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Devoted to 150th birthday of Henri Poincé&r—
the greatest mathematician, mechanist,
theoretical physicist

Preface

The special theory of relativity “resulted from the joint efforts
of a group of great researchers: Lorentz, Poinar Einstein,
Minkowski” (Max Born).

“Both Einstein and Poincag, took their stand on the prepara-
tory work of H. A. Lorentz, who had already come quite close
to the result, without however quite reaching it. In the agre
ment between the results of the methods followed indepettigen
of each other by Einstein and Poincér| discern a deeper sig-
nificance of a harmony between the mathematical method and
analysis by means of conceptual experiments (Gedankengxpe
mente), which rests on general features of physical expece’
(W. Pauli, 1955.

H. Poincaré, being based upon the relativity principlerfor
lated by him for all physical phenomena and upon the Lorentz
work, has discovered and formulated everything that coeptse
essence of the special theory of relativity. A. Einstein a@sing
to the theory of relativity from the side of relativity pripde for-
mulated earlier by H. Poincaré. At that he relied upon id®eas
H. Poincaré on definition of the simultaneity of events adog
in different spatial points by means of the light signal.tJasthis
reason he introduced an additional postulate — the congtainc
the velocity of light. This book presents a comparison ofdtiele
by A. Einstein of 1905 with the articles by H. Poincaré aratiles
what is thenew content contributed by each of them. Somewhat
later H. Minkowski further developed Poincaré’s appraoaSnce



4 Preface

Poincaré’s approach was more general and profound, osepre
tation will precisely follow Poincaré.

According to Poincaré and Minkowski, the essence of nelati
ity theory consists in the followingthe special theory of rel-
ativity is the pseudo-Euclidean geometry of space-time. Al
physical processes take place just in such a space-timdhe
consequences of this postulate are energy-momentum and ang
lar momentum conservation laws, the existence of iner&fdrr
ence systems, the relativity principle for all physical pbmena,
Lorentz transformations, the constancy of the velocityigiftl in
Galilean coordinates of the inertial frame, the retardatbtime,
the Lorentz contraction, the possibility to exploit noriitial ref-
erence systems, the clock paradox, the Thomas preceskmn, t
Sagnac effect, and so on. Series of fundamental consegience
have been obtained on the base of this postulate and theumiant
notions, and the quantum field theory has been constructed. T
preservation (form-invariance) of physical equationsliinartial
reference systems means thatpdly/sical processesaking place
in these systems under the same conditionsdmnatical. Just for
this reason alhatural standards arethe samein all inertial ref-
erence systems.

The author expresses profound gratitude to Academicidmeof t
Russian Academy of Sciences Prof. S. S. Gershtein, Prof. Ref
rov, Prof. N. E. Tyurin, Prof. Y. M. Ado, senior research asate
A. P. Samokhin who read the manuscript and made a number of va-
luable comments, and, also, to G. M. Aleksandrov for sigaific
work in preparing the manuscript for publication and cortiptg
Author and Subject Indexes.

A.A. Logunov
January 2004



1. Euclidean geometry

In the third century BCEuclid published a treatise on math-
ematics, the“Elements”, in which he summed up the preceding
development omathematics in antique Greecelt was precisely
in this work that the geometry of our three-dimensional spae
Euclidean geometry — was formulated.

This happened to be a most important step in the develop-
ment of both mathematics and physics. The point is that geom-
etry originated from observational data and practical eepee,

i.e. it arose via the study of Nature. But, since all natufa{
nomena take place in space and time, the importance of ggomet
for physics cannot be overestimated, and, moreover, geghset
actually a part of physics.

In the modern language of mathematics the essence of Eu-
clidean geometry is determined by the Pythagorean theorem
In accordance with the Pythagorean theorem, the distanee of
point with Cartesian coordinatasy, z from the origin of the re-
ference system is determined by the formula

0 = 2% + % + 22, (1.2

or in differential form, the distance between two infinitaaily
close points is

(d0)? = (dz)* + (dy)* + (dz)*. (1.2)

Heredx, dy, dz are differentials of the Cartesian coordinates. Usu-
ally, the proof of the Pythagorean theorem is based on Esclid
axioms, but it turns out to be that it can actually be congdex
definition of Euclidean geometry. Three-dimensional spaee
termined by Euclidean geometry, possesses the propeftles o
mogeneity and isotropy. This means that there exist no fangu
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points or singular directions in Euclidean geometry. Byfqen-
ing transformations of coordinates from one Cartesianreefse
systemy, y, z, to anothery’, v/, 2/, we obtain

€2 — 2:'2 _|_y2 + 22 — x/2 +y/2 + 2/2. (13)

This means that the square distariégs an invariant, while its
projections onto the coordinate axes are not. We especiathy
this obvious circumstance, since it will further be seer shieh a
situation also takes place in four-dimensional space;tsogcon-
sequently, depending on the choice of reference systemaitesp
time the projections onto spatial and time axes will be netat
Hence arises the relativity of time and length. But this essuil
be dealt with later.

Euclidean geometry became a composite part of Newtonian
mechanics. For about two thousand years Euclidean geomasy
thought to be the unique and unchangeable geometry, in @pite
the rapid development of mathematics, mechanics, and gysi

It was only at the beginning of the 19-th century that the
Russian mathematician Nikolai Ivanovich Lobachevsky made
the revolutionary step — a new geometry was constructed —
the Lobachevsky geometry. Somewhat later it was discovered
by the Hungarian mathematician Bolyai.

About 25 years later Riemannian geometries were developed
by the German mathematician Riemann. Numerous geometrical
constructions arose. As new geometries came into beingsthe i
sue of the geometry of our space was raised. What kind was it?
Euclidean or non-Euclidean?



2. Classical Newtonian mechanics

All natural phenomena proceed in space and time. Precisely f
this reason, in formulating the laws of mechanics in thel.@en-
tury, Isaac Newton first of all defined these concepts:

“Absolute Space, in its own nature, without regard
to any thing external, remains always similar and im-
movable”.

“Absolute, True, and Mathematical Time, of itself,
and from its own nature flows equably without regard
to any thing external, and by another name is called
Duration”.

As the geometry of three-dimensional space Newton actually
applied Euclidean geometry, and he chose a Cartesian metere
system with its origin at the center of the Sun, while its éhages
were directed toward distant stars. Newton consideredgaigc
such a reference system to be “motionless”. The introdnatio
absolute motionless space and of absolute time turned dug to
extremely fruitful at the time.

The first law of mechanics, or the law of inertia, was formu-
lated by Newton as follows:

“Every body perseveres in its state of rest, or of
uniform motion in a right line, unless it is compelled
to change that state by forces impressed thereon”.

The law of inertia was first discovered by Galileo. If, in nuot
less space, one defines a Cartesian reference system,rttem, i
cordance with the law of inertia, a solitary body will moverad
a trajectory determined by the following equations:

T = Uy, Y = vyt, z = v,t. (2.1)
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Here,v,, v,, v, are the constant velocity projections, their values
may, also, be equal to zero.

In the book“Science and Hypothesis” H. Poincaré formu-
lated the following general principle:

“The acceleration of a body depends only on its
position and that of neighbouring bodies, and on their
velocities. Mathematicians would say that the move-
ments of all the material molecules of the universe
depend on differential equations of the seconal order.
To make it clear that this is really generalisation of
the law of inertia we may again have recourse to our
imagination. The law of inertia, as | have said above,
is notimposed on us ~ priori; other laws would be just
as compatible with the principle of sufficient reason.
If body is not acted upon by a force, instead of sup-
posing that its velocity is unchanged we may suppose
that its position or its acceleration is unchanged. Let
us for moment suppose that one of these two laws is a
law of nature, and substitute it for the law of inertia:
what will be the natural generalisation? moment’s re-
flection will show us. In the first case, we may suppose
that the velocity of body depends only on its position
and that of neighbouring bodies; in the second case,
that the variation of the acceleration of body depends
only on the position of the body and of neighbouring
bodies, on their velocities and accelerations; or, in
mathematical terms, the differential equations of the
motion would be of the first order in the first case and
of the third order in the second”.

Newton formulated the second law of mechanics as follows:

“The alteration of motion is ever proportional to
the motive force impressed; and is made in the di-
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rection of the right line in which that force is impressed”.
And, finally, the Newton'’s third law of mechanics:

“To every Action there is always opposed an equal
Reaction: or the mutual actions of two bodies upon
each other are always equal, and directed to contrary
parts”.

On the basis of these laws of mechanics, in the case of central
forces, the equations for a system of two particles in a esies
system “at rest” are:

027 o — 7
— = F(lro —r =
1 dt2 (|T2 T1|)|F2 _F1| ’
2.2)
7, o — 7
M — —F e )
2 dt2 (‘T2 TID‘FQ . Fl‘

Here M, and M, are the respective masses of the first and second
particles; is the vector radius of the first particl&, is the vector
radius of the second particle. The functibrreflects the character
of the forces acting between bodies.

In Newtonian mechanics, mostly forces of two types are con-
sidered: of gravity and of elasticity.

For the forces of Newtonian gravity

L M M.
F(|7 — 7)) = Go——=, (2.3)
|7 — 7
G is the gravitational constant.
For elasticity forces Hooke’s law is
F(|ry —7|) = k[ry — 7], (2.4)

k is the elasticity coefficient.
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Newton’s equations are written in vector form, and, consequ
ently, they are independent of the choice of three-dimernadicef-
erence system. From equations (2.2) it is seen that the ntamen
of a closed system is conserved.

As it was earlier noted, Newton considered equations (2.2) t
hold valid only in a reference system at rest. But, if one sake
a reference system moving with respect to the one at restawith
constant velocity’/

—/

Pl =7 - it (2.5)

it turns out that equations (2.2) are not altered, they remain
form-invariant, and this means that no mechanical phenom-
ena could permit to ascertain whether we are in a state of rest
or of uniform and rectilinear motion. This is the essence ofle
relativity principle first discovered by Galileo. The transfor-
mations (2.5) have been termed Galilean

Since the velocity' in (2.5) is arbitrary, there exists an infinite
number of reference systems, in which the equations refain t
form. This means, that in each reference system the law dfane
holds valid. If in any one of these reference systems a boulyas
state of rest or in a state of uniform and rectilinear motiben in
any other reference system, related to the first by transftom
(2.5), it will also be either in a state of uniform rectilimgaotion
or in a state of rest.

All such reference systems have been termed inertial. The
principle of relativity consists in conservation of the fom of
the equations of mechanics in any inertial reference system
We are to emphasize thiat the base of definition of an inertial
reference system lies the law of inertia by Galileo According
to it in the absence of forces a body motion is described lBalin
functions of time.

But how has an inertial reference system to be defined? Newto-
nian mechanics gave no answer to this question. Nevertehes
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reference system chosen as such an inertial system hadgits or
at the center of the Sun, while the three axes were directeaktb
distant stars.

In classical Newtonian mechanics time is independent of the
choice of reference system, in other words, three-dimeasgpace
and time are separated, they do not form a unique four-dimneals
continuum.

Isaac Newton's ideas concerning absolute space and adsolut
motion were criticized in the 19-th century by Ernst Mach.dWa
wrote:

“No one is competent to predicate things about ab-
solute space and absolute motion; they are pure things
of thought, pure mental constructs, that cannot be pro-
duced in experience”.

And further:

“Instead, now, of referring a moving body K to
space (that is to say to a system of coordinates) let us
view directly its relation to the bodies of the universe,
by which alone a system of coordinates can be deter-
mined.

...even in the simplest case, in which apparently we
deal with the mutual action of onlgyvo masses, the
neglecting of the rest of the worldimpossible ... If

a body rotates with respect to the sky of motionless
stars, then there arise centrifugal forces, while if it ro-
tates aroundcanother body, instead of the sky of mo-
tionless stars, no centrifugal forces will arise. | have
nothing against calling the first revolutiabslute, if
only one does not forget that this signifies nothing but
revolutionrelative to the sky of motionless stars”.
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Therefore Mach wrote:

“...there is no necessity for relating the Law of iner-
tia to some special absolute space”.

All this is correct, since Newton did not define the relation
of an inertial reference system to the distribution of matad,
actually, it was quite impossible, given the level of phgsievel-
opment at the time. By the way, Mach also did not meet with
success. But his criticism was useful, it drew the attentibsci-
entists to the analysis of the main concepts of physics.

Since we shall further deal with field concepts, it will befuse
to consider the methods of analytical mechanics developadgl
the 18-th and 19-th centuries. Their main goal, set at the,tim
consisted in finding the most general formulation for clesigine-
chanics. Such research turned out to be extremely imposiaice
it gave rise to methods that were later quite readily gersaito
systems with an infinite number of degrees of freedom. Rebcis
in this way was a serious theoretical start created, thatsuas
cessfully used of in the 19-th and 20-th centuries.

In his “Analytic Mechanics”, published in 1788, Joseph La-
grange obtained his famous equations. Below we shall presen
their derivation. In an inertial reference system, Newscgqjua-
tions for a set ofN material points moving in a potential field
have the form

di, v

mey dt :_8—7_"0_7 0':1,2,...,N. (26)
In our case the forcé, is
- oUu
- _ U 2.7
f o (2.7)

To determine the state of a mechanical system at any moment of
time it is necessary to give the coordinates and velocitfeallo
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the material points at a certain moment of time. Thus, thie sta
of a mechanical system is fully determined by the coordmatel
velocities of the material points. In a Cartesian referesystem
Egs. (2.6) assume the form

dvl dv? dv3
mad—;: 0—17 mad—;: 027 mO'd—to:fg' (28)

If one passes to another inertial reference system and makes
use of coordinates other than Cartesian, then it is readép shat
the equations written in the new coordinates differ esatintin
form from equations (2.8). Lagrange found for Newton’s naeth
ics such a covariant formulation for the equations of mothoat
they retain their form, when transition is made to new vdesab

Let us introduce, instead of coordinatés new generalized
coordinates¢®, A = 1,2,...,n, heren = 3N. Let us assume
relations

Ty = To(q1y -+ s G,y t)- (2.9)
After scalar multiplication of each equation (2.6) by vecto
or,
-2 2.10
90, (2.10)

and performing addition we obtain

dv, Or, ou o,
o= 2 XN=1,2,...,n. 2.11
Mod Bqn O, Ogn o (@1h)
Here summation is performed over identical indiees
We write the left-hand part of equation (2.11) as

d or, d (or,
— MUy =2 | — MTy— | —= | . 2.12
dt |:m Y 8q,\} Mo¥ dt (an) ( )
Since P o7
T T T
Uy = —0 = — 2y + ——, 2.13
S T o o (2.13)
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hence, differentiating (2.13) with respecigowe obtain the equal-
ity

or, _ 00,
Oqn O
Differentiating (2.13) with respect tg, we obtain
o, 1, | N 0?7,
00, 04,00, 0tdg,
But, on the other hand, we have
d (or, o°r, 0?7,
— 7)) = "4 —. 2.16
dt (5%) 94,00, * otoq, (2.16)
Comparing (2.15) and (2.16) we find

d (0r, v,

(2.14)

(2.15)

In formulae (2.13), (2.15) and (2.16) summation is perfairoeer
identical indices\.

Making use of equalities (2.14) and (2.17) we represent ex-
pression (2.12) in the form

d[ o [mguv? 9 [ mgv?
o (5%)) o ("57)- e

Since (2.18) is the left-hand part of equations (2.11) weaiobt
Lagrangian equations
d (8T) or  ou

Bl (i I W T O ) 2.19
dt \ 94y oq oq (2.19)

HereT is the kinetic energy of the system of material points

T="9"0 (2.20)
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summation is performed over identical indieedf one introduces
the Lagrangian functioh as follows

L=T-1, (2.21)

then the Lagrangian equations assume the form

d (0L oL
E<a—%)———0,)\_1,2,...,n. (2.22)

The state of a mechanical system is fully determined by the
generalized coordinates and velocities. The form of Lagjean
equations (2.22) is independent of the choicgemneralized co-
ordinates. Although these equations are totally equivalent to the
set of equations (2.6), this form of the equations of cladsite-
chanics, however, turns out to be extremely fruitful, sincgens
up the possibility of its generalization to phenomena wihielfar
beyond the limits of classical mechanics.

The most general formulation of the law of motion of a me-
chanical system is given by thginciple of least action (or the
principle of stationary action). The action is composedédls\vs

t2

S = /L(q,q‘)dt. (2.23)
t1
The integral (functional) (2.23) depends on the behavidurc-
tions ¢ and ¢ within the given limits. Thus, these functions are

functional arguments of the integral (2.23). The leastoaxcgirin-
ciple is written in the form

t2

5S = 6/L(q, q)dt = 0. (2.24)

t1
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The equations of motion of mechanics are obtained from 4
varying the integrand expression

to

/ a—Léq + a—l,/éq dt = 0. (2.25)
dq aq

t1

Heredq anddg represent infinitesimal variations in the form of the
functions. The variation commutes with differentiatioa, s

_4a
Cdt

Integrating by parts in the second term of (2.25) we obtain

oq (q). (2.26)

to

2
oL d oL
+/ (8_q -8 a_q') Sqdt =0.  (2.27)

1t

Since the variationgq at pointst; andt, are zero, expression
(2.27) assumes the form

t2

oL d 0L
08 = — — — - — | dqdt = 0. 2.28
[ (5 - 50) (229
t1
The variationdq is arbitrary within the interval of integration, so,
by virtue of the main lemma of variational calculus, froméntre
necessary condition for an extremunfollows in the form of the
equality to zero of the variational derivative

5L L d <0L)

dq  dt\9q

- — 0. (2.29)

Such equations were obtained by Leonard Euler in the codrse o
development of variational calculus. For our choice of fiorTtL,
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these equations in accordance with (2.21) coincide withLtne
grangian equations.

From the above consideration it is evident that mechanical m
tion satisfying the Lagrangian equations provides foremum of
the integral (2.23), and, consequently, the action hastestay
value.

The application of the Lagrangian function for describing a
mechanical system with a finite number of degrees of freedom
turned out to be fruitful, also, in describing a physicaldiglo-
ssessing an infinite number of degrees of freedom. In theafase
a field, the function) describing it depends not only on time, but
also on the space coordinates. This means that, instead wéth
ablesq,, ¢, of a mechanical system, it is necessary to introduce

the variables)(z"), a—wA Thus, the field is considered as a me-

chanical system with an infinite number of degrees of freedom
We shall see further (Sections 10 and 15) how the principle of
stationary action is applied in electrodynamics and otatdield
theory.

The formulation of classical mechanics within the framekwor
of Hamiltonian approach has become very important. Conside
certain quantity determined as follows

H = pyiy — L, (2.30)

and termed the Hamiltonian. In (2.30) summation is perfarme
over identical indices. We define thegeneralized momentum

as follows:
oL

o — AF-. - 2.31
b= 94, (2.31)
Find the differential of expression (2.30)

dH = p,dis, + qodps — oL dgs, — oL dg, — oL . (2.32)

945 iy Ot
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Making use of (2.31) we obtain

oL oL

dH = g,dp, — adqg ~ Zar (2.33)

ot
On the other handH is a function of the independent variables
4-, Do @ndt, and therefore

DI OH oH
af = g0+ Mg 2.34
g, "1 T 5, e T (2:34)

Comparing (2.33) and (2.34) we obtain

. OH 9L  OH 9L  OH

4o = o 0q 04 ot ot (2.35)

These relations were obtained by transition from indepeneei-
ablesy,, ¢, andt to independent variableg, p, andt.

Now, we take into account the Lagrangian equations (2.22) in
relations (2.35) and obtain the Hamiltonian equations

0oH OH
qO’ apa Y pO’ aqo— ( 36)

When the Hamiltoniar! does not depend explicitly on time,

OH
= =0, (2.37)

we have iH 8l SH
— =y + — Py 2.38
dt 8ng + 8p0p ( )

Taking into account equations (2.36) in the above exprassie
obtain

dH
— =0 2.39
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this means that the Hamiltonian remains constant duringbie
on.

We have obtained the Hamiltonian equations (2.36) making
use of the Lagrangian equations. But they can be found aiso di
rectly with the aid of the least action principle (2.24),a§L, we
take, in accordance with (2.30), the expression

L:pUCja_H7
t

[ H
0S = /5pa (dqa — %dt) —

t1

to
oH
—/5% (dpg + —dt) + Do0qs
¢y

t1

to
=0.

t1

Since variation9g, at the pointg; andt, are zero, while inside
the interval of integration variations;,, ép, are arbitrary, then,
by virtue of the main lemma of variational calculus, we obtiie
Hamiltonian equations

_oH oM
q0_8p07 pCT_ aqo"

If during the motion the value of a certain function remaiong-c
stant

f(q,p,t) = const (2.40)

then it is called as integral of motion. Let us find the equabd
motion for functionf.
Now we take the total derivative with respect to time of ex-
pression (2.40):
df _of  of. of .

_or,of. -0 2.41
it~ ot Tag e T gt =0 (2.41)
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Substituting the Hamiltonian equations (2.36) into (2,448 ob-

tain

of ~of OH of OH

o " og o, op 0g, 0 @42
The expression

of of

04, Opr| _0f 09 _0f 09
dg 99| 04 Ops I Ogo
0q¢s  Ops

(f,9) =

(2.43)

has been termed the Poisson bracket. In (2.43) summatiat-is p
formed over the index.

On the basis of (2.43), Eq. (2.42) for functigrcan be written
in the form

g—{+(f,H) = 0. (2.44)
Poisson brackets have the following properties
(fag) - _(gvf)a
(fi + fo, 9) = (f1,9) + (f2,9), (2.45)
(fife,9) = fi(f2,9) + f2(f1,9),
(f:(g,0) + (g (h, ) + (h, (£, 9)) = 0. (2.46)
Relation (2.46) is called th#acobi identity. On the basis of (2.43)
__of _of
(f7 QU) - 8])0 ) (f7 pa) - 8q0 . (247)

Hence we find

(q>\7 QU) - 07 (p)npa) = 07 (Q)npa) = 6)\0- (248)
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In the course of development of the quantum mechanics, by
analogy with the classical Poisson brackets (2.43), thegenated
guantum Poisson brackets, which also satisfy all the cromdit
(2.45), (2.46). The application of relations (2.48) for gtuan
Poisson brackets has permitted to establish the commuitagio
lations between coordinates and momenta.

The discovery of the Lagrangian and Hamiltonian methods in
classical mechanics permitted, at the time, to generahzeex-
tend them to other physical phenomena. The search for \&ariou
representations of the physical theory is always extrennehor-
tant, since on their basis the possibility may arise of themeral-
ization for describing new physical phenomena. Within teptts
of the theory created there may be found formal sprouts dfithe
ture theory. The experience of classical and quantum méechan
bears witness to this assertion.
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3. Electrodynamics. Space-time geometry

Following the discoveries made by Faraday in electromagmet
Maxwell combined magnetic, electric and optical phenonaarh
thus, completed the construction of electrodynamics byingi
out his famous equations.

H. Poincaré in the booKThe Value of Science" wrote the
following about Maxwell’s studies:

“At the time, when Maxwell initiated his studies,
the laws of electrodynamics adopted before him ex-
plained all known phenomena. He started his work
not because some new experiment limited the impor-
tance of these laws. But, considering them from a
new standpoint, Maxwell noticed that the equations
became more symmetric, when a certain term was in-
troduced into them, although, on the other hand, this
term was too small to give rise to phenomena, that
could be estimated by the previous methods.

A priori ideas of Maxwell are known to have waited
for their experimental confirmation for twenty years;
if you prefer another expression, — Maxwell antici-
pated the experiment by twenty years. How did he
achieve such triumph?

This happened because Maxwell was always full of
a sense of mathematical symmetry ...”

According to Maxwellthere exist no currents, except closed
currents. He achieved this by introducing a small term a-lis-
placement current, which resulted in the law of electric charge
conservation following from the new equations.

In formulating the equations of electrodynamics, MaxweHl a
plied the Euclidean geometry of three-dimensional spadeasn
solute time, which is identical for all points of this spauided
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by a profound sense of symmetry, he supplemented the egsatio
of electrodynamics in such a way that, in the same time exipigi
available experimental facts, they were the equations axfted-
magnetic waves. He, naturally, did not suspect that thernmie

tion on the geometry of space-time was concealed in the equa-
tions. But his supplement of the equations of electrodycami
turned out to be so indispensable and precise, that it glézall

H. Poincaré, who relied on the work of H. Lorentz, to the disc

ery of the pseudo-Euclidean geometry of space-time. Belav,
shall briefly describe, how this came about.

In the same time we will show that the striking desire of some
authors to prove that H. Poincaréd's not made the decisive stép
to create the theory of relativity is based upon both miststdad-
ing of the essence of the theory of relativity and the shaknawl-
edge of Poincaré works. We will show this below in our comtaen
to such statements. Just for this reason in this book | ptesen
sults, first discovered and elucidated by the light of comseness
by H. Poincaré, minutely enough. Here the need to compare th
content of A. Einstein’s work of 1905 both with results of fiub
cations [2, 3] by H. Poincaré, and with his earlier worksunally
arises. After such a comparison it becomes clear wkateach
of them has produced.

How could it be happened that the outstanding research of
Twentieth Century — works [2,3] by H. Poincaré — were used
in many ways at in the same time were industriously consigned
to oblivion? It is high time at least now, a hundred years later, to
return everyone his property. It is also our duty.

Studies of the properties of the equations of electrodyoami
revealed them not to retain their form under the Galileanstra
formations (2.5), i.e. not to be form-invariant with respéc
Galilean transformations. Hence the conclusion follovet the
Galilean relativity principle is violated, and, conseqtigrthe ex-
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perimental possibility arises to distinguish between amertial
reference system and another with the aid of electromagoeti
optical phenomena. However, various experiments perfdyes
pecially Michelson’s experiments, showed that it is implolgsto
find out even by electromagnetic (optical) experimentshwaipre-
cision up to(v/c)?, whether one is in a state of rest or of uniform
and rectilinear motion. H. Lorentz found an explanationtfare-
sults of these experiments, as H. Poincaré notedly‘by piling
up hypotheses.

In his book“Science and Hypothesis” (1902) H. Poincaré
noted:

“And now allow me to make a digression; | must
explain why | do not believe, in spite of Lorentz, that
more exact observations will ever make evident any-
thing else but the relative displacements of material
bodies. Experiments have been made that should have
disclosed the terms of the first order; the results were
nugatory. Could that have been by chance? No one
has admitted this; general explanation was sought,
and Lorentz found it. He showed that the terms of
the first order should cancel each other, but not the
terms of the second order. Then more exact experi-
ments were made, which were also negative; neither
could this be the result of chance. An explanation was
necessary, and was forthcoming; they always are; hy-
potheses are what we lack the least. But this is not
enough. Who is there who does not think that this
leaves to chance far too important role? Would it not
also be chance that this singular concurrence should
cause certain circumstance to destroy the terms of the
first order, and that totally different but very oppor-
tune circumstance should cause those of the second



3. Electrodynamics ... 25

order to vanish? No; the same explanation must be
found for the two cases, and everything tends to show
that this explanation would serve equity well for the
terms of the higher order, and that the mutual destruc-
tion of these terms will be rigorous and absolute”.

In 1904, on the basis of experimental facts, Henri Poincaré
generalized the Galilean relativity principle to all natupheno-
mena. He wrote J1]:

“The principle of relativity, according to which the
laws of physical phenomena should be the same, whe-
ther to an observer fixed, or for an observer carried
along in a uniform motion of translation, so that we
have not and could not have any means of discover-
ing whether or not we are carried along in such a mo-
tion”.

Just thisprinciple has become the key ondor the subsequent
development of both electrodynamics and the theory ofiviat
It can be formulated as follow3.he principle of relativity is the
preservation of form by all physical equations in any inertial
reference system

But if this formulation uses the notion of theertial reference
systenthen it means that the physical law of inertia by Galilei is al
ready incorporated into this formulation of the relatiitynciple.
This is just the difference between this formulation andrfola-
tions given by Poincaré and Einstein.

Declaring this principle Poincaré precisely knew that ofe
its consequences was the impossibilityadifsolute motion be-
causeall inertial reference systems were equitable It follows
from here that the principle of relativity by Poincaré doed re-
quire a denial okther in general, it only deprives ether of rela-
tion to any system of reference. In other words, it removes th
ether in Lorentz sense. Poincaré does not exclude the concept
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of ether because it is difficult to imagine more absurd thing than
empty space. Therefore the wather, which can be found in the
Poincaré articles even after his formulation of the reigtiprin-
ciple, has another meaning, different of therentz ether. Just
this Poincaré’s ether has to satisfy the relativity principle. Also
Einstein has come to the idea of ether in 1920.

In our time such a role is played by physical vacuum. Namely
this point is up to now not understood by some physicists (@&pk
silence about philosophers and historians of science)h&pédr-
roneously attribute to Poincaré the interpretation cdtreity prin-
ciple as impossibility to register the translational unifiomotion
relative to ether. Though, as the reader can see, there iseno t
word “ether” in the formulation of the relativity principle

One must distinguish between tiGalilean relativity prin-
ciple and Galilean transformations. While Poincaré extended
theGalilean relativity principle to all physical phenomenaith-
out altering its physical essencethe Galilean transformations
turned out to hold valid only when the velocities of bodies ar
small as compared to the velocity of light.

Applying this relativity principle to electrodynamical eho-
mena in ref.[3], H. Poincaré wrote:

“This impossibility of revealing experimentally the
Earth’s motion seems to represent a general law of
Nature; we naturally come to accept this law, which
we shall term theelativity postulate and to accept it
without reservations. Itis irrelevant, whether this pos-
tulate, that till now is consistent with experiments, will
or will not later be confirmed by more precise mea-
surements, at present, at any rate, it is interesting to
see, what consequences can be deduced from it”.

In 1904, after the critical remarks made by Poincaré, H. Lo-
rentz made a most important step by attempting again to write
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electrodynamics equations in a moving reference systeratama-
ing that thewave equation of electrodynamicgemainedunal-
tered (form-invariant) under the following transformations bkt
coordinates and time:

X' = y(X —oT), T’=7<T—%X>,Y’:Y, 7' = 7. (3.1)
C

Lorentz named” as themodified local time in contrast tdocal
time 7 = 7"/~ introduced earlier in 1895;

! (3.2)

fy = U2 )
tme
wherec is the electrodynamic constant.
H. Poincaré termed these transformations the Lorentzsfioan
mations. The Lorentz transformations, as it is evident f(8ri),
are related to two inertial reference systems. H. Lorendznait
establish the relativity principle for electromagneticepbmena,
since he did not succeed in demonstrating the form-inveeari
all the Maxwell-Lorentz equations under these transfolonat
From formulae (3.1) it follows that the wave equation being
independent of translational uniform motion of the refeeesys-
tem is achieved only by changing the time. Hence, the coimius
arises, naturally, that for each inertial reference systésmeces-
sary to introduce its own physical time.

In 1907, A. Einstein wrote on this:

< Surprisingly, however, it turned out that a suffi-
ciently sharpened conception of time was all that was
needed to overcome the difficulty discussed. One had
only to realize that an auxiliary quantity introduced by
H. A. Lorentz, and named by him “local time”, could
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be defined as “time” in general. If one adheres to this
definition of time, the basic equations of Lorentz’s,
theory correspond to the principle of relativity >

Or, speaking more precisely, instead of thee time there arose
themodified local time by Lorentz different for each inertial ref-
erence system.

But H. Lorentz did not notice this, and in 1914 he wrote on that
in detailed article “The two papers by Henri Poincaré onhmat
matical physics”:

“These considerations published by myselfin 1904,
have stimulated Poincérto write his article on the
dynamics of electron where he has given my name to
the just mentioned transformation. | have to note as
regards this that a similar transformation have been
already given in an article by Voigt published in 1887
and | have not taken all possible benefit from it. In-
deed | have not given the most appropriate transfor-
mation for some physical quantities encountered in
the formulae. This was done by Poinéaand later
by Einstein and Minkowski. ...| had not thought of
the straight path leading to them, since | considered
there was an essential difference between the refer-
ence systems, y, z,t andz’, vy, 2/, t'. In one of them
were used — such was my reasoning — coordinate
axes with a definite position in ether and what could
be termedtrue time in the other, on the contrary,
one simply dealt with subsidiary quantities introduced
with the aid of a mathematical trick. Thus, for in-
stance, the variablé could not be calledime in the
same sense as the variatile Given such reasoning,

I did not think of describing phenomena in the refer-
ence system’, ¢/, 2/, t’ in precisely the same ways
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in the reference systemy, z, t ... | later saw from the
article by Poincaé that, if | had acted in a more sys-
tematic manner, | could have achieved an even more
significant simplification. Having not noticed this, |
was not able to achieve total invariance of the equa-
tions; my formulae remained cluttered up with excess
terms, that should have vanished. These terms were
too small to influence phenomena noticeably, and by
this fact | could explain their independence of the
Earth’s motion, revealed by observations, but | did
not establish the relativity principle as a rigorous and
universal truth. On the contrary, Poincarachieved
total invariance of the equations of electrodynamics
and formulated theelativity postulate— a term first

introduced by him ...l may add that, while thus cor-
recting the defects of my work, he never reproached
me for them.

| am unable to present here all the beautiful results
obtained by Poinca. Nevertheless let me stress some
of them. First, he did not restrict himself by demon-
stration that the relativistic transformations left the
form of electromagnetic equations unchangeable. He
explained this success of transformations by the op-
portunity to present these equations as a consequence
of the least action principle and by the fact that the
fundamental equation expressing this principle and
the operations used in derivation of the field equations
are identical in systems,y,z,t and 2/, v/, 2/, t'...
There are some new notions in this part of the article,
| should especially mark them. Poin&anotes, for ex-
ample, that in consideration of quantitiesy, z, t/—1
as coordinates of a point in four-dimensional space
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the relativistic transformations reduces to rotations in
this space. He also comes to idea to add to the three
components(, Y, Z of the force a quantity

T =X¢+Yn+ Z¢,

which is nothing more than the work of the force at
a unit of time, and which may be treated as a fourth
component of the force in some sense. When dealing
with the force acting at a unit of volume of a body the
relativistic transformations change quantiti&s Y, 7,
T+v/—1 in a similar way to quantities, y, z, tv/—1.

| remind on these ideas by Poinébecause they are
closed to methods later used by Minkowski and other
scientists to easing mathematical actions in the theory
of relativity.”

