the statement form DQ v - - . v Dk,. Then A determines the truth func- 
tion f. (For the k,th row, f takes the value T; but Dkl also is T, and therefore so is A. For 
the jth row, where j is different from any of kl, . . . , k,, the function f takes the value F; but 
each Dkl also is F on the jth row, and hence so is A.) Notice that A is a statement form in 
the connectives 1, &, V. ) 

Remark on Theorem 1.8. If the given truth function is not always F (Case 2), the 
statement form A constructed in the proof is in full disjunctive normal form. This gives 
us a way of constructing a full dnf logically equivalent to a given non-contradictory state- 
ment form C. Just write down the truth table for C and then construct the corresponding 
statement form A as in the proof of Theorem 1.8. 

Example 1.45. 

Given the truth function 
21 22 fh 22) 

T T F 

-t-l- 

F T T 

T F T 

F F T 

Fig. l-25 

D, is lA,&A,, D, is Al& lA2, D, is lA,& lA2. Hence 

(lA,&A,) v (A,& -IA& v (lA,& lA,) 

determines the given truth function. 
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A B AIB 

T T F I-T- F T T 

T F T 
F F T 

Fig. 1-28 

A / B means “not both A and B”. The connective ( is called the Sheffer stroke. { I} is 
adequate, since 1 A is logically equivalent to A) A, and A v B is logically equivalent to 
(A I 4 I P I W. 

Let 1 be the connective corresponding to the truth-functional operation of joint denial, 
given by the truth table 

A B A&B 

T T F 

t 

F T F 

T F F 

F F T 

Fig. 1-29 

A J B is read “neither A nor B”. {J} is adequate, since 1 A is logically equivalent to 
A J A, and A & B is logically equivalent to (A J A) J (B & B). 

Theorem 1.10. The only one-element adequate systems of binary connectives are {(} and 
(11. 

Proof. Let g(x, y) be the truth function of a binary connective # forming an adequate 
system. Clearly, g(T, T) = F. For, if g(T, T) were T, then any statement form in # alone 
would always take the value T when its statement letters all took the value T, and no such 
statement form could determine the negation operation. For the same reason (reversing 
the roles of T and F), g(F, F) = T. The situation at this stage is given by Fig. l-30. 

A 1 B 1 A#. I3 

T T F 

F T ? 

T F ? 

F F T 

Fig. l-30 

Case 1. The second row is F and the third row is T. Then A # B is logically equivalent 
to 7 8, and all the statement forms in # alone using the letters A and B would be logically 
equivalent to one of A, B, 1 A, 1 B. Then { #} would not be adequate. 

Case 2. The second row is T and the third row is F. This is handIed in exactly the 
same way as Case 1, since A # B would be logically equivalent to 1 A. 

Case 3. The second and third rows are F. Then # is J. 

Case .4. The second and third rows are T. Then # is j. ) 
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Solved Problems 
1.1. Reduce the following sentences to statement forms. 

(a) A necessary condition for x to be prime is that x is odd or x = 2. 
(b) A sufficient condition for f to be continuous is that f is differentiable. 
(c) A necessary and sufficient condition for Jones to be elected is that Jones wins 

75 votes. 
(d) Grass will grow only if enough moisture is available. 
(e) It is raining but the sun is still shining. 
(f) He will die today unless medical aid is obtained. 
(9) If taxes are increased or government spending decreases, then inflation will not 

occur this year. 
Solution: 
(a) P + (0 v D), where P is “x is prime”, 0 is “x is odd”, and D is “x = 2”. 

(b) D + C, where D is “f is differentiable” and C is “f is continuous”. 
(c) Et) V, where E is “Jones will be elected” and V is “Jones will win 75 votes”. 

(d) G + M, where G is “grass will grow”, and M is “enough moisture is available”. 

(e) R &S, where R is “it is raining”, and S is “the sun is still shining”. 

(Note that “but” indicates conjunction, usually with an element of surprise.) 

(f) 1 D + M (or, equivalently, 1M + D), where D is “he will die today”, and M is “medical 
aid is obtained”. 

(g) T v G + lZ, where 2’ is “taxes are increased”, G is “government spending decreases”, and 
Z is “inflation will occur this year”. 

1.2. Eliminate as many parentheses as possible from: 

(4 {[(A v B) + (1 C)l v KUB) & C) WI) 
(b) {[A&(l(lB))l * P4CvB)l~ 
(4 [P - (Cv B)) e (A & (l(l WI 
Solution: 
(a) [(AvB)+ -ICI v [lB&C&B] 

(b) [A& llB] t, [Bt,(CvB)] 

(c) B t) (CvB) - (A& 1-iB) 

1.3. Write the truth tables for (a) (A v 1 B) + (C&A), (b) (A cs 1 B) v (B + A). 
Solution: 
(4 

A 

T 

F 

T 

F 
T 

F 
T 

F 

B 
- 

T 

T 

F 

F 

T 

T 
F 

F 

C 
- 

T 

T 

T 

T 

F 

F 

F 
F 

Av 1B C&A 

T 

F 

T 

F 

F 

F 

F 

F 

(Av -IB)+(C&A) 

T 

T 

T 

F 

F 

T 

F 

F 



20 

(b) 
A B 1B AolB 

T T F F 

-i-t-t- 

F T F T 

T F T T 

F F T F 

1.4. Write abbreviated truth tables for 
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(A - 1B) v (B+A) 

T 

T 

T 

T 

(a) ((A+B)+B) v lA, (b) (lA& lB)-+ (BeC). 

Solution : 
(a) ((A + B) + B) v -I A (b) (-IA & -IB)+(B-C) 

TTTTT TFT FTFFT TTTT 

FTTTT TTF TFFFT TTTT 

TFFTF TFT FTFTF TFFT 

FTFFF TTF TFTTF FFFT 

FTFFT TTFF 

TFFFT TTFF 

FTFTF TFTF 

TFTTF TFTF 

1.5. Show that the following are tautologies. 
(a) (At,(A&lA))++lA, 

(b) ((A + B) + C) + ((C + A) + P 3 A)), 

(c) (A + B) + ((B -, C) -+ (A -, C)). 
Solution: 
(4 

A -IA A&-IA A t) (A & -!A) (At,(A&lA))- -IA 

T F F F T 

F T F T T 

(b) Instead of using a truth table, we show that the statement form cannot be F. Assume that 
some assignment makes it F. Then ((A + B) + C) is T while ((C + A) + (D + A)) is F. Since 
the latter is F, C + A is T but D --*A is F. Since the latter is F, D is T and A is F. Since 
C + A is T and A is F, C must also be F. Since ((A -+ B) + C) is T and C is F, it follows that 
A + B is F. But this is impossible, since A is F. 

(c) As in (b), we shall show that the statement form is a tautology by proving that the assumption 
that it is ever F leads to a contradiction. Assume that some assignment makes it F. Then 
A + B is T, while (B + C) -+ (A + C) is F. Since the latter is F, B + C is T and A + C is F. 
Since the latter is F, A is T and C is F. Since B + C is T and C is F, it follows that B is F. 
Since A + B is T and B is F, we know that A is F, contradicting the fact that A is T. 

1.6. Show that the following are contradictions. 
(a) (AvB)&(AvlB)&(lAvB)&(lAvlB), 

(b) [(A&C) v (B&lC)l t) [(lA&C)v (lB&lC)]. 

Solution: 
(a) Any truth assignment to A and B makes one of the conjuncts false. 

(b) Let A stand for the statement form. 
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1.10. For each of the following, find a logically equivalent statement form in full disjunctive 
normal form (with respect to all the variables occurring in the statement form): 
(a) (A&lB) v (A&C) (c) B + (A v 1 C) 

(b) (A v B) ti 1 C (d) (A + B) + ((B + C) + (A + C)) 

Solution : 
(a) (A&lB)v(A&C) 

(A&lB&C)v(A&lB&lC)v(A&B&C) 

(b) (AvB)- -IC 

((AvB)&~C)v(l(AvB)&C) 

((A& lC)v(B&lC))v(lA&lB&C) 

(A&B&lC)v(A&7B&lC)v(A&B&lC)v(lA&B&lC)v(~A&lB&C) 

(A&B&lC)v(A&lB&lC)v(lA&B&lC)v(lA&lB&C) 

(c) B+(Av -IC) 

-iBv(AvlC) 

1BvAvlC 

(d) l(A+B)v ((B-+C)+(A+C)) 

~-I(A&~B)v(~(B-+C)V(A+C)) 

(A&lB)v(ll(B&lC)vlAvC) 

(A&-IB)v(B&~C)V~AVC 

(A&~B&C)v(A&lB&lC)v(A&B&lC)v(lA&B&lC) 

~(-IA&B&C)~(~A&~B&C)~(-IA&~B&~C)~(A&B&C) 

1.11. Two statement forms A and B in full dnf (with respect to the same statement letters) 
are logically equivalent if and only if they are essentially the same (i.e. they contain 
the same fundamental conjunctions except possibly for a change in the order of the 
conjuncts in each conjunction). 

Solution: 
Assume that A has as one of its disjuncts a fundamental conjunction B, & . . . & B, (where each 

B, is a literal), no permutation of the conjuncts of which is a disjunct of B. Under the truth assign- 
ment which assigns T to a statement letter if it is one of the literals Bi and assigns F to a statement 
letter if its denial is one of the literals Bi, B, & . . . & B, is T, and hence A is also. But every other 
essentially different fundamental conjunction is F, and therefore B must be F. Thus A and B 
could not be logically equivalent. 

1.12. By a fundamental disjunction we mean either (i) a literal or (ii) a disjunction of two 
or more literals no two of which involve the same statement letter. One fundamental 
disjunction A is said to be included in another B if all the literals of A are also literals 
of B. A statement form A is in conjunctive normal form (cnf) if either (i) A is a 
fundamental disjunction or (ii) A is a conjunction of two or more fundamental dis- 
junctions of which none is included in another. A statement form A in cnf is said 
to be in full cnf (with respect to the statement letters SI, . . . , Sk) if and only if every 
conjunct of A contains all the letters SI, . . . , Sk. 

(a) Which of the following are in cnf? Which are in full cnf? 
(i) (AvBv 1C) & (Av 1B) (iii) (AvB) & (Bv 1B) 
(ii) (AvBvlC)&(AvB) (iv) 1 A 
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(b) The denial of a statement form A in (full) dnf is logically equivalent to a statement 
form B in (full) cnf obtained by exchanging & and v and by changing each literal 
to its opposite (i.e. omitting the negation sign if it is present or adding it if it is 
absent). (Example: 1 ((A & 1 B & C) v (1 A & 1 B & C)) is logically equivalent to 
(1AvBv 1C) & (AvBv lC).) 

(c) Any non-tautologous statement form A is logically equivalent to a statement form 
in full cnf (with respect to all statement letters in A). 

(d) For each of the following, find a logically equivalent statement form in cnf (and 
one in full cnf). 
(i) (A+~B)&(Av(B&C)), 
(ii) (A&B)v (‘AA&B), 
(iii) A c) (B v 1 C). 

(e) Given a truth table for a truth function (not always taking the value T), construct 
a statement form in full cnf determining the given truth function. 

Solution: 
(a) (i) In cnf, but not in full cnf. (ii) Not in cnf, since one conjunct is included in the other. 

(iii) Not in cnf, since B v 1B is not a fundamental disjunction. (iv) In full cnf. 
(b) This follows by several applications of De Morgan’s Laws (Example 1.28(a)). 
(c) Assume A is non-tautologous. Then 1 A is not a contradiction, and, by Theorem 1.7, 1A is 

logically equivalent to a statement form in full dnf (with respect to all the statement letters 
in A). Hence by part (b), 11 A is logically equivalent to a statement form in full cnf. 
But A is logically equivalent to 11 A. 

(d) (i) (A+ IB)&(Av(B&C)) 
(1Av -IB)&((AvB)&(AvC)) 

(lAvlB)&(AvB)&(AvC) (cnf) 
(~A~-IB~C)&(~A~-~B~~C)&(A~B~C)&(A~B~~C)&(A~~B~C) 

(ii) (A&B)v (lA& 1B) 
(full cnf) 

(AvlA)&(AvlB)&(BvlA)&(BvlB) 

(Av lB)&(Bv -IA) (full cnf) 

(iii) A @ (B v 1C) 
(A+(Bv lC))&((Bv lC)+A) 

(~AvBv~C)&(l(BvlC)vA) 
(1AvBv lC)&((lB&C)vA) 
(lAvBv~C)&(~BvA)&(CvA) 
(1AvBv lC)&(Av lB)&(AvC) (cnf) 
(lAvBv~C)&(AvlBvC)&(AvlBvlC)&(AvBvC) (full cnf) 

(e) Use the same procedure as in the proof of Theorem 1.8, except that we use only the rows ending 
in F (rather than T), we exchange & and v throughout, and we replace each literal by its 
opposite. 

Example. B C 

Answer: 
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1.13. Find a statement form in 1, &, v determining the truth function f(A, B, C): 

f(A,B, C) 
T 

F 

F 

F 

F 

F 

T 

F 

Solution: (A&B&C) v (A&lB&lC) 

1.14. Find a statement form in the Sheffer stroke 1 alone and one in 4 alone logically equiv- 
alent to the statement form A & 1 B. 

Solution: 
For the Sheffer stroke, A& 1B 

l(lAv B) 

l(t-4 IA)vB) 

l{[@I4l(Al41 I(B/B)l 

([(A I A) I (A I A)] I (B I B)) I ([(A I A) I (A I A)1 I (B I B)) 

For &, A & 7B, A & (B&B), (A&A) & ((BJB)J(BJB)) 

1.15. Show that {+, V} is not an adequate system of connectives. 
Solution : 

If A is a statement form in -+ , v, then A takes the value T when the statement letters are T 
(since T + T = T and T v T = T). Hence negation is not determined by any statement form in 
‘,V. 

1.16. Prove that { 1, ++} is not an adequate system of connectives. 

Solution: 
The eight truth functions in the following diagram are the only ones determined by statement 

forms in 1, t). For, if we apply 1 to any of them or if we apply t) to any two of them we 
obtain another of them. 

A I B IlAll~ 1~4 +A 

T 

;j 

A--IA A-B A- 1B 

Alternative solution. We shall show that the truth function determined by a statement form 
in 1, f) takes T an even number of times. This is clearly true for statement letters, and, when it 
holds for A, it must hold for 1A. It remains to show that, if it holds for A and B, it also holds for 
AC* B. Let n be the number of rows in the truth table. n is even (since n is of the form 2k, where 
k s 1). Let j and I be the number of T’s of A and B respectively. Let m be the number of T’s of 
A&B,andletsbethenumberofT’sof lA&lB. Then j-?-I-m=n-s; hence jfl-n=m-s. 
Since j, 1, n are even, it follows that m - s is even, i.e. m and s have the same parity (both odd or 
both even). Hence m + s is even. But m + s is the number of T’s of A e B. 
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1.17. Determine whether the following arguments are correct by representing the sen- 
tences as statement forms and checking to see whether the conjunction of the aasump- 
tions logically implies the conclusion. 

(a) Either Arlen is lying or Brewster was in Mexico in April or Crawford was not a 
blackmailer. If Brewster was not in Mexico in April, then either Arlen is telling 
the truth or Crawford was a blackmailer. Hence Brewster must have been in 
Mexico in April. 

(b) If the budget is not cut, then a necessary and sufficient condition for prices to 
remain stable is that taxes will be raised. Taxes will be raised only if the budget 
is not cut. If prices remain stable, then taxes will not be raised. Hence taxes 
will not be raised. 

Solution : 

(a) Assumptions: AvBv lC, lB+ (1AvC). 

Conclusion: B. 

Does (A v B v 1 C) & (1 B -+ (7 A v C)) logically imply B? In other words, is [(A v B v 1 C) & 
( 1B + (1A v C))] + B a tautology? Let us try to find a truth assignment making this statement 
form false. Then the antecedent (A v B v 1 C) & (1 B + (1 A v C)) must be T and the consequent 
BmustbeF. HenceAvBvlCisTand lB+(lAvC)isT. SinceBisF, 1BisT;and 
therefore since 1 B + (1 A v C) is T, it follows that 1 A v C is T. Since A v B v 1 C is T but 
B is F, it follows that A v 1 C is T. It is clear now that, if we take A to be T, C to be T, and 
B to be F, then the statement form is F. Therefore the conclusion is not implied by the premises. 

(b) Aasumptions: lB-+(P++R), R-+ qB, P-, 1R. 

Conclusion: 7 R. 

Does (lB+(PoR))&(R+lB)C(P + IR) logically imply lR? Let us try to find a 
truth assignment making the former true and the latter false. Then 1 B + (P-R) is T, 
R + 1 B is T, and P + 7 R is T. Since 7 R is F, R is T. But R + IB is T, and therefore 
1B is T. Hence by the truth of 1 B + (P f) R), (P c* R) is T. Since R is T, P must be T. 
Then since P + 1R is T, 1 R is T, which is impossible. Therefore the argument is correct. 

(a) and (a) can be solved by writing down the truth tables, but the method used above is usually 
faster. 

1.18. Are the following assumptions consistent ? f will be continuous (D) if g is bounded 
(C) or h is linear (E). g is bounded and h is integrable (B) if and only if h is bounded 
(A) or f is not continuous. If g is bounded, then h is unbounded. If g is unbounded 
or h is not integrable, then h is linear and f is not continuous. 

Solution: 

Assumptions: (CvE)+D, (C&B)o(AvlD), C+ lA, (lCvlB)+(E&lD). Assume 
that these are all T. 

Case 1. C is T. Then A is F. Since Cv E is T, D is T. Therefore A v 1 D is F. Hence 
CBtBisF. HenceBisF,and 1CvlBisT. Thus E & 1 D is T, and D is F, which ia impossible. 

Case 2. C is F. Thus 1 C is T, and therefore so is 1Cv 1 B. It follows that E & 1 D is T, 
and therefore E is T and D is F. Since Cv E is T, then D is T, which is a contradiction. Hence 
the assumptions are inconsistent. 

This and similar problems can also be solved by writing out the complete truth table (which, 
in this case, has sixteen rows). 
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1.19. If A is a statement form in 1, &, V, and A* results from A by interchanging & and v 
and replacing all statement letters by their denials, show that A* is logically 
equivalent to 1 A. 

Solution: 

Apply De Morgan’s Laws (Example 1.28) to 1A until no denials of conjunctions or disjunctions 
remain. The result is A*. 

1.20. Let A and B be statement forms in 1, &, v. By the dual Ad of A we mean the state- 
ment form obtained from A by interchanging & and V. Notice that (Ad)d = A. 

(a) Show that A is a tautology if and only if 1 (Ad) is a tautoIogy. 

(b) Prove that, if A + B is a tautoIogy (i.e. A logically implies B), then Bd + Ad is a 
tautology (i.e. Bd logically implies Ad). (Example: Since A & B + A is a tautology, 
so is A + A v B.) 

(c) Prove: A H B is a tautology (i.e. A is logically equivalent to B) if and only if 
Ad H Bd is also a tautology (i.e. Ad is logically equivalent to Bd). (Example: Since 
1 (A v B) is logically equivalent to 1 A & 1 B, it follows that 1 (A &B) is logically 
equivalent to 1 A v 1 B.) 

Solution: 

(a) By Problem 1.19, l(Ad) is logically equivalent to (Ad)*, where (Ad)* is obtained from Ad by 
exchanging & and v, and replacing all their statement letters by their denials. But then 
(Ad)* is obtained from A by replacing all statement letters by their denials; and therefore if A 
is a tautology, so is (Ad)* (by Theorem 1.1); and conversely if (Ad)* is a tautology, SO is A. (In 
this case we substitute for each statement letter its denial and then again use Theorem 1.1 
plus the Law of Double Negation (Example 1.24).) 

(b) Assume A --* B is a tautology. Then 1 A v B is a tautology, and, by part (a), 1 (( 1 A v B)d) is a 
tautology. But 1 (( 1 A v B)d) is 1 ( 1Ad & Bd), which is logically equivalent to Bd + Ad. 

(c) Assume A ++ B is a tautology. Then A + B and B -+ A are tautologies. By part (b), Bd + Ad 
and Ad + Bd are also tautologies. Hence Ad c) Bd is a tautology. Conversely, if Ad e Bd is a 
tautology, then, by what we have just proved, (Ad)d t) (Bd)d is a tautology. But (Ad)d is A, and 
(Bd)d is B. 

Supplementary Problems 
1.21. I Write the following sentences as statement forms. 

(a) A depression will occur if government spending does not increase, and inflation will result only 
if government spending increases. 

(b) Jones will lose his job unless he makes good on the deficit, although Jones is the cousin of the 
boss’s wife. 

(c) Either f is discontinuous or if f is nonlinear, then f is differentiable. 

1.22. Assume that the truth values of A, B, C are T, F, F. Compute the truth values of (a) (A + 1 B) ++ 
((Av C) & B), (b) (A t) (A -+ B)) v (A -) C). 
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1.23. 

1.24. 

1.26. 

1.26. 

1.27. 

1.28. 

1.29. Show that A is logically equivalent to B if and only if A logically implies B and B logically implies A. 

1.30. Show that a statement form logically equivalent to a tautology is a tautology, and a statement form 
logically equivalent to a contradiction is a contradiction. 

1.31. Give an example to show that, if A logically implies B, then B does not necessarily logically imply A. 

1.32. Of the following pairs D and E, find those pairs for which D is logically equivalent to E, those for 
which D logically implies B, and those for which E logically implies D. 

D E 

(4 C c) ((A&C)v (B&z 1C)) B--i (C+A) 

(b) Av (B-C) (AvB) W (AvC) 

(4 l(BvC) 1B 

(4 A v (B&C) AvB 

(4 A*0 BeA 

(f) A c, (B-C) (A c, B) c) C 

If A -+ B is T, what can be deduced about the truth values of 

(a) (AvC)-,(BvC), (b) (A&C)+(B&C), (c) (lA&B)-(AvB)? 

In each of the following cases, what further truth values can be deduced from those already given? 

(a) 1Av (A-‘B), (b) l(A&B)o(lAv lB), (c) (lAvB)+(A+ -lC). 
F T F 

Which of the following are statement forms? For the statement forms, determine the principal 
connectives. 

(4 (((A v (1 B)) + A) & (1 A)), (b) ((((A + B) + A) + A) v B), (4 (1 (((A v J3 v C) f) (1B))) 

Eliminate as many parentheses as possible from 

(4 ({[(Av(lB))vC] 81 [Av(l(lB))]l & (1AN 

(b) ((l(AvB)) v (Cv (1B))) 

(4 ((-4 + (l(Bv 0)) + ((14 + (1B))) 

Write truth tables and abbreviated truth tables for the statement forms of Exercise 1.26. 

Determine which of the following are tautologies, which are contradictions, and which are neither. 

(a) [(A+B)-, l(B+A)] t) (A@B) 

(b) ((A + B) + B) + B 

(c) [(A-‘B)-+(C-+D)] -+ [E+{(D+A)-+(C-+A)}] 

(4 A - (B*(Ae(B*A)N 

(e) B&z l(AvB) 

(f) (AvBvO - [(((A-‘B)+B)+C)+Cl 

(d ((A + B) -, A) * (B + (B + A)) 

(h) (A-, (B& 1B)) + IA 
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1.33. 

1.34. 

1.35. 

1.36. 

1.37. 

1.38. 

1.39. 

1.40. 

1.41. 

Prove: A, v A, v --a v A, is T if and only if at least one of the Ai’s is T; and A, & A, & . . . & A, 
is T if and only if all of the Ai’s are T. 

Prove generalizations of DeMorgan’s Laws and the Distributive Laws, in the sense that the 
following pairs are logically equivalent: 
(a) -I (A, v * - * v A,) lA, & . . . & lA, 

(b) l(A,& . . . &A,) lA, v -++ v lA, 

(c) A & (B, v + 1. v 8,) (A & 4) ” **a v (A&B,) 

(d) A v (B, & . . . & B,) (AvB,)& . . . &(AvB,) 

Which of the following are fundamental conjunctions? 
(a) A&B& -IA, (b) B&IA, (c) B&C&A&C. 

Which of the following are in disjunctive normal form? 
(a) (A&B) v (lA&B) v (A& TC) 

(b) (B&z 1A) v (A&B) v (IA&B) 

(c) TA & -IB 

(d) (A&B) v (lA&B) v (A&B&C) 

(e) (A&B) v (A& IB) v (lA&B) v (-IA& 1B) 

Find a statement form in disjunctive normal form IogicalIy equivalent to: 
(a) (A-+lB)&(BvC), (b) (AvlB)-C, (e) (AvBvlC)&(BvC). 

Which of the following are in full dnf (with respect to all the variables occurring in the statement 
form)? For those not in full dnf, find a logically equivalent statement form in full dnf. 
(a) (A&B) v (lA& 1B) 
(b) (A&B) v (lA&C) 

(c) (A&B&C) v (A&B& -IC) v (A& lB&C) 

(d) (A&B) v C 

Which of the following are in conjunctive normal form? In full cnf? For any not in full cnf 
(with respect to all its statement letters), find a logically equivalent statement form in full cnf. 
(a) AvlB 

(b) (AvB)&(AvlB)&(AvBvC) 

(c) A&lB 

(d) (AvB)&(Av 1B) 

(e) (A&B) v (lA& 1B) 

Which statement forms are in both dnf and cnf? 

For each of the following 
dnf and one in full cnf. 

truth tables (a,) (b), (c), construct a corresponding statement 

A B C 

T T T 
F T T 
T F T l-l F F T 
T T F 
F T F 
T F F 
F F F 

(4 (b) (4 
F F T 
F T F 
F T F 
T T F 
T F F 
F F T 
F F T 
T F F 

in full 

1.42. A statement form A is a tautology if and only if it is logically equivalent to a statement form in 
full dnf having 2” disjuncts, where n is the number of statement letters in A. 
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1.43. Find a statement form in 1, &, v logically equivalent to the statement forms 
(a) (A f) (BvC))+ lA, (b) ((A + B) -j B) + A. 

1.44. Find a statement form in the Sheffer stroke ) and a statement form in 4 logically equivalent to the 
statement forms (a) (A v 1 B) & (A + C), (b) l(A & 1 B). 

1.45. Show that A + B is logically equivalent to 1 (A c) B). (Cf. Example 1.2 on page 4.) 

1.46. Find a statement form logically equivalent to the denial of (A v (B Jz C)) v (1 A & (B v C)). 

1.47. Show that {e, +, &, v} is not an adequate system of connectives. 

1.48. Show that { 1, +} is not an adequate system of connectives. 

1.49. For which binary connectives 0 does { 1, 0) form an adequate system of connectives? 

1.50. Determine whether the following arguments are correct. 

(a) If April is rainy, then flowers will bloom in May and mosquitoes will thrive in June. If mos- 
quitoes thrive in June, then malaria will increase in July. If flowers bloom in May, there will 
be a lot of honey in September. If April is not rainy, then the lawns will be brown this summer. 
Hence either there will be a lot of honey in September and malaria will increase in July, or the 
lawns will be brown this summer. 

(b) If f is continuous, then g or h is differentiable. If g is not differentiable, then f is not continuous 
and f is bounded. A sufficient condition for g or h to be differentiable is that f be bounded. 
Hence g is differentiable. 

(c) If an orange precipitate forms, then either sodium or potassium is present. If sodium is not 
present, then iron is present. If iron is present and an orange precipitate forms, then potassium 
is not present. Hence sodium is present. 

1.51. Check the consistency of the following sets of assumptions. 

(a) If the roof needs repair or the house has to be painted, then either the house will be sold or no 
vacation will be taken this summer. The house will be sold if and only if the roof needs repair 
and a vacation will be taken this summer. If the house has to be painted, then the house will 
not be sold or the roof does not need repair. Either a vacation will be taken this summer, or 
the house has to be painted and the house will be sold. 

(b) Either devaluation will occur, or, if exports do not decrease, then price controls will be imposed. 
If devaluation does not occur, then exports will decrease. If price controls are imposed, then 
exports will not decrease. 

1.52.o A computer (called Farfel) has been built to answer any yes-or-no question, but it has been pro- 
grammed either to answer all questions truthfully or to give incorrect answers to all questions. 
If we wish to find out whether Fermat’s Last Theorem is true, what question should we put to the 
computer? (Hint: Let A stand for “Fermat’s Last Theorem is true” and let B stand for “Farfel 
answers all questions truthfully”. Construct a statement form A such that, if “A?” is put as a 
question to Farfel, then the answer will be “Yes” if and only if A is true.) 

1.53.JJ Find the duals of statement forms in 1, &, v which are logically equivalent to A + B and A * B, 
and extend Problems 1.19-1.20 to statement forms in 1, &, V, +, @. 

1.54.n Prove that a statement form A whose only connective is Cs is a tautology if and only if every state- 
ment letter occurs in A an even number of times. (Hint: Problem 1.32(e, f).) 



Chapter 2 

The Algebra of Sets 

2.1 SETS 

By a set we mean any collection of objects.? For example, we may speak of the set of 
all living Americans, the set of all letters of the English alphabet, or the set of all real 
numbers less than 4. In most cases, sets will be defined by means of a characteristic 
property of the objects belonging to the set. In the examples above, we used the properties 
of being a living American, a letter of the English alphabet, or a real number less than 4. 

Notation: For a given property P(x), let {x : P(z)} denote the set of all objects x such 
that P(x) is true. 

Example 2.1. 
The set of all real roots of the equation x4 - 2x2 - 3 = 0 is denoted by 

{z: xisarealnumber & d-2x2-3=0} 

Sometimes we shall define a set merely by listing its elements within braces: 
ia, b, c, . . . , h}. In particular, (b) is the set having b as its only member. Such a set {b) 
is called a singleton. The set {b, c} contains b and e as its only members, and, if b Z c, 
then {b, c} is called an unordered pair. Notice that {b, c} = {c, b}. 

Example 2.2. 
The set of integers strictly between 1 and 5 is equal to (2, 3,4}. 

Example 2.3. 
The set of all real roots of the equation x4 - 2x2 - 3 = 0 is equal to the set {&, -fl>. 

We shall extend this method of denoting sets by listing a few elements of the set, fol- 
lowed by dots, in such a way as to indicate the characteristic property of the elements of 
the set. 

Example 2.4. 
{1,2,3, 4, * * .> is intended to represent the set of positive integers. (1, 4, 9, 16, 25, . . ., n2, . . .> is the 

set of squares of positive integers. {Washington, Adams, Jefferson, Madison, . . .} is the set of Presidents 
of the United States. 

Definition : An object x belonging to a set A is said to be a member or element of A. We 
shall write x E A to indicate that x is a member of A. The denial of z E A 
will be written x B A. 

Example 2.5. 6 E {z : z is an even integer}, 1 B {z: 5 is an even integer) 

tS$nonyms for set are totality, family, and class. 

30 
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2.2 EQUALITY AND INCLUSION OF SETS. SUBSETS 

The sets A and B are equal when and only when A and B have the same members. 
Equality of A and B is designated in the usual way by A = B, and denial of this equality 
by A # B. 

Example 2.6. {z : x2 = 1 and cc is a real number} = {z : cz = 1 or 5 = -l} 

We say that A is a subset of B if and only if every member of A is also a member of B. 
We write A c B as an abbreviation for: A is a subset of B. Sometimes, instead of saying 
that A is a subset of B, one says that A is included in B. The denial of A c B is written 
A $B. 

Example 2.7. (1, 3) c P, 2, 3, 61; lb, aI c 16 a, bk 012, 4) g (1, 2, 5) 

Obvious properties of the inclusion relation are 

Incl (i) A c A (Reflexivity). 

Incl (ii) If A c B and B c C, then A c C (Transitivity). 

Incl (iii) A = B if and only if (A c B & B c A). 

It is convenient to introduce a special sign for the relation of proper inclusion. We shall 
use A C B as an abbreviation for A c B & A #B. Thus A c B if and only if every member 
of A is a member of B but there is a member of B which is not a member of A. If A c B, 
we say that A is a proper subset of B. Hence the only subset of B which is not a proper 
subset of B is B itself. The denial of A c B is written A C/ B. 

Some basic properties of proper inclusion are: 
PI(i) A @A. 

PI(ii) If A c B & B c C, then A c C. 

PI(iii) If A c B & B c C, then A c C. 

PI(iv) If A C B, then B $ A. 

Example 2.8. 11, 31 c 0, 2, 3); {1,3) $ 0, 31; u, 41 q 0, 31 

2.3 NULL SET. NUMBER OF SUBSETS 

Whenever P(z) is a property satisfied by no objects at all, then {x : P(X)} is a set having 
no members. For example, {x : 2 f z} is a set with no members. We shall use p to denote 
a set with no members. The set @ is called the null set or empty set. There is precisely 
one null set, since any two null sets would contain the same members (namely, none at all) 
and therefore must be equal. The null set is included in every set: $B c A for all A. 

Example 2.9. 

The only subset of @ is @ itself. 

Example 2.10. 

The subsets of {z} are Q? and (2). Thus a singleton has two subsets. 

Example 2.11. 

If x # y, the subsets of the unordered pair {z, y} are a, {z}, {v} and (2, y}. Thus a two-element set 
has four subsets. 
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Example 2.12. 
If 2, y and .z are three distinct objects, then the subsets of (5, y, x} are e), (~1, {y}, {z}, {s, y}, (2, z}, 

{y, z} and {cc, y, z}. Thus there are eight subsets of a three-element set. 

Let T(A) denote the set of all subsets of A. Then T(A) = {B : B C A}. Examples 
2.9-2.12 suggest the following result. 

Theorem 2.1. For any non-negative integer n, if a set A has n elements, then the set 
T(A) of all subsets of A has 2” elements. 

First proof: The result is clear when n = 0 (Example 2.9). Assume a set A has n 
elements, where n > 0. In choosing an arbitrary subset C of A, there are two possibilities 
for each element x of A: 2 E C or x B C. Whether one element x is in the subset C is 
independent of whether any other element 2/ is in C. Hence there are 2” ways of choosing 
a subset of A. 

Second proof: By induction on n. The case for n = 0 is clear (Example 2.9). Assume 
that the result is true for n = k, and assume that A is a set with k + 1 elements, i.e. 
A = {al, . . ., akt ak+l}. We must prove that A has 2k+1 subsets. Let B = (al, . . ., ak}. 
Since B has k elements, then by inductive hypothesis B has 2k subsets. Every subset C of 
B can be thought of aa determining two distinct subsets of A, i.e. C itself and C together 
with the element ak+l. In addition, every subset D of A is determined in this way by pre- 
cisely one subset C of B, i.e. C is obtained by removing ak+ 1 from D (where, if ak+ I e D, 

then C is identical with D). Thus the number of subsets of A is twice the number of subsets 
of B. But since B has 2k subsets, A has 2k+1 subsets. ) 

2.4 UNION 

Given sets A and B, their union AU B consists of all elements of A or B or both. Thus 
AUB = {x: XEAVZEB}. Remember that v stands for the inclusive “or”, i.e. for any 
sentences A, B, AV B means A or B or both. 

Example 2.13. {1,2,3) U (1, 3,4, 61 = (1, 2, 3,4, 6) 

{a> u @I = {a, b) 

{0,2, 4, 6, 8, . ..> u {1,3,6,7,9, . ..> = {0,1,2,3,4,5, . ..I 

If we represent the elements of A and B by points 
within two circles, then their union consists of all 
points lying within either of the two circles (see 

A B 

Fig. 2-l). The union operation on sets has the 
obvious properties: 

U(i) AuA = A (Idempotence) a3 

U(ii) AUB = B U A (Commutativity) Fig. 2-1 

U(iii) AU@ = A 

U(iv) (AUB)UC = A U (SU C) (Associativity) 

U(v) AUB = B ifandonlyif A GB 

U(vi) AcAuB $ BCAUB 
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2.5 INTERSECTION 

Given sets A and B, their intersection An B consists of all objects which are in both 
A and B. Thus, 

AnB = {x:x~A & LCEB) 

Example 2.14. (1, 2, 41 n {1,3, 41 = {1,4) 

11, 3, 61 n t&4,6> = $3 

u, 3, 51 l-l (0, 21 = QJ 

P-4 I,21 n lo,31 = (01 

Pictorially, we can visualize the intersection as 
consisting of the shaded area of Fig. 2-2. 

Two sets A and B such that An B = p are said 
to be disjoint. 

The following properties of the intersection opera- 
tion are evident. 

Int (i) A n A = A (Idempotence). 

Int (ii) A rl B = Bn A (Commutativity). 

Int (iii) A n $3 = @. 

Int (iv) (A nB) n C = A fl (BnC) (Associativity). 

Int (v) A n B = A if and only if A G B. 

Int(vi) AnBcA & AnBcB. 

Fig. 2-2 

The associative laws for unions and intersections allow us to omit parentheses in writing 
unions or intersections of three or more sets. Thus we write An B rl C to stand for either 
(A n B) n C or A n (B n C), since these sets are equal. Similarly A fl BnCnD has a unique 
meaning, since any of the five ways of inserti.ng parentheses yields the same result. 

Important relations between unions and intersections are given by the di8tributive laws: 

Dist (i) A n (BUC) = (AnB) u (AnC). 

Dist (ii) A u (Bn C) = (AUB) rl (AuC). 

Property Dist (i) can be verified directly from the definitions by logical manipulations. 
Thus, 

An(BuC) = {x:: ZEA & xEBUC} 

= {z: zEA & (XEBVZEC)} 

= {x: (TEA & ZEB) v (TEA & ZEC)} 

ZZ {x: xEAnB v zEAfiC) 

= (AnB) u(AnC) 

We also can check Dist (i) pictorially. In Fig. 2-3 below, we have vertical lines for 
B U C and horizontal lines for A. Hence A n (B UC) is represented by the cross-hatched area. 
In Fig. 2-4 below, the vertical lines indicate A rl B and the horizontal lines A n C. The com- 
bined area represents (A n B) U (A n C) and is seen to be identical with the cross-hatched 
area of Fig. 2-3. Dist (ii) may be handled in a similar manner (see Problem 2.3). 
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Fig. 2-3 Fig. 2-4 

Diagrams as shown in Fig. 2-3 and 2-4 are called Venn diagrams. They are useful for 
verifying identities involving operations on sets, but should not be considered tools of 
rigorous mathematical proof. Similar pictorial methods can be given for four or more 
sets (see [112]t and J. F. Randolph, American Mathematical Monthly, 1965, pp. 11’7-127), 
but this does not seem fruitful enough to warrant consideration here. 

Example 2.15. Show that A n (A uB) = A. 

By U(vi), A cAuB. Hence, by Int (v), A n (AuB) = A. 

Example 2.16. Show that A u (A n B) = A. 

Au(AnB) = (AuA)n(AuB) = An(AuB) = A 

The first equality is justified by Dist (ii), the second by U(i), and the third by Example 2.15. 

The distributive laws have the obvious generalizations: 

Dist (i’) A n (BluBzu . . . uB,) = (AnB1)u(AnB2)u -.- u(AnB,) 

Dist (ii’) A u (BlnBzn . e - nB,) = (AuB1) n (AUBz) n . . e n (AUB,) 

These can be proved directly, using mathematical induction. 

2.6 DIFFERENCE AND SYMMETRIC DIFFERENCE 

By the diflerence B-A of B and A we mean the set of all those objects in B which are 
not in A (the shaded area of Fig. 2-5). Thus, 

B-A = {x: xEB&xBA} 

Clearly, 

D(i) B-B = $3 

D(ii) B-e, = B 

D(iii) e)-A = @ 

A 3 m 
Fig. 2-5 

D(iv) (A-B)-C = A-(BUC) 

= (A-C) - B 

The symmetric difference A A B of sets A and B is 
(A -B) U (B -A) (the shaded area of Fig. 2-6). Fig. 2-6 
makes it clear that A A B = (A U B) - (A n B). Fig. 2-6 

TThroughout this book numbers in brackets refer to Bibliography, pages 201-208. 
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The following properties are easily verified. 
SD(i) AAA=~ 

SD(ii) AAB=BAA 

SD(iii) A A $3 = A 

Example 2.17. 
Let A = {0,1,2,3,5}, B = {0,1,2,3}, C = {0,1,4,5}. Then BcA, C$A, AnC = {0,1,5}, 

B n C = (0, l), A -B = {5), A -C = {2,3}, B-C = {2,3}, C-B = {4,5}, A A B = (51, A AC = {2,3,4}, 
B A C = {2,3,4, 5). 

2.7 UNIVERSAL SET. COMPLEMENT 
We shall often find it useful to confine our attention to the subsets of some given set X. 

In such a case, X is called the universal set or the universe (of discourse). 
The union, intersection, difference, and symmetric difference of subsets of X are again 

subsets of X. When we restrict ourselves to subsets of X, there is still another operation 
which can be introduced. If A c X, then the complement A of A is defined to be X-A. 
Thus, A = (z: x~X & x4A). Whenever we use compEements, it is assumed that we 
are dealing only with subsets of some fixed universe X. 

The following assertions are easily verified. 

C(ii) AuB = AnB De Morgan’s Laws 
C(iii) AnB=AuB 

C(iv) AnA=p C(viii) A c B if and only if B L A 

C(v) Au/i = X C(ix) A = B if and only if A = B 
C(vi) $3 = X C(x) A-B= Ani? 

C(vii) X = ST, C(xi) AAB = (An@u@nB) 

From C(x) and C(xi) we see that difference and symmetric difference are dispensable in the 
presence of union, intersection and complement. 

Example 2.18. 
Let us check C(ii) using definitions and logical transformations. 

AuB = {s:sEX&z4AuB} = {z:zEX& -1(z6AvrEB)} 

=I {x: zEX&(z4A&z4B)} = {x: (xEX&x4A)&(sEX&s4B)} 

= {x: xEX&x4A}n{x:xEX&x4B} = /inB 

We also may use Venn diagrams to verify the validity of C(ii). Compare Fig. 2-7 and 2-8. 

A u B is the shaded area. 
Fig. 2-7 

A n B is the cross-hatched area. 
Fig. 2-8 
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De Morgan’s Laws C(ii)-C(iii) have the obvious generalizations: 

C(ii’) AluAzu-.- WA, = &n&n..-nA, 

C(iii’) A1 n A2 n -.. n A, = h,u&u ..a uA, 
Example 2.19. 

A c B if and only if A n B = $3. In’ Fig. 2-9, the cross- 
hatched area is A n B. To say that this is $3 is equivalent to 
saying that A is entirely within B. 

Logical proof: 

A = AnX = An(BuB) = (AnB)u(An@ 
Hence if A n B = @, then A = A n B; therefore, by Int (v), 
A c B. On the other hand, if A C B, then by Int (v), A = A n B 
and therefore 

AnB = (AnB)nB = An(BnB)= An@ = 8 Fig. 2-9 

2.8 DERIVATIONS OF RELATIONS AMONG SETS 

We have seen two ways of verifying propositions about sets: by means of analogous 
logical laws, or by pictorial methods (usually Venn diagrams). The first method 
only rigorous one, but the use of diagrams is sometimes quicker and more intuitive. 

is the 

Example 2.20. 
Prove A-(BuC) = (A-B)n(A-C). 

This is clear from Figs. 2-10 and 2-11. 

Unshaded: A - (B u C) 
Fig. 2-11 

Cross-hatched: (A - B) n (A - C) 

Fig. 2-10 

More rigorously, 

A-(BuC) = {z: xEA & x@(BuC)} 

= {x: xEA & (x4B&x4C)} 

II {x: (zEA &x4B) & (xEA & z4C)) 

= {x: xEA & x4B) n {x: xEA & xBC} 

= (A - B) n (A - C) 

Example 2.21. 

Prove: (AuB)nB = A ifandonlyif AnB=JD. 

In Fig. 2-12 below, the cross-hatched part represents (A UB) n B and lies entirely within A. The rest 
of A is the lens-shaped intersection A n B. Hence to say that (A u B) n fi is identical with A is equiva- 
lent to saying that A n B = @. 
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Logical proof: 

(AuB)nB = (Ank?)u(Bn& (by Dist (ii)) 

= (An@u@ (by WV)) 
ZI AnB (by U(iii)) 

Hence (AuB) n B = A if and only if A n l? = A. But 
A n B = A if and only if A c B (Int (v)), which holds if and 
only if A n B = @ (by Example 2.19 and C(i)). Fig. 2-12 

Example 2.22. 

Simplify A- u (B nC). 

Ani?u(BnC) = piu&u(BnC) (by C(iii)) 

= (AuB)u(BnC) (by C(i)) 
= Au (Bu(BnC)) (by U(iv)) 

= /iuB (by Example 2.16) 

In simplifying expressions, we make frequent use of De Morgan’s Laws C(ii) and C(iii) 
for distributing complement bars over smaller expressions, C(i) for eliminating double 
complements, Examples 2.15 and 2.16, and the distributive laws Dist (i) and Dist (ii). 

Example 2.23. 

Simplify (AuBuC) n (Am) n c. 

(AuBUC)n(Am)nn = (AuBuC)n(AuBuC)n6 (De Morgan) 

= [(AuBuC) n(iiuBuC)]n6 (Associativity of n) 

= [(A nA)u (BUG)] n6 (Dist (ii)) 

= [BuC]nC = (BnC)U(Cne) = (BnC)up (C(iv), U(iii)) 

= BnC 

2.9 PROPOSITIONAL LOGIC AND THE ALGEBRA OF SETS 

Every truth-functional operation determines a corresponding operation on sets. For 
example, denial determines complementation: A = {x : 1 (x E A)} ; conjunction determines 
the intersection operation: A n B = {x : x E A & x E B}; and disjunction determines the 
union operation: A U B = {x : x E A v x E B}. In general, if # is a connective corre- 
sponding to a truth function f(xl, . . . , x,), then we define a corresponding operation @ on 
setsby @(Al ,..., A,) = (x: #(xEA*, . . . . XEA,)}. Thus the set-theoretic operation of 
symmetric difference corresponds to the exclusive usage of “or”. 

Example 2.24. 

The operation of alternative denial determines the set-theoretic operation A n B, while joint denial 
determines the operation A n B. 

In general, a uniform way of determining the set-theoretic operation corresponding to 
a given truth function is to express the latter in terms of 1, &, V, and then replace 1, &, v 
by -, n , U respectively. The statement letters need not be replaced since they can serve 
as set variables in the new expression. 
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2.10 ORDERED PAIRS. FUNCTIONS 

If x f y, then {x, y} was called the unordered pair of x and y. We say “unordered” 
because {x, y} = {y, x}. Let us define an ordered pair (x, y), which is determined by x and 
y, in, that order. By this we mean that the following proposition holds: if (x, y) = (u, v), 
then x =u and y=v. 

Theorem 2.2. (x, y) = {(x), (x, y}} is an adequate definition of an ordered pair. 

Proof. Assume (x, y) = (u, v). We must prove that x = u and y = v. We have 

ilx), {XtY)> = {{u>, {%V>) cw 

Since {x} is a member of the left side of equation (ZJ), it must also be a member of the 
right side. Hence 

(x> = {u> or {x} = {u,v} 

Therefore x = u or x = u = v. In either case, x = u. Now by (Z.l), 

Ix, Y> = {u) or {x,21) = {u, VI 

If {x, y} = {u, v}, then {x, y} = {x, v} since x = u. Hence y = x or y = V. If y = x, 
then {y} = {y, v} and y = v. In all cases, y = v. If WY) + hv}, then PAY> = 04 
and so x = y = u. By (2.1), 

{u,v} = {x} or {%Vl = {%Y> 

Since {u,v} z {x,y}, {u, v} = {x} and so u = v = x. Therefore y = o. ) 

Let us recall the definition of a function. A function f from A into B is a way of 
associating an element of B to each element of A. The phrase “way of associating” may 
be replaced by a more precise notion: 

(1) f is a set of ordered pairs such that, if (x, y) E f and (x,x) E f, then y = z; 

(3) for every x in A there exists some y in B such that (x, y) E f. (Such an object y 
must be unique, by virtue of (1); it is denoted in the standard way by f(x).) 

We say that f is a function from A onto B if f is a function from A into B and every 
element of B is a value f(x) for some x in A. 

Example 2.25. 

The function f such that f(z) = x2 for every x in the set A of all integers is a function from A into 
(but not onto) A. On the other hand, f is a function from A onto the set B of all squares. 

A function f is said to be one-one if it assigns different values to different arguments, 
i.e. f(x) = f(y) implies x = y. 

Example 2.26. 

The function f in Example 2.26 is not one-one, since f(--n) = ns = f(n) for all integers n. On the 
other hand, the function g such that g(x) = x 2 for all non-negative integers z is a one-one function, since 
U* = V* implies u = ?I for all non-negative integers u and w. 

A one-one function from A onto B is called a one-one correspondence between A and B. 
For example, the function h such that h(x) = x + 1 for all odd integers x is a one-one 
correspondence between the set of all odd integers and the set of all even integers. 
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2.11 FINITE, INFINITE, DENUMERABLE, AND COUNTABLE SETS 

A finite set is a set which is either empty or can be enumerated by the positive integers 
from 1 up to some integer n. More precisely, A is finite if there is a positive integer n 
such that there is a one-one correspondence between A and the set of all positive integers 
less than n. (Wh en n = 1, A must be the empty set.) 

For example, to justify the assertion that the set of fingers on a hand is finite we set 
up the correspondence 

It is clear that a subset of a finite set is finite (and hence that the intersection of any set 
with a finite set is finite). Also obvious is the fact that the union of two finite sets is finite. 

A set is said to be infinite if it is not finite. Examples are the set of positive integers, 
the set of rational numbers, and the set of real numbers. Clearly any set containing an 
infinite set must also be infinite, and therefore the union of an infinite set with any other 
set is infinite. However, the intersection of two infinite sets need not be infinite. For 
example, the set of even integers and the set of odd integers have an empty intersection. 

A set A is said to be denumerable (or countably infinite) if and only if A can be enumer- 
ated by the set P of all positive integers, i.e. if there is a one-one correspondence between 
P and A. 

Example 2.27. 
(1) The set of positive even integers is denumerable. Here the one-one correspondence is given by 

f(n) = 272. (2) The set of all integers is denumerable. Here the enumeration is given by 0, 1, -1, 2, -2, 3, 
n/2 if n is even 

-3, . . . . The one-one correspondence is s(n) = 
-(n - 1)/Z if n is odd * 

Clearly the union of a finite set and a denumerable set is also denumerable. (Just 
enumerate the finite set first and continue with the enumeration of the denumerable set, 
omitting repetitions.) The union of two denumerable sets is again denumerable. (For, if 
A = {al, a2, . . . } and B = { bl, bz, . . . }, then A U B = {al, bl, ~2, b2, . . . }, where in the latter 
enumeration we omit any repeated objects.) If we remove a finite number of elements from 
a denumerable set, the remaining set is still denumerable. 

A set is said to be countable if and only if it is either finite or denumerable. Obviously, 
any subset B of a countable set A is also countable. (For, in an enumeration of A, we omit 
all objects which are not in B. The resulting enumeration of B does or does not terminate. 
If it does, B is finite. If it does not, B is denumerable.) The union of two countable sets is 
a countable set. This follows from what has been said above about finite and denumerable 

2.12 FIELDS OF SETS 

By a field of sets on X we mean a non-empty collection y of subsets of X such that, for 
any members A and B in 1;‘, the sets Au B, Arl B, and A are also in F. Another way of 
expressing this is to say that 7 is closed under the operations of union, intersection and 
complementation. Since AU B = A- and A fl B = A-, it suffices to verify closure 
under complementation and either union or intersection. 
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Examples of fields of sets are: 

(1) the set T(X) of all subsets of X; 

(2) the set of all finite subsets of X and their complements; 

(3) iam* 

Notice that any field 7 of subsets of X must coniain both $3 and X. For, if B E 7, then 
B E 7: and hence @= BITBET. Therefore X= @ET. 

2.18 NUMBER OF ELEMENTS IN A FINITE SET 

Let #(A) stand for the number of elements in a finite set A. Clearly 

#(AluAz) = #(AI) + #(AZ) - #(AlnAz) 

For three sets, we have 

#(AlUAzuAs) = #(Al) + #(AZ) + #(As) 

- #(AlnAz) - #(ADAM) - #(AdAa) 

+ #(AlnAznAQ) 
and, for four sets, 

#(AIUAZUA~UAJ) = #(AI) + #(AZ) + #(As) + #(Ad) 

- #(AlnAz) -#(AlnA3)- #(AlnA4)- #(AznA3) - #(AznA4) - #(A3nA4) 
+#(AlnA2nA3) + #(AlnABnA,) + #(AlnA3nA4)+ #(AznA3nA4) 

- #(AlfIAznA3nAd) 

The general formula for n sets should be clear from the examples for n = 2,3,4. 

Example 2.28. 
In a two-party election district consisting of 136 voters, 67 people voted for at least one Democrat and 

84 people voted for at least one Republican. How many people voted for candidates of both parties? 

#(RnD) = #(R) + #(D) - #(RuD) = 84 + 67 - 135 = 16 

Here R is.the set of people who voted for at least one Republican and D the set of people who voted for 
at least one Democratic candidate. Hence R u D is the set of all voters and R f~ D is the set of all people 
who split their ballots. 

Example 2.29. 
A government committee reported that, among the students using marijuana, LSD or heroin at a 

certain university, 90% used marijuana, 6% used LSD and 7% heroin, while 4% took marijuana and LSD, 
5% marijuana and heroin, 2% heroin and LSD, and 1% took all three. Are the committee’s figures 
consistent? 

Note that, if there are n students taking at least one of the drugs, and if H is a set of students, 
then the percentage in H is #(H)/n. Hence if we let A, B, C be the sets of students taking marijuana, LSD 
and heroin respectively, and we divide the equation for #(A U BUC) by n to obtain the percentages, 

%(AuBuC) = %(A) +%(B)+%(C)- %(AnB) - %(AnC) -%(BnC)+%(AnBnC) 

100 = 90+6+‘7-4-5-2+1 = 93 

which is impossible. Hence the figures are not consistent. 



CILtP.~2] THE ALGEBRA OF SETS 41 

Solved Problems 
2.1. Show that the cancellation law 

if AUB=AUC then B=C 

is false by giving a counterexample. 

Solution: 
A = C = {a}. B = $3. 

