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The History of every major Galactic Civilization tends to pass through three distinct and
recognizable phases, those of Survival, Inquiry and Sophistication, otherwise known as the
How, Why, and Where phases. For instance, the first phase is characterized by the question
“How canwe eat?” the second by the question “Why dowe eat?” and the third by the question
“Where shall we have lunch?”

Douglas Adams
The Hitchhikers Guide to the Galaxy



PREFACE

The curvature is the most natural and most important invariant of pseudo-Riemannian
geometry. According to Osserman1 [97], the notion of curvature is one of the central con-
cepts of differential geometry, distinguishing the geometric core of the subject from those
aspects that are analytic, algebraic, or topological. The curvature information is contained
in the curvature tensor, which is difficult to work with, despite the many symmetries it
possesses. Extracting the geometrical information that is encoded therein is often quite
a challenging task. That is why Gromov2 [64] described the curvature tensor as a little
monster of (multi)linear algebra whose full geometric meaning remains obscure. There-
fore, instead of working with the curvature tensor itself, we often use Jacobi operators or
sectional curvature that are easier to handle and have a better geometric interpretation,
while they contain the complete curvature information.

Our general goal is to find some kind of bridge between the curvature of a pseudo-
Riemannian manifold and its geometric properties. This aim can be approached in two
ways. The first approach is direct and begins by endowing a manifold with a metric, and
then its curvature is completely determined. We can compute it locally by calculating
Christoffel symbols of the Levi-Civita connection according to the formula (5.11), and then
use the formula (6.3) to get the components of the curvature operator, which consequently
gives the Jacobi operators.

If the initial metric has some nice features, like a large group of isometries, then it
is natural to expect that it implies the curvature that behaves nicely. We usually start
from highly symmetric manifolds which consequently have a relatively simple curvature
tensor, and then we study their geometric properties, which are often generalisations of
properties common in Euclidean geometry. These simple starting manifolds, such as two-
point homogeneous spaces, are called model spaces, and are used for more simple and con-
crete expression of the essential characteristics of Riemannian (or pseudo-Riemannain)
geometry.

The second approach goes in the opposite direction. We look at more general manifolds
to discover which of their properties are representative to a particular model space. If
we cannot recognize a model space based on these certain properties, then we want to
establish a complete classification of pseudo-Riemannian manifolds with these features.
Without an explicit description of the curvature tensor, we try to conclude to what extant
the special properties of Jacobi operators can determine the metric.

The simplest case in Riemannian geometry is when all the reduced Jacobi operators
have the single eigenvalue, which implies a space of constant sectional curvature. The
characteristic polynomial of the Jacobi operator which is independent on the unit tangent
bundle is the subject of the next simplest case. The key question is whether this condition
determines the curvature and metric tensor of such Riemannian manifolds, which are
known as Osserman manifolds.

This book is meant to be a monograph on Osserman manifolds and brings together a
large number of results published by the author in this topic. In order for as many read-

1Robert Osserman (1926–2011), American mathematician
2Mikhael Leonidovich Gromov (1943), Russian mathematician
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ers as possible to follow these results, the book also contains a detailed introduction to
smooth manifolds, as well as the basics of Riemannian and pseudo-Riemannian geometry,
and can be used as a textbook for the course in differential geometry. The book can be
divided into three imaginary parts: Part I Smooth manifolds, consisting of chapters 1–3,
Part II Pseudo-Riemannian geometry, consisting of chapters 4–7, and Part III Osserman
manifolds, consisting of chapters 8–10.

Part I (Chapters 1–3) is an introduction to smooth manifolds. We introduce the basic
mathematical objects, notation and terminology which will be used throughout this book.
The material of this part borrows from many sources, including the standard texts on man-
ifolds and differential geometry: O’Neill3 [96], Jeffrey Lee4 [76], John Lee5 [78], Gross6 and
Meinrenken7 [65], Gallier8 and Quaintance9 [59], Morita10 [86, Chapter 1], Tu11 [114], An-
tić12 [2].

Part II (Chapters 4–7) is an introduction to a pseudo-Riemannian geometry. An excellent
reference for the classical treatment of pseudo-Riemannian geometry is the book by O’Neill
[96]. We also recommend Jeffrey Lee [76]. Some standard texts for Riemannian geometry
are given by John Lee [79] and do Carmo13 [31]. We insist on the indefinite case, so we
find valuable texts by Meinrenken [83] and Clark14 [38]. For the submanifold theory we
recommend Dajczer15 and Tojeiro16 [41].

Part III (Chapters 8–10) deals with the study of Osserman manifolds and related tensors.
The basic reference on Osserman manifolds is certainly the monograph written by García-
Río17, Kupeli18, and Vázquez-Lorenzo19 [62]. We can also recommend the books written
by Gilkey20 [54, 55].

Belgrade, September 2024
Vladica Andrejić

3Barrett O’Neill (1924–2011), American mathematician
4Jeffrey M Lee (1956), American mathematician
5John M Lee (1950), American mathematician
6Gal Gross, Canadian mathematician
7Eckhard Meinrenken, German-Canadian mathematician
8Jean Henri Gallier (1949), French-American mathematician
9Jocelyn Quaintance, америчка математичарка

10Shigeyuki Morita (1946), Japanese mathematician
11Loring Wuliang Tu (1952), Taiwanese-American mathematician
12Miroslava Antić (1978), Serbian mathematician
13Manfredo Perdigão do Carmo (1928–2018), Brazilian mathematician
14Pete Louis Clark (1976), American mathematician
15Marcos Dajczer (1948), Argentinian-Brazilian mathematician
16Ruy Tojeiro, Brazilian mathematician
17Eduardo García-Río, Spanish mathematician
18Demir Nuri Kupeli (1957), Turkish mathematician
19Ramón Vázquez-Lorenzo, Spanish mathematician
20Peter Belden Gilkey (1946), American mathematician
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CHAPTER 1

SMOOTHMANIFOLDS AND MAPS

One of the most significant events in the history of geometry was on June 10, 1854, when
Bernhard Riemann1 held a public lecture entitled “On the hypotheses which lie at the
foundations of geometry” (Über die Hypothesen, welche der Geometrie zu Grunde liegen)
at the Philosophical Faculty at Göttingen.

In 1851, Riemann completed his doctoral dissertation (it was on the foundations of com-
plex analysis) under Gauss’s2 supervision. The next step in his academic career was to
qualify as a privatdocent, a lecturer who received no salary, but was merely forwarded
fees paid by these students who elected to attend his lectures.

This position was obtained through the process of habilitation, where candidates were
asked to submit an inaugural paper (habilitationsschrift) as well as to hold a public lecture
(habilitationsvortrag). An inaugural lecture topic was chosen by the faculty from a list of
three proposals made by the candidate. The first two topics which Riemann submitted
were ones on which he had already worked. However, contrary to tradition, Gauss passed
over the first two and picked the third topic, about the foundations of geometry.

Riemann worked hard to make the lecture understandable to non-mathematicians in
the audience (there were only a few geometricians), so he had a great presentation in
which the ideas were clearly defined without the help of analytic techniques. Although
Gauss was very impressed since the lecture surpassed all his expectations, the material
was presented orally and without technical details, so it is not surprising that the lecture
did not achieve the immediate impact on the mathematical world. However, the first pub-
lication of this lecture (by Dedekind3 in 1868 [106], two years after Riemann’s death) caused
significant reactions of mathematicians and became a milestone in the history of geometry.

At that time was the investigation concerning Euclid’s4 fifth postulate, looking for ax-
ioms to solidly define the basic space of geometry. There was also the quest of the structure
of the space we are living in, and some mathematicians were starting to think that other
structures might exist. This led us to the non-Euclidean geometries dealt with by Bolyai5

and Lobachevsky6 (before them pioneering works had Saccheri7 and Omar Khayyam8),
which suddenly become only special cases of more general theory.

Riemann was the first to give a comprehensive contribution to the generalisation of the
idea of surface to higher dimensions. His vision set up a new concept of space for which
he used the word mannigfaltigkeit, which was first translated by Clifford9 as manifoldness

1Georg Friedrich Bernhard Riemann (1826–1866), German mathematician
2Johann Carl Friedrich Gauß (1777–1855), German mathematician
3Richard Dedekind (1831–1916), German mathematician
4Euclid of Alexandria (fl. 300 BCE), Greek mathematician
5János Bolyai (1802–1860), Hungarian mathematician
6Nikolai Ivanovich Lobachevsky (1792–1856), Russian mathematician
7Giovanni Girolamo Saccheri (1667–1733), Italian Jesuit priest and mathematician
8Omar Khayyam (1048–1131), Persian mathematician, philosopher, and poet
9William Kingdon Clifford (1845–1879), English mathematician and philosopher
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Chapter 1. Smooth manifolds and maps

[107], while the word manifold was later established. The famous Riemann’s lecture and
the story about it can be found at Spivak10 [109, Chapter 4].

Manifolds are the fundamental objects of Differential Geometry. However, Riemann
did not have a precise definition of the concept. At that time there were technical diffi-
culties to give a formal definition, because the general notion of topological space was not
defined before Fréchet11 (1906 [48]) and Hausdorff12 (1914 [66]). Poincaré13 in 1895 [100]
introduced the idea of a manifold atlas and gave a definition of a manifold which served
as a precursor to the modern concept of a manifold. However, the first rigorous axiomatic
definition of manifolds was given by Veblen14 and Whitehead15 in 1931 [115] and 1932
[116].

Manifolds are all around us in many guises and these can be seen as higher dimensional
generalisations of smooth curves and smooth surfaces. Generally speaking, these are geo-
metrical objects that locally look like some Euclidean space Rn, and on which one can do
differential and integral calculus. Of course, the basic examples of manifolds are Euclidean
spaces themselves, smooth plane curves (such as ellipses, hyperbolas, and parabolas), and
smooth surfaces (such as ellipsoids, hyperboloids, paraboloids, tori). Higher-dimensional
examples include the unit n-sphere in Rn+1 and graphs of smooth maps between Euclidean
spaces.

In contrast to mentioned examples, a manifold does not always appear in a well known
space. In general it is rather difficult to think of it as a geometric figure, since it lives
in a very abstract environment. However, when we find local coordinates on such a set
and study the relationship among them, it often happens that a hidden geometric struc-
ture gradually comes to light. Since we want to involve as many objects as possible, it is
unavoidable for the definition of manifolds to be abstract. Though, once an object is re-
cognized to be a manifold based on this abstract definition, it appears in a known space
through the coordinates, and turns out to be a very practical object.

The study of manifolds involves topology, so we assume that the reader is familiar with
the definition and basic properties of topological spaces. We can consider a topological
space with certain properties that tell us what exactly means that it locally looks like an
Euclidean space. However, this resemblance to an Euclidean space should be sharp enough
to allow partial differentiation and consequently all important features of differential and
integral calculus on a manifold. Once we have established the calculus on a manifold,
many concrete applications are possible. We can compute a volume (by integration) or a
curvature (by formulas involving second derivatives), we can work in classical mechanics
(where we solving systems of ordinary differential equations) or general relativity (where
we solving systems of partial differential equations).

1.1 Locally Euclidean spaces

One can imagine a manifold as a dark room with a lamp available. At any given time, the
lamp will permit us to look at a certain region of the room only, giving us a local idea about
how the room looks like. The lamp here is an Euclidean space which comes equipped with
a nice coordinate system.

In studying the geography of Earth as a whole, it is convenient to use geographical maps
(charts), which provide a scaled-down representation of some portions of Earth on a flat

10Michael David Spivak (1940), American mathematician
11Maurice René Fréchet (1878–1973), French mathematician
12Felix Hausdorff (1868–1942), German mathematician
13Jules Henri Poincaré (1854–1912), French mathematician
14Oswald Veblen (1880–1960), American mathematician
15John Henry Constantine Whitehead (1904–1960), British mathematician
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1.1. Locally Euclidean spaces

sheet of paper. Maps are often preferred over globes because they are more practical for
everyday use. A collection of geographical maps such that every point of Earth is shown in
at least one map is called an atlas and it gives an excellent description of the entire planet,
without its actual visualization in three-dimensional space.

Let us formalize this idea of   local coordinates for an arbitrary nonempty setM. A chart
or a local coordinate system of dimension n ∈ N0 on the set M is an injective map
φ : U → Rn, where U ⊆ M and φ(U) ⊆ Rn is a nonempty open set. The domain U of a chart
φ is called a coordinate neighbourhood, and because of the frequent use, that chart φ
is traditionally recorded as the ordered pair (U,φ). We say that (U,φ) is a chart at p ∈ M
if p ∈ U, and if φ(p) = 0 ∈ Rn additionally holds we say that the chart is centred at p. The
inverse φ−1 : φ(U) → U of a chart φ is called a local parametrization.

M

U
φ(U)

Rn

φ

Throughout this book, πi : Rn → R denotes the natural projection defined by
πi(u1, . . . ,un) = ui for every 1 ≤ i ≤ n. The coordinate functions of an n-dimensional
chart (U,φ) on M are the functions xi : U → R defined by xi = πi ◦ φ for 1 ≤ i ≤ n. Their
values at some point p ∈ U are the coordinates, while we have

φ(p) = (x1(p), . . . , xn(p)).

If U ⊆ Rm is an open subset of a Euclidean space, we say that a function f : U → Rn is
of class Cr on U for r ∈ N, if each of its component functions πi ◦ f has continuous partial
derivatives of order r. If f is of class Cr for every r ∈ N, then it is of class C∞, and then we
say that f is smooth or differentiable. Functions of class C0 are continuous, and those of
class Cω are analytic.

A function between open subsets of Euclidean spaces is a Cr-diffeomorphism if it is
bijective and both it and its inverse are of class Cr. We allow a choice r ∈ N0 ∪ {∞,ω}, but
most often we use r = ∞, where a C∞-diffeomorphism we simply call a diffeomorphism,
while a C0-diffeomorphism is actually a homeomorphism.

The link between two charts (U,φ) and (V,ψ) on a setM is established by the transition
function, which is the bijective map ψ ◦φ−1 : φ(U∩V) → ψ(U∩V). We say that two charts
areCr-compatible if their transition function is aCr-diffeomorphism (we assume that then
both domain and codomain are open sets). In the special case when the subsets U and V
are disjoint, we assume that the charts are trivially Cr-compatible.

3



Chapter 1. Smooth manifolds and maps

U V

φ(U) ψ(V)

φ ψ

ψ ◦ φ−1

A collection of charts on the set M that are mutually Cr-compatible and such that the
union of all coordinate neighbourhoods is equal to M (every point of M is contained in the
domain of some chart) is called a Cr-atlas for M. If each chart in a Cr-atlas is of dimension
n ∈ N0, then n is the dimension of that atlas.

Since all functions of class Cr for r ∈ N0 ∪ {∞,ω} are certainly continuous (of class C0),
every atlas we consider is at least C0-atlas, that is, a topological atlas. We say that a set
M is a locally Euclidean space of dimension n if it has a topological atlas of dimension
n.

It turns out that a locally Euclidean space M becomes a topological space in a natural
way. Let A = {(Uα,φα) : α ∈ Λ} be a topological atlas of dimension n for a set M. The atlas
topology of A is the topology on M where we have

V ⊆ M is open ⇐⇒ (∀α ∈ Λ)φα(Uα ∩ V) ⊆ Rn is open. (1.1)

Since φα(∅) = ∅ and φα(Uα∩M) = φα(Uα) are open, ∅ and M are open in M. The intersec-
tion is distributive over the union, while according to Lemma A.1 the image of the union
is equal to the union of images, so we have

φα

(
Uα ∩

⋃
β
Vβ

)
= φα

(⋃
β
(Uα ∩ Vβ)

)
=
⋃
β
φα(Uα ∩ Vβ),

from which it can be seen that the union
⋃

β Vβ of open sets Vβ is an open set. Since φα is
injective, by Lemma A.1 the image of the intersection is equal to the intersection of images,
so we have

φα

(
Uα ∩

⋂
β
Vβ

)
= φα

(⋂
β
(Uα ∩ Vβ)

)
=
⋂
β
φα(Uα ∩ Vβ),

from which it can be seen that the finite intersection
⋂

β Vβ of open sets Vβ is an open set,
which proves that the formula (1.1) really defines a topology on M.

Lemma 1.1. IfA is a topological atlas of fixed dimension for a set M, then the atlas topology
of A is a unique topology by which M becomes a topological space such that all charts of the
atlas A are homeomorphisms onto their image.

Proof. Let A = {(Uα,φα) : α ∈ Λ} be a topological space of dimension n for a set M that
becomes a topological space. As we require that φα : Uα → φα(Uα) are homeomorphisms,
the family {Uα}α∈Λ becomes an open cover of M, so V ⊆ M is open if and only if Uα ∩V ⊆ M
is open for every α ∈ Λ. Therefore, a required topology on M can only be the atlas topology
given by (1.1).

If W ⊆ φα(Uα) is open in Rn, then φβ(Uβ∩φ−1
α (W)) = φβ ◦φ−1

α (φα(Uα∩Uβ)∩W) is open in
Rn, so φ−1

α (W) is open in M, and thus φα is continuous. If V ⊆ Uα is open in M, then φα(V) =
φα(Uα ∩ V) is open in Rn, so φ−1

α is continuous and therefore φα is a homeomorphism onto
its image.
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1.1. Locally Euclidean spaces

Some authors allow that the dimension of a chart from a Cr-atlas is not fixed in advance.
However, according to the dimension invariance theorem (Theorem A.5), a nonempty sub-
set of Rm is not homeomorphic to an open subset of Rn except for m = n. Therefore, n is
constant on the connected component of M, but it is possible for each component to have a
different dimension. We do not want to use the word manifold for spaces of mixed dimen-
sion, such as the disjoint union of different Euclidean spaces, so we require that a Cr-atlas
has a fixed dimension.

Lemma 1.1 shows that the basic manifold concept implies a locally Euclidean topolo-
gical space M. However, this approach has a minor technical problem as there are many
choices of a topological atlas that give the same topological space.

For a chart (U,φ) on a set M we say that is Cr-compatible with a Cr-atlas A for M if it is
Cr-compatible with each chart from A, which happens if and only if the union A∪{(U,φ)}
is also a Cr-atlas.

Consider a Cr-atlas A = {(Uα,φα) : α ∈ Λ} of dimension n for a set M. For V,W ⊆ M and
an arbitrary map ψ : V → Rn, since the intersection is distributive over the union, and the
formulas (A.1) and (A.2) from Lemma A.1 hold for the injective φα, we obtain

ψ(V ∩W) =
⋃
α
ψ(Uα ∩ V ∩W) =

⋃
α
(ψ ◦ φ−1

α )(φα(Uα ∩ V ∩W))

=
⋃
α
(ψ ◦ φ−1

α )(φα(Uα ∩ V) ∩ φα(Uα ∩W)).
(1.2)

Let (V,ψ) and (W,θ) be charts on the set M that are Cr-compatible with A Since the
transition function ψ ◦ φ−1

α is a homeomorphism (as a Cr-diffeomorphism) for each α ∈ Λ,
the formula (1.2) shows that ψ(V∩W) is open in Rn, as well as θ(V∩W). For the transition
function θ ◦ ψ−1 : ψ(V ∩W) → θ(V ∩W) we have

θ ◦ ψ−1↾ψ(Uα∩V∩W) = (θ ◦ φ−1
α ) ◦ (φα ◦ ψ

−1),

so θ ◦ ψ−1 is of class Cr on ψ(Uα ∩ V ∩W) for every α ∈ Λ, and thus of class Cr on ψ(V ∩W).
Similarly, ψ ◦ θ−1 is of class Cr on θ(V ∩W), so the charts (V,ψ) are (W,θ) Cr-compatible,
which proves the following lemma.

Lemma 1.2. if two charts are Cr-compatible with a Cr-atlas, then they are mutually Cr-
compatible.

A complete Cr-atlas is a maximal Cr-atlas in the sense that it is not properly contained
in any larger Cr-atlas. In other words, every chart that is compatible with a complete Cr-
atlas is already in the atlas.

Lemma 1.3. Every Cr-atlas for a set M generates a unique complete Cr-atlas for M that con-
tains it.

Proof. Let A be a Cr-atlas for M, and let A be the family of all charts on M that are Cr-
compatible with A. Obviously A ⊆ A, while by Lemma 1.2 all charts from A are mutually
Cr-compatible. Every chart that is Cr-compatible with A is also Cr-compatible with A, so it
is already in A, which proves that A is a complete Cr-atlas.

The complete smooth atlas allows great flexibility in the choice of a chart, which is
discussed in the following lemma.

Lemma 1.4. Let (U,φ) ba a chart from a complete Cr-atlas A of dimension n on a set M.
If a nonempty subset V ⊂ U is such that φ(V) ⊂ Rn is open, then (V,φ↾V) ∈ A. If a map
f : φ(U) → f(φ(U)) ⊆ Rn is a Cr-diffeomorphism, then (U, f ◦ φ) ∈ A.
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Chapter 1. Smooth manifolds and maps

Proof. Since φ↾V(V) = φ(V) is open, and the transition function φ↾V ◦ψ−1 = (φ◦ψ−1)↾ψ(V∩W)

is a Cr-diffeomorphism for each (W,ψ) ∈ A, we have (V,φ↾V) ∈ A. Since f ◦ φ(U) is open,
and (f ◦ φ) ◦ ψ−1 = f ◦ (φ ◦ ψ−1) is a Cr-diffeomorphism for each (W,ψ) ∈ A, we have
(U, f ◦ φ) ∈ A.

A frequent use of Lemma 1.4 refers to the case where a Cr-diffeomorphism f is the trans-
lation given by the formula f(x) = x − φ(p), which maps φ(p) to 0 ∈ Rn. Consequently, for
every point p ∈ M there exists a chart on M that is centred at p.

Of course, the topologies on M generated by Lemma 1.1 using an arbitrary topological
atlas A = {(Uα,φα)}α∈Λ for M and using its complete topological atlas A ⊇ A, are equal,
since if φα(Uα ∩W) ⊆ Rn are open for each α, then for every (V,ψ) ∈ A, the formula (1.2)
implies that ψ(V ∩W) ⊆ Rn is open.

In this sense, a locally Euclidean space of dimension n is an ordered pair (M,A), where
M is a set, and A is a complete topological atlas of dimension n for M, and therefore it is
a topological space whose topology is determined by an arbitrary topological atlas A ⊆ A,
while all charts of that atlas are homeomorphisms onto their image. However, a topolo-
gical space does not have to be locally Euclidean, as we see in the next example.

Example 1.1. Consider the crossing lines M = {(x, y) ∈ R2 : x2 = y2} ⊂ R2 with the sub-
space topology. If φ : V → φ(V) ⊆ Rn is a homeomorphism for a connected neighbourhood
V ⊆ M of the point 0 = (0,0), then V \ {0} and φ(V) \ {φ(0)} are homeomorphic. However,
V \ {0} has four connected components, whereas φ(V) \ {φ(0)} has two components when
n = 1 or only one component when n > 1, and therefore M is not locally Euclidean. 4

Usually, additional technical assumptions on the topological space are made to avoid
some pathological examples that do not arise in practice. We naturally assume that M is
a Hausdorff space, which means that for any two distinct points p,q ∈ M there exist dis-
joint open subsets P,Q ⊂ M such that p ∈ P and q ∈ Q. In that case, instead of charts
(U,φ), (V,ψ) ∈ A with p ∈ U and q ∈ V, by Lemma 1.4 we can take their restrictions
(U ∩ P,φ↾U∩P), (V ∩ Q,ψ↾V∩Q) ∈ A which have disjoint coordinate neighbourhoods. The
Hausdorff condition is satisfied if for every two distinct points p,q ∈ M there are charts
(U,φ), (V,ψ) ∈ A with p ∈ U and q ∈ V such that U ∩ V = ∅, which is equivalent to the fact
that the induced topology is Hausdorff.

It is useful to know that the Hausdorff condition is automatically satisfied for points
from the same coordinate neighbourhood, which we see in the following lemma.

Lemma 1.5. Let (M,A) be a locally Euclidean space and (U,φ) ∈ A. For distinct points
p,q ∈ U there exist (Vp,ψp), (Vq,ψq) ∈ A such that p ∈ Vp, q ∈ Vq, and Vp ∩ Vq = ∅.

Proof. Distinct points φ(p),φ(q) ∈ φ(U) ⊆ Rn can be separated by open sets P 3 φ(p) and
Q 3 φ(q), where P ∩ Q = ∅, so we obtain disjoint sets Vp = φ−1(P) 3 p and Vq = φ−1(Q) 3 q,
while the required charts are the corresponding restrictions of the chartφ given by Lemma
1.4.

Example 1.2. The linewith twooriginsM = {(x, y) : x ∈ R, y ∈ {−1,1}}/∼ is the quotient
space, where the equivalence relation ∼ is given by (x,−1) ∼ (x,1), if x 6= 0. We can see it
as M = (R \ {0}) ∪ {0+,0−}, so let A = {(U+,φ+), (U−,φ−)}, where φ± : M \ {0∓} → R are
given by φ±(x) = x for x ∈ R \ {0} and φ±(0±) = 0. The transition function φ− ◦ φ−1

+ =
1R\{0} is a homeomorphism, so A is a topological atlas for M. Additionally, the charts φ+

and φ− are homeomorphisms with respect to the quotient topology of the space M, which
is precisely the topology that, according to Lemma 1.1 will be generated by the atlas A.
Every neighbourhood of the point 0± contains φ−1

± (−ε, ε) = (−ε,0)∪ {0±} ∪ (0, ε) for some
small ε > 0, so the points 0+ and 0− cannot be separated by open sets. The line with two
origins is a locally Euclidean space of dimension 1 which does not satisfy the Hausdorff
condition. 4
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0+

0−
0+

R \ {0} ∪ {0+} ∼= R 0− R \ {0} ∪ {0−} ∼= R

R \ {0}
φ+ φ−

An additional requirement is that M is second countable (satisfying the second axiom
of countability), which means that its topology has a countable basis. In chart terms, this
means that the complete atlas A has a countable subatlas A ⊆ A. Namely, for every p ∈ M
there is a chart at p which by Lemma 1.4 can be replaced by restriction to some basis set,
so if M has a countable basis, then it also has a countable subatlas. Conversely, since open
subsets ofRn have a countable basis, if there is a countable subatlasA thenM is a countable
union of open sets with a countable basis, ant it itself has a countable basis.

Example 1.3. An ordinary line R can be constructed in an unusual way as L = I× [0,1) by
taking the half-open intervals indexed by I = Z equipped with the topology induced by the
lexicographical order on L. Let ω1 be the first uncountable ordinal. Since every set can be
well-ordered (according to Zermelo16, where the axiom of choice is used), we can naturally
introduce the well-ordered set I = −ω1 ∪ {0} ∪ ω1 on the model of Z = −N ∪ {0} ∪ N. The
long line (or Alexandroff line17) is L = I× [0,1) with the lexicographical order topology.
The set {x ∈ ω1 : x < α} is countable for every α ∈ ω1, and so is the set {x ∈ I : α < x < β}
for α, β ∈ I, which implies that every α ∈ I has its successor S(α) ∈ I. For each α ∈ I we
introduce homeomorphisms φα : Uα → (0,2), where Uα = ({α} × (0,1)) ∪ ({S(α)} × [0,1)),
given by φα(α, t) = t and φα(S(α), t) = t + 1, so L is a locally Euclidean space of dimension
1 with the topological atlas {(Uα,φα) : α ∈ I}. The long line has no countable basis because
{(α, t) ∈ L : t ∈ (1/4,3/4)}α∈I is an uncountable family of disjoint nonempty open subsets
of L. 4

The second countable atlas condition, among other things, can be used in proofs by
mathematical induction. Most of our examples have an atlas consisting of finitely many
charts, and it is not hard to notice that if M is compact, instead of a complete atlas we can
take a finite subatlas.

Finally, we introduce the definition of Cr-manifold of dimension n ∈ N0, which is the
set M together with a complete Cr-atlas of dimension n that has a countable subatlas and
satisfies the Hausdorff condition. In general, it is not convenient to explicitly define a
complete because it contains too many charts. Therefore, along with the set M we usually
specify some countable Cr-atlas A (which solves the countable basis problem), and we say
that (M,A) is a Cr-manifold, assuming that it is the Cr-manifold (M,A), where A ⊇ A is the
complete Cr-atlas generated by Lemma 1.3.

Example 1.4. Of course, the basic example of a Cr-manifold of dimension n is the Euc-
lidean space Rn. It is locally Euclidean of dimension n, which is justified by the Cr-atlas
with the single chart (Rn,1Rn), and the Hausdorff condition is satisfied because Rn is Haus-
dorff as a metric space. 4

1.2 Topological properties of manifolds

A topological manifold of dimension n or topological n-manifold is a C0-manifold
of dimension n. First of all, it is a topological space in accordance with Lemma 1.1. A
chart (U,φ) of dimension n on a topological space M ⊇ U is every homeomorphism

16Ernst Friedrich Ferdinand Zermelo (1871–1953), German logician and mathematician
17Pavel Sergeyevich Alexandrov (1896–1982), Soviet mathematician
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φ : U → φ(U) ⊆ Rn. Any two charts of the same dimensions on a topological space are
C0-compatible because their transition function is a homeomorphism as a composition of
homeomorphisms. Therefore, it is sufficient to find charts of dimension n on M whose
domains form an open cover of M to obtain a topological atlas and showed that the topo-
logical space M is locally Euclidean of dimension n.

If a topological space M as a set has a topological atlas A by which M becomes a topolo-
gical manifold whose topology induced by the atlas A agrees with the topology of M, then
a complete topological atlas A ⊇ A is uniquely determined, as well as a topological mani-
fold. This allows us to describe a topological manifold without any specific atlas, which is
actually the standard definition of almost all authors.

Lemma 1.6. A topological n-manifold is a second countable Hausdorff topological space
that is locally Euclidean of dimension n.

Although there are some important locally Euclidean spaces that do not satisfy the addi-
tional conditions (see Example 1.2 and Example 1.3), it can be said that almost all ordinary
geometrical figures satisfy them, and it is extremely rare to meet a space in nature without
all of these conditions.

The Hausdorff condition has two essential properties. First, that the limit of a conver-
gent sequence is unique. Second, that compact subsets are closed sets (especially, any finite
set is closed) and thus have complements that are open. Hausdorffness together with the
second countability implies the existence of partitions of unity, a very important tool in a
manifold theory, and would suffice to justify these conditions. It follows that these condi-
tions ensure that every manifold embeds in some finite-dimensional Euclidean space, and
it can be endowed with a Riemannian metric.

The simplest examples of manifolds have an atlas consisting of only one chart. Then
we automatically have a countable basis, while the Hausdorff condition follows directly
from Lemma 1.5.

Example 1.5. Let M = {(x, y, z) ∈ R3 : z = x2+y2} ⊂ R3 be the circular paraboloid with the
subspace topology inherited from R3. It is enough to observe the single chart φ : M → R2

given by φ(x, y, z) = (x, y) that is the normal projection onto the plane z = 0, which is a
homeomorphism between the paraboloid and the plane. Therefore, the paraboloid M is a
topological 2-manifold. 4

Example 1.6. For any open set U ⊆ Rn, the graph of a continuous function f : U → Rm is
the subset of Rn × Rm defined by Γ(f) = {(x, y) : x ∈ U, y = f(x)}. The natural projection
φ : Γ(f) → U given by φ(x, y) = x is continuous, invertible, and its inverse φ−1(x) = (x, f(x))
is continuous. Since φ is a homeomorphism, Γ(f) with the atlas {(Γ(f),φ)} is a locally Eu-
clidean space, so Γ(f) with the subspace topology inherited from Rn+m = Rn × Rm is a
topological n-manifold. We can notice that the paraboloid from Example 1.5 is just one
special case of graph. 4
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Of course, we cannot expect that a topological space M always has an atlas with a single
chart (M,φ). If M is compact, then so is its image φ(M) ⊆ Rn under homeomorphism φ, but
a nonempty open subset of Euclidean space is never compact, so we need at least two
charts. In case when an atlas has more charts, it is necessary to check the Hausdorff con-
dition, but in practice this is often straightforward. For example, if M is a topological sub-
space of Euclidean space, then the Hausdorff condition (as well as the second countability)
is automatically inherited.

Example 1.7. The unit circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} ⊂ R2 with the subspace
topology is a topological 1-manifold, since the map ψ : R → S1 given by ψ(t) = (cos t, sin t)
has restrictions to small open sets which are homeomorphisms. More generally, the n-
dimensional sphere of unit radius centred at the origin,

Sn = {(x1, . . . , xn+1) ∈ Rn+1 : x2
1 + · · ·+ x2

n+1 = 1} ⊂ Rn+1,

is called the n-sphere. Hausdorffness and second countability for Sn with the subspace
topology are inherited from Rn+1. An arbitrary point (a1, . . . ,an+1) ∈ Sn can be assigned
to the open hemisphere U = {(x1, . . . , xn+1) ∈ Sn : a1x1 + · · · + an+1xn+1 > 0}. The ortho-
gonal projection of U onto the hyperplane given by a1x1 + · · ·+ an+1xn+1 = 0 has formulas
(x1, . . . , xn+1) 7→ (x′1, . . . , x′n+1) where x′i = xi − ai(a1x1 + · · · + an+1xn+1) for 1 ≤ i ≤ n + 1.
This projection determines a homeomorphism between the hemisphere U and the disc de-
scribed by the set {(x1, . . . , xn+1) ∈ Rn+1 : x2

1 + · · ·+ x2
n+1 < 1, a1x1 + · · ·+ an+1xn+1 = 0}, so

the n-sphere is a topological n-manifold by Lemma 1.6. 4

O

A

X

X′

Manifolds, as topological spaces, share many important properties with Euclidean
spaces. Since a topological manifold is locally Euclidean, local properties of Euclidean
spaces (such as local compactness or local path-connectedness) are inherited. Usually, the
open balls of radius r > 0 and centre p ∈ Rn form a topology basis of the Euclidean space
Rn, and we use the notation

Br(p) = {x ∈ Rn : ‖x− p‖ < r} ⊂ Rn.

Lemma 1.7. Every topological manifold is locally compact and locally path-connected.

Proof. Let M be a topological n-manifold, and U ⊆ M be a neighbourhood of a point p ∈ M.
Since M is locally Euclidean, there exists a chart at p ∈ M, and this chart can be modified
according to Lemma 1.4 so there is a chart (V,φ) centred at p ∈ M such that V ⊆ U. The
set φ(V) 3 0 is open, so there is a sufficiently small ε > 0 such that B2ε(0) ⊂ φ(V). The
ball Bε(0) ⊂ Rn is path-connected and relatively compact, and so is its homeomorphic
preimage φ−1(Bε(0)) ⊂ φ−1(Bε(0)) ⊂ V ⊆ U. Thus M is locally path-connected and locally
compact.

If M is locally compact and Hausdorff, then all compact sets in M are closed. Hence,
every point p ∈ M lies in some open set whose closure is compact.

9
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Lemma 1.8. A topological manifold is connected if and only if it is path-connected.

Proof. Since every path-connected topological space is connected, and every topological
manifold is locally path-connected (Lemma 1.7), it suffices to prove that a connected and
locally path-connected topological space is path-connected. Since any path-connected
component of a locally path-connected space is open, the space itself is a union of dis-
joint open sets which are path-connected components. Thus, connected components and
path-connected components are the same, with the lemma being a special case of this.

A refinement of a cover U ofM is a new cover V ofM, such that everyV ∈ V is contained
in some U ∈ U . A simple example of refinement is a subcover, but refinements are much
more flexible. For example, the covering of a metric space by open balls of radius 2 is
refined by the covering by open balls of radius 1. A collection of subsets of M is said to be
locally finite, if each point of M has a neighbourhood that intersects only finitely many
of the sets in the collection. We say that M is paracompact if every open cover of M has
a locally finite open refinement.

The notion of paracompactness is introduced by Dieudonne18 [42] as a generalisation
of the notion of compactness. Every compact space is, certainly, paracompact, while the
most famous counterexample is the long line from Example 1.3, which is not paracompact.
Hausdorffness of paracompact spaces extend their properties.

Lemma 1.9. Every paracompact Hausdorff space is regular.

Proof. Let M be a paracompact Hausdorff space, p ∈ M, and C is a closed set not containing
p. For any q ∈ C, by Hausdorffness, we have disjoint open sets Uq 3 p and Vq 3 q. Since
C ⊆

⋃
q∈C Vq, the setsVq andM\C form an open cover ofM. By paracompactness ofM, there

is a locally finite open refinement. Throwing out from this any open subset not intersecting
C, we still get a locally finite collection A of open subsets, each contained in some Vq, that
cover C. By local finiteness of A, there exists an open set W 3 p such that there are only
finitely many members A1, . . . ,Ak of A that intersects W. Let q1, . . . , qk be points in C such
that Ai ⊆ Vqi 3 qi holds for 1 ≤ i ≤ k. Let us define U = W∩Uq1 ∩ · · · ∩Uqk and V =

⋃
A. It is

easy to see that U and V are disjoint open sets. Thus p ∈ U and C ⊆ V can be separated by
neighbourhoods and therefore M is regular.

Moreover, the original theorem of Dieudonne states that every paracompact Hausdorff
space is normal, but we do not need that fact. Every locally compact second countable
Hausdorff space is paracompact, so this holds in particular for a topological manifold.

Lemma 1.10. Every topological manifold is paracompact.

Proof. Let M be a locally compact second countable Hausdorff space. Then there exists a
countable basis {Wi}i∈N consisting of relatively compact sets. Put K1 = W1 and assume
inductively that compact Kj has been defined for 1 ≤ j ≤ n. Since {Wi}i∈N is an open
cover of compact Kn, there is the smallest m ∈ N such that Kn ⊂

⋃m
i=1 Wi, so we define

Kn+1 =
⋃m

i=1 Wi which is compact as a finite union of compact sets. Thus we have an
exhaustion of M as a family {Kn}n∈N of compact subsets of M such that Kn ⊂ Int(Kn+1)
and M =

⋃
n∈N Kn.

Let U be an open cover of M for which we seek a locally finite refinement. For p ∈ M
there is Up 3 p from U and a minimal n ∈ N such that p ∈ Int(Kn) and p /∈ Int(Kn−1). The set
(Kn \ Int(Kn−1)) is a compact subset of open (Int(Kn+1) \ Kn−2), and therefore there exists
a finite subfamily that covers it, consists of sets of shape Vp = (Int(Kn+1) \ Kn−2) ∩ Up. The
cases n = 1 and n = 2 need a slight modification, for example Vp = Int(K3) ∩ Up. Anyway,
such Vp can intersects only sets of such shape whose n differs from the original n for no

18Jean Dieudonné (1906–1992), French mathematician
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more than one, which is a finite number. Hence, the sets of shape Vp make a new basis,
which is a locally finite refinement of U .

Let us remark that some authors define a topological manifold as a locally Euclidean
paracompact Hausdorff space. In this case we should know that each connected compon-
ent of a locally Euclidean paracompact Hausdorff space has a countable basis. Thus, if a
locally Euclidean paracompact Hausdorff space has a countable number of components,
then it is second countable.

1.3 Smooth manifolds

The definition of topological manifolds is sufficient for studying topological properties,
such as compactness and connectedness. However, smoothness is not invariant under
homeomorphisms (a circle and a square are homeomorphic, but the square is not smooth),
and therefore the topological structure is insufficient to provide the calculus. Therefore, a
topological manifold requires an additional structure.

A smooth manifold or differential manifold of dimension n is a C∞-manifold of
dimension n. According to the definition, it is a set M furnished with a countable C∞-atlas
A of dimension n which satisfies the Hausdorff condition. We say that A is a smooth
atlas for M, and every two charts from A are smoothly compatible in the sense that
their transition function is a diffeomorphism.

Since our theory predominantly assumes the smoothness of fundamental objects, we
often omit the explicit use of the adjective “smooth”. Throughout this book, unless ex-
plicitly stated otherwise, manifold will refer to a smooth manifold, atlas will refer to a
smooth atlas, and compatible charts will imply smooth compatibility. The dimension of
a manifold M is denoted by dimM, and if we want to emphasize that n = dimM, we say
that M is an n-manifold, or we indicate the dimension through a superscript and write
that Mn is a manifold.

According to Lemma 1.1, a smooth atlas A uniquely determines the topology on M, but
in addition to the topological one, we also get an additional structure, called the smooth
structure, which allows changing of local coordinates during the transition from one
chart to another always be smooth. A smooth structure on M is essentially defined by a
complete smooth atlas A, but thanks to Lemma 1.3 it is sufficient to have a smooth subatlas
A ⊆ A.

By a common abuse of language, we usually speak of a manifold M, where a certain
(complete smooth) atlas A is implicitly understood. Therefore, a chart on M will always
mean a chart in the atlas A. Let us survey some common examples of manifolds to which
we naturally assign a smooth atlas to define smooth structure that we call the standard
smooth structure, which will, unless otherwise explicitly specified, be our default.

Example 1.8. The only neighbourhood of a point p in a 0-manifold M that is homeo-
morphic to an open subset of R0 is {p} itself, and therefore there is exactly one chart
φ : {p} → R0. All charts on M are trivially compatible, and every 0-manifold is just a
countable discrete space. We can notice that the countable subatlas (second countable)
condition from the manifold definition does not allow to consider R as a 0-manifold. 4

Example 1.9. If a topological manifold M has a topological atlas with a single chart, the
compatibility condition holds trivially, this atlas is automatically smooth and determines
a smooth structure on M. Euclidean space Rn with the single chart (Rn,1Rn) from Example
1.4 is a topological n-manifold, and that identity map determines the standard smooth
structure on Rn. Also, the graph of any continuous function on an open subset of Rn is
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a topological n-manifold with a single chart from Example 1.6, and therefore it is an n-
manifold. This shows that many of the familiar surfaces are manifolds, for example an
elliptic paraboloid or a hyperbolic paraboloid. 4

Example 1.10. Example 1.9 shows the 1-manifold R with the standard smooth structure
is determined by the single chart (R,1R). However, we can use another single chart (R,φ),
where φ : R → R is given by φ(x) = x3, to determine a new smooth structure on R. Since
the transition map 1R ◦φ−1(y) = y1/3 is not smooth at the origin, two charts are not com-
patible and therefore they determine different smooth structures. Thus, we have a new
1-manifold R̃ which convinces us that the same topological manifold can have many vari-
ous smooth structures. 4

Every open subsetU ⊂ Rn can be seen as a manifold using the atlas with the single chart
(U,1U). Moreover, this kind of construction is possible for any open subset of an arbitrary
manifold, as we see in the following examples.

Example 1.11. Let M be an n-manifold with a complete smooth atlas A. The natural atlas
on an open subset U ⊂ M consists of the chart (V,φ) ∈ A such that V ⊆ U. Each point
p ∈ U is contained in the domain of some chart (V,φ) on M, while (V ∩ U,φ↾V∩U) is a chart
at p ∈ U by Lemma 1.4. The second countability and Hausdorff condition are inherited
by subspaces, so U ⊂ M becomes an n-manifold in a natural way, and we call it an open
submanifold of M. 4

Example 1.12. For m,n ∈ N, we denote the vector space of all real m × n matrices by
Rm×n. Since Rm×n ∼= Rmn, according to Example 1.9, Rm×n is a manifold of dimension mn.
The general linear group of degree n ∈ N is a group GL(n,R) of invertible real square
matrices of order n, that is,

GL(n,R) = {A ∈ Rn×n : detA 6= 0} = det−1(R \ {0}).

Since the determinant function det : Rn×n → R is continuous, GL(n,R) is an open subset of
Rn×n ∼= Rn2 , and therefore GL(n,R) is a manifold of dimension n2 by Example 1.11 as an
open submanifold of Rn×n. Similarly, the complex general linear group GL(n,C), which is
a group of invertible n × n complex matrices of order n, is an open subset of Cn×n ∼= R2n2

and it is a manifold of dimension 2n2. 4

Example 1.13. We can generalise Example 1.12 to rectangular matrices of full rank. Let
Rm×n
m be the subset of Rm×n consists of matrices of rank m < n. For any A ∈ Rm×n

m there
is a submatrix fA(A) ∈ GL(m,R), where fA : Rm×n

m → Rm×m is a concrete projection. By
continuity of the determinant function there exists a neighbourhood U ⊂ Rm×n

m of matrix
A such that det(fA(X)) 6= 0 holds for all X ∈ U. Hence Rm×n

m is an open subset of Rm×n, and
thus a manifold of dimension mn as an open submanifold of Rm×n. 4

In Example 1.7 we showed that the sphere Sn is a topological n-manifold even though
we did not specify the charts of topological atlas. In order to show that Sn is a smooth n-
manifold, it is necessary to define a concrete smooth atlas, preferably with as few charts
as possible, as we see in the following examples.

Example 1.14. Consider the topological atlas for the sphere Sn from Example 1.7. If we
use only those points of the sphere whose coordinates are all zero except one, the corres-
ponding hemispheres will cover the whole Sn. The number of charts in the atlas is reduced
to 2n+ 2, where all of them have very simple formulas. Concretely, for each 1 ≤ i ≤ n+ 1
we have projections on the hemispheres U±i = {(x1, . . . , xn+1) ∈ Sn : ±xi > 0} given by
φ±i(x1, . . . , xn+1) = (x1, . . . , xi−1, xi+1, . . . , xn+1), while φ±i(U±i) = B1(0) = Bn ⊂ Rn is the

12
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open unit ball. The projections φ±i : U±i → Bn are bijections since we easily calculate their
inverses,

φ−1
±i (y1, . . . , yn) = (y1, . . . , yi−1,±

√
1 − y2

1 − · · · − y2
n, yi, . . . , yn),

which means that (U±i,φ±i) are charts on the sphere Sn. This charts are mutually compat-
ible because all transition functions are smooth. For example, for j < i we have

φ+j ◦ φ−1
±i (y1, . . . , yn) = φ−j ◦ φ−1

±i (y1, . . . , yn)

= (y1, . . . , yj−1, yj+1, . . . , yi−1,±
√

1 − y2
1 − · · · − y2

n, yi, . . . , yn),

which is smooth, so φ+j ◦φ−1
±i is a diffeomorphism between V+j and V±(i−1), and φ−j ◦φ−1

±i is
a diffeomorphism between V−j and V±(i−1), where V±k = {(y1, . . . , yn) ∈ Bn : ±yk > 0} are
open sets. The case j > i can be solved similarly, while the case j = i essentially does not
exist since U+i∩U−i = ∅, and therefore the charts (U±i,φ±i) form a smooth atlas for Sn. 4

Example 1.15. In Example 1.7 we use 2n+2 charts to show that the n-sphere Sn is a smooth
n-manifold. The number of charts in the atlas can be reduced to 2, which is optimal because
Sn is compact. Let us consider two points p± = (0, . . . , 0,±1) ∈ Sn and two sets U± =
Sn \ {p∓} which cover the whole Sn.

p+

p−

q

φ−(q)

φ+(q)

The atlas will consists of two stereographic projections φ± : U± → Rn defined by

φ±(x1, . . . , xn, xn+1) =
1

1 ± xn+1
(x1, . . . , xn).

Such φ± are continuous, invertible, and the inverse

φ−1
± (y1, . . . , yn) =

1
1 + y2

1 + · · ·+ y2
n
(2y1, . . . , 2yn,∓(−1 + y2

1 + · · ·+ y2
n)) (1.3)

is also continuous. The transition map

φ− ◦ φ−1
+ (y1, . . . , yn) =

1
y2

1 + · · ·+ y2
n
(y1, . . . , yn) (1.4)

is an obvious diffeomorphism from Rn \ {0} onto itself (geometrically, it is the inversion
with respect to the sphere Sn−1 ⊂ Rn \{0}, which is an involution), and therefore these two
charts are compatible. In this way, the stereographic projections on the n-sphere form a
smooth atlas, and determine the smooth structure of the n-manifold Sn.

13



Chapter 1. Smooth manifolds and maps

Moreover, the stereographic projections are compatible with the projections from Ex-
ample 1.14 since the transition functions are smooth,

φs ◦ φ−1
±i (y1, . . . , yn) =

1
1 + syn

(
y1, . . . , yi−1,±

√
1 − y2

1 − · · · − y2
n, yi, . . . , yn−1

)
φ±i ◦ φ−1

s (y1, . . . , yn) =
1

1 + y2
1 + · · ·+ y2

n

(
2y1, . . . , 2yi−1,2yi+1, . . . , 2yn,−s(−1 + y2

1 + · · ·+ y2
n)
)

for each 1 ≤ i ≤ n, as well as

φs ◦ φ−1
±(n+1)(y1, . . . , yn) =

1

1 ± s
√

1 − y2
1 − · · · − y2

n

(y1, . . . , yn)

φ±(n+1) ◦ φ−1
s (y1, . . . , yn) =

2
1 + y2

1 + · · ·+ y2
n
(y1, . . . , yn),

where s ∈ {+,−}, so the atlas with ordinary projections and the atlas with stereographic
projections determine the same smooth structure, which is the standard smooth structure
of the n-sphere. 4

It is common to build new manifolds out of old. For example, if we have two manifolds
of the same dimensions, we can take their disjoint union with the union of their atlases
and get a new manifold, although it is no more interesting than considering the manifolds
separately.

Example 1.16. Consider the product M×N for an m-manifold M and an n-manifold N. For
any point (p,q) ∈ M × N we can choose a chart (U,φ) at p ∈ M and a chart (V,ψ) at q ∈ N,
which allows us to construct product charts in an obvious wayφ×ψ : U×V → φ(U)×ψ(V) ⊆
Rm ×Rn = Rm+n by (φ× ψ)(u, v) = (φ(u),ψ(v)). Any two charts (φ1 × ψ1) and (φ2 × ψ2) are
compatible because (φ2 × ψ2) ◦ (φ1 × ψ1)

−1 = (φ2 ◦ φ−1
1 ) × (ψ2 ◦ ψ−1

1 ). The product atlas
is smooth, while the Hausdorffness and second countability are hereditary properties for
products, so the product manifold M × N is a manifold of dimension m + n. Therefore,
the torus S1 × S1 and the infinite cylinder S1 × R are manifolds. This construction can be
easily extended to more manifolds, so the n-torus, Tn = S1×· · ·×S1 (n factors) is a smooth
n-manifold. 4

Gluing is a good method to construct new spaces from known ones. For example, gluing
together the upper and lower edges of a square gives a cylinder and gluing together the
boundaries of the cylinder gives a torus. The quotient construction is a process starting
with an equivalence relation ∼ on a set M, where we identify each equivalence class to
a point. The quotient set M/∼ is the set of equivalence classes, and there is the natural
projection map π : M → M/∼ that sends p ∈ M to its equivalence class π(p) = [p].

If M is a topological space, it is natural that the quotient set M/∼ becomes the quo-
tient space by obtaining the quotient topology in which U ⊆ M/∼ is open if and only if
π−1(U) ⊆ M is open. Then the projection π is continuous, and we have additional topology
compatibility if π is open. This motivates us to make all charts (U,φ) on M/∼ such that
φ ◦ π is both continuous and open, because then the topology of M/∼ induced by Theorem
1.1 agrees with the quotient topology induced by the projection π. However, even if the
original space is a manifold, a quotient space is often not a manifold, since the Hausdorff
condition must be checked.

Example 1.17. The real projective space of dimension n is the set of all one-dimensional
linear subspaces of the vector space Rn+1. It is the quotient set RPn determined by the
projection π : Rn+1 \ {0} → RPn sending each point x ∈ Rn+1 \ {0} to the equivalence class
π(x) = [x] = Span{x}, which becomes a point of the space RPn = (Rn+1 \ {0})/∼. Usually,
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1.3. Smooth manifolds

we write the equivalence class of a vector (x1, . . . , xn+1) 6= 0 in homogeneous coordinates,
(x1 : . . . : xn+1) = [(x1, . . . , xn+1)].

Let us define the sets Ũi = {(x1, . . . , xn+1) : xi 6= 0} ⊂ Rn+1 \ {0} and Ui = π(Ũi) ⊆ RPn for
1 ≤ i ≤ n+ 1. The function φi : Ui → Rn given by

φi(x1 : . . . : xn+1) =

(
x1
xi

, . . . ,
xi−1
xi

,
xi+1
xi

, . . . ,
xn+1
xi

)
is well defined, since the value φi([x]) is invariant on multiplying x = (x1, . . . , xn+1) by a
nonzero scalar, and it is obviously bijective with the inverse

φ−1
i (y1, . . . , yn) = (y1 : . . . : yi−1 : 1 : yi : yi+1 : . . . : yn).

In this way we make the standard charts (Ui,φi) on RPn for 1 ≤ i ≤ n+1. They are mutually
compatible since for i > j the transition function gives

φj ◦ φ−1
i (y1, . . . , yn) =

(
y1
yj
, . . . ,

yj−1
yj

,
yj+1
yj

, . . . ,
yi−1
yj

,
1
yj
,
yi
yj
, . . . ,

yn
yj

)
,

which is a diffeomorphism between the open sets φi(Ui ∩Uj) = Rj−1 × (R \ {0})×Rn−j and
φj(Ui ∩Uj) = Ri−2 × (R \ {0})×Rn+1−i, and it can be shown similarly in the case i < j. Since
every nonzero vector has some nonzero coordinate, we have RPn =

⋃n+1
i=1 Ui, so our charts

form a smooth atlas.
It remains to check the Hausdorff condition for distinct points p = (p1 : . . . : pn+1) and

q = (q1 : . . . : qn+1) from RPn. If p,q ∈ Ui holds for some 1 ≤ i ≤ n+1, the matter is solved by
Lemma 1.5. Otherwise, there exist 1 ≤ i 6= j ≤ n+1 such that pi 6= 0,pj = 0 and qi = 0,qj 6= 0.
Consider the disjoint sets P = {(x1 : . . . : xn+1) : x2

i > x2
j } and Q = {(x1 : . . . : xn+1) : x2

i < x2
j },

where p ∈ P ⊂ Ui and q ∈ Q ⊂ Uj. Since for each 1 ≤ k ≤ n the sets {(y1, . . . , yn) : |yk| < 1}
are open in Rn, then φi(P) and φj(Q) are open in Rn, so by Lemma 1.4 (P,φi↾P) and (Q,φj↾Q)
are charts of the complete smooth atlas (as (1 : . . . : 1) ∈ Ui for each i we could not use the
original charts only), which proves the Hausdorff condition. Finally, RPn with the standard
atlas introduced is an n-manifold.

It is important to emphasize that the topology of the manifold RPn induced by Theorem
1.1 agrees with the quotient topology induced by the projection π. We consider the map
φi ◦ π : Ũi → Rn given by φi ◦ π(x1, . . . , xn+1) = (x1/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn+1/xi), for
each 1 ≤ i ≤ n + 1. It is obviously continuous, but also open because for an open W ⊆ Ũi,
as multiplication by λ 6= 0 is a homeomorphism of Ũi ⊂ Rn+1 \ {0}, we have open λW ⊆ Ũi,
from where (φi ◦ π)−1((φi ◦ π)(W)) =

⋃
λ ̸=0 λW is open, and therefore (φi ◦ π)(W) is open.

Since all the maps φi ◦ π are continuous and open, the topologies agree. 4

Example 1.18. Complex projective space of dimension n is the quotient set CPn =
(Cn+1 \ {0})/∼ obtained in complete analogy with RPn, where ∼ is the proportional-
ity relation (scalars are nonzero complex numbers) that induces the natural projection
π : Cn+1 \ {0} → CPn and homogeneous coordinates π(z1, . . . , zn+1) = (z1 : . . . : zn+1). The
standard atlas charts are φi : Ui → Cn ∼= R2n, where Ui = {(z1 : . . . : zn+1) : zi 6= 0} for
1 ≤ i ≤ n+ 1, given by

φi(z1 : . . . : zn+1) =

(
z1
zi
, . . . ,

zi−1
zi

,
zi+1
zi

, . . . ,
zn+1
zi

)
.

They are mutually compatible since for i > j the transition function gives

φj ◦ φ−1
i (z1, . . . , zn) =

(
z1
zj
, . . . ,

zj−1
zj

,
zj+1
zj

, . . . ,
zi−1
zj

,
1
zj
,
zi
zj
, . . . ,

zn
zj

)
,
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Chapter 1. Smooth manifolds and maps

which is a diffeomorphosm between open sets φi(Ui ∩ Uj) = Cj−1 × (C \ {0}) × Cn−j and
φj(Ui∩Uj) = Ci−2×(C\{0})×Cn+1−i, and similarly in the case of i < j. Of course, we should
always keep in mind that

zk
zj

=
xk + iyk
xj + iyj

=
(xk + iyk)(xj − iyj)

x2
j + y2

j
=

(
xkxj + ykyj
x2
j + y2

j
,
ykxj − xkyj
x2
j + y2

j

)
.

Analogous to the proof for RPn, the Hausdorff condition holds for CPn because the points
p = (p1 : . . . : pn+1) and q = (q1 : . . . : qn+1) fromCPn with pi 6= 0,pj = 0 and qi = 0,qj 6= 0 can
be separated by P = {(z1 : . . . : zn+1) : ‖zi‖ > ‖zj‖} and Q = {(x1 : . . . : xn+1) : ‖zi‖ < ‖zj‖}.
Finally, CPn with the introduces standard atlas is a 2n-manifold whose topology agrees
with the quotient topology because as in Example 1.17 it can be shown that all maps φi ◦ π
are continuous and open. 4

1.4 Smooth maps

The smooth structure on a manifold M with a smooth atlas A allows us to unambiguously
define which real-valued functions on M are smooth.

Let f : M → R be a real-valued function on M. If (U,φ) ∈ A is a chart at p ∈ M, we
can naturally identify f with the composition function f ◦φ−1 : φ(U) → R, where φ(U) ⊆ Rn,
thus enabling the notion of smoothness of a function on a manifold. We say that a function
f : M → R is smooth at p ∈ M if there exists a chart (U,φ) ∈ A at p ∈ M such that f ◦ φ−1

is smooth at φ(p) in the sense of ordinary calculus. A function f : M → R is smooth if it is
smooth at all points of M.

U
φ

φ(U)

p
φ(p)

R

f f ◦ φ−1

If (V,ψ) ∈ A is another chart at p ∈ M, the transition function φ ◦ ψ−1 is smooth, and
because of (f◦ψ−1)↾ψ(U∩V) = (f◦φ−1)◦ (φ◦ψ−1), we have that f◦ψ−1 is smooth at ψ(p) if and
only if f◦φ−1 is smooth at φ(p). In this way, the smooth atlas allowed us that our definition
does not depend on the choice of chart, while f : M → R is smooth if and only if f ◦ φ−1 is
smooth for every chart (U,φ) ∈ A.

Let F(M) denotes the set of all smooth real-valued functions f : M → R on a manifold M.
For two functions f,h ∈ F(M) we naturally define the functions f + h (sum), fh (product),
and αf (multiplication with a scalar α ∈ R) by the equalities

(f+ h)(p) = f(p) + h(p), (fh)(p) = f(p)h(p), (αf)(p) = αf(p),

that hold for all p ∈ M. It is easy to see that our new functions are also in F(M). Equipped
with these operations, F(M) is a commutative ring (with unity), and also an algebra over
R.

Example 1.19. The coordinate functions xi = πi ◦ φ of an arbitrary chart (U,φ) on a man-
ifold M are smooth as functions on the open submanifold U since their coordinate repres-
entation xi ◦ φ−1 is a restriction of the projection πi to φ(U), and therefore smooth. 4
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Example 1.20. The height function f : Sn → R on the n-sphere with its standard smooth
structure is given by f(x1, . . . , xn+1) = xn+1. Using the formula (1.15) for the stereographic
projections from Example 1.15 we can calculate

(f ◦ φ−1
± )(y1, . . . , yn) = ∓

−1 + y2
1 + · · ·+ y2

n
1 + y2

1 + · · ·+ y2
n
,

that is smooth on Rn, and therefore f is smooth. Alternatively, we could use the atlas with
projections on the hemispheres from Example 1.14 (since it also gives the standard smooth
structure of the n-sphere) to show that the functions f ◦ φ−1

±i are smooth.
More generally, let us consider a smooth function f : Rn+1 → R and its restriction f↾Sn =

f ◦ ı, where ı : Sn ↪→ Rn+1 is the inclusion map. The coordinate representation of inclusion
is ı ◦ φ−1

± : Rn → Rn+1 given by

ı ◦ φ−1
± (y1, . . . , yn) =

1
1 + y2

1 + · · ·+ y2
n
(2y1, . . . , 2yn,∓(−1 + y2

1 + · · ·+ y2
n)),

which is smooth on Rn, hence f↾Sn ◦ φ−1
± = f ◦ ı ◦ φ−1

± is also smooth, and therefore f↾Sn is
smooth. 4

The support of a function f : M → R on a manifold M is the closure of the set of points
where f is nonzero,

supp(f) = {p ∈ M : f(p) 6= 0} = f−1(R \ {0}).
Therefore, the support of a function f is the smallest closed subset of M outside of which
f is zero. In other words, the complement of supp(f) is the largest open subset on which f
is identically zero. If supp(f) is contained in some set U ⊆ M, we say that f is supported
in U. If supp(f) is a compact set we say that f is compactly supported. Of course, every
function on a compact space is compactly supported.

If a smooth function on an open submanifold of M is supported in a closed subset of M,
then it can be extended by zero to the whole manifold.
Lemma 1.11. If U is an open subset of a manifold M, and f ∈ F(U) is supported in a closed
subset of M, then the function h : M → R defined by h↾U = f and h↾M\U = 0 is smooth.
Proof. By assumption, supp(f) ⊆ A ⊆ U holds for some closed subset A ⊆ M, and therefore
h = 0 (and therefore smooth) on the open subset M \ A. Of course, since h↾U = f is smooth
on U, h is smooth on (M \ A) ∪ U ⊇ (M \ U) ∪ U = M.

A smooth structure allows us to extend the notion of smoothness to maps between two
manifolds M and N. The natural idea is to identify a map f : M → N with its coordinate
representation ψ ◦ f ◦ φ−1, where (U,φ) is a chart on M and (V,ψ) is a chart on N. The
domain of the representation is (f ◦ φ−1)−1(V) = φ(U ∩ f−1(V)), but it is not necessarily an
open set, which can be a problem. That problem can be removed by requiring that f(U) ⊆ V
because then ψ ◦ f ◦ φ−1 is a map between open sets φ(U ∩ f−1(V)) = φ(U) and ψ(V).

A map f : M → N between manifoldsM andN is said to be smoothat p ∈ M if there exist
charts (U,φ) at p ∈ M and (V,ψ) at f(p) ∈ N, with f(U) ⊆ V such that ψ ◦ f ◦φ−1 : φ(U) → ψ(V)
is Euclidean smooth. A map f : M → N is smooth if it is smooth at all points of M.

U
p

φ(U) ψ(V)

f(p)
f(U)

V

NM

φ ψ

ψ ◦ f ◦ φ−1

f
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An open domain of a coordinate representation can naturally be ensured by the re-
quirement that the map f is continuous, and as expected, smoothness implies continuity,
which we see in the following lemma.

Lemma 1.12. A smooth map between manifolds is continuous.

Proof. Let f : M → N be a smooth map between manifolds. For p ∈ M there exist a chart
(U,φ) at p ∈ M and a chart (V,ψ) at f(p) ∈ N with f(U) ⊆ V, such that ψ ◦ f ◦φ−1 is Euclidean
smooth, and therefore continuous. The restriction f↾U = ψ−1 ◦ (ψ ◦ f ◦φ−1) ◦φ is continuous
as a composition of continuous maps, and since f is continuous in a neighbourhood of each
point p ∈ M it is continuous on the whole M.

In order to check by definition whether a map f : M → N is smooth, it is enough to take
some smooth atlas {(Uα,φα) : α ∈ Λ} forMwith the property that f(Uα) ⊆ Vα holds for some
chart (Vα,ψα) on N and then check whether all maps ψα ◦ f ◦ φ−1

α are smooth. Of course,
thanks to the smooth structure, the smoothness of a map does not depend on the choice of
charts, which gives an alternative way to set a definition of smooth maps.

Lemma 1.13. A map f : M → N between manifolds is smooth if and only if f is continuous
and the function ψ ◦ f ◦ φ−1 is Euclidean smooth for every chart (U,φ) on M and every chart
(V,ψ) on N.

Proof. Let (U,φ) be a chart on M and (V,ψ) be a chart on N. By Lemma 1.12, a smooth f
is continuous which implies that f−1(V) is open, and therefore the function ψ ◦ f ◦ φ−1 has
the open domain D = φ(U ∩ f−1(V)). For an arbitrary point d ∈ D 6= ∅, denote p = φ−1(d),
so there exist charts (U1,φ1) at p ∈ M and (V1,ψ1) at f(p) ∈ N with f(U1) ⊆ V1 and smooth
ψ1 ◦ f ◦ φ−1

1 . Since

(ψ ◦ f ◦ φ−1)↾φ(U∩U1) = (ψ ◦ ψ−1
1 ) ◦ (ψ1 ◦ f ◦ φ−1

1 ) ◦ (φ1 ◦ φ−1),

while the transition maps ψ◦ψ−1
1 and φ1◦φ−1 are smooth on appropriate neighbourhoods,

ψ ◦ f ◦ φ−1 is smooth on φ(U ∩ U1) 3 d as a composition of smooth maps. Thus, smooth f
implies smooth ψ ◦ f ◦ φ−1.

The converse is obvious because for p ∈ M and a chart (V,ψ) у f(p) ∈ N, an arbitrary
chart (U,φ) at p ∈ M can be restricted by Lemma 1.4 to the open set W = U ∩ f−1(V) and
obtain a new chart φ↾W with the condition f(W) ⊆ V.

Lemma 1.13 covers the most common definition of smoothness in the literature. A map
f : M → N between manifolds is smooth if the function ψ ◦ f ◦ φ−1 is Euclidean smooth for
every chart (U,φ) on M and every chart (V,ψ) on N, with the stipulation that φ(U∩ f−1(V))
is an open set. For example, φ(U ∩ f−1(V)) is open if f happens to be continuous.

There is a corresponding notion of a smooth function whose domain is an arbitrary
subset of Euclidean space, which can be generalised to manifolds. A map f : A → N, whose
domain A ⊆ M is an arbitrary subset of manifold and the codomain N is a manifold, is
said to be smooth at p ∈ A, if there is a smooth map fp : Up → N where Up ⊆ M is a
neighbourhood of p, such that f = fp on Up ∩ A. Of course, f : A → N is smooth if it is
smooth at every point of A. If we allow the domain of the coordinate representation not
to be an open set, a problem from the following example may occur.

Example 1.21. Consider the characteristic (indicator) function f : R → {0,1} ⊂ R of the
set {x ∈ R : x ≥ 0}. Let us take the single chart (R,1) on M = R, and two charts on N =
R, for example ((−∞,1),1) and ((0,+∞),1). The coordinate representation of f is just its
restriction to the domain D = f−1(V), where V is the domain of the corresponding chart
on N. For V = (−∞,1), the set D = (−∞,0) is open and f↾D = 0, so it is smooth. However,
for V = (0,+∞), the set D = [0,+∞) is not open, but f↾D = 1 holds and therefore it has
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a smooth extension to an open set. Our goal is to generalise the definition of a smooth
function between Euclidean spaces, so we do not want that such non-continuous f, and
therefore not ordinary smooth function, be smooth. 4

The definition of smooth map between manifolds generalises the previous concepts.
For example, a map between open subsets of Euclidean spaces has the coordinate repres-
entation (relative to the identity charts) equal to some of its restriction, and is smooth if
and only if it is Euclidean smooth. Similarly, in the case of a real-valued function on a
manifold, we have a coincidence of smooth maps between manifolds with smooth func-
tions determined by the smooth structure.

Since the smoothness of map between manifolds is by definition a local property, we
immediately have the Gluing lemma for smooth maps.

Lemma 1.14. Let M and N be manifolds and {Uα}α∈Λ be an open cover of M. If there are
smooth maps fα : Uα → N for α ∈ Λ such that fα = fβ holds on Uα ∩ Uβ for all α, β ∈ Λ, then
there exists a unique smooth map f : M → N such that f↾Uα = fα for each α ∈ Λ.

Example 1.22. The obvious example of smooth map is the identity map, or more generally
the inclusion map ı : U ↪→ M for an open submanifoldU ⊆ M. Every constant map c : M → N
is also smooth. 4

Lemma 1.15. A composition of smooth maps between manifolds is smooth.

Proof. Let f : M → N and h : N → P be smooth maps. Since h is smooth, for each p ∈ M there
exist charts (V,ψ) at f(p) ∈ N and (W,θ) at h(f(p)) ∈ P, with h(V) ⊆ W such that θ ◦ h ◦ ψ−1

is smooth. The map f is continuous by Lemma 1.12, so f−1(V) 3 p is open and there exists
a chart (U,φ) at p ∈ M with U ⊆ f−1(V). Since f is smooth, ψ ◦ f ◦ φ−1 is smooth by Lemma
1.13. Hence (h ◦ f)(U) ⊆ h(V) ⊆ W and θ ◦ (h ◦ f) ◦φ−1 = (θ ◦ h ◦ψ−1) ◦ (ψ ◦ f ◦φ−1) is smooth
as a composition of smooth functions.

Although the definition is not simple, it is often straightforward to prove that a par-
ticular map is smooth. The most common way is to write the map in local coordinates
and recognize its component functions as compositions of smooth elementary functions
or maps that are known to be smooth.