As one can see, in the course of studying the article by Panca
H. Lorentz sees and accepts the possibilitge$cribing pheno-
mena in the reference systenx’, y’, 2/, t’ in exactly the same
way as in the reference systenx, y, z, { and that all this fully
complies with the relativity principle, formulated by Poaré.
Hence it follows thaphysical phenomena are identicalif they
take place inidentical conditions in inertial referencsteyns ¢, ,
z,t)yand @', v/, 2/, t'), moving with respect to each other with a ve-
locity v. All this was a direct consequence of thleysical equa-
tions not altering under the Lorentz transformations, that together
with space rotations form a group. Precisely all this is aoméd,
also, in articles by Poincaré [2, 3].

H. Lorentz writes in 1915 in a new edition of his botikheory
of electrons”, in commen72*:

“The main reason of my failure was | always thought
that only quantity could be treated as a true time and
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that my local time’ was considered only as an aux-
iliary mathematical value. In the Einstein theory, just
oppositet’ is playing the same role as If we want

to describe phenomena as dependent:ony/, 2/, ¢/,
then we should operate with these variables in just
the same way as with, y, z, ¢ .

Compare this quotation with the detailed analysis of then€aié
article given by Lorentz in 1914.

Further he demonstrates in this comment the derivation-of ve
locity composition formulae, just in the same form as it i€o
in article [3] by Poincaré. In commeft* he discusses the trans-
formation of forces, exploits invariant (3.22) in the samayvas
it is done by Poincaré. The Poincaré work is cited only in-co
nection with a particular point. It is surprising but Lorer his
dealing with the theory of relativity even does not cite Rairé
articles [2; 3]. What may happen with Lorentz in the period af
ter 1914? How we can explain this? To say the truth, we are to
mention that because of the war the Lorentz article writtel8i14
has appeared in print only in 1921. But it was printed in thaea
form as Lorentz wrote it in 1914. In fact he seems to confirm by
this that his opinion has not been changed. &Llithis in the long
run does not mean nothing substantial, because now we can
ourselves examine deeper and in more detail who has done the
work, what has been done and what is the level of this work,
being informed on the modern state of the theoryand compar-
ing article of 1905 by Einstein to articles by Poincaré.

The scale of works can be better estimated from the time
distance Recollections of contemporaries are valuable for us as
a testimony on how new ideas have been admitted by the physi-
cal community of that time. But moreover one may obtain some
knowledge on the ethic of science for some scientists, onpgro
interests, and maybe even something more, which is abgplute
unknown to us.
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It is necessary to mention that Lorentz in his article of 1804
calculating his transformations has made an error and asuét re
Maxwell-Lorentz equations in a moving reference frame Haee
come different than electrodynamics equations in the rasté.
These equations were overloadeddmperfluousterms. But Lo-
rentz has not been troubled by this. He would easily see tbeiér
he were nokeep away of the relativity principle. After all, just
the relativity principle requires that equations have taHsesame
in both two reference frames. But he singled out reference
frame directly connected with the ether.

Now, following the early works of H. Poincaré we shall deal
with the definition of simultaneity, on the synchronizatafitlocks
occupying different points of space, and we shall clarify pihysi-
cal sense olocal time, introduced by Lorentz. In the artict®le-
asurement of time”, published in 1898, Poincaré discusses the
issue of time measurement in detail. This article was eafigci
noted in the booKScience and hypothesis” by Poincaré, and,
therefore, it is quite comprehensible to an inquisitivedieza

In this article, for instance the following was said:

“ But let us pass to examples less artificial; to un-
derstand the definition implicitly supposed by the sa-
vants, let us watch them at work and look for the rules
by which they investigate simultaneity. ...

When an astronomer tells me that some stellar phe-
nomenon, which his telescope reveals to him at this
moment, happened, nevertheless, fifty years ago, | seek
his meaning, and to that end | shall ask him first how
he knows it, that is, how he has measured the velocity
of light.

He has begun bgupposingthat light has a con-
stant velocity, and in particular that its velocity is
the same in all directions. That is a postulate with-
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out which no measurement of this velocity could be
attempted. This postulate could never be verified di-
rectly by experiment; it might be contradicted by it
if the results of different measurements were not con-
cordant. We should think ourselves fortunate that this
contradiction has not happened and that the slight
discordances which may happen can be readily ex-
plained.

The postulate, et all events, resembling the princi-
ple of sufficient reason, has been accepted by every-
body; what | wish to emphasize is thaturnishes us
with a new rule for the investigation of simultane-
ity, (singled out by me— A.L.) entirely different from
that which we have enunciated above”.

It follows from this postulate thatthe value of light veloc-
ity does not depend on velocity of the source of this lightThis
statement is also a straightforward consequence of Maeasi}
trodynamics.The above postulate together with the relativity
principle formulated by H. Poincaré in 1904 for all physical phe-
nomena preciselgecome the initial statementsn Einstein work
of 1905.

Lorentz dealt with the Maxwell-Lorentz equations in a “moti
onless” reference system related to the ether. He considbes
coordinatesX, Y, Z to beabsolute and the timél" to be thetrue
time.

In a reference system moving along tkieaxis with a velocity
v relative to a reference system “at rest”, the coordinatels ve-
spect to the axes moving together with the reference sysés® h
the values

xr=X—-vl, y=Y, z=1, (3.3)

while the time in the moving reference system was termed by Lo
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rentzlocal time (1895) and defined as follows:
T=T-—X. (3.4)
C

He introduced this time so as to be able, in agreement witbréxp
mental data, to exclude from the theory the influence of théhisa
motion on optical phenomena in the first order owvér.

This time, as he notedwas introduced with the aid of a
mathematical trick”. The physical meaning olbcal time was
uncovered by H. Poincaré.

In the article“The theory of Lorentz and the principle of
equal action and reaction®, published in 1900, he wrote about
thelocal time T, defined as follows (Translation from French by
V. A. Petrov):

“l assume observers, situated at different points, to
compare their clocks with the aid of light signals; they
correct these signals for the transmission time, but,
without knowing the relative motion they are under-
going and, consequently, considering the signals to
propagate with the same velocity in both directions,
they limit themselves to performing observations by
sending signals froml to B and, then, fromB to A.
Thelocal time is the time read from the clocks thus
controlled. Then, it is the velocity of light, and is
the velocity of the Earth’s motion, which | assume to
be parallel to the positiv axis, we will have:

T=T——X". (3.5)
C
Taking into account (3.3) in (3.5) we obtain

U2 v
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The velocity of light in a reference system “at rest“ds In a
moving reference system, in the variabted’, it will be equal, in
the direction parallel to th&  axis, to

c—v (3.7)
in the positive, and
c+wv (3.8)

— in the negative direction.
This is readily verified, if one recalls that the velocity @t
in a reference system “at rest“ is, in all directions, eqoal, i. e.

(5 ()5

In a moving reference system= X — vT the upper expression
assumes, in the variablesT’, the form

2 _ (do | 2+ dy 2+ dz\?
“c=\ar " dT ar )
Hence it is evident that in a moving reference system thedioor

. , . Cdr .
nate velocity of a light signal parallel to the aX|sd—; is given as
follows

dr

a7 =C v
in the positive direction,

dr n

ar ~ "

— in the negative direction.
The coordinate velocity of light in a moving reference sgste
along theY” or Z axis equals the quantity

V2 — o2,
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We note that if we had made use of the Lorentz transformations
inverse to (3.1), then taking into account the equality

v 2
22 (dT’ + ng/) — 2 (dX + 0dD")? = A(dT)? — (dX')?,

we would have obtained from Eq\)the expression

I\ 2 N\ 2 N\ 2
02:(dX)+<dY)+<dZ>7 ()
a1’ dr’ dr’

which would signify that the velocity of light equatsn all direc-
tions in a moving reference system, too. Let us mention dlab t
the light cone equation remains the same after multiplyimgr of
Egs. (3.1) (Lorentz transformations ) by arbitrary funotig(x).
The light cone equation preserves its form under conforraalst
formations.

Following Poincaré, we shall perform synchronization lod t
clocks in a moving reference system with the aid of Loreritocal
time. Consider a light signal leaving point with coordinates
(0,0, 0) at the moment of time,:

To =T (1 — Z—z) . (3.9)

This signal will arrive at pointB with coordinates, 0, 0) at the
moment of timer,

2
Tb:<T+CfU)(1_Z_2)_§_2x:mg (3.10)

Here, we have taken into account the transmission time dfithe
nal from A to B. The signal was reflected at poiBtand arrived
at pointA at the moment of time,

2
r;:<T+ v, 7 )(1—“—2):¢b+£ (3.11)
c— c+v c [
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On the basis of (3.9), (3.11) and (3.10) we have

To + T,
2

Thus the definition of simultaneity has been introducedcvinas
later applied by A. Einstein for deriving the Lorentz traorsha-
tions. We have verified that the Lorentintal time” (3.6) satisfies
condition (3.12). Making use of (3.12) as the initial eqaatfor
defining time in a moving reference system, Einstein arratetie
same Lorentzlbcal time” (3.6) multiplied by an arbitrary func-
tion depending only on the velocity From (3.10), (3.11) we see
that in a reference system moving along thexis with thelocal
time 7 the light signal has velocitg along any direction parallel
to the X axis. The transformations, inverse to (3.3) and (3.4), will
be as follows

= 7. (3.12)

v
T+ 5

T XY —y 2= (313
-5 -5

Since the velocity of light in a reference system “at restt,isn
the new variables, z, y, = we find from Eqs()\) and (3.13)

dr\? dy\ 2 dz\?
() () ¢ (1) e

We can see from the above that to have the velocity of lighkqu
to c in any direction in the moving reference system, also, it is
necessary to multiply the right-hand sides of transforomei(3.3)
and (3.4) forr and 7 by v and to divide the right-hand sides in
transformations (3.13) fof and X by ~. Thus, this requirement
leads to appearance of the Lorentz transformations here.

H. Lorentz in 1899 used transformation of the following form

X' =y(X —oT), Y' =Y, 7 =72 T’znﬂ(T—%X),



38 3. Electrodynamics ...

to explain the Michelson experiment. The inverse transétioms
are

X=X 0T, Y=Y, Z=2, T=T+—1X"
C

If H. Lorentz would proposed the relativity principle fol ghys-

ical phenomena and required in this connection that a sgdleri
wave should have the same form in unprimed and primed systems
of reference, then he would come to Lorentz transformatibas

we have in unprimed system of reference

AT? — X2 Y2 72 =,

then according to his formulae this expression in new vig&gals
as follows

2
&2 (T’ + %VX’) (X T2 Y2 22 =,
C
and after some simplifications we obtain

CQTIZ (1 _ U_j) o X/2 _ Y/Z _ Z/2 =0.
C
We see that to guarantee the same form of a spherical wavevin ne
variables as in the old ones it is necessary to change varidbl
replacing it by new variable

1

T =T

~
After transition to the new variable we obtain Lorentz tfansa-
tions

X' =y(X —oT), Y' =Y, 7 =72 TI’Y(T—EX>,
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and the inverse transformations
X=rX'+vr), Y=Y, Z=2, T:7<T+%X/>.
C

But H. Lorentz has not seen this in 1899. He obtained thess-ra
formations in 1904 only, then he also came closely to thertheb
relativity, but did not make the decisive step. Lorentz $farma-
tions (3.1) were obtained in 1900 by Larmor. But he also did no
propose the principle of relativity for all physical phenena and
did not require form-invariance of Maxwell equations untherse
transformations. Therefore Larmor also has not made aidecis
step to construct the theory of relativity.

Precisely the constancy of the velocity of light in any iner-
tial reference system is what A. Einstein chose to underfi@p-
proach to the electrodynamics of moving bodies. But it isvjuted
for not by transformations (3.3) and (3.4), but by the Lozerdns-
formations.

A. Einstein started from the relativity principle and froimet
principle of constancy of the light velocity. Both prinogs were
formulated as follows:

< 1. The laws governing the changes of the state of
any physical system do not depend on which one of
two coordinate systems in uniform translational mo-
tion relative to each other these changes of the state
are referred to.

2. Each ray of light moves in the coordinate sys-
tem “at rest” with the definite velocity independent
of whether this ray of light is emitted by a body at rest
or a body in motiors>.

Let us note thaGalilean principle of relativity is not included
into these principles.
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Itis necessary to specially emphasize thapthieciple of con-
stancy of velocity of light, suggested by A. Einstein as tbecond
independent postulateis really a special consequence of require-
ments of the relativity principle by H. Poincaré. This miple was
extended by him on all physical phenomena. To be convinced in
this it is sufficient to consider requirements of the relgiyprin-
ciple for an elementary process — propagation of the elewmp
netic spherical wave. We will discuss this later.

In 1904, in the articléThe present and future of mathema-
tical physics”, H. Poincaré formulates the relativity principle for
all natural phenomena, and in the same article he agaimeetar
Lorentz’s idea ofocal time. He writes:

< Let us imagine two observers, who wish to regu-
late their watches by means of optical signals; they
exchange signals, but as they know that the transmis-
sion of light is not instantaneous, they are careful to
cross them. When statidp sees the signal from sta-
tion A, its timepiece should not mark the same hour
as that of statiord at the moment the signal was sent,
but this hour increased by constant representing the
time of transmission. Let us suppose, for example, that
stationA sends it signal at the moment when its time-
piece marks the hour zero, and that statiBmeceives
it when its time-piece marks the hourThe watches
will be set, if the time is the time of transmission,
and in order to verify it, station in turn sends signal
at the instant when its time-piece is at zero; station
must then see it when its time-piece ig.affhen the
watches are regulated.

And, indeed, they mark the same hour at the same
physical instant, but under one condition, namely, that
the two stations are stationary. Otherwise, the time
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of transmission will not be the in the two directions,
since the station , for example, goes to meet the dis-
turbance emanating from , whereas station flees be-
fore the disturbance emanating fram Watches reg-
ulated in this way, therefore, will not mark the true
time; (the time in the reference system “at rest
A.L.) they will mark what might be called the local
time, so that one will gain on the other. It matters
little, since we have means of perceiving it. All the
phenomena which take place at , for example, will be
behind time, but all just the amount, and the observer
will not notice it since his watch is also behind time;
thus, in accordance with the principle of relativity he
will have means of ascertaining whether he is at rest
or in absolute motion. Unfortunately this is not suffi-
cient; additional hypotheses are necessary. We must
admit that the moving bodies undergo a uniform con-
traction in the direction of motios-.

Such was the situation before the work of Lorentz, which also
appeared in 1904. Here Lorentz presents again the transfioms
connecting a reference system “at rest” with a referenceesys
moving with a velocityv relative to the one “at rest”, which were
termed by Poincaré the Lorentz transformations. In thiskwo
Lorentz, instead of théocal time (3.4) introduced the tim&”,
equal to

T = ~T. (3.15)

Lorentz called timel” as themodified local time. Precisely this
time will be present in any inertial reference system in [Bah
coordinates. It does not violate the condition of synchzation
(3.12)

Below we shall see following Lorentz that the wave equation
does indeed not alter its form under the Lorentz transfaonat
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(3.1). Let us check this. The wave equation of electrodysami
has the form:

1 9% 092 02 02
Op=|—= = — - - = 0. :
¢ <02 otz 0x2  0y? 822> ¢=0 (3.16)

Here¢ is a scalar function in four-dimensional space, which cleang
under coordinate-time transformations according to theiiz’) =
o(z), cis theelectrodynamic constant that has the dimension of
velocity.

Let us establish the form-invariance of the operatavith res-
pect to transformations (3.1). We represent part of theaiper
in the form

1 02 0?2 1 0 0 1 0 0

R TE R i (zﬂ‘%><?a+a—x>' .17
We calculate the derivatives in the new coordinates, apglfor-
mulae (3.1)

dr  Or or  dx o

Hence we find

o ot o 9 0 <v8 a)
= + it i :
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Substituting these expressions into (3.17) we obtain

1 02 02 1 02 02
298 2@ o a2 &)
Taking into account that the variablgsandz in accordance with
(3.1) do not change, on the basis of (3.20) we have

1 02 02 02 02

02.ﬁ_8x2_8y2_822_

(3.21)
l_ 82 B 82 B 82 B 82
2 ot? ox?*r Oy? 0

This means that theave equation(3.16)remains form-invari-
ant with respect to the Lorentz transformations (3.1). In other
words, it is the same in both inertial reference systems celeior
instance, it follows that the velocity of a light wave equglfoth
in a reference system “at rest” and in any other referenceesys
moving relative to the one “at rest” with a velocity

We have shown that the Lorentz transformations leave the ope
rator O unaltered, i.e. they conserve the form-invariance of the
wave equation. On the other hand, this computation can be con
sidered as an exact derivation of the Lorentz transformatiased
on the form-invariance of the operator

In electrodynamics, the wave equation holds valid outdide t
source both for the scalar and vector potentialsand A, res-
pectively. In this caseyp is defined as a scalar with respect to
three-dimensional coordinate transformations, Aris defined as
a vector with respect to the same transformations. For thewa
equation to be form-invariant under the Lorentz transfdroms it
is necessary to consider the quantit,'reand/f as components of
the four-dimensional vectot” = (¢, ff)

04 =0, v=0,1,2,3.
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In 1905 Henri Poincaré first established([2, 3] the invaceaof
the Maxwell-Lorentz equations and of the equations of nmotib
charged particles under the action of the Lorentz force weigipect
to the Lorentz transformations (3.1) on the basis of the 186«
by Lorentz, in which the Lorentz transformations were disred,
and on the relativity principle, formulated by Poincaréhe same
year for all natural phenomena. All the above will be dematst
in detail in Sections 8 and 9.

H. Poincaré discovered that these transformations, together
with spatial rotations form a group. He was the first to intro-
duce the notion of four-dimensionality of a number of physial
quantities. The discovery of this group together with quantum
ideas created the foundation of modern theoretical physics

Poincaré established that the scalar and vector poténtial ),
the charge density and currénp, p7), the four-velocity(~, v 7/c),

the work per unittime and force normalized to unit vqur@é,U/c,

f), as well as the four-force transform like the quantities 7).
The existence of the Lorentz group signifies that in all iaéref-
erence systems the Maxwell-Lorentz equations in Galilesor-c
dinates remain form-invariant, i. e. the relativity pripld is satis-
fied. Hence it directly follows that the descriptions of pberena
are the same both in the reference system z,t and in the ref-
erence system’, v/, 2/, ¢/, so, consequently, time like the other
variablesz, y, z, is relative. Thus, time being relative is a direct
consequence of the existence of the group, which itselés@s
a consequence of the requirement to fulfil the relativitypiple
for electromagnetic phenomena. The existence of this gledip
to the discovery of the geometry of space-time.

H. Poincaré discovered a number of invariants of the group
and among these — the fundamental invariant

J=cT? - X*-Y?* - 7%, (3.22)
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which arose in exploiting the Lorentz transformatidntestifies
that space and time form a unique four-dimensional contin-
uum of events with metric properties determined by the in-
variant (3.22). The four-dimensional space-time discovered by
H. Poincaré, and defined by invariant (3.22), was later called the
Minkowski space Precisely this is the essence of special relativ-
ity theory. This is why it is related to all physical phenoraetit is
space-time determined by the invariant (3.22) that pra/fdethe
existence of physically equal inertial reference systamnisdture.
However, as earlier in classical mechanics, it remainsaanchow
the inertial reference systems are related to the distobwf mat-

ter in the Universe. From expression (3.22) it follows tmaany
inertial reference system a given quantitin Galilean (Cartesian)
coordinates remains unaltered (form-invariant), whitegtojec-
tions onto the axes change. Thus, depending on the choice of
inertial reference system the projectioRsY, Z, T are relative
guantities, while thequantity J for any givenX,Y, Z, T has an
absolute value A positive intervalJ can be measured by a clock
whereas a negative one — by a rod. According to (3.22), irediff
ential form we have

(do)? = A (dT)* — (dX)* — (dY)? — (dZ)*. (3.23)

The quantitydo is called arinterval.

The geometry of space-time, i.e. the space of ever(the
Minkowski space)with the measure (3.23) has been termed
pseudo-Euclidean geometry

As it could be seen from the structure of invariahtwritten
in orthogonal (Galilean) coordinates, it is always posstblintro-
duce a unique tim& for all points of the three-dimensional space.
This means that the three-dimensional space of a giveniahert
reference system is orthogonal to the lines of time. Sinsayea
shall see below, the invariaritin another inertial reference system
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assumes the form (3.27), it hence follows that in this refeeesys-
tem the unique time will already be different, it is detersdroy
the variabl€l”. But length will change simultaneously. Thus, the
possibility to introduce simultaneity for all the pointstbfee-di-
mensional space is a direct consequence of the pseudad&acli
geometry of the four-dimensional space of events.

Drawing a conclusion to all the above, we see that H. Lorentz
found the transformations (3.1), which conserve the fornthef
wave equation (3.16). On the basis of the relativity pritecfpr all
physical phenomena formulated by himin 1904 and of the Ltaren
transformations, Henri Poincaré established form-iiavere of the
Maxwell-Lorentz equations and discovered the pseudoiéicl
an geometry of space-time, determined by the invarian{3o2
(3.23).

A short exposition of the detailed article [3] was given by
H. Poincaré in the reports to the French academy of scigtes
and published even before the work by Einstein was submitted
for publication. This paper contained a precise and rigember
scription of the solution to the problem of the electrodymaof
moving bodies and, at the same time, an extension of the toren
transformations to all natural forces, independently efrtbrigin.

In this publication H. Poincaré discovered Lorentz groughwac-
cordance to that a whole set of four-dimensional physichles
transforming similar ta, x, y, = arose. The presence of Lorentz
group automatically provides the synchronization of ckoickany
inertial reference system. So the proper physical timesaris
any inertial system of reference — timeodified local time by
Lorentz. In paper [2] relativistic formulae for adding veilites
and the transformation law for forces arose for the first tifrteere
existence ofravitational waves propagating with light velocity
waspredicted.

It should be emphasized that just the discovery of Lorentz
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group provided the uniformity of description of all phydieffects
in all the inertial reference systems in full accordancédthie rel-
ativity principle. Just all this automatically providecethelativity
of time and length.

H. Poincaré discovered the invariant (3.22) on the basikef
Lorentz transformations (3.1). On the other hand, applyirg
invariant (3.22) it is easy to derive the actual Lorentz $famma-
tions (3.1). Let the invariant in an inertial reference system have
the form (3.22) in Galilean coordinates. Now, we pass tolzerot
inertial reference system

r=X—-oT, Y=Y, Z=2 (3.24)
then the invarian/ assumes the form
J=c(1- Qﬁﬂ—sz—x—yﬁ Z°.  (3.25)
C

Hence we have
2

J =72 1— v T — v
= = =
02 1-— C—2
(3.26)
2 1 U2 Y/Q Z/2
| Y =2
Expression (3.26) can be written in the form
J=cT? - X"? -Y"? - 77, (3.27)

where

T——X
=4/1- (3.28)
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X' = = . (3.29)

We see from expression (3.27) that the form-invariance ef th
invariant.J is provided for by the Lorentz transformations (3.28)
and (3.29). In deriving the Lorentz transformations frora #x-
pression for the invariant (3.22) we took advantage of tbetfaat
the invariant/ may assume an arbitrary real value. Precisely this
circumstance has permitted us to consider quantffiesd X as
independent variables, that can assume any real valuese,If w
following Einstein, knew only one value of, equal to zero, we
could not, in principle, obtain Lorentz transformationstioé ge-
neral form, since the space variables would be related ttirtee
variable.

In this case the followingdpeuristic approach can be realized.
The equation of spherical electromagnetic wave havingeitder
in the origin of the coordinate system has the following form

AT - X2 -Y? 7%=,

wherec is the electrodynamic constant, if we use Galilean coordi-
nates of the “rest” system of referenke This fact follows from
the Maxwell -Lorentz equations.

Let us consider two inertial reference systehand K’ with
Galilean coordinates moving relative to each other witloogy v
along axisX. Let their origins coincide at the momeft= 0 and
let a spherical electromagnetic wave is emitted just atrtfument
from their common origin. In reference systdfnit is given by
equation

AT - X?—-Y? - 72 =0.

As system of referenc&” is moving with velocityv, we can use
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Galilean transformations
r=X T, Y=Y 6 Z=17

and rewrite the preceding equation of spherical wave in tie f
lowing form

2
AT (1 — 2—2) — 20T — > —Y?-Z"%=0.
The requirement of relativity principle here is reducedeoessity
that the electromagnetic wave in a new inertial referenctesy
K’ has to be also spherical having its center at the origin &f thi
reference system.

Having this in mind we transform the above equation (as done
before) to the following form

CQT/2 - X/2 - Y/2 - Z/2 — 0

So, we derive the Lorentz transformations.

v
T——-X
:/7/:7027 X/:ﬂ7 Y =Y, 7 =72,
v? v?
- -

but at the light cone only.

Now, we go to the most important stuff. Let us treat variables
T, X, Y, Z,appearing in the derived transformationsiagepen-
dent. Then after inserting these expressions into r.h.s. oftemua
(3.27) we can see that they leave quantity

AT? — X2 -Y? - 72

unchanged due to the linear character of transformatiohsref
fore we come to the fundamental invariahtand so to pseudo-
Euclidean geometry of space-time. It follows from the ahore
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particular, that velocity of light both in systeKy, and in system
K’ is the same and therefore the principle of constancy of wtgloc
of light is a particular consequence of the relativity pijhe. Pre-
cisely this circumstance remained unnoticed by A. Eingteims
1905 work, in which the Lorentz transformations were detive

Earlier we have shown, following Poincaré, that Lorentis
cal time” permits to perform synchronization of clocks in a mov-
ing reference system at different spatial points with tleeadia
light signal. Precisely expression (3.12) is the condifionthe
synchronization of clocks in a moving reference systemnttor
duces the definition of simultaneity of events at differemityps of
space. Poincaré established that Lorentldgdl time” satisfies
this condition.

So, the definition of simultaneity of events in different spa
tial points by means of a light signal as well as the definition
of time in a moving reference system by means of light signal
both were considered by Poincag in his papers of 1898, 1900
and 1904. Therefore nobody has any ground to believe that
these ideas have been first treated by A. Einstein in 1905.

But let us see, for example, what is written by Academician
L.l. Mandel’'stam in his lectures [8]:

“So, the great achievement of Einstein consists in
discovering that the concept of simultaneity is a con-
cept ...that we have to define. People had the knowl-
edge of space, the knowledge of time, had this knowl-
edge many centuries, but nobody guessed that idea.”.

And the following was written by H. Wey!:

“...we are to discard our belief in the objective
meaning of simultaneity; it was the great achieve-
ment of Einstein in the field of the theory of knowl-
edge that he banished this dogma from our minds
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and this is what leads us to rank his name with that of
Copernicus”.

Is it possible that L. I. Mandel'stam and H. Weyl have not raad
ticles and books by Poincaré?

Academician V. L. Ginzburg in his bod®On physics and as-
trophysics” (Moscow: Nauka, 1985) in the articlétow and who
created Special Relativity Theory?”! wrote:

“From the other side, in earlier works, in articles
and reports by Poinca there are a set of comments
which sound almost prophetical. | mean both the ne-
cessity to define a concept of simultaneity, and an op-
portunity to use light signals for this purpose, and on
the principle of relativity. But Poinc& have not de-
veloped these ideas and followed Lorentz in his works
of 1905-1906".

Let us give some comments to this citation.

To be precise it should be said thRdincaré was the first who
formulated the relativity principle for all physical proce sses
He alsodefined the concept of simultaneity at different spa-
tial points by means of the light signalin his papers 1898, 1900
and 1904. In Poincaré works [2;tBese concepthave been ade-
quately realized in the language of Lorentz group which ples
fulfilment both the requirement of relativity principle, &the in-
troduction of his ownmodified local Lorentz time in every inertial
system of reference. All that automatically provided a ueigyn-
chronization of clocks by means of the light signal in evemsrtial
reference system. Just due to this not tumther development of
these conceptsvere required after H. A. Lorentz work of 1904.

LAll the citations of Academician V. L. Ginzburg presenteaéhand below
are taken from this article. -A. L.
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It was necessary only to introduce these concepts into the bo
som of the theory. It was precisely realized in works [2; 3] by
means of the Lorentz group , discovered by H. Poincaré.daoin
does not follow Lorentz, he developss own ideasby using Lo-
rentz achievements and he completes the creation of theytb&o
relativity in this way. Exactly in papers [2; 3] he extendsré&otz
invariance on all the forces of nature, including gravaaél; he
discovers equations of the relativistic mechanics ; heodiss
fundamental invariant

22 g2 g2 2

C
which determines the geometry of space-time.

H. Poincaré approach is transparent and contemporargkhou
it is realized almost one hundred years ago. How is it possibt
to understand this after reading Poincaré works [2; 3]?

In the article (1905)On the electrodynamics of moving
bodies” (§3) A.Einstein took the relation (3.12) as the initial
equation in searching for the function But hence one can na-
turally obtain nothing, but Lorentz’sldcal time”. We write the
equation obtained by him in the form

a ’U2 v
T:l U2 [(1—§)T—§x:|,

2

Wherea is an unknown function depending only on the velo-
city v.

Hence it is seen that this expression differs from the Larent
“local time” (3.6) only by a factor depending on the velocity
and which is not determined by condition (3.12). It is strang
see that A. Einstein knows that this is Lorentz "local timait he
does not refer to the author. Such a treatment is not an agoept
for him.
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Further, for a beam of light leaving the source at the time mo-
mentr = 0 in the direction of increasingvalues, Einstein writes:

E=cT

or
C

(%)

He further finds
r=(c—v)T.

Substituting this value of" into the equation fo€, Einstein ob-
tains a
£= 5.
==
Since, as it will be seen further from Einstein’s articles fuantity

ais given as follows
2
v

a=1/1— —02,

then, with account of this expression, we obtain:
X
£= ——.
1)2

1— —

CZ
Substituting, instead af, its value (3.3),
r=X—T, (v)

Einstein obtains fo¢€ an expression of the form
X =T
§=F—,
v
11— —

c2
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which he namely considers as the Lorentz transformatiorg for
implying that X and T are arbitrary and independent. How-
ever, this is not so. He does not take into account, that dowpr
to (§) and (), there exists the equality

X =T = (c—v)T,

hence it follows that
X =T.

Hence it follows, that Einstein obtained the Lorentz transf
mations for¢ only for the partial case ok = 7"

This can be directly verified, if in formulas] for £ one substitutes,
instead of the value &f from formula ¢), as done by Einstein, the
value ofz from the same formula. Then we obtain:

¢=—"_X, X=c
14 —
C

Taking into account the expression far we again arrive at the
formula found earlier,

But further in the text of the article A. Einstein exploitseth
general form of Lorentz transformations without any comtaen
A. Einstein has not observed that the principle of relatitogether
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with electrodynamics obligatory requires a constructibrfiooir-
dimensional physical quantities, in accordance with theehtz
group. As a result this requires presence of the group iantsi
testifying to the pseudo-Euclidean geometry of space-tithest
due to this Einstein has not succeeded in finding relatovegua-
tions of mechanics, because he has not discovered the laansf t
formation for Lorentz force. He also has not understood ¢mat
ergy and momentum of a particle constitute a unified quaatity
that they transform under Lorentz transformations in timeesevay
asct, z,y, z. It should be especially emphasized that Einstein, in
his work of 1905, in contrast to Poincaré, has not extenaedriz
transformations onto all forces of nature, for exampleparav-
itation. He wrote later thdin the framework of special relativity
theory there is no place for a satisfactory theory of gratia”.
But as it is shown in [5] this statement is not correct.

Owing to the Maxwell-Lorentz equations, the relativityrpri
ciple for inertial reference systems led Poincaré [3] asuhse-
qguently, Minkowski [4] to discovering the pseudo-Euclidege-
ometry of space-time. Precisely for this, we indebted toPaxié
and Minkowski. In 1908 H. Minkowski, addressing the 80-theme
ting of German naturalists and doctors in Cologne, noted [4]

“The views of space and time which | wish to lay
before you have sprung from the soil of experimental
physics, and therein lies their strength. They are radi-
cal. Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a
kind of union of the two will preserve an independent
reality”.

Therefore, the essence of special relativity theory cosss
the following (t is a postulate): all physical processes proceed
in four-dimensional space-time(ct, ¥), the geometry of which
is pseudo-Euclidean and is determined by the interval3.23).
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The consequences of this postulate are energy-momentum and
angular momentum conservation laws, the existence ofahest-
erence systems, the relativity principle for all physida¢pomena,
the Lorentz transformations, the constancy of the velafityght
in Galilean coordinates of an inertial system, the retéaodabf
time, the Lorentz contraction, the opportunity to use noertial
reference systems, the “clock paradox”, the Thomas prexess
the Sagnac effect and so on. On the base of this postulatdvand t
guantum ideas a set of fundamental conclusions was obtaimekd
the quantum field theory was constructed.

By centennial of the theory of relativity it is high time to ke
clear that constancy of the light velocity in all inertialssgms of
reference is not a fundamental statement of the theory atived,.

Thus, investigation of electromagnetic phenomena togetitle
Poincaré’s relativity principle resulted in the unificatiof space
and time in a unique four-dimensional continuum of event$ an
permitted to establish the pseudo-Euclidean geometryi@ttn-
tinuum. Such a four-dimensional space-time is homogenaods
isotropic.

These properties of space-time provide validity of fundatake
conservation laws of energy, momentum and angular momentum
in a closed physical systerithe pseudo-Euclidean geometry of
space-time reflects the general dynamical properties of mat
ter, which make it universal. Investigation of various forms of
matter, of its laws of motion is at the same time investigatid
space and time. Although the actual structure of space-tiase
been revealed to us as a result of studying matter (eleatsody
ics), we sometimes speak of space as of an arena, in which some
or other phenomena take place. Here, we will make no mistake,
if we remember that this arena does not exist by itself, witho
matter. Sometimes it is said that space-time (Minkowskcep&s
given a priori, since its structure does not change undeinthe
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ence of matter. Such an invariability of Minkowski spacesesi
owing to itsuniversality for all physical fields, so the impression
is thus created that it exists as if independently of mat&ob-
ably just due to a vagueness of the essence of special iglativ
theory for him A. Einstein arrived at the conclusion thatthin
special relativity theory there is no place for a satisfagttheory
of gravity”.