2.2. Show that parentheses are necessary for writing expressions involving more than 
one of the operations rl and U. 

Solution: 
Consider A n B u C. This is either A n (BU C) or (An B) U C. But these two sets are not 

necessarily equal. Take A = @ and B = C # @. Then An(BuC) = @, but (AnB)uC = 
@UC = c. 

2.8. Prove the distributive law Dist (ii), page 33: A U (Bn C) = (AU B) fl (A UC). 

Solution: 
Logical Proof. 

Au(BnC) = {z: SEA v zE(BnC)} 
= (5: zEA v (xEB & xEC)} = {z: (zEA v s:EB) & (icEA v zEC)} 

= {x : zEA v zEB} n{z: SEA v zEC} = (AuB)n(AuCj 

PiotoriaZ Proof. In Fig. 2-13, the vertical lines indicate B n C and the shaded area is A. In Fig. 
2-14, the vertical lines indicate A u B, the horizontal lines A U C, and the cross-hatched area 
(A uB) n (A u c) is identical with the marked area of Fig. 2-13. 

Fig. 2-13 Fig. 2-14 

2.4. Prove the generalized distributive law Dist (ii’), page 34: 
Au(Blnss -nB,) = (AuB1)n~~~n(AuB,) 

Solution: 
For n = 1, the assertion is obvious and the case n = 2 is the distributive law Dist (ii). 

Now using mathematical induction, we assume the result true for n = k. Then for n = k + 1, 

Au (B,n -~.~TB~~B,+~) = A u ((Bin---nB,)nB,+,) 
= [Au (B,n -.-nBk)l n [A U&+1] (by Dist(ii)) 

= [(AuB,)n *** rl (AUB,)] rl (s‘iUBk+l) (by the inductive hypothesis) 

= (AuB,) n ..a n (AuB,) n (AUB~+~) 
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DIFFERENCE AND SYMMETRIC DIFFERENCE 

2.5. Using a Venn diagram, determine whether the following conditions are compatible. 

(i) AnB= $3 (iii) (CnA) - B = g 

(ii) (CnB) -A = $73 (iv) (CnA)U(CnB)U(AnB) # $3 

Solution: 
In Fig. 2-15, (iv) says that E u F U G u H is non-empty. (i) says that E U F is empty. Hence 

G U H is non-empty. (iii) says that G is empty and (ii) says that H is empty. Hence G U H*is empty. 
Therefore conditions (i)-(iv) are inconsistent. 

Fig. 2-15 Fig. 2-16 

2.6. Show that AA (BAC) = (AAB)AC. 

Solution: 
In Fig. 2-16, AAB=EuHuGuJ and C=HuIuJUK, and so (AAB)AC = EU 

GuIuK. BAC = FuGuHUK and A = EuFUHUI, and soAA(BAC) = GUKUIUE. 
Thus (AAB)AC = A A(BAC). 

Observe that E G K I 

(AAB)AC = mnBnCjU$ii%$nnnCjm 

A logical derivation of this result is rather tedious and is left to the reader. It is easiest to prove 
by showing (AAB)AC c AA(BAC) and AA(BAC) c (AAB)AC. 

2.7. Show that A A B = p if and only if A = B. 

Solution: 
AAB = $3 ifandonlyif (A-B)u(B-A) = $3, 

ifandonlyif A-B = @ and B-A = $3, 

ifandonlyif AcB and BcA, 

if and only if A = B. 

Note: By C(xi), page 35, this result can be restated as 

A = B ifandonlyif (Anl?)u(AnB) = @ 

2.8. Prove the cancellation law: If A A B = A AC, then B = C. 

Solution: 
Assume A A B = A A C. Then A A A A B = A A A A C (parentheses can be omitted by virtue 

of Problem 2.6). Since AAA = 0, we obtain: QAB= @AC. But @AD = D for any D. 
Hence B = C. 
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2.9. Prove the distributive law: A fl (B A C) = (A nB) A (An C). 

Solution: 
An(BAC) = An((B-C)u(C-B)) 

= (An(B-C))b(An(C-B)) = ((An@-C)u((AnC)-B) 
= ((Arm)- (AnC))u ((AnC)- (AM?)) = (AnB) A (AnC) 

The problem can also be handled by means of a Venn diagram, as in Problem 2.6. 

2.10, Prove C(iii): A f~ B = 2 Ui?, logically and pictorially. 
Solution: 

Logical Proof. 

AnB = {x: xEX & ze(AnB)} 

= {x: xEX & (zBA v x@B)} 

= {x: (xEX & x4A)v (zEX & z4B)) 

= {x: zEX&zGA}u{x: xEX&zBB} = /iuS 

Pictorial Proof. See Fig. 2-17 and 2-18. 

Unshaded region: A n B 
Fig. 2-17 

A: vertical, B: horizontal 
Marked region: A U fi 

Fig. 2-18 

43 

2.11. Prove C(viii): AcB if and only if I?GA. 
Solution: 

Recall that A and B are subsets of some fixed universe X. Then 

AcB ifandonlyif,foranyxinX,ifxEA,thenxEB, 

if and only if, for any x in X, if x 4 B, then x B A,t 

if and only if, for any x in X, if x E B, then x E A, 

if and only if B CA. 

2.12. Using mathematical induction prove the generalized DeMorgan Law C(iii’): 
AIn--. nA, = A,uA,u~~~ uA, 

Solution: 
It is obvious for n = 1. The case m= 2 is simply C(iii). Assume the result true for n = k. 

Then for n = k + 1, 

Aln -.- nA,nA,+, = (Aln---nAk)nA,+, 
= A,n . ..nA.uA,+, (by C(iii)) 

zz (A,u... uA,) u A, + I (by inductive hypothesis) 

= A,u . . . uA,uA,+, 

tWe have used here the logical law of contraposition: P --) Q is logically equivalent to 1 Q --) 1 P. 
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2.13. Prove: AUB = AnB and AnB = A-. 

Solution : 
By De Morgan’s law C(ii), A UB = A flfi. 

WY 
Hence AuB = AnB. But AT=AuB, by C(i). - 

Likewise, by De Morgan’s law C(iii), AnB=AuB. Hence AnB=AnB=A-. 

2.14. Prove: (1) (AuB)nA = BnA (3) (AnB)uB = B 

(2) (AnB)uA = BuA (4) (AuB)nB = B 

Solution: 
(1) (AuB)nA = (AnA)u(Bnd) = Qu(BnA) = BnA. 

(2) (AnB)uA = (AuA)n(Buii) = Xn(But?) = BuA. 

(3) (AnB)uBcBuB = B. Also, BC(AnB)uB. Hence (AnB)uB = B. 

(4) (AuB)nB = (AnB)u(BnB) = (AnB)uB = B (by(3)). 

2.15. (a) Show that the four ellipses in the diagram below form an appropriate Venn 
diagram for four sets. 

(b) Using the diagram of part (a), what conclusion can you draw from the following 
assumptions? 
(i) C c (BnD) u (DnB). 
(ii) Everything in both A and C is either in both B and D or in neither B nor D. 
(iii) Everything in both B and C is either A or II. 
(iv) Everything in both C and D is either in A or B. 

Solution: 
(a) Show that the fifteen regions of the diagram cover all possible cases: 

AnBnCnb, AnBncnD, AnBnCnD, AnBnCnD, AnBnCnD, 

AnBncnb, AnBnCni?, AnBnCnD, AnBncnD, AnBncnD, 

AnBnCnD, Anl?nCnb, AnBncnb, Anl?nCnb, AnL?nCnD. 

(b) c = $3. 

2.16. Algebra of Sets and Algebra of Logic. Given a statement form C in 1, &, v, let S(C) 
be the expression obtained from C by substituting -, n, U for 1, &, v respectively. 
Example: 

S((AvB) & 1C) = (AUB)ne 

(a) Prove: A is logically equivalent to B if and only if S(A) = S(B) holds for all sets 
(where the statement letters of a statement form C are interpreted in S(C) as set 
variables ranging over all subsets of a fixed universe). 
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2.17. Define ordered n-tuples (for n z 3) by induction: 

(b) Prove that A logically implies B if and only if S(A) c S(B) holds for all sets. 

Solution: 

(4 If we replace each statement letter 1 in A by MEL, then the resulting sentence is equivalent to 
x E S(A) (since x E W,n W2 if and only if z E W, & x E W,; z E W, u W, if and only if 
XEW, v xEW,; and x E I? if and only if 1 (z E W)). Hence if A is logically equivalent to B, 
then x E S(A) if and only if x ES(B), which implies that S(A) = S(B). Conversely, assume that 
A is not logically equivalent to B. In general if we are given a truth assignment to the state- 
ment letters in an arbitrary statement form C, and if we replace statement letters which are 
T by (0) and statement letters which are F by 8, then, under this substitution of sets for 
statement letters, S(C) = {@d> if C is T under the given assignment, and S(C) = @ if C 
is F under the given assignment. This holds because, under the correspondence associating (@} 
with T and $ZJ with F, the truth-functional operations correspond to the set-theoretic operations 
(where sets are restricted to subsets of the universe {@}). 

-IT = F <a>=@ 

-IF = T G = {Q) 

T&T = T 03 n Cal = {@I 

T&F = F&T = F 18) n P = 0 n ~~1 = Qi 

F&F = F On@ = @ 

TvT = TvF = FvT = T ($31 u (81 = {@I u 8 = 0 u {@d) = 181 

FvF = F @ue, = 17, 

Since A is not logically equivalent to B, there is a truth assignment making one of them T 
and the other F, say A is T and B is F. Then under the substitution of {$3} for the true state- 
ment letters and of $3 for the false statement letters, S(A) = {@> and S(B) = $3. Hence 
S(A) = S(B) does not always hold. 

Remark: Lurking behind this rather long-winded discussion is what in mathematics is 
called an “isomorphism” between the structures 

0, Fl, 1, &, v) and ({WI, a>, -, n, U) 

Note that we also have shown that an equation S(A) = S(B) holds for all sets if and only if 
it holds in the domain {{@}, @} of all subsets of {@}. 

(b) A logically implies B if and only if A & B is logically equivalent to A. By part (a), the latter 
holds if and only if S(A & B) = S(A) always holds. But S(A & B) = S(A) nS(B), and 
S(A) nS(B) = S(A) if and only if S(A) r S(B). 

@1,x2, . . . . x,) = ((Xl, 372, * . ., Xn-i), xn) 

Thus (CC,, x2, xB) = ((xl, x2), x3) and (XI, 22, ~3, x4 = ((PI, GA ~3)~ ~4). Prove that if 
(x1,x2 ,..., x,) = (ul,uz ,..., u,,), then X~=UI, XZ,=U~, . . . . xn=un. 

Solution: 
We already have proved this result for n = 2. Now assume it is true for n = k h 2, and we 

shall prove it must then hold for k + 1. We have, by assumption, 

(Xl, Q, . . . . xk, zk+l) = &, u2, ..-,Uk,Uk+l) 

Hence by definition, 
((Xl, x21 . - ‘, xk), ++I) = (@,, US3 . . *I uk), %+l) 

By the result for n = 2, we conclude xk+, = uk+ I and (xl. 22, . . . ,zk) = (u,, up, . . . , uk). But the 
latter equation, by virtue of the inductive hypothesis, implies x1 = U1, 52 = us, . . . , xk = uk. 
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FINITE, INFINITE, DENUMERABLE, AND COUNTABLE SETS 

2.18. Prove that the set W of all ordered pairs of non-negative integers is denumerable. 
Solution : 

Arrange W in the following infinite array: 

(0, 0) (0, 1) (0, 2) a 3) (0,4) . . . 

. . . 

Enumerate the ordered pairs as indicated by the arrows, going up each diagonal from left to right. 
Notice that the pair (i, j) appears in the [((i + j)(i + j + 1)/2) i- (j + l)]th place in the enumeration. 
This can be seen as follows: all pairs in the same diagonal have the same sum. Adding up all 
pairs in diagonals preceding the one containing (i, j), we obtain 

1+2+ 0.. + (ifj) = (i+j)(i+j+1)/2 

There are j pairs in the same diagonal as (i, j) and preceding (i, j). 

2.19. Prove that the set of all non-negative rational numbers is denumerable. 
Solution: 

Every non-negative rational number corresponds to a fraction m/n, where (i) m and n are 
non-negative integers, (ii) n St 0, and (iii) m and n have no common integral factors other than 51. 
We can associate the ordered pair (m, n) with m/n, and use the enumeration given in Problem 2.18, 
merely omitting those pairs (m, n) which do not satisfy conditions (i)-(iii). 

2.20. The set A of all real roots of all nonzero polynomials with integral coefficients (such 
roots are called real algebraic numbers) is denumerable. 
Solution: 

Any nonzero polynomial has only a finite number of roots. First list the finite set of all real 
roots of all polynomials of degree at most one whose coefficients are in magnitude 5 1 (i.e. whose 
coefficients are either 0, 1, or -1). Then list the finite set of all real roots of all polynomials of 
degree 5 2 whose coefficients are in magnitude f 2, etc. In general, at the nth step we list the 
finite set of all real roots of all polynomials of degree 5 n whose coefficients are in magnitude 5 n. 
Of course, we omit repetitions. In this way, we obtain an enumeration of all real algebraic numbers. 
That the set A is not finite follows from the fact that all integers belong to A. 

2.21. Show that the set of all real numbers is not countable. 
Solution: 

Let R, be the set of all real numbers z such that 0 f z < 1. It suffices to show that RI is 
not countable, since any subset of a countable set is countable. Every x in RI is representable as 
a unique infinite decimal 

2 = .a1a2a3. . . 

where the infinite decimal does not end with an infinite string of 9’s. (Thus although a decimal 
such as .1362000 . . is also representable as .1361999.. ., we shall use only the first representation.) 
Assume now that RI can be enumerated: 
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Xl = .u11a,2a13. . . 

x2 = .a2la22a23. . . 

. . . . . . . . . . . . . . . . . . 

Xk = aaklak2ak3. . . 

. . . . . . . . . . . . . . . . . . 

Construct a decimal y = .b,b,b,. . . as follows: 

{ 

0 if aii f 0 
bi = 

1 if aii = 0 

Thus, for all i, aii # bi. But then, y is in RI and is different from all of the numbers x1, xs, . . . 
(since the decimal representation of y differs from that of Xi in the ith place). This contradicts 
the assumption that the sequence x1, x2, . . . exhausts RI. 

2.22. Given two sets A and B. We say that A has the same cardinality as B if there is a 
one-one correspondence between A and B. We say that A has smaller cardinalitg 
than B if there is a one-one correspondence between A and a subset of B but A does 
not have the same cardinality as B. 

Prove that, for any set A, A has smaller cardinality than the set ‘Z-‘(A) of all sub- 
sets of A (Cantor’s Theorem). 

Solution: 
(1) There is a one-one correspondence between A and a subset of ‘P(A). Namely, to each element 

x of A associate the set {x} in T(A). Clearly if x and y are distinct elements of A, {x} Z {y}. 

(2) We must show that there is no one-one correspondence f between A and T(A). Assume, on 
the contrary, that there is such a one-one correspondence f. Let C = {x : x GA & x 4 f(z)>. 
Thus C consists of all elements x of A such that x is not a member of the corresponding 
subset f(x) of A. But Cc A. Hence CE T(A). So there must be an element y in A such 
that f(y) = C. Then by definition of C, y E C if and only if y 4 f(y). Since f(y) = C, it 
follows that yE C if and only if y 4C. But either yE C or y4 C. Hence yE C & y 4 C, 
which is a contradiction. 

FIELD OF SETS 

2.23. Prove that the collection 7 of all subsets B of X such that either B or I? is countable 
is a field of sets. 
Solution: 

Assume BE p. Then either B or B is countable. Hence BE p. Assume now that A is also 
in 7. 

Case 1: B is countable. Then A n B is countable. Hence A n B E p. 

Case 2: A is countable. Then A r? B is countable. Hence A n B E T. 

Case 3: B is countable and A is countable. Hence A U B is countable. But An B = A UB. 
Therefore A n B E T. 

2.24. Let X be the set of all integers, and let k be a fixed integer. Let G be the collection 
of all subsets B of X such that, for any u in B, both u + k and u - k are also in B. 
(This means that a shift of k units does not alter B.) Show that S is a field of sets. 

Solution: 
Let B E 6. Assume u E B. Hence u 4 B. So u - k 4 B. (For, if u - k E B, then 

u = (u - k) + k E B.) Also, u + k E fi. (For, if u+kEB, then u = (u+k)-kkB.) Thus 
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B E 6. Assume now that A and B are in 6. Let us consider A n B. Assume u E A nB. Then 
uEA & uEB. Hence u*kEA & u%kEB. Therefore u -C k E A n B. Thus, A nB E g. 

Additional question: How many elements does 6 have? 

NUMBER OF ELEMENTS IN A FINITE SET 

2.25. Derive the equality 

#(AuBuC) = #(A) + #(B) + #(C) 

- #(AnB) - #(AnC) - #(BnC) 
+ #(AnBnC) 

for arbitrary finite sets A, B and C. 

(1) 

Solution: 

Take any element x in A u B u C. If x is in precisely one of the sets A, B, C, then x is 
counted once on the right side of (1). (For example, if z E B nki n 6, then x is counted only 
in #(B).) If x belongs to precisely two of the sets A, B, C, then x will be counted twice in the 
positive sense on the right side and once in the negative sense. (For example, if x E A nBn C, 
then z-c is counted twice in the positive sense in #(A) and #(C), and x is subtracted once in #(AnC).) 
Lastly, if x belongs to A n B n C, then x is counted in every term on the right side, four times 
in the positive sense and three times in the negative sense. Thus the net effect of the right side of 
(I) is to count the number of elements in A U B U C. 

2.26. If a boating club of 75 members admitted only owners of sailboats or powerboats, 
and if 48 members owned sailboats and 33 members owned powerboats, how many 
members owned both sailboats and powerboats? 

Solution : 
Let A = the set of all members owning sailboats, and B = the set of all members owning 

powerboats. 
#(AuB) = #(A) + #(B) - #(AnB) 

Hence #(A n B) = 6. 
75 = 48+33-#(AnB) 

2.27. Among 50 students taking examinations in mathematics, physics and chemistry, 37 
passed mathematics, 24 physics and 43 chemistry; at most 19 passed mathematics and 
physics, at most 29 mathematics and chemistry, and at most 20 physics and chemistry. 
What is the largest possible number that could have passed all three? 

Solution: 

Let M, P, C stand for the collections of students passing mathematics, physics and chemistry, 
respectively. 

#(MuPuC) = #(M) + #(P) + #(c) - #(MnP) - #(Mnc) - #(PnC) + #(MnPnC) 

50 2 37 + 24 + 43 - #(MnP) - #(MnC) - #(PnC) + #(MnPnC) 

Hence 
#(MnPnC) L #(MnP) + #(MnC) + #(Pnc) - 54 

5 19 + 29 + 20 - 54 = 14 
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Supplementary Problems 
2.23. List all subsets of {@, {@}>. 

2.26. (z : z is a real number & z2 < 0) = ? 

2.30. Prove: BuC=@ ifandonlyif B=@ & C=@. 

2.31. Prove: If A u B = A for all sets A, then B = 0. 

2.32. Show with an example that A U B n C requires parentheses to be unambiguous. 

2.33. Prove: If BcA & CGA, then BuCCA; and if AcB & AcC, then AcBnC. 

2.34. Prove: If Cc_A, then BnCcA and CcAuB. 

2.35. Prove: F(A) n T’(B) = T(A nB). 

2.36. Is T(A) u T(B) = T(A uB)? If not, give a counterexample. 

2.37. (5 : 5 is an integral multiple of 2} n {z : x is an integral multiple of 3) = ? 

2.38. Disprove the cancellation law: If AnB=AnC, then B =C. 

In Problems 2.39-2.54, determine whether the given equation is always true, using rigorous logical 
methods and also, if possible, Venn diagrams. If an equation is not always true, specify a counterexample. 

2.39. (AuB)n(BuC)n(CuA) = (AnB)w(BnC)u(CnA). 

2.40. A - (B-C) = (A-B)u(AnBnC). 

2.41. An(B-C) = (AnB) -(AnC). 

2.42. Au(B-C) = (AuB) - (AuC). 

2.43. A - (BnC) = (A-B)u(A-C). 

2.44. A-(AnB) = A-B. 

2.45. An B = A - (A-B). 

2.46. AuB = Au(B-A). 

2.47. (A-Ou(B-O = (AuB) -C. 

2.48. A u(BAC) = (AuB) A (AuC). 

2.49. A-(BAC) = (A-B)A(A-C). 

2.50. A-B = AuB. 

2.51. /f-l? = B-A. 

2.52. AAB = AA& 

2.53. AAB = (AnB)u(AnB). 

2.54. AAB=AAB=AAB. 

2.55. Let Z = the set of integers = {. . ., -2, -l,O, 1,2, . . 
ml, 2, . 

.); N = the set of non-negative integers = 
. .>; Np = the set of non-positive integers = (0, -1, -2 , 

P = the set of prime numbers. 
. . . ); E = the set of even integers; 

Z-E, En P. 
Find: N n (Np), Z - N, Z - (Np), N - (Np), N u (Np), N A (Np), 
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2.56. 

2.57. 

2.58. 

2.59. 

2.60. 

2.61. 

2.62. 

2.63. 

2.64. 

2.65. 

2.66. 

2.67. 

2.68. 

Prove that A = B is equivalent to each of the following conditions. 

(i) A-B = B-A. 
(ii) A u B = A n B. 
(iii) AuC = BuC& AnC = BnC. 

Prove that A c B is equivalent to each of the following conditions. 

(i) AAB = B-A, (ii) AuB = X. 

Prove: AAB = AuB ifandonlyif AnB=@. 

Prove: A s A if and only if A = $3, and A c A if and only if A = X. 

Using Venn diagrams, determine the compatibility of the following conditions. 

(i) (AnB) u C = A -B and CnA = BnA. 
(ii) A-(B-C) c CUB and AnBnC = $3 and C-BGA. 
(iii) (B-A)nC # @ and C-A c C-B. 

Prove the following identities. 
(i) A,uA,u~~~uA, = (AI-A2)~(As-A,)~*--u(A,-,-A,) 

u (4 - A,) u (A,nA,n . . . n A,) 
= A, u (4 -A,)u(A,- (A,uA,)) u (A4 - (A,uA,uA,)) u ... 

u&z- (A,uA,u . . . uA,_,)) 
(ii) A,nA,n...nA, = Al- [(A,-A,)u(A,-A,)u..~u(A,-A,)]. 
(iii) (A, -B,)n(A,-B,)n...n(A,-B,) = (A,nA,n...nA,)-(B,uB,u~~~uB,). 

Simplify the following expressions. 

(i) (An B) u C n fi, (ii) ((A u B) n A) u Bn. 

Find the set-theoretic operations corresponding to the truth functions for + and c). 

Determine whether each of the following sets of ordered pairs is a function, 

0) ((2, Y) : x and y are human beings and x is the father of y}. 

(3 {lx, Y) : x and y are human beings and y is the father of x}. 
(iii) {(x, y) : x and y are real numbers and x2 + y2 = l}. 
(iv) {(x, y) : (5 = 1 & y = 2) v (5 = -1 & y = 0)). 

For each of the following functions f from the set of integers Z into I, determine whether f is a 
function from Z onto Z and also whether f is one-one. 

(i) f(x) = 2x + 1 

(ii) f(x) = -x 

x + 1 if x is even 
(iii) f(x) = 

{ x - 1 if x is odd 

(iv) f(x) = x2 - 3x -I- 5 

Prove: The set of all rational numbers is denumerable. 

Prove: The set of all irrational real numbers is not countable. 

By a left-open interval of the set R of real numbers, we mean either an interval 
(a, b] = {x : a < x f b} 

or an infinite interval of the form 
(a,m) = (5: a<x} or (-a, a] = {x: x f b} 

Let T be the collection of sets of real numbers consisting of @, R, and all unions of a finite number 
of left-open intervals. Show that 7 is a field of sets. 
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2.69. (1) For finite sets A, B, C, D, derive the formula 

#(AuBuCuD) = #(A) + #(B) + #(C) + #(D) 

- #(AnB) - #(AnC) - #(AnD) - #(BnC) - #(BnD) - #(CnD) 

+ #(AnBnC) + #(AnBnD) + #(AnCnD) + #(BnCnD) 

- #(AnBnCnD) 

(2) Generalize the result of (1) to any finite sets A,, . . ., A,. 

2.70. In an advertising survey of a hundred coffee and tea drinkers, 70 people were found to drink coffee 
at times, and 30 people drank both tea and coffee. How many people sometimes drank tea? 

2.71. Among Americans taking vacations last year, 90% took vacations in the summer, 65% in the winter, 
10% in the spring, 7% in the autumn, 55% in the winter and summer, 3% in the spring and summer, 
6% in the autumn and summer, 4% in the winter and spring, 4% in the winter and autumn, 
3% in the spring and autumn, 3% in the summer, winter and spring, 3% in the summer, winter and 
autumn, 2% in the summer, autumn and spring, and 2% in the winter, spring and autumn. 
What percentage took vacations during every season? 

2.72. If A and B both contain n elements, prove that A -B and B -A have an equal number of elements. 
Show that this is no longer the case when A and B are infinite. 

2.73. (a) Show that the maximum number of sets obtainable from A and B by applying the union and 
difference operations is eight. (b) Show that the maximum number of sets obtainable from A, B, C 
by applying the union and difference operations is 128 = 27. (Hint: How many regions appear in 
the Venn diagram for A, B, C?) (c) Generalize (b) to the case of n sets Al, . . ., A,. 

2.74. (a) Prove: (AnBnC) u (AnBnD) u (AnCnD) u (BnCnD) 

= (AuB)n(AuC)n(AuD)n(BuC)n(BUD)n(CUD). 

(5) Prove: (AnB)u(AnC)u(AnD)u(BnC)u(BnD)u(CnD) 

= (AuBuC) n (AuBuD) n (AuCuD) n (BuCuD). 

(c)D Prove the following generalization of (a), (b) and Problem 2.41: Given n sets Al, . . ., A,. 
Let k f n. Show that the union U of all intersections of k of the sets A,, . . ., A,, is equal 
to the intersection I of all unions of n - k + 1 of the sets A,, . . . , A,. (Note: In Problem 
2.41, n = 3, k = 2; in (a), n = 4, k = 3; in (b), n = 4, k = 2.) Hint: Prove U CZ and Zc U. 



Chapter 

Boolean Algebras 
3.1 OPERATIONS 

An n-ary operation on a set Y is defined to be any function f which, to each n-tuple : 
(Yl, * . . , yn) of elements 2j1, . . ., yn in Y, assigns an element f(yl, . . ., yn) in Y. A more 
traditional way of asserting that f is an n-ary operation on Y is to say that Y is closed 
under the function f. 

Example 3.1. 
Addition, multiplication and subtraction are binary operations on the set of integers. (We use “binary” 

instead of “2-ary”.) The function f such that f(z) = x - 1 for every integer x is a singulary operation 
on the set of all integers. (W e use “singulary” instead of “1-ary”.) 

Example 3.2. 
The subtraction function x - y is not a binary operation on the set of non-negative integers, because : 

the value x-y is not always a non-negative integer. The division function x/y is not a binary _ 
on the set of positive integers. (Why?) 

3.2 AXIOMS FOR A BOOLEAN ALGEBRA 

By a Boolean algebra we mean a set B together with two binary operations A and v on 
B, a singulary operation ’ on B, and two specific elements 0 and 1 of B such that the follow- 
ing axioms hold. 

(1) For any x and y in B, x v y = y v x 
Commutative Laws 

(2) Foranyx andgin B, x r\y = yr\ x 
(3) Foranyx,y,xinB, x~(yvx) = (x/zy)v(x~x) 

Distributive Laws 
(4) For any x, y, x in B, x v (y A x) = (xv y) A (x v x) 

(5) For any x in B, x v 0 = x. 

(6) For anyx in B, x A 1 = X. 
(7) Foranyx in B, XV x’ = 1. 

(8) For any x in B, x A x’ = 0. 
(9) 0 # 1. 

A Boolean algebra will be designated by a sextuple (B, A, V, ‘, 0,l). Sometimes one refers 
to the set B as a Boolean algebra, but this is just a loose misuse of language. 

Example 3.3. 
(a) The two-element Boolean algebra 

LB, = ({@,{@I>, n, u,-,t%{t%) 

where B = {@, {@>I; A = the ordinary set-theoretic intersection operation n; v = the ordinary 
set-theoretic union operation U; ’ = the ordinary set-theoretic operation of complex 
0 = (d; and 1 = {Q}. In Chapter 2, we have verified properties (l)-(9). Of course, we first 
that n, U and - are operations on (@, {(d}}. 

52 
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I _I (b) The Boolean algebra of all subsets of a non-empty set A, under the usual operations of inter- 
section, union, and complementation, and with $?J and A as the distinguished elements 0 and 1: 
(T(A), n, U,- , $?l, A). When there is no danger of confusion, we shall refer to this Boolean algebra 

I simply as T(A). Part (a) is a special case of (b) when A = (0). (Notice that we have omitted the case 
I where A = $3; in this case, 0 = $8 = A = 1, violating Axiom (9).) 

j \- Example 3.4. (This example should be omitted by those not familiar with elementary number theory.) 

! Let B be the set of all positive integers which are integral divisors of 70. Thus, 
I B = {1,2,5,7,10,14,35,70} 

I For any z and y in B, let x A y be the greatest common divisor of r and y, let xv y be the least common 
multiple of x and y, and let x’ = 70/x. (For example, 5 A 14 = 1, 5 v 14 = 70, 10 /\. 35 = 5, 10 v 35 = 70, 
5’ = 14, 10’ = 7.) Then (B, A, v, ‘, 1,70) is a Boolean algebra. Verification of Axioms (l)-(9) uses ele- 
mentary properties of greatest common divisor and least common multiple. 

c Example 3.5. 
It seems evident that a set of sentences closed under the operations of conjunction, disjunction and 

negation should form a Boolean algebra. However, this is not quite so. For example, A &B and B &A 
are not equal, but only logically equivalent. Thus we should have to replace the equality sign = in Axioms 
(l)-(9) by the relation of logical equivalence. In addition, 0 could be any sentence of the form A 8~ lA, 
and 1 could be any sentence of the form A v 1 A. If we wish to retain the equality sign = with its usual 
meaning (i.e. identity), then we may proceed as follows. By the statement bundle [A] determined by a 
statement form A, we mean the set of all statement forms which are logically equivalent to A. Then, it 
is clear that: (i) [A] = [B] if and only if A is logically equivalent to B; (ii) if [A] # [B], then 
[A] fl [B] = @. If K, and K2 are statement bundles, it is obvious that if A, and B, are statement forms in 
K, and A, and B, are statement forms in K,, then A, & A, is logically equivalent to B, & B,, A, v A, is 
logically equivalent to B, v B,, and 1 A, is logically equivalent to 1 B,. Therefore if we take an arbitrary 
statement form C, from K, and an arbitrary statement form C, from K,, then we may define K, & K, to 
be [C, & C,], K, v K, to be [C, v Cc], and K; to be [l C,]. If B is taken to be the set of all statement 
bundles, 0 is taken to be [A & 1 A], and 1 is taken to be {A v 1 A], then (B, &, v, ‘, 0,l) is a Boolean 
algebra. Verification of Axioms (l)-(9) reduces to well-known properties of the algebra of logic. (For 
example, to check Axiom (l), we consider any statement bundles K, and K,, and we take any statement 
forms C, and C, in K, and K, respectively. Then K, v K, = [C, v C,] and K, v K, = [C, v C,]. But 
[C, v C,} = [C, v CJ, since C, v Cc is logically equivalent to C, v Cr.) 

Terminology: x A y is called the meet of x and y. 
x v y is called the join of x and y. 

x’ is called the complement of x. 
0 is called the zero element. 
1 is called the unit element. 

If it is necessary to distinguish the meet, join, complement, zero element and unit 
element of a Boolean algebra % from those of another Boolean algebra, we shall add the 
subscript 48: A%, v%, ‘TV, 0,, 1,. 

Unless something is said to the contrary, we shall assume in what follows that 
8 = (B, A, V, 0,l) is an arbitrary Boolean algebra. 

/ 
Theorem 3.1. Uniqueness of the complement: If xvy=l and x~y=O, then y=x’. 

Proof. First, y = y v 0 by Axiom (5) 
= y v (XAX’) by Axiom (8) 
= (y v x) A (y v x’) by Axiom (4) 

I = (x v y) A (y v x’) by Axiom (1) 
/ = lr,(yvx’) by hypothesis 

= (yVx’)Al by Axiom (2) 
= yvx’ by Axiom (6) 
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Second, x’ = 2’ v 0 by Axiom (5) 
= x’v (x/Y\) by hypothesis 
= (x’v x) A (x’ v y) by Axiom (4) 
= (x v x’) A (x’ v y) by Axiom (1) 
= 1 A (dVy) by Axiom (7) 
= (X’VY) A 1 by Axiom (2) 
= x’vy by Axiom (6) 
= yvx’ by Axiom (1) 
=Y by the first part above b 

Corollary 3.2. For any x in B, (2’)’ = x. (Notation: We shall denote (2’)’ by z”, ((2’)‘)’ by 
x “‘, etc.) 

Proof. First, x’ v x = x v z’ by Axiom (1) 
= 1 by Axiom (7) 

Second, z’ Ax = x A x’ by Axiom (2) 
= 0 by Axiom (8) 

Hence by Theorem 3.1, taking 2 to be x’ and y to be x, we obtain z = 2”. ) 

Theorem 3.3. Idempotence: For any x in B, 

(9 XAX = L-i?, (ii) xvx = x 

Proof. 

(9 x = XAl by Axiom (6) (ii) x = xv0 by Axiom (5) 
= x A (XV x’) by Axiom (7) = x v (x A x’) by Axiom (8) 
= (X A 2) v (X A 2’) by Axiom (3) = (XV x) A (XV x’) by Axiom (4) 
= (XAX)V 0 by Axiom (8) = (x V x) A 1 by Axiom (7) 
= XAX by Axiom (5) = xvx by Axiom (6) ) 

i -; Definition: By the dual of a proposition concerning a Boolean algebra B, we mean the 
proposition obtained by substituting v for A, A for V, 0 for 1, and 1 for 0, i.e. by exchanging 
A and V, and exchanging 0 and 1. 

Example 3.6. 
The dual of ZA(~VZ) = (ZAY)V(ZAZ) is ZV((YAZ) = (ZVY)A(SVZ), and vice versa. The 

dual of z V tc’ = 1 is z A a? = 0, and vice versa. 

It is obvious that if B is the dual of A, then A is the dual of B. 

-. Theorem 3.4. Duality Principle (Proof-theoretic version): If a proposition A is derivable 
from Axioms (l)-(9), then the dual of A is also derivable from Axioms (l)-(9). 

Proof. The dual of each of Axioms (l)-(9) is again an axiom: (1) and (2) are duals of 
each other, and so are the pairs (3)-(4), (5)-(6), and (‘7)-(8). (9) is its own dual. Thus if in 
a proof of A we replace every proposition by its dual, the result is again a proof (since 
axioms are replaced by axioms), but this new proof is now a proof of the dual of A. ) 
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The proof of Theorem 3.3 is twice as long as it need be. Since x v x = x is the dual of 
x A x = x, it would have sufficed to prove x A x = x and then cite the Duality Principle to 
obtain x v x = X. As a matter of fact, the proof of the Duality Principle is illustrated in 
the proof of Theorem 3.3: the proof of (ii) is obtained by taking the duals of the proposi- 
tions in the proof of (i). 

Theorem 3.5. For all x, y, x in B, 1 ,i, ni 4 : 1 

(9 XAO = 0 
(ii) xv1 = 1 

(iii) xr,(xvy) = x 

(3 xv(xr\y) = x 
Absorption Laws 

(4 xv (yvx) = (xv y) v 2 
Associative Laws 

(vii) x A (yA 2) = (x Ay) A 2 

(Viii) (x V y)’ = X’ A y’ 

(ix) (x A y)’ = X’ V y’ 
De Morgan’s Laws 

(4 x V y = (X’ A y’)’ 

(xi) x A y = (X’V y’)’ 

(xii) XAy’=O c) XAy-X 

(xiii) 0’ = 1 
(xiv) 1’ = 0 

(xv) x A (X’V y) = x A y 

(xvi) XV(X’Ay) = XVy 

Proof. From now on, we usually will not cite the particular axioms or theorems being 
used in a proof. 

(i) x A 0 = (X A 0) V 0 = (X A 0) V (X A X’) = (X AX’) V (X A 0) = X A (X’V 0) = X A X’ = 0 

(ii) is the dual of (i). 

(iii) x A (XVy) = (XV 0) A (XVy) = X V (OAy) = x V 0 = X. 

(iv) is the dual of (iii). 

(V) Assume y A Z = 2 A 2 & y AX’ = 2 AX’. Then 
‘$, = y A 1 = y A (XV X’) = (y A X) V (y AX’) 

= (2 AX) V &A Xl) = 2 A (XV X’) = 2 A 1 = 2 

(vi) We shall use (v), replacing y by x v (y v x) and x by (XV y) v x. Thus to apply (v) we 
must show . 

(a) (Z V (yv 2)) A X = ((Xv ZJ) v 2) A X and (b) (X v (y v 2)) A X’ = ((XV y) V 2) A X’ 

To prove (a): (x v (yv 2)) A x = x A (x v (y v 2)) = x by (iii). Also, 
((x V y) V 2) A X = X A ((XV y) V 2) 

= [x A (XV y)] V [X Ax] 

= x v (x A 2) by (iii) 
=x by (iv> 
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= oV(x’A(yV2)) = X’A(z/Vx) 

Also, ((xv@ V 2) A X’ = x’ A [(x V y) V i?] = (x’ A (x V y)) V (X’ A 2) 

= [(x’Ax) v (X’AY)] v (X’AX) 

Thus (3 V (y V x)) A x = X = ((XV j/y) V 2) A x 

To prove (b): (xV(yVi@)Ax’ = x’A(xV(yVx)) 

= (X’AX) v (X’ A (YvX)) 

= [o V (X’ A y)] V [X’ A x] 

= ($‘A@ V (X’ Ax) = X’ A (YV 2) 

Thus (xV@Vx))Ax’ = x’ A (y V 2) = ((X V ‘y) V 2) A X’ 

(vii) is the dual of (vi). 

[CHAP. 3 

(viii) To prove (XV y)’ = x’ A y’, we use the uniqueness of the complement (Theorem 3.1). 
We must show 

(c) (XVY)A(X’AY’) = 0 and (d) (XVY)V(X’AY’) = 1 

To prove (c): (XV@ A (X’AY’) = (X’AY’) A (Xv@ 

= [(x’ A y’) A x] V [(x’ A y’) A 2/] 

= [x A (x’ A y’)] V [X’ A (y’ A 2/)] 

= [(x Ax’) A y’] V [X’ A (y A y’)] 

= [or\ 2/‘] V [X’ A o] = 0 V 0 = 0 

To prove (d): (XV@ V (X’AY’) = [(xv@ V x’] A [(XVY) V y’] 

= [x”’ (XV&] A [XV (Y”Y’)] 

= [(X’Vx)Vy] A [XVl] 

= [(xv x’) v y] A 1 = (x V X’) V y 

=lvy=yvl=l 

(ix) is the dual of (viii). 
(x) By (viii), (XV y)’ = x’ A y’. Hence (xv y)” = (x’ A y’)‘. But (z v y)” = xv y, by 

Corollary 3.2. 
(xi) is the dual of (x). 
(xii) x = x A 1 = x A (y v y’) = (x A y) v (x A y’). Therefore x A y’ = 0 implies x = x A,y. 

Conversely, assume x = x A y. Then 
XAy’ = Ov(xr\y’) = (XAX’) V (XA\‘) 

= ZA(X’V$/) = XA(XAY)’ = XAX’ = 0 
(xiii) Since 0 v 1 = 1 and 0 A 1 = 0, we obtain 0’ = 1 by Theorem 3.1. 
(xiv) is the dual of (xiii). 
(XV) ZA(S’vfj) = (XAX’) v (XA~) = Ov (XA\) = Xhy. 

(xvi) is the dual of (xv). ) 

3.3 SUBALGEBRAS 
It is clear that a Boolean algebra (B, A, V, ‘, 0,l) has a unique zero element 0 and a unique 

unit element 1. For, assume that x is also a possible zero element; in particular, x = z v x 
forallxinB. Henceifwelet x=0, O=Ovz. But 0~x=z~0=z. Thus 0=x. Like- 
wise, if u were a possible unit element, then 1 = 1 A u = u A 1 = % 
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The subset (0, l} is closedt under the operations A, V, ‘. The subset (0, l} is closedt under the operations A, V, ‘. For, For, 

Ovl= l= Iv0 Ovl= l= Iv0 oA1 = 0 = IA0 oA1 = 0 = IA0 
= 

Iv1 Iv1 = 1 = 1 
0’ 0’ = 1 1 

IAl = 1 IAl = 1 
1’ = 0 1’ = 

ovo = 0 ovo 
0 

= 0 OAO = 0 OAO = 0 

Thus if we let A 10,1), v{~,~), ‘{o,l) denote the restrictions of the operations A, v, ’ to the set 
10, l>, then g* = V-4 11, A{o+ v{~,~), ‘{o,l), 0,l) is itself a Boolean algebra. Notice that 
all we had to observe was that (0, l} is closed under the operations A, V, ‘; it is easy to check 
that Axioms (l)-(9) are then automatically satisfied. 

More generally, if A is any non-empty subset of B closed under the operations A, V, ‘, 

then (A, AA9 vA, ‘A, 0, 1) is a Boolean algebra, where AA, vA, ‘A are the restrictions of the opera- 
tions A, V, ’ to the set A. Observe that 0 and 1 must belong to A. For, if x E A, then x’ E A, 
and thus we obtain 0 = x A x’ E A and 1 = x v x’ E A. The Boolean algebra (A, AA, vA, ‘A, 0,l) 
is called a subalgebra of 48. In particular, the Boolean algebra 53* determined by (0, l} is 
a subalgebra of 48. In fact, %* is the “smallest” subalgebra of %, since 3* is a subalgebra 
of any other subalgebra of 5% 

To show that a subset A of B is closed under A, V, I, it suffices to show that A is closed 
either under A and ‘, or under v and ‘. For, if A is closed under A and I, then, for any 
x,y in A, Xvy = (X’r\y’)‘EA. Likewise, if A is closed under v and ‘, then, for any 
x, y in A, x A y = (X’ v y’)’ E A. 

Example 3.7. 

Let 9 be the Boolean algebra T’(K) of all subsets of an infinite set K under the usual set-theoretic 
operations of intersection, union and complementation, and with $2 and K as the zero element and unit 
element, respectively. Let A be the set of all subsets of K which are either finite or cofinite (i.e. the com- 
plement of a finite set). Then A is closed under intersection, union and complement, and therefore A 
determines a subalgebra of 9. In general, the subalgebras are the fields of subsets of K. 

3.4 PARTIAL ORDERS 

In a Boolean algebra 48, we define a binary relation L on B by stipulating that 

x’y if and only if x A y = Xtt 

Theorem 3.6. x 4 y if and only if x v y = y. 

Proof. Assume x 4 y. Then 

XVy = (XAy)Vy = y 

(using Theorem 3.5(iv)). Conversely, if XV y = y, then 

XAy = XA(XVy) = X 

(using Theorem 3.4(iii)). ) 

Example 3.8. 

In a Boolean algebra T(A), the relation x f y is equivalent to x c y, for any subsets x and y of A. 

tRecal1 that A is said to be closed under the operations A, v, ’ if, for any x and 2/ in A, the objects 
z A y, XV l/, and x’ are also in A. 

ttThe symbol f should not be confused with the symbol for the usual ordering of integers or of real 
numbers. If necessary, use 5% instead of 5. 
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Example 3.9. 

In the Boolean algebra 9 associated with the propositional calculus (Example 3.4, if A and B are 
statement forms, then [A] 5 [B] if and only if [A] A [B] = [A]. But [A] A [B] = [A&B]. Thus 
{A] 5 [B] if and only if [A & B] = [A], i.e. if and only if A & B and A are logically equivalent. Clearly 
A & B is logically equivalent to A if and only if A logically implies B. Thus [A] 5 LB] if and only if A 
logically implies B (or, equivalently, if and only if A + B is a tautology). 

Theorem 3.7. (PO 1) x L x (Reflexivity) 

(PO 2) (x L y & y L x) + x 4 x (Transitivity) 

(PO 3) (x ‘y & y” x)+ x = y (Anti-symmetry) 

Proof. 

PO 1) XAX = X. 

(PO 2) Assume x A y = x and y A x = y. Then 

XAX = (XAY) AZ = XA(YAX) = XAY = X 

(PO 3) Assume x A y = x and y A x = y. Then 

X=XAy=yAX=y 1 

In general, a binary relation R on a set A is any subset of A x A, i.e. any set of ordered 
pairs (u, v) such that u E A & v E A. For example, the relation of fatherhood on the set of 
human beings is the set of all ordered pairs (x, y) such that x and y are people and x is the 
father of y. In accordance with tradition, one often writes xRy instead of (x, y) E R. 

A binary relation R on a set A satisfying the analogues of (PO 2) - (PO 3), 

(2) (xRy & yRx) + XRX, 

(3) (xRy & yRx) --f x = y, 

is called a partial order on A. 

A partial order on a set A is said to be reflexive if and only if xRx holds for all x in A, 
while R is said to be G-reflexive on A if and only if xRx is false for all x in A. For example, 
the ordinary relation 6 on the set of integers is reflexive while the relation < on the set of 
integers is irreflexive. In Theorem 3.7 we have seen that the binary relation 4 on a 
Boolean algebra % is a reflexive partial order. 

If 4 is a reflexive partial order on a set A, we can define x < y to mean that x 4 y & x Z y. 
Then we have 

Theorem 3.8. (i) 1 (x < x) 

(ii) (x<y & y&x) + x<x 

(iii) (XL y & y< 2) + x < 2 

(iv) (x< y & y<x) + x<x 

(v) 1 (x < Y & Y < 4 
(vi) < is an irreflexive partial order on A. 

Of course, given an irreflexive partial order < on A, we can define a reflexive partial 
order g on A as follows: x ‘y t, (x < y or x = y). 
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Let 4 be a partial order on a set A. An element x of A is said to be an upper bound of 
a subset YcA if y’x for all y in Y. An element x of A is said to be a least upper bound 
(lub) of a subset Y G A if and only if 

(1) x is an upper bound of Y, 
(2) 24 w for every upper bound w of Y. 

Clearly, by (PO 3), a subset Y of A has at most one lub. 

Similarly, an element x of A is said to be a lower bound of a subset Y G A if and only if 
x 6 y for all y in Y; x is called a greatest lower bound (glb) of Y if and only if 

(3) x is a lower bound of Y, 
(4) w 6 x for every lower bound w of Y. 

Again, by (PO 3), Y has at most one glb. 

Example 3.10. 
The usual order relation 5 on the set Z of integers is a partial order on 1. Any non-empty subset of Z 

having an upper bound (respectively, lower bound) must have a lub (respectively, glb), which is, in fact, 
the greatest element (respectively, smallest element) of the set. However, there are non-empty subsets 
which have no lub, e.g. the set Z itself or the set of even integers. 

Example 3.11. 
The usual order relation 5 on the set R of real numbers is a partial order on R. Any non-empty 

subset of R having an upper bound (respectively, lower bound) must have a lub (respectively, glb). 

Example 3.12. 
The usual order relation 5 on the set Q of rational numbers is a partial order on Q. However, in 

this case, there exist non-empty subsets of Q which are bounded above but do not have a lub. An example 
is the set of all positive rational numbers x such that x2 < 2. (This is just another way of saying that 
fi is not rational.) 

Examples 3.10-3.12 possess the additional property of connectedness: 
(Conn): For any x and y in A, x ‘y or y L x. 

A partial order satisfying (Conn) is called a total order (synonyms: simple order, linear 
order). Not all partial orders are total orders. 

Example 3.13. 
The partial order c determined by the Boolean algebra of all subsets of (0, l} is not connected, for 

we have neither (0) C (1) nor (1) c (0). 

A partial order on a finite set A can be indicated by a diagram in which the elements 
of A are pictured as points, and a point x has the relation to some point y if and only if y 
can be reached from x by following a sequence of zero or more upward arrows. The order 
relation G in the Boolean algebra of all subsets of {0, l} is pictured in Fig. 3-1, and the 
order relation in the Boolean algebra of all subsets of (0, 1, 2} is shown in Fig. 3-2. 

0 
I 

. Fig. 3-1 Fig. 3-2 
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The partial order 5 determined by a Boolean algebra 48 has a special property (L) not 
possessed by all partial orders. 

Theorem 3.9. (L) For any x and y, {x, y} has both a lub (namely, XV y) and a glb (namely, 
XAY). 

Proof. x 4 XV y (since x A (XV y) = x), and similarly, y L xv y. Thus xvy is an 
upper *bound of {x, y} . Now assume w is any upper bound of {x, y}. This means that x 4 w 
and y&w, i.e. x A w = x and y A w = y. Then (XVY)AW = (XAW)V(~AW) = xvy, 

i.e. xv y L w. Thus XV y is the Iub of {x, y). The proof for x A y is left to the reader. ) 

3.5 BOOLEAN EXPRESSIONS AND FUNCTIONS. NORMAL FORMS 

By a Boolean expression we mean any expression built up from the variables x, y, x, xl, 
y1, 21, a!, y2, 22, . . . by applying the operations A, v, ’ a finite number of times. In other 
words, all variables are Boolean expressions, and if 7 and u are Boolean expressions, so are 
(7 A u), (7 v U) and (#)t. 

Example 3.14. 
The following are Boolean expressions: 

((XV (Y’)) A (z;)), (b”z) ” (b’) “1/h (b A 2 ” X))‘), ((((Y’)‘) A 2) A I//), (((Id’) A (2 A II)) ( 

We shall use the same conventions for omitting parentheses as were used for statement 
forms in Chapter 1 (cf. page 5). For this purpose, the symbols A, V, ’ are to correspond to &, V, 1. 

Example 3.15. 
Using the conventions for omitting parentheses, we can write the Boolean expressions of Example 3.14 

as follows: 
(XV u’) A Z;, (?/ A 2) V (2’ A 2/), ($4 A (2 V CC))‘, $/” A 2 A 2,/, 2/” A (2 A y) 

Given a Boolean algebra B = (B, A, v, ‘, 0,l) and a Boolean expression ~(241, . . . , uk) 

having its variables among ul, . . . ,?&, we can determine a corresponding Boolean function 
Tqh, . . . ,G): for each k-tuple (bl, . . . , bk) of elements of B, ~~(bl, . . ., bk) is the element of 
B obtained by assigning the values bl, . . . , bk to UI, . . . , uk respectively, and interpreting the 
symbols A, V, ’ to mean the corresponding operations in %. (In order to make the corre- 
sponding function unique, we always shall list the variables ~1, . . . , uk in the order in which 
they occur in the list x, y, x, x1, yl, xl, x2, y2, x2, . . . . For example, y v x’ determines the 
function f(x, y) = y v x’; thus f(l,O) = 0 and f(O,l) = 1.) 

Example 3.16. 
The Boolean expression z v y’ determines the following function f(x, w) with respect to the two-element 

Boolean algebra 53,. 
f(O,O) = 1, f(0, 1) = 0, fU, 0) = 1, f(l, 1) = 1 

Notice that, if bl, . . . , b, are in (0, l} and 5(u1, . . ., u,) is a Boolean expression, then 
P(b1, . . . , bn) is also in (0, l}, since (0, l} is closed under A, v and ‘. 

Observe also that different Boolean expressions may determine the same Boolean func- 
tion. For example, x A (y v 2) and (z A y) v x Ax) always determine the same Boolean ( 

functions. 

tMore precisely, o is a Boolean expression if and only if there is a finite sequence T~, . . . ,T, such that T,, is 
c, and, if 1 f i f n, then either 7i is a variable or there exist j, k < i such that 7i is (Tj A 7k) or Ti is 
(Tjv Tk) or Ti is (7;). 
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Theorem 3.10. Given a Boolean expression T(U), which may contain other variables 
Ul, . . ., uk as well as u. Then the equation 

T(u) = [T(o) Au’] V [T(l) Au] 

is derivable from the axioms for Boolean algebras. 

Proof. See Problem 3.7, page 66. ) 

Now we shall present a normal form theorem for Boolean algebras which is a gen- 
eralization of the disjunctive normal theorem for propositional logic (Theorem 1.6). The 
following notation will be convenient: 

T if i=l 
For any expression T, 2 = 

# if i=O’ 

The symbol 2, with appropriate indices, will be used to indicate repeated use of V. In 
particular, c U(OI) stands for a(O) v a(l), while 2 i ~(a,, cy2) stands for 0(0,0) v u(0, 1) v 

a=0 n,=o nz=o 
up, 0) v u(l, 1). 

Theorem 3.11. (Disjunctive Normal Form) For any Boolean expression s(u~, . . . , Uk), the 
equation 

is derivable from the axioms for Boolean algebra (and therefore the corre- 
sponding equation, with T replaced by 7%, holds in any Boolean algebra %). 

Proof. See Problem 3.8, page 67. ) 

Example 3.17. 
When k = 1, Theorem 3.11 reads 

When k = 2, we obtain 

T(U) = i, h) A Ua = (7(o) AU’) V (~(1) AU) 

= (T(O,O)AU:AU~)V (T(~,~)AU;AZL~) v (T(~,~)AZQAU;)V (T(~,~)AZQAU~) 

Example 3.18. 
When 7 is zv v y, Theorem 3.11 states 

X V v = [(o V 0) A 2’ A $1 V [(IV 0) A % A 2/‘] V [(o V 1) A 2’ Au] V [(IV 1) A 2 A v] 

= [o A 2’ A y’] V [l A X A $,‘I V [l A 5’ A jj] V [l A X A f,] 

= [X A y’] V [%‘A y] V [X A v] 

Example 3.19. 
The representation of (x v y) A (x’ v y’) in disjunctive normal form is 

(5 V y) A (2’ V $,‘) = (0 A 5’ A 21’) V (1 A 5’ A 1/) V (1 A X A y’) V (0 A X A y) 

= (X’AY) V (X Ay’) 
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-. Corollary 3.12. Let T(u~, . . . , Uk) and ~(ul, . . . ,uk) be Boolean expressions, and let 9 be 
some Boolean algebra. If the Boolean functions s%(u~, . . . ,uk) and 
0% (Ul, . . . , uk) are equal, then: 
(a) the equation 7(U1, . . . , uk) = u(~I, . . . , t&k) is provable from the axioms 

for Boolean algebras; 
(b) 4 = UC for all Boolean algebras C. 