Example 1.23. Any map from a 0-dimensional manifold into a smooth manifold is smooth,
since each coordinate representation is constant. 4

Example 1.24. Let M and N be manifolds and let πM : M × N → M, πM(p,q) = p be the
projection to the first component. Let (U,φ) be a chart at p ∈ M and (V,ψ) be a chart at
q ∈ N, then (U× V,φ× ψ) is a chart at (p,q) ∈ M×N. The coordinate representation of πM
is φ ◦ πM ◦ (φ× ψ)−1 : (φ× ψ)(U× V) → φ(U) given by (a1, . . . ,am,b1, . . . , bn) 7→ (a1, . . . ,am),
which is smooth, and therefore πM is smooth. 4

Example 1.25. The quotient map π : Rn+1\{0} → RPn from Example 1.17 is smooth. Its co-
ordinate representation related to introduced coordinates for RPn and standard coordin-
ates for Rn+1 \ {0} is

φi ◦ π ◦ 1−1(x1, . . . , xn+1) = φi(x1 : . . . : xn+1) =

(
x1
xi

, . . . ,
xi−1
xi

,
xi+1
xi

, . . . ,
xn+1
xi

)
,

which is obviously smooth for (x1, . . . , xn+1) ∈ Ũi, that is, for xi 6= 0. 4

A Lie group19 is a manifold G that is also a group in the algebraic sense with the prop-
erty that the group operations are compatible with the smooth structure. Concretely, the
multiplication map μ : G× G → G, μ(a,b) = ab and the inversion map ı : G → G, ı(a) = a−1

are both smooth.
19Marius Sophus Lie (1842–1899), Norwegian mathematician
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Chapter 1. Smooth manifolds and maps

Example 1.26. Let us mention basic examples of Lie groups. The Euclidean space Rn is
a Lie group under addition. The set of nonzero complex numbers C \ {0} is a Lie group
under multiplication. The unit circle S1 in C \ {0} is a Lie group under multiplication. The
product G1 ×G2 of two Lie groups (G1, μ1) and (G2, μ2) is a Lie group under coordinatewise
multiplication μ1 × μ2. 4

Example 1.27. The general linear group GL(n,R) = {A ∈ Rn×n : detA 6= 0} from Example
1.12 is a manifold as an open subset of Rn×n. Since each component of the product AB
of two matrices A,B ∈ GL(n,R) is a (quadratic) polynomial in the entries of A and B, the
matrix multiplication is clearly smooth. By Cramer’s20 rule, the inverse matrix A−1 is the
quotient of the adjugate matrix of A and the determinant of A. The adjugate of A is the
transpose of the cofactor matrix of A, so the entries of the inverse matrix are (degree n−1)
polynomials in the entries of A, and therefore the inversion map is smooth. 4

1.5 Diffeomorphisms

A diffeomorphism between manifolds M and N is a smooth bijective map f : M → N that
has a smooth inverse. If such diffeomorphism exists we say that M and N are diffeo-
morphic. A diffeomorphism of manifolds is a bijection of the underlying sets that identi-
fies their complete smooth atlases. Similarly, a homeomorphism between manifolds M
and N is a continuous bijective map f : M → N that has a continuous inverse, and if it exists
we say that manifolds are homeomorphic. Since every smooth map is continuous, every
diffeomorphism is a homeomorphism.

The manifold theory investigates properties of manifolds that are preserved by diffeo-
morphisms, so we consider diffeomorphic manifolds to be the same. Manifolds that are
homeomorphic are considered the same topologically.

Example 1.28. Let M be an n-manifold. Every chart (U,φ) on M gives a diffeomorphism
φ : U → φ(U) from the open submanifold U ⊆ M onto an open subset of Rn. The maps
φ and φ−1 are smooth because such are their representations related to charts, (U,φ) on
U and (φ(U),1φ(U)) on φ(U), 1φ(U) ◦φ ◦ φ−1 = 1φ(U) = φ ◦ φ−1 ◦ 1−1

φ(U). Conversely, every
diffeomorphism f : U → f(U) from an open subset U ⊆ M onto an open subset of Rn is a
chart in the complete atlas. Namely, if (V,ψ) is a chart of the atlas for M, we know that ψ
and ψ−1 are smooth, so the transition maps f ◦ψ−1 and ψ ◦ f−1 are smooth as compositions
by Lemma 1.15, which implies that the chart (U, f) is compatible with the atlas. 4

Example 1.29. If f is a bijection from a set P onto a manifold M, then there is a unique way
to make P a manifold such that f is a diffeomorphism. In that case, an atlas for P consists
of charts (f−1(U),φ ◦ f) where (U,φ) is a chart on M. 4

Example 1.30. The open unit ball Bn = B1(0) in Rn is diffeomorphic with Rn itself. In
the case of dimension n = 1 there are many ways to set a smooth increasing bijection
f : (−1,1) → R such as

20Gabriel Cramer (1704–1752), Swiss mathematician
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1.5. Diffeomorphisms

f(x) = x
1 − x2 , f(x) = tan

(π
2 x
)
, f(x) = artanh(x) = 1

2 ln
(

1 + x
1 − x

)
.

In general, we can set a diffeomorphism f : Bn → Rn by

f(x) = x√
1 − ‖x‖2

, f−1(y) = y√
1 + ‖y‖2

,

where the argument of the roots never vanishes, 1−‖x‖2 6= 0 and 1+ ‖y‖2 6= 0, so f and f−1

are smooth. The map
f(x) = x

1 − ‖x‖2

is also a diffeomorphism, but it is more difficult to prove that f−1 is smooth without an
explicit formula. However,

f(x) = x
1 − ‖x‖

is not a diffeomorphism, since the norm ‖·‖ : Rn → [0,∞), unlike its square ‖·‖2, is not
smooth in general. Concretely, for n = 1 we have

f(x) = x
1 − |x| , f′(x) = 1

(1 − |x|)2 , f′′(x) = 2x
(1 − |x|)3|x| ,

and therefore f′′(0) do not exists and f is not smooth. 4

Example 1.31. The map f : R2 → R2 given by f(x, y) = (xey+y, xey−y) is a diffeomorphism.
From f(x, y) = (xey + y, xey − y) = (u, v) we have u− v = 2y and u+ v = 2xey, and therefore

f−1(u, v) =
(
u+ v
2e u−v

2
,
u− v

2

)
,

so it is easy to see that f is bijective, and both f and f−1 are smooth. 4

Example 1.32. The projective line RP1 is diffeomorphic to the circle S1. To obtain a
diffeomorphism explicitly we can construct a bijection that identifies the standard atlas
{(U1,φ1), (U2,φ2)} for RP1 with the standard stereographic atlas {(U+,φ+), (U−,φ−)} for
S1, where

U1 = {(1 : x) ∈ RP1 : x ∈ R}, φ1(1 : x) = x,
U2 = {(x : 1) ∈ RP1 : x ∈ R}, φ2(x : 1) = x,
U+ = {(x, y) ∈ S1 : y 6= −1}, φ+(x, y) = x/(1 + y),
U− = {(x, y) ∈ S1 : y 6= 1}, φ−(x, y) = x/(1 − y).
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Chapter 1. Smooth manifolds and maps

For f : RP1 → S1, the identification φ1 with φ+ means that φ+ ◦ f◦φ−1
1 : R → R is the identity,

so we have f↾U1 = φ−1
+ ◦ φ1. The calculations yield

f(x : y) =
(

2xy
x2 + y2 ,

x2 − y2

x2 + y2

)
for x 6= 0, so we can naturally redefine f by the same formula for x = 0 and get the required
diffeomorphism whose inverse is

f−1(x, y) =
{
(1 + y : x) за y 6= −1
(x : 1 − y) за y 6= 1

.

The calculations show φ− ◦ f ◦ φ−1
2 = 1R, so f is a diffeomorphism. Note that x = cos t,

y = sin t leads to the formula f(cos t : sin t) = (sin 2t, cos 2t), so a required diffeomorphism
can also be [eit] 7→ e2it. 4

Example 1.33. The classical example of a homeomorphism between manifolds that is not
a diffeomorphism is the map φ : R → R given by φ(x) = x3. It is smooth and invertible,
but the inverse map is not smooth. In Example 1.10 we created the manifold R̃ from R
endowed with the smooth structure determined by the chart (R,φ). This smooth structure
is different than the standard one, but manifolds R and R̃ are diffeomorphic. The map
f : R̃ → R given by f(x) = x3 is a diffeomorphism, because its representation 1R ◦f◦φ−1 = 1R
is obviously smooth, like its inverse. 4

Example 1.34. Let M be a manifold with a complete atlas A. Any homeomorphism
f : M → M determines a new atlas A′ on M with charts (f(U),φ ◦ f−1) ∈ A′ obtained from
charts (U,φ) ∈ A. Then f is a diffeomorphism if and only if A = A′. Therefore, if f is a
homeomorphism which is not a diffeomorphism, then f defines a new atlas A′ 6= A. How-
ever, the new smooth structure onM is not essentially different from the old one. Although
f : M → M is not a diffeomorphism it defines a diffeomorphism between M and the man-
ifold with the atlas A′. Hence, even though A and A′ are different atlases, the resulting
smooth structures are still diffeomorphic. 4

Example 1.35. For every s > 0 we can construct the map Fs : Bn → Bn defined by

Fs(x) = ‖x‖s x
‖x‖

for x 6= 0 and Fs(0) = 0. Since x ∈ Bn means ‖x‖ < 1, it follows ‖Fs(x)‖ < 1 and we obtain
Fs(Bn) ⊆ Bn. It is easy to check that Fs◦Ft = Fst, so Fs is a bijection where (Fs)−1 = F1/s, while
F1/s(Bn) ⊆ Bn implies Fs(Bn) = Bn. Obviously, the map Fs is smooth on Bn \ {0}, so there
remains to check the smoothness at the point x = 0. Since Fs(x) → 0 as x → 0, we know
that Fs is a homeomorphism. Since Fs is not smooth at 0 for s < 1, while (Fs)−1 = F1/s is not
smooth at 0 for s > 1, we know that Fs is a diffeomorphism only for s = 1. In this way we
construct an uncountable family of homeomorphisms onBn that are not diffeomorphisms,
but their restriction to Bn \ {0} are diffeomorphisms.

Let A = {(Vα,ψα) : α ∈ Λ} be an atlas for M. For p ∈ M there exists a chart (U,φ) of the
complete atlas centred at p such that φ(U) = Bn. For every s > 0 we construct the new atlas
As = {(Vα\{p},ψα↾Vα\{p}) : α ∈ Λ}∪{(U,Fs◦φ)}. Since (Fs◦φ)◦(Ft◦φ)−1 = Fs◦F−1

t = Fs/t is not
a diffeomorphism for s 6= t, our complete smooth atlases determined by As are different
and there are uncountable many of them. We have shown that if a topological manifold of
dimension n ≥ 1 has a smooth structure, then it has uncountable many different smooth
structures. 4
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1.6. Partitions of unity

Unlike homeomorphisms that are not diffeomorphisms, it is difficult to find two homeo-
morphic manifolds that are not diffeomorphic. It turns out that for n ≤ 3 every topological
n-manifold has a smooth structure that is unique up to diffeomorphism (see Moise21 [85]).
However, the first example of exotic manifold structures was discovered by Milnor22 in
1956 [84], who found that 7-sphere S7 admits smooth structures that are not diffeomorphic
to the standard structure.

It is an interesting question whether a given topological manifold can carry smooth
structures that are not diffeomorphic. This question is very complicated, even for Euc-
lidean spaces. It appears that Rn for n 6= 4 has a unique smooth structure, up to diffeo-
morphism (see Stallings23 [110]). However, a combination of results due to Donaldson24

[43] and Freedman25 [49] led to the discovery of non-standard smooth structures on R4.
Moreover, R4 has uncountably many distinct smooth structures, no two of which are dif-
feomorphic to each other (see Taubes26 [112]).

On the other hand, there exist topological manifolds that do not admit smooth struc-
tures at all. The first example of this deep result was a compact 10-dimensional mani-
fold found by Kervaire27 in 1960 [73]. In fact, examples of non-smoothable topological
n-manifolds are known for each n ≥ 4. The most famous example is so-called E8 manifold,
which is a topological 4-manifold discovered by Freedman in 1982 [49].

1.6 Partitions of unity

Since manifolds are constructed by gluing open sets in Rn by diffeomorphisms, working
on the entire manifold can be inconvenient. The theory of partitions of unity is a rather
technical but important tool that allows us work in local coordinates. The basic idea is to
break the constant value function 1 into a bunch of smooth pieces that are easier to work
with.

There is a huge number of smooth functions on a manifold, but the heart of partitions
of unity are the bump functions. These are smooth equivalents of characteristic functions,
and we use them to camouflage a function f : M → R. If we multiply f by a characteristic
function of U ⊂ M, the result is zero outside of U, but this causes some discontinuities. A
bump function b repairs the problem by smoothly decreasing to zero between an inner set
V and an outer open setU ⊃ V. Then, for x ∈ Vwe have b(x) = 1 and therefore (fb)(x) = f(x),
while for x /∈ U we have (fb)(x) = 0. Additionally, the product fb will be at least as smooth
as f was (except in the case of analytic functions).

The core of the theory is a smooth real function that vanishes for all negative values of
the domain and is strictly positive for its positive values. The famous non-analytic smooth
function f : R → R from Example A.7, defined by

f(x) =
{
e− 1

x if x > 0
0 if x ≤ 0

has exactly such properties. For arbitrary a,b ∈ R such that a < b, we define a smooth
function h : R → R by

h(x) = f(b− x)
f(b− x) + f(x− a) .

21Edwin Evariste Moise (1918–1998), American mathematician
22John Willard Milnor (1931), American mathematician
23John Robert Stallings Jr. (1935–2008), American mathematician
24Simon Kirwan Donaldson (1957), English mathematician
25Michael Hartley Freedman (1951), American mathematician
26Clifford Henry Taubes (1954), American mathematician
27Michel André Kervaire (1927–2007), French mathematician
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Chapter 1. Smooth manifolds and maps

Since at least one of the expressions b− x and x−a is positive, the denominator is positive
for all x. Thus, a so-called cutoff function h is well defined with the properties h(x) = 1
for x ≤ a, 0 < h(x) < 1 for a < x < b, and h(x) = 0 for x ≥ b.

0 x

y = f(x)

a b x

y = h(x)

A cutoff function can be further generalised in Rn where we use the open balls Br(p) =
{x ∈ Rn : ‖x − p‖ < r}. For 0 < a < b we set a function H : Rn → R by H(x) = h(‖x‖). The
functionH is smooth on Rn\{0} as a composition of smooth functions, while it is identically
equal to 1 on Ba(0), so it is also smooth at 0 ∈ Rn. This construction proves the following
lemma.
Lemma 1.16. Given any a,b ∈ R such that 0 < a < b, there is H ∈ F(Rn) such that H(x) = 1
for x ∈ Ba(0), 0 < H(x) < 1 for x ∈ Bb(0) \ Ba(0), and H(x) = 0 for x ∈ Rn \ Bb(0).

This concept is generalised from Euclidean space to manifolds, and the following
lemma is fundamental in our theory.
Lemma 1.17. Let M be a manifold and U be some neighbourhood of p ∈ M. Then there are a
neighbourhood of V 3 p and a compactly supported smooth function b : M → [0,1] ⊂ R such
that b↾V = 1 and supp(b) ⊂ U.
Proof. According to Lemma 1.4 there is a chart (W,φ) centred at p ∈ M such that W ⊆ U.
There is a small enough ε > 0 such that B3ε(0) ⊆ φ(W) ⊆ Rn. Let H : Rn → R for n = dimM
be a smooth function from Lemma 1.16 with H(x) = 1 for ‖x‖ ≤ ε, 0 < H(x) < 1 for
ε < ‖x‖ < 2ε, and H(x) = 0 for ‖x‖ ≥ 2ε. The new function f = H ◦ φ : W → [0,1] ⊂ R is
smooth and supported inφ−1(B2ε(0)) ⊂ W, so by Lemma 1.11 it extends by zero to b ∈ F(M).
For V = φ−1(Bε(0)) 3 p we have b↾V = 1, while supp(b) = φ−1(B2ε(0)) ⊂ W ⊆ U.

The function f ∈ F(M) from Lemma 1.17 is called a bump function at p and it easily
extends a smooth function on the whole manifoldM, which we see in the following lemma.
Lemma 1.18. Let M be a manifold and U be some neighbourhood of p ∈ M. For f ∈ F(U)
there exist a neighbourhood V 3 p and F ∈ F(M) such that supp(F) ⊆ U and F↾V = f↾V.
Proof. Applying Lemma 1.17 we find an open V 3 p and a bump function b ∈ F(M)
supported in U with b↾V = 1. The function bf ∈ F(U) is supported in the closed subset
supp(b) ⊂ U ⊆ M, so by Lemma 1.11 it extends by zero to F ∈ F(M), where we have
supp(F) ⊆ U and F↾V = (bf)↾V = f↾V.

When in Lemma 1.17, we replace a point from a neighbourhood by a compact subset,
we get the important consequence.
Lemma 1.19. If K ⊆ U ⊆ M holds for a manifold M, a compact K, and an open U, then there
is a smooth function f : M → [0,1] ⊂ R supported in U with f↾K = 1.
Proof. According to Lemma 1.17, for each p ∈ K ⊆ U there exist an open Vp 3 p and a
smooth function fp : M → [0,1] ⊂ R supported in U with fp↾Vp = 1. The family {Vp}p∈K is
an open cover of the compact K and therefore it has a finite subcover {Vp1 , . . . ,Vpk}. The
function f : M → [0,1] ⊂ R given by f = 1−(1−fp1)(1−fp2) · · · (1−fpk) is clearly smooth. Since
f(x) 6= 0, if there exists 1 ≤ i ≤ k such that fpi(x) 6= 0, we have supp(f) ⊆

⋃
i supp(fpi) ⊆ U,

which means that f is supported in U. Finally, f↾Vp = 1 holds for 1 ≤ i ≤ k, and therefore
because of K ⊆

⋃k
i=1 Vpi we have f↾K = 1.
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1.6. Partitions of unity

A partition of unity is a decomposition
∑

α∈Λ fα = 1 of constant function 1 (the word
unity stands for this function) into a sum of smooth functions fα. We usually deal with
infinite sums, so our functions are indexed by some infinite set Λ, so it is natural to require
that for each p ∈ M we have fα(p) = 0 for all but a finite number of α ∈ Λ. The sum is then
well defined as a function on M and we can retain the smoothness through the following
definition.

A partition of unity on a manifold M is a family {fα}α∈Λ of smooth functions fα : M →
[0,1] ⊂ R, such that the family of supports {supp(fα)}α∈Λ is locally finite and

∑
α∈Λ fα(p) = 1

holds for all p ∈ M. We say that a partition of unity is subordinate to some cover of M if
the family of all supports is a refinement of this cover.

This definition implies that for every p ∈ M there exists some α ∈ Λ such that fα(p) > 0,
and thus {supp(fα)}α∈Λ is a cover of M. This cover is locally finite, so the (infinite) sum∑

α∈Λ fα(p) is well defined. If {Uα}α∈Λ is a cover of M and supp(fα) ⊆ Uα holds for all α ∈ Λ,
then we say that {fα}α∈Λ is subordinate to {Uα}α∈Λ with the same index set as the partition
of unity. However, if {fα}α∈Λ is a partition of unity subordinate to a cover {Vβ}β∈Δ, then
{supp(fα)}α∈Λ is a refinement of {Vβ}β∈Δ and we can use the refinement map φ : Λ → Δ
satisfying supp(fα) ⊆ Vφ(α) for every α ∈ Λ, and get the partition of unity {

∑
α∈φ−1(β) fα}β∈Δ

that is subordinate to {Vβ}β∈Δ with the same index set.

Theorem1.20. For any open cover of amanifold there exists a partition of unity subordinate
to it.

Proof. Let U be an open cover of M. Since by Lemma 1.7 M is locally compact, there is an
open refinement U ′ of U consists of relatively compact sets. Then, since by Lemma 1.10 M
is paracompact, we may find a new open refinement V of U ′ which is locally finite.

Consider the set W = {U ⊆ M : U is open and U ⊆ V for some V ∈ V}. Each p ∈ M has
a neighbourhood V ∈ V , and since by Lemma 1.9 M is regular, the point p and the closed
set M \ V 63 p are separated by some open disjoint sets P 3 p and Q ⊇ M \ V. Because of
P∩Q = ∅ we have P ⊆ M\Q, so P ⊆ M\Q, while M\V ⊆ Q implies M\Q ⊆ V, and therefore
P ⊆ M \ Q ⊆ V. Hence p ∈ P ∈ W , which means that W is a cover of M, and therefore it is
an open refinement of V .

Another use of paracompactness gives a locally finite open refinement W ′ of W . The
family W ′ = {Wβ}β∈Δ is a refinement of V = {Vα}α∈Λ and for each β ∈ Δ there is φ(β) ∈ Λ
such that Wβ ⊆ Vφ(β), which defines φ : Δ → Λ and we can set

Xα =
⋃

β∈ϕ−1(α)

Wβ,

where by convention it is the empty set in a case of φ−1(α) = ∅. Since W ′ is a locally finite
family, for every p ∈ M\

⋃
β∈ϕ−1(α)Wβ there is a neighbourhood U 3 p which intersects just

finite number of members, for example W1, . . . ,Wk. For other Wβ we have Wβ ∩ U = ∅,
it implies Wβ ⊆ M \ U, so Wβ ⊆ M \ U and therefore Wβ ∩ U = ∅. Because of this the
set U \

⋃
β∈ϕ−1(α)Wβ = U \ (W1 ∪ · · · ∪ Wk) is a neighbourhood of p, which means that

M \
⋃

β∈ϕ−1(α)Wβ is open, so
⋃

β∈ϕ−1(α)Wβ is closed. Thus, we have

Xα =
⋃

β∈ϕ−1(α)

Wβ =
⋃

β∈ϕ−1(α)

Wβ ⊆ Vα,

so for any α ∈ Λ there exists a compact Xα contained in open Vα, and by Lemma 1.19 there
is a smooth function fα ∈ F(M) supported in Vα and equal to 1 on Xα. The sum f =

∑
α∈Λ fα

is a smooth function which is always finite non-zero. Therefore, the sum of new functions
fα/f is 1 everywhere.
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Chapter 1. Smooth manifolds and maps

Example 1.36. Urysohn’s28 lemma is known from topology and states that a topological
space is normal if and only if any two nonempty disjoint closed subsets can be separated
by a continuous function in the sense that a continuous function exists which takes value 0
on one of the two subsets and value 1 on the other. Let A and B be two disjoint closed sub-
sets in a manifold M. According to Theorem 1.20 there exists a partition of unity {ψA,ψB}
subordinate to the open cover {M \ A,M \ B}. The function ψA : M → [0,1] ⊂ R is smooth
and it satisfies ψA↾A = 0 as well as ψA↾B = 1 − ψB↾B = 1, which gives the smooth version of
Urysohn’s lemma. In particular, any manifold is normal. 4

Example 1.37. Let f : A → R be a smooth function on an arbitrary subset A ⊆ M. Then for
every a ∈ A there exists fa ∈ F(Ua) such that Ua ⊆ M is a neighbourhood of a and f = fa
on Ua ∩ A. By Theorem 1.20 there exists a partition of unity {ψa}a∈A subordinate to the
open cover {Ua : a ∈ A} of U =

⋃
a∈AUa ⊆ M. Since fa ∈ F(Ua) and supp(ψa) ⊆ Ua we

obtain ψafa ∈ F(U), which allows us to define F =
∑

a∈Aψafa ∈ F(U). For x ∈ A we have
F(x) =

∑
a∈Aψafa(x) =

∑
a∈A f(x)ψa(x) = f(x). Hence, any smooth f : A → R has a smooth

extension F : U → R to an open set U ⊇ A.
If we additionally assume that A is closed, then there exists a partition of unity {ψ1,ψ2}

subordinate to the open cover {U,M \A} of M. Since F ∈ F(U) and supp(ψ1) ⊆ U we obtain
ψ1F ∈ F(M), while supp(ψ2) ⊆ M \ A implies ψ1↾A = 1 − ψ2↾A = 1, and therefore ψ1F = f on
A. Thus, any smooth function on a closed subset ofM can be extended to a smooth function
on M. 4

1.7 Problems

Problem 1.1. Is the smooth compatibility of charts on M a relation of equivalence for
every nonempty set M?

Problem 1.2. Given the set M = R∪{∞}, as well as the functions φ = 1R : M\{∞} = R → R
and ψ : M \ {0} → R, where ψ(x) = x for x 6= 0 and ψ(∞) = 0. Does M with the atlas {φ,ψ}
form a smooth manifold?

Problem 1.3. Given the topological surface M = {(x, y, z) ∈ R3 : x2 +y2 = z2 + r} ⊂ R3 with
the subspace topology. For which values r ∈ R there exist an atlas such that M becomes a
smooth manifold?

Problem 1.4. Determine (the most natural) atlas so that the set of all affine lines in R2

forms a smooth manifold.

Problem 1.5. Examine whether the function f : S2 → R given by f(x, y, z) =
√

1 − z2 is
smooth.

Problem 1.6. Prove that the map f : RP2 → R given by

(x : y : z) 7→ yz+ xz+ xy
x2 + y2 + z2

is well-defined and smooth.

Problem 1.7. Prove that the map f : RP1 → RP1 given by (t : 1) 7→ (t + 1 : 1) for t ∈ R and
(1 : 0) 7→ (1 : 0) is smooth.

Problem 1.8. Prove that for every p ∈ Bn = B1(0) ⊂ Rn there exists a diffeomorphism
f : Bn → Bn such that f(0) = p.

28Pavel Samuilovich Urysohn (1898–1924), Soviet mathematician
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Problem 1.9. Given the set M = C ∪ {∞}, as well as the functions φ = 1C : M \ {∞} = C →
C ∼= R2 and ψ : M \ {0} → C ∼= R2, where ψ(z) = 1/z for z 6= 0 and ψ(∞) = 0. Prove that M
with the atlas {φ,ψ} forms a smooth manifold that is diffeomorphic to S2.

Problem 1.10. Exemine whether the map f : FP1 → FP1 given by f(t : 1) = (et2 : 1) for t ∈ F
and f(1 : 0) = (1 : 0) is smooth, where F = R or F = C.

Problem 1.11. Let f : M → R be a positive continuous function on a manifold M. Prove
that there exists h ∈ F(M) such that for every p ∈ M we have 0 < h(p) < f(p).

Problem 1.12. Let M be a manifold, A ⊂ M a closed subset, and f : A → (0,∞) smooth.
Prove that there exists a smooth function F : M → (0,∞) such that F↾A = f.
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CHAPTER 2

TANGENT SPACES AND MAPS

2.1 Tangent vectors

The most intuitive way to define a tangent vector is to use curves on a manifold. Let
γ : (−ε, ε) → M be a smooth curve in an n-manifold M which goes through a point p ∈ M,
where ε > 0 is a small real number. In other words γ is a smooth map such that γ(0) = p.
A tangent vector of manifold M at a point p can be seen as a derivative of a curve γ at zero.
However, if M is not contained in some Euclidean space, the derivative γ′(0) does not make
sense. The common idea is to choose a chart (U,φ) at p ∈ M and identify the curve γ on M
with the curve φ ◦ γ on Rn, so our tangent vector can be well defined (φ ◦ γ)′(0).

γ(0)

γ(t)

γ′(0)

Since different smooth curves on M which go through p can give the same tangent vec-
tor, there is an obvious equivalence relation among these curves. Two such curves γ1 and
γ2 are equivalent if there is a chart (U,φ) at p, such that (φ ◦ γ1)

′(0) = (φ ◦ γ2)
′(0). Let (V,ψ)

be a chart at p, then p ∈ U ∩ V 6= ∅ and ω = ψ ◦ φ−1 is smooth, so

(ψ ◦ γ1)
′(0) = (ω ◦ φ ◦ γ1)

′(0) = ω′(φ(p)) · (φ ◦ γ1)
′(0)

= ω′(φ(p)) · (φ ◦ γ2)
′(0) = (ω ◦ φ ◦ γ2)

′(0) = (ψ ◦ γ2)
′(0),

and therefore the curve equivalence is chart independent.
Alternatively, we can define γ′(0) : F(M) → R by

(γ′(0))(f) = (f ◦ γ)′(0) = d(f ◦ γ)
dt

∣∣∣∣
t=0

and get the relation between different definitions by Φ : (φ ◦ γ)′(0) 7→ γ′(0). Equivalent
curves γ1 and γ2 imply

(f ◦ γ1)
′(0) = (f ◦ φ−1)′(φ(p)) · (φ ◦ γ1)

′(0) = (f ◦ φ−1)′(φ(p)) · (φ ◦ γ2)
′(0) = (f ◦ γ2)

′(0),

so Φ depends only on the equivalence class of γ.

28



2.1. Tangent vectors

φ(U)

φ

p

U
f(p)

R
ε

−ε

0 γ f

φ ◦ γ
f ◦ φ−1

The definition of a tangent vector over curves is very geometric, but it is not imme-
diately obvious where the vector space structure comes from. However, since we have
(αf+ βh) ◦ γ = α(f ◦ γ)+ β(h ◦ γ), an evident property of the function γ′(0) is linearity. From
the other side, since (fh) ◦ γ = (f ◦ γ)(h ◦ γ) holds, we have

(γ′(0))(fh) = ((f ◦ γ)(h ◦ γ))′(0) = (f ◦ γ)′(0) · h(γ(0)) + (h ◦ γ)′(0) · f(γ(0))
= h(p)(γ′(0))(f) + f(p)(γ′(0))(h),

which means that γ′(0) satisfies the Leibniz1 law (product rule). Hence, the function
γ′(0) : F(M) → R has properties characteristic for the derivative (an R-linear function
which is Leibnizian at p), so a real-valued function on F(M) with this features we call the
derivation at point p. This properties for a map γ′(0) motivate us to introduce the defin-
ition of a tangent vector in the following way.

A tangent vector to a manifold M at a point p ∈ M is any derivation at p. The set TpM
of all tangent vectors on a manifold M at a point p ∈ M is called the tangent space to M
at p. Accordingly, if X : F(M) → R has X ∈ TpM, then for all α, β ∈ R and every f,h ∈ F(M)
hold linearity X(αf+ βh) = αX(f) + βX(h) and Leibnizian X(fh) = f(p)X(h) + h(p)X(f).

The addition and the scalar multiplication we introduce naturally. If X,Y ∈ TpM then
(X+Y)(f) = X(f)+Y(f) and (αX)(f) = αX(f) hold for each f ∈ F(M) and all α ∈ R. Such defined
X+ Y and αX are also tangent vectors and thus TpM is a vector space over R.

By their very nature manifolds are curved spaces, and they can be very complicated
objects to study, while vector spaces are much simpler with many benefits. The key idea
of calculus is linear approximation. A tangent space TpM is a vector space, and it can be
thought of as the best linear approximation to a manifold M at a point p ∈ M. This is the
reason why we are minded to use a tangent space instead of an original manifold.

Naturally, the derivative of a constant function vanishes. For X ∈ TpM and the unit
function 1 ∈ F(M) we have X(1) = X(1 · 1) = 1(p)X(1) + 1(p)X(1) = 2X(1) and therefore
X(1) = 0, while for an arbitrary α ∈ R, linearity gives X(α1) = αX(1) = 0.

Lemma 2.1. If f ∈ F(M) is a constant function on a manifold M 3 p, then Xf = 0 holds for
each X ∈ TpM.

The tangent space is defined in terms of smooth functions on the whole manifold, while
charts are in general defined on some open subsets. However, tangent vectors act locally
on F(M).

Lemma2.2. If f ∈ F(M) andh ∈ F(M) agree on someneighbourhood of a point p of amanifold
M, then Xf = Xh holds for each X ∈ TpM.

1Gottfried Wilhelm von Leibniz (1646–1716)

29



Chapter 2. Tangent spaces and maps

Proof. Let f = h on some neighbourhood U 3 p. By Lemma 1.17 there exists a function
b ∈ F(M) supported in U such that b(p) = 1. Since (f − h)b = 0 holds on all of M, we have
0 = X((f− h)b) = b(p)X(f− h) + (f− h)(p)X(b) = X(f− h), and hence Xf = Xh.

The previous lemma is very important, because it allows the notion of germs. Two
functions f : U → R and h : V → R, locally defined on some neighbourhoods of the fixed
point p ∈ M, are equivalent if there exists some open subset W ⊆ U ∩ V, containing p, so
that f↾W = h↾W. The equivalence class of such functions is called a germ at p.

Since we work with smooth functions (instead of Ck functions with k < ∞), any locally
defined smooth function by Lemma 1.18 has an equivalent smooth function defined on
the whole manifold M. Let us notice that if f and h are extensions of equivalent smooth
functions, by Lemma 2.2 we have Xf = Xh for any X ∈ TpM. Thus, a tangent vector X ∈ TpM
is essentially defined on the germ at p, so we also use the notation Xf for functions f ∈ F(U)
where U 3 p is an open subset of M, which takes the value of X in an arbitrary (thus, each)
function in F(M) that is equivalent to f at p.

To define partial differentiation on a manifold, we should move the function f ∈ F(M)
back to the Euclidean space using some chart, and then take the usual partial derivatives.
Let (U,φ) be a chart on an n-manifold M at a point p ∈ M, and xi = πi ◦ φ for 1 ≤ i ≤ n
are appropriate coordinate functions. The partial derivative of a function f ∈ F(M) for
1 ≤ i ≤ n we define by

(∂i)p(f) =
(

∂

∂xi

)
p
(f) = ∂f

∂xi
(p) = ∂(f ◦ φ−1)

∂πi
(φ(p)).

Since our definition comes from a derivative we immediately have linearity and the
Leibniz’s law, so such defined function (∂i)p : F(M) → R is a tangent vector to M at p.
Moreover, these partial derivatives form a basis of our tangent space TpM.

We start from the Hadamard’s2 lemma (Lemma A.29) according to which if U 3 a is
an open convex neighbourhood in Rn, then for f ∈ F(U) there exist functions li ∈ F(U) for
1 ≤ i ≤ n such that for each x ∈ U we have

f(x) = f(a) +
n∑
i=1

(πi(x)− πi(a))li(x),

where li(a) = (∂f/∂πi)(a).
The Hadamard’s lemma is essentially a first-order form of Taylor’s3 theorem. By iter-

ating the previous expansion we arrive at a second-order form,

f(x) = f(a) +
n∑
i=1

(πi(x)− πi(a))

li(a) + n∑
j=1

(πj(x)− πj(a))lij(x)


= f(a) +

n∑
i=1

(πi(x)− πi(a))
∂f
∂πi

(a) +
n∑

i,j=1
(πi(x)− πi(a))(πj(x)− πj(a))lij(x),

where lij ∈ F(U) for 1 ≤ i, j ≤ n.
Let (U,φ) be a chart at p ∈ M such that φ(U) is convex (for instance, an open ball), and

let f ∈ F(U). Applying the previous formula for the smooth function f ◦ φ−1 ∈ F(φ(U)) and
points a = φ(p) and x = φ(q), we get

f(q) = f(p) +
n∑
i=1

(xi(q)− xi(p))
∂(f ◦ φ−1)

∂πi
(φ(p)) +

n∑
i,j=1

(xi(q)− xi(p))(xj(q)− xj(p))lij(φ(q)),

2Jacques Salomon Hadamard (1865–1963), French mathematician
3Brook Taylor (1685–1731), English mathematician

30



2.2. Tangent maps

that is,

f = f(p) +
n∑
i=1

(xi − xi(p))
∂f
∂xi

(p) +
n∑

i,j=1
(xi − xi(p))(xj − xj(p))(lij ◦ φ),

where lij ◦ φ is smooth for all 1 ≤ i, j ≤ n.
This allows us to examine the value of Xf for an arbitrary tangent vector X ∈ TpM. The

first term is f(p), which is constant, so it vanishes by Lemma 2.1. The Leibnizian property
implies that X vanishes the last sum since each of three obtained terms has at least one
factor of the form (xi − xi(p))(p) = 0. It remains the sum in the middle, where

Xf = X
( n∑

i=1
(xi − xi(p))

∂f
∂xi

(p)
)

=

n∑
i=1

X(xi)
(

∂

∂xi

)
p
f,

and therefore we obtain

X =

n∑
i=1

X(xi)
(

∂

∂xi

)
p
. (2.1)

The formula (2.1) implies that the partial derivatives (∂i)p generate the tangent space
TpM. On the other hand, applying these partial derivatives on the coordinate functions
we get (∂i)p(xj) = δij. Then

∑n
i=1 λi(∂i)p = 0 implies λj = (λ1(∂1)p + · · · + λn(∂n)p)(xj) = 0

for all 1 ≤ j ≤ n, so (∂1)p, . . . , (∂n)p are linearly independent, and therefore they form a
basis of the tangent space. The following theorem summarizes the previous discussion
and establishes the fundamental link between coordinates and tangent vectors.

Theorem 2.3. Let M be an n-manifold and (U,φ) be a chart at p ∈ M with xi = πi ◦ φ. Then
the partial derivatives (∂1)p, . . . , (∂n)p form a basis of TpM and the formula (2.1) holds for all
X ∈ TpM.

Let us go back to the beginning where we had a smooth curve γ : (−ε, ε) → M, a chart
(U,φ) at p = γ(0), and the relation Φ : (φ ◦ γ)′(0) 7→ γ′(0) which does not depend of the
choice of an equivalent curve. We have already seen that γ′(0) is a derivation at p, which
means that γ′(0) ∈ TpM.

The map Φ is injective since (φ ◦ γ1)
′(0) 6= (φ ◦ γ2)

′(0) means that there exists some
1 ≤ i ≤ n such that (πi ◦ φ ◦ γ1)

′(0) 6= (πi ◦ φ ◦ γ2)
′(0), respectively (γ′1(0))(xi) 6= (γ′2(0))(xi),

and therefore γ′1(0) 6= γ′2(0). The map Φ is also surjective since any X ∈ TpM by (2.1) has
the form X =

∑n
i=1 λi(∂i)p for some λ1, . . . , λn ∈ R. This allows us to construct the curve

γ : (−ε, ε) → M for small ε > 0 with γ(t) = φ−1(φ(p) + t(λ1, . . . , λn)), for which we have

(γ′(0))(f) = (f ◦ γ)′(0) = (f ◦ φ−1)′(φ(p)) · (λ1, . . . , λn) = X(f).

In this way we have shown that TpM can be identified with the equivalence classes of
smooth curves which go through the point p ∈ M,

2.2 Tangent maps

The basic idea of differential calculus is to approximate smooth objects by linear objects.
The tangent space TpM is a linear approximation of a manifold M at a point p ∈ M. The
next idea is to approximate a smooth map between manifolds by a linear transformation
of tangent spaces.

Let M and N be manifolds, and f : M → N is a smooth map. For X ∈ TpM and h ∈ F(N)
we can naturally set a linear map Tpf(X) : F(N) → R by

(Tpf(X))(h) = X(h ◦ f).
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Chapter 2. Tangent spaces and maps

Moreover, for h1,h2 ∈ F(N) we have

Tpf(X)(h1h2) = X((h1h2) ◦ f) = X((h1 ◦ f)(h2 ◦ f)) = (h1 ◦ f)(p)X(h2 ◦ f) + (h2 ◦ f)(p)X(h1 ◦ f)
= h1(f(p))Tpf(X)(h2) + h2(f(p))Tpf(X)(h1),

so it is Leibnizian at f(p), while the linearity is obvious. We can conclude that Tpf(X) is a
derivation at f(p) ∈ N, that is, Tpf(X) ∈ Tf(p)N holds.

The previous result for any smooth f : M → N allows to define the tangentmap of f at a
point p ∈ M by Tpf : TpM → Tf(p)N and Tpf(X)(h) = X(h◦f), where X ∈ TpM and h ∈ F(N). The
tangent map Tpf is linear, and it is worth noting that some authors call it the differential
of f at p, while the notations dfp, f′p, and Dpf are also used.

p

X

f(p)

Tpf(X)

M N
f

TpM Tf(p)N
Tpf

R

h

Example 2.1. The tangent map of the identity map 1M : M → M at some point p ∈ M is
the identity map 1TpM : TpM → TpM since for X ∈ TpM and f ∈ F(M) we have the equation
((Tp(1M))(X))(f) = X(f ◦ 1M) = X(f). 4

The chain rule can easily be generalised to manifolds, which gives that the tangent map
of composition is the composition of tangent maps.

Lemma 2.4. Given any two smooth maps f : M → N and h : N → P between manifolds, for
each point p ∈ Mwe have Tp(h ◦ f) = Tf(p)h ◦ Tpf.

Proof. The result follows directly from the straightforward calculation for X ∈ TpM and
l ∈ F(N), where we obtain Tp(h ◦ f)(X)(l) = X(l ◦ h ◦ f) = Tpf(X)(l ◦ h) = (Tf(p)h(Tpf(X)))(l).

As a consequence, a diffeomorphism between manifolds induces an isomorphism
between the corresponding vector spaces.

Lemma 2.5. Let f : M → N be a diffeomorphism between manifolds and p ∈ M, then
Tpf : TpM → Tf(p)N is an isomorphism between vector spaces and holds (Tpf)−1 = Tf(p)(f−1).

Proof. Since f and f−1 are smooth, 1TpM = Tp(1M) = Tp(f−1 ◦ f) = Tf(p)(f−1) ◦ Tpf holds by
Lemma 2.4, as well as 1Tf(p)N = Tf(p)(1N) = Tf(p)(f ◦ f−1) = Tpf ◦ Tf(p)(f−1).

A direct consequence of the previous lemma is the smooth version of the the dimen-
sion invariance theorem (Theorem A.5), which says that an m-manifold and an n-manifold
cannot be diffeomorphic, unless m = n. The original theorem (when we replace the word
diffeomorphic by homeomorphic) is not so easy to prove, but now we see that it is not
necessary for our theory of smooth manifolds.

If U is an open submanifold of a manifold M with inclusion ı, then both γ : (−ε, ε) → U
and ı ◦ γ : (−ε, ε) → M essentially represent the same curve, so we expect that the tangent
map of the inclusion is an isomorphism between the corresponding tangent spaces.

Lemma 2.6. Let U ⊆ M be an open subset with the inclusion ı : U ↪→ M. For each p ∈ U, the
tangent map Tpı : TpU → TpM is an isomorphism.
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Proof. For f ∈ F(U), by Lemma 1.18 there is an extension F ∈ F(M) supported in U which
agrees with f on some neighbourhood of p. If Tpı(X) = 0 ∈ TpM for some X ∈ TpU, then by
Lemma 2.2 X(f) = X(F↾U) = X(F ◦ ı) = ((Tpı)(X))(F) = 0 holds for any f ∈ F(U), which gives
X = 0 and proves that Tpı is injective. Since dimU = dimM the map Tpı is bijective, and
therefore an isomorphism.

Example 2.2. Let M and N be manifolds and let πM : M × N → M and πN : M × N → N be
canonical projections of the product M×N. For each (p,q) ∈ M×N, we can define the map
π : T(p,q)(M×N) → TpM×TqN by π(X) = (T(p,q)πM(X),T(p,q)πN(X)). In the opposite direction,
we can define the map θ : TpM × TqN → T(p,q)(M × N) by θ(Y,Z) = Tpμ(Y) + Tqν(Z) where
μ : M → M × N is given by μ(x) = (x,q), and ν : N → M × N is given by ν(x) = (p, x). The
calculation shows

π ◦ θ(Y,Z) = (T(p,q)πM(Tpμ(Y) + Tqν(Z)),T(p,q)πN(Tpμ(Y) + Tqν(Z)))
= (Tp(πM ◦ μ)(Y) + Tq(πM ◦ ν)(Z),Tp(πN ◦ μ)(Y) + Tq(πN ◦ ν)(Z)) = (Y,Z),

from where we get that π ◦ θ = 1TpM×TqN holds, so we can conlude that π is surjective,
and since dim(T(p,q)(M × N)) = dim(TpM × TqN) = dimM + dimN, we obtain that π is an
isomorphism of vector spaces. 4

In the next two examples, we give some special cases in which the tangent map is equal
to zero.

Example 2.3. If f : M → N is a constant map, then for h ∈ F(N) the map h◦f is also constant,
so by Lemma 2.1 for every p ∈ M and X ∈ TpM we have (Tpf(X))(h) = X(h◦ f) = 0. Therefore
for every p ∈ M and constant map f we have Tpf = 0. 4

Example 2.4. Suppose that f ∈ F(M) has a local extremum (minimum or maximum) at a
point p ∈ M, then for a smooth curve γ : (−ε, ε) → M for which γ(0) = p and every h ∈ F(R)
we have (Tpf(γ′(0)))(h) = γ′(0)(h ◦ f) = (h ◦ f ◦ γ)′(0) = h′(f(p))(f ◦ γ)′(0) = 0, and therefore
Tpf = 0. 4

Although so far tangent spaces and tangent maps look rather abstract, in local coordin-
ates things are becoming more practical. Let f : M → N be a smooth map between an
m-manifold M and an n-manifold N. Let (U,φ) be a chart at p ∈ M with xj = πj ◦ φ for
1 ≤ j ≤ m, and (V,ψ) be a chart at f(p) ∈ N with yi = πi ◦ ψ for 1 ≤ i ≤ n. According to the
formula (2.1), for each 1 ≤ j ≤ m we have

Tpf
(

∂

∂xj

)
p
=

n∑
i=1

(
Tpf
(

∂

∂xj

)
p

)
(yi)

(
∂

∂yi

)
f(p)

=

n∑
i=1

∂(yi ◦ f)
∂xj

(p)
(

∂

∂yi

)
f(p)

. (2.2)

The matrix of the tangent map Tpf with respect to these coordinate bases is
∂(y1◦f)
∂x1

(p) · · · ∂(y1◦f)
∂xm (p)

...
. . .

...
∂(yn◦f)
∂x1

(p) · · · ∂(yn◦f)
∂xm (p)

 =

(
∂(yi ◦ f)

∂xj
(p)
)

1≤i≤n, 1≤j≤m

called the Jacobian matrix4 of f at a point p relative to charts φ and ψ.
Since the entries of the Jacobian matrix satisfy

∂(yi ◦ f)
∂xj

(p) = ∂(πi ◦ (ψ ◦ f ◦ φ−1))

∂πj
(φ(p)),

4Carl Gustav Jacob Jacobi (1804–1851), German mathematician
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Chapter 2. Tangent spaces and maps

we see that the tangent map is actually the derivative of the coordinate representation at
the corresponding point, Tpf = (ψ ◦ f ◦ φ−1)′(φ(p)), as well as Tpf = f′(p) in the case that f is
a map between open subsets of Euclidean spaces.

Especially, if we set f = 1M : M → M, then we have the formula(
∂

∂xj

)
p
=

n∑
i=1

∂yi
∂xj

(p)
(

∂

∂yi

)
p
, (2.3)

which gives the rule for the change of coordinates, and the Jacobian matrix here is the
Jacobian matrix of the transition map ψ ◦ φ−1 at φ(p).

Example 2.5. The transition map between polar coordinates and standard coordinates in
suitable open subsets of the plane is given by (x, y) = (r cosθ, r sinθ). Let p ∈ R2 has polar
coordinates (r,θ) = (3, π/2) and let X ∈ TpR2 be the tangent vector whose polar coordinate
representation is X = 2(∂/∂r)p − (∂/∂θ)p. Concrete calculations by the formula (2.3) give(

∂

∂r

)
p
=

∂x
∂r (p)

(
∂

∂x

)
p
+

∂y
∂r (p)

(
∂

∂y

)
p
= cos π2

(
∂

∂x

)
p
+ sin π

2

(
∂

∂y

)
p
=

(
∂

∂y

)
p(

∂

∂θ

)
p
=

∂x
∂θ (p)

(
∂

∂x

)
p
+

∂y
∂θ (p)

(
∂

∂y

)
p
= −3 sin π

2

(
∂

∂x

)
p
+ 3 cos π2

(
∂

∂y

)
p
= −3

(
∂

∂x

)
p
,

and therefore X = 2(∂/∂r)p − (∂/∂θ)p = 3(∂/∂x)p + 2(∂/∂y)p. 4

Example 2.6. It is important to note that a coordinate vector (∂i)p of the tangent space TpM
does not depend only on the specific coordinate function xi, but on the entire coordinate
system, because the derivative is obtained by differentiation with respect to xi but while
remaining coordinates are fixed. Let (x, y) denote the standard coordinates in R2, while
the new coordinates (x, y) are given by x = x and y = y+ x. Then we have(

∂

∂x

)
p
=

(
∂

∂x

)
p
+

(
∂

∂y

)
p
6=
(

∂

∂x

)
p
,

which differs at each point p ∈ R2. 4

2.3 Submersions and immersions

Let f : M → N be a smooth map between manifolds. The tangent map Tpf : TpM → Tf(p)N
should represent the best linear approximation of f at p ∈ M, and investigating algebraic
properties of the map Tpf we can conclude a lot about f itself. The most important property
of the tangent map (as a linear map) is its rank, since it is independent of choices of bases.
The rank of a map f at a point p ∈ M is the rank of the tangent map,

rankp f = rankTpf = dim Im(Tpf).

If the rank is independent of the choice of point p ∈ M, we say that f has constant rank,
and the rank is denoted by rank f.

The rank of a linear map has natural upper bounds, because it is never higher than
the dimension of either its domain (rankp f ≤ dimM) or its codomain (rankp f ≤ dimN).
If the rank rankp f is equal to this upper bound we say that f has full rank at p, and if
additionally f has constant rank we say that f has full rank. The most important constant
rank maps are those of full rank.

In the case of rank f = dimM, which means that Tpf is injective for any p ∈ M, we
say that f is an immersion, and then f locally looks like an injective map. In the case
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of rank f = dimN, which means that Tpf is surjective for any p ∈ M, we say that f is a
submersion, and then f locally looks like a surjective map. Let us note that if a map is an
immersion or submersion, according to our definition we always assume that it is smooth.

A prototype of immersion is the inclusion ı : Rm ↪→ Rn of Euclidean space into Euclidean
space of higher dimension (m ≤ n) given by ı(x1, . . . , xm) = (x1, . . . , xm,0, . . . , 0). A proto-
type of submersion is the projection π : Rm → Rn of Euclidean space onto Euclidean space
of lower dimension (m ≥ n) given by π(x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn). Moreover,
it turns out (Theorem 2.10) that every immersion is locally an inclusion, while every sub-
mersion is locally a projection.

Example 2.7. Every regular curve γ on a manifold is an immersion since its derivative
never vanishes, which gives rank γ = 1. Especially, γ : R → R2 given by γ(t) = (cos t, sin t)
is an immersion, but although Ttγ is injective for all t ∈ R, γ is not injective. 4

Lemma 2.7. Let f : M → N be a smooth map between manifolds and p ∈ M. If Tpf is injective,
then p has a neighbourhood U such that f↾U is an immersion. If Tpf is surjective, then p has a
neighbourhood U such that f↾U is a submersion.

Proof. Let dimM = m and dimN = n. If we choose a chart (U,φ) at p ∈ M and a chart (V,ψ)
at f(p) ∈ N, either hypothesis means that the Jacobian matrix of f relative to φ and ψ has
full rank at p. Consider the continuous map T : U → Rn×m given by T(p) = (ψ◦f◦φ−1)′(φ(p)).
Since matrices of full rank by Example 1.13 form an open subset of Rn×m, their preimage
gives a neighbourhood of p where the Jacobian matrix of f has full rank.

The inverse function theorem from real analysis (Theorem A.30) gives a sufficient con-
dition for a smooth function to be invertible in a neighbourhood of a point in its domain.
The inverse function theorem can be generalised in terms of smooth maps between
manifolds.

Theorem 2.8. Let f : M → N be a smooth map between manifolds. If Tpf is invertible for
some p ∈ M, then there exists a neighbourhood U ⊆ M of p such that f↾U : U → f(U) is a
diffeomorphism.

Proof. Since Tpf is a bijection, we have dimM = dimN = n. Choose a chart (U,φ) centred
at p ∈ M and a chart (V,ψ) centred at f(p) ∈ N such that f(U) ⊆ V, and ψ ◦ f ◦ φ−1 is smooth.
Since φ and ψ are diffeomorphisms, (ψ ◦ f ◦φ−1)′(0) = T0(ψ ◦ f ◦φ−1) = Tf(p)ψ ◦Tpf ◦T0φ−1 is
invertible. Theorem A.30 guarantees a neighbourhood W ⊆ φ(U) ⊆ Rn of 0 such that the
restriction ψ◦ f◦φ−1↾W is a diffeomorphism onto its image, so the restriction of f to φ−1(W)
is a diffeomorphism onto its image as a composition of diffeomorphisms.

A map f : M → N between manifolds is a local diffeomorphism if each point p ∈ M
has a neighbourhood U such that f(U) is open in N and f↾U : U → f(U) is a diffeomorphism.
The key properties of local diffeomorphisms can be seen in the following theorem.

Theorem 2.9. A smooth map f : M → N is a local diffeomorphism if and only if it is both
immersion and submersion.

Proof. if f is a local diffeomorphism then for each p ∈ M there is a neighbourhood U 3 p
such that f↾U : U → f(U) is a diffeomorphism, so Tp(f↾U) : TpU → Tf(p)f(U) is an isomorphism
by Lemma 2.5, as well as Tpf : TpM → Tf(p)N by Lemma 2.6, which proves that f is immer-
sion and submersion. Conversely, if f is both immersion and submersion, then Tpf is an
isomorphism for every p ∈ M, so by Theorem 2.8, any p has a neighbourhood on which the
restriction of f is a diffeomorphism onto its image.

In the case that M and N have the same dimension, it is enough to know that f is an
immersion or a submersion, since then the other condition is immediate and f is a local
diffeomorphism by Theorem 2.9.
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Example 2.8. The map ψ : R → S1 given by ψ(t) = (cos t, sin t) has coordinate repres-
entations (related to the projections of hemispheres) given by t 7→ cos t for points where
sin t 6= 0 and t 7→ sin t for points where cos t 6= 0, so ψ is a local diffeomorphism. For an
arbitrary a ∈ R the restriction ψ↾(a,a+2π) : (a,a + 2π) → S1 \ {ψ(a)} is a homeomorphism,
and therefore a diffeomorphism. An angle function on U ⊂ S1 is the restriction of the
inverse of that diffeomorphism θ ∈ F(U), so (U,θ), according to Example 1.28, is a chart of
the circle S1 with the standard smooth structure. If we identify S1 ⊂ C ∼= R2, then the angle
function has eiθ(z) = z for all z ∈ U. Now it is easy to see that the map f : S1 → S1 given by
f(z) = z2 is smooth, since in new charts it has the representation given by t 7→ 2t+ 2kπ for
some k ∈ Z. 4
Example 2.9. Let π : Sn → RPn be the canonical quotient map that sends x to its equival-
ence class [x] = {x,−x}, that is, π(x1, . . . , xn+1) = (x1 : . . . : xn+1). If we use the standard
charts φi on RPn and their corresponding charts on Sn which are projections of the hemi-
spheres to the planes xi = 0, then we get coordinate representations that are up to sign
equal to the diffeomorphism between Bn and Rn from Example 1.30, so π is a local diffeo-
morphism but not a diffeomorphism since it is not bijective. A local diffeomorphism is a
continuous map, and since Sn is compact, so is RPn. 4

In the case that a smooth map has constant rank it can be locally written in a simple
canonical form using the change of coordinates, which we see in the constant rank the-
orem.
Theorem 2.10. Let f : M → N be a smooth map of constant rank r = rank f between mani-
folds M and N. For every p ∈ M there is a chart (U,φ) centred at p ∈ M and a chart (V,ψ)
centred at f(p) ∈ N such that f(U) ⊆ V where f has a coordinate representation of the form
ψ ◦ f ◦ φ−1(x1, . . . , xr, xr+1, . . . , xm) = (x1, . . . , xr,0, . . . , 0).
Proof. For every p ∈ M there is a chart (U1,φ1) centred at p ∈ M and a chart (V1,ψ1) centred
at f(p) ∈ N such that f(U1) ⊆ V1 and ψ1 ◦ f ◦ φ−1

1 is smooth. The Jacobian matrix of f at a
point p has entries in the form

∂(yi ◦ f)
∂xj

(p) =
∂(πi ◦ ψ1 ◦ f ◦ φ−1

1 )

∂πj
(0)

for 1 ≤ i ≤ n = dimN, 1 ≤ j ≤ m = dimM. Since rankp f = r, we can permute the appropri-
ate coordinates, that is, we use permutations of rows and columns of the Jacobian matrix
in such a way that in the upper left corner we get an invertible square submatrix of order
r. Formally, a permutation of coordinates is a diffeomorphism, which by Lemma 1.4 leads
to new charts (U1,φ2) and (V1,ψ2) related to which f has the coordinate representation
ψ2 ◦ f ◦ φ−1

2 , such that the submatrix of the Jacobian matrix of f at p with entries

∂(πi ◦ ψ2 ◦ f ◦ φ−1
2 )

∂πj
(0)

for 1 ≤ i, j ≤ r, is invertible. Consider the function θ1 : Rm → Rm defined by
θ1(a1, . . . ,am) = (π1 ◦ ψ2 ◦ f ◦ φ−1

2 (a1, . . . ,am), . . . , πr ◦ ψ2 ◦ f ◦ φ−1
2 (a1, . . . ,am),ar+1, . . . ,am),

which the corresponding Jacobian matrix at 0 ∈ Rm is a block upper triangular matrix

∂π1ψ2fφ
−1
2

∂π1
(0) · · · ∂π1ψ2fφ

−1
2

∂πr (0) ∂π1ψ2fφ
−1
2

∂πr+1
(0) · · · ∂π1ψ2fφ

−1
2

∂πm (0)
...

. . .
...

...
. . .

...
∂πrψ2fφ

−1
2

∂π1
(0) · · · ∂πrψ2fφ

−1
2

∂πr (0) ∂πrψ2fφ
−1
2

∂πr+1
(0) · · · ∂πrψ2fφ

−1
2

∂πm (0)
0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1


.
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As on the diagonal we have the previously mentioned square submatrix of rank r, as well
as the unit submatrix of order m − r, we obtain rank0 θ1 = m, so by Theorem A.30 we
have a diffeomorphism on some neighbourhood W1 3 0. This is a legitimate change of
coordinates that according to Lemma 1.4 brings us a new chart (U3,φ3) at p ∈ M, where
U3 = U1 ∩ φ−1

2 (W1) and φ3 = θ1 ◦ φ2↾U3 , which is centred at p because of ψ2 ◦ f ◦ φ−1
2 (0) = 0.

A new coordinate representation of f is of form

ψ2 ◦ f ◦ φ−1
3 (b1, . . . , br,ar+1, . . . ,am) = (b1, . . . , br,br+1, . . . , bn),

where bi = πi ◦ ψ2 ◦ f ◦ φ−1
2 (a1, . . . ,am) for 1 ≤ i ≤ n. Thus, the Jacobian matrix of f relative

to new charts is a block lower triangular matrix

1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0

∂br+1
∂b1

· · · ∂br+1
∂br

∂br+1
∂ar+1

· · · ∂br+1
∂am

...
. . .

...
...

. . .
...

∂bn
∂b1

· · · ∂bn
∂br

∂bn
∂ar+1

· · · ∂bn
∂am


.

Since on the diagonal we first have the unit submatrix of order r = rank f, the other com-
ponent on the diagonal is the zero submatrix, which means that br+1, . . . , bn are independ-
ent of ar+1, . . . ,am, but depend only on b1, . . . , br. This allows us to introduce a new change
of coordinates θ2 : Rn → Rn by

θ2(b1, . . . , br, cr+1, . . . , cn) = (b1, . . . , br, cr+1 − br+1(b1, . . . , br), . . . , cn − bn(b1, . . . , br)),

on some neighbourhood W2 3 0, because the corresponding Jacobian matrix is a block
lower triangular matrix with the unit submatrices on the diagonal. Hence, we have a new
chart (V,ψ) centred at f(p) ∈ N, whereV = V1∩ψ−1

2 (W2) andψ = θ2◦ψ2↾V, so with additional
U = U3 ∩ f−1(V) and φ = φ3↾U we have the desired coordinate representation

ψ ◦ f ◦ φ−1(b1, . . . , br,br+1, . . . , bm) = (b1, . . . , br,0, . . . , 0),

which finishes the proof.

Example 2.10. The constant rank theorem often applies to immersions and submersions.
For example, it shows that any submersion locally looks like a projection with respect to
suitable charts. Since a projection is an open map, while charts are diffeomorphisms, we
conclude that any submersion is an open map. 4

Example 2.11. Is there a submersion f : Sm → Rn for some m,n ∈ N? The domain M = Sm
is compact, so for a smooth f : M → Rn we consider π1◦f : M → R, where π1 is the projection
to the first component, which attains a maximum on M at some point p ∈ M. According
to Example 2.4 we have 0 = Tp(π1 ◦ f) = Tf(p)π1 ◦ Tpf, but Tf(p)π1 is surjective, so Tpf is not
surjective, and consequently f cannot be a submersion.

Moreover, every continuous map with a compact domain is closed (Lemma A.2), while
according to Example 2.10, a submersion is an open map. If f : Sm → Rn is a submersion,
then the image of Sm is a nonempty open and closed subset in Rn, so f(Sm) = Rn, and since
it is not compact, a submersion f does not exist. 4

Example 2.12. Let f : S1 × R → R2 be defined by f((x, y), r) = (erx, ery). If we use an angle
function θ from Example 2.8 as a chart of the circle S1 we get the coordinate representation
f ◦ (θ × 1R)

−1(t, r) = (er cos t, er sin t). Therefore f is smooth with the Jacobian matrix

T(t,r)(f ◦ (θ × 1R)
−1) =

(
−er sin t er cos t
er cos t er sin t

)
,
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whose determinant is −e2r 6= 0, which gives rank f = 2, so f is a submersion and a local
diffeomorphism. 4

A topological embedding is a homeomorphism onto its image. More explicitly, it is
a map f : M → N which yields a homeomorphism between topological spaces M and f(M),
where f(M) ⊆ N carries the subspace topology inherited from N. As a consequence, any
topological embedding is injective and continuous.

An embedding (or imbedding) is an immersion that is also a topological embedding.
In other words, an embedding is an injective (smooth) immersion which domain is diffeo-
morphic to its image. This special case of immersion is rather important, and it allows us
to introduce the notion of submanifold.

Example 2.13. According to the constant rank theorem any immersion f : M → N has
a coordinate representation in the form of inclusion (x1, . . . , xm) 7→ (x1, . . . , xm,0, . . . , 0).
Thus, for each p ∈ M there is an neighbourhood U ⊆ M of p such that f↾U is an embedding,
which means that any immersion is a local embedding. 4

Example 2.14. Let f : M → N be an injective immersion. The answer to the question
whether f is an embedding is reduced to checking whether f−1 : f(M) → M is continuous.
With the additional condition that f is open or closed map, this is obviously satisfied. If M
is compact, f is closed (Lemma A.2), so it is an embedding. If dimM = dimN, then f is a
local diffeomorphism (Theorem 2.9), so f is open and therefore an embedding. 4

Example 2.15. A smooth map γ : R → R2 given by γ(t) = (t2, t3) is a topological embed-
ding. However, although it is injective, it is not an immersion since γ′(0) = 0, which gives
rank0 γ = 0. 4

Example 2.16. Consider a map γ : (−π, π) → R2 given by γ(t) = (sin 2t, sin t). Since for
any t ∈ (−π, π) we have γ′(t) 6= 0, the map γ is an injective immersion. However, its image
{(x, y) ∈ R2 : x2 = 4y2(1 − y2)} is a compact set in R2, but since the domain is not compact
then γ is not a topological embedding, and therefore γ is not an embedding. 4

Example 2.17. Let γ : R → T2 = S1 × S1 ⊂ C2 ∼= R4 be a winding of the torus given by

γ(t) = (e2πit, e2πict) = (cos 2πt, sin 2πt, cos 2πct, sin 2πct),

for some irrational c ∈ R \ Q. Since γ′(t) never vanishes, γ is an immersion. It is also
injective since γ(t1) = γ(t2) implies both t1 − t2 ∈ Z and c(t1 − t2) ∈ Z, and consequently
t1 = t2. According to the Dirichlet’s5 approximation theorem (Lemma A.33), for every ε > 0
there exist integers m,n ∈ Z such that |cn−m| < ε. Since the line segment is shorter than
the circular arc we have

|γ(n)− γ(0)| = |(e2πin, e2πicn)− (1,1)| = |e2πicn − e2πim| ≤ 2π|cn−m| < 2πε,
5Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician
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so γ(0) is a limit point of γ(Z). However, Z has no limit point in R which proves that γ is
not a homeomorphism onto its image γ(R), hence γ is not an embedding.

The second argument is that γ(R) is not locally path-connected since in a ball we have
a countably infinite number of parallel lines shading it, each of which forms a (local) path-
component.

The third argument is that the image of an embedding cannot be dense, while it is
not hard to show that γ(R) is dense in T2 Let f : M → N be an embedding which is not a
submersion. The constant rank theorem gives a chart (V,ψ) on N, where P = V ∩ f(M) 6= ∅
such that ψ(P) ⊆ Rm×{0}. However, then the open set ψ−1(ψ(V)∩ (Rm× (Rn−m \ {0}))) lies
in V and does not intersect P, so f(M) is not dense in N. 4

2.4 Submanifolds

Many familiar manifolds appear naturally as subsets of other manifolds. Roughly speak-
ing, submanifolds of some manifoldM is a subset P ⊆ M that has a manifold structure in its
own right. That structure comes from M through the appropriate inclusion that has some
nice properties. A submanifold of a manifold M is a subset P ⊆ M which is a manifold
such that the appropriate inclusion ı : P ↪→ M is an embedding. Thus, a submanifold has
the subspace topology inherited from its containing manifold and a smooth structure with
respect to which the inclusion map is embedding.

If P is a submanifold of M, then M is the ambient manifold for P, and the difference
dimM − dimP is the codimension of P in M. A submanifold of codimension 1 is called a
hypersurface. Let us notice that such defined submanifolds are also called embedded
submanifolds or regular submanifolds by some authors. In a more relaxed variant
where the corresponding inclusion ı : P ↪→ M is an immersion (not necessarily an embed-
ding), we say that P is an immersed submanifold.

Example 2.18. In Example 1.20 we show that the inclusion ı : Sn ↪→ Rn+1 is smooth. This
time it is more convenient to use ordinary projections from Example 1.14, where the co-
ordinate representation is given by

ı ◦ φ−1
±i (y1, . . . , yn) = (y1, . . . , yi−1,±

√
1 − y2

1 − · · · − y2
n, yi, . . . , yn),

so the Jacobian matrix contains the n × n identity submatrix, from where Tpı is injective
for every p ∈ Sn. Therefore, ı is an injective immersion, while Sn is compact (closed and
bounded in Rn+1), so ı is embedding by Example 2.14, which implies that Sn is a submani-
fold of Rn+1. 4

Example 2.19. Submanifolds of codimension 0 of a manifold M are exactly the open sub-
manifolds. IfU ⊆ M is an open submanifold with the inclusion ı : U ↪→ M, then ı is obviously
an embedding (U has the subspace topology, while the coordinate representation of ı is the
identity) with the codimension 0, which means dimU = dimM. Conversely, if ı : U ↪→ M
is an embedding of codimension 0, then it is both an immersion and a submersion, so by
Theorem 2.9 it is a local diffeomorphism, and therefore U is an open subset of M. 4

We often find submanifolds in the codomain of some embedding, which is discussed in
the following theorem.

Theorem 2.11. If f : M → N is an embedding between manifolds, then P = f(M) with the
subspace topology is a topological manifold, and it has a unique smooth structure making it
into a submanifold of N such that f is a diffeomorphism between M and P.
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Proof. Since f is an embedding, it is a homeomorphism between M and P. For any chart
(U,φ) on M we take a corresponding chart (f(U),φ ◦ f−1) on P which determines a smooth
structure such that f is the appropriate diffeomorphism (see Example 1.29). The inclusion
P ↪→ N is a composition f ◦ f−1 of diffeomorphism f−1 : P → M and embedding f : M → N, so
it is an embedding, which means that P is a submanifold of N.

Example 2.20. For some fixed p ∈ N, the map f : M → M × N given by f(x) = (x,p) is an
embedding, so a sliceM× {p} is a submanifold of M×N diffeomorphic to M. 4

Example 2.21. Let M and N be manifolds, and f : U → N is smooth for an open set U ⊆ M.
Then the graph Γ(f) = {(x, y) ∈ M×N : x ∈ U, y = f(x)} is a submanifold of M×N. The map
γ : U → M×N given by γ(x) = (x, f(x)) is smooth and γ(U) = Γ(f). From πM ◦ γ = 1U follows
Tγ(x)πM ◦ Txγ = 1TxM for all x ∈ U, so Txγ is injective and γ is an immersion. The inverse
of γ : U → Γ(f) is the continuous map πM↾Γ(f), so γ is a homeomorphism, which implies that
Γ(f) is a submanifold of M×N diffeomorphic to U. 4

It turns out that all submanifolds are actually slices, which leads to the following the-
orem which represents an alternative (and actually the most common) definition of sub-
manifolds.

Theorem 2.12. If P is a submanifold of dimension n of a manifold M, then for each point
p ∈ P there is a chart (V,ψ) at p ∈ M such that ψ(V ∩ P) = ψ(V) ∩ (Rn × {0}).

Proof. If P ⊆ M is a submanifold of dimension n then the inclusion ı : P ↪→ M is an embed-
ding. Since ı is an immersion, by the constant rank theorem (Theorem 2.10) for every p ∈ P
there are charts, (U,φ) centred at p ∈ P and (V,ψ) centred at p ∈ M, such that U = ı(U) ⊆ V
andψ◦ı◦φ−1(x1, . . . , xn) = (x1, . . . , xn,0, . . . , 0). Since ı is a topological embedding andU ⊆ P
is open, there exists an open W ⊆ M such that U = W∩P. Let π : Rm → Rn be the projection
onto the first n coordinates, then we have φ(U) = π◦ψ(U), so C = ψ−1((Rn\φ(U))×{0}) ⊆ V
is closed disjoint from U. If we restrict ψ to the open subset V1 = V∩W \C, then we obtain
ψ(V1 ∩ P) = ψ(U \ C) = ψ(U) = ψ(V1) ∩ (Rn × {0}), so (V1,ψ↾V1) is a chart at p ∈ M that
satisfies the required condition.