In Einstein’s general relativity theory, special relatviheory
is certainly not satisfied, it is considered a limit case. @53
A. Einstein wrote:

< An essential achievement of general relativity the-
ory consists in that it has saved physics from the ne-
cessity of introducing an “inertial reference system”
(or “inertial reference systems”}.

However, even now, there exists absolutely no experimental
observational fact that could testify to the violation oésgal rel-
ativity theory. For this reason no renunciation, to whatewtent,
of its rigorous and precise application in studies of geional
phenomena, also, can be justified. Especially taking intoaat
that all known gravitational effects are explained prdgiséthin
the framework of special relativity theory! [SRenunciation of
special relativity theory leads to renunciation of the funda-
mental conservation laws of energy, momentum and angular
momentum. Thus, having adopted the hypothesis that all natural
phenomena proceed in pseudo-Euclidean space-time, waatito
ically comply with all the requirements of fundamental cens-
tion laws and confirm thexistence of inertial reference systems.

The space-time continuum, determined by the interval (3.23
can be described in arbitrary coordinates, alsdransition to ar-
bitrary coordinates, the geometry of four-dimensional spae-
time does not change. However, three-dimensional space il
no longer be Euclidean in arbitrary coordinates. To simplify
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our writing we shall, instead of variabl€s X, Y, Z, introduce the
variablesX”, v = 0,1,2,3, X" = ¢I". We now perform transition
from the variablesY{” to the arbitrary variables” with the aid of
the transformations

XV = f(z9). (3.30)
These transformation generally lead to a non-inertialresfee
system. Calculating the differentials
_or
o
(here and further summation is performed from O to 3 over-den

tical indices)\) and substituting them into (3.23) we obtain an ex-
pression for the interval in the non-inertial referenceeys

dXxv da? (3.31)

(do)? =y (z)dadz>. (3.32)

Here,,.(z) is the metric tensor of four-dimensional space-time,
it is given as follows

3
B Vafl/ 8f1/
(@) = 1,206 dzr OaN’

e’ =(1,-1,-1,-1). (3.33)

Expression (3.32) is invariant with respect to arbitrargrciinate
transformations. Expression (3.33) represents the gefioena of
the pseudo-Euclidean metric.

The difference between a metric of the form (3.23) from the
metric (3.32) is usually, in accordance with Einstein’sasleat-
tributed to the existence of the gravitational field. Busths in-
correct. No gravitational field is present in a metric of thent
(3.32). Ideas of accelerated reference systems in Minkicspsice
have played an important heuristic role in Einstein reftettion
the problem of gravitation. They contributed to his arrgyiat
the idea of describing the gravitational field with the aidtloé
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metric tensor of Riemannian space, and for this reason étinst
tried to retain them, although they have nothing to do with th
gravitational field. Precisely such circumstances precbiitim
from revealing the essence of special relativity theoryonirra
formal, mathematical, point of view Einstein highly appesed
Minkowski’s work, but he never penetrated the profound dails
essence of Minkowski's work, even though the article deatt w
a most important discovery in physics — thescovery of the
pseudo-Euclidean structure of space and time

Einstein considered special relativity theory only reditie an
interval of the form (3.23), while ascribing (3.32) to gealere-
lativity theory. Regretfully, such a point of view still prails in
textbooks and monographs expounding relativity theory.

Consider a certain non-inertial reference system whemntte
ric tensor of space-time is given as,(z). It is, then, readily
shown that there exists an infinite number of reference systs
which the interval (3.32) is as follows

(do)? = vy (2))da'"dx". (3.34)

A partial case of such transformations is represented blydhentz
transformations, which relate one inertial referenceesysio an-
other. We see that the transformations of coordinates,iwibave
the metric form-invariant, result in that physical phenoa@ro-
ceeding in such reference systems at identical conditiamsever
permit to distinguish one reference system from anothencklge
one can give a more general formulation of tleativity prin-
ciple, which not only concerngertial reference systems but
non-inertial ones[B]], as well:

“Whatever physical reference system (inertial or
non-inertial) we choose, it is always possible to point
to an infinite set of other reference systems, such as
all physical phenomena proceed there exactly like in
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the initial reference system, so we have no, and cannot
have any, experimental means to distinguish, namely
in which reference system of this infinite set we are”.

It must be noted that, though the metric tenggor(x) in (3.33)
depends on coordinates, nevertheless the space remairgopse
Euclidean. Although this is evident, it must be pointed suice
even in 1933 A. Einstein wrote the absolute opposite [7]:

<In the special theory of relativity, as Minkowski
had shown, this metric was quasi-Euclidean one,
i.e., the square of the “lengthds of line element
was a certain quadratic function of the differentials of
the coordinates.

If other coordinates are introduced by means of
non-linear transformationjs? remains a homogeneous
function of the differentials of the coordinates, but the
coefficients of this functiory(,) cease to be constant
and become certain functions of the coordinates. In
mathematical terms this means that physical (four-
dimensional) space has a Riemannian metric

This is, naturallywrong, since it is impossible to transform
pseudo-Euclidean geometry into Riemannian geometry blyapp
ing the transformations of coordinates (3.30). Such arstate by
A. Einstein had profound physical roots. Einstein was coced
that the pseudo-Euclidean metric in arbitrary coordinatggx),
describes the gravitational field, also. These ideas, putaial
by Einstein, restricted the framework of special relayiiieory
and in such form became part of the material expounded iR text
books and monographs, which had hindered comprehensibte of t
essence of relativity theory.

Thus, for example, Academician L.I. Mandel'stam, in his-lec
tures on relativity theory 8], especially noted:
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“What actually happens, how an accelerated mov-
ing clock shows time and why it slows down or does
the opposite cannot be answered by special relativity
theory, because it absolutely does not deal with the
issue of accelerated moving reference systems”.

The physical sources of such a limited understanding ofiapec
relativity theory origin from A. Einstein. Let us present amber
of his statements concerning special relativity theoryl943 he
wrote [9]:

“In the case of the customary theory of relativity
only linear orthogonal substitutions are permissible”.

In the next article of the same year he writes [10]:

“While in the original theory of relativity the in-
dependent of the physical equations from the special
choice of the reference system is based on the postu-
lation of the fundamental invariants®> = Xdz?, we

are concerned with constructing a theory in which the
most general line element of the form

ds® = %gikdxidxk

plays the role of the fundamental invariant”.
Later, in 1930, A. Einstein wrotée [11]:

“In the special theory of relativity those coordi-
nate changes (by transformation) are permitted for
which also in new coordinate system the quantity
(fundamental invariant) equals the sum of squares of
the coordinate. Such transformations are called Lo-
rentz transformation”.
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Although Einstein, here, takes advantage of the invariant (
terval) discovered by Poincaré, he understands it onlylimiged
(strictly diagonal) sense. For A. Einstein it was difficadtdee that
the Lorentz transformations and the relativity of time cesled a
fundamental fact: space and time form a unique four-dinueradi
continuum with pseudo-Euclidean geometry, determinedhiey t
interval

ds® =y (0)datde’,  det(y) =7 <0,  (3.35)

with the metric tensof,,, (x), for which the Riemannian curvature
tensor equals zero. But, precisely, the existence of thedooen-
sional space of events with a pseudo-Euclidean metric pieuani
to establish that a number of vector quantities in Euclidbase-
dimensional space are at the same time components of fowerdi
sional quantities together with certain scalars in Euelidspace.

This was performed by H. Poincaré and further developed by
H. Minkowski. Very often, without understanding the essent
theory, some people write that Minkowski allegedly gavedke
ometrical interpretation of relativity theory. This is notie. On
the basis of the group discovered by Poincdr, H. Poincat€ and
H. Minkowski revealed the pseudo-Euclidean geometry of
space-time, which is precisely the essence of special reVity
theory.

In 1909 H. Minkowski wrote about this in the articl8pace
and time”:

“Neither Einstein, nor Lorentz dealt with the con-
cept of space, maybe because in the case of the afor-
ementioned special transformation, under which the
a', ¢’ plane coincides with the, ¢ plane, it may be un-
derstood that the: axis of space retains its position.
The attempt to thus evade the concept of space could
have indeed been regarded as a certain impudence of
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the mathematical thought. But after making this step,
surely unavoidable for true comprehension of the
group the Lorentz group.— A.L.), the term fela-
tivity postulaté for requiring invariance with respect

to the G. group seems to me too insipid. Since the
meaning of the postulate reduces to that in phenom-
ena we only have the four-dimensional world in space
and time, but that the projections of this world onto
space and time can be taken with a certain arbitrari-
ness, | would rather give this statement the tite%-
tulate of the absolute worltor, to be short, world
postulate”.

It is surprising, but in H. Minkowski’s work there is no refer
ence to the articles [2] and [3] by H. Poincaré, althoughst gives
the details of what had already been presented in refs. [2[2n
However, by the brilliant exposition before a broad audeent
naturalists it attracted general attention. In 1913, innG@ety, a
collection of articles on relativity by H. A. Lorentz, A.Estein,

H. Minkowski was published. The fundamental works [2] and [3
by H.Poincaré were not included in the collection. In theneo
ments by A. Sommerfeld to Minkowski’s work Poincaré is only
mentioned in relation to particulars. Such hushing up offtime
damental works of H. Poincaré in relativity theory is difficto
understand.

E. Whittaker was the first who came to the conclusion of the
decisive contribution of H. Poincaré to this problem whamndg-
ing the history of creation of the special relativity thed9 years
ago. His monograph caused a remarkably angry reaction o som
authors. ButE. Whittaker was mainly right. H. Poincar € re-
ally created the special theory of relativity grounding upa the
Lorentz work of 1904 and gave to this theory a general char-
acter by extending it onto all physical phenomena.lnstead of
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a more thorough study and comparison of Einstein’s 1905 work
and Poincaré’s papers (it is the only way of objective stofihe
problem) the way of complete rejection of Whittaker’s carsobns
was chosen. So, the idea that the theory of relativity waatece
independently and exclusively by A. Einstein was propatjate
literature without detail investigations. This was also wigw up

to the middle of 80-s until | had read the articles by H. Poiaca
and A. Einstein.
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4. The relativity of time and the contraction of
length

Consider the course of time in two inertial reference systeme

of which will be considered to be at rest, while another onk wi
move with respect to the first one with a velocityAccording to
the relativity principle, the change in time shown by thec&®(for

a given time scale) in both reference systems is the sameaeThe
fore, the both courntheir own physical time in the same manner.
If the clock in the moving reference system is at rest, themit
terval in this system of reference is

do?® = Pdt”, 4.1)

t" is the time shown by the clock in this reference system.

Since this clock moves relative to the other reference syste
with the velocityv, the same interval, but now in the reference
system at rest will be

2
do? = c2dt2<1 - ”—), (4.2)

c2

heret is the time shown by the clock at rest in this reference sys-

tem, and
ar\ () [dz\
2 _ [ @x “y e
v _<dt> +<dt> +<dt> . 4.3)

From relations (4.1) and (4.2) we find the relationship betwe
the time durations in these inertial reference systems in the de-
scription of thephysical phenomenon

Y
dt' = dty |1 - . (4.4)
C
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One often reads that a retardation of moving clocks takeepla
It is wrong, because such a statement contradicts the phinof
relativity. The clock rate in all inertial reference systedoes not
change. The clocks equally measure physical time of their ow
inertial system of reference. This is not a change of thekalate
but a change of a physical process duration. The duratiofockh
physical process according to the clock of this inertiatesysor a
clock in other inertial system is in general different. Inignimal
in the system where the process is localized in one spatiat.po
Precisely this meaning is implied in saying about tbardation
of time.

Integrating this relation, we obtain

At/:mm—“—Q (4.5)
. .

This expression is a consequence of the existence of thefund
mental invariant (3.22). The “time dilation” (4.5) was cateyed
as early asin 1900 by J. Larmor. As noted by W. Paitligceived
its first clear statement only by Einsteiri from the “Lorentz
transformation”.

We shall apply this equality to an elementary particle with a
lifetime at rest equal ta,. From (4.5) after setting\t’ = 7y, we
find the lifetime of the moving particle

T
At = —2 .
'U2

-2

(4.6)

Precisely owing to this effect it turns out to be possiblertms-
port beams of high energy patrticles in vacuum over quiteeldig-
tances from the accelerator to the experimental devictmaih
their lifetime in the state of rest is very small.

In the case considered above we dealt with a time-like iaterv
do? > 0. We shall now consider another example, when the inter-
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val between the events is space-like? < 0. Again we consider
two such inertial reference systems. Consider measureineat
moving reference system, of the length of a rod that is atirest
another reference system. We first determine the methoddar m
suring the length of a moving rod. Consider an observer in the
moving reference system, who records the ends of theXodnd

X3, at thesame moment of time

T =Ty, 4.7)

this permits to reduce the intervé, in the moving reference sys-
tem to the spatial part only

S2, = — (X, — XI)? = 2. (4.8)

Thus, in our method of determining the length of a moving rod,
is rather natural to consider the quantitgs its length.

The same interval in the reference system at rest, wherethe r
is in the state of rest, is given as follows

5%2 = 02(T2 — T1)2 — (Xg — X1)2. (49)
But, in accordance with the Lorentz transformations we have
v
L-T =9 -T) - 5(e-X)], @10

whence for our case (4.7) we find

v
2

v
Ih-T ==X —Xp) = ggm (4.11)

C
{y is length of the rod in the reference system at rest. Sulistifu
this expression into (4.9) we obtain

2

S2, = —£3<1 . ”—). (4.12)

c2
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Comparing (4.8) and (4.12) we find

U2
(=lo\[1— . (4.13)
C

From relations (4.7) and (4.11) we sékat events that are si-
multaneous in one inertial reference system will not be simu
taneous in another inertial reference system, so the notioof
simultaneity is relative. Relativity of time is a straightforward
consequence of thaefinition of simultaneity for different spatial
points of inertial reference system by means of a light digitae
contraction (4.13) is a consequence of the relative natiseul-
taneity, or to be more precise, of thgistence of the fundamental
invariant (3.22).

Length contraction (4.13), as a hypothesis to explain tigane
tive result of the Michelson-Morley experiment, was inliisug-
gested by G.F. FitzGerald in 1889. Later, in 1892, the same hy
pothesis was formulated by H.A. Lorentz.

Thus, we have established that, in accordance with spezial r
lativity theory, the time interval between events for a longject
and the length of a rod, given the method of measurementdy, (4.
are relative. They depend on the choice of the inertial esfes
system. Only the interval between events has an absoluse sen
It must be especially noted that contraction of the length odd
(4.13) is determined not only by the pseudo-Euclidean sirac
of space-time, but also by omnethod of measuring length so
contraction, unlike the slowing down of time (4.5), does hate
such essential physical significance. This is due to theispw
down of time being related tolacal object, and such objects ex-
ist in Nature, they are described by the time-like interieed > 0;
consequently, a causal relationship is realized, here tr@cion
of length is related to different points in space and is, défore,
described by the space-like interval®> < 0, when no causal rela-
tionship is present.
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Let us return to the issue of Lorentz contraction, deterohine
formula (4.13). We saw that in the case considered abovenwhe
the rod is at rest in the unprimed inertial reference systedrhas a
length/y, for all observers in other inertial reference systemsgther
occurs, given the adopted method of measuring length (don),
traction, and the length will be determined by formula (4.18is
quite evident that here nothing happens to the rod. Somewuth
call this contraction effect kinematical, since the rod enggbes no
deformation, here. And they are right in this case, and tisene
reason for criticizing them. However, it must be noted tlinégs t
kinematics is a consequence of the pseudo-Euclidean steuct
space, which reflects the general dynamic properties oematt
the conservation laws.

Back in 1905 H. Poincaré wrote the following about thisaitu
tion:

“If we were to accept the relativity principle, then
we would find a common constant in the law of grav-
ity and in electromagnetic laws, the velocity of light.
Precisely in the same way, we would also encounter it
in all the other forces of whatever origin, which can
be only explained from two points of view: either eve-
rything existing in the world is of electromagnetic ori-
gin, or this property, that is, so to say, common to all
physical phenomena, is nothing more, than an exter-
nal appearance, something related to the methods of
our measurements. How do we perform our measure-
ments? Earlier we would have answered as follows:
by carrying bodies, considered solid and unchange-
able, one to the place of the other; but in modern
theory, taking into account the Lorentz contraction,
this is no longer correct. According to this theory,
two segments are, by definition, equal, if light covers
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them in the same timégsingled out by me. —A.L)".

A totally different situation arises in the case of motiorthwac-
celeration. If, for instance, the rod, that is at rest in thprimed
inertial reference system and has a lengthstarts moving with
acceleration along its length so thettth of its ends start moving
simultaneously, then in the reference system, related to the rod,
its length will increase according to the law

or, if formula (12.3) is taken into account, then one can egpthe
velocity v(t) via the acceleration and obtain the expression

242
L=1/0p\/1+ ac—;
of events being the same in the unprimed inertial refereystem
and in the reference system moving with acceleratioim which
the rod is at rest. This means that the rod undergoes rugtares
Earlier we found the Lorentz transformations for the casgesiw
the motion of one reference system with respect to anotleetiah
reference system proceeded with a constant velocity aloagt
axis. Now, consider the general case, when the motion td&es p
with a velocity in an arbitrary direction

—

F=R—iT. (4.14)

Transformation (4.14) provides the transition to the iaérefer-
ence system the origin of which moves with a constant vejlactit
related to the initial reference system.

Let us decompose vectof$, F' in the initial Galilean refer-
ence system along the direction of the veloaitand along the
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direction perpendicular to the velocity

— —

R=—R+R., R=_R+R. (4.15)

|71 |7]

On the basis of the Lorentz transformations (3.1), one mage&x
that only the longitudinal quantities will be changed, whihe

transverse quantities remain without change.
v — -
Ry =y(Ry—oT), T'=x (T—§R|> ., R, =R,. (4.16)

In accordance with (4.15) we find

—»R' o o — =T
Ry = (“U ) R - - “<“2 ). (4.17)

v

Substituting (4.17) into (4.16) and, then, into (4.15) wéaab

é/:ﬁ+(7—1)(22)ﬁ—w:ﬁ, (4.18)
T — ~ (T . (“j)> . (4.19)

In obtaining formulae (4.18) and (4.19) we have considenad t
under the general transformation (4.14) only the compoM
the vector along the velocity changes, in accordance with the
Lorentz transformations (3.1), while the transverse camepore-
mains unchanged.

Let us verify that this assertion is correct. To this end wadish
take as a starting point the invariant (3.22). Substitu@ghtj4) into
(3.22) we obtain

’U2

J =T~ (F+0T)?* = >T? (1 — —) —2(07)T —72. (4.20)

c2
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In the invariant/ we single out the time-like part
T (@] 7
_ 2 -2 = N2

Our goal is to find such new variablg€ and £/, in which this
expression can be written in a diagonal form

J=JAT"?— R (4.22)

From comparison of (4.21) and (4.22) we find tiffien the mov-
ing reference system:

T~

Expressing the right-hand part in (4.23) via the variaile®, we
obtain B
T =~ (T . @) . (4.24)
C

We also express the space-like part of the invariair terms of
variablesl’, R
2 v’ 2 52 s 2 2= B 2 272
7+ 6—2(1777) =R+ C—Z(UR) — 2y (VR)T +~“v°T". (4.25)
One can readily verify that the first two terms in (4.25) can be
written in the form
2
— ’}/ L=
R® + (@ R)? =

— 2
(7 R)
U2

R+ (y—1) : (4.26)

and, consequently, expression (4.25) assumes the form

R+(v-1)

2 72 2
T +C—2(v7_") =

(4.27)
—27%(T R)T + v*4*T?.
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The right-hand part of (4.27) can be written as

2 —/ = 13 2
2+ L@ = | Bt (y— 1)“<“2R> —AGT| . (4.28)
v

Thus, the space-like part of the invariahdissume a diagonal form

7+ L)’ = (R, (4.29)

where .
R=FR+(y- 1)11(523) 47T (4.30)
Formulae (4.24) and (4.30) coincide with formulae (4.18) @h19);
this testifies to our assumption, made earlier in the coulrieedr
derivation, being correct.

It should be especially emphasized that we have derivedeabov
thegeneral formulaerelating coordinategl’, R) of the initial in-
ertial reference system to coordinat@¥, 1?') of the reference sys-
tem moving with constant velocity relative to the first system.
We have used the form-invariance of invariant (3.22) alghti-
cal transformations only. If by means of transformations (4.24)
and (4.30) we go from an inertial reference system S to amsySte
and later to a systerfi”, then after these two subsequent transfor-
mations we will get transformation which will be differermbm
transformations (4.24) and (4.30) by a rotation in 3-dinnemel
space. It means that transformations (4.24) and (4.30) tifmrma
a subgroup of the Lorentz group. The rotation mentioned abov
reduces the axes of the reference system S to the same tioenta
as axes of the systeff. Thomas’effect which will be considered
in Section 14 is caused just by this circumstance.

The general derivation of Lorentz transformations fromréte
ativity principle, Galilean principle of inertia and the wadront
equation was done by Academician V.A. Fock in his monograph
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[12, Appendix A]. His analysis demonstrates that it is ingbke
to derive Lorentz transformations from the two Einsteintplzdes
only (see pl-39 of this book).
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5. Adding velocities

Differentiating the Lorentz transformations (3.1) withspect to
the variablel’, we obtain the formulae relating velocities

2 2
Uy —V - U_2 - U_2
U, = miuxv ) U; = Uy7u£1> = uziuxcv (5.1)
1-— 2 1-— 2 1-— 2
Here dX dy dz
T = i—— = e z = ey 52
Ye=ar T ar T ar (-2)
ax’ ay’ dz’
! I o
Up = s Uy = oy U = o (5.3)
In deriving (5.1) we made use of the formula
dr’ v
—y(1-2 ) 5.4
drT 7( 2 (5-4)

It is possible, in a similar way, to obtain general formulalep, if
one takes advantage of expressions (4.18), (4.19):

. (i) ,
+ —1)—=v — / —
= i w} ar _ [1—@] . (5.5)
[ (g*)] dT
L ey

We will further (Section 16) see, that the velocity spacdeslio-
bachevsky space.
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6. Elements of vector and tensor analysis in
Minkowski space

All physical quantities must be defined in a way, to have their

physical meaning independent on the choice of referendersys
Consider a certain reference systethry = 0,1,2,3 given

in four-dimensional Minkowski space. Instead of this refere

system, it is possible to choose another, defined by the ssipire

¥ = fr(x%). (6.1)

We shall consider functiong” as continuous and differentiable.
If at any point Jacobian of the transformation

af

J = det
¢ 0x°

(6.2)

differs from zero, then under this condition the variabiéswill
be independent, and, consequently, the initial variablesnay
unambiguously be expressed in terms of the new affes

% = (7). (6.3)

Physical quantities must not depend on the choice of reteren
system, therefore, it should be possible to express themrimnst
of geometrical objects. The simplest geometrical objestcaar
¢(x), which under transition to new variables transforms as fol-
lows:

o) = 6[2(a)]. (6.4)
The gradient of scalar function(z) transforms by the rule for
differentiating composite functions
9¢/(«') _ 09 0a°
ox'v Oz Ox'v’

(6.5)
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here, and below, summation is performed over identicatis
from O to 3.

A set of functions that transforms, under coordinate tramnsf
mation, by the rule (6.5) is calledavariant vector

o0x°

- ox'v

Accordingly, a quantity3,,,,, that transforms by the rule

Al (2 A, (). (6.6)

ox®  Ox)
T Oxin Qg

is called a covariant tensor of the second rank, and so on.
Let us now pass to another group of geometrical objects. Con-
sider the transformation of the differentials of coordesat
8 v
dae"” = 2 dge. (6.8)
o0x°®
A set of functions that transforms, under coordinate tramsf
mations, by the rule (6.8) is calledcantravariant vector:

B, () (6.7)

ax/V o
= &WA (x). (6.9)

Accordingly, a quantityB*”, that transforms by the rule

A/l/ (.’,U/)

- Oxe O

has been termed a contravariant tensor of the second rathlsoan
on.

From the transformational properties of a vector or a tersor
follows, that, if all its components are zero in one referenygs-
tem, then they are zero, also, in any other reference syHete,
thatcoordinatesx” do not form a vector, while the differential

B () B x), (6.10)
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dz” is a vector. The coordinate$ only form a vector with respect
to linear transformations.
Now, we calculate the quantity’ (z') B (x’)

/! / lo / 8‘,1:# axla
A B () = 5o S

but, it is easy to see that

' 8x“’_6u_{0, for ;1 # A
-

A, (z)BNz), (6.11)

— 12
Oz'7 Ozt 1, forpu=A (612)

The symbob is a mixed tensor of the second rank and is known
as the Kronecker symbol.
Taking into account (6.12) in expression (6.11) we find

Al (2B (2') = Ax(z)B*(z) . (6.13)

Hence it is evident that thiguantity is a scalar, it is usually
called an invariant.

In writing expression (3.32) we actually dealt with the fand
mental invariant

do® =y (z)dztdx,  det(7,,) =7 < 0. (6.14)

The existence of the metric tensor of Minkowski space, tlzat h
the general form (3.33), permits to raise and to lower irslick
vector and tensor quantities, for example:

Ay =yna(@)AN, AN =224, AAY =7, ANA7. (6.15)

Yy =6 (6.16)
Tensors can be added and subtracted, for example,

CoP = A6 4 Bob (6.17)

pvo uro pro
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They can also be multiplied, independently of their streetu

aBX __ paf A
Chvep = Alpe - By . (6.18)
Here it is necessary to observe both the order of multipbeics
the order of indices.

Transformations (6.9) form a group. Consider

o "

A%(z), A= WA'A(Q;') : (6.19)

A/l/ (ZE,) — axo

hence we have

1 I\ 1/
A5 = ox"™  O«™ . Ox"™

I N (z) = 0’

Note that tensor calculus does not depend on the metric pirepe
of space. It is persisted, for example, in Riemannian gemnet
where the group of motion of space-time is absent, in thergéne
case. On the other hand, the group of general coordinatsféran
mations (6.19-6.20) is fully persisted, since it is indegent of
the metric properties of space, but it has no any physicahinga

A°(z) . (6.20)
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7. Lorentz group

H.Poincaré discovered that the Lorentz transformations, to-
gether with all space rotations, form a group. Consider, for
example,

=y —wnt), t'=m (t - %93) ; (7.1)
2" =yp(d —wt), t'=y <t' — %x’) . (7.2)
Substituting (7.1) into (7.2) we obtain
V1V
2" =172 (1 + %) T —m172(v1 + )t (7.3)

V1V v+ v
t" =172 <1+ 222>t—7172( 102 2)9:, (7.4)

But since

v
= —ut), t"=4y (t - §x> . (7.5)
From comparison of (7.3) and (7.4) with (7.5) we obtain
V1V
V=772 (1 + %) ;v =m72(v + ). (7.6)
From relations (7.6) we find
U1 + Vg
Tz
It is readily verified that
1 V1V
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Thus, we have established that transition from the referenc
systemz” to the reference systeni” and, subsequently, to the
reference system’”” is equivalent to direct transition from the ref-
erence system” to the reference systemni”. Precisely in this
case, it can be said that the Lorentz transformations fornoapy
Poincaré discovered [[2] this group and named it the Lorentz
group. He found the group generators and constructed the Lie
algebra of the Lorentz group. Poinca® was the first to estab-
lish that, for universal invariance of the laws of Nature with
respect to the Lorentz transformations to hold valid, it is nec-
essary for the physical fields and for other dynamical and kire-
matical characteristics to form a set of quantities transfam-
ing under the Lorentz transformations in accordance with the
group, or, to be more precise, in accordance with one of the
representations of the Lorentz group

Several general words about a group. A group is a set of ele-
mentsA, B, C ... for which the operation of multiplication is de-
fined. Elements may be of any nature. The product of any two
elements of a group yields an element of the same group. In the
case of a group, multiplication must have the following faxies.

1. The law of associativity

(AB)C = A(BCQ).
2. A group contains a unit element
AE =A.
3. Each element of a group has its inverse element
AB=E, B=A"'.

Transformations of the Lorentz group can be given in matrix
form
X' =AX,
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/ /
To=ct, xg=ct.

It is readily verified, that the set of all Lorentz transfotinas
satisfies all the listed requirements of a group.

Coordinate transformations which preserve the form of tae m
ric tensor form thegroup of motions of the space In particular
the Lorentz group is such a group.
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8. Invariance of Maxwell-Lorentz equations

The Maxwell-Lorentz equations in an inertial referenceteys
said to be “at rest”, have the form

T 1 OE . 1 0H
tH="pi+— 2 wotB=—— 2"
o va+c ar 0 c ot’
R oo (8.1)
divEk =4nmp, divH =0,
— — 1 o o=
f=pE+—p [v, H] . (8.2)

The second term in the right-hand part of the first equatiqB.df)
is precisely that small term — thdisplacement current, intro-
duced by Maxwell in the equations of electrodynamics. Nantel
was mentioned in Section 3. Since the divergence of a cuelis, z
from the first and third equations of (8.1) follows the consagion
law of current

dp
ot

As one sees from (8.3), the displacement current permittadiieve
accordance between the equations of electrodynamics amdth
servation law of electric charge. To make the fourth equtiom
(8.1) be satisfied identically we represéhiin the form

+divj=0, j=pv. (8.3)

H=rotA. (8.4)

Thus, we have introduced the vector potentialSubstituting ex-
pression (8.4) into the second equation from (8.1) we obtain

L 1 04
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To have equation (8.5) satisfied identically the expresisitanack-
ets must be gradient of some functipn

E:—i-%—grad 0. (8.6)
c Ot

Thus, we have introduced the notion of scalar potewtidtor
given values ofF’ and H the potentialsy and A, as we shall see
below (Section 10), are determined ambiguously. So by éhgos
them to provide for the validity of the L. Lorenz condition

1 0o

;‘a"‘leA:O, (87)

from equations (8.1), with account of formulae
div gradg = V3¢, rot rotA = grad divA — VZ/T,
Po P P
20 _
Vo= Ox? + oy? + 022’

and relation (8.7) as well, we find equations for potentiedsd A
in the following form:

471'—,»

0A="7, O¢=A4np. (8.8)
c

For the equation of charge conservation to be form-invéarian
with respect to the Lorentz transformations it is necestaithe
densityp and current be components of the contravariant vector
Sl/

" = (cp, ) = (8°,9), j=pi. (8.9)
The contravariant vectdi” transforms under the Lorentz transfor-
mations in the same way &&t , z). The equation (8.3) of charge
conservation assume the form

oS"
or’ 0,

(8.10)
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summation is performed over identical indicesTaking into ac-
count Eq. (8.9) we rewrite Eqgs. (8.8) as follows

OA=-"8, Op=-—-5°, (8.11)
C C

For these equations not to alter their form under Lorentastra
formations, it is necessary that the scalar and vector fateioe
components of a contravariant vectot

A = (A% A) = (¢, A). (8.12)

Since, as we showed earlier, the operatatoes not alter its form
under the Lorentz transformations, Egs. (8.11) at anyialesys-
tem of reference will have the following form

4
0A” = %TS”, v=01,23. (8.13)

The vectors S” and A” were first introduced by Henri Poin-
caré [3].

Unification of ¢ and A into the four-vectorA” is necessary,
since, as the right-hand part of (8.13) represents the vetto
then the left-hand part must also transform like a vectonddeit
directly follows that, if in a certain inertial referencessgm only
an electric field exists, then in any other reference systeret
will be found, together with the electric field, a magnetiddje
also, owing toA” transforming like a vector. This is an immediate
consequence of validity of the relativity principle for efleomag-
netic phenomena.

The Lorentz transformations for the vectgt have the same
form, as in the case of the vectot, %)

Sl =~ <Sx . %So) S0 = (50 . %5) . (8.14)
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Taking into account the components of the vecto(8.9), we find

u
dzw(b7y@,d%=7M%—w- (8.15)
Here
(8.16)

whereuw is the velocity of the reference system.
The transformations for the components S. have the form

Py, = pvy, P = pu.. (8.17)

All these formulae were first obtained by H. Poincagé[2]. From
these the formulae for velocity addition follow

2 2
U U
/ /U;p — U / 1 - g ’ 1 - g
Uz = UV, ? by = ,inuvxv v, = Uziuvx. (818)
L= c2 2 1- 2
We now introduce the covariant vectsy
Sy = a8t (8.19)

Taking into account that,, = (1,—1,—1,—1), we obtain from
(8.19) '
Sp=28° S;=-5, i=1,23. (8.20)

Now compose the invariant
2 2 v? 2 2
S,S8" =cp <1 — c_2> = cpp, (8.21)

herep, is the charge density in the reference system, where the
charge is at rest. Hence we have

02
po=py\/1— = (8.22)
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H. Minkowski introduced antisymmetric tensor F},,,

o _0A, 04,

M D Qv

which automatically satisfies the equation

v=0,1,2,3, (8.23)

0F,, OF,, O0F,

9 Dt S 0. (8.24)

o S 194 .
SinceH =rot A, E = — grad ¢———, the following equa-
C

. - ot
tions are easily verified

_HZ’:F237 _Hy:F317 _HZ:F127
(8.25)
—kE, =Fy, —E, =TIy, —E., = F3.

The set of equations (8.24) is equivalent to the set of Malkwel
equations
L 1 O0H -
rotE:——-a—, divH =0. (8.26)
c Ot
With the aid of the tensoF'*”, the set of equations (8.13) can be

written as follows:

=g (8.27)

The tensod™* is related to the field componentsand 4 by the
following relations:

—Hm:F23, —Hy:F31, —HZ:F12,
(8.28)
E,=F"Y E,=F" E =F%.
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All this can be presented in the following table form, wherstfi
indexu = 0,1, 2,3 numerates lines, and secomd— columns

0 E, E, E.
e | B 0 - H,
o ~E, H. 0 -H, |’
—E. —H, H, 0
0 —-E, —-E, —E.
pw_ | Be 0 —H. H,
E, H 0 -—H,
E. —H, H, 0

Hence it is seen that the quantitisand H change under the
Lorentz transformations like individual components of tee-
sor F*¥, Neither Lorentz, nor Einstein established this, so they,
did not succeed in demonstrating the invariance of the M#xwe
Lorentz equations with respect to the Lorentz transforomstnei-
ther in space without charges, nor in space with charges.