Proof. (a) Since (0, I} C B, +((bl, . . . , bk) = dB(b1, . . . , bk) whenever bl, . . . , bk E (0, l}. 
But rS(b1,. . ., bk) = Us(bl, . . . , bk) holds if and only if the corresponding equation 
dbl, . . . , bk) = u(b1, . . . , bk) can be proved from the axioms for Boolean algebras. For, 
the equations 0 A 0 = 0, 0 A 1 = 1 A 0 = 0, 1 A 1 = 1, etc., are all derivable from these axioms, 

and the values rB(bl, . . ., &) and ~e(h, . . . , bk) are computable from these equations. Hence 
by Theorem 3.11, T(u~, . . . , UI~) = ~(ul, . . . , uk) is derivable from the axioms. 

(b) is an immediate consequence of (a). ) 

The remarkable thing about Corollary 3.12 is that, if an equation holds for one Boolean 
algebra (in particular, if it holds for the two-element Boolean algebra 484, then it holds for 
all Boolean algebras. To mathematicians it probably would not have been surprising if we 
had only asserted that, if an equation holds for all Boolean algebras, then it is provable 
from the axioms. This latter assertion follows, in fact, from the completeness theorem for 
first-order logic (see Corollary 2.15(a), page 68 of [135]). 

3.6 ISOMORPHISMS 

A function @ is called an isomorphism from a Boolean algebra 9 = (B, As, vI) , ‘g, O,, 1%) 
into a Boolean algebra C = (C, AC, vc, ‘c , 0,, lc) if and only if 

(a) @ is a one-one function from B into C, 
(b) for any x, y in B, 

@,(X”, Y) = Q(X) “c NY) 
@(X’S) = (@(X))‘C 

Such a function @ is called an isomorphism from !B onto C if, in addition, Q is a function 
from B onto C. 

-I Theorem 3.13. Let + be an isomorphism from a Boolean algebra 9 into (respectively, onto) 
a Boolean algebra C (with the notation given above). Then 

(4 Wd = OC and +(l%) = 1,. 

(b) It is not necessary to assume that 

@(X VT3 Y) = +(x) vc a(y) for all x, y in B 

Alternatively, we could omit the assumption that 

qx *ql Y) = G(X) AC WY) 

(c) If o is an isomorphism from C into (respectively, onto) a Boolean 
algebra D = (0, A?), v~, ‘9, 0,, l,), then the composite mapping+ 
o o @ is an isomorphism from % into (respectively, onto) D. 

tThe composite mapping (or composition) 8 0~ is the function defined on the domain B of + such that 
(co+)(x) = 8(@(x)) for each z in B. The inverse e-1 is the function whose domain is the range +P[B] of + 
(here, +[B] = {a(z) : 2 E B}) and such that, for any y in +[B], (+-l)(y) is the unique x in B such that 
Nx) = y. 
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(d) The inverse mapping a-’ is an isomorphism from the subalgebra of 
C determined by @[B] onto 59, and, in particular, if @ is onto C, then 
@-I is an isomorphism from C onto % 

Proof. 

(4 @(OS) = @(X/l, x3) = Q(X) AC @(X’%) 

= a(x) AC (a(x))‘c = 0, 

a(&) = @(OZ) = (@(Oa))‘C = 0: = 1, 

(b) @(X “s y) = q(x% As y’g)‘s) = (aqx”B As Y’S))‘C 

= (@(x’q ) AC @(@))t = ((@(x))t AC (@(@)‘c )t = Q(x) Vc a(y) 

(c) First, o O@ is one-one. (If x f y, then a(x) z a(y) and therefore @(G(X)) f @(a(y)).) 

Second, (0 0 @)(X’S) = O(cP(X’23)) = O((@(X))‘C ) = (@(Q(X)))‘9 = ((0 O@)(X))‘V 

Lastly, (0 o @)(x A% 3) = @(a@ AI( Y)) = @(a(x) AC @(Y)> 
= 0(@(X)) f’v @(@(Y)) = (0 O a)(x) Av (0 ’ a)(Y) 

(d) Assume x, w E +[B]. Then x = Q(X) and w = a,(y) for some x and y in B. Hence 
x = +-l(x) and y = @-l(w). First, if x f w, then x f y (for, if x = z/, then x = Q(X) = 
a(y) = w). Thus rp-l is one-one. Second, @(x V~ ‘~j) = a(x) vc a(y) = x vc w. Hence 
a-‘(xvc w) = x vs y = a-‘(x) v.g Q-1 (w). Third, @(x’s) = (@(x))‘c = 2%. Hence 
W’(X’C) = x’s = (a-‘(x))‘%. ) 

We say that 9 is isomorphic with C if and only if there is an isomorphism from 9 onto 
C. From Theorem 3.13(d, c) it follows that, if % is isomorphic with C, then C is isomorphic 
with 93, and if, in addition, C is isomorphic with D, then % is isomorphic with D. Isomorphic 
Boolean algebras have, in a certain sense, the same Boolean structure. More precisely, this 
means that any property (formulated in the language of Boolean algebras) holding for one 
Boolean algebra also holds for any isomorphic Boolean algebra.? 

Example 3.20. 
Consider the two-element subalgebra C = {O,, l%} of any Boolean algebra FB. Let ?) be the Boolean 

algebra whose elements are the integers 0 and 1 and whose operations are: 

bD): ordinary multiplication, i.e. 0 in 0 = 0 A~ 1 = 1 AI) 0 = 0, 1~3 1 = 1. 

(“VI: addition modulo 2, i.e. 0 ~9 0 = 0, 0 vn 1 = 1 vn 0 = 1, 1 vn 1 = 0. 

(‘a): the function l-z, i.e. 0% = 1 and 1’3 = 0. 

Then the function + on {O%, ls} such that *(OS) = 0 and +(ls) = 1 is an isomorphism of C onto ?). 

3.7 BOOLEAN ALGEBRAS AND PROPOSITIONAL LOGIC 

A statement form A and a Boolean expression 7 are said to correspond if 7 arises from 
A by replacing 1, &, v by ‘, A, v (respectively) and by replacing the statement letters 
A, B, C, AI, BI, Cl, . . . by x, y, x, x1, yl, x1, . . . (respectively). 

*For a rigorous formulation of this assertion, see page 90 of [135]. 
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Example 3.21. 
A v (B & 1 C) corresponds to z v (y A 2’). 1 (1A & (B, v A)) corresponds to (x’ A (y1 v X))‘. 

The statement form corresponding to a Boolean expression ‘T will be denoted SF(T). 

Theorem 3.14. The equation T = u holds for all Boolean algebras if and only if SF(T) is 
logically equivalent to SF(a). Hence we have a decision procedure to deter- 
mine whether T = (T holds for all Boolean algebras. 

Proof. By Corollary 3.12, 7 = u holds for all Boolean algebras if and only if 7 = 0 
holds for the two-element Boolean algebra C = ({F, T}, &‘z(~,~), v{~,~) , ‘{F.T) , F, T), where 
the operations L?L~~,~), v{~,~), ‘{F,T) have the obvious meanings given by the usual truth tables. 
These are given in detail in Problem 2.16, page 44. It is clear that 7 = Q holds for C if 
and only if SF(T) and SF(o) always take the same truth values. (For, an assignment of 
truth values, T or F, to the statement letters in SF(T) and SF( (T corresponds to substitution ) 
of the same truth values for the corresponding variables in T and u.) ) 

Example 3.22. 
Consider the equation XA (yvx) = (XA~) V (XAZ). The corresponding statement forms are 

A & (BvC) and (A&B) v (A&C). To check that these statement forms are logically equivalent, we 
substitute T and F for A, B, C in all possible ways and verify that the outcomes are the same. For 
example, if A is F, B is T, and C is F, then A & (B v C) and (A&B) v (A &C) both are F. The com- 
putation we make to determine this is essentially the same as the one we make to see that x A (y V z) = 
F = (x A u) v (x AZ) when x is F, g is T, and x is F. (Namely, FA(TvF) = FAT = F and 
(F A T) v (F A F) = F v F = F.) 

Solved Problems 
3.1. In a Boolean algebra, let x - y be defined as x A y’. Prove: 

(a) x v y = x v (y- 2) 

(b) x-(x-y) = XAy 

1, (c) A non-empty subset A determines a subalgebra if and only if A is closed under 
- and ‘. 

(d) 5’ = 1 - x 

(e) x 4 y t, x - y = 0 (i.e. x L y c* x A y’ = 0) 

(f) x&O c* x=0 

(9) xAy=o c* x-2/=% 

(h) Z A (Y-X) = (ZAY) - (X AZ) 

(i) Does x v (y -2) = (xv y) - (xvz) hold? 

Solution: 
(a) x v (2/ - 2) = X V (y A 5’) = (XV y) A (XV 5’) = (XV y) A 1 = X V y 

UJ) X - (X - y) = 5 A (5 - y)’ = X A (5 A $,‘)’ = 5 A (Z’ V y”) 

= 2 A (2’ V y) = (5 A Z’) v (X A 2/) = 0 V (Z A y) = X A 2/ 
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(c) If A is a subalgebra and if x and y are in A, then x -p = x A y’ E A. Conversely, if A is 
closed under - and ’ , and if x and y are in A, then x -yEA, and therefore XAY= 
x - (x-y) E A. Since A is closed under A and ‘, A is a subalgebra. 

(4 1 -X = I,,%’ XZ 2’ 

(e) This is Theorem 3.5(xii). 

(f) x-x = XA x’ = 0. Now use part (e) with y= 0. 

(9) X--y = X t) XA2/‘= 2 

f, X A y” = 0 (Theorem 3.5(xii)) 
f) XAy=o 

(h) X A (2/ - 2) = X A (y A 2’) = Z A 2/ A 2’. On the other hand, 
(X A y) - (X A 2) = (X A y) A (X A 2)’ = (5 A y) A (X’v 2’) 

= ?/ A (X A (X’V 2’)) = y A (X A 2’) = X A y AZ’ 

(i) No. 1 v (1 -1) = Iv0 = 1. However, (Iv 1) - (1” 1) = 1 - 1 = 0. 

3.2. In our axiom system for Boolean algebras, prove that Axiom (9), 0 # 1, is equivalent 
(in the presence of the other axioms) to the assertion that the Boolean algebra contains 
more than one element. 

Solution : 
Clearly, if 0 Z 1, then there is more than one element. Conversely, assume 0 = 1. Then 

for any x, x = x A 1 = x A 0 = 0. (Notice that in proving results about Boolean algebras we have 
not used Axiom (9).) Thus every element is equal to 0, and the Boolean algebra contains just one 
element. 

3.3. Let n be an integer greater than 1. Let B be the set of positive integers which are 
divisors of n. If x and y are in B, define x’ = n/x, x A y = the greatest common 
divisor (gcd) of x and y, z v y = least common multiple (lcm) of x and y. (This is a 
generalization of Example 3.5.) 

Show that (B, A, V, ‘,l, n) is a Boolean algebra if and only if n is square-free (i.e. 
n is not divisible by any square greater than 1). 

Solution: 
Remember that the zero 0, and unit 1, of the algebra are the integers 1 and n respectively. 

Axioms (l)-(6) and (9) represent simple properties of integers and of greatest common divisors and 
least common multiples (cf., for example, [129]). However, Axioms (7) and (8) hold if and only if, 
for all x in B, x and n/x have no factors in common (other than l), and this condition is equivalent 
to n being square-free. (Example: if n = 60, which is not square-free, 6’ = 10 and 6 v 6’ = 
Icm(6,10)=30#60=1~, 6 A 6’ = gcd (6,lO) = 2 # 1 = O,.) 

SUBALGEBRAS 

3.4. In the Boolean algebra of all divisors of ‘70 (see Example 3.4), find all subalgebras. 

Solution: 
We must find all subsets A of {1,2,5, ‘7,10,14,35, ‘70) closed under A and ‘. Remember that 

x A y = gcd (x, g) and x’ = 70/x. 
A, = {1,70) = {Oqp Is,) 

A, = (1, 2, 35, 70) 

A, = (1, 5, 14, 70) 

A, = (1, 7, 10, 70) 

A5 = (1, 2, 5, 7, 10,14, 35, 70) 
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3.5. (a) Given a subset D of a Boolean algebra 48, show that the intersection? of all sub- 
algebras of B containing D as a subset is itself a subalgebra of 9 (called the sub- 
algebra generated by D). 

(b) What is the subalgebra generated by the empty set $9 ? 
(c) If D = {b}, what is the subalgebra generated by D ? 

Solution: 
(a) Let C be the intersection of all subalgebras containing D. Clearly, if x and y are in C, then 

x A y and x’ are in all subalgebras containing D and hence also are in C. 

(b) {(O%, 1%) is a subalgebra containing @ as a subset and is contained in all other subalgebras. 
Hence (0%) Is} is the subalgebra generated by 0. 

(c) {O%, 1%) b, b’} is a subalgebra containing {b} and is contained in every subalgebra contain- 
ing {b}. Therefore {O%, l,, b, a’} is the subalgebra generated by {b}. 

BOOLEAN EXPRESSIONS AND FUNCTIONS. NORMAL FORMS 

‘f 3.6. If D is a subset of a Boolean algebra 9, show that the subalgebra C generated by D 

1 
; ,l~l_ consists of the set C of all values obtained by substituting elements of D for the 
., variables in all Boolean functions. :’ 4 

‘. Solution: 

\i 
Every such value, being obtained from elements of D by A, v, ‘, must belong to every sub- 

algebra containing D. On the other hand, the set C of all such values clearly forms a subalgebra 
containing D. Hence C is the intersection of all subalgebras containing D. 

3.7. Prove Theorem 3.10: Given a Boolean expression T(U), which may contain other 
variables ~1, . . . , uk as well as u. Then the equation 

T(U) = [T(o) A u’] V [T(l) A u] 

is derivable from the axioms for Boolean algebras. 

Solution: 
We shall use induction on the number m of occurrences of A, v, ’ in 7. If m = 0, then T is 

either u or ui (for some i). If 7 is u, then T(O) = 0 and ~(1) = 1. Thus 
T(U) = U = [o AU’] V [l AU] = [T(o) AU’] V [T(l) AU] 

If 7 is ui, then ~(0) = ~(1) = ui. Hence 
T(U) = Ui = Ui A (U’V U) = (UiA U’) V (UiA U) = [T(o) AU’] V [T(l) AU] 

Now let m > 0 and assume that the result is true for all expressions with fewer than m occur- 
rences of A, V, ‘. 

Case 1. T(U) = [u(u)]‘. Now, by inductive hypothesis, 
u(U) = [o(o) AU’] V [o(l) A U] 

T(U) = (o(U))’ = ([u(o) AU’] V [o(l) AU])’ 

= [o(o) AU’]’ A [u(l) A U]’ = [U(o)’ V U”] A [O(l)’ V U’] 

= [T(O) v u] A [T(l) ” u’] 

= [T(O) A T(I)] V [T(O) A U’] V [7(l) AU] V [U AU’] 

= [T(O) A 7(l)] V [7(o) AU’] V [T(l) A U] 

= [(T(O) A 7(l)) A (U V U’)] V [T(o) A U’] V [T(l) A U] 

= [T(O) A ~(1) A U] V [T(O) A ~(1) A U’] V [T(o) A U’] V [T(l) A U] 

= [(T(O) A ~(1) A U) V (r(1) AU)] V [(7(o) A T(1) A U’) V (T(o) AU’)] 

= [r(l) AU] V [T(O) AU’] 

*The intersection of a collection of sets is the set of all objects belonging to every set in the collection. 
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Case 2. T(U) = u(u) v p(u). Then the inductive hypothesis holds for (T and p. Hence 

4-4 = h-4 ” 44 

= [b(O) A 4 ” (o(l) AU,] ” [MO) A u’) ” (P(l) A 41 

= [b(o) A U’) ” (~(0) AU’,] ” [b(l) A U) ” (p(l) A U,] 

= [(do) ” ~(0)) AU’] V [b’(l) ” /‘(I)) A u] 

= [T(O) AU’] V [7(l) AU] 

Case 3. 7(u) = U(U) A p(u). This is similar to Case 2 and is left to the reader. 

.., ‘, !,,’ ,’ ,iY.,xi ,>, ‘. 

3.8. Prove Theorem 3.11: For any Boolean expression r(ul, . . . , ZL~), the equation 

7 ( u,, . . . , uk) = i 5 * * * o$o [T(c+ a2, . . . , a,) A u;l A u;’ A * * ’ A ?@] 
ax=0 a,=0 

6’7 

is derivable from the axioms for Boolean algebras (and therefore the corresponding 
equation for 7% holds for any Boolean algebra 48). 

Solution: 
We shall use induction on k. The case k = 1 is an immediate consequence of Theorem 3.10. 

Now assume that the result holds for k and we shall prove it for an expression r($, us, . . ., uk+r). 
By Theorem 3.10, 

4-b a*‘, %+I) = [7@,3, . . . . Uk+l)f’U;]” [4%, . . . . Uk+l)A%] 
But, by inductive hypothesis, 

1 
T(0,U2,...,Ukfl) = z *** 

a,=0 
& o [T(o,(Y2,...,(Yk+l)AU~A ‘*- AU:;;] 

%+l= 

and 
1 

7(1,?&...,?&+l) = x --* 
a,=0 

f: o [T(l, “2, . . ., “k+l) A Uza, A * ” A Uz;] 
%+I= 

Hence 

d”1,u2, . . -,uk+l) = 
I( a,=0 

**’ e,$zo [7(0,(YZ,...,(Yk+l)AU~A ‘*‘Auf:+: 

; o[T(l,n2,...,olk+l)AU1AU~A *‘* AUk+l 
%+I= 

%+I]) 

3.9. Show that in any Boolean algebra 55 there are 2 2” different Boolean functions of n 
variables. 

Solution: 
By the Disjunctive Normal Form Theorem (Theorem 3.11), the equation 

1 
+-Q, . . ..u.) = B **- 

a,=0 
...,,,)AU;lA*-AU~] 

11 

is derivable. Hence the function determined by 7 depends only on the 2n values T((Y~, . . . , cy,), where 
each (Y~ is either 0 or 1. Each such value is 0 or 1. Hence there are 22” different Boolean functions. 
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- 3.10. If D is a finite subset of a Boolean algebra 59, show that the subalgebra C generated 
by D is also finite. 

Solution: 

Let D have n elements. By Problem 3.6, the elements of C are the values obtained by substi- 
tuting elements of D for the variables in all Boolean functions TV. Clearly, we may confine our 
attention to functions 7% of at most n variables, since variables for which the same element of D is 
substituted may be identified. By Problem 3.9, there are 22” such functions. Hence since each of 
the n variables may be replaced by any of the elements of D, we obtain at most 22”* nn possible 
elements in C. 

3.11. If T and (T are Boolean expressions such that 

T(C1, . . ., c,) = 1 + a(C1, . . ., c,) = 1 

for all elements cl, . . . , cn of some Boolean algebra C, then 7 4 u is derivable from the 
axioms for Boolean algebras. 

Solution: 

Let p(U,, . . ., 24,) = T A u’. If Ur, . . ., U, are given values 0 or 1, then: 

(i) if 7 takes the value 0, so does p; 

(ii) if Q- takes the value 1, then, by assumption, so does 0, and therefore U’ assumes the value 0, 
and so does p. Hence p(u,, . . ., u,) = 0 for all values of ur, . . ., u, in the subalgebra (0, l}. 
Hence by Corollary 3.12, the equation p(u,, . . ., u,) = 0 is derivable from the axioms for 
Boolean algebras. (Although 0 itself is not officially a Boolean expression, one can use the 
expression u1 A 24; instead of 0 so as to fit into the formulation of Corollary 3.12.) Thus 
7 A U’ = 0 is derivable. Hence 7 f (I is derivable (by Theorem 3.5(xii)). 

3.12. (Conjunctive Normal Form.) We shall use n to indicate repeated application of A. 

Thus fi ~(a) denotes a(O) A V( 1). Given a Boolean expression ~(uI, . . . , u,) having its 
a=0 

variables among ut, . . . , u,,, show that the equation 

7 u,, . . . ,u,) ( = h 
a,=0 

* * * jj, (7(a1, . . . , a,) v 24;; v * * * v 24:) 
I 

(1) 

is derivable from the axioms for Boolean algebras and therefore holds in every 
Boolean algebra. Also, write equation (1) for the cases n = 1 and n = 2. 

Solution: 

(4u1, u ))’ a**, n is a Boolean expression, and, by the Disjunctive Normal Form Theorem, the 
equation 1 1 

4% . . ..uJ = 2 .** 
a,=0 

. . ..cu.)‘AU;‘A **’ A U?] 
n 

is derivable. Taking the complements of both sides of (2) and applying De Morgan’s Laws, we 
obtain (I). In the case n = 1, we obtain 

For n = 2, we obtain 

T(U) = (T(0) v u) A (7(l) v u’) 

T(U~, 242) = (T&O) V U1 V 24,) A (7(0,1) V U1 V U;) 

A (7(1,0) V U; V U2) A (~(1, 1) V U; V U;) 
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3.13. Write the Boolean expression (x A (y’ v 2)) v x’ in both disjunctive and conjunctive 
normal forms. 

Solution: 

Disjunctive: 

(2’ A $/’ A 2’) V (X’ A y A 2’) V (Z A y’ A 2’) V (x A 2/’ A 2) V (x A y A 2’) V (x A y A 2) 

Conjunctive: (X V 1/ V 2’) A (x V y’ V 2’) 

Sometimes, instead of using the theorems on disjunctive and conjunctive normal forms, it is 
easier to find the appropriate expression by using known laws for Boolean algebras. Thus 

(X A (y’” 2)) V 2’ = (XV 2’) A ((y’” X) V 2’) = X V 2’ 

Then, x v z’ = (XV X’) V (y A y’) = (XV y V X’) A (5 V y’” 2’). 

3.14. Given a Boolean algebra 9. (i) Sh ow that the set of all Boolean functions T* is a 
Boolean algebra 7;. (ii) Prove that 7 is isomorphic to the Boolean algebra of state- 
ment bundles (cf. Example 3.6). (iii) Show that the set of all Boolean functions u*, - ’ 
where u is a variable, is a set of generators D of 7 (i.e. the subalgebra generated by 
D is the whole algebra 7). 

Solution: 

(4 

(ii) 

(iii) 

The operations of A, v, ’ on Boolean functions are defined in the obvious way. The zero ele- 
ment is (x A x’)% and the unit element is (x v x’)s. The straightforward verification of Axioms 
(l)-(9) is left to the reader. 

For each Boolean function ~“8, let *(T%) be the statement bundle containing the corresponding 
statement form SF(T) defined in Section 3.7. This is a well-defined function, for if 7% = 09, then, by 
Corollary 3.12, 7 = o holds for all Boolean algebras, and therefore by Theorem 3.14, SF(T) 
and SF(o) belong to the same statement bundle. That the mapping ‘k is one-one follows from 
the “if” part of Theorem 3.14. The fact that \k preserves the Boolean operation can be 
checked easily by the reader. 

Every Boolean function 7% belongs to every subalgebra containing the Boolean functions us, 
since 7% is obtained from the functions us in the same way that 7 is built up from the corre- 
sponding variables. 

3.15. (Boolean Algebra and the Algebra of Sets.) For any Boolean expression T, form the 
corresponding set-theoretic expression Set (T) by replacing A, V, ’ by fl, U, -. Show ’ .L C., 
that T = c holds for all Boolean algebras if and only if Set (7) = Set (u) holds in all 
fields of sets. 

Solution : 

Use Problem 2.16(a) and Theorem 3.14. 
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Supplementary Problems 

3.16. Prove the generalized Distributive and De Morgan’s Laws: 
(U) X A (&V * . . ” Y,) = (X A 241) ” * * * V (X A yn) 

(b) X V (yl A * - * AY,) = (X”Yd A ... A (X”Yn) 
(C) (21 V ’ ” V X,)’ = x; A * . . A X:, 

(d) (XlA .** A 2,)’ = X; V * ** V X:, 

3.17. For any Boolean algebra, prove: 
(a) x = 0 @ y = (5 A y’) v (x’ A y) (Poretzky’s Law) 

L (b) xvy=xvz & x’vy=x’vz + y=z 
‘r (c) xvy=o H x=0 & y=o 
\ (d) XAy=l - X=1 & 1/=1 

(e) (x-y) v (y - 2) = 0 f) x = y 

SUBALGEBRAS 
3.18. Show by an example that a subset of a Boolean algebra containing 0 and 1 and closed under 

A and v need not be a subalgebra. 

-\ 3.19. If A determines a subalgebra of a Boolean algebra % (i.e. A is closed under A, v, ‘) and if 
b E B-A, show that the subalgebra generated by A U {b} consists of all elements of the form 
(ai A b) v (a2 A b’), where a, E A and u2 E A. 

3.20. Prove that, in any Boolean algebra, 
(U) X5$/’ t) xAy=o 

(b) xfy c) x’vy=l 

BOOLEAN EXPRESSIONS AND FUNCTIONS. NORlMAL FORMS 
3.21. Simplify the following Boolean expressions. 

(a) (xVY) A (xVZ) A (X’AY) 

(b) [x ” (Y A (2 v x’))]’ 

(C) (2’ A Y)’ ” (X A Y’) 

3.22. Prove that two Boolean expressions either determine the same Boolean function in all Boolean 
algebras or they never determine the same Boolean function. 

3.23. Prove that, for any two disjunctive (conjunctive) normal forms in n variables 7 and 0, 7 = o holds 
in all Boolean algebras if and only if 7 and (r are precisely the same (i.e. the identity 

” ’ ,i, [+I, . . ., a,) A U;’ A * * * 
1 

a,=0 
A 2421 = 2 

II a,=0 
’ . * ,$, [O(Crl, . . ., a,) A U;l A - . . A U>] 

n 

holds in all Boolean algebras if and only if r((~i, . . ., a,) = O(CU~, . . ., a,) for all (~i, 
from (0, 1)). 

, a,, chosen 

1 3.24. Let r(u) be a Boolean expression. Prove: 
(U) 7(7(o)) = ~(0) A ~(1) L T(U) f ~(0) V ~(1) = +(I)) 

0) +I v UP) v &I A ~2) = &I) v 4~2) 

3.26. Show that the dual of x 5 y is x * y. 



Chapter 4 

Switching Circuits 
and logic Circuits 

4.1 SWITCHING CIRCUITS !>.\/ :: ?, 

A switch is a device which is attached to a point in an electric circuit and which may 
assume either of two states, closed or open. In the closed state the switch allows current to 
flow through the point, whereas in the open state no current can flow through the point. We 
shall indicate a switch by means of the symbol - A\-- , where A denotes a sentence 
such that the switch is closed when A is true and open when A is false. We say that two 
points are connected by a switching circuit if and only if they are connected by wires (lines) 
on which a finite number of switches are located. 

Example 4.1. 
In Fig. 4-l points z and y are connected by a switching circuit. The four switches are said to be 

in parallel. Clearly, current flows between x and y if and only if A v B v C v D is true. This example 
mav be generalized to the case of any finite number of switches connected in parallel. Current flows 

” -  

through the circuit of Fig. 4-2 if and only if the sentence A, v A2 v * * * v A, is true. 

Y 

Fig. 4-1 Fig. 4-2 

Example 4.2. 
In the switching circuit of Fig. 4-3 current can 

flow between the points z and y if and only if A &B is 
true. The two switches are said to be in series. This 
case may be generalized to the case of any finite number 
of switches connected in series. The condition for cur- 
rent flow through the circuit of Fig. 4-4 is A, & A2 & 
A,&...&A,. Fig. 4-3 

Fig. 4-4 

Example 4.3. 
In the switching circuit of Fig. 4-5 below, current can flow if and only if (A &C) v (1A v B) is true. 

71 
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Fig. 4-5 

Example 4.3 shows that we may combine switches in parallel and in series in the same 
circuit. Such a circuit is called a series-parallel switching circuit. More precisely, if A is 
any sentence, then -AL is a series-parallel switching circuit, and if S, &, . . . , S, 
are series-parallel switching circuits, we may form a new series-parallel switching circuit 
by replacing any switch in S by either 

Clearly, a condition for flow of current through a series-parallel switching circuit can be 
written down by means of conjunctions and disjunctions, starting from the expressions 
representing the closure of the individual switches. In Example 4.3, this condition was 
(A&C) v (1AvB). 

4.2 SIMPLIFICATION OF CIRCUITS 

The condition for flow of current through the cir- 
cuit of Example 4.3 is (A & C) v (1 A v B). The latter 
statement form is logically equivalent to the statement 
form ((A & C) v 1 A) v B, which in turn is logically 
equivalent to C v 1 A v B. Hence the circuit of Fig. 
4-5 may be replaced by the circuit of Fig. 4-6. 

The circuit of Fig. 4-6 is clearly a simplification 
of that of Fig. 4-5, since it involves fewer switches. 

-ct 
Fig. 4-6 

Example 4.4. 

A condition for current flow through the circuit of Fig. 4-7 is (A &B & 1C) v ( 1C & 1A). However, 
this is logically equivalent to 1 C & [(A &B) v 1 A], which in turn is logically equivalent to 1 C & (B v 1 A). 
Hence an equivalent, but simpler, circuit is that of Fig. 4-8. (The two circuits are equivalent in the sense 
that one allows passage of current if and only if the other does.) 

Fig. 4-7 Fig. 4-8 
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Example 4.5. 
A committee of three decides questions by majority vote. Each member can press a button to signify 

a “Yes” vote. Let us construct a switching circuit which will pass current when and only when a majority 
votes “Yes”. 

Let A stand for “member 1 approves”, B for “member 2 approves”, and C for “member 3 approves”. 
Then a necessary and sufficient condition for a majority vote is 

(A&B)v(A&C)v (B&C) 

A corresponding circuit is shown in Fig. 4-9. However, the given statement form is logically equivalent to 
(A & (B v C)) v (B & C), having the simpler circuit of Fig. 4-10. 

-E 
LL 
LL 

Fig. 4-9 

Example 4.6. 

Fig. 4-10 

A light in a room is to be controlled independently by three wall switches (not to be confused with 
switches of a circuit), located at the three entrances of the room. This means that flicking any one of 
the wall switches changes the state of the light (on to off, and off to on). Let us design a circuit which 
allows current to flow to the light under the required conditions. 

Let A stand for “wall switch 1 is up”, B for “wall switch 2 is up”, and C for “wall switch 3 is up”. 
In the truth table of Fig. 4-11, we wish to construct a statement form f(A, B, C) for the required switch- 
ing circuit. 

A f(4 B, C) A 

(1) 'I' 

(2) F 
(4) 'I' 

(3) F 

(6) T 
(7) F 
(5) T 

(8) F 

f(A B, C) 
T 

F 

F 

T 

F 

T 

T 

F 

Fig. 4-11 Fig. 4-12 

The requirement on f(A, B, C) is that its truth value should change whenever the truth value of one 
of A, B, C changes. We arbitrarily assign the value T to f(A, B, C) when A, B, C are all T (the first row); 
thus the light will be on when all wall switches are up. Then we proceed down the truth table, changing 
the truth value of f(A, B, C) whenever the truth value of precisely one of A, B, C changes. We have indi- 
cated such a procedure in Fig. 4-12 by writing to the left of each row a number showing at what step the 
truth value for that row has been determined. Another way of describing the assignment of truth values 
is to note that T is assigned when an odd number of statement letters have the value T. We find the 
resulting statement form by the method developed in the proof of Theorem 1.8; this amounts to forming 
the disjunction of the truth assignments in the rows to which a T is attached: 

(A&B&C)v(lA&lB&C)v (lA&B&lC)v(ABlB&lC) 

This is logically equivalent to 

[A&((B&C)v(-IB&lC))] v [lA&((lB&C)v(B&lC))] 

having the circuit shown in Fig. 4-13 below. 
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Fig. 4-13 

4.3 BRIDGE CIRCUITS 

Sometimes a series-parallel circuit can be replaced by an equivalent circuit which is not 
a series-parallel circuit. 

Example 4.7. 
A series-parallel circuit corresponding to the condition [A & (B v E)] v [C & (1 B v E v D)] is given in 

Fig. 4-14. This is equivalent to the circuit shown in Fig. 4-15. Clearly, the only paths through this 
circuit are A & B, A &z E & D, A &E & 1 B, C &E &B, C&D, C & 1 B. Hence, a condition for flow through 
thiscircuitis (A&B)v(A&E&D)v(A&E&lB)v(C&E&B)v(C&D)v(C&lB), whichislogically 
equivalent to [A&(BvE)] v [C&(lBvEvD)]. 

Fig. 4-14 Fig. 4-15 

The circuit of Fig. 4-15 is an example of a circuit which is not a series-parallel circuit. 
Such circuits are called bridge circuits. In Example 4.7, the bridge circuit had fewer 
switches (6) than the corresponding series-parallel circuit (7). 

Another example of a bridge circuit is given in Fig. 4-16. A corresponding statement 
form is (A & [D v (C&E)]) v [B & (E v (C&D))], whose series-parallel circuit is shown in 
Fig. 4-17. 

Fig. 4-16 

Fig. 4-17 
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Notice that any bridge circuit determines a truth function. A statement form for this 
truth function is obtained by finding all possible paths through the circuit. For example, 
the bridge circuit displayed in Fig. 4-18 corresponds to the statement form 

(A&B&C&D) v (A&B&lC) v (lB&C&D) 

Notice that the path 1 B + C + 1 C is impossible, since it contains a formula and its negation. 

Fig. 4-18 

4.4 LOGIC CIRCUITS 

The processing of information is one of the most important roles of the modern digital 
computer. For this purpose, special devices are available. 

An and-gate operates on two or more inputs AI, . . . , A, and produces their conjunction 
AI&A~& . . . &A,. An and-gate is denoted @. 

-Al&A,& . . . &A, 

Fig. 4-19 

More precisely, each input Ai has the form of a physical quantity (say, voltage level), of 
which we choose to distinguish two states, denoted 0 and 1. The state 1 occurs if Ai is true, 
and the state 0 if Ai is false. The output of the and-gate is likewise in two possible states, 
0 and 1: it is 1 if and only if A1 & A2 & . . . & A, is true, and it is 0 if and only if 
A1 & AZ & . . . & A, is false. Often the state of an input or output is taken to be 1 if it is 
transmitting current and 0 if not. Arithmetically, the output of an and-gate is the product 
of the inputs. 

Another common element of a logic circuit is an or-gate v . If the inputs are 
AI, . . ., A, (n% 2), then the output is A1 v AS v . . . v A,. 0 

Thus the output is 1 if and only if the output of at least one Ai is 1. Arithmetically, the 
output is the maximum of the inputs. 
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An inverter 1 0 is a device which has one input A and 
produces as its output 1A. Thus the output is 1 if the A-1 0 - -iA 

input is 0 and the output is 0 if the input is 1. Fig. 4-21 

A logic circuit is defined as a circuit constructed from various inputs by means of 
and-gates, or-gates, inverters, and possibly also other devices for performing truth- 
functional operations. 

The actual electronic (or mechanical) devices used to construct and-gates, or-gates, and 
inverters vary with the state of technology. For this reason, it is most convenient to 
ignore (as far as possible) questions of hardware (diodes, transistors, vacuum tubes, etc.). 
This also holds for our treatment of switching circuits. Readers interested in the physical 
realization of switching and logic circuits can consult [53] and [13]. 

Example 4.8. 
To construct a logic circuit producing the output Al e A,, notice that A, e A, is logically equivalent to 

(A, &AZ) v (1 A, & 1 A,) (Fig. 4-22) as well as to (A, &A,) v l(A, v A2) (Fig. 4-23). Clearly the second 
logic circuit is simpler. 

Fig. 4-22 

1 
0 & O- 

1 
A,vAz 

1 
0 

V 

t t 

Fig. 4-23 

Example 4.9. 
Construct a logic circuit producing 

(A,&-iA,)v -iA,v(Az&A3) 

s 

Fig. 4-24 
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Notice that, instead of a logic circuit, one could construct a series-parallel switching circuit through 
which current flows if and only if (1) is true (see Fig. 4-25). 

Fig. 4-25 

Example 4.9 indicates that the same effect can be obtained by logic circuits as by series- 
parallel switching circuits. Indeed, connection in series corresponds to an and-gate, while 
connection in parallel corresponds to an or-gate. 

4.5 THE BINARY NUMBER SYSTEM 
We are accustomed to using the decimal number system. Thus 34,062 stands for the 

number 2+6~10+0~102+4~103+3~104. In general, any positive integer can be rep- 
resented in one and only one way in the form 

a0 + al’ 10 + a2’ 10” + ’ ’ ’ + ak’ 1ok 

where 0 g ai 6 9 for 0 6 i 6 k and ak > 0. This number is denoted akak-1’ . .a2alao in 
standard decimal notation. 

However, for any integer r > 1, every positive integer n can be represented uniquely in 
the form a0 + al.r + az-r2 + --- + am-F 

where O’ai’r-1 for Oli’rn and a,>O. This can be proved by induction on n. 

In particular, every positive integer can be represented in binary notation: 
a0 + aI-2 + a2-22 + --- + am*2m 

where O--‘aigl for O~i~?n and a,=l. 

Example 4.10. 
The number 23 (in decimal notation) has the binary representation 10111, i.e. 24 + 22 + 2 + 1. The 

decimal number 101 has the binary representation 1100101, i.e. 26 + 2j + 22 i- 1. 

A procedure for finding the binary representation of a number n is to find the highest 
power 2” which is 4 n, subtract 2”” from n, then find the highest power 21 which is 
6 n - 2”, etc. 

Further examples: 

Decimal Notation Binary Notation Decimal Notation I Binary Notation 

L 

1 

10 
11 

100 

101 
110 

111 
1000 

11 1011 

16 10000 

35 100011 

52 110100 

117 1110101 
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4.6 MULTIPLE OUTPUT LOGIC CIRCUITS 

Occurrence of the same logic circuit as part of other logic circuits suggests the use of 
logic circuits with more than one output. 

Example 4.11. 

Cv (A&B) 
w 

values for the sum digit s and the carry digit c. 
A B s 

-t-t 

c 

1 1 0 1 
0 1 1 

f 

0 

1 0 1 

I I 

0 

0 0 0 0 

Thus s corresponds to the exclusive-or (which we shall denote A + B), while c corresponds 
to the conjunction. 

If we wished to construct a separate logic circuit for s we would obtain 

Fig. 4-26 

Example 4.12. 
Two numbers in binary notation are added in the same way as numbers in decimal notation. 

Binary notation: 100101 Decimal notation: 37 
10111 23 

111100 so 

If we just consider the addition of one digit numbers, 0 and 1, we have the following 

s=A+B _ 

Fig. 4-27 

Similarly we can construct a iogic circuit for c: 

A- 0 & c 
B--------r 

Fig. 4-28 
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However, we can combine these two circuits into a single multiple output circuit: 

Ac& e = 

79 

Fig. 4-29 

The circuit in Fig. 4-29 is called a haZf-adder. 
If we wish to add two single-digit numbers A and Bt, while taking into account a 

carry-over C from a previous addition, we obtain the table 

A B C S -- - - 

1 1 1 1 

0 1 1 0 

1 0 1 0 

0 0 1 1 

1 1 0 0 

0 1 0 1 

1 0 0 1 

0 0 0 0 

Thus s corresponds to the statement form 

(C& l(A+B)) v ((A+B) & 1C) 

which is logically equivalent to (A + B) + C. The carry-over c corresponds to the statement 
form 

(A&B) v (C&(A+B)) 

We can use the circuit constructed for A + B in Fig. 4-27 to obtain the following diagram 
corresponding to the above statement. 

A’ 

c : I > I 
s=(A+B)+C 

w 
Fig. 4-30 

The circuit of Fig. 4-30 is called a full adder. 

*Actually, A is the proposition that the first number is 1, and B is the proposition that the second num- 
ber is 1. 
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We can construct a circuit for adding two three-digit binary numbers AzA,Ao and 

:n 

-S 

-II 

-5 
B2BIBo. Let - FA represent a full-adder, and let - HA 

-c -c 

represent a half-adder. Then the sum is represented in Fig. 4-31 by CSZSISO. 

A,- 

u : 

t so 
HA 

Bo- co 

Al 

.c : 

?? Sl 
FA 

Bl 
Cl 

-1 

b -92 

‘42 FA 
WC 

B2 

Fig. 4-31 

4.7 MINIMIZATION 

The cost of constructing and running a switching circuit or logic circuit depends upon 
the state of technology and therefore varies with time. However, at a given time, some 
circuits will be less expensive than other equivalent circuits. 

Example 4.13. 
The circuit (Fig. 4-32) corresponding to 1A v (B&A) is more expensive than the equivalent circuit 

(Fig. 4-33) corresponding to 1A v B, since the latter contains fewer occurrences of statement letters and 
fewer connectives. In general, decreasing the number of connectives (i.e. gates and inverters in a logic 
circuit) lowers the cost, other things being equal, and decreasing the number of occurrences of statement 
letters also lowers the cost, other things being equal. These two criteria usually are not the only measures 
of cost; the special hardware used for constructing circuits imposes other criteria. 

4:ImY.l. ---II”: 

Fig. 4-32 Fig. 4-33 

The minimization problem consists of determining methods for finding a simplest (i.e. 
cheapest) circuit equivalent to a given circuit (or finding aZZ simplest circuits equivalent 
to a given circuit). Since all that matters about the given circuit is the truth function that 
it determines, the minimization problem amounts to. finding one or all simplest circuits 
defining a given truth function. In Example 4.13, the circuit of Fig. 4-33 is clearly the 
simplest circuit corresponding to the truth function represented by 1 A v B. Of course, 
for any given truth function, one can find a circuit representing the truth function and 
then check the cost of the finite number of all simpler or equally simple equivalent circuits. 
This method will yield all simplest equivalent circuits, but, for three or more variables, the 
application of this method often will be so involved and long that it becomes practically 
unfeasible. Therefore what we are seeking is a fast, convenient and practical way of 
finding one or all simplest circuits for a given truth function. 





82 SWITCHING CIRCUITS AND LOGIC CIRCUITS [CHAP. 4 

Notice that we have not pictured inverters. This common convention stems from the 
fact that the presence or absence of a negation sign often results from an arbitrary decision 
as to which of two contradictory assertions is to be labeled by a letter, say A, rather than 
by 1 A. Since the number of negation signs often depends upon arbitrary decisions, it is 
advisable to consider negations of letters as initial inputs, on a par with letters, and not to 
count the number of inverters in computing the cost of the circuit. 

(2) In solving minimization problem (II) for the case of logic circuits, we must consider 
arbitrary statement forms (not just dnf’s). In this case, inverters are counted in computing 
the cost, since negations may be applied not only to letters but also to arbitrary statement 
forms. However, if we are only interested in switching circuits, consideration is restricted 
to statement forms in which negation is applied only to statement letters. 

Notational Convention. In writing statement forms, it is often convenient to omit the 
conjunction sign &, and to write ii instead of 1 A. 

Example 4.15. 
ABCV ABC insteadof (A&lB&C) v (lA&B& 1C) 

fifi~~iBf?D~kiC insteadof (lA&lB)v(lA&B&lC&D)v(lA&C) 

(AvB)(AvBvC) insteadof (lAvB)&(Av 1Bv 1C) 

In Example 4.15 and in the sequel, we adopt the convention of omitting the parentheses 
around the disjuncts of a disjunctive normal form. Thus, we have written ABC v ABC 
instead of (ABC) v (ABC), and AB v ABeD v AC instead of (A@ v @B&l) v (AC). This 
alternative notation saves time and space, and is customary in work on circuits. 

4.8 DON’T CARE CONDITIONS 

In many problems involving design of circuits there are certain conditions which are 
impossible or for which no requirement is made concerning the operation of the circuit. 
Such conditions are called don’t care conditions. 

Example 4.16. 
The switching circuit of Fig. 4-37 has a corresponding statement form A@ v C) v A B 6. In the spe- 

cial case where A is “5 is an even integer”, B is “z is a perfect square”, and C is “x is an integer divisible 
by 4”, the three conditions ABC, ABC, ABC are impossible. Hence there is no danger if we build a 
circuit which happens to allow current to flow if some of these impossible conditions occur. In particular, 
a circuit corresponding to the statement form 

A(~vC)v~~~vAB~v/i~C 

will accomplish the same task as the original circuit. But this statement form turns out to be logically 
equivalent to A v B, which has the much simpler circuit of Fig. 4-38. (To derive the logical equivalence, 
notice that ABC v ABC is logically equivalent to AR, while A@ v C) v ABe is logically equivalent to 
A(Bv Cv B6) and therefore to A. We are left with A v AB, which is logically equivalent to A v fi.) 

Fig. 4-37 Fig. 4-38 
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Example 4.16 shows that addition of don’t care conditions sometimes allows simplifica- 
tion of circuits. Later (Section 4.17), we shall learn a technique enabling us to choose 
those don’t care conditions which lead to maximal simplification of the circuit. 

Example 4.17. 

The decimal digits 0 to 9 can be represented in binary notation as follows: 

Decimal Notation 0 1 2 3 4 5 6 7 8 9 

Binary Notation 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 
c; 6 ; UiA& 

Consider the sentences: 

A The first (right-most) binary digit is 1 

B The second binary digit is 1 

C The third binary digit is 1 

D The fourth binary digit is 1 

Then -- -- 
ABCD corresponds to 0 

- -- 
ABCD corresponds to 1 

ABcD corresponds to 2 
. . . . . . . . . . . . . . . . . . . . . 

&&CD corresponds to 9 

In terms of inputs A, B, C, D, let us construct a switching circuit which passes current 
if and only if the number represented is 6,J, or 8,.i.e. under the condition ABC% v ABCD v 
ABeD. If the inputs A, B, C, D are such that they always represent a number between 0 
and 9, then we can ignore the six possibilities 1010, 1011, . . ., 1111 (i.e. the binary rep- 
resentations of 10 through 15). Hence the don’t care conditions are ABED, ABED, ABCD, 
ABCD, ABCD, ABCD. In particular, we can use 1 ;I’ 

AB@ V ABCb V ABeD v ABC? V f@CD V ABED v ABCD 
‘3 qJ 43- 44 Ii 

(Thus we are usin; four of the six don’t care conditions.) 
4” 

This statement form is logically 
equivalent to BC v AD. (This is left as an exercise. It can be done laboriously by a truth 
table, or much more easily using well-known logical equivalences from Chapter 1.) The 
circuit for BC v AD is given in Fig. 4-39. 

I Fig. 4-39 Fig. 4-40 

/ If we had not made use of the don’t care conditions, our original statement form 

f ABCb v ABCD v ABED could have been reduced to BCD v ABeD, with the costlier circuit 

i 
shown in Fig. 4-40. 
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4.9. MINIMAL DISJUNCTIVE NORMAL FORMS 
-- 

Given any dnf a, say ABC v ABD v ABCD v ABCD. Let IQ = the total number of 
literals (i.e. letters or negations of letters) in a, and d a = the total number of disjuncts of a. 
In the example above, la = 14 and da = 4. 

For dnf’s Q and YP, we say that @ is simplex than ? if and only if 1~ 5 lQ and da 4 d, 
and at least one of these inequalities is strict (<). 

This definition of simpler is most suitable in the case of logic circuits. If one is inter- 
ested only in switching circuits, then the size of 1~ alone would be a better measure of 
simplicity. 

That we do not take into account the number of negation signs stems from the fact, 
already mentioned, that the number of such signs often depends only on arbitrary decisions 
as to which one of a proposition and its negation is to be represented by a statement letter. 

A dnf Q, is said to be a ,minimal dnf for a statement form A if and only if Q is logically 
equivalent to A and no other dnf simpler than Q, is logically equivalent to A. We shall now 
embark upon the task of describing various methods of finding the minimal dnf’s for a 
given statement form. 

We must emphasize again that we shall not distinguish between a fundamental con- 
junction and any other permutation of the literals in that conjunction. Thus we shall not 
distinguish between ABC, BAC, &‘A, ACE, CAB and C’BA. Likewise we shall not dis- 
tinguish between a given dnf and any other dnf obtained by permuting the disjuncts. -- 
Hence for our purposes, AB v ABC v ABC and ACB v BA v ACE are essentially the same. 

4.10 PRIME IMPLICANTS 

Let A be a statement form. A fundamental conjunction Z+ is said to be a prime implicant 
of A if and only if + logically implies A but A is not logically implied by any other funda- 
mental conjunction included in $. This is the same as saying that $ logically implies A 
while any fundamental conjunction obtained by eliminating literals from # does not logically 
imply A. Clearly, a prime implicant of A is also a prime implicant of any statement form 
logically equivalent to A. 

Example 4.18. 

Let A be AB v ABC v ABC. Then AC is a prime implicant of A. For, AC logically implies A, while 
A alone does not logically imply A and C alone does not logically imply A. Other prime implicants of A are 
AB and BC. (Verification of these facts is left to the reader. We have no way of knowing at this point 
whether we have found all the prime implicants of A.) 

Example 4.19. 

Let A be (fi & (A v C)) v (I?& (A v c)). This is logically equivalent to Afi v BC v Al3 v BC. The 
prime implicants turn out to be AB, BC, AB, B6, AC and AC. 

The main significance of the notion of prime implicant is revealed by the following 
theorem. 

Theorem 4.1. Any minimal dnf @ for A is a disjunction of one or more prime implicants 
of A. -* / 

Proof. Let $ be a disjunct of a,. If + were not a prime implicant of A, then I/ would 
include a fundamental conjunction v such that B logically implies A. If @# is formed from 
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@ by replacing + by LT, then clearly 0 is logically equivalent to @. (For, on the one hand, $ 
logically implies 0, and therefore + logically implies a#. On the other hand, u logically 
implies A, which-is logically equivalent to @, and therefore @# logically implies a.) But 
@# is simpler than a’, contradicting the assumption that @ is a minimal dnf. ) 

We shall see shortly that a minimal dnf for A need not be a disjunction of all the prime 
implicants of A. 

Remark: Every fundamental conjunction which logically implies a statement form A 
must include a prime implicant of A. For, if the fundamental conjunction I# is not itself 
a prime implicant of A, then $ must include a fundamental conjunction +I which logically 
implies A. If $1 is not a prime implicant of A, then +1 must include a fundamental conjunc- 
tion #z which logically implies A, etc. This procedure must eventually stop, yielding a 
prime implicant of A which is included in #. 

Definition. If + is a fundamental conjunction and @ is a dnf, then we say that # is 
superfluous in + v @ when and only when @ is logically equivalent to # v a. 

If (Y is a literal, $ is a fundamental conjunction, and 9 is a dnf, then we say that CY is 
superfluous in a$ v Q when and only when # v 9 is logically equivalent to a$ v a. 

Remarks: (1) + is superfluous in + v @ if and only if $ logically implies 4,. (2) a is 
superfluous in N+ v @ if and only if $ logically implies (Y v @. 

We shall say that a dnf is h-redundant if and only if it contains no superfluous disjuncts 
or literals. 

Of course, we may obtain an irredundant equivalent of a given statement form by 
eliminating superfluous conjunctions and literals one by one. Clearly, an irredundant dnf 
is a disjunction of prime implicants, for, if one of its disjuncts were not a prime implicant, 
some literal of that disjunct would be superfluous (cf. Problem 4.10). In addition, any 
minimal dnf must be irredundant (for, elimination of superfluous disjuncts or literals 
would yield a simpler dnf). 

Example 4.20. 

Start with the dnf AB v ABC v ABC v Be. 

(1) The first occurrence of B is superfluous. (For, AC implies B v AB v ABC v Be.) Thus we obtain 
ABvACvAfXvBc. 

(2) AB is superfluous. (For, AB implies AC v ABC v BC.) We now have AC v ABC v B6. 

(3) A is superfluous. (For, BC implies AC v A v Be.) This leaves us with AC v l?C v BE, which turns 
out to be irredundant. (The reader can verify this without difficulty.) 

Notice that AB is a prime implicant of the original dnf but that AB does not occur in the irredundant 
dnf that we have constructed. Thus an irredundant dnf logically equivalent to a given statement form A 
need not contain all of the prime implicants of A. 

Example 4.21. 

It is easy to verify that AB v AB v Bc v BC is irredundant. However, it is not a minimal dnf, 
since AB v AC v B6 is a simpler logically equivalent dnf. Thus an irredundant dnf need not be a 
minimal dnf. Hence the very simple procedure of reducing to an irredundant dnf does not solve the 
problem of finding minimal dnf’s. 
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4.11 THE QUINE-MCCLUSKEY METHOD FOR FINDING 
ALL PRIME IMPLICANTS 

If A is a statement form and $I and & are fundamental conjunctions, then we say that 
$I is a completion of & relative to A if and only if +I includes & and the statement letters 
in $I are precisely the letters occurring in A. 

Example 4.22. 
Let A be ABC v AD v AB, and let #1 be AC. Then there are four completions of + relative to A, - _- 

namely: ABED, ABcfi, ABCD, Al?cD. 

Lemma 4.2. Let, + be a full dnf (i.e. a dnf in which the letters contained in any one dis- 
junct are precisely the letters in any other disjunct; see page 14). Let + 
be a fundamental conjunction all of whose letters are in @. Then + 
logically implies @ if and only if all completions of + relative to 4, are 
disjuncts of ai. 

Proof. (i) Assume 46 logically implies a’, but some completion $J of + relative to @ is not 
a disjunct of a. Take the truth assignment corresponding to $ (i.e. letters unnegated in # 
are T, while letters negated in + are F). Since $ is a completion of 4, the assignment makes 
+ T, and, therefore, it also makes @ T. But all disjuncts of a, being different from # in at 
least one letter, must be F. Hence @ would also be F, not T. 