P

M
V1

U

φ(U) Rn
φ

ψ(U)

ψ(V1)

Rmψ

πψ ◦ ı ◦ φ−1

Charts (V,ψ) on M for which ψ(V∩P) = ψ(V)∩(Rn×{0}) holds are slice charts adapted
to a subset P ⊆ M and they naturally induce n-dimensional charts (V ∩ P,ψP) on P with
ψP = π◦ψ, where π : Rm → Rn is the projection to the first n coordinates. If (U,φ) is another
slice chart onM and φP = π◦φ, then we have φP◦ψ

−1
P = π◦(φ◦ψ−1)◦, where (x1, . . . , xn) =

(x1, . . . , xn,0, . . . , 0), which is smooth as a composition of smooth maps. If there is a slice
map at every point p ∈ P, then the induced charts form a smooth atlas for P, and it is
clear that it assigns P the subspace topology from M. The coordinate representation of the
inclusion ı : P ↪→ M is ψ ◦ ı ◦ ψ−1

P =  which is smooth, while the Jacobian matrix contains
the n× n identity submatrix, so ı is an immersion, and consequently it is an embedding.

Thus, the slice charts on P induces a natural atlas with whicn P becomes a submanifold
of M. However, it turns out that the complete atlas of a submanifold is uniquely determ-
ined.
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Theorem 2.13. Let M be a manifold, P ⊆ M, and n ∈ N. If for each p ∈ P there exists a chart
(V,ψ) at p ∈ M such that ψ(V ∩ P) = ψ(V) ∩ (Rn × {0}), then there is a unique complete atlas
for P with which it becomes a submanifold of M of dimension n.

Proof. Let P̃ be a submanifold of M consisting of the set P and some other atlas such that
the inclusion ı̃ : P̃ ↪→ M is an embedding. This inclusion when restricting the codomain to
P = ı̃(P̃) becomes ı̃1 : P̃ ↪→ P, where ı ◦ ı̃1 = ı̃. Since ı̃1 is continuous (a homeomorphism
because ı̃ is an embedding), and ψP ◦ ı̃1 ◦φ−1 = π ◦ (ψ◦ ı̃◦φ−1) is smooth for a chart (U,φ) on
P̃ and a slice chart (V,ψ) on M that induces the chart (V∩P,ψP) on P, ı̃1 is smooth according
to Lemma 1.13. Since for p ∈ P we have Tpı̃ = Tpı ◦ Tpı̃1, and both Tpı̃ and Tpı are injective,
then Tpı̃1 is injective, which means that ı̃1 is an immersion. However, due to dim P̃ = dimP
it is a local diffeomorphism, and since it is a ijection, the it is also a diffeomorphism, which
means that P̃ and P have the same complete smooth atlas.

Theorem 2.11 finds submanifolds in the codomain of smooth maps, but we can notice
them in the domain as well, because in practice, submanifolds are most often shown as a
set of solutions of equations or a system of equations.

Theorem 2.14. If f : M → N is a smooth map of constant rank r, then for every q ∈ f(M), the
level set P = f−1(q) is a submanifold in M of codimension r.

Proof. By the constant rank theorem, for every p ∈ P there is a chart (U,φ) centred at p ∈ M
and a chart (V,ψ) centred at q = f(p) ∈ N such that f related to these charts has a coordinate
representation in the form ψ◦ f◦φ−1(x1, . . . , xr, xr+1, . . . , xm) = (x1, . . . , xr,0, . . . , 0). Because
of φ(U ∩ P) = {(x1, . . . , xm) ∈ φ(U) : x1 = · · · = xr = 0} = φ(U) ∩ ({0} × Rm−r), Theorem 2.13
finishes the proof.

Especially, if f from the previous theorem is a submersion, then the level set is a sub-
manifold of codimension dimN. We say that a point p ∈ M is a regular point if Tpf is
surjective; otherwise, we say that p is a critical point. A point q ∈ N is called a regu-
lar value if its preimage f−1(q) contains only regular points. A level set f−1(q) is called a
regular level set if q is a regular value of f.

Theorem 2.15. Every regular level set of a smooth map between manifolds is a submanifold
whose codimension is equal to the dimension of codomain.

Proof. Let f : M → Nbe a smooth map and let q ∈ Nbe a regular value. By Lemma 2.7 the set
U of points p ∈ M such that Tpf has rank dimN is open in M and contains f−1(q). It follows
that f↾U is a submersion, so f−1(q) is a submanifold of U by Theorem 2.14. The composition
of embeddings f−1(q) ↪→ U ↪→ M is again embedding, which proves the statement.

Example 2.22. If a function f : Rn+1 \ {0} → R is given by f(x1, . . . , xn+1) = x2
1 + · · · + x2

n+1,
then f is a submersion, so Sn = f−1(1) is a submanifold in Rn+1 of dimension n. 4

Example 2.23. Consider the subspace M = {(x : y : z) ∈ RP2 : xy = z2} ⊂ RP2 which is first
of all well defined because (tx)(ty) = (tz)2 for t 6= 0 holds if and only if xy = z2. Also, it is
easy to see that f : RP2 → R is well defined by

f(x : y : z) = xy− z2

x2 + y2 + z2 ,

and that M = f−1(0). In the first chart we have the smooth f◦φ−1
1 (x, y) = (x−y2)/(1+x2+y2)

with the Jacobian matrix

(f ◦ φ−1
1 )′(x, y) =

(
(1+x2+y2)−2x(x−y2)

(1+x2+y2)2
−2y(1+x2+y2)−2y(x−y2)

(1+x2+y2)2

)
=
(

1−x2+y2+2xy2

(1+x2+y2)2
−2y(1+x+x2)
(1+x2+y2)2

)
,
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which is of rank 1 except for y = 0 and x = ±1, that is for the points (1 : ±1 : 0) /∈ M. In
the second chart we have f ◦ φ−1

2 (x, y) = (x− y2)/(1 + x2 + y2), with a symmetric result. In
the third chart we have the smooth f ◦ φ−1

3 (x, y) = (xy − 1)/(1 + x2 + y2) with the Jacobian
matrix

(f ◦ φ−1
3 )′(x, y) =

(
y(1+x2+y2)−2x(xy−1)

(1+x2+y2)2
x(1+x2+y2)−2y(xy−1)

(1+x2+y2)2

)
=
(
y+2x−x2y+y3

(1+x2+y2)2
x+2y−xy2+x3

(1+x2+y2)2

)
,

which is of rank 1 except for the solution of the system y+ 2x− x2y+ y3 = 0 and x+ 2y−
xy2 + x3 = 0. If we multiply the first equation by x, and the second by y and add them,
we get 2(x2 + xy + y2) = 0, which is possible only for x = y = 0 that corresponds to the
point (0 : 0 : 1) /∈ M. Therefore, f is a submersion, except at three concrete points that do
not belong to M, and in any case M is a regular level set and therefore a submanifold of
RP2. 4

It turns out that at each point of a regular level set we have a nice decomposition of the
tangent space.

Lemma 2.16. If P is a regular level set of smooth map f : M → N, then TpP = KerTpf for each
p ∈ P.

Proof. Let ı : P = f−1(q) ↪→ M be the natural inclusion. Since f↾P = f ◦ ı is constantly equal
to q ∈ N, we have Tpf ◦ Tpı = Tpf↾P = 0, and therefore Tpı(TpP) ⊆ KerTpf ⊆ TpM. Since the
subspace TpP has the same dimension as KerTpf, we conclude that they are equal under
the natural identification Tpı(TpP) ∼= TpP.

The concept od submanifolds allows us to restrict the domain or codomain of a
smooth map between manifolds to their submanifolds, whereby the restriction will re-
main smooth. Of course, for the domain restriction it is obvious because we have a com-
position of a smooth map and an inclusion which is an embedding.

Theorem 2.17. Let f : M → N be a smooth map and P be a submanifold of N, then the restric-
tion f : M → P is also smooth.

Proof. If f1 : M → P is the observed restriction, then f = ı ◦ f1, where the inclusion ı : P ↪→ N
is an embedding. A coordinate representation ψP ◦ f1 ◦ φ−1 = π ◦ ψ ◦ f ◦ φ−1 is smooth for
a chart (U,φ) on M and a slice chart (V,ψ) on N that induces the chart (V ∩ P,ψP) on P,
while f1 is continuous since ı is a homeomorphism onto its image. Therefore f1 is smooth
by Lemma 1.13.

2.5 Vector fields

Basically, a vector field on a manifold M is a map p 7→ X(p) that assigns to each point p ∈ M
a tangent vector X(p) ∈ TpM. We would like such assignments to have some smoothness
properties when p varies in M. To do this we need to fit together all the tangent spaces
TpM as p ranges over M into a single manifold. The tangent bundle of a manifold M is
the disjoint union of tangent spaces to M,

TM =
⊔
p∈M

TpM =
⋃
p∈M

({p} × TpM) =
⋃
p∈M

{(p,X) : X ∈ TpM}.

An element of the tangent bundle TM can be thought of as a pair (p,X), where p is a
point inM and X is a tangent vector toM at p. The tangent bundle comes equipped with the
natural projection map π : TM → M defined by π(p,X) = p, that maps each tangent vector
from TpM to the single base point p. We often conveniently identify the pair (p,X) ∈ TM
with the tangent vector X ∈ TpM and the fiber π−1(p) with TpM.
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To make a manifold from the set TM, it is necessary to give a smooth atlas in some
natural way. Let (U,φ) be a chart on M, and let xi = πi ◦ φ be the coordinate functions. By
Lemma 2.6, for p ∈ Uwe have TpU = TpM, and therefore TU =

⊔
p∈U TpU =

⊔
p∈U TpM ⊆ TM.

A tangent vector X ∈ TpM at p ∈ U is the unique linear combination X =
∑n

i=1 X(xi)(∂i)p,
which motivate us to define the map φ̃ : π−1(U) = TU → φ(U)× Rn ⊆ R2n by

φ̃(p,X) = (x1(p), . . . , xn(p),X(x1), . . . ,X(xn)). (2.4)

We can notice that φ̃ is a bijection with the inverse

φ̃−1
(φ(p), λ1, . . . , λn) =

(
p,

n∑
i=1

λi
(

∂

∂xi

)
p

)
.

Let (U,φ) and (V,ψ) be charts on M, then the corresponding charts on TM are (TU, φ̃)
and (TV, ψ̃). The sets φ̃(TU ∩ TV) = φ(U ∩ V)×Rn and ψ̃(TU ∩ TV) = ψ(U ∩ V)×Rn are open
in R2n, while for the map ψ̃ ◦ φ̃−1

: φ(U ∩ V)× Rn → ψ(U ∩ V)× Rn holds

(ψ̃ ◦ φ̃−1
)(φ(p), λ1, . . . , λn) = ψ̃

(
p,

n∑
i=1

λi
(

∂

∂xi

)
p

)

=

(
ψ(p),

n∑
i=1

λi
(

∂

∂xi

)
p
(π1 ◦ ψ), . . . ,

n∑
i=1

λi
(

∂

∂xi

)
p
(πn ◦ ψ)

)

=

(
(ψ ◦ φ−1)(φ(p)),

n∑
i=1

λi
∂(π1 ◦ (ψ ◦ φ−1))

∂πi
(φ(p)), . . . ,

n∑
i=1

λi
∂(πn ◦ (ψ ◦ φ−1))

∂πi
(φ(p))

)
,

and therefore it is smooth. In this way, the original atlas for M induces a smooth atlas for
TM.

Since M has a countable subatlas, then TM also has one. For X ∈ TpM and Y ∈ TqM
where p 6= q (otherwise Lemma 1.5 works) there exist trivially compatible charts, φ at
p ∈ M and ψ at q ∈ M, and therefore φ̃ and ψ̃ have disjoint domains that separate points
(p,X) and (q,Y), which proves the Hausdorff condition. Hence, the tangent bundle TMwith
the induced atlas is a smooth manifold of dimension 2n.

A section of a tangent bundle TM is a map X : M → TM such that π ◦ X = 1M, where
π : TM → M is the natural projection. A vector field on a manifold M is a smooth section
of the tangent bundle TM, that is a smooth function X : M → TM that assigns a tangent
vector Xp = X(p) ∈ TpM to each point p ∈ M. The set of all vector fields on a manifold M
we denote by X(M).

Let (U,φ) be a chart on M with coordinate functions xi = πi ◦ φ. A section X : M → TM
has a coordinate representation φ̃ ◦ X ◦ φ−1 : φ(U) → φ(U) × Rn which due to (2.4) can be
expressed with φ(p) 7→ (φ(p),Xp(x1), . . . ,Xp(xn)) for p ∈ U. Every section X can be seen
as a map that assigns to each smooth function f ∈ F(M) a function Xf : M → R given by
(Xf)(p) = Xp(f). Then Xp(xi) = (Xxi ◦ φ−1)(φ(p)) and for v ∈ φ(U) we have

(φ̃ ◦ X ◦ φ−1)(v) = (v,Xx1 ◦ φ−1(v), . . . ,Xxn ◦ φ−1(v)), (2.5)

so the section X is smooth on U if and only if Xxi are smooth functions for 1 ≤ i ≤ n.
For 1 ≤ i ≤ n we define the i-th coordinate vector field ∂i : U → TU by ∂i(p) = (∂i)p,

but since ∂i(xj) : p 7→ (∂i)p(xj) = δij for all 1 ≤ j ≤ n, thus ∂i(xj) ∈ F(U), so we have ∂i ∈ X(U)
as a basic example of a vector field.

For f ∈ F(M), the coordinate representation of ∂if is the smooth function

∂if ◦ φ−1 : φ(p) 7→
(

∂

∂xi

)
p
f = ∂(f ◦ φ−1)

∂πi
(φ(p)),
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and therefore ∂if ∈ F(U), while at a point p ∈ U for a section X : M → TM we have

(Xf)(p) = Xp(f) =
( n∑

i=1
Xp(xi)

(
∂

∂xi

)
p

)
f =

n∑
i=1

Xp(xi)
∂f
∂xi

(p) =
( n∑

i=1
(Xxi)

∂f
∂xi

)
(p),

so on the coordinate neighbourhood U we get

Xf =
n∑
i=1

(Xxi)∂if.

If X ∈ X(M), the section is smooth, so Xxi are smooth, and Xf is smooth on U, but since
this holds for any chart, we obtain Xf ∈ F(M). Any particular function Xp : F(M) → R is
a derivation at p, so linearity and Leibnizian properties can simply be extended to the
smooth section X : F(M) → F(M). The Leibnizian property for points gives X(fh) = f(Xh) +
h(Xf) for every f,h ∈ F(M), and if X is also linear then we say that X is a derivation, so we
have proved that any vector field is a derivation.

Conversely, every derivation X : F(M) → F(M) induces a derivation at a point p ∈ M,
so Xp(f) = (Xf)(p) for f ∈ F(M) defines a tangent vector at p, and therefore the section
X : M → TM is also defined. Since in any chart (U,φ) we have xi = πi ◦ φ ∈ F(U), then
Xxi ∈ F(U), so using (2.5) we see that this section is smooth on U, and therefore smooth on
the whole M. This completes the proof that vector fields have a dual nature, which we see
in the following theorem.

Theorem 2.18. Derivations on amanifold are exactly smooth sections of its tangent bundle.

We can introduce basic operations on X(M) in a natural way. The addition and the
scalar multiplication (αX + βY)(h) = α(X(h)) + β(Y(h)) (for α, β ∈ R, h ∈ F(M)) make X(M)
a vector space over R. Additionally, a vector field can be multiplied by f ∈ F(M) with
(fX)(h) = fX(h), which makes X(M) a module over the ring F(M). In accordance with the
introduced operations, analogous to the formula (2.1), we obtain the decomposition of an
arbitrary vector field via the coordinate vector fields in some chart,

X =
n∑
i=1

Xxi
∂

∂xi
.

Example 2.24. If V ∈ TpM is an arbitrary tangent vector of a manifold M 3 p, then there
exists a vector field X ∈ X(M) such that Xp = V. By choosing a chart (U,φ) at p ∈ M, we get
coordinate functions and corresponding base tangent vectors. Since V =

∑
i vi(∂i)p holds

for some vi = V(xi) ∈ R, we can define Y ∈ X(U) by Y =
∑

i vi∂i, to get Yp = V. According to
Lemma 1.18 there exists b ∈ F(M) supported in U with b(p) = 1. If we define X = bY on U
and X = 0 on M \ supp(b), we obtain X ∈ X(M) and Xp = b(p)Yp = V holds. 4

The multiplication for X,Y ∈ X(M) can be seen as (XY)(h) = X(Y(h)) for h ∈ F(M), which
is clearly R-linear. However, using the Leibniz property for X and Y we have

XY(fh) = X(Y(fh)) = X(fYh+ hYf) = fX(Yh) + (Xf)(Yh) + hX(Yf) + (Xh)(Yf).

Looking closely at this formula, we see two extra terms (Xf)(Yh) and (Xh)(Yf). Since in
general there is no reason for these terms to cancel each other, XY is not Leibnizian, and
thus it is not a vector field. However, our extra terms are symmetric in X and Y, so if we
compute YX(fh) as well and subtract it from XY(fh), these terms will disappear. Hence,
XY−YX will be Leibnizian and therefore it is a vector fields called the commutator or the
Lie bracket, with the notation [X,Y] = XY− YX ∈ X(M).
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The commutator on X(M) naturally has some nice properties. From the definition fol-
lows the anti-symmetry [Y,X] = −[X,Y]. The linearity of vector fields immediately gives the
R-bilinearity, [αX+ βY,Z] = α[X,Z] + β[Y,Z] and [X,αY+ βZ] = α[X,Y] + β[X,Z] for α, β ∈ R,
and X,Y,Z ∈ X(M).

However, although the commutator is R-bilinear it is not F(M)-bilinear. Since for every
X,Y ∈ X(M) and f,h ∈ F(M) we have X(fY(h)) = fXY(h) + (Xf)(Yh), we obtain the useful
formula

X(fY) = fXY+ (Xf)Y,
from which we can easily calculate

[fX,hY] = fh[X,Y] + f(Xh)Y− h(Yf)X. (2.6)

Another nice feature of vector fields is the Jacobi identity,

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0, (2.7)

that holds for all X,Y,Z ∈ X(M), which can be easily checked, or shown by applying Lemma
A.31 for the subalgebra X(M) of the algebra of all linear endomorphisms End(F(M)) of the
vector space F(M) over the field R.

A Lie algebra (over R) is a vector space endowed with an antisymmetric R-bilinear op-
eration [−,−] that satisfies the Jacobi identity. Since vector fields on an arbitrary manifold
M has all the above properties, we can say that X(M) is a Lie algebra.

Example 2.25. Let us determine all vector fields V ∈ X(R2) that satisfy[
∂

∂x ,V
]
= V =

[
V, ∂

∂y

]
.

Their general form is V = a∂x + b∂y, where a = a(x, y) and b = b(x, y) are some smooth
functions. From the initial conditions we get

∂x(a∂x + b∂y)− (a∂x + b∂y)∂x =
∂a
∂x∂x +

∂b
∂x∂y = a∂x + b∂y,

(a∂x + b∂y)∂y − ∂y(a∂x + b∂y) = −∂a
∂y∂x −

∂b
∂y∂y = a∂x + b∂y.

From ∂a/∂x = a follows a = f(y)ex, while ∂b/∂x = b implies b = h(y)ex. From −∂a/∂y = a
we have −f′(y) = f(y), so f(y) = Ce−y, while from −∂b/∂y = b follows −h′(y) = h(y), and
therefore h(y) = De−y. Hence, we obtain a = Cex−y and b = Dex−y for some constants C and
D. The wanted vector fields are of form V = ex−y(C∂x + D∂y), where C and D are arbitrary
constants. 4

Example 2.26. Let us express the coordinate vector fields ∂/∂x and ∂/∂y in polar coordin-
ates, given by x = r cosθ, y = r sinθ for r > 0, −π < θ < π. The calculations give

∂

∂r =
∂x
∂r

∂

∂x +
∂y
∂r

∂

∂y = cosθ ∂

∂x + sinθ ∂

∂y ,
∂

∂θ =
∂x
∂θ

∂

∂x +
∂y
∂θ

∂

∂y = −r sinθ ∂

∂x + r cosθ ∂

∂y .

The matrix of coefficients is the Jacobian matrix of the change of coordinates, with the
inverse (

cosθ −r sinθ
sinθ r cosθ

)−1
=

1
r

(
r cosθ r sinθ
− sinθ cosθ

)
,

and therefore
∂

∂x = cosθ ∂

∂r − 1
r sinθ ∂

∂θ ,
∂

∂y = sinθ ∂

∂r +
1
r cosθ ∂

∂θ .

4
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It is important to see that a commutator is always zero in two special cases. The first
case is a consequence of anti-symmetry, [X,X] = 0 holds for all X ∈ X(M). The second case
concerns coordinate vector fields from the same chart (U,φ). Partial derivatives are the
same in either order on smooth functions,

∂2f
∂xi∂xj

=
∂

∂xi
∂

∂xj
f = ∂

∂xi

(
∂(f ◦ φ−1)

∂πj
◦ φ
)

=
∂

∂πi

(
∂(f ◦ φ−1)

∂πj
◦ φ ◦ φ−1

)
◦ φ

=
∂2(f ◦ φ−1)

∂πi∂πj
◦ φ =

∂2(f ◦ φ−1)

∂πj∂πi
◦ φ =

∂2f
∂xj∂xi

,

and therefore [
∂

∂xi
,
∂

∂xj

]
= 0. (2.8)

Example 2.27. Consider the following two vector fields on R2,

X =
∂

∂x and Y = (1 + x2)
∂

∂y .

Then
XY = (1 + x2)

∂2

∂x∂y + 2x ∂

∂y and YX = (1 + x2)
∂2

∂y∂x ,

so we obtain
[X,Y] = XY− YX = 2x ∂

∂y .

Is it possible to find new coordinates (u, v) = f(x, y) such that X and Y are exactly vector
fields ∂/∂u and ∂/∂v? We can notice that the vector fields X and Y are linearly independent
everywhere, but this is not good enough. By (2.8) for the coordinate vectors fields holds
[∂/∂u, ∂/∂v] = 0, so the answer is negative. 4

Example 2.28. Consider the previous example for vector fields on R2, on the open subset
where xy > 0,

X =
x
y

∂

∂x +
∂

∂y , Y = 2√xy ∂

∂x .

A straightforward calculations show that XY and YX are both equal to 2
√
x/y(∂/∂x) plus

some second order derivatives which we need not to calculate, because we know in ad-
vance that these are the same, and therefore [X,Y] = 0. So, we can consider the change of
coordinates x = x(u, v), y = y(u, v). We should set

x
y

∂

∂x +
∂

∂y = X =
∂

∂u =
∂x
∂u

∂

∂x +
∂y
∂u

∂

∂y

2√xy ∂

∂x = Y =
∂

∂v =
∂x
∂v

∂

∂x +
∂y
∂v

∂

∂y ,

which implies
∂x
∂u =

x
y ,

∂y
∂u = 1, ∂x

∂v = 2√xy, ∂y
∂v = 0.

First, we conclude y = u+C for a constant C. Then, ∂x/x = ∂u/(u+ C) gives x = (u+C)f(v).
Finally, we have (u + C)f′(v) = 2

√
(u+ C)f(v)(u+ C), that is f′(v) = ±2

√
f(v) and therefore√

f = ±v+ Const, which gives f = (v+ D)2 for a constant D. Hence, for arbitrary constants
C and D, the change of coordinates x = (u+ C)(v+ D)2, y = u+ C gives X = ∂/∂u, Y = ∂/∂v
and we have the affirmative answer. 4
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Example 2.29. Consider the same question as before, this time for vector fields

X = x ∂

∂y − y ∂

∂x , Y = x ∂

∂x + y ∂

∂y .

When we confirm [X,Y] = 0, we can introduce polar coordinates x = r cosθ, y = r sinθ,
which is well defined for r > 0, −π < θ < π. Then we have

∂

∂r =
∂x
∂r

∂

∂x +
∂y
∂r

∂

∂y =
x
r
∂

∂x +
y
r
∂

∂y =
1
rY,

∂

∂θ =
∂x
∂θ

∂

∂x +
∂y
∂θ

∂

∂y = −y ∂

∂x + x ∂

∂y = X.

We can introduce another change of coordinates with ρ = f(r), where we keep the coordin-
ate θ, in such a way to get the desired form Y = ∂/∂ρ. Since

∂

∂r =
∂ρ
∂r

∂

∂ρ = f′(r) ∂

∂ρ ,

we need f′(r) = 1/r, so f(r) = ln r + Const, hence r = Ceρ and we have x = Ceρ cosθ,
y = Ceρ sinθ for any constant C > 0. 4

2.6 Global tangent maps

Let f : M → N be a smooth map between manifolds M and N. By fitting together the tangent
maps of f at all points of M, we obtain a globally defined map between tangent bundles,
Tf : TM → TN with Tf(Xp) = Tpf(Xp) for all Xp ∈ TpM. This map Tf is called the global
tangent map and it is just the map whose restriction to each tangent space TpM ⊆ TM is
Tpf.

The global tangent map Tf pushes a tangent vector X ∈ TpM forward from the domain
manifold to the codomain manifold tangent vector f∗(X) = Tpf(X) called the pushforward
of X. The pushforward of X can be denoted by Tpf(X), Tf(X), or f∗(X), depending what re-
lations we want to point out and whether we want to emphasize the base point p = π(X).
Let us notice that if πM : TM → M and πN : TN → N are the canonical projections of tangent
bundles, then we have an obvious relation πN ◦ Tf = f ◦ πM.

TM TN

M N

Tf

πM πN

f

Theorem 2.19. The global tangent map is a smooth map.

Proof. For a smooth f : M → N and any p ∈ M there is a chart (U,φ) at p ∈ M with xj = πj ◦φ
(1 ≤ j ≤ m = dimM) and a chart (V,ψ) at f(p) ∈ N with yi = πi ◦ ψ (1 ≤ i ≤ n = dimN),
where f(U) ⊆ V such that ψ ◦ f ◦ φ−1 is smooth. For associated charts (TU, φ̃) on TM and
(TV, ψ̃) on TN, Tf(TU) ⊆ TV obviously holds. The coordinate representation

ψ̃ ◦ Tf ◦ φ̃−1
: φ(U)× Rm → ψ(V)× Rn
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of the global tangent map Tf can be calculated using the formula (2.2),

(
ψ̃ ◦ Tf ◦ φ̃−1

)
(φ(p), λ1, . . . , λm) =

(
ψ̃ ◦ Tf

)p, m∑
j=1

λj
(

∂

∂xj

)
p


=ψ̃

f(p), m∑
j=1

λjTpf
(

∂

∂xj

)
p

 = ψ̃

f(p), m∑
j=1

λj
n∑
i=1

∂(yi ◦ f)
∂xj

(p)
(

∂

∂yi

)
f(p)


=

(ψ ◦ f ◦ φ−1)(φ(p)),
m∑
j=1

λj
∂(π1 ◦ ψ ◦ f ◦ φ−1)

∂πj
(φ(p)), . . . ,

m∑
j=1

λj
∂(πn ◦ ψ ◦ f ◦ φ−1)

∂πj
(φ(p))

 ,

which is smooth since ψ ◦ f ◦ φ−1 is smooth, and therefore Tf is smooth.

If f : M → N is a constant map then Example 2.3 implies Tpf = 0 for each p ∈ M, and
therefore Tf = 0. Moreover, the converse is also valid, but only on the connected compon-
ents.

Lemma 2.20. Let f : M → N be a smooth map between a connected manifold M and a mani-
fold N. If the global tangent map Tf : TM → TN vanishes then f is constant.

Proof. As before, for an arbitrary p ∈ M we choose a chart (U,φ) at p ∈ M and a chart (V,ψ)
at f(p) ∈ N with f(U) ⊆ V such that ψ◦ f◦φ−1 is smooth. If we apply Tf = 0 on the coordinate
vectors from TqM, then by (2.2) we have

∂(yi ◦ f)
∂xj

(q) = ∂(πi ◦ (ψ ◦ f ◦ φ−1))

∂πj
(φ(q)) = 0,

for all q ∈ U, 1 ≤ j ≤ dimM, and 1 ≤ i ≤ dimN. Thus ψ ◦ f ◦ φ−1 is constant on some
ball around φ(p), so f is constant on some connected neighbourhood of p, for each p ∈ M.
Consider a closed set Q = f−1({f(q)}) that contains some fixed point q ∈ M. Since each
point from Q has a connected neighbourhood where f is constant, so Q is open. The only
nonempty closed and open subset of a connected space M is M itself, hence f is constant on
the whole M.

Let f : M → N be a smooth map between manifolds M and N. If we apply the global
tangent map on a vector field X ∈ X(M), every point p ∈ M is associated to the vector
Tpf(Xp) ∈ Tf(p)N. However, this way in general does not establish a vector field on N. For
example, if f is not surjective there is a problem to assign a vector to points from N \ f(M).
On the other hand, if f is not injective we have f(p) = f(q) for some distinct points p,q ∈ M,
and there is no reason why the vectors Tpf(Xp) and Tqf(Xq) from the same tangent space
Tf(p)N = Tf(q)N should be equal.

In the case that vector fields X ∈ X(M) and Y ∈ X(N) have the property that for each
p ∈ M holds Tpf(Xp) = Yf(p), we say that X and Y are f-related and write X ∼f Y. Since we
have (X(h ◦ f))(p) = Xp(h ◦ f) = (Tpf(Xp))(h) and (Yh ◦ f)(p) = (Yh)(f(p)) = Yf(p)(h) for any
p ∈ M and h ∈ F(N), the following statement holds.

Lemma 2.21. Let f : M → N be a smooth map between manifolds, and let X ∈ X(M) and
Y ∈ X(N) be vector fields. Then X ∼f Y holds if and only if X(h ◦ f) = (Yh) ◦ f holds for all
h ∈ F(N).

Example 2.30. Let f : R → R2 be the smooth map f(t) = (cos t, sin t) and X = d/dt ∈ X(R).
There is a natural question whether there exists Y ∈ X(R2) such that X ∼f Y. For a potential
solution Y = μ(x, y)(∂/∂x) + ν(x, y)(∂/∂y), by the formula (2.2) we have

Yf(t) = Ttf
(
d
dt

)
t
=

∂ cos t
∂t

(
∂

∂x

)
f(t)

+
∂ sin t
∂t

(
∂

∂y

)
f(t)

= − sin t
(

∂

∂x

)
f(t)

+ cos t
(

∂

∂y

)
f(t)

,
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and therefore we need μ(cos t, sin t) = − sin t and ν(cos t, sin t) = cos t. For example it
works for μ(x, y) = −y and ν(x, y) = x, which gives a solution Y = −y(∂/∂x) + x(∂/∂y).

Let us notice that although f is not surjective, there is a solution since the condition from
the definition trivially holds for points that are not in the image f(R). However, this is the
reason why a required vector field Y is not uniquely determined. For example, the vector
field Y = −y(x2 + y2)(∂/∂x) + x(x2 + y2)(∂/∂y) also satisfies the problem conditions. 4

Theorem 2.22. If f : M → N is a diffeomorphism between manifolds M and N, then for any
X ∈ X(M) there is a unique Y ∈ X(N) such that X ∼f Y.

Proof. Since f is a bijection, any point q ∈ N is uniquely assigned with Yq = Tf−1(q)f(Xf−1(q)),
which defines a section Y = Tf ◦X ◦ f−1 : N → TN that is smooth as a composition of smooth
maps (Tf is smooth by Theorem 2.19), so Y ∈ X(N).

The unique vector field Y ∈ X(N) from the previous theorem such that X ∼f Y is called
the pushforward for f of X ∈ X(M) and has the notation f∗X. So, f∗X ∈ X(N) is defined only
for diffeomorphisms f : M → N and can be calculated using the formula (f∗X)q = Tf(Xf−1(q)),
while by Lemma 2.21 for any h ∈ F(N) we have

((f∗X)h) ◦ f = X(h ◦ f). (2.9)

The key thing about related vector fields is their cooperation respect to the commutator,
as discussed in the next theorem.

Theorem 2.23. Let f : M → N be a smooth map between manifolds M and N. If for vector
fields X1,X2 ∈ X(M) and Y1,Y2 ∈ X(N) hold X1 ∼f Y1 and X2 ∼f Y2, then [X1,X2] ∼f [Y1,Y2]
also holds.

Proof. From Lemma 2.21 for h ∈ F(N) we have X1X2(h◦ f) = X1((Y2h)◦ f) = (Y1Y2(h))◦ f and
X2X1(h ◦ f) = (Y2Y1(h)) ◦ f, so [X1,X2](h ◦ f) = (Y1Y2(h)) ◦ f− (Y2Y1(h)) ◦ f = ([Y1,Y2]h) ◦ f. The
proof ends with the reuse of Lemma 2.21.

As a consequence, if we put a diffeomorphism f : M → N in the previous theorem, then
for X1,X2 ∈ X(M) we have a nice formula

f∗[X1,X2] = [f∗X1, f∗X2]. (2.10)

2.7 Problems

Problem 2.1. In the half-plane M = {(x, y) ∈ R2 : y > 0} ⊂ R2, the point p ∈ M is given by
coordinates (x, y) = (0,2). Express the tangent vector TpM 3 X = 4

(
∂
∂x
)
p+

(
∂
∂y
)
p in terms of(

∂
∂r
)
p and

(
∂
∂θ
)
p in polar coordinates.

Problem 2.2. Show that f : RP1 → R given by f(x : y) = xy/(x2 + y2) is well-defined and
smooth. Determine the maximum of f on RP1, if it exists.

Problem 2.3. Is the composition of two maps of constant rank always of constant rank?

Problem 2.4. Prove that any smooth map between manifolds can be decomposed into the
composition of a submersion and an embedding.

Problem 2.5. For which m,n ∈ N does there exist a submersion f : RPm → Sn that is not
surjective?

Problem 2.6. Let f : RP1 → RPn for n ∈ N be given by f(x : y) = (xn : xn−1y : . . . : xyn−1 : yn).
Prove that f is well-defined and examine whether it is an embedding.
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Problem 2.7. Let f : RP1 × RP1 → RP3 be given by f((x : y), (z : w)) = (xz : xw : yz : yw).
Prove that f is well-defined and determine whether f is an immersion, a submersion, or an
embedding.

Problem 2.8. For which r ∈ R is the set M = {(x, y, z) ∈ R3 : x2 + y2 = 1, x2 + z2 = r2} ⊂ R3

a one-dimensional submanifold of R3?

Problem 2.9. Prove that {(x : y : z) ∈ RP2 : xy = z2} is a submanifold of RP2.

Problem 2.10. Prove that M = {((x1 : . . . : xn+1), (y1 : . . . : yn+1)) ∈ RPn × RPn :
∑n+1

i=1 xiyi =
0} is a submanifold of RPn × RPn and determine dimM.

Problem 2.11. For the manifold M = {(x, y) ∈ R2 : x > 0, y > 0} ⊂ R2, determine the vector
field V ∈ X(M) if [

∂

∂y ,V
]
= 2x+ y

y2
∂

∂x and
[
y ∂

∂x ,V
]
= 0.

Problem 2.12. Determine V ∈ X(R2) for which [∂x + x∂y, [∂x,V]] = 0 = [V, ∂y] such that
V(0,0) = (∂x)(0,0) + (∂y)(0,0) and V(1,1) = 3(∂x)(1,1) + 3(∂y)(1,1).

Problem 2.13. Determine all constants c ∈ R for which the vector fields X,Y ∈ X(R+×R+)
given by

X = (x+ 1) ∂

∂x + (y ln y+ y) ∂

∂y и Y = (2x+ c) ∂

∂x + xy ∂

∂y
allow a coordinate change such that X and Y become coordinate vector fields.

Problem 2.14. Determine the real constants a and c for which the vector fields X and Y in
R+ × R+ given by

X = x ∂

∂x + 2y ∂

∂y и Y = a ∂

∂x + xc ∂

∂y
allow a coordinate change such that X and Y become coordinate vector fields, and then
find such a coordinate change.

Problem 2.15. If f : D → f(D) is a diffeomorphism given by (x, y) = f(r,θ) = (r cosθ, r sinθ),
where D, f(D) ⊂ R2, compute (f−1)∗(∂x).

Problem 2.16. Let Q = {(x, y) ∈ R2 : x > 0, y > 0} be an open submanifold of R2 and
f : Q → Q be given by (u, v) = f(x, y) = (xy, y/x). Show that f is a diffeomorphism and
compute f∗(x∂x + y∂y) and f∗(y∂x).

Problem 2.17. Let f : R2 → RP2 be given by f(x, y) = (x : y : 1) and X = x ∂
∂y − y ∂

∂x ∈ X(R2).
How many vector fields Y ∈ X(RP2) satisfy X ∼f Y? Write down a solution (if one exists)
for Y in all three standard charts.
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CHAPTER 3

TENSOR BUNDLES AND FIELDS

3.1 Vector bundles

The tangent bundle of a manifold has a natural structure as a smooth manifold in its own
right, which is a concept that can be generalised. Roughly speaking, a vector bundle is a
family of vector spaces, one for each point of manifold, glued together in some smoothly
varying manner.

Let an n-manifold M be the bundle base and let r ∈ N be the fixed bundle rank.
Consider a family of real vector spaces Ep of dimension r indexed by points p ∈ M, and let
the bundle space be

E =
⊔
p∈M

Ep.

The bundle projection is the natural projection π : E → M defined by π(v) = p for v ∈ Ep.
A bundle chart on E is a map φ̃ : π−1(U) → φ(U)× Rr for which there exists a map (U,φ)
on M such that φ̃ for each p ∈ U restricts to a linear isomorphism

φ̃↾Ep : Ep = π−1(p) → {φ(p)} × Rr ∼= Rr.

A bundle atlas is a smooth atlas for E consisting of bundle charts on E. Every bundle
atlas for E determines a complete bundle atlas consisting of all bundle charts that are
compatible with all bundle charts from the given atlas.

A vector bundle (or smooth real vector bundle) of rank r over M is a smooth man-
ifold of dimension n + r generated by a set E with a (complete) bundle atlas for E. The
additional topological conditions from the definition of a manifold are automatically trans-
ferred from a baseM. SinceM has a countable subatlas, a bundle atlas also has a countable
subatlas, and therefore E is second countable. If x ∈ Ep and y ∈ Eq hold for p 6= q (the case
p = q is covered by Lemma 1.5), there exist open disjoint Vp,Vq ⊂ M that separate p ∈ Vp
and q ∈ Vq, so π−1(Vp) and π−1(Vq) separate x and y, and therefore E is Hausdorff.

The bundle projection π : E → M is a smooth surjective map in which the essential
information of a vector bundle is hidden, and they are often identified. Of course, when
there is no danger of ambiguity, it is easier to identify a vector bundle by its total space E.

The key property of a bundle chart φ̃ is that, at the points p ∈ U, it restricts to a linear
isomorphism between a fiber Ep = π−1(p) over p which has the structure of a real vector
space and Rr. As a manifold M locally looks like an open subset of Rn, a vector bundle E
over M locally looks like the product of an open subset of Rn and a vector space Rr.

π−1(U) φ(U)× Rr

U φ(U)

φ̃

π πφ(U)

φ
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Chapter 3. Tensor bundles and fields

For a transition function ψ̃ ◦ φ̃−1
: φ(U∩V)×Rr → ψ(U∩V)×Rr, where (U,φ) and (V,ψ)

are the corresponding charts on M, we have πψ(U∩V) ◦ ψ̃ ◦ φ̃−1
= ψ ◦ φ−1 ◦ πφ(U∩V), from

which it can be seen that the transition function is of form

ψ̃ ◦ φ̃−1
(x, v) = ((ψ ◦ φ−1)(x), τ(x)v),

where τ : φ(U ∩ V) → GL(r,R). It follows that to check the compatibility of charts it is
sufficient to examine the smoothness of the map τ.

Example 3.1. The tangent bundle of an n-manifold M is a basic example of a vector
bundle. For a chart (U,φ) on M we can consider the global tangent map Tφ : TU →
Tφ(U) ∼= φ(U) × Rn, which at a point p ∈ U is restricted to the linear isomorphism
Tpφ : TpU = TpM → Tφ(p)φ(U) ∼= Rn. If (V,ψ) is some other chart on M, then we have
Tpψ ◦ (Tpφ)−1 = Tφ(p)(ψ ◦ φ−1), from which follows the compatibility of bundle charts
Tψ◦(Tφ)−1(x, v) = (ψ◦φ−1(x),Tx(ψ◦φ−1)(v)) because the Jacobian matrix depend smoothly
on x. Thus, an arbitrary smooth atlas for M generates a bundle atlas for TM, so TM is a vec-
tor bundle of rank n over M. Let us notice that from a simple calculation,

Tpφ
(

∂

∂xj

)
p
=
∑
i

∂(πi ◦ φ)
∂xj

(p)
(

∂

∂πi

)
φ(p)

=
∑
i

∂πi
∂πj

(φ(p))
(

∂

∂πi

)
φ(p)

=

(
∂

∂πj

)
φ(p)

follows that the bundle charts Tφ correspond to the chart from (2.4) that we originally
introduced when we defined the tangent bundle. 4

Example 3.2. The simplest, but certainly important example of a vector bundle is a
product bundle, that exists for any n-manifold M and each r ∈ N. This is a manifold
E = M × Rr of dimension n + r with the natural projection πM : M × Rr → M, πM(p, v) = p.
The product bundle of rank r over M assigns the fiber Ep = π−1

M (p) = {p}×Rr to each point
p ∈ M, while the bundle charts are φ × 1Rr , where φ are charts on M. In particular, the
cylinder S1×R is a product bundle over the circle S1 via the projection πS1 : S1×R → S1. 4

Example 3.3. LetPbe a submanifold of a manifoldM, and let π : E → Mbe a vector bundle.
Then its restriction πP : π−1(P) → P is also a vector bundle, we denote E↾P = π−1(P) and
call it the restriction of E to P. If (U,φ) is a chart at p ∈ M, and (UP,φP) is a chart at p ∈ P
such that UP ⊆ U, then from the induces chart φ̃ on E we obtain the induced chart φ̃P on
E↾P by

φ̃P = ((φP ◦ φ−1)× 1Rr) ◦ φ̃↾π−1(UP)
: π−1(UP) → φP(UP)× Rr,

while the transition function ψ̃P ◦ (φ̃P)
−1 is smooth as a composition of smooth functions.

4

Example 3.4. Let πE : E → M and πF : F → N be vector bundles of rank r1 and r2, then
their Cartesian product E× F is a vector bundle of rank r1 + r2 over M×N, whose fiber at
(p,q) ∈ M×N is the vector space Ep × Eq. 4

Example 3.5. Let M be a manifold, and πE : E → M and πF : F → M be vector bundles of
rank r1 and r2 over M. The Whitney sum1 of E and F is the vector bundle E ⊕ F over M
which fiber at a point p ∈ M is the direct sum Ep ⊕ Fp, that is,

E⊕ F =
⊔
p∈M

(Ep ⊕ Fp)

with the obvious projection π = πE ◦ π1 = πF ◦ π2. For each p ∈ M there is a chart (U,φ) at
p ∈ M and bundle charts φ̃ : π−1

E (U) → φ(U) × Rr1 and φ : π−1
F (U) → φ(U) × Rr2 , where we

1Hassler Whitney (1907–1989), American mathematician
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3.2. Local and global frames

define Φ : π−1(U) → φ(U)×Rr1+r2 by Φ = (φ ◦ π, πRr1 ◦ φ̃ ◦ π1, πRr2 ◦φ ◦ π2). Let Ψ : π−1(V) →
ψ(V) × Rr1+r2 be another bijective map, where (V,ψ) is a chart at p ∈ M. If the transition
functions ψ̃ ◦ φ̃−1 and ψ ◦ φ−1 correspond to smooth maps τ1 : φ(U ∩ V) → GL(r1,R) and
τ2 : φ(U ∩ V) → GL(r2,R), then the transition function Ψ ◦ Φ−1 corresponds to the map
τ : φ(U ∩ V) → GL(r1 + r2,R) where τ(p) = τ1(p) ⊕ τ2(p) is the block diagonal matrix with
τ1(p) и τ2(p) on the diagonal, which depends smoothly on p and proves that E⊕F is a vector
bundle over M. 4

Suppose πE : E → M and πF : F → N are vector bundles. A smooth map Φ : E → F
is called a (smooth) bundle homomorphism if there exists a map f : M → N satisfying
πN ◦ Φ = f ◦ πM such that the restriction Φ↾Ep : Ep → Ff(p) is linear on fibers for all p ∈ M. In
that case we say that f is the base map of Φ, as well as that F covers f.

E F

M N

Φ

πE πF

f

Example 3.6. If f : M → N is a smooth map between manifolds M and N, then its global
tangent map Tf : TM → TN is a bundle homomorphism covering f. 4

If a bundle homomorphism Φ : E → F is additionally diffeomorphism (thus f is also a
diffeomorphism), then we say that Φ is a bundle isomorphism.

A bundle isomorphism Φ : E → M × Rr with the product bundle from Example 3.2 is
called a trivialization of E, and if it exists, then we say that a vector bundle E is trivial.
Each bundle chart φ̃ defines a bundle isomorphism

(φ−1 × 1Rr) ◦ φ̃ : E↾U = π−1(U) → U× Rr,

which we call a local trivialization of E over U. Of course, every vector bundle is locally
trivial in the sense that a trivialization exists over some neighbourhood of every point from
base. However, we cannot expect a local trivialization to exist for every subset U ⊆ M, but
if it does, we say that the bundle is trivial over U.

An important special case occurs when both E and F are vector bundles over the same
manifold M. In this case it is convenient to use slightly more restrictive definitions that
include f = 1M. A bundle homomorphism overM is a bundle homomorphism covering
the identity map of M, and whose restriction to each fiber is linear. If there exists a bundle
homomorphism F : E → F over M that is also a bundle isomorphism, then Φ is a bundle
isomorphism overM and we say that E and F are isomorphic overM.

E F

M

Φ

πE πF

3.2 Local and global frames

A section of a vector bundle π : E → M over an open set U ⊆ M is a map σ : U → E such
that π ◦ σ = 1U. Hence, for each point p ∈ U, the section σ selects one element of the fiber
Ep. The term section comes from the geometric interpretation of the image σ(U) ⊂ E as a
subset of the total space E. The basic example of section is a vector field on a manifold M,
which is a smooth section of the tangent bundle TM over M.
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If σ is a smooth section of a vector bundle π : E → M, then π ◦ σ = 1M implies the
injectivity of σ and Tσ, so from the continuity of π it follows that σ is an embedding, and
σ(M) is a submanifold of E. Especially, any vector bundle admits a canonical section called
the zero section, that maps each point p ∈ M to the zero vector 0 ∈ Ep, which gives a
natural embedding M ↪→ E.

Example 3.7. A section of a product bundle πM : M × Rr → M is a map σ : M → M × Rr of
the form σ = (1M, f) for some map f : M → Rr, which is smooth if and only if f is smooth.
Hence, a smooth section of a product bundle of rank r over M is essentially a smooth map
f : M → Rr. 4

The set of all smooth sections of E over U ⊆ M is denoted by Γ(U,E), while in the case
that U is the manifold M we use the notation Γ(E) = Γ(M,E). It is easy to notice that the set
Γ(U,E) is a vector space over R under addition and scalar multiplication defined pointwise
by (c1σ1 + c2σ2)(p) = c1σ1(p)+ c2σ2(p) for σ1,σ2 ∈ Γ(U,E), c1, c2 ∈ R, and p ∈ U. Just like in
the case of vector fields X(U) = Γ(TU) = Γ(U,TM), smooth sections of E can be multiplied
by smooth functions f ∈ F(U) with (fσ)(p) = f(p)σ(p), and Γ(U,E) is a module over the ring
F(U).

Let M be a manifold of dimension n, and U ⊆ M is some its open subset. Consider a vec-
tor bundle π : E → M of rank r. A local frame for E overU is an ordered r-tuple (σ1, . . . ,σr)
of smooth sections over U (σi ∈ Γ(U,E) for 1 ≤ i ≤ r) such that vectors σ1(p), . . . ,σr(p) form
a basis for the fiber Ep, for each p ∈ U. In particular, a local frame for E over M is called a
global frame for E.

The most frequently observed vector bundle is the tangent bundle (E = TM), and then
for frames for TM we say that they are frames for a manifold M. In other words, a local
frame for a manifold M over U is an ordered m-tuple of vector fields on U whose values at
each point p ∈ U form a basis of the tangent space TpM. A manifold that admits a global
frame is called parallelisable.

Example 3.8. If (U,φ) is an arbitrary chart on a manifold M with the corresponding co-
ordinate functions xi = πi ◦ φ, then the coordinate vector fields form a local frame(

∂

∂x1
, . . . ,

∂

∂xn

)
for M over U called the coordinate frame. Of course, any point of M has an neighbour-
hood over which there is such a local frame. Coordinate vector fields in some chart provide
a convenient way of representing vector fields. 4

Example 3.9. The standard basis (e1, . . . , er) for Rr by Ei(p) = (p, ei) for 1 ≤ i ≤ r and p ∈ M
gives a global frame (E1, . . . ,Er) for the product bundle M× Rr. 4

Example 3.10. Let π : E → M be a vector bundle of rank r. A local trivialization
Φ : π−1(U) → U × Rr of E over U ⊆ M generates a local frame based on Example 3.9,
where we define σi = Φ−1 ◦ Ei : U → E for 1 ≤ i ≤ r. Since π = πU ◦ Φ we have
π ◦ σi = π ◦ Φ−1 ◦ Ei = πU ◦ Ei = 1U, so σi is a section, while it is smooth because Φ is
a diffeomorphism. Since Φ restricts to an isomorphism and Φ ◦ σi = Ei, then (σ1, . . . ,σr) is
a local frame for E over U and we say that this frame is associated with Φ.

π−1(U) U× Rr

U

Φ

π πU
Eiσi

Conversely, if (σ1, . . . ,σr) is a local frame for E over U, then Φ : π−1(U) → U × Rr given
by Φ(

∑r
i=1 λiσi(p)) = (p, λ1, . . . , λr) for each p ∈ U is a local trivialization of E over U. 4
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From the previous example we see that the existence of a local frame for E over U is
equivalent to the existence of a local trivialization over U. As a consequence, we have the
following theorem.

Theorem 3.1. A vector bundle E over a manifold M is trivial if and only if there exists a
global frame for E over M. Especially, a tangent bundle TM is trivial if and only if a manifold
M is parallelisable.

Example 3.11. A manifold M of dimension n with a single chart atlas {(M,φ)} induces a
natural global trivialization (φ−1 × 1Rn) ◦ φ̃ : TM → M × Rn, so the tangent bundle TM is
trivial and the manifold M is parallelisable. 4

Example 3.12. Let G be a Lie group with the neutral e ∈ G. Consider f : G × TeG → TG
given by f(p,X) = (TeLp)(X), where Lp : G → G is a diffeomorphism defined by Lp(q) = pq.
Then the map f−1 is a global trivialization as the diffeomorphism between manifolds TG
and G× TeG ∼= G× RdimG, so any Lie group is parallelisable. 4

Let π : E → M be a vector bundle. A subbundle of E is a subset D ⊆ E such that the
restriction π↾D : D → M is a vector bundle, and the inclusion ı : D ↪→ E is a bundle ho-
momorphism over M. In particular, a distribution on M is a subbundle of the tangent
bundle, and its dimension is the rank of this subbundle. The following theorem is the local
frame criterion for checking that a union of subspaces is a subbundle.

Theorem 3.2. Let E be a vector bundle over a manifold M and assume that for each p ∈ M
we have a k-dimensional linear subspace Dp ⊆ Ep. Then D =

⊔
p∈MDp ⊆ E is a subbundle of

E if and only if each point of M has a neighbourhood U ⊆ M over which there exists a local
frame for D.

Proof. In this proof we use Example 3.10 and the relation between local trivializations
and local frames. If D is a subbundle then a local trivialization easily gives a wanted local
frame for D. On the other hand, let (σ1, . . . ,σk) be a local frame for D over some open sub-
set containing p ∈ M. We can complete it to a local frame (σ1, . . . ,σr) for E over some
neighbourhood U of p. It is associated with a local trivialization Φ : π−1(U) → U × Rr

defined by Φ(
∑r

i=1 λiσi(q)) = (q, λ1, . . . , λr). However, Φ takes D ∩ π−1(U) to the subset
{(q, λ1, . . . , λk,0, . . . , 0) : q ∈ U; λ1, . . . , λk ∈ R} ⊆ U× Rr, which is a submanifold. Moreover,
the map Ψ : D ∩ π−1(U) → U × Rk defined by Ψ(

∑k
i=1 λiσi(q)) = (q, λ1, . . . , λk) is a local

trivialization of D, so D is a vector bundle.

Suppose πE : E → M and πF : F → M are vector bundles and Φ : E → F is a bundle
homomorphism over M. The rank of Φ at a point p ∈ M is the rank of the linear map Φ↾Ep ,
and if its rank is the same for all p ∈ M we say that Φ has constant rank. Let us define
subsets Ker Φ ⊆ E and Im Φ ⊆ F by

Ker Φ =
⊔
p∈M

Ker(Φ↾Ep) and Im Φ =
⊔
p∈M

Im(Φ↾Ep).

Since the fibers of a bundle have the same dimension everywhere, in order for Ker Φ and
Im Φ to be subbundles, it is necessary that F has constant rank. However, the converse
is also true, as can be seen from the following theorem that allows us to obtain new sub-
bundles (see Lee [78, Theorem 10.34]).

Theorem 3.3. Let E and F be vector bundles over a manifold M and let Φ : E → F be a bundle
homomorphism over M. If Φ has constant rank, then Ker Φ is a subbundle of E and Im Φ is a
subbundle of F.
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Proof. Let us suppose that Φ has constant rank ρ. For any p ∈ M we can choose a local
frame (σ1, . . . ,σr) for E over a neighbourhood U 3 p. The maps Φ ◦ σi : U → F for 1 ≤ i ≤ r
are smooth sections of F over U. Since these sections span (Im Φ)↾U, we can assume (after
rearranging the indices if necessary) that the elements Φ ◦σ1(p), . . . ,Φ ◦σρ(p) form a basis
for Im(Φ↾Ep). By continuity they remain linearly independent in some neighbourhood V 3
p, and because of constant rank, (Φ ◦ σ1, . . . ,Φ ◦ σρ) is a local frame for Im Φ over V, which
proves that Im Φ is a subbundle of F.

Consider a subbundleE0 ⊆ E↾V spanned by σ1, . . . ,σρ. Since the bundle homomorphism
Φ↾E0 : E0 → (Im Φ)↾V is bijective it is a bundle isomorphism. Define a bundle homomorph-
ism Ψ : E↾V → E↾V by Ψ = 1−(Φ↾E0)

−1 ◦ Φ to see that Φ ◦ Ψ = 0 on both E0 and (Ker Φ)↾V.
However, E0 and (Ker Φ)↾V together span E↾V, so Ψ takes its values in (Ker Φ)↾V and con-
sequently Im Ψ = (Ker Φ)↾V is a subbundle of E↾V, which proves that Ker Φ is a subbundle
of E.

3.3 Vector fields on a sphere

The question of how many linearly independent vector fields exist on a sphere is a clas-
sical problem of differential topology. Let Span(M) ∈ N0 denotes the maximal number
of linearly independent vector fields on a manifold M. We are interested in the values
Span(Sn−1), so we consider vector fields on a sphere Sn−1 ⊂ Rn.

The idea is to assign to each point x ∈ Sn−1 a vector V(x) tangent to x (orthogonal to the
position vector of x) in a smooth way. The zero vector is orthogonal to everything, which is
inconvenient (since it violates linear independence), so we look for nowhere-zero vector
fields. Such a vector field can be normalized to get ‖V(x)‖ = 1 for all x, so we looking for
smooth maps V : Sn−1 → Sn−1 such that V(x) ⊥ x holds for all x ∈ Sn−1.

Example 3.13. Consider a standard topological argument, where a required vector field V
would give a homotopy ht(x) = x cos(πt)+V(x) sin(πt) between the identity h0 = 1Sn−1 and
the antipodal map h1 = −1Sn−1 . Then the degree of a continuous map from the n-sphere
Sn−1 to itself, is a homotopy invariant, and we have that the degree (−1)n of antipodal map
(a composition of n reflections) is equal to the degree 1 of identity, and therefore n must be
even. Hence, for an odd n there are no such vector fields, which gives Span(S2k) = 0. This
claim is well known as the hairy ball theorem (or the hedgehog theorem) and states
that there is no non-vanishing continuous vector field on even-dimensional spheres, or
expressed colloquially, you cannot comb a hairy ball flat without creating a cowlick. 4

Example 3.14. When n is even we can identify Rn ∼= Cn/2, and put V(x) = ix which is
clearly a vector field on every sphere of odd dimension, which gives Span(S2k+1) > 0. In
the special case n = 2 we obtain a global frame for the circle S1 consists of one vector field
given by V(x) = ix, that is a unit tangent vector field directed counter-clockwise. 4

We can find a vector field on Sn−1 of the form V(x) = Ax for some matrix A ∈ Rn×n. As
we require Ax ⊥ x, we have that

x⊺Ax = 0 (3.1)

holds for all x ∈ Sn−1, and thus (by appropriate scaling) for all x ∈ Rn. By polarizing (3.1),
0 = (x+y)⊺A(x+y) = x⊺Ay+y⊺Ax = x⊺Ay+x⊺A⊺y = x⊺(A+A⊺

)y holds for all x, y ∈ Rn, which
yieldsA+A⊺

= 0. Hence, as a consequence of the condition (3.1) we have a skew-symmetric
matrix A = −A⊺. Conversely, a skew-symmetric matrix A implies 2x⊺Ax = x⊺(A+A⊺

)x = 0,
so we conclude that a required vector field uniquely corresponds to some skew-symmetric
matrix A.

Additionally, since V is normalized we have ‖V(x)‖ = ‖x‖ that implies (Ax)⊺(Ax) = x⊺x,
so x⊺(A⊺A − 1)x = 0, which corresponds to the condition (3.1) for a matrix A⊺A − 1 that
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must be skew-symmetric. However, A⊺A−1 is obviously symmetric, which yields A⊺A = 1,
and therefore A2 = −1. A required vector field depends on a skew-symmetric orthogonal
matrix A, and since then (detA)2 = det(A2) = det(−1) = (−1)n holds, we can additionally
confirm that an odd n is out of the question.

If there exist vector fields V1, . . . ,Vk ∈ X(Sn−1) such that V1(x), . . . ,Vk(x) ∈ TxSn−1 ∼= x⊥
are linearly independent for all x ∈ Sn−1, then the Gram2–Schmidt3 process makes vector
fields with the condition that V1(x), . . . ,Vk(x) are mutually orthogonal for all x ∈ Sn−1.
Thus, for appropriate matrices A1, . . . ,An−1 ∈ Rn×n we additionally suppose that Aix ⊥ Ajx
holds for 1 ≤ i 6= j ≤ k, which gives x⊺(A⊺

i Aj)x = 0 and again, like the condition (3.1), implies
that A⊺

i Aj is skew-symmetric. Thus, we obtain −AiAj = A⊺
i Aj = −(A⊺

i Aj)
⊺
= −A⊺

j Ai = AjAi.
Finally, the required conditions are described with the Hurwitz4 relation

AiAj + AjAi = −2δij 1, (3.2)

which holds for all 1 ≤ i, j ≤ k.
A classical problem is to determine parallelisable spheres Sn−1 ⊂ Rn, which are char-

acterized by Span(Sn−1) = n− 1. Using methods from algebraic topology it was proved in
1958 by Bott5 and Milnor [25] and independently by Kervaire [72] that we have parallelis-
able spheres only for n ∈ {1,2,4,8}. In fact, this question is closely related with existence
of normed division algebra of the real numbers. There are only four such algebras: the
real numbers R, the complex numbers C, the quaternions H, and the octonions O. Con-
cretely, the only parallelisable spheres are S0, S1, S3, and S7, and they are assigned with
the algebras R, C, H, and O respectively.

Example 3.15. In the case n = 4 we can set three skew-symmetric orthogonal matrices
that satisfy the Hurwitz relations (3.2) by

A1 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , A2 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , A3 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .

In this way, we obtain three orthonormal vector fields on S3, so the sphere S3 is parallel-
isable. It is not hard to notice that the matrices A1,A2,A3 correspond to multiplication by
unit quaternions i, j,k ∈ H. 4

Skew-symmetric orthogonal matrices such that (3.2) holds were discussed independ-
ently by Hurwitz [70] and Radon6 [101] (see also Eckmann7 [44]), which is closely related
to the Hurwitz–Radon function ρ : N → N given by

ρ(a · 24b+c) = 8b+ 2c for 0 ≤ c ≤ 3 and 2 ∤ a. (3.3)

Their algebraic construction gave the lower bound, Span(Sn−1) ≥ ρ(n) − 1. However,
Adams8 used sophisticated techniques of homotopy theory to provide a definite solution
in 1962 [1]. The answer is that no more independent vector fields can be found than those
already constructed.

Theorem 3.4. For any n ∈ N holds Span(Sn−1) = ρ(n)− 1.
2Jørgen Pedersen Gram (1850–1916), Danish mathematician
3Erhard Schmidt (1876–1959), German mathematician
4Adolf Hurwitz (1859–1919), German mathematician
5Raoul Bott (1923–2005), Hungarian-American mathematician
6Johann Karl August Radon (1887–1956), Austrian mathematician
7Beno Eckmann (1917–2008), Swiss mathematician
8John Frank Adams (1930–1989), British mathematician
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Consequently, the only parallelisable spheres Sn−1 are those with ρ(n) = n, which hap-
pens only for n ∈ {1,2,4,8}.

Example 3.16. Although the sphere S2 ⊂ R3 does not admit a nowhere-zero vector field,
there exists a vector field on it that is zero at exactly one point. From the stereographic
projection given by φ−(x, y, z) = (x/(1 − z), y/(1 − z)) = (u, v) we have coordinate vector
fields

∂

∂u ∈ X(R2) and ∂

∂x1
= (φ−1

− )∗

(
∂

∂u

)
◦ φ− ∈ X(S2 \ {p+}),

where x1 = u ◦ φ−. The second chart, φ+(x, y, z) = (x/(1 + z), y/(1 + z)) = (u, v) smoothly
overlaps φ− on the intersection S2 \ {p+,p−}, and the relation from (1.4) is

(u, v) = φ+ ◦ φ−1
− (u, v) =

(
u

u2 + v2 ,
v

u2 + v2

)
.

For y1 = u ◦ φ+ and y2 = v ◦ φ+ we can calculate

∂y1
∂x1

=
∂(u ◦ φ+ ◦ φ−1

− )

∂u ◦ φ− =
∂ u
u2+v2

∂u ◦ φ− =
v2 − u2

(u2 + v2)2 ◦ φ− = (v2 − u2) ◦ φ+ =
y2 − x2

(1 + z)2 ,

∂y2
∂x1

=
∂(v ◦ φ+ ◦ φ−1

− )

∂u ◦ φ− =
∂ v
u2+v2

∂u ◦ φ− =
−2uv

(u2 + v2)2 ◦ φ− = (−2uv) ◦ φ+ =
−2xy

(1 + z)2 ,

and obtain
∂

∂x1
=

∂y1
∂x1

∂

∂y1
+

∂y2
∂x1

∂

∂y2
=

y2 − x2

(1 + z)2
∂

∂y1
+

−2xy
(1 + z)2

∂

∂y2
,

so the vector field ∂/∂x1 can be extended to the point p+. The concrete formula

Vq =


(

∂

∂x1

)
q

for q ∈ S2 \ {p+}(
y2 − x2

(1 + z)2
∂

∂y1
+

−2xy
(1 + z)2

∂

∂y2

)
q

for q ∈ S2 \ {p−}

defines V at each point of the sphere S2, and since it is smooth in local coordinates, we
have V ∈ X(S2). Of course, Vp+ = 0, while Vq = (∂/∂x1)q 6= 0 holds on S2 \ {p+}. 4

Of course, any k linearly independent vector fields on a sphere span a k-dimensional
distribution. However, although any distribution is not determined in this way by some
vector fields, we know that a sphere Sm admits a k-dimensional continuous distribution
for 2k ≤ m if and only if it admits k linearly independent continuous vector fields (see
Steenrod9 [111, Theorem 27.16]). Hence we have the following consequence of Theorem
3.4.

Theorem 3.5. The sphere Sn−1 for ρ(n) ≤ k ≤ n− 1 − ρ(n) does not admit a k-dimensional
distribution.

3.4 Covector fields

The cotangent space of a manifold M at a point p ∈ M is the dual space of the tangent
space,

T∗
pM = (TpM)∗ = Hom(TpM,R).

9Norman Earl Steenrod (1910–1971), American mathematician
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Elements of the cotangent space T∗
pM are tangent covectors at p, which are linear func-

tions ωp : TpM → R. Following the theory of vector fields, we want to investigate a map ω
that smoothly assigns to each point p ∈ M a covector ωp at p.

For example, for every function f ∈ F(M) we define its differential df, that assigns to
each point p ∈ M a covector dfp ∈ T∗

pM given by dfp(Xp) = Xp(f) for Xp ∈ TpM. A tangent
map in this important special case f ∈ F(M) can be calculated in some chart (U,φ) at p ∈ M
by formula (2.2). We have Tpf(∂/∂xj)p = (∂f/∂xj)(p)(d/dt)f(p), and therefore by linearity of
tangent maps

Tpf(Xp) = Xp(f)
(
d
dt

)
f(p)

holds for Xp ∈ TpM. Thus, if we take advantage of the identification Tf(p)R ∼= R, then we
can naturally identify the differential dfp with the tangent map Tpf.

Let M be an n-manifold, and let (U,φ) be a chart at arbitrary point p ∈ M with co-
ordinate functions xi = πi ◦ φ. By Theorem 2.3, (∂/∂x1)p, . . . , (∂/∂xn)p form a basis of the
tangent space TpM. Since (dxi)p(∂/∂xj)p = (∂/∂xj)p(xi) = δij for 1 ≤ i, j ≤ n, covectors
(dx1)p, . . . , (dxn)p form a basis of the cotangent space T∗

pM that is dual to given basis for
TpM. Additionally, for ωp ∈ T∗

pM and Xp ∈ TpM, from (2.1) follows

ωp(Xp) = ωp

( n∑
i=1

Xp(xi)
(

∂

∂xi

)
p

)
=

n∑
i=1

Xp(xi)ωp

(
∂

∂xi

)
p
=

n∑
i=1

ωp

(
∂

∂xi

)
p
(dxi)p(Xp),

and we obtain

ωp =

n∑
i=1

ωp

(
∂

∂xi

)
p
(dxi)p. (3.4)

Theorem 3.6. Let M be an n-manifold, and (U,φ) is a chart at p ∈ M with xi = πi ◦ φ. Then
covectors (dx1)p, . . . , (dxn)p form a basis for T∗

pM and (3.4) holds for all ωp ∈ T∗
pM.

Since we want a map ω : p 7→ ωp to be smooth, it is necessary that its codomain is a
manifold. Following the tangent bundle construction, we make the cotangent bundle

T∗M =
⊔
p∈M

T∗
pM

of a manifold M as a union of all cotangent spaces. As in the case of the tangent bundle, the
cotangent bundle goes together with the natural projection π : T∗M → M which is given by
π(ωp) = p for ωp ∈ T∗

pM. Similar to the construction of the tangent bundle, we use charts
(U,φ) with coordinate functions xi = πi ◦ φ to make bundle charts φ̃ : π−1(U) → φ(U)× Rn

by

φ̃
( n∑

i=1
λi(dxi)p

)
= (φ(p), λ1, . . . , λn).

If ψ̃ : π−1(V) → ψ(V) × Rn is another such map, this time induced by a chart (V,ψ) with
coordinate functions yi = πi ◦ ψ, then from

(dxi)p =
n∑
j=1

(
(dxi)p

(
∂

∂yj

)
p

)
(dyj)p =

n∑
j=1

∂xi
∂yj

(p)(dyj)p

we have

(ψ̃ ◦ φ̃−1
)(φ(p), λ1, . . . , λn) = ψ̃

( n∑
i=1

λi(dxi)p

)
= ψ̃

 n∑
j=1

( n∑
i=1

λi
∂xi
∂yj

(p)
)
(dyj)p


=

(
ψ(p),

n∑
i=1

λi
∂xi
∂y1

(p), . . . ,
n∑
i=1

λi
∂xi
∂yn

(p)
)
.
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The corresponding map τ : φ(U ∩ V) → GL(n,R) is of the form

τ(φ(p)) =


∂x1
∂y1

(p) . . . ∂xn
∂y1

(p)
...

. . .
...

∂x1
∂yn (p) · · · ∂xn

∂yn (p)


that is smooth, and it is the map that z ∈ φ(U ∩ V) maps to the transpose of the Jacobian
matrix Tψ◦φ−1(z)(φ ◦ ψ−1). Hence T∗M is a vector bundle with a bundle atlas consisting of
bundle charts φ̃, and therefore T∗M is also a smooth manifold of dimension 2n.

Consider sections of the cotangent bundle, which are maps ω : M → T∗M such that
π ◦ ω = 1M. The covector field on a manifold M is a smooth section of the cotangent
bundle T∗M, and the set of all covector fields is denoted by X∗(M) = Γ(T∗M).

If (U,φ) is a chart on M with coordinate functions xi = πi ◦ φ, then every section ω of
the cotangent bundle T∗U can be written as a linear combination ω =

∑n
i=1 ai dxi for some

functions ai : U → R. Smoothness of these coefficient functions depends of smoothness of
sections, since for a bundle chart φ̃ of T∗U we have φ̃ ◦ω = (φ,a1, . . . ,an), so ω is smooth if
and only if ai ∈ F(U) for all 1 ≤ i ≤ n.

Lemma 3.7. If (U,φ) is a chart on an n-manifold M with coordinate functions xi, then a
section ω =

∑n
i=1 ai dxi of the cotangent bundle T∗U is smooth if and only if all coefficient

functions ai : U → R are smooth.