We emphasize that the identical appearance of equations
in two systems of coordinates under Lorentz transformatiors
still does not mean their form-invariance under these trans
formations. To prove the form-invariance of equations we ae
to ascertain that Lorentz transformations form a group and
field variables (for example,ﬁ and H) transform according
to some representation of this group

Taking into account the relationship between the companent
of the tensor*" and the components of the electric and magnetic
fields, it is possible to obtain the transformation law fog tom-
ponents of the electric field

B, = B, By =~ (B, 1),
(8.29)
E =~ (E + %Hy> ,
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and for the components of the magnetic field

Hy = Ha, Hy=~ (Hy+ 2 E),
(8.30)
H. =~ (H.- 2E,).
C

These formulae were first discovered by Lorentz, however,
neither he, nor, later, Einstein established their group néure.
This was first done by H. Poincag, who discovered the trans-
formation law for the scalar and vector potentials[3]. Since¢
and A transform like(ct, Z), H. Poincaré has found, with the aid
of formulae (8. 4) and (8.6), the procedure of calculationtfe
quantitiesk and H under transition to any other inertial reference
system.

From the formulae for transforming the electric and magneti
fields it follows that, if, for example, in a reference systéithe
magnetic field is zero, then in another reference systemaady/
differs from zero and equals

L1 L
Hy— "B, H -5, o f-= [ﬁE} (8.31)
C C C

From the field components itis possible to construct tworiavds
with respect to the Lorentz transformations.

E? — H?, (EH). (8.32)

These invariants of the electromagnetic field were first diso-
vered by H. Poincare [3].

The invariants (8.32) can be expressed via antisymmetric te
sor of the electromagnetic field*

1 - 1
E?*— H? = 5 PP, BH = = F F™ (8.33)
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here . .
FMV — —§€MVU)\FO—)\, (834)

e"v7A is the Levi-Civita tenso?'?® = 1, transposition of any two
indices alters the sign of the Levi-Civita tensor.

In accordance with the second invariant (8.32), the figlds
and H, that are reciprocally orthogonal in one reference system,
persist this property in any other reference system. Iffieremce
systemK the fieldsE and H are orthogonal, but not equal, it is
always possible to find such a reference system, in whichekee fi
is either purely electric or purely magnetic, dependinghangign
of the first invariant from (8.33).

Now let us consider the derivation of tfReynting equation
(1884). To do so we multiply both parts of first equation from
Egs. (8.1) by vectorZ, and both parts of second equation from
Egs. (8.1) — by vectof ; then we subtract the results and obtain

= <E%_f n H%_f> = —pil — = (Hror i~ Brotii)

By using the following formula from vector analysis
div[a@, b] = brot@ — @rot b,
we obtain théPoynting equation

E? 4 I L
% (%) — _piF — divs,

where e L
=—[FH
S= B4
is called thePoynting vector. After integration of the Poynting
equation over volum& and using Gauss theorem we get
0 [ E*+ H* - -
— [ ————dV = — vEdV — da'.
BT / o V /pv V %S g
\% \% P
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The term standing in I.h.s. determines a change of elecgopii
energy in volumé/ at a unit of time. The first term in r.h.s. char-
acterizes work done by electric field on charges in volim&he
second term in r.h.s. determines #ergy flow of electromag-
netic field through surface”, bounding volumé/.

Formulation of the energy conservation law with help of the
notion of the energy flowwas first proposed by N. A. Umov. The
notion of theenergy flowhas become one of the most important
in physics. With help of théoynting equationit is possible to
prove theuniqueness theorermin the following formulation (see:

l. E. TammFoundations of the theory of electricity. Moscow:
“Nauka”, 1976 (in Russian), pp. 428-429):

“...electromagnetic field at any instant of time
t; > 0 and at any point of volum&, bounded by
an arbitrary closed surfacé' is uniquely determined
by Maxwell equatlons if initial values for electromag-
netic vectorst and H are prescribed in all this part
of space at time¢ = 0 and if alsofor one of these
vectors(for example,E) boundary values of its tan-
gential components on surfacg are given during
the whole time interval fromr = 0tot = t;.

Let us suppose the opposite, i. e. suppose there are
two different systems of solutions of Maxwell equa-
tions E', H' and E”, H”, satisfying the same initial
and boundary conditions. Due to linear character
of the field equations the difference of these solutions
E" = E' — E"andH" = H' — H" should also sat-
isfy Maxwell equations under the following additional
conditions:

a) E_"eq:tra — 0'

b) at timet = 0 in each point of the volum¥’:
E" =0,H" = 0(because at= 0 E', E" andH’, H"
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have, as supposed, equal given values),

c) during the whole time interval fromh = 0 to
t = t; in all points of the surfacé tangential compo-
nents of vecto£" or vector H” are equal to zero (by
the same reason).

Let us apply the Poynting theorem (which is a con-
sequence of Maxwell equations) to this fiélt], 7"
and put work of extraneous force3 equal to zero.
The surface integral which enters the Poynting equa-
tion is equal to zero during the whole time interval
fromt = 0 tot = ¢;, because from Eqc) it follows
that on surfaces

S = [E’///I:’[///] —0:

therefore, at any time during this interval we get

219

W™ ]
—_ [ L _ gy
ot / A

\%4

As the integrand is strictly positive, we have

aW///
g =0

i.e. field energy/’””” may decrease or stay constant.
But att = 0, according to Eq.#), energylV"”” of field
E". H" is equal to zero. It also can not become neg-
ative, therefore during the whole interval considered
0 <t < t, the energy

W — 8i /(E_T///Q + ﬁ///Z)dV
T
1%

22! =7

7 = AE



8. Invariance of Maxwell-Lorentz equations 93

should stay equal to zero. This may take place only
if £ and H" stay equal to zero at all points of the
volumeV'. Therefore, the two systems of solutions of
the initial problemE’, H' and E”, H”, supposed by
us to be different, are necessarily identical. So the
uniqueness theorem is proved.

It is easy to get convinced that in case of the whole
infinite space the fixing of field vectors values on the
bounding surface5 may be replaced by putting the
following conditions at infinity:

ER? and HR? at R — oo stay finite

Indeed, it follows from these conditions that the in-
tegral of the Poynting vector over an infinitely distant
surface is occurred to be zero. This fact enables us
to prove applicability of the above inequality to the
whole infinite space, starting from the Poynting equa-
tion. Also uniqueness of solutions for the field equa-
tions follows from this inequality”.

For consistency with the relativity principle for all electro-
magnetic phenomena, besides the requirement that the Max-
well-Lorentz equations remain unaltered under the Lorentz
transformations, it is necessary that the equations of motin
of charged patrticles under the influence of the Lorentz force
remain unaltered, alsa

All the aforementioned was only performed in works [2, 3]
by H. Poincaré. The invariability of physical equationsalhiner-
tial reference systems is just what signifies the identitylofsical
phenomena in these reference systems under identicaltiomsdi
Precisely for this reason, alhtural standards areidentical in all
inertial reference systems. Hence, for instance, folldwe®tual-
ity of the NaC' crystal lattice constants taken to be at rest in two



94 8. Invariance of Maxwell-Lorentz equations

inertial reference systems moving with respect to eachrofies

Is just the essence of the relativity principle. The reigtiprin-
ciple was understood exactly in this way in classical memdsan
also. Therefore, one can only be surprised at what Acadamici
V. L. Ginzburg writes in the same article (see this edititwe, foot-
note on pagéB1):

“l add that, having reread now (70 years after they
were published!) the works of Lorentz and Poirédr
have been only able with difficulty and knowing the
result beforehand (which is known to extremely fa-
cilitate apprehension) to understand why invariance
of the equations of electrodynamics with respect to
the Lorentz transformations, demonstrated in those
works, could at the time be considered as evidence
for validity of the relativity principle”.

Though A. Einstein wrote in 1948

“With the aid of the Lorentz transformation the spe-
cial relativity principle can be formulated as follows:
the laws of Nature are invariant with respect to the
Lorentz transformation (i. e. a law of Nature must not
change, if it would be referred to a new inertial refer-
ence system obtained with the aid of Lorentz transfor-
mation forz, y, z, t)".

Now, compare the above with that written by H. Poincaré in
1905:

“...If it is possible to give general translational mo-
tion to a whole system without any visible changes
taking place in phenomena, this means that the equa-
tions of the electromagnetic field will notchange as a
result of certain transformations, which we shall call
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Lorentz transformations two systems, one at rest,
and another undergoing translational motion repre-
sent, therefore, an exact image of each other”.

We see that classical works require attentive reading, mot t
mention contemplation.

We shall now establish the law for transformation of the Intze
force under transformation from one inertial referenceeysto
another. The equations of motion will be established iniSe@.
The expression for the Lorentz force, referred to unit vadyumaill,
in reference systeri’, have the form (8.2)

— — 1 —
F=pE+p— [17, H} . (8.35)
C
Then, in reference systeki’ we must have a similar expression
P =pB 4+ )= [ﬁﬁ] . (8.36)

Replacing all the quantities by their values (8.15), (8.18)29),
(8.30) and (8.35), we obtain

fi=r(fe==f). £=r(r-=£). @37

fg::fyv f;:fm (838)

here byf we denote the expression
1 /.
f== (v f) . (8.39)

These formulae were first found by Poincaé. We see that
scalarf and vectorf transform like components ¢f°, 7). Now
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let us establish the law for the transformation of a forcemefd to
unit charge

ﬁ:E+1[a,ﬁ}, Fol r_ 1 (8.40)
c p p
Making use of (8.37), (8.38) and (8.39), we find
Fl=~L2 (Fx - EF) P =~L (F - ﬁFx) . (8.41)
p c p c
F=LF, r=-LF. (8.42)
p p
On the basis of (8.15) we have
2
=
E/ _ . (8.43)
P 1——uv,
CZ

To simplify (8.43) we shall derive an identity. Consider atam
inertial reference systermy, in which there are two bodies with
four-velocitiesUy andUy (see (9.1)) respectively

U U
Uy = <71,?171> , Uy = <72,?272> ; (8.44)

then, in the reference systeffi, in which the first body is at rest,
their four-velocities will be

=
Uy = (1,0, Uy = <7', %7) . (8.45)

Since the product of four-vectors is an invariant, we obtain

, o
Y =M (1 — %) : (8.46)
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Setting in this expressiory, = ¢, and v; = « (velocity along the
x axis), we find

\/1 e \/ _wy (8.47)

Ul 2
CZ
On the basis of (8.43) and (8.47) we obtain
AV
A
;= —_— (8.48)
-5
C

wheret’ is the charge’s velocity in the reference syst&im Sub-
stituting (8.48) into (8.41) and (8.42) we obtain the foaree R”
determined by the expression

- R= (8.49)

27
‘/1_?2 ‘/1_?2

which transforms under the Lorentz transformations (ikex)

r_ _“ /_ _ X
R,= (R~ 2R), B =~ (R-2R.),
(8.50)

R,=R, R,=R..
Such a four-vector of force was first introduced by Poincae
[2,3].

With the aid of formulae (8.28) and (8.9) the Lorentz force

(8.35) can be written as

1
S A (8.51)
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similarly, for the four-vector of forcé?” we have
RY = F"'U,,. (8.52)

Now let us calculate the energy-momentum tensor of therelect
magnetic field. By means of Egs. (8.51) and (8.27) we obtain

fo =~ O (FFI) — FR0,F,). (859

With the help of identity (8.24) the second term may be wnits
follows

FH0,F,, = —%@FWFW.
Taking into account this equation we get
fo=—0.T2, (8.54)
whereT? is energy-momentum tensor of the electromagnetic field
1 1

T% = —F,,F"* 4+ —§°FHF
Y + 167 " w>
or in symmetric form
ao 1 ap op 1 ao

For more details see Section 19p.R17.
The components of energy-momentum tensor may be expressed
throughE andH as follows

1

TOO -
s

(E* + H?),
<

TOi — Sz _
¢ 47

[EH];,

. 1 1
Tk = - (EE,c + H;H;, — 5 w(E% + HZ)) .
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From Eq. (8.54) by integrating it over the whole space we get

., - d 1 ==

- /de -2 / BV
This result coincides with the expression obtained by Ha€amié
(see Section 9, p_1116)

Thus, the entire set of Maxwell-Lorentz equations is wntte
via vectors and tensors of four-dimensional space-tifiriee Lo-
rentz group, that was discovered on the basis of studies ofesi-
tromagnetic phenomena, was extended by H. Poincaf2, 3] to

all physical phenomena.
In ref. [3] developing Lorentz ideas he wrote:

“...All forces, of whatever origin they may be, be-
have, owing to the Lorentz transformations (and, con-
sequently, owing to translational motion) precisely like
electromagnetic forces”.

H. Poincaré wrote:

“The principle of physical relativity may serve us
in defining space. It gives us, so to say, a new instru-
ment for measurement. Let me explain. How can a
solid body serve us in measuring or, to be more cor-
rect, in constructing space? The point is the follow-
ing: by transferring a solid body from one place to
another, we thus notice that it can, first, be applied to
one figure and, then, to another, and we agree to con-
sider these figures equal. This convention gave rise
to geometry. .. Geometry is nothing, but a doctrine on
the reciprocal relationships between these transfor-
mations or, to use mathematical language, a doctrine
on the structure of the group composed by these trans-
formations, i. e. the group of motions of solid bodies.
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Now, take another group, the group of transforma-
tions, that do not alter our differential equations. We
obtain a new way of determining the equality of two
figures. We no longer say: two figures are equal, when
one and the same solid body can be applied both to
one figure and to the other. We will say: two figures
are equal, when one and the same mechanical system,
sufficiently distant from neighbouring that it can be
considered isolated, being first accommodated so that
its material points reproduce the first figure, and then
so that they reproduce the second figure, behaves in
the second case like in the first. Do these two views
differ from each other in essence? No...

A solid body is much the same mechanical system
as any other. The only difference between our previ-
ous and new definitions of space consists in that the
latter is broader, allowing the solid body to be re-
placed by any other mechanical system. Moreover,
our new conventional agreement not only defines space,
but time, also. It explains to us, what are two simulta-
neous moments, what are two equal intervals of time,
or what is an interval of time twice greater than an-
other interval”.

Further he notes:

“Just transformations of the “Lorentz group” do
not alter differential equations of dynamics. If we sup-
pose that our system is referred not to axes at rest, but
to axes in translational motion, then we have to admit,
that all bodies are deformed. For example, a sphere
is transformed to an ellipsoid which smallest axis co-
incides with the direction of translational motion of
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coordinate axes. In this case the time itself is expe-

rienced profound changes. Let us consider two ob-

servers, the first is connected to axes at rest, the sec-
ond — to moving axes, but both consider themselves
at rest. We observe that not only the geometric ob-

ject treated as a sphere by first observer will be looked

liked an ellipsoid for the second observer, but also two

events treated as simultaneous by the first will not be

simultaneous for the second.”.

All the above formulated by H. Poincaré’s (not mentionihg t
content of his articles [2, 3] ) completely contradicts tdnstein
words written in his letter to professor Zangger (DirectbL.aw
Medicine Institute of Zurich University) 16.11.1911, th&tPoin-
caré“has taken up a position of unfounded denial (of the theory of
relativity) and has revealed insufficient understandinghaf new
situation at all”. (B.Hoffmann*. Einstein”, Moscow: Progress,
1984, p. 84 (in Russian)).

If one reflects upon H. Poincaré’s words, one can immediatel
perceive the depth of his penetration into the essence ofiqddy
relativity and the relationship between geometry and grdene-
cisely in this way, starting from the invariability of the Maell-
Lorentz equations under the Lorentz group transformatiowhgh
provided for consistency with the principle of physicalatality,

H. Poincaré discovered the geometry of space-time, dé@techiy
the invariant (3.22).

Such space-time possesses the properties of homogendity an
isotropy. It reflects the existence in Nature of the fundamen
conservation laws of energy, momentum and angular momentum
for a closed system. Thus, the “new convention” is not aabytr
it is based on the fundamental laws of Nature.

Now let us quote one striking statement by Hermann Weyl. It
is written in his booKRaum. Zeit. Materie” appeared in 1918:
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“The solution of Einsteintfere is the reference to
the 1905 paper by A. Einsteis- A.L.), which at one
stroke overcomes all difficulties, is then thilse world
is a four-dimensional affine space whose metrical
structure is determined by a non-definite quadratic
form

Q(7) = (77)
with has one negative and three positive dimensitns

Then he writes:

—_— —
“(OA,0A) = —22 + 2% + 22 + 22,
in which ther;’s are the co-ordinates ofl”.

But all this mentioned by H. Weyl was discovered by H. Poigcar
(see articles [2, 3]), and not by A. Einstein. Nonethelesg/ely!
does not see this and even more, he writes in his footnote:

“Two almost simultaneously appeared works by
H. Lorentz and H. Poincarg, are closely related to it
(the article by A. Einstein of 1905- A.L.). They are
not so clear and complete in presenting principal is-
sues as Einstein’s article is.

Then references to works by Lorentz and Poincaré are gweny.
strange logic. H. Weyl has exactly formulated the solutfevhich
at one stroke overcomes all difficultiebut namely thisis con-
tained in articles by H. Poincaré [2, 3], and not in Einstein’s
ones. It is surprising how he has not seen this during his-read
ing the Poincaré articles, because, as he mentions dgrrect
essence of the theory of relativity is namely this. All theimezon-
sequences of it follow trivially from this, including the fitdtion
of the simultaneity concept for different space points byanseof
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the light signal, introduced by H. Poincaré in his artigieblished
in 1898, 1900 and 1904.

What a clearness and completeness of presentation of the pri
cipal issues is additionally necessary for Weyl when he Blfns
has demonstrated whaat'one stroke overcomes all difficultiés.
H. Weyl should better be more attentive in reading and mora-ac
rate in citing literature.

Above we have convinced ourselves that the symmetric set
of equations of electrodynamics, (8.1), (8.2), which isamant
with respect to coordinate three-dimensional orthogaasfor-
mations, at the same time turned out to be invariant, alsb, et
spect to Lorentz transformations in four-dimensional spgi@me.
This became possible due to a number of vector quantitiesiof E
clidean space become, together with certain scalar gieantitthe
same space, components of four-dimensional quantitiesthe\t
same time, some vector quantities, such as, for exampleH,
are derivatives of the components of four-dimensional tties,
which is the evidence that they are components of a tensdreof t
second rank in Minkowski space. The latter leads to the tesul
that such concepts atectric and magnetic field strengthse not
absolute.
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In Section 3 we saw that the requirement of fulfilment of tHa-re
tivity principle for electrodynamics leads to transitigori one in-
ertial reference system to another, moving with respedidditst
along ther axis with a velocityv, being realized not by Galilean
transformations (2.5), but by Lorentz transformation$)3tHence
it follows, of necessity, that the equations of mechanicsinie
changed to make them form-invariant with respect to the mhizare
transformations. Since space and time are four-dimenkitma
physical quantities described by vectors will have four pom
nents. The sole four-vector describing a point-like body tree

form
B dx”

U" = ) (9.1)
do
Here the intervallo in Galilean coordinates is as follows
,U2
(do)? = Pdt? (1 - —2) : (9.2)
C
Substituting the expression fde into (9.1) we obtain
0 i v’ i dz’ .
U=~ U=y—, vVV=—, 1=123. (9.3)
c dt

This four-vector of velocity was first introduced by Poincare

[3].

We now introduce the four-vector of momentum
PY =mcU" (9.4)

wherem is rest mass of a point-like body.
The relativistic equations of mechanics can intuitivelynré-
ten in the form dU
me? =F", (9.5)
do
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here F” is the four-vector of force, which is still to be expressed
via the ordinary Newtonian forcé. It is readily verified that the
four-force is orthogonal to the four-velocity, i. e.

F*U, =0.

On the basis of (9.2) and (9.3) equation (9.5) can be writien i
the form

d mu " V2
— =F4/1-— 9.6
dt 1)2 27 ( )
==
d mc v?
=F%/1 - —=. 9.7
dt 02 c? ©.7)
1=
1

Since from the correspondence principle at small velxiigua-
tion (9.6) should coincide with Newton’s equation, it isuval to
defineF' as follows:

F = (9.8)

D) 9

7
v
-2

herefis the usual three-dimensional force.

Now let us verify, that equation (9.7) is a consequence ochequ
tion (9.6). Multiplying equation (9.6) by the velocityand differ-
entiating with respect to time, we obtain

m L dv >
(1-%)
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On the other hand, upon differentiation with respect to tietpia-
tion (9.7) assumes the form

m LA\ v?
11— —
02

Comparing (9.9) and (9.10), we find

v
==
C

ol

(9.11)

On the basis of relations (9.8) and (9.11) the equationdatives-
tic mechanics assume the form

d mu -
E 5 - 5 (912)
v
==
d mc? -
E > = JU. (913)
v
==

These equations were first obtained by H. Poinca& [3]. Equa-
tion (9.13) relates the change in particle energy and thé& done
per unit time.

Having obtained these equations, Poincaré applied them fo
explaining the anomalies in the movement of Mercury. In this
connection he wrote:
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“Thus, thenew mechanicss still on unsteady soil.
So we are to wished it new confirmations. Let us see
what astronomical observations give us in this con-
nection. The velocities of planets are, doubtless, rel-
atively very small, but, on the other hand, astrono-
mical observations exhibit a high degree of precision
and extend over long intervals of time. Small actions
can, apparently, add up to such an extent, that they
acquire values permitting to be estimated. The only
effect, with respect to which one could expect it to be
noticeable is the one we actually see: | mean the per-
turbations of the fastest of all planets — Mercury. It
indeed shows such anomalies in its motion that can
still not be explained by celestial mechanics. The shift
of its perihelion is much more significant than calcu-
lated on the basis of classical theory. Much effort has
been applied with the aim of explaining these devi-
ations ... The new mechanics somewhat corrects the
error in the theory of Mercury’s motion lowering it to
32", but does not achieve total accordance between
the observation and calculation. This result, is, thus,
not in favour of thenew mechanicsbut at any rate,
it also is not against it. The new doctrine does not
contradict astronomical observations directly”.

One can see here, how careful H. Poincaré was in his estima-
tion of results. This was quite understandable, since therthwas
still under development, and therefore attentive and iplelgxpe-
rimental tests of its conclusions were required. It turnatitbat
these equations were valid only when gravity was negledtiatdr
A. Einstein explained the anomaly in the motion of Mercunttos
basis of general relativity theory, in which gravity is a sequence
of the curvature of space-time. But to explain the anomakh@
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motion of Mercury Einstein actually had to renounce speela-
tivity theory and, as a consequence, the fundamental ceatsan
laws of energy-momentum and of angular momentum.

From equations (9.12) it follows that the equations of ctads
mechanics are valid only when the velocitis small as compared
with the velocity of light. It is just the approximate chat@cof
the equations of classical mechanics that has led to thénarig
tion of the Galilean transformations, that leave the equatiof
mechanics unchanged in all inertial reference systems.

In three-dimensional form the momentum and energy have the
form

7=ymv, E=p’c=ymc. (9.14)

From (9.12) and (9.13) it follows that for a closed systenrgye
and momentum are conservefls we see from formula (9.14),
energy E is not an invariant. It has been and remains to be
an invariant only with respect to three-dimensional coordnate
transformations, and at the same time it is the zeroth compo-
nent of the four-dimensional momentum vector in Minkowski.

As an example let us calculate the energy of a system of two
particlesa andb in two different systems of reference. To proceed
so let us consider the invariant

V= (pa +pb>2'

In the system of reference where one patrticle is at rest,
ﬁa =0 5

we have
VY = 2mE + 2m%c.

Here we take masses for partiedl@nd for particleb as equal. The
same invariant is
2

V= (pa +pb)2 = 4?7
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when estimated at the reference system where the centerssf ma
is at rest

ﬁa + ﬁb = 07
and¢ is a particle energy calculated in this system of reference.

When comparing these expressions we get a connection be-
tween the energies in these two reference systems:

2
E=2— —md.
mc

The collision energy of two particles is used with most effi-
ciency in case when the center of mass of the two particles is a
rest in laboratory system of reference. Just this situataeal-
ized in colliders. There is no loss of energy for the centanats
motion.

One who has felt the four-dimensionality of space-timed¢ou
have seen immediately that energy and momentum are combined
in the four-momentum. Moreover, he would have understoat th
in the case of a closed system they obey the energy and momentu
conservation law.

In 1905 A. Einstein has proposed really existent quanta®f th
light energyhw to explain the photo-effect. If he would understand
in deep the existence and meaning of the group, and so thiegequ
ment of relativity principle that physical quantities skibbe four-
dimensional, then he could introduce for light the quantdimo-
mentum in line with the quantum of energy. Moreover that time
it was already proved experimentally (P. N. Lebedev, 1964j t
the light was carrying not only the energy, but also the manman
and so it was exerting pressure on solid bodies. But A. Eimste
has not done this. The momentum of the quantum of light has
been introduced by J. Stark in 1909. He took it into accouttén
momentum conservation law. So the quantum of lightpthaton,
has appeared (as a particle).
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Energy and momentum according to (9.4) transform as follows
under Lorentz transformations

E
pfpzv(px—vg), Py =0y, P.=D: E =7(E—uvp.).

A monochromatic plane light wave is characterized by frexqye
= w
w and wave vectolk = —ri. Together they are components of
C
four-dimensional wave vector
w W
KY = (—, —ﬁ) .

C C
Square of this four-dimensional wave vector is zero due & th
wave equation
K"K, =0.
The meaning of this fact is that the rest mass is zero.

The frequencw and the wave vectdk transform under Lorentz
transformations in the same waya@s, i. e. as follows

W= wy (1 — Enm> ,
c

11 v
wn, =wy(ng ——),

c
1.1 1.1
y

W, = Wny, WnN, =wn,.

Just the same formulae stay valid fanoton which rest mass is
zero. The vector of four-momentum of photon is as follows

ho -
pV: <_7hK)7
C

wheref is the Planck constant.

It follows from the above that energy and frequency trans-
forms in the same way. Formulae given above explaappler
effect, i. e. the change of the light frequency when it is emitted by



9. Poincaré’s relativistic mechanics 111

a moving source. ThBoppler effect takes place also when the
direction of movement of the light source is perpendicutathte
direction of observation®, = 0). So far as

w=uw"y <1 + Ené) :
C
we obtain for the transverd@oppler effectthe following result

W =wy1—v/c

This effect is small enough in comparison with the longituadi
one. From the above formulae it is also possible to deterimme
the direction of light beam changes under transformatioarto
other inertial reference system

v

Ng — —

n., = c_.
1-— Enw

C
This formula shows the effect @berration. We will return to
this subject in Sectiom6.
The covariant vector of four-velocity i$, = U°+,,,, but since

in Galilean coordinates,, = (1,—1,—1,—1), we obtain
U, = (U° -UY. (9.15)

Taking into account (9.1) and (9.15) it is possible to coneptbe
invariant .

U U = (U%?* = (U)* =1, (9.16)
which by virtue of the definition of the four-vect@r” will be

unity. This is readily verified, if the values determined loy-f
mulae (9.3) are substituted into (9.16). Thus, we have

pup” = (mc)?, or E = c/p? +m2c2. (9.17)
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In formula (9.17) we have retained for energy only the pesiti
sign, however the negative sign of energy also has sens@ni t
out to be significant in the case of unification of relativitgory
and quantum ideas. This led Dirac to predicting the parf{jote
sitron) with the mass of the electron and positive chargeakip
the electron charge. Then the ideas arose of “elementanyi- pa
cles creation in the process of interaction, of the physiaalium,
of the antiparticles (V. Ambartzumyan, D. Ivanenko, E. Feynit
has opened the possibility of transformation of the catigdpar-
ticles kinetic energy to the material substancepossessingest
mass So the need to construct accelerators for high energies to
study microcosm’s mysteries has arisen.
On the basis of (9.14) equation (9.12) assumes the form
d (F -  F dv - U dE
(&) - -

E v —f, Org'E: g % (918)

e
From (9.18) it follows that the acceleration of a body, deteed

by the expressmrzl% does not coincide in direction with the acting

force f From the equations of Poincaré’s relativistic mechanics
we have on the basis of (9.17), for a body in a state of rest

_ 2
Eo—mC,

wherekE) is the energyn is the mass of the body at rest.

From (9.17) it is evident, that massis an invariant. This re-
lation is a direct consequence of pseudo-Euclidean stiofithe
space-time geometry. The connection between energy ansl mas
first arose in relation to the inert property of the electrgmetic
radiation. FormulaZ = mc? for radiation had been found for the
first time in the article by H. Poincaré in 1900 in clear andax
form.
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Let us quote some extractions from the article by H. Pomcar”
published in 1900 “Lorentz theory and principle of equatifyac-
tion and reaction” (put into modern notations by V. A. Pejrov

“First of all let us shortly remind the derivation
proving that the principle of equality of action and re-
action is no more valid in the Lorentz theory, at least
when it is applied to the matter.

We shall search for the resultant of all pondero-
motive forces applied to all electrons located inside a
definite volume. This resultant is given by the follow-
ing integral

. 1. o~ o
F:/pdV (—[U,H]—FE),
c

where integration is over elemeni¥” of the consid-
ered volume, and is the electron velocity.
Due to the following equations

4dm 1 OF —
—pU=—— — tH
¢ P’ c Ot +rot A,
drp = divE,

and by adding and subtracting the express;%}rWHz,
T
| can write the following formula

4
FoS"F
1
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where ~
~ 1 - 0F
Fr=—[dV |H—
"7 dre ot |’
. 1 Lo
Fy=— [dV(HV)H
2 AT ( V) )
Fy = —i/deﬂ,
8m
— 1 — . —
F, = yp dVE(divE).
Integration by parts gives the following
A= / doA(RH) — - / v i (div),
47 4

- 1
Is = ——/daﬁH2,
8w

where integrals are taken over all elemenqts of the
surface bounding the volume considered, and where
denotes the normal vector to this element. Taking into
account

divH = 0,
it is possible to write the following

L. 1 L
Fy+ By = o / do <2H(ﬁH) - ﬁH2>. (A)

Now let us transform expressioﬁ. Integration by
parts gives the following
- 1 — — 1 — —
Fy=— [ doE(NE) — — /dV(EV)E.
47 41
Let us denote two integrals from r.h.s. Asand F,
then B L
Fy=F,—F).
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Accounting for the following equations

. 1 0H
El=—-——."=
[VE] T B
we can obtain the following formula
Fr—v+7
where
S 1 )
Y=— | dVVE",
8w
S 1 _ 0H
Z=—[dV |E—
4rc v ot
As a result we find that
L1 o
Y =— [ donk”,
8
- 5 d [dV = 5
F—-7Z=— | —|HFE
! dt 47?0[ ]
At last we get the following
S d [dV = 5 - S o
F=— [ —[HE|+ (Fy+ F3)+ (F;—-Y),

dt | 4me
Where(ﬁg + 133) is given by Eq. (A), whereas
T L
Fi—Y = / do <2E(ﬁE) - ﬁE2).
Term(F,+ F) represents the pressure experienced by

different elementgo of the surface bounding the vol-
ume considered. It is straightforward to see that this
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pressure is nothing else, but the Maxwelhgnetic
pressureintroduced by this scientist in well-known
theory. Similarly, term(F; — Y') represents action of
the Maxwell electrostatic pressure. In the absence of
the first term,
d 1 — =
— [dV—[HE
dt 47?0[ I
the ponderomotive force would be nothing else, but a
result of the Maxwell pressures. If our integrals are
extended on the whole space, then forégsts, F)
andY disappear, and the rest is simply
F=— [ —HE|.
dt 47?0[ ]
If we denote ad/ the mass of one of particles consid-
ered, and ag’/ its velocity, then we will have in case
when the principle of equality of action and reaction
is valid the following:

ZMU: const. 3

Just the opposite, we will have:

ZMﬁ—/ﬂ[ﬁﬁ] = const.

4re

Let us notice that
C

HE
1 1 E]

is the Poynting vector of radiation.

3The matter only is considered here. A-L.
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If we put
1
_ H2 El2
then the Poynting equation gives the following

/ %dV: - / daiﬁ[HE]— / AV p(¢E). (B)
The first integral in the r.h.s., as well known, is the
amount of electromagnetic energy flowing into the con-
sidered volume through the surface and the second
term is the amount of electromagnetic energy created
in the volume by means of transformation from other
species of energy.

We may treat the electromagnetic energy as a ficti-
tious fluid with density which is distributed in space
according to the Poynting laws. It is only necessary
to admit that this fluid is not indestructible, and it is
decreasing over vaIungEﬁ in volume elementV
in a unit of time (or that an equal and opposite in sign
amount of it is created, if this expression is negative).
This does not allow us to get a full analogy with the
real fluid for our fictitious one. The amount of this
fluid which flows through a unit square surface ori-
ented perpendicular to the axisat a unit of time is
equal to the following

JU;

whereU; are corresponding components of the fluid
velocity.

Comparing this to the Poynting formulae, we ob-
tain e L
= —[F HJ;

JU = [ H];
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so our formulae take the following form

ZMU—}-/dVg:const.“ (@)
c

They demonstrate that the momentum of substance plus
the momentum of our fictitious fluid is given by a con-
stant vector.

In standard mechanics one concludes from the con-
stancy of the momentum that the motion of the mass
center is rectilinear and uniform. But here we have no
right to conclude that the center of mass of the system
composed of the substance and our fictitious fluid is
moving rectilinearly and uniformly. This is due to the

4In Eq. (C) the second term in the .h.s. determines the total momentum
of the electromagnetic radiation. Just here the concegtdftion momentum

densityarises

_ J =
g:C_QUa

and also the concept afiass density of the electromagnetic field

J

m= —
c?’

whereJ is the electromagnetic energy density. It is also easy tdreeehere
that radiation energy density

S="|EH]

e

is related to the momentum density
3§
g - 02'

So the notions of locaénergyand momentunmappeared. All this was firstly
obtained by H. Poincaré. Later these items were discussttiPlanck work
(Phys. Zeitschr. 1908. S. 828) —A. L.
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fact that this fluid is not indestructible.
The position of the mass center depends on value
of the following integral

/ ZJdv,

which is taken over the whole space. The derivative of
this integral is as follows

/ f%dv = — / Zdiv(JU)dV — / pZ(ET)dV.

But the firstintegral of the r.h.s. after integration trans-
forms to the following expression

/ JUdv

<(j — Z Mﬁ) 2,

when we denote lﬁ the constant sum of vectors from
Eq. ).