(ii) Assume all completions of + relative to @ are disjuncts of @. Take any truth assign- 
ment making + T. We must prove that @ also is T. The truth assignment corresponds to 
some completion + of + relative to 4, (a letter appears unnegated in $ if it is T and negated 
if it is F). Then $ is a disjunct of @. But, since # is T, so is @. ) 

Lemma 4.3. If A is not a tautology, no prime implicant + of A contains any letters not 
in A. 

Proof. Assume some letter, say B, is in + but not in A. Let x be the fundamental 
conjunction obtained from + by removing the literal containing B. (Notice that + is neither 
B nor Z?. For, take a truth assignment making A false and choose the value of B so that 
+ is T. Then + does not logically imply A.) x also logically implies @. (For, given any truth 
assignment making x T, extend it by making B true or false according as B or B occurs as 
a conjunct of 4. Then (b is T and therefore A is also T.) But this contradicts the assumption 
that + is a prime implicant of A. ) 

Theorem 4.4. Let Q be a non-tautologous full dnf, and let + be some fundamental con- 
junction. Then + is a prime implicant of @ if and only if 

(i) all letters of (p are also in Q’; 
(ii) all completions of + relative to Q are disjuncts of a’, but no other 

fundamental conjunction included in + has this property. 

Proof. Direct consequence of Lemmas 4.2-4.3. ) 

The Quine-McCluskey Method for Finding All Prime Implicants of a Non-Tautologous 
Full Dnf a: Let Q be +I v - . . v &. 

(1) List +1, . . . , tik. 
(2) If two fundamental conjunctions + and x in the list are the same except that + con- 

tains a certain letter unnegated while x contains the same letter negated, add to the list 
the fundamental conjunction obtained by eliminating from + the letter in which + differs 
from X. Place check marks next to 4 and x. 
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(3) Repeat the process indicated in (2) until it can no longer be applied. Fundamental 
conjunctions which already have been checked can be used again in applications of (2). 

The unchecked fundamental conjunctions in the resulting list are the prime implicants 
of a. (This assertion will be justified after consideration of a few examples.) 

Example 4.23. 
Let + be Al36 v ABC v ABC v AL% v ABC. Start with 

ABC 

Al% 

ABC 
ABC 

ABC 

Application of (2) yields 

Notice that ABC and ABC yield BC; ABC and ABC yield AC, ABC and ABC yield AB. Now (2) is no 
longer applicable. Hence the prime implicants are ABC, BC, AC, AB. 

Example 4.24. 
Let @ be 

ABCD v AB6D v AB6D v A&D v ABCb v ABcii v ABCD v A%D 

(1) List ABCD 

ABCD 

A&D 

1 

Al%D 

ABED 

ABCD 

Notice that the disjuncts are listed in groups: first, those with no negations, then those with one 
negation, etc. Since process (2) is applicable only to a pair of fundamental conjunctions which differ 
by one in the number of negations, in seeking to apply (2) we need only compare fundamental con- 
junctions with those in the next group. 

(2) Application of process (2) yields ABCD p’ ABD 

1 

ABCD / 1 ACD 

A&D / ACD 

i 

Al?CD / ABi‘ 

ABC‘6 / 1 AL?D 

dBCb / BCD 

/iBcD / BCD 

tlB6ij / ABiS 
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Further application of (2) produces 

ABCD 4 

i 

ABD 4 AD 

-i 

ABi‘D / ACD d 

A&D 1/ 

i 

A6D r/ 

1 

ABCD 4 ABC 

AS&j r/ ABD I/ 

ABCb r/ 

I 

BCD 

i 

A&D / BCb 

/iBcD J ABb 

Process (2) is no longer applicable. Hence the prime implicants are ABC, k?D, Bc’b, ABb, AD. 

Justifica.tion of the &u&e-McCluskey Method: All fundamental conjunctions in the list 
logically imply a. (It is only necessary to observe that application of process (2) to funda- 
mental conjunctions which logically imply 4i yields a fundamental conjunction which also 
logically implies Q.) Every prime implicant + of @ will appear unchecked. (For, by Theorem 
4.4, all completions of $ will be disjuncts in a. Hence $ will eventually appear in the list 
after suitable applications of process (2) to these completions eliminate all the letters not 
in $. # itself will never be checked, since if it were it would not be a prime implicant of a.) 
On the other hand, no fundamental disjunction $ which is not a prime implicant will remain 
unchecked. (For, + must include a fundamental conjunction + which is a prime implicant 
of a,. By Theorem 4.4, all completions of + originally appear in the list. By suitable 
applications of process (2) to these completions, we obtain a fundamental disjunction x 
differing from # in precisely one letter. Then application of process (2) to JI and x imposes 
a check on $.) 

Limitation of the &wine-McCluskey Method: One must start with a full dnf. If we 
are given a dnf which is not full, we must expand it into a full dnf. This tedious and long 
process can be avoided by another procedure which we shall study later. 

4.12 PRIME IMPLICANT TABLES 

Once we have obtained all prime implicants of a given statement form a’, we must find 
out which disjunctions of prime implicants are minimal dnf’s. 

Theorem 4.5. Let @ be a non-tautologous full dnf, and let Q be a dnf. If * is a minimal 
dnf for @, then each disjunct of Q includes a disjunct of Q. 

Proof. Assume not. Let + be a disjunct of cp which does not include any disjunct of +. 
Hence each disjunct of 9 differs in at least one literal from + But then the assignment 
of truth values making + T makes * F, and therefore makes + F. But + is a disjunct of Qk; 
so Q must be T, which is a contradiction. ) 

Our overall strategy can now be made clear. We choose a disjunction @ of prime impli- 
cants so that every disjunct of the full dnf 9 includes a disjunct of q. (Clearly, + is logically 
equivalent to Q. Since q is a disjunction of prime implicants of a, * logically implies a. 
On the other hand, since each disjunct of Q includes a disjunct of ‘k-, @ logically implies 9.) 
Among all such q’s we find the minimal ones. We shall indicate techniques for narrowing 
this choice to a relatively small number of *‘s. 
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Construct a matrix, one row for each prime implicant of 4, and one column for each 
disjunct of a. Place a cross (x) at the intersection of a row corresponding to a prime 
implicant + and a column corresponding to a disjunct I/ of + such that I+ includes + This 
matrix is called the prime implicant table for @. 

Example 4.25. 
Let + be ABC v dBc v ABC v ABC. Using the Quine-McCluskey method, we obtain 

ABC i 

A& / AC 

ABC 4 
AB 

ABC / Bi‘ 

Thus the prime implicants are AC, AB, BC, and the prime implicant table is shown in Fig. 4-41. 

~5 i A~ A~, A~ ~:i 

Fig. 4-41 

We shall now describe various operations performed on prime implicant tables in order 
to obtain minimal dnf’s. 

Core Operation. Assume there is a disjunct I/ of Q such that the column under + con- 
tains a single cross. Let + be the prime implicant corresponding to this cross. + belongs 
to what we shall call the core of @. By Theorem 4.5, + must be a disjunct of every minimal 
dnf for @. We eliminate the row corresponding to + as well as all columns containing a 
cross in the row corresponding to 4. (Since + must be a disjunct of every minimal dnf, the 
condition of Theorem 4.5 is met for the disjuncts heading any such column.) 

Example 4.25 (continued). 
In Fig. 4-41, the columns under ABC and ABe have a single cross each. Hence JC and B6 belong to 

the core. But all the columns contain a cross in the rows corresponding to AC and BC. Hence AC v BC 
is the unique minimal dnf for 9. 

Example 4.26. 
Let 9 be 

ABCD v ABC'D v AB~'D v A&D v ABCD v ABC~ v ABED v ABED 

Find the prime implicants: 

ABCD / 

i 

ABCD 4 

AkD / 
ABCD / 

ABD d BD 

ACD 

BCD r/ 

Hence the prime implicants are BD, ACD, ABC, ABC', ACD. 
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The prime implicant table is 

BD 
ACD 

ABC 

ABC 

ACD 

ABCD ABED ABC'6 ABCD ABCD tlBCD ABCD ABCD 

X X X 

We draw circles around crosses which are the only ones in a given column. In this case there are such 
crosses in the columns under ABc‘?i, ABCD,ABCB,AB6D. Hence ABC, ACD, ABC and dcD are in the 
core. We draw a square around each cross in any row in which there is an encircled cross. In Example 
4.26 we then have a square or circle in every column. Thus every disjunct of Q includes a prime implicant 
in the core. Hence ABC v ACD v ABC v AcD is the unique minimal dnf for a. 

The results of Examples 4.25 and 4.26 are exceptional. Sometimes a single application 
of the core operation is not sufficient. Wider coverage is afforded by adding the following 
two operations. 

Dominant Column Operation. Jf a column /3 has a cross in every row in which a column 
a has a cross, then we can eliminate column ,!A (To satisfy the condition of Theorem 4.5, 
we have to use a prime implicant included in the fundamental conjunction heading column 

Then by assumption the same prime implicant is included in the fundamental conjunc- 
ken heading column p.) 

Dominated Row Operation. If the row corresponding to a prime implicant #1 has a 
cross in every column in which the row corresponding to a prime implicant q2 has a cross, 
and if the number of literals of $1 is smaller than that of q2, then we eliminate the row 
corresponding to +2. (F or, if a minimal dnf had $2 as a disjunct, replacing qz by #1 would 
lower the cost, contradicting the assumption that $z is minimal.) 

Example 4.27. 
Let @ be 

- -- _- -- 
Abed V A&D V ABcb V ABED V h%?D V ABED V A&B V Abed V &CD V &CD V ABED 

First we obtain the prime implicants: 

ABCD / 

A&D 1/ 
ABCb d 
ABCD 4 

1 A&b ABCD /iBCD ABCD 4 1/ / / 
_ _- 

ABCD v' 
/iBED 4 
_- -- 
ABCD 4 

ACD 4 AC 

ABC r/ BC 

BCD / AB 

1 

Al% v' 
LIB 

Ai?D I/ 
BCD / 
ACiS r/ 

ABC 4 
ABD I/ 

- _- 
BCD 
- -- 
ACD 
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--- --- 
Thus the prime implicants are BCD, ACD, AC, BC, AB, AB. The prime implicant table is 

- -- 
BCD 
- -- 
ACD 

AC 

BC 
AB 
AB 

- -- - - -- 
ABCD ABCD ABCB ABCD ABCii ABCb A&% ABCD ABCD AB6D ABCD 

X X 

X X 

X X X X 

X X X X 

El El 
El 0 

El 0 
El 0 

The columns under ABED and ABED have unique crosses, which we circle. Thus AB and AB belong to 
the core. Put a square around each cross in the rows belonging to AB and AB. Hence all the columns 
containing a circle or square can be eliminated. The new table is 

f 

The columns under ABCD and ABCB have crosses in the same row. Hence by a dominant column opera- 
tion we may eliminate either column, say, the one under ABCD. This leaves us with the new table: 

_- -- 
ABCD ABCD 

(1) - -- BCD X 
- -- 

(2) 

t 

ACD X 

(3) AC X 

(4) BC X 

Fig. 4-42 

None of our operations are applicable to this table. However, notice that in order that each column 
include some disjunct of the required minimal dnf, we must have ((1) or (2)) and ((3) or (4))t, i.e. 
((1) v (2)) & ((3) v (4)). This is logically equivalent to 

((1) & (3)) v ((1) & (4)) v ((2) CfL (3)) v ((2) & (4)) 

Thus there are four different ways of choosing the rest of the prime implicants, and we obtain the 
four dnf’s: - -- 

Ai?vi%BvBCDvAC 
- -- 

ABvfiBvBCDvBC 
- -- 

ABvABvACDvAc 
- -- 

ABvtlBvACDvBc 

These are the only possibilities for minimal dnf’s. Since they all have the same cost, all four are mini- 
mal dnf’s. 

We shall call the method we have used for handling the table of Fig. 4-42 the Boolean method. 

Example 4.28. 
Let + be 

ABCD v ABED v ABCD v ABCB v ABCD 
- -- _ - -- 

v ABM v ABCD v ABCD ~ABcbv ABCD 

tBy (l), we mean that row (1) appears as a disjunct in the required minimal dnf, by (2) we mean that 
row (2) appears as a disjunct, etc. 
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We obtain the prime implicants: 

, ABCD 4 [ABD 4 BD 

[CHAP. 4 

(ABCD r/ I. BCD 4 

i 

- -- 
ABCD r/ 
ABCD 1/ 
- -- - 
ABCD I/ 

- -- 
Thus the prime implicants are ABC, ACD, BCD, ABb, BD, AC. The prime implicant table is 

ABC 

ACD 
- -- 
BCD 

AED 

BD 

AC 

- - -- 
ABcD A&D ABCD ABCI~ ABCD 

- -- 
/iBCfi /iBCD ABCD t3&% ABCD 

X X 

X X 

X X 

X X 

0 El El 0 X 

El 0 0 El 

Circle the crosses which are unique in their columns. Hence BD and A6 are in the core. Place squares 
around all crosses in the rows of BD and AC. We then eliminate the rows of BD and AC, and all columns 
containing squares or circles. The new table is 

(1) tlBC 

(2) ACB 

(3) - -- BCD 

(4) ABii 

1 /iBCir ABCD 
-_ -- 
ABCD 

I 

I X 

X X 

X 

X X 

Fig. 4-43 

Now we can apply the Boolean method used in Example 4.27. We obtain 1(l) v (2)] 8~ [(2) v (4)] & [(3) v (4)1, 
which is equivalent to 

[Cl) 65 (2) & (3)] v [Cl) & (2) & (4)] v [Cl) & (4)] v [Cl) & (3) & (4)] v [(2) & (3)] v [(2) & (4)] v [(2) & (3) & (4)l 

But, taking into account the fact that, when (2) is used, (1) is not required, and that, when (4) is used, 
(3) is not required, we obtain 

((2) & (3)) v ((2) & (4)) v ((1) & (4)) 

Thus there are three possibilities for minimal dnf’s: 
- -- 

BDvAcv/iCijvBCD 

BDvACvACijv~@ij 

BDvACvABCvAB6 

Since the costs are the same, all three are (the only) minimal dnf’s for a. 
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Instead of the Boolean method, we may use the so-called branching method for handling the table of 
Fig. 4-43. We take a column with a minimal number of crosses. In our example, there are two crosses in 
each column; so we may choose any column, say the one under .dBCD. To ensure that ABCD includes 
a prime implicant of the sought-for dnf’s, we may use either ABC or ACD. Hence we obtain two tables 
(in general, if there are n crosses in the column, we would obtain n tables) as follows: in the left-hand table 
(Fig. 4-44) we assume that ABC is taken as a disjunct and we eliminate the row containing ABC as well 
as every column containing a cross in that row. 
with ACD. 

For the right-hand table (Fig. 4-45), we do the same 

Fig. 4-44 Fig. 4-45 

In the left-hand table, we can again apply the Boolean method or branching, but in this simple case it is 
obvious that only the choice of ABi? will yield minimal cost. In the right-hand table, we can choose either - _- 
BCD or AED. Thus we have the following possibilities: 

From the left-hand table, BD v A6 v ABC v ABD. 

From the right-hand table, BD v At? v ACD v Bf?D and BD v AC’ v ACD v ~@fi. 

This is identical with the result of the Boolean method. 

4.13 MINIMIZING WITH DON’T CARE CONDITIONS 

Let us assume that we must find a minimal dnf for a statement form @, assuming that 
the additional fundamental conjunctions +1, . . . , +k are don’t care conditions. Then we can 
adapt the method used in the preceding section in the following manner. Find all prime 
implicants of Q v q1 v . . f v tik. However, in constructing the prime implicant table, use 
columns only for the disjuncts of CD, not for ql, . . . , +k (since we are concerned only that 
each disjunct of @ include some prime implicant of the required minimal dnf’s). 

Example 4.29. 
Let @ be 

A&D V ABCb V &?CD V &cb V A&L% 

-- -- 
Let the don’t care conditions be: ABCD, ABED, ABeD, dBcD, ABCD. By the standard procedure (left 
as an exercise for the reader), we fmd that the prime implicants of 9 v ABCD v ABED v A%D v ABcD v - - -- 
ABCD are: BD, AC, ABC, ACE, ficb, Al?b. 

The prime implicant table is 

1 Al?cD Al?cb ABCD ABCb /i&B 

BD 

AC 

ABC 

ACB 
- -- 
BCD 

Am 

X X 

X X 

X X 

X X 

X 

Now AC has crosses wherever BCB has, and A6 has fewer literals than J?CD. Hence by a dominant row - -- 
operation we eliminate the row of BCD, obtaining 
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BD 

AC 
ABC 
ACD 

ABD 

ABCD AiX?D ABCD tlBCfi ABCD 

X X 

El 0 
X X 

X X 
X 

Now the column of ABED has a unique cross. Hence we place A6 into what we call the secondary core. 
(AC must be a disjunct of every minimal dnf.) Then by the core operation we drop the row of AC, 
together with the columns under ABED and ABED: 

Now we can apply either the Boolean method or the branching method. However, it is clear that the first 
and third rows yield the only minimal dnf. Hence the unique minimal dnf is AC v BD v ACD. 

4.14 THE CONSENSUS METHOD FOR FINDING PRIME IMPLICANTS 

Given two fundamental conjunctions q1 and #2. If there is precisely one letter p which 
occurs negated in one of $1 and #z and unnegated in the other, then the fundamental con- 
junction obtained from $1+2 by deleting p and p and omitting repetitions of any other literals 
is called the consensus of #, and s#~. 

Example 4.30. 
(i) The consensus of A% and ABD is ACD. 

(ii) The consensus of AB and Ak'D is BCD. 
(iii) There is no consensus of ABC and ABD. 

(iv) The consensus of A and AB is B. 

(v) The consensus of A and AB is B. 

Theorem 4.6. The consensus + of $1 and q2 logically implies #1 v #2. 

Proof. Consider any truth assignment making + true. Let P be the letter occurring 
negated in $I and unnegated in g2. If p is T, then qz is T. If p is F, then +I is T. In either 
case, I/I~ v I& is T. ) 

Corollary 4.7. If + is the consensus of $1 and $z, then +I v qz is logically equivalent to 
$1 v #z ” + 

Consider the following two operations transforming a dnf into a logically equivalent dnf. 

(i) Eliminate any disjunct which includes another. 

(ii) Add as a disjunct the consensus of two disjuncts, if that consensus neither is identical 
with nor includes some disjunct of the given dnf. 

Given a dnf a. (If we are given an arbitrary statement form, first transform it into a 
logically equivalent dnf.) The consensus method consists of applying operations (i) and (ii) 
until these operations are no longer applicable. The result turns out to be the disjunction 
of all prime implicants of @. 
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Example 4.31. 

Let + be ABi’ v Al?Cb v Al? v ABC v AfiCD. 

By (i), ABC v AB v ABC v Al?cD (ABCD includes A@. 

By (ii), ABC v Afi v ABe v L@~D v A6 (Consensus of ABC and A@. 

By (i), Al? v ABC v ABcD v A6 (ABC includes AC). 

By (ii), AR v ABC v ABC?D v A6 v BED (Consensus of AB and .dBcD). 

By (i), AI? v BBC v A6 v BcD (.dBcD includes BED). 

By (ii), AB v ABC v A6 v B6D v Bf? (Consensus of ABC and AC). 

By (i), Al? v AC v fi6D v B(? (ABC includes Bc). 
By (ii), AB v A6 v B6’D v Bc v CD (Consensus of BED and B6). 

By (i), Ai? v AC v B(? v CD (i?cD includes CD). 

Thus, the prime implicants are Al!?, AC, B6, CD. 

Example 4.32. 

Let 9 be AB v ABCb v ABC v E?D. 

By (ii), AB v ABCn v ABC v BD v AC6 (Consensus of AB and A&%). 

By (i), AB v ABC v BD v ACD (ABCD includes ACfi). 
By (ii), AB v ABC v BD v ACD v Be (Consensus of AB and ABC). 

By (i), AB v BD v AC?? v BE (ABC includes BE). 

By (ii), AB v l?D v ACir v Bc v AD (Consensus of AB and ED). 

By (ii), AB v l?D v ACfi v BC v AD v ABC (Consensus of BD and ACB). 
By (ii), AB v ED v AC6 v BC v AD v ABC v AC (Consensus of AB and ABC). 

By (i), AB v ED v Bc v AD v AC (ABC includes AC; ACfi includes AC). 

By (ii), AB v ED v SC v AD v AC v CD (Consensus of BD and B6). 

Hence the prime implicants are AB, BD, B6, AD, AC, CD. 

Example 4.33. 

Let + be ABCD v ABED v ABED v ABC v A6i. 

By (i), ABCD v ABED v ABC v A6b (ABED includes A6n). 
By (ii), ABCD v ABED v ABC v At% v t?cD (Consensus of ABcD and .&?Z‘). 

By (i), ABCD v Al?C v A6D v AcD (ABED includes AED). 

By (ii), ABCD v ABC v ACn v AC?D v Bcb (Consensus of ABe and ACB). 
- -- 

Hence the prime implicants are ABCD, ABC, Acfi, AcD, BCD. 

Justification of the Consensus Method. 

(1) The process must come to an end. Since there are only a finite number of dnf’s using 
the letters of the given statement form a, we must show that there can be no cycles in the 
application of (i) and (ii). Once we drop a fundamental conjunction #I by (i), then (b can 
never reappear by virtue of (ii). For, in all future step& there will always be a fundamental 
conjunction which is included in 9. Hence if there were a cycle, it would consist solely of 
applications of (ii). But (ii) increases the number of disjuncts. 

(2) Every prime implicant + of @ occurs as a disjunct in the dnf -P remaining at the end 
of the process. Assume the contrary. Hence there must be a fundamental conjunction 6’ 
which has the maximum number of literals among all fundamental disjunctions T such 
that: (a) T includes 4; (b) T includes no disjunct of -P; (c) the letters of T occur in @. 
Notice that 4 is such a fundamental conjunction 7. Clearly, by (a), 19 logically implies a. 
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Also, B cannot contain all the letters of a,. (Otherwise, by (b), B would logically imply the 
negation of each disjunct of +, and therefore would logically imply la. But only con- 
tradictions logically imply both Q, and 1 Q, and no fundamental conjunction is a contradic- 
tion.) Let A be a letter of Q not in 0. By the maximality of 8, A0 and A0 must lack one of 
the properties (a)-(c). The only one they can lack is (6). Hence there are disjuncts +I and 
qz of * such that AH includes #1 and &I includes q2. By property (b) of 0, A must be a literal 
of I/~ and A must be a literal of qz. Since A0 includes I+~ and A6’ includes q2, q1 and $, do not 
have any other literals which are negations of each other. Then the consensus p of I#~ and 
qz is included in 8, and therefore, by (b), includes no disjunct of Q. Hence an application of 
(ii) can be made to #I and g2, contradicting the assumption that the process has ended. 

(3) Every disjunct + of the dnf !P remaining at the end of the process must be a prime 
implicant of a. Otherwise + would include some prime implicant #. By (2), # would be a 
disjunct of the final dnf, and operation (i) would still be applicable. 

4.15 FINDING MINIMAL DNF’s BY THE CONSENSUS METHOD 

If we have obtained all the prime implicants of a statement form GJ by the consensus 
method, the problem remains to find the minimal dnf’s. Of course, we could construct the 
full dnf for 4, and then apply the methods already described. However, constructing the 
full dnf for + sometimes would involve a long and tedious process, and it would be conven- 
ient to have ways of producing minimal dnf’s without going through that process. One 
such method is to eliminate superfluous literals and disjuncts from the disjunction of the 
prime implicants, obtaining irredundant dnf’s. Then one can compare the irredundant 
dnf’s and pick out the minima1 ones.? 

Example 4.34. 

We have already found (Example 4.33) that the dnf ABCD v ABC6 v ABcD v ~~~ v Acid has as - _- 
its prime implicants ABCD, ABC, Acfi, ACD, BCD. Now we shall eliminate superfluous disjuncts from 

ABCD v /ifiG v AC0 v ACD v k%n 
1 

To determine whether a given disjunct $ is superfluous in a dnf + v * we check whether * is logically 
equivalent to $ v *. This holds if and only if + logically implies *. But the latter holds if and only if 
the result is a tautology whenever, for each literal p in +, we replace p in * by T and the negation of p 
by F. Hence we construct the following table. 

1 ABCD ABC ACb ACD 
- -- 
BCD 

ABCD F F F F 

ABC F F F D 

ACb F F F E 

ACD F B F F 
- -- 
BCD F A A A 

In the row corresponding to a fundamental conjunction @ we calculate what each of the other disjuncts 
must be when @ is T. Then we check to see whether the disjunction of the results in that row is a - -- 
tautology. In the table above, this holds only in the last row. Hence BCD is the only superfluous disjunct. 
All the other disjuncts must occur in every minimal dnf. Thus we are reduced to 

ABCD v Ah? v AC’LS v ACD 

fThe method we shall outline is due to M. J. Ghazala [26]. 
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To eliminate superfluous literals, remember that a literal p is superfluous in p$ v * if and only if $ logi- 
cally implies p v *. A quick check shows that none of the literals is superfluous. Hence we have a unique 
irredundant dnf, which must be the only minimal dnf. 

Example 4.35. 

Consider the statement form @: 
BCVBCVBDVCDVAD 

Since the consensus method yields no additional disjuncts, this is already the disjunction of all the prime 
implicants of +. For finding superfluous disjuncts, we construct a table as in the preceding example. 

I 
$1 $2 $3 (h4 $5 

l&Y B6 BD CD AD 

$1 Bc F F D AD 

+, BE F D F AD 

$3 BD F c C A superfluous 

$4 CD fi F B A superfluous 

c5 AD EC SC B C 

Since the disjunctions of the terms in the first, second and fifth rows (respectively) are not tautologies, 
BC, B6 and AD are not superfluous and occur in all minimal dnf’s for +. Let ei mean that ci occurs as 
a disjunct in a given dnf for a. Hence from the third row, if 5 then 0204, for, if +3 does not occur in the 
given dnf for +, then both +s and @4 must occur. (Otherwise, when @s is T, then + would not necessarily 
be T, contradicting the fact that +3 logically implies a,) Thus u3 v (u2g4) is true. Similarly, from the 
fourth row, ch v (01u3) is true. Hence we must have 

which is equivalent to ul”204u5 v 01u2u3(r5 

Hence the two irredundant dnf’s are BC v BE v CD v AD and l?C v B6 v BD v AD. Since these are 
of equal cost, they are both minimal dnf’s. Notice that in this example we could have guessed this 
immediately from the third and fourth rows. 

Example 4.36. 
Let the prime implicants of a statement form be BE, CDls?, ACD, ACE, ABD, ABE, BCD, BCE. 

(Observe that the consensus method is no longer applicable to the disjunction + of these fundamental con- 
junctions, and therefore the latter are all the prime implicants of a.) 

DE 

CDB 

tlCD 

ACE 
Al?D 
ABE 

BCD 

BCE 

$1 +2 $3 @4 $5 cs $7 $8 

bE CD‘?3 ACD ACE ABD ABE BCD BCE 

F 

F 

F E 

b F 

F CE 
D F 

F B 

D F 

F AC F AB F BC 

A F AB F B F 

E F F B BE superfluous 

D F F BD B superfluous 

F F E c CE 
F F D CD C superfluous 

A AE A AE E superfluous 

AD A AD A D superfluous 

Rows 3, 4, 6, 7, 8 show that ACD, ACE, ABE, BCD, kE are superfluous. Thus (r,, 02, a5 are true. From 
the third row, n3 v 02~4 is true. From the fourth row, ~4 v c103 is true. From the sixth row, 06 v u1u5 
is true. From the seventh row, 

07 v up8 v (r.p,p6 v (1p30fj v 02r74c75 v (1305 
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is true. This has been obtained by finding those subsets of the entries in the seventh row, the disjunction 
of which is a tautology and such that no proper subset of this subset has the same property. This process 
can be carried out by constructing a table for the entries in the seventh row similar to the one constructed 
above. From the eighth row, 

OS ” Ol”7 v cT~c73(15 v (rl(ryJf, ” (r1aqag ” 0406 

is true. Hence we have 
o1q&3 ” v4)(u4 ” v3)b% ” UlC5) 

(07 v QzC,s ” ozt,4mG ” rza3g,j ” (7204m5 ” a305)(08 ” 0lc7 ” 0103m5 ” 0l(r3(Tf, ” UlU405 ” 04d 

This is equivalent to (71~2U3U5 ” ~1(72~4”5 

(When multiplying out, we see that these are two of the disjuncts in the expansion, and, since all the other 
disjuncts include one of these, all other disjuncts may be dropped.) 

Thus the irredundant dnf’s are 

DE v CD.@ v ACD v .&?b and bE v CDI? v ACE v Al?D 

Notice that none of the literals is superfluous. Since the costs of these dnf’s are equal, both are 
minimal dnf’s. 

4.16 KARNAUGH MAPS 

There is a pictorial method for obtaining minimal dnf’s which is convenient for problems 
involving at most six statement letters.? 

Let us start with the case of two statement letters. 
In this case t.he Karnaugh map is based upon Fig. 4-46. 
Each square represents the fundamental conjunction 
whose conjuncts are the literals standing at the head of 
the row and column determining the square. To rep- 
resent a full dnf @ we place a check in each square cor- 
responding to a disjunct of a. 

B 

I3 
El 

Fig. 4-46 

Example 4.37. 

AB v AB is represented in the Karnaugh map of Fig. 4-47 and Ai? v AB v AB in the Karnaugh 
map of Fig. 4-48. 

Fig. 4-47 Fig. 4-46 

By adjacent squares we mean squares which have a A A 

side. in common. Clearly, a single square represents a 
fundamental conjunction consisting of two literals, while 

B 

two adjacent squares differ in one statement letter and 
therefore represent a single literal. Thus in Fig. 4-4’7 B 
we have AB v AB, which is logically equivalent to B. In 
Fig. 4-49 we notice two pairs of checked adjacent Fig. 4-49 

tSee Karnaugh [42]. Another pictorial method, somewhat less graphic than Karnaugh’s, has been given 
by Veitch [93]. 
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squares. We place loops around the checks in each pair. Then the corresponding dnf is 
logically equivalent to B v A. (B corresponds to the horizontal loop, and A to the vertical 
loop.) Clearly, B v A is minimal. 

Now let us turn to the case of three statement letters (Fig. 4-50). Each square rep- 
resents the conjunction of the fundamental conjunctions heading the column and row 
intersecting in that square. 

AB AB /iB AB 

C 

c 

EIE 

Fig. 4-50 

Example 4.38. 

ABC v AL?C v ABC is represented in Fig. 4-51. 

AB Al? /iB /iB 

C 4 d 

E 
6 I/ 

Fig. 4-51 

Example 4.39. 

ABC v ABC v ABC v ABC v ABC is represented in Fig. 4-52. 

C 

c 

Fig. 4-52 

In Fig. 4-50, by adjacent squares we mean squares which differ in precisely one literal. 
Thus two squares which have a side in common are adjacent. (Observe that we have used 
the labeling AB, Al?, AB, AB so that as we move from one square to an adjoining one, 
only one literal changes.) In addition, in the first row the left-most square ABC is adjacent 
to the right-most square ABC; and in the second row, ABC 
is adjacent to ABC. This amounts to an identification of 
the left-most vertical line with the right-most vertical line. 
Pictorially we can imagine the left-most vertical line glued C 

to the right-most vertical line so as to form a cylinder 
(Fig. 4-53). c 

On the cylinder, adjacent squares are adjacent in the 
usual geometric sense. Fig. 4-53 
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In Fig. 4-50, a single square represents a fundamental conjunction of three literals, 
while two adjacent squares differ in one literal and therefore represent a fundamental 
conjunction of two literals. 

Example 4.40. 

Fig. 4-54 shows ABC v ABC which is logically equivalent to At?. 

AB AB iiB /iB 

C 4 

c 

i 
4 

Fig. 4-54 

Example 4.41. 
ABC v ABC is represented in Fig. 4-55 and is logically equivalent to BC. 

AB Al? /iB /iB 

Fig. 4-55 

Furthermore, four squares forming a square array or arranged in one row represent 
a single literal. 

Example 4.42. 

Fig. 4-56 

Fig. 4-56 exhibits ABC v ABC v ABe v ABC?, which is logically equivalent to B. 

Example 4.43. 

Fig. 4-57 

In Fig. 4-57 we see ABC v ABC v ABC v ABC, which is logically equivalent to A. 
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Example 4.44. 

Fig. 4-58 

In Fig. 4-58 we have ABC v AL%? v ABZ‘ v ABi‘, which is logically equivalent to c. 

Example 4.45. 

101 

c 4 4 

n 
c 4 4 

Fig. 4-59 

Fig. 4-59 represents ABC v ABC v ABC v ABC, which is logically equivalent to B. 

Notice that if we picture Fig. 4-59 on a cylinder, the four checks form a square array. 

The technique for minimization is straightforward. We draw loops around single 
checks, or pairs of adjacent checks, or groups of four checks (forming a square array or 
arranged along a row), in such a way that every check belongs to at least one loop. We try 
to make maximal use of groups of four checks or two checks so as to minimize the number 
of disjuncts and literals. 

Example 4.46. 

C 

c 

AB AB /iB AB 

Fig. 4-60 

The Karnaugh map of Fig. 4-60 represents ABC v ABC v ABe v A&?. The unique minimal dnf is 
AB v AC v A&?. AB corresponds to the vertical loop, and AC to the horizontal loop. 

Example 4.47. 

C 

c 

AB AB /iB /iB 

Fig. 4-61 

Fig. 4-61 represents ABC v ABC v ABC v ABC v ABe. There is a unique minimal dnf: B v AC. 
B corresponds to the four checks ABC, ABC, ABC, ABC’, while AC corresponds to the horizontal loop 
covering ABC and ABC. 
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Example 4.48. 
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The unique minimal dnf is A v 6. 

Example 4.49. 

C 

c 

Fig. 4-62 

Fig. 4-63 

In this case, Al?6 can be combined with either ABC or Al%?. Hence we have twb minimal dnf’s: 

ACVA~VAB, ACv~~v~~ 

Let us consider now Karnaugh maps for four statement letters (Fig. 4-64). 

AB AB /iI? /iB 

Fig. 4-64 

Again, adjacent squares are those which differ in exactly one literal. In particular, ABCD 
and ABED are adjacent, as are ABED and ABeD. This amounts to identifying the left- 
most and right-most vertical lines, and identifying the lowest and highest horizontal lines. 
Pictorially we can imagine that we have glued together the left-most and right-most vertical 
lines, and the lowest and highest horizontal lines, to form a doughnut-shaped surface 
(called a torus). On this doughnut, adjacent squares are adjacent in the usual geometric 
sense. 

A single square represents a fundamental conjunction of four literals. A pair of 
adjacent squares represents a fundamental conjunction of three literals. Four squares, in 
a square array or along a single row or along a single column, represent a fundamental 
conjunction of two literals. Finally, eight squares arranged in two adjacent columns or in 
two adjacent rows represent a single literal. 
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Example 4.50. 
AB AB /iE /iB 

CD 

Fig. 4-65 

The Karnaugh map in Fig. 4-65 represents AB. 

Example 4.51. 

CD 

Fig. 4-66 
Fig. 4-66 represents AD. 

Example 4.52. 
AB AB AB AB 

Fig. 4-67 
Fig. 4-6’7 is the Karnaugh map for BD. 

Example 4.53. 
AB AB AR /iB 

Fig. 4-68 
Fig. 4-68 represents B. 



104 

Example 4.54. 
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CD 

Cb 

CD 

CD 

Fig. 4-69 

Fig. 4-69 represents D. 

Minimization techniques for four statement letters are similar to those for three. 

Example 4.55. 

Fig. 4-70 

The unique minimal dnf is AD v Bd. Observe that the four squares in the column under AB are 
not joined by a loop, since the corresponding fundamental conjunction AB would be superfluous. 

Example 4.56. 
AB AB AB /iB 

Fig. 4-71 

The check in ABCD cannot be combined with any other. Hence ABCD must be in any minimal dnf. 
The check in ABC% can be combined only with the check in A&D. Hence BCD must be a disjunct of 
any minimal dnf. Similarly, the check in ABEiS can be combined only with the check in ABeD. Hence 
Ai% is a disjunct of any minimal dnf. Now the checks in Ah% and Ah?ii already have been covered. 
Thus the unique minimal dnf is 

ABCD vBc6vAC.D 

Examples 4.55-4.56 illustrate the method to be used. For each checked square, deter- 
mine whether there is a unique largest combination of checked squares containing it. If 
so, put a loop around that combination. To avoid superfluous disjuncts, first handle each 
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checked square whose unique largest combination consists only of itself; then, among the 
remaining uncovered checks, handle those whose unique largest combination consists of two 
checks; among the still uncovered checks, handle those whose unique largest combination 
consists of four checks, etc. For any remaining checked square, determine all the possible 
largest combinations containing them, and, among the corresponding dnf’s,t find the minimal 
ones. 

Example 4.57 

CD 

CD 

Cb 

CD 

AB Al? /iB iiB 

L 
Fig. 4-72 

Considering ABCD, we see that ABC must be a disjunct (covering ABCD and ABC@. Looking at 
ABCD, we note that ABC must be a disjunct (covering A&D and A&B). None of the other three checks 
belongs to a unique largest combination. The only uncovered check is A&D, which can be combined 
either with ABCD or with A&%. Hence we obtain two minimal dnf’s: 

ABC v ABC v Ad and ABC v ABC v i?CD 

In the case of five statement letters, we can use a three-dimensional Karnaugh map 
(Fig. 4-73). 

Fig. 4-73 

tSome choices among the remaining combinations may render superfluous some of the disjuncts already 
obtained (cf. Problem 4.22). 
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The usual definition of adjacent squares implies that corresponding squares in the two 
planes (e.g. Al?CiSE and ABCDE) are adjacent. Combinations of sixteen squares are pos- 
sible and yield a fundamental conjunction consisting of a single literal. Combinations of 
eight squares yield fundamental conjunctions of two literals, etc. 

For six statement letters one could use four planes, but in that case, and even more so 
for larger numbers of statement letters, the geometric picture often is too complex to permit 
easy construction of minimal dnf’s. 

4.17 KARNAUGH MAPS WITH DON’T CARE CONDITIONS 

If we are given a full dnf a, together with various don’t care conditions, we construct a 
Karnaugh map by placing checks in the squares corresponding to the disjuncts of ip and 
crosses in the squares corresponding to the don’t care conditions. In constructing minimal 
dnf’s, we are free to use any of the crosses which allow us to form larger combinations of 
squares. 

Example 4.58. 

Let + be 
ABCD v A&D v AfiCfi v ABCfi v ABeD 

--- _-_- 
and assume that ABCD, ABED, ABED, ABCD, ABCD are don’t care conditions. The Karnaugh map is 
shown in Fig. 4-74. 

-- 
tlB 

X 

Fig. 4-74 

First we handle the checked squares which belong to unique largest combinations (possibly including 
crosses). Thus ABCD belongs to a unique largest combination: {ABCfi, ABCD}. Hence ABC must be a 
disjunct of all minimal dnf’s. Likewise, A&b belongs to a unique largest combination (the second column), 
and therefore AB must be a disjunct of all minimal dnf’s. The other checks do not belong to unique largest 
combinations. The only check still not included in a loop is ABCD. For the latter, there are two possible 
combinations of four squares. Hence we may use either AD or BD. Thus there are two minimal dnf’s: 
ABC v AL? v AD and ABC v AB v BD. 

Example 4.59. 

Let 9 be _- -- ABcDE V Aide V A&BE V A&bE V ABCDE V A&DE 
---- ----- v ABcDk V ABCDB V ABCDE V ABCDE V A&DE 

Let the don’t care conditions be 

ABCDE, A&%E, ABCDE, ABCfil?, /ikijl?, ABCDE 

The Karnaugh map is shown in Fig. 4-75 below. 
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Fig. 4-75 

We seek the checks belonging to unique largest combinations. First, ABCDE belongs to such a com- 
bination (the four corners of both p-lanes). Hence BD is a disjunct of all minimal dnf’s. We get the 
same result from the checks for ABCDE, ABCDE, ABCDE, ABEDI?. The checks in the middle squares --- _-__ 
of both planes belong to a unique 8-square combination: (A&TEE, A&DE, ABCDE, ABCDE, A&%jE, - - - - - - - _ - 
ABCnE, ABCDE, ARCDE}, yielding the disjunct fib. The only check still unaccounted for is A&DE. 
This belongs to two Z-square combinations. Hence we must have either ABCE or ACDE. Thus there are 
two minimal dnf’s: 

BDvB~v/i&E 

4.18 MINIMAL DNF’s OR CNF’s 

Given a statement form cp, we can obtain the minimal dnf’s for Q and we also can obtain 
the minimal dnf’s for 1 a. But the minimal dnf’s for la yield minimal cnf’s (conjunctive 
normal forms) for a. 

Example 4.60. 
Recall that a cnf is a conjunction of one or more disjunctions of one or more literals. The cnf 

(A vi?v C) & (A v B) & (Bv i‘) 
has as its negation 

ABCVABVBC 

Thus by comparing the costs of the minimal dnf’s and minimal cnf’s for +, we can obtain those state- 
ment forms which are minimal among all dnf’s or cnf’s for +. 

Example 4.61. 
Let + be - -- 

ABC~"ABCDVAB~DVABCDV ABCDvAlkfivABCB 

If we examine the Karnaugh map for + (Fig. 4-76, below), we find that there are three minimal dnf’s: 

ABD v ACiiv ACDVBCD 

ABDvAC'~~AB?~VABC 

ABD v AC~~ABC~BC~~ 
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CD 

CD 

Cb 

CD 

On the other hand, la has the Karnaugh map (Fig. 4-77) obtained by putting checks in the empty squares 
and erasing the checks already present in Fig. 4-76. 

CD 

Fig. 4-76 

AB Al? 

Fig. 4-77 

From Fig. 4-77, we see that the minimal dnf’s for 1Q are 

AD v ABC v ABd v /i% 

AD v BCD v ABd v Al%? 
- -- 

AD v BCij v ACD v ABC 

AD v BCij v /icfi v i?cD 

Thus the minimal cnf’s for + are 

Since these are cheaper than the minimal dnf’s for +, these are minimal among all dnf’s or cnf’s for a. 

The procedure in the above example for finding the minimal statement forms among all 
dnf’s or cnf’s for @ does not provide a general method for finding minimal statement forms 
for @ (i.e. minimal series-parallel switching circuits, or minimal logic circuits). For example, 
(A&B) v (C&(DvE)) is minimal, but it is neither a dnf nor a cnf. 

Final Remarks: (1) We have indicated methods for finding minimal dnf’s (or minimal 
dnf’s or cnf’s). This constitutes a solution of Problem (I) on page 81, although possibly 
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not the best solution (cf. Remark (2)). No reasonably good general solutions for Problems 
(II) or (III), page 81, are known. (2) The methods we have given for finding minimal 
dnf’s require us to find all prime implicants. (This is not true of Karnaugh maps, but these 
are useful only for statement forms involving at most five or six statement letters.) How- 
ever, there are certain cases in which the number of prime implicants is so large that our 
methods are not practical3 There is need then for a method for finding minimal dnf’s which 
does not use the set of all prime implicants, but no general method of this kind is available. 

Solved Problems 

SWITCHING CIRCUITS. SIMPLIFICATION 

4.1. Replace the series-parallel circuit of Fig. 4-78 by a simpler bridge circuit. 

Fig. 4-78 

Solution: 
Consider the bridge circuit shown in Fig. 4-79. The paths through this circuit are A &B t2 C, 

A &D &E, A &D & c, A &B & 6, A &B &E. Hence a condition for passage of current is 

(A&B&C)v (A&D&E)v (A&D&I’)v (/i&fiB&)v (A&B&E) 

which is logically equivalent to [A &B & C] v [(E v c) & ((A &D) v (A &&)I. But this is a con- 
dition for passage of current through the given circuit. 

Fig. 4-79 

tFridsha1 [24] states that, for nine statement letters, the full dnf whose fundamental conjunctions are 
those with 1, 3, 4, 5, 6, or 8 negated literals has 1698 prime implicants. The full dnf whose fundamental 
conjunctions are those with 0, 1, 5, 6, or 7 negated literals has 765 prime implicants, and its negation has 
the same number of prime implicants. 
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4.2. A committee consists of the chairman, president, secretary, and treasurer. A motion 
passes if and only if it receives a majority vote or the vote of the chairman plus one 
other member. Each member presses a button to indicate approval of a motion. 
Design a switching circuit controlled by the buttons which passes current if and only 
if a motion is approved. 

Solution: 
Let C, P, S, T stand for “The chairman approves”, “The president approves”, etc. Then the 

condition for approval is 
[C&(PvSv T)] v (P&S&T) 

which has the corresponding series-parallel circuit shown in Fig. 4-80. 

LOGIC CIRCUITS. BINARY NUMBER SYSTEM 

4.3. Let a non-negative integer less than 10 be given by its binary representation u3u~u1u0. 

(For example, if the integer is 3, then a3 = a2 = 0 and aI = uo = 1; while if the 
integer is 9, then a3 = a0 = 1 and a2 = al = 0.) If Ai is the statement that ui is 1, 
construct a logic circuit corresponding to the condition that the given integer is prime. 

Solution: 
The prime integers are 

Decimal Notation 2 3 5 7 

Binary Notation 0010 0011 0101 0111 

A corresponding statement form is 

-IA,& [(-iA,&A,& -IA,) v (lA,&A,&Ao) v (A,& -iAl&Ao)v (A,&A,&Ao)] 

which is logically equivalent to 

TA,& ([A,&(A,vA,)] v [TA,&A,& lA2j) 

A corresponding logic circuit is 

-43 eO 1’ 
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4.4. Justify the following algorithm for translating a number x from decimal into binary 
notation. 

Use two columns. Place x at the top of the left column 43 
(in our example, x = 43). Divide x by 2, putting the re- 21 
mainder TO in the right hand column and the quotient qo in 10 
the left hand column below the given number. Repeat this 5 
process with qo, etc. Stop when we get a quotient 0. The 2 
resulting binary number is to be found by reading the right 1 
hand column from the bottom up (in our example, 101011). 0 

Solution: 
x = 2q, + 9.0, To = Oorl 

Qo = 2% + r19 r1 = Oorl 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9k-2 = 2qk--1 + ,)-k--l, rk-l = Oorl 

qk-I = 2.1 + Tk, ?.k = Oorl 

1 = 2*0+1 

Then 
x = 2(2q, + 9.1) + 9-o = 4q, i- 2r, + 9-0 = 4(2q, + T‘J + 2?-, + 7-o 

= 8q, + 4r, + 2?-1 + 9-0 = 16q, + 8r, + 43 + 2r, + v. = *. * 

Z.Z 2k+l + 2krk + * f . + 23r, + 227, + 27-i + To 

Thus the binary expansion of x is lrkrk- i. * .rzrlro. 

4.5. Construct a logic circuit for adding 1 to a four-digit binary number U~UZCLNXO. 

Solution : 
Let A, stand for “q is 1”. Let b,bsb,b,bo be the result of adding 1, and let Bi stand for 

“bi is 1”. Then 

B, = 1 A, and the carry Co = A,; 

B1=(A1&lCo)v(lA1&C,)=A1+Co andthecarry C1=AI&Co=A,&Ao; 

B,=(A,&lC1)v(lA,&C1)=A2-tC1 andthecarry C2=A2&C1=A2&A1&Ao; 

B3=(A3&lC2)v(lA3&C2)=A3+CC2 andthecarry CS=A3&C2=A3&A2&A1&Ao=Bq. 

If we use @ to designate the circuit of Fig. 4-27, we obtain 

Ao 

A2 
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4.6. Describe a method for reducing the operation of subtraction of binary numbers to 
the use of addition only. 

Solution: 
Assume given two numbers x and y in binary notation. Let us assume that they are at most 

n-digit numbers. 

Example: x = 11010 
y = 1101 (n=5) 

Change all digits of y to their opposites; in our example, 10010. Add this new number z to 2. 

11010 
+ 10010 

101100 

Add 1 to the result: 101101. Omit the leading 1: 1101. This is x-y. 

What we did in obtaining x from y was to form (2 n-l)--y=lll...l-y. Addingthistox 
nd$its 

yielded x + [(2” - 1) - y] = (x - y) + (271- 1). Addition of 1 then gave (x-y) + 2n, and omission 
of the leading 1 finally reduced to x - y. 

Another example: x = 101111 and y = 110100. Then x = 001011. 

101111 
+ 001011 

111010 
1 

111011. Answer: 11011. 

The purpose of reducing subtraction to other operations (addition, adding 1, etc.) is to facilitate 
its implementation by logic circuits. 

What does the process described above yield when y is greater than x? 

4.7. Assume that a number between 0 and 9 is given as a four-digit binary number. 
Employing the notation of Example 4.17, make use of don’t care conditions in order 
to construct a simple switching circuit (or logic circuit) for the condition that the 
given number is a prime. 

Solution: 

The condition for being a prime is 

/iB~~vAB~6vA~C~vABC~ 

The don’t care conditions correspond to the numbers 10 through 15: 

AseD, AB&, A&D, ABCD, ABcD, ABCD 

Of these six conditions, we select three and obtain the dnf: 

ABeD V A&D V A&D V AB& V ABED V ABeD V &CD 

(A method for choosing the proper don’t care conditions is presented in Section 4.17.) This state- 
ment form is logically equivalent to Bc v AB (exercise for the reader) and hence to B(C'v A), 
which has the switching circuit 



CHAP. 41 SWITCHING CIRCUITS AND LOGIC CIRCUITS 113 

MINIMAL DISJUNCTIVE NORMAL FORMS. PRIME IMPLICANTS 

4.8. To test whether a fundamental conjunction + is superfluous in I# v a, show that it 
suffices to replace all occurrences in @ of unnegated letters of $I by T and occurrences 
of negated letters of $ by F, and then observe whether the result is a tautology. 

Example: To see whether AC is superfluous in AB v AC v BC, we obtain TB v 
TF v BT, i.e. B v B, which is a tautology. (Note that any T in a fundamental con- 
junction may be dropped, and any fundamental conjunction containing an F as a 
conjunct also may be omitted.) 

Solution: 
We must see whether + logically implies @, i.e. whenever $ is T, then + also must be T. 

When \L is T, all the unnegated letters of 1~ are T and all the negated letters are F. When this 
truth assignment is made in +, we observe whether the result is always T, i.e. whether the result 
is a tautology. 

4.9. If I+ is a fundamental conjunction and Q is a literal, to test whether (Y is superfluous 
in a$ v @‘, show that it suffices to replace all occurrences in (Y v Q of unnegated letters 
of # by T and occurrences of negated letters by F, and then to observe whether the 
result is a tautology, 

Example: Is B superfluous in AB v AR v ABC? We obtain TB v I? v FBC, i.e. 
B v B, which is a tautology. 

Solution: 
We must see whether $ logically implies DI v a; i.e. whenever $ is T, then 01 v rP also must be T. 

But, if $ is T, the unnegated letters of $ are T and the negated ones are F. Then the result of 
the indicated substitution must always be T, i.e. must be a tautology, 

4.10. Prove that if one of the disjuncts of a dnf @ is not a prime implicant of @, then a 
literal of that disjunct is superfluous. Hence an irredundant dnf @ must be a dis- 
junction of prime implicants of @. 

Solution: 
Let o be + v q, where + is not a prime implicant of +. This means that there is a fundamental 

conjunction e which is a proper part of + and such that B logically implies #V k. Let (Y be any 
literal of $ which is not a literal of 8, and let 3 be obtained from $ by deleting LY. Thus 6 is 
included in 3. Hence 5 logically implies 8, and therefore $ logically implies $ v *. From this we 
may conclude that 3 logically implies O! v q. Thus (Y is superfluous in CY$V 9, i.e. in a. 

4.11. Find an irredundant dnf logically equivalent to 

ABC v ACD v Al?D v ABC v BCD 

Solution: 
(1) ACD is superfluous (since B v 2 is a tautology). This leaves 

ABC v ABD v ABe v BCD 

(2) B is superfluous (since BCv B v Be is a tautology). This leaves 

ABC v AD v /iBd v BCD 

(3) B6D is superfluous (since A v A is a tautology). This leaves 

ABC v AD v ABC 
which is irredundant. 
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4.12. Find all prime implicants of ((A v B) -+ C) v AI?c by the Quine-McCluskey method. 
Solution: 

First we must expand the given statement form into a full dnf: 

~(Av~)vCv~~~ 

ABVCVABC 

ABCv/iBCvABCv A~Cv~~Cv/il?~ 
Then 

ABC r/ 

1 

BC I/ C 

{ 

ABC r/ AC 4 A 

ABC r/ 

1 

AB 4 

{ 

ABe r/ AC 4 

ABC c' Bc 4 

ABC 4 AC / 

AB r/ 

Thus there are two prime implicants: C, A. 

4.13. Find all minimal dnf’s logically equivalent to 

ABcDE V ABCDE V A&DE V ABCDE V &?Ci?E V ABCbE 
- - -- 

vA~CmvABC~~v~~~~E V ABcDE 

using the Quine-McCluskey method and prime implicant tables. 

Solution: 
First we find the prime implicants. 

ABCDE 1/ 

{ 

ABDE 

-I 

ABdDE I/ ACDE 

AkDE J Ak?3 

1 

Al?CfjE r/ 

{ 

L?CaE 

ABC~E / /iCaE 

ABCijl? ACDB 

i 

ABCDB 4 ABBE 

A&DE / 

/iL%?DE J 
- - -- 

ABCDE r/ 

The prime implicants are ABCDE, ABDE, ACDE, Al?CE, ACbE, l?CDE, ACDl?, ABnE. The 
prime implicant table is 

-- -- 
ABCDEABC~EAB~DEABCDEABC~EABC~EAB~D~'AB~D~ABCDE~BC~~E 

ABCijI? 0 X 

ABDE El 0 X 

ACDE X X 

A&E X X 
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Hence the core consists of ABCBL?, ABDE, ACBE,A(?Dl?, ABBE. Thus we obtain the new table: 

xgy-y 

It is clear from this table that a minimal dnf is obtained only if we choose ABCE (since all other 
ways of covering both columns would require two disjuncts, each having four literals). Hence there 
is a unique minimal dnf: 

ABC~l?vABDEv/iC~Ev ticDz??vi@iiEvABCE 

4.14. Find the minimal dnf’s for the dnf 

ABCDE v ABeDE v ABCDE v ABeDE v /iBcDE 

v ABcDE v ABCDE v ABciX 

with the don’t care conditions Ak’DE, ABCDE, ABCfiE, ABf?Dl?. 