For f ∈ F(M), we can consider the differential df that in every chart (U,φ) has a form
df =

∑n
i=1 ai dxi. Acting on coordinate vectors we get the coefficient functions

∂f
∂xj

=

(
∂

∂xj

)
f = (df)

(
∂

∂xj

)
=

n∑
i=1

ai dxi
(

∂

∂xj

)
=

n∑
i=1

aiδij = aj,

that are obviously smooth, so we obtain a covector field df ∈ X∗(M), and a local expression,

df =
n∑
i=1

∂f
∂xi

dxi. (3.5)

Example 3.17. The differential of a function f : R2 → R given by f(x, y) = xy2 sin x is calcu-
lated by (3.5),

df = ∂(xy2 sin x)
∂x dx+

∂(xy2 sin x)
∂y dy = y2(sin x+ x cos x)dx+ 2xy sin xdy.

4

Example 3.18. Although the differential of a smooth function is a covector field, there
are covector fields that are not the differential of some smooth function. For example, if
there exists f ∈ F(R2) such that dx + xdy = df, then we have ∂f/∂x = 1 and ∂f/∂y = x, and
therefore we obtain f(x, y) = x+ γ(y), and then γ′(y) = x, which is impossible. 4

From the formula (3.5), directly follows that the differential d : F(M) → X∗(M) has the
following nice properties.

Lemma 3.8. For all f,h ∈ F(M), l ∈ F(R), α, β ∈ R, the formula (3.5) holds as well as

d(αf+ βh) = αdf+ βdh,
d(fh) = fdh+ hdf,

d(l ◦ f) = (l′ ◦ f)df.
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Of course, for constant f ∈ F(M) we have df = 0, while df = 0 for a connected M implies
constant f, which is a consequence of Lemma 2.20.

For an arbitrary section ω of the cotangent bundle T∗M and a vector field X ∈ X(M), we
naturally define a function ω(X) : M → R by ω(X)p = ωp(Xp) for p ∈ M. An arbitrary func-
tion f : M → R commutes with ω because of ω(fX)p = ωp(f(p)Xp) = f(p)ωp(Xp) = (fω(X))p,
which implies ω(fX) = fω(X). In some chart (U,φ) on M, from the formulas (3.4) and (2.1)
we can calculate

ω(X) =
n∑
i=1

ω
(

∂

∂xi

)
dxi

 n∑
j=1

Xxj
∂

∂xj

 =

n∑
i,j=1

ω
(

∂

∂xi

)
Xxj dxi

(
∂

∂xj

)
=

n∑
i=1

ω
(

∂

∂xi

)
Xxi.

If ω is a smooth section, Lemma 3.7 gives ω(∂i) ∈ F(U), and therefore ω(X) is smooth on an
arbitrary coordinate neighbourhood, so ω(X) ∈ F(M). Conversely, if ω(X) ∈ F(M) holds for
all X ∈ X(M), it especially holds for ∂i, so ω =

∑n
i=1 ω(∂i)dxi is smooth by Lemma 3.7. Thus,

a covector field ω ∈ X∗(M) can be seen as a map ω : X(M) → F(M).

Lemma 3.9. A section ω of the cotangent bundle T∗M is smooth if and only if for every X ∈
X(M) holds ω(X) ∈ F(M).

Let f : M → N be a smooth map between manifolds M and N. The global tangent map
f∗ = Tf : TM → TN pushes tangent vector forward from M to N. Dualizing this leads to a
map on covectors going in the opposite direction, from N to M. The pullback is a map
f∗ : T∗N → T∗M defined by

(f∗(ωf(p)))(Xp) = ωf(p)(f∗(Xp))

for a covector ωf(p) ∈ T∗
f(p)N and a vector Xp ∈ TpM at a point p ∈ M.

Unlike vector fields which in general can not be pushed by smooth map, covector fields
always pull back to covector fields. For a covector field ω ∈ X∗(N) we define the pullback
f∗ω as a section of the cotangent bundle T∗M such that (f∗ω)p = f∗(ωf(p)) holds for p ∈ M,
witch means (f∗ω)p(Xp) = ωf(p)(f∗(Xp)) for all Xp ∈ TpM. There is also the pullback of a
function h ∈ F(N) defined by f∗h = h ◦ f ∈ F(M).

Lemma 3.10. For a smooth map f : M → N and ω, τ ∈ X∗(N), h ∈ F(N) we have

f∗(dh) = d(f∗h),
f∗(ω+ τ) = f∗ω+ f∗τ,

f∗(hω) = (f∗h)(f∗ω).

Proof. The pullback and differential commutes, since for p ∈ M and Xp ∈ TpM holds

(f∗dh)p(Xp) = (dh)f(p)(f∗(Xp)) = (f∗(Xp))h = Xp(h ◦ f) = Xp(f∗h) = (d(f∗h))p(Xp),

while the other two equalities are easy to show.

Theorem 3.11. If f : M → N is smooth and ω ∈ X∗(N) then f∗ω ∈ X∗(M).

Proof. For p ∈ Mwe can choose a chart (U,φ) at p ∈ Mwith xj = πj◦φ for 1 ≤ j ≤ m = dimM
and a chart (V,ψ) at f(p) ∈ N with yi = πi ◦ ψ for 1 ≤ i ≤ n = dimN, such that f(U) ⊆ V and
ψ ◦ f ◦ φ−1 is smooth. Since ω↾V =

∑n
i=1 ai dyi holds for some ai ∈ F(V), from (3.5) we have

(f∗ω)↾U =

n∑
i=1

(f∗ai)f∗(dyi) =
n∑
i=1

(f∗ai)d(f∗yi) =
n∑
i=1

(ai ◦ f)d(yi ◦ f) =
n∑
i=1

m∑
j=1

(ai ◦ f)
∂(yi ◦ f)

∂xj
dxj.

Since the coefficient functions
∑n

i=1(ai ◦ f)(∂(yi ◦ f)/∂xj) are smooth, f∗ω is smooth on U by
Lemma 3.7. Thus, f∗ω is smooth at each point p ∈ M, so f∗ω ∈ X∗(M).
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Example 3.19. Let f : R3 → R2 is given by (u, v) = f(x, y, z) = (x2y, y sin z) and ω ∈ X∗(R2) is
given by ω = udv+ vdu. By direct calculations we have

f∗ω = (f∗u)(f∗dv) + (f∗v)(f∗du) = (u ◦ f)d(v ◦ f) + (v ◦ f)d(u ◦ f)
= (x2y)d(y sin z) + (y sin z)d(x2y) = x2y(sin z dy+ y cos z dz) + y sin z(2xydx+ x2 dy),

and we obtain f∗ω = 2xy2 sin z dx+ 2x2y sin z dy+ x2y2 cos z dz. 4

3.5 Tensor fields

The notion of tensor field on a manifold M generalises the notions of smooth real-valued
functions F(M), vector fields X(M), and covector fields X∗(M), and therefore provides more
complicated objects on a manifold. Tensors occur in many different guises, but their com-
mon characteristic is multilinearity.

In general, we consider a module V over ring K, and its dual module V∗ = Hom(V,K).
A tensor of type (r, s) ∈ N0 × N0 on V is a K-multilinear map A : (V∗)r × (V)s → K. The set
Tr
s(V) of all tensors of type (r, s) on V is a module over K with usual definitions of addition

and scalar multiplication.
A tensor field A on a manifold M is a tensor on the F(M)-module X(M). This actually

means that an F(M)-multilinear map

A : X∗(M)× · · · × X∗(M)︸ ︷︷ ︸
r

×X(M)× · · · × X(M)︸ ︷︷ ︸
s

→ F(M),

is a tensor field of type (r, s) ∈ N0 ×N0. Thus, the set Tr
s(M) of all tensor fields on M of type

(r, s) is a module over F(M).

Example 3.20. Tensor fields generalise the previously introduced notions. In the special
case (r, s) = (0,0), tensor fields are smooth functions on M, T0

0(M) = F(M). By Lemma
3.9, ω ∈ X∗(M) is an F(M)-linear map ω : X(M) → F(M), so T0

1(M) = X∗(M). Finally, each
X ∈ X(M) determines a tensor field X : X∗(M) → F(M) by X(ω) = ω(X), while the converse
is Xf = df(X) = X(df) for f ∈ F(M). This yields the identification T1

0(M) = X(M), so we use
the same notation X = X ∈ X(M), that is, X(ω) = ω(X) holds for every ω ∈ X∗(M). 4

To prove that a given map A : X∗(M)r×X(M)s → F(M) is a tensor field, we have to show
that it is F(M)-linear in each slot (in each variable separately). Additivity in each slot is
often obvious, so the main question is whether functions from F(M) can be factored out A
of each slot,

A(ω1, . . . ,ωr,X1, . . . , fXi, . . . ,Xs) = fA(ω1, . . . ,ωr,X1, . . . ,Xi, . . . ,Xs).

Example 3.21. Consider a function E : X∗(M)×X(M) → F(M) given by E(ω,X) = ω(X). It is
obviously F(M)-linear in both slots, so E ∈ T1

1(M). 4

Example 3.22. For a fixed 0 6= ω ∈ X∗(M) we can define F : X(M) × X(M) → F(M) by
F(X,Y) = X(ω(Y)). The map F is F(M)-linear in the first slot, but in the second slot it is only
additive, because of F(X, fY) = X(ω(fY)) = X(fω(Y)) = (Xf)ω(Y)+ fF(X,Y), so F is not a tensor
field. 4

Example 3.23. Every F(M)-multilinear map A : X(M)s → X(M) is naturally identified with
A : X∗(M) × X(M)s → F(M) given by A(ω,X1, . . . ,Xs) = ω(A(X1, . . . ,Xs)), which induces the
tensor field A ∈ T1

s(M). Therefore, we can use the same notation, A = A, and assume that
A ∈ T1

s(M) holds. 4
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Tensors of type (0, s) are said to be covariant of order s, while tensors of type (r,0) are
said to be contravariant of order r ≥ 1. For example, real-valued smooth functions and
covector fields are covariant tensors, while vector fields are contravariant tensors.

While we can add only tensors of the same type, any two tensors can be multiplied. For
A1 ∈ Tr1

s1(M) and A2 ∈ Tr2
s2(M) we define A1 ⊗ A2 : X

∗(M)r1+r2 × X(M)s1+s2 → F(M) by

(A1 ⊗ A2)(ω1, . . . ,ωr1+r2 ,X1, . . . ,Xs1+s2)

= A1(ω1, . . . ,ωr1 ,X1, . . . ,Xs1)A2(ωr1+1, . . . ,ωr1+r2 ,Xs1+1, . . . ,Xs1+s2).

Then A1 ⊗ A2 is a tensor of type (r1 + r2, s1 + s2) called the tensor product of A1 and A2.
Especially, for A ∈ Tr

s(M) and f ∈ F(M) we have A⊗ f = f⊗A = fA, while additional A ∈ F(M)
gives the ordinary multiplication of functions in F(M).

The tensor product is F(M)-linear, since (f1A1 + f2A2)⊗B = f1 A1 ⊗B+ f2 A2 ⊗B holds for
f1, f2 ∈ F(M), A1,A2 ∈ Tr1

s1(M), B ∈ Tr2
s2(M), as well as the similar identity by the other com-

ponent. Also, directly from the definition we have that the tensor product is associative,
so for tensors A,B,C of any types we often write without brackets A⊗B⊗C. We can notice
that for a covariant tensor A and a contravariant tensor B by definition holds A⊗B = B⊗A.
However, although functions commute with anything, f(A ⊗ B) = (fA) ⊗ B = A ⊗ (fB), the
tensor product in general is not commutative.

Example 3.24. On a coordinate neighbourhood, (dx1 ⊗ dx2)(∂1, ∂2) = dx1(∂1)dx2(∂2) = 1
and (dx2 ⊗ dx1)(∂1, ∂2) = dx2(∂1)dx1(∂2) = 0, so dx1 ⊗ dx2 6= dx2 ⊗ dx1. 4

Just as for a vector field or a covector field, any tensor field A on a manifold M can be
viewed as a field, assigning a value Ap at each point p ∈ M. It turns out that the value Ap
does not depend on whole vector and covector fields, not even from their values in some
neighbourhood of p, but solely from their individual values at the point p.

Lemma 3.12. If anyone of covector fields ω1, . . . ,ωr or vector fields X1, . . . ,Xs vanishes at
p ∈ M, then A(ω1, . . . ,ωr,X1, . . . ,Xs)(p) = 0 holds for A ∈ Tr

s(M).

Proof. Let (U,φ) be a chart at p ∈ M with xi = πi ◦φ ∈ F(U). By Lemma 1.17 there is a bump
function b ∈ F(M) supported in U with p(p) = 1, which allows extensions bXj(xi) ∈ F(M)
and b∂i ∈ X(M) as well as bωj(∂i) ∈ F(M) and bdxi ∈ X∗(M). From the multilinearity of
tensor we have equations

b2A(. . . ,Xj, . . . ) = A(. . . ,
n∑
i=1

bXj(xi)b∂i, . . . ) =
n∑
i=1

bXj(xi)A(. . . , b∂i, . . . ),

b2A(. . . ,ωj, . . . ) = A(. . . ,
n∑
i=1

bωj(∂i)bdxi, . . . ) =
n∑
i=1

bωj(∂i)A(. . . , bdxi, . . . ),

which we calculate at p. If (Xj)p = 0 for some 1 ≤ j ≤ s, then we have (bXj(xi))(p) = 0 which
gives A(. . . ,Xj, . . . )(p) = 0. Similarly, (ωj)p = 0 for some 1 ≤ j ≤ r implies (bωj(∂i))(p) = 0
and therefore A(. . . ,ωj, . . . )(p) = 0.

Theorem 3.13. The value A(ω1, . . . ,ωr,X1, . . . ,Xs)(p) of a tensor A ∈ Tr
s(M) at a point p ∈ M

depends only of the values (ω1)p, . . . , (ωr)p, (X1)p, . . . , (Xs)p.

Proof. Let (ωi)p = (ωi)p for ωi,ωi ∈ X∗(M), 1 ≤ i ≤ r and (Xj)p = (Xj)p for Xj,Xj ∈ X(M),
1 ≤ j ≤ s. The value of difference

A(ω1, . . . ,ωr,X1, . . . ,Xs)− A(ω1, . . . ,ωr,X1, . . . ,Xs)

= A(ω1 −ω1, . . . ,ωr,X1, . . . ,Xs) + A(ω1,ω2 −ω2 . . . ,ωr,X1, . . . ,Xs)

+ . . .+ A(ω1, . . . ,ωr,X1, . . . ,Xs − Xs)

at the point p ∈ M is equal to zero, since by Lemma 3.12 all r+ s terms vanish at p.
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Directly from Theorem 3.13 follows that a tensor field A ∈ Tr
s(M) has a value Ap at each

point p ∈ M, which is a funciton Ap : (T∗
pM)r × (TpM)s → R given by

Ap((ω1)p, . . . , (ωr)p, (X1)p, . . . , (Xs)p) = A(ω1, . . . ,ωr,X1, . . . ,Xs)(p).

It is easy to check R-multilinearity of the function Ap, so by restriction of tensor field
A ∈ Tr

s(M) at p ∈ M we get the tensor Ap ∈ Tr
s(TpM). Just as a vector field is a smooth section

of the tangent bundle, a tensor field A ∈ Tr
s(M) can be considered as a smooth section of

the appropriate tensor bundle that assigns to each point p ∈ M the tensor Ap. Especially,
this interpretation allows that the restriction A↾U of a tensor field A ∈ Tr

s(M) to an open
subest U ⊂ M can be seen as a well defined tensor field on U, that is, A↾U ∈ Tr

s(U).
Let (U,φ) be a chart on an n-manifoldM, and xi = πi◦φ are its coordinate functions. The

coordinate formulas, (2.1) for vector fields and (3.4) for covector fields, can be extended
to tensor fields of arbitrary type. Components of a tensor field A ∈ Tr

s(M) relative to the
given chart are functions

Ai1...ir
j1...js = A

(
dxi1 , . . . ,dxir ,

∂

∂xj1
, . . . ,

∂

∂xjs

)
∈ F(U),

which are defined for all indices 1 ≤ i1, . . . , ir, j1, . . . , js ≤ n.
The components of a covector field ω ∈ T0

1(M) = X∗(M) are ωj = ω(∂j), and these can
be seen in the formula (3.4), ω =

∑
jωj dxj. Similarly, the components of a vector field

X ∈ T1
0(M) = X(M) are Xi = X(dxi) = dxi(X) = X(xi), and we can see them in the formula

(2.1), X =
∑

i Xi∂i.

Example 3.25. If A ∈ T1
s(M) is represented by A : X(M)s → X(M) as in Example 3.23, then

its components are determined by

A
(

∂

∂xi1
, . . . ,

∂

∂xis

)
=

n∑
j=1

Aj
i1...is

∂

∂xj
,

because of A(dxj, ∂i1 , . . . , ∂is) = dxj(A(∂i1 , . . . , ∂is)) =
∑

k Ak
i1...is dxj(∂k) = Aj

i1...is . 4

An arbitrary tensor field A ∈ Tr
s(M) can be expressed by its components with

A(ω1, . . . ,ωr,X1, . . . ,Xs) =
∑

1≤i1,...,ir,j1,...,js≤n
(ω1)i1 · · · (ωr)ir(X1)

j1 · · · (Xs)
jsAi1...ir

j1...js , (3.6)

so if we use (ωk)i = ωk(∂i) = ∂i(ωk) and (Xk)
j = Xk(dxj) = dxj(Xk), we obtain

A =
∑

1≤i1,...,ir,j1,...,js≤n
Ai1...ir
j1...js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs . (3.7)

We can notice that in a fixed chart, components of a sum of tensors are just the sum of
components, while components of a tensor product are given by

(A⊗ B)i1...ir+r′
j1...js+s′

= Ai1...ir
j1...js · B

ir+1...ir+r′
js+1...js+s′

.

There is an interesting operation on the set of tensors that tensors of type (r, s) shrink
to tensors of type (r− 1, s− 1), and its general definition is based on the following special
case.

Lemma3.14. There is a unique F(M)-linearmap C : T1
1(M) → F(M) such that C(X⊗ω) = ω(X)

for all X ∈ X(M) and ω ∈ X∗(M).
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Proof. In a coordinate neighbourhood U, any A ∈ T1
1(M) by the formula (3.7) has a form

A =
∑n

i,j=1 Ai
j ∂i ⊗ dxj. Since it must be C(∂i ⊗ dxj) = dxj(∂i) = δij, we are forced to define

C(A) =
∑n

i=1 Ai
i =

∑n
i=1 A(dxi, ∂i). Such C has the required properties on U. To extend the

map on the whole manifold it suffices to show that this definition is independent of the
choice of coordinate system, where

∑
k
A
(
dyk,

∂

∂yk

)
=
∑
k
A

∑
i

∂yk
∂xi

dxi,
∑
j

∂xj
∂yk

∂

∂xj

 =
∑
i,j,k

∂yk
∂xi

∂xj
∂yk

A
(
dxi,

∂

∂xj

)

=
∑
i,j

δijA
(
dxi,

∂

∂xj

)
=
∑
i
A
(
dxi,

∂

∂xi

)
completes the proof.

The map C from the previous lemma is called (1,1) contraction. In general, if we
choose one contravariant slot 1 ≤ i ≤ r and one covariant slot 1 ≤ j ≤ s, and apply C to the
map

(ωi,Xj) 7→ A(ω1, . . . ,ωr,X1, . . . ,Xs),

we obtain a (1,1) tensor for fixed ω1, . . . ,ωi−1,ωi+1, . . . ,ωr,X1, . . . ,Xj−1,Xj+1, . . . ,Xs. There-
fore we have (CijA)(ω1, . . . ,ωi−1,ωi+1, . . . ,ωr,X1, . . . ,Xj−1,Xj+1, . . . ,Xs) ∈ F(M), and thus
CijA ∈ Tr−1

s−1(M). We say that CijA is the contraction of A over i, j. The components of the
contraction are

(CijA)
p1...pr−1
q1...qs−1 =

n∑
k=1

Ap1...pi−1 k pi...pr−1
q1...qj−1 k qj...qs−1

.

Example 3.26. Tensor contraction can be seen as a generalisation of the trace. A lin-
ear operator L ∈ End(V) on a finite-dimensional vector space V has a representation
L ∈ T1

1(V) (see Example 3.23). Related to some basis (e1, . . . , en) in V , the tensor compon-
ents correspond to the matrix entries, because of L(ei) =

∑
j L

j
iej (see Example 3.25). Hence,

CL =
∑

j L
j
j = TrL, which means that the contraction of L is the trace of L. 4

The pullback of a covector field can be generalised to the pullback of a covariant tensor.
Let f : M → N be a smooth map between manifolds. The pullback of a covariant tensor
A ∈ T0

s(N) is defined by

(f∗A)(X1, . . . ,Xs) = A(f∗(X1), . . . , f∗(Xs))

for all p ∈ M, Xi ∈ TpM. At any point p ∈ M, the pullback f∗(A) gives an R-multilinear
function from (TpM)s to R, which is a (0, s) tensor on TpM. Coordinate computations show
that f∗(A) is a covariant tensor field on M.

Thus, for a smooth f : M → N and each s ≥ 0 we get the R-linear f∗ : T0
s(N) → T0

s(M).
Additionally, for A ∈ T0

s(N) and B ∈ T0
t (N) we have f∗(A ⊗ B) = f∗(A) ⊗ f∗(B). Also, for a

smooth h : N → P holds (h ◦ f)∗ = f∗ ◦ h∗ : T0
s(P) → T0

s(M).
In general, rearranging the arguments of a tensor need not have any expected result

on its value. However, some tensors do not change their values when their arguments
are rearranged. For a covariant or contravariant tensor (of order at least 2) we say that is
symmetric if its value is unchanged by transposing any pair of its arguments. If each such
transposition produces a sign change then we say that this tensor is skew-symmetric.

The symmetric part of a covariant tensor A of order s is the new covariant tensor
SymA of order s given by

(SymA)(X1, . . . ,Xs) =
1
s!
∑
σ∈Ss

A(Xσ(1), . . . ,Xσ(s)),
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where Ss is the symmetric group on s elements, that is, the group of permutations of the
set {1, . . . , s}. It is easy to see that SymA is symmetric and A is symmetric if and only if
SymA = A.

If A and B are symmetric covariant tensors, then A ⊗ B in general is not symmetric.
However, their symmetric productdefined byAB = Sym(A⊗B) is a symmetric tensor, and
it is easy to check that it is commutative (AB = BA) andR-bilinear ((αA+βB)C = αAC+βBC).
Especially, if ω and τ are covector fields, then

ωτ =
1
2(ω⊗ τ + τ ⊗ω),

while we often use ω2 as a short notation for the symmetric product ωω.

3.6 Tensor fields derivations

For now, we considered the algebraic side of the tensor fields, so it is time to establish a
tensor calculus. A tensor field derivation on a manifold M is a collection of R-linear
maps

∇ = ∇r
s : T

r
s(M) → Tr

s(M), (r, s) ∈ N0 × N0,

such that for any tensor fields A,B and any contraction C we have

∇(A⊗ B) = ∇A⊗ B+ A⊗∇B, (3.8)
∇(CA) = C(∇A). (3.9)

According to the definition, the derivation ∇ is R-linear, preserves tensor type, obeys Leib-
niz rule, and commutes with all contractions.

For f ∈ F(M) holds fA = f⊗A, so we have ∇(fA) = (∇f)A+ f∇A. Especially, in the special
case (r, s) = (0,0), ∇0

0 is a derivation on T0
0(M) = F(M), so there is a unique vector field

X ∈ X(M) such that ∇f = Xf holds for all f ∈ F(M).
Since a tensor field derivation is not F(M)-linear, in general the value of ∇A at a point

p ∈ M cannot usually be determined from Ap only. However, it can be found from the
values of A on any arbitrarily small neighbourhood of p, and this local character of tensor
field derivation can be expressed as follows.

Theorem 3.15. if ∇ is a tensor field derivation on a manifold M and U ⊂ M is an open
subset, then there exists a unique derivation ∇U on U such that ∇U(A↾U) = (∇A)↾U holds for
each tensor field A on M.

Proof. For each p ∈ U by Lemma 1.17 there exists a bump function bp ∈ F(M) supported in
U and identically equal to 1 on some neighbourhood Vp 3 p. For an arbitrary tensor field
T ∈ Tr

s(U) we have bpT ∈ Tr
s(M), which allows to define (∇UT)p = (∇(bpT))p. First, we can

show that this definition does not depend on the choice of bump function, and ∇UT ∈ Tr
s(U)

holds. After that, it remains to show that ∇U is a tensor field derivation on U, that has the
stated restriction properties, and that it is unique.

The Leibnizian formula for tensors (3.8) can be reformed and generalised. Comparing
functions A(ω1, . . . ,Xs) ∈ F(M) from (3.6) with a tensor A ⊗ ω1 ⊗ · · · ⊗ Xs ∈ Tr+s

r+s(M) whose
components are

(A⊗ω1 ⊗ · · · ⊗ ωr ⊗ X1 ⊗ · · · ⊗ Xs)
i1...irl1...ls
j1...jsk1...kr = Ai1...ir

j1...js(ω1)k1 . . . (ωr)kr(X1)
l1 . . . (Xs)

ls ,

we see that after r+ s contractions, in which we pair it with kt, and jt with lt, we obtain

A(ω1, . . . ,ωr,X1, . . . ,Xs) = C1
1C2

2 . . .CrrCr+1
1 . . .Cr+ss (A⊗ω1 ⊗ · · · ⊗ ωr ⊗ X1 ⊗ · · · ⊗ Xs),
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and therefore the derivation gives

∇
(
A(ω1, . . . ,ωr,X1, . . . ,Xs)

)
=(∇A)(ω1, . . . ,ωr,X1, . . . ,Xs)

+

r∑
i=1

A(ω1, . . . ,∇ωi, . . . ,ωr,X1, . . . ,Xs)

+

s∑
j=1

A(ω1, . . . ,ωr,X1, . . . ,∇Xj, . . . ,Xs).

(3.10)

From the formula (3.10) follows that the term involving ∇A can be expressed in terms
of ∇ applied solely to functions, vector fields, and covector fields. Moreover, since

(∇ω)(X) = ∇(ωX)−ω(∇X) (3.11)

holds for ω ∈ X∗(M), it is enough to know only derivations of functions and vector fields. It
turns out that the converse is also true, which means that from the suitable data on F(M)
and X(M) we can construct a tensor field derivation.

Theorem 3.16. For a vector field∇0
0 : F(M) → F(M) and an R-linear map∇1

0 : X(M) → X(M)
such that ∇1

0(fX) = (∇0
0f)X + f∇1

0X holds for all f ∈ F(M) and X ∈ X(M), there is a unique
tensor field derivation ∇ on M whose ∇0

0 and ∇1
0 are appropriate parts.

Proof. Uniqueness follows from (3.10) which we also use to complete ∇. For ω ∈ X∗(M) we
have to define (∇0

1ω)(X) = ∇0
0(ω(X))−ω(∇1

0X) because of (3.11), so

(∇0
1ω)(fX) = ∇0

0(ω(fX))−ω(∇1
0fX) = ∇0

0(fω(X))−ω((∇0
0f)X+ f∇1

0X)
= (∇0

0f)ω(X) + f∇0
0(ω(X))− (∇0

0f)ω(X)− fω(∇1
0X) = f(∇0

1ω)(X),

which means that ∇0
1ω is F(M)-linear and therefore ∇0

1ω ∈ X∗(M) holds. It is also easy
to see that ∇0

1 : X
∗(M) → X∗(M) is R-linear. By the formula (3.10), ∇r

sA for r + s ≥ 2 and
A ∈ Tr

s(M) must be expressed by

(∇r
sA)(ω1, . . . ,ωr,X1, . . . ,Xs) = ∇0

0
(
A(ω1, . . . ,ωr,X1, . . . ,Xs)

)
−

r∑
i=1

A(ω1, . . . ,∇0
1ωi, . . . ,ωr,X1, . . . ,Xs)−

s∑
j=1

A(ω1, . . . ,ωr,X1, . . . ,∇1
0Xj, . . . ,Xs),

so we define it in this way. As before, we should check that ∇r
sA is F(M)-multilinear, i.e.

∇r
sA ∈ Tr

s(M), and also that ∇r
s : T

r
s(M) → Tr

s(M) is R-linear. The next step is a direct compu-
tation which shows that ∇(A⊗ B) = ∇A⊗ B+ A⊗∇B holds.

It remains to prove that a derivation commutes with contractions. ForC : T1
1(M) → F(M)

we have ∇C(X ⊗ ω) = ∇(ω(X)) = (∇ω)(X) + ω(∇X) = C(X ⊗ ∇ω + ∇X ⊗ ω) = C∇(X ⊗ ω),
so C and ∇ commute on tensors of the form X ⊗ ω. Locality of ∇ allows calculations on
coordinate neighbourhoods, where we know that all tensor fields of type (1,1) are sums of
tensor products. At the end, we should extend this process to contractions of tensor fields
of arbitrary type.

Example 3.27. For any V ∈ X(M), by the previous theorem, we can set a tensor field de-
rivation LV on M by LV(f) = Vf for all f ∈ F(M) and by LV(X) = [V,X] for all X ∈ X(M). The
conditions of the theorem are satisfied since (LV)0

0 = V is a vector field, (LV)1
0 = [V, ·] is

R-linear, and we also have the equality LV(fX) = [V, fX] = (Vf)X + f[V,X] = (LVf)X + fLVX.
This tensor derivative LV we call the Lie derivative relative to V. 4

Lemma 3.17. If X,Y ∈ X(M), then for the Lie derivative we have [LX,LY] = L[X,Y].
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Proof. First, we check the formula for f ∈ F(M) = T0
0(M), where

[LX,LY]f = LXLYf− LYLXf = XYf− YXf = [X,Y]f = L[X,Y]f.

After that, we prove the formula for V ∈ X(M) = T1
0(M), where we use the Jacobi identity

(2.7) for

LXLYV−LYLXV = [X, [Y,V]]− [Y, [X,V]] = [X, [Y,V]]+ [X, [V,Y]]+ [V, [Y,X]] = [[X,Y],V] = L[X,Y]V.

Since [LX,LY] and L[X,Y] agree on T0
0(M) and T1

0(M), according to Theorem 3.16 it is enough
to prove that [LX,LY] is a tensor field derivation. The initial conditions are obvious, so it
remains to check the properties (3.8) and (3.9). The contractions commute with LX and LY,
so [LX,LY]C = LXLYC− LYLXC = CLXLY − CLYLX = C[LX,LY], while from

LXLY(A⊗ B) = LXLYA⊗ B+ LXA⊗ LYB+ LYA⊗ LXB+ A⊗ LXLYB,

we confirm the Leibniz rule [LX,LY](A⊗B) = [LX,LY]A⊗B+A⊗ [LX,LY]B, which completes
the proof.

Example 3.28. The calculations from Lemma 3.17 can be directly completed because for
ω ∈ X∗(M) = T0

1(M) from

LXLYω(V) = LX(LYω(V))− LYω(LXV)
= LX(LY(ω(V))−ω(LYV))− LY(ω(LXV)) +ω(LYLXV)
= XY(ω(V))− X(ω([Y,V]))− Y(ω([X,V]) +ω(LYLXV)

we get
(LXLY − LYLX)ω(V) = (XY− YX)(ω(V))−ω((LXLY − LYLX)V)

= [X,Y](ω(V))−ω(L[X,Y]V) = L[X,Y]ω(V),
which further generalises the formula for an arbitrary tensor field A ∈ Tr

s(M), where

LXLYA(ω1, . . . ,Vs) =LX(LYA(ω1, . . . ,Vs))−
∑
i
LYA(. . . ,LXωi, . . . )−

∑
j
LYA(. . . ,LXVj, . . . )

=LXLY(A(ω1, . . . ,Vs))− LX
∑
k
A(. . . ,LYωk, . . . )− LX

∑
l
A(. . . ,LYVl, . . . )

−
∑
i
LY(A(. . . ,LXωi, . . . )) +

∑
i

∑
l
A(. . . ,LXωi, . . . ,LYVl, . . . )

+
∑
i

∑
k ̸=i

A(. . . ,LYωk, . . . ,LXωi, . . . ) +
∑
i
A(. . . ,LYLXωi, . . . )

−
∑
j
LY(A(. . . ,LXVj, . . . )) +

∑
j

∑
k
A(. . . ,LYωk, . . . ,LXVj, . . . )

+
∑
j

∑
l ̸=j

A(. . . ,LYVl, . . . ,LXVj, . . . ) +
∑
j
A(. . . ,LYLXVj, . . . )

implies

(LXLY − LYLX)A(ω1, . . . ,Vs) = (XY− YX)(A(ω1, . . . ,Vs))−
∑
i
A(. . . , (LXLY − LYLX)ωi, . . . )

−
∑
j
A(. . . , (LXLY − LYLX)Vj, . . . )

=[X,Y](A(ω1, . . . ,Vs))−
∑
i
A(. . . ,L[X,Y]ωi, . . . )−

∑
j
A(. . . ,L[X,Y]Vj, . . . )

=L[X,Y]A(ω1, . . . ,Vs),

but it is certainly better and faster to avoid this unnecessary calculations. 4
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3.7 Problems

Problem 3.1. Prove that there exista a covector field on the sphere S2 ⊂ R3 that is zero at
exaclty one point.

Problem 3.2. On the manifold M = {(x, y) ∈ R2 : x > 0}, consider the function f ∈ F(M)
given by f(x, y) = x/(x2 + y2). Compute the differential df both in standard and polar co-
ordinates. Determine the set of all points p ∈ M where dfp = 0.

Problem 3.3. For f : R2 → R2, (x, y) = f(s, t) = (st, et) and ω = xdy− ydx compute f∗ω.

Problem 3.4. For f : R2 → R3, (x, y, z) = f(θ,φ) = ((cosφ + 2) cosθ, (cosφ + 2) sinθ, sinφ)
and ω = z2 dx compute f∗ω.

Problem 3.5. Let M be a manifold and A ∈ T0
s(M). Show that SymA ∈ T0

s(M) is the unique
symmetric tensor satisfying (SymA)(X,X, ...,X) = A(X,X, ...,X) for every X ∈ X(M).

Problem 3.6. Show that the symmetric product ia associative for symmetric covariant
tensors.

Problem 3.7. Let M be a parallelisable two-dimensional manifold with a global frame
(∂1, ∂2). The map det : X(M) × X(M) → F(M) is given in terms of the components of vector
fields with respect to (∂1, ∂2) by det(X,Y) = X1Y2 − X2Y1. Determine whether det ∈ T0

2(M).
Do there exist ω, τ ∈ X∗(M) such that det = ω⊗ τ?

Problem 3.8. Let ∇ be a tensor field derivative on the manifold Rn such that for every
f ∈ F(Rn) and 1 ≤ i ≤ n, we have ∇f = ∂1f and ∇(dxi) = dx1 + dxi. Find the general form of
∇X, where X ∈ X(Rn). In particular, compute ∇∂1 and ∇∂2.
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CHAPTER 4

PSEUDO-RIEMANNIAN METRIC

4.1 Scalar products

Let V be a finite-dimensional vector space over R. A bilinear form on V is an R-bilinear
function g : V × V → R. A bilinear form g on V is called symmetric if g(X,Y) = g(Y,X)
holds for all X,Y ∈ V . In other words, a symmetric bilinear form g on V is a symmetric
covariant tensor of order two on V . It is uniquely determined by the associated quadratic
form ε : V → R given by

εX = g(X,X), (4.1)

because we can recover it using the polarization identity

g(X,Y) = 1
4(εX+Y − εX−Y), (4.2)

or equivalently g(X,Y) = (εX+Y − εX − εY)/2.
We say that a symmetric bilinear form g on V is nondegenerate if g(X,Y) = 0 for all

Y ∈ V implies X = 0. Additionally, if for all X 6= 0 holds g(X,X) > 0 then g is positive
definite. Similarly, if for all X 6= 0 holds g(X,X) < 0 then g is negative definite. If g is
positive definite or negative definite we say that g is definite, otherwise it is indefinite.
Evidently, if g is definite then it is nondegenerate, but the converse is not true.

A scalar product g on V is a nondegenerate symmetric bilinear form on V . A finite-
dimensional real vector space V together with a scalar product g on V will be referred to
as a scalar product space (V, g). Since the data of g and the associated quadratic form ε
are interchangeable by (4.1) and (4.2) we sometimes say that (V, g) is a quadratic vector
space. Especially, an inner product is a positive definite scalar product in which case
(V, g) is called an inner product space.

In the presence of some basis (E1, . . . ,En) in V , each bilinear form g on V has the asso-
ciated Gram matrix G with the entries gij = g(Ei,Ej) for 1 ≤ i, j ≤ n. The Gram matrix G
recovers g by the bilinearity g(

∑n
i=1 αiEi,

∑n
j=1 βjEj) =

∑n
i,j=1 αiβjgij, which can be written

in the matrix notation as g(X,Y) = X⊺GY, where X,Y ∈ V are column matrices. The sym-
metry of g is obviously equivalent that its Gram matrix is symmetric, G⊺

= G. Finally, in
the following lemma we see that the condition of nondegeneracy implies detG 6= 0, which
means that the Gram matrix is invertible.

Lemma 4.1. A symmetric bilinear form on V is nondegenerate if and only if its Grammatrix
with respect to any basis in V is invertible.

Proof. Let G be the Gram matrix of g with respect to a basis (E1, . . . ,En). If detG = 0, then
there exists a vector Y 6= 0 such that GY = 0, which implies g(X,Y) = X⊺GY = 0 for all X ∈ V ,
and consequently g is not nondegenerate. Conversely, if detG 6= 0, then GY 6= 0 holds for
any Y 6= 0, there exists 1 ≤ i ≤ n such that g(Ei,Y) = E⊺

i GY 6= 0, so g is nondegenerate.
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Example 4.1. The basic example of the inner product is the standard scalar product of
the Euclidean space Rn, given by g(X,Y) = X⊺Y =

∑
i xiyi, and its Gram matrix with respect

to the canonical basis is the identity. The simplest example of an indefinite scalar product
space is given by g(X,Y) = x1y1 − x2y2 on R2. Obviously, such g is bilinear, its Gram matrix
G with respect to the canonical basis is diagonal with 1 and −1 on the diagonal, so G is
symmetric and invertible. 4

Let (V, g) be a scalar product space. The norm (or length) of any vector X ∈ V is the
nonnegative number ‖X‖ =

√
|g(X,X)|, while its quadratic norm is εX = g(X,X), so we

have |εX| = ‖X‖2. The sign of εX distinguishes all nonzero vectors X ∈ V into three different
types that indicate the causal character of a vector. A nonzero vector X ∈ V is spacelike
if εX > 0; timelike if εX < 0; null (isotropic, lightlike) if εX = 0. Especially, a vector X ∈ V
is nonnull (non-isotropic, anisotropic, definite) if εX 6= 0, and it is unit if εX ∈ {−1,1}
(‖X‖ = 1).

Let us remark that we left the causal character of the zero vector undetermined. Nat-
urally, the zero vector could be considered null, but when we say that a vector is null we
assume that it is not zero. Some authors, especially those who often work in Lorentzian
geometry (for example O’Neill [96]), consider the zero vector to be spacelike. The last pos-
sibility is that the zero vector should have all three causal characters (see Lee [76]).

We say that two vectors X,Y ∈ V are mutually orthogonal if g(X,Y) = 0, and this is
written as X ⊥ Y. Similarly, for subsets A,B ⊆ V , which are usually subspaces, we say that
they are orthogonal and we write A ⊥ B if g(X,Y) = 0 holds for all X ∈ A and all Y ∈ B,
while we can also naturally write X ⊥ A if Span{X} ⊥ A. The orthogonal subspace (or
perpendicular subspace) of a subspace W ≤ V is defined as W⊥ = {X ∈ V : X ⊥ W} ≤ V ,
which is the maximal subspace of V orthogonal to W .

In the definite case, the orthogonal subspace W⊥ is known as the orthogonal comple-
ment of W , because of V = W +W⊥. However, when g is indefinite, W +W⊥ is generally
not all of V , so sometimes the orthogonal W⊥ is not the complement of W . Anyway, the
perpendicular operation does have some common properties, which we emphasize in the
following two lemmas.

Lemma 4.2. A subspaceW of a scalar product space V satisfies dimW + dimW⊥ = dimV .

Proof. Let us extend a basis (E1, . . . ,Ek) in W to a basis (E1, . . . ,En) in V . Then a vector
X =

∑n
i=1 αiEi belongs to W⊥ if and only if 0 = g(X,Ej) =

∑n
i=1 αigij for all 1 ≤ j ≤ k. We

obtain a homogeneous system of k = dimW linear equations in n = dimV unknowns, but
by Lemma 4.1 the rows of the coefficient matrix are linearly independent, so this matrix
has rank k, which implies that the space of solutions has dimension n − k. However, the
system solutions (α1, . . . ,αn) by construction give exactly all vectors X ∈ W⊥ and therefore
dimW⊥ = n− k.

Lemma 4.3. For a subspaceW of a scalar product space V we have (W⊥)⊥ = W .

Proof. Since W ⊥ W⊥ we have W ≤ (W⊥)⊥. On the other hand, according to Lemma 4.2
we have dimW + dimW⊥ = dimV = dimW⊥ + dim(W⊥)⊥, so dim(W⊥)⊥ = dimW , and
therefore (W⊥)⊥ = W .

For any subspace W of a scalar product space (V, g), the restriction of the scalar product
g↾W = g↾W×W is a symmetric bilinear form on W . Moreover, if g is positive definite then
g↾W is a positive definite scalar product on W . However, if g is indefinite then g↾W does
not need be nondegenerate.

Example 4.2. If S ∈ V is spacelike, and T ∈ V is timelike, then we easily construct a null
vector by

N = S+ −g(S,T)±
√
(g(S,T))2 − εSεT
εS

T,
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since the coefficient along T is the solution of the quadratic equation εS+xT = εS+2xg(S,T)+
x2εT = 0. Ig g is indefinite then there exist both spacelike and timelike vectors, and there-
fore there is a nullN, so for W = Span{N} ≤ V the restriction g↾W is not nondegenerate. 4

We transfer properties of the scalar product of scalar product space (V, g) to subspace
W , so we say that it is nondegenerate, positive definite, or negative definite, if such is
its restriction g↾W . The radical of W is the subspace rad(W) = W∩W⊥ which can help us
to characterize nondegenerate subspaces.

Lemma 4.4. LetW be a subspace of a scalar product space (V, g). Then the equivalent state-
ments are: rad(W) is trivial,W is nondegenerate,W⊥ is nondegenerate, V = W +W⊥.

Proof. By definition, W is nondegenerate if 0 is the only vector in W orthogonal to W ,
which is equivalent to rad(W) = W ∩ W⊥ = {0}. From Lemma 4.3, rad(W) = rad(W⊥),
so nondegeneracy of W and W⊥ are equivalent. According to the Grassmann1 formula
dim(W +W⊥) + dim(W ∩W⊥) is equal to dimW + dimW⊥, which is dimV by Lemma 4.2.
Thus, V = W +W⊥ is equivalent to rad(W) = W ∩W⊥ = {0}.

Of course, since a scalar product space is nondegenerate, we have rad(V) = V⊥ = {0}.
The orthogonal direct sum is denoted by the symbol k, so if W ≤ V is nondegenerate then
we can write V = W k W⊥.

A scalar product g on V can be diagonalized by applying Lemma 4.4. As usual, a set of
mutually orthogonal unit vectors is said to be orthonormal. Any set of dimV orthonor-
mal vectors in V is necessarily a basis in V , and such basis always exists.

Lemma 4.5. Any scalar product space has an orthonormal basis.

Proof. The proof is by induction on n = dimV . The case dimV = 1 is obvious. If n > 1,
choose a nonnull vector X ∈ V (otherwise εX = 0 holds for all X ∈ V , so g = 0 is de-
generate), and by rescaling it we obtain the unit E1 = (1/

√
|εX|)X. The one-dimensional

subspace Span{E1} is nondegenerate, so by Lemma 4.4 Span{E1}⊥ is also nondegenerate.
By induction hypothesis, there is an orthonormal basis (E2, . . . ,En) of Span{E1}⊥. Since
V = Span{E1}+ Span{E1}⊥, we obtain a wanted orthonormal basis (E1,E2, . . . ,En).

An indefinite scalar product often has appearance of εEi ∈ {−1,1} for vectors from an
orthonormal basis (E1, . . . ,En) in formulas that would be familiar in the positive definite
case. If X =

∑n
i=1 αiEi then g(X,Ej) = αjg(Ej,Ej), so αj = g(X,Ej)/g(Ej,Ej) = εEjg(X,Ej), and

therefore we obtain

X =
n∑
i=1

εEig(X,Ei)Ei. (4.3)

Lemma4.6. If (E1, . . . ,En) is an orthonormal basis in a scalar product space (V, g), then each
X ∈ V is uniquely expressed by the formula (4.3).

The Gram matrix of a scalar product g with respect to an orthonormal basis (E1, . . . ,En)
in V is diagonal, because of gij = g(Ei,Ej) = δijεEi . Whenever it is convenient we order the
vectors in an orthonormal basis so that negative signs come first, εEi = −1 for 1 ≤ i ≤ ν,
and then positive signs, εEi = 1 for ν < i ≤ n. The orthonormal expansion is still available
taking these signs into account.

The index of a scalar product g on V is the largest integer Ind(g) ∈ N0 which is the
dimension of a negative definite subspace of V . The number of negative εEi is equal to
the index of g which establishes the following theorem known as the Sylvester’s law of
inertia2.

1Hermann Günther Graßmann (1809–1877), German physicist, mathematician and linguist
2James Joseph Sylvester (1814–1897), English mathematician
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Theorem 4.7. The number of negative εEi does not depend on the orthonormal basis
(E1, . . . ,En) in a scalar product space (V, g), and it is equal to the index of g.

Proof. If T ≤ V is negative definite and S ≤ V is positive definite, we have T ∩ S = {0},
whence Grassmann’s formula gives dim T +dimS = dim(T +S) ≤ dimV = n. The subspace
S = Span{Eν+1, . . . ,En} is positive definite, which gives dim T ≤ ν, while dim T = ν for the
negative definite T = Span{E1, . . . ,Eν}, so we get Ind(g) = ν.

The index of a scalar product space (V, g) of dimension n is the index of its scalar
product ν = Ind(V) = Ind(g), while the signature is an ordered pair (p,q) that repres-
ents the number of negative εEi and the number of positive εEi . According to Theorem 4.7,
the numbers 0 ≤ p,q ≤ n are independent on a particular choice of orthonormal basis,
and we have p = ν, q = n− ν.

It is worth noting that (V,−g) is also a scalar product space with Ind(−g) = n− Ind(g).
Scalar product spaces (V, g) and (V,−g) exchange numbers in the signature, but the dif-
ference between them is not essential, so it is usual to normalize the index with ν ≤ n/2,
which would mean that there are no more temporal coordinates than spatial ones.

Let (V, gV) and (W, gW) be scalar product spaces. We say that a linear map L : V → W
preserves the scalar product if gW(LX,LY) = gV(X,Y) holds for all X,Y ∈ V . Such map L is
necessarily injective since LX = 0 implies gV(X,Y) = 0 for all Y ∈ V and therefore X = 0. Of
course, if L preserves the scalar product then it preserves the associated quadratic forms,
while the converse holds by polarization. A linear isometry is a linear bijective map that
preserves the scalar product.

Lemma 4.8. There exists a linear isometry L : V → W if and only if scalar product spaces V
andW have the same dimension and index.

Proof. If L is a linear isometry then dimV = dimW and L maps an orthonormal basis in
V to an orthonormal basis in W , and therefore Theorem 4.7 gives IndV = IndW . Con-
versely, we can reorder orthonormal bases (E1, . . . ,En) in V and (F1, . . . ,Fn) in W such that
gV(Ei,Ei) = gW(Fi,Fi), and define the linear isometry by L(Ei) = Fi.

4.2 Null vectors

In a scalar product space (V, g), a nonzero vector X ∈ V that is self-orthogonal (X ⊥ X) is
referred to as a null vector. If g is definite, then the zero vector is the only vector with
zero norm, so null vectors exist only in the case of indefinite g. The set of all null vec-
tors {X ∈ V : X 6= 0, εX = 0} is called the nullcone or lightcone. How our awareness
readily accepts only positive definite metric, null vectors are quite inconvenient and often
counter-intuitive, but they are also crucial in understanding pseudo-Riemannian mani-
folds.

Lemma 4.9. Any scalar product space V of signature (p,q) can be decomposed as an ortho-
gonal sum V = V+ k V−, where V+ is a maximal positive definite subspace of dimension q,
and V− is a maximal negative definite subspace of dimension p.

Proof. Let (T1, . . . ,Tp, S1, . . . , Sq) be an orthonormal basis of V , with εTi = −1 for 1 ≤ i ≤ p
and εSj = 1 for 1 ≤ j ≤ q. Subspaces V− = Span{T1, . . . ,Tp} and V+ = Span{S1, . . . , Sq} are
mutually orthogonal and have trivial intersection, where V = V+ + V−.

Lemma 4.9 allows a decomposition N = S+ T of any null vector N ∈ V = V+ k V−, such
that S ∈ V+ and T ∈ V−. Since V+ ⊥ V−, we have g(S,T) = 0, and therefore we obtain
0 = εN = g(S + T, S + T) = εS + εT. The condition N 6= 0 implies S 6= 0, so εS 6= 0 and
finally εS = −εT > 0. Hence, any null N ∈ V can be decomposed as a sum N = S + T of
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mutually orthogonal S and T, with εS = −εT > 0. However, the previous decomposition is
not unique, even in the same plane Span{S,T}.

Lemma 4.10. Any null N 6= 0 from a scalar product space V can be decomposed as N = S+T,
such that S,T ∈ V and εS = −εT = 1.

Proof. We already have a decomposition N = S + T with g(S,T) = 0 and εS = −εT > 0.
Consider S1 = θS+ (1 − θ)T and T1 = (1 − θ)S+ θT for some θ > 1/2. Then S1,T1 ∈ V with
S1 + T1 = S+ T = N and

g(S1,T1) = g(θS+ (1 − θ)T, (1 − θ)S+ θT) = θ(1 − θ)(εS + εT) = 0.

We have εS1 = θ2εS+(1−θ)2εT = (θ2−(1−θ)2)εS = (2θ−1)εS > 0, while g(S1,T1) = 0 implies
εS1 + εT1 = εS1+T1 = εN = 0, which yields εS1 = −εT1 > 0. This construction, for any θ > 1/2
gives a new decomposition, so for θ = (1 + εS)/(2εS) > 1/2 we obtain εS1 = −εT1 = 1, and a
new decomposition

N =

(
εS + 1

2εS
S+ εS − 1

2εS
T
)
+

(
εS − 1

2εS
S+ εS + 1

2εS
T
)

with desired properties.

Example 4.3. New constructions are possible outside of the plane Span{S,T}. If dimV > 2,
there exists a nonnull W ∈ V , such that W ⊥ Span{S,T}. We want α, β, γ ∈ R such that
S1 = αS+ βT+ γW and T1 = (1 − α)S+ (1 − β)T− γW, which assures S1 + T1 = S+ T = N.
From S1 ⊥ T1 we have

0 = g(S1,T1) = α(1 − α)εS + β(1 − β)εT − γ2εW = ((α − α2)− (β − β2))εS − γ2εW,

and therefore
γ2εW = (α − β)(1 − α − β)εS. (4.4)

Since

εS1 = α2εS + β2εT + γ2εW = (α2 − β2)εS + (α − β)(1 − α − β)εS = (α − β)εS,

the last condition εS1 > 0 is true for α > β. We choose α + β < 1 for a spacelike W or
α + β > 1 for a timelike W. This, together with α > β, according to (4.4) determines the
final conditions for α and β. Finally, every α and β limited with the last two inequalities
create a new decomposition, where γ = ±

√
(α − β)(1 − α − β)εS/εW. 4

We say that a subspace of a scalar product space is totally isotropic if it consists just
of vectors whose norm is zero. Using the identity (4.2) we see that any two vectors in a
totally isotropic subspace are mutually orthogonal. Thus, for a totally isotropic subspace
W ≤ V we have g↾W = 0. Therefore W ≤ W⊥ holds, and consequently rad(W) = W .

It is worth noting that the radical of an arbitrary subspace U ≤ V is totally isotropic
because of rad(rad(U)) = rad(U). In general, any complementary subspace W to rad(U) in
the sense of usual linear algebra will give rise to a radical splitting U = rad(U) k W . It is
easy to see that W is far from being unique, but it is surely nondegenerate.

Example 4.4. Let U be an arbitrary subspace of a scalar product space (V, g). Assume
that U = W k N is the orthogonal sum of a nondegenerate W ≤ V and a totally isotropic
N ≤ V . First, we want to show that N is uniquely determined. On the one hand, we have
N ≤ U , while N ⊥ W ,N gives N ⊥ U , so N ≤ U ∩ U⊥ = rad(U). On the other hand,
since nondegenerate and totally isotropic subspaces have a trivial intersection, we have
the inequality dim rad(U) = dim(W + rad(U)) − dimW ≤ dimU − dimW = dimN . Since
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4.2. Null vectors

N ≤ rad(U) and dim rad(U) ≤ dimN , we obtain the uniqueness, N = rad(U), which brings
us to a radical splitting.

Suppose that there is another such decomposition, U = W k rad(U) = W ′ k rad(U)
for some nondegenerate W ′ ≤ V . If (E1, . . . ,Ek) is an orthonormal basis for W , then from
W ≤ W ′ k rad(U) we can decompose Ei = E′

i+Ni, where E′
i ∈ W ′ and Ni ∈ rad(U). However,

since g(Ei,Ej) = g(E′
i + Ni,E′

j + Nj) = g(E′
i,E′

j), we see that (E′
1, . . . ,E′

k) is an orthonormal
basis for W ′, where W and W ′ have the same signature. Thus, we invariantly introduce
the signature of a subspace U of a scalar product space V as an ordered triple (p,q, r),
where (p,q) is the signature of the scalar product space (W, g↾W), and r = dim rad(U). 4

For a totally isotropic subspaceW ≤ V , by Lemma 4.2 holds dimW+dimW⊥ = dimV , so
from W ≤ W⊥ follows dimW ≤ (dimV)/2. Moreover, the dimension of a totally isotropic
subspace is not greater than the index.

Theorem 4.11. For a totally isotropic subspace W of a scalar product space (V, g) we have
dimW ≤ min(Ind(g),dimV − Ind(g)), and especially dimW ≤ (dimV)/2.

Proof. Let V = V+ kV− be a decomposition from Lemma 4.9. According to the Grassmann
formula we have dimW = dim(W + V+) + dim(W ∩ V+) − dimV+. Using W + V+ ≤ V
and W ∩ V+ = {0}, it yields dimW ≤ dimV − dimV+ = dimV− = Ind(g). Consequently,
dimW ≤ Ind(−g) = dimV − Ind(g).

Example 4.5. If (V, g) is a scalar product space of signature (p,q), then it has an or-
thonormal basis (T1, . . . ,Tp, S1, . . . , Sq), where Ti are timelike and Si are spacelike. The
bound from Theorem 4.11 is easily reached by constructing a totally isotropic subspace
Span{S1 +T1, S2 +T2, . . . , Sν +Tν}, where ν = min(p,q). Many other constructions are also
possible, because the elements in the basis can be permuted, while individual elements
can be changed by its opposite vector. The dimension of the maximal totally isotropic sub-
space of (V, g) is called the Witt index3. We can notice that the Witt index ν is in fact the
minimum of the numbers Ind(g) and Ind(−g). 4

Any totally isotropic subspace of a scalar product space has its isotropic supplement
which we see in the following theorem (for example, see Clark [38, Theorem 6.2]).

Theorem4.12. LetW be a totally isotropic subspace of a scalar product space (V, g). For any
basis (N1, . . . ,Nk) of W there is a corresponding basis (M1, . . . ,Mk) of some totally isotropic
subspace of V which has a trivial intersection with W such that g(Ni,Mj) = δij holds for
1 ≤ i, j ≤ k.

Proof. The proof is by induction on k, where the case k = 0 is trivial. Let us introduce
P = Span{N1, . . . ,Nk−1}. Since Span{Nk} is not a subspace of P , P⊥ is not a subspace of
Span{Nk}⊥, and there exists X ∈ P⊥ such that g(X,Nk) 6= 0. Then

Mk =
−εX

2(g(X,Nk))2Nk +
1

g(X,Nk)
X

is null with g(Nk,Mk) = 1. The subspace Span{Nk,Mk} = Span{Nk,X} ≤ P⊥ is nondegener-
ate since it has an orthonormal basis ((Nk +Mk)/

√
2, (Nk −Mk)/

√
2). Thus, P is a subspace

of the nondegenerate Span{Nk,Mk}⊥ which we consider as a scalar product space, and we
apply the induction hypothesis to get (M1, . . . ,Mk−1) which with Mk completes a basis of a
totally isotropic subspace with desired properties.

3Ernst Witt (1911–1991), German mathematician
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Chapter 4. Pseudo-Riemannian metric

4.3 Pseudo-Riemannian manifolds

A metric tensor or a metric on a manifold M is a symmetric covariant tensor field of
order two on M which is nondegenerate at any point and has constant index. In other
words, a metric is a map g : X(M) × X(M) → F(M) that smoothly assigns a scalar product
gp : TpM × TpM → R on the tangent space TpM for each point p ∈ M, such that the index
Ind(gp)does not depend on p. Apseudo-Riemannianmanifold is a manifoldM endowed
with a metric g.

Strictly speaking a pseudo-Riemannian manifold (also called semi-Riemannianman-
ifold) is an ordered pair (M, g). Two different metrics on the same manifold establish dif-
ferent pseudo-Riemannian manifolds. It often happens that a pseudo-Riemannian mani-
fold has a default concrete metric, so we can denote it by the name of its smooth manifold.

The common index 0 ≤ ν = Ind(gp) = Ind(g) = Ind(M) ≤ dimM = n of all scalar
products gp is called the index of a pseudo-Riemannian manifold (M, g). Since the distinc-
tion between g and −g in a pseudo-Riemannian manifold is not essential, without loss of
generality we may assume that the index satisfies ν ≤ n/2.

It is interesting to look at some special cases, depending on the index. The most com-
mon case is ν = 0, where we say that M is a Riemannian manifold. In this case, g is
called a Riemannian metric, and it is characterized by the fact that gp is a positive def-
inite scalar product on TpM for each p ∈ M. If ν = 1 6= n then M is called a Lorentzian
manifold4 and the corresponding metric is Lorentzian. A pseudo-Riemannian manifold
of signature (ν, ν) is a Kleinian manifold5, it is necessarily of even dimension, while its
metric is said to be Kleinian or neutral.

Let (U,φ) be a chart on a pseudo-Riemannian n-manifold (M, g) with coordinate func-
tions xi = πi ◦φ. The components of a metric tensor g on U are gij = g(∂i, ∂j) for 1 ≤ i, j ≤ n,
so for vector fields X,Y ∈ X(U) we have

g(X,Y) = g

 n∑
i=1

X(xi)∂i,
n∑
j=1

Y(xj)∂j

 =
n∑

i,j=1
g(∂i, ∂j)X(xi)Y(xj) =

n∑
i,j=1

gij dxi(X)dxj(Y),

and therefore the metric tensor can be expressed as

g =

n∑
i,j=1

gij dxi ⊗ dxj =
n∑

i,j=1
gij dxi dxj,

where dxi dxj = (dxi ⊗ dxj + dxj ⊗ dxi)/2 is the symmetric product of covariant tensors.

Example 4.6. The simplest and most important example of Riemannian manifold is of
course Rn with the Euclideanmetric g which is the classic inner product on each tangent
space under the natural identification TpRn ∼= Rn. In standard coordinates this can be
written by

g =
n∑

i,j=1
δij dxi dxj = (dx1)

2 + · · ·+ (dxn)2, (4.5)

that is, gij = δij, which gives the identity Gram matrix G = 1Rn . Henceforward in any
geometric context, the Euclidean space Rn will denote the Riemannian manifold (Rn, g).

4

Example 4.7. In the standard metric g from (4.5) for Rn, for any 1 ≤ ν ≤ n we can change
the first ν signs from plus to minus, which brings us to the metric tensor g =

∑n
i=1 εi (dxi)2

4Hendrik Lorentz (1853–1928), Dutch physicist
5Felix Klein (1849–1925), German mathematician
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4.3. Pseudo-Riemannian manifolds

where εi = −1 for 1 ≤ i ≤ ν and εi = +1 for ν + 1 ≤ i ≤ n. The resulting pseudo-
Riemannian manifold Rn

ν = (Rn, g) is the pseudo-Euclidean space of index ν. In particu-
lar, the Lorentzian manifold Rn

1 for n ≥ 2 is called the Minkowski space6, and especially
R4

1 is the simplest example of relativistic space-time. 4

Example 4.8. TheWalkermetric7 [117] is defined on some open subsetM of R2n with the
usual coordinates (x1, x2, . . . , x2n), by the Gram matrix related to the natural global frame
(∂1, ∂2, . . . , ∂2n) with

g =



f11 f12 . . . f1n 1 0 . . . 0
f12 f22 . . . f2n 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
f1n f2n . . . fnn 0 0 . . . 1
1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0


, (4.6)

where fij = fij(x1, x2, . . . , x2n) for 1 ≤ i ≤ j ≤ n are arbitrary smooth functions on M. The
matrix from (4.6) is obviously symmetric and invertible (of determinant (−1)n 6= 0). A
common problem in a pseudo-Riemannian manifold construction is to ensure the con-
stancy of the index for each particular scalar product. From the equation (4.6) it is clear
that Wp = Span{(∂n+1)p, (∂n+2)p, . . . , (∂2n)p} is an n-dimensional totally isotropic subspace
of the scalar product space (TpR2n, gp) for each point p ∈ M. According to Theorem 4.11 we
have n = dimWp ≤ Ind(gp) ≤ dimM− dimWp = n, which is possible for Ind(gp) = n only.
Thus, g is a Kleinian metric on R2n, and we obtain a huge family of pseudo-Riemannian
manifolds (M, g) of signature (n,n). 4

Often, instead of a metric tensor g we consider the corresponding squared norm given
by εX = g(X,X) for X ∈ TM, which by (4.2) completely determines the metric tensor. This
squared form ε is called the line element of M, and denoted by ds2. In coordinates we
have ds2 =

∑
i,j gij dxi dxj, which means

εX =
∑
i,j

gij dxi(X)dxj(X) =
∑
i,j

gijXiXj.

If p and p′ are nearby points with coordinates (x1, . . . , xn) and (x1 +Δx1, . . . , xn+Δxn) in
some chart, then the tangent vector Δp =

∑
i Δxi∂i at p points approximately to p′. Because

of this, we expect that the square of the distance ds from p to p′ to be approximately equal to
|Δp|2 = g(Δp,Δp) =

∑
i,j gij(p)Δxi Δxj, as in the formula for ds2, which justifies this unusual

notation.
In the presence of a metric tensor, we can talk about orthonormal vector fields. Let

U be an open subset of a pseudo-Riemannian n-manifold (M, g). A local orthonormal
frame for M over U is a local frame (E1, . . . ,En) for M over U that at each point p ∈ M
forms an orthonormal basis for the tangent space TpM. For example, the coordinate frame
(∂1, . . . , ∂n) is a global orthonormal frame for (Rn, g).

Example 4.9. Consider the open subsetU = R2\{0} ⊂ R2. Let us set the unit vector field E1
tangent to radial lines and the unit vector field E2 tangent to circles centred at the origin.
Then

E1 =
∂

∂r =
1√

x2 + y2

(
x ∂

∂x + y ∂

∂y

)
, E2 =

1
r

∂

∂θ =
1√

x2 + y2

(
x ∂

∂y − y ∂

∂x

)
6Hermann Minkowski (1864–1909), German mathematician
7Arthur Geoffrey Walker (1909–2001), British mathematician
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Chapter 4. Pseudo-Riemannian metric

make a local orthonormal frame for R2 over U (see Example 2.29 for calculations). How-
ever, (E1,E2) cannot be a coordinate frame with respect to any choice of local coordinates,
since [E1,E2] = −(∂/∂θ)/r2 6= 0. 4

Orthonormal frames are very useful for the study of Riemannian and pseudo-
Riemannian manifolds. For a Riemannian manifold, things are simple since the Gram–
Schmidt process smoothly creates a local orthonormal frame starting from any local frame.
The Riemannian case is easy because the vectors whose norms appear in the denominators
are nowhere vanishing. However, if the metric is indefinite we need to avoid null vectors,
so we have to be careful.

Theorem 4.13. There is a local orthonormal frame over a neighbourhood of any point of a
pseudo-Riemannian manifold.

Proof. Let (M, g) be a pseudo-Riemannian n-manifold and p ∈ M. Consider a local co-
ordinate frame (∂1, . . . , ∂n) over some coordinate neighbourhood U 3 p and an arbitrary
orthonormal basis (V1, . . . ,Vn) in TpM. Because (V1, . . . ,Vn) = ((∂1)p, . . . , (∂n)p)A holds
for the transition matrix A ∈ GL(n,R), a new local frame (X1, . . . ,Xn) can be set with
((X1)q, . . . , (Xn)q) = ((∂1)q, . . . , (∂n)q)A for all q ∈ U. Since gp((Xi)p, (Xj)p) = gp(Vi,Vj) = ±δij
and g(Xi,Xj) ∈ F(U), by continuity there exists a neighbourhood W ⊆ U of p where for all
1 ≤ i 6= j ≤ n we have

|g(Xi,Xi)| > a =
3
4 +

1
3n < 1 and |g(Xi,Xj)| < b =

1
6n .

The Gram–Schmidt process allows us to inductively construct an orthogonal local frame
(Y1, . . . ,Yn) on W such that for all 1 ≤ j < k ≤ n we have

|g(Yj,Yj)| > d =
3
4 and |g(Yj,Xk)| < c = 1

2n .

Let Y1 = X1. Suppose that we inductively set (Y1, . . . ,Yj−1) for some 2 ≤ j ≤ n and define

Yj = Xj −
j−1∑
i=1

g(Yi,Xj)

g(Yi,Yi)
Yi.

It is clear that we obtain g(Yj,Yi) = 0 for 1 ≤ i ≤ j− 1. Additionally we provide

|g(Yj,Yj)| =

∣∣∣∣∣∣g(Xj,Xj)−
j−1∑
i=1

(g(Yi,Xj))
2

g(Yi,Yi)

∣∣∣∣∣∣
≥ |g(Xj,Xj)| −

j−1∑
i=1

|g(Yi,Xj)|2

|g(Yi,Yi)|
> a− nc

2

d = d,

|g(Yj,Xk)| =

∣∣∣∣∣∣g(Xj,Xk)−
j−1∑
i=1

g(Yi,Xj)g(Yi,Xk)

g(Yi,Yi)

∣∣∣∣∣∣
≤ |g(Xj,Xk)|+

j−1∑
i=1

|g(Yi,Xj)||g(Yi,Xk)|
|g(Yi,Yi)|

< b+ nc
2

d = c,

for all 1 ≤ j < k ≤ n, which is what we wanted to show. Since ‖Yi‖ =
√

|g(Yi,Yi)| ∈ F(W)
is non-vanishing we can set Ei = Yi/‖Yi‖ ∈ X(W) for each 1 ≤ i ≤ n, and get a desired
orthonormal local frame (E1, . . . ,En) over W 3 p.
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It is worth noting that the constant index condition in the definition of a metric tensor
is not too strong. Namely, since we did not use this condition in the proof of the previous
theorem, where we get continuous functions g(Ei,Ei) ∈ F(W) which must be constant (1
or −1), we can conclude that the index is constant on each connected component of the
manifold.

4.4 Pullback of metric tensors

When we build new manifolds from the old ones, there is often a corresponding way to
derive a metric on the new manifolds from the metric on the old. This is why we need the
pullback of a covariant tensor field. Let f : M → N be a smooth map between a manifold M
and a pseudo-Riemannian manifold (N, g). The pullback of g ∈ T0

2(N) is f∗g ∈ T0
2(M) such

that at each point p ∈ M for Xp,Yp ∈ TpM we have
(f∗g)p(Xp,Yp) = gf(p)(f∗(Xp), f∗(Yp)),

and since g is symmetric then f∗g is also symmetric. However, if f is not an immersion then
f∗ is not injective and for some point p ∈ M there exists 0 6= Xp ∈ TpM such that f∗(Xp) =
0, which follows (f∗g)p(Xp,Yp) = 0 for all Yp ∈ TpM, that is, (f∗g)p is not nondegenerate.
Because of that, f∗g can be a metric only if f is an immersion, but in general this is not
enough.
Example 4.10. Consider the unit circle S1 that is embedded into R2

1 by the natural embed-
ding f(θ) = (cosθ, sinθ), where θ is a local coordinate. The pullback of the metric tensor
is f∗g = f∗(−dx2 + dy2) = −(− sinθ dθ)2 + (cosθ dθ)2 = cos 2θ dθ2, which is degenerate at
θ ∈ {π/4,3π/4,5π/4,7π/4}, where it also changes the index. 4

However, in the Riemannian case it is also the sufficient condition. If f∗ is injective, then
positive definite g implies that f∗g is positive definite, and thus f∗g is a Riemannian metric.
Theorem 4.14. If (N, g) is a Riemannian manifold and f : M → N is an immersion, then
(M, f∗g) is a Riemannian manifold.

Let P be a submanifold of a pseudo-Riemannian manifold (M, g) where ı : P ↪→ M is
the appropriate inclusion. If ı∗g is a metric on P then we say that (P, ı∗g) is a pseudo-
Riemannian submanifold of (M, g). Each tangent space TpP is regarded as a subspace
of TpM, but there is no specific reason why it would have to be nondegenerate relative to
gp. Moreover, no one guarantees that if this is the case, we have the constancy of Ind(gp).