Let us denote by, the total mass of substance,
by R, the coordinates of its center of mass, i}
the total mass of fictitious fluid, bﬁl its center of
mass, by\/, the total mass of the system (substance +
fictitious fluid), byR, its center of mass, then we have

or

M2 == M0+M1, MQEQ — M(]ﬁg"‘Mlél,

/deV = MR, 5

c2

5H. Poincareé also exploits in this formula the concept ofrtiess density of
the electromagnetic fielstroduced by him earlier. —A. L.
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Then we come to the following equation

L My = G — /fpt’f)

p av. (D)
Eq. (D) may be expressed in standard terms as fol-
lows. If the electromagnetic energy is created or anni-
hilated nowhere, then the last term disappears, whereas
the center of mass of the system formed of the mat-
ter and electromagnetic energy (treated as a fictitious
fluid) has a rectilinear and uniform motion”.

Then H. Poincaré writes:

“So, the electromagnetic energy behaves as a fluid
having inertia from our point of view. And we have to
conclude that if some device producing electromag-
netic energy will send it by means of radiation in a
definite direction, then this device must experience a
recoil, as a cannon which fire a shot. Of course, this
recoil will be absent if the device radiates energy iso-
tropically in all directions; just opposite, it will be
present when this symmetry is absent and when the
energy is emitted in a single direction. This is just the
same as this proceeds, for example, for the H. Hertz
emitter situated in a parabolic mirror. It is easy to es-
timate numerically the value of this recoil. If the de-
vice has mass 1 kg, and if it sends three billion Joules
in a single direction with the light velocity, then the
velocity due to recoil is equal to 1 sm/sec”.

When determining the velocity of recoil H. Poincaré agaipleits
the formula

E
M=—

2
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In §7 of article [3] H.Poincaré derives equations of relaticis
mechanics. If we change the system of units in this paragraph
from M = 1, ¢ = 1 to Gaussian system of units, then it is easy to
see thatnert mass of a bodyis also determined by formula:

E
M = el
Therefore, it follows from works by H.Poincaré that theert
massboth ofsubstance and ofradiation is determined by their
energy. All this has been a consequence of the electrodgsami
and the relativistic mechanics.
In 1905 Einstein has published the artitiioes the inertia of
a body depend on the energy contained in it?”. Max Jammer
wrote on this article in his book'he concept of mass in clas-

sical and modern physics” (Harvard University Press, 1961.):

<lt is generally said that “the theorem of inertia
of energy in its full generality was stated by Einstein
(1905)” (Max Born. “Atomic physics”. Blackie,
London, Glasgow ed. 6, p. 55). The article referred
to is Einstein’s paper,Does the inertia of a body
depend upon its energy content?”. On the basis of
the Maxwell-Hertz equations of the electromagnetic
field Einstein contended that “if a body gives off the
energy E in the form of radiation, its mass dimin-
ishes byE /c*". Generalizing this result for all en-
ergy transformations Einstein concludes: “The mass
of a body is a measure of its energy content”.

It is a curious incident in the history of scientific
thought that Einstein’s own derivation of formula=
mc?, as published in his article in théAnnalen der
Physik”, was basically fallacious. In fact, what for
the layman is known as “the most famous mathemati-
cal formula ever projected” in scienc®\(illiam Cahn.
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“Einstein, a pictorial biography”. New York: Citadel.
1955. P. 26) was but the result gdetitio principii, the
conclusion of begging the question

“The logical illegitimacy of Einstein’s derivation
has been shown by Ivé3ournal of the Optical So-
ciety of America. 1952. 42, pp. 540-543)".

Let us consider shortly Einstein’s article of 1908oes the
inertia of a body depend on the energy contained in it?” Ein-
stein writes:

“Let there be a body at rest in the systém y, =),
whose energy, referred to the systemy, z), is Ej.
The energy of the body with respect to the system., <),
which is moving with velocity as above, shall béf,,.

Let this body simultaneously emit plane waves of
light of energyL /2 (measured relative tr, y, 2)) in
a direction forming an angle> with the xz-axis and
an equal amount of light in the opposite direction. All
the while, the body shall stay at rest with respect to the
system(z, y, z). This process must satisfy the energy
principle, and this must be true (according to the prin-
ciple of relativity) with respect to both coordinate sys-
tems. IfE; and H; denote the energy of the body after
the emission of light, as measured relative to systems
(z,y,2) and (¢, n,s), respectively, we obtain, using
the relation indicated above,

L L
Ey=F — + —
0 1+{2+2},
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1—£cosgp 1+—cos<p
Hy=H;, +
\/1- 11—
== H1 4+ — 2.
v
b [V]
Subtracting, we get from these equations
1
(HO_EO)_<H1_E1):L{ﬁ—l}”. (N)
- y)

A. Einstein tries to get all the following just from this réian.
Let us make an elementary analysis of the equation derived by
him. According to the theory of relativity

E E
Hy=——"—, H=——"—.
v v

Vi- @ Vi-=

Einstein seemingly did not take into account such formulke.
follows then that

1 1
Ho—E, = E, <72—1>, H\—E, = E, <72—1>,
v v
1—— 1——

c? c?
and consequently the |.h.s. of the Einstein equation isléqube
following

(HO—EO)—(Hl—El)Z(EO—E1)<%—1>;
1_1)

c2
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then Eq. (V) takes an apparent form
EO - E1 == L

Therefore, it is impossible to get something more substbinom
the initial Einstein equatiori/V). In this work A.Einstein has
not succeeded in discovering neither physical argumermtsan
method of calculation to prove that formula

E
M=3
is valid at least for radiation. So, the critics given by \esthe
A. Einstein work is correct. In 1906 Einstein once more nesuo
this subject, but his work reproduces the Poincaré restilt900,
as he notes himself.

Later, Planck in 1907 and Langevin in 1913 revealed, on this
basis, the role of internal interaction energy (bindingrgyke which
led to the mass defect, providing conditions for possible ergy
release, for example, in fission and fusion of atomic nucleirhe
relativistic mechanics has become an engineering diseplc-
celerators of elementary particles are constructed wartip of
it.

“Disproofs” of the special theory of relativity appearingse-
times are related to unclear and inexact presentation bbgtcs
in many textbooks. Often its meaning is deeply hidden bytglen
of minor or even needless details presented. The speciatythe
of relativity is strikingly simple in its basics, almost asdtidean
geometry.

On the transformations of force
According to (9.8) and (9.11) the four-force is

FY = (7 ?, y ﬁ) , (9.19)
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F, = (7 = —7f> . (9.20)

As we noted above, the force as a four-vector transformshike
guantitiesct andz, so,

fl="y (fx = ﬂf) (@) = L@ - eB1,), (9.22)
g c g

! 2 / Y
fy==l o= (9.22)
g Y
Here '
u
b= m= = (9.23)
¢ U
==

u is the velocity along the axis.
Consider two particles in the unprimed inertial referenge s
tem with the four-velocities

v v y U
Uy = (%v;) , Uy = (%m;) - (9.24)

Then, in the inertial reference system, in which the secartl-p
cle is at rest, we have the following expressions for theeetye
four-vectors:

2 / /Q_}V v __
Ul - 777; 7U2 _(170)

Hence, on the basis of invariance of expresdignlUs we have
the following equality:

7 = (1 - %) : (9.25)
C
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Thus, we obtain .
7o - . (9.26)

In our case, when the velocity is directed along the axis, we
have )
A S— (9.27)

N 1—5%’ v 1—5%’ 1-g%
flo' = M (9.29)
1- g%

Hence it is evident that, if the forcﬁin a certain inertial Ga-
lilean reference system is zero, it is, then, zero in anyraties-
tial reference system, also. This means that, if the law eftia
is valid in one inertial reference system, then it is alsoyelen
any other inertial reference system. Moreover, the commuson-
cerning the force is not only valid for an inertial referesgstem,
but also for any accelerated (non-inertial) referencessysEorce
cannot arise as a result of coordinate transformations If mo-
tion by inertia in an inertial reference system proceedsi@la
straight line, then in a non-inertial reference system fresion
will proceed along the geodesic line, which in these coatdis
will no longer be a straight line.

In classical mechanics the forgeis the same in all inertial
reference systems, in relativistic mechanics this is ngéoso, the
components of force, in this case, vary in accordance wi28(9
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Let us, now, dwell upon a general comment concerning iner-
tial reference systems. Inertial reference systems beajogable
signifies that, if we create in each reference system idantmn-
ditions for the evolution of matter, then we, naturally, shichave
the same description of a phenomenon in each referencergyste
other words, we will not be able to single out any one of the-ine
tial reference systems. But, if we have provided some cuomdit
for the motion of matter in one inertial reference systengnth
in describing what goes on in this reference system by obwgerv
from any other inertial reference system, we will alreadyaob
another picture. This does not violate the equality of iaéref-
erence systems, since in this case the initial referendersyisas
been singled out by the actual formulation of the probldpne-
cisely such a situation arises, when we consider the Univers
In this case, there exists a unique, physically singled ouher-
tial reference system in the Universe, which is determinedyo
the distribution of matter. Time in this reference system will
have a special status as compared with other inertial referece
systems. This time could be termed the “true time” of the Uni-
verse. As an example of such a special reference system one
could choose a reference system, in which the relict electro
magnetic radiation is homogeneous and isotropi¢see ref.[5]).

From the above exposition, especially from Sections 3, 8, 7,
and 9 it is evident that Henri Poincaré discovered all tisee8als
that make up the content of the special theory of relativiny
person, who has graduated from a University in theoreticgsjzs
and who has attentively read at least two of his artié@s the
dynamics of the electron”, may verify this.

There exist, also, other points of vief#Poincaré did not make
the decisive step{de Broglie),“Poincaré was, most likely, quite
close to creating the STR, but did not arrive at the end. Ome ca
only guess why this happenedV. L. Ginzburg). But these state-
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ments characterize their authors’ own level of understamnthe
problem, instead of H. Poincaré’s outstanding achievesiarthe
theory of relativity. What is surprising is that the autheh®w no
trace of doubt in considering their own incomprehensiornther
difficulty they had in understanding, as a criterion in ewailug
the outstanding studies performed by Poincaré. In this taere
is no need to “guess”. It is only necessary to read the works by
Poincarél[2, 3] and to think.

Professor A. Pais wrote the following in his botRubtle is
the Lord: the science and the life of Albert Einstein”, Oxford
University Press, 1982:

“It is evident that as late as 1909 Poincardid not
knowthat the contraction of rods is a consequence
of the two Einstein’s postulates(singled out by me
—A. L.) Poincaté therefore did not understand one of
the most basic traits of special relativity”.

We right away note that the underlined statement is wrongt. Bu
about this later.

From everything that A. Pais has written it clearly follovasit
he himselfdid not understand the fundamentals of special rela-
tivity. Let me explain. Poincaré demonstrated the invality of
the Maxwell-Lorentz equations with respect to the Lorerdns-
formations, which was consistent with the relativity pipie, for-
mulated by Poincaré in 1904 for all natural physical pheeona
As we already noted, H. Poincaré discovered the fundarhienta
variant (3.22)

J=cT? - X2 —-Y? - 72,

that establishes the geometry of space-time. Namely héhale i
lows, that the light velocity being constant is a particudanse-
quence of this formula, when the invariahis zero. A.Pais had
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to understand that the Lorentz contraction is related tating
J, i.e. to a space-like value of, not equal to zero. As to the
slowing down of time, it is related to positivé i.e time-like J,
but certainly not equal to zero. Thus, from the above it isGle
that contraction of the dimensions of rods is not a conseque®
of the two Einstein’s postulates only Such is the result of a
superficial knowledge of the relativity theory foundations

So with such a knowledge of material A. Pais had tried to prove
on the pages of his book that H. Poincaré had not made thgideci
step to create the theory of relativity! He,a physicistjriferced”
his view on the contribution of H. Poincaré by the decisidthe
Paris Session of the French Philosophical Society in 1922.

So simple it is! The philosophers have met and made a deci-
sion whereas they probably have not studied works by Pancar
on the theory of relativity at all. But such a study requirecba
responding professional level. | doubt whether their msi@nal
level had been higher than one by A. Pais in this field. We shoul
say that A.Pais was an outstanding scientist irrespeabiiis
criticism and he made a lot of remarkable investigations.

As to the Lorentz contraction, in the article [3]q “The con-
traction of electrons”) H. Poincaré deals with this issue in de-
tail, making use of the Lorentz transformations. All thiglsarly
presented in article [3]. Precisely unification of relagnvand the
Maxwell-Lorentz electrodynamics permitted Poincaré darfu-
late in articles [2] and [3] the foundation of the theory datevity.

As to the postulate concerning the constancy of the velafity
light, it proved to be just a simple heuristic device, but adtn-
damental of the theory. It is a consequence of the requirethat
electrodynamical phenomena, described by the Maxwelehiar
equations in Galilean coordinates, be consistent withetegivity
principle.

A. Pais, mentioning the group character of Lorentz tramséor
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tions, writes (see p. 130 of the book cited above):

“He did, of course, not know that a few weeks
earlier someoneA. Einstein is understood— A.L)
else had independently noted the group properties of
Lorentz transformations ...”

But all this isabsolutely incorrect Article [2] by H. Poincaré,
appeared irfComptes Rendus” on June, 5, 1905, whereas the
article by A. Einstein had been sent to publisher on Junel 305.

H. Poincaré, discovered the group and named iL@®ntz
group. He wrote in article [2]:

“All these transformations together with all rota-
tions should form a group”.

In articles [2; 3] by H. Poincaré, the group properties ardely
used for constructing four-dimensional physical quassitipro-
viding the invariance of electrodynamics equations under t
Lorentz group. While in the article by A. Einstein only thd-fo
lowing is told:

“...from this we see that such parallel transforma-
tions form a group — as they indeed must”.

There is no any other word on the group in the Einstein article
From here his misunderstanding that electrodynamic qtiesti
should be transformed according to the group in order toigeov
the invariance of equations required by relativity prineifollows
naturally. But all this leads to the consequence that sorgsigdl
quantities become four-dimensional, for example, curdemisity,
potentials, momentum, and force.

Striking “discoveries” are made by certain historians rezas
ence. Here, follows, for example, one “masterpiece” of sach
creative activity. S. Goldberg wrote the following in hidiele
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(“The British Journal for the History of Science”. 1970. Vol. V,
No. 17, p. 73):

“Poincaré had retained the notion of absolute space
in his work, whether or not that space was accessible
to observation”.

“There was in Poincag’s mind apreferredframe of
reference in which the velocity of light wasally a
constant, and only one such frame”.

S. Goldberg attributes all this to Poincaré without anyugas
whatsoever. Thus, back in 1902, in the bd&kience and Hy-
pothesis”, Poincaré wrote:

“Absolute space does not exist. We only perceive
relative motions”.

“Absolute time does not exist”.

In 1904 Poincaré formulated the principle of relativity &l phy-
sical phenomena (see Section Ipl 25) and in 1905 established
that, in accordance with the relativity principle, the etiras of
the electromagnetic field remain the same in all inertianefice
systems, owing to the Lorentz transformations.

Thus the equality and constancy of the velocity of light is-pr
vided for any inertial reference system. All this is expoeddn
the articles by H. Poincaré [2, 3], which should have beend-st
ied carefully by S. Goldberg before writing about an opinan
Poincaré.

In evaluating works [2] and [3], as well as the early works
of H. Poincaré in physics it is necessary to proceed only from
their content, comparing it with contemporary ideas, but teo
be guided by outside statements on the issue, even made by wel
known scientists, contemporaries of Poincaré, sincedtel lof
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many of them was insufficient to fully apprehend what Poiacar
has written. At the time his personality was especially rfei
in that for him physical problems and their adequate mathieala
formulation joined naturally and composed a single wholams-
ly for this reason, his creations are exact and modern exen af
hundred years. H.Poincaré was one of those rare resesyrtber
whom natural sciences and mathematics are their propensurr
dings. The young people of today, who are prepared in theoret
ical physics, can readily perceive this, if only they, atsleaead
Poincaré’s works [2] and [3]. What concerns the statembwpts
Professor A. Pais and Doctor S. Goldberg, we once more encoun
ter, what we saw earlier is a clear attempt to attribute tbein
incomprehension to the author.

Some authors wishing to stress the preceding character of
H. Poincaré’s articles [2], [3] on relativity give two follving quotes
from the book of W. PauliTheory of Relativity” written by him
in young age in 1921

“Is was Einstein, finally, who in a way completed
the basic formulation of this new discipline ”.

“It includes not only all the essential results con-
tained in the other two papers, but shows an entirely
novel, and much more profound, understanding of the
whole problem”.

Below we will give a quotation from W. Pauli related to the sam
subject, but written later, in 1955.

To the first Pauli quotation it should be said that no further
completion of works [2], [3] by H. Poincaré is required. Afle
main results which contain the full content of the theoryedétiv-
ity are formulated there and in the most definite form.

What about the second statement by Pauli, the case is just op-
posite. It is sufficient to compare the content of the Poiaeard
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Einstein works to conclude that articles [2], [3] by Poiricaon-
tain not only all the main content of the article by Einsteii 805
(moreover Poincaré has formulated everything definitelgan-
trast to Einstein), but also contain main parts of the laterkw
by Minkowski. What about words by Pauli odéep understand-
ing of the whole probleiit is just present in articles [2], [3] by
Poincaré. For example:

“All forces behave in the same way as electromag-
netic forces irrespective of their origin. This is due
to Lorentz transformations (and consequently due to
translational motion)”.

In other words Lorentz invariance is universal. All the aban
full can be said about gravitational forces.

Further, Poincaré discovered pseudo-Euclidean geonoétry
space-time, revealed the four-dimensionality of physorenti-
ties. He constructed the equations of relativistic medwrpre-
dicted existence of the gravitational waves, propagatiitg the
velocity of light. Then, what elsedeep understanding of the
whole problerfimay be spoken about?

There is a surprising statement by L. de Broglie made in 1954:

“A bit more and it would be H. Poincd, and not
A. Einstein, who first built the theory of relativity in
its full generality and that would deliver to French
science the honor of this discovery....But Poirgcar
has not made the decisive step and left to Einstein
the honor to uncover all the consequences following
from the principle of relativity, and in particular, by
means of a deep analysis of measurements of length
and time, to discover the real physical nature of rela-
tion between space and time maintained by the prin-
ciple of relativity”.



134 9. Poincaré’s relativistic mechanics

Infact all is just opposite to the L. de Broglie writings. H. Poin-
caré gave detailed analysis of time measurements alreadis i
article of 1898“The measurement of time”, in particular, by
means of a light signal. Later, in articles of 1900 and 1904de
scribes a procedure fdetermination of simultaneity at different
points of space by means of a light signal in a moving inestyat
tem of reference, and therefore reveals the physical mganfin
local time by Lorentz. In 1904 in article [1] he was the first who
formulated the principle of relativity for all physical phemena.
In 1905 being based on the Lorentz paper H. Poincaré haswdisc
ered the Lorentz group in articles [2; 3] and on this grouravpd
invariance of Maxwell-Lorentz equations under Lorentngfar-
mations in full agreement with the relativity principle. Pbincaré
extrapolated the Lorentz group on all physical forces. &ftoe
the Lorentz invariance became universal and valid also fav-g
itational phenomena. In article [3], being based on the htare
group H. Poincaré introduced pseudo-Euclidean spacegaom-
etry. So, the homogeneous and isotropic space-time arosé wh
was defined by theawvariant

A2 g? oy 2
It was developed in relativity dimeandlengthconcepts, in sym-
metry of physical laws, in conservation laws, in existentéhe
limiting velocity for material bodies, in four-dimensiditg of
physical quantities. The connection between space andwiase
determined in full by the structure of geometry. There is nchs
a deep insight into the essence of the problem in the artigle b
A. Einstein. Following these ideas H. Poincaré discovergda-
tions of relativistic mechanics and predicted existencgra¥ita-
tional waves propagating with velocity of light. TherefétePoin-
caré deduced all the most general consequences from ti-pri
ple of relativity. There is no an idea from the 1905 work by
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A. Einstein which has not been present in articles by H. Poira-

ré. The work by A. Einstein is rather elementary in realizatidn
ideas. Though in fact the realization of ideas required taegél of
analysis. In H. Poincaré’s works [2; 3] there is not onlygilievel
analysis and realization, but they contain also much nevehvisi
not contained in the article by A. Einstein and which has dete
mined further development of the theory of relativity. Howuis
de Broglie has not seen all this when reading the Poincéickem?
Compare writings by Louis de Broglie to writings by W. Pauli o
1955 (see present edition [p.136).

It is quite evidentthat Louis de Broglie has not gained an
understanding of the essence of the problem as a matter of
fact. Though being the Director of the Henri Poincaré Institute
had to do so.

Being based upon opinions by Louis de Broglie Academician
V. L. Ginzburg writes:

“As we see, the position of L. de Broglie, referring
to the memory of H. Poincarwith a deep respect and
with a maximal kindness, should be considered as one
more testimony that the main author of the SRT is
A. Einstein”.

All this is strange. One would think everything is simple dieif
your qualification admits you, then take the article by A.4k@in
of 1905 and the articles by H. Poincaré, compare thermedvdll
be clear. Just this will be considered in details in further Sections
What about the quotation of L. de Broglie, it clearly demoaitsts
his superficial knowledge of the works by H. Poincareé.

P. A. M. Dirac wrote in 1979 (Proceedings of the 1979 Ein-
stein Centennial Symposium: Some Strangeness in the Ri@por
Addison-Wesley MA 1980. P. 111.):

“In one respect Einstein went far beyond Lorentz
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and Poincaé and the others, and that was in assert-
ing that the Lorentz transformation would apply to
the whole of physics and not merely to phenomena
based on electrodynamics. Any other physical forces
that may be introduced in the future will have to con-
form to Lorentz transformations, which is going far
beyond what the people who were working with elec-
trodynamics were thinking about”.

But just relating to this H. Poincaré wrote in 1905-1906riticées
[2; 3]

“...All forces, despite of the nature they may have,
behave according to Lorentz transformations (and con-
sequently, according to translational motion) just in
the same way as electromagnetic forces”.

Comparing the quotation from Poincaré with the words byabir
it is easy to get convinced, that all this considered by Daac
the achievement by Einstein is contained in full in artic¢ hy
Poincaré. Therefore the quoted statement by Difat.one re-
spect Einstein went far beyond ... Poingaiis simply incorrect.
Poincaré was the first who extrapolated Lorentz transftona
onto any forces of nature, including gravitational ones.

The following, for example, is what Richard Feynman wrote
(see his booK he Character of Physical law. BBC, 1965):

“It was Poincaré’s suggestion to make this analysis
of what you can do to the equations and leave them
alone. It was Poinca’s attitude to pay attention to
the symmetries of physical laws”.

In 1955, in connection with the 50-th anniversary of religgiv
theory W. Pauli wrote:
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“ Both Einstein and Poinca®, took their stand on
the preparatory work of H.A.Lorentz, who had al-
ready come quite close to the result, without however
guite reaching it. In the agreement between the re-
sults of the methods followed independently of each
other by Einstein and Poincéarl discern a deeper
significance of a harmony between the mathematical
method and analysis by means of conceptual experi-
ments (Gedankenexperimente), which rests on general
features of physical experience”

Compare this quotation from W. Pauli with words by L. de Breg|
of 1954,

The articles[[2[13] by Henri Poincaré are extremely modern
both in content and form and in the exactness of expositicuy,T
they are pearls of theoretical physics.

Now let us return to words by Academician V.L. Ginzburg (see
this edition, p[94), further he says about the principlestdtivity:

“...Moreover, Lorentz and Poincérinterpreted this
principle only as a statement on impossibility to reg-
ister the uniform motion of a body relative to ether”.

This is absolutely incorrect in relation to Poincaré. Led m
explain. This principle in Poincaré formulation is as éolis [1]:

“The principle of relativity, according to which the
laws for physical phenomena should be the same both
for observer at rest and for observer in uniform mo-
tion, i. e. we have no any method to determine whether
we participate in such motion or not and we cannot
have such a method in principle.”.

There is no term “ether” in this formulation of the relatywprin-
ciple. Therefore the statement by V.L. Ginzburg is a simpig-m
understanding. Let us present some trivial explanationis
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connection. It follows from the formulation of the relatiyiprin-
ciple that an observer performing a translational uniforotion
can move with any constant velocity and so there is an infinite
set of equitable reference systems with the same laws faigdly
phenomena. This set of equitable reference systems irchlde
a system of reference taken as a system of rest.

Then V. L. Ginzburg continues:

“...It is possible to go from above to consideration
of all inertial systems of reference as completely eg-
uitable (this is the modern treatment of the relativity
principle) without special efforts only in casewe
understand Lorentz transformations as transforma-
tions corresponding to transition to the moving ref-
erence systerfemphasized by me. A:L.)".

To have in mind that Poincaré has not understood that Lorent
transformations correspond to transition from the “reststem
of reference to the moving one is also a misunderstandings Th
trivially follows from the Lorentz transformations.

From the Lorentz transformations

' =y(x — et)

it follows that the origin of the new system of reference

moves along axig with velocity¢:

x =ct

in relation to another system of reference. Therefore, hiare
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transformations connect variablesA, y, z) referring to one sys-
tem of reference with variable#' (', 4/, 2’) referring to another
system moving uniformly and straightforwardly with velyce
along axisz relatively to the first system. The Lorentz transfor-
mations has taken place of the Galilean transformationskspg
figuratively.

Let us consider in more detail the statement by V. L. Ginzburg
He notes thatif one understands Lorentz transformations as trans-
formations corresponding to transition to a moving systémef
erence”, then ‘it is possible without special effort€b go on to
“the treatment of all inertial systems of reference as cotaple
equitable (this is the modern treatment of the relativitypiple)’.

But it is not so. This is not enough for the fulfilment of re-
quirements of the principle of relativity. It is necessanyprove
(and this is the most important) that the Lorentz transfaiona
together with the spatial rotations forthe group. But we are
obliged for this solely to Poincaré. Only after discoverihe
group itis possible to say that all physical equations stay urtteuc
able at any inertial reference system. Then all the corrmedipg
physical characteristics transform exactly accordintipéogroup.
Just this provides the fulfilment of requirements of the treity
principle.

In connection with the quotation from Ginzburg (see this edi
tion, p.[13T) we will give some comments. Let us admit that the
principle of relativity is treated as a statement of impb#isy to
register a uniform translational motion of a body relativettie
ether. What follows from here? First, from here it followseditly
that the physical equations are the same, both in the etlser sy
tem of reference and in any other reference system, movitig wi
constant velocity relative to the ether system. The intéei@ess
of equations is provided by the Lorentz transformationso8d,
as the Lorentz transformatioferm a group, it is impossible to
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prefer one system of reference to another. The ether system o
reference will be a member of this totality of equitable tradr
systems. Therefore it will lose the meaning of the fixed sysbé
reference. But this leads to the fact thia¢ etherin the Lorentz

sensalisappears
Very often in order to stress that Poincaré has not creaied t

theory of relativity one cites his words:

“The importance of this subject ought me to return
to this again; the results obtained by me are in corre-
spondence with those of Lorentz in all the most impor-
tant points. | only tried to modify slightly and enlarge
them..

One usually concludes from this that Poincaré has exaatly f
lowed Lorentz views. But Lorentz, as he notes himself, haggo
tablished the relativity principle for electrodynamics, $ne con-
cludes that also Poincaré has not made this decisive Btgthis
is incorrect. Those authors who write so have not read Poincaré
articles [2, 3] carefully. Let us give some more explanation
H. Poincaré writes in his article [2]:

“The idea by Lorentz is that electromagnetic field
equations are invariant under some transformations
(which 1 will call by name of H.A. Lorentz) of the fol-
lowing form. . .

Poincaré writes: the idea by LorentZ’, but Lorentz never wrote
so before Poincaré. Here Poincaré has formulated his awn f
damental idea, but ascribed it to Lorentz. He always apatedi
and celebrated extremely high anybody who gave a stimulbisto
thought, a joy of creation, probably as nobody else. He was ab
solutely deprived of personal priority sentiments. Butadeslants
are obliged to restore truth and pay duty to the creator.
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In the same article (see this edition, the footnote dnjp. TB-A
demician V.L. Ginzburg writes:

“One can suspect that Poincarhas not estimated
the Einstein contribution as a very substantial one,
and maybe he even has believed that he “has made
everything himself”. But that’s just the point that we
are trying to guess about the Poin&feelings from
his silence and not from some claims told by him.”

One may readily find out what Poincaré has done in the thefory o
relativity: for a theoretical physicist it is enough to rdad articles
[2, 3]. Therefore it is not necessary “to guess” about the€aié
feelings in order to answer the question: what he really loaed
Academician V. L. Ginzburg usually cites writings by W. Haofl
1921, but surprisingly does not cite writings by W. Pauli 665.
Some people for some reason want to see only A. Einsteiretteat
as the creator of special theory of relativity. But we shdoltbw
facts and only them.

Now let us consider words by professor Pais written in the
same book at p. 169.

“Why did Poincag not mention Einstein in hisd@#in-
gen lectures? Why is there no paper by Poirgcar
which Einstein and relativity are linked? It is incon-
ceivable that Poinca would have studied Einstein’s
papers of 1905 without understanding them. It is im-
possible that in 1909 (the year he spoke éttingen)

he would never have heard of Einstein’s activities in
this area. Shall | write of petulance or professional
envy?”.

There is a unique answer to these questions. After readimg th
articles and books published by Poincaré up to 1905 it iy eas
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to get convinced that there has been nothing new for Panicar”
the Einstein article. Being based on his own previous worit a
on Lorentz investigations Poincaré formulated all the maon-
tent of the special theory of relativity, discovered the dan¥ rel-
ativistic mechanics, extended Lorentz transformationaltahe
forces of nature. But all this he ascribedthe Great destructor
H.A. Lorentz, because just his article of 1904 provided mgti

lus for Poincaré thought. This was his usual practice. dtiange
that professor Pais addresses questions only to Poirasat@ot to
Einstein. How Einstein decided to submit his paper on ebeigtr
namics of moving body if he knew papers by Lorentz of ten years
ago only and papers by Poincaré of five years ago only? What
prevented Einstein from acquaintance with reviews pubtisim

the journal“Beiblatter Annalen der Physik”, if he himself pre-
pared many reviews for this journal? 21 reviews by Einstesnev
published there in 1905.

The journal‘Beiblatter Annalen der Physik” was printed in
Leipzig in separate issues. 24 issues were published inrahea
review of the Lorentz article which appeared in the joufivalrsl.

K. Ak. van Wet.” (1904.12 (8). S. 986—1009) was published in
4th issue of 1905. This review contained Lorentz transfdiona
also.

A review by Einstein on the article by M. Ponsot from the May
issue of the French journ&Comptes Rendus” 1905. 140 S.
1176-1179 was published in the 18th issue of 1905. The same is
sue (S. 1171-1173) contains article by P. Langé@n impossi-
bility to register the translational motion of Earth by physical
experiments”. In this article P. Langevin refers to the articles by
Lorentz of 1904 and Larmor of 1900.

Why Einstein never refers to articles [2, 3] by Poincaré? By
the way, he wrote a lot of articles on the theory of relatidtying
the next 50 years. What personal qualities explain this? Isatv
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possible not to refer to articles, if they are publishedieadnd if
you exploit ideas and concepts from them?

Academicians V. L. Ginzburg and Ya. B. Zel'dovich wrote in
1967 (see “Zel'dovich — known and unknown (in the recollec-
tions of his friends, colleagues, students). Moscow: “Neuk
1993, p. 88):

“For example, despite how much a person would
do himself, he could not pretend to have a priority,
if later it will be clear that the same result has been
obtained earlier by other persons”.

This is a quite right view. We are to follow it. Ideas and résul
should be referred to that person who has discovered thetim firs
How strange the fate happened to be, if one can say that, of the
works by Henri Poincar&,0On the dynamics of the electron”,
published in 1905-1906. These outstanding papers by HcRi@n
have become a peculiar source from which ideas and methods
were drawn and then published without references to theoauth
When references to these articles were done, they alwaysdtad
ing to do with the essence. All those discovered and intredny
Poincaré, in articles [2; 3] can be easily found in one ortlheio
form in articles by other authors published later.
M. Planck wrote in article of 1906The relativity principle
and the general equations of mechanics”:

“The relativity principle suggested by Lorentz
and in more general formulation by Einstein means. . .”

But after all this is incorrect. The relativity principle wérst for-
mulated in general form by Poincaré, in 1904. Then M. Planck
derives equations of relativistic mechanics, but therenareefer-
ences to the Poincaré article [3], though the equationslafivis-
tic mechanics have been derived in it earlier. If ever M. Bkamas
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not been informed on the Poincaré work that time, he couket re
to it later. But such a reference to article [3] did not appeao
later. Articles by Poincarg, [2; 3] did not appear also ia ter-
man collection devoted to the theory of relativity. How omeiicl
explain all this?

B. Hoffmann (Proceedings of the 1979 Einstein Centennial-Sy
posium: Some Strangeness in the Proportion. Addison-Wesle
MA 1980. P. 111):

“I am wondering whether people would have dis-
covered the special theory of relativity without Ein-
stein. It is true that Poincdr had all the mathemat-
ics and somewhat more than Einstein had in his 1905
paper, but in Poinca&’s work there was always the
implication that there was a rest system - something
at rest in the ether — and so you get the impression
that Poincaé and any followers would have said, yes,
if something is moving relative to the ether, it is con-
tracted. But, of course, people who believe this would
think that our stationary rods were expanded, instead
of contracted, and Poincérwould have had one clock
going slower, but the other going faster. This reci-
procity was a very subtle point, and it is quite likely
that people might never have realized that it was a
reciprocal relationship”.

All this is inaccurate or follows from misunderstanding bét
SRT basics. First, the SRT has already been discovered hgdtéi
in articles [2; 3] according to the principle of relativitgrimulated
by Poincaré in 1904 for all physical phenomena. In accardan
with the principle of relativity physical equations are t@me in
all inertial reference systems. All inertial referenceteyss are
equitable, and so the existence of a rest system of refersrse
cluded. From this it follows that the reversibility is readd here.
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Second, Poincaré discovered the Lorentz group and theeages
of the inverse element follows from here, consequently,réie
versibility follows from existence of the group. Third, ing SRT
constructed by Poincaré really this fact — “the reversitdeaure of
this connection is a very subtle point” — is a trivial conseqce,
so writing “that people would never recognize this” is aremmtion
of the author to see the problem there where it is absent. dderg
it is absurdly to ascribe his own misunderstanding to Paénca

It is surprising to read a quotation from A. Einstein given by
G. Holton (Proceedings of the 1979 Einstein Centennial Symp
sium: Some Strangeness in the Proportion. Addison-Weslgy M
1980. P. 111):

“Einstein himself said that not Poincéror Lorentz
but Langevin might have developed the special theory
of relativity”.