Solution: 
First find the prime implicants: 

ABCDE { ABDE / ADE 

I 

ABCDE 4 ACDE / 

A&DE / I ABCD 

ABCDE / 
ACDE / 

r 

Al%?DE / BCDE 
ABCDE i ABDE r/ 
Al?CijE / i A%'E 

r 

ti&%E / 

ABCbI? / i 

ABED 
i?cDE 

ABCD@ 4 ABCD 

1 

ABCDE / 

Ah.?Dl.? 4 i 

ACDB 

ACDE 

Therefore the prime implicants are ABCD, BCDE, A&YE, ABcD, &DE, A&B, ACDl?, AeDl?, 
ADE. We obtain the prime implicant table: 

ABCDE ABCDE ABCDI~ ABCDE ABCDE ABCDE ABCDB ABcI% 

ABCD El 0 X 

BCDE X X 

A&E 

ABC0 X X 

&DE X 

Aim X X 

ACDB X 

A6DB X 

ADE R El 0 

Hence ABCD and ADE belong to the core. We obtain the following new table. (Notice that row 
Al?CE has been dropped, since it is empty.) 
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BCDE 

ABCD 

&%E 

ABCD 

ACDB 

ACDB 

ABCDE .&?CbE ABCDB ABCbB 

X 

X X 

X 

x X 

X 

X 

We may now use the Boolean or branching method. However, in this case, it is obvious that the 
minimal dnf is obtained using ABf.?D and ABC?i (since any other way of covering all the columns 
would require more than two disjuncts). Hence there is a unique minimal dnf: 

ABcD V ADE V ABeD V A&D 

4.15. Find all solutions of Problem 4.7, using the Quine-McCluskey method and a prime 
implicant table. 

Solution: 
The given dnf is ABcfiv ABen v ABCBv ABCb. The don’t care conditions are: ABcD, 

ABED, L@CD, AL%D, ABCD, ABCD. First we find the primeimplicants. 

'AB 

i 

AC 

BD 

CD 

BC 

Hence the prime implicants are AB, AC, BD, CD, B6; and we obtain the following prime 
implicant table 

1 ABcb ABCb A&b ABCb 

AB X X 

AC X 

Thus SC is in the core. We then obtain the table 

AB X 

AC X 
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Thus we may choose either AB or AC, and there are two minimal dnf’s: Bcv AB (which factors 
into B(c v A)), and B6 v AC. Notice that in Problem 4.7 we obtained only SC v AB. However, 
the other answer SC v AC cannot be factored, and therefore the first answer gives us the simplest 
statement form (although both give equally simple dnf’s). 

4.16. Using the Quine-McCluskey method and prime implicant tables, find all minimal dnf’s 
for 

ABCDEG~ABCDEG~AB~DEG~ABCDEG~ABCDEG~ABCDEG 

” ABmEG V ABCDEG V ABcDEG V ABCDEG V ABCDEG V AB(% 

with the don’t care conditions 

ABZ'DEG, ABCDEG, ABcDEG, ABcDEG, 

ABCDEC, ABCDEG, ABCDl?G, h?CDl?G 

Solution: 

The prime implicants turn out to be 

B~DG, CDEG, CDL?G, BD~G, ADI~G, BCDE', ACEG, Ab~i2, CDBG, ACD 

(Verification is left as an exercise for the reader.) We then draw up the prime implicant Table I. 

Table I 

ABCDEG Al%DEG ABCDBG ABCDEG ABt?DI?G Al%DEG 

BCDG 

CDEG 

CD&G 

BDl?G 

ADl?G 

BeDI? 

A6EG 

AbEG 

CD8G 

A6D 

X X 

X X 

X X 

X X X 

X X X 

X 

X X X X 

1 ABCDEG Al?CDEG AB(?ijEc --- ABCDEG ABcD@ ABCDBG 

B6DG 

CDEG 

CDI?G 

BD.!?G 

AD.??G 

B6DE 

ACEG 

AB,Ee 

6DBG 

AZ‘D 

X 

X 

X 

X 
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No applications of the core operation are possible. However, we can eliminate the following col- 
umns by dominant column operations: 

ABCDEG (since it dominates ABCDEG), 

ABCDBG (since it dominates ABCDI?G), 

ABcDl?G (sinceitdominates ABi'Dl?G), 

ABCDEC (since it dominates Ah?DEG), 
- -- 

AB(?DEf? (since it dominates ABCDEC), 

ABcD&c (since it dominates ABcDI?f?). 

Thus, we obtain Table II. 

B6DG 

CDEG 

CDz!?G 

BD.@G 

ADl?G 

BCDI? 

ACEi.? 

ADEt? 

CD@ 

ACD 

Table II 

ABCDEG ABCDEG ABeDBG AhCDEG --- ABCDEG ABCDEG 

X 

X 

X 

X 

X 

X X X 

In Table II we can apply the dominated row operation to eliminate the rows of CDEG and 
ADl?G (both dominated by ACD). We can also drop the first row, since it is empty. Thus we 
obtain Table III. 

Table III 

Ak?DEG ABCDBG Ai%DI?G ABCDEG A&%EG ABCDIZ 

X 

X 

X 

X X 

X 

X 

In Table III, the first and third columns have unique entries. Hence ACD belongs to the secondary 
core. We then can drop the last row and the first, third and fourth coIumns, obtaining Table IV. 
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Table IV 
_ -- 

I ABCDBG ABCDEG ABCDIX 

CD.?.?G 

BDl?G 

BeDI? 

ACEG 

ADEt? 

CDS 

X 

X 

X 

X 

X 

Clearly, application of the Boolean method to Table IV yields eight different minimal dnf’s 
(by choosing either the first or second row, either the third or sixth row, and either the fourth or 
fifth row): 

A6D v CDEG v AcEt? v BCDI? 

ACD v CDl.?G v Af?Ec v CD&?? 

ACD v CDl?G v AbEG v BCDB 

At?D v CD.@G v AiSEG v CDl?G 

ACD v BD.lm?G v AeEG v BcD.?I? 

ACD v BDI?G v A6EG v CDl?G 

ACD v BDl?G v AbEG v BeDI? 

AicD v BD.l?G v ADEt? v CD,@ 

Observe that ACD must be present because it is in the secondary core, 

4.17. Using the consensus method, find all minimal dnf’s for the dnf of Problem 4.11. 

Solution: 

(1) ABC v ACD v Ai?D v ABC v BED 

(2) ABC v ACD v ABD v ABC v BCD v ABD (Consensus of ARC and BGDJ 

(3) ABC v ACD v ABD v ABC v Bt?D v ABD \/ ACD (Consensus of Ai?D and B6D) 

(4) ABC v ACD v ABD v ABC v BCD v ABD v A6D v AD (Consensus of ACD and ACD) 

(5) ABC v ABC v Bi?D v AD (since ACD, Al?D, ABD, A6D all include AD) 

Operations (i) and (ii), page 94, are no longer applicable. Hence ABC, ABC, BCD, AD are the 
prime implicants. 

Let us draw the following table: 

I 
91 @z $3 e4 

ABC ABC BCD AD 

ABC F F D 

ABC F D F 

B6D F A A superfluous 

AD BC F Be 

From the third row, (ra v o~(T~, and we obtain u1u2(u3 v u2u4)oq, which is equivalent to ~i~so4. Hence 
the only irredundant dnf is 

ABC v ABC v AD 

Therefore this is the only minimal dnf. 
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4.18. Apply the consensus method to find all minimal dnf’s for 

ABC v Bf) v ACD v /i&F? 

[CHAP. 4 

Solution: 

(1) ABC v Bb v Ac?D v Ai% 

(2) ABC v Bfi v ACD v Ah? v ABD (Consensus of ABC and ACD) 

(3) ABC v Bb v ACD v 2% v ABD v ABC (Consensus of BB and ACD) 
- -- 

(4) ABC v Bb v ACD v ib?C v ABD v ABC v ACD (Consensus of Bb and A&) 
- -- 

(5) ABC v Bb v ACD v A&? v ABD v ABC v ACD v AB (Consensus of SD and ABD) 

(6) Bd v AZ’D v ABC v Aefi v AB (ABC, ABD, ABC all include AB) 

(7) Bb v ACD v ABZ‘ v AC6 v AB v &?b (Consensus of ACD and AL%?) 

Operations (i) and (ii), page 94, are no longer applicable. Hence the prime implicants are Bd, 
AeD, Al%, /iC6, AB, h?D. 

Now we construct the following table: 

91 $2 $3 +4 $5 $6 

Bd ACD ABC --- ACD AB ED 

Bb F F AC A F 

ACD F F F B B 

/ifIG F F is F D 
- -- 

ACD B F B F F 

AB b CD F F F 

BED F A A F F 

Hence we have the result 
ulb2 v “5~6h3 v ~4u6)b4 v ‘71”3b5(c6 v u2O3) 

which is equivalent to 
01C73”506 v OlC2U3O5 v (r10405(r6 

Therefore there are three irredundant dnf’s: 

BbviiBCvABvh?D 

Bbv/ii?CvABvAcD 

BdvACfivABvB~D 

Since they are of equal cost, all three are minimal dnf’s. 

superfluous 

superfluous 

superfluous 

superfluous 

KARNAUGH MAPS 

4.19. Using a Karnaugh map, find all minimal dnf’s for 
--- ---- 

Al?CD v ABCb v ABCb v /iI%% v ABCD v ABCD v tlBeb v ABeD 

Solution: 

Draw the Karnaugh map: 
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CD 

Handling the checks whose unique largest combination consists of two squares, we obtain the 
four loops indicated in the diagram. Since all checks are covered, the unique minimal dnf is 

Al%2 v ACB v A&? v /icij 

Notice that, although each of the four checks in the middle belongs to a unique largest combination 
of four squares, that combination is not required, since all the checks in it already have been 
covered. 

4.20. Use a Karnaugh map to find all minimal dnf’s for the dnf of Problem 4.18: 

ABCvBbvA~Dv/il?C 

Solution: 
To use a Karnaugh map we need not expand the given dnf into a full dnf. It suffices to place 

a check in every square containing one of the disjuncts. (For example, ABC generates the two 
checks in ABCD and ABCB; Bd generates four checks, etc.) 

There are no isolated checks and no checks with a unique largest 2-square combination. 
However, there are checks belonging to unique largest I-square combinations. The first column 
gives AB, and the other I-square combination yields Bb. The remaining three checks produce 
three minimal dnf’s: 

- - -- 
AB v Bb v ACD v ABC (A&?D combines with ABED, and ABCD with ABeD) 

AB v Bb v BCD v ABC 
- - -- 

(ABeD combines with ABcD, and ABCD with ABeD) 

AB v Bd v 860 v A6n 
-- -- 

(A%D combines with A&?D, and ABCD with ABeD) 

This verifies the solution of Problem 4.18. 

4.21. By means of a Karnaugh map, find all minimal dnf’s for 
- -- 

ABcDE v A%DE V ABCDE V ABCDE V ABCDE 
- - -- 

v ABcDE V ABCDE V ..dBCDE V ABCDE V ABCDE 
- - -- - 

vAB~bli?vABCDEvAB~Dl?v/il?~DI? 
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Solution: 
The Karnaugh map is 

AB Ai? tll? /iB 

[CHAP. 4 

There is one isolated check, yielding the disjunct ABCfiE. There is one check (ABCDE) 
belonging to a unique 2-square combination, which yields the disjunct ACDE. There are two - - - _- _ - -- 
checks (ABCDE and ABCDE) belonging to a unique g-square combination, which yields BC. 
Another check (dBCD8) belongs to a unique &square combination, yielding BD. Since all the 
checks are covered, we have obtained a unique minimal dnf: 

hK%E v ACDE V B6 V &I 

4.22. Use a Karnaugh map to find all minimal dnf’s for 
- -- 

/~~CDEV~BCDEVA~C~EVL@C~EVABCDE 
--_-- - - 

VAB~EVABCDEVABC~VL~BCDEVABCDE 

AB /il? /iB 

There are four checks belonging to unique largest e-square combinations (ABCDE with -- --- __ _- - -- 
ABCDE,-Al?Cfif? with ABCDE, ABCDE with ABCDE, and ABCDI? with ABCDE), yielding the dis- _- -- 
juncts ABCE, ABCD, ABCD, and ABCD. There is a unique largest I-square combination containing 
ABCDE, and this yields the disjunct BbE. Now there is one check still uncovered: A&DE. 
There are apparently two equally simple ways of covering this check: 

(1) A&DE with ABCDE, yielding the disjunct ACDE. 

(2) ABCDE with h?CnE, yielding the disjunct A&YE. 
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- - -- 
However, notice that in case (2) the 4-square combination (AfiCfiE, AI%~E, _Af@fiE, ABCDE) 
has been covered by four different S-square combinations, and the disjunct BDE becomes super- 
fluous. Thus there is actually only one minimal dnf: 

-- -- 
ABCEV ABCB v ABCD v ABCD v ALWE 

4.23. Using a Karnaugh map, find all minimal dnf’s for 
- -- 

Aik%v~~C~vABCD 

assuming Al?CD,ABCD,ABCD,ABCD,ABCD,ABCD, ABcD,AB(?D are don’t care 
conditions. 

Solution : 

We use checks for the disjuncts of 

CD 

the given dnf, and crosses for the don’t care conditions. 

AB Al? AB /iB 

- -- 
The check in ABCD is in a unique largest I-square combination, yielding the disjunct AR. The 

only uncovered check is in A&%. This belongs to two 4-square combinations. Hence there are 
two minimal dnf’s: AB v AC and AB v BC. 

4.24. Use a Karnaugh map to find all minimal dnf’s for 

---- ----- 
with the don’tcareconditions Ai?CDE,ABCDE, ABcDZ?, Abed,!?, ABCDE, ABE. 

Solution: 

AB 
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There is an isolated check at ABCDE. Hence this must be a disjunct. The checks at ABCDE 
and .dBcDl? belong to unique largest 2-square combinations, producing the disjuncts A%E and 
ABC%. The check in ABCDE belongs to a unique largest 4-square combination, yielding the dis- 
junct BD8. The only uncovered check is ~~CD~. This belongs to two e-square combinations, 
yielding either .@CE or A&D. Hence there are two minimal dnf’s: 

ABCDE v Ah?E v ABC’ v l?ds?? v A&TX? 

ABCDE v A%E v /iBCB v iio‘x?? v A&D 

4.25. Find all minimal dnf’s or cnf’s for 

Solution: 
Draw the following Karnaugh map. 

AB AB AB AB 

The checks in Ah?D-, .dBcD and A&D belong to unique largest a-square combinations, yield- 
ing the disjuncts ABC’, ABC and ABC. The remaining check in AfX?D belongs to three 2-square 
combinations. Hence there are three minimal dnf’s: 

Aih? v /iBC v ABC v lb?D 

A% v ABC v /i&Y v /iBD 

A&? v tlB6 v ABC v &?D 

To find the minimal cnf’s, we draw the Karnaugh map for the negation: 

CD 

CD 

cii 

CD 

AB AB Ai? 

I 
- 

4 
- 

d 

4 
- 

4 
- 

ABeD belongs to a unique largest 4-square combination (the first column), yielding the disjunct AB. 
A&D belongs to a unique largest 4-square combination, producing the disjunct AC, and ABCD - - -- 
belongs to a unique largest I-square combination, yielding BC. The only uncovered check is ABCD, 
which is isolated. Hence the unique minimal dnf for the negation is 

- - -- 
ABvACvBCvABCD 

Therefore the unique minimal cnf is 

(/iv~)(/iv~)(~v~)(AvBvCvD) 

This is simpler than any of the minimal dnf’s. Hence it is the minimal dnf or cnf. 
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4.26. Find all minimal dnf’s or cnf’s for 
- - _- - - -- - 

ACDEvABC~EvAI?C~~vABCDvABCDE V AB&IE 

with the don’t care conditions ACD,??, ABCI?, BCDE, AB6E, A%'ijl?, Al?Cl?, 
ABCDE. 

Solution: 
First we draw the Karnaugh map. 

The check in ABCDE is in a unique largest 2-square combination, yielding the disjunct ABcD. 
The check in Al?cDE is in a unique largest I-square combination, yielding the disjunct B&J. 
The other checks are covered by two 8-square combinations, yielding Bb and AC. Hence there is 
a unique minimal dnf: ABCD v 1303 v BB v Ac 

The Karnaugh map for the negation is: 

AB Afi /iB AB 

The check in .@CDE belongs to a unique largest 2-square combination, producing the dis- 
junct %DE. The check in ABCDl? belongs to a unique largest 4-square combination, yielding ABd. 
The remaining checks are covered by two unique largest %square combinations, generating AC and 
AC. Hence there is a unique minimal dnf for the negation: 

BI~DEVAB~VACVAC 

and therefore a unique minimal cnf for the given dnf: 

? (BvCv~v~)(Av~vD)(~vC)(Av6) (2) 

This cnf and the minimal dnf (I) are of equal cost. Hence there are two minimal dnf’s or cnf’s: 
(I) and (2). 
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Supplementary Problems 

[CHAP. 4 

SWITCHING CIRCUITS. SIMPLIFICATION. BRIDGE CIRCUITS 

4.27. Write down a statement form representing a condition for flow of current through each of the 
following series-parallel circuits. 

-I- 
‘c\ 1 0 

---E 
1B IA 

‘D\ 

4.28. Write down a statement form representing a condition for flow of current through each of the 
folIowing bridge circuits. 

(6) 

4.29. Draw a switching circuit having the following corresponding statement forms. 

(a) [(BvA)&(lBvC)] v (C&IA) 

(b) (A&lB&(CvD))v (-IA&(BvC)) 

- 

- 



CHAP. 41 SWITCHING CIRCUITS AND LOGIC CIRCUITS 127 

4.30. Replace the following series-parallel switching circuits by simpler bridge circuits. 

(4 

0 

Use at most five switches. 

(b) 

(4 

Use at most ten switches. 

L&-ry 

c 

-2 

\B\ 

Use at most seven switches. 

\E\ 

\c\ 1G 

0 

4.31. Is there an equivalent bridge circuit simpler than the series-parallel circuit of Fig. 4-13 
(Example 4.6)? 

4.32. A light is to be controlled from two wall switches such that flicking one of the wall switches changes 
the state of the light (“on” to “off”, or “off” to “on”). Construct a switching circuit that will allow 
current to flow to the light under the given condition. (Hint: Compare Example 4.6.) 

4.33. A municipal board consists of the Mayor, President of the City Council, Comptroller, and three 
Borough Presidents. The Mayor has two votes and all the others one vote. A motion obtaining 
a majority passes except that any motion opposed by all three Borough Presidents fails. Write a 
switching circuit which will indicate passage of a motion. 
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LOGIC CIRCUITS 
4.34. Construct logic circuits corresponding to the following statement forms. 

(a) (A& 1B) v (B&(Cv IA)) 

(b) (A+B)v 1C 

4.35. Write down statement forms corresponding to the following logic circuits. 

(4 

(b) A 
I I i 

0 v-&-l-& 0 
1 

0 0 
B 

‘1 

BINARY NUMBER SYSTEM 
4.36. 

4.37. 

4.38. 

4.39. 

4.40. 

4.41. 

4.42. 

Write the binary notation for the following numbers given in decimal notation: 35, 74, 155, 320. 

Write the decimal notation for the following numbers given in binary notation: 10110, 111011, 
10001101. 

Write the ternary notation (base 3) for the numbers given in Problem 4.36. 

Write the decimal notation for the following numbers in ternary notation: 12011, 222110, 10110. 

Solve Problem 4.36 for base 6 and base 8, instead of base 2. 

Do the following additions in the binary system (and check by going over to the decimal system). 

(4 11101 (b) 11000 
+ 1011 + 101110 

Do the following multiplications in the binary system (and check by going over to the decimal 
system). 

(4 11101 (b) 11000 
x 1011 x 1010 
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4.43. (CL) Let a non-negative integer less than 10 be given in binary notation: u3u2u1uo. Letting Ai stand 
for “ai is l”, construct a logic circuit producing the statement that the given integer is a per- 
fect square. 

(b) Same as (a), except that the resulting proposition states that the given integer is even. 
(c) Same as (a), except that the resulting proposition states that the given integer is a perfect 

cube. 

4.44. (a) Using half-adders and full adders, draw a logic circuit which carries out the addition of two 
four-digit binary numbers. 

(b) Same as (a), except that three two-digit numbers are to be added. 

4.45. Translate the following decimal integers into binary notation using the method of Problem 4.4: 
27, 59, 124. 

4.46. Translate the decimal numbers of Problem 4.45 into ternary notation, using a method analogous 
to the one given for binary notation. 

4.47. Perform the following binary subtractions directly and also by the method indicated in Problem 4.6. 

(4 1100110 (b) 1110001 (4 10101 
- 111011 - 1011100 - 11010 

MINIMAL DISJUNCTIVE NORMAL FORMS. PRIME IMPLICANTS 

4.48. Show that 
ABCD v ABCD v AED v ABCD v ABCD v A&D v ABCD 

is logically equivalent to BCv AD (cf. Example 4.17). 

4.49. Under the same assumptions as in Problem 4.7, use don’t care conditions to find a simple switching 
circuit for the following properties: 

(a) the given number is odd; 

(b) the given number is composite (i.e. has a divisor different from 1 and itself). 

4.50. Which of the following dnf’s are simpler than the dnf ABC v AR v BCD? 
(a) AB v ABC; (b) A v I? v CD v AC; (c) ABCD v ABC; (d) ABCD v AC v A& 

4.51. Which of the following are prime implicants of the dnf ABC v AR v BCD? 

(a) A, (b) AC, (c) AB6, (d) BC?i. 

(Note: There are prime implicants which do not occur in this list.) 

4.52. Show that + is logically equivalent to $ v Q, if and only if $ logically implies *. 

4.53. Determine whether the fundamental conjunction AB is superfluous in 

(a) ABC v AB v BC; (b) AC v SC v /iB. 

4.54. Determine whether the fundamental conjunction Bc is superfluous in 

tu) ABCD v ABCD v A&D v ~6; (b) BCV .413b v BLI v AEB. 

4.55. Show that $J v rP is logically equivalent to a# v + if and only if + logically implies (Y v 9. 

4.56. Determine whether the first occurrence of the literal e is superfluous in 

(a) ABe v Ab v CA; (6) AC v Be v AC. 

4.57. Determine whether the first occurrence of the literal B is superfluous in 
(a) A&v BC v ii’?; (b) /ih2 v BC v AC. 
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4.58. 

4.59. 

4.60. Find full dnf’s logically equivalent to (a) ABD v ABC; (b) A v BC v AC. 

4.61. Carry out the proof of Theorem 4.4, using Lemmas 4.2-4.3. 

4.62. Show that if $a logically implies + and +Z logically implies a’, then + logically implies a. 

4.63. Find all prime implicants of the following statement forms, using the Quine-McCluskey method. 

(a) (ABeG)& AC 

(b) AB(?v~BCvA%vAi?C 
- _ __ 

4.64. Do the irredundant dnf’s of Problem 4.58 contain all their prime implicants? 

4.65. Prove that a statement form is logically equivalent to the disjunction of all its prime implicants. 

4.66. Find all the prime implicants of the dnf in (a) Problem 4.11, (b) Problem 4.51. 

4.67. Construct the prime implicant tables for the dnf’s in Problem 4.63b, c, d. 

4.68. Find the minimal dnf’s for the dnf’s in Problem 4.63b, c,d, using the Quine-McCluskey method 
and prime implicant tables. 

4.69. 

4.70. 

4.71. 

4.72. 

SWITCHING CIRCUITS AND LOGIC CIRCUITS [CHAP. 4 

Find irredundant dnf’s logically equivalent to 

(U) ABED V ABD V CD V .dD V fi%; (b) ABD V A6 V ABD V Bcb V BD. 

Prove that a full dnf containing n letters is not a tautology if and only if it has fewer than 2” 
disjuncts. 

(c) ABCDvABCDv~B~Dv/ii?C~vAl?CD 

(d) ABCDZ v A&DE v ABCDE v ABZ‘DE vAB~DEvABCDE 

Find the minimal dnf’s for the following dnf’s, using the Quine-McCluskey method and prime im- 
plicant tables. 

(a) ABCDE v A&DE v ABCDE V A&%E V ABcnE V A&DE 
--- ---- 

v ABCDE v ABCDE v ABCDE v ABCDB 

(b) ABED V A&D V A&D V AkD V &CD V hid V A&% V A&% V Ah% 

(c) ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABcDBG 
- -- 

v ABCDEG v ABCDEG v AMDEG v ABCDEG v ABCD%~~ vABC~MG 
- -- - ---- 

vABCDE~VL-@CD.!?~VABCDEGV~B~~~~~ 
-- --- -- _- 

(d) ABCDE vAWDIZV ABcDB v ABCDE v ABCDE v A&DE 

vAl%2DEvABCDEvAB~~EvABf?DE 

Are the irredundant dnf’s of Problem 4.58u, b minimal dnf’s? 

Give a full argument showing that, if + is a full dnf and, in the prime implicant table for a, every 
column contains an entry from a row corresponding to a fundamental conjunction in the core, 
then the disjunction of the members of the core is the unique minimal dnf for % (cf. Examples 
4.25-4.26). 

Verify the assertion in Example 4.29 that members of the secondary core must be a disjunct of 
every minimal dnf. 
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4.73. Find minimal dnf’s for the following dnf’s with don’t care conditions. Use the Quine-McCluskey 
method and prime implicant tables. 

(a) ABCDE v A&DE v ABCfil? v ABEDI? v A&DE v ABeDI?, with don’t care conditions - _-- 
ABCDE, ABcDR, ~Bci%, ABCDB, A~ciiE, ABCDE. 

(b) ABCDE v ABCDE v i-iBcDE v Ah?Dl? v tlB@E v Ak?njE, with don’t care conditions - -- -- --- 
ABCDE, ABCDE, ABCDE, ABCBE’, ABC~E”, ABCDE, ABCDE. 

(c) Ai%Dl?G v Al?CDEG v ABCDEG v ABCDEG v ABCD@ v ABCijl% v ABCijI?c v -- ---- _- --- 
ABCDEG v ABCDEG, with don’t care conditions ABCDEG, ABCDEG, ABcDEE, iiBcDl?c, 
ABCDEG, ABC~IZG, ABcDEG, AB&~EG, ABC~~EB. 

4.74. Show that if one fundamental conjunction $i includes another tip, then +a is logically equivalent 
to +1v!k?. 

4.75. By the consensus method, find all prime implicants of the following dnf’s: 
(a) ABC v ABeD v &k’ v Beb; (b) ABCD v AD v BCD v Ah?ij v ABED. 

4.76. By the consensus method, find all prime implicants of the dnf’s in: 

(a) Problem 4.11, (b) Problem 4.13, (c) Problem 4.63b, (d) Problem 4.69u,c. 

4.77. Check the solution to Problem 4.18 by expanding the original dnf into a full dnf and using the 
Quine-McCluskey method. 

4.78. Apply the consensus method to find all minimal dnf’s for: 
-- -- 

(a) AE v BCE v ABCB v ABCDE; (b) ABC v Bcb v ACD v iifib; (c) A(? v BC v itfj v BD. 

Check your results by using the Quine-McCluskey method. 

4.79. Apply the consensus method to find all minimal dnf’s for: 

(a) dnf in Problem 4.13; (b) dnf’s in Problem 4.69a, b, c, d; (c) dnf’s in Problem 4.75u, b. 

KARNAUGH MAPS 

4.80. Using Karnaugh maps, find the minimal dnf’s for: 

(a) Ai% v ABC v ABC v ABC v ABC 
-- -- 

(b) ABCD v ABC~ v A&D v ABCD v ABCD v ABCD v ABCD 
- - -- 

lc) A&D v A&% v ABCD v ABCD v ABCD v tl~cii v ABCD 
- - -- 

(d) ABCD v ABCij v &kii v AL?Cb v Ah?D v AiiCD v ABCD 

v ABCD v AWi v ABCD v ABCD 
-- -- 

(e) .&?CDE v ABCDE v ABCDE v A&DE v Aik%E v Al?cDE v ABCDE v ABCDE 

v Ak?DE v ABCDI? v /iBCfil? v ABCBE v A&Y~E 
-- --- 

v ABCDE v /iBf%jl? v ABCDE 

(f) AB v &DE v tlBd v CD,?? v AB6 

4.81. Solve Problem 4.48 by means of a Karnaugh map. 

4.82. By use of Karnaugh maps, solve Problems 4.69a, b, c, d and 4.78a, b. 
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4.83. Using a Karnaugh map, find all minimal dnf’s for 

ABCDE v ABCDE v ABCDE v ABISE v ABCDE v ABCDE v ABCDE 
_ - -- 

v ABCDE v ABCDE vAB~DEvAABCDEV ABCDB v ABC~E 

v ABCDB v ABCDE v ABCDP v A;BCDE 

(Be sure that you are not using superfluous disjuncts.) 

4.84. Draw a Karnaugh map for six statement letters, and try to use it to solve Problem 4.69c and 
Problem 4.16. 

4.85. Using Karnaugh maps, find all minimal dnf’s for the given statement forms, with the indicated 
don’t care conditions. 

(CC) ABC v ABD v ACD v APO, with the don’t care conditions ABED, L-@CD, ABCD. 

(b) ABeDI? v fiBCDEvAl%DEv ABCfiEv A%Dl?vABCDE v ABED@, withthedon’tcare 
conditions ABfI%, A&DE. 

(c) ABC v ABCii v AC, with the don’t care conditions ABED, ABCD, ABCD, ABcfi. 
-- _- 

4.86. Find all minimal dnf’s or cnf’s for the statement forms in 

(a) Problems 4.13, 4.18, 4.19, 4.21, 4.22. 

(b) Problems 4.63b,c,d, 4.69u,b,c,d, 4.78u,b,c, 4.80u-f. 

4.87. Find all minimal dnf’s or cnf’s for the following statement forms, with the indicated don’t care 
conditions. 

(a) Al?CD v ABCD v ABCD, with the don’t care conditions ABCD,ABCD,ABcD,ABcD, ABCD, 
- -- 

- ABCD, ABED, ABcb, as in Problem 4.23. 

(b) Same as Problem 4.24. 

(c) Same as Problem 4.16. 

(d) Same as Problem 4.14. 

(e) Same as Problem 4.73u, b, c. 



Chapter 5 

Topics in the Theory 
of Boolean Algebras 

5.1 LATTICES 
A lattice is an ordered pair (I+ 6) consisting of a non-empty set L together with a 

partial order 4 on L satisfying: 

(L4) For any x and y in L, the set {x, y} has both a least upper bound (lub) and a greatest 
lower bound (glb). 

We have seen in Chapter 3 (Theorem 3.9) that a Boolean algebra 5!I determines a lattice 
(I?, L), with XV y and x A y as the lub and glb respectively. Therefore it should cause no 
confusion if, for any lattice (L, 4) and for any x and y in L, we use x v y and x A y to denote 
the lub and glb of {x, y}, respectively. 

Example 5.1. 
The set {a, b, c, d, e, f} is not a lattice with respect to the partial order pictured in Fig. 5-l. For, 

{a, b} has no lub. 

e 

Fig. 5-l 

Theorem 5.1. For any elements x, y, x of a lattice (L, 4): 

(a) xr\x=x and xvx=x (Idempotence) 

(b) x~y=yr\x and xvy=yvx (Commutativity) 

(C) X A (yA2) = (X A y) A 2 and x v (yv 2) = (Xv y) v 2 (Associativity) 

(d) x~(xvy) = x and XV(XA~) = x (Absorption) 

(e) x&y f) xAy=x and xLy f) xvy=y 

(f) xLy’(XAi?“yAx & xVxLyVx) 

Proof. (a) and (b) follow directly from the definition of lub and glb. 

(c) First,noticethat XA(YAX) 6 yr\x L x. Also, XA(~AX) 5 y~x 4 y and XA(YAZ) 4 x. 
Therefore by definition of glb, x A (y AZ) L x A y. Thus since we have x A (y Ax) 4 2 

and X A (yA2) A XAy, it follows by the definition of glb that XA(yAX) 4 (X Ay)~2. 

133 
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Using this result twice, we have (x Ay) AX = x/Y (XAY) L @Ax) Ay = YA @Ax) 4 

(yA@As = xA(yAx). Thus XA((YAX) A (XAY)AX and (XAY)AX 6 XA(~AX), and 
therefore by (PO 3), x A (y Ax) = (X A y) A x. A similar proof shows that 

xv(yvx) = (xvy)vx 

(d) Clearly, x 6 2 and x 4 XV y. Hence by definition of glb, x L x A (x: v y). But x A (z v y) 
L X. Therefore by (PO 3), x A (X v y) = x. Similarly, x v (x A y) = x. 

(e) First, if x A y = X, then x = x A y 6 y. Conversely, if II: 6 y, then, by definition of 
glb, XAy=X. SiIrdarly, X&y ti Xvy=y. 

(f) Assume x 4 y. Then 

(XAX) A (y~2) = (Xr\y) A 2 (by (4, (b), (4) 

= x A X (by (e)) 

Therefore x A x 4 y A x, by (e). Analogously, (XV x) v (y v x) = (XV y) v x = y v 2, and 
therefore x v x 6 y v x. ) 

By a unit 1 of a lattice (L, ‘) we mean an upper bound of the whole set L. It is clear 
that, if a unit exists it is unique. By a zero 0 of (L, 6) we mean a lower bound of L, and 
clearly, if a zero exists it is unique. Obviously we have OAX = 0, Ovx = x, xv1 = 1, 
x A 1 = x for all x in the lattice. 

A lattice may lack a unit. For example, the set of all finite subsets of the set of integers, 
with respect to the partial order C, is a lattice without a unit. A lattice may lack a zero, 
e.g. the lattice of all cofinite subsets of the set of integers with respect to the partial order 
C. In the lattice determined by a Boolean algebra (B, A~, v%, ‘B, 0,, l,}, 1, is the unit of 
the lattice and 0, is the zero of the lattice. 

A lattice is said to be distributive if and only if it satisfies the following two laws: 

(L5) x A (y Vx) = &A\) V (x Ax); 

(L6) X v @AX) = (Xv y) A (Xvi?). 

Theorem 5.2. In any lattice, (L5) is equivalent to (L6) (and therefore in the definition of 
distributive lattice it suffices to assume either (L5) or (L6)). 

Proof. Assume (L5). Then 

(x V y) A (x V 2) = [(lt V y) Ax] V [(x V y) Ax] = x V [(x A 2) V (y A x)] 

= [x V @Ax)] V (y/lx) = x V (yAx) 

Therefore (L6) holds. The proof of (L5) from (L6) is similar and is left to the reader. ) 

The lattice determined by a Boolean algebra is distributive. (L5) and (L6) are simply 
Axioms (3) and (4) for Boolean algebras. 

Example 5.2. 

The lattice shown in Fig. 5-2 is not distributive. For, 

while 

d/\(bvc) = dAl = d 

(dr\b)v(d/\c) = 0~0 = 0 

bb\i7*d 
??? ?

Fig. 5-2 
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A lattice with zero 0 and unit 1 is said to be complemented if, for any x in the lattice, 
there exists an inverse x’ in the lattice such that x Ax’ = 0 and xv x’ = 1. Obviously the 
lattice determined by a Boolean algebra is complemented. 

If a distributive lattice with zero and unit is complemented, then, for any x, the inverse 
x’ is unique. To see this, note that the proof of Theorem 3.1 (uniqueness of complements 
in Boolean algebras) still is valid under the given assumption. 

Theorem 5.3. A complemented distributive lattice (L, ‘) with 0 # 1 determines a Boolean 
algebra (L, A, V, ‘, 0, 1). 

Proof. Axioms (l)-(2) were proved in Theorem 3.1(b). Axioms (3)-(4) are just the dis- 
tributive laws. Axioms (5)-(6) have already been treated above. Axioms (7)-(8) follow 
from the fact that the lattice is complemented, and Axiom (9) is part of our hypothesis. ) 

5.2 ATOMS 
A nonzero element b of a Boolean algebra is said to be an atom if and only if, for all 

elements x of the Boolean algebra, the condition x G b implies that x = b or x = 0. 

Example 5.3. 
In the Boolean algebra T(A) of all subsets of a non-empty set A, the atoms are the singletons {z}, 

i.e. the sets consisting of a single element. 

Example 5.4. 
The Boolean algebra of all positive integral divisors of 70 (cf. Example 3.4) has as its atoms {2,5,7}, 

as is evident from Fig. 5-3. (Remember that the integer 1 is the zero element.) 

Fig. 5-3 

For any atom b and any element x, either b Ax = b or b Ax = 0 (since b AX 4 b). 
This has the following consequences: 

(i) If b is an atom and b 4 x1 v . . . v xn, then b 4 xi for some i. (For, if b + xi, then 
bAXi+ b and SO bAXi=O. Hence if b 4 Xi for all i, then b = b A (XI v . * * v x,) = 

(b A xl) v - . . v(b/,X,) = ov -a-v0 = 0, which is a contradiction.) 

(ii) If b and c are different atoms, then b A c = 0. (For, if bAc#o, then b=br\c= 
c A b = c.) 

(iii) If b is an atom and b + x, then b 4 x’. (For, b 6 1 = XV x’, and we then use (i).) 

A Boolean algebra is called atomic if and only if, for every nonzero element x of the 
algebra, there is some atom b such that 2,d x. The Boolean algebras of Examples 5.3-5.4 
are both atomic. 
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Theorem 5.4. Every finite Boolean algebra is atomic. 

Proof. Given a nonzero element xo of the algebra. Assume there is no atom b such 
that b 4 x0. In particular, x0 is not an atom and therefore there is some nonzero element 
x1 such that x1 4x0 and x1 #x0, i.e. 0 <xl < XO. x1 cannot be an. atom; hence there is 
some nonzero element x2 such that x2 < x1. Continuing in this way, we obtain a sequence 
x0, Xl, x2, . . . such that x0 > x1 > x2 > . . . .t All the terms of this sequence are distinct 
(by Theorem 3.8), contradicting the fact that there are only a finite number of elements 
in the algebra. ) 

Given an element x of a Boolean algebra %, we define q(x) to be the set of all atoms b 
of % such that b 4 x. Clearly, ~(0) = $9 and q(1) is the set A of all atoms of % 

Lemma 5.5. In an atomic Boolean algebra %, the function + is one-one, i.e. if x f y, 
then q(x) # q(y). 

Proof. Assume x f y. Then x + y or y + x; say, x f y. Hence x A y’ # 0. Since 
48 is atomic, there is an atom b 4 x A y’. Then b 4 x and so b E q(x). However, b 4 y’ 
and therefore b 4 q(y). (For, if b 4 y, then b 4 y A y’ = 0, and b would have to be 0.) 
Hence q(x) f k(y). ) 

Theorem 5.6. Every finite Boolean algebra 48 has 2” elements, where the positive integer 
n is the number of elements in the set A of atoms of CB. 

Proof. By Theorem 5.4, CB = (B, A, V, ‘, 0, 1) is atomic, and, by Lemma 5.5, * is a 
one-one function from B into the set T(a) of all subsets of A. Now let C be any subset of 
A. Since ‘8 is finite, so is A and therefore also C. Thus C = {bl, . . . , bk}. Let x = 
bi v . - . v bk. Then q(x) = {bl, . ..,bk}=C. (For, bi’blv***vbk=x for all i. Thus 
CC*(X). On the other hand, if b E q(x), then b 6 x = bl v - . . v br. Hence 

b = b A x = b A (blv - + - v bk) = (b A bl) v . * * v (by br) 

Now if b were different from all the hi’s, then each b A bi = 0 and we would have 
b=Ov-- . v 0 = 0 which is impossible. Thus b = bi for some i, i.e. q.(x) CC.) We have 
proved that * is a one-one correspondence between B and the whole set T(A). Since A 
has n elements, T(A) has 2” elements and therefore B also must have 2” elements. ) 

Something more can be said about the function q. 

Theorem 5.7. If CB is an atomic Boolean algebra, then the function ?l! is an isomorphism 
from % into the Boolean algebra T(A). If 9 is a finite Boolean algebra, then 
YP is an isomorphism from 9 onto T(A). 

Proof. Remember that A is the set of atoms of %, and X@(X) = {b : b E A & b 4 x}. 
We already know from Lemma 5.5 that @ is one-one. Next, we show that *(xl) = q(x). 
For, on the one hand, if b is an atom and b 6 x’, then b + x. Thus Y&+(X’) C+(X). On the 
other hand, if b is an atom and b f x, then b 4 x’. Thus G) c*‘(Y). Hence *(xl) = q(x). 
Finally, we shall show that +(x A y) = q(x) rl q(y). On the one hand, if an atom b 4 x A y, 

then b 6 x and b 6 y. Thus q(x A y) c q(x) n q(y). On the other hand, if b is an 
atom and b 5 x dz b L y, then b 6 x A y. Thus q(x) n q-(y) C +(x A y). Hence %‘(X A y) = 

*(x)n*(y). Hence q is an isomorphism from B into T(A). When B is finite, the proof of 

tWe use the usual conventions: z s y means y 6 x; z > y means y < z; z # y means 1 (z f y); z Q y means 
1 (z < Y). 
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! Theorem 5.6 shows that the range of * is all of T(A). ) 

Corollary 5.8. Any two finite Boolean algebras with the same number of elements are 
isomorphic. 

Proof. By the second part of Theorem 5.7 and Theorem 5.6, it suffices to show that, if 
A and C are finite sets with the same number of elements, then the Boolean algebras T(A) 
and T(C) are isomorphic. Let A = {al, . . . , a,} and C = {cl, . . . , c,}. Define the function 
0 from T(A) into T(C) as follows: for any subset (~~1, . . ., ajk} of A, let o({ujl, . . . , ujk}) = 
{cjl, . . .,cjk}. It is obvious that o is the required isomorphism. ) 

The second part of Theorem 5.7 shows that any finite Boolean algebra is isomorphic 
with a Boolean algebra of all subsets of a set A. This turns out not to be true for arbitrary 
infinite Boolean algebras, although, as we shall see later, any Boolean algebra is isomorphic 
with a field of sets (i.e. to a subalgebra of the Boolean algebra of all subsets of a set). 

5.3 SYMMETRIC DIFFERENCE. BOOLEAN RINGS 
In a Boolean algebra % we define the operation + of symmetric difference as follows: 

x + y = (x Ay’) V (X’ Ay) 

In the Boolean algebra T(A) of all subsets of a non-empty set A, x + y = x A y (cf. 
Section 2.6). In the Boolean algebra of statement bundles (cf. Example 3.5), [A] + [B] = 
[A-t B], where the second + is the exclusive-or connective. 

Theorem 5.9. The operation + has the following properties. 

(a) x+y = y+x 

(b) x + 0 = x 

(c) x + x’ = 1 

(d) x + (y +x) = (x + y) + x 

(e) XA (y+x) = (x~y) + (XAX) 

(f) 2 -I- x = 0 

(g)x+y=x+++y=z 

(h) 1 4- x = x’ 

(i) x+y=x+ 2/=x+x 

(j) x=zt)x+x=o 

Proof. 

(a) X +y = (%A\‘) V (x’“y) 

y+X = (y~x’)~ (y’~x) = (y’~x)v (y~x’) = (X~y’)v (X’A~) 

(b) X +0 = (xA0’) ( V x’A0) = (XAl)Vo = xAl = x 

(c) 2 + x’ = (x A (x’)‘) V (X’ Ax’) = (x Ax) V X’ = X V X’ = 1 

(d) x + (y +z) = x + ((Y A 2’) V (Y’ A 2)) 
= (x A [(y A 2’) V (y’ Ax)]‘) V (X’ A [(y A 2’) V (y’ A z)]) 

= [x A (y’ V 2) A (y V z’)] V [(x’ A y A 2’) V (x’ A y’ A x)] 

= [XA((~AZ’) v (~/AZ))] v [(X’A~A~‘) v (X’A\‘AZ)] 

= (XA~‘A~‘)V (XAYAX)V (X’AYAX’)V (X’AY’AX) 
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On the other hand, (X + y) + x = x + (X + y). But, to calculate x + (X + y), we use 
the equation just found for x + (y +x) after substituting x for 2, x for y, and y for x. 
We obtain 

x + (x + y) = (x A x’ A y’) v (x A x A y) v (2’ A x A y’) v (2’ A x’ A y) 

= (5 A y’ A if) V (z A y A 2) V (x’ A y A 2’) V (d A y’ A 2) 

= x + (y +q 

(e) x A (y + z) = x A ((y A 2’) V (y’ A 2)) = (z A y A 2’) V (x A y’ A 2). 

(x A y) + (x A 2) = [(x A y) V (x Ax)‘] V [(x A y)’ A (x Ax)] 

= [(x A y) A (2’ V x’)] V [(x’ V y’) A (x A x)] 

= [yA(~A(~‘V~‘))] V [((X’VY’) A x)Ax)] 

= [YAZAX’] v [ZAY’AX] = (XAYAX’) v (XAY’AX) 

(f) x + 2 = @Ax’) V (&AZ) = 0 V 0 = 0. 

(g) Assume r + y = x+x. Then z+(x+y) = X+($+X). Hence 

(x+x)+y = (x+x)+x, o+y = 0+x, y = 2 

(h) Add 2 to both sides of (c) and use (f). 

(i) Add 2 to both sides of x + y = x and use (f). 

(j) Taking y = 0 in (i) yields x = x + x +x = 0. If we exchange y and z in (i) and set 
y=O, weobtain x+x=0-,x=x.) 

By a ring, we mean a structure T = (R, +, X, 0), where R is a set, + and x are binary 
operations on R, and 0 is an element of R, such that 

(1) (x+ y) + 2 = x + (y+z); 

(2) x + y = y + 2; 

(3) 2 + 0 = x; 

(4) for any x, there is a unique element (-x) such that x + (-x) = 0; 

(5) (xxy)xz = xx(yxx); 

(6) xx(y+x) = (xxy)+(xxx); 

(7) (y+z) x x = (y x 2) + (2 x 2). 

A ring 9 is said to be commutative if and only if, in addition, 

(8) x x y = y x x. 

A ring T is said to have a unit element if and only if there is an element 1 in R such that 

(9) xx1 = lxx = 2. 

(Clearly, there cannot be another unit element u, for we would then have u = 1 X u = 1.) 

In Theorem 5.9 we have already verified that a Boolean algebra determines the com- 
mutative ring (B, +, A, 0) with unit element 1. This enables us to apply the highly developed 
algebraic theory of rings to the study of Boolean algebras. But we also can give a more 
precise characterization of Boolean algebras in terms of rings, in the following way. 
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A ring % = (R, +, X, 0) is said to be a Boolean ring if and only if it satisfies the 
identity 

x2 = x 

for all x. (Here we employ the usual abbreviation: x2 = x X x.) 

Theorem 5.10. Let q = (R, +, X, 0) be a Boolean ring. Then 

(a) x + x = 0 

(b) x = -x 

(c) x+y=o c) x=y 

(d) x x y = y x x (Thus the ring must be commutative.) 

Proof. First, we observe that for an arbitrary ring the cancellation law x + y = x + x + 
y=x holds. For,if x+y=x+x, then 

(-x) + (x + y) = (-x) + (x + 2) 

((-x) +x) + y = ((-x) +x) + 2 

o+y = 0+x 

y=x 

From the cancellation law it follows that 

x=x+x + x=0 

For, if x = x +x, then x + 0 = x +x, and the cancellation law yields x = 0. 

(1) 

(a) x + x = (x+x) x (x +x) = x2 + x2 + x2 + x2 = x + x + x + x. By (I), x + x = 0. 

(b) Since x+x = 0, x = (-x) by the uniqueness assumption for (-x) (cf. Axiom (4) for 
rings). 

(c) If x + y = 0, then, again using x + x = 0, we conclude that x = y by the uniqueness 
assumption of Axiom (4). 

(d) (x + y) = (x + y) x (x + y) = x2 + (x x y) + (y x x) + y2 = (x + Y) + (x x Y) + (Y x 2). 

By (I), 0 = (x x y) + (y x x). Hence by (c), x x y = y x x. ) 

Theorem 5.11. Let T = (R, +, x, 0) be a Boolean ring with unit element 1 # 0. If we 
define 

x’ = 1 + x, Xhy = xX$./, xvy = x+y+(xxy) 

then 3 = (R, A, V, ‘, 0, 1) is a Boolean algebra. 

Proof. We must verify Axioms (l)-(9) for Boolean algebras. 

(1) x v y = y v x. 
xvy = x+y+(xxy) = y+x+(yxx) = yvx 

(2) x A 1/ = y A x. This is just (d) of Theorem 5.10. 

(3) X A((YvX) = (ZA~)V (XA~). 

X A (y V 2) = 2 x (y + 2 + (2/ x 2)) = (x x y) + (X x 2) + (X x (y x 2)) 

(xAy)V(xAx) = (~~~)+(~~~)+((~~~)~(X~~)) 

= (x x y) + (x x 2) + (x2 x y x 2) 

= (xxy)+(xxx)+(xxyxx) 
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(4) x V (?/Ax) = (XV y) A (XV 2). 

x V (y A 2) = x + (y x 2) + (x x y x x) 

(X ” Y) A (X v 2) = [(X v Y) A X] v [(X v Y) A z] by (3) 

= [(x A X) V (Y A X)] v [(X A 2) V (Y A z)] by (3) 
= [xv (Y x x)] v [(x x 4 v (Y x 41 
= [x + (x x y) + (x x x x y)] v [(x x 2) + (y x 2) + (x x y x x2)] 

= [x +(x x Y) + (x x Y)] v [( x x 2) + (y x 2) + (x x y x x)] 

= x v [(x x 2) + (y x 2) + (x x y x x)] 

= x + (x x x) + (y x 2) + (x x y x 2) + (x x [(x x 2) + (y x 2) + (x x y x x)]) 
= x+(xxx)+(yxx)+(xxyxx) 

+ [(x x (x x 4) + (x x (Y x 4) + (x x (x x Y x 4)] by (3) 
= x + (x x 2) + (y x 2) + (x x y x 2) + (x x 2) + (x x y x 2) + (x x y x 2) 

= x+(yxx)-+(xxyxx)+[(xxx)+(xxx)]+[(xxyxx)+(xxyxx)] 

= x+(yxx)+(xxyxx) 
(5) x v 0 = 0. 

xv0 = x+0+(xX0) = x+0+0 = x 

(Note that we have used the fact that, in any ring, x x 0 = 0. To see this fact, observe 
that x x 0 = x x (0 + 0) = (x x 0) + (x x 0); and then by (1) in the proof of Theorem 
5.10, x x 0 = 0.) 

(6) x A 1 = x. 

This is just x x 

(7) xvx’= 1. 

1 = x, which follows from the definition of a unit element. 

xvx’ = x + x’ + (x x x’) = x + (1 +x) + (x x (1 +x)) 

= 1 + (x+x) + ((x-x 1) + (x x x)) = 1 + 0 + (x+x) = 1 + 0 + 0 = 1 

(8) x A d = 0. 

XAX = xx(l+x) = (xX1)+(xXx) = x+x = 0 

(9) 0 f 1. This is an assumption of the theorem. ) 

Thus we see that a Boolean ring with nonzero unit element determines a Boolean algebra, 
and vice versa any Boolean algebra determines a Boolean ring with nonzero unit element 
(essentially Theorem 5.9). 

5.4 ALTERNATIVE AXIOMATIZATIONS 
There are numerous axiom systems for Boolean algebras.* The following system is a 

variation of one due to Byrne [loll. 

A Byrne algebra is a structure (B, A, ‘, 0) where B is a set, A is a binary operation on B, 
’ is a singular-y operation on B, and 0 is an element of B, satisfying the postulates: 

tThe one we have used (Axioms (l)-(9)) is due to Huntington [121]. For systems proposed up to 1933, 
cf. Huntington [122]. For later work, cf. Sikorski [148], p. 1, footnote 1. 



From what we have already proved, it follows that, for any Boolean algebra (B, A, v, I, 0, l), 
the structure (B, A, ‘, 0) is a Byrne algebra. The converse is established in the following 
theorem. 

Theorem 5.12. For any Byrne algebra (B, A, ‘, 0), the structure (B, A, v, ‘, 0,l) is a l3oolean 
algebra, where v and 1 are defined as above. In particular, 

(a) XAX = 0 

P) xAy’=o H x”y 

(4 x4x 

(4 x&y&y’x + x=y 

(e) x’y&y~x + XL.2 

(f) xAyLx 

(9) $A0 = 0 

(h) x” = x 

(i) x A y = (x’ V y’)’ 

0) xvy = yvx 

(4 x v (yv 2) = (xv y) v 2 

(4 xvx = x 
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(Bl) XAy = yAx 

(B2) X A (y AZ) = (X A y) A 2 

P3) XAX = x 

034) xAy’=o c) xAy=x 

(B5) 0 # 0’ 

Let us introduce a few definitions. 

Definitions. 1 for 0’ 

X V y for (X' Ay’)’ 

x&y for x~y=x 

141 

Cm) x&y w y‘&x’ 

(n> xvy’=l t) xvy=x 

(0) Duality: Any theorem in the language of Byrne algebras (i.e. involv- 
ing the symbols A, ‘, 0) is transformed into another theorem when we 
replace A by V, and 0 by 1. Under this replacement, the defined term 
x v y (i.e. (x’ A y’)‘) becomes (x’ v y’)‘, which is equal to x A y, and the 
defined term 1 (i.e. 0’) becomes l’, which is equal to 0 (by (h)). Thus 

.I of x 6 y is equivalent to y 4 x.) 
the dual of a theorem is a theorem. 