Thanks to Theorem 4.14, things are much simpler in the Riemannian case. If P is a
submanifold of a Riemannian manifold (M, g) with the inclusion ı : P ↪→ M, then (P, ı∗g) is
a Riemannian submanifold of (M, g). Since at each point p ∈ P holds TpP ≤ TpM, the
Riemannian metric ı∗g on P is obtained merely by applying the metric tensor g.

If we know the coordinate representation for an immersion, then the induced Rieman-
nian metric is easy to compute. In some chart with the coordinate functions xi holds

f∗g = f∗
∑

i,j
gij dxi dxj

 =
∑
i,j

f∗(gij)f∗(dxi)f∗(dxj) =
∑
i,j

(gij ◦ f)d(xi ◦ f)d(xj ◦ f),

which we apply in the following concrete examples.
Example 4.11. Let f : R2 → R3 is given by f(u, v) = (u cos v,u sin v, v), which is an immer-
sion whose image is a helicoid. The induced metric f∗g we calculate by

f∗g = f∗(dx2 + dy2 + dz2) = d(u cos v)2 + d(u sin v)2 + d(v)2

= (cos vdu− u sin vdv)2 + (sin vdu+ u cos vdv)2 + dv2 = du2 + (u2 + 1)dv2.

4
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Chapter 4. Pseudo-Riemannian metric

To transform a Riemannian metric under a change of coordinates, we consider the
identity map expressed in terms of different coordinates for the domain and codomain.

Example 4.12. The Euclidean metric g = dx2 + dy2 on R2 in polar coordinates can be
calculated as the pullback of the identity map. Because of x = r cosθ and y = r sinθ we
have

g = dx2 + dy2 = d(r cosθ)2 + d(r sinθ)2

= (cosθ dr− r sinθ dθ)2 + (sinθ dr+ r cosθ dθ)2 = dr2 + r2dθ2.

4

A Riemannian metric demands positive definiteness and it is the most commonly stud-
ied metric. One nice feature of Riemannian metrics is that there are a lot of them.

Theorem 4.15. Every manifold admits a Riemannian metric.

Proof. Let M be a manifold with a smooth atlas {(Uα,φα)}α∈Λ. By Theorem 1.20 there exists
a partition of unity (ψα)α∈Λ subordinate to an open cover {Uα}α∈Λ. In each chart there is a
Riemannian metric gα = φ∗

αg induced by the standard Euclidean metric from (4.5). By local
finiteness, there are only finitely many nonzero terms in a neighbourhood of each point,
and therefore g =

∑
α∈Λ ψαgα defines a symmetric covariant tensor field of order two. For

0 6= X ∈ TpM we have gp(X,X) =
∑

α∈Λ ψα(p)(gα)p(X,X). Since each term is nonnegative,
the sum is nonnegative, and since

∑
α∈Λ ψα(p) = 1, then at least one of α ∈ Λ has ψα(p) > 0.

Thus gp(X,X) > 0 and g is a positive definite metric.

It is important to note that there is a lot of choice in the construction of a metric g for a
given manifold. In particular, various metrics on the same manifold can have highly dif-
ferent geometric properties. However, the same procedure does not work in an indefinite
case, although we can construct a metric of index ν on each coordinate neighbourhood for
any 0 < ν < n. The reason is that the sum of two metrics of index ν may be degenerate,
and is not necessarily a metric.

Example 4.13. Let (M, gM) and (N, gN) be pseudo-Riemannian manifolds, and consider the
natural projections πM : M× N → M and πN : M× N → N. On the product manifold M× N
we can define the product metric by gM × gN = π∗

M(gM) + π∗
N(gN). If we use the natural

isomorphism T(p,q)(M×N) ∼= TpM×TqN from Example 2.2 then the associated Gram matrix
is a block diagonal matrix where the blocks are individual Gram matrices. The pseudo-
Riemannian manifold (M × N, gM × gN) is called the pseudo-Riemannian product of
(M, gM) and (N, gN). 4

Example 4.14. More generally than the previous example, for any strictly positive func-
tion f ∈ F(M) we can set

gM ×f gN = π∗
M(gM) + (f ◦ πM)π∗

N(gN).

This time, the Gram matrix at a point (p,q) is a block diagonal matrix where the first block
is the Gram matrix for gM at p, and the other is the Gram matrix of gN at q multiplied by
the positive constant c = f(p) > 0. Symmetry and nondegeneracy are obvious, while from
Ind(cgN) = Ind(gN) follows Ind(g) = Ind(gM) + Ind(gN). The pseudo-Riemannian manifold
M ×f N = (M × N, gM ×f gN) is called the warped product, while in the special case f = 1
we have the standard pseudo-Riemannian product. 4

Let (M, gM) and (N, gN) be two pseudo-Riemannian manifolds. A smooth map f : M → N
between the underlying manifolds is a pseudo-Riemannian immersion if it preserves
the metric tensors, f∗(gN) = gM, which can be written explicitly by

(gM)p(Xp,Yp) = (gN)f(p)(Tpf(Xp),Tpf(Yp))
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for all p ∈ M and Xp,Yp ∈ TpM. Any such map is an immersion, which justifies the name
and yields the inequalities dimM ≤ dimN and Ind gM ≤ IndgN.

An isometry from (M, gM) to (N, gN) is a pseudo-Riemannian immersion f : M → N
which is also a diffeomorphism. We say that pseudo-Riemannian manifolds are isomet-
ric if there exist an isometry between them. If a pseudo-Riemannian immersion f is only a
local diffeomorphism then it is called a local isometry. Since such f is already an immer-
sion, for a local isometry by Theorem 2.9 we additionally only have that dimM = dimN.

It is easy to see that the composition of isometries and the inverse of an isometry are
isometries, as well as the identity map. Thus, being isometric is an equivalence relation,
so we can say that an isometry is a special kind of map that provides a notion of isomorph-
ism in the category of pseudo-Riemannian manifolds. Pseudo-Riemannian geometry is
the study of properties of pseudo-Riemannian manifolds that are invariant under local or
global isometries.

For a fixed pseudo-Riemannian manifold M, an isometry f : M → M is called an iso-
metryof M. The set of all isometries ofM is a group I(M), called the isometry group ofM.
An important deep theorem asserts that the isometry group I(M) of a pseudo-Riemannian
manifold M has the structure of a Lie group with respect to the compact-open topology [80,
Corollary 2]. For Riemannian manifolds this has been established by Myers8 and Steenrod
in 1939 [87].

Example 4.15. Let f : S1 → S1 is given by f(z) = z2, where ı : S1 ↪→ C, so S1 has a Riemannian
metric g = ı∗g. Since f is an immersion, f∗g is a Riemannian metric by Theorem 4.14. Thus, f
is a Riemannian immersion, but it is not an isometry because f is not a diffeomorphism. 4

Example 4.16. Let (V, g) be a scalar product space of dimension n. By choosing a basis on
V we induce a bijective linear map which is a homeomorphism between V and Rn, so V is
a manifold. There exists a canonical linear isomorphism X 7→ XZ from V onto each tangent
space TZV given by the directional derivative

XZh =
d
dt

∣∣∣∣
t=0

h(Z+ tX),

where gZ(XZ,YZ) = g(X,Y) gives rise to a metric tensor on the manifold V , making it a
pseudo-Riemannian manifold. If f : V → W is a linear isometry of scalar product spaces
(V, gV) and (W, gW), then

TZf(XZ)(h) = XZ(h ◦ f) = d
dt

∣∣∣∣
t=0

h(f(Z) + tf(X)) = f(X)f(Z)h,

which gives TZf(XZ) = f(X)f(Z), and hence

(f∗gW)Z(XZ,YZ) = gWf(Z)(f∗XZ, f∗YZ) = gWf(Z)(f(X)f(Z), f(Y)f(Z))
= gW(f(X), f(Y)) = gV(X,Y) = gVZ (XZ,YZ),

so f is a pseudo-Riemannian immersion. Since linear maps are smooth, the linear iso-
morphism f is a diffeomorphism, and therefore an isometry between pseudo-Riemannian
manifolds V and W . It follows that if V is a scalar product space of dimension n and in-
dex ν, then as a pseudo-Riemannian manifold, V is isometric to Rn

ν. In fact, the coordinate
isomorphism of any orthonormal basis in V is a isometry. 4

8Sumner Byron Myers (1910–1955), American mathematician
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Chapter 4. Pseudo-Riemannian metric

4.5 Musical isomorphisms

A pseudo-Riemannian metric induces an isomorphism between vector and covector fields.
For a given pseudo-Riemannian manifold (M, g) we can define the map [ : X(M) → X∗(M)
called the flat, that a vector field X ∈ X(M) maps to a covector field X♭ ∈ X∗(M) defined by
X♭(Y) = g(X,Y) for each Y ∈ X(M).

For an arbitrary p ∈ M we can restrict the flat and get [ : TM → T∗M, or [p : TpM → T∗
pM,

that a vector Xp ∈ TpM maps to a covector X♭
p ∈ T∗

pM given by X♭
p(Yp) = gp(Xp,Yp) for each

Yp ∈ TpM.
Note that the nondegeneracy condition for a symmetric bilinear form gp ∈ T0

2(TpM) is
equivalent to Ker([p) = 0, or that [p is injective. As we deal with finite dimensions only,
dimTpM = dimT∗

pM = dimM, which is equivalent to the condition that [p is an isomorph-
ism. A metric is always nondegenerate, so the flat is an isomorphism between correspond-
ing tangent and cotangent spaces, that is, between vector and covector fields.

Let us see what is happening in a chart (U,φ) with the coordinate functions xi = πi ◦ φ.
If X =

∑n
i=1 Xi∂i, then we have

X♭ =

n∑
j=1

X♭

(
∂

∂xj

)
dxj =

n∑
j=1

g
( n∑

i=1
Xi ∂

∂xi
,
∂

∂xj

)
dxj =

n∑
i,j=1

gijXi dxj =
n∑
j=1

Xj dxj,

where Xj =
∑n

i=1 gijXi. We can say that X♭ is obtained from X by lowering an index, which is
why we call the operation the flat. As we can see, the matrix of flat in terms of coordinate
basis is actually the Gram matrix of g.

On the other hand, the inverse isomorphism ] = [−1 : X∗(M) → X(M) we call the sharp.
The sharp, a covector field ω ∈ X∗(M) maps to a vector field ω♯ ∈ X(M) in such a way that
ω(X) = g(ω♯,X) holds for each X ∈ X(M). In coordinates, the matrix of sharp must be the
inverse matrix of flat.

Since g is nondegenerate, the Gram matrix with entries gij is invertible at each point,
so there exists its inverse matrix with entries gjk, where

∑n
j=1 gijgjk = δik. The components

of the inverse matrix smoothly depend of the initial components, so the functions gij are
smooth on U. Because g is symmetric, we have

gjk =
n∑
i=1

gikδij =
n∑

i,l=1
gik(gilglj) =

n∑
i,l=1

(gikgli)glj =
n∑
l=1

δklglj = gkj,

so the inverse is also symmetric, gjk = gkj. Now for ω =
∑n

i=1 ωi dxi we have ω♯ =
∑n

j=1 ωj∂j,
where ωj =

∑n
i=1 gijωi and we say that ω♯ is obtained from ω by raising an index.

Maps [ : X(M) → X∗(M) and ] : X∗(M) → X(M) are the musical isomorphisms, a nice
name propagated (and probably named) by Berger9 [17].

Probably, the most important application of the sharp is an extension of the classical
gradient to pseudo-Riemannian manifolds. If (M, g) is a pseudo-Riemannian manifold and
f ∈ F(M), the gradient of f is a vector field grad f = df♯ ∈ X(M) obtained from the differen-
tial df ∈ X∗(M) by raising an index. The gradient can be expressed by the formula

g(grad f,X) = df(X) = Xf,

which holds for all X ∈ X(M), while in local coordinates we have

grad f = df♯ =
n∑
j=1

( n∑
i=1

gij df
(

∂

∂xi

))
∂

∂xj
=

n∑
i,j=1

gij ∂f
∂xi

∂

∂xj
.

9Marcel Berger (1927–2016), French mathematician
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Especially, for natural coordinates on pseudo-Euclidean space Rn
ν, the coordinate frame is

orthonormal, and the previous formula is reduced to grad f =
∑n

i=1 εi∂if∂i, which gives the
usual formula on Euclidean space where the gradient has the same components as df.

The flat and the sharp can be applied to tensor of arbitrary type and at any slot. In
this way, tensor can be transferred from contravariant to covariant and vice versa. For
example, in the tensor A ∈ T1

2(M) we can lower an upper index to obtain the covariant
tensor A♭ ∈ T0

3(M) with components Aijk = (A♭)ijk =
∑n

l=1 gilAl
jk.

In a general case, the flat can pass to the corresponding argument since from the equal-
ity (3.6) we have

A♭(. . . ,X, . . . ) =
∑
i

∑
· · ·Xi · · · (A♭)······i =

∑
i

∑
· · ·Xi · · ·

∑
j
gjiA

···j
···

A(. . . ,X♭, . . . ) =
∑
j

∑
· · · (X♭)j · · ·A

···j
··· =

∑
j

∑
· · ·
∑
i
gjiXi · · ·A···j

··· ,

which also applies to the sharp. Concretely, A♭(X,Y,Z) = A(X♭,Y,Z) holds for A ∈ T1
2(M)

and X,Y,Z ∈ X(M).
Another important implication of the flat and sharp is the extension of contraction. For

example, for a symmetric covariant tensor A ∈ T0
2(M) we can raise one index (it does not

matter which since A is symmetric) to get A♯ ∈ T1
1(M) and then apply the contraction to

obtain trg(A) = C(A♯) ∈ F(M), which is the trace of A related to g. In coordinates this is
trg(A) = C(A♯) =

∑n
i=1 Ai

i =
∑n

i,j=1 gijAij, which in the case of an orthonormal basis becomes
the ordinary trace of the matrix.

Another application of the musical isomorphisms allows us to investigate conditions
under which some n-manifold admits a metric of fixed index 0 < ν < n.

Theorem 4.16. Amanifold admits ametric of index ν if and only if it admits a ν-dimensional
distribution.

Proof. Let (M, g) be a pseudo-Riemannian n-manifold of index 0 < ν < n. We can choose
a Riemannian metric g on M and create T ∈ T1

1(M) by T(X) = (X♭)♯ for X ∈ X(M),
where ] is the sharp with respect to g. In other words, we construct a linear operator
T : X(M) → X(M) such that g(X,Y) = g(T(X),Y) holds for X,Y ∈ X(M). The matrix of T with
respect to g coincides with the Gram matrix of g, which gives the characteristic polynomial
det(λ1−T) = (λ− 1)n−ν(λ+ 1)ν. Thus, T+1 is a tangent bundle homomorphism over M of
constant rank n − ν which, according to Theorem 3.3, yields a ν-dimensional distribution
Ker(T+ 1) on M. Moreover, we have TM = Ker(T+ 1)⊕ Ker(T− 1).

On the other hand, the existence of a ν-dimensional distribution D on a Riemannian
manifold (M, g) implies the existence of its complementary distribution D⊥ such that we
have TM = D⊕D⊥ and TpM = DpkD⊥

p for p ∈ M. Then we can split the metric into the direct
sum of bundle metrics g = gD ⊕ gD⊥ , where gD and gD⊥ are the corresponding restrictions,
which allows us to create a metric (−gD)⊕ gD⊥ of index ν.

Although we obtain a one-dimensional distribution directly from a non-vanishing vec-
tor field on a manifold, the converse is not obvious, but their existences are closely re-
lated. Algebraic topology techniques can show that the condition for the existence of a
non-vanishing vector field on a manifold M is equivalent to M being either noncompact
or having the Euler10 characteristic χ(M) = 0, which is also equivalent to the existence
of a one-dimensional distribution on M (see O’Neill [96, Proposition 5.37]). Therefore,
any noncompact manifold admits a Lorentzian metric, while torus and Klein bottle are
only compact two-dimensional manifolds with this property. A concrete construction of a
Lorentzian metric from a vector field we can see in the following example.

10Leonhard Euler (1707–1783), Swiss mathematician

83



Chapter 4. Pseudo-Riemannian metric

Example 4.17. Let us suppose that there exists a non-vanishing vector field X ∈ X(M) on
a manifold M. By Theorem 4.15 we can pick a Riemannian metric g on M. Consider a
symmetric covariant tensor gL of order two defined by

gL = g− 2
g(X,X)X

♭ ⊗ X♭.

It is clear that gL(X,X) = −g(X,X) < 0, while g(X,Y) = 0 implies gL(Y,Z) = g(Y,Z). Thus, an
orthogonal basis for g that includes X is also an orthogonal basis for gL which proves that
gL is a Lorentzian metric. 4

4.6 Model spaces

The development of Riemannian and pseudo-Riemannian geometry has been very affected
by certain highly symmetric spaces called model spaces. They are very good examples,
so we can compare more abstract pseudo-Riemannian manifolds with these more simple
spaces and look for common features. The main feature of model spaces is that they are
highly symmetric, which means that they have a large group of isometries.

The most important application of Lie groups in geometry involves their action on man-
ifolds. A (left) group action of a group G on a manifold M is a map θ : G ×M → M, with
θ(h,p) often shortened to h · p, that satisfies h1 · (h2 · p) = (h1h2) · p and e · p = p for all
h1,h2 ∈ G and p ∈ M, where e is the identity element of G. Given an action of G on M,
for every p ∈ M the isotropy group (or stabilizer subgroup) of G at p is the subgroup
Gp = {h ∈ G : h ·p = p} of G consisting of all elements that fix p. The action of G on M is free
if all Gp are trivial, which means that h · p = p implies h = e. The orbit of a point p ∈ M
is the set G · p = {h · p : h ∈ G} of points in M to which p can be moved by the elements of
G. The action is transitive if it has exactly one orbit, which means that for every pair of
points p,q ∈ M there exists h ∈ G such that h · p = q.

If G is a Lie group, an action θ : G × M → M is smooth action if θ is smooth. In this
case, for each h ∈ G, a map θh : M → M given by θh(p) = h · p is a diffeomorphism, because
θh is smooth as well as its inverse θh−1 .

To describe the symmetries of a pseudo-Riemannian manifold (M, g) we start from its
isometry group I(M) which naturally define an action on M by f · p = f(p) for f ∈ I(M) and
p ∈ M. Moreover, it is worth noting that for any f ∈ I(M), the global tangent map Tf maps
TM to itself and restricts to a linear isometry Tpf : TpM → Tf(p)M for each p ∈ M. A pseudo-
Riemannian manifold M is homogeneous if the isometry group I(M) acts transitively on
M, which means that for any two points p,q ∈ M there exists an isometry f ∈ I(M) such
that f(p) = q.

The isotropy group of I(M) at a point p ∈ M is its subgroup Ip(M) that contains all
f ∈ I(M) such that f(p) = p. For p ∈ M and f ∈ Ip(M), the linear map Tpf takes TpM to itself,
so we obtain the isotropy representation Ip : Ip(M) → GL(TpM) given by Ip(f) = Tpf. We
say that M is isotropic at p ∈ M if the isotropy representation of Ip(M) acts transitively
on the set of unit vectors in TpM, which means that for any unit vectors X,Y ∈ TpM there
is an isometry f ∈ Ip(M) such that f∗(X) = Y. A pseudo-Riemannian manifold is isotropic
if it is isotropic at every point.

A homogeneous pseudo-Riemannian manifold looks geometrically the same when
viewed from any point, while an isotropic one looks the same in every direction. Of course,
a homogeneous pseudo-Riemannian manifold that is isotropic at one point is isotropic at
every point. However, it turns out that an isotropic pseudo-Riemannian manifold is ho-
mogeneous (see Theorem 7.11).

The three model spaces of Riemannian manifolds are Euclidean spaces, spheres, and
hyperbolic spaces. The basic and most important model Riemannian manifold is the Euc-
lidean space Rn with the Euclidean metric g from (4.5) (Example 4.6). Let us remark that
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Example 4.16 showed that any scalar product space of index 0 is isometric to (Rn, g). It is
easy to construct isometries of the Riemannian manifold (Rn, g), since every orthogonal
linear transformation on Rn preserves the Euclidean metric as does every translation.

The next model space is the sphere Sn whose inclusion ı : Sn ↪→ Rn+1 induces the
Riemannian metric g̊ = ı∗g on Sn called the roundmetric. The sphere (Sn, g̊) is a Rieman-
nian manifold that is homogeneous and isotropic.
Example 4.18. The linear action of the orthogonal group O(n+ 1) on Rn+1 preserves both
Sn and the Euclidean metric, and therefore its restriction to Sn acts isometrically on it. Con-
sider the north pole q(0, . . . , 0,1) ∈ Sn with the standard basis (∂1, . . . , ∂n) in TqSn. Let p ∈ Sn
be an arbitrary point with an orthonormal basis (E1, . . . ,En) in TpSn. Since these basis vec-
tors are tangent to the sphere, they are orthogonal to p, so (E1, . . . ,En,p) is an orthonormal
basis in TpRn+1. If f ∈ O(n + 1) is the matrix whose columns are these basis vectors, then
f : (∂1, . . . , ∂n+1) 7→ (E1, . . . ,En,p), and in particular f(q) = f(∂n+1) = p. Moreover, since f
acts linearly on Rn+1, its tangent map Tqf : TqRn+1 → TpRn+1 in standard coordinates has a
representation which is given by the same matrix as f, and therefore we obtain f∗∂i = Ei
for 1 ≤ i ≤ n.

q

∂n+1

p p
f

Thus, we find an isometry f that takes q to p, while pushes the orthonormal basis at
q forward to a chosen orthonormal basis at p, which proves that Sn is homogeneous and
isotropic. 4

A smooth map f : M → N between pseudo-Riemannian manifolds (M, gM) and (N, gN) is
conformal if f∗(gN) = hgM for some positive function h ∈ F(M). If there exists a conformal
diffeomorphism between pseudo-Riemannian manifolds we say that they are conform-
ally equivalent. Two metrics g1 and g2 on a manifold M are conformal if there is a
positive function h ∈ F(M) such that g2 = hg1, that is, if the identity map between (M, g1)
and (M, g2) is conformal. In Riemannian geometry it is known that two metrics are con-
formal if and only if they define the same angles, while a diffeomorphism is conformal if
and only if it preserves angles.
Example 4.19. The sphere is locally conformally equivalent to Euclidean space, while the
stereographic projection is a conformal diffeomorphism between Sn\{(0, . . . , 0,1)} and Rn.
Consider the stereographic projection φ = φ− from Example 1.15 given by

φ(x1, . . . , xn, xn+1) =
1

1 − xn+1
(x1, . . . , xn), (4.7)

with the inverse

φ−1(y1, . . . , yn) =
1

1 + y2
1 + · · ·+ y2

n
(2y1, . . . , 2yn,−1 + y2

1 + · · ·+ y2
n). (4.8)

For an arbitrary point s ∈ Rn and a vector V ∈ TsRn, from

φ−1
∗ V =

n+1∑
i=1

(φ−1
∗ V)(xi)

∂

∂xi
=

n+1∑
i=1

V(xi ◦ φ−1)
∂

∂xi
,
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we can compute the pullback metric,

(φ−1)∗g̊(V,V) = g̊(φ−1
∗ V,φ−1

∗ V) = g(φ−1
∗ V,φ−1

∗ V) =
n+1∑
i=1

(V(xi ◦ φ−1))2,

where

V(xi ◦ φ−1) = V
(

2yi
1 + y2

1 + · · ·+ y2
n

)
= 2(1 + y2

1 + · · ·+ y2
n)V(yi)− yiV(y2

1 + · · ·+ y2
n)

(1 + y2
1 + · · ·+ y2

n)2

for 1 ≤ i ≤ n, with additional

V(xn+1 ◦ φ−1) = V
(
−1 + y2

1 + · · ·+ y2
n

1 + y2
1 + · · ·+ y2

n

)
= 2 V(y2

1 + · · ·+ y2
n)

(1 + y2
1 + · · ·+ y2

n)2 .

Hence, because of V(y2
1 + · · ·+ y2

n) =
∑n

i=1 2yiV(yi), we have

(φ−1)∗g̊(V,V) = 4
(1 + y2

1 + · · ·+ y2
n)4

(
(V(y2

1 + · · ·+ y2
n))

2

+
n∑
i=1

((1 + y2
1 + · · ·+ y2

n)V(yi)− yiV(y2
1 + · · ·+ y2

n))
2
)

=4(V(y1))
2 + · · ·+ (V(yn))2

(1 + y2
1 + · · ·+ y2

n)2 =
4

(1 + y2
1 + · · ·+ y2

n)2g(V,V).

In other words,
(φ−1)∗g̊ =

4
(1 + y2

1 + · · ·+ y2
n)2g,

where g represents the Euclidean metric onRn, and therefore this stereographic projection
φ is a conformal diffeomorphism. It follows that the sphere is locally conformally flat,
which means that each point of Sn has a neighbourhood that is conformally equivalent to
an open subset in Rn. 4

The third class of model Riemannian manifolds consists of the hyperbolic space Hn

defined by
Hn = {X = (x0, . . . , xn) ∈ Rn+1

1 : g(X,X) = −1, x0 > 0}

as a pseudo-Riemannian submanifold of the Minkowski space Rn+1
1 = (Rn+1, g). Geo-

metrically, this is the upper sheet of the two-sheeted hyperboloid given by the equation
x2

0 − x2
1 − · · · − x2

n = 1. Consider the smooth function f : Rn+1 → R defined by f(X) = g(X,X).
Because of

dfX(YX) = YXf =
d
dt

∣∣∣∣
t=0

f(X+ tY) = d
dt

∣∣∣∣
t=0

(f(X) + 2tg(X,Y) + t2f(Y)) = 2g(X,Y) = 2gX(XX,YX),

we have dfX = 2(XX)
♭, so TXf has rank 1 for any X 6= 0, and therefore −1 is a regular value of

f. By Theorem 2.15, the regular level set f−1(−1) is a submanifold of codimension 1, which
also holds for its open subset Hn. Moreover, by Lemma 2.16 for each X ∈ Hn we have
TXHn = KerTXf = KerX♭ = X⊥. Because of g(X,X) = −1 < 0, the restriction of the ambient
metric to X⊥ is positive definite, so g induces the Riemannian metric h = ı∗g on Hn.

Example 4.20. Consider the hyperbolic stereographic projection π from Hn to the hy-
perplane x0 = 0 using the point (−1,0, . . . , 0). From the formula

π(x0, x1, . . . , xn) =
1

1 + x0
(x1, . . . , xn),
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we see that ‖π(x0, x1, . . . , xn)‖ =
√
(x0 − 1)/(x0 + 1) ↗ 1 when x0 → +∞, so Im(π) = Bn

r is
the unit ball in Rn. Thus, the diffeomorphism π : Hn → Bn give rise to another model called
the Poincaré ball model HBn = (Bn, (π−1)∗h) where h is the metric on Hn.

Hn

Bn

After we calculate the inverse,

π−1(y1, . . . , yn) =
1

1 − y2
1 − · · · − y2

n
(1 + y2

1 + · · ·+ y2
n,2y1, . . . , 2yn),

as before, we consider an arbitrary point s ∈ Bn and a vector V ∈ TsBn. From

π−1
∗ V =

n∑
i=0

(π−1
∗ V)(xi)

∂

∂xi
=

n∑
i=0

V(xi ◦ π−1)
∂

∂xi
,

we can compute,

(π−1)∗h(V,V) = h(π−1
∗ V, π−1

∗ V) = g(π−1
∗ V, π−1

∗ V) = −(V(x0 ◦ π−1))2 +

n∑
i=1

(V(xi ◦ π−1))2,

where

V(xi ◦ π−1) = V
(

2yi
1 − y2

1 − · · · − y2
n

)
= 2(1 − y2

1 − · · · − y2
n)V(yi) + yiV(y2

1 + · · ·+ y2
n)

(1 − y2
1 − · · · − y2

n)2

for 1 ≤ i ≤ n, with additional

V(x0 ◦ π−1) = V
(

1 + y2
1 + · · ·+ y2

n
1 − y2

1 − · · · − y2
n

)
= 2 V(y2

1 + · · ·+ y2
n)

(1 − y2
1 − · · · − y2

n)2 .

Thus,
(π−1)∗h(V,V) = 4

(1 − y2
1 − · · · − y2

n)4

(
− (V(y2

1 + · · ·+ y2
n))

2

+
n∑
i=1

((1 − y2
1 − · · · − y2

n)V(yi) + yiV(y2
1 + · · ·+ y2

n))
2
)

=4(V(y1))
2 + · · ·+ (V(yn))2

(1 − y2
1 − · · · − y2

n)2 =
4

(1 − y2
1 − · · · − y2

n)2g(V,V),

which gives the metric of HBn,

h2 = (π−1)∗h = 4(dy1)
2 + · · ·+ (dyn)2

(1 − y2
1 − · · · − y2

n)2 . (4.9)

In this way, we obtained the Riemannian manifoldsHn = (Hn,h) andHBn = (Bn,h2) which
are isometric. 4
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Example 4.21. Let φ : Sn \ {q} → Rn be the stereographic projection from Example 4.19
with the formulas (4.7) and (4.8), and ρ : Sn → Sn be the rotation defined by the equation
ρ(x1, . . . , xn−1, xn, xn+1) = (x1, . . . , xn−1,−xn+1, xn) taking the hemisphere {xn+1 < 0} to the
hemisphere {xn > 0}. Consider the diffeomorphism

ψ = φ ◦ ρ ◦ φ−1 : Rn \ {(0, . . . , 0,1)} → Rn \ {(0, . . . , 0,−1)}
and its restriction from the ball Bn onto the half-space Un = {(z1, . . . , zn) ∈ Rn : zn > 0}.
Then the map ψ↾Bn : Bn → Un gives rise to the third model of our hyperbolic space, the
Poincaré half-space model HUn = (Un, (ψ−1)∗h2).

Let us calculate the inverse f = ψ−1 = φ ◦ ρ−1 ◦ φ−1 in coordinates,
f(z1, . . . , zn) = φ ◦ ρ−1 ◦ φ−1(z1, . . . , zn)

= φ ◦ ρ−1
(

1
1 + z2

1 + · · ·+ z2
n
(2z1, . . . , 2zn,−1 + z2

1 + · · ·+ z2
n)

)

= φ
(

1
1 + z2

1 + · · ·+ z2
n
(2z1, . . . , 2zn−1,−1 + z2

1 + · · ·+ z2
n,−2zn)

)

=
1

(1 + zn)2 + z2
1 + · · ·+ z2

n−1
(2z1, . . . , 2zn−1,−1 + z2

1 + · · ·+ z2
n).

For an arbitrary point p ∈ Un we obtain

f∗
∂

∂zn
=

n∑
i=1

∂(yi ◦ f)
∂zn

∂

∂yi
◦ f

=
2((1 + zn)2 − z2

1 − · · · − z2
n−1)

∂
∂yn ◦ f− 4(1 + zn)

∑n−1
i=1 zi ∂

∂yi ◦ f
((1 + zn)2 + z2

1 + · · ·+ z2
n−1)

2 ,

and hence for the induced metric h3 = f∗h2, with z2 = z2
1 + · · ·+ z2

n−1, we have

h3

(
∂

∂zn
,

∂

∂zn

)
= h2

(
f∗

∂

∂zn
, f∗

∂

∂zn

)
=

4
(1 − (y1 ◦ f)2 − · · · − (yn ◦ f)2)2

4((1 + zn)2 − z2)2 + 16(1 + zn)2z2

((1 + zn)2 + z2)4

= 16 ((1 + zn)2 + z2)2

(((1 + zn)2 + z2)2 − 4z2 − (−1 + z2 + z2
n)2)2 =

1
z2
n
.
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However, from the formula (4.9) we see that h2 and g are conformal on Bn, while Example
4.19 shows that f−1 is a conformal diffeomorphism between (Bn, g) and (Un, g), and there-
fore h3 and g are conformal on Un. This is why we only need to calculate h3(V,V) for a
single chosen vector field, for example for V = ∂/∂zn. Finally, it follows

h3 = f∗h2 =
(dz1)

2 + · · ·+ (dzn)2

z2
n

. (4.10)

Since the Riemannian manifolds Hn, HBn, and HUn are all mutually isometric, we often
use the simple notation RHn, to refer to any of these hyperbolic models that is the most
convenient in a given context. 4

Example 4.22. The symmetries of RHn are most easily seen in the hyperboloid model Hn.
The Lorentz group O(1,n) is the group of linear maps from Rn+1

1 to itself that preserve
the Minkowski metric. Each element of it preserves the hyperboloid {x2

0−x2
1−· · ·−x2

n = 1},
which has two components determined by {x0 > 0} and {x0 < 0}. The subgroup O+(1,n)
that preserves the direction of time consists of maps that take the component {x0 > 0} to
itself, and therefore it acts isometrically on Hn. We can analogously follow the arguments
from Example 4.18 to conclude that there is an isometry from O+(1,n) which maps an
arbitrary point q to an arbitrary point p and pushes forward an arbitrary orthonormal
basis for TqHn into an arbitrary orthonormal basis for TpHn, so the hyperbolic space RHn

is homogeneous and isotropic. 4

The Euclidean, spherical, and hyperbolic metrics can be adapted to give model pseudo-
Riemannian manifolds. The first example is the pseudo-Euclidean space Rn

ν of index ν > 0
from Example 4.7.

For other examples we consider pseudo-Riemannian submanifolds of the pseudo-
Euclidean space (Rn+1

ν , g) given by M = {X ∈ Rn+1
ν : g(X,X) = c} for some real c = ±1. Sim-

ilar to the case of hyperbolic spaceHn we can set the function f : Rn+1 → R by f(X) = g(X,X).
Then we have dfX = 2X♭, so c is a regular value of f and therefore M = f−1(c) is a sub-
manifold of dimension n, while its metric is induced from the ambient metric g. Since
TXM = KerTXf = KerX♭ = X⊥ and g(X,X) = c, it is easy to see that the index will decrease
by 1 only if c < 0.

The pseudo-Riemannian manifold (M, ı∗g) for c = 1 has index ν and it is called the
pseudosphere, while for c = −1 has index ν − 1 and it is called the pseudohyperbolic
space. Especially, de Sitter space11 is the pseudosphere dSn embedded in Rn+1

1 , while
anti-de Sitter space is the pseudohyperbolic space AdSn embedded in Rn+1

2 . In this way,
we get three models of the Lorentzian geometry, namely Minkowski, de Sitter, and anti-de
Sitter spaces.

4.7 Length and distance

On Euclidean spaces there is an immediate idea of distance between points, so defining
the lengths of curves is justified by the sums of distances for a fine polygonal approxima-
tion. Riemannian manifolds are not metric spaces in advance, while pseudo-Riemannian
manifolds (with indefinite metrics) are not metric spaces at all. However, the positive def-
inite scalar product structures on the tangent space of a Riemannian manifold give rise to
a concept of lengths of tangent vectors. Thus, we naturally obtain the ability to measure
lengths of curves, which allows us to define the distance between points on a connected
Riemannian manifold which becomes a metric space.

11Willem de Sitter (1872–1934), Dutch mathematician, physicist, and astronomer
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Chapter 4. Pseudo-Riemannian metric

LetM be a smooth manifold. A curve (or smooth parametric curve) inM is a smooth
map γ : I → M, where I ⊆ R is some open interval. Since I is an open submanifold of the
real line R1, it has the identity chart consisting of the single coordinate function u = 1I.
The velocity of a curve γ : I → M is defined as the push-forward of the coordinate vector
field, γ′ = Tγ ◦ (d/du) : I → TM. More precisely, a curve γ assigns to each t ∈ I the velocity
vector γ′(t) ∈ Tγ(t)M defined by

γ′(t) = (Ttγ)
(

d
du

)
t
= γ∗

(
d
du

)
t
,

where (d/du)t ∈ TtI is the canonical basis vector at t which maps f ∈ F(I) to the old-
fashioned derivative f′(t) in the sense of calculus.

We say that a curve γ is regular if γ′(t) 6= 0 holds for all t ∈ I, which implies that γ is an
immersion. The concept of regular curves can be extended to a closed bounded interval
[a,b] ⊆ R. A map γ : [a,b] → M is a regular curve segment if it extends to a regular
curve defined on some open interval containing [a,b]. More generally, a continuous map
γ : [a,b] → M is an admissible curve (or piecewise regular curve segment) from γ(a)
to γ(b) if there exists a finite sequence a = t0 < t1 < · · · < tk = b of numbers ti ∈ R, called
a partition of [a,b], such that the restriction γ↾[ti−1,ti] is a regular curve segment for each
1 ≤ i ≤ k.

The usual calculus concept of the length of curves in Euclidean space generalises in a
natural way for a pseudo-Riemannian manifold (M, g). The existence of metric g allows to
measure the size of the velocity vectors. The speed of a curve γ ∈ F(I) at some time t ∈ I is
the magnitude of its velocity vector at t,

‖γ′(t)‖ =
√
|gγ(t)(γ′(t), γ′(t))|.

Since the distance an object travels is the integral of speed over the time interval, we define
the arc length of an admissible curve γ : [a,b] → M by

L(γ) =
∫ b

a
‖γ′(t)‖dt.

The speed function is bounded and continuous everywhere on [a,b] except possibly at
the finitely many points where γ is not smooth, so it is integrable in the Riemann (or Le-
besgue12) integral sense, and therefore L(γ) is a well-defined finite nonnegative number.

A reparametrization of a curve γ : I → M is a curve of the form γ̃ = γ ◦ φ : I′ → M,
where I′ ⊆ R is another interval and φ : I′ → I is a diffeomorphism. Since intervals are
connected, φ is strictly monotone (either increasing or decreasing) on I′. We say that γ̃ is a
forward reparametrization if φ is increasing (φ′ > 0), and a backward reparamet-
rization if it is decreasing (φ′ < 0).

More generally, a reparametrization of an admissible curve γ : [a,b] → M is an ad-
missible curve of the form γ̃ = γ◦φ, where φ : [c,d] → [a,b] is a homeomorphism for which
there is a partition c = t0 < t1 < · · · < tk = d of [c,d] such that the restriction φ↾[ti−1,ti] is a
diffeomorphism on its image for each 1 ≤ i ≤ k. If the derivative φ′ does not change the
sign we say that the corresponding reparametrization is monotone.

It is important to notice that the arc length of an admissible curve is invariant under
monotone reparametrizations, where for φ′ > 0 we have

L(γ ◦ φ) =
k∑
i=1

∫ ti

ti−1

‖(γ ◦ φ)′(t)‖dt =
k∑
i=1

∫ φ(ti)

φ(ti−1)
‖γ′(φ(t))‖d(φ(t)) = L(γ).

12Henri Lebesgue (1875–1941), French mathematician

90



4.7. Length and distance

Although the arc length on a Riemannian manifold behaves much as in Euclidean
space, in the case of an indefinite metric the term length can be misleading. For example,
a null curve has length zero. To avoid potential problems where a nonzero null γ′(t) has
speed zero we focus on Riemannian geometry.

Let (M, g) be a Riemannian manifold. Hence, an admissible curve γ : [a,b] → M has a
positive speed ‖γ′(t)‖ > 0 for all t except the points from a corresponding partition of [a,b].
Consider a function s : [a,b] → R called the arc-length function of γ and defined by

s(t) = L(γ↾[a,t]) =
∫ t

a
‖γ′(u)‖du,

which is continuous everywhere, and by the fundamental theorem of calculus it is smooth
wherever γ is, with the derivative s′(t) = ‖γ′(t)‖. Since s′(t) > 0 holds for all smooth points
t ∈ [a,b], the function s is strictly increasing on [a,b]. Its inverse φ = s−1 : [0,L(γ)] → [a,b]
determines a forward reparametrization γ̃ = γ ◦ φ of γ, where

‖γ̃′(t)‖ = ‖γ′(s−1(t)) · (s−1)′(t)‖ =
∥∥∥γ′(s−1(t))
s′(s−1(t))

∥∥∥ =
∥∥∥ γ′(s−1(t))
‖γ′(s−1(t))‖

∥∥∥ = 1

holds wherever γ is smooth. Such reparametrization γ̃ hasunit speed, while its arc-length
function has the simple form s(t) = t. A unit-speed admissible curve whose parameter
interval is of the form [0,b] for some b > 0 is said to be parametrized by arc length.

Lemma 4.17. Every admissible curve in a Riemannian manifold has a unique forward re-
parametrization by arc length.

Let us introduce the concept of distance between points on a connected Riemannian
manifold (M, g). For each pair of points p,q ∈ M we establish the path space Ωp,q of all
admissible curves from p to q. This space is not empty, which we see in the following
lemma.

Lemma 4.18. Any two points of a connected manifold can be joined by an admissible curve.

Proof. A connected manifold M is path-connected, and therefore any two points p,q ∈ M
can be joined by a continuous path γ : [a,b] → M. By compactness it follows that there is
a partition a = t0 < · · · < tk = b of [a,b] such that γ↾[ti−1,ti] is contained in a coordinate
neighbourhood that is diffeomorphic to a Euclidean ball, for each 1 ≤ i ≤ k. Then, each
γ↾[ti−1,ti] can be replaced by a straight-line path in coordinates, which yields an admissible
curve from p to q.

The previous lemma allows us to well define the Riemannian distance d(p,q)
between points p,q ∈ M by

d(p,q) = inf{L(γ) : γ ∈ Ωp,q}.

Example 4.23. The infimum of curve length in the definition of d(p,q) can fail to be real-
ized. Consider the punctured plane R2 \ {(0,0)} as a Riemannian submanifold of R2. The
distance between points p(−1,0) and q(1,0) is d(p,q) = 2, but this distance is not realized
by any admissible curve, since any such path in R2 passes through (0,0). 4

It immediately follows from the definition that d(p,q) = d(q,p) ≥ 0 and d(p,p) = 0.
Additionally, the triangle inequality d(p,q) ≤ d(p, r)+d(r,q) for all p,q, r ∈ M follows from
the fact that an admissible curve from p to q can be obtained by combining one from p to
r with one from r to q (possibly changing the starting time of the parametrization), whose
length is the sum of the lengths of two starting admissible curves. In order for (M,d) to
become a metric space, we only need to show the fact that d(p,q) = 0 implies p = q. To
prove this we introduce the following topological statement.
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Chapter 4. Pseudo-Riemannian metric

Lemma 4.19. Let X and Y be topological spaces and let Y be compact. For any continuous
f : X × Y → R, the function h : X → R given by h(x) = miny∈Y f(x, y) is well-defined and con-
tinuous.

Proof. For any fixed x ∈ X, the function fx : Y → R defined by fx(y) = f(x, y) is continuous
with a compact domain, so fx(Y) is a compact interval, which gives h(x) = min fx(Y). For
continuity of h it suffices to check that h−1(−∞,a) and h−1(b,∞) are open. It is easy to see
that h−1(−∞,a) = πX◦f−1(−∞,a) is open, where πX : X×Y → X is the (continuous and open)
canonical projection. On the other hand for any x ∈ h−1(b,∞) and y ∈ Y there is a neigh-
bourhood (x, y) ∈ Ux,y×Vx,y ⊆ f−1(b,∞). Since Y is compact there exist y1(x), . . . , yk(x)(x) ∈ Y
such that Y ⊆

⋃k(x)
i=1 Vx,yi(x), so we obtain

{x} × Y ⊆

k(x)⋂
i=1

Ux,yi(x)

× Y ⊆
k(x)⋃
i=1

(Ux,yi(x) × Vx,yi(x)) ⊆ f−1(b,∞),

and therefore h−1(b,∞) =
⋃

x∈h−1(b,∞)

⋂k(x)
i=1 Ux,yi(x) is open.

Let us fix an arbitrary point p of an n-manifold M, and take a chart (U,φ) centred at p
with the coordinate functions xi = πi ◦ φ. The Euclidean metric g on U, that is defined by
g(∂i, ∂j) = δij, yields the Euclidean distance d given by

d(q, r) =

√√√√ n∑
i=1

(xi(q)− xi(r))2.

Without loss of generality, a coordinate neighbourhood U can be reduced to some ball
{q ∈ U : d(p,q) < ε} for small ε > 0. Let f : U × Sn−1 → R be the smooth function given by
f(q,V) = g(V,V)(q) = gq(Vq,Vq), where (α1, . . . ,αn) ∈ Sn−1 and

∑n
i=1 αi∂i ∈ X(U) are identi-

fied. Since Sn−1 is compact we apply Lemma 4.19 which yields the well-defined continuous
positive functions μ, ν : U → R defined by

μ(q) = min
V∈Sn−1

f(q,V) = min
gq(V,V)=1

gq(V,V) = min
0 ̸=V∈TqM

gq(V,V)
gq(V,V)

> 0,

ν(q) = max
V∈Sn−1

f(q,V) = max
gq(V,V)=1

gq(V,V) = max
0 ̸=V∈TqM

gq(V,V)
gq(V,V)

> 0.

This implies
μ(q)gq(V,V) ≤ gq(V,V) ≤ ν(q)gq(V,V)

for all V ∈ TqM, which allows us to compare two metrics g and g for q ∈ U. Let γ : [a,b] → M
be an admissible curve from p to q ∈ U and

c = min
t∈[a,b]

√
μ(γ(t)) > 0, C = max

t∈[a,b]

√
ν(γ(t)) > 0.

If γ lies entirely in U then

L(γ) =
∫ b

a

√
gγ(t)(γ′(t), γ′(t))dt ≥ c

∫ b

a

√
gγ(t)(γ′(t), γ′(t))dt ≥ cd(p,q).

Otherwise, γ lives U, and there exists the smallest s such that γ(s) 6∈ U, and again

L(γ) ≥
∫ s

a

√
gγ(t)(γ′(t), γ′(t))dt ≥ c

∫ s

a

√
gγ(t)(γ′(t), γ′(t))dt ≥ cε ≥ cd(p,q).
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Anyway, taking the infimum it follows d(p,q) ≥ cd(p,q). On the other hand, if γ is a straight-
line path in the Euclidean metric g, then it lies in U and we have

Cd(p,q) = C
∫ b

a

√
gγ(t)(γ′(t), γ′(t))dt ≥

∫ b

a

√
gγ(t)(γ′(t), γ′(t))dt = L(γ) ≥ d(p,q).

Consequently, we obtain
0 < cd(p,q) ≤ d(p,q) ≤ Cd(p,q), (4.11)

which proves that d(p,q) > 0 for q 6= p. Moreover, (4.11) shows that the Euclidean distance
d and the Riemannian distance d are comparable on a neighbourhood of p, which means
that the metric topology and the manifold topology (coming from the Euclidean distance)
are equivalent.

Theorem 4.20. A connected Riemannian manifold with the Riemannian distance is a metric
space whose metric topology is the same as the manifold topology.

4.8 Problems

Problem4.1. LetV andW be inner product spaces of te same finite dimension. If f : V → W
is a map that preserves the origin and distances (f(0) = 0 and ‖f(x)− f(y)‖ = ‖x− y‖), then
f is a linear isometry.

Problem 4.2. Let (V, g) be an indefinite scalar product space, and let b be a symmetric
bilinear form on V . Prove that b = cg for some c ∈ R if and only if b(N,N) = 0 holds for
every null N ∈ V .

Problem 4.3. Let f : R2 → R3 be given by f(x, y) = (
√

1 + 2x2 + 2y2, x+y, x−y). Compute f∗g
for the Minkowski metric g = −dx2

1 + dx2
2 + dx2

3 ∈ T0
2(R

3), and show that it is a Riemannian
metric on R2.

Problem 4.4. Prove that the pseudo-sphere of dimension n, index ν and radius r is diffeo-
morphic to Rν×Sn−ν. Prove that the pseudo-hyperbolic space of dimension n, index ν and
radius r is diffeomorphic to Rn−ν × Sν.
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CHAPTER 5

CONNECTION

5.1 Covariant derivatives

In order to introduce a curvature on pseudo-Riemannian manifolds it is necessary to
study geodesics, the pseudo-Riemannian generalisations of straight lines. In the original
sense, a geodesic was the shortest route between two points on a surface, so it is reason-
able to define geodesics as length minimizing curves, at least locally. However, pseudo-
Riemannian manifolds whose metric is indefinite are not metric spaces and geodesics
there are not distance minimizing. Even if we restrict observations on Riemannian mani-
folds only, the minimizing property as a definition has big technical difficulties.

This is why we choose a different property of straight lines and generalise that. A
good candidate is the property that straight lines are the only curves in Euclidean space
that have parametrizations with zero acceleration, and we generalise this to pseudo-
Riemannian manifolds.

Let γ : I → M be a curve in a pseudo-Riemannian manifold (M, g). The velocity vector
at time t ∈ I represents the derivative γ′(t), while another derivative γ′′(t) gives rise to
the acceleration. Therefore, it is necessary to make the quotient by subtracting the vectors
γ′(t+h) ∈ Tγ(t+h)M and γ′(t) ∈ Tγ(t)M, which is not convenient because they live in different
spaces. In the case of abstract manifolds this difference makes no sense, so we need a
way to compare the values of vector field at different points, or to connect close tangent
spaces. That connection is additional information on a manifold that allows differentiation
of vector fields as well as interpretation of the curve acceleration.

Let us first consider the case of the Euclidean space Rn. We can differentiate a function
f ∈ F(Rn) at a point p ∈ Rn in the direction Xp ∈ TpRn with

DXpf = lim
t→0

f(p+ tXp)− f(p)
t = (f ◦ γ)′(0) = γ′(0)f = Xp(f), (5.1)

where γ(t) = p+ tXp. Similarly, we can differentiate a vector field Y =
∑n

i=1 Yi∂i ∈ X(Rn) by

DXpY = lim
t→0

Y(p+ tXp)− Y(p)
t =

n∑
i=1

lim
t→0

Yi(p+ tXp)∂i − Yi(p)∂i
t

=
n∑
i=1

DXpYi∂i =
n∑
i=1

Xp(Yi)∂i.
(5.2)

In the case of an arbitrary manifold M, which is not necessarily embedded in an Eu-
clidean space, we can use the result from (5.1) to differentiate a function f ∈ F(M) in the
direction of vector Xp ∈ TpM by ∇Xpf = Xp(f). However, since there is no canonical basis
of tangent space TpM, the result from (5.2) is not usable directly. Since we do not have a
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canonical way to define vector field differentiation on an abstract manifold, we use the
formula (5.2) to establish the properties that DXpY has in Rn, to base a general theory on
them.

For a vector field X ∈ X(Rn) we define DXY by (DXY)p = DXpY for each p ∈ Rn. Because
of (5.2) we have (DXY)p =

∑n
i=1 Xp(Yi)(∂i)p, so vector fields X and Y bring a new vector field

DXY =

n∑
i=1

X(Yi)∂i (5.3)

and the R-bilinear binary operation D : X(Rn) × X(Rn) → X(Rn). The map D is obviously
F(Rn)-linear by the first argument, while it is Leibnizian by the second argument, since for
X,Y ∈ X(Rn) and f ∈ F(Rn) holds

DX(fY) =
n∑
i=1

X(fYi)∂i =
n∑
i=1

(Xf)Yi∂i +
n∑
i=1

fX(Yi)∂i = (Xf)Y+ fDXY.

Observed properties motivate us to introduce the connection operation on an arbitrary
manifold.

A connection (affine connection, linear connection) on a manifold M is an R-
bilinear map ∇ : X(M)×X(M) → X(M) with the notation (X,Y) 7→ ∇XY, that is F(M)-linear in
its first argument and Leibnizian in its second argument. The symbol ∇ is read “nabla”or
“del” and ∇XY is called the covariant derivative of Y in the direction of X.

For arbitrary X,Y,Z ∈ X(M) and f,h ∈ F(M), we can write the covariant derivative
formulas as follows. Since the connection is F(M)-linear in its first argument we have

∇fX+hYZ = f∇XZ+ h∇YZ. (5.4)

The connection is not F(M)-linear in its second argument, but only R-linear, so

∇X(Y+ Z) = ∇XY+∇XZ, (5.5)

while a deviation from F(M)-linearity can be seen through the Leibniz rule

∇X(fY) = f∇XY+ (X(f))Y. (5.6)

The motivational operation D defined by (5.3) surely satisfies the definition conditions and
we call it the standard connection on Rn.

A covariant derivative ∇X with respect to a vector field X ∈ X(M) can be extended to
an arbitrary tensor field on M. We have naturally ∇Xf = Xf for f ∈ F(M), while ∇XY by
formulas (5.5) and (5.6) completes the conditions of Theorem 3.16, so there exists a unique
tensor field derivation on M that generalises a covariant derivative.

For an arbitrary tensor field A ∈ Tr
s(M) we have ∇XA ∈ Tr

s(M), so additionally we define
a map ∇A : X∗(M)r × X(M)s+1 → F(M) by

∇A(ω1, . . . ,ωr,Y1, . . . ,Ys,X) = (∇XA)(ω1, . . . ,ωr,Y1, . . . ,Ys).

Since ∇XA ∈ Tr
s(M) then ∇A is F(M)-multilinear in the first r+ s arguments, while by (5.4)

it is F(M)-linear in the last argument. In this way, we get a new tensor field ∇A ∈ Tr
s+1(M)

called the total covariant derivative of A. We say that a tensor field A ∈ Tr
s(M) is par-

allel if ∇A = 0.

Example 5.1. For f ∈ F(M) we have (∇f)(X) = ∇Xf = Xf = df(X), so the total covariant
derivative of function is equal to its differential, ∇f = df. Additionally, if ∇f = 0, then
df = 0, and as the differential is identified with the tangent map we have Tf = 0, so from
the proof od Lemma 2.20 we see that f is a local constant. Hence, if ∇f = 0, then f is locally
constant, while for a connected M it is globally constant. 4

95



Chapter 5. Connection

Example 5.2. The covariant tensor of order two ∇2f = ∇(∇f) is called the Hessian1 of f.
If C is the (1,1) contraction we have

∇X(∇Yf) = ∇X(∇f(Y)) = ∇X(C(∇f⊗ Y)) = C(∇X(∇f⊗ Y)) = C(∇X∇f⊗ Y+∇f⊗∇XY)
= (∇X∇f)(Y) +∇f(∇XY) = ∇2f(Y,X) +∇∇XYf,

and therefore ∇2f(Y,X) = X(Y(f))− (∇XY)f. 4

Although the connection is defined on global vector fields, it is actually a local operator,
which we see in the following theorem.
Theorem 5.1. Let ∇ be a connection on a manifold M. The value of a vector field ∇XY at
p ∈ M depends only on the value for Y ∈ X(M) in a neighbourhood of p and the value for
X ∈ X(M) at p.
Proof. We have the dependence on the component Y as a tensor derivative in Theorem
3.15, while the dependence on the component X can be seen in Theorem 3.13 if for a fixed
Y we consider T1

1(M) 3 T : X(M) → X(M) given by T(X) = ∇XY.

Let V ∈ TpM be a tangent vector at a point p = π(V) ∈ M and Z ∈ X(U) be a vector field
where U ⊆ M is a neighbourhood of p. Theorem 5.1 allows us to well define ∇VZ = (∇XY)p,
where X,Y ∈ X(M) are arbitrary vector fields such that Xp = V and Y↾U = Z.

Let ∇ be a connection on an n-manifold M, and (E1, . . . ,En) is a local frame over an
open subset U ⊆ M. Most often this is a coordinate frame with Ei = ∂i, but it is useful to see
general calculations. For any 1 ≤ i, j ≤ n the covariant derivative ∇EiEj can be expressed
in terms of the same frame by

∇EiEj =
n∑

k=1
ΓkijEk.

In this way, we get n3 functions Γkij ∈ F(U) called Christoffel symbols2 of ∇ related to that
frame. If X =

∑n
i=1 XiEi and Y =

∑n
j=1 YjEj, then

∇XY = ∇X
(∑

j
YjEj

)
=
∑
j
(XYj)Ej +

∑
j
Yj∇∑

i XiEiEj

=
∑
j
(XYj)Ej +

∑
i,j

XiYj∇EiEj =
∑
k
(XYk)Ek +

∑
i,j,k

XiYjΓkijEk,

which implies

∇XY =

n∑
k=1

XYk + n∑
i,j=1

XiYjΓkij

Ek,

so the connection on U is completely determined by its Christoffel symbols. In the case of
coordinate frame, the previous formula is reduced to the equality

∇XY =
n∑

k=1

X(Y(xk)) + n∑
i,j=1

X(xi)Y(xj)Γkij

 ∂

∂xk
, (5.7)

from where it is easy to conclude the locality of the connection from Theorem 5.1.
Moreover, in the case that the manifold atlas consists of a single chart, (∂1, . . . , ∂n) is a

global frame and it turns out that an arbitrary choice of n3 smooth functions Γkij ∈ F(M)

defines a connection ∇ using the equality (5.7). First we notice that X,Y ∈ X(M) obviously
give ∇XY ∈ X(M). It is also obvious R-linearity by Y and F(M)-linearity by X. It remains the
Leibnizian property by Y, which is a simple straightforward calculation.

1Ludwig Otto Hesse (1811–1874), German mathematician
2Elwin Bruno Christoffel (1829–1900), German mathematician and physicist
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Example 5.3. If we set all Christoffel symbols to be zero, then from the equation (5.7) we
obtain ∇XY =

∑n
k=1 XYk∂k which is the standard connection DXY when M = Rn. 4

Example 5.4. Any choice of smooth functions Γkij ∈ F(Uα) creates a connection ∇α on each
coordinate neighbourhood Uα. For partitions of unity ψα subordinate to atlas we can set
∇XY =

∑
α ψα∇α

XY, which allows us to construct plentiful connections on a manifold M. It
is easy to see the smoothness, R-linearity by Y, and F(M)-linearity by X. For Leibnizian
by Y, each linear combination of connections will not make a connection, but because of∑

α ψα = 1 we have ∇X(fY) =
∑

α ψα∇α
X(fY) =

∑
α ψα((Xf)Y+ f∇α

XY) = (Xf)Y+ f∇XY. 4

5.2 Levi-Civita connection

Let (M, g) be a pseudo-Riemannian manifold and let ∇ be a connection on M. We say that
a connection ∇ is metric (or preserves the metric g) if g is a parallel tensor field, ∇g = 0.
For a metric connection we have

0 = (∇g)(Y,Z,X) = (∇Xg)(Y,Z) = ∇X(g(Y,Z))− g(∇XY,Z)− g(Y,∇XZ),

which gives the agreement between the metric g and the connection ∇,

X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ). (5.8)

The map τ : X(M) × X(M) → X(M) defined by τ(X,Y) = ∇XY − ∇YX − [X,Y] we call the
torsion. The torsion is evidently F(M)-bilinear, and therefore τ ∈ T1

2(M) (see Example
3.23). We say that a connection is symmetric if it is torsion-free, τ = 0, which gives

[X,Y] = ∇XY−∇YX. (5.9)

Since the commutator of coordinate vector fields is equal to zero, the symmetry of the
connection one can see in the equality ∇∂i∂j = ∇∂j∂i, that is the symmetry Γkij = Γkji between
Christoffel symbols related to the coordinate frame.

Example 5.5. In Example 5.2, by ∇2f(Y,X) = X(Y(f)) − (∇XY)f we expressed the Hessian
of a function f ∈ F(M), which implies ∇2f(X,Y)−∇2f(Y,X) = (τ(X,Y))f, so the symmetry of
connection is equivalent to the symmetry of Hessian. 4

We often require that a connection satisfies the last two conditions, which bring us
a new concept of connection that includes the metric. A Levi-Civita connection3 on a
pseudo-Riemannian manifold (M, g) is a symmetric metric connection ∇. In other words,
a Levi-Civita connection is a map ∇ : X(M) × X(M) → X(M) that satisfies (5.4), (5.5), (5.6),
(5.8), and (5.9) for every f,h ∈ F(M) and all X,Y,Z ∈ X(M). It turns out that all of them can
be unified with one single general equality. Let us start with the following expression,

X(g(Y,Z)) + Y(g(Z,X))− Z(g(X,Y)).

Since ∇ is metric, we apply (5.8) three times to get

g(X,∇YZ−∇ZY)− g(Y,∇ZX−∇XZ) + g(Z,∇XY+∇YX).

Since ∇ is symmetric, we apply (5.9) three times to get

g(X, [Y,Z])− g(Y, [Z,X])− g(Z, [X,Y]) + 2g(∇XY,Z).
3Tullio Levi-Civita (1873–1941), Italian mathematician
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Thus, we have the following equality,

2g(∇XY,Z) = X(g(Y,Z))+Y(g(Z,X))−Z(g(X,Y))−g(X, [Y,Z])+g(Y, [Z,X])+g(Z, [X,Y]), (5.10)

called the Koszul formula4, which is very useful because it determines a Levi-Civita con-
nection.

Theorem 5.2. A map ∇ : X(M)× X(M) → X(M) is a Levi-Civita connection if and only if for
all X,Y,Z ∈ X(M) the Koszul formula (5.10) holds.

Proof. We already know that a Levi-Civita connection ∇ satisfies the Koszul formula, since
it is derived from the properties of a Levi-Civita connection. Vice versa, it remains to prove
the formulas (5.4), (5.5), (5.6), (5.8), and (5.9) under the assumption that (5.10) holds for all
X,Y,Z ∈ X(M).

We use the fact that g(V,X) = g(W,X) for all X ∈ X(M) implies V♭ = W♭, and therefore
V = W. In the following calculations functions f ∈ F(M) go ahead of the tensor field g, while
for commutators we can use special cases of the formula (2.6). For example, checking the
Leibnizian property (5.6), for all Z ∈ X(M) gives

2g(∇XfY,Z) =X(g(fY,Z)) + fY(g(Z,X))− Z(g(X, fY))
− g(X, [fY,Z]) + g(fY, [Z,X]) + g(Z, [X, fY])

=X(fg(Y,Z)) + fY(g(Z,X))− Z(fg(X,Y))
− g(X, f[Y,Z]− (Zf)Y) + fg(Y, [Z,X]) + g(Z, f[X,Y] + (Xf)Y)

=2fg(∇XY,Z) + (Xf)g(Y,Z)− (Zf)g(X,Y) + g(X, (Zf)Y) + g(Z, (Xf)Y)
=2fg(∇XY,Z) + 2g((Xf)Y,Z) = 2g(f∇XY+ (Xf)Y,Z).

The symmetry (5.9) follows from the simple calculation,

2g(∇XY−∇YX,Z)
= X(g(Y,Z)) + Y(g(Z,X))− Z(g(X,Y))− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y])
− Y(g(X,Z))− X(g(Z,Y)) + Z(g(Y,X)) + g(Y, [X,Z])− g(X, [Z,Y])− g(Z, [Y,X])

=g(Z, [X,Y])− g(Z, [Y,X]) = 2g([X,Y],Z).

In a similar way, we can prove that (5.10) implies the remaining formulas (5.4), (5.5), and
(5.8).

Let us create the map F(X,Y) : X(M) → F(M) by

F(X,Y) : Z 7→ X(g(Y,Z)) + Y(g(Z,X))− Z(g(X,Y))− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y]).

It is easy to show that F(X,Y) is F(M)-linear, which gives F(X,Y) ∈ X∗(M). By Theorem 5.2,
∇ is a Levi-Civita connection if and only if 2g(∇XY,Z) = F(X,Y)Z holds for all X,Y,Z ∈ X(M).
This condition is equivalent to 2(∇XY)♭ = F(X,Y) ∈ X∗(M), that is,

∇XY =
1
2F(X,Y)

♯,

whence the existence and uniqueness of a Levi-Civita connection follow.

Theorem 5.3. Any pseudo-Riemannian manifold admits a unique Levi-Civita connection.

4Jean-Louis Koszul (1921–2018), French mathematician
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We can express the unique Levi-Civita connection on a pseudo-Riemannian n-manifold
(M, g) by computing the Christoffel symbols in an arbitrary chart (U,φ) on M. Applying the
Koszul formula on the coordinate vector fields we have

F(∂i, ∂j) =
n∑
l=1

F(∂i, ∂j)∂l dxl =
n∑
l=1

(
∂

∂xi
gjl +

∂

∂xj
gli −

∂

∂xl
gij
)
dxl,

which implies

∇∂i∂j =
1
2F(∂i, ∂j)

♯ =
1
2

n∑
k=1

n∑
l=1

glk
(

∂

∂xi
gjl +

∂

∂xj
gli −

∂

∂xl
gij
)
∂k,

and therefore we obtain the explicit formula

Γkij =
1
2

n∑
l=1

glk
(
∂gjl
∂xi

+
∂gli
∂xj

−
∂gij
∂xl

)
. (5.11)

Consider the behaviour of the unique Levi-Civita connection from Theorem 5.3 in the
case of an isometry f : M → N. Since f is a diffeomorphism, we use the formulas (2.9) and
(2.10), so for every X,Y,Z ∈ X(M) we obtain

X(gM(Y,Z)) = X((f∗gN)(Y,Z)) = X(gN(f∗Y, f∗Z) ◦ f) = f∗X(gN(f∗Y, f∗Z)) ◦ f,
gM(X, [Y,Z]) = (f∗gN)(X, [Y,Z]) = gN(f∗X, f∗[Y,Z]) ◦ f = gN(f∗X, [f∗Y, f∗Z]) ◦ f.

In light of this, the Koszul formula (5.10) gives

2gN(f∗(∇XY), f∗Z) ◦ f = 2gM(∇XY,Z) = 2gN(∇f∗Xf∗Y, f∗Z) ◦ f,

and consequently
f∗(∇XY) = ∇f∗Xf∗Y, (5.12)

which means that the Levi-Civita connection is preserved by isometries.

Lemma 5.4. The total covariant derivative commutes with the musical isomorphisms.

Proof. Consider the flat, which lowers the p th contravariant index of an arbitrary tensor
A ∈ Tr

s(M), where for components we have

(A♭)
i1...ip−1ip+1...ir
j1...jsk =

∑
l
Ai1...ip−1lip+1...ir
j1...js gkl =

∑
l
(A⊗ g)i1...ip−1lip+1...ir

j1...jskl = (C(A⊗ g))i1...ip−1ip+1...ir
j1...jsk ,

from which follows A♭ = C(A ⊗ g), where C = Cps+2 is the corresponding contraction. For
X ∈ X(M), since ∇g = 0, we have

∇X(A♭) = ∇XC(A⊗ g) = C∇X(A⊗ g) = C(∇XA⊗ g+ A⊗∇Xg) = C(∇XA⊗ g) = (∇XA)♭,

so we obtain

∇(A♭)(. . . ,X) = ∇X(A♭)(. . . ) = (∇XA)♭(. . . ) = (∇A)(. . . ,Y♭, . . . ,X) = (∇A)♭(. . . ,X),

which means that the flat commutes with the covariant derivative, ∇(A♭) = (∇A)♭. Since
the sharp and flat are inverses of each other (applied to the same index position), we have

(∇A)♯ = (∇(A♯♭))♯ = (∇(A♯))♭♯ = ∇(A♯),

so the sharp also commutes with the covariant derivative ∇(A♯) = (∇A)♯.
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5.3 Parallel transport

Let γ : I → M be the curve in a manifold M, and γ′ : I → TM is its velocity. In some chart
(U,φ) at γ(t) ∈ M with the coordinate functions xi = πi ◦ φ, for a function f ∈ F(M) holds

γ′(t)f = d(f ◦ γ)
dt (t) =

n∑
i=1

∂(f ◦ φ−1)

∂πi
(φ(γ(t)))d(πi ◦ φ ◦ γ)

dt (t) =
n∑
i=1

∂f
∂xi

(γ(t))d(xi ◦ γ)dt (t).

If γi = xi ◦ γ for 1 ≤ i ≤ n denotes the curve components, then the velocity in coordinates
can be expressed as

γ′(t) =
n∑
i=1

γ′i(t)
(

∂

∂xi

)
γ(t)

. (5.13)

A vector field along a curve γ : I → M is a smooth map V : I → TM which satisfies
V(t) ∈ Tγ(t)M for all t ∈ I, that is, π ◦ V = γ. Let X(γ) denotes the set of all vector fields
along γ, and it is a module under F(I). A basic example of a vector field along a curve γ is
its velocity γ′ ∈ X(γ), which is expressed in coordinates by the formula (5.13).

A large class of examples is obtained from an arbitrary vector field X ∈ X(M) for a
curve γ : I → M, by placing Xγ = X ◦ γ ∈ X(γ), that is, Xγ(t) = Xγ(t) for t ∈ I. For V ∈ X(γ)
is said to be extendible if there exists a vector field X on a neighbourhood of the image
of γ such that V = Xγ. However, if γ(t1) = γ(t2) and γ′(t1) 6= γ′(t2) for some t1, t2 ∈ I, then
γ′ ∈ Xγ is not extendible. Moreover, the velocity of the injective immersion γ : (−π, π) → R2,
γ(t) = (sin 2t, sin t) from Example 2.16 is not extensible.

A connection ∇ on a manifold M yields an operator ∇/dt : X(γ) → X(γ) whose natural
properties are expressed by the equalities

∇
dt(V+W) =

∇V
dt +

∇W
dt , (5.14)

∇
dt(fV) =

df
dtV+ f∇V

dt , (5.15)
∇Xγ
dt (t) = ∇γ′(t)X, (5.16)

for V,W ∈ X(γ), X ∈ X(M), f ∈ F(I).

Theorem 5.5. Let ∇ be a connection on a manifold M, and γ : I → M is a curve. Then, there
exists a unique operator ∇/dt : X(γ) → X(γ) satisfying the formulas (5.14), (5.15), and (5.16)
for all V,W ∈ X(γ), X ∈ X(M), f ∈ F(I).

Proof. Suppose that an operator ∇/dt satisfies the desired conditions. For an arbitrary
t0 ∈ I consider a chart (U,φ) at γ(t0) ∈ M with xi = πi ◦ φ. In a neighbourhood I0 of
t0 ∈ I, where γ(I0) ⊆ U, we can locally express V ∈ X(γ) by V(t) =

∑
j vj(t)(∂j)γ(t), where

vj(t) = (V(t))(xj). Using the formulas (5.14) and (5.15) we get

∇V
dt =

n∑
j=1

∇
dt
(
vj(∂j)γ

)
=

n∑
j=1

(
v′j(∂j)γ + vj

∇
dt(∂j)γ

)
.