If we trust G. Holton, then we see that A. Einstein without any
doubt thought that it was exclusively he who discovered fiee s
cial theory of relativity. Was it possible that he did notdehe
Poincaré papers [2; 3] where all the main content of theiapec
theory of relativity was given in the extremely definite amhgral
form? Therefore it is rather strange even such an appeartdnce
this statement from A. Einstein. But if we admit that A. Emist
really has not read Poincaré articles [2; 3] during nexy fiiars,
then this is also surprising. How this could be connected wie
“punctilious honesty of Einstein” as a scientist which igees-
sively described by G. Holton?

The suppression of Poincag articles [2; 3] continued all
the twentieth century. The opinion was created that the spe-
cial theory of relativity is created by A. Einstein alone. This
is written in textbooks, including those used at school, onor
graphs, in science popular books, in encyclopedia. Gerrhgsi{
cists as distinct from French physicists have made a lofoftsfin
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order to arrange the situation when A. Einstein alone wasiden
ered as the creator of the special theory of relativity, dnsl $ci-
entific achievement as a fruit of German science. But fotelga
“manuscripts do not burn”. Articles [2; 3] clearly demoradé&
the fundamental contribution by Poincaré to the discowgaf the
special theory of relativity. All the following done in thérection
are applications and developments of his ideas and methods.

In 1913, a collection of the works of Lorentz, Einstein and
Minkowski in the special relativity theory was publishedGer-
many. But the fundamental works by H. Poincaré were not in-
cluded in the collection. How this could be explained?

In 1911 the French physicist Paul Langevin published two ar-
ticles on the relativity theory:Evolution of the concept of space
and time”; “Time, space and causality in modern physics”.
But in these articles H. Poincaré is not even mentionetipatjh
they deal with the relativity principle, the Lorentz grougpace
and time, determined by the interval. In 1920 in the artigfe b
P. LangeviriThe historical development of the relativity prin-
ciple” H. Poincaré is also not mentioned. How could P. Langevin
do that?

In 1935 a collectioriThe relativity principle”, edited by pro-
fessors V. K. Frederix and D.D. Ivanenko was published, twhic
for the first time contained works in the relativity theoryLafrentz,
Poincaré, Einstein and Minkowski. However, the first wosk b
H. Poincaré;On the dynamics of the electron” happened not to
be included. And only in 1973, in the collectiémhe relativity
principle” (with an introductory article by corresponding member
of the USSR Academy of Sciences Professor D. . Blokhint$ey;
collection was compiled by Professor A. A. Tyapkin), the ksoof
H. Poincaré in relativity theory were presented most catgty,
which permitted many people to appreciate the decisiveritont
tion made by Poincaré in the creation of special relatithigory.
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Somewhat later, Academician V. A. Matveev and me decided to
rewrite the formulae in the articles by H. Poincd@n the dy-
namics of the electron” in modern notations, so as to facilitate
studying these articles.

In 1984, to the 130-th anniversary of H. Poincaré his atcl
“On the dynamics of the electron” together with comments were
published by the Publishing Department of the Joint Intitor
Nuclear Research (Dubna), and later, in 1987 they were shadddi
by the Publishing Department of the M.V. Lomonosov Moscow
State University.

Henri Poincaré is one of the most rare personalities in ike h
tory of science. A greatest mathematician, specialist ichage-
ics, theoretical physicist; his fundamental works haveadefost
brilliant imprint in many fields of modern science. He, more
possessed the rare gift of profound vision of science as dewho
In the beginning of the past century (1902-1912) severak$o0
by Poincaré were publishedScience and hypothesis”; “The
value of science”; “Science and method”; “Recent thoughts”.
Some of them were nearly at once translated into RussiarseThe
books are marvellous both in content and in the free, extreme
ly brilliant and illustrative manner of presentation. Thiegve
not become obsolete, and for everyone, who studies matiemat
physics, mechanics, philosophy, it would be extremely wlstef
become familiarized with them. Itis quite regretful that¥arious
reasons they were not republished for a long time. And onipgw
to the persistent efforts of Academician L. S.Pontryagaythave
been republished and become available to present-dayrseiade
Russia.

We also would like to note that some interesting books delvote
to various aspects and “non-orthodoxal” views of the histfithe
relativity theory were published recently in the West [12].
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10. The principle of stationary action in
electrodynamics

Many equations of theoretical physics are obtained frorireay
the functional, termed action, to achieve an extremum. i&arl
(Section 2), the principle of least action was applied in Inaexdics,
resulting in the Lagrange equations. We must in the casescf el
trodynamics, also, compose action so as to have its variaiith
respect to the fields leading to the Maxwell-Lorentz equmestio
Action is constructed with the aid of scalars composed offun
tions of the field and current. We introduce tensor of thetadec

magnetic field
_0A, 0A,
Fuy - ax“ - 81"/ 9 (101)

which by construction satisfies the equation

8F;w +8FW _'_aFCW
0x° oz ox”

that is equivalent to the Maxwell-Lorentz equations (8.2@Je
need further the two simplest invariants only

— 0, (10.2)

A,S”, F\,F. (10.3)

HereS” is the four-vector of current (8.9).
The sought action will have the form

C

S = 1/LdQ, (10.4)

L is the density of the Lagrangian function, equal to

1 1
L=—-——A,5" — —F,F", dQ = dz°dz*dz?dz®. (10.5)
c 167
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In seeking for the field equations we shall only vary the fiedd p
tentials in the action functional, considering the field rees .S
as given.

Then

1 1 1
68 = —— / {—S“&A,, + —F“&FAU} dY=0. (10.6)
c c 81
Since the variations commute with differentiation, we abta

0 0 0
Ao o oA
F (—axA 0A, — p 5A>\) = 2F —8x)\5A0. (20.7)

Substituting (10.7) into (10.6) we find

§S = —l/ lS”MV — iF"Ai(SAU dQ=0. (10.8)
c c 4 ox?

Integrating in the second term by parts and taking into actthat

the variations of potentials at the initial and final momesftsme

are zero, while the field vanishes at infinity, we obtain

oA
0SS = —i/ lS" + i . 8L 0A,d2 = 0. (10.9)
c c 47 Oz

Hence, owing to the arbitrarinessaf,, we find

OF°X A
= S (10.10)

Thus, our choice of density of the Lagrangian function (15
justified, since we have obtained exactly the second pairaofi|l-
Lorentz equations

. A7~ 1 OE .
rot =25+ —. 0_7 divE = 4rp. (10.11)
c c Ot
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One must bear in mind, that the choice of density of the Lagjean
function in the action functional is not unambiguous, hogreit is
readily verified that adding to the density of the Lagrandiarc-
tion an additional term in the form of the four-dimensionisedl-
gence of a vector does not influence the form of the field eqnati
The Maxwell-Lorentz equations (10.2), (10.10) are invatriaith
respect to gauge transformations of the potentials,

A=A, + a—f, (10.12)

ox°
heref is an arbitrary function.
The density of the Lagrangian (10.5) we have constructed is

not invariant under transformations (10.12). On the babth®
conservation law of current” (8.10), it only varies by a diver-

gence,

1 0

U=L—— =2(fs"), (10.13)

which has not effect on the field equations.

From the point of view of classical electrodynamics the pete
tial A” has no physical sense, since only the Lorentz force acts on
the charge, and it is expressed via the field strer@tlﬁ. How-
ever, in quantum mechanics this is no longer so. It turnsmbet
that the vector-potential does act on the electron in aicestaua-
tion. This is the Aharonov-Bohm effect. It was observed i6@Q9
The experiment was carried out as follows: a long narrowsnte
was used, the magnetic field outside the solenoid was zeve, ne
ertheless, the motion of electrons outside the solenoidimias
enced. The effect is explained by the solenoid violatingstheple
connectedness of space-time, which gave rise to the in#uehc
the potentiald”, as it should be in quantum gauge theory.

We shall now find the equations of motion for charged parti-
cles in an electromagnetic field. To obtain them it is neagssa
compose an action with a part related to the particles asd, tie
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already known to us part containing the field interactiorhvpiar-
ticles. Since for a particle having chargéhe following equations
are valid

. dxt
p=ed(F =), j' = e—0(F =), (10.14)
we have )
-5 [sade =L [Adr. o1y
C C

The action for a particle in an electromagnetic field is
S = —me / do — % / A, da”. (10.16)
Varying over the particle coordinates, we obtain
58 = — / (mcU,,déx” n %A,,d&x” + %6Al,dx”) —0. (10.17)

Integrating by parts in the first two terms and setting théatimms
of coordinates to zero at the ends, we obtain

5S = / <mch,,5x” n %dAuax” - %6/1,,0[9:”) — 0. (10.18)

With account of the obvious relations

04,
O

expression (10.18) assumes the form

o dUV e aAA aAV A v
55—/[mcdg _?(0xV — 8x/\>U}daéx =0,
(10.20)

04,

5 s, (10.19)

dA, dz?, 6A, =
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hence, due to arbitrariness of variatién” being arbitrary, we
have

ch@ = eF,\U", (10.21)
do
or s
mc? = eF"U,. (10.22)
do
In three-dimensional form (10.22) assumes the form
d 1 e =
t-e
d mu R
— | —— | =eE+—[V,H]. (10.24)
dt v2 c
==

Let us calculate the energy loss for an electron moving with a
celeration. In case of electron velocity small in comparismthe
velocity of light the radiation energy loss is given by thédwing
formula due to Larmor:

OFE  2¢% [di\?

In the system of reference where the electron is at restdhisifla

takes the form , )
OE  2e* (dv
—=—| = 10.26

ot 3c3 < dt ) o ( )
where acceleration is calculated in the given system ofeafe.

In the given system of reference the total momentum radiated
is zero due to the symmetry of radiation:

ot

0. (10.27)
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In order to find the formula for radiation energy loss of a dglear
with high velocity it is necessary to apply the Lorentz grpap-
cording to which it is easy to make the transition from ondesys

of reference to another. To do so we consider the accelaratio
four-vector, which is as follows according to (9.5)

,dU” auv
=C .

do dr
By means of this relation and also formulae (9.3) we get

oo (TATY L dT (e
a —7( ), a=- t+vcz (Udt . (10.29)

(10.28)

a =cC

Using (10.29) we find invariant
dine [0 do)?
02 _ (72 _ _ 6] (%Y _|Z “Y
()" — (@) {(dt> {c’ dt} } (10-30)

In the rest system of reference we have

diNz: [ @ do)? i\ 2
6 - J— - - — -
7 {<dt) {c’ dt} } (dt)o' (10.31)
Let us now write formulae (10.26) and (10.27) in the covdrian
form ) )
op”  2e* [(dv
_ - (= v, 10.32
or 3¢ (dt)OU (10.32)
Substituting now (10.31) into this relation we obtain
OE  2¢2  (sdvN: [¥ dv]?
~a =30 W) - [z’ ﬂ > (10-33)

_g_lj _ §576{<§>2 _ {% Z_ﬂz}, (10.34)
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Formula (10.33) has been derived first by Liénard in 1898.

The equations of motion (10.22) in an external electromagne
field do not account for the reaction of radiation. Thereftinese
equations are valid only for the motion of a charged particle
weak fields. In 1938 Dirac took into account the reactiondsrc
and this led to the equation

mc2dU = eF U, +
do
(10.35)
2, [Ur  (dU, dU"
+§€[dﬁ‘+U'<E;'E;)y

called the Dirac-Lorentz equation.

Let us apply these formulae to motion of an ultra-relatigist
charge with mass: in a strong constant uniform magnetic field
H. We admit that the circular charge motion is determined ley th
Lorentz force only. So we neglect by influence of the force of
reaction on the motion. Let us write equations (10.35) inftmen
of Egs. (9.12), (9.13):

d s (& L o~ —
—Hmy@) = = 6. + f (10.36)
2?2 |?U - (dU, dU*
fR_ﬁ' ?—FU‘(CZO"dU) ’ (10.37)
dE 2% |- d*U ., (dU, dU”
ak LEY . : 10.
dt 32 [ do? v < do do ) ’ (10.38)

whereF is the energy of the particle.
As in our approximation the equations of motion are the fol-
lowing

me. 80 _ €. [U*, F[] , (U*F[) —0, (10.39)
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it follows from here that

S\ 2
d H\?
vz (U} (BN e (10.40)
do mc?
. U eH\*
U~W__(m—02) U7, (10.41)
whereU is the length of vectot/. For ultra-relativistic particles
E
U~ —s. (10.42)
mc

As U? > 1 we can neglect first term (10.41) in comparison to
second one (10.40) in expression (10.38). In our approximat
we can also neglect by the following term

o\ 2
U2-<ﬂ) , (10.43)
do

in second term (10.38) due to its smallness in comparisoh wit
(10.40). Expression (10.38) after taking into account4@pand
(10.42) is as follows

dE 2 ‘H?E?
dt 3 mac?

With regard to the fact that for the motion of a charge ovetleir
of radiusR the following equation takes place

E
H=—; 10.45
— (10.45)

we can rewrite formula (10.44) in the following form

dE  2¢%c E\*
_%:W(@) , (10.46)

(10.44)
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If the energy of electrons and the value of the magnetic fiedd a
large enough, then energy losses for synchrotron radibBoome
rather substantial. Synchrotron radiation is widely usgiology
and medicine, in production of integral schemes an so orci&lpe
storage rings for generation of the intense X-rays are cocistd
(see more details in: Ya. P. Terletsky, Yu. P. Rybakélectrody-
namics”. Moscow: “Vysshaja Shkola”, 1980 (in Russian)).
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11. Inertial motion of a test body. Covariant
differentiation

In an arbitrary reference system the interval is known tcehthe
form
do? = v, (z)dx"dx", det(v,,) =~ < 0. (11.1)

The pseudo-Euclidean metg, is determined by expression (3.33).
Precisely for this metric the Riemannian curvature tensaero.
The action for a free moving point-like body of masshas the
form

S = —mec / do. (11.2)

Owing to the principle of stationary action, we have

0S = —mc/é(da) =0, (11.3)

§(do?) = 2dod(do) = (v (v)datda”) =

(11.4)
— DU 5Ny 4 9, a5 ()
= I rrdx"dx Y AT T ).
Since
d(dx") = d(dz"), (11.5)
from expression (11.4) we find
§(do) = L O g + v, Urd(02") (11.6)
2 Ox? m ’ '
here dot
gr =2 (11.7)

_E.
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Substituting (11.6) into (11.3) we obtain

— 1 a’ylw LTTV S0 A ud((;l'y) -
0S = —mc/ [5 B UrUYox" + v, U Io do = 0.
(11.8)
Since
d(ox") d d
n — B§aV\ _ St n
VU - da(%wU ox”) — dx da(%wU ),  (11.9)

then, with account of the variations at the boundary of tlggore
being zero, we find

1 U™
5S = —mc/ [— : 81“; U0 — Y

2 0 do
(11.10)

_ Ut

p dodxz® = 0.

We represent the last term in (11.10) as

07/0\ nyra 1 a’}/u)\ 8700\ LTTO
TRURU = <0x0‘ o U, (11.11)

With account of (11.11), expression (11.10) assumes time for
1 af}/‘u)\ 870{)\ 87;140( 1 8ge’
/[E <8x°‘ + oxH oxA Urus

v
do

(11.12)

YA ]daéx)‘ =0.

Since the factoréz* are arbitrary, we find

du* 1 (O0v; | Ve OV pru
.l — *=0. (1112
TGy T3 <3xa Ozt Oz* vt =0 (1113)
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Multiplying (11.13) by~y*”, we obtain

d v
A0 L pegepe — o, (11.14)
do H

herel’’, is the Christoffel symbol

F;l;a = %71»\(80/7“)\ + a,ufya)\ - 8)\7;104)' (1115)
We see that inertial motion of any test body, independeritiyso
mass, proceeds along the geodesic line, determined byieqguat
(11.14). It is absolutely evident that in arbitrary coomtigs the
geodesic lines could not be treated as direct lines, thiois ¢
firmed by nonlinear dependence of spatial coordinatgs= 1, 2,

3) on time variabler’. Motion along a geodesic line (11.14) in
Minkowski space is a free motioifhus, forces of inertia cannot
cause any deformation by themselves. Under their influence
free motion takes place. The situation changes, when thereea
forces of reaction, which counteract the forces of inertia.In

this case deformation is unavoidable In weightlessness, in a
satellite, deformation does not exist, because, owingeatavi-
tational field being homogeneous, in each element of thenvelu
of a body compensation of the force of gravity by the forces of
inertia takes place. The forces of gravity and the forceseftia
are volume forces.

Physical forces are four-vectors in Minkowski space. Bt th
forces of inertia are not, since they can be rendered equarto
by transition to an inertial reference system in Minkowglace.

Now we shall dwell upon the issue of covariant differentati
In Cartesian coordinates' ordinary differentiation, for example,
of a vectorA” results in a tensor quantity

0A”
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with respect to linear transformations. In arbitrary cooates;*
this property is not conserved, and, therefore, the quentit /9y*
will no longer be a tensor.

It is necessary to introduce the covariant derivative, Wwhvdl
provide for differentiation of a tensor yielding a tens@aan. This
will permit us to easily render covariant any physical egpre.
Covariance is not a physical, but a mathematical, requiremet.

Earlier (see 6.13) we saw that of two vecte¥s B, it is pos-
sible to construct an invariant

A”(2)B, (). (11.17)
We shall consider an invariant of a particular form
Ax(2)U(z), (11.18)
where
o = 4 (11.19)
do

fulfils Eq. (11.14).
Differentiating (11.18) with respect tdo, we also obtain an
invariant (a scalar)

d a dAN au”
d—U(AAU )= d—aU + A, T
Substituting expression (11.14) into the right-hand paetfind
d A _aAA arTA v arTA H
da(AAU )= 8xaU Ur—TYUU A, li.e.
d A\ aA}\ v arTA
%(AAU ) = <% FMAV) Ucu". (11.20)

Since (11.20) is an invariant]* is a vector, hence it follows that

the quantity
0A\

oz

- FSAAV
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is a covariant tensor of the second rankA .,

DAy 0A,
o Oz
Here and further the semicolon denotes covariant diffeatan.

Thus, we have defined the covariant derivative of the comtiria
vector A,. Now, we shall define the covariant derivative of the
contravariant vectod”. To this end we write the same invariant
as

Apa = — TV A, (11.21)

d 0AH

do_ (AMUVVMV) = a—UVU)\’y/u/_‘_
dU” N
A e+ AU S

Substituting expression (11.14) into the right-hand peetpb-
tain
d v
%(AVU ) -
(11.22)

DA M| o0
= g — A a5+ AN UVU

Taking into account definition (11.15) we find

1
Aua)\%w - Au%wcrl%\ - —A”(aw;w + a/l’yl/)\ V’V/D\) (11 23)
2

Substituting this expression into (11.22), and applyingregsion
U,y*, instead ofU”, we obtain

%(A,,U") = {gAA + I AA“} U, (11.24)

Since (11.24) is an invariant (a scalar), aiidis a vector, from
(11.24) it follows that the first factor in the right-hand p& a
tensor.



162 11. Inertial motion of a test body. Covariant differation

Hence it follows,that the covariant derivative of the con-
travariant vector AY is

DAY QA%

’ oxA ox

Making use of formulae (11.21) and (11.25) one can also nbtai
covariant derivatives of a tensor of the second rank.

+ AR, (11.25)

0A,, o o
Auy;)\ — a—a;;\ - F)\},LAO”/ - F)\VAH/O” (1126)
OAM
AR = s F T A + A, (11.27)
v 8AV A AV VAN
Ay = 2 = A+ THA. (11.28)

We see, that the rules established for (11.21) and (11.25qa
plied independently for each index of the tensor. Precisetiiis
way, one can obtain the covariant derivative of a tensor @f an
rank.

With the aid of expression (11.26) it is easy to show that the
covariant derivative of a metric tensor is zero,

Yuvip = 0. (1129)

Applying the technique of covariant differentiation, orenaead-
ily write the equations of relativistic mechanics and ofcéledy-
namics in arbitrary coordinates of Minkowski space.

Thus, substituting the covariant derivative for the ordynane
in (9.5) we find the equation of relativistic mechanics initny
coordinates

, DU _
do

mc

d v
mec? (% + FZAU“UA) = F", (11.30)
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here
1
;ZA = Eryyp(a,uf)ﬂp + a)ﬁ/up - ap”V,uA)' (1131)

In a similar way, it is also possible to write the Maxwell-leoitz
equations in arbitrary coordinates. To this end, it is neagsto
substitute covariant derivatives for ordinary derivasiie equa-
tions (8.24) and (8.27),

DyFyy + DyFyy + Dy Fy, =0, (11.32)

D,F* = —4—7TS“. (11.33)
C
One can readily verify, that the following equalities hoklid:

F,, = D,A, — D,A, = 9,A, — 0,A,, (11.34)

DyF,, +D,F,; + D,F,, = 0,F,, + 0,F,, + 0,F,,. (11.35)

On the basis of (11.31) we find

1
Ity = 5700 (11.36)

But, since the following equalities hold valid:

1 0Oy Y ov/—y 1 Y
7 Coph VPO pus By = 5\/_—77u ) (11.37)
nv

[herey = det(y,,) < 0], we obtain

oL 5 = 0,Inv/=7. (11.38)

v 27'@
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Making use of (11.27), we find
D,F" = 9,F" 4 [* Fov 4 [V FHe, (11.39)

The second term in (11.39) equals zero, owing to the teAssr
being antisymmetric. On the basis of (11.38), expressiar3d)
can be written as

Dy(V— F*) = 0,(V—7 F*"). (11.40)
Thus, equation (11.33) assumes the form
b
V=
The equations of motion of charged particles can be obtained

by substituting covariant derivatives for the ordinaryidggatives in
(10.22)

3, (/= F™) = —4%5#. (11.41)

v

D
mc? u = eF"U,. (11.42)
do

Thus, we have established that transition in Minkowski spac
from Galilean coordinates in an inertial reference systemrbi-
trary coordinates is a simple mathematical procedure Magant
differentiation has been defined.

The property of covariance of the equations has nothing to
do with the relativity principle. This has long ago been clai-
fied by V. A. Fock [13].

Therefore, no “general relativity principle”, as a physical
principle, exists.
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12. Relativistic motion with constant acceleration.
The clock paradox. Sagnac effect

Relativistic motion with constant acceleration is a motiorder
the influence of a forcg, that is constant in value and direction.

According to (9.12) we have

d i} i
i ! Sz (12.1)
dt 2 m
t-a
Integrating equation (12.1) over time, we obtain
= at + vp. (12.2)
’U2

1— —

C2
Setting the constani, to zero, which corresponds to zero initial

velocity, we find after squaring

1 22
y=1+"- (12.3)
v C
-z
Taking into account this expression in (12.2), we obtain
dr at
g="= 4 (12.4)
dt a2t?
I+ =
C

Integrating this equation, we find
ac? a’t?
F=70+— \/1+—2—1]. (12.5)
a C
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Since the intervals is

rU2
ds = cdty/1 — — (12.6)

9
02

the proper timelr for a moving test body is

d 2
dr == —dnf1- =, (12.7)
C C

Taking account of (12.3), from equation (12.7) we find thaltot
proper timer

t 2¢2
T:t0+£1n a—+ 1+—a2 ] (12.8)
a c c

From this formula it follows that, as timeincreases in an iner-
tial reference system, the proper time for a moving body flows
slowly, according to a logarithmic law. We considered theioro

of a body with acceleratiod with respect to an inertial reference
system in Galilean coordinates.

Now consider a reference system moving with constant acce-
leration. Let the inertial and moving reference systemsehzor
ordinate axes oriented in the same way, and let one of them be
moving with respect to the other along theaxis. Then, if one
considers their origins to have coincided at 0, from expression
(12.5) one obtains the law of motion of the origin of the refere
system moving relativistically with constant accelerafio

242
,/1+%—1]. (12.9)
C

Therefore, the formula for coordinate transformation, whan-
sition is performed from the inertial reference systef 7') to

2

c
Ty = —
a
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the reference systerfx, t) moving relativistically with constant
acceleration, will have the form

02

r=X—-2g=X——
a

a?T?

c? -1

1+

. (12.10)

The transformation of time can be set arbitrarily. Let ithe same
in both reference systems

t=T. (12.11)

In the case of transformations (12.10) and (12.11) thevatelr
assumes the form

2dt? 2at dtd
d0” = =y — - —da* —dY? —dZ*. (1212)
a a“t
1 ot
+— L=

We shall now proceed to deal with the “clock paradox”

Consider two reference systems. If two observers, who are in
these reference systems, compared their clocks at mameitx,
and then departed from each other, and after some perioohef ti
they again met at one point in space, what time will their k$oc
show? The answer to this question is the solution of the #eeta
“clock paradox”. However, two observers, who are in diffare
inertial reference systems, after they have compared thmks
at one and the same point of space, will never be able to meet in
the future at any other point of space, because to do so, €t lea
one of them would have to interrupt his inertial motion and fo
some time go over to a non-inertial reference system. Imstie
literature, and in textbooks, as well, it is often writterathhe
answer to this question cannot be given within the framevadrk
special relativity theory.
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This is, naturally, wrong, the issue is resolved precisethivw
the framework of special relativity theory. The point istthefe-
rence systems moving with acceleration in pseudo-Eudiidea
ometry, contrary to A. Einstein’s point of view, have nothiio do
with the gravitational field, and for this reason generaatieity
theory is not required for explaining the “clock paradox”.

Let usillustrate this statement by a concrete computagoip-
pose we have two identical (ideal) clocks at one and the sameé p
of an inertial reference system. Consider their readingsitacide
at the initial moment” = 0. Let one of these clocks always be at
rest at the initial point and, thus, be inertial. Under tHiuence of
an applied force, at moment= 0, the other clock starts to move
relativistically with a constant acceleratiaralong ther axis, and
continues moving thus till the moment of time= 77, shown by
the clock at rest. Further, the influence of the force on ticerse
clock ceases, and during the time inter¥al < ¢t < T} + Ty it
moves with constant velocity. After that a deceleratingéors
applied to it, and under the influence of this force it startssm
ing relativistically with constant acceleratiern and continues to
move thus till the moment of time = 27 + 75, as a result of
which its velocity with respect to the first clock turns zefidhen,
the entire cycle is reversed, and the second clock arrivéiseat
same point, at which the first clock is.

We shall calculate the difference in the readings of theseksl
in the inertial reference system, in which the first clocktisesst.
By virtue of the symmetry of the problem (four segments of mo-
tion with constant acceleration and two segments of unifierct-
linear motion), the reading of the clock at rest, by the maonties
two clocks meet, will be

T = AT, + 2Ts. (12.13)
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For the second clock
T' = 4T} + 2Ty, (12.14)

HereT] is the time interval between the moment when the second
clock started to accelerate and the moment when the actietera
ceased, measured by the moving clo@K. is the interval of the
second clock’s proper time between the first and secondexecel
tions, during which second clock’s motion is uniform anditec
ear.

In an inertial reference system, the interval for a movingybo

ds = cdt\/i (12.15)
T
/ V11— (12.16)
0

On the basis of (12.3) we obtain

is

Therefore

T d
= / _a ) (12.17)
/ a’t?
0 1+ —02
Hence we find
aT 272
T{:£1n< 2y 1+a21>. (12.18)
a C C

The motion of the second clock during the interval of time

T <t<Ti+1T,
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due to Eq. (12.4) proceeds with the velocity

T
= (12.19)

2T2’
\/1+a21
c

and, therefore, in accordance with (12.15) we obtain
T
T = ——2 . (12.20)
a*T?
1+ —

C

Consequently, by the moment the two clocks meet the reading o
the second clock will be

4 T 2772 2T
T/:_01n<2+ 1+ 1>+ . (12.21)
a
1

¢ c? a’T?
+ - -

02
Subtracting (12.13) from (12.21), we find

22
AT:T’—T:@m(a—Tw T )-
a C

c2

(12.22)

1
—AT + 2T | —/—=—1

a?T?
14+ —

C

It can be verified that for any > 0,7} > 0,7, > 0 the quantity
AT is negative. This means that at the moment the clocks meet
the reading of the second clock will be less than the readitigeo
first clock.

Now consider the same process in the reference system, where
the second clock is always at rest. This reference systeratis n
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inertial, since part of the time the second clock moves witbra
stant acceleration with respect to the inertial refererysgesn re-
lated to the first clock, while the remaining part of time itetion
is uniform. At the first stage the second clock moves with tamts
acceleration, according to the law (12.9)

a?t?
1+ ——1].
c

Therefore, at this segment of the journey, the interval ertbhn-
inertial reference system, according to (12.12) has tha for

02
To = —
a

2dt? 2at dxdt

do? — A 2atdvdt o gy gz (12.23)
1+ a’t” a’t
c? e

In this reference system the second clock is at rest at poinD,

while the first clock moves along the geodesic line deterchine

Egs. (11.14)
auv
do

Of these four equations only three are independent, sirecéoth
lowing relation is always valid:

+I,U°U° =0, v=0,1,23. (12.24)

dx¥
do’

’}/MVUMUV - ]., U" = (1225)

From expression (12.23) we find
1 at

Yoo = W; Yo1 = _W7
2 C 1—0—7

From Eq. (12.26) and the following equation

,}/W.%)\ — 5;"
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we find

T e T P
C 1+? 02

By means of these formulae and also Egs. (11.31) and (12.i6) i
easy to see that there is only one nonzero Christoffel symbol

0 _ q 01 at 11 1

We do not have to resolve equation (12.24), we shall only take
advantage of relation (12.25)

Yoo(U")? + 290 U°U" — (U')? = 1. (12.27)

Taking into account (12.26), from equation (12.27) we fincaa p
tial solution
t
U= ————, U'=1, (12.28)
t
& 1 + ?
which as easy to check satisfies also Eqgs. (12.24). Fromg)L&.2

follows il
T at
e h— 12.29
dt a2t2 ( )

Resolving this equation with the initial conditiong0) = 0,
%(0) = 0, we obtain

[\

a c?

242
g=2 [1— 1+ﬂ]. (12.30)
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Thus, we have everything necessary for determining the rea-
dings of both clocks by the final moment of the first stage inrthe
motion. The proper timér of the first clock at this stage of mo-
tion, by virtue of (12.29), coincides with the tird&’ of the inertial

reference system
dr = ds =dT, (12.31)
C
therefore, by the end of this stage of the journey the readirag

the first clock will beT;
T = T1~ (1232)

Since the second clock is at rest with respect to the nortiahesf-
erence system, its proper time can be determined from esipres

dr' = /oo dt. (12.33)

Since the first stage of the journey occupies the intérvalt < T;
of inertial time, then at the end of this segment the readingf
the second clock will be

a®T?

T
c aT;
T{Z/\/%odtZEIH [71+ L+
0

(12.34)

At the end of the first stage of the journey, upon reaching the v
locity

p= (12.35)

the action of the accelerating force ceases, this mean#ae-
ference system related to the second clock will be inerfide
interval in this reference system, in accordance with @Rvall,
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by the momen{i, have the form

2

do? = ¢ <1 - “—2) dt? — 2udadt — da? — dY? — dZ2, (12.36)
C

here

T
=L (12.37)

2T2'
\/1+a21
c

Taking advantage, for the metric (12.36), of the identity

Y UPUY =1, U = dr” (12.38)
do
we find .
X
Taking into account (12.39) in (12.36), we obtain
dr = do = dt, (12.40)

Cc

I. e. the time, shown by the first clock at this stage, coineidih
the timeTs;

Ty = T>. (12.41)
Since the second clock is at rest, its reading of its propee ts
dr’ = /Y00 dt. (12.42)
Hence follows
T +T>
’ T2
7‘2 = \/%dt - 72 5 . (1243)
a”T5
T 1+
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Owing to the symmetry of the problem, the information ob-
tained is sufficient for determining the readings of the k#oat
the moment they meet. Indeed, the reading of the first cigck
determined in the reference system, related to the seconk, ¢s

T = 47'1 + 27'2, (1244)
which on the basis of (12.32) and (12.41) gives

7= AT, + 2Ts. (12.45)

The reading of the second cloek determined in the same refer-
ence system, where the second clock is at rest, is

7' = 47| + 275, (12.46)
which on the basis of (13.34) and (13.43) gives

4c

2772

, aTy a1y
7 =—In
a

— +4/1+

; = (12.47)

Subtracting from (12.47) expression (12.45), we obtain

AT:T/—T:gln
a

T 272
YA R
C C

(12.48)
1

2 2_1
a“T:
\1+—+
C

Comparing (12.22) and (12.48) we see, that the computagon p
formed in the inertial reference system, where the firsticleat

—4T) + 2T,
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rest, yields the same result as the computation performeiein
non-inertial reference system related to the second clock.
Thus,
AT = AT <0. (12.49)

Hence it follows that no paradox exists, since the refersgstem
related to the first clock is inertial, while the referencstsyn, in
which the second clock is at rest, is non-inertial.

Precisely for this reason, the slowing down of the seconckglo
as compared to the first clock, is an absolute effect and dotes n
depend on the choice of reference system, in which this tefec
computed.

The arguments concerning the relativity of motion, whicheve
used previously, in this case cannot be applied, since theerece
systems are not equitable. Qualitatively, the slowing doithe
second clock, as compared to the first, can be explained as fol
lows. It is known, that in arbitrary coordinates the free oot
of a test body proceeds along a geodesic line, i.e. the eatrem
line, which in pseudo-Euclidean space is the maximum digtan
between two points, if on the entire line, joining these paithe
quantitydo? is positive. In the case, when we choose an inertial
reference system in Galilean coordinates, related to thiecfmck,
this means that the first clock describes a geodesic linde\ie
second clock, owing to the influence of the force, moves akng
line differing from the geodesic, and, therefore, slows dowhe
same happens, also, when the reference system is relatkd to t
second clock. In the case of transition to this referencéesys
the interval somewhat changes its form. In this case thectiosk
again describes a geodesic line in an altered metric, whalaséc-
ond clock is at rest, and, consequently, do not describe degto
line and, therefore, slow down.