(P) x’y t) xvy=y. (Hencethedua 

Cd XAl = x 

(4 xv0 = x 

(4 xvx’ = 1 

(t) x 52 xvy 

(4 xV(XAy) = xA((xVy) = x 

(v) x&y + (XAXL~AX & XvXLyvX) 
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(zu) (x~x& y'x) + xvy~x 

(X) (xsX&xgy) + xgxAy 

(Y) X A (x’V y) = x A y 

(XI) xA (yV2) = (xAy)V (xA2) 

(x2) x V (y Ai?) = (xv y) A (XVX) 

(x3) Axioms (l)-(9) for Boolean algebras hold. 

Proof. 

(4 x A x = x. Hence by (B4), x A x’ = 0. 

(b) This follows immediately from (B4) and the definition of L. 

(c) This follows immediately from (B3) and the definition of A. 

(d) Assume x’y & y’x. Then xAy=x & yAx=y. By(Bl), x=y. 

(e) Assume xsy & y&x. Then x~y=x & yAz=y. Hence XAX = (XA~)AX = 

xA(yAx) = xAy =X. Thus X&X. 

(f) (x A v) A x = (x A x) A y = x A y. Thus x A y 4 x. 

(9) x A 0 = x A (x A x’) = (x A x) A x’ = x A x’ = 0. 

(h) x” A x’ = xf A x” = 0 (by (a)). Therefore x” 5 x (by (b)). Likewise, x”’ 6 x’ and 
x”” 4 x’t. Hence x,,” & x (by (e)). Therefore x”” A x’ = 0 (by (b)). Hence x’ 4 x”’ 
(by (b)), and therefore x’ = x”’ (by (d)). Thus x Ax”’ = 0 (by (a)), and then x 4 x” 
(by (b)). Therefore x = x” (by (d)). 

(9 x’ V y’ = (x” A y”)’ = (x A y)‘. Hence (X’v y’)’ = (X A y)” = X A y. 

t j) x V y = (x’ A y’)’ = (y’ A d)’ = y V x. 

(14 x V (y V 2) = (x’ A (y’ A f)“)’ = (d A (y’ A 2’))‘. 

(x”y) V ?? = 2 V (xVy) = (&A (x’ Ay’))’ = (x’A (y’A2’))‘. 

(0 x V x = (x’ Ax’)’ = x” = x. 

(m) Assume x 5 y. Then x A y’ = 0 (by (b)). Therefore y’ A x” = 0, and, by (b), y’ L x’. 
Conversely, if y’ L x’, then x” 6 y”. Hence x 4 y. 

(n) y g x t) x’ 6 y’ (by (m)). Therefore x’ A y = 0 c) x’ A y’ = x’. Hence (x’ A y)’ = 

0’ - (x’ A y’)’ = x” andso xvy’=l c) xvy=x. 

(0) Changing A to v and 0 to 1 transforms the axioms for Byrne algebras into theorems. 
((Bl) becomes (j); (B2) becomes (k); (B3) becomes (1); (B4) becomes (n); and (B5) becomes 
1 # 1’ which by (h) is equivalent to 1 # 0.) Hence if we make these changes in all 
propositions of a proof, we obtain a proof of the transformed theorem. 

(P) x”y H y/Lx’ 

tf y’ A x’ = y’ 

tf (y’ A x’)’ = y” 

e xvy = y 

(4 0 L x’, by (9). x 4 1, by (m) and (h). Therefore x A 1 = x. 

(r) This is the dual of (q). 

(s) This is the dual of (a). 

tt) This is the dual of (f). 
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w x A y 6 x, by (f). Hence by (p), (x A y) v x = x. The dual of this is (XV y) A x = x. 

(v) Assume x L y. Then x A y = x. Hence (XAX)A(ZJAX) = (XAY)AX = XAX. Thus 
XAX’-PAX. Also, since x 4 y, we have, by (p), x v y = y. Hence (xv x) v (y v x) = 
(xvy)vx = yvx, and so by(p), xvx 4 yvx. 

(w) Assume x&z& y’x. Then X=XVX=XV~. Therefore xv(xvy) = (xvx)vy = 
xvy = 2. Hence x v y L x. 

(x) This is the dual of (w). 

(Y> X A (x’ v y) = X A (x” A y’)’ = x A (x A y’)‘. Hence 

(x A (X’V y)) A y’ = (x A y’) A (x A y’)’ = 0 

Then by (B4), x A (x’v y) = ( XA X’vy))~y ( = X~((X’vy)~yy) = XA~ (by(u)). 

(x1) First, yLyvx & x”yvx (by (t)). Therefore by (z)), XA~~XA(~VX) & XAX& 

x A (y v 2). Hence by (w), (x A y) v (x A 2) 4 x A (y v 2). On the other hand, 

x A (yVz) A ((XAy) V (XAX)) = x A (yvx) A (XAy)’ A (XAX) 

= XA(~VX)A(X’V~‘)A(X’VX’) 

= (y V 2) A (x A (x’ V y’)) A (x A (x’ V 2’)) 

= (yvz) A @A\‘) A (x”x’) (by(y)) 

= x A (y V 2) A (y’ A x’) 

= x A (y’ A 2’)’ A (y’ A 2’) 

= XAO = 0 

Hence x A (yvx) L (xA y) v (x AZ), by (b)). Now apply (d). 

(x2) is the dual of (x1). 

(z3) All the Axioms (l)-(9) for a Boolean algebra already have been proved. ) 

5.5 IDEALS 
An ideal of a Boolean algebra 3 = (B, A, v, ‘, 0,l) is a non-empty subset J of B such 

that: 

(i) (zEJ& yEJ) + XV~EJ 

(ii) (sEJ & YEB) + XA~EJ 

It is clear that (ii) is equivalent to 

(ii’) (XEJ & y”x) + YE J 

For, assume (ii) and let x E J & y 6 x. Then since y 6 x, we have y = x A y. Hence by 
(ii), y E J. Conversely, assume (ii’) and let x E J & y E B. Since x A y 6 x, it follows by 
(ii’) that x A y E J. 

Notice that 0 belongs to every ideal, since 0 4 x for all x. 

Example 5.5. (0) is an ideal. 

Example 5.6. B is itself an ideal. 

Every ideal different from B is called a proper ideal. In particular, (0) is a proper ideal. 

Note: An ideal J is proper if and only if 1 4 J. For, if 1 4 J, then JC B. Conversely, 
iflEJandifyEB,theny’l. Hence by (ii’), y E B. Thus J = B. 
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Example 5.7. 
If A is a non-empty set and if P(A) is the Boolean algebra of all subsets of A, then the set J of all 

finite subsets of A is an ideal. J is proper if and only if A is infinite. (More generally, if m is any 
infinite cardinal number, the set of all subsets of cardinality less than m is an ideal.) 

Example 5.8. 
Given u E B, the set J, of all v f u is an ideal. For, if wi f u and v2 5 u, then ~1 v vs f u; and if 

v f u and y 4 v, then y f u. The ideal J, is called the principal ideal generated by u. 

Theorem 5.13. Given any subset C of a Boolean algebra 23, the intersection W of all ideals 
J containing C (i.e. such that CcJ) is itself an ideal containing C. W is 
said to be generated by C, and is denoted Gen (C). 

Proof. There is at least one ideal containing C, namely B itself. Assume x and y are in 
W, and x is in B. If J is any ideal containing C, then x E J & y E J. Hence x v y E J. 
Likewise, x Ax E J. Thus x v y and x Ax are in W, and therefore W is an ideal. ) 

Theorem 5.14. Given any subset C of a Boolean algebra, the ideal Gen (C) consists of all 
elements of the form 

(yl A xl) V * ’ * V (yk A xk), k?l 

where x1, . ..,XkEC and yl,. . . , yk are arbitrary elements of B. 

Proof. Let D be the set of elements of the given form. The join of any two elements 
of D is clearly again of the same form and therefore also in D. In addition, for any y E B, 
the meet 

y A ((yl A XI) V ’ * ’ V (yk A xk)) = (y A (yl A xl)) v ’ * . V (y A (yk A Xk)) 

= ((yAyl)Axl) v --’ v ((yAyk)AXk) 

is again in D. Thus D is an ideal. Since x = 1 A x, every member x of C is in D. Every 
member (yl A xl) v - . . v (yk A xk) of D belongs to any ideal J containing C, for, since xi E C, 
it follows that yi A xi E J and therefore that (x1 A yl) v - . . v (xk A yk) E J. Hence D iS the 
intersection of all ideals containing C. ) 

Theorem 5.15. Given any subset C of a Boolean algebra 9, the ideal Gen (C) consists of 
the set E of all y such that 

y L x1 v * ’ ’ v xk 

where x1, . . . , xk are arbitrary members of C. 

Proof. If y 5 Xi, v - . . v Xik and x 6 ~j, v * . * v Xj,, then 

y V 2 L xi1 V * * * V xi, V xj, A ’ * . V xj,,, 

andif yAxlv.-. v xk and v g y, then v 4 z1 v - . + v xk. Thus E is an ideal. In addition, 
if x is in C, then x 4 x and therefore x is in E. Clearly, every member of E belongs to every 
ideal containing C. Hence E = Gen (C). ) 

Corollary 5.16. If C is any subset of a Boolean algebra CB, then the ideal Gen (C) generated 
by C is a proper ideal if and only if 

XIV ** ‘Vxk # 1 
for all xl, . . ..xkin c. 

Proof. Note first that 1 4 u if equivalent to 1 = u, for any u. Hence by Theorem 5.15, 

i 
lEGen if and only if l=xlV”-Vxk for some rl,...,xk in C. But, lEGen(C)if 
and only if Gen (C) is not a proper ideal. ) 
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Theorem 5.17. If J is an ideal of a Boolean algebra 48, and if y E B, then the ideal 
Gen (JU {y}), generated by J plus y, consists of all elements of the form 

(2 A Y) ” x 
where x E B and x E J. 

Proof. Let H be the set of all elements (x A y) v x, where x E B and x E J. First, y E H, 
since y = (1 A y) v 0. Also, if v E J, then v = (O~y)vv EH. Thus JU{y} cH. In 
addition, 

((XI A y) v XI) v (@,A y) v x2) = ((XI v x2) A y) v (XI v x2) E H 

Also, if x E J, then 
w A ((x A y) v x) = ((w A x) A y) v (w A x) E H 

Hence H is an ideal. Finally, if Z is an ideal containing J U {y}, and if x E J, then (x A y) v x 
E I; thus I> H. ) 

Corollary 5.18. If J is an ideal of a Boolean algebra %, and if y E B-J, then the ideal 
Gen (J U {y}) generated by J plus y is a proper ideal if and only if x v y Z 1 
for all x in J, i.e. if and only if, for all x in J, y’ =b x. 

Proof. By Corollary 5.16, Gen (JU {y}) is proper if and only if x1 v . * * v xk v y f 1 
for all x1, . . . , xk in J. (Note that if x1 v . . . v xk v y # 1, then x1 v * * . v xk # 1.) But since 
J is an ideal, x = x1 v - . . v xk is also in J. Hence the indicated condition is equivalent to 
saying that x v y # 1 for all x in J. The additional remark follows from the fact that 
xv y = 1 is equivalent to y’ 4 x. ) 

Definition. An ideal M of a Boolean algebra 48 is said to be maximal if and only if M 
is a proper ideal and there is no proper ideal J of CB such that MC J. 

Theorem 5.19. Given a proper ideal M of a Boolean algebra % Then M is maximal if 
and only if, for any y in B, either y E M or y’ E M. 

Proof. 

(a) Assume M is maximal. Assume y 4 M. We must show that y’ E M. Let Z = Gen (MU {y}). 

Then Z is an ideal of % such that M c I. Hence by the maximality of M, Z = B. There- 
fore by Corollary 5.18, y’ G x for some x in M. Since M is an ideal, y’ EM. 

(b) Assume that y E M or y’ E M for all y in B. Assume MC J, where J is an ideal. We 
must prove that J = B. Let y E J-M. Since y 4 M, y’ EM. Hence y’ E J. Then 
1 = yvy’EJ. Therefore J=B.) 

Definition. An ideal J in a Boolean algebra ‘B is prime if and only if, for any x and y 
in B, (x 4 J & y G J) + x A y 4 J. 

Theorem 5.20. A proper ideal J in a Boolean algebra % is maximal if and only if it is 
prime. 

Proof. 

(a) Assume J is maximal. Assume x 4 J & y 4 J. Then by Theorem 5.19, x’ E J and y’ E J. 
Hence x’ v y’ E J. Since J is proper, x A y = (x’ v y’)’ 4 J. Thus J is prime. 

(5) Assume J prime. Given y E B. By Theorem 5.19 it suffices to show that y E J or 
y’EJ. Assume y4 J and y’4 J. Since J is prime, O=y~y’eJ which is a 
contradiction. ) 
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Theorem 5.21. The maximal principal ideals are the principal ideals J,,, where u is an 
atom. 

Proof. 

(a) Assume u is an atom. To prove J,, maximal, we shall use Theorem 5.19. Assume 
y E B and y 4 J,,. Then y 4 u’. Hence u f y’. Since u is an atom, u 4 y (by Remark 
(iii) on page 135). Hence y’ g u’, i.e. y’ E J,,. 

(b) Assume J,, maximal. To prove that u is an atom, we assume v 4 u and we must show 
that v = 0 or v = u. Assume v # u. Since J,, is maximal, v E J,, or v’ E J,!. Hence 
v 6 u’ or vu’ g u’, i.e. v of u’ or u 6 v. But u 4 v, since v 6 u & v # u. Hence v L u’. 
Since v 6 u and v 5 u’, it follows that v 4 u Au’ = 0. Therefore v = 0. ) 

Example 5.9. 
In the Boolean algebra T(A) of all subsets of a non-empty set A, the atoms are the singletons {a}, 

where aEA. Hence a maximal principal ideal consists of all subsets X of A such that u 4X. 

Example 5.10. 
In a finite Boolean algebra %, every maximal ideal M is principal. For, there are a finite number of 

atoms ai, . . . , ak in B, and aIva2~~-~vak=1. Hence there is some atom a which is not in M. Then 
M = J,,. To see this, observe first that since a 4 M, then a’ EM. Therefore J,, c M. On the other hand, 
if yEM, then aPy since a4M. Since a is an atom and a 4 y, it follows that a L y’, and so Y f a’. 
Therefore M c J,,,. 

5.6 QUOTIENT ALGEBRAS 
Let J be an ideal of a Boolean algebra ‘B. 

Definition. x -J y if and only if x + y E J. 

Recall that x + y = (x A y’) v (x’ A y) (cf. Section 5.3). Hence, since J is an ideal, 
x~J&yfiZJ + x+y~J. 

Theorem 5.22. If J is an ideal of a Boolean algebra %, 

(a) x =J x. 

(b) x =J y --, y =J x. 

(c) x =J y & y =J .?i + x =J 2. 

(d) (x=Jy & a=Jb) + (x’=Jy’& xAa=JyAb & xVo=JyVb). 

Proof. 

(a) x +x = 0 E J. 

(b) x + y = y + x. 

(c) x+x = x+0+x = x+(y+y)+z = (x+y)+(y+z). 

(d) Assume x =J y and a =J b. Since X’ + y’ = x + y, it fOllOWS that X’ =J y’. Next, 
notice that for any 2, (x A 2) =J (y A z), since (x A 2) + (y A 2) = (x + y) A 2. Hence 

XAU=JyAa = oAy=JbAy = y/\b 

Lastly, x v a = (x’ A a’)’ =J (y’ A b’)’ = y v b b 

Definition. [x] = {y : x =J y} 

[x] is called the equivalence class of x modulo J. Clearly, x E [x]. 
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Theorem 5.23. (a) [x] = [x] t) x =J x. 

(b) [xl f Lx1 + [xl ” Cxl = @* 
Proof. 

(a) First, assume [x] = [x]. Since x E [xl, we obtain x E [xl, i.e. x =J x. Second, assume 
x =J 2. Then for any y, 

Y E I34 + x ‘J y + ?i =J y + y E [z] 

Hence [x] c [xl. Similarly, [x] c [xl. Therefore [x] = [xl. 

(b ) Y E [xl n I4 + (x=Jy & x=Jy) + xEJz + [x]=[x]., 

Given an ideal J of the Boolean algebra %. Let B/J be the set of equivalence classes 
modulo J. We define operations A~, vJ, ‘J on B/J as follows: 

[‘I AJ [y] = Lx A y] 

[‘I vJ [y] = Lx ” y] 

[X]‘J = [X’] 

These definitions are meaningful by virtue of Theorem 5.22(d). For example, if X and Y 
are equivalence classes modulo J, we select any x E X and any y E Y. If x1 E X and yl E Y, 
then [x A y] = [X~A yl] by virtue of Theorem 5.22(d) and Theorem 5.23(u). Thus [x A y] 
does not depend upon the particular x chosen in X or the particular y chosen in Y. This 
shows that our definition of ~~ makes sense. 

Let OJ stand for [O], and let 15 stand for [l]. Clearly, OJ = J and 13 = {y : y’ E J}. 

Let WJ stand for (BIJ, AJ, vJ, ‘J, O,, lJ). 

Theorem 5.24. If J is a proper ideal of a Boolean algebra %, then LB/J is a Boolean algebra 
(called the quotient algebra of 48 by J). 

Proof. We must check the axioms for Boolean algebras. 

(1) [xl ” [Yl = [xv Y] = [Y” xl = [Yl ” [xl. 
Axioms (2)-(8) are proved in a similar manner. (This is left as an exercise for the reader.) 

(9) OJ # 15, since 0 +J 1. (This follows from the equation 0 -I- 1 = 1 and the assumption 
that J is a proper ideal.) ) 

Example 5.11. 
Let J be the ideal (0). Then x =J y if and only if z = y. Thus the elements of B/J are the single- 

tons {z}, where x E B. The function f(z) = (5) is an isomorphism between 9 and g/(O). 

Theorem 5.25. B/J = (OJ, 15) if and only if J is a maximal ideal. 

Proof. If J is maximal, then, for any x, either x E J or x’ E J. Hence [x] = OJ or 
[x] = 1~. Conversely, assume that for every x in B, [x] = OJ or [x] = 15. Hence x E J or 
x’ E J. Therefore by Theorem 5.19, J is maximal. ) 

Remark. If x E B, then [x] = x + J, where x + J stands for {x + u : u E J}. For, on 
the one hand, y E [x] +x+y~J+x+y=u forsomeuin J+y=x+u forsomeuEJ. 
On the other hand, if y = x + u for some u in J, then y + x = u E J, and therefore y E [xl. 
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5.7 THE BOOLEAN REPRESENTATION THEOREM 

The theory of Boolean algebras is intended to be a generalization of the algebra of sets. 
We already have proved (Theorem 5.7) that every finite Boolean algebra is isomorphic to the 
Boolean algebra of all subsets of some set A (namely, A is the set of atoms). This is not 
true for all Boolean algebras. For, in Problem 5.16 we cite an example of an atomless 
Boolean algebra CB; and since the Boolean algebra T(A) of all subsets of any set A is atomic, 
% cannot be isomorphic to T(A). However, we shall show in what follows that every Boolean 
algebra is isomorphic to some field of sets. 

To this end, we shall need the following general mathematical principle. 

Zorn’s Lemma: Given a set 2 of sets such that, for every C-chain C in Z,t the union 
AliJC A is also in 2. Then there is an C-maximal set M in 2, i.e. M E 2, 

and, if A is any set in 2, then M # A. 

A proof of Zorn’s Lemma (based upon the use of a more transparent assumption, the 
so-called axiom of choice) is given in Appendix C. 

Theorem 5.26 (Maximal Ideal Theorem). If J is a proper ideal in a Boolean algebra S8: 
then there is a maximal ideal M in % such that JC M (i.e. every proper 
ideal can be extended to a maximal ideal). 

Proof. Assume J is a proper ideal. Let 2 be the class of all proper ideals K in LB such 
that J c K. Now assume that C is an c-chain in 2. Then I yc Z is a proper ideal (cf. 

Problem 5.34) containing J. Hence by Zorn’s Lemma there is a maximal set M in 2. But 
M > J and M is a maximal ideal in 9 (for, if M# is any proper ideal such that M c M#, then 
M# EZ and hence M = M*). ) 

Example 5.12. 

Consider the Boolean algebra T(A) of all subsets of an infinite set A. Let J be the ideal of all finite 
subsets of A. By Theorem 5.26, J can be extended to a maximal ideal M. M cannot be a principal ideal. 
(For, a principal maximal ideal consists of all subsets of A not containing some fixed element b of A 
(cf. Example 5.9), while every singleton {b}, being finite, belongs to J and therefore to M. Hence if M 
were principal, we would have A = {b} u (A - {b}) EM, and then M would not be a proper ideal.) No way 
is known for describing such an ideal M in a constructive way, i.e. no property is known for which the 
sets satisfying this property form a maximal ideal M containing J as a subset. 

Corollary 5.27. Every Boolean algebra has at least one maximal ideal. 

Proof. The set { 0} is an ideal. Hence by Theorem 5.26, (0) can be extended to a 
maximal ideal. ) 

Corollary 5.28. If C is any subset of a Boolean algebra % such that for any ~1, . . . , u,, in 
c, 241 v * *. VU,, # 1, then there is a maximal ideal M containing C. 

Proof. By Corollary 5.16, the ideal Gen (C) generated by C is a proper ideal. Then 
by Theorem 5.26 there is a maximal ideal M containing Gen (C), and therefore also 
containing C. ) 

tBy an c-chain C in Z we mean a subset of Z such that, if A EC and BE C and A + B, then either 
A C B or B c A. More generally, if R is a binary relation on a set W, then an R-chain in W is a subset 
of W on which R is transitive, connected, and antisymmetric (i.e. xRy & yRx -f x = y). 
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Corollary 5.29. If x is a nonzero element of a Boolean algebra ‘i3, there is a maximal ideal 
M not containing the element x. 

Proof. 2’ # 1. Hence by Corollary 5.28 there is a maximal ideal M containing x’. 
Hence x 4 M. (Otherwise, 1 = XV x’ E M.) ) 

Theorem 5.30. (St one’s Representation Theorem). Every Boolean algebra % is isomorphic 
to a field of sets. 

Proof. For each x in B, let Z(x) be the set of all maximal ideals of 53 such that x 4 M. 
Clearly, E(1) is the set 34 of all maximal ideals of 9, while E(0) is the empty set. For any 

x Z 0, Z(x) is non-empty, by Corollary 5.29. Also, Z(x’) = Z:(x), since every maximal ideal 
M contains precisely one of the elements x and x’. Finally, Z(x v y) = Z(x) UE(y). (First, 
if x@M, then xvy4M, since XLXV~. Likewise, if y 4 M, then x v y 4 M. Hence 
Z(x) U e(y) c Z(x v y). Conversely, if x EM & y EM, then xv y E M. Hence if xv y 6? M, 
then x 6! M or y 4 M. Therefore S(x v y) c Z(x) U Z(y).) Thus S is an isomorphism of 23 
into the Boolean algebra T(N) of all subsets of the set 34 of all maximal ideals. The range 
of B is a field of sets isomorphic to 3. ) 

Corollary 5.31. For any sentence A of the theory of Boolean algebras, A holds for all 
Boolean algebras if and only if A holds for all fields of sets. 

(By a sentence of the theory of Boolean algebras we mean either an equality 7 = U, where 
T and v are Boolean expressions, or an expression obtained from such equalities by applying 
the logical connectives and the quantifiers “for all x” and “there exists an x”.) 

5.8 INFINITE MEETS AND JOINS 
Given a Boolean algebra 53 = (B, A, V, ‘, 0,l) and a subset A of B. If the least upper 

bound (lub) of A exists, it is denoted v x and called the join of A. Thus in order for y 
XEA 

to be the join of A, it is necessary and sufficient that: 

(a) x L y for all x EA. 

(b) For any o, if x L v for all x E A, then y 4 v. 

If the greatest lower bound (glb) of A exists, it is denoted A x and called the meet of A. 
XEA 

Notice that 
VP” = 0, AoX = 1 

v x = 1, A x=0 
XEB ZEB 

Definition. The Boolean algebra LB is said to be complete if and only if V x and A x 
ZEA XEA 

exist for all subsets A of B, i.e. every subset of B has both a lub and a glb. 

Example 5.13. 
I In the field T(K) of all subsets of a non-empty set K, 

V x= uz and A 5= nz 
I ZEA XEA ZEA ZEA 

I Thus T(K) is a complete Boolean algebra. 
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Theorem 5.32. (De Morgan’s Laws) 

(4 .YA x = ( Aa w) 

P) Aa x = ( .ya w) 

(Each equation is taken to mean that, if one side has meaning, then so does the other, and 
they are equal.) 

Proof. (a) Assume .y, x exists, and let y = (,xA x)‘. Now if u EA, then u 4 zyA x. 

Hence y L u’. Thus y is a lower bound of the set W of all x’, where x EA. Now assume v 
is a lower bound of W. Thus v 4 x’ for all x EA. Hence x Lv’ for all x EA. Thus 

v x 4 v’. 
XEA 

Hence v 4 (,‘$, x)’ = y. We have shown that y = z$A (2’). Hence .yA x = 

y’ = ( A (x’))‘. On the other hand, assume .,$a (x’) exists. Let b = (,?, (xl))‘. If u E A, 
XEA 

then z$A (x’) g u’. Hence us b. Thus b is an upper bound of A. If c is an upper bound 

of A, then x L c for all x E A; this implies that ~‘4 x’ for all x EA. Hence c’ 6 A (x’), 
and b = (,$A (XI))’ 5 c. Therefore b = .:a x. The proof of (b) is similar. ) XEA 

Corollary 5.33. If all subsets of B have a meet (respectively, a join), then B is complete. 

Example 5.14. 

Let S be the Boolean algebra of all finite and cofinite sets of positive integers. Let A be the set of all 
sets of the form {2n}, where n is a positive integer, i.e. A is the set of singletons of the positive even integers. 
Then A has no join. For, if u were equal to V 2, then u would have to contain all positive even integers. 

ZEA 
But, since u would be cofinite, u would also have to contain all but finitely many odd positive integers. 
Then any proper subset of u obtained by removing an odd integer also would be an upper bound of A, 
contradicting the assumption that u is the least upper bound of A. Thus % is not complete. 

Example 5.15. 

Let A be the field of sets consisting of all finite sets of positive integers and all sets N-X, where N 
is the set of all non-negative integers and X is any finite set of positive integers. A is a subfield of the 
field F(N) of all subsets of N. Let C be the set of all singletons of the form {n}, where n is a positive 
integer. Then the join of C in the Boolean algebra T(N) is N - (0). However, the join of C in the 
Boolean algebra A is N. (Notice that N - (0) does not belong to A.) This illustrates two facts: 

(1) The join of a set in a field of sets is not necessarily the union. (In Example 5.15, the union 
of C is N - (0) but the join in A is N.) 

(2) If Al is a Boolean subalgebra of a Boolean algebra A,, and if Y is a set of elements of A,, 
then the join of Y in A, (if it exists) is not necessarily the join of Y in A, (if it exists). 

Of course the same facts hold for meets as well as joins, 

Because of the fact illustrated in (2), we shall, if necessary, designate the join in a Boolean algebra 
B of a set Y of elements by v 3 x, and the meet by A‘B 2. 

ZEY XEY 

Definition. By a complete field of sets we mean a field of sets such that, for any subset 
A of the field, the union and intersection of the sets in A are also in the field. The field 
T(K) of all subsets of a non-empty set K is an example of a complete field of sets. Clearly, 
a complete field of sets is a complete Boolean algebra, with union and intersection serving 
as join and meet. 
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5.9 DUALITY 
If % = (B, A, v, ‘, 0,l) is a Boolean algebra, then its dual %* = (B, v, A, ‘, 1,O) is also 

a Boolean algebra. In fact, the function f(x) = x’ is an isomorphism between 3 and %* 
(cf. Problem 5.42). 

Theorem 5.34. (Duality Principle). For any Boolean sentence A, the dual formula A*, 
obtained from A by exchanging 0 and 1 and exchanging A and v, will be 
true for !B if and only if A is true for 48. 

Proof. A is true for % if and only if it is true for the isomorphic algebra 48*. But the 
interpretation of A with respect to the model “8* is the same as the interpretation of A* 
with respect to l3. ) 

There are various extensions of the Duality Principle. The transformation from A to 
the dual A* exchanges 6 and 1. (For, x g y * z A y = x, and the dual of x A y = z is 
XV y = x, which is equivalent to x 1 y.) In addition, the taking of duals interchanges the 
general notions of meet and join. 

Example 5.16. 
The second part of DeMorgan’s Laws (Theorem 5.32) 

@) A x = 
ZEA ( ) 

I 
v (x0 

2EA 

is the dual of the first part: 

(4 v 5 = 
XEA (z?A(~‘))’ 

Hence our proof of (a) automatically is also a proof of (b). 

Example 5.17. 
From v x=0, it follows by duality that A s=l. Similarly, A 5 = 0 follows from 

zeg, ZEB 5EB 

v x=1. 
ZEB 

5.10. INFINITE DISTRIBUTIVITY 

Theorem 5.35. (a) x A %:A u = JA (x AU). 

(b) x v A u = A @vu). 
UEA UEA 

(These equations are intended to mean that, if the left side is meaningful, then the right 
side is also meaningful and the two sides are equal.) 

Proof. Since (b) is the dual of (a), it suffices to prove (a). As a preliminary, note that 

aAb 4 c --f b s a’vc (5.1) 

(For, if ur\b-“c, then b = (u’Ab)v(uAb) 4 u’vc.) By taking the dual of (5.1) and 
changing a to a’, we obtain 

csu’vb + aAclb (5.2) 

Assume now that v u exists. If v E A, then v =G V u and therefore 
UEA UEA 

XAV &xA/\u 
UEA 
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Thus x A ,ya u is an upper bound of the set Z of all x AU, where u EA. Now assume w 

is an upper bound of the set 2. Then for all u E A, x AU 4 w; and therefore by (5.1), 
u 2s x’vw. Hence v u 4 x’v w. By (5.2), x A V u 4 w. Thus x A v u = 

v @AU).) 
UEA UEA UEA 

u E A 

Remark. If the right-hand side of (a) or (b) of Theorem 5.35 is meaningful, the left-hand 
side need not be. For example, if x = 0, then 
if 48 is not complete. 

,yA (x A u) = 0, but u yA u need not exist 

By means of the ordinary distributive laws, one obtains identities of the form 

(x11 v x12 v . . - V Xlkl) A ($21 V x22 V - - ’ V X2k2) A ’ * ’ A (XmlV%,,ZV “-‘.‘%nk,) 

For example, 

(xl, V x12) A (x21 V x22 V x23) = (x II A x21) V (xl1 A x22) V (x11 A 223) V (xl2 A x21) 

V (xl2 A x22) V (xl, A x23) 

One even can extend these identities to the following infinite case. 

= 
j, yA, (‘ljl A x2j2 A * ’ + A Xkj,) I t 

where the join on the right is taken over all possible terms xljl A XZJ, A * * * A xkjk, with 
j, E AI, . . . , jk E Ak, and where we assume that all the joins on the left-hand side exist. 
This identity is proved by induction on k, using Theorem 5.35(a) (plus generalized associ- 
ativity; cf. Problem 5.37). 

(5.3) 

For any sets S and W, let SW stand for the set of all functions from W into S. Assume 
given a function assigning to each w E W and s E S an element x~,~ of a given Boolean 
algebra %. Consider 

where the join on the right extends over all functions f E SW. 

Definition. If m and n are cardinal numbers, the Boolean algebra % is said to be 
(m, n)-distributive if and only if, whenever W has cardinal number m and S has cardinal 
number n and xw,$ is any assignment of elements of B such that the left-hand side of (5.4) 
makes sense and each term A xw,fcw) on the right-hand side makes sense, then the right- 

WEW 

hand side makes sense and the equation (5.4) holds. 

% is said to be completely distributive if and only if l3 is (m, n)-distributive for all 
cardinals m and n. 48 is said to be m-distributive if and only if 9 is (m, m)-distributive. 

We have seen above (equation (5.3)) that if m is finite every Boolean algebra is (m, II)- 
distributive, no matter what n is. Obviously (m, n)-distributivity also holds when n = 1. 
However, if m is infinite and n% 2, then a Boolean algebra need not be (m, n)-distributive, 
even when II is finite. 
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It is easy to see that, if CB is (m, n)-distributive, then 

(4 & --Lm + % is (@, n)-distributive; 

(b) P g n + 48 is (m, #)-distributive. 

To verify (a), it suffices to choose a set W* such that Wrl W* = $Zj and WU W* has cardi- 
nality m, and then to extend the given assignment by letting x~,~ = 1 for all w E W*. To 
prove (b), we need only choose a set S* so that Sn S* = $Zj and SUS* has cardinality n, and 
then extend the given assignment by letting x~,~ = 0 for all s E S*. 

From (a) and (b) it follows that ?l is completely distributive if and only if % is m-dis- 
tributive for all m. 

It can be shown that 3 is m-distributive if and only if 48 is (m, 2)-distributive (cf. [I401 
and [149]). 

Example 5.18. 
The field T(K) of all subsets of a non-empty set K is completely distributive. This follows from the 

fact that 

always holds for arbitrary sets x,,, . 

Remark. By the Duality Principle, it is not necessary to give separate consideration to 
the dual of (5.4): 

5.11 m-COMPLETENESS 
Let m be an infinite cardinal number. A Boolean algebra 9 is said to be m-complete if 

and only if every subset of B having cardinal number Lnt possesses a least upper bound 
(lub) and a greatest lower bound (glb). 

By De Morgan’s Laws (Theorem 5.32), for m-completeness it suffices to know only that 
every subset of B having cardinal number drn possesses a lub (or that every subset of B 
having cardinal. number g m possesses a glb). 

If HO is the cardinal number of the set of integers, it is customary to use the term 
u-algebra instead of Ho-complete Boolean algebra. Thus l3 is a a-algebra if and only if every 
denumerable subset of B has a lub. 

We shall use the term m-comp2ete jie2d of sets for a field of sets 7 such that any subset 
of JJ of cardinality gnt has its union in 7. In addition, by a a-field of sets we mean a field 
of sets closed under denumerable unions. 

Clearly, an m-complete field of sets is an m-complete Boolean algebra, and a o-field of 
sets is a a-algebra. 

Example 5.19. 

Let K be a non-denumerable set. The field 10 of all subsets of K which are either countable (i.e. either 
finite or denumerable) or co-countable (i.e. their complement is countable) is a a-field, but not a complete 
field of sets (nor a complete Boolean algebra). For, let A be a subset of K such that both A and its 
complement are non-denumerable. Then for each x EA, the set {x} E T. However, the union of all the 
sets ix), where x E A, is equal to A, which does not belong to p. 
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Example 5.20. 

The field 6 of all finite and cofinite subsets of an infinite set K is not a o-algebra. For, let A be an 
infinite subset of K whose complement is also infinite. Then the union of all sets {x}, where xEA, is 
infinite but not cofinite. This shows that we do not have a o-field. To see that 6 is not even a u-algebra, 
observe that the same set E of all sets {z}, where x E A, cannot have a lub in 6. For, if C were such a 
set, then x E A + {x} c C. Hence A c C, and so C would be infinite. Hence C must be cofinite, and 
therefore C must intersect the complement A of A. If we choose y E Cn A, then C - (y} would be an 
upper bound of E in 6, contradicting the assumption that C is the lub of E. 

Solved Problems 

LATTICES 
5.1. In each of the following diagrams, a partial order -L of a set A is represented. For 

which of them is (A, 6) a lattice ? A distributive lattice? A complemented lattice? 

(b) (4 
I 

? ???

????

??
? ?? d.& 

??
? ?? ‘b ????

?? ?? ? ? ???

Solution: 

(a) This is a distributive lattice with zero a and unit e, but it is not a complemented lattice. (For 
example, there is no y corresponding to c such that c v y = e and c A y = a.) 

(b) This is not a lattice. (For example, f and g have no lub.) 

(c) This is a complemented lattice with zero a and unit e, but it is not distributive. (For example, 
d A (b v c) = d, while (d A b) v (d A c) = b.) 

(d) This is a lattice with zero a and unit f, but it is not complemented (c has no complement) and 
not distributive ( d A (b v c) = d A e = d, while (d A b) v (d A c) = b v a = b.) 
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5.2. Prove that any finite lattice has a zero element and a unit element. 

Solution: 
Let al, . . ..a. be the elements of the lattice, and let b = a, v . * * v a,. Then b is a unit. 

For, oi 5 b for each i. Similarly, a, A * * . A a, is a zero. 

5.3. (a) Given a set A totally ordered by a binary relation 4. Prove that (A, 4) is a dis- 
tributive lattice. When is (A, 6) a complemented lattice? 

(b) Give an example of a distributive lattice lacking both zero and unit elements. 

Solution: 
(a) For any z and y in A, either z 5 y or y f x. Then max (2, y), the larger of 2: and y, is 

obviously the lub 2 v y, while min (5, y), the smaller of 2 and y, is the glb 2 A y. Thus (A, 6) 
is a lattice. We must now prove the distributive law (L5) which becomes 

min (z, max (y, 2)) = max (min (2, y), min (X,2)) 

First, max (y,z) 2 2 and max(y,z) 2 y. Hence min (x, max (y, z)) 5 min (2, z) and 
min (2, max (y, z)) 2 min (2, y). Therefore min (5, max (y, z)) z max (min (x, y), min (x, 2)). Now 
assume min (2, max(y, z)) > max (min (5, y), min (r, x)), and we shall derive a contradiction. It 
follows from our assumption that x > max (min (x, y), min (x, 2)). Therefore z > min (z, y) 
and x > min (x,2). Hence x > y and z > z. Consequently max (min (a, y), min (2,~)) = 
max (y, z) and min (x, max (y, z)) = max (y, z), contradicting our assumption. The other dis- 
tributive law (L6) must hold by virtue of Theorem 5.2. 

For (A, 4) to be complemented, there would have to be a least element 0 and a greatest ele- 
ment 1. Also, for any z in A, max (x, x’) = 1 and min (3c, x’) = 0. But either x = max (x,x’) 
or 2 = min (x, z’). Hence x = 1 or 5 = 0. Therefore A would have to contain at most two 
elements. 

(b) By Part (a), such a lattice is given by (I, L), where Z is the set of all integers (positive, 
zero, and negative) and f is the usual order relation on integers. 

5.4. Show that lattices can be characterized by the six laws: 

(a) xvy = yvx 

I 
commutative laws 

(b) SAY = y/lx 

(c) 2 v (y v 2) = (xv y) v 2 

i 
associative laws 

(d) xA(yAz) = (xAy)Ax 

(e) zv (x~y) = 2 

I 

absorption laws 
(f) x A (XV@ = 2 

in the following sense: if (L, A, V) is a structure such that A and v are binary operation 
on the set L satisfying the laws (a)-(f), and if we define xLy by xAy=z, then 
(L, 4) is a lattice with lub ((x, y}) = x v y and glb ({x, y}) = x A y. 

Solution: 
We already know, by Theorem 6.1, that any lattice satisfies (a)-(f). Conversely, assume that 

(L, r\,v) is a structure satisfying (a)-(f) and define x ‘y by SAY = x. Notice that zhy c* 
xvy=y. (For, assume z 5 y, i.e. o A y = 2. Then by (e) and (b), y=yv(y~x)=yvx= 
z v y. Conversely, if y = xv y, then, by (f), r = z A (z v y) = x A y, i.e. z e y.) Now, 

0) 252, i.e. x~x=x. (For, by(f) and (e), X=ZA(ZV(ZA~))=XAX.) 

(ii) (5 f y & y 5 2) + z f 2. (For, we are given x A y = x and y A z = y. Then x A z = 
(X A 2/) A 2 = X A (g A 2) = x A 2/ = 2, i.e. X L 2.) 
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(iii) (x 4 y & y f 5) + x = y. (For, x = 5 A y = y AZ = y.) Thus f is a partial order on L. 

(iv) z A y = glb ((5, y}). (For, (x A y) A z = x A y implies z A y L 2. Likewise, x A y f y. Thus 
5 A y is a lower bound of {qy}. Assume z is any lower bound of {x,y}, i.e. 

ZAX = Z & ZAY = 2 

Then 2 A (x A y) = (2 A 2) A y = 2 A y = 2, i.e. 2 g x A y.) 

(v) xv y = lub ({x, y}). This is proved in a manner similar to that of (iv). 

Remark. Since (a) and (b), (c) and (d), and (e) and (f) are duals of each other, the result 
we have just demonstrated yields a Duality Principle for lattices. 

5.5. (a) Show that the following inequalities hold in any lattice. 

(i) (XAY)V(XAX) L XA(Z/VX) 

(ii) XV @AZ) L (XVY) A (XVz) 

(b) Show that each of the following inequalities is a necessary and sufficient condi- 
tion for a lattice to be distributive. 

(iii) x A (y V 2) L (x A 2/) V (x A 2) 

(iv) (XV y) A (XVX) L X V (y AZ) 

(v) XA(yVx) h (xAl/)Vx 

Solution: 

(a) By duality, it suffices to prove (i). We have 

XAY =? XA(yVZ) and XAZ L xA(yV2) 

Hence (~A~)v(~Az)~xA(~vz). 

(a) For (iii) we just use (i), and for (iv) we use (ii). For (v) we first assume distributivity. Then 

xr\(yvz) f (x~y)v(x~~) 5 (x~y)v2 

Conversely, let us assume that (v) holds. Since a A (b v c) 6 a, it follows by (v) that 

UA(bVC) f UA((UAb)VC) = UA(CV(UAb)) 

f (a A c) v (a A b) by (v) 

= (UAB) v (UAC) 

Thus we have shown that (iii) holds and therefore that the lattice is distributive. 

5.6. Prove that, in any lattice, 

X&X + (XA’Il)vX L XA(yvX) 

Solution: 

Assume z f 5. Hence z f r A (y v z). Also, x A y f x A (y v z). Therefore 

(XAy)V Z f X A (YVZ) 

5.7. Let us call a lattice modular if and only if it obeys the following law: 

262 + xA(yvx) 26 (x/\y)vx 



(a) Show that a lattice L is modular if and only if it obeys the law 

X4X + (xA’lj)Vx = xA(z/Vx) 

(b) Prove that distributivity implies modularity. 

Solution: 
(a) This follows immediately from Problem 5.6. 

(b) This is a direct consequence of Problem 5.5(b(v)). 
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5.8. Determine which of the lattices appearing in Problems 5.1(c, d) and Example 5.2 are 
modular. 

Solution: 
The lattice of Problem 5.1(c) is 

This is not modular, since b f d and b v (c A d) # (b v c) ACL (Namely, b v (c A d) = b v a = b 
and (bvc)Ad=eAd=d.) 

The lattice of Problem 5.1(d) is 

I 
.e 

/*< 

t 

by\./’ 

This is not modular since it contains the lattice of Problem 5.5(c) as a sublattice?, and we have just 
seen that the latter is not modular. 

The lattice of Example 5.2 is 

A\ 
“VT’” 

????

This lattice is modular. To see this, we must verify 

ZfX -+ X A (2/V 2) E (Z A y) V 2 

tBy a sublattice of a lattice (L, 5) we mean a lattice determined by a subset of L closed under A and V. 
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It is obvious that if z = 2, the result z A (y v x) f (x A y) v x is an immediate consequence of the 
absorption laws. Therefore we may assume that z < x. It is obvious that this implies that z = 0 
or x=1. But if z = 0 the inequality reduces to x A y f x r\y, and if x = 1 the inequality 
reduces to y v z 5 ?d v z. 

5.9. Show that a lattice is modular if and only if it satisfies the identity 

@“(xVY)) V Y = (z”Y) A (x”Y) 

Solution: 

Assume L is modular. In the condition for modularity of Problem 5.7(a), substitute z for y, 
y for z and x v y for x. The antecedent then becomes the true statement y f XV y, and we obtain 

(2 A (X V Id) V Y = (XV Y) A (z V Y) 

Conversely, assume that the indicated identity is true. Exchanging y and z, we obtain the 
identity 

(yA(xVZ))VZ = (yVZ)A(XvZ) (1) 

Now, to prove modularity, we assume zfx and we have to prove that (~AX)VZ=XA(~VZ). 
But since zfx, zvx=x. Hence the identity (I) becomes (y A 2) v z = (yv z) AX, which is 
precisely what is required. 

5.10. Prove that a lattice L is modular if and only if it does not contain a sublattice iso- 
morphic to the lattice of Problem 5.1(c), 

;i/\ 
b*,./‘c 

Solution: 

If L is modular, then L cannot contain such a sublattice, since the latter is not modular 
(cf. Problem 5.8). Conversely, assume L is not modular. Then there exist elements x. y, z such 
that 2 f z and z v (y A x) < (2 v y) A x. Now let a = y A 2, b = 2 v (y A x), c = y, d = (2 v y) A 2, 
e=zvy. We leave it as an exercise for the reader to show that a, b, c, d and e are pairwise 
distinct and that d A c = b A c = a, bvd=d, and cvd=cvb=e. This shows that L has 
a sublattice isomorphic to the one in the diagram above. 

5.11. (a) Show that in any lattice the following inequality holds. 

(XAy) V (PAX) V @AX) 4 (XVY) A (YVZ) A (ZVX) 

(b) Show that a lattice L is distributive if and only if the folIowing identity hoIds. 

(XAY) V (VAX) V @Ax) = (XV& A (yV%) A (ZVX) 

(c) Prove that a lattice is distributive if and only if it has no sublattice isomorphic 
with either the lattice of Problem 5.1(c), Fig. 5-4 below, or the lattice of Example 
5.2, Fig. 5-5 below. 
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Fig. 5-4 Fig. 5-5 

Solution: 
(a) From x~y~yvz and XAY &zvx, weinfer 

SAY L (XVy)A(yVX)A(ZVx) 

Similarly, we obtain yAZ L- (XVy)A(yVZ)A(ZVX) 

and 2 A X f (XV y) A (y V 2) A (2 V 2) 

Hence (X A y) V (3/A 2) V (2 A 5) L (Z V $/) A (y V 2) A (2 V 2) 

(b) First, assume the lattice is distributive. Then 

(XV& A (yV2) A (zVX) = ((xV~)A(~VZ)A~)V ((~V~)~(yvz)~x) 

= ((X V Y) A 2) V ((Y V 2) A $1 

= ((X A 2) V (Y A 2)) V ((II A 2) V (2 A $1 

= (X A y) V (y A 2) V (2 A 5) 

Conversely, assume the given identity holds. Now let us prove that the lattice is modular. 
Assume x 5 z. Then 

(xAy)V(yAZ)V(ZAX) = (XAy)V(yAZ)VX = XV(yA2) 

and (XVy)A(yVZ)A(ZVx) = (XVy)A(yVZ)AZ = (XV2/)AZ 

Thus we have shown modularity. Hence 
z A (1/v 2) = x A (5 v y) A (Xv 2) A (v v 2) (by absorption) 

= x A ((y A z) v (2 A x) v (z A y)) (by the assumed identity) 

= [z A (y A z)] v ((z A x) v (x A y)) (by modularity and 2 k (2 A x) V (x A y)) 

= [X A (Y A z)] V [b A Y) V (X A z,] 

= (x~y)V (XA~) (SinCe XA(yA2) e(xAy)V(XAZ)) 

Thus the lattice is distributive. 

(c) Clearly, if a lattice is distributive it has no sublattices of either of the two indicated forms, 
since the latter are both non-distributive (cf. Example 6.2 and Problem 5.8). Conversely, 
assume the lattice non-distributive. If it is not modular, then the result follows by Problem 
5.10. So we may assume modularity. By parts (a) and (b) of this problem, there exist ele- 
ments x, II, z such that 

(XAy)V(yAZ)V(ZAX) < (XVy)A(yVZ)A(ZVX) 

I.&t 24 = (XA1/) V (yA2) V &AX), 

V = (XVy) A (yV2) A (ZVX), 

d = u V (5 A V) = (~‘4 2) A V, 

b = UV(yAV) = (UVy) AV, 

C = UV(ZAV) = (UVZ)AV. 

We leave it as an exercise for the reader to show that v, d, b, c, u are all distinct and that 
dhb=bAc=eAd=u and dvb=bvc=cvd=v. 
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ATOMS 

5.12. In an atomic Boolean algebra ‘B, prove that every element x is the lub of the set k(z) 
of all atoms b 6 x (but x is not the lub of any proper subset of k(x)). 

Solution: 
Clearly, z is an upper bound of q(x). Assume now that z is an upper bound of q(x) such that 

x + z, and we shall obtain a contradiction. x $ z implies z A z’ # 0. Since % is atomic, there 
is some atom b 6 5 A z’. Hence b f x, i.e. b E q(x). Also, b f 2’. But since z is an upper 
bound of q(s), b f z. Therefore b f z A z’ = 0, contradicting the fact that b is an atom. Lastly, 
assume z is the lub of WC*(x). Let b E ‘k(x) - W. Then for every cE W, c f x A b’ (since 
c A (x A b’) = (c A x) A b’ = c A b’ = c, by properties (ii)-(iii), page 136, of atoms). Hence x A b’ is 
an upper bound of W and therefore x 5 x A b’. But b 5 x. This implies b 5 b’ and therefore 
b = 0, which is a contradiction. 

5.13. (a) In an atomic Boolean algebra, show that 1 is the lub of the set of all atoms. 
In particular, when the algebra has a finite number of atoms al, . . . , ak, 

1 = al V ” ’ V ak. 

(b) Prove that an atomic Boolean algebra is finite if and only if its set of atoms is 
finite. 

Solution : 
(a) This is an immediate corollary of Problem 5.12. The additional remark follows from the fact 

that alv “‘Vak is the lub of {a,, . . ..ok}. 

(b) When an algebra is finite, then its set of atoms must be finite. Conversely, assume that there 
are only finitely many atoms ai, . . ., ak. By Problem 5.12, every element 2 of the algebra is the 
lub of all the atoms b 4 x, and therefore 2 is of the form ajl v . * . v aim where jr < * . * < j, f k. 
But since there are only a finite number of joins of that form, there can be only a finite 
number of elements in the algebra. 

5.14. Show that any infinite Boolean algebra 9 contains an infinite set of pairwise-disjoint 
elements. 

Solution: 
Case 1. Assume ‘E is atomic. Then ‘3 has infinitely many atoms, by Problem 5.13(b). If 2 

and 2/ are distinct atoms, then XA g = 0 (by property (ii) of atoms). 

Case 2. ‘3 is not atomic. Then there is an element xo # 0 such that x,, contains no atom. 
Hence there is some z1 such that 0 < x1 < x0. Similarly, there is some x2 such that 0 < xs < xi. 
Proceeding in this manner, we obtain (using the axiom of choice) an infinite sequence x0, xi, x2, . . . 
suchthat z,,>z,>z,>.*.. Let ~o=xo-~~,yl=x~-x~,~~=x~-x~, . . . . Then 2/ir\yj=O 
w.henever i # j. 

5.15. Exhibit a Boolean algebra which is not isomorphic to any Boolean algebra of the 
form T(A). 

Solution: 
Consider the Boolean algebra 4B of statement bundles, based upon the propositional calculus 

(cf. Example 3.5). “B is denumerable. For, since there are denumerably many statement forms, 
there can only be a countable number of statement bundles. However, distinct statement letters 
determine distinct statement bundles, since distinct statement letters are not logically equivalent. 
Hence there are denumerably many statement bundles. Assume % is isomorphic to some F(A). 
Then A must be infinite, for otherwise ‘P(A) would be finite and so would S. Thus T(A) is 
denumerable (since it is isomorphic with %) and A is infinite. By Cantor’s Theorem (Problem 2.22), 
A must have smaller cardinality than T(A). A is equinumerous with a subset of T(A), and there- 
fore A must be denumerable. But then A would be equinumerous with T(A) (since both are denum- 
erable), contradicting Cantor’s Theorem. (What we have shown, by means of Cantor’s Theorem, 
is that no denumerable Boolean algebra can be isomorphic with any T(A), and we also exhibited 
a particular denumerable Boolean algebra.) 
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5.16. Show that the Boolean algebra % of statement bundles (cf. Example 3.5) is atomless. 

Solution: 
Assume [A] is an atom. Then [A] # O,, and A cannot be a contradiction. Let Ai be any 

statement letter not occurring in A. Then A does not logically imply Aip for we can assign Ai 
the value F and assign the statement letters in A suitable values so that A is T. In addition, 
Ai 8z A is not a contradiction, since we can make Ai T and, at the same time, make A T. Also, Ai & A 
logically implies A. Thus 0, < [Ai & A] < [A], contradicting the assumption that [A] is an atom. 

This problem provides another way of solving Problem 6.15, since any Boolean algebra T’(A) 
is atomic. 

SYMMETRIC DIFFERENCE. BOOLEAN RINGS. 
5.17. In any Boolean algebra, prove 

(a) x + y = (x vy) A (XAY)’ 

(b) x + (xvy) = x’ A y 

(c) y + (x A y) = x’ A y 

(d) x V ‘$j = x + y + (x A y). 

Solution: 
(a) (XV y) A (X A $4)’ = (XV y) A (X’ V y’) 

= (X A 2’) V (X A y’) V (2/A X’) V (v A y’) 

= (X A g’) V (X’A 76) = X + y 

(b) 2 f (X v Y) = (XV (xv Y)) A (X A (xv Y))’ (by (a)) 

= (xv y) * 2’ = (X A X’) V ($/ A X’) = ‘Jj A 2’ = X’ A 2/ 

(C) Y + (X A Y) = (Y V (X A Y)) A (Y A (X A Y))’ 0-v (a)) 

= y A (X A y)’ = y A (X’v 9’) = (VAX’) V (y A y’) = 2’ A ‘j/ 

(d) (x +Y) + (xv Y) = Y + (x + (xv Y)) = Y -t @‘A Y) (by (a)) 

= 2” A y (by (c)) 

= XAlLj 

Thus (x + y) + (xv y) = x A y. Hence xv g = x -f-y -t (z A y), by Theorem 5.9(i). 