Applying the formula (5.16) with locally expressed γ′(t) by the components γi = xi ◦ γ from
(5.13), we have

∇(∂j)γ

dt (t) = ∇γ′(t)∂j =
n∑
i=1

γ′i(t)(∇∂i∂j)γ(t) =
n∑
i=1

γ′i(t)
n∑

k=1
Γkij(γ(t))(∂k)γ(t),
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which finally gives

∇V
dt (t) =

n∑
k=1

v′k(t) + n∑
i,j=1

vj(t)γ′i(t)Γ
k
ij(γ(t))

 (∂k)γ(t). (5.17)

Therefore, a required operator must be unique, that is, at t0 ∈ I expressed by (5.17). For ex-
istence, in the general case we can cover γ(I) with coordinate neighbourhoods and define
the operator by (5.17) in each chart. Then uniqueness implies that various definitions
agree whenever two or more charts overlap. Of course, we should prove that it satisfies
the properties (5.14), (5.15), and (5.16).

The covariant derivative of V ∈ X(γ) along γ : I → M is V′ = ∇V/dt ∈ X(γ). We say
that V ∈ X(γ) is parallel along γ with respect to ∇ if V′ ≡ 0. A vector field X ∈ X(M) turns
out to be parallel (∇X = 0) if it is parallel along every curve in M.

Example 5.6. Consider the standard connection DXY =
∑n

i=1 X(Yi)∂i on Rn from the for-
mula (5.3). For such D we have Γkij ≡ 0, so by (5.17) follows V′(t) =

∑
k v′k(t)(∂k)γ(t). Thus,

V ∈ X(γ) is parallel along curve if and only if v′k ≡ 0 for all 1 ≤ k ≤ n, which means that all
functions vk are constant, that is, V is a constant vector field along curve. 4

The fundamental fact about parallel vector fields is that every tangent vector at any
point on a curve can be uniquely extended to a parallel vector field along the entire curve.

Theorem 5.6. Given a curve γ : I → M, t0 ∈ I, and a vector V0 ∈ Tγ(t0)M, there exist a unique
parallel vector field V along γ such that V(t0) = V0.

Proof. First suppose that γ(I) is contained in a single chart. In coordinates of that chart we
use (5.17), so V is parallel along γ if and only if

v′k(t) = −
n∑

i,j=1
vj(t)γ′i(t)Γ

k
ij(γ(t))

holds for all 1 ≤ k ≤ n. On the other hand, the initial condition V(t0) = V0 transforms into
vk(t0) = V0(xk) for 1 ≤ k ≤ n. This is a linear system of ordinary differential equations
with the initial condition, so we have existence and uniqueness of a solution on all of I. If
γ(I) is not covered by a single chart we consider a as a supremum of all b > t0 for which
there exists a unique desired parallel vector field on [t0,b]. For b close enough to t0, the
image γ[t0,b] is contained in a single chart, so we have a > t0. If a ∈ I, we can choose a
coordinate neighbourhood that contains γ(a−ε,a+ε) for some ε > 0. Now, on (a−ε,a+ε)
there is a parallel vector field W with the initial condition W(a − ε/2) = V(a − ε/2). By
uniqueness on the common domain it follows thatW is an extension ofV that past a, which
is a contradiction. Similarly, the proof works for values b less than t0.

The vector field V along a curve γ from the previous theorem we call the parallel
transport of V0 along γ. For a,b ∈ I we define the parallel transport operator
Pba : Tγ(a)M → Tγ(b)M with PbaVa = V(b), where V is the parallel transport of Va along γ.

We say that a connection ∇ on a pseudo-Riemannian manifold (M, g) is compatible
with the metric g if the parallel transport operator keeps the metric. In other words, com-
patibility of connection and metric, for every curve γ and parallel vector fields V,W ∈ X(γ)
yields the equality

gγ(t)(V(t),W(t)) = gγ(t0)(V(t0),W(t0)) = Const,

which is an obvious consequence of the more general equality

d
dtg(V,W) = g

(
∇V
dt ,W

)
+ g

(
V, ∇W

dt

)
. (5.18)
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Lemma 5.7. A connection∇ of a pseudo-Riemannian manifold (M, g) is compatible with g if
and only if for any two vector fields V and W along a curve γ : I → M holds (5.18).

Proof. If we choose an orthonormal basis in Tγ(t0)M, and then by Theorem 5.6 extend
the basis vectors to the corresponding parallel E1, . . . ,En ∈ X(γ), then the compatibility
between ∇ and g for any t ∈ I gives an orthonormal basis (E1(t), . . . ,En(t)) in Tγ(t)M. For
arbitrary V =

∑
i viEi and W =

∑
jwjEj we have g(V,W) =

∑
i,j viwjδijεi =

∑
i εiviwi. On the

other hand, from E′
i ≡ 0 we have V′ =

∑
i v′iEi and W′ =

∑
jw′

jEj, and therefore we have
g(V,W) =

∑
i,j εiviwjδij =

∑
i viwi, which implies (5.18).

Theorem 5.8. A connection∇ of a pseudo-Riemannian manifold (M, g) is compatible with g
if and only if it is a metric connection.

Proof. Let ∇ is compatible with g and X,Y,Z ∈ X(M). For an arbitrary curve γ such that
γ(0) = p, γ′(0) = Xp holds and vector fields V = Yγ, W = Zγ, from Lemma 5.7 we have
(g(Yγ,Zγ))′ = g(Y′

γ,Zγ) + g(Yγ,Z′
γ). Because of

d
dtg(Yγ,Zγ) =

d
dt(g(Y,Z) ◦ γ) = γ∗

d
dt(g(Y,Z)) = γ′(t)(g(Y,Z)), (5.19)

for t = 0 we obtain
Xp(g(Y,Z)) = gp(∇XpY,Zp) + gp(Yp,∇XpZ),

which proves the formula (5.8), at each point p, and therefore ∇ is a metric connection.
Conversely, it is enough to check the claim for curves γ that lie entirely in some coordin-

ate neighbourhood. Let us set basis vector fields along a curve with Ei = (∂i)γ, and express
V =

∑
i viEi and W =

∑
jwjEj. On the left hand side we have

d
dtg(V,W) =

n∑
i,j=1

(
v′iwjg(Ei,Ej) + viw′

jg(Ei,Ej) + viwj
d
dtg(Ei,Ej)

)
,

while the right hand side gives

g(V′,W) + g(V,W′) =
n∑

i,j=1

(
v′iwjg(Ei,Ej) + viwjg(E′

i,Ej) + viw′
jg(Ei,Ej) + viwjg(Ei,E′

j)
)
,

so it is enough to prove the claim for basis vector fields V = Ei, W = Ej. Because of the
formula (5.19), it remains to prove

γ′(t)(g(∂i, ∂j)) = gγ(t)(∇γ′(t)∂i, (∂j)γ(t)) + gγ(t)((∂i)γ(t),∇γ′(t)∂j).

However, since ∇ is metric, the required compatibility follows from the equality (5.8) for
a vector field X ∈ X(M) such that Xp = γ′(0) with Y = ∂i, Z = ∂j.

Let V,W ∈ X(γ) be parallel and α, β ∈ R. Because of (αV+βW)′ = αV′+βW′ = 0 we have
Pba(αV(a) + βW(a)) = αV(b) + βW(b), which proves that Pba is linear. If Pba(V(a)) = 0 then
by uniqueness V = 0 and therefore V(a) = 0, so Pba is injective hence bijective. Bearing in
mind Theorem 5.8, we arrive at the following crucial property of parallel translation.

Theorem 5.9. Parallel transport is a linear isometry in the case of Levi-Civita connection.

The covariant differentiation along a curve γ can be recovered from the parallel trans-
port. We can start with basis vectors in Tγ(a)M to get the corresponding parallel vector
fields E1, . . . ,En ∈ X(γ), where E′

j ≡ 0 and Ej(t) = PtaEj(a) for 1 ≤ j ≤ n. From V =
∑

j vjEj we
obtain

V′(a) =
n∑
j=1

(vjEj)′(a) =
n∑
j=1

v′j(a)Ej(a) = lim
t→a

n∑
j=1

vj(t)− vj(a)
t− a Ej(a) = lim

t→a

(Pta)−1V(t)− V(a)
t− a .
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Lemma 5.10. For a vector field V along a curve holds

∇V
dt (a) = lim

t→a

(Pta)−1V(t)− V(a)
t− a .

5.4 Geodesics

Let ∇ be a connection on a manifold M, and γ is a curve in M. The covariant derivative
along γ allows to define the acceleration of γ by (γ′)′ ∈ X(γ). A curve γ is called geodesic
with respect to ∇ if its acceleration is zero, (γ′)′ ≡ 0. In other words, a geodesic can be
characterized as a curve whose velocity vector field is parallel along the curve.

The covariant derivative along a curve for V ∈ X(γ) we calculate in some coordinate
neighbourhood according to the formula (5.17). After the substitution V = γ′ we have
vj = γ′j for 1 ≤ j ≤ n, so

∇γ′
dt (t) =

n∑
k=1

γ′′k(t) + n∑
i,j=1

γ′j(t)γ′i(t)Γ
k
ij(γ(t))

 (∂k)γ(t).

The geodesic condition (γ′)′ ≡ 0 establishes the system of ordinary differential equations
of second order,

γ′′k(t) +
n∑

i,j=1
γ′j(t)γ′i(t)Γ

k
ij(γ(t)) = 0 (5.20)

for all 1 ≤ k ≤ n, called the local geodesics equations. For each t0 ∈ I, there exists ε > 0
such that γ(t0 − ε, t0 + ε) is contained in some coordinate neighbourhood, so γ is geodesic
if and only if the corresponding restriction satisfies the local geodesics equations in every
chart whose domain intersects the image of γ.

Theorem 5.11. Let ∇ be a connection on a manifold M. For any p ∈ M and V ∈ TpM there
exist an open interval 0 ∈ I ⊆ R and a geodesic γ : I → M such that γ(0) = p, γ′(0) = V. Any
two such geodesics agree on their common domain.

Proof. An usual trick is to introduce auxiliary functions ξk = γ′k that converts the local
geodesics equations (5.20) to the equivalent first-order system,

γ′k(t) = ξk(t),

ξ′k(t) = −
n∑

i,j=1
ξi(t)ξj(t)Γkij(γ(t)),

in twice the number of variables and equations. According to Picard5–Lindelöf6 theorem
(for a system of ordinary differential equations of first order with initial condition) for
some ε > 0 there exists a unique solution

ζ : (−ε, ε) → M× Rn, ζ(t) = (γ1(t), . . . , γn(t), ξ1(t), . . . , ξn(t))

satisfying the initial condition ζ(0) = (p,V), so the geodesic is γ(t) = (γ1(t), . . . , γn(t)).
For the uniqueness part, let γ1, γ2 : I → M be two geodesics such that γ′1(0) = γ′2(0). For

a = inf{t ∈ I : t > 0, γ1(t) 6= γ2(t)} > 0 we have γ′1(t) = γ′2(t) on (0,a), and from continuity
γ′1(a) = γ′2(a) holds. Now, t 7→ γ1(a + t) and t 7→ γ2(a + t) are geodesics with the initial
velocity γ′1(a) = γ′2(a), so γ1 and γ2 agree on some open interval containing a, which is a
contradiction. There is a similar approach for values t < 0 which completes the proof.

5Charles Émile Picard (1856–1941), French mathematician
6Ernst Leonard Lindelöf (1870–1946), Finish mathematician
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A geodesic γ : I → M ismaximal if there is no other geodesic with an open domain that
strictly contains I, such that agrees with γ on I. From Theorem 5.11 directly follows that
for any V ∈ TM there is a unique maximal geodesic γV with γ′V(0) = V.

If the domain of every maximal geodesic that goes through p ∈ M is the whole R, we
say that M is geodesically complete at point p. For a pseudo-Riemannian manifold is
said to be geodesically complete if it is geodesically complete at every its point. Example
4.23 shows that there are manifolds which are not geodesically complete.

Example 5.7. Consider the pseudo-Riemannian space Rn
ν of index ν. The Christoffel

symbols of the Levi-Civita connection we calculate according to the formula (5.11), but
since the coefficients of metric are constant it follows Γkij ≡ 0. For geodesics γ we have∑

k γ′′k(t)(∂k)γ(t) = 0, so γ′′k ≡ 0 for all 1 ≤ k ≤ n. Thus, geodesics have a form t 7→ p+ tV for
some p,V ∈ Rn

ν. 4

Example 5.8. Consider the hyperbolic half-plane HU2 = {(x1, x2) ∈ R2 : x2 > 0} with the
Riemannian metric g = (dx2

1+dx2
2)/x2

2 from Example 4.21. The components of Riemannian
metric one can see from the following matrices,

g =

(
1/x2

2 0
0 1/x2

2

)
, g−1 =

(
x2

2 0
0 x2

2

)
.

First, we calculate the Christoffel symbols of the Levi-Civita connection by (5.11), and be-
cause of gab = x2

2δab we have

Γkij =
1
2

2∑
l=1

glk
(
∂gjl
∂xi

+
∂gli
∂xj

−
∂gij
∂xl

)
=

1
2x

2
2

(
∂gjk
∂xi

+
∂gki
∂xj

−
∂gij
∂xk

)
.

Since
∂gab
∂xc

= δabδc2
∂(1/x2

2)

∂x2
= − 2

x3
2
δabδc2,

we have
Γkij = − 1

x2
(δjkδi2 + δkiδj2 − δijδk2),

from where we get

Γ1
11 = Γ2

12 = Γ1
22 = 0, Γ2

11 = −Γ1
12 = −Γ2

22 =
1
x2

. (5.21)

We want to find geodesics γ(t) = (γ1(t), γ2(t)) using the local geodesic equations (5.20),

γ′′1(t) +
∑
i,j

γ′j(t)γ′i(t)Γ
1
ij(γ(t)) = 0, γ′′2(t) +

∑
i,j

γ′j(t)γ′i(t)Γ
2
ij(γ(t)) = 0,

which by substitution (5.21) become

γ′′1 − 2γ′1γ′2
1
γ2

= 0, γ′′2 + ((γ′1)2 − (γ′2)2)
1
γ2

= 0. (5.22)

The equations (5.22) are solved by interpreting two cases, where in simpler one holds
γ′1 = 0, that is, γ1 = C = Const. This satisfies the first equation, while the second equation
becomes γ′′2 − (γ′2)2/γ2 = 0, and after dividing by γ2 > 0 we get

γ′′2γ2 − γ′2γ′2
(γ2)

2 =

(γ′2
γ2

)′
= 0.
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5.5. Exponential map

Then γ′2/γ2 = (ln γ2)
′ = D, so ln γ2 = Dt + E and finally γ2 = eDt+E. Thus, the first type of

geodesics are the curves
γ(t) = (C, eDt+E),

which are open rays perpendicular to the x1-axis.
In the second case, we have γ′1 6= 0, where from the first equation of (5.22) implies

γ′′1
γ′1

− 2γ
′
2
γ2

= (ln|γ′1| − 2 ln γ2)
′ =

(
ln |γ′1|

γ2
2

)′

= 0,

so γ′1 = Cγ2
2. Then we have

γ′′2γ2 − γ′2γ′2
(γ2)

2 + C2γ2
2 =

(γ′2
γ2

)′
+ C2γ2

2 = 0.

If we introduce f = γ′2/γ2 = (ln γ2)
′, the equation becomes f′ + C2γ2

2 = 0, and hence f′ < 0.
By differentiation we obtain f′′ + 2C2γ2γ′2 = f′′ − 2f′f = (f′ − f2)′ = 0, so f′ = f2 − A2 for some
constant A > 0. Then we have,

B+

∫
dt =

∫ df
f2 − A2 = − 1

A

∫ d(f/A)
1 − (f/A)2 = − 1

A artanh
(
f
A

)
,

that gives f = −A tanh(A(t + B)) = (ln γ2)
′. It follows γ2 = r/(cosh(A(t + B))), where from

f′ + C2γ2
2 = 0 we get A2 = C2r2. From γ′1 = Cγ2

2 we obtain γ1 = (Cr2/A) tanh(A(t + B)) + l.
Thus, the second type of geodesics are the curves of form

γ(t) =
(
±r tanh(A(t+ B)) + l, r

cosh(A(t+ B))

)
,

for which (γ1 − l)2 + γ2
2 = r2 holds, so geometrically these are half-circles with centre (l,0)

and radius r.

x2

x1

4

5.5 Exponential map

Let ∇ be an arbitrary connection on a manifold M. According to Theorem 5.11 each initial
velocity vector V ∈ TM determines a unique maximal geodesic γV with γ′V(0) = V and
γV(0) = πV. For a deeper understanding of geodesics, it is necessary to figure out how
they change when we vary the initial tangent vector. Geodesics with proportional initial
velocities are closely related, which is discussed in the following rescaling lemma.

Lemma 5.12. For any V ∈ TM and c, t ∈ R holds γcV(t) = γV(ct), whenever either side of the
equality is defined.
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Proof. We assume c 6= 0 since for c = 0 both sides of the equality are equal to πV. It is
sufficient to prove the lemma whenever the right-hand side is defined, since we obtain the
converse when we replace V, t, c with cV, ct,1/c respectively. For γ = γV : I → M we define
the new curve ψ : (1/c)I → M by ψ(t) = γ(ct), where ψ(0) = γ(0) = πV is immediately valid.
In local coordinates xi = πi ◦ φ of some chart (U,φ) we have components γi = xi ◦ γ and
ψi = xi ◦ψ. Then we obtain ψ′

i(t) = (d/dt)γi(ct) = cγ′i(ct), and especially ψ′(0) = cγ′(0) = cV.
Since (γ′)′(ct) = 0, we have

ψ′′
k(t) +

∑
i,j

ψ′
j(t)ψ

′
i(t)Γkij(ψ(t)) = c2γ′′k(ct) + c2

∑
i,j

γ′j(ct)γ′i(ct)Γ
k
ij(γ(ct)) = 0,

so ψ is a geodesic with the initial condition ψ′(0) = cV and therefore ψ = γcV.

Let E ⊆ TM be the set of all tangent vectors V ∈ TM such that the maximal geodesic γV
is defined on an interval containing [0,1]. The map exp : E → M defined by the equation
expV = γV(1) is called the exponentialmap, and we use the same name for its restriction
expp : Ep = E ∩ TpM → M for a point p ∈ M.

Lemma 5.12 allows to obtain from an existing maximal geodesic a new geodesic whose
domain interval will be arbitrary large, by sufficiently reducing the initial vector. If tV ∈ E ,
then γtV(1) is defined, which implies that the geodesics γV has a form

γV(t) = γtV(1) = exp(tV).

Therefore, the maximal geodesics through p ∈ M with initial velocity V ∈ TpM has the
form t 7→ expp tV. Thus, it follows that straight lines of the tangent space TpM through
the origin 0p ∈ TpM are mapped by expp onto geodesics. These geodesics are called the
radial geodesics through p, and analogously we can speak of radial geodesic segments
and radial geodesic rays emanating from p.

Standard results for solutions of ordinary differential equations ensure that expp(V)
depends smoothly on both V and p, so expp is well defined and smooth in some neighbour-
hood of the origin 0p ∈ TpM.

Let τ : I → TpM be the curve in the tangent space defined by τ(t) = tV. It is easy to see
that for V0p = τ′(0) ∈ T0p(TpM) we have

(T0p expp)(V0p) = (T0p expp)(τ′(0)) = (expp ◦τ)′(0) = γ′V(0) = V,

and therefore T0p expp : T0p(TpM) → TpM is a canonical map V0p 7→ V, which is the identity
map under the identification T0p(TpM) ∼= TpM.

Lemma 5.13. Let p be an arbitrary point of a pseudo-Riemannian manifold M. The tan-
gent map of the exponential map expp at the origin 0p ∈ TpM is the identity map under the
canonical identification.

Since the tangent map T0p expp is an isomorphism, the inverse function theorem (The-
orem 2.8) implies that expp is a local diffeomorphism at the origin 0p.

Theorem 5.14. Let ∇ be a connection on a manifold M and p ∈ M. Then, there is a neigh-
bourhood 0p ∈ U ⊆ TpM and a neighbourhood p ∈ U ⊆ M, such that expp ↾U : U → U is a
diffeomorphism.

A subset U 3 0 of a vector space V is called star-shaped at 0 if V ∈ U implies tV ∈ U
for all t ∈ [0,1]. Let us notice that Ep is star-shaped at 0p ∈ TpM. If the domain U of a
diffeomorphism from Theorem 5.14 is star-shaped at 0p then its image U = expp(U) is
called a normal neighbourhood of p.

Let (M, g) be a pseudo-Riemannian manifold of dimension n and let p ∈ M be an arbit-
rary point. A choice of orthonormal basis (E1, . . .En) in the scalar product space (TpM, gp)
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5.5. Exponential map

is equivalent to an isometry L : TpM → Rn
ν given by L(

∑n
i=1 αiEi) = (α1, . . . ,αn). If U is a

normal neighbourhood of p ∈ M, then φ : U → Rn given by φ = L ◦ exp−1
p ↾U is a chart at

p ∈ M. Coordinates xi = πi ◦ φ are called the normal coordinates centred at p ∈ M.
Normal coordinates are extremely useful since they yield a very simple representation for
geodesics.

Theorem 5.15. Let (M, g) be a pseudo-Riemannian n-manifold endowed with its Levi-Civita
connection ∇, and let (U,φ) be a chart with normal coordinates centred at p ∈ M. Then for
all 1 ≤ i, j,k ≤ n we have

Γkij(p) = 0, gij(p) = εiδij, ∂kgij(p) = 0.

Proof. Every vector 0 6= V =
∑n

i=1 viEi ∈ TpM determines the radial geodesic γV through
p of form γV(t) = expp(tV) for t ∈ I where 0 ∈ I ⊆ R is some open interval. In normal
coordinates centred at p we have φ ◦ γV(t) = L(tV) = (tv1, . . . tvn), so γi = xi ◦ γV = tvi
holds for 1 ≤ i ≤ n, which must satisfy the local geodesic equations (5.20), and we obtain∑

i,j vivjΓ
k
ij(γV(t)) = 0 for 1 ≤ k ≤ n. This is certainly true for t = 0 where γV(0) = p, whence

every choice of (v1, . . . , vn) ∈ Rn yields

n∑
i,j=1

vivjΓkij(p) = 0

for all 1 ≤ k ≤ n. A suitable choice is V = Ei from which we get Γkii(p) = 0, and after that
for V = Ei + Ej we have Γkii(p) + Γkij(p) + Γkji(p) + Γkjj(p) = 0, which implies Γkij(p) + Γkji(p), and
since ∇ is symmetric, we obtain Γkij(p) = 0, so all Christoffel symbols vanish at p.

Consider the remaining properties. From V(xi) = (γ′V(0))(xi) = (xi ◦ γV)′(0) = γ′i(0) = vi
we have V =

∑n
i=1 vi(∂i)p, which for V = Ei = (∂i)p yields gp(∂i, ∂j) = εiδij. Since ∇ is metric

we have ∂kgij = g(∇∂k∂i, ∂j) + g(∂i,∇∂k∂j) =
∑

l(Γ
l
kiglj + Γlkjgil), and therefore ∂kgij(p) = 0

because ∇ is also symmetric.

In Theorem 5.14 we showed that every point of a pseudo-Riemannian manifold has a
normal neighbourhood. We say that a normal neighbourhood is totally normal if it is a
normal neighbourhood of each of its points.

Theorem 5.16. Every point of a pseudo-Riemannian manifold has a totally normal neigh-
bourhood.

Proof. We start from a normal coordinate neighbourhood U ⊆ M of a point p ∈ M. We
define the map E : EU → U × U by E(q,V) = (q, expq V), where EU = E ∩ TU ⊆ U × Rn. The
Jacobian matrix of the tangent map of E at the point 0p = (p,0) is a block lower triangular
matrix with the identical matrices on the diagonal (the second of them comes from Lemma
5.13) and therefore it is invertible. According to the inverse function theorem (Theorem
2.8) there is a neighbourhood W ⊆ TU of the point 0p such that E↾W is a diffeomorphism
onto a neighbourhood of (p,p) ∈ U×U. SinceE is continuous, we can assume thatE↾W(W) =
Uϵ ×Uϵ for some ϵ > 0, where Uϵ = {q ∈ U :

∑n
i=1(xi(q))2 < ϵ} is a Euclidean ball related to

the normal coordinates (x1, . . . , xn). Let the tensor b ∈ T0
2(Uϵ) be defined by its components

related to the normal coordinates by

bij = δij −
n∑

k=1
Γkijxk.

It is obviously symmetric and positive definite at p, so we can take a smaller ϵ > 0 such
that b is positive definite on the whole Uϵ. For an arbitrary point q from such Uϵ and
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Wq = W ∩ TqM we know that E↾Wq is a diffeomorphism onto {q} × Uϵ, which means that
expq ↾Wq is a diffeomorphism onto Uϵ, and Uϵ is a normal neighbourhood of each of its
points q if we prove that Wq is star-shaped at 0q.

Let q 6= s ∈ Uϵ and E(q,V) = (q, s), which means that γV : [0,1] → M is a geodesic from
from q to s. If we set its components by γi = xi ◦ γV for 1 ≤ i ≤ n, using the geodesic
equations (5.20) we can calculate

0 < 2b(γ′V, γ′V) = 2
n∑

i,j=1
bijγ′iγ′j = 2

n∑
i,j=1

(
δij −

n∑
k=1

γk(Γkij ◦ γV)
)
γ′iγ′j

= 2
n∑
i=1

(γ′i)2 − 2
n∑

i,j,k=1
γkγ′iγ′j(Γ

k
ij ◦ γV) = 2

n∑
k=1

(γ′k)2 + 2
n∑

k=1
γkγ′′k =

n∑
k=1

(2γkγ′k)′ =
n∑

k=1
(γ2

k)
′′,

from which it follows that the function
∑n

k=1 γ2
k is convex and cannot have a maximum on

the interval (0,1). Therefore γV([0,1]) ⊆ Uϵ, so Wq is star-shaped at 0q and Uϵ is a normal
neighbourhood of the point q which completes the proof.

5.6 Geodesics and minimizing curves

A two-parameter map is a smooth map f : I × J → M, where I, J ⊆ R are open intervals.
Vector fields along a curve can be generalised to vector fields along a two-parameter map.
Thus, a vector field Z ∈ X(f) along f means a smooth map Z : I× J → TM such that π ◦ Z = f.
The partial velocities (∂f/∂t) and (∂f/∂s) are vector fields along f = f(t, s) defined by

∂f
∂t(t, s) = T(t,s)f

(
∂

∂t

)
(t,s)

= (fs)′(t),
∂f
∂s(t, s) = T(t,s)f

(
∂

∂s

)
(t,s)

= (ft)′(s),

where fs : I → M and ft : J → M are given with fs(t) = f(t, s) = ft(s). In some coordinate
neighbourhood, from (2.2) we have

∂f
∂t = f∗

∂

∂t =
∑
j

∂fj
∂t

∂

∂xj
◦ f,

where fj = xj ◦ f, so from the formula (5.17) follows

∇
ds

∂f
∂t =

∑
k

 ∂2fk
∂s∂t +

∑
i,j

∂fj
∂t

∂fi
∂s (Γ

k
ij ◦ f)

 ∂k ◦ f.

In the case of symmetric connection, Γkij = Γkji holds, and we obtain

∇
ds

∂f
∂t =

∇
dt

∂f
∂s . (5.23)

Let (M, g) be a pseudo-Riemannian manifold, and ∇ is its Levi-Civita connection. Note
that since ∇ is symmetric, the formula (5.23) holds. Let us fix p ∈ M, and let V,W ∈ TpM be
such that 0 6= V ∈ Ep. Consider the two-parameter map τ : I × J → TpM, τ(t, s) = tV + tsW
and its exponential image in M, f : I × J → M, f(t, s) = expp(tV + tsW). It is not hard to see
that there exists a small ε > 0 such that for intervals I = (−ε,1 + ε) and J = (−ε, ε) we
have tV+ tsW ∈ Ep. For any s ∈ J, the curve fs : I → M, fs(t) = f(t, s) is the restriction of the
maximal geodesic γV+sW, and therefore

g
(
∂f
∂t ,

∂f
∂t

)
(t, s) = g

(
∂f
∂t ,

∂f
∂t

)
(0,0) = gp(V+ sW,V+ sW),

∇
dt

∂f
∂t ≡ 0.
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However, using ∇g = 0 and the symmetry (5.23) we have

∂

∂tg
(
∂f
∂t ,

∂f
∂s

)
= g

(
∇
dt

∂f
∂t ,

∂f
∂s

)
+ g

(
∂f
∂t ,

∇
dt

∂f
∂s

)
= g

(
∂f
∂t ,

∇
ds

∂f
∂t

)
=

1
2

∂

∂sg
(
∂f
∂t ,

∂f
∂t

)
= gp(V+ sW,W),

which gives

g
(
∂f
∂t ,

∂f
∂s

)
= tgp(V+ sW,W) + g

(
∂f
∂t ,

∂f
∂s

)
(0,0) = tgp(V+ sW,W).

Since
∂τ
∂t (t, s) = (V+ sW)tV+tsW,

∂τ
∂s (t, s) = (tW)tV+tsW,

we have

TV expp(VV) = TV expp ◦T(1,0)τ
(

∂

∂t

)
= T(1,0)(expp ◦τ)

(
∂

∂t

)
=

∂f
∂t(1,0),

TV expp(WV) = TV expp ◦T(1,0)τ
(

∂

∂s

)
= T(1,0)(expp ◦τ)

(
∂

∂s

)
=

∂f
∂s(1,0),

and therefore
gexpp V(TV expp(VV),TV expp(WV)) = gp(V,W). (5.24)

This result is known as the Gauss lemma.

Lemma 5.17. Let (M, g) be a pseudo-Riemannian manifold, p ∈ M, and V,W ∈ TpM such
that 0 6= V ∈ Ep, then the equality (5.24) holds.

The most important case consider a connected Riemannian manifold (M, g), which is a
metric space whose metric topology is the same as the manifold topology (Theorem 4.20).
Let us fix a point p ∈ M. In the inner product space (TpM, gp) we define tangent spheres
and tangent balls of radii r > 0 by

Sr(0p) = {X ∈ TpM : ‖X‖ = r}, Br(0p) = {X ∈ TpM : ‖X‖ < r}.

For r small enough, Br(p) = expp Br(0p) is a normal neighbourhood of p, and then we
say that Br(p) is a geodesic ball (or normal ball) in M centred at p, while for all ε < r,
Sε(p) = expp Sε(0p) is a geodesic sphere (or normal sphere) in M centred at p. Gauss
lemma (Lemma 5.17) asserts that a geodesic sphere Sε(p) is perpendicular to all geodesics
emanating from p, and allows the exponential map to be understood as a radial isometry.

An admissible curve γ : [a,b] → M in a Riemannian manifold M is said to be minimiz-
ing if L(γ) ≤ L(ψ) for every admissible curveψ from γ(a) to γ(b). Of course, γ is minimizing
if and only if L(γ) = d(γ(a), γ(b)) (provided that M is connected, which is what we assume
here).

Theorem 5.18. Let Bε(p) is a geodesic ball in a Riemannian manifold M centred at p ∈ M,
and p 6= q ∈ Bε(p). The radial geodesic from p to q is up to reparametrization the unique
minimizing curve from p to q in M.

Proof. For the unique radial geodesic γ : [0,1] → M from p to q (γ′(0) = exp−1
p (q)) we have

L(γ) = ‖exp−1
p (q)‖ = r < ε. Let ψ : [a,b] → M be an admissible curve from p to q. Let

a0 ∈ [a,b] be the largest t such that ψ(t) = p and let b0 ∈ [a0,b] be the smallest t such that
ψ(t) ∈ Sr(p). For t ∈ [a0,b0] we can express

ψ(t) = expp(ρ(t)V(t)),
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where ρ : [a0,b0] → [0,1] and V : [a0,b0] → Sr(0p). Hence

ψ′ = TρV expp ◦(ρV)′ = TρV expp(ρ′VρV + ρV′
ρV) = ρ′TρV expp(VρV) + ρTρV expp(V′

ρV),

where V′ = ∇V/dt has the property 2g(V,V′) = (g(V,V))′ = (r2)′ = 0. The Gauss lemma
implies

g(ψ′,ψ′) = (ρ′)2g(V,V) + 2ρ′ρg(V,V′) + ρ2g(V′,V′) = (ρ′r)2 + ρ2g(V′,V′) ≥ (ρ′r)2,

and therefore

L(ψ) ≥
∫ b0

a0

‖ψ′(t)‖dt ≥
∫ b0

a0

|ρ′r|dt ≥ r
∫ b0

a0

ρ′ dt = rρ(q)− rρ(p) = r,

which proves L(ψ) ≥ L(γ) = d(p,q).
In order to have the equality L(ψ) = r, it is necessary that a0 = a and b0 = b hold,

and then V′ = 0 and ρ′ > 0. This means that V is constant while ρ is increasing, so ψ is
the exponential image of the segment connecting 0p and exp−1

p (q). Thus, ψ is a monotone
reparametrization of γ, and they have the same image, γ([a,b]) = ψ([a,b]).

Theorem 5.19. Every geodesic in a Riemannian manifold is locally minimizing.

Proof. Let γ : I → M be a geodesic in a Riemannian manifold M defined for some open in-
terval I. For t ∈ I, according to Theorem 5.16, there exists a totally normal neighbourhood
U 3 γ(t). For a,b ∈ γ−1(U), the point γ(b) is contained in the normal neighbourhood U
centred at γ(a), so by Theorem 5.18, the radial geodesic from γ(a) to γ(b) is minimizing
between these two points. However, the restriction of γ to [a,b] is also a geodesic seg-
ment from γ(a) to γ(b) contained in U, and therefore γ↾[a,b] coincides with this minimizing
geodesic.

From the previous theorems, we see that locally, a geodesic (or its reparametrization)
connecting two points is the shortest such curve. However, globally this may not be the
case.

Example 5.9. Consider a sphere, where we know that the images of geodesics are the
great circles of the sphere, and two points from a great circle determine two arcs, one of
which is longer (unless they are antipodal points).

More interesting is the case of a cylinder, where the images of geodesics are helices, so
for two nearby points there are infinitely many geodesics (which have different images)
connecting them, but there is only one (up to reparametrization) whose image is in a nor-
mal neighbourhood of one of those points. 4

Theorem 5.20. Every minimizing curve in a Riemannian manifold is up to reparametriza-
tion geodesic.

Proof. Let ψ : [a,b] → M be a minimizing admissible curve parametrized by arc length. For
each t ∈ [a,b] there exists a totally normal neighbourhood Ut 3 ψ(t), so the image ψ([a,b])
can be covered by finitely many totally normal neighbourhoods. In every neighbourhood
Ut, the unique minimizing curve is a radial geodesic, so ψ satisfies the geodesic equations,
and since it holds for each point, ψ is a geodesic.

5.7 Completeness

A pseudo-Riemannian manifold (M, g) is geodesically complete at a point p ∈ M if every
geodesic through p extends indefinitely. Since the maximal geodesic for some V ∈ TpM is
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of the form γV(t) = expp(tV), it is clear that the previous condition is equivalent to the fact
that TpM is the domain of expp. Thus, M is geodesically complete if and only if the whole
TM is the domain of the exponential map. For example, an open submanifold U ⊂ Rn

ν
of pseudo-Euclidean space is not geodesically complete beacause there are geodesics that
reach the boundary in finite time.

Any two different points of a totally normal neighbourhood can be connected by a
minimizing geodesic, which is a property that does not hold for two arbitrary points of
a Riemannian manifold. However, if a manifold is geodesically complete at one of these
points, we have the following lemma.

Lemma 5.21. If p ∈ M is a point of a connected Riemannian manifold M such that expp is
defined on the whole TpM, then for every q ∈ M there is a minimizing geodesic from p to q.

Proof. Let x be the point of a (compact) geodesic sphere Sϵ(p) where the (continuous) func-
tion Sϵ(p) 3 s 7→ d(s,q) attains its minimum. Then x = expp(ϵV), for some unit V ∈ TpM
and we can consider the geodesic γV which for each t ∈ R is defined by γV(t) = expp(tV).
Every, admissible curve from p to q must pass through Sϵ(p), so

r = d(p,q) = min
s∈Sϵ(p)

(d(p, s) + d(s,q)) = ϵ + min
s∈Sϵ(p)

d(s,q) = ϵ + d(x,q),

which implies d(x,q) = r− ϵ. The set I = {t ∈ [ϵ, r] : d(γV(t),q) = r− t} is nonempty (due to
ϵ ∈ I), closed and bounded, and therefore reaches the maximum t0 ∈ I. For y = γV(t0) there
is a point z of a geodesic sphere Sδ(y) for 0 < δ < r−t0 where the function Sδ(y) 3 s 7→ d(s,q)
attains its minimum. We obtain d(z,q) = r− t0 − δ, and therefore

d(p, z) ≥ d(p,q)− d(z,q) = r− (r− t0 − δ) = t0 + δ = d(p, y) + d(y,q),

so d(p, z) = d(p, y)+d(y,q), which means that the minimizing curve from p to z goes through
y. As a minimizing curve according to Theorem 5.20 is geodesic, we have z = expp((t0+δ)V)
and therefore t0 +δ ∈ I, which is impossible, unless t0 = r. Hence we obtain γV(r) = q, and
γV is a minimizing geodesic from p to q.

Let (M, g) be a connected Riemannian manifold. According to Theorem 4.20, Mwith the
Riemannian distance forms a metric space whose metric topology is equal to the topology
of M. Naturally the question arises whether M is complete as a metric space.

Assume that K ⊆ M is closed and bounded subset of the metric space (M,d). If M is
geodesically complete at a point p ∈ M, by Lemma 5.21 for every q ∈ M there is a minim-
izing geodesic from p to q, so bounded K is contained in some sufficiently large geodesic
sphere Br(p). Thus, there exists r > 0 such that K ⊂ expp(Br(0p)), so a closed subset of
a compact is compact. The set of points of Cauchy7 sequence is bounded, so its closure
is compact, which means that a Cauchy sequence has a convergent subsequence and is
therefore convergent.

In this way, we prove that if M is geodesically complete, then M is complete as a metric
space. However, the converse also holds, which means that geodesic completeness and
metric completeness are equivalent concepts, which is known as Hopf8–Rinow9 theorem
from 1931 [68].

Theorem 5.22. A connected Riemannian manifold is geodesically complete if and only if it
is complete as a metric space.

7Augustin-Louis Cauchy (1789–1857), French mathematician
8Heinz Hopf (1894–1971), German mathematician
9Willi Ludwig August Rinow (1907–1979), German mathematician
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Proof. Let p ∈ M and V ∈ TpM be a unit vector. Consider the maximal geodesic γV : I → M.
Thanks to Theorem 5.11, the interval I is open. Let {tn}n∈N be a Cauchy sequence such
that limn→∞ tn = b = sup I < ∞. Since d(γV(ti), γV(tj)) ≤ |ti − tj|, we see that {γV(tn)}n∈N
is a Cauchy sequence in M, so using the fact that M is complete we have the point q =
limn→∞ γV(tn) ∈ M. There exists ϵ > 0 such that B2ϵ(q) is geodesic ball. Let us choose a ∈ R
such that 0 < b− a < ε, so for W = γ′V(a) consider the geodesic γW. Then γW(t) = γV(a+ t),
so γV is defined for a + ϵ > b, which is a contradiction. Therefore the interval I is closed,
hence I = R, which proves that M is geodesically complete at the point p, but it holds for
every point, and therefore M is geodesically complete.

5.8 Problems

Problem 5.1. Let (M, g) be a Riemannian manifold, and let P,Q ∈ T0
2(M) be parallel tensor

fields. if T ∈ T0
4(M) is defined by T(X,Y,Z,W) = P(X,Y)Q(Z,W) for all X,Y,Z,W ∈ X(M),

prove that T is also parallel.

Problem 5.2. Consider R3 with the standard Euclidean metric and introduce a connection
∇ defined in standard coordinates by Γ3

12 = Γ1
23 = Γ2

31 = 1 and Γ3
21 = Γ1

32 = Γ2
13 = −1, with

all other Christoffel symbols equal to zero. Is ∇ compatible with the Euclidean metric?
Determine the geodesics with respect to ∇. Is ∇ the Levi-Civita connection?

Problem 5.3. Construct the (Beltrami-Klein) model of hyperbolic space using the central
projection c : Hn

r → Kn
r that maps a point P ∈ Hn

r ⊂ Rn+1
1 to the intersection of the line OP

with the hyperplane x0 = r. Show that c is a diffeomorphism and compute the induced
metric in the natural coordinates of Kn

r .

Problem 5.4. Determine the geodesics in the Beltrami–Klein disc model (M, g), whereM =
{(x1, x2) ∈ R2 : x2

1 + x2
2 < 1},

g =
dx2

1 + dx2
2

1 − x2
1 − x2

2
+

(x1dx1 + x2dx2)
2

(1 − x2
1 − x2

2)
2 .
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CHAPTER 6

CURVATURE

6.1 Curvature tensor fields

An important question in pseudo-Riemannian geometry is whether there are local invari-
ants that are preserved by isometries. Some useful structures in differential geometry
do not have local invariants. For example, any non-vanishing vector field can be written
locally as a partial derivative, and all of them are locally equivalent. Also, Riemannian
1-manifolds are all mutually locally isometric to R. However, the sphere S2 and the plane
R2 are not locally isometric.

Example 6.1. If we introduce the spherical coordinates on the sphere S2 ⊂ R3 without the
closed set {(x, y, z) : x ≤ 0, y = 0} by

x = sinφ cosθ, y = sinφ sinθ, z = cosφ,

for the inclination 0 < φ < π and the azimuth −π < θ < π, its metric inherited from R3 is

g̊ = dx2 + dy2 + dz2 = dφ2 + sin2 φdθ2.

Calculations for the Christoffel symbols of the Levi-Civita connection yield

Γφ
φφ = Γθφφ = Γφφθ = Γθθθ = 0, Γθφθ = cotφ, Γφ

θθ = − sinφ cosφ,

from where it can be seen that meridians θ = Const are geodesics on the sphere, because
the curves of the form γ(t) = (t,θ) obviously satisfy the geodesic equations. Covariant
derivatives of the coordinate vector field ∂φ are

∇∂φ∂φ = 0, ∇∂θ∂φ = cotφ ∂θ,

which means that it is parallel along each meridian, but also along the equator (φ = π/2).
Consider the point p given by coordinates (φ,θ) = (π/2,0) and the vector (∂φ)p. If there
exists a parallel extension of this vector to a neighbourhood of p, it can only be ∂φ (paral-
lel transport along the equator, and then along the corresponding meridian), but we have
∇∂φ 6≡ 0. In Euclidean space each tangent vector has a parallel extension to the entire
space, which is not valid for the sphere, so the sphere and the plane are not locally isomet-
ric. 4

For a pseudo-Riemannian 2-manifold (M, g) there is an obvious attempt to extend a vec-
tor Zp ∈ TpM to a parallel vector field Z ∈ X(M). Choose local coordinates (x1, x2) centred
at p, construct the parallel vector field along x1-axis, and then parallel translate the result-
ing vectors along the coordinate lines parallel to the x2-axis. Such vector field Z is parallel
along any x2 coordinate line, and along the x1-axis. The question is whether ∇∂1Z ≡ 0, or
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whether Z is parallel along x1-coordinate lines other than the x1-axis itself. The condition
∇∂2∇∂1Z ≡ 0 determines a unique parallel transport along x2-coordinate lines for some
initial vector, but since ∇∂1Z vanishes at points x2 = 0, this implies ∇∂1Z ≡ 0 On the other
hand we have ∇∂2Z ≡ 0, and also ∇∂1∇∂2Z ≡ 0, so the problem would be solved if ∇∂1 and
∇∂2 commute.

Direct calculations give D∂2D∂1Z = D∂2(
∑

i ∂1Zi∂i) =
∑

i ∂2∂1Zi∂i, for the standard con-
nection ∇ = D in R2, and because partial derivatives commute we get D∂2D∂1Z = D∂1D∂2Z.
However, this does not hold in a general case, since the non-commutativity of such cov-
ariant derivatives allows us to distinguish locally the sphere and the plane in Example
6.1. In order to express non-commutativity in a coordinate invariant way, consider
∇X∇YZ − ∇Y∇XZ, where in Rn holds DXDYZ = DX(

∑
i YZi∂i) =

∑
i XYZi∂i, and therefore

we obtain DXDYZ− DYDXZ =
∑

i(XY− YX)Zi∂i = D[X,Y]Z.
This analysis motivates us to define the curvature operator R : X(M)3 → X(M) on a

pseudo-Riemannian manifold (M, g) by

R(X,Y)(Z) = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z,

for X,Y,Z ∈ X(M), where ∇ is the associated Levi-Civita connection. In other words, the
curvature operator is the map R(X,Y) : X(M) → X(M) given by R(X,Y) = [∇X,∇Y] − ∇[X,Y].
Let us remark that some authors define the curvature operator with the opposite sign,
which is a difference that is not important, but we should be careful about that.

From the very definition, the anti-symmetry

R(Y,X) = −R(X,Y) (6.1)

is evident, as well as its special case R(X,X) = 0. Since both the connection and the com-
mutator are R-bilinear, the curvature operator is R-multilinear with additivity by all three
arguments. Moreover, R is F(M)-multilinear. For F(M)-linearity by the first argument we
have,

R(fX,Y) = [∇fX,∇Y]−∇[fX,Y] = [f∇X,∇Y]−∇f[X,Y]−(Yf)X

= f[∇X,∇Y]− (Yf)∇X − f∇[X,Y] + (Yf)∇X = fR(X,Y),

which also works by the second argument because of (6.1). For the third argument we use
properties (5.6) and (5.5) to obtain

R(X,Y)(fZ) =∇X∇Y(fZ)−∇Y∇X(fZ)−∇[X,Y](fZ)
=∇X(f∇YZ+ (Yf)Z)−∇Y(f∇XZ+ (Xf)Z)− (f∇[X,Y]Z+ ([X,Y]f)Z)
=f∇X∇YZ+ (Xf)∇YZ+ (Yf)∇XZ+ (XYf)Z− f∇Y∇XZ

− (Yf)∇XZ− (Xf)∇YZ− (YXf)Z− f∇[X,Y]Z− ([X,Y]f)Z
=f∇X∇YZ− f∇Y∇XZ− f∇[X,Y]Z = fR(X,Y)Z.

Thus, the curvature operator R : X(M)3 → X(M) is F(M)-multilinear and we usually treat it
as a tensor field R ∈ T1

3(M). By multiple use of (5.9), which is the fact that the connection
is symmetric, we get

R(X,Y)Z+R(Y,Z)X+R(Z,X)Y
= ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z+∇Y∇ZX−∇Z∇YX−∇[Y,Z]X+∇Z∇XY−∇X∇ZY−∇[Z,X]Y
= ∇X[Y,Z] +∇Y[Z,X] +∇Z[X,Y]−∇[X,Y]Z−∇[Y,Z]X−∇[Z,X]Y
= [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]],

and therefore the Jacobi identity (2.7) implies

R(X,Y)Z+R(Y,Z)X+R(Z,X)Y = 0, (6.2)

114



6.1. Curvature tensor fields

which is the formula well known as the Bianchi identity1.
Theorem 6.1. For the curvature operator R ∈ T1

3(M) of a pseudo-Riemannian manifold M,
the formulas (6.1) and (6.2) hold for all X,Y,Z ∈ X(M).

In local coordinates we have R(∂i, ∂j)∂k =
∑

lRl
ijk∂l (see Example 3.25), so the compon-

ents of the curvature operator can be expressed through the Christoffel symbols. From

R(∂i, ∂j)∂k = ∇∂i∇∂j∂k −∇∂j∇∂i∂k −∇[∂i,∂j]∂k

= ∇∂i

∑
m

Γmjk∂m −∇∂j

∑
m

Γmik∂m

=
∑
m

(∂iΓmjk)∂m +
∑
m

Γmjk∇∂i∂m −
∑
m

(∂jΓmik)∂m −
∑
m

Γmik∇∂j∂m

=
∑
m

(∂iΓmjk − ∂jΓmik)∂m +
∑
m,l

(ΓmjkΓlim − ΓmikΓljm)∂l,

we obtain

R(∂i, ∂j)∂k =
∑
l

((
∂iΓljk − ∂jΓlik

)
+
∑
m

(ΓmjkΓlim − ΓmikΓljm)
)
∂l,

and hence
Rl

ijk = ∂iΓljk − ∂jΓlik +
∑
m

(ΓmjkΓlim − ΓmikΓljm). (6.3)

By lowering an index we get the curvature tensor R = R♭ ∈ T0
4(M), which is a covari-

ant tensor field
R =

∑
i,j,k,l

Rijkl dxi ⊗ dxj ⊗ dxk ⊗ dxl

with components Rijkl =
∑

m glmRm
ijk, and therefore for all X,Y,Z,W ∈ X(M) holds

R(X,Y,Z,W) = g(R(X,Y)Z,W).

From (6.1) directly follows the identity

R(X,Y,Z,W) = −R(Y,X,Z,W), (6.4)

while as a consequence of (6.2) we have the first Bianchi identity,

R(X,Y,Z,W) + R(Y,Z,X,W) + R(Z,X,Y,W) = 0. (6.5)

Since the Levi-Civita connection ∇ is metric, from (5.8) follows
g(∇X∇YZ,Z) + g(∇YZ,∇XZ) = Xg(∇YZ,Z),
g(∇Y∇XZ,Z) + g(∇XZ,∇YZ) = Yg(∇XZ,Z),

2g(∇WZ,Z) = g(∇WZ,Z) + g(Z,∇WZ) = Wg(Z,Z),

where the last equality is interesting in the cases W ∈ {Y,X, [X,Y]}. Thus, we have

R(X,Y,Z,Z) = g(∇X∇YZ−∇Y∇XZ−∇[X,Y]Z,Z)
= Xg(∇YZ,Z)− Yg(∇XZ,Z)− g(∇[X,Y]Z,Z)

=
1
2XYg(Z,Z)−

1
2YXg(Z,Z)−

1
2 [X,Y]g(Z,Z) = 0,

so by polarization from

R(X,Y,Z+W,Z+W) = R(X,Y,Z,Z) + R(X,Y,Z,W) + R(X,Y,W,Z) + R(X,Y,W,W)

we obtain
R(X,Y,Z,W) = −R(X,Y,W,Z). (6.6)

1Luigi Bianchi (1856–1928), Italian mathematician
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Theorem 6.2. For the curvature tensor R ∈ T0
4(M) of a pseudo-Riemannian manifold M, the

formulas (6.4), (6.6), and (6.5) hold for all X,Y,Z,W ∈ X(M).

Similar properties can be seen for the total covariant derivative of curvature tensor
∇R. Since

∇R(X,Y,Z,W,V) =V(R(X,Y,Z,W))− R(∇VX,Y,Z,W)− R(X,∇VY,Z,W)

− R(X,Y,∇VZ,W)− R(X,Y,Z,∇VW),

the property (6.4) immediately gives

∇R(X,Y,Z,W,V) = −∇R(Y,X,Z,W,V), (6.7)

while
∇R(X,Y,Z,W,V) = −∇R(X,Y,W,Z,V) (6.8)

is a straightforward consequence of (6.6). From multiple application (6.2) and (6.5),

∇R(X,Y,Z,W,V) +∇R(Y,Z,X,W,V) +∇R(Z,X,Y,W,V)
= V(R(X,Y,Z,W) + R(Y,Z,X,W) + R(Z,X,Y,W))

− g(R(∇VX,Y)Z+R(Z,∇VX)Y+R(Y,Z)∇VX,W)

− g(R(∇VY,Z)X+R(X,∇VY)Z+R(Z,X)∇VY,W)

− g(R(∇VZ,X)Y+R(Y,∇VZ)X+R(X,Y)∇VZ,W)

− g(R(X,Y)Z+R(Y,Z)X+R(Z,X)Y,∇VW) = 0,

we obtain the covariant derivative of the first Bianchi identity

∇R(X,Y,Z,W,V) +∇R(Y,Z,X,W,V) +∇R(Z,X,Y,W,V) = 0. (6.9)

If we use (5.8) to calculate ∇R(X,Y,Z,W,V), we have

∇R(X,Y,Z,W,V) =V(g(R(X,Y)Z,W))− R(X,Y,Z,∇VW)

− R(X,Y,∇VZ,W)− R(∇VX,Y,Z,W)− R(X,∇VY,Z,W)

= g(∇V∇X∇YZ−∇V∇Y∇XZ−∇V∇[X,Y]Z,W)

− g(∇X∇Y∇VZ−∇Y∇X∇VZ−∇[X,Y]∇VZ,W)

− g(∇∇VX∇YZ−∇Y∇∇VXZ−∇[∇VX,Y]Z,W)

− g(∇X∇∇VYZ−∇∇VY∇XZ−∇[X,∇VY]Z,W),

which can be written as

∇R(X,Y,Z,W,V) = g((T1(X,Y,V) + T2(X,Y,V) + T3(X,Y,V))Z,W),

where T1, T2, and T3 are defined by

T1(X,Y,V) = ∇V∇X∇Y −∇V∇Y∇X −∇X∇Y∇V +∇Y∇X∇V = [∇V, [∇X,∇Y]];

T2(X,Y,V) = ∇Y∇∇VX −∇∇VX∇Y +∇∇VY∇X −∇X∇∇VY +∇[X,Y]∇V −∇V∇[X,Y]

= [∇Y,∇∇VX] + [∇∇VY,∇X] + [∇[X,Y],∇V];

T3(X,Y,V) = ∇[X,∇VY] +∇[∇VX,Y].

The Jacobi identity from Lemma A.31 applied to the algebra of all linear endomorphisms
End(X(M)) of the module X(M) over the ring F(M), gives

T1(X,Y,V) + T1(Y,V,X) + T1(V,X,Y) = [∇V, [∇X,∇Y]] + [∇X, [∇Y,∇V]] + [∇Y, [∇V,∇X]] = 0.
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From the equality (5.9) we have

T2(X,Y,V) + T2(Y,V,X) + T2(V,X,Y)
= [∇∇VY−∇YV−[V,Y],∇X] + [∇∇XV−∇VX−[X,V],∇Y] + [∇∇YX−∇XY−[Y,X],∇V] = 0.

The equality (5.9) and the Jacobi identity (2.7) yield

T3(X,Y,V) + T3(Y,V,X) + T3(V,X,Y)
= ∇[X,∇VY] +∇[∇VX,Y] +∇[Y,∇XV] +∇[∇XY,V] +∇[V,∇YX] +∇[∇YV,X]

= ∇[X,∇VY−∇YV] +∇[Y,∇XV−∇VX] +∇[V,∇YX−∇XY]

= ∇[X,[V,Y]]+[Y,[X,V]]+[V,[Y,X]] = 0.

Finally, by combining the previous results, we obtain the second Bianchi identity

∇R(X,Y,Z,W,V) +∇R(Y,V,Z,W,X) +∇R(V,X,Z,W,Y) = 0. (6.10)

Theorem6.3. For the total covariant derivative of curvature tensor∇R ∈ T0
5(M) of a pseudo-

Riemannian manifold M, the formulas (6.7), (6.8), (6.9), and (6.10) hold for all X,Y,Z,W,V ∈
X(M).

Long and painful calculations used in the proof of Theorem 6.3 can be simplified more
intelligently. Namely, as far as tensor equalities are concerned, by Theorem 3.13 it is suf-
fice to show the statement at an arbitrary point p ∈ M. Due to the multilinear nature of
tensors it is enough to show the formula for the basis elements related to some frame. If we
introduce, by Theorem 5.14, normal coordinates centred at p, next to standard [∂i, ∂j] ≡ 0,
according to Theorem 5.15 additionally we have

(∇∂i∂j)p =
∑
k

Γkij(p)(∂k)p = 0.

For example, in normal coordinates centred at p for coordinate vector fields X,Y,Z,W,V
in some neighbourhood of p, for (6.9) we have immediately

(∇R(X,Y,Z,W,V) +∇R(Y,Z,X,W,V) +∇R(Z,X,Y,W,V))(p)
=Vp(R(X,Y,Z,W) + R(Y,Z,X,W) + R(Z,X,Y,W)) = 0.

The second Bianchi identity (6.10) is getting more incomparably faster and easier,

(∇R(X,Y,Z,W,V))(p) = (V(R(X,Y,Z,W)))(p)
= g(∇V(R(X,Y)Z),W)(p) + g(R(X,Y)Z,∇VW)(p)
= g(∇V∇X∇YZ−∇V∇Y∇XZ−∇V∇[X,Y]Z,W)(p)
= g(∇V∇X∇YZ−∇V∇Y∇XZ,W)(p),

and therefore
(∇R(X,Y,Z,W,V) +∇R(Y,V,Z,W,X) +∇R(V,X,Z,W,Y))(p)

=g((∇V∇X∇Y −∇V∇Y∇X +∇X∇Y∇V −∇X∇V∇Y +∇Y∇V∇X −∇Y∇X∇V)Z,W)(p)
=R(V,X,∇YZ,W)(p) + R(X,Y,∇VZ,W)(p) + R(Y,V,∇XZ,W)(p) = 0.

Let f : M → N be an isometry between pseudo-Riemannian manifolds. Since the Levi-
Civita connection is preserved in the sense of the formula (5.12), so is the curvature it
induces,

f∗(R(X,Y)Z) = R(f∗X, f∗Y)f∗Z.
It is important to understand the behaviour of isometries and local isometries. The

various concepts of pseudo-Riemannian geometry that we have defined so far are pre-
served in an appropriate sense by isometries. As we have constructed the concepts from
the metric tensor using the tools of manifolds theory, while isometries preserve both the
tools and the tensor, it is natural to expect that they are isometric invariants.
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Example 6.2. Let f : M → N be a local isometry between pseudo-Riemannian manifolds.
The covariant derivative along a curve γ is preserved with

Tγ(t)f
∇V
dt =

∇f∗V
dt ,

for V ∈ X(γ) where (f∗V)(t) = Tγ(t)f(V(t)) for all t. Hence, the parallel translation along a
curve is preserved by

Tγ(b)f ◦ Pγ = Pf◦γ ◦ Tγ(a)f,

where Pγ = Pab denotes the parallel transport from γ(a) to γ(b) along γ in M and Pf◦γ
denotes the parallel transport from f(γ(a)) to f(γ(b)) along f ◦ γ in N. Thus, if γ is a geodesic
in M, then f ◦ γ is a geodesic in N, or more concretely, the geodesics are preserved by

f ◦ γV = γTpf(V), (6.11)

whenever both sides are defined (the domain of γ(Tpf)V may be larger than the domain of
γV), where γV(0) = p and γ′V(0) = V. Therefore, the exponential maps are preserved by

f ◦ expp = expf(p) ◦Tpf (6.12)

whenever both sides are defined. 4

6.2 Algebraic curvature tensors

In the theory of pseudo-Riemannian manifolds, it is convenient to work in a purely algeb-
raic setting. Using the reduction of a pseudo-Riemannian manifold (M, g) to an arbitrary
point p ∈ M, we obtain the vector space V = TpM with a scalar product gp, while natural
tensors yield the concept of algebraic curvature tensors. A tensor R ∈ T0

4(V) over a scalar
product space (V, g) is said to be an algebraic curvature tensor if it for all X,Y,Z,W ∈ V
satisfies the symmetries

R(X,Y,Z,W) = −R(Y,X,Z,W), (6.4 revisited)
R(X,Y,Z,W) = −R(X,Y,W,Z), (6.6 revisited)
R(X,Y,Z,W) + R(Y,Z,X,W) + R(Z,X,Y,W) = 0. (6.5 revisited)

It is important to notice that this definition nicely agrees with Theorem 6.2. The
curvature tensor of a pseudo-Riemannian manifold, reduced to any point, is an algebraic
curvature tensor. Thus, any result derived from an algebraic curvature tensor can be ap-
plied to the curvature tensor of a pseudo-Riemannian manifold.

Applying (6.6), then (6.5) and finally (6.4) and (6.6), we get

2R(X,Y,Z,W)− 2R(Z,W,X,Y)
=R(X,Y,Z,W)− R(X,Y,W,Z)− R(Z,W,X,Y) + R(Z,W,Y,X)
=(−R(Y,Z,X,W)− R(Z,X,Y,W))− (−R(Y,W,X,Z)− R(W,X,Y,Z))
− (−R(W,X,Z,Y)− R(X,Z,W,Y)) + (−R(W,Y,Z,X)− R(Y,Z,W,X))

=− R(Y,Z,X,W)− R(Y,Z,W,X)− R(Z,X,Y,W) + R(X,Z,W,Y)
+ R(Y,W,X,Z)− R(W,Y,Z,X) + R(W,X,Y,Z) + R(W,X,Z,Y) = 0,

and therefore we obtain the symmetry by pairs

R(X,Y,Z,W) = R(Z,W,X,Y), (6.13)
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which holds for all X,Y,Z,W ∈ V and consequently it can be transferred to the curvature
tensor on a manifold. With this in mind, let us remark that the equality (6.6) from the
definition of algebraic curvature tensor, can be replaced by (6.13), since (6.6) is a direct
consequence of (6.4) and (6.13).

Let R be an algebraic curvature tensor on a scalar product space (V, g) of dimension
n. For simplicity, the properties of the scalar product will be relayed to the tensor. This
allows us to say thatR is Riemannian or positive definite (if Ind g = 0), definite (Ind g = 0 or
Indg = n), indefinite (1 ≤ Indg ≤ n−1), Lorentzian (Ind g = 1), n-dimensional (dimV = n),
and so on.
Example 6.3. The basic example of an algebraic curvature tensor on a scalar product
space (V, g) is certainly R1 ∈ T0

4(V) given by

R1(X,Y,Z,W) = g(Y,Z)g(X,W)− g(X,Z)g(Y,W) (6.14)
for all X,Y,Z,W ∈ V . It is easy to see that R1 satisfies the Z2 symmetries (6.4) and (6.6) as
well as the first Bianchi identity (6.5). 4

Let J : V → V be a linear operator on a scalar product space (V, g). We say that J is
self-adjoint or symmetric if g(JX,Y) = g(X, JY) holds for all X,Y ∈ V . Similarly, J is skew-
adjoint or skew-symmetric if g(JX,Y) = −g(X, JY) holds for all X,Y ∈ V . Self-adjoint
and skew-adjoint endomorphisms allow us to obtain new examples of algebraic curvature
tensors.
Example 6.4. A self-adjoint endomorphism J : V → V on a scalar product space (V, g) gen-
erates the algebraic curvature tensor RJ ∈ T0

4(V) defined by

RJ(X,Y,Z,W) = g(JX,W)g(JY,Z)− g(JX,Z)g(JY,W),

for all X,Y,Z,W ∈ V , which can be easily checked. Let us notice that R1 is the special case
for J = 1 · 1. 4
Example 6.5. A skew-adjoint endomorphism J : V → V on a scalar product space (V, g)
generates the algebraic curvature tensor RJ ∈ T0

4(V) defined by

RJ(X,Y,Z,W) = g(JX,Z)g(JY,W)− g(JY,Z)g(JX,W) + 2g(JX,Y)g(JZ,W), (6.15)
for all X,Y,Z,W ∈ V , which can be easily checked. 4
Example 6.6. Let R1, . . . ,Rk ∈ T0

4(V) be algebraic curvature tensors on a scalar product
space (V, g) and α1, . . . ,αk ∈ R. Then

k∑
i=1

αiRi ∈ T0
4(V)

is also an algebraic curvature tensor, since obviously satisfies the equalities (6.4), (6.6),
and (6.5). Thus, a new algebraic curvature tensor can be made as a linear combination of
existing tensors. In particular, kR1 is an algebraic curvature tensors for any k ∈ R. 4

Raising the last index we obtain the affine curvature operator R = R♯ ∈ T1
3(V) for

which the equality
R(X,Y,Z,W) = g(R(X,Y)Z,W),

holds for all X,Y,Z,W ∈ V . Through the restriction, we intentionally kept the notation
from a manifold, R for a curvature tensor and R for a curvature operator. In this way we
can take over the global terminology.

A common way to express an algebraic curvature tensor R is via coordinate curvature
tensor components Rijkl = R(Ei,Ej,Ek,El) related to some basis (E1,E2, . . . ,En) in V . It turns
out that we need only n2(n2 − 1)/12 components, which is given in the following theorem
(see Weinberg2 [119, pp.142–143]).

2Steven Weinberg (1933), American theoretical physicist
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Theorem6.4. The dimension of the space of algebraic curvature tensors on a scalar product
space of dimension n is equal to n2(n2 − 1)/12.

Proof. Consider components Rijkl as two pairs (i, j) and (k, l). Since (6.4) holds we have
(n

2
)

independent pairs on the first place. Since (6.6) holds we have the same on the second
place. However, the pairs are related with (6.13), which gives

(n
2
)
+ · · ·+ 2 + 1 possibilities.

The first Bianchi identity (6.5) adds
(n

4
)

dependent components, for example these are Rijkl
for i < j < k < l. Therefore, the number of independent components Rijkl is equal to(

n
2

)
+ · · ·+ 2 + 1 −

(
n
4

)
=

1
2

(
n
2

)((
n
2

)
+ 1
)
−
(
n
4

)
=

n(n− 1)(n2 − n+ 2)
8 − n(n− 1)(n− 2)(n− 3)

24 =
n2(n2 − 1)

12 .

The Jacobi operator and its related operators play important roles in our theory. The
polarized Jacobi operator is the linear map J : V3 → V defined by

J (X,Y)(Z) = 1
2 (R(Z,X)Y+R(Z,Y)X) , (6.16)

for all X,Y,Z ∈ V . The Jacobi operator for X ∈ V is the linear map JX : V → V defined by
JX = J (X,X), which is often expressed by

JX(Y) = R(Y,X)X. (6.17)

Since (6.6) implies g(JX(Y),X) = R(Y,X,X,X) = 0, then we have JX(Y) ⊥ X, so the codo-
main of the Jacobi operator JX is X⊥. In the case of nonnull X (εX 6= 0), the orthogonal X⊥

is a nondegenerate hypersurface in V , while (6.4) gives JX(X) = R(X,X)X = 0. Thus, the
Jacobi operator for nonnull X ∈ V is completely determined by its restriction

J̃X = JX↾X⊥ : X⊥ → X⊥,

called the reduced Jacobi operator.
From (6.13), (6.4), and (6.6) follow R(Y,X,X,Z) = R(Z,X,X,Y), and therefore the Jacobi

operator is self-adjoint,
g(JX(Y),Z) = g(JX(Z),Y).

Similarly, (6.4) and (6.6) imply R(Y,X,X,Y) = R(X,Y,Y,X), so we obtain the compatibility
of the Jacobi operators,

g(JX(Y),Y) = g(JY(X),X). (6.18)

Thus, the Jacobi operators are self-adjoint endomorphisms on V for which the compatibil-
ity (6.18) holds.

Let (E1, . . . ,En) be an arbitrary orthonormal basis in a scalar product space (V, g) of
dimension n. For any vector X =

∑n
i=1 xiEi we have JX(Ej) =

∑n
i=1 εEig(JX(Ej),Ei)Ei, so we

can calculate the entries of the matrix JX related to the given basis,

(JX)ij = εEig(JX(Ej),Ei) = εEiR(Ej,X,X,Ei) = εEi
n∑

p,q=1
Rjpqixpxq,

which clearly shows that they are homogeneous polynomials of degree 2 (quadratic forms)
in n variables x1, . . . , xn. Of course, this also applies to bases that are not orthonormal,
because M−1JXM is a new matrix of JX, where M is the transition matrix.
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6.3. Sectional curvature

Lemma 6.5. The entries of the matrix JX are homogeneous polynomials of degree 2 in coef-
ficients of X.

Although we defined the Jacobi operator using a scalar product space V , it is important
to notice that we can always substituteV = TpM, where p is a point in a pseudo-Riemannian
manifold M. Also, we can extend the Jacobi operator on the whole X(M) (or at least on the
tangent bundle TM) and keep our terminology.

6.3 Sectional curvature

The curvature tensorR of a pseudo-Riemannian manifold (M, g) is reasonably complicated,
so we introduce commonly used quantity called the sectional curvature. A tangent plane
σ to M at p ∈ M is a two-dimensional subspace of the tangent space TpM. The sectional
curvature κ of a nondegenerate tangent plane σ = Span{X,Y} in TpM is given by

κ(σ) = κ(X,Y) = R(X,Y,Y,X)
εXεY − (g(X,Y))2 .

Let us notice that the denominator εXεY − (g(X,Y))2 = g(X,X)g(Y,Y) − g(X,Y)g(Y,X) is
the determinant of the Gram matrix for g↾σ related to basis X,Y ∈ TpM in σ = Span{X,Y}.
Since by definition we consider only nondegenerate planes σ, our denominator according
to Lemma 4.1 is not zero. Moreover, for Riemannian manifolds, it represents the square
of the area of the parallelogram determined by the pair of vectors X,Y ∈ TpM.

We should check that the value κ(X,Y) depends only on the (nondegenerate) plane
spanned by the vectors X and Y. Let X1 = αX+ βY and Y1 = γX+ δY form another basis in
σ. The change of basis for a bilinear form g gives(

g(X1,X1) g(X1,Y1)
g(Y1,X1) g(Y1,Y1)

)
=

(
α β
γ δ

)(
g(X,X) g(X,Y)
g(Y,X) g(Y,Y)

)(
α γ
β δ

)
,

and therefore εX1εY1 − (g(X1,Y1))
2 = (αδ − βγ)2 (εXεY − (g(X,Y))2). On the other hand, by

using the symmetry properties of R, we have

R(X1,Y1,Y1,X1) = R(αX+ βY, γX+ δY,Y1,X1)

= (αδ − βγ)R(X,Y, γX+ δY,αX+ βY),
= (αδ − βγ)2R(X,Y,Y,X).

Since the determinant of the change of basis is not zero we have αδ−βγ 6= 0, and therefore
κ(X1,Y1) = κ(X,Y), which means that the sectional curvature is well defined.