We have considered the influence of accelerated motion on the
readings of clocks and have showed their slowing down. Bat th
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effect concerns not only clocks, but all physical, or, to baren
general, all natural phenomena. On this basis, interstiéihgts
become fantastically fascinating. Back in 1911, Paul Lairge
discussed in an articlé [L4] the voyage of a human being &t hig
velocities, close to the velocity of light, subsequentlyraing to
the Earth. In principle, this is possible, but it still remsionly a
fantasy.

Let us now pay attention to the Sagnac effect (see more dletalil
in: Uspekhi Fiz. Nauk. 1988. \Vol. 156, issue 1, pp. 137-148. |
collaboration withYu. V. Chugreev As is well known, the Sagnac
effect in line with the Michelson experiment is one of theibas
experiments of the theory of relativity. But till now it is psible
to read incorrect explanations of this effect with the helpignals
propagating faster than light or with the help of generatreity
(see in more detail below). So we consider it as necessatietsss
once more purely special relativistic nature of Sagnaceffe

Let us at first describe the Sagnac experiment. There are mir-
rors situated at the angles of a quadrangle on a disk. The an-
gles of their reciprocal disposition are such that the beam fa
monochromatic source after reflections over these mirrass¢s
a closed circle and returns to the source. With the help ofra-se
transparent plate it is possible to divide the beam comiogfr
a source into two beams moving in opposite directions ovier th

closed circle.
Sagnac has discovered that if the disk is subjected to ootati

then the beam with the direction of its round coinciding vittle
direction of rotation will come back to the source later thihe
beam with opposite round, resulting in a shift of the intexfece
picture on the photographic plate. After interchangingdirec-

tion of rotation the interference bands shift in oppositection.

What explanation was given to this effect? Sagnac himself

has obtained a theoretical value for the magnitude of theceff
by purely classical addition of the light velocity with thaear
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velocity of rotation for the beam moving oppositely to ratatand
corresponding subtraction for the beam moving in the doaatf
rotation. The discrepancy of this result with the experitneas
of percent order.

This explanation of the experimental results remainedr late
more or less invariable or even became obscure. As a typieal e
ample we present a related quotation from “Optics” by A. S@nm
feld:

“The negative result of Michelson’s experiment
has, of course, no bearing on the problem of the prop-
agation of light inrotating media. To discuss this
problem one must use not the special but rather the
general theory of relativity with its additional terms
which correspond to the mechanical centrifugal cen-
trifugal forces. However, in view of the fact that in
the following experimentdy Sagnac and others—
A.L.) only velocitiesy < ¢ occur and only first order
effects inv/c are important, relativity theory can be
dispensed with entirely and the computations can be
carried out classically”.

We will see below that the explanation of the Sagnac effect
lies in full competence of the special theory of relativitydanei-
ther general theory of relativity nor super-luminal vetas are
not required as well as any other additional postulates. \ile w
consider in detail how to calculate the time difference lestwar-
rivals of the two beams to the source in the inertial restesyisbf
reference. We will also do that in the rotating with the dislon
inertial reference system. The results of calculationsamincide
as should be expected. For simplicity of calculations wé eaih-
sider the motion of light in a light guide over circular trejery
which corresponds to the case of infinite number of mirrothén
Sagnac experiment.
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We begin with the case of inertial system of reference. Let us
express the interval in cylindrical coordinates:

ds? = Adt* — dr? — r?d¢* — d2*. (12.50)

Let as it has been told before light beams move in plane 0
over circle of radius = ry = const. The interval is exactly equal
to zero for light, so we obtain the following

d¢i(t) C

=+—. 12.51
dt To ( )

The beam moving in the direction of rotation is marked by inde
“+”, and the beam moving in opposite direction is marked by.*
With account for the initial conditions, (0) = 0, ¢_(0) = 27
we find the law of angle.. dependence of the two beams on time
t
C
¢+(t) - %ta
(12.52)
C

The beams will meet at timeg, wheno, (t1) = ¢_(t;). Substitut-
ing (12.52) we obtain

¢4 (t1) = o—(t1) = 7.

Then taking time; as the initial time and repeating our argu-
mentation we will find that the next meeting of beams will take
place just at that spatial point where they have been emitted
at point with coordinateg = 0,r = rq, z = 0.

We emphasize that this result does not depend on the angular
velocity of rotation of the system of reference which is tlestr
system for the source and mirrors.
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The law of dependence of the angular coordinate of the source
by definition is as follows (for initial conditiom,(0) = 0):

Ps(t) = wt. (12.53)

Therefore, the meeting of the source with “+”-beam will take
place at time moment, determined by conditiors(t,) =

Oy (ty) —2m, i e. )
™
ty = (o) =" (12.54)
and with “—"-beam — at time momerit. determined by condition
¢s(t-) = o-(t-): )
m
t_ = T (12.55)
It may seem from the form of Egs. (12.54), (12.55) that the ve-
locity of light is here anisotropic and is different froen But this
is incorrect. The light velocity is the same for both beamd in
is equal toc, and the different time of return to the source is ex-
plained by the fact that the source has moved over some destan
during the time of beams propagation (“+”-beam has tradedieer
larger distance).
Let us now find the interval of proper time between arrivals of
the two beams for an observer sitting on the source. By diefmit

itis equal to
s(t4

) by
1 1 [d
A== / ds — —/—Sdt, (12.56)
c c dt
s(t=) i

wheres is the interval. As a value of interval after using (12.53)
we get

2,2
ds* = Adi* — 13d¢? = Fdf? (1 - ) ,
C
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wherew?r2/c? < 1.
Substituting this into Eq. (12.56) we will find exact value of
the Sagnac effeét

r2w? 1/2 47or?
A=(1-"") (t, -t )= 0 . (12.57
(155 ) ) = g 4257

Let us note that in deriving Eq. (12.57) we used only absolute
concepts of events of beams meeting (with each other and with
the source), and not the concept of the light velocity redato the
rotating reference system.

Let us consider now the same physical process of propagation
of beams over circle towards each other in rotating with gargu
velocityw non-inertial system of reference. In order to find out the
form of interval in this system we will make a coordinate sfam-
mation:

(bnew = Qbold - Wtold;
tnew = told, (1258)
Tnew = Told,

Znew = Zold-

In new coordinates, ..., Tnew, Prews Znew We Obtain (after lowing
index “new” for simplicity) interval in the following form

2,.2 2
ds? = (1 - ﬂ) 2 — 2 dsedt —
C

2
(12.59)
—dr? — r?d¢? — d2*.
61n calculation for the realistic Sagnac effect, when thbtligeam trajectory

is a polygonal line, it is necessary to take into account trerdfuge deforma-
tion due to centrifugal forces.
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Let us note that timein this expression is the coordinate time for
the rotating system of reference.

After accounting for initial conditiong (0) = 0, ¢_(0) = 27
we get:

o) = = (1-22).
(12.60)
ct wr
6-(t) = 2m — (1+7°).

the first meeting of beams will happen at timewheng, (t1) =
¢_(t1), i.e. when angular variable will be equal to =

7[1 — (wro/c)]. After analogous reasoning we conclude that the
second meeting of beams will happen “at angle”

by = 2 (1 . ﬂ) , (12.61)
C
i.e. at angular distanc®rrgw/c from the source. The dependence
of source angular coordinate is trivia) = const = 0.
The moment of coordinate time corresponding to meeting
of “+”-beam with the source could be found, as before, frota-re

tion ¢, (1) =0 = ¢4 (1) — 2m

P (12.62)

c—wry

and similarly we find momert_:

b= 27’("/“0
T c4wry

(12.63)

The proper time interval between two events of coming the
beams into the point where the source is disposed can bdaiaidu
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with the help of definition (12.56) and interval (12.59):

-t - () -

47Tw7"0
= ([

i.e. we come to the same expression (12.57).

Therefore we demonstrated that for explanation of the Sagna
effect one does not need neither modify the special theorglof
ativity, nor use super-luminal velocities, nor apply to teneral
theory of relativity. On only has to strictly follow the spatthe-
ory of relativity.
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13. Concerning the limiting velocity

The interval for pseudo-Euclidean geometry, in arbitraxgrdina-
tes, has, in accordance with (3.32) and (3.33) the followegeral
form:

do® = 7, (z)dr"dz”, v = det(7,,) < 0. (13.1)
The metric tensof,,, equals
3
O Of"
WHA(J‘,) = € Ok ’ o™’ e = (17 -1,—1, _1) (132)
v=0

Here f are four arbitrary continuous functions with continuous
derivatives, that relate Galilean coordinates with thétimty 2.

Depending on the sign @k-2, events can be identified as time-
like

do® > 0, (13.3)
space-like

do? < 0, (13.4)
and isotropic

do? = 0. (13.5)

Such a division of intervals is absolute, it does not depanthe
choice of reference system.
For a time-like intervatio? > 0 there always exists an inertial
reference system, in which it is only determined by time
do® = 2dT”.

For a space-like intervalo? < 0 there can always be found an
inertial reference system, in which it is determined by tiséeshce
between infinitesimally close points

do? = —d?, dt* = dz® + dy? + dz%.
These assertions are also valid in the case of a finite ifterva
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Any two events, related to a given body, are described by a
time-like interval. An isotropic interval corresponds tdfield
without rest mass. Let us see, what conclusions result fram a
isotropic interval

Y dr'dz” = yoo(dz®)? + 270;dx’dx’ + vy dr'dx® = 0. (13.6)

We single out in (14.6) the time-like part

dri 12 ; ‘
& | /Ao dt + 2 } — [—%H gt 70’“} dz'dz® = 0. (13.7)
C

1/ 00 Yoo
The quantity
Yoida 1 (Voxdx)‘)
dT = /Yoo dt + = — 13.8
oo Cy/7V00 C 1/ 700 ( )

is to be considered as physical time, which, as we shall dearbe
is independent of the choice of time variable. In the geneaiab
(non-inertial reference systems) the quantityis not a total dif-
ferential, since the following conditions will not be séiesl:

0 10 [
8332‘(\/700) - c Ot ( ,—700) )

(13.9)

i( Toi ) _ 9 < ok )
Ok v/ Y00 ox' v/ Y00 .
The second term in (13.7) is nothing, but the square distaaee

tween two infinitesimally close points tifree-dimensional space
which is independent of the choice of coordinates in thi€spa

dl? = ypdrida®, (13.10)
here the metric tensor of three-dimensional spage.is

Xik = — ik + 200k (13.11)
“Yoo
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With account of (13.8) and (13.10), from expression (13.&¥iwd

e
dr
The quantitiesl/ anddr are of local character. In this case the

concept of simultaneitylosessensefor events at different sites,
because it is impossible ®ynchronize clockswith the aid of a
light signal, since it depends on the synchronization p&itom
(13.12) it follows, that the field at each point of Minkowskiexe,
in accordance with the local characteristicsdé6fanddr, have a
velocity equal to the electrodynamic constantThis is the limi-
ting velocity, that is not achievable for particles with tresass,
since for them

c. (13.12)

do? > 0.

This inequality is the causality condition. The causalitinpiple

is not contained in the Maxwell-Lorentz equations. It is ovpd
as a natural complementary condition. In 1909 H. Minkowski f
mulated it as the principal axiom as follows:

“ A substance, found at any world point, given the
appropriate definition of space and tim@. e. given
the corresponding choice of reference system in Min-
kowski space— A.L.) can be considered to be at rest.
The axiom expresses the idea, that at each world point
the expression

Adt* — da? — dy? — d2?

is always positive or, in other words, that any velocity
v is always less than”.

H. Poincaré has demonstrated the deep physical meanihg of t
limiting velocity in his article [1] published in 1904 everfore
his fundamental works [2; 3]. He wrote:
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< If all these results would be confirmed there will
arise an absolutely new mechanics. It will be charac-
terized mainly by the fact that neither velocity could
exceed the velocity of lightas the temperature could
not drop below the absolute zero. Also no any ob-
servable velocity could exceed the light velocity for
any observer performing a translational motion but
not suspecting about it. There would be a contradic-
tion here if we will not remember that this observer
uses another clock than the observer at rest. Really
he uses the clock showing “the local timg”.

Just these thoughts by H. Poincaré and his principle ofivela
ity were reported by him in a talk given at The Congress of Ad a
Science in Sent-Louis (in September of 1904) and they fonei t
realization in articles [2; 3]. They underlie the work by AnEtein
of 1905.

Signal from one object to another can only be transferred by
means of a material substance; from the aforementioned|gas,
that c is themaximum velocity for transferring interaction or
information. Since particles, corresponding to the electromag-
netic field, — photons — are usually considered to be massless
the quantityc is identified with the velocity of light. The existence
of a maximum velocity is a direct consequence of the pseudo-
Euclidean geometry of space-time.

If we choose the functiorf” in (13.2) by a special way as
follows

Foa), fiah), (13.13)

then, owing such transformation, we do not leave the inedfa-
rence system.

’Because bodies would oppose to the forces trying to acdeltrair motion
by means of the increasing inertia, and this inertia woulddrae infinite in
approaching the velocity of light.
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In this case the metric tensqy,,, in accordance with (13.2)
and (13.13), assumes the form

2
B B afo 8f0
Yoo = <—8x0) y o Yo = FIOMEWE (13.14)

B afo 8f0 3 afé afé
Tk = ozt Bk — O’ OrF (13.15)

Substituting the values for the metric coefficients, o, from
(13.14) into (13.8) we obtain, with account for (3.30) and.(B),

1 0 1 1

dr = - (af dx”) = —df’ = ~dXx°. (13.16)
c \ Or” c c

We see, that proper time, in this case, is a total differérgiace

our reference system is inertial. Substituting (13.14) @&i15)

into (13.11), we obtain

3
M LGt Ga (13.17)
Hence, with account for (3.30) and (13.13), we find
3 3
A = xpdaida® = (df")? = (dX™)%. (13.18)
n=1 n=1

In an inertial reference system, ambiguity exists in ther€oo
dinate description of Minkowski space, depending on thaagho
of functions (13.13). This is the reason for arbitraringsadopt-
ing anagreementconcerning simultaneity at different points of
space. All such agreements are conventional. Howeveathis-
guity and, consequently, the arbitrariness in reachingya@eanent
do not influence the physical quantities. Eqgs. (13.16) agdL@)
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show that in an inertial reference system the physical diesof
time (13.8) and distance (13.10) do not depend on the chdice o
agreement concerning simultaneity. Let me clarify. In falae
(13.16) and (13.18), given any choice of functions (13.13re
only ariseGalilean coordinates X°, X™ of Minkowski space,
that correspond to the invariant (3.22). This is precisehaiv
removes, in the physical quantities of time (13.8) and dista
(13.10), arbitrariness in the choice of a conventional agent
concerning simultaneity. Moreover, no physical quargitan, in
principle, depend on the choice of this agreement on simeitya
And if someone has written, or writes, the opposite, thiy tedti-
fies to that person’®comprehensionof the essence of relativity
theory. One must distinguish between coordinate quasitérel
physical quantities. For details concerning this issuaskd6].

Let us demonstrate a particular special example of the simul
taneity convention. Let the synchronization of clocks ifiedtent
spatial points is provided by the light signal having vetpei, in
the direction parallel to the positive semi-aXs and having ve-
locity c» in the direction of the negative semi-ax}s. Then the
signal sent from poinA at the moment of time, will arrive to
point B at timetz which is given as follows

X
tp=ts—+ CAB. (M)
1

The reflected signal will arrive at point at timet’,

X
t=tp+ 22
(&)

After substituting into this expression valtig, determined by for-
mula M) we get

1 1
tiq_tA:XAB <—+—)

&1 C2
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From here it follows

Applying this expression to EqM) we find

C2

tg =ts+ (t'y —ta).

c1 + Co
So we come to the synchronization proposed by Reichenbaeh (s
his book: ‘The philosophy of space & time”. Dover Publica-
tions, Inc. New York. 1958, p. 127):

tg=ta+e(ty—ta), 0<e<l.

The conditional convention on the synchronization of ckck
and therefore on simultaneity at different spatial poirdsepted
by us corresponds to the choice of interval in inertial refee
system in the following form:

do? = (dx°)? — deodx—
&, (K)
———(dz)* — (dy)* — (d=z)”.
() — (dy)? — (d2)
Here we deal with coordinate tinte= z°/c and other coordinate
values.
Metric coefficients of intervalK) are as follows:

c(co — 1)

Yoo = 17 Yo1 = — 21 c )

02 162 ([J
m=—-—— Y2=-1 ms=-L

C1C2
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With the help of Egs. (13.14), (13.15), and aldo), we obtain
transformation functions (13.13) for our case:

2 C1C2
flox = xc(cl + ¢o)
20162

P=Y=y f=z=:

Deriving from the above the inverse transformation funciccal-
culating with them differentialgz®, dz and then substituting them
into (K), we find

do? = (dX°)? — (dX)?* — (dY)* — (dZ)*. (H)

Therefore,the physical time dr in our example is given as fol-
lows:
dr—dt— .20

2 C1C2 ’
dX° = cdr,

and it does not depend on the choice of functions (13.13juser
it is completely determined by intervaHj only. Any change in
coordinate values like (13.13) leads only to changing ofcitwe-
nection betweethe physical timeand coordinate values.

To any conditional convention on the simultaneity therd wil
correspond a definite choice of the coordinate system inetiah
system of reference of the Minkowski space. Therefareon-
ditional convention on the simultaneity is nothing more thama
definite choice of the coordinate systenn an inertial system of
reference of the Minkowski space.

An important contribution into understanding of some funda
mental questions of the theory of relativity related to teérdtion
of simultaneity in different spatial points was providedPrpfes-
sor A. A. Tyapkin (Uspekhi Fiz. Nauk. 1972. Vol. 106, issug 4.
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Now let us return to the analysis of physical tisve Quantity
dr characterizes physical time, which is independent on tb&eh
of coordinate time. Indeed, let us introduce new varialflesuch
that

20 =22 2%, 2" = 2" (aF). (13.19)

Then due to tensorial charactergf, transformation

, 0z 9aF
T = Vet

we will obtain for our case

920\ oz 028
7(/)0 = Y00 (w) ) 7(/»\ = WOﬁ@ . w; (13.20)
similarly
I\
da™ = gid:co. (13.21)
xO’
Exploiting the Kronecker delta symbol
oz® 0z
oA our = (1322)
we get
/ I\ o
edr = 20987 _ YordT (13.23)

VT IVAT
We can see that physical tinale does not depend on the choice
of the coordinate system in an inertial system of referericbe
Minkowski space.

Physical time determines the flow of time in a physical preces
however, the quantity~ exhibits local character in a non-inertial
reference system, since it is not a total differential aretdfore
no variable 7 exists



13. Concerning the limiting velocity 193

In this case, there exists no unique physical time with lines
orthogonal to three-dimensional space. In a non-inergédr¢
ence system the intervat is expressed via the physical quantities
dr, d¢ as follows:

do? = Adr? — di?.

Thereexist novariablesr, ¢ in this case. Hereoordinate quan-
tities arise which permit to describe any effects in space and time
in non-inertial system of reference.

In an inertial reference systetir coincides, in Galilean coor-
dinates, with the differentiaft, so in Minkowski space one can
introduce unique time. It will be physical. Introduction of si-
multaneity for all the points of three-dimensional spacesnse-
guence of the pseudo-Euclidean geometry of the four-diroeabk
space of events.

One can only speak of the velocity of light being constard, th
same in all directions, and identical with the electrodyitacon-
stantc in aninertial reference system in Galilean coordinates
In an inertial reference system, in any other admissibledieo
nates, the velocity of light will be the same, if time is detine
accordance with formula (13.8) and distance by formulal(@p.
In a non-inertial reference system the electrodynamic temrns
is only expressed via the local quantitiés d¢. There exist no
variablesr, ¢ in this case.

It is often written that the principle of constancy of theae!
ity of light underlies special relativity theory. This is @ng. No
principle of constancy of the velocity of light exists as a fist
physical principle, because this principle is a simple consequence
of the Poincaré relativity principle for all the nature ploenena. It
is enough to apply it to the emission of a spherical electigimetic
wave to get convinced that the velocity of light at any iredmefer-
ence system is equal to electrodynamic constamherefore, this
proposition, having only secondary role, as we alreadydh(gee
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Sections 3 and 9), does not underlie relativity theory. Bedgin
the same way, the synchronization of clocks at differenbisonf
space, also, has a limited sense, since it is possible oigitial

reference systems. One cannot perform transition to aetete
reference systems on the basis of the principle of the coagta

of the velocity of light, because the concept of simultankises
sense, since the synchronization of clocks at differenhtsan
space depends on the synchronization path. The need talsescr
effects by means of coordinate quantities arises.

We, now, define the coordinate velocity of light

vi= B (13.24)

=—=

here/ is a unit vector satisfying the condition
Xanl'0F = 1. (13.25)

With account for formulae (13.8), (13.10) and (13.25) ezpien
(13.12) assumes the following form

v

7 = (13.26)
U Yoi
+ .
v/ Y00 - o
Hence one finds the coordinate velocity
v=c Y0 (13.27)
1— Yoi £
v/ Yoo

In the general case, the coordinate velocity varies, bothlune
and in direction. It can take any value satisfying the coadit

0<v<o0. (13.28)
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In Galilean coordinates of an inertial reference systemdioate
velocity coincides with physical velocity.

In an arbitrary non-inertial reference system, for desegb
physical processes it is possible to introduce unique coatel
time throughout space in many ways. In this case, the synchro
nization of clocks at different points in space must be pentx
with the aid of coordinate velocity. In non-inertial systei is
necessary to ussordinate quantitiesin order to describe phys-
ical processes because in this cplgsical quantities are deter-
mined only locally.
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14. Thomas precession

Consider a particle with its own angular momentum (spit) In
a reference system, where the particle is at rest, its featev
of angular momentum (spin) has the componéﬁtsf). In any
arbitrary inertial reference system we have the relation

S°U, = 0. (14.1)

When a forcefwithout torque acts on the particle, the following
relation should be valid

as”

=zU0", (14.2)
dr
hereU" is the four-vector of velocityt is proper time,
1
dr = dt—. (14.3)
Y

If the velocity U is not zero, then the quantity can be deter-
mined from the relation

d o, dS” v, .,
E(S U,)) = ?Uy + SY =0. (14.4)
Substituting (14.2) into (14.4), we obtain
dU"
Z=— (Sud—T) , (14.5)
the covariant vecta$,, has the components
S, = (8% -8 —S% —5%). (14.6)

With account for Eqg. (14.5) the equation of motion for thenspi
vector (14.2) assumes the form

dSsS” dU#
= — — v, 14.7
dr (SM dr ) v ( )
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Our further goal will be to try to provide the details of these
equations making use of the Lorentz transformations. Cens
particle of spinfmoving with a velocityy in a laboratory inertial
reference system. In this case, the inertial laboratorgresice
system will move with respect to the inertial reference eystin
which the particle is at rest, with a velocityy. Applying the
Lorentz transformations (4.18) and (4.19) and taking tge sif
the velocity into account, we obtain

U N
50:7—(6 ,S=J+ 2

~—

3 "= @), (14.8)

au+ .
The four-vectorg/*, dL have the following components:
T

= (0 l) = (2 E D). aan)

dr dr’ ¢ dr ¢ dr

Applying (14.6), (14.8) and (14.9), we obtain

—

du» (@]) dy
(52 = 2D 1

c dr

(14.10)
v odv U dy > oy=1_
<c = + E dT) <J+ 2 U(UJ)) .
Computations in the right-hand part of expression (14.10) w
only leave terms obtained by multiplication of the first term

brackets and the two terms in the second pair of bracketse athi
other terms mutually cancel out

dU*\ vy ~>dv vy—1, = (_dv
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Making use of (14.8) and (14.11), we write equation (14.pase
rately for the zeroth component of the four-vector of sgihand
for its vector part,

% {v@h} =+ { <fj—f) - 7;2 ) <ﬁ§—f) } , (14.12)

1)2

(14.13)

2 — —

sl (Y L g (6%

N czv{<JdT) + 02 (v )<Ud7')}
From equations (14.12) and (14.13) we find

d (- ~v—1_, 4 v d L2

E{JJF — U(UJ)}—;E{v(U )b=0. (1414

From equation (14.12) we find

ALYy (Uj—f) = % {v@n}-+ (f;l—f) . (14.15)

v

Now we write the first term of equation (14.14) in expandedrfor

d—j+774 7(0J) 7% +
dr (1 + )2

(14.16)
2

v d I v L= dU
_v @ _ T GhY
Tei sy dr {7(“ )} g il

In computation we took into account the equalities

v-1 vody P
= =L (5=, 14.17
v? A(l+7) dr ¢ Var ( )




14. Thomas precession 199

The second term in (14.16) can be transformed, taking adgant
of (14.15), to the form

_ i (¢ =
A1+ 7)? dr)

o[£ )2 ()]

Applying (14.18) we see, that the second term together vii¢h t
third term in (14.16) can be reduced to the form

\_/l

(14.18)

v d L v =dU

5= {V(UJ)} pET L (J%) . (14.19)
With account of (14.16) and (14.19) equation (14.14) is cedu
to the following form:

dJ 2 dv _dT
IS S LT, §S R ¥ (S I Q) 14.2
dr + A(l+7) {dT(U )= v (Jdr)} 0 ( 0)

Using the formula

[a b, 5]} — §(a@) — &(ab), (14.21)
and choosing the vectors
i=J b= d—”, ‘=7, (14.22)
dr

dJ _ [sz] (14.23)

here

Go_1—1 [a, d—”} . (14.24)
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When the particle moves along a curvilinear trajectory, the
spin vector fundergoes precession around the directiorf}
with angular velocity |€2]. This effect was first discovered by
Thomas|[15].

The equation of relativistic mechanics (9.12) can be wriite
the form

—

mj—f —f- %(ﬁf). (14.25)

With account of this equation, expression (14.24) assurnes t
form

G--2"lm A (14.26)

mu?

Thus, a force without torque, by virtue of the pseudo-E @il
structure of space-time, gives rise to the precession of gpis
action results in curvilinear motion in the given inertiaference
system. In the case, when the force is directed, in a certdin r
erence system, along the velocity of the particle, no psoaof
the spin occurs. But parallelism of the vectors of fofcm\d of ve-
locity o' is violated, when transition is performed from one inertial
reference system to another. Therefore, the effect of pstme,
equal to zero for an observer in one inertial reference sysiall
differ from zero for an observer in some other inertial refere
system.
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15. The equations of motion and conservation
laws in classical field theory

Earlier we saw that, with the aid of the Lagrangian appro#gcs,
possible to construct all the Maxwell-Lorentz equationBisTap-
proach possesses an explicit general covariant charégiermits

to obtain field equations of motion and conservation lawsger
eral form without explicit concretization of the Lagrangidensity
function. In this approach each physical field is describgdb
one- or multi-component function of coordinates and tinsdled
the field function (or field variable). As field variables, qgtides
are chosen that transform with respect to one of the lingaere
sentations of the Lorentz group, for example, scalar, spusator,

or even tensor. Apart the field variables, an important relati
tributed, also, to the metric tensor of space-time, whidbhines
the geometry for the physical field, as well as the choice efan
another coordinate system, in which the description of [@ays
processes is performed. The choice of coordinate systeat is,
the same time, a choice of reference system. Naturally, ot e
ery choice of coordinate system alters the reference system
transformations in a given reference system of the form

70 = fo(x(]? xl) 3527 x?))?
(15.1)
2 = [l 2%, 2%,
always leave us in this reference system. Any other choic®-of
ordinate system will necessarily lead to a change in retereys-

tem. The choice of coordinate system is made from the class of
admissible coordinates,

Yoo > 0, yirdr'dz® < 0, det |y,,| = < 0. (15.2)
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The starting-point of the Lagrangian formalism is condiarcof
the action function. Usually, the expression determiniregaction
function is written as follows

1
S = —/L(xo,xl,xz,x3)dx0dx1dx2dx3, (15.3)
C
Q

where integration is performed over a certain arbitrary-gimen-
sional region of space-time. Since the action must be iaagrthe
Lagrangian density function is the density of a scalar ofghti
+1. The density of a scalar of weightl is the product of a scalar
function and the quantity/—~. The choice of Lagrangian density
is performed in accordance with a number of requirementse On
of them is that the lagrangian density must be real.

Thus, the Lagrangian density may be constructed with the aid
of the fields studiedyp, the metric tensoy,,,, and partial deriva-
tives with respect to the coordinates,

L= L(@Av au()OAa <o Yuws a)\’y;uz)- (154)

For simplicity we shall assume, that the system we are dgalin
with consists of a real vector field. We shall consider thelfied-
grangian not to contain derivatives of orders higher, tnenfirst.
This restriction results in all our field equations beingaipns of
the second order,

L = L(A”, 0\ A", Yy, Ox Yy )- (15.5)

Note,that, if the Lagrangian has been constructed, the theory
is defined We find the field equations from the least action prin-
ciple.
1
58 = - / d*z6L = 0. (15.6)

C
Q
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The variationd L is

oL oL
L=—0A _— A 15.7
0 aA}\(S AT+ 8(8,,14)\)6(01/ )\), or ( 5 )
oL 0L
0L = 6—AA6AA +0, {0(0 AA)(SAA} . (15.8)
Here we have denoted Euler’s variational derivative by
oL oL OL
- 2= _ — . 15.
AL oA, (a@AA)) (15.9)

In obtaining expression (15.8) we took into account, that
5(0,A)) = 0,(0A)). (15.10)

Substituting (15.8) into (15.6) and applying the Gausstd@ove
obtain

1 oL
= — [ dQd*x A Ayl .
/ I (%)5 S /ds”{ﬁmm‘s *}
b

Since the field variation at the boundatyis zero, we have

g1 /de% oL 5A, = 0. (15.11)
C 5A>\
Q

Owing to the variationg A, being arbitrary, we obtain, with the
aid of the main lemma of variational calculus, the equatanrtlie

leld ooz oL
= - ) =0. 15.12
NN (8(@&)) 0 (15.12)

We see, that if the Lagrangian has been found, then the
theory has been definedBesides field equations, the Lagrangian
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method provides the possibility, also, to obtain differ@intonser-
vation laws: strong andweak. A strong conservation lawis a
differential relation, that holds valid by virtue of the amance of
action under the transformation of coordinates. Weak awatien
laws are obtained from strong laws, if the field equation12bis
taken into account in them.

It must be especially stressed that, in the general casmgstr
differential conservation laws do not establish the coregeyn of
anything, neither local, nor global. For our case the adtiasthe
form

1
S = Z /d4xL(A,\,&,A)\,VW,@)\%V). (1513)
Q

Now, we shall perform infinitesimal transformation of theoodi-
nates,
2V =a" + 6z, (15.14)

heredz” is an infinitesimal four-vector.
Since action is a scalar, then in this transformation it iesa
unaltered, and, consequently,

_ 1 / & (2 / d'zL(x) =0,  (15.15)

where
L(a) = L' (A, 0L44,(2"), 7 (), 05/, ()

The first term in (15.15) can be written as

/ 'L (2)) = / Jd'zL(2'), (15.16)

Qf Q
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where the Jacobian of the transformation

8(x’0,9:’1,x’2,9:’3) ax/u

/= 020, 2t 2%, 23) oz

= det . (15.17)

In the case of transformation (15.14) the Jacobian has the fo
J =1+ 0\0z". (15.18)
Expandingl’(z’) into a Taylor series, we have

L'(z) = L'(z) + 5:&%. (15.19)

Taking (15.16), (15.18) and (15.19) into account, we rexwéri-
ation (15.15) as

oz

5.5 = % / dia [5LL(Q;) + 9 (WL(@)] —0; (15.20)
Q

here we have denoted
opL(z) = L'(x) — L(x).

This variation is usually called the Lie variation. It comtesiwith
partial differentiation

01,0, = 0,0p. (15.21)
The Lie variation of the Lagrangian density function is

oL oL

(5LL(CL’) = 8—A)\5LA)\ + m(sL&/A)\ +
(15.22)
oL
—— 01V + =————0 ”
+3%y LV + 2 Orvm) LY
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The following identity

0
6 L(z) + %(MAL(x)) =0, (15.23)
is a consequence of EqQ. (15.20) due to arbitrariness of vefum
It was obtained by D. Hilbert in 1915.

Upon performing elementary transformations, we obtain

0.8 =
(15.24)
B 1 4 oL oL N
= c /d x [5AA5LAA+ &ylwéL’yuy—'—D)\J :| —0,
Q
here
6L _ 0L _, ( oL )
M OV 7 (O Yyuw) 7
JY = Léx" + iéLAA + oL (15.25)

e — .
B9, Ay) D(Dyyay)

Since J" is the density of a vector of weight1, then, in accor-
dance with (11.25) and (11.28), we find

8,J" = D, J", (15.26)

where D” is a covariant derivative in pseudo-Euclidean space-
time. It must be pointed out, that the variations,, 6;7,, origi-
nate from the coordinate transformation (15.14), so thayttere-
fore, be expressed via the components.
Let us find the Lie variation of field variables, that is due to

coordinate transformation. According to the transfororataw
of the vectorA,

ox”

A4(a") = 4, @) 55,



15. The equations of motion and conservation laws ...

we have
, ddx”
A\(z +0z) = Ax(z) — Ay(z) 5 (15.27)
or
Expanding the quantityl) (z + dx) in a Taylor series, we find
A\ (z + o) = A\ (z) + gAj dz”. (15.28)
xr
Substituting (15.28) into (15.27) we obtain
VaA)\ 6(51’”
or, in covariant form
O0pAx(z) = —0x"D, A\ — A, Dydz". (15.30)

Now let us find the Lie variation of the metric tensgy, from
the transformation law

L o 0z°
’)/“V(ZL') = o' : W’}/)\J(x)
we obtain
Vo (T4 0) = Yy — Vo 0,027 — 7,650,027, (15.31)

hence we find
0LV = = Vo 002" — Y000,017 — 627 gy - (15.32)
Taking into account the equality
0oV = YLy + YAl s (15.33)
we write expression (15.32) through covariant derivatives

LY = —VuoeDuo2 — 7,6 D027 . (15.34)
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Substituting expressions (15.30) and (15.34) into actidn24),
we obtain

1 A \ OL oL .
0.8 = - /d x[ ox 5AZ,D)‘AV 5A/\AZ,D>\5x
Q
(15.35)
oL
—(Yuo Dv02° + 6D, 627 )—— + D, J" | = 0.
Yy
We introduce the following notation:
™ = -2 oL : (15.36)
0V

As we will further seethis quantity, first introduced by Hilbert,
is the tensor density of the field energy-momentum
Integrating by parts in expression (15.35) we obtain

1 " \| 0L
565—?/d93{ ox LSAV
Q

oL
—Dl, (ﬂAA) +DV (T“V’Yu)\>:| + (1537)

D)\AV_

0L
0A,

+D, (J” — Aoz + T“”%wém”) } =0.
Substituting into expression (15.25) for the density ofteed”
the values of variations; A, (z), 6.7, (x), in accordance with
formulae (15.30) and (15.34), and grouping the termsrétand
D,\éx¥, we obtain

JY —

(SAVAA(SxA = —71702° — O‘Z)‘D)\(qu, (15.38)
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here we denote
0L oL
V=—-L64+———D,A —A,. 15.
TO' 60’ + 8(81,14)\) oI + 5AV o ( 5 39)
This quantity is usuallgalled the density of the canonical energy-
momentum tensor, while the quantity

A 0L oL
o = 28(&,%A)%" + 0(0VAA)A“ (15.40)
is called the spin tensor density.
If function L depends only on*”, A,,, 0, A,,, then quantityfl’jA
according to Eq. (15.40) may be written as follows

oL
A ——— ) A, 154
= (o) & (15402

On the basis of (15.38) we represent the covariant divesgenc
in (15.37) as

v 5L A VSO _
DV<J — 5AVA)\5x + Tz ) =

—6x° {DVT; — Dﬂg] + D, (627) x (15.41)
X [T)’\’ -7y = Duaf\w] — oD, Dydat.