5.18. Given a Boolean algebra % = (B, A, v, ‘, 0, l), we have seen that % determines a 
Boolean ring with unit r(9) = (B, +, A, 0). Theorem 5.11 tell us that, starting with 
a Boolean ring T = (R, +, X, 0) with unit element 1 # 0, and defining x’ = 1 +x, 
x A y = x x y, and XV y = x + y + (x X y), we obtain a Boolean algebra 

WY) = @, *, VP ‘t Cl) 

Show that these transformations are inverses of each other in the sense that 
b(r(48)) = 48 and r(b(!Q) = %. 

Solution: 
Start with a Boolean algebra % = (B, As, vs, ‘%, 0% , 1,). Then r(3) = (B, SFB, A~, 0, ) with 

unit element 1,. Let C = b(r(9)). By definition of C, 

2% = 1, +I( z = z’s (by Theorem 5.9(h)) 

2 AC Y = XAgy 

XVc $j = Xi-% y+, (XAsy) = XV% j/ (by Problem 6.17(d)) 

Thus b(r@)) = 55. 
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NOW let US start with a Boolean ring ?K = (E, -i-%.’ Xx., 0%) with unit element 1% # 0%. 
Then in ‘D = b(T), 

2’1, = l+Tz 

XAQY = Xx~u 

xv,y = x+KY+5y(xxqY) 

Let d = T(D) = r@(T)). 

x +d y = (a Am Y’Do) VTJ (X”= A?, Y) 

= (x XT (1 +x Y)) vn ((1 +t 4 XK Y) 

= [x xx (1 +T y,] +x [(l +“R. x) xx Y] +1( [(x xq (1 +q Y)) xq ((1 +T 2) xq 2/)1 

= [x+x (x XK y)] +T [Y +T (x XT y,] +Ip (5 xx y x$.y (1 +T 4 xx (1 +*Y)) 

= x+x Y+T [(x+(y) xK(l+q(x+TY+K (XXq(Y))] 

= x+~y++q(xx~Y)+~xx~(zx~Y)+q Yx~(“x~Y)+~(xx5yYP 

= xfq y+1((xx~Y)+~(~x~Y)+~((“xqY)+~(~x~Y) 

= x+Ky 

Also, Xx,y= XAqY==x~Y. Thus r(b(4)) = 9. 

5.19. Solutions of Equations. 

(a) Show that any equation 7 = a is equivalent to an equation of the form p = 0. 

(b) Show that a finite system of equations 71 = 0, . . . , 711. = 0 is equivalent to a single 
equation (T = 0. 

(c) Find necessary and sufficient conditions for the existence of a solution u of an 
equation 7(u, us, . . . , ur) = 0, and, when there is a solution, find them all. 

(d) Show that T(U,UI, . . ., ?.&k) = 0 has a unique solution in u if and only if T = u + p, 
where p does not contain u. 

Solution: 

(a) 7 = o if and only if (T Au’) v (T’ A U) = 0, by Theorem 5.9(j). 

(b) .rl = 0 & . . . &7,=0 t) T1V’*‘VT,=o. 

(c) Write 7 in disjunctive normal form. Grouping those terms involving u and those involving u’, 
we obtain 

7 = (UA 01) V (U’ A 02) 

Hence T = 0 f) (U A U1) V (U’ A “2) = 0 

f* UAq=O & U’AU2=0 

* u-u; 82 02~24 

t) u2~ufu; 

Hence there is a solution if and only if 0s f u;, and the solutions are all u such that 
02 f u f u;. Hence the set of solutions consists of all (ue v w) A u;, for all values of w. (For, if 
02 2-z u 4 o;, then (Q v u) A ui = u A U; = u. Conversely, if us f ui, then, for any W, 02 f 
(es v w) A ei 5 vi.) If we wish to solve for the remaining variables, we then solve the inequality 
ue f ei, which is equivalent to the equality ue A 01 = 0. 

(d) By (c), if there is a unique solution, ut = ui. (Otherwise, u2 and U; would be distinct solutions.) 
Hence 

7= (U A 01) V (U’ A 0;) = U + U; = U + (1 + “1) 

Conversely, if 7 = u + p, then 7 = 0 + u = p. 
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5.20. Find necessary and sufficient conditions for existence of a solution and find all 
solutions of the following equations. 

(a) uvx = w, (b) UAX = UAW. 

Solution: 

(4 uvz=w f) [(U V 2) A W’] V [(U V 2)’ A W] = 0 

f) (U A W’) V (2 A W’) V (U’ A 2’ A W) = 0 

c) (UAW’) v (UAZAW’) v (U’AXAW’) v (U’AZ’AW) = 0 

c, (UA[W’V(ZAW’)])V (U’A[(ZAW’)V(Z’AW)]) = 0 

e (U A W’ ) V (U’A(Z+W)) = 0 
w 

01 Q2 

A solution exists f) u2 f ui 

t) z$wfw 

ti (Z+W)AW’ = 0 

c, (ZAW’) + (WAW’) = 0 

t* ZAW’=O 

When z A W’ = 0, all solutions are of the form ((x + w) v x) A w for arbitrary x. But 

[(Z+W)AW] V [XAW] = (WAZ’) V (XAW) = WA (XVZ’) 

The equation z A w’ = 0 always has solutions z and the solutions are all elements g A w 
for arbitrary y. Thus 

2 = YAW 

(b) 

U = W A (XV 2’) = W A (5 V (y A W)‘) = W A (XV $j’ V W’) 

= w A (XV y’) for arbitrary x, y and w 

UAZ=UAW ‘3 [(U A 2) A (U A W)‘] V [(U A W) A (U A Z)‘] = 0 

f) [(U A 2) A (U’ V W’)] V [(U A W) A (U’ V Z’)] = 0 

t) (UAXAW’)V (UAWAZ’) = 0 

t) U A [@A W’) V (WA Z’)] = 0 

-3 uA(w+x) = 0 

A solution exists if and only if 0 4 (w + 2)‘. Hence a solution always exists. The solutions 
are u = 5 A (w + 2)’ for all 2, w, 2. 

5.21. Find all solutions of the system 

1 

u = (xAw’)V~ (4 
2 L (2,Aw)Vu (b) 
wvv = x’vu (c) 

Solution: 
(a) is equivalent to 

(U A [(Z’ VW) A V’]) V (24’ A [(Z A W’)” V]) = 0 (a’) 

(b) is equivalent to 
2 A [(V’V W’) AU’] = 0 @‘I 

(c) is equivalent to 
[(WVW)AZAU’] v [w’A~A(z’vU)] = 0 (c’) 



AXIOMATIZATIONS AXIOMATIZATIONS 
5.22. 5.22. In our axiom system for Boolean algebra (cf. Section 3.2), prove the independence of In our axiom system for Boolean algebra (cf. Section 3.2), prove the independence of 

each of Axioms (l)-(4) and (7)-(g). Show that each of Axioms (5)-(6) is not independent. each of Axioms (l)-(4) and (7)-(g). Show that each of Axioms (5)-(6) is not independent. 
(A member A of a system 2jI of axioms is said to be independent if and only if A (A member A of a system 2jI of axioms is said to be independent if and only if A 
is not provable from the set W u {A} of the other axioms.) is not provable from the set W u {A} of the other axioms.) 

Solution : Solution : 

Axiom (1): z v y = yv x. Axiom (1): z v y = yv x. Define a model ((0, l), A,V, ‘, 0,l) as follows: Define a model ((0, l), A,v, ‘, 0,l) as follows: 

Complement: 0’ = 1, 1’ = 0. Complement: 0’ = 1, 1’ = 0. 

Join: Join: 

In the above table, the value of xv 2/ is to be found at the intersection of the row to the right In the above table, the value of xv 2/ is to be found at the intersection of the row to the right 
of x and the column under y. Thus of x and the column under y. Thus 

ovo = 0, ovo = 0, Ovl= 0, Ovl= 0, Iv0 = 1, Iv0 = 1, Iv1 = 1 Iv1 = 1 

Meet: Meet: 

Thus Thus OAO = 0, OAO = 0, Olzl= 0, Olzl= 0, 1AO = 0, 1AO = 0, l/71= 0 IAl = 0 

Then Axioms (2)-(g) hold, but Axiom (1) is false. Then Axioms (2)-(g) hold, but Axiom (1) is false. (1) fails because 1 v 0 = 1 # 0 = 0 v 1. (1) fails because 1 v 0 = 1 # 0 = 0 v 1. To see To see 
that Axiom (2), z A y = y A 2, holds, observe that all meets are 0. that Axiom (2), z A y = y A 2, holds, observe that all meets are 0. Verification of the other axioms Verification of the other axioms 
is left as an exercise for the reader. is left as an exercise for the reader. 

For the independence of Axiom (2), use 0’ = 1, 1’ = 0, and the operations For the independence of Axiom (2), use 0’ = 1, 1’ = 0, and the operations 
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Hence we must solve the system (a’), (b’), (c’). By Problem 5.19(b), this system is equivalent 
to the single equation 

(24 A [(z’ v w) A v’]) v (u’ A [(z A w’) v v]) v (2 A [(v’v w’) AU’]) 

V [(WV V) A X A U’] V [W’ A W’ A (2’ V U)] = 0 

which is equivalent to 
(U A ([(Z’ V W) A ‘II’] V [W’ A W’]}) v (U’ A {[(Z A W’) v V] 

V [ZA (V’VW’)] V [(WV?J)AX] v [W’AV’AZ’])) = 0 

Hence c1 is [(z’ v w) A v’] v [w’ A 0’1, and us is 

[(Z A W’) V V] V [Z A (V’ V W’)] V [(W V V) A Z] V [W’ A 2)’ A Z’] 

By easy calculation, us = v v z v w’ and or = vu’. Hence a solution exists if and only if 
ZI v z v w’ f v. But the latter equation is equivalent to v’ A (zv w’) = 0. By Problem 5.20(b), 
substituting v’ for u, z v w’ for z, and 0 for w, we obtain the solution v’ = x A (x v w’)’ = x A (x’ A w), 
i.e. v=x’vzvw’. The solution for u is u = (us v y) A U; = (v v z v w’ v y) A v = v. Thus the 
solutions are u = v = x’ v xv w’ for arbitrary x, z, w. 
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For the independence of Axiom (3), x A (y v z) = (z A y) v (Z A z), use 0’ = 1, 1’ = 0, and 

l- 

V 0 1 

l- 

A 0 1 

0 0 1 0 1 0 

1 1 1 1 0 1 

Note that 0 A (0 v 1) = 0 A 1 = 0, but (0 A 0) v (0 A 1) = 1 v 0 = 1. 

For the independence of Axiom (4), xv (y A z) = (xv y) A (xv z), use 0’ = 1, 1’ = 0, and 

t 

V 0 1 

I- 

A 0 1 

0 0 1 0 0 0 

1 1 0 1 0 1 

For the independence of Axiom (‘7), xv x’ = 0, let the domain of the model be F(A), where 
A is any non-empty set, take A to be fl, and v to be U. Let 0 be @ and let 1 be A. However, let 
2’ = 0 for all x. 

For the independence of Axiom (8), use the same model as for Axiom (7), except that 
x’ = A = 1 for all x. 

For the independence of Axiom (9), use the model (81, with A, v, ’ as n, U, and - (Q)n@ = 
pug=e,=$g; O=l=@ 

To show that Axiom (5), xv 0 = x, is provable from the rest, note first that xv 1 = 1 for 
all x. For, 

1 = XVX’ = X V (2’ A 1) = (XV X’) A (XV 1) = 1 A (XV 1) = X V 1 

Hence X V 0 = X V (X AX’) = (X A 1) V (X A X’) = X A (IV X’) = 2 A 1 = X 

To show that Axiom (6), z A 1 = x, follows from the rest, “dualize” the proof just given for 
the axiom xv 0 = x. Thus, first, x A 0 = 0 for all x. For, 

0 = XAX’ = X A (X’V 0) = (X A 2’) V (X A 0) = 0 V (X A 0) = X A 0 

Hence X A 1 = X A (XV 2’) = (XV 0) A (XV X’) = X V (0 A 2) = X V 0 = X 

Detailed verification that the examples in the independence proofs satisfy the remaining axioms 
is left to the reader, 

IDEALS 
5.23. If C is a subset of a Boolean algebra CB and if an ideal J contains C and is contained 

in every ideal containing C, show that J is the ideal Gen (C) generated by C. 

Solution: 

We have to show that J is equal to the intersection H of all ideals containing C. Since J is 
contained in every ideal containing C, it follows that J c H. On the other hand, since J is itself 
an ideal containing C, H C_ J. Therefore, J = H. 

5.24. If J is an ideal of a Boolean algebra % and @ E B, prove that Gen (JU {y}) is a proper 
ideal if and only if Y’ 4 J. 

Solution: 

Assume y’ E J. Hence 1 = y v y’ E Gen (JU {y}), and therefore Gen (Ju {y}) is not a proper 
ideal. Conversely, assume that Gen (Ju{y}) is not a proper ideal. Then 1 E Gen (JU {y}), and 
by Theorem 5.17 there exist z E B and z E J such that 1 = (z A g) v X. Hence 

g” = y’ A 1 = 1/’ A ((2 Ay) V 2) = (y’ A (2 Au)) V ($/A 2) = y’ A 2 

But since z E J, y’ A x E J and therefore y’ E J. 
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5.25. By a congruence relation R on a Boolean algebra 23 we mean a binary relation R on B 
satisfying the following properties. 

(a) xRx (reflexivity) 

(b) xRy --f yRx (symmetry) 

(c) (zRy & yRx) + xRx (transitivity) 

(d) xRy --, (x’Ry’ & (x A x)R(y A 2)). 

Define JR = {x : xR0). Prove: (i) JR is an ideal. (ii) JR is a proper ideal if and 
only if 1 (ORl). (iii) x =J~ y if and only if xRy. 

Solution: 

(9 BY (4, 0 E JR. Assume x E J, and y E J,. Hence xR0 and yR0. By (d) x’R1, and, again by 
(4, (2’ A Y’WY’. But from (d), yR0 implies y’R1. Hence by (c), (2’ A y’)Rl, and, again by (d), 
(x’ A y’)‘Ro, i.e. x v y E JR. Now assume that x E JR and zE B. Then xR0 and, by (d), 
(x A x)RO, i.e. x A x E JR. 

(ii) This follows immediately from the fact that an ideal is proper if and only if it does not 
contain 1. 

(iii) Since + is definable in terms of the meet and complement, it follows by (d) that xRy + 
(x + y)R(y + y), i.e. xRy + (z + y)RO. But (x + y)RO is equivalent to x + y E JR, which in 
turn is equivalent by definition to x ‘J, y. 

5.26. A subset F of a Boolean algebra 23 is said to be a filter if and only if: (i) F is non- 
empty; (ii) (x E F & y E F) +xA~EF’; (iii)xEF&yEB+xvyEF. Byanultra- 
filter we mean a proper filter which is contained in no other proper filter. Prove: 

(a) F is a filter if and only if F’ = {x’ : x E F) is an ideal. 

(b) F is an ultrafilter if and only if F’ is a maximal ideal. 

(c) Assumption (iii) in the definition of filter may be replaced by 

(iii’) x E F & x g y + y E F 

Solution: 

(a) Assume F is a filter. Given x E F’, y E F’, z E B. Then x’ E F and y’ E F. Hence x’ A y’ E F 
and X’VZ’E F. Therefore xv y = (x’ A y’)’ E F’ and x A z = (z’v 2’)’ E F’. Thus F’ is 
an ideal. The converse is left as an exercise for the reader. 

(b) This is an immediate consequence of (cc). 
(c) The equivalence between (iii) and (iii’) follows from the equivalence between x f y and 

xvy=y. 

5.27. Call a Boolean algebra 3 sim$e if and only if (0) is the only proper ideal. Prove 
that 3 is simple if and only if B = (0, l}. 

Solution: 

Clearly, if B = (0, l}, then (0) is the only proper ideal. Conversely, assume B is simple. Let 
z be any element of B different from 1. Then the principal ideal J, is a proper ideal, since 1 =# X. 
Since 9 is simple, J, = (0). But x E J, and therefore x = 0, i.e. B = (0, 1). 

5.28. In a Boolean algebra %, a set C of ideals of % is said to be an C-chain of ideals if and 
only if, for any J1 and Jz in C, either J1 c Jz or J2 C_ JL (This amounts to saying that 
the relation c totally orders C.) Prove that the union of an c-chain of ideals is 
again an ideal, and, if each ideal in C is proper, so is the union. 
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Solution: 

Let H = U J, where C is an c-chain of ideals. Given x and y in H, and z in B. Then 
JEC 

XE J, and y E J, for some J, and J, in C. Since C is an C-chain, either J1 L J, or J, c J,, say, 
J, c_ J,. Hence x E J, and y E J,. Since J, is an ideal, xv y E J2 and x A x E J,. But since J, c H, 
we obtain: xv y E H and x A z E H. Hence H is an ideal. If each ideal in C is proper, then 14J 
for each J in C. Hence 14 H and therefore H is also proper. 

5.29. If T = (R, +, X, 0) is a commutative ring, then a non-empty subset 
a ring-theoretic ideal if and only if 

(i) (xEJ & yEJ) + x-y EJ; 

(ii) (x E J & x E R) + x: x x E J. 

J of R is called 

Prove that if J is a subset of a Boolean algebra 3 = (B, A, V, ‘, 0, l), and T = 
(B, +, A, 0) is the corresponding Boolean ring, then J is an ideal of 48 if and only if 
J is a ring-theoretic ideal of T. 

Solution: 

Notice that, for Boolean rings, (-y) = y, and therefore we may replace x-y in condition (i) 
by z + y. Now assume that J is an ideal in %. Wealreadyknowthat (zEJ&yEJ) +s+yEJ, 
which is condition (i), while condition (ii) reads (xEJ & zE B) + x A z E J, which is part of the 
definition of an ideal. Conversely, assume that J is a ring-theoretic ideal. By (ii), (x E J & x E B) + 
XAZEJ. Nowitremainstoshowthat (xEJ&yEJ)-+xvyEJ. SoassumexEJ&yEJ. By 
(ii), x A y E J, and, since x v y = x + y + (x A y), we may conclude by (i) that 2 v y E J. 

5.30. Show that, if J is an ideal of a Boolean algebra 48, then x =J y if and only if there 
exists some element x in J such that x v x = y v x. 

Solution: 

Assume x zJ y, i.e. x + y E J. Let z = z + y. Then 

xv2 = xv(x+y) = xvy = yv(x+y) = yvz 

Conversely, assume x v z = y v x for some z in J. Then 

xfly’ f (xv 2) A y’ = (y v 2) A y’ = 2 A y’ f 2 

Hence XA~’ E J. Also, 

2’ A y f X’ A (y V 2) = 2’ A (XV 2) = X’ A 2 5 2 

Hence x’ A y E J. Therefore x-l-y = (x A y’) v (x’ A y) E J. 

QUOTIENT ALGEBRAS 
5.31. Let 48 be the Boolean algebra T(A), where A is some infinite non-empty set, and let 

J be the ideal of finite subsets of A. Prove that the quotient algebra WJ is atomless. 

Solution: 

Given an element [Xj of WJ such that [X] # [O]. Hence X is infinite. Then there is an 
infinite set Y such that Y c X and X - Y is infinite. (To see this, enumerate a subset of 
x, Ia,, a,, . . .I, and let Y = {a,, as, a,, . . .}.) Since Y is infinite, [Y] # 09,J. Also, since Y cX, 
[Y] 5 [Xl. However, since X - Y is infinite, X + Y 4 J, i.e. X +J Y. Hence [X] # [Y]. Thus 
093/J < VI < [Xl, and therefore [Xj cannot be an atom. 
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5.32. Given Boolean algebras & = (A, A&, v~, ‘~4, O,, loA) and 9 = (B, A%, vs, ‘q, 0,, 1%). 
A function f from A into B is called a homomorphism from CA into 9 if and only if 

(i) fW-4) = (f(x))‘* ; 
(ii) f(xAdY) = f(x) As f(y). 

If such a function has its range equal to all of B, then it is called a homomorphism 
from W¶ onto 48, and 9 is called a homomorphic image of CA. A homomorphism f is 
an isomorphism of CA into ?t? if and only if f is one-one, and f is called an isomorphism 
of ~4 onto CB if and only if f is an isomorphism of CA into ‘B and the range of f is B. 
We say that CA and 553 are isomorphic if and only if there is an isomorphism of CA 
onto %. If f is any function from A into B, by the kernel Kf we mean the set 
{x : x E A & f(x) = O,}. Prove: 

(a) If f is a homomorphism from CA into %, then 

(1) f&V&Y) = f(x) vql f(y); 

(2) f(x+oAy) = f(x) +ef(Y); 

(3) f(O,) = 0% and f(1,) = 1%. 

(b) If f is a homomorphism from CA into %, the range f(A) determines a subalgebra 
of 9. 

(c) If f is a homomorphism from CA into %, and C determines a subalgebra of ‘73, then 
f-‘(C) = {x: it: E A & f(x) E C} determines a subalgebra of CA. 

(d) The identity mapping IA is an isomorphism from CA onto CA. (Hence the relation 
“isomorphic” is reflexive.) 

(e) If f is an isomorphism from CA onto %, then the inverse function f-l from B onto 
A is an isomorphism from % onto 4. (Hence the relation “isomorphic” is 
symmetric.) 

(f) If f is a homomorphism from CV~ into %, and g is a homomorphism from CB into an 
algebra C = (C, A~, vc, ‘c, O,, l,), then the composition g 0 f is a homomorphism 
from CA into C. In particular, if f and g are isomorphisms onto, then so is g 0 f. 
(Hence the relation “isomorphic” is transitive.) 

(g) A homomorphism f from CA into 48 is an isomorphism of CA into 9 if and only 
if the kernel Kf = (0,). 

(h) If J is an ideal of CA, then the function f(x) = x + J for all x in A is a homomor- 
phism from CA onto CA/J (called the natural homomorphism from & onto CA/J). 

(i) If 48 is a homomorphic image of CA, then there is an ideal J of CA such that 4B and 
CAIJ are isomorphic. 

Solution: 

(4 fb v&.q Y) = f((X’d A\w4 y’d)‘=‘f) 

= (f(X’w4 A 04 Y’d))‘“B = (fb’d A% f(Y’=d)‘g 

= (f(X)‘% As f(Y)‘%)‘% = f(X) vq~ f(Y) 

The proof for + is similar, since + is definable in terms of A, V, ‘. Now 

f(0,) = f(X A& 5’4) = f(X) A\“B f(X’&) = f(X) “\II f(X)‘% = 023 

Hence f(ld) = f(Oy) = f(Od)‘s = 02 = 1%. 
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(5) From now on we shall omit subscripts CA and 9, wherever this is not likely to cause confusion. 
Assume now that j is a homomorphism from CA into ‘K Assume u, w E f(A). Then u = j(z) 
and w = j(y) for some x, y in A. Hence u A v = j(x) A j(y) = j(x A y) E j(A). Similarly, 
u’ = j(x)’ = j(x’) E f(A). Hence f(A) determines a subalgebra of CB. 

(c) Assume x, y E j-r(C). Then j(x A y) = j(x) A j(y) E C, since C is closed under A. Similarly, 
f(x’) = j(x)‘E C, since C is closed under complementation. Thus x A y E f-r(C) and x’E j-r(C). 

(~2) This is obvious. 

(e) Given u, v E B. Then 

j(j-‘(U A W)) = U A 2, = j(j-‘(U)) Aj(f-‘(V)) = j(j-‘(U) A j-‘(V)) 

Since j is one-one, j-‘(UA V) = j-l(u) A j-r(v). Similarly, f(j-‘(u’)) = u’ = (jj-r(u))’ = 
j((j-l(u))‘). Since j is one-one, j-‘(24’) = (j-l(u))‘. 

(f) (L7 Of)(X A Y) = dfh A Y)) = df(X) A f(Y)) 

= &f(X)) A &f(Y)) = (!J of)(X) A (g Of)(Y) 

Similarly, (l7 ofw) = f7W’)) = W(x)‘) = bM4))’ = ((f7 of)b)Y 

(9) Assume j is one-one, and let x E Kp Then j(x) = 0 = j(0). Since j is one-one, z = 0. Con- 
versely, assume Kf = {0}, and assume j(x) = j(y). Then j(x + y) = j(x) + j(y) = j(z) + j(z) = 0. 
Thus x + y E Kf, but, since Kf = {0}, x + y = 0, which is equivalent to x = y. 

(h) f(XA Y) = (X A Y) + J = [X “Y] = [Xl A [Y] = f(X) A f(V) 

Similarly, j(x’) = 2’ + J = [x’] = [xl’ = j(x)’ 

(i) Assume j is a homomorphism from & onto 9. Let J = Kp J is an ideal. (For, if x, y E J 
and z E A, then j(x v y) = j(x) v j(y) = 0 v 0 = 0, and j( x A Z) = j(x) A j(2) = 0 A j(2) = 0.) For 
any 2 in A, we define F([x]) = j(x). This definition is independent of the choice of the particu- 
lar representative 2 in [z], since 

‘I 

x + y E J --) j(x + y) = 0 --f f(x) + f(Y) = 0 + f(x) = f(Y) 

Now F([X] A [W], = F([X A W], = f(XA W) = f(X) A f(w) = F([X]) A F([W]) 8% 
,: 
/ 

Similarly, F([x]‘) = F([x’]) = j(x’) = j(x)’ = F([x])’ 

To see that F is one-one, we check that the kernel of F is (0). Assume F([x]) = 0. Then 
j(x) = 0. Hence x E Kf, and therefore [x] = 0. That the range of F is B follows from the 
fact that the range of j is B. 

5.33. (a) Let b be a nonzero element of a Boolean algebra 23. Let Bt, denote {x : z 4 b}. 
Define u# = b -u for every u in BL,. Then show that (Bt,, A, v, #, 0, b) is a 
Boolean algebra (denoted 3 1 b). 

(b) Let b be a nonzero element of a Boolean algebra FB. Let J be the principal ideal 
JV generated by b’, i.e. J = {x : x 6 b’}. Define 4(u) = [u] = u + J for every 
u 4 b. Prove that + is an isomorphism of 23 1 b onto WJ. 

Solution: 
(a) Since the operations A, v and # are closed in B,, Axioms (l)-(4) are automatically satisfied. 

Axioms (5) and (9) are obvious. Axiom (6) becomes z A b = z which holds for all z in Bb. 
Axiom (7) reads z v (b - x) = b for all x in Bb, which is obvious. Finally, Axiom (8) becomes 
z A (b - x) = 0 which holds for all 2. 
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(b) 

Since b+l=b’EJ, wehave b+J=[l]. Hence 

+(x#) = C(b - 2) = +(b~ 2’) = [b] A [cc’] = [l] A [z]’ = [xl’ = (&))’ 

Thus + is a homomorphism. To see that @ is one-one, assume that u is in the kernel K+. Then 
[u] = 0 IIjJ = J, i.e. UE J. Hence u 5 b’. But u f b. Therefore u = 0. Hence K = {0}, 
and + is one-one. Assume now that [v] E B/J. Let u = u A b. Then [u] = [w] A [b] = 
[w] A [l] = [w], and u E % ] b. Hence [v] is in the range of $. Therefore + is an isomorphism 
of 4B / b onto WJ. 

BOOLEAN REPRESENTATION THEOREM 
5.34. Show that every proper ideal J of a Boolean algebra 9 is equal to the intersection 

H of all maximal ideals containing it. 

Solution: 
By Theorem 5.26, there is a maximal ideal containing J. Now J C H. We must show that 

H G J. Assume x 4 J. Then by Problem 5.24, Gen (J U {z’}) is a proper ideal. Hence by Theorem 
5.26 there is a maximal ideal M containing Gen (J U (2’)). Therefore J c M and 5 B M. Thus z 4 H. 
Hence H c J. 

5.35. (For those readers acquainted with elementary point-set topology.) Definitions: A 
clopen set of a topological space is a set which is both closed and open. A topological 
space X is totally disconnected if and only if, for any distinct points x and y of X, 
there exists a clopen set C such that x EC and y 4 C. A topological space which is 
both compact and totally disconnected is called a Boolean space. 

(a) Prove that the clopen subsets of a Boolean space X form a field of sets (called the 
dual algebra Bx). 

(b) Let x be the set of maximal ideals of a Boolean algebra 9. For any x in B, let 
E(x) = {M : M E zw & x 4 M}. Then if we take arbitrary unions of sets of the 
form E(x) to be open sets, show that 3M becomes a Boolean space (called the 
Stone space of CB). Prove also that the sets E(x) are the clopen subsets of 3M, and 
that the dual algebra B, is isomorphic with the original Boolean algebra 9. 

(c) If X is a Boolean space, prove that the Stone space 3M of the dual algebra BX is 
homeomorphic with the original space X. 

Solution: 
(a) The complement of an open space is closed and vice versa. Hence the complement of a clopen 

set is clopen. In addition, the union and intersection of a finite number of closed (open) sets 
are also closed (open). 

(b) Any maximal ideal is a proper ideal and therefore belongs to 2(z) for some 2. Now assume 
that MI and M, are distinct maximal ideals. Then there must be some element z E MI - MP. - 
Hence M, E E(z’) and M, E E(z). Since g(z’) = E(z), &V is a totally disconnected space. To 
prove compactness, assume &f is covered by some collection {O,}, e A of open sets, i.e. 
CM= u 0,. 

CZEA 
Let us assume JM is not covered by any finite subset of the collection {O,), e A, 

and let us show that this leads to a contradiction. Replace each 0, by the sets E(o) contained 
in it. Hence we obtain a covering of &V by a collection U of sets of the form E(s), where x 
ranges over some set C C B. It follows that no finite subset of lJ covers iu. (Otherwise, 
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replacing each 5(z) by a corresponding 0, containing it, we would obtain a finite covering of 
&f by Ool’s.) Hence E(z,) v * . . v _C(z,) # &!z for any x1, . . ., zk in C. But -C(xl) v . . . v +?Z(r,) -= 
E xlv ( ... v xk) (by the proof of Theorem 5.30). Hence X(zi v . . . v xk) f d1 for any zl, . , zk 
inc. Therefore x,v...vx,#l forahyx,,...,x,inC. By Theorem 5.16 the ideal Gen (C) 
generated by C is a proper ideal, and therefore by Theorem 5.26 there is a maximal ideal M 
containing C. Hence for every x in C, M 4 Z(z). This contradicts the fact that the set CJ~ of 
all maximal ideals is covered by the collection U of open sets. Hence the space ~jlf is compact. 

By definition, each E(x) is open, and, since E(X) = E(z’), each ~(2) is also closed. Con- 
versely, assume that g is a clopen subset of c%‘. Since 9 is closed and ,T[ is compact, (1~ 
is itself compact. Since q is open, ‘JJ is a union of sets of the form T(x) and therefore, by 
ComPactness, qj is a union of a finite number of such sets: s(xi), . , E(r,,). But 

E(xJ v . *. v E(x,) = E(x, v . . . v Xm) 
i.e. (y is of the form X(y). 

The isomorphism between the dual algebra B ej~ and ‘B already has been established in the 
proof of Theorem 5.30. 

(c) Given a Boolean space X. For each x in X, let G(z) be the set of all clopen sets A in the dual 
algebra 2x such that x @A. Let us show that G(x) is a maximal ideal in B,. If A, and A, 
are in G(x), then x4-4, and x4A,, and therefore z & A,uA,, i.e. A,uA,,E G(x). If, in addi-. 
tion, A, E B,, then x 4 A,nA,, i.e. A, nA, E G(x). Thus G(x) is an ideal. Clearly, for any 
clopen set A, either x 4 A or x 4 X - A. Hence G(x) is maximal. Thus G is a function from 
X into the Stone space a of the dual algebra B,. To see that G is one-one, observe that if 
1: and y are distinct points of X, then since X is totally disconnected, there is a clopen set 
containing x but not y, and therefore G(x) # G(y). To see that the range of G is all of -Jl, 
assume M is any maximal ideal in the field of clopen sets and assume for the sake of contra- 
diction that M # G(x) for all x E X. 

Case 1. For each x in X, there is a clopen set A in M - G(x). Hence x E A. Thus the 
sets of M form a covering of X, and by compactness there must be finitely many sets of M 
whose union is X. But the union of a finite number of sets in an ideal must again be in the 
ideal. Therefore the unit element X of the field of clopen sets would have to be in M, and 
M would not be a proper ideal, contradicting the definition of maximal ideal. 

Case 2. There is some element x in X such that there is no clopen set in M - G(.y) but 
there is a clopen set A in G(z) -M. So A 4M, and therefore the clopcn set X-A E M, 
since M is maximal. Since there is no clopen set in M - G(x), X - A 6 G(z). Hence both A 
and X-A are in G(x), which is impossible. 

It remains to show that G is continuous. (That G-1 is also continuous then follows from 
the fact that ~11 and X are compact Hausdorff spaces.) Let z E X. Since the open sets of ~77 
are unions of clopen sets of the form E(A), where A is some clopen set of X, it suffices to con- 
sider any clopen set %(A) having G(x) as a member. We must show that there is some open 
set Y containing x as a member such that G[Y] c E(A). Since E(A) is the set of all maximal 
ideals of the dual algebra not containing the clopen set A, it follows from the fact that 
G(z) E E(A) that EEA. Then A is an open set such that x EA and, for any y in A, G(y) E E:(A). 
Hence G is continuous. 

INFINITE MEETS AND JOINS 
5.36. Prove that a Boolean algebra CB is isomorphic to a Boolean algebra T(A) of all subsets 

of some non-empty set A if and only if % is complete and atomic. 

Solution : 

We already know that any Boolean algebra T(A) is atomic and complete. Conversely, assume 
that 9 is atomic and complete, and let A be the set of atoms of %. For any element x in B, let 
q(x) = {b : b E A & b g x}. By Theorem 5.7, * is an isomorphism of ‘5 into T(A). Let C E T(A), 
i.e. CcA. By the completeness of ‘B, C has a lub x. Hence by Problem 5.12, C = q(r). Thus * 
is an isomorphism of CB onto T(A). 
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5.37. Associativity of Meets and Joins. If for each w in a set W, X, is a set of elements 
of a given Boolean algebra CB, and X = ~ VW X,, prove: 

(a) ,Yw (2x U) = 2x u 

tb) w?w (.PxW u, = ,?x” a0 

in the sense that, if the left-hand sides exist, then so do the right-hand sides and they 
are equal. 

Solution : 

Let z = V V u . Assume xEX. 
( > 

Then x~X, for some vE W. Hence x f 
WEW u E x, 

V u f z. Thus z is an upper hound of X. Assume now that 2/ is any upper bound of X. For 
u E x, 
each w in W, X, c X. Hence y is an upper bound of X,,, and so V u f u. Since this holds 

u E x, 
for each v in W, z 5 y. Therefore z = V u. This proves (a). 

UEX 

Equation (5) follows from (a) by duality. 

5.38. Prove that the following identities hold in any Boolean algebra. 

(a) x v v u = v (xv4 
UEA UEA 

(b) x A A u = A @AU) 
UEA UEA 

(in the sense that, if the left-hand sides exist, so do the right-hand sides, and they 
are equal). 

Solution : 

Observe first that if a set X of elements of a Boolean algebra contains as a member an upper 
bound z of X, then z is the lub of X. To prove (a), assume v EA. Then v f V U, and SO 

UEA 

x v v f xv v u. Thus xv v u is an upper bound of {xv u : uE A}. Assume now that 2/ 
UEA UEA 

is any upper bound of {xv u : uEA}. Then xv u f v for all uE A. We must show that 
xv V uf g, which isequivalent to xv V uvy = v. But the latter equation follows by 

UEA USA 
Problem 5.37(a) and the observation at the beginning of this proof. 

Equation (5) follows from (a) by duality. 

5.39. If CA is a Boolean subalgebra of %, and Y is a set of elements of CA such that II L’,” 2/ 

exists and belongs to CA, show that ,‘$,” y exists and ,yt y = ,u,” y (and similarly, 
by duality, for meets). 

Solution: 

This is an obvious consequence of the fact that the partial order LWQ is the restriction to 04 
of the partial order 5% on S. (For, 

Xf&W t, xA&W=W, XLCBW ts x/Ysw=w 

and x A *w =xAgw.) 
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5.40. If Y is a set of elements of a field of sets 7 and if y 2, y E F, show that y g, y = 
VP y (and, similarly, by duality, for intersections and meets). 

UEY 

Solution: 

Clearly, tl vy y is an upper bound in p of Y. Assume z is an upper bound in y of Y. Then 

VGz for all y in Y. Hence ~>~Fvy. Thus U y is the lub in T of Y. 
YEY 

5.41. Let 7: be a field of subsets of a set W such that, for every w E W, {w} E y. Prove 
that joins (meets) coincide with unions (intersections), i.e. if Y is a collection of sets 
in 7, then VT y exists if and only if ,vy y E 7 (and therefore by Problem 5.40, 

YCY 
.y,’ Y = ,yy Y>. 

Solution : 

In one direction, if U y E 7, then by Problem 5.40, y yy y is the lub in F of Y. Conversely, 
UEY 

assume that VT y exists. Then y C VF y for all y in Y. Hence u y c VF u. Let us assume 
UEY UEY YEY YEY 

that equality does not hold and derive a contradiction. Then there is some u in W such that 

u E vy y and u 4 U y. Since {u} belongs to the field T, x = V7: y - {u} also belongs 
YEY ( > 

to 7: Eld z < vy y. But z is an upper bound of Y, contradicting’tEeYfact that VT y is the 
lub of Y. UEY YEY 

5.42. Is a complete field of subsets of a set X necessarily the field of all subsets of X? 

Solution : 

If X contains more than one element, then {e),X} is a complete field of subsets. More gen- 
erally, if A is any non-empty subset of X containing at least two elements, then the collection fF 
of all subsets Y c X such that Y n A = @ or A C_ Y is a complete field of subsets of X not con- 
taining any of the non-empty proper subsets of A. 

5.43. Prove that any complete field of sets 7 is atomic. 

Solution: 

Let A be any non-empty set belonging to 7, and let s,, be some element of A. Then the inter- 
section H of all sets in 7 which contain x0 is, by the completeness of T, also in T, and it is an atom 
included in A. To see that H is an atom, assume W c H and WE 7. 

Case 1. s,E W. Then H c W and therefore H = W. 

Case 2. x0 B W. Then x,, E H - W E p. Hence H c H - W and therefore W = @. 

DUALITY 
5.44. (a) If 9 = (B, A, v, ‘, 0, 1) is a Boolean algebra, show that 4Bd = (B, V, A, ‘, 1, 0) 

is also a Boolean algebra. 

(b) Prove that the function f such that f(x) = x’ is an isomorphism of FE onto CBd. 

Solution: 

(a) Verification of Axioms (l)-(9) for W is straightforward. Remember that O%d = 19, 
1 q(d = O‘B* Aq(d = Vs, and vs(d = A%. 

(b) f is one-one, since 5’ = 2/’ + x = y. The range of f is B, since x = (z’)‘. Also, f(x A y) = 
(Z A 1/)’ = 2’ V II’ = f(x) V j(y), and f(x’) = 2” = f(x)‘. 
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INFINITE DISTRIBUTIVITY 
5.45. Let A be the set of atoms of a Boolean algebra 3. Prove that T is atomic if and only 

if V x=1. 
ZEA 

Solution: 

By Problem 5.13(a), if 9 is atomic, then v x=1. Conversely, assume v x=1. 
XEA ZEA 

Given any nonzero g in B, we must show that there is an atom b f y. Let us assume not and 
derive a contradiction. Then for every atom x, x A y = 0. Hence v (x A y) = 0. But 

XEA 

V (x A y) = t/ A V x by Theorem 5.35(u). Since V x = 1, we have 0 = V (x AW) = g, 
ZEA XEA SEA ZEA 
contradicting the fact that y Z 0. 

5.46. Prove that a Boolean algebra 3 is isomorphic to a field T(K) of all subsets of a non- 
empty set K if and only if T is complete and completely distributive. 

Solution: 

We already know that T(K) is complete and completely distributive. Conversely, assume B is 
complete and completely distributive. Let 

w, if 8 is 1 
W = B, s = (1, -1) and x,,, = w’, if 8 is -1 

By complete distributivity, 

A (wvw’) = 
WEB 

Hence 

Now by Theorem 5.35(u), for any nonzero UE B, 

U = UAl = UA v 
f E se 

Since u f 0, there must be some f E SB such that u A A x,,f(,j Z 0, and therefore 
WEB 

A XW,f(W) + 0 
WEB 

Now observe that if z = A xw,f(wj # 0, then z is an atom. (To see this, assume 0 f w < z. 
WEB 

We must prove that v = 0. But v < z 5 x,,f(,j. Since x,,f(vj is v or w’ and w < v is impossible, 
it follows that x,,~(,,) = 2)‘. Hence v < w’, which implies that w = 0.) Thus for any nonzero 
uE B there is an atom z such that z 5 u, i.e. FB is atomic. But we already have proved (cf. 
Problem 5.36) that a complete atomic Boolean algebra is isomorphic to some F(K) where K is 
non-empty. 

5.47. Regular Open Sets (For those readers acquainted with elementary point-set topology). 
Let W be a non-empty topological space. For any Y c W, we use the notation Yc for 
the closure of Y. Recall that Y is the complement of Y. 

Definitions: Ye = F = the complement of the closure of Y. Y is regular if and 
only if Y = Yee. 

Prove the following assertions. 

(1) Y” is open. 

(2) XC Y --* Ye c X”. (Hence XC Y -+ Xee c Ye”.) 
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(3) If Y is open, then Y c Ye,. 

(4) If Y is regular, Y is open. 

(5) Y is open if and only if Y = 2” for some 2. 

(6) If Y is open, then Ye is regular (i.e. if Y is open, Ye = Yeee). 

(7) $?I and W are regular. 

(8) If X and Y are open, then (Xn Y)ee = x”“n Yee. 

(9) Let B be the set of regular sets of a topological space W. For any sets X and 
Y in B, define 

XAY = XnY, x v Y = (X u Y)““, X’ = X” 

Then % = (B, A, V, ‘, e), ?V) is a complete Boolean algebra (called the regular 
open algebra of W). 

Solution : 

(1) The complement of a closed set is open. 

(2) If Xc Y, then XC c YC and therefore F r %. 

(3) Since Y C_ Yc, Ye = E c Y. Taking closures, we obtain Yet c (P)c = P, since Y is closed. x 
Hence Y = Y c yet = Yee. - 

(4) This follows immediately from (1). 

(5) If Y = Ze, then Y is open by (1). Conversely, if Y is open, and if we let Z = Y, then 2 is 
closed. Hence Ze = 5 = 2 = Y. 

(6) Assume Y open. Then by (3), Y c Yee. Hence by (2), Yeee G Ye. On the other hand, since Ye 
is open by virtue of (l), it follows by (3) that Ye L Yeee. 

(7) @e = @ = @ = 70. Also, qp = CjJ+ = 23 = @ Hence gee = 21/” = @, and CJv”” = @e = W. 

(8) Assume X and Y open. First, let us prove 

X n Yee c (XnYp (4 

To see this, observe that X n YC c (Xn Y)c. (For, let x be any point of X n YC and let N be 
any open set containing the point x. We must show that N intersects X n Y. But N n X is an 
open set containing x, and therefore N n X must intersect Y.) Taking complements, we obtain 
(Xn Y)e c Bu Ye. Taking closures, we have (Xn Y)eC c acU Yet = 8U Y~c, and, taking com- 
plements again, we obtain the inclusion (a). Now substituting Xee for X in (a), we have 
Xee n Yee c (X-n Yp. But exchanging X and Y in (a), we also have (Y nXee) G (Y rlX)ee, 
and therefore by (2), (YnXe+e C (Yf7X)eeee. But the last term, by (6), is (Y nX)=?. Hence 
Xeen Yee c (Xn Yp. Conversely, since Xn Y L X and XnY c Y, two applications of (2) 
yield (Xn Y)ee c Xeen Ye=. 

(9) By (‘I), $?l E B and CJvc B. The operation A is closed in B, for, by (8), (XfJY)ee = Xeen Yee = 
XnY. The operation v is closed in B, since, by (6), 

Similarly, the operation ’ is closed in B, since (X’)ee = Xeee = Xe = X’. Now we must show that 
all the axioms for Boolean algebras are satisfied. Axioms (l), (2), (6) and (9) are obvious. 
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Let us consider Axiom (3): 

X A (Yv 2) = Xn (YuZp 

= X== n (YuZp 

= (Xn(YuZ))ee (by (8)) 

= ((Xn Y) u (XnZ)p 

= (XAY) v (XAZ) 

For Axiom (4): 
XV (YAZ) = (Xu(YnZ)p = ((XuY)n(XuZ)p 

= (XuYp n (XuZp (by (8)) 

= (Xv Y) A (XVZ) 

[CHAP. 6 

Axiom (5) is easy: Xv 0 = (XU @)ee = Xee = X. Axiom (8) is also easy: X ~XC. Hence 
Xe = XT L 2. Therefore Xn Xe = $3. It remains to prove Axiom (7). First, let us show that 
(XUXe)e = 8. Assume, to the contrary, that some point u lies in (XUX+ = (XUX+. Thus 
u 4 (xuxy, which implies that there is an open set N containing u and disjoint from 
XuX= = XUB. Since NnX=Q, u4Xc, i.e. uE=, contradicting the fact that N is dis- 
joint from X u E. Taking closures and complements, we obtain Xv X’ = (XUXe)ee = w = l,, 
which is Axiom (7). Thus we have shown that S is a Boolean algebra. 

We still have to prove completeness. Note’ first that 
xFsy f) xAY=x e XnY=X @ XcY 

Now let X be any collection of regular sets. Let us show that 
\ I 

First, for any YE X, n Y L Y and therefore C Yee = Y. Thus 
YEX 

a lower bound of X. Assume that Z is a regular set which is a lower bound of X. Then Z c Y 
for all YE X. Hence Z G y ?x Y, and therefore 

z = z== c - 

This proves the completeness of ‘8. It may easily be checked that the lub of a collection X 

is (y~xY~.) 

5.48. Show that a complete Boolean subalgebra % of an algebra of the form T(K) need not 
be a complete field of sets (i.e. infinite joins and meets need not coincide with unions 
and intersections, respectively). 

Solution: 
Consider the regular open algebra % of the real line (cf. Problem 5.4’7). It is easy to verify 

that every finite open interval is regular. Since every regular set must contain a finite open inter- 
val, it follows that the algebra “B is atomless. Hence by Problem 5.43, B cannot be isomorphic to a 
complete field of sets. 

5.49. Give an example of a complete but not completely distributive Boolean algebra. 

Solution: 

The regular open algebra of the real line is complete and atomless (cf. Problems 6.47-6.48). 
Hence by Problems 5.46 and 5.36, the algebra cannot be completely distributive. 
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m-COMPLETENESS. a-ALGEBRAS 
5.50. Given o-algebras CA and 48. By a a-subalgebra of CA we mean a subalgebra determined 

by a subset closed under denumerable joins and meets. By a u-homomorphism of CA 
into CB we mean a homomorphism g of ~4 into LB preserving denumerable joins and 
meets (i.e. such that g( A Xi) = A g(Xi); the corresponding equality for joins follows 

I 
by De Morgan’s Laws). i By a &deal of CA we mean an ideal of & closed under 
denumerable joins. 

(a) If g is a o-homomorphism of CA into 23, then the range g[cA] is a a-subalgebra of 
23, the kernel KB is a u-ideal of CA, and CA/K, is u-isomorphic with g[cA]. 

(b) If J is a u-ideal of CA, then CA/J is a u-algebra where V (xi + J) = V xi + J 
( 1 L ) )y 

and CA/J is a o-homomorphic image of CA under the natural mapping. 

Solution: 

(a) These are just obvious extensions of the results in Problem 5.32. 

(a) We must show that fA/J is closed under denumerable unions. To see this; we shall show that 

[ 1 y xi = y [Zi]* Clearly, [xi] 5 [ y zi] and therefore [\, xi] is an upper bound. 

Assume now that [z] is an upper bound of the [zi]‘s. Note that, in general, [u] 5 [v] if and 
only if u A 2)’ EJ 0. (For, [U] f [?I] c) [UA W] = [W] c* U A 2, ‘J 0 * (U A V) + 2, =J 0 f) 

(UA v) f (1 A v) EJ 0 C, u A (1 f W) sJ 0 f) u A 21’ =J 0.) since [Xi] f [Z], Xi A 2’ =J 0. Since 3 

is a o-ideal, V (zi A 2’) “J 0, i.e. 2’ A V 5i =J 0. Hence V Xi 
1 1 [i 1 f [z]. That the natural 

mapping 44 = x + J is a a-homomorphism of CA onto CA/J is an easy consequence of the fact 

that ‘y’ Xi = y [Xi]* c 1 
5.51. For any subset C c T(K), the intersection of all u-subfields of T(K) containing C is 

itself a u-subfield containing C. 

Solution: 

The intersection H clearly is closed under denumerable joins and complements. The u-subfield 
H is called the a-subfield generated by C. 

5.52. Given a subset C of a a-algebra CA. The intersection D of all a-ideals containing C 
is itself a o-ideal containing C (called the u-ideal generated by C). The elements of 
D are all those x L y ci for elements ct in C (1 g i < 01). 

Solution : 

That D is a o-ideal containing C is obvious. Let E be the set of all x f V Ci for some CiE C. 
I 

First, if ~1 5 V Cij for cij E C, then V xj 6 V cij. Thus E is closed under denumerable joins. 
I j i.j 

Also, if x E E and y 5 x, then x f V ci for ci E C, and therefore ?/ 5 V Ci, i.e. 2/E E. Thus E 
1 t 

is a o-ideal containing C. Hence D c E. On the other hand, for any u-ideal J containing C, if 
xf V ci for Ci E C, then V ci E J and therefore x E J. Hence E c; D. 

f i 
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5.53. The Loomis Representation Theorem: Any a-ideal CA is a u-homomorphic image of a 
u-field of sets, i.e. ~4 is u-isomorphic with the quotient algebra of a &eld of sets by a 
u-ideal. 

Solution: 

Call YE ‘P(A) a selection if and only if, for any a E A, Y contains exactly one of a and a'. Let 
S be the set of selections. Define a function 7 from CA into T(S) by setting T(U) equal to the set of 
all selections Y such that aE Y. Let 2’ be the range of r. Clearly, T is closed under complements: 
(r(a)) = ~(a’). Let F be the o-field of subsets of S generated by T. Let N be the subset of F con- 
sisting of countable intersections n ~(a~) such that A ai = 0. Let J be the o-ideal generated by 

E 1 
N. Consider the mapping +(a) = ~(a) + J E F/J. We now show that + is a o-isomorphism of 04 
onto F/J. 

Let z = V zi in CA. Then, x’ A zi = 0. Hence ~(z’)n~(zJ E N. Therefore 
z 

7(2) n y ‘(Zi) = ~(2’) n U ‘(Zi) = U (T(X)) n ‘(ZJ) E J 
(i > E 

E 6 ) 

/ I 
Also, XA~(ZI) = ZA VZi = ZAZ’ = 0 

Hence r(z) n n r(zl) E N and 
f 

‘(z) n $J T(Zi) ’ 
( > 

= ~(2) n n T(Zi)’ = 4~) n n &) E J 
t I 

Hence T(Z) + IJ r(q) = 
z ( 

‘0 n L/ r(zi)> u (42) n (y 44J) E J 

It follows that r(z) + J = U r(zJ + J. Therefore 

+(z) ’ T(Z) + J = 7 T(z~) + J = $J (‘(Zi) + J) 

In addition, q/(d) = T(z’) + J = (T(Z) + J)’ = ($(z))’ 

Hence + is a o-homomorphism. It is readily seen that the range of $ is F/J. (For, a yd +(4 is a 

o-subfield of F containing T and is therefore equal to all of F. Hence $[04] = F/J.) It remains to 
show that $ is one-one. To do this, we shall show that the kernel K, is (0). Assume a E K,p So, 
&a) = OF/J. Therefore r(a) E J. Note that J consists of all p in F such that p C IJ pi, where 

Y~E N. Here vi = n 7(Uij) where A aij = 0. Therefore T(U) C $J fl T(Uij) 

( > 

for sode aij such 
j 5 j 

that A aij = 0. Hence 
5 

da) C y T(%,fCi)) (1) 

where f is any function such that Ui,fci, is defined for all i. Since we wish to prove that a = 0, 

let us assume the contrary, i.e. a # 0. Hence 1 > a’ = a’~ 0 = a’ v A alj = ,\ (U’V U,j). There- 
fore some a’v Ulj Z 1; say, a’v uifcl, # 1. Then ( > 5 5 

1 > a’ v a,f<i, = a V Ulf(l) v 0 = a’ v aIf v A a2j = A (a’v ulf(l)v a2j) 
5 j 

Hence 1 > u’v aif v u2fc2) for some j = f(2); etc. We obtain a sequence aifcl), a2f(2), . . . such 
that 

1 ’ u’ ” alf(l, v a2ft2, v -‘* v ukfck, for each k 

Therefore among ulfcl,, u2f(2), . . . neither a nor a complement of any aif occurs. Therefore there 
exists a selection Y containing a and all Ul’r(i,. Thus YE T(U), but Y 4 r(oif(i)), contradicting (1). 

Remark: This result of Loomis fails to hold for non-denumerable cardinalities [125]. 
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Supplementary Problems 
LATTICES 
5.54. Which of the partially ordered sets given by the following diagrams are lattices? Among the 

lattices, which (i) have a zero element, (ii) have a unit element, (iii) are complemented, (iv) are 
modular, (v) are distributive? 

(a) eb 

1-L 

(4 

. / 
/ 

d; ‘*c 

t/ 
b’ 

1 
a’ 

(b) 

(4 

5.55. Which of the following structures (L, 5) are partially ordered sets, totally ordered sets, lattices, 
distributive lattices, lattices with a zero element, lattices with a unit element, complemented lat- 
tices? For those which are lattices, describe the operations A and v. 

(a) L is the set of all finite subsets of a set A and f is the inclusion relation c_. 

(b) Same as (a), except that A itself is also a member of L. 

(c) L is the set of complex numbers and a + bi 4 c + di @ a f c. 

(d) L is the set of all complex numbers and a + bi 5 c + di e (a < c) v (a = c & b 4 d). 

(e) L is the set of all complex numbers and a + bi f c + di @ a 5 c & b f d. 