Note that for a two-dimensional Riemannian manifold, there is only one sectional
curvature at each point, which is the well-known Gaussian curvature. The sectional
curvature is a real-valued function defined on the 2-Grassmannian bundle over M. How-
ever, although the sectional curvature seems simpler than the curvature tensor R, it con-
tains the same information.

First, we can see that the curvature operator depends only on Jacobi operators, because
using (6.1) and (6.2) we have

3R(X,Y)Z = R(X,Y)Z+ (−R(Y,X)Z) + (−R(Y,Z)X−R(Z,X)Y)
= (R(X,Y)Z+R(X,Z)Y)− (R(Y,X)Z+R(Y,Z)X)
= R(X,Y+ Z)(Y+ Z)−R(X,Y)Y−R(X,Z)Z
−R(Y,X+ Z)(X+ Z) +R(Y,X)X+R(Y,Z)Z

= JY+ZX− JYX− JZX− JX+ZY+ JXY+ JZY.
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Since R(W,Z,Y,X) = R(X,Y,Z,W) = g(R(X,Y)Z,W), we have

R(X,Y,Z,W) =
1
3g((JY+Z − JY − JZ)W− (JY+W − JY − JW)Z,X), (6.19)

which shows that the Jacobi operators completely determine the curvature tensor.
Also, the curvature tensor can be expressed only by values μ(X,Y) = R(X,Y,Y,X). From

the polarization

2R(Y,X,X,W) = R(Y+W,X,X,Y+W)− R(Y,X,X,Y)− R(W,X,X,W)

follows
2g(JXY,W) = μ(Y+W,X)− μ(Y,X)− μ(W,X),

and therefore R(X,Y,Z,W) = g(R(X,Y)Z,W) is expressed with 18 terms

6R(X,Y,Z,W) = μ(X+W,Y+ Z)− μ(X,Y+ Z)− μ(W,Y+ Z)
− μ(X+W,Y) + μ(X,Y) + μ(W,Y)
− μ(X+W,Z) + μ(X,Z) + μ(W,Z)
− μ(Y+W,X+ Z) + μ(Y,X+ Z) + μ(W,X+ Z)
+ μ(Y+W,X)− μ(Y,X)− μ(W,X)
+ μ(Y+W,Z)− μ(Y,Z)− μ(W,Z),

where 4 terms vanish in pairs for the final result,

6R(X,Y,Z,W) = μ(X+W,Y+ Z)− μ(X,Y+ Z)− μ(W,Y+ Z)
− μ(X+W,Y) + μ(W,Y)− μ(X+W,Z) + μ(X,Z)
− μ(Y+W,X+ Z) + μ(Y,X+ Z) + μ(W,X+ Z)
+ μ(Y+W,X)− μ(W,X) + μ(Y+W,Z)− μ(Y,Z).

(6.20)

Alternatively, we have

∂

∂s

∣∣∣∣
s=0

R(X+ sW,Y+ tZ,Y+ tZ,X+ sW)

= lim
s→0

(
R(X,Y+ tZ,Y+ tZ,W) + R(W,Y+ tZ,Y+ tZ,X) + 2sR(W,Y+ tZ,Y+ tZ,W)

)
=2R(X,Y+ tZ,Y+ tZ,W),

whence it implies

∂2

∂t∂s

∣∣∣∣
t=0,s=0

R(X+ sW,Y+ tZ,Y+ tZ,X+ sW)

= 2 lim
t→0

(
R(X,Y,Z,W) + R(X,Z,Y,W) + 2tR(X,Z,Z,W)

)
= 2

(
R(X,Y,Z,W) + R(X,Z,Y,W)

)
,

so using some symmetries we can express R by μ in a different way,

6R(X,Y,Z,W) = 2(R(X,Y,Z,W) + (−R(X,Y,W,Z)) + (−R(Y,Z,X,W)− R(Z,X,Y,W)))

= 2
(
R(X,Y,Z,W) + R(X,Z,Y,W)

)
− 2
(
R(X,Y,W,Z) + R(X,W,Y,Z)

)
=

∂2

∂s∂t

∣∣∣∣
s=0,t=0

(
R(X+ sW,Y+ tZ,Y+ tZ,X+ sW)− R(X+ sZ,Y+ tW,Y+ tW,X+ sZ)

)
=

∂2

∂s∂t

∣∣∣∣
s=0,t=0

(
μ(X+ sW,Y+ tZ)− μ(X+ sZ,Y+ tW)

)
,
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and therefore

R(X,Y,Z,W) =
1
6

∂2

∂s∂t

∣∣∣∣
s=0,t=0

(
μ(X+ sW,Y+ tZ)− μ(X+ sZ,Y+ tW)

)
, (6.21)

which is known from Lee [76, Proposition 13.27].
We have shown (in two ways) that the overall values for μ completely determine the

curvature tensor. In the case of a nondegenerate plane Span{X,Y}, its sectional curvature
determines μ(X,Y) = R(X,Y,Y,X) = (εXεY − (g(X,Y))2)κ(X,Y). However, the values μ in
a degenerate case εXεY = (g(X,Y))2 follow from continuity. Namely, for a null X we can
find an arbitrary vector Z for which g(X,Z) 6= 0 holds, and for 0 6= t ∈ R observe the
nondegenerate plane Span{X,Y + tZ} (since εXεY+tZ − (g(X,Y + tZ))2 = −t2(g(X,Z))2 6= 0),
where

μ(X,Y) = lim
t→0

(μ(X,Y) + 2tR(X,Y,Z,X) + t2μ(X,Z)) = lim
t→0

μ(X,Y+ tZ).

The last case is a degenerate plane with a nonnull X, where we set Z = Y − θX for
θ = g(Y,X)/εX to get Z ⊥ X, and therefore μ(X,Y) = μ(X,Z), where the value μ(X,Z) is
already calculated because either Z is null or the plane Span{X,Z} is nondegenerate. Thus,
two algebraic curvature tensors that have the same sectional curvatures must be equal.

Theorem 6.6. The values μ(X,Y) = R(X,Y,Y,X) completely determine the curvature tensor.
The sectional curvature completely determines the curvature tensor at points where the
scalar product is known.

Although the sectional curvature looks simpler than the curvature tensor, its import-
ance arises from the fact that knowledge of all sectional curvatures completely determines
the curvature tensor (at points where the scalar product is known). This refers to the Jacobi
operators, which also contain the very same information as the curvature tensor. These
well known results give the uniqueness of the curvature tensor and are purely algebraic
in nature.

The question of existence of a curvature tensor for given Jacobi operators naturally
arises. This problem was observed and solved by Andrejić3 in 2022 [11, Theorem 1], and we
follow the arguments from [13], where omissions from the original work were corrected,
and the theorem was generalised to a pseudo-Riemannian case.

Let us suppose that we know self-adjoint endomorphisms KX on V for each nonnull
X ∈ V , such that they are compatible in the sense that (6.18) holds. Is there an algebraic
curvature tensor R on (V, g), such that JX = KX holds for all nonnull X ∈ V?

Consider the condition JXX = 0 which holds for all Jacobi operators. However,
the construction KX = εX 1 gives self-adjoint endomorphisms on V that are compatible,
g(εX 1Y,Y) = εXεY = g(εY 1X,X), but εX 1X = εXX 6= 0 holds for a nonnull X ∈ V . Therefore,
we add the natural condition that

KXX = 0, (6.22)
holds for any nonnull X ∈ V .

The first step is to extend the family KX for all X ∈ V . The natural extension is K0 = 0,
which completes the family in the Riemannian setting. However, if the scalar product is
indefinite, then we need to define KX for any null X ∈ V .

Let X,Y,X+ Y,X− Y ∈ V be nonnull. Using (6.18), from

g(KX±YZ,Z) = g(KZ(X± Y),X± Y) = g(KZX,X)± 2g(KZX,Y) + g(KZY,Y)
= g(KXZ,Z)± 2g(KZX,Y) + g(KYZ,Z),

it follows g(KX+YZ,Z) + g(KX−YZ,Z) = 2g(KXZ,Z) + 2g(KYZ,Z) for any nonnull Z ∈ V . The
polarization Z = V+W gives g((KX+Y +KX−Y − 2KX − 2KY)V,W) = 0, when εVεWεV+W 6= 0.

3Vladica Andrejić (1978), Serbian mathematician
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If (E1,E2, . . . ,En) is an orthonormal basis in (V, g), then we can consider the orthogonal
basis (E1,2E2, . . . ,nEn), which provides εiEi = i2εEi 6= 0 and εiEi+jEj = i2εEi + j2εEj 6= 0 for all
1 ≤ i 6= j ≤ n. Hence,

KX+Y +KX−Y = 2KX + 2KY (6.23)
holds, whenever εXεYεX+YεX−Y 6= 0.

The equality (6.23) motivates us to define KN for a null N ∈ V by

2KN = KN+X +KN−X − 2KX,

whenever the right hand side is defined, which immediately shows that KN is a self-adjoint
endomorphism on V . Because of (6.23), if εXεYεN+XεN−XεN+YεN−Y 6= 0, then we have

2(KN+X +KN−X − 2KX) = (KN+X+Y +KN+X−Y − 2KY) + (KN−X+Y +KN−X−Y − 2KY)− 4KX

= (KN+X+Y +KN−X+Y − 2KX) + (KN+X−Y +KN−X−Y − 2KX)− 4KY

= 2(KN+Y +KN−Y − 2KY),

whenever εN+X+YεN+X−YεN−X+YεN−X−Y 6= 0. Otherwise, we can use

KN+X +KN−X − 2KX = KN+tX +KN−tX − 2KtX = KN+Y +KN−Y − 2KY,

where t is not a root of

εtXεN+tXεN−tXεN+X+tXεN−X+tXεN+X−tXεN−X−tXεN+Y+tXεN−Y+tXεN+Y−tXεN−Y−tX = 0,

which is a polynomial equation of degree 22. This proves that KN does not depend on the
choice of X, and therefore KN is well-defined.

If we use Z ∈ V that satisfies εN+ZεN−ZεZ 6= 0, then the equality

2g(KNX,X) = g((KN+Z +KN−Z − 2KZ)X,X)
= g(KX(N+ Z),N+ Z) + g(KX(N− Z),N− Z)− 2g(KXZ,Z) = 2g(KXN,N)

holds for any null N and any nonnull X, which means that endomorphisms KN and KX are
compatible. With that in mind, we see that the very same equality holds when both N and
X are null. In this way, we obtain KX for any X ∈ V , and this extended family remains
compatible.

Let N ∈ V be null. For any X ∈ V such that εXεN+XεN−X 6= 0 holds, using the properties
(6.22) and (6.18) we have

2g(KNN,X) = g(KN+XN+KN−XN− 2KXN,X) = −g(KN+XX,X) + g(KN−XX,X)− 2g(KXX,N)
= −g(KX(N+ X),N+ X) + g(KX(N− X),N− X) = 0.

If (E1,E2, . . . ,En) is an orthonormal basis in (V, g), then we create an orthogonal basis
(mE1,mE2, . . . ,mEn), where m > max1≤i≤n |2g(N,Ei)| to provide εmEi 6= 0 and εN±mEi 6= 0
for 1 ≤ i ≤ n, which yields KNN = 0.

The second step considers a compatible family of self-adjoint endomorphisms KX for
all X ∈ V such that KXX = 0 holds. For all X,Y ∈ V and t ∈ R we have

g(KtXY,Y) = g(KYtX, tX) = t2g(KYX,X) = g(t2KXY,Y),

where the polarization Y = V +W gives g(KtXV,W) = g(t2KXV,W) for V,W ∈ V , so since g
is nondegenerate, it follows KtX = t2KX, which is a natural property of Jacobi operators.

For all X,Y,Z ∈ V and t ∈ R, using the compatibility we have

g(KX+tYZ,Z) = g(KZ(X+ tY),X+ tY) = g(KZX,X) + 2tg(KZX,Y) + t2g(KZY,Y)
= g(KXZ,Z) + 2tg(KZX,Y) + t2g(KYZ,Z),
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which implies

g((KX+tY −KX − t2KY)Z,Z) = 2tg(KZX,Y) = tg((KX+Y −KX −KY)Z,Z).

After the polarizationZ = V+Wwe get g((KX+tY−KX−t2KY)V,W) = tg((KX+Y−KX−KY)V,W)
for all V,W ∈ V , and therefore, since g is nondegenerate, we obtain a generalisation of
(6.23),

KX+tY −KX − t2KY = t(KX+Y −KX −KY), (6.24)

which yields KX+tY = tKX+Y + (1 − t)KX + (t2 − t)KY. Using the property (6.22), we get

0 = KX+tY(X+ tY) = tKX+Y(X+ tY) + (1 − t)KX(X+ tY) + (t2 − t)KY(X+ tY)
= tKX+Y((t− 1)Y) + (1 − t)KX(tY) + t(t− 1)KY(X)
= t(t− 1)(KX+YY−KXY+KYX),

which for t ∈ R \ {0,1} implies

KX+YY−KXY+KYX = 0 (6.25)

for all X,Y ∈ V .
Let us use a compatible family of self-adjoint endomorphisms KX on V that satisfies

KXX = 0 to define a map R : V4 → R, resembling the formula (6.19) by

R(X,Y,Z,W) =
1
3g((KY+Z −KY −KZ)W− (KY+W −KY −KW)Z,X), (6.26)

for all X,Y,Z,W ∈ V . From (6.24), if we take the limit where t tends to zero, then it follows

g((KY+Z −KY −KZ)W,X) = g(KY+tZW,X)− g(KYW,X)
t − tg(KZW,X) = ∂

∂t

∣∣∣∣
t=0

g(KY+tZW,X),

and therefore the equality (6.26) is equivalent to

R(X,Y,Z,W) =
1
3

∂

∂t

∣∣∣∣
t=0

g(KY+tZW−KY+tWZ,X). (6.27)

However, from

2g(KY+tZW,X) = ∂

∂s

∣∣∣∣
s=0

(
g(KY+tZX,X) + 2sg(KY+tZW,X) + s2g(KY+tZW,W)

)
=

∂

∂s

∣∣∣∣
s=0

(
g(KY+tZW,W) + 2sg(KY+tZW,X) + s2g(KY+tZX,X)

)
,

we obtain

2g(KY+tZW,X) = ∂

∂s

∣∣∣∣
s=0

μ(X+ sW,Y+ tZ) = ∂

∂s

∣∣∣∣
s=0

μ(W+ sX,Y+ tZ), (6.28)

where μ(X,Y) = g(KYX,X) = g(KXY,Y) for all X,Y ∈ V . The equality on the left side in (6.28)
shows that (6.27) is equivalent to our formula (6.21),

R(X,Y,Z,W) =
1
6

∂2

∂s∂t

∣∣∣∣
s=0,t=0

(μ(X+ sW,Y+ tZ)− μ(X+ sZ,Y+ tW)). (6.21 revisited)

The definition (6.26) of R is equivalent to (6.21), but the latter is easier to prove that
R is an algebraic curvature tensor. The property (6.6) follows directly from (6.21), while
(6.4) is a consequence of commutativity ∂s∂t = ∂t∂s. The equality on the right side in (6.28)
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helps us to easily see (6.5). From (6.27), R(X,Y,Z,W) is obviously linear by X, but due to the
already proven symmetries, where (6.13) automatically follows, R is multi-linear, which
proves that R is an algebraic curvature tensor.

It remains to show that KX for X ∈ V are the Jacobi operators for R. From (6.26), using
g(JYW,X) = R(W,Y,Y,X) we have 3g(JYW,X) = g(2KYW−KY+WY+KWY,X), which implies

3JYW = 2KYW−KY+WY+KWY.

According to (6.25) we have −KY+WY = KY+WW = KYW − KWY, so 3JYW = 3KYW holds
for all Y,W ∈ V , which gives JY = KY. This finally proves the following theorem (see [13,
Theorem 1] and [11, Theorem 1]).

Theorem6.7. LetKX for all nonnull X ∈ V be a compatible family of self-adjoint endomorph-
isms on a scalar product space V that satisfies KXX = 0. Then there exists a unique algebraic
curvature tensor on V such that KX are its Jacobi operators.

6.4 Constant sectional curvature

The most simple case of a pseudo-Riemannian manifold is a space of constant sectional
curvature. Let (M, g) be a pseudo-Riemannian manifold such that κ(σ) = k(p) for any
nondegenerate tangent plane σ ≤ TpM and some fixed k(p) ∈ R. According to Theorem 6.6
this uniquely determines the curvature tensor R. For any point p ∈ M we have the restric-
tion that gives the scalar product space V = TpM, and the associated algebraic curvature
tensor. Consider an algebraic curvature tensor R = kR1 ∈ T0

4(V) from Example 6.6, where
R1 is defined in (6.14). Since it satisfiesR(X,Y,Y,X) = k(εXεY−(g(X,Y)2), we have κ(X,Y) = k,
so the curvature tensor on (M, g) has a form

R(X,Y,Z,W) = k
(
g(Y,Z)g(X,W)− g(X,Z)g(Y,W)

)
,

where k ∈ F(M). Moreover, in dimension n ≥ 3, we have the following surprising theorem
of Schur4 [108].

Theorem 6.8. Let (M, g) be a connected pseudo-Riemannian manifold of dimension n ≥ 3.
If the sectional curvature κ(σ) does not depend on the plane σ ⊆ TpM, but only on the point
p ∈ M, then κ is constant.

Proof. The sectional curvature at any point p ∈ M is constant k(p), so the curvature tensor
must be R = kR1. Since ∇ is a metric connection, from ∇g = 0 we have

(∇VR1)(X,Y,Z,W) = V(g(Y,Z)g(X,W)− g(X,Z)g(Y,W))

− (g(Y,Z)g(∇VX,W)− g(∇VX,Z)g(Y,W))

− (g(∇VY,Z)g(X,W)− g(X,Z)g(∇VY,W))

− (g(Y,∇VZ)g(X,W)− g(X,∇VZ)g(Y,W))

− (g(Y,Z)g(X,∇VW)− g(X,Z)g(Y,∇VW)) = 0,

and therefore R1 is a parallel tensor field, ∇VR1 = 0. Thus

∇VR = ∇V(k⊗ R1) = ∇Vk · R1 + k · ∇VR1 = (Vk)R1,

and therefore
(∇VR)(X,Y,Z,W) = (Vk)(g(Y,Z)g(X,W)− g(X,Z)g(Y,W)),

(∇XR)(Y,V,Z,W) = (Xk)(g(V,Z)g(Y,W)− g(Y,Z)g(V,W)),

(∇YR)(V,X,Z,W) = (Yk)(g(X,Z)g(V,W)− g(V,Z)g(X,W)).

4Friedrich Heinrich Schur (1856–1932), German mathematician
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The sum of the previous equalities is zero by the second Bianchi identity (6.10), so

g(((Vk)g(Y,Z)− (Yk)g(V,Z))X+ ((Xk)g(V,Z)− (Vk)g(X,Z))Y
+ ((Yk)g(X,Z)− (Xk)g(Y,Z))V,W) = 0

for all W, and therefore from the nondegeneracy of metric

((Vk)g(Y,Z)− (Yk)g(V,Z))X+ ((Xk)g(V,Z)− (Vk)g(X,Z))Y+ ((Yk)g(X,Z)− (Xk)g(Y,Z))V = 0

holds for all X,Y,Z,V ∈ X(M). By restricting the previous equality to a point p ∈ M, thanks
to Example 2.24, we see that

gp((Vpk)Yp− (Ypk)Vp,Zp)Xp+ gp((Xpk)Vp− (Vpk)Xp,Zp)Yp+ gp((Ypk)Xp− (Xpk)Yp,Zp)Vp = 0

holds for all Xp,Yp,Zp,Vp ∈ TpM. Let us fix Xp ∈ TpM. Since n ≥ 3, we can find Yp,Vp ∈ TpM
such that vectors Xp,Yp,Vp are linearly independent. This linear independence yields zero
coefficients in the previous equality, which gives

gp((Ypk)Xp − (Xpk)Yp,Zp) = 0.

This equality holds for every Zp, so the nondegeneracy of gp gives (Ypk)Xp − (Xpk)Yp = 0,
and by linear independence we have Xpk = 0. Since this hold for each p ∈ M, we have
Xk = 0 for X ∈ X(M), so by Example 5.1, k is locally constant. Finally, since M is connected,
k is constant.

A space of constant sectional curvature is a pseudo-Riemannian manifold (M, g)
for which the sectional curvature κ(σ) is constant, that is equivalent to R = κR1 for κ ∈ R.
The scaling is the process in which a metric g is changed by a metric g̃ = λg for some
constant λ > 0 (the multiplication of a metric by a negative number is not convenient
since it turns its signature which essentially changes the manifold). After the scaling we
get R̃1(X,Y)Z = λR1(X,Y)Z, while the corresponding relations are

Γ̃kij = Γkij, ∇̃XY = ∇XY, R̃(X,Y)Z = R(X,Y)Z, κ̃ = κ/λ.

Thus, there are three essential cases for a curvature tensor of constant sectional curvature,
R = R1 (with κ = 1), R = 0 (with κ = 0), and R = −R1 (with κ = −1). The corresponding
model spaces for Riemannian manifolds are, respectively, a sphere Sn, an Euclidean space
Rn, and a hyperbolic space Hn.

Example 6.7. For the hyperbolic half-planeHU2 from Example 5.8 we had calculated g11 =
g22 = 1/(x2)

2 as well as Γ1
11 = Γ2

12 = Γ1
22 = 0, Γ2

11 = −Γ1
12 = −Γ2

22 = 1/x2. From the formula
(6.3) we have

R1
121 = ∂1Γ1

21 − ∂2Γ1
11 + Γ1

21Γ1
11 − Γ1

11Γ1
21 + Γ2

21Γ1
12 − Γ2

11Γ1
22 = 0,

R2
121 = ∂1Γ2

21 − ∂2Γ2
11 + Γ1

21Γ2
11 − Γ1

11Γ2
21 + Γ2

21Γ2
12 − Γ2

11Γ2
22 = (1 − 1 + 1)/(x2)

2 = 1/(x2)
2,

that is, R(∂1, ∂2)∂1 = (1/(x2)
2)∂2. Then R(∂1, ∂2, ∂1, ∂2) = 1/(x2)

4 and finally κ = −1. 4

In the Riemannian setting, the sectional curvature κ may be viewed as a continuous
real-valued function on the Grassmann bundle of 2-planes of a Riemannian manifold M.
From this it will follow that κ on a compact subset of M is bounded, that is, κ attains its
minimum and maximum values [21, Section 9.3]. Thus, in Riemannian geometry, lower
and upper bounds of the sectional curvature have been intensively studied.

However, in a pseudo-Riemannian setting, some bounds of κ usually imply that κ is con-
stant. Let us examine the sectional curvature at some fixed point of a pseudo-Riemannian

127



Chapter 6. Curvature

manifold. Consider an algebraic curvature tensor R on an indefinite scalar product space
(V, g) of dimension n ≥ 3.

Let A,B,X ∈ V be orthonormal vectors such that εA = εB = −εX. Then, we have

κ(X+ θB,A) = R(X+ θB,A,A,X+ θB)
εX+θBεA

=
θ2κ(B,A)− κ(X,A) + 2θR(X,A,A,B)

θ2 − 1
. (6.29)

If κ ≥ m is bounded from below, then θ2κ(B,A) − κ(X,A) + 2θR(X,A,A,B) is greater than
m(θ2 − 1) for |θ| > 1 and less than m(θ2 − 1) for |θ| < 1, so by continuity it is zero for θ = 1
and θ = −1, which implies κ(B,A) = κ(X,A) and R(X,A,A,B) = 0.

Changing the orthonormal vectors to A cosh t+ X sinh t,B,A sinh t+ X cosh t, for an ar-
bitrary t 6= 0, we have

0 = R(A sinh t+ X cosh t,A cosh t+ X sinh t,A cosh t+ X sinh t,B)
= R(X,A,A,B) cosh t− R(A,X,X,B) sinh t,

where R(X,A,A,B) = 0 implies R(A,X,X,B) = 0. This argument was originally given by
Kulkarni5 [74], and the rest is not difficult to finish.

For example, we can use an orthogonal basis (E1, . . . ,En) in (V, g) with E1 = X and
E2 = A to get JX(A) =

∑n
i=1 εEiR(A,X,X,Ei)Ei = εAR(A,X,X,A)A. Hence, if X is spacelike

(timelike) then any timelike (spacelike) vector in X⊥ is an eigenvector of JX. Especially, A
and Ei + 2A for i > 2 are non-orthogonal eigenvectors and therefore share the same ei-
genvalue (Lemma A.18), which yields J̃X = εXμ(X)1X⊥ for some function μ. However, the
equation (6.18) implies εXεYμ(X) = εYεXμ(Y) for orthogonal X and Y, so for definite vectors
holds μ(X) = μ(Y) = Const. This ensures a constant sectional curvature which proves the
following theorem given by Kulkarni in 1979 [74].

Theorem 6.9. Let κ be the sectional curvature function of an indefinite algebraic curvature
tensor. If κ is either bounded from above or bounded from below, then κ is constant.

Consequently, using the Schur’s theorem (Theorem 6.8), if the sectional curvature func-
tion of a connected indefinite manifoldM of dimension n ≥ 3 is either bounded from above
or bounded from below, then M is a space of constant sectional curvature. This Kulkarni’s
result was the starting point for a wide research on the sectional curvature of indefinite
(usually Lorentzian) metrics.

Let us suppose that the sectional curvature of indefinite planes are bounded both above
and below. Again, we start with orthonormal vectors A,B,X ∈ V such that εA = εB = −εX
and use the equality (6.29). For |θ| < 1, the plane Span{X+θB,A} is indefinite and therefore
−m ≤ κ(X+ θB,A) ≤ m for some constant m > 0, which gives

−m(1 − θ2) ≤ θ2κ(B,A)− κ(X,A) + 2θR(X,A,A,B) ≤ m(1 − θ2).

By continuity at θ = 1 and θ = −1, we have κ(B,A) − κ(X,A) ± 2R(X,A,A,B) = 0, and the
rest of proof is the same as in the previous theorem. Thus, we have the following theorem
given by Dajczer and Nomizu6 in 1980 [39].

Theorem 6.10. Let κ be the sectional curvature function of an indefinite algebraic curvature
tensor. If κ of indefinite planes is bounded both above and below, then κ is constant.

Of course, as before, if the sectional curvature function of indefinite planes of a connec-
ted indefinite manifold M of dimension n ≥ 3 is bounded both above and below, then M
is a space of constant sectional curvature. However, one-side boundedness on indefinite
planes does not imply that κ is a constant function.

5Ravindra Shripad Kulkarni (1942), Indian mathematician
6Katsumi Nomizu (1924–2008), Japanese-American mathematician
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6.5. Ricci curvature

6.5 Ricci curvature

The contraction is an important operation that allows us to get new tensors from existing
ones. Often we need to write the value of a new tensor at some point of a manifold as
simple as possible, what happens if we use a local orthonormal frame (E1, . . . ,En) from
Theorem 4.13. We denote its dual coframe by (E∗

1, . . . ,E∗
n), and it is easily verified that

E∗
i = εEiE♭

i for 1 ≤ i ≤ n.
For some tensor field A, the contraction of the new covariant argument of total cov-

ariant derivative ∇A with some of the original arguments is called the divergence and
we use the notation divA. It is mostly used in two special cases where there is a unique
divergence.

In the first case we consider an arbitrary vector field V ∈ X(M) = T1
0(M), where we set

divV = C(∇V) ∈ F(M).

In an orthonormal frame for V =
∑

j VjEj we have

divV =
∑
i
(∇V)ii =

∑
i
(∇EiV)(E

∗
i ) =

∑
i
E∗
i (∇EiV) =

∑
i
εEig(∇EiV,Ei)

=
∑
i
εEig

Ei,∑
j
Ei(Vj)Ej +

∑
j
Vj
∑
k

ΓkijEk

 =
∑
i
Ei(Vi) +

∑
i,j

VjΓiij.

In natural coordinates on Rn
ν holds divV =

∑
i ∂Vi/∂πi, which is the usual formula on R3.

Example 6.8. The Laplacian7 Δf of a function f ∈ F(M) is the divergence of its gradient,
Δf = div(grad f) ∈ F(M). According to Lemma 5.4 the sharp commute with the covariant
derivative, so

Δf = div(grad f) = C(∇(df♯)) = C((∇df)♯) = C((∇∇f)♯) = trg(∇2f),

which means that the Laplacian is the trace of Hessian. In an orthonormal frame we have

Δf = div(grad f) =
∑
i
εEiEiEif+

∑
i,j

εEj(Ejf)Γ
i
ij

= trg(∇2f) =
∑
i
εEiEiEif−

∑
i,j

εEi(Ejf)Γ
j
ii,

so in natural coordinates on Rn
ν we have Δf =

∑
i εEi∂2f/∂π2

i , which is reduced to the usual
formula on R3. 4

In the second case we consider a symmetric covariant tensor field A of order 2, where
we define

divA = C((∇A)♯) ∈ T0
1(M) = X∗(M),

which can be calculated in an orthonormal frame with

(divA)(X) =
∑
i
((∇A)♯)(E∗

i ,X,Ei) =
∑
i,j

gij(∇A)(X,Ej,Ei) =
∑
i
εEi(∇EiA)(X,Ei).

Let (M, g) be a pseudo-Riemannian manifold, SymA = A ∈ T0
2(M), and f ∈ F(M). Then,

in an orthonormal frame,

(div fA)(X) =
∑
i
εEi(∇EifA)(X,Ei) =

∑
i
εEi
(
(∇Eif)A(X,Ei) + f(∇EiA)(X,Ei)

)
= A

(
X,
∑
i
εEi(Eif)Ei

)
+ f
∑
i
εEi(∇EiA)(X,Ei) = A(grad f,X) + f(divA)(X).

7Pierre-Simon Laplace (1749–1827), French mathematician, physicist and astronomer
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Especially, in the case A = g for f ∈ F(M) it yields (div(fg))(X) = g(grad f,X) = df(X), which
gives the following useful formula

div(fg) = df. (6.30)

Since covariant tensors of higher order are quite complicated, it is often useful to con-
struct simpler tensors that compress some information. Let us start with covariant tensors,
like a curvature tensorR, where we can consider the trace, that is, the contraction of sharp.
We already had R = R♭, so we need trg R = C(R♯) = CR. However, it is necessary to em-
phasize which covariant index we should pair with the covariant index. If we try with the
third covariant index, then we have∑

k
Rk

ijk =
∑
k

∑
l
gklRijkl = −

∑
l

∑
k
glkRijlk = −

∑
l
Rl

ijl,

which is possible only if
∑

kRk
ijk = 0, so the third index is not suitable for the contraction.

We have a choice between the first and the second index, but from Rijkl = −Rjikl we have∑
iRi

jik = −
∑

iRi
ijk, so these possibilities of non-zero contractions differ in the sign only. If

we choose the first index, we get the Ricci tensor8, Ric = trg R = CR ∈ T0
2(M) where we

have
Ric(X,Y) = Tr(Z 7→ R(Z,X)Y) = Tr(J (X,Y)).

The Ricci tensor is obviously symmetric, Ric(X,Y) = Ric(Y,X), and if

Rij =
∑
l
Rl

lij =
∑
l,k

glkRlijk

denote its components, we have Ric =
∑

i,j Rij dxi ⊗ dxj, which in an orthonormal frame
becomes

Ric(X,Y) =
∑
i
εEig(R(Ei,X)Y,Ei) =

∑
i
εEiR(Ei,X,Y,Ei). (6.31)

The scalar curvature is the trace of the Ricci tensor, Sc = trg Ric = C(Ric♯) ∈ F(M), so
Sc =

∑
i,j gijRij =

∑
i,j,k,l gijglkRlijk holds, while in an orthonormal frame we have

Sc =
∑
i,j

εEiεEjRijji.

If we consider a local orthonormal frame at a point p ∈ M, that is, an orthonormal basis
(E1, . . . ,En) in TpM, we can use the sectional curvature to describe the Ricci tensor and the
scalar curvature,

εEk Ricp(Ek,Ek) = εEk
n∑
i=1

εEiRp(Ei,Ek,Ek,Ei) =
i ̸=k∑
i
κ(Ei,Ek),

Sc(p) =
n∑

i,j=1
εEiεEjRp(Ei,Ej,Ej,Ei) =

i ̸=j∑
i,j

κ(Ei,Ej).

Example 6.9. The Ricci tensor is determined by the sectional curvatures, but generally
contains less information. However, in small dimensions (n = 2,3) the Ricci tensor determ-
ines the full curvature tensor. In dimension n = 3 for a nondegenerate plane σ we can take
an orthonormal basis (E1,E2,E3) such that σ = Span{E1,E2}. Then εkRkk =

∑
i ̸=k κ(Ek,Ei),

and therefore κ(σ) = κ(E1,E2) = (ε1R11 + ε2R22 − ε3R33)/2. 4
8Gregorio Ricci-Curbastro (1853–1925), Italian mathematician
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Let us start with the second Bianchi identity that can be expressed through the com-
ponents of the new covariant tensor T ∈ T0

5(M) given by

Tijklm = ∇iRjklm +∇jRkilm +∇kRijlm = 0,

where ∇iRjklm = (∇R)jklmi. We can contract T twice using the trace on the indices i and
m and the trace on the indices j and l, to get

∑
i,m gim

∑
j,l gjlTijklm = 0. We perform the

calculation at some point p ∈ M using the normal coordinates centred at that point. Since
∇g = 0, the trace commutes with the covariant derivative,∑

i,m
gim∇Ei

∑
j,l

gjlRjklm +
∑
j,l

gjl∇Ej
∑
i,m

gimRkilm +∇Ek
∑
i,m

gim
∑
j,l

gjlRijlm = 0,

and therefore
∇Ek Sc = 2

∑
i,m

gim∇EiRkm.

However, we have

div Ric(Ek) =
∑
i,m

gim(∇Ei Ric)(Ek,Em) =
∑
i,m

gim∇Ei(Ric(Ek,Em)),

which yields the equality ∇Ek Sc = 2 div Ric(Ek). Hence the identity 2 div Ric = ∇ Sc holds
in normal coordinates, but this is a proper tensor equality and therefore stands in any
basis. It is the fundamental equation in general relativity called the contracted Bianchi
identity.

Theorem 6.11. For a pseudo-Riemannian manifolds holds 2 div Ric = d Sc.

We say that a pseudo-Riemannian manifold (M, g) is Einstein9 if its Ricci tensor is pro-
portional to the metric, that is, if Ric = λg for some constant λ ∈ R. If we take the trace, we
get Sc = trg Ric = trg(λg) = λ trg g = λn, and therefore an Einstein manifold has constant
scalar curvature.

Example 6.10. Let (M, g) be a space of constant sectional curvature κ. Then we have,

Rij =
∑
l,k

glkRlijk =
∑
l,k

κglk(glkgij − gljgik) = (n− 1)κgij,

and therefore Ric = (n−1)κg, so (M, g) is an Einstein manifold and Sc = n(n−1)κ holds. 4

More relaxed, we can say that (M, g) is Einstein at a point p ∈ M if the corresponding
algebraic curvature tensor at that point is Einstein, that is, if the Ricci tensor is proportional
to the metric at p. Using such definitions we have the following well known statement for
Einstein manifolds (see Besse10 [19, Theorem 1.97]).

Theorem 6.12. If a connected pseudo-Riemannian manifold of dimension n ≥ 3 is Einstein
at each point, then it is Einstein.

Proof. Since (M, g) is Einstein at each point, Ric = λg holds for some function λ ∈ F(M).
Taking the trace with respect to g, we get Sc = nλ, while applying the divergence, using
Theorem 6.11 and the formula (6.30), we obtain

n∇λ = ∇ Sc = 2 div Ric = 2 div(λg) = 2∇λ.

Hence ∇λ = 0 holds for n 6= 2, so λ is a local constant on a connected manifold, and
therefore it is a global constant, which also holds for Sc.

9Albert Einstein (1879–1955), German theoretical physicist
10Arthur Besse is a pseudonym of French differential geometers, led by Marcel Berger

131



Chapter 6. Curvature

Example 6.11. In the previous proof we can avoid use of Theorem 6.11, and calculate
directly in an orthonormal frame (gij = gij = εiδij),

∇Ek Sc =

n∑
i,j=1

εiεj∇kRijji =
n∑

i,j=1
εiεj(−∇iRjkji −∇jRkiji) =

n∑
i,j=1

εiεj∇iRjkij +
n∑

j,i=1
εjεi∇jRikji

= 2
n∑
i=1

εi
n∑
j=1

εj∇iRjkij = 2
n∑
i=1

εi
n∑

j,l=1
gjl∇iRjkil = 2

n∑
i=1

εi∇EiRki = 2∇Ekλ,

and therefore n∇λ = ∇ Sc = 2∇λ. 4

By Theorem 6.4, an algebraic curvature tensor of dimension n = 3 has only six inde-
pendent components, while for n = 2 there is only one. Thus, in small dimensions we get
the following interesting examples.

Example 6.12. Every two-dimensional algebraic curvature tensor is Einstein. All Ricci
tensor components Rij =

∑
k,l gklRkijl for n = 2 can be expressed only by R1221. We have

R11 = g22R1221, R12 = −g12R1221, R22 = g11R1221, and therefore Ric = (R1221/detg)g. 4

Example 6.13. In dimension n = 3, by Example 6.9, the Ricci tensor completely determ-
ines the sectional curvature, and consequently also determines the curvature tensor. In
particular, if a three-dimensional algebraic curvature tensor is Einstein, then it has con-
stant sectional curvature. Additionally, a three-dimensional connected Einstein manifold
is a space of constant sectional curvature. 4

6.6 The Ricci identities

Let M be a pseudo-Riemannian manifold and ∇ its arbitrary connection. Comparing the
components, for an arbitrary tensor field A ∈ Tr

s(M) and X,Y ∈ X(M) we have

(∇XA)i1...irj1...js =
∑
k
(∇A)i1...irj1...jskX

k = (Cr+1
s+1(∇A⊗ X))i1...irj1...js ,

from where we get
∇XA = Cr+1

s+1(∇A⊗ X),

and similarly we have

(∇2
X,YA)

i1...ir
j1...js =

∑
k,l

(∇2A)i1...irj1...jsklY
kXl = Cr+1

s+1(C
r+1
s+2(∇

2A⊗ X)⊗ Y)i1...irj1...js ,

which gives
∇2

X,YA = Cr+1
s+1(C

r+1
s+2(∇

2A⊗ X)⊗ Y).

Because of

∇X∇YA =∇XCr+1
s+1(∇A⊗ Y) = Cr+1

s+1∇X(∇A⊗ Y) = Cr+1
s+1(∇X∇A⊗ Y+∇A⊗∇XY)

=Cr+1
s+1(C

r+1
s+2(∇

2A⊗ X)⊗ Y) + Cr+1
s+1(∇A⊗∇XY) = ∇2

X,YA+∇∇XYA,

we obtain
∇2

X,YA−∇2
Y,XA = ∇X∇YA−∇Y∇XA−∇∇XY−∇YXA,

or more simply written ∇2
X,Y −∇2

Y,X = [∇X,∇Y]−∇∇XY−∇YX.
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The simplest case of a tensor field A ∈ Tr
s(M) is a smooth function f ∈ F(M), and then

the derived formula gives

∇2f(X,Y)−∇2f(Y,X) = ∇2
Y,Xf−∇2

X,Yf = (−[X,Y] +∇XY−∇YX)f = τ(X,Y)f,

where τ is the torsion, which we have already seen in Example 5.5, related to the Hessian
of a function f.

In the context of curvature, a connection ∇ is always Levi-Civita. Then the symmetry
of ∇ gives symmetry of the Hessian, ∇2

X,Yf = ∇2
Y,Xf, while in the case of an arbitrary tensor

field we obtain
∇2

X,Y −∇2
Y,X = [∇X,∇Y]−∇[X,Y]. (6.32)

The next simplest case considers a tensor field A ∈ Tr
s(M) as a vector field Z ∈ X(M),

and then the formula (6.32), by the definition of R, becomes

∇2
X,YZ−∇2

Y,XZ = R(X,Y)Z. (6.33)

In the case of a covector field ω ∈ X∗(M) we have

(∇X∇Yω)Z =X((∇Yω)Z)− (∇Yω)(∇XZ)
=X(Y(ω(Z))−ω(∇YZ))− (Y(ω(∇XZ))−ω(∇Y∇XZ))
=XY(ω(Z))− (∇Xω)(∇YZ)−ω(∇X∇YZ)− (∇Yω)(∇XZ),

from where, using the formula (6.32), we obtain

(∇2
X,Yω−∇2

Y,Xω)Z =(∇X∇Yω)Z− (∇Y∇Xω)Z− (∇[X,Y]ω)Z
=(XY− YX)(ω(Z))−ω(∇X∇YZ−∇Y∇XZ)− [X,Y](ω(Z)) +ω(∇[X,Y]Z)
=−ω(∇X∇YZ−∇Y∇XZ−∇[X,Y]Z) = −ω(R(X,Y)Z).

If R∗(X,Y) : X∗(M) → X∗(M) is the map defined by

(R∗(X,Y)ω)Z = ω(R(X,Y)Z),

then our formula yields
∇2

X,Yω−∇2
Y,Xω = −R∗(X,Y)ω. (6.34)

Let us now consider the general case. First, let us note that if A and B are arbitrary
tensor fields then ∇X∇Y(A⊗B) = ∇X∇YA⊗B+∇YA⊗∇XB+∇XA⊗∇YB+A⊗∇X∇YB holds,
where from (6.32) we get

(∇2
X,Y −∇2

Y,X)(A⊗ B) =(∇X∇Y −∇Y∇X −∇[X,Y])(A⊗ B)
=(∇X∇Y −∇Y∇X −∇[X,Y])A⊗ B+ A⊗ (∇X∇Y −∇Y∇X −∇[X,Y])B
=(∇2

X,Y −∇2
Y,X)A⊗ B+ A⊗ (∇2

X,Y −∇2
Y,X)B.

An arbitrary tensor field A ∈ Tr
s(M) can be written as a sum of tensor products com-

posed of vector and covector fields, so for V1, . . . ,Vr ∈ X(M) and λ1, . . . , λs ∈ X∗(M), using
(6.33) and (6.34), we calculate

(∇2
X,Y −∇2

Y,X)(V1 ⊗ · · · ⊗ Vr ⊗ λ1 ⊗ · · · ⊗ λs)
=R(X,Y)V1 ⊗ V2 ⊗ · · · ⊗ λs + · · ·+ V1 ⊗ · · · ⊗ Vr−1 ⊗R(X,Y)Vr ⊗ λ1 ⊗ · · · ⊗ λs

− V1 ⊗ · · · ⊗ Vr ⊗R∗(X,Y)λ1 ⊗ λ2 ⊗ · · · ⊗ λs − · · · − V1 ⊗ · · · ⊗ λs−1 ⊗R∗(X,Y)λs.

Since (R(X,Y)Vi)ωi = Vi(R∗(X,Y)ωi) for 1 ≤ i ≤ r, while (R∗(X,Y)λj)Zj = λj(R(X,Y)Zj) for
1 ≤ j ≤ s, where ωi ∈ X∗(M) and Zj ∈ X(M), we obtain

((∇2
X,Y −∇2

Y,X)(V1 ⊗ · · · ⊗ Vr ⊗ λ1 ⊗ · · · ⊗ λs))(ω1, . . . ,ωr,Z1, . . . ,Zs)
=V1(R∗(X,Y)ω1)V2(ω2) · · · λs(Zs) + · · ·+ V1(ω1) · · ·Vr−1(ωr−1)Vr(R∗(X,Y)ωr)λ1(Z1) · · · λs(Zs)

− V1(ω1) · · ·Vr(ωr)λ1(R(X,Y)Z1)λ2(Z2) · · · λs(Zs)− · · · − V1(ω1) · · · λs−1(Zs−1)λs(R(X,Y)Zs).
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From here follows the final formula for an arbitrary tensor field A ∈ Tr
s(M),

(∇2
X,YA−∇2

Y,XA)(ω1, . . . ,ωr,Z1, . . . ,Zs)
=A(R∗(X,Y)ω1,ω2, . . . ,Zs) + · · ·+ A(ω1, . . . ,ωr−1,R∗(X,Y)ωr,Z1, . . . ,Zs)

− A(ω1, . . . ,ωr,R(X,Y)Z1,Z2, . . .Zs)− · · · − A(ω1, . . . ,Zs−1,R(X,Y)Zs),
(6.35)

called the Ricci identity.
It is usual to observe special cases of the Ricci identity in which A ∈ Tr

s(M) are simpler
tensor fields. In the equalities (6.33) and (6.34) we had cases when A is a vector or covector
field. For J ∈ T1

1(M) the formula (6.35) gives

(∇2
X,YJ−∇2

Y,XJ)(ω,Z) = J(R∗(X,Y)ω,Z)− J(ω,R(X,Y)Z),

and considering J as the F(M)-linear operator J : X(M) → X(M), we get the formula

(∇X∇YJ−∇Y∇XJ−∇[X,Y]J)Z = R(X,Y)(JZ)− J(R(X,Y)Z). (6.36)
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CHAPTER 7

MORE PSEUDO-RIEMANNIAN GEOMETRY

7.1 Jacobi fields

For an arbitrary vector field along a two-parameter map we have the following relation
with the curvature.

Lemma 7.1. Let (M, g) be a pseudo-Riemannian manifold, and f : L × I → M is a two-
parameter map. Then for every V ∈ X(f) we have

∇
ds

∇
dtV− ∇

dt
∇
dsV = R

(
∂f
∂s ,

∂f
∂t

)
V. (7.1)

Proof. This is a local result, so for each (s, t) ∈ L × I we use local coordinates (x1, . . . , xn)
defined on some neighbourhood of the point f(s, t). If we denote Vk(s, t) = (V(s, t))(xk) and
fk = xk ◦ f for 1 ≤ k ≤ n, then we calculate

∇
dtV =

n∑
k=1

(
∂

∂tVk
∂

∂xk
+ Vk

∇
dt

∂

∂xk

)
◦ f,

and therefore

∇
ds

∇
dtV =

n∑
k=1

(
∂

∂s
∂

∂tVk
∂

∂xk
+

∂

∂tVk
∇
ds

∂

∂xk
+

∂

∂sVk
∇
dt

∂

∂xk
+ Vk

∇
ds

∇
dt

∂

∂xk

)
◦ f,

which gives
∇
ds

∇
dtV− ∇

dt
∇
dsV =

n∑
k=1

Vk

(
∇
ds

∇
dt

∂

∂xk
− ∇
dt

∇
ds

∂

∂xk

)
◦ f.

On the other hand, we have

∇
ds

∇
dt

∂

∂xk
=

∇
ds

(
∇ ∂f

∂t

∂

∂xk

)
=

∇
ds

n∑
j=1

∂fj
∂t∇ ∂

∂xj

∂

∂xk
=

n∑
j=1

∂

∂s
∂fj
∂t∇ ∂

∂xj

∂

∂xk
+

n∑
j=1

∂fj
∂t

∇
ds∇ ∂

∂xj

∂

∂xk

=

n∑
j=1

∂2fj
∂s∂t∇ ∂

∂xj

∂

∂xk
+

n∑
i,j=1

∂fj
∂t

∂fi
∂s∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
,

which implies

∇
ds

∇
dt

∂

∂xk
− ∇
dt

∇
ds

∂

∂xk
=

n∑
i,j=1

∂fj
∂t

∂fi
∂s

(
∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
−∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk

)

=
n∑

i,j=1

∂fj
∂t

∂fi
∂sR

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
= R

(
∂f
∂s ,

∂f
∂t

)
∂

∂xk
,
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and finally

∇
ds

∇
dtV− ∇

dt
∇
dsV =

n∑
k=1

Vk

(
R
(
∂f
∂s ,

∂f
∂t

)
∂

∂xk

)
◦ f = R

(
∂f
∂s ,

∂f
∂t

)
V.

Consider a two-parameter map f : L× I → M for a pseudo-Riemannian manifold (M, g),
where L = (−ϵ, ϵ) for some ϵ > 0 and I ⊆ R is an interval. It determines the longitudinal
curves fs : t 7→ f(s, t), and the smooth curve γ = f0 has special importance as the central
longitudinal curve. The variation vector field along γ is V ∈ X(γ) given by

V(t) = ∂f
∂s(0, t).

We are interested in the special case when the partial maps fs are geodesics for each
s ∈ L and we say that f is a variation through geodesics of γ. In that case, for the
variation vector field V ∈ X(γ) we use the equality (5.23) and Lemma 7.1 to compute

∇
dt

∇
dtV =

∇
dt

∇
dt

∂f
∂s =

∇
dt

∇
ds

∂f
∂t =

∇
ds

∇
dt

∂f
∂t −R

(
∂f
∂s ,

∂f
∂t

)
∂f
∂t = −R

(
∂f
∂s ,

∂f
∂t

)
∂f
∂t .

Thus, if γ : I → M is a geodesic in a pseudo-Riemannian manifold M, then its variation
vector field J ∈ X(γ) satisfies

J′′ +R
(
J, γ′

)
γ′ = 0. (7.2)

The equation (7.2) is called the Jacobi equation, while a vector field J ∈ X(γ) along a
geodesic γ that satisfies it is called a Jacobi field.

It turns out that a Jacobi field J is determined by its initial conditions J(a) and J′(a) for
some a ∈ I. Let us choose a parallel orthonormal frame (E1, . . . ,En) along γ. An arbitrary
J ∈ X(γ) can be written as J(t) =

∑
i Ji(t)Ei(t) for Ji ∈ F(I), 1 ≤ i ≤ n, so we can express the

Jacobi equation (7.2) as

n∑
i=1

J′′i (t)Ei(t) +
n∑
i=1

gγ(t)(R(J(t), γ′(t))γ′(t),Ei(t))Ei(t) = 0,

which gives

J′′i +
n∑
j=1

JjR(Ej, γ′, γ′,Ei) ◦ γ = 0,

for all 1 ≤ i ≤ n. This is a system of n second order ordinary differential equations for the
n functions Ji ∈ F(I). Making the usual substitution Vi = J′i converts it to an equivalent first
order linear system for the 2n unknown functions,

J′i = Vi, V′
i = −

n∑
j=1

(R(Ej, γ′, γ′,Ei) ◦ γ)Jj.

This guarantees the existence and uniqueness of a solution on the whole interval I with
arbitrary initial conditions Ji(a) = (Ei(a))∗(J(a)) and Vi(a) = (Ei(a))∗(J′(a)).

Theorem 7.2. Let γ : I → M be a geodesic in a pseudo-Riemannian manifold M. For a ∈ I
and every pair of vectors X,Y ∈ Tγ(a)M there exists a unique Jacobi field J ∈ X(γ) satisfying
the initial conditions J(a) = X and J′(a) = Y.
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Theorem 7.2 is the existence and uniqueness theorem for Jacobi fields, so we introduce
the notation JYX ∈ X(γ) for the Jacobi field such that JYX(a) = X and (JYX)′(a) = Y hold. The set
of all Jacobi fields along a geodesic γ : I → M,

J (γ) = {JYX : X,Y ∈ Tγ(a)M} ⊆ X(γ),

can be identified with Tγ(a)M × Tγ(a)M. Moreover, for X,Y,Z,V ∈ Tγ(a)M and α, β ∈ R we
have

(αJYX + βJVZ)′′ = α(JYX)′′ + β(JVZ)′′ = −αR(JYX, γ′)γ′ − βR(JVZ , γ′)γ′ = −R(αJYX + βJVZ , γ′)γ′,

which proves that αJYX + βJVZ is a Jacobi field, while

(αJYX + βJVZ)(a) = αX+ βZ = JαY+βV
αX+βZ(a), (αJYX + βJVZ)′(a) = αY+ βV = (JαY+βV

αX+βZ)
′(a),

yields
αJYX + βJVZ = JαY+βV

αX+βZ.

Hence, J (γ) becomes a vector space of dimension 2n, isomorphic to Tγ(a)M× Tγ(a)M.
Let us remark that the previous theorem works for an arbitrary a ∈ I, but to avoid

ambiguity, unless otherwise stated we assume a = 0 ∈ I. Of course, the translation t 7→ t−a
does not violate the fact that γ is a geodesic nor that J is a Jacobi field.

We have already seen that a variation vector field along γ is a Jacobi field. However,
the converse also works, because every Jacobi field along γ is some variation vector field
along γ.

Theorem 7.3. Let γ : I → M be a geodesic in a pseudo-Riemannian manifold M, where I is
a compact interval. Every Jacobi field along γ is the variation vector field of some variation
through geodesics of γ.

Proof. Without loss of generality 0 ∈ I. We suppose JYX ∈ J (γ). Let us choose a smooth
curve ψ : (−ϵ, ϵ) → M such that ψ(0) = γ(0) and ψ′(0) = X. Let us choose V ∈ X(γ) such
that V(0) = γ′(0) and (∇V/ds)(0) = Y. We define a variation of γ by f(s, t) = expψ(s)(tV(s)).
Since I is compact, the domain of exp is an open subset of TM that contains the compact
set {(ψ(0), tγ′(0)) : t ∈ I}), so there is 0 < δ ≤ ϵ such that f is defined for (s, t) ∈ (−δ, δ)× I.

Since f(0, t) = expψ(0)(tV(0)) = expγ(0)(tγ′(0)) = γ(t), we see that f is a variation of γ,
while f(s,0) = expψ(s)(0) = ψ(s). Let W(t) = (∂f/∂s)(0, t) be the variation vector field. Then
W(0) = ψ′(0) = X, each longitudinal curve fs is a geodesic with (fs)′(0) = V(s), while we
have

∇W
dt (0) = ∇

dt
∂f
ds(0,0) =

∇
ds

∂f
dt(0,0) =

∇V
ds (0) = Y,

which proves that JYX = W.

The most obvious example of a Jacobi field is γ′ ∈ X(γ), since it satisfies (7.2) because
of (γ′)′ = 0 and R(γ′, γ′)γ′ = 0, which is the variation field of the variation f(s, t) = γ(s+ t).
Another simple example is J(t) = tγ′(t), which is the variation field of f(s, t) = γ((1 + s)t).
However, these Jacobi field examples are reparametrizations of γ and they do not give us
anything new about the behaviour of the geodesic γ.

To exclude such unimportant examples, whenever γ′(t) is not null we can use the de-
composition Tγ(t)M = Span{γ′(t)} k Span{γ′(t)}⊥. If γ′ is nowhere null, any V ∈ X(γ) de-
composes into an orthogonal sum V⊤ + V⊥, where V⊤ is a multiple of γ′ and V⊥ is normal
to γ′. We say that V⊤ is a tangential vector field along γ, while V⊥ is a normal vector
field along γ. Using the compatibility with the metric

0 =
d
dtg(V

⊥, γ′) = g((V⊥)′, γ′) + g(V⊥, (γ′)′) = g((V⊥)′, γ′),
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we see that (V⊥)′ is also normal to γ′, and similarly (V⊤)′ is parallel to γ′.
A Jacobi field J satisfying J(t) ⊥ γ′(t) for all t ∈ I is called a normal Jacobi field, while

we have the following theorem.

Theorem 7.4. Let γ : I → M be a geodesic in a pseudo-Riemannian manifold M. If J ∈ J (γ)
then the following are equivalent: J is a normal Jacobi field; J is orthogonal to γ′ at two
distinct points; both J and J′ are orthogonal to γ′ at one point; both J and J′ are orthogonal to
γ′ everywhere along γ.

Proof. Consider the function f : I → R given by f(t) = g(J(t), γ′(t)). A Jacobi field is normal
if and only if f ≡ 0. For J ∈ J (γ) we have f′′ = (g(J′, γ′))′ = g(J′′, γ′) = −g(R(J, γ′)γ′, γ′) = 0,
which means that f(t) = ct + d for some c,d ∈ R. Since g(J′, γ′) = c, we have J′ ⊥ γ′ if and
only if c = 0, while J ⊥ γ′ at t ∈ I if and only if ct+ d = 0, which is enough to complete this
proof easily.

We are interested in Jacobi fields that vanish at a concrete point. Let γ : I → M be a
geodesic in a pseudo-Riemannian manifold M, where I is a compact interval containing 0.
According to Theorem 7.2, an arbitrary Jacobi field J ∈ J (γ) such that J(0) = 0 is J = JX0 for
some X ∈ Tγ(0)M. Theorem 7.3 claims that J is the variation field of a variation through
geodesics of γ, where in the proof we set ψ(s) = γ(0) and V(s) = γ′(0) + sX, to obtain the
variation

f(s, t) = expγ(0)(t(γ′(0) + sX)).
This allows us to calculate

J(t) = ∂f
∂s(0, t) =

(
Tt(γ′(0)+sX) expγ(0)

)
(tX)t(γ′(0)+sX)

∣∣∣
s=0

=
(
Ttγ′(0) expγ(0)

)
(tX)tγ′(0),

which gives an explicit formula

JX0 (t) =
(
Ttγ′(0) expγ(0)

)
(tX)tγ′(0), (7.3)

where (tX)tγ′(0) ∈ Ttγ′(0)(Tγ(0)M) canonically corresponds to tX ∈ Tγ(0)M.
In normal coordinates, the coordinate representation of the exponential map is the

identity, so on a normal neighbourhood of γ(0) containing the image of γ, f can be written
explicitly in coordinates as f(s, t) = (t(γ′1(0) + sJ′1(0)), . . . , t(γ′n(0) + sJ′n(0))), so we obtain

JX0 (t) = t
n∑
i=1

Xi(∂i)γ(t),

where
∑n

i=1 Xi(∂i)γ(0) is the coordinate representation of X.

Example 7.1. Let (M, g) be a space of constant sectional curvature κ, which implies that
R = κR1. In that case the Jacobi equation (7.2) becomes J′′ + κ(g(γ′, γ′)J− g(J, γ′)γ′) = 0, so
for a unit-speed geodesic γ in M, a normal Jacobi field J satisfies

J′′ + κJ = 0.

Let E be an arbitrary parallel unit normal vector field along γ. It is reasonable to try
J(t) = α(t)E(t) for some α ∈ F(I). After the substitution we obtain that α is a solution of the
differential equation α′′ + κα = 0. We suppose J(0) = 0, which gives the initial condition
α(0) = 0, and the solutions are α(t) = c · hκ(t), where

hκ(t) =


t if κ = 0,
sin(t

√
κ)√

κ if κ > 0,
sinh(t

√
−κ)√

−κ if κ < 0,
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and c is an arbitrary constant. Thus, we obtain J = chκE. The simple calculations show
J′(0) = ch′

κ(0)E(0) = cE(0), since h′
κ(0) = 1 always holds, while ‖J′(0)‖ = |κ|, because E is a

unit vector field. 4

Consider J = JX0 ∈ J (γ) where we have J(0) = 0 and J′(0) = X. Because of J′′ = −R(J, γ′)γ′,
we also have J′′(0) = 0. Let us calculate the Taylor expansion of ‖J(t)‖2 about t = 0. For the
first coefficients we have

g(J, J)(0) = g(J(0), J(0)) = 0,
(g(J, J))′(0) = (g(J′, J) + g(J, J′))(0) = 2g(J′, J)(0) = 0,
(g(J, J))′′(0) = 2g(J′′, J)(0) + 2g(J′, J′)(0) = 2g(X,X) = 2,
(g(J, J))′′′(0) = 2g(J′′′, J)(0) + 6g(J′′, J′)(0) = 0.

For an arbitrary Y ∈ X(γ) we calculate

g(J′′′,Y)(0) = (g(J′′,Y))′(0)− g(J′′(0),Y′(0)) = (g(−R(J, γ′)γ′,Y))′(0) = −(g(R(Y, γ′)γ′, J))′(0)
= −g((R(Y, γ′)γ′)′(0), J(0))− g(R(Y, γ′)γ′, J′)(0) = −g(R(J′, γ′)γ′,Y)(0),

which implies J′′′(0) = −(R(J′, γ′)γ′)(0). This helps us to calculate the next Taylor coefficient,

(g(J, J))′′′′(0) = 2g(J′′′′, J)(0) + 8g(J′′′, J′)(0) + 6g(J′′, J′′)(0) = 8g(J′′′, J′)(0)
= −8g(R(J′, γ′)γ′,X)(0) = −8gγ(0)(R(X, γ′(0)), γ′(0),X) = −8κ(γ′(0),X),

where κ(γ′(0),X) is the sectional curvature of the plane σ = Span{γ′(0), J′(0)} ≤ Tγ(0)M.
The Taylor expansion shows

‖J(t)‖2 = t2 − 1
3κ(σ)t

4 + O
t→0

(t5),

which implies
‖J(t)‖ = t− 1

6κ(σ)t
3 + O

t→0
(t4). (7.4)

Now we are able to give the relation between geodesics and curvature. An arbitrary
Jacobi field JX0 ∈ J (γ) is the variation field of the variation f(s, t) = expγ(0)(t(γ′(0)+sX)), and
it is given in the formula (7.3). Intuitively, the formula (7.4) shows how fast the geodesics
that start from γ(0) and are tangent to the the plane σ = Span{γ′(0),X} spread apart. Loc-
ally, for κ(σ) > 0 the radial geodesics spread apart less than the rays in TpM, while for
κ(σ) < 0 they spread apart more than the rays in TpM (see the details in Do Carmo [31,
Remark 5.2.11]).

It is easy to check that the space Ja(γ) of all Jacobi fields J ∈ X(γ) such that J(a) = 0 is
an n-dimensional subspace of J (γ), which is based on the choice of linearly independent
vectors J′(a) ∈ Tγ(a)M. Since the tangent map of the exponential map is linear it is easy to
see that vectors J′(a) ∈ Tγ(a)M are linearly independent if and only if Jacobi fields J ∈ Ja(γ)
are linearly independent.

Lemma 7.5. Let γ : I → M be a geodesic in a pseudo-Riemannian manifold M and a ∈ I. If
Ji ∈ Ja(γ) for 1 ≤ i ≤ k ∈ N, then J′1(a), . . . , J′k(a) ∈ Tγ(a)M are linearly independent if and only
if J1, . . . , Jk ∈ Ja(γ) are linearly independent.

Proof. Suppose that Ji are linearly independent and
∑

i αiJ′i(a) = 0 for some αi ∈ R. We
create J =

∑
i αiJi ∈ Ja(γ) satisfying J′(a) = 0, so Theorem 7.2 implies J = 0, and therefore

0 = J(a) =
∑

i αiJi(a) gives αi = 0. Conversely, suppose that J′i(a) are linearly independent
and

∑
i αiJi = 0 for some αi ∈ R. Differentiating, we obtain

∑
i αiJ′i = 0, which implies∑

i αiJ′i(a) = 0, and therefore αi = 0.
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The next application of Jacobi fields can allow us to examine when the exponential
map is a local diffeomorphism, that is, to find the relation between the singularities of the
exponential map and Jacobi fields.

Let γ : I → M be a geodesic in a pseudo-Riemannian manifold M of dimension n. We
say that two distinct parameter values a,b ∈ I are conjugate parameters along γ if there
exists a Jacobi field 0 6≡ J ∈ X(γ) such that J(a) = 0 = J(b). The multiplicity of conjugacy
is the maximum number of such linearly independent Jacobi fields, which is actually the
dimension of the subspace Jab(γ) = Ja(γ) ∩ Jb(γ).

It is often said that the points γ(a) and γ(b) are conjugate along γ if a and b are con-
jugate parameters along γ. However, if γ has self-intersections, this definition becomes
ambiguous since we do not know which space Ja(γ) should be taken for a point γ(a) in the
case γ−1(γ(a)) 6= {a}.

Example 7.2. Consider the pseudo-Euclidean space Rn
ν, where R = 0 yields the Jacobi

equation J′′ = 0. The case J(a) = 0 = J(b) implies J ≡ 0, so there are no conjugate points. 4

Consider the tangential Jacobi field J given by J(t) = (t − a)γ′(t). Since γ′ vanishes
nowhere we see J ∈ Ja(γ) and J /∈ Jb(γ) for b 6= a. Therefore, dimJab(γ) < dimJa(γ) = n,
which implies that the multiplicity of conjugacy does not exceed n−1. The upper limit can
be reached, as we see in the following example.

Example 7.3. Consider the unit sphere Sn ⊂ Rn+1, which is a space of constant sectional
curvature 1. According to Example 7.1 we know that J(t) = (sin t)E(t) satisfies J ∈ J0(γ) for
an arbitrary parallel unit normal vector field E ∈ X(γ). Moreover, such J satisfies J(π) = 0,
and therefore J ∈ J0π(γ), which means that γ(0) and its antipodal point γ(π) are conjugate
along γ with multiplicity n− 1. 4

Theorem 7.6. Let γ : [0,1] → M be a geodesic segment in a pseudo-Riemannian manifold M
such that p = γ(0) and V = γ′(0) ∈ Ep ⊆ TpM. The point γ(1) is conjugate to p along γ if
and only if V is a critical point of expp. Moreover, the multiplicity of conjugation is equal to
dim Ker(TV expp).

Proof. Consider an arbitrary J ∈ J01(γ). Since J01(γ) ⊆ J0(γ) we have J = JX0 for some
X = J′(0) ∈ TpM, where the equation (7.3) yields (TV expp)(XV) = J(1) = 0. Therefore
JX0 ∈ J01(γ) if and only if XV ∈ Ker(TV expp), where Lemma 7.5 completes the proof.

Let us remark that by reparametrizing γV(t) = γtV(1) from Lemma 5.12 we have that
γ(0) and γ(t) are conjugate along γ if and only if tγ′(0) is a critical point of expp.

According to Theorem 7.2, a unique Jacobi field is naturally determined by giving its
initial value and initial derivative. However, if points γ(a) and γ(b) are not conjugate, then
we can determine a unique Jacobi field by giving J(a) and J(b).

Theorem 7.7. Let γ : I → M be a geodesic in a pseudo-Riemannian manifold M. If γ(a) and
γ(b) for distinct a,b ∈ I are not conjugate along γ, then for every X ∈ Tγ(a)M and Y ∈ Tγ(b)M
there exists a unique J ∈ J (γ) such that J(a) = X and J(b) = Y.

Proof. Define a linear map f : Ja(γ) → Tγ(b) by f(J) = J(b). Since a and b are not conjugate
parameters, J(b) = 0 implies J ≡ 0, which means that f is injective. Both the domain and
the codomain of f are of the same dimension n, so f is an isomorphism. Hence, there exists
J1 ∈ Ja(γ) such that J1(b) = Y. In a similar fashion, there exist J2 ∈ Jb(γ) such that J2(a) = X,
so J = J1 + J2 ∈ J (γ) satisfies J(a) = X and J(b) = Y as claimed. If K ∈ J (γ) is another such
Jacobi field, then J− K ∈ J (γ) vanishes at both a and b, and therefore J ≡ K, which proves
uniqueness.
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7.2 Pseudo-Riemannian submanifolds

Let (M, g) be a pseudo-Riemannian manifold and (M, g) is its pseudo-Riemannian subman-
ifold. If ı : M ↪→ M is the corresponding inclusion, then it is a pseudo-Riemannian immer-
sion and M is endowed with the induced metric g = ı∗g. We want to investigate the rela-
tions between the pseudo-Riemannian geometry of a submanifold and that of the ambient
manifold.

For each p ∈ M, the tangent space TpM is a nondegenerate subspace of the scalar
product space (TpM, gp) as well as its orthogonal NpM = (TpM)⊥ called the normal space
at p. Hence, the ambient tangent space splits as an orthogonal direct sum

TpM = TpM k NpM

with the corresponding projections π⊤ : TpM → TpM and π⊥ : TpM → NpM, so every vector
X ∈ TpM has a unique expression X = X⊤ + X⊥, where X⊤ = π⊤X ∈ TpM, X⊥ = π⊥X ∈ NpM.

Consider the ambient tangent bundle

TM↾M =
⊔
p∈M

TpM,

which is a vector bundle as the restriction of TM (Example 3.3). Given any point p ∈ M,
there is a neighbourhood U of p in M that is embedded in M and we can use slice coordin-
ates from Theorem 2.13 to create an orthonormal frame (σ1, . . . ,σdimM) that is adapted toU
in the sense that the restrictions of σi toU for 1 ≤ i ≤ dimM form a local orthonormal frame
for M. The restriction of the last dimM−dimM vector fields σi to M for dimM < i ≤ dimM
form a local frame forNM =

⊔
p∈MNpM, which by Theorem 3.2 becomes a subbundle called

the normal bundle of M.
Applying π⊤ and π⊥ at each point of M, we obtain two bundle homomorphisms, the

tangential projection π⊤ : TM↾M → TM and the normal projection π⊥ : TM↾M → NM.
On the other hand, the smooth sections X(M) = X(M)↾M = Γ(TM↾M) of the ambient tangent
bundle can be decomposed by

X(M) = X(M) k X(M)⊥, (7.5)

where X(M)⊥ = Γ(NM) is the set of smooth sections of the normal bundle. Thus, X(M) and
X(M)⊥ can be seen as submodules of X(M), while the tangential and normal projections
yields the appropriate module projections that decompose X ∈ X(M) as X = X⊤ + X⊥ with
X⊤ ∈ X(M) and X⊥ ∈ X(M)⊥.

Let ∇ be the Levi-Civita connection on (M, g), and ∇ be the Levi-Civita connection on
(M, g). For any p ∈ M and X ∈ X(M) there is a neighbourhood p ∈ U ⊆ M and an exten-
sion X ∈ X(M) of X↾U. Because of the local properties of a connection (Theorem 5.1), the
appropriate restriction along M of ∇XY = (∇X̄Y)↾M ∈ X(M) does not depend on extensions
X,Y ∈ X(M) for X,Y ∈ X(M). An important question is how ∇XY is decomposed by (7.5) into
a tangential and a normal component.

Let us start with X,Y,Z ∈ X(M) and their extensions X,Y,Z ∈ X(M). Applying the Koszul
formula (5.10) for ∇, along M for every Z ∈ X(M) we have

2g((∇XY)⊤,Z) = X(g(Y,Z)) + Y(g(Z,X))− Z(g(X,Y))− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y]).

Hence, the tangential term is a Levi-Civita connection, and since it is unique we obtain

(∇XY)⊤ = ∇XY.

On the other hand, the symmetry of the connection ∇ implies that (∇XY)⊥ is symmetric
because of (∇XY − ∇YX)⊥ = [X,Y]⊥ = 0. Since (∇XY)⊥ is F(M)-linear in X, it also must be
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F(M)-linear in Y. We define the second fundamental form (or shape tensor) as a map
II : X(M)× X(M) → X(M)⊥ given by II(X,Y) = (∇XY)⊥. It is a symmetric F(M)-bilinear map
such that for any X,Y ∈ X(M) we have the decomposition

∇XY = ∇XY+ II(X,Y), (7.6)

called the Gauss formula.
For any N ∈ X(M)⊥, the vector-valued second fundamental form II can be reduced to a

simpler scalar-valued form hN ∈ T0
2(M) given by

hN(X,Y) = g(II(X,Y),N),

and called the scalar second fundamental form of M with respect to N. Raising an
index we get the tensor field AN = (hN)♯ ∈ T1

1(M) which can be seen as an F(M)-linear map
AN : X(M) → X(M) given by AN(X)f = (hN)♯(df,X), which means that (hN)♯(ω,X) = ω(s(X))
naturally holds. The map AN is called the shape operator with respect to N ∈ X(M)⊥, and
because of

hN(X,Y) = (hN)♯(X♭,Y) =
∑
i
Xi(hN)♯(dxi,Y) =

∑
i,j

gij dxj(X)dxi(ANY) = g(X,ANY),

for all X,Y ∈ X(M) we have

g(X,ANY) = hN(X,Y) = g(II(X,Y),N).

Since hN is symmetric, AN is self-adjoint, and therefore g(ANX,Y) = g(X,ANY).
In a more general case, we consider the connection ∇ restricted to M as a map

∇↾M : X(M)× X(M) → X(M). For X,Y ∈ X(M) and N ∈ X(M)⊥, along M we have g(Y,N) = 0,
so

0 = Xg(Y,N) = g(∇XY,N) + g(Y,∇XN) = g(II(X,Y),N) + g(∇XN,Y),

which implies the equality

g(∇XN,Y) = −g(II(X,Y),N) = −hN(X,Y) = −g(ANX,Y). (7.7)

called theWeingarten formula1. Hence, the tangent component of ∇XN is −ANX. On the
other hand, the normal component ∇⊥

XN = (∇XN)⊥ defines a compatible connection on the
normal bundle NM, called the normal connection. Thus, the Weingarten formula can be
written as

∇XN = −ANX+∇⊥
XN. (7.8)

It is interesting to consider the relation between the corresponding curvature operators
R and R, or between the curvature tensors R and R. We use the Gauss formula (7.6) and
the Weingarten formula (7.8) to write

∇X∇YZ = ∇X∇YZ+∇X II(Y,Z) = ∇X∇YZ+ II(X,∇YZ) +∇⊥
X II(Y,Z)− AII(Y,Z)X

for all X,Y,Z ∈ X(M), and therefore

R(X,Y)Z =∇X∇YZ−∇Y∇XZ−∇[X,Y]Z
=∇X∇YZ+ II(X,∇YZ) +∇⊥

X (II(Y,Z))− AII(Y,Z)X
−∇Y∇XZ− II(Y,∇XZ)−∇⊥

Y (II(X,Z)) + AII(X,Z)Y
−∇[X,Y]Z− II(∇XY,Z)− II(∇YX,Z)

=R(X,Y)Z+ AII(X,Z)Y− AII(Y,Z)X+ (∇⊥
X II)(Y,Z)− (∇⊥

Y ) II(X,Z),
1Julius Weingarten (1836–1910), German mathematician
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where
(∇⊥

X II)(Y,Z) = ∇⊥
X (II(Y,Z))− II(∇XY,Z)− II(Y,∇XZ).

The tangential component is

(R(X,Y)Z)⊤ = R(X,Y)Z+ AII(X,Z)Y− AII(Y,Z)X,

which after taking the scalar product by W ∈ X(M) yields the Gauss equation (or Gauss
curvature equation),

R(X,Y,Z,W) = R(X,Y,Z,W) + g(II(X,Z), II(Y,W))− g(II(X,W), II(Y,Z)). (7.9)

The normal component is called the Codazzi equation2 (or Codazzi–Mainardi equa-
tion3),

(R(X,Y)Z)⊥ = (∇⊥
X II)(Y,Z)− (∇⊥

Y II)(X,Z).

On the other hand, for N ∈ X(M)⊥ we have

∇X∇YN = ∇X∇⊥
YN−∇XANY = ∇⊥

X∇⊥
YN− A∇⊥

Y N
X−∇XANY− II(X,ANY),

and therefore

R(X,Y)N =∇X∇YN−∇Y∇XN−∇[X,Y]N
=∇⊥

X∇⊥
YN− A∇⊥

Y N
X−∇XANY− II(X,ANY)

−∇⊥
Y∇⊥

XN+ A∇⊥
X N

Y+∇YANX+ II(Y,ANX)

−∇⊥
[X,Y]N+ AN∇XY− AN∇YX

=R⊥(X,Y)N+ II(Y,ANX)− II(X,ANY) + (∇YA)(X,N)− (∇XA)(Y,N),

where
(∇YA)(X,N) = ∇YANX− AN∇YX− A∇⊥

Y N
X.

The tangential component yields

(R(X,Y)N)⊤ = (∇YA)(X,N)− (∇XA)(Y,N),

which is an equivalent form of the Codazzi equation. The normal component is called the
Ricci equation,

(R(X,Y)N)⊥ = R⊥(X,Y)N− II(X,ANY) + II(Y,ANX).

Taking the scalar product by P ∈ X(M)⊥, we have

R(X,Y,N,P) = R⊥(X,Y,N,P)− g([AN,AP]X,Y), (7.10)

which is also the Ricci equation.
The Gauss equation is a tensor equation, so it remains valid when we replace vector

fields by individual tangent vectors. Using the Gauss equation in the definition of a sec-
tional curvature gives the following relation between the sectional curvatures κ of M and
κ of M, also called the Gauss equation,

κ(X,Y) = κ(X,Y) + g(II(X,X), II(Y,Y))− g(II(X,Y), II(X,Y))
g(X,X)g(Y,Y)− g(X,Y)g(X,Y) . (7.11)

2Delfino Codazzi (1824–1873), Italian mathematician
3Gaspare Mainardi (1800–1879), Italian mathematician

143



Chapter 7. More pseudo-Riemannian geometry

Example 7.4. The position vector field N =
∑n

i=1 xi∂i on the sphere Sn−1
r ↪→ Rn is normal

at each point (x1, . . . , xn) ∈ Sn−1
r as a consequence of Lemma 2.16. On the other hand, for

the Levi-Civita connection ∇ in Rn, for any X ∈ X(Sn−1
r ) we have ∇XN =

∑n
i=1 X(xi)∂i = X.

The formula (7.7) implies g(II(X,Y),N) = −g(∇XN,Y) = −g(X,Y), so since εN = r2 we obtain
II(X,Y) = −g(X,Y)N/r2. Finally, the equation (7.11) for κ = 0, yields κ = 1/r2. 4

The Gauss formula (7.6) can be adapted to compare intrinsic and extrinsic covariant
derivatives along curves. For a curve γ : I → M and Y ∈ X(M) we have

∇γ′(t)Y = ∇γ′(t)Y+ II(γ′(t),Y ◦ γ(t)),

which implies
∇Yγ
dt (t) = ∇Yγ

dt (t) + II(γ′(t),Yγ(t)).

The special case Yγ = γ′ implies the formula for the acceleration of γ,

∇γ′
dt =

∇γ′
dt + II(γ′, γ′). (7.12)

As a consequence of the previous equation, a curve γ in M ⊂ M is a geodesic of M if and
only if its M acceleration is everywhere normal to M.

Example 7.5. A great circle of the sphere Snr is a circle Π∩Snr obtained as the intersection
by a two-dimensional plane Π through the origin of Rn+1. If γ is a constant speed para-
metrization of Π ∩ Snr , then γ′ and γ′′ are mutually orthogonal and tangent to the plane
Π. However, the position vector field is also tangent to Π and orthogonal to γ′ 6= 0, so the
position vector field and γ′′ are collinear at each point of the curve, which means that γ′′
is normal to Snr and therefore γ is a geodesic of the sphere. Conversely, any nonconstant
geodesic γ can obatained in this way. If Π is a plane through the origin and γ(0) to which
γ′(0) is tangent, then there is a suitable constant speed parametrization of Π ∩ Snr and the
rest follows from the uniqueness of geodesics. 4

A pseudo-Riemannian submanifold M of a pseudo-Riemannian manifold (M, g) is said
to be totally geodesic if every geodesic in M is also a geodesic in M. The formula (7.12)
provides that M is totally geodesic if and only if the second fundamental form II vanishes.

Let (M, g) be a pseudo-Riemannian manifold. Let us consider the set of all fixed points
Φ = {p ∈ M : f(p) = p} of an isometry f ∈ I(M). Since Φ is the inverse image of the diagonal
in M × M under the smooth map p 7→ (p, f(p)), the set Φ ⊆ M is closed. If p ∈ Φ is not
isolated, then there exists a normal neighbourhood U = expp(U) of p which contains some
p 6= q ∈ Φ. If γV is a unique radial geodesic from p to q, then it is also γTpf(V) = f ◦ γV from
(6.11), and therefore γTpf(V) = γV. Hence Ψ = {V ∈ TpM : Tpf(V) = V} is a closed non-trivial
subspace of TpM.

For q ∈ Φ ∩ U , the radial geodesic from p to q is γV where V = exp−1
p q and thus V ∈ Ψ.

Conversely, for V ∈ Ψ ∩ U we have f ◦ γV = γTpf(V) = γV, so f ◦ γV(1) = γV(1) = expp(V) ∈ Φ.
This proves expp(Ψ ∩ U) = Φ ∩ U, which means that Φ is a submanifold of M, and since
every radial geodesic γ through p ∈ Φ satisfies f ◦ γ = γ, Φ is totally geodesic.

Theorem 7.8. Every connected component of the fixed point set of an isometry of a pseudo-
Riemannian manifold M is a totally geodesic submanifold of M.

A pseudo-Riemannian hypersurface is a pseudo-Riemannian submanifold of codi-
mension one. Let (M, g) be a pseudo-Riemannian hypersurface in (M, g). By definition,
each tangent space TpM is a nondegenerate subspace of TpM that has constant index, so its
complementary space NpM is also nondegenerate and its constant index IndNpM is called
the co-index of M. The co-index of a pseudo-Riemannian hypersurface M is either 0 or 1
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and it determines the sign of M, which is the sign of any nonzero normal vector. Hence,
the co-index 0 (IndM = IndM) gives sgnM = 1, while the co-index 1 (IndM = IndM − 1)
implies sgnM = −1. Of course, any hypersurface in a Riemannian manifold is Riemannian
with sign 1.

Example 7.6. Consider the case ∅ 6= M = f−1(c) for some f ∈ F(M) and c ∈ R such that
grad f never vanishes on M. Since grad f 6= 0 on M implies df 6= 0 on M, we see that M is
a regular level set and by Theorem 2.15 we conclude that M is a hypersurface of M. Since
g(grad f,X) = df(X) = Xf, while f = c onMwe conclude that grad f is normal toM. Therefore,
M is a pseudo-Riemannian hypersurface M if and only if g(grad f, grad f) has constant sign
on M. In this case the sign of M is the constant sign of g(grad f, grad f) and grad f/‖grad f‖
is a unit normal vector field on M. 4

Example 7.7. Basic examples of pseudo-Riemannian hypersurfaces in Rn+1
ν are pseudo-

spheres and pseudo-hyperbolic spaces defined by M = {X ∈ Rn+1
ν : g(X,X) = c} = f−1({c})

for some c 6= 0, where f(X) = g(X,X) (see Section 4.6). We already know that dfX = 2X♭

which gives grad f = 2P, where P =
∑

i xi∂i is the position vector field. Consequently,
g(grad f, grad f) = 4g(P,P) = 4f, which gives g(grad f, grad f) = 4c on M and M is a pseudo-
Riemannian hypersurface. 4

For a hypersurface M ⊂ M, we use a unit normal vector field N ∈ X(M)⊥, which is
locally unique up to sign. Once it has been fixed, we use the notation A = AN for the shape
operator with respect to N. We have II(X,Y) = εNhN(X,Y)N, while the Gauss formula (7.6)
becomes

∇XY = ∇XY+ g(AX,Y)N.

On the other hand, since 2g(∇XN,N) = ∇Xg(N,N) = 0, it follows that ∇XN is tangent to M,
so the Weingarten formula (7.7) reduces to

∇XN = −AX.

LetM be a hypersurface of the Euclidean space. At each point p ∈ M, the shape operator
s is a self-adjoint endomorphism of the tangent space TpM. Such an operator (definiteness
of metric is important) has real eigenvalues λ1, . . . , λn, and there exists an orthonormal
basis (E1, . . .En) in TpM consists of eigenvectors of s, that is, sEi = λiEi for 1 ≤ i ≤ n. In this
basis, both h and s are diagonal and hence h(X,Y) =

∑
i λiXiYi.

The eigenvalues of s are called the principal curvatures of M at p, while the corres-
ponding eigenspaces are called the principal directions. They are independent on the
basis choice, but the principal curvatures change sign if we reverse the normal vector. The
principal curvatures give a description of the local shape of the embedded surface.

There are two combinations of the principle curvatures which play important roles
for Euclidean hypersurfaces. The Gaussian curvature is defined as K = det s, while
the mean curvature is H = tr s/n = trg h/n. The determinant and trace of a lin-
ear endomorphism are invariants, while in terms of the principal curvatures we obtain
K = λ1λ2 · · · λn and H = (λ1 + · · ·+ λn)/n.

7.3 Symmetric spaces

The main feature of the most beautiful and most important pseudo-Riemannian mani-
folds is that they are highly symmetric (they have large groups of isometries). A connected
pseudo-Riemannian manifold (M, g) is called a locally symmetric space if each p ∈ M
is an isolated fixed point of some involutive local isometry of M. It is called a (globally)
symmetric space if each p ∈ M is an isolated fixed point of an involutive isometry of M.
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Suppose that there is an involutive isometry s ∈ Ip(U) with p ∈ U ⊆ M to which p is
an isolated fixed point. Then s2 = 1U implies (Tps)2 = 1TpM, which after subtracting λ2

1

becomes
(Tps− λ1)(Tps+ λ1) = (1 − λ2)1,

and by taking the determinant we see that the characteristic polynomial of Tps by λ divides
the polynomial (1− λ)n(1+ λ)n. However, the case det(Tps− 1) = 0 is not possible because
then exists a nonzero V ∈ TpM such that Tps(V) = V, from where the equation (6.12) shows
that γV(t) = expp tV is a fixed point of s for every sufficiently small t, which contradicts the
fact that p is an isolated fixed point. This is why −1 is the only eigenvalue of Tps, which
gives det(Tps− λ1) = (1 + λ)n, and therefore (Tps+ 1)n = 0. Moreover,

0 = (Tps+ 1)n = (Tps+ 1)n−2((Tps)2 + 2Tps+ 1) = 2(Tps+ 1)n−1 = 2n−1(Tps+ 1),

from where we obtain Tps = −1.
The condition Tps = −1 by (6.12) gives s(expp(V)) = exps(p)(Tps(V)) = expp(−V) for

V ∈ TpM, which uniquely determines s. We see that s reverses geodesics emanating from
p because of s(γV(t)) = γV(−t), which motivates us to introduce the following definition.
A geodesic symmetry at p ∈ M is a diffeomorphism f of some neighbourhood of p that
fixes that point (f(p) = p) and reverses geodesics through it, that is, f(γ(t)) = γ(−t) holds
for a geodesic γ with γ(0) = p. So far, we have shown that our involutive isometry s is a
geodesic symmetry.

Conversely, suppose that f is a geodesic symmetry at p ∈ M. Immediately Tpf = −1

because we have Tpf(V) = (f ◦ γV)′(0) = (γ−V)′(0) = −V. If f is an isometry on some neigh-
bourhood U ⊆ M of the point p, then according to Theorem 7.8 the set of all fixed points of
f is a totally geodesic submanifold P of M whose tangent space at p is the fixed point set of
Tpf in TpM. From Tpf = −1 we obtain TpP = {0} and hence P is discrete. Moreover, f2 is an
isometry with f2(p) = p and Tpf2 = 1, so it must be f2 = 1. Hence f is an involutive isometry
to which p is an isolated fixed point, and we obtain the following statement.

Theorem 7.9. A pseudo-Riemannian manifold is a locally symmetric space if and only if the
geodesic symmetry at each point is a local isometry.

A symmetric space has the property that the geodesic symmetry at any point extends to
an isometry of the whole space onto itself. Symmetric spaces can be observed from plenty
different points of view. The algebraic description allowed Cartan4 to develop the theory
of Riemannian symmetric spaces merged with the theory of semisimple Lie groups which
led to a complete classification in 1926 [29, 30].

One refined invariant of a symmetric space is the rank, which is the maximal dimen-
sion of a totally geodesic flat submanifold. The rank is always at least one, with equality
when the maximal flat submanifolds are geodesics, in which case the sectional curvature
is positive (compact type) or negative (noncompact type). Among the pseudo-Riemannian
symmetric spaces, those of rank one are of special importance.

On the other hand, we can consider the cosmological principle which says that the spa-
tial distribution of matter in the universe is homogeneous and isotropic at a sufficiently
large scale. A homogeneous pseudo-Riemannian manifolds looks geometrically the same
when viewed from any point, while an isotropic one has the geometry that does not depend
on directions.

Theorem 7.10. Every homogeneous Riemannian manifold is complete.

Proof. Let γV : I → M be a maximal unit-speed geodesic that cannot be extended, which
means: 0 ∈ I, γ′V(0) = V, ‖V‖ = 1, and a = sup I < ∞. For an arbitrary point p ∈ M,

4Élie Cartan (1869–1951), French mathematician
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7.3. Symmetric spaces

there exists a sufficiently small 0 < r < a such that B2r(p) is a geodesic ball. Consider an
isometry f : M → M that maps γV(a − r) to p, and let W = (Tγ(a−r)f)(γ′(a − r)). Isometries
preserve geodesics, and according to the formula (6.11) we have f ◦ γγ′V(a−r) = γW, which
is defined at least on (−2r,2r). Hence, (−2r,2r) is in the domain of γγ′V(a−r) = f−1 ◦ γW, but
since γV(t) = γγ′V(a−r)(t + r − a) holds for t ∈ [0,a), γV extends to I ∪ [a,a + r), which is a
contradiction. We have shown that a homogeneous Riemannian manifold is geodesically
complete, and is complete according to the Hopf-Rinow theorem.

However, a homogeneous pseudo-Riemannian manifold does not have to be complete,
as we see in the following example.

Example 7.8. Let M be the right half-plane {(u, v) ∈ R2 : u > 0} with Lorentzian metric
g = 2dudv. An arbitrary (a,b) ∈ M is mapped to (1,ab) by the isometry (u, v) 7→ (u/a,av),
which is further mapped to (1,0) by the isometry (u, v) 7→ (u, v − ab), which proves that
(M, g) is homogeneous. However, the null geodesic γ(t) = (t,0) has the maximal domain
(0,∞), so (M, g) is not complete. 4

A Riemannian manifold M is two-point homogeneous if any pair of points can be
transformed by means of an appropriate isometry to any other pair of points with the
same distance between them. This means that the isometry group I(M) acting transitively
on equidistant pairs of points. The special case when the first point in a pair is fixed proves
that a two-point homogeneous M is homogeneous and in particular complete. However,
we have the following theorem of Wolf5 [120, Lemma 8.12.1].

Theorem 7.11. A connected Riemannian manifold is isotropic if and only if it is two-point
homogeneous.

Proof. Let M be two-point homogeneous, Br(p) is a geodesic ball centred at p ∈ M, and
0 < ε < r. For arbitrary X,Y ∈ S1(0p) we have d(p, expp εX) = d(p, expp εY), so there exists
f ∈ I(M) such that f(p) = p and f(expp εX) = expp εY, but from the equation (6.12) holds
f(expp εX) = expp(f∗(εX)), which implies f∗(εX) = εY, and therefore f∗X = Y, which means
that M is isotropic.

Let M be isotropic. For an arbitrary geodesic γV with p ∈ M,V ∈ TpM there exists an
isometry f ∈ Ip that reverses it, f∗V = −V, so M is complete and homogeneous. Consider
x1, x2, y1, y2 ∈ M with d(x1, y1) = d(x2, y2). By homogeneity, there exists f1 ∈ I(M) such that
f1(x2) = x1. By completeness, we have minimizing geodesics γX1

, γX2
: [0,1] → M such that

y1 = expx1(X1), f1(y2) = expx1
(X2). Since ‖X1‖ = d(x1, y1) = d(x2, y2) = d(x1, f1y2) = ‖X2‖, by

isotropy we have f2 ∈ Ix1(M) with f2∗X2 = X1. Thus, we obtain f2 ◦ f1 ∈ I(M) that satisfies
f2f1(x2) = f2(x1) = x1 and f2f1(y2) = f2 expx1

(X2) = expf2x1
(f2∗X2) = expx1

(X1) = y1, which
proves that M is two-point homogeneous.

Two-point homogeneous spaces were first studied by Busemann6 in 1942 [28] and by
Birkhoff7 in 1944 [20]. We have a complete classification of these spaces, the compact ones
were classified by Wang8 in 1952 [118], while the noncompact ones by Tits9 in 1955 [113].
As a consequence of the classification, it is known that any locally two-point homogeneous
Riemannian manifold is either flat or locally isometric to a rank one symmetric space, see
Helgason10 [67, p.535]. For the details about two-point homogeneous spaces we recom-
mend Wolf [120, pp.293–300] and Helgason [67, p.535].

5Joseph Albert Wolf (1936), American mathematician
6Herbert Busemann (1905–1994), German-American mathematician
7Garrett Birkhoff (1911–1996), American mathematician
8Hsien Chung Wang (1918–1978), Chinese-American mathematician
9Jacques Tits (1930), Belgium-born French mathematician

10Sigurdur Helgason (1927), Icelandic mathematician
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Theorem 7.12. A two-point homogeneous connected Riemannian manifold is isometric (up
to a homothety) to one of the following: a Euclidean space; a sphere; a real, complex or
quaternionic, projective or hyperbolic space; or the Cayley11 projective or hyperbolic plane.

More precisely, the classification of two-point homogeneous spaces is as follows:

• Rn = E(n)/O(n) for n ≥ 1, Euclidean space;
• Sn = SO(n+ 1)/SO(n) for n ≥ 1, sphere;
• RPn = SO(n+ 1)/O(n) for n ≥ 2, real projective space;
• CPn = SU(n+ 1)/U(n) for n ≥ 2, complex projective space;
• HPn = Sp(n+ 1)/Sp(n)× Sp(1) for n ≥ 2, quaternionic projective space;
• OP2 = F4/Spin(9), Cayley projective plane;
• RHn = SO1(n+ 1)/SO(n) for n ≥ 2, real hyperbolic space;
• CHn = SU1(n+ 1)/U(n) for n ≥ 2, complex hyperbolic space;
• HHn = Sp1(n+ 1)/Sp(n)× Sp(1) for n ≥ 2, quaternionic hyperbolic space;
• OH2 = F∗

4/Spin(9), Cayley hyperbolic plane.

However, it is convenient to notice that there are following isomorphisms (isometries up
to a homothety) in low dimensions: RP1 ∼= S1, CP1 ∼= S2, HP1 ∼= S4, OP1 ∼= S8, CH1 ∼= RH2,
HH1 ∼= RH4, OH1 ∼= RH8.

11Arthur Cayley (1821–1895), British mathematician
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CHAPTER 8

OSSERMAN CONDITIONS

8.1 Osserman conditions

Let (M, g) be a pseudo-Riemannian manifold and p ∈ M is an arbitrary point. The set of all
unit vectors in TpM,

SpM = {X ∈ TpM : |gp(X,X)| = 1},

in the Riemannian setting corresponds to the tangent sphere S1(0p) . However, if g is indef-
inite, SpM is not even compact (a hyperbola in dimension 2, a hyperboloid in dimension
3), and it is convenient to observe spacelike and timelike vectors separately (geometric
difference between one-sheet and two-sheets hyperboloids). Thus, we introduce pseudo-
spheres

S−pM = {X ∈ TpM : gp(X,X) = −1},
S+pM = {X ∈ TpM : gp(X,X) = 1},

where SpM = S−pM ∪ S+pM. Moreover, on a manifold, we often consider pseudo-sphere
bundles {X ∈ TM : gπX(X,X) = Const}, which are hypersurfaces of the tangent bundle
TM. In this way we have the timelike unit tangent bundle S−M =

⊔
p∈M S−pM and the

spacelikeunit tangent bundle S+M =
⊔

p∈M S+pM, as well as their union SM = S−M∪S+M.
According to Theorem 7.12, the classification of two-point homogeneous connected

Riemannian manifolds includes: Rn, Sn, RPn, CPn, HPn, OP2, RHn, CHn, HHn, and OH2.
Local isometries of a locally two-point homogeneous spaceM act transitively on the sphere
bundle SM, and therefore fix the characteristic polynomial of the Jacobi operator there. In
this way we get a generalisation of locally two-point homogeneous Riemannian manifolds,
called the Riemannian Osserman manifolds, in which the characteristic polynomial
(or equivalently, the eigenvalues and their multiplicities) of a Jacobi operator JX is inde-
pendent of X from the unit tangent bundle.

The lack of other examples led Osserman [97] to conjecture that the converse might
also be true. The question of whether the converse is true (every Osserman Riemannian
manifold is locally two-point homogeneous) is known as the Osserman conjecture. The
first results on the Osserman conjecture were given by Chi1 [34], who established the af-
firmative answer for manifolds of dimension not divisible by four. The largest progress
in solving the conjecture was made by Nikolayevsky2 [88, 89, 90, 91], who proved it in all
cases, except the manifolds of dimension 16 whose reduced Jacobi operator has an eigen-
value of multiplicity 7 or 8.

We can extend this concept to pseudo-Riemannian manifolds. We say that a pseudo-
Riemannian manifold (M, g) is Osserman or globally Osserman, if the characteristic

1Quo-Shin Chi (1955), Taiwanese-American mathematician
2Yuri Nikolayevsky, Australian mathematician

149



Chapter 8. Osserman conditions

polynomial
ωX(λ) = det(λ1−JX)

of a Jacobi operator JX is independent of a choice of X ∈ TM on both S−M and S+M.
It is often convenient to study certain geometric problems in a purely algebraic setting.

Reducing a pseudo-Riemannian manifold (M, g) to a point p ∈ M allows us to deal with
an algebraic curvature tensor Rp on the scalar product space (TpM, gp). In this context
we introduce some notions related to an algebraic curvature tensor R on a scalar product
space (V, g).

We say that R is timelike Osserman if ωX is independent of unit timelike X ∈ V . We
say that R is spacelike Osserman if ωX is independent of unit spacelike X ∈ V . Naturally,
R is called Osserman if it is both timelike and spacelike Osserman. However, it turns out
that timelike Osserman and spacelike Osserman conditions are equivalent (see Theorem
8.1).

This algebraic approach brings us a less restrictive concept of manifolds in which the
characteristic polynomial of Jacobi operator is constant on both S−pM and S+pM for all p ∈
M, but can vary from point to point. We say that a pseudo-Riemannian manifold M is
pointwise Osserman if the associated algebraic curvature tensor Rp is Osserman at each
point p ∈ M. Of course, globally Osserman manifolds are necessarily pointwise Osserman,
while the converse is not true (see [23]).

The Osserman condition is equivalent to the constancy of (possibly complex) eigen-
values of the Jacobi operators counting multiplicities. It was originally established in the
positive definite case, which enables us to diagonalize the Jacobi operator, as a self-adjoint
operator. However, for indefinite scalar product, the eigen-structure of a self-adjoint op-
erator is not determined by its characteristic polynomial (in general, the Jacobi operators
are not diagonalisable), so the Jordan normal form plays a crucial role (see Section A.3).

Further generalisations of Osserman conditions at a point concern the eigen-structure
of Jacobi operators. We say that R is timelike Jordan-Osserman if the Jordan normal
form of JX is independent of unit timelike X ∈ V . We say that R is spacelike Jordan-
Osserman if the Jordan normal form of JX is independent of unit spacelike X ∈ V . As be-
fore, R is called Jordan-Osserman if it is both timelike and spacelike Jordan-Osserman.
Timelike and spacelike Jordan-Osserman conditions, unlike the original Osserman condi-
tions, are not equivalent (see Theorem 9.7).

The simplest case of Jordan-Osserman R for indefinite g considers diagonalisable Jac-
obi operators, which means that the corresponding Jordan normal form consists of dimV
blocks of size one. We say that R is Jacobi-diagonalisable if for each nonnull X ∈ V
there exists an orthonormal eigenbasis in V related to JX. Jacobi-diagonalisable algebraic
curvature tensors are closest to the definite case. Moreover, this condition is natural in
some way, because a Jordan-Osserman R that is not Kleinian (dimV 6= 2 Ind g) have to be
Jacobi-diagonalisable (see Gilkey and Ivanova3 [57]).

We say that a pseudo-Riemannian manifold (M, g) is pointwise Jordan-Osserman if
its corresponding algebraic curvature tensor Rp is Jordan-Osserman for each point p ∈ M,
while it is globally Jordan-Osserman if the Jordan normal form of JX is constant on both
S−M and S+M. We say that (M, g) is Jacobi-diagonalisable if Rp is Jacobi-diagonalisable
for each point p ∈ M.

Example 8.1. As we have already pointed out, two-point homogeneous connected
Riemannian manifolds (Rn, Sn, RPn, CPn, HPn, OP2, RHn, CHn, HHn, OH2) are globally Os-
serman. 4

Example 8.2. Spaces of constant sectional curvature of dimension n ≥ 3 (from Section
6.4) have the corresponding algebraic curvature tensor of form R = κR1 for some global

3Raina B. Ivanova
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constant κ ∈ R. Hence R(X,Y)Z = κ(g(Y,Z)X− g(X,Z)Y), so for a nonnull X and Y ∈ X⊥ we
have

JXY = R(Y,X)X = κ(g(X,X)Y− g(Y,X)X) = εXκY.

Thus J̃X = εXκ 1X⊥ holds for any nonnull X, which shows that the reduced Jacobi operator
J̃X has the single eigenvalue εXκ on pseudo-spheres εX = Const 6= 0. Therefore the charac-
teristic polynomial of JX is ωX(λ) = λ(λ − εXκ)n−1, which is constant on both unit tangent
bundles. As a corollary, spaces of constant sectional curvature are globally Osserman. In
particular, apart from the Riemannian spaces already seen (Rn, Sn, RPn, RHn), we have
pseudo-Riemannian model spaces from Section 4.6 such as Rn

ν, dSn, and AdSn. 4

Example 8.3. Let J : V → V be a skew-adjoint endomorphism on a scalar product space
(V, g) of dimension n. Such J generates an algebraic curvature tensor RJ ∈ T0

4(V) by (6.15)
from Example 6.5. The corresponding curvature operator has

RJ(X,Y)Z = g(JX,Z)JY− g(JY,Z)JX+ 2g(JX,Y)JZ,

and consequently the Jacobi operator satisfies

J J
XY = RJ(Y,X)X = 3g(JY,X)JX− g(JX,X)JY = −3g(Y, JX)JX,

that is,

J J
X =

{
−3εJX 1 on Span{JX}
0 on Span{JX}⊥

.

If we additionally suppose that J2 = c1 holds for some constant c ∈ R, then we have
εJX = g(JX, JX) = −g(X, J2X) = −cεX. It is clear that the case c 6= 0 implies

ωX(λ) = det(λ1−J J
X) = λn−1(λ− 3cεX). (8.1)

The case c = 0 gives εJX = 0, so J J
X vanishes on Span{JX} + Span{JX}⊥ = Span{JX}⊥. If

JX = 0 then we have J J
X = 0. Otherwise, JX is null, so Span{JX}⊥ ≤ Ker((J J

X)
n) is degenerate

subspace of dimension n − 1, and therefore Lemma A.22 implies dim Ker((J J
X)

n) > n − 1,
which yields Ker((J J

X)
n) = V . This proves that all the eigenvalues are zero in the case c = 0,

so (8.1) holds anyway. The formula (8.1) shows that ωX(λ) is constant on pseudo-spheres,
and therefore RJ is an Osserman algebraic curvature tensor.

Thus, any skew-adjoint endomorphism J such that J2 = c1 holds, generates an Os-
serman algebraic curvature tensor RJ. In particular any orthogonal skew-adjoint endo-
morphism (c = −1, a complex structure that preserves g) and any anti-orthogonal skew-
adjoint endomorphism (c = 1, a product structure) yield an Osserman algebraic curvature
tensor. 4

8.2 Osserman manifolds examples

The following concrete examples allow us to illustrate our definitions in a nice way.
García-Río, Kupeli, and Vázquez-Lorenzo [62] are constructed the collection of pseudo-
Riemannian manifolds (M, g) with M = R4 and the usual coordinates (x1, x2, x3, x4), by the
following Gram matrix

g =


x3f1 a 1 0
a x4f2 0 1
1 0 0 0
0 1 0 0

 (8.2)
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related to the natural global frame (∂1, ∂2, ∂3, ∂4) forM, where smooth real-valued functions
f1 = f1(x1, x2) and f2 = f2(x1, x2) depend on x1 and x2 only, while a ∈ R. This is a special
case of the Walker metric from Example 4.8, and therefore (M, g) is a pseudo-Riemannian
manifold of index two, that is, a Kleinian manifold of dimension 4. The Christoffel symbols
are given by the formula

Γkij =
1
2

n∑
l=1

glk
(
∂gjl
∂xi

+
∂gli
∂xj

−
∂gij
∂xl

)
, (5.11 revisited)

where gij are entries of the matrix g from (8.2), while gij are entries of the inverse matrix,

g−1 =


0 0 1 0
0 0 0 1
1 0 −x3f1 −a
0 1 −a −x4f2

 .

Concrete calculations give all nonzero Christoffel symbols:

Γ1
11 =− 1

2 f1, Γ3
11 =

1
2x3

∂f1
∂x1

+
1
2x3f21,

Γ4
11 =− 1

2x3
∂f1
∂x2

+
1
2af1, Γ3

12 =Γ3
21 =

1
2x3

∂f1
∂x2

,

Γ4
12 =Γ4

21 =
1
2x4

∂f2
∂x1

, Γ2
22 =− 1

2 f2,

Γ3
22 =− 1

2x4
∂f2
∂x1

+
1
2af2, Γ4

22 =
1
2x4

∂f2
∂x2

+
1
2x4f22,

Γ3
13 =Γ3

31 =
1
2 f1, Γ4

24 =Γ4
42 =

1
2 f2.

Using the formula

Rl
ijk = ∂iΓljk − ∂jΓlik +

∑
m

(ΓmjkΓlim − ΓmikΓljm), (6.3 revisited)

we find all nonzero curvature operator components:

R(∂1, ∂2)∂1 =
1
2
∂f1
∂x2

∂1 − 1
2x3f1

∂f1
∂x2

∂3+

+
1
4

(
2x3

∂2f1
∂x2

2 + 2x4
∂2f2
∂x1

2 + (x3f2 − 2a) ∂f1
∂x2

+ x4f1
∂f2
∂x1

− af1f2
)
∂4,

R(∂1, ∂2)∂2 = −1
2
∂f2
∂x1

∂2 +
1
2x4f2

∂f2
∂x1

∂4−

− 1
4

(
2x3

∂2f1
∂x2

2 + 2x4
∂2f2
∂x1

2 + x3f2
∂f1
∂x2

+ (x4f1 − 2a) ∂f2
∂x1

− af1f2
)
∂3,

R(∂1, ∂2)∂3 =− 1
2
∂f1
∂x2

∂3, R(∂1, ∂2)∂4 =
1
2
∂f2
∂x1

∂4,

R(∂1, ∂3)∂1 =
1
2
∂f1
∂x2

∂4, R(∂1, ∂3)∂2 =− 1
2
∂f1
∂x2

∂3,

R(∂2, ∂4)∂1 =− 1
2
∂f2
∂x1

∂4, R(∂2, ∂4)∂2 =
1
2
∂f2
∂x1

∂3.
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The previous calculations give the matrix of Jacobi operator JX for X =
∑4

i=1 αi∂i as the
block matrix

JX =

(
A 0
B A⊺

)
,

where

A =


1
2α1α2

∂f1
∂x2

−1
2α

2
1
∂f1
∂x2

−1
2α

2
2
∂f2
∂x1

1
2α1α2

∂f2
∂x1

 .

Since the determinant of a block triangular matrix is the product of the determinants of
its diagonal blocks, the characteristic polynomial of JX does not depend on the matrix B,

ωX(λ) = det(λ1−JX) = det(λ1−A)det(λ1−A⊺
) = (det(λ1−A))2.

Since
det(λ1−A) = λ2 − 1

2λα1α2

(
∂f1
∂x2

+
∂f2
∂x1

)
,

it is not hard to conclude that the characteristic polynomial ωX(λ) is constant on pseudo-
spheres only if

∂f1
∂x2

+
∂f2
∂x1

= 0 (8.3)

holds at each point of M. Assuming (8.3), we have ωX(λ) = λ4, and (M, g) is a globally
Osserman pseudo-Riemannian manifold.

Let us consider Jordan-Osserman conditions for these manifolds. Thanks to a small
dimension of M, the Jordan normal form of JX can be described in terms of its minimal
polynomial μX. If the more restrictive condition

∂f1
∂x2

=
∂f2
∂x1

= 0 (8.4)

holds at some point of M, then the curvature operator formulas are much simpler, and the
curvature operator components at this point are nonzero only for

R(∂1, ∂2)∂1 =
1
4

(
2x3

∂2f1
∂x2

2 + 2x4
∂2f2
∂x1

2 − af1f2
)
∂4,

R(∂1, ∂2)∂2 = −1
4

(
2x3

∂2f1
∂x2

2 + 2x4
∂2f2
∂x1

2 − af1f2
)
∂3.

Hence

JX =
1
4

(
2x3

∂2f1
∂x2

2 + 2x4
∂2f2
∂x1

2 − af1f2
)

0 0 0 0
0 0 0 0

−α2
2 α1α2 0 0

α1α2 −α2
1 0 0


and JX

2 = 0. At points satisfying (8.4), the condition

2x3
∂2f1
∂x2

2 + 2x4
∂2f2
∂x1

2 − af1f2 = 0

gives μX(λ) = λ. Otherwise, JX = 0 holds only for α1 = α2 = 0, but any X = α3∂3 + α4∂4 is
null, and therefore μX(λ) = λ2 holds for a nonnull X. Concrete Osserman manifolds can be
given by a suitable choice for f1, f2, and a.

153



Chapter 8. Osserman conditions

Example 8.4. For f1(x1, x2) = 1, f2(x1, x2) = 1, and a = 1 hold
∂f1
∂x2

=
∂f2
∂x1

= 0, 2x3
∂2f1
∂x2

2 + 2x4
∂2f2
∂x1

2 − af1f2 = −1 6= 0.

For a nonnull X we have μX(λ) = λ2 at each point of M. This manifold is globally Jordan-
Osserman, but it is not Jacobi-diagonalisable. 4
Example 8.5. For f1(x1, x2) = x1, f2(x1, x2) = 1, and a = 1 hold

∂f1
∂x2

=
∂f2
∂x1

= 0, 2x3
∂2f1
∂x2

2 + 2x4
∂2f2
∂x1

2 − af1f2 = −x1.

In this case, for a nonnull X, we have μX(λ) = λ at points with x1 = 0 and μX(λ) = λ2 at
points with x1 6= 0. This manifold is globally Osserman and pointwise Jordan-Osserman,
but it is not globally Jordan-Osserman. 4

For completeness and some possible examples we can calculate the matrix B. Under
the condition (8.3) we have

A =
1
2
∂f1
∂x2

(
α1α2 −α2

1
α2

2 −α1α2

)
, B =

(
b11 b12
b21 b22

)
,

where

b11 =− 1
2α

2
2x3

∂2f1
∂x2

2
+

1
2α

2
2x4

∂2f1
∂x1∂x2

+
1
4aα

2
2f1f2

− 1
4
(

2α1α2x3f1 + α2
2x3f2 − α2

2x4f1 + 4α2α3 + 2aα2
2

) ∂f1
∂x2

,

b12 =
1
2α1α2x3

∂2f1
∂x2

2
− 1

2α1α2x4
∂2f1

∂x1∂x2
− 1

4aα1α2f1f2

+
1
4
(

2α2
1x3f1 + α1α2x3f2 − α1α2x4f1 + 2α1α3 + 2aα1α2 − 2α2α4

) ∂f1
∂x2

,

b21 =
1
2α1α2x3

∂2f1
∂x2

2
− 1

2α1α2x4
∂2f1

∂x1∂x2
− 1

4aα1α2f1f2

− 1
4
(
α1α2x4f1 + 2α2

2x4f2 − α1α2x3f2 − 2α1α3 + 2aα1α2 + 2α2α4
) ∂f1
∂x2

,

b22 =− 1
2α

2
1x3

∂2f1
∂x2

2
+

1
2α

2
1x4

∂2f1
∂x1∂x2

+
1
4aα

2
1f1f2

+
1
4
(

2α1α2x4f2 + α2
1x4f1 − α2

1x3f2 + 4α1α4 + 2aα2
1

) ∂f1
∂x2

.

The straightforward calculation gives

JX
2 =

(
A2 0

BA+ A⊺B (A⊺
)2

)
=

(
0 0

BA+ A⊺B 0

)
=

1
4εX

(
∂f1
∂x2

)2


0 0 0 0
0 0 0 0

−α2
2 α1α2 0 0

α1α2 −α2
1 0 0

 ,

and
JX

3 =

(
0 0

(BA+ A⊺B)A 0

)
= 0,

for all X ∈ TM. Therefore, for all nonnull X, the condition
∂f1
∂x2

= − ∂f2
∂x1

6= 0

implies μX(λ) = λ3, which allows new concrete examples.
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Example 8.6. For f1(x1, x2) = x2, f2(x1, x2) = −x1, and a = 1 hold

∂f1
∂x2

= − ∂f2
∂x1

= 1 6= 0.

For a nonnull X we have μX(λ) = λ3 at each point of M, which gives another example of a
globally Jordan-Osserman manifold. 4

Example 8.7. For f1(x1, x2) = x1x2, f2(x1, x2) = −1
2x2

1, and a = 1 hold

∂f1
∂x2

= − ∂f2
∂x1

= x1, 2x3
∂2f1
∂x2

2 + 2x4
∂2f2
∂x1

2 − af1f2 = −2x4 +
1
2x

3
1x2.

Here, μX(λ) for a nonnull X varies from point to point. It can be λ3 (for points with x1 6= 0),
or λ2 (for x1 = 0, x4 6= 0), or λ (for x1 = x4 = 0). The constructed manifold is globally
Osserman and pointwise Jordan-Osserman. 4

8.3 Osserman algebraic curvature tensor

Let R be a spacelike Osserman algebraic curvature tensor on a scalar product space (V, g)
of dimension n. The characteristic polynomial ωX(λ) = det(λ1−JX) is independent of a
unit spacelike X, so the coefficients of ωX are constant, and according to (A.5) from Lemma
A.17, there exist constants C1,C2, . . . ,Cn such that Tr(JX

j) = Cj holds for each 1 ≤ j ≤ n and
any unit spacelike X. Evidently it works vice-versa, so R is spacelike Osserman if and only
if such constants exist. Since

Tr(JX)
j = Tr

(√
|εX|

2j (
JX/

√
|εX|

)j)
= |εX|j Tr

((
JX/

√
|εX|

)j)
,

our equations can be extended for a spacelike X to

Tr(JX)
j = (εX)jCj, (8.5)

for each 1 ≤ j ≤ n.
The equation R(Z,X + tY)(X + tY) = R(Z,X)X + t(R(Z,X)Y +R(Z,Y)X) + t2R(Z,Y)Y can

be written using the polarized Jacobi operator as

JX+tY = JX + 2tJ (X,Y) + t2JY

for all X,Y ∈ V and t ∈ R.
If X is timelike, Y ∈ X⊥ is spacelike, and |t| >

√
−εX/εY, then εX+tY = εX+ t2εY > 0 which

implies that X+ tY is spacelike. In that case for a spacelike Osserman R we have

Tr((JX + 2tJ (X,Y) + t2JY)
j) = Tr((JX+tY)

j) = (εX+tY)jCj = (εX + t2εY)jCj,

which yields
2j∑
i=0

(Tr(Li))ti =
j∑

i=0

(
j
i

)
(εX)j−i(εY)iCjt2i, (8.6)

for some concrete linear operators L0,L1, . . . ,L2j. Since a polynomial of degree d has at
most d roots, while we have infinitely many t such that (8.6) holds, the polynomials in (8.6)
are equal, so their coefficients must also be equal. Evidently L0 = (JX)

j holds and therefore
we have Tr(JX)

j = (εX)jCj for any timelike X.
In a similar way, it is easy to see that R is timelike Osserman if and only if there exist

constants Cj such that (8.5) holds for each 1 ≤ j ≤ n and any timelike X. Thus, we have
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Chapter 8. Osserman conditions

already proven that a spacelike Osserman R is timelike Osserman, while the converse can
be obtained similarly. Therefore, spacelike Osserman and timelike Osserman are equival-
ent conditions in the case of indefinite g, which is originally proved by García-Río, Kupeli,
Vázquez-Abal4, and Vázquez-Lorenzo in 1999 [61].

Theorem 8.1. An indefinite algebraic curvature tensor is spacelike Osserman if and only if
it is timelike Osserman.

Consequently, an algebraic curvature tensor is Osserman if and only if there exist con-
stants C1, . . . ,Cn such that Tr(JX)

j = (εX)jCj holds whenever X is nonnull. If we look at the
coefficients of the characteristic polynomial,

ωX(λ) = det(λ1−JX) = λn + σ1λn−1 + · · ·+ σn−1λ+ σn,

then the equation (A.5) from Lemma A.17 gives

mσm + σm−1 Tr(JX) + σm−2 Tr(JX)
2 + · · ·+ σ1 Tr(JX)

m−1 + Tr(JX)
m = 0,

for each 1 ≤ m ≤ n. After the substitution we have

σm
(εX)m

= − 1
m

(
σm−1

(εX)m−1C1 +
σm−2

(εX)m−2C2 + · · ·+ σ1
εX

C1 + Cm
)
,

and by induction σm/(εX)m are constant for 1 ≤ m ≤ n. Hence,

det
(
λ1− 1

εX
JX

)
=

det(εXλ1−JX)

(εX)n
=

ωX(εXλ)
(εX)n

= λn + σ1
εX

λn−1 + · · ·+ σn−1
(εX)n−1 λ+

σn
(εX)n

is a polynomial with constant coefficients which proves the following theorem.

Theorem 8.2. An algebraic curvature tensor is Osserman if and only if the polynomial
det(λ1−JX/εX) is independent of a nonnull vector X.

Thanks to Theorem 8.2, we no longer need to look at the Osserman condition through
two independent constancy of different polynomials, one for spacelike unit and the other
for timelike unite vectors, but we united all this through a unique polynomial that is con-
stant for each definite vector.

So far, (8.5) holds for a nonnull X, and obviously for X = 0. Any null X, by Lemma 4.10,
can be decomposed as X = S + T, with εS = −εT > 0. For n > 2 there exists a nonnull
Y ∈ Span{S,T}⊥. Because of Y ⊥ X we have εX+tY = g(X + tY,X + tY) = t2εY 6= 0 for t 6= 0.
According to Lemma 6.5, the entries of the matrix JX are homogeneous polynomials of
degree 2 in coefficients of X, so Tr(JX+tY)

j is a polynomial of degree 2j, and thus continuous
by t. If t decreases to zero, then we obtain Tr(JX+tY)

j = (εX+tY)jCj = t2j(εY)jCj which implies

Tr(JX)
j = lim

t↘0
Tr(JX+tY)

j = lim
t↘0

t2j(εY)jCj = 0.

Hence Tr(JX)
j = 0 = (εX)jCj holds, which extends the equation (8.5) for all X ∈ V , and

motivate us to introduce the following definition.
An algebraic curvature tensorR on a scalar product space (V, g) is called k-stein if there

exist constants C1, . . . ,Ck such that

Tr(JX)
j = (εX)jCj (8.5 revisited)

holds for each 1 ≤ j ≤ k and any X ∈ V . The previous calculations prove the following
theorem (see Gilkey [54, Lemma 1.7.3]).

4María Elena Vázquez-Abal, Spanish mathematician
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Theorem 8.3. An algebraic curvature tensor of dimension n is Osserman if and only if it is
n-stein.

As a consequence, an Osserman algebraic curvature tensor has Tr(JX)
j = 0 for a null X

and each 1 ≤ j ≤ n, which implies σ1 = σ2 = · · · = σn = 0 for the coefficients of ωX. In light
of this ωX(λ) = det(λ1−JX) = λn holds for all null X and we have the following theorem
(see Gilkey [54, Lemma 1.7.4]).

Theorem 8.4. If R is an Osserman algebraic curvature tensor, then all eigenvalues of JX for
a null X are equal to zero.

8.4 Einstein, zwei-stein, ...

An Osserman algebraic curvature tensor R on a scalar product space (V, g) of dimension
n ≥ 3 is n-stein. Let us recall the previous idea starting with JX+tY, where the k-stein
condition implies that

Tr(JX + 2tJ (X,Y) + t2JY)
j = Tr(JX+tY)

j = (εX+tY)jCj = (εX + 2tg(X,Y) + t2εY)jCj (8.7)

holds for each 1 ≤ j ≤ k, and all X,Y ∈ V , t ∈ R. The simplest case is k = 1, which yields the
equal polynomials,

Tr(JX) + 2tTr(J (X,Y)) + t2 Tr(JY) = εXC1 + 2tC1g(X,Y) + t2εYC1,

and therefore C1g(X,Y) = Tr(J (X,Y)) = Ric(X,Y), which gives Ric = C1g. Hence, an algeb-
raic curvature tensor is Einstein if and only if it is 1-stein, which is the reason why Car-
penter5, Gray6, and Willmore7 [33] wittily choose the name k-stein for a generalisation. As
the name of the famous physicist Einstein means one-stone in German, by generalisation
we get zwei-stein (two stones), drei-stein (three stones), and so on.

Consider an orthonormal basis (E1,E2, . . . ,En) in (V, g), where we introduce the short-
cuts εi = εEi ∈ {−1,1} for 1 ≤ i ≤ n. Using the equality (6.31), the Einstein condition gives
C1g(X,Y) = Ric(X,Y) =

∑n
i=1 εiR(Ei,X,Y,Ei), and therefore

∑n
i=1 εiRixyi = C1εxδxy holds for

all 1 ≤ x, y ≤ n, where Rijkl = R(Ei,Ej,Ek,El) for 1 ≤ i, j,k, l ≤ n are components of R. Hence,
for an Einstein R we have ∑

1≤i≤n
εiεxRixxi = Const = C1, (8.8)

∑
1≤i≤n

εiRixyi = 0. (8.9)

Theorem 8.5. If R is an Einstein algebraic curvature tensor of dimension n, then in an or-
thonormal basis the equalities (8.8) and (8.9) hold for all 1 ≤ x 6= y ≤ n.

Let us recall the equation (8.7) and consider the next simplest case k = 2. Without loss
of generality, we assume X ⊥ Y, so the equation becomes

Tr(JX + 2tJ (X,Y) + t2JY)
2 = Tr(JX+tY)

2 = (εX+tY)2C2 = (εX + t2εY)2C2.

The equal polynomials have the same coefficients, so comparing the coefficients of 1, t, and
t2 we obtain

Tr(JX)
2 = (εX)2C2,

Tr(JXJ (X,Y)) + Tr(J (X,Y)JX) = 0,
Tr(JXJY) + 4 Tr(J (X,Y))2 + Tr(JYJX) = 2εXεYC2,

5Paul Carpenter, British mathematician
6Alfred Gray (1939–1998), American mathematician
7Thomas James Willmore (1919–2005), English mathematician
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Chapter 8. Osserman conditions

while due to the symmetry between X and Y, the equations obtained by comparing the
coefficients of t3 and t4 are redundant.

For an arbitrary endomorphism J on V , from (4.3) follows J (Eq) =
∑

i εig(J (Eq),Ei)Ei,
so the matrix ofJ related to our basis has the entries (J )pq = εpg(J (Eq),Ep) for 1 ≤ p,q ≤ n.
Additionally, for endomorphisms J and K holds Tr(JK) = Tr(KJ ), which allows us to
calculate the traces of concrete endomorphisms,

C2 = (εx)2C2 = Tr(JEx)
2 =

∑
i,j

(JEx)ij(JEx)ji =
∑
i,j

εig(JEx(Ej),Ei)εjg(JEx(Ei),Ej)

=
∑
i,j

εiRjxxiεjRixxj =
∑
i,j

εiεj(Rixxj)
2,

0 = Tr(JExJ (Ex,Ey)) + Tr(J (Ex,Ey)JEx) = 2 Tr(JExJ (Ex,Ey))

= 2
∑
i,j

εiRjxxiεj
1
2(Rixyj + Riyxj) = 2

∑
i,j

εiεjRixxjRixyj,

2εxεyC2 = Tr(JExJEy) + 4 Tr(J (Ex,Ey))2 + Tr(JEyJEx) = 2 Tr(JExJEy) + 4 Tr(J (Ex,Ey))2

= 2
∑
i,j

εiRjxxiεjRiyyj + 4
∑
i,j

εi
1
2(Rjxyi + Rjyxi)εj

1
2(Rixyj + Riyxj)

= 2
∑
i,j

εiεjRixxjRiyyj +
∑
i,j

εiεj(Rixyj + Riyxj)
2.

Hence, we obtain the equalities that are characteristic of a zwei-stein R,∑
1≤i,j≤n

εiεj(Rixxj)
2 = Const = C2, (8.10)

∑
1≤i,j≤n

εiεjRixxjRixyj = 0, (8.11)

2
∑

1≤i,j≤n
εiεjRixxjRiyyj +

∑
1≤i,j≤n

εiεj(Rixyj + Riyxj)
2 = 2εxεyC2. (8.12)

Theorem 8.6. If R is a zwei-stein algebraic curvature tensor of dimension n, then in an or-
thonormal basis (8.8), (8.9), (8.10), (8.11), and (8.12) hold for all 1 ≤ x 6= y ≤ n.

Let R be an Osserman algebraic curvature tensor on a scalar product space (V, g) of
dimension n. By Theorem 8.3, R is n-stein. In light of this, constant eigenvalues (with
multiplicities) of JX additionally give constant Tr(JX)

k for k > n, which extends R to be
k-stein for any k ∈ N. Hence,

Tr(JX + 2tJ (X,Y) + t2JY)
k = Tr(JX+tY)

k = (εX+tY)kCk = (εX + t2εY)kCk

holds for all k ∈ N, t ∈ R, and mutually orthogonal X,Y ∈ V . That recalls the equation (8.6),

2k∑
i=0

ti Tr(Li) =
k∑
i=0

(
k
i

)
(εX)k−i(εY)iCkt2i,

which holds for concrete linear operators L0,L1, . . . ,L2k. Especially, Tr(Li) = 0 for an odd
i, as well as

Tr(L2p) =

(
k
p

)
(εX)k−p(εY)pCk, (8.13)
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for all 0 ≤ p ≤ k. We have already seen L0 = (JX)
k which implies Tr(JX)

k = (εX)kCk. The
next simplest is

L1 = 2((JX)
k−1J (X,Y) + (JX)

k−2J (X,Y)JX + · · ·+ J (X,Y)(JX)
k−1).

Since
k−1∑
i=0

Tr((JX)
k−1−iJ (X,Y)(JX)

i) =
k−1∑
i=0

Tr((JX)
i(JX)

k−1−iJ (X,Y)) = kTr((JX)
k−1J (X,Y)),

we obtain
Tr((JX)

k−1J (X,Y)) = 1
2k Tr(L1) = 0.

The general case, for X = Ex, Y = Ey with x 6= y, is rather complicated,∑
i1,...,ik

εi1 · · · εikRi2xxi1Ri3xxi2 · · ·Rikxxik−1

1
2(Ri1xyik + Ri1yxik) = 0. (8.14)

If we assume that R is Jacobi-diagonalisable, or at least that JEx is diagonalisable, then
there exists an orthonormal eigenbasis (E1, . . . ,En) related to JEx . In this basis Rpxxq = 0
holds for all p 6= q, so the general equality (8.14) has sense only for i1 = i2 = · · · = ik, and
therefore

0 =
1
2
∑
i
(εi)k(Rixxi)

k−1(Rixyi + Riyxi) =
∑
i
εi(εiRixxi)

k−1Rixyi. (8.15)

If we denote the sectional curvatures by κij = εiεjRijji = κ(Ei,Ej), then we have

JExEi =
∑
p
εpg(JEx(Ei),Ep)Ep =

∑
p
εpRixxpEp = εiRixxiEi = εxκxiEi.

Let {λ1, λ2, . . . , λm} = {λ : det(εxλ1−JEx) = 0} be the spectrum of the operator εxJEx , then
for any 1 ≤ a ≤ m we can combine together such 1 ≤ i ≤ n that κxi = λa holds. Multiplying
(8.15) by (εx)k−1 we have

0 =
∑
i
εi(εiεxRixxi)

k−1Rixyi =
∑

1≤a≤m

∑
κxi=λa

εi(λa)k−1Rixyi =
∑

1≤a≤m
(λa)k−1Wa,

where Wa =
∑

κxi=λa εiRixyi. The equalities
∑m

a=1(λa)k−1Wa = 0 for 1 ≤ k ≤ m can be
written as 

1 1 · · · 1
λ1 λ2 · · · λm
λ2

1 λ2
2 · · · λ2

m
...

...
. . .

...

λm−1
1 λm−1

2 · · · λm−1
m




W1
W2
W3
...

Wm

 = 0.

This system of equations has a well known Vandermonde8 matrix, generated by distinct
numbers from the spectrum, and therefore its determinant is

Δ = V(λ1, . . . , λm) =
∏

1≤a<b≤m
(λb − λa) 6= 0.

Thus, our homogeneous system is invertible and it has the unique trivial solution, which
gives Wa = 0 for all 1 ≤ a ≤ m and the following theorem holds.

8Alexandre-Théophile Vandermonde (1735–1796), French mathematician, musician and chemist
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Theorem 8.7. Let R be an Osserman algebraic curvature tensor and let (E1, . . . ,En) be an
orthonormal eigenbasis related to JEx . Then for any λ ∈ R and y 6= x holds∑

κxi=λ
εiRixyi = 0.

Let us keep the previous notations (X = Ex, Y = Ey with x 6= y, Rpxxq = 0 for p 6= q) and
consider the next simplest L2. It is not hard to see that

L2 =
∑

p+q=k−1
(JX)

pJY(JX)
q + 4

∑
p+q+r=k−2

(JX)
pJ (X,Y)(JX)

qJ (X,Y)(JX)
r = P+ S.

We calculate the trace of L2 = P+ S. The trace of the first term is simple,

TrP =
∑

p+q=k−1
Tr
(
(JX)

pJY(JX)
q) = kTr((JX)

k−1JY) = k(εx)k−1εy
∑

1≤i≤n
κyi(κxi)k−1.

However, the trace of the second term is rather complicated,

Tr S =4
∑

p+q+r=k−2
Tr
(
(JX)

pJ (X,Y)(JX)
qJ (X,Y)(JX)

r)
=4

∑
s+q=k−2

(s+ 1)Tr((JX)
sJ (X,Y)(JX)

qJ (X,Y))

=2k
∑

p+q=k−2
Tr((JX)

pJ (X,Y)(JX)
qJ (X,Y))

=
1
2k

∑
p+q=k−2

∑
i,j

(εi)p+1(εj)q+1(Rixxi)
p(Rjxyi + Rjyxi)(Rjxxj)

q(Rixyj + Riyxj)

=
1
2k(εx)

k−2
∑

1≤i,j≤n
εiεj(Rixyj + Riyxj)

2
∑

p+q=k−2
(κxi)p(κxj)q.

It is necessary to discuss cases, depending on whether κxi and κxj are equal,

∑
p+q=k−2

(κxi)p(κxj)q =

(k− 1)(κxi)k−2 if κxi = κxj
(κxi)k−1

κxi−κxj +
(κxj)k−1

κxj−κxi if κxi 6= κxj
.

Using the symmetry we have

∑
1≤i,j≤n

εiεj(Rixyj + Riyxj)
2 (κxi)k−1

κxi − κxj
=

∑
1≤j,i≤n

εiεj(Rixyj + Riyxj)
2 (κxj)k−1

κxj − κxi
,

and therefore

Tr S =k(εx)k−2
∑

κxi ̸=κxj

εiεj(Rixyj + Riyxj)
2 (κxi)k−1

κxi − κxj

+
1
2k(εx)

k−2
∑

κxi=κxj

εiεj(Rixyj + Riyxj)
2(k− 1)(κxi)k−2.

On the other hand, the equality (8.13) for p = 1 yields

Tr(L2) = k(εX)k−1εYCk = kεYεX
Tr(JX)

k = k(εx)k−1εy
∑

1≤i≤n
(κxi)k.
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This equality, together with the previous calculations, after dividing by k(εx)k−2, gives

εxεy
∑

1≤i≤n
(κxi)k = εxεy

∑
1≤i≤n

κyi(κxi)k−1 +
∑

κxi ̸=κxj

εiεj(Rixyj + Riyxj)
2 (κxi)k−1

κxi − κxj

+
1
2
∑

κxi=κxj

εiεj(Rixyj + Riyxj)
2(k− 1)(κxi)k−2.

We can combine together relate to the spectrum {λ1, . . . , λm} of εxJEx to get

∑
1≤a≤m

λk−1
a

εxεy ∑
κxi=λa

(κyi − λa) +
∑
b̸=a

1
λa − λb

∑
κxi=λa

∑
κxj=λb

εiεj(Rixyj + Riyxj)
2


+

∑
1≤a≤m

(k− 1)λk−2
a

1
2
∑

κxi=λa

∑
κxj=λa

εiεj(Rixyj + Riyxj)
2

 = 0.

If we set

Ua = εxεy
∑

κxi=λa

(κyi − λa) +
∑
b̸=a

1
λa − λb

∑
κxi=λa

∑
κxj=λb

εiεj(Rixyj + Riyxj)
2,

Wa =
1
2
∑

κxi=λa

∑
κxj=λa

εiεj(Rixyj + Riyxj)
2,

then our equality becomes∑
1≤a≤m

λk−1
a Ua +

∑
1≤a≤m

(k− 1)λk−2
a Wa = 0,

while for 1 ≤ k ≤ 2m we have the matrix form as follows,

1 · · · 1 0 · · · 0
λ1 · · · λm 1 · · · 1
λ2

1 · · · λ2
m 2λ1 · · · 2λm

λ3
1 · · · λ3

m 3λ2
1 · · · 3λ2

m
...

. . .
...

...
. . .

...

λ2m−1
1 · · · λ2m−1

m (2m− 1)λ2m−2
1 · · · (2m− 1)λ2m−2

m





U1
...

Um
W1
...

Wm


= 0.

Since the (m + a)-th column is the derivative of the a-th column, our system has the de-
terminant Δ derived from the Vandermonde determinant as

Δ =
∂mV(λ1, . . . , λm, ξ1, . . . , ξm)

∂ξ1∂ξ2 · · · ∂ξm

∣∣∣∣
ξ1=λ1,...,ξm=λm

.

On the other hand

V(λ1, . . . , λm, ξ1, . . . , ξm) =
∏
a
(ξa − λa)

∏
a<b

(λb − λa)
∏
a<b

(ξb − ξa)
∏
a<b

(ξb − λa)
∏
a<b

(ξa − λb),

when after ∂
∂ξa

∣∣
ξa=λa survives just the term with differentiation of (ξa − λa). Thus

Δ =
∏
a<b

(λb − λa)
∏
a<b

(λb − λa)
∏
a<b

(λb − λa)
∏
a<b

(λa − λb) 6= 0,

and the system has the unique trivial solution Ua = Wa = 0 for all 1 ≤ a ≤ m. This leads to
the following theorem given by Andrejić in 2006 [3] (see also [15]), which is a generalisation
of the result given by Rakić9 in 1998 [102] (see also [103]) that covers the definite case.

9Zoran Rakić (1964), Serbian mathematician
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Theorem 8.8. Let R be an Osserman algebraic curvature tensor and let (E1, . . . ,En) be an
orthonormal eigenbasis related to JEx . Then for any λ ∈ R and y 6= x holds∑

κxi=λ

∑
κxj=λ

εiεj(Rixyj + Riyxj)
2 = 0.

8.5 Lorentzian zwei-stein

Let R be a Lorentzian timelike Osserman algebraic curvature tensor of dimension n ≥ 3.
Consider a unit timelike T ∈ V . Since T⊥ ≤ V is a positive definite subspace, by Lemma A.21
it has an orthonormal eigenbasis (V1, . . . ,Vn−1) related to J̃T. Then, JTVi = λiVi holds for
1 ≤ i ≤ n − 1 where 0, λ1, . . . , λn−1 are roots of the characteristic polynomial det(λ1−JT)
and therefore they are independent of T. Hence, for an arbitrary X =

∑n−1
i=1 αiVi ∈ T⊥ we

obtain

κ(T,X) = g(JT(X),X)
εTεX

= −
∑n−1

i=1 α2
i λi∑n−1

i=1 α2
i
,

which implies the bounds

− max
1≤i≤n−1

λi ≤ κ(T,X) ≤ − min
1≤i≤n−1

λi.

The sectional curvature of indefinite planes is bounded, so Theorem 6.10 implies that κ
is constant. García-Río, Kupeli, and Vázquez-Abal used this argument in 1997 [60] for the
following theorem.

Theorem 8.9. A Lorentzian timelike Osserman algebraic curvature tensor has constant sec-
tional curvature.

However, for Theorem 8.9 to hold, it is enough to assume that R is zwei-stein instead of
Osserman. Let R be a zwei-stein algebraic curvature tensor on (V, g) of dimension n. For
an arbitrary orthonormal basis and 1 ≤ x 6= y ≤ n, using (8.12) and (8.10) from Theorem
8.6 we have

2
∑

1≤i,j≤n
εiεjRixxjRiyyj +

∑
1≤i,j≤n

εiεj(Rixyj + Riyxj)
2 = εxεy

∑
1≤i,j≤n

εiεj((Rixxj)
2 + (Riyyj)

2).

Hence ∑
1≤i,j≤n

εiεj
(
(Rixyj + Riyxj)

2 − εxεy(εxRixxj − εyRiyyj)
2
)
= 0,

which for εxεy < 0 becomes∑
1≤i,j≤n

εiεj
(
(Rixyj + Riyxj)

2 + (Rixxj + Riyyj)
2
)
= 0.

Let us assume additionally that (V, g) is Lorentzian (Ind g = 1), where εxεy < 0 implies that
εi = 1 holds for all i /∈ {x, y}. We can split the previous sum into four parts,∑

i,j/∈{x,y}
εiεj

(
(Rixyj + Riyxj)

2 + (Rixxj + Riyyj)
2
)

+
∑

j/∈{x,y}

(
εxεj((Rxyxj)

2 + (Rxyyj)
2) + εyεj((Ryxyj)

2 + (Ryxxj)
2)
)

+
∑

i/∈{x,y}

(
εiεx((Rixyx)

2 + (Riyyx)
2) + εiεy((Riyxy)

2 + (Rixxy)
2)
)

+
(
εxεx(Rxyyx)

2 + εxεy(Rxyxy)
2 + εyεx(Ryxyx)

2 + εyεy(Ryxxy)
2
)
= 0,
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where all parts except the first one disappearing. Therefore∑
i,j/∈{x,y}

(
(Rixyj + Riyxj)

2 + (Rixxj + Riyyj)
2
)
= 0,

so Rixyj + Riyxj = 0 and Rixxj + Riyyj = 0 hold for all i, j /∈ {x, y}. Especially, for i = j we have
the same sectional curvatures

κ(Ei,Ex) = κix = εiεxRixxi = εiεyRiyyi = κiy = κ(Ei,Ey),

whenever i, x, y are different with εxεy = −1, for example εx = −1.
In order to complete the proof we use the following argument given by Andrejić in 2018

[9], that significantly shortens the proof, which was missed by the previous authors. Since,
zwei-stein is Einstein by definition, for fixed x and i 6= x, the equality (8.8) gives

C1 = κix +
∑
y ̸=i,x

κiy = κix +
∑
y̸=i,x

κix = (n− 1)κix,

and therefore κix = κiy = C1/(n− 1) for any orthonormal basis, so R has constant sectional
curvature. In this way, we got the following theorem originally given by Blažić10, Bokan11,
and Gilkey in 1997 [22].

Theorem8.10. Any Lorentzian zwei-stein algebraic curvature tensor has constant sectional
curvature.

8.6 Zwei-stein submanifolds

There is a vast literature dedicated to isometric immersions of Einstein manifolds into
space forms. If an immersion has a large codimension, then great flexibility causes that
there is no close link between the intrinsic and extrinsic geometry of the manifold. How-
ever, with a small enough codimension of an embedding, the links between the extrinsic
geometry of the manifold and its curvature are strengthened.

The case of codimension one is well known from Fialkow12 [46, Theorem 7.1], who
gave the classification of Einstein hypersurfaces of space forms (see [41, Exercise 8.4]). It
is interesting to investigate submanifolds of higher codimension in a space form, where it
was considered that the merely Einstein condition is not good enough for some meaningful
classification.

Many authors have set strong additional conditions to achieve some results. For ex-
ample, minimal isometric immersions with codimension two of Einstein manifolds into
space forms were classified by Matsuyama13 [82] (see [41]). It is known that a minimal iso-
metric immersion of Einstein manifolds