Taking advantage of this expression, the variation of aqtl®.37)
can be written in the form

0.5 = i /d4x —5m)‘< oL DA, —
c

0A,
Q
-D, A Ay | + D,y | + D, (dz7) % (15.42)

x (TY — 1 — D,ob") — UZAD,,DAM“] =0.
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Since the integration volume is arbitrary, it hence follows that
the integrand function is zero.

L L
—593’\< d DA, — DV(CS—AA> + D,,T;:) +

A, A,
(15.43)

+ (Ti’ — Ty Duo—‘;”) D, 62" — o} D, Dyda* = 0.

This expression turns to zero for arbitrafy* independently of
the choice of coordinate system. Precisely this permitgaaolity
establish that the tenso;jA Is antisymmetric with respect ta .
Due to antisymmetry of quantitzy;A in upper indices’, A\ we get
from Eq. (15.40) the following

(agyﬁm ! a@&ixu)) -

It follows from the above that function depends on derivatives
in this case as follows

L(Fl/)\)a

F,»=D,A\ — D)A,.

This result was obtained by D. Hilbert in 1915. Of courses thi
does not exclude an explicit dependencéd.@n variableA, .

By virtue of the tensor transformation law, if it becomesazer
in one coordinate system, then it is equal to zero in any atber
ordinate system. Hence the identities follow:

6L 5L
D,/T)\ + 5—14VD)\AV - Dl, (5—141/14)\) =0. (1544)

TY — 7% — Dyoh’ =0, o} = —o))". (15.45)
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As to the last term in (15.43), it should become zero owing to
the quantitiesfzA being antisymmetric with respect to the upper
indices. From the antisymmetry of the spin tensor follows

D, TV = D,7". (15.46)
A A

Identities (15.44) and (15.45) are called strong consenvdaws,
they are obeyed by virtue of action being invariant underdiso
nate transformations. Applying relation (15.46), expi@s$l5.44)
can be written in the form

oL 5L
DT + 5P = A, <ﬂ) =0,

(15.47)
F\, = D\A, — D, A,.

If we take into account the field equations (15.12), we wilizot
D,TY =0, TV — 7} = D,a}", (15.48)
here the quantity} equals

, .. 0L
X =L+ 5, Au>DAAu. (15.49)

The existence of a weak conservation law of the symmetriggne
momentum tensor provides for conservation of the field aargul
momentum tensor. By defining the angular momentum tensor in
Galilean coordinates of an inertial reference system

MHA = gV T — gh TV (15.50)
it is easy, with the aid of (15.48), to establish that

MM =0, (15.51)
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The weak conservation laws we have obtained for the energy-
momentum tensor and for the angular momentum tensor do not
yet testify in favour of the conservation of energy-momemtor
angular momentum for a closed system.

The existence of integral conservation laws for a closed sys
tem is due to the properties of space-time, namely, to the es4
tence of the group of space-time motions. The existence ofdh
Poincaré group (the Lorentz group together with the group
of translations) for pseudo-Euclidean space provides for the
existence of the conservation laws of energy, momentum and
angular momentum for a closed systenf6]. The group of space-
time motion provides form-invariance of the metric tensgy of
Minkowski space.

Let us consider this in more detail. The density of substance
energy-momentum tensor according to Eq. (15.36) is thevatig

™ = =2 oL , (15.52)
0V
oL oL 9 ( OL )
N OV \ Vo)
This tensor density satisfies EQ. (15.48)
D, T" =0, (15.53)
that may be written as follows
1
0,1y + §Tm,aug"” = 0. (15.54)

In general case Eqg. (15.53) could not be written as an egualit
an ordinary divergence to zero, and so it does not demoastrgt
conservation law. But an expression of the form

D, A", (15.55)
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whereA” is an arbitrary vector, is easy to convert into a divergence
form even in the Riemannian space.
From Eq. (11.25) one has

DAAN = O\AN + T\ AF. (15.56)
By means of Eq. (11.38) one obtains
DA(V=7 AY) = d\(vV— A). (15.57)

Let us exploit this below. Multiply the energy-momentum slién
onto vectom,

T"n,. (15.58)
According to Eq. (15.57) we obtain
D, (T"n,) = 0,(T""n,). (15.59)

Quantity (15.58) already is a vector density in our case. r&he
fore we should not substitutg—~ into Eq. (15.59). We rewrite
Eq. (15.59) in the following form

1
5 T (Duny + D) = 0u(T" ). (15.60)

After integration of Eq. (15.60) over volume containing -
stance we get

1 v 8 v0
5 [T+ D) = 5 [(@nav. @sey
1%

|4

If vectorn, fulfils the Killing equation
D,n, + Dyn, =0, (15.62)

then we have integral of motion

/T”Omdv = const. (15.63)

\%
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We have already derived Eq. (15.34):
LY = —(Dyox, + D,dx,). (15.64)

From Eqs. (15.62) it follows that if they are fulfilled, thdretmet-
ric is form-invariant
OV = 0. (15.65)

In case of pseudo-Euclidean (Minkowski space) geometry
Egs. (15.62) may be written in a Galilean (Cartesian) coais
system:

Ouny + 0ym, = 0. (15.66)

This equation has the following general solution
Ny = Gy + Wyott’, Wye = Wy, (15.67)

containing ten arbitrary parameters w,,,,. This means that there
are ten independent Killing vectors, and so there are t&giats
of motion. Taking
Ny = ay (1568)
and substituting this to Eq. (15.63), one finds four integadimo-
tion: .
PY = — /T”OdV = const. (15.69)
C
14

Here PY is the system energy, ani’ is the momentum of the
system. Taking Killing vector in the following form
Ny = Wyet?’ (15.70)

and substituting it in the initial expression (15.63), oretsgthe
following expression for the angular momentum tensor:

1
P =— / (T"°2° — T72")dV. (15.71)
&
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QuantitiesP’° are center of mass integrals of motion, apid are
angular momentum integrals of motion.

In correspondence with Eq. (15.50) we introduce the folfavi
quantity

por = L / (T 27 — T x")dV, (15.72)
C
where
Mo = T — T " (15.73)
is tensor density, satisfying the following condition
LM = 0. (15.74)

Therefore, we have been convinced, by deriving Eqgs. (1568)
(15.71), that all these ten integrals of motion arise on teelof
pseudo-Euclidean geometry of space-time. Namely this geom
try possesses ten independent Killing vectors. There majdue
ten Killing vectors in a Riemannian space, but only in casa of
constant curvature space [6].

Note that conservation laws are automatically satisfiedfor
arbitrary scalar (Lagrangian) density of the fofiwy, 9,1, in
Minkowski space, that provides for the field energy beingipos
tive, if we only consider second-order field equations. leesgly
recall this here, since from discussions with certain Acaid&ns
working in theoretical physics, | have seen, that this isnavin
even to them.

Now let us find, as an example, the symmetric tensor of the
electromagnetic field energy-momentum. According to (Lth&
Lagrangian density for this field is

1
Ly =———\/=~ F,3F". 15.75
f T6nV 7Y Fos ( )

We write it in terms of the variable,, and the metric coefficients

1 14
Ly = _m_w,/—_y FogF ™y, (15.76)
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According to (11.37) we have

oJ/— 1 3
5 =gV (15.77)
uv
With the aid of (15.77) we obtain
0*L 1 . N
5= _?)Q_W\/——wﬂ FsF* (15.78)
nv

* indicates that differentiation is performed with respexcty},,
present in expression (15.76).

Similarly
o*L 1
= ———/=7 FusF,
Oy 167V Taster 8
(15.79)
8 oo 8 BA
Y - . 76)\ + ,yaa 5 LV
OyH OyH
Since gryao )
/7 o SO a SO
o — 5(%51/ +6,0,,),

then using the antisymmetry properties of the tefsgr= —Fj,,
we obtain o .
= —— /A FE\F,.7. 15.80

In obtaining (15.78) and (15.80) we considered quantitjgsy*°
as independent.

Since no derivatives of the metric tensor are present ingne d
sity of the electromagnetic field Lagrangian, the densitythaf
symmetric energy-momentum tensor will be

oL o*L o*L 870‘6
™ = -2 = -2 + . . (15.81)
a’ﬂw a’ﬂw 8’Yaﬁ 8’)/;“/
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From the relation

78 = O, (15.82)
we find 508
,}/a 1 Q v av
5 = 30 By PR, (15.83)
uv

Substituting this expression into (15.81), we obtain
oL _ [8*L 0L ““75”} .
87;w 87;w Oyb

Using expressions (15.78) and (15.80) we find the densithef t
energy-momentum tensor of the electromagnetic field

T = —2 (15.84)

J= 1
T — ?7 {_FWF”A%A + ZW‘“’FagFaﬁ} . (15.85)

Hence it is readily verified, that the trace of the electronig
field energy-momentum tensor turns to zero, i. €.

T = ~,,T" = 0.

We shall now construct the energy-momentum tensor of sub-
stance. The density of the conserved mass or charge is

1= ~/=7 1oU°, 8,(v/= U") = 0, (15.86)

due to Eqg. (11.41), wherg, is the density in the rest reference
system. The four-dimensional velocity is defined by the ex-
pression
v d v
Ur = =2 0= (15.87)

VAegre?

Hence, it is clear that

UVU)\’)/V)\ = 1.
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Take the variation of expression (15.86) with respect to the
metric tensor. The quantity is independent of the metric tensor,
therefore,

p = U6(v/=7 o) + /=7 podU° = 0, (15.88)

here

« 55
o_ ¢ v
0 = = S o (15.89)

From expression (15.88) and (15.89) we find

1
5(v/=7 o) = V=7 NOQUQUBCS’Yaﬁ' (15.90)
Since the density of the Lagrangian of substance has the form

L = —/=7 poc?, (15.91)

the density of the energy-momentum tensor of substance €an b
determined as

= =2 oL : (15.92)
MV
On the basis of (15.90) we obtain
" = poctUMUY. (15.93)

Taking into account Eq. (15.86) we obtain in Cartesian cioaite
system:

LU da¥ 02@
orv ds — Ho ds

Let us rewrite Eq. (10.22) for mass and charge densities:

O, t" = e (15.94)

au+
MOCZK = poF* U, = f*. (15.95)
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After comparing Egs. (15.94) and (15.95) we have
fv = 0aty. (15.96)

From Egs. (8.54) and (15.96) we can see that the law of energy-
momentum tensor conservation for electromagnetic fieldsandces
of charge taken together takes place:

Oa(TO +12) = 0. (15.97)

As we noted above, addition to the Lagrangian density of a
covariant divergence does not alter the field equationss dlso
possible to show [6], that it does not alter the density oHiikert
energy-momentum tensor, as well. On the contrary, the teofsi
the canonical tensor (15.49) does change. But at the saradtan
divergence of the spin tensor density changes with it, aldoe
sum of the canonical tensor density and of the divergencheof t
spin density remains intact.
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16. Lobachevsky velocity space

Let us remind that the relativistic law of composition of aelties
(see Eq. (9.26)) has the following form:

U2 U2
 (-5)(-%)
v ¢ v (16.1)

Note that this expression is a direct consequence of théeexis
of the following invariant

Yu Yo (1l — U¥) = inv.

Herey, = (1 —u?) ™2, v, = (1 —v?)~1/2,

This invariant has been demonstrated first in the H. Poencar”
article [3] (se€§ 9, Eq. (5)), where the system of units is taken so
that velocity of light is equal to 1.

It follows just from here that in pseudo-Euclidean spaoeeti
the velocity space follows the Lobachevsky geometry.

For the further presentation it will be more convenient toan
duce the following notation:

V=g, V=1, U=, (16.2)

cosha = — sinha =

(16.3)
Substituting (16.2) and (16.3) into (16.1) we obtain

cosha = cosh b - cosh ¢ — sinh b - sinh ¢ - cos A, (16.4)
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A is the angle between the velocitiésand .. This is actually
nothing, butthe law of cosines for a triangle in Lobachevsky’s
geometry. It expresses the length of a side of a triangle in terms
of the lengths of the two other sides and the angle between.the
Finding, hencegcos A and, thensin A etc., one thus establishes
thelaw of sines of the Lobachevsky geometry

sin A sin B sin C'

(16.5)

sinha sinhb  sinhc¢’
Below, following Lobachevsky, we shall obtain tkev of co-
sines for a trianglein the form

cos A = — cos B cos C + sin B sin C' cosh a. (16.6)
We write (10.4) in the form

h
tanhbtanhccos A = 1 — — 2% (16.7)
cosh b cosh ¢

From the law of sines (16.5) we have
1 sin A tanhc

coshe  sinC  snha’ (16.8)
Substituting this expression into (16.7) we find
sin A tanh ¢
tanh h A=1- . . 16.
anhbtanh ¢ cos sinC  coshbtanha (16.9)
Hence we findanh ¢
tanh a si
tanhe = anh.asin € . (16.10)

1 .
" sin A
With the aid of the law of cosines, Lobachevsky further egthbd

the identity

cos Asin C'tanh a tanh b 4+

1

cosh? b’
(16.11)

(1 — tanhbtanhccos A)(1 — tanh atanhbcos C') =
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Applying (16.10), we find

1 )
sin A
1—tanhd tanhccos A = cosh b 1 .
cos Asin C'tanh a tanh b + sin A
cosh b
(16.12)
Substitution of this expression into identity (16.11) gl
1hb _ sinA—sinAcosCtanhatlanhb (16.13)
cos cos Asin C tanh a tanh b + sin A
cosh b
With account for
1
1— ———— = tanh®¥, (16.14)
cosh
EqQ. (16.13) assumes the form
tanh b sin C'
— =cot A . 16.1
tanh a cos ' = co cosh b (16.15)
In a similar manner one obtains the relation
tanh a sin C'
ol 8 C = cot Bcosh o~ (16.16)
From thelaw of sineswe have
1 sin A tanhb
coshb sinB sinha’ (16.17)
Substituting this expression into (16.15), we obtain
tanh a cos Asin C
~ tanhb cos €' = coshasin B (16.18)

Applying expressions (16.16) in (16.18), we find
cos A = — cos B cos C' + sin B sin C cosh a. (16.19)
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In a similar manner one obtains the relations:

cos B = —cos AcosC + sin Asin C' cosh b,
(16.20)

cos(C = —cos Acos B +sin Asin Bcoshec.

Thus, the space of velocities in pseudo-Euclidean geometry
is the Lobachevsky space

For a rectangular trianglé = % according to (16.4) we have

cosh ¢ = cosh a cosh b. (16.21)

From the theorems of sines, (16.5), and of cosines, (16.4Hlwe
tain

inh tanh b
sin A = Sl.n a’ cos A = 20 (16.22)
sinh ¢ tanh ¢
In line with the obvious equality
sin? A +cos? A =1 (16.23)

one can, making use of expressions (16.22) and (16.21)jndhta
relation

1
sin? A cosh? b + cos? A—ms—=1. (16.24)
cosh”a

Consider, as an example [16], the phenomendigbt aber-
ration, i. e. the change in direction of a beam of light, when tran-
sition occurs from one inertial reference system to anotier,
in two reference systems, moving with respect to each other,
directions toward one and the same souttevill differ. Let ¢
and @’ be the angles at which the light from the source at point
C'is seen from two inertial reference systemisaand B, moving
with respect to each other with a velocity In the Lobachevsky
velocity space we shall construct the trianglé’D (see Fig. 1),
with angleC' equal to zero, since light has the limit velocity.
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Now, we join pointsA and B by a line, and we drop a perpen-
dicular to this line from pointC. It will intersect the line at point
D. We denote the distance from poiatto point D by x and the
distance from poinD to B by y.

A x D vy B
Fig. 1
Applying for given triangleAC D thelaw of cosines(16.20),
we obtain

coshz = —— sinhg = 22 (16.25)
sin o sin o
hence
tanhx = cosa = cos(m — ') = — cos ¢, (16.26)
similarly

tanhy = cos#. (16.27)
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In accordance with formula (16.3)anh(z + y) is the velocity
of one reference system with respect to the other in unith®f t
velocity of light

v tanh(z + ) = tanhz +tanhy  cos — cos 0’
c Y ~ 1+tanhztanhy 1 —cosf-cosf
(16.28)
Hence follow the known formulae faberration
cosf — v
COS 9/ = Uic, (1629)
1 — —cosf
C
5 )
s = 41— L. smf (16.30)

c (1 S cos@)

C
Applying formulae (16.29) and (16.30) we obtain

2
(cos@ - 1) cosf +4/1 — U—zsinzé
0—0)= ¢ < . (16.31)

1—£COS6’
c

COS

Let us determine the square distance between infinitegimall
close points in the Lobachevsky space. From (16.1) we find

(it~ 1)~ i,
- c (16.32)

v ’
(1-%)
v’ is the relative velocity.
Settingu = v + dv and substituting into (16.32) we find
2 _ 2 (c? — v?)(d0)? + (vdv)?
(02 _ ,U2)2

—/2

(dt,) (16.33)
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Passing to spherical coordinates in velocity space
vy = vsinfcos ¢, v, = vsinfsing, v, =vcosd, (16.34)

we obtain

o, [ ?(dv)? v? (
(@ —v2)2 ' (2 —v?)

(dt,)* = c df? + sin® Gdéz)} . (16.35)
Hence it is evident that the ratio between the length of the ci
cle and the radius is
14 2
. (16.36)
v 'U2
-z
and is always greater tham.
We now introduce the new variable

Ccv
)
V2 — 2

the range of which extends from zero to infinity. In the newi-var
ables we have

(16.37)

r =

dr?

der? = + 1r?(d6? + sin® d¢*); (16.38)

2
"
L+

if we introduce the variable
r = csinh Z, (16.39)
we obtain

d? = 2dZ? + ¢ sinh® Z(d6* + sin® 0d¢?). (16.40)
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Usually the space metric in cosmology is written this fornmew
dealing with the open Universe.

Further we shall dwell, in a descriptive manner, on certiag t
orems of Lobachevsky’s geometry, following the book by Nefi
mov (‘Higher geometry” M.: Nauka, 1978 (in Russian)) and the
lectures of N. A. Chernikov delivered at the Novosibirski&tani-
versity and published as a preprint in 1965.

In the Lobachevsky geometry, through poftnot lying on
the straight linea, there pass an infinite number of straight lines,
that do not intersect ling, but not all these straight lines are con-
sidered to be parallel to line Leta be a straight line in the plane,
and letA be a point outside it (see Fig. 2),and c are bound-
ary straight lines that do not intersect straight lsmeAny straight
line passing through poi inside angle3 will also not intersect
straight linea, while any straight line passing through pofin-
side the angle containing poiBtwill necessarily intersect straight
line a. The straight lineb is called the right boundary straight
line, andc the left boundary straight line. It turns out to be that
this property is conserved for any point lying on straighelb.
Precisely such a boundary straight lihas parallel toa in the
right-hand direction, and in the left-hand direction. Thus, two

b
A
—
(8%
C
X
a
B

Fig. 2
straight lines parallel t@a cargJ be drawn through any one point:
one going to the right and the other to the left. In the Lobashg
geometry, the reciprocity theorem is proven: if one of twaigiht
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lines is parallel to the other in a certain direction, thee #ec-
ond straight line is parallel to the first in the same dirattin a
similar manner, it is established, that two straight linasafiel to
a third in a certain direction are parallel to each otheg dlsthe
same direction. Two straight lines, perpendicular to aitkiraight
line, diverge. Two divergent straight lines always have com-
mon perpendicular, to both sides of which they diverge imatedy
from each another.

Parallel straight lines, indefinitely receding from eacheotin
one direction, asymptotically approach each other in therofThe
anglea is called the parallelism angle at poistwith respect to
straight linea.

From the law of cosines (16.6) we find

1 = sin «v cosh z.

In obtaining this expression we took into account that gtréline

b asymptotically approaches straight liagso, therefore, the an-
gle between straight linesandb is zero. Hence we obtain Loba-
chevsky’s formula

a(r) = 2arctane™”,

herea is the distance from poim to straight linea. This function
plays a fundamental part in the Lobachevsky geometry. Bmsi
seen from our exposition, because we obtained the Lobakhevs
geometry as the geometry of velocity space. proceeding them
pseudo-Euclidean geometry of space-time. Funciian decrea-
ses monotonously. The area of the triangle is

S=d*- (n—A—-B-0), (16.41)

hered is a constant value. Below we shall derive this formula.
From the formula it is evident that in the Lobachevsky geaynet
similar triangles do not exist.
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Following Lobachevsky, we express the function
cos/\, where 2A =A+ B+ C, (16.42)

via the sides of the triangle. Applying the law of cosines.§)6
and, also, the formulae
A 1—cosA A 1 A
sin? — = &, cos® — = ﬂ, (16.43)
2 2 2 2
we find
o A sinh(p —b) - sinh(p — ¢)

In“ — = 16.44
S 2 sinh bsinh ¢ ’ (16.44)

A sinhp-sinh(p —a)
27 =
€5 sinhbsinhe (16.45)

herep is the half-perimeter of the triangle

2p=a+b+ec
With the aid of formulae (10.44) and (10.45) we obtain
A B sinh(p —b) C

Sin —- €08 - = — —— 08 -, (16.46)
, A sinh(p —a) C
S1n ? COS 7 = W COS 7 (1647)

Hence we have

cosh (_a _ b)
A+ B
; = g oS % (16.48)

h —
COS B

sin

Applying the formulae

B sinhp . C
Cos - Cos —- = —— - sin—-, (16.49)
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A B sinh(p—¢) . C

sin —-sin - = —— ———sin -, (16.50)
we find
cosh (CL—M)
A+ B
cos 5 z sin g (16.51)
2 cosh — 2
2
From (16.48) and (16.51) we have
sinh g sinh é C C
cos A\ = 22—02 sin — cos —. (16.52)
cosh 5 2 2

Replacing sin%cos% in (16.52) by the expressions from
Egs. (16.44) and (16.45) we find

\/sinh p - sinh(p — a) sinh(p — b) sinh(p — ¢)

cos A\ = " ; -
2 cosh 5 cosh B cosh —
(16.53)
From (16.41) we have the equality
)
sin — = cos A\. (16.54)

2d?
Comparing (16.53) and (16.54) we obtain

.S 4/sinhp-sinh(p — a)sinh(p — b) sinh(p — ¢)
S1n 52 = .
2d 2 cosh g cosh g cosh ¢

(16.55)
In our formulae the sides, b, ¢ are dimensionless quantities, in

accordance with definition (16.3). Eq. (16.55) is the analbilpe
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Heron formula in Euclidean geometry. From (16.52) the expre
sion for the area of the triangle can be written, also, in trenf

S sinh a sinh ﬁ
sin -— = 2 e 2 sinC. (16.56)
2d cosh 5

The areaS is expressed in dimensionless units, since the sides of
the triangle are dimensionless. In our exposition, the tzomd is
unity, on the basis of the law of cosines (16.4).

From formula (16.41) it follows that in the Lobachevsky ge-
ometry the area of a triangle cannot be indefinitely larges fie-
stricted to the quantityl?r. Thus, admitting the existence of a
triangle of indefinitely large area is equivalent to Eudigaral-
lelism axiom. The areas of polygons can be indefinitely lange
the Lobachevsky geometry.

The area of a spherical triangle in Euclidean geometry is

Sp=R*(A+B+C — ), (16.57)

hereR is the radius of the sphere. Comparing this expression with
formula (16.41), we see that formula (16.41) can be derivech f
formula (16.57), if the radius of the sphere is chosen to bsgim
nary and equal to the valué = id. This circumstance was already
noted by Lambert.

If one introduces the variables

xzv—x, y:@, z:k, (16.58)
c c c

then formula (16.33), for the Lobachevsky geometry, inthg
plane assumes the form

2 (1= y?) - (d)* + 2wydady + (1 — 2?) - (dy)*

(1 _ 1'2 _ y2)2 ’
(16.59)

(dt,)* =c
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the quantities;, y are called Beltrami coordinates in the Lobachev-
sky geometry.
Passing to new variablésn with the aid of formulae

tanhn

xr =tanh¢, y= coshe’ (16.60)
and calculating the differentials
dr=— dy= —ay— P Gy eae,
cosh” ¢ cosh” 7 cosh & cosh” ¢
upon performing the required computations, we find
(dl,)* = *(cosh®nd&* + dn?). (16.61)
The net of coordinate lines
£ = const, 1 = const, (16.62)

is orthogonal. The area of the triangle in these variables is

S = / / cosh ndédn. (16.63)
(a)

For calculating the area of a triangle by formula (16.63¥ihe-
cessary to find the geodesic (extremal) line in the Lobadtevs
geometry in coordinates ». To this end we shall take advantage
of the principle of stationary action.

Length is
L:/ds:/\/cosh2n-d£2+dn2 =

2

= /dn\/cosh2n-§’2+1.

m

(16.64)




16. Lobachevsky velocity space 233

Hence the extremal curve is found in accordance with theieond
tion
2 9
& - cosh”n-6(&)
Veosh?n - €2 +1
1

5L = dn=0, ¢&=2(16.65)

The variationd commutes with differentiation, i. e.

(&) = (6¢); (16.66)

taking this into account and integrating by parts in the graé
(16.65) we obtain

2
d < cosh?n - &'

6L:—/d 6
! dn \ \/cosh®n- &2 +1

m

) =0. (16.67)

Here, it is taken into account that the variatioigsat the limit
points of integration are zero.

From equality (16.67), owing to the variatio being arbi-
trary, it follows

d h2 W
i coshin - & — 0. (16.68)
dn \ \/cosh®n- &2 +1

Hence we find the equation for the geodesic line
h2 =
coshin-&  _ . (16.69)
Vcosh?n - €2 + 1
geodesic lines, as the shortest in the Lobachevsky geonaety

straight lines in it.
Resolving this equation, we obtain

dn

5 - 50 = :*:C/ > .
coshny/cosh”n — 2

(16.70)




234 16. Lobachevsky velocity space

Changing the variable of integration

u = tanhn, (16.71)
we find
cdu
S :i/ V(1= ) + 2u? N
(16.72)
= j:/ \/% = t+arcshv.
Here u
V= = (16.73)
It is suitable to take for variablethe following notation:
¢ = siné. (16.74)
Thus, the equation of a geodesic line has the form
sinh(§ — &) = £ tano - tanh 7. (16.75)

Let us, now, construct a triangle in tilie n plane (Fig. 3).
The linesAB and AC' are geodesic lines, that pass through point
(&0, 0). The anglesA; and A, are inferior to the parallelism angle
a

A=A+ As.

From expression (16.75) we find the derivative of the geadas
AC at point¢,
& = —tand,. (16.76)

Hence and from\ AL P we have
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Jy = — — As, (16.77)
similarly, from AAK P, we also find for the geodesic linéB

5y = g — A, (16.78)
Thus, the constarttfor each geodesic is expressed via the angles
A1, A;. The geodesic linegt B and AC' intersect the) axis at
pointsn?, 75.
In accordance with (16.63) the area of the triangleC' is

o n2(€) o
Sa= [de [ coshn-an - / {sinh 15 (€) — sinh s (€) }d€.
0 n1 (&)
(16.79)
Taking advantage of expression (16.75), we find
sinh7 = + sinh(€ — &) (16.80)

\/008—2 § — cosh?(¢ — 50).
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Hence we find

sinh 72(€) = — sinh(€ — &) , (16.81)
\/sin_2 Ay — cosh?(€ — &)
sinh 7, (€) = sinh(€ — &) (16.82)

\/sin_2 Ay — cosh?(€ — &)
Then the intersection points of the geodesic lines with treeght
linen({ =0) are

sinh 7y = sinh & , (16.83)
V/sin=2 Ay — cosh? &
inh
sinh7? = — sinh & . (16.84)
\/sin_2 A; — cosh? o
From the law of sines (16.5) we have
in A
sin B = sinh & - ————| (16.85)
sinh |n}|

Substituting into this expression the valuef(16.84) we obtain

sin B = \/1 —sin? A; cosh?¢&,, cos B = sin A; cosh &.

(16.86)
Similarly
cos C' = sin Aj cosh &. (16.87)
Introducing the variable
u = cosh(& — &) (16.88)

in the integral (16.79), we obtain

cosh &g ] ]
Sa = / + du.
/ { VsinT2A; —u? /sin 2 Ay — u? }

(16.89)
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Hence follows

Sa = arcsin(sin A; cosh &) +

(16.90)
+ arcsin(sin A; cosh &) — (A1 + As).
Taking into account (16.86) and (16.87), we obtain
Sa = arcsin(cos B) + arcsin(cos C') — A. (16.91)
Ultimately, we have
Sa=m—A—B-C. (16.92)

We have obtained the expression for the area of a triafiglen
the Lobachevsky geometry, that we earlier (16.41) made lise o
finding formula (16.55).

From the above we saw that the Lobachevsky geometry, cre-
ated by him as an “imaginary geometry”, has become a congosit
part of the physics of relativistic motions, as the geomefrye-
locity space.

The discovery of Lobachevsky had a great impact on the deve-
lopment of various parts of mathematics. Thus, for exantpke,
French mathematician G. Hadamard, in the bhddn-Euclidean
geometry” in Section devoted to the theory of automorphic func-
tions noted:

“We hope we have succeeded in showing, how Lo-
bachevsky’s discovery permeates throughout Poigisar
entire remarkable creation, for which it served, by the
idea of Poincaé himself, as the foundation. We are
sure that Lobachevsky’s discovery will play a great
part, also, at the further stages of development of the
theory we have considered”.
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Beltrami raised the questiorils it possible to realize Loba-
chevsky planimetry in the form of an internal geometry ofréece
surface in Euclidean spaceilbert has shown, that in Euclidean
space no surface exists, that is isometric toathire Lobachevsky
plane. However, part of the plane of the Lobachevsky gegmetr
can be realized in Euclidean space.
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Problems and exercises

Section 2

2.1. An electric charge is in a falling elevator. Will it eneiectro-
magnetic waves?

2.2. A charge is in a state of weightlessness in a space ship. W
it radiate?

Section 3

3.1. Let the metric tensor of Minkowski space in a non-irarti
coordinate system have the for, (x). Show that there exists a
coordinate system, in which the metric tensor has the same form
7w (2'), and that nonlinear transformations relating these system
constitute a group.

Section 4

4.1. Is the following statement correct: “In a moving refeze
system (with a constant velocity) time flows slower, than in a
reference system at rest”?

4.2. Is the Lorentz contraction of a rod (4.13) real or appi&e
4.3. Is it possible, by making use of the Lorentz effect oftcact
tion, to achieve a high density of substance by acceleratirogl?

Section 8

8.1. The electric charge of a body is independent on the ehoic
of reference system. On the basis of this assertion find #mes-r
formation law of charge density, when transition occursrfrane
inertial reference system to another.
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8.2. With the aid of Lorentz transformations find the field of a
charge undergoing uniformly accelerated motion.

Section 9

9.1. Three small space rockets B andC' are drifting freely in

a region of space distant from other matter, without roratiad
without relative motion, and3 and C' are equidistant fromA.
When a signal is received from, the engines oB andC' are
switched on, and they start to smoothly accelerate. Letdbleats

B andC be identical and have identical programs of acceleration.
SupposeB andC have been connected from the very beginning
by a thin thread. What will happen to the thread? Will it break
not?

(Problem by J. Bell)

9.2. Let some device emits electromagnetic energy with powe
6000 Watt in a definite direction. What force is required duthe
recoil to hold the device at rest?

Section 10

10.1. Applying the principle of stationary action obtaire tfol-
lowing formula for the Lorentz force:

f= pﬁ+§[17,ﬁ],
wherep is the electric charge density.

Section 11

11.1. Does a charge, moving along a geodesic line in a unijorm
accelerating reference system, radiate?

11.2. Does a charge, moving along a geodesic line in an anpitr
non-inertial reference system, radiate?
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11.3. Does a charge, that is at rest in a non-inertial reteregs-
tem, radiate?

11.4. Does an elevator, the rope of which has been torn,septe
an inertial reference system?

Section 12

12.1. Find the space geometry on a disk, rotating with a eonst
angular velocityw.

12.2. Consider an astronaut in a space ship moving with anhst
acceleratior: away from the Earth. Will he be able to receive in-
formation from the Control Center during his trip?

Section 16

16.1. Find a surface in the Lobachevsky geometry, on whieh th
Euclidean planimetry is realized.

16.2. Explain the Thomas precession with the aid of the Loba-
chevsky geometry.

16.3. Does a triangle exist in the Lobachevsky geometnarall
gles of which equal zero?

16.4. Find the area of a triangle on a sphere of radius Eucli-
dean geometry.
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