(f) L is the set of all subalgebras of a given Boolean algebra, and f is the inclusion relation C. 

(g) L is the set of all sublattices of a given lattice and 5 is the inclusion relation C. 

(h) L is the set of all polynomials with real coefficients and f 5 g means that f divides g. 

(i) Same as (h), except that the coefficients of the polynomials must be integers. 

(j) L is the set of all subsets of a set A, and f is C. 

(k) L is the set of positive integers and z 9 y if and only if y is an integral multiple of x (i.e. x 
divides y). 

(I) Assume (A, 5) is a given partially ordered set. Let C be a fixed set. Let L be the set of all 
functions from C into A. For any f and g in L, let f f g if and only if f(s) f g(x) for all 
2 in C. 

(m) Assume (A, 5) is a given partially ordered set. Let L = A, and x 5 y ff y f x. 

(n) L is the set of all infinite subsets of an infinite set A, and 5 is L. 
(0) L is the set of all subsets of a set A containing a fixed subset C, i.e. L = {Y : C G Y c A), 

and 5 is c_. 
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(p) L consists of the empty set @ and all points, lines and planes of three-dimensional Euclidean 
space, and f is 5. 

(q) L is the set of all subgroups of a group G, and f is c_. (This exercise is for those readers 
acquainted with elementary group theory.) 

(r) L is the set of all convex planar sets and f is C. (By a convex set we mean a set such that, 
for any two points in the set, all the points on the line connecting the two given points are 
also in the set.) 

(s) L is the set of all functions from the unit interval [0, l] of the real line into the set of all 
real numbers, and f L g means that f(x) 4 g(x) for all r in [O, 11. 

(t) L is the set of all functions from a fixed set A into a lattice (L,, h), and f f g means that 
f(x) f g(x) for all z in A. 

5.56. In a lattice, prove that u1 v . . . v uk is the lub of {u,, . . .,uk} and u1 A *. . A %k is the glb of 
{u,, . . . , d’. 

5.57. How many partial orders can be defined on a fixed set of two elements? Of three elements? 
(What is the largest number of mutually non-isomorphic partial orders in each case? We say 
that a partially ordered structure (A, La) is isomorphic to a partially ordered structure (B, fa) if 
and only if there is a one-one function f from A onto B such that x EA y c) f(x) 4s f(y) for all 
x and y in A.) Try to extend these results to more than three elements. 

5.58. How many (mutually non-isomorphic) lattices are there of two elements? Three elements? Four? 
*Five? Six? Draw diagrams of the lattices. 

5.59. Given a lattice (L, g). Show by an example that a substructure (L,, s), where L, c L, may be a 
lattice, but not a sublattice of (L, 5) (i.e. the operations A~ 
the operations A,. and vr,). 

1 and vL1 may not be the restrictions of 

5.60. Let L be a lattice with zero 0 and unit 1. An element x in L is said to be complemented if and 
only if r has an inverse y (i.e. x A y = 0 and xv y = 1). 

(a) If L is distributive, prove that the set of complemented elements is a Boolean algebra (under 
the operations A and v of L). 

(b) If L is modular (but not distributive), give an example containing six elements to show that 
the set of complemented elements need not form a sublattice. 

(c) Show by an example that, if L is not distributive, an element can have more than one 
complement. 

5.61. Show that a lattice (L, g) is complemented if and only if L contains a zero element 0 and there is a 
singulary operation x + x’ on L such that: 

(i) x A 5’ = 0, (ii) 2” ZY x , (iii) (z V y)’ = x’ A y’ 

5.62. Finish the proof of Theorem 5.2, i.e. prove that (L6) implies (L5). 

5.63. Using Problem 5.4, state and prove a Duality Theorem for lattices. 

5.64. Show that the following properties of a distributive lattice 

(a) x A x = x 

(b) X A (YVZ) = (XA y) V (XA 2) 

(C) (YV 2) A X = (y A 5) V (2 A 5) 

(d) xv1 = lvz = 1 

(e) XA1 = 1AX = X 

serve to characterize distributive lattices with a unit element 1 in the sense that if the structure 
(A, A,V, 1) satisfies these laws then (A, A, v) is a distributive lattice with unit element 1, and 
vice versa [99]. 
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5.65. Prove that the following laws hold in any lattice. 
(U) XAy = XVy + X=y 

(b) XAyAZ = XVyVZ -+ X=y=z 

5.66. Prove that the following inequalities hold in any lattice. 

(CL) (XAl/)V(UAW) f (xVU)A(yvw) 

(b) (X A y) V (y A 2) V (2 A X) z5 (5 V y) A (y V 2) A (2 V X) 

5.67. Prove that each of the following conditions is equivalent to distributivity of a lattice. 
(a) (xnyL-2 & x’-yvx) + xfz 

(b) (x~z~y~z&xvz~yvz) --f x’y (Hint: Use (a).) 

(c) (ZAZ=~AZ & xVZ=~VX) + x=y (Hint: In one direction, use Problem 5.11(c).) 

(d) (XV y) A (y V 2) A (XV 2) f (x A y) V (y A 2) V (5 A 2) 

5.68. Complete the proof of Problem 5.11(c). 

5.69. Give an example of a distributive lattice (L, 5) lacking both zero and unit elements such that f 
is not a total order on L. 

5.700. If (L, 4) is a lattice, prove that f totally orders L if and only if all subsets of L are sublattices (i.e. 
are closed under A and v). 

5.71. Prove that any distributive (modular) lattice can be extended to a distributive (modular) lattice 
with zero and unit elements simply by adjoining such elements if they are not already present. 

5.72. Prove that a lattice is modular if and only if it satisfies the law 
(~~~=~Ay&xv,2=yvz&x~y) + x=y 

(Hint: In one direction, use Problem 5.10.) 

5.73. 

5.74. 

A lattice (L, 5) is said to be complete if and only if every subset of L has a lub and a glb. Prove 
that in order to verify completeness it suffices to show that every subset has a lub or that every 
subset has a glb. 

Given lattices (L,, fi) and (L,, fz) and a function f from L1 into L,. 

Definitions. 
f is an order-homomorphism if and only if x L1 y -+ f(x) L2 f(y). 

f is a meet-homomorphism if and only if f(x A~ y) = f(x) off. 

f is a join-homomorphism if and only if f(x v1 y) = f(x) v2 f(y). 

f is a lattice-homomorphism if and only if f is both a meet-homomorphism 
and a join-homomorphism. 

Prove: 
(a) Every meet-homomorphism is an order-homomorphism. 

(b) Every join-homomorphism is an order-homomorphism. 

(c) Every lattice homomorphism is a meet-homomorphism. 

(d) Every lattice homomorphism is a join-homomorphism. 

(e) The converses of (a)-(d) do not hold. (Counterexamples may be found using lattices of at 
most four elements.) 

(f) For one-one functions f from L, onto L,, the notions of order-, meet-, join-, and lattice- 
homomorphism are equivalent. 

(g) Any order-isomorphism from a Boolean algebra CA onto a Boolean algebra ‘5 is a Boolean 
isomorphism, i.e. not only is it a lattice-homomorphism, but it also preserves complements: 
f(x’) = (f(x))‘. 
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5.15. A lattice (L, L--‘) is said to be relatively pseudo-complemented if and only if, for any x, y in .L, the 
set {,z : !I 4 z 5 x} has a lub. (Such a lub is denoted y 3 x.) By a pseudo-Boolean algebra, we 
mean a relatively pseudo-complemented lattice possessing a zero element 0. Prove ([142]): 

(4 

(b) 

(c) 
((0 

(e) 

(f) 

In a relatively pseudo-complemented lattice: 

(ii z 5 y + x if and only if y A x 5 x. 

(ii) The distributive laws hold. 

[iii) For any x, x 3 x is a unit element 1. 

(ivj y 3 x = 1 if and only if y 5 x. 

(VI x = !/ if and only if x 3 y = y 3 x = 1. 

(vi) z,+1=1 

(vii) I 2 x = x 

(viii) YA(Y3Xx)“X 
(ix) If x 5 y, then y * z f x 3 z and z I$ x 5 z 3 y. 

ix) x’y+x 

(xij yA(y*x) = y/\x 

(xii) (y +’ X) A X = X 

(xiii) (x + y) A (x 3x) = x j (y Ax) 

(Xiv) (x + 2) A (Y %’ Z) = (y V X) 3 z 

(xv) X +’ cl/ +’ X) = (X A Y) +’ Z = Y 3 (X +’ Z) 

(xvi) (x 3 Y) A (Y rs x) 4 x + x 

(xvii) (x 3 y) G (y I$ 2) 3 (x 3 2) 
(xviii) x s y j (x A y). 

In a pseudo-Boolean algebra, we define: -x = x 3 0. Then: 

(i) -0 = 1 and -1 = 0 

(ii) x A (-x) = 0 

(iii) xey + -y”-x 

(iv) x&--x 

(VI ---x=-x 

(vi) -(xvy) = -x/Y-y 

(vii) -(xPty) 2 -xv-y 

(viii) (-2) v y f x 3 y 

(ix) x 3 Y f C-Y) 3 (-4 

c-4 X +'(-Y) = -(XAY) = Y+'(-X) 

(4 0+x=1 

(xii) A subset F is a filter if and only if 1 E F and 
(xEF&z+yEF) --) yEF 

In a Boolean algebra, show that y j x = y’ v x. 

(For those readers acquainted with elementary point-set topology.) Show that the lattice of 
all open sets of a topological space is a pseudo-Boolean algebra, where A j B is the,.interior 
of AuB. By taking the special case of the real line, show that the assertions x v (-5) = 1 
and - -x = x do not hold for all pseudo-Boolean algebras. 

By a Brouwerian lattice we mean a lattice with a unit element such that, for any X,Y in the 
lattice, the glb of the set {z : y 5 xv z} exists (and is denoted y I x). Show that the notion 
of Brouwerian lattice is dual to the notion of pseudo-Boolean algebra in the sense that a lattice 
(B, 5) is a pseudo-Boolean algebra if and only if the lattice (L, ‘) is a Brouwerian lattice. 
(For a study of Brouwerian lattices, cf. [133].) 

In the Boolean algebra of statement bundles (cf. Example 3.5), for any statement forms A and 
B, what is the interpretation of [A} 3 [B]? 
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ATOMS 

5.76. Prove that two finite Boolean algebras are isomorphic if and only if they have the same number 
of atoms. 

5.77. Show that there is no Boolean algebra containing 28 elements. 

5.78. In the Boolean algebra of all divisors of n, where n is a square-free integer > 1 (cf. Problem 3.3), 
what are the atoms? Note that x 5 y t) x divides y. 

5.79. (a) How many subalgebras are there of the Boolean algebra of all subsets of a four-element set? 
(5) Given a Boolean algebra 9 with 2k elements, show that the number of subalgebras of 4B is 

equal to the number of partitions of a set with k elements (where a partition is a division of 
the set into one or more disjoint non-empty sets). 

5.80. If CA and % are Boolean algebras with the same finite number 2k of elements, how many isomor- 
phisms are there from 04 onto %? 

5.81. Consider the Boolean algebra given by the field of sets consisting of all finite unions of left-open 
intervals of real numbers (cf. Problem 2.68). What are the atoms of this algebra? 

5.82n. Does the set of atoms of a Boolean algebra always have a supremum? 

5.83, Show that every atomic, uniquely complemented lattice with zero and unit elements is isomorphic 
to a field of sets and is therefore a Boolean algebra. (Hint: Use the proof of Theorem 5.7.) 

SYMMETRIC DIFFERENCE. BOOLEAN RINGS 

5.84. In an arbitrary Boolean algebra: 
(a) Does the distributive relation x + (y A z) = (5 + y) A (x + z) hold? 
(a) Is (5 f y & u f V) + z + u f y + w valid? 

5.85. In the Boolean algebra of all divisors of n, where n is a square-free integer > 1 (cf. Problem 3.3), 
find an arithmetic formula for the symmetric difference z + y. 

5.86. In any Boolean algebra, prove: 
(a) zv (z-i-y) = zvy, (a) the “dual” of z+ y is (x + y)‘. 

5.87. In a.ring, z-y is defined to be 5 + (-y). In a Boolean ring, what is (-y)? Is there any difference 
between x - y in the ring-theoretic sense and x - y as defined in Problem 3.1? 

5.88. Prove that the uniqueness of (-5) in Axiom (4) for rings need not be assumed (i.e. it can be proved 
from the other axioms). 

5.89. (a) Give an example of a Boolean ring without a unit element. (b) Show that every Boolean ring 
without a unit element can be extended (by addition of new elements and extension of the ring 
operations to the enlarged set) to a Boolean ring with unit element. Prove that the original ring 
is a maximal ideal of the extension. 

5.90. In the axioms for Boolean rings, show that 5 + y = y + z is not independent. 

5.91. Let q = (R, f, X, 0) be a commutative ring with unit element 1. We say that an element x in R 
is idempotent if and only if xs = x. Let R* be the set of idempotent elements of R. For any x 
and 2/ in R*, define x@y=s+y-22s~. Prove that (R*, @, X, 0) is a Boolean ring with unit 
element 1. Express the Boolean operations A,V, ’ in terms of the original ring operations +, X. 
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5.92. For any Boolean expression r(u), prove that 
7(u) = b, + (b, AU) 

where b, and b, are fixed elements of the Boolean algebra. 

5.93. Solve the following equations. 

(a) u A w = 0 

(b) u A z = w 

(c) u + w = 7 (for u and w in terms of T) 

(d) (p A U) v (o A w) = 7 (for u and w in terms of p, 0, T) 

5.94. Solve the simultaneous equations 
xvb = c 

x/\b = 0 

for 2 in terms of b and c. What further conclusion follows if b f c? 

5.95. Solve the following system of equations. 
u f wvw 

2) = ZAW’ 

u’ A z f w’ 

5.96. If T(U) is a Boolean expression and b is an element of a Boolean algebra 9, and if T(O) A ~(1) f 
b 6 ~(0) v r(l), prove: 

(a) T(U) = b has a solution. Find all solutions. 

(b) If T(U) = b has a unique solution, then, for any c, r(u) = c has a unique solution (namely, 
44). 

(c) If FB is finite and there are k atoms which are 5 ~(0)’ + 7(l), then r(u) = b has 2k solutions. 

AXIOMATIZATIONS 

5.97D. In our axiom system for Boolean algebras, determine whether Axiom (6) can be proved from 
Axioms (l)-(4), (7)-(g). (See Problem 5.22.) 

5.98. Determine whether or not each of the axioms (Bl)-(B5) for Byrne algebras (cf. Section 5.4) is 
independent. 

5.99. Show that the following variation of the axioms for Byrne algebras (cf. Section 5.4) also may serve 
as an axiom system for Boolean algebras. Consider structures (B, A, ‘) satisfying (Bl), (B2), (B5), and 

(Cl xhy’ = ZAZ’ - XAy=X 

(Hint: Prove that z A z’ = w A w’ for all z and w, and introduce 0 by definition as being equal 
to this common value of all z A z’.) 

5.100. (a) Prove that the following is a system of axioms for Boolean algebras. 

WI XAy = yAX 

03% 2 A (y”Z) = (X Ay) A 2 

(D3) (2’ Ay’)’ A (2’ Ay)’ = 5 

(b) Investigate the independence of Axioms (Dl)-(D3). 

5.101. Prove the independence of Axioms (a)-(f) for lattices in Problem 5.4. 

5.102. [121]. Let L be a complemented lattice. Show that L is a Boolean algebra if and only if, for any 
x and y in L and for any complement z of y, x A y = 0 ++ x f z. 
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5.103. [loll. Given a structure % = (B, A, 9. Prove that ‘5 determines a Boolean algebra if and only 
if the following two laws are satisfied. 

(a) x=x/Ty ++ XAy’=zAz’ 

(b) (X A y) A z = (y A z) A x 

5.104. [122]. Prove that a structure ‘B = (B, v, ‘) determines a Boolean algebra if and only if the 
following three laws are satisfied. 

(a) xvy = yvx 

(b) (xvy)vx = xv(yvx) 

(c) (x’v y’)’ v (x’v y)’ = x 

IDEALS 

5.105. If A is an infinite set, prove that the ideal of all finite subsets of A is not a principal ideal in the 
field of sets T(A). 

5.106. Prove that a non-empty subset J of a Boolean algebra is an ideal if and only if the condition 
xvyEJ t, (xEJ&yEJ) is satisfied. 

5.107. What is the ideal generated by the empty subset P, of a Boolean algebra? 

5.108. Given a Boolean algebra 9. For any ideals J and Z of 9, let 

JVZ = {xvy: xEJ&yEZ} 

(a) Prove that J v Z is an ideal. 

(b) Show that the set of ideals of % forms a distributive lattice under the operations of n and v. 
Are there zero and unit elements? Is the lattice complemented? 

5.109. A non-trivial finitely-additive measure on a Boolean algebra % is a function /I from B into the set 
of non-negative real numbers such that 

(1) ,U(x v y) = p(x) + p(y) if x A y = 0. 

(2) p is not a constant function. 

(a) If p is a non-trivial finitely-additive measure on a Boolean algebra 3, prove: 

6) ~(0) = 0 

(ii) &I v .** v x,) = p(x1) + .*. + p(xk) if Xi A Xj = 0 for i P j. 

(iii) x f y + p(x) f p(y) 

(iv) p(x, v . . f v xk) s i&l) + ’ *. + dx,) 
(v) J, = {x : p(x) = 0) is a proper ideal of ‘5. 

(vi) If p is 2-valued, i.e. if the range of p consists of two numbers (one of which, by (i), must 
be 0), then J, is a maximal ideal. 

(vii) If p is bounded, i.e. the range of p is bounded above, and if we define Y(Z) = a(x)la(l), 
then Y is a non-trivial finitely-additive measure such that 0 f Y(X) 5 1 and r(1) = 1. 

(b) If M is a maximal ideal of ‘5, and if we define 

TO if xEM 
P(X) = 1 1 if x4M 

for any x in B, show that p is a non-trivial 2-valued finitely-additive measure on 9. 

(c) If % is the Boolean algebra T(K), where K is a finite set, and if we define h(A) = the number 
of elements in A, prove that p is a non-trivial finitely-additive measure on ‘9. 

(d) Prove that every Boolean algebra admits a non-trivial e-valued finitely-additive measure. 
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5.110. Given a subset D of a Boolean algebra !B, recall (cf. Problem 3.5) that the intersection of all sub- 
algebras containing D is a subalgebra G,, called the subalgebra generated by D. 

(a) Prove that the elements of Gn are all elements of the form c1 v -0. v c,, where each 
ci = dj,” --. Ad. , 

T 
and either dj,, E D or dj’, E D, i.e. the elements of GD are finite joins of 

finite meets of elements of D and complements of elements of D. 

(b) Show that the subalgebra Gn of T(K) generated by the set D of all singletons consists of all 
finite and cofinite sets. Prove that Go is complete if and only if K is finite. 

(c) We say that a set D is a set of generators of the Boolean algebra ‘B if and only if the sub- 
algebra GD generated by D is the whole set B. We say that 73 is finitely generated if and only 
if there is a finite set of generators of ‘3. Prove that every finitely generated Boolean algebra 
is finite. 

(d) We say that a set D of generators of a Boolean algebra % is a free set of generators of “B if 
and only if, for every function h from D into a Boolean algebra C, there is an extension g 
of h which is a Boolean homomorphism of 93 into C. The Boolean algebra ‘9 is said to be free 
if and only if there is a free set of generators of %. 

U) For any non-negative integer k, if FB is a Boolean algebra having a free set of k gen- 
erators, prove that % has 2(2”) elements. 

(ii) Is every subalgebra of a free Boolean algebra also free? 

(iii) Show that the cardinal number of any infinite free Boolean algebra ‘5 is equal to the 
cardinal number of any free set of generators of ‘5. 

(iv) Show that if D, and D, are free sets of generators of the same Boolean algebra 9, then 
D, and D, have the same cardinal number. 

(v) If h is a function from a free set D of generators of a Boolean algebra CB into a Boolean 
algebra C, show that there is a unique homomorphism g from FB into C such that g is an 
extension of h. 

(vi) If D, is a free set of generators of %i and D, is a free set of generators of ‘R2 and D, 
and D, have the same cardinal number, then ‘BB, and 48, are isomorphic. 

(vii) Let D be a set of generators of a Boolean algebra ‘3. Show that D is a free set of 
generators of % if and only if, for any ui, . . ., u, in B, if uiE D or u;E D for each I*~, 
then zii A . * * A u, f 0. 

(viii) For any cardinal number m, prove that there is a Boolean algebra having a free set of 
generators of cardinality m. (Hint: Generalize the Boolean algebra of statement bundles 
(Example 3.5) by using a set of statement letters of cardinality m instead of a denumer- 
able set of statement letters.) 

(ix)n When is T(K) a free Boolean algebra? 

QUOTIENT ALGEBRAS 

5.111. Let J be a proper ideal of a Boolean algebra ‘% and let K be a proper ideal of the quotient algebra 
‘Bs=TVJ. Let JO = {x: xEB & x+JJK}. Prove that Jo is a proper ideal in ‘B and that 
the function + from WJO onto %#lK defined by 

+(x + Jo) = (x + J) + K 
is an isomorphism. 

5.112. In a Boolean algebra ‘3, B is an ideal. What is ‘B/B? Why isn’t it a Boolean algebra? 

5.113. (For those readers acquainted with elementary point-set topology.) Let X be a topological space. 

(a) Prove that the set F of subsets of 2 having nowhere dense boundary is a field of sets. 

(b) Prove that the set N of nowhere dense sets of X is an ideal of F. 

(c) Show that the quotient algebra F/N is isomorphic to the algebra of regular open sets of X 
(cf. Problem 5.47). (Hint: If A E F, show that there is a unique regular set A, such that 
A + A, is nowhere dense.) 
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BOOLEAN REPRESENTATION THEOREM 

5.114. Prove that every ideal of a Boolean algebra % is principal if and only if LB is finite. 

5.115. For each s in a set S assume that there is an associated Boolean algebra ‘Bs. By the Cartesian 
product n 48, we mean the set of all functions f defined on S such that, for each s E S, f(s) E B,. 

SE.9 

We define Boolean operations on the Cartesian product in componentwise fashion, e.g. if f and g 
are in the Cartesian product, let f A g be the function defined on S such that 
for each s ES. 

(f A g)(s) = f(s) +8, g(s) 

(a) Prove that the Cartesian product of Boolean algebras is a Boolean algebra. 

(b) Prove that a finite Boolean algebra of cardinality 2n is isomorphic to a Cartesian product of 
n copies of the Boolean algebra (0, l}. 

(c) If the cardinal number of a set A is m, prove that the Boolean algebra T(A) is isomorphic to 
a Cartesian product of m copies of {O,l}. 

(d) Show that every Boolean algebra is isomorphic to a subalgebra of a Cartesian product of 
copies of (0, l}. 

5.116. (a) Prove that if x and y are distinct elements of a distributive lattice, then there is a prime ideal 
containing one of x and y but not the other. (The notion of prime ideal, although 
originally defined for Boolean algebras, also makes sense for lattices. Hint for the proof: 
Since z f y, we may assume y $ 2. Let 2 be the set of all ideals containing x but not y, 
and apply Zorn’s Lemma.) 

(b) Prove that any distributive lattice is lattice-isomorphic to a lattice of sets. (Hint: To each 
element z of the lattice associate the set of proper prime ideals not containing x.) 

(c) Prove the converse of (a), i.e. a lattice is distributive if, for any two distinct elements of the 
lattice, there is a prime ideal containing one of the elements but not the other. 

5.117. Although every Boolean algebra is, by Theorem 5.30, isomorphic to a field of sets, show that there 
are Boolean algebras % for which there is no isomorphism to a field of sets preserving infinite 
joins and meets. (Hint: Consider the regular open algebra of the real line (Problem 5.47).) 

5.118D. [137]. Prove that a distributive lattice is a Boolean algebra if and only if every proper prime 
ideal is maximal. 

INFINITE MEETS AND JOINS 

5.119. Give an example of a Boolean subalgebra C of a Boolean algebra ‘8 such that some subset E of C 
has a lub in C but not in ‘B. 

5.120. In any lattice, prove (assuming that all the indicated lub’s and glb’s exist): 

(4 If 2, f yw for all w E W, then A x, f A y, and V X, L_ V &,. 
WEW WEW WEW WUEW 

W V A sw f A V %t. 
SGSWGW WEWSES 

(4 A xl0 v A Y, 6 A hwv l/w). 
WEW WEW IDEW 

(4 V (x,~vw) f V 2, A V ?dw. 
WEW UIEW WEW 

(e) None of the inequalities in (a)-(d) can be changed into equalities valid for all lattices. 

5.121. An ideal J of a Boolean algebra is said to be complete if and only if J is closed under arbitrary 
joins of its elements. 
(a) Prove that every complete ideal is a principal ideal. 
(b) If .I is a complete ideal of a complete Boolean algebra “8, prove that the quotient algebra 

S/J is complete. 
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5.122. (a) Prove that the set of sublattices of a lattice is a complete lattice with respect to the inclusion 
relation C. What are the operations of join and meet? 

(b) Prove that the set of subalgebras of a Boolean algebra is a complete lattice with respect to 
the inclusion relation C. Describe the join and meet operations. 

5.123. (a) Assume that g is a closure operation on a set L partially ordered by f, i.e. g is a function 
from L into L such that: 

(1) x5 Y + g(s) 5 g’(Y) 

(2) x 5 d4 

(3) gkm) = g(x) 

An element x in L is said to be g-closed if and only if g(x) = x. Prove: 

(i) z is g-closed if and only if x = g(y) for some y. 

(ii) If 1 is a maximum element of L, then 1 is g-closed. 

(iii) A glb of a set of g-closed elements is also g-closed. In particular, if x and y are g-closed, 
so is x A y (if it exists). 

(iv) If (L, G) is a complete lattice, then the set C of g-closed elements is a complete lattice with 
respect to the original ordering 5 on L, and, for any subset Y of L, 

A,“” = ALY and vc Y = g vL Y 
ICY llEY ( > IIEY 

(b) Let f be a partial order on L. For any Y C_ L, let Yb = the set of upper bounds of Y and 
Ys = the set of lower bounds of Y. We say that Y is a cut if and only if Y = Ybs. Prove: 

(9 YcYbs 

(ii) Y c Ysb 

(iii) XC Y -+ (YbcXb & Ys~XS) + (XbScYbs & XSbcYSb) 
(iv) Xb = Xbsb & XS = Xsbs 

(v) Xbs = Xbsbs & Xsb = Xsbsb 

(vi) Every set X~S is a cut. 

(vii) The function g(X) = Xbs is a closure operation on (T(L), z;). The g-closed elements are 
the cuts. 

(viii) The set C of all cuts is a complete lattice with respect to G. Meets are intersections and 
v Y= The function f, such that f(x) = (x}bS for any x in L, is an 

YEX ( > 
yixY bs. 

order-isomorphism of (L, 4) into the complete lattice (C, c); f preserves all meets and 
joins already existing in (L, c), i.e. if z = V 2, in L, then f(z) = V f(x,) in C, 
and similarly for meets. CYEA CCEA 

(ix) Let c = (L, 5) determine a Boolean algebra, i.e. it is a distributive, complemented lat- 
tice. Define, for any XC L, X* = {y : yr\ x = O}. Then 
(1) XnX* = (0) = oc 

(2) (XuX*)b = (1) 

(3) (XuX*)bs = L = 1, 

(4) X** = XbS 

(5) {x’}bs = {x}bs* 

(6) X** is an ideal of L. 

(7) The function F such that F(J) = J ** for any ideal J of < is a lattice-homomorphism 
from the distributive lattice of all ideals of .4J onto the lattice of cuts. 

(8) Hence C forms a complete Boolean algebra, and the lattice-isomorphism f of (viii) is 
a Boolean isomorphism. Thus every Boolean algebra is embeddable in a complete 
Boolean algebra in such a way that unions and meets are preserved [131]. 
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5.124. In Example 5.19, prove that the collection of all singletons {x}, where XE K, has no lub in 7 (in 
addition to not having its union in 7). 

m-COMPLETENESS. o-ALGEBRAS 

5.125. Let p be the collection of all subsets A of a given set K such that the cardinality of A or the 
cardinality of A is 5 a given infinite cardinal number m. Prove that 7 is an m-complete field of 
sets. What happens if we change 5 to < ? If K has cardinal number n > m and m < p f n, 
is 7 a p-complete field of sets? 

5.126. If T is an m-complete field of subsets of a set K and A E 7, prove that 7 [ A = {Y : YE p & Y c A 
is also an m-complete field of sets. 

5.127. Prove that an infinite u-algebra must have at least 2% elements. (Hint: Problem 5.14.) 

5.128. By a free a-algebra with m generators we mean a a-algebra ‘B having a subset D of cardinality 
m such that any function from D into a a-algebra C can be extended to a o-homomorphism h from 
CB into C. 

(a)n For every cardinal number m, show that there is a free o-algebra with m generators. 

(b) Prove the analogues of Problem 5.llO(d)(iv)-(vi) for free o-algebras. 

(c) Prove that any free o-algebra with m generators is isomorphic to a u-field of sets. (Hint: 
Use Problem 5.53.) 

5.129. We say that a Boolean algebra 3 satisfies the countable chain condition (CCC) if and only if every 
pairwise-disjoint set of nonzero elements of B is countable. (A set Y is said to be pairwise-dis- 
joint if and only if, for any distinct elements q and z in Y, y A x = 0.) 

(a) Prove that a Boolean algebra % satisfies (CCC) if and only if every subset 2 c B has a count- 
able subset Y such that Y and 2 have the same set of upper bounds. 

(b) Prove that any u-algebra satisfying (CCC) is complete. 

(c) Show that the regular open algebra of a topological space with a countable base satisfies (CCC). 
(Cf. Problem 5.47.) 



Appendix A 

Elimination of Parentheses 

More extensive conventions for eliminating parentheses than those given in Section 
1.4, page 5, will be presented here. 

(I) We assign a rank to the connectives as follows: 

t) 5 
+ 4 

i 
3 
2 

1 1 

The rank of a statement form A will be 

(a) 0, if A is a statement letter; 

(b) the rank of the principal connective of A, otherwise. 

We shall describe our procedure for eliminating parentheses by induction on the number 
of occurrences of connectives in the statement form. (The description will appear com- 
plicated, but the simplicity of the procedure will become apparent after a few examples.) 

Clearly, if A has no connectives, it is a statement letter and has no parentheses. Assume 
that we have described the procedure for all statement forms having fewer than k 
occurrences of connectives, and assume that A has k occurrences of connectives. 

Case (i) : A is a denial (1 B). If B itself is of the form (1 C), then we apply our 
procedure to (1 C) and omit the outer parentheses (if any) of the resulting expression, 
obtaining some expression D. The final result is taken to be (1 D). If B is not of the form 
(1 C), and the application of our procedure to B yields E, then the final result is (1 E). 

Case (ii): A is (Bo~C), where (Y is c), +, v or &. We apply the procedure for eliminating 
parentheses to B and C, obtaining B* and C*. At this stage we have (B*aC*). We drop 
the outermost pair of parentheses (if any) from B* if the rank of (Y is greater than or equal 
to the rank of B. We drop the outermost pair of parentheses (if any) from C* if the rank 
of a: is greater than the rank of C. 

(II) After completion of (I), we omit the outermost pair of parentheses (if any). 

Examples. 
A.l. (l(-iA)). 

Applying (I), Case (i), twice, we obtain ( 1lA). Then by (II) we have 1lA. In general, no 
parentheses are needed to separate successive negations. 

A.2. ((A v B) + C). 

The principal connective is +, of rank 4. Since (A v B) has rank 3, we obtain, by (I), Case (ii), 
(A v B + C), and finally by (II), A v B + C. 

190 
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A.3. (A v (B + C)). 

The principal connective is v, of rank 3. Since (B+ C) has rank 4, we do not drop the parentheses 
from (B + C). Thus in this example (I) allows no elimination of parentheses, and by (II) we obtain 
A v (B-tC). 

A-4. (((B v A) ++ B) --f ((-I B) & C)). 

+ is the principal connective. Application of (I) to ((B v A) e B) yields (B v A c) B), and application 
of (I) to (( 1 B) & C) yields (1 B & C). Since the rank of * is greater than that of +, we leave the outermost 
pair of parentheses of (B v A H B). However, since the rank of & is less than that of +, we omit the 
outermost pair of parentheses from ( 1 B & C). The final result is (B v A @ B) + 1B & C. 

A.5. ((A v B) v C). 

The right-most v is the principal connective. Since (A v B) has rank equal to that of v, we may drop 
the parentheses, obtaining (A v I? v C), and finally by (II), A v B v C. 

A.6. (A v (B v C)). 

The left-most v is the principal connective. Since (B v C) has rank equal to that of v, we cannot drop 
the parentheses. Thus (I) yields no elimination of parentheses, and by (II) we obtain A v (B v C). 

The results given in Examples A.5 and A.6 illustrate the principle of association to the 
left. Thus A v B v C stands for ((A v B) v C). Likewise A + B + C stands for ((A + B) + C), 
and the same holds for the other binary connectives. Association to the left is due to our 
agreemen that in (B CY C), we omit outer parentheses from B if rank (B) 4 rank (a), but from 
C if rank(C) < rank (a). 

A.7. ((A v (B v C)) v (B & (-I (-I C)))). 

Application of (I) to (A v (23 v C)) yields no elimination of parentheses, while (B & ( l(1 C))) becomes 
(B & 11 C). Then by (I) we obtain (A v (B v C) vB& llC), and finally Av(BvC)v B&z llc. 

The rough idea of convention (I) is that connectives of higher rank are to have greater 
scope than those of lower rank. Thus if elimination of parentheses yields A v B + C, this 
stands for ((A v B) + C). The connective +, being of higher rank than v, must “connect” 
the longest possible statement forms to the left and right. Thus + has (A v B) as its ante- 
cedent rather than just B. Similarly, in A + B&B H D v B, c) is the connective of highest 
rank. Hence the left side of ti should be (A -+ B&B) and the right side should be D v B. 
Thus we have (A + B&B) t) (D v B). Within (A + B&B), + is stronger, and we obtain 
((A + (B&B)) t) (D v B)). 

In ordinary arithmetic, without realizing it we already have been taught an analogous 
ranking of arithmetic operations. Addition is strongest, then comes multiplication, and 
finally exponentiation. For example, 4 + 2 * 5 stands for 4 + (2 * 5), and not for (4 + 2) ?? 5, 
while 5 * 23 stands for 5 * (23), not for (5 * 2)3. 

Sometimes, especially in long statement forms, for the sake of clarity we can keep 
some parentheses which could be omitted according to our conventions. For example, in 
A.7 above we might write A v (B v C) v (B & 11 C) instead of A v (B v C) v B & 11 C. 



A.l. Describe an algorithm (i.e. effective procedure) for determining whether a given 
expression is a statement form, and for determining the principal connective when 
the expression is a statement form. 
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Solved Problems 

Solution: 

The description is given by induction on the number of occurrences of connectives. If there are 
no connectives, then the expression is a statement form if and only if it is a statement letter. 
Assume now that an expression A has k connectives, where k > 0, and that our algorithm already 
has been defined for expressions with fewer than k occurrences of connectives. If A does not 
begin with a left parenthesis and end with a right parenthesis, then A is not a statement form. 
If A does have the appropriate initial left and terminal right parentheses, omit them, obtaining an 
expression 8. 

Case 1. B has the form 1C. If C is a statement form, then A is a statement form and its 
principal connective is 1. If C is not a statement form, then neither is A. 

Case 2. B is not of the form 1 C. For each of the binary connectives 0 in B, if B is C 0 D 
and if C and D are statement forms, then A is also a statement form with principal connective [7. 
On the other hand, if the indicated condition does not hold for any of the binary connectives 0 in 
B, then A is not a statement form. 

A.2. Eliminate as many parentheses as possible from: 

(a) (((AvB)~(lC))v((lB)&C) 

(b) ((A & (1 (1 B))) * (B - CC v B))) 

(4 (P - cc v B)) - (A & (l(l B)))) 

Solution: 

(a) The second v is the principal connective. Since v has higher rank than &, we can omit the 
outer parentheses from (( 1 B) & C). Since + has higher rank than v, we cannot drop the outer 
parentheses from ((A v B) + (1 C)). But within ((A v B) + (1 C)) we can drop the outer paren- 
theses from (A v B), since + has higher rank than V: 

(AvB+(lC)) v (lB)&C 

Finally, we can drop the parentheses around the denials: 

(AvB+ 1C) v -IB&C 

(b) @ is the principal connective. We can omit the outer parentheses of (A & (l(1 B))), since e 
has higher rank than &: 

A&(l(lB)) - (B-(CvB)) 

However, we cannot omit the outer parentheses of (B @ (Cv B)), since the latter has the same 
rank as t, and appears on the right hand side of the biconditional. Within (B W (Cv B)) we 
can drop the parentheses of (Cv B), and, on the other side, we can drop the parentheses around 
the denials: 

A& l-iB - (BoCvB) 

(c) This is the same as (b) except that the two sides of the biconditional have been reversed. Since 
(B @ (Cv B)) now appears on the left hand side of the biconditional, we can drop the outer 
parentheses: 

B-(CvB) * A&(l(lB)) 

As before, we then obtain 
B-CvB - A& -~-IB 

In practice, we would never eliminate all the parentheses in part (c), since their complete 
elimination will not facilitate the interpretation of the original statement form. 



APPENDIX A] ELIMINATION OF PARENTHESES 193 

A.3. Describe an algorithm for determining whether a given expression A has been 
obtained from a statement form as a result of applying our conventions for elimi- 
nating parentheses (and, if it has, find the statement form). 

Solution: 

We shall describe, by induction on the number of symbols of A, a procedure which either will 
find the statement form abbreviated by A or will eventually tell us that there is no such statement 
form. Clearly, if A has one symbol, then A abbreviates a statement form (A itself) if and only if 
A is a statement letter. Now assume that A has k symbols (where k > 1) and that our algorithm 
has been defined for all expressions with fewer than k symbols. 

Case 1. A either does not begin with a left parenthesis or does not end with a right paren- 
thesis. (Hence if A does abbreviate a statement form F, then the outer parentheses of F were 
omitted.) 

Case la. Aisoftheform ll... l(B). If B abbreviates a statement form G (and hence B does 
not have the outer parentheses of G), then A abbreviates (1 ( l(. . .( 1 G) . . .))). Otherwise, A is not 
an abbreviation of a statement form. 

Case lb. Aisoftheform ll... 1 B, where B is a statement letter. Then A abbreviates 
(l(l(...(lB)...))). 

Case le. A is not of the form 11 . . . l(B), and not of the form 11 . . . 1B (where B is a 
statement letter). For each occurrence of a binary connective # in A, represent A as C # D. If 

(i) C abbreviates a statement form H, 

(ii) D abbreviates a statement form J, 

(iii) C contains the outer parentheses of H (if any) if the rank of H is greater than or equal to 
that of #, 

(iv) D contains the outer parentheses of J (if any) if the rank of J is greater than the rank of 
#, then A abbreviates (H # 1). 

If no occurrence of a binary connective in A satisfies (i)-(iv), then A does not abbreviate 
a statement form. 

Case 2. A is of the form (B). 

Case 2a. Omit the initial left and terminal right parentheses, and then apply Case 1 to B. 
If B abbreviates a statement form C, then A abbreviates C also. 

Case 2b. If Case 2a does not show A to be an abbreviation of a statement form, apply the 
procedure of Case lc. If we obtain a statement form D, then A abbreviates D. 

Examples. 

(a) B * C v B. Case lc applies. First, we try H as principal connective. The left side is B, 
and the right side C v B, which abbreviates (C v B). Since (C v B) has rank less than that of 
@, the outer parentheses around Cv B have been legitimately omitted. Thus we obtain 
(B - (Cv B)). 

(b) A & 1 B & A. Case lc applies. First, we consider the left-most &. The left side is A and 
the right side is 1B &A. Hence we must consider 1 B &A. Again, Case lc applies and we 
consider &. The left side is 1B (which is an abbreviation of (1B)) and the right side is A. 
Thus 1 B & A abbreviates (( 1 B) &A), but, since (( 1 B) & A) has rank equal to that of &, clause 
(iv) has been violated. Next, we try the second &. The left side is A & 1 B, which is easily 
seen to abbreviate (A & (1 B)). Hence the original statement form is ((A & ( 1B)) &A). 

(c) 1lAvB. Case lc applies. The left side of v is 1 IA, which by Case lb abbreviates 
(1 ( 1A)). Hence we obtain (( 1 (1A)) v B). 

(d) A v 1 (A v C). Case lc applies and we look at the first v. The right side is 1 (A v C). To 
the latter, Case lb applies and we see immediately that A v C is a statement form. Hence the 
original statement form is (A v ( 1 (A v C))). 
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Supplementary Problems 
A.4 Find the ranks of the following statement forms. 

(a) A; (a) (W; (4 (1 WV 0); (4 ((A+ (19)&A); (e) (A + ((lB)&A)). 

A.5. Eliminate as many parentheses as possible from the following. 

(a) (((lA)“(R&C))+ (A-(-W)) 

(b) ((A+(l(lB)))v (164 kc))) 

(4 ((t-4 -, ( 1 A)) + f9 + (-4 + B)) 

(4 ((lA)+@+B)) 

A.& Determine whether each of the following expressions is an abbreviation of a statement form, and, 
if so, construct the statement form. 

(a) Av -IB+(BwC)&A 

(b) A-B+ 1lAvB 

(c) l(AvB)vA&B 

(d) AvBv (C+D) 

A.7. Show that if A is a statement form, then there is at most one connective 0 such that A is of the 
form (B 0 C), where B and C are statement forms. 

A.3 Show that the algorithm of Problem A.3 is correct, i.e. when B is an abbreviation of a statement 
form A, then the algorithm applied to B yields A as its only answer, and when B is not an abbrevia- 
tion of a statement form, then the algorithm says so. 



Parenthesis-free Notation 

We may avoid the use of parentheses if we redefine the notion of statement form as 
follows: (i) every statement letter is a statement form; (ii) if A and B are statement forms, 
so are 1 A, & AB, v AB, + AB, c) AB. 

Examples. 
The statement form ((1A) & (B v A)) would be rewritten as & 1A v BA. The statement form 

(A + (( 1B) e (A v C))) would be rewritten as -t A e 1B v AC. 

This way of writing statement forms is sometimes called Polish notation (in honor of its 
inventor J. Lukasiewicz). 

Examples. 
+v AB v 1 C & 1 BC is Polish notation for the statement form ((A v B) + (( 1 C) v (( 1B) 6% C))). Sim- 

ilarly, e Kz Al 1B e B v CB is Polish notation for ((A & (1 (1B))) * (B e (C v B))). 

Solved Problems 

B.l. Write the following statement forms in Polish notation. 

(4 ((((1 A) v (B & C)) + (A * (-’ B))) 

(b) ((A + (‘(1 B))) v (‘(A &C>>> 

(4 (((A + (1 A)) + B) + (A --, B)) 

Solution: 
(a) +v -IA&BC~AIB 

(b) v+A~-IB~JzAC 
(c) +-+AlAB+AB 

B.2. Find the statement forms whose transcriptions into Polish notation are 

(u)+vA~B&HBCA (c) vlvAB&AB 

(b) ++ABvllAB (d)vvAB-,CD 

Solution: 

(a) ((A v (1 B)) --* ((B * C) 6~ A)) 

(b) ((A+B) -((l(lA))“B)) 

(4 ((1 (A ” B)) ” (A & B)) 

b-4 ((A ” 4 ” (C-+D)) 
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B.3. Describe an algorithm for determining whether a given expression is a statement 
form in Polish notation and for constructing the corresponding statement form in its 
original notation. 

Solution : 

Assign the integer -1 to statement letters, 0 to 1, and +1 to the binary connectives &, v, +, t). 
Then we have 

Theorem: An expression A is a statement form in Polish notation if and only if 

(I) the sum #(A) of the integers assigned to all the occurrences of symbols in A is -1; 

(II) the sum #(B) of the integers assigned to all the occurrences of symbols in every 
proper initial segment Bt of A is non-negative. 

Example. v-,vABlB&lBC 

- 
2 

3 

2 

1 

n 

0 

-1 

Proof of the Theorem. First, we shall prove that any statement form in Polish notation satisfies 
conditions (I) and (II). This is shown by induction on the number k of occurrences of connectives 
in A. If there are no connectives, A is a statement letter and conditions (I)-(II) are obvious. 
(In this case there are no proper initial segments of A.) Now assume that the result has been 
established for all statement forms having fewer than k occurrences of connectives (k 2 1). By our 
new definition of statement form, A is of one of the forms 1 B, & BC, v BC, + BC, e BC, where 
B and C are statement forms (having fewer than k occurrences of connectives). Use of the induc- 
tive hypothesis now yields (I)-(II). (For instance, if A is & BC, then #(A) = 1 + #(B) + #(C) = 
1 + (-1) + (-1) = -1, yielding (I). If D is a proper initial segment of A, then either D is & and 
#t(D) is +l k 0; or D is &D, (where D, is a proper initial segment of B) and #(D) = 1 + #(D1) h 
1 + 0 = 1 > 0; or D is &B and #(D) = 1 + #(B) = 1 + (-1) = 0; or D is & BC, (where C, is a proper 
initial segment of C) and #(D) = 1 + #(B) + #(C,) = 1 + (-1) + #(C,) = 0 + #(C,) = #(C,) 2 0.) 

Conversely, let us assume now that an expression A satisfies (I)-(II). We prove that A is a 
statement form in Polish notation by induction on the number k of symbols in A. k = 1: then 
by (I), A is a statement letter. Induction step: assume that k > 1 and that the result holds for 
all expressions having fewer than k symbols. Case 1: A is of the form 1 B. It is then easy to 
show that the truth of (I)-(II) for A implies the truth of (I)-(II) for B, and hence, by inductive 
hypothesis, B is a statement form. Therefore 1 B is a statement form. Case 2: A is of the form 
BC, where B is a statement letter. This contradicts (II), since B is a proper initial segment of A. 
Case 3: A is of the form 0 C, where 0 is one of the binary connectives &, v, +, w. There must 
be a shortest proper initial segment B of C such that #(B) = -1. For, as we move from left to 
right in A, the sum of the symbols begins at +l (the integer for 0) and ends with -1 (= #(A)), 
and moving from one symbol to the next either leaves the sum unchanged or changes it by 1-l or -1. 
Hence we must finally arrive at the first proper initial segment of A whose sum is 0. This proper 
initial segment is of the form ??B, where B is the shortest proper initial segment of C such that 
#t(B) = -1. Then B satisfies (I). As for (II), consider any proper initial segment D of B. Then 

+B is a proper initial segment of A if and only if A is of the form BC, where C contains at least one symbol. 
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since 0 D is a shorter proper initial segment of A than [7 B, #(l-J D) is > 0, and #(D) A 0. Hence 
(II) holds for B, and, by inductive hypothesis, B is a statement form in Polish notation. Let C be 
BE. Thus A is 0 BE. Since -1 = #(A) = 1 + #(B) + i?(E) = 1 + (-1) + #(E) = g(E), E satisfies (I). 
As for (II), let F be any proper initial segment of E. Then 0 BF is a proper initial segment of A. 
By (II) for A, 0 f #(O BF) = 1 + #(B) + #(F) = 1 + (-1) + #i(F) = #t(F). Thus (II) holds for E, and, 
by inductive hypothesis, E is a statement form in Polish notation, and therefore so is ??BE. 

Notice that the second part of the proof of the theorem gives a method for constructing the 
corresponding statement form in our original notation (since it locates the statement forms out of 
which our given statement form is constructed). 

Example. -&A-~-IB-BvCB 

The first proper initial segment whose sum is 0 is * & A 11 B. Thus we have (& A 11 B) @ 
(eB v CB). In &A 1-1 B, the first proper initial segment whose sum is 0 is &A. Hence we 
obtain A & 11 B. In @B v CB, the first proper initial segment whose sum is 0 is @B, and we 
obtain B t) (v CB). Thus, so far, (A & 1-1 B) f) (B @ (v CB)). Finally, v CB corresponds to 
C v B, and the statement form in our original notation is (A & 1-1 B) e= (B t) (Cv B)). 

Supplementary Problems 
B.4. Write the following statement forms in Polish notation. 

(a) B&z l(AvB) 

(b) [(A-+B)+ l(B+A)] * (A-B) 

(c) [(A+B)+(C+D)] + [E+{(D-+A)+(C+A)}] 

B.5. Determine whether each of the following expressions is a statement form in Polish notation, and, 
if it is, find the corresponding statement form in our original notation. 

(a) + 1 vAB++C& TAB 

(b) -I &A+B+A 

(c) vv++AB lAA&BA 

k-l) --+A+BC+&ABC 



The Axiom of Choice 
Implies Zorn’s lemma 

By the axiom of choice we mean the assertion that, for any set x, there is a function f 
(called a choice function for x), defined on T(x) - {@}, such that, for any non-empty subset 
u of x, f(u) E u. 

We shall say that a collection A of sets is well-ordered by inclusion if and only if A is 
an C-chain and every non-empty subset C of A has a least element b (i.e. if u E C, then 
b cu). Given a collection A well-ordered by inclusion, and given any set y in A, the segment 
determined by y (denoted Seg (A, y)) is defined to be the set of all x in A such that XC y. 
Notice that, if S is a section of A (i.e. if S is a subset of A such that (y E S 6i x CY) + X ES)) 
and if S # A, then S = Seg (A, u), where u is the least element of A c S. 

Theorem. The axiom of choice implies Zorn’s Lemma. 

Proof. Assume that a set Z of sets has the property that, for every c -chain C in 2, the 
union A2C A is also in 2. Let F be a choice function for 2. Thus if $?Ij P D CZ, then 

F(D) ED. 

Let us assume that 2 has no c-maximal element. We shall derive a contradiction from 
this assumption. 

For any y in 2, the set Y of all elements x of 2 such that y Cx is non-empty (since there 
are no C-maximal elements). Let f(y) = F(Y). Thus for any y in 2, f(y) is an element of 
2 such that yc f(y). 

By a ladder we mean any subset L of Z such that L is well-ordered by inclusion, and, 
for any x E L, f ( u E s$ .,u) = x. (By hypothesis, we know that u u E 2, since 

u E seg u,,z) 
Seg (L, x) is an C-chain.) ’ 

Let L be the set of all ladders. 

(1) Given two different ladders L1 and Lz, we shall show that one of them is a segment of 
the other. Let K be the set of all u E LlnL2 such that Seg (LI,u) = Seg (Lz, u). 

Clearly, K is a section of both LI and Lz. Hence if K = L1 or K = LP, then one of ZI 
or LZ is a segment of the other. Thus we must show that KC L1 and KC LZ do not 
simultaneously hold. To this end, assume KC L1 and KC Lp. Let u1 be the least element 
of LIN K, and let uz be the least element of LZ - K. Then Seg (Ll, UI) = K and 
Seg (Lz, u2) = K. By definition of ladder, 

and 

Ul = f (. E s2L,.Ul) uJ = f (u:, 4 

I.42 = 
f( u u E seg (L2.112) u) = f(&u> 
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Hence u1 = u2 and Seg (L1, ul) = K = Seg (Lz, 24. Thus UI E K, which contradicts the 
fact that ul E Ll- K. 

(2) The union of all ladders H = L 2 L L1 is again a ladder. For, by (1) it is clear that H 

is an c-chain. H is well-ordereld by inclusion. (In fact, if @ # W’G H and u E W, then 
N E L1 for some L1 E L and the least element of Wn LI must be the least element of W.) 
Finally, for any x E H, x E L1 for some LIE L, and, by (l), Seg(H,x) = Seg(L1, x). 

Hence x = f( u E &,,2) = f (u E s~~H,*,“~ * 
Since H is an C-chain, the union v = u ‘;;‘, u E 2, by hypothesis. Hence H U {f(v)} 

is a ladder, and therefore f(v) E H. 

It follows that f(v) c v, contradicting v c f(v). ) 



Appendix D 

A lattice-Theoretic Proof 
of the Schriider-Bernstein Theorem 

Lemma. Let (L, 6) be a complete lattice and let + be a function from L into L such that 
+ is order-preserving, i.e. x g y + 4(x) 6 4(g). Then + has a fixed point b in 
L, i.e. +(b) = b. 

Proof. Let W = {x : x E L & x’+(x)}, and let b = V x. We shall show that 
ZEW 

+(b) = b. First, 4(b) is an upper bound of W. For, if x E W, x 4 b, and therefore 4(x) 6 +(b). 
But since x E W, x 4 +(x). Hence x 6 4(b). Thus +(b) is an upper bound of W, and so 
b = 3 yw x 4 +(b). On the other hand, since b 4 4(b), it follows that +(b) 5 +(4(b)), i.e. 
+(b) E W. Hence +(b) 6 I yw x = b. From b 6 +(b) & +(b) 6 b we obtain +(b) = b. ) 

SchrZder-Bernstein Theorem. If there is a one-one correspondence f between X and a 

for 

subset of Y and a one-one correspondence g between Y and a subset of X, then 
there is a one-one correspondence between X and Y. (In terms of cardinal num- 
bersmandtt,ifm~nandn’m,then m=n.) 

Proof. For every subset ZcX, let +(Z) = X - g[Y - f[Z]] (Fig. D-l). (Recall that, 
any function h, h[C] = {h(u) : u E C}.) 

Now, 

Fig. D-l Fig. D-2 

21 c 22 --, f[Zl] cf[&] + Y - f[Z2] c Y w f[.G] 

+ g[Y - f[Zz]] c g[Y - f [~a 

+ x - g[Y - f [Zl]] c x - g[Y - f [Z2]1 

-- 
dZ1) G2) 

Hence 4 is an order-preserving function from the complete lattice (T(X), C) into itself. 
Hence by the lemma above, + has a fixed point Z*, i.e. 

z* = +(Z*) = x - g[Y - f[z*]] 

Therefore g[Y-f[Z*]] = x-z* 

It is easy now to verify, using Fig. D-2 as a guide, that the following function h, 

i 

f(x) if xEZ* 
h(x) = 

g-l(x) if x E X-Z* 

is a one-one correspondence between X and Y. ) 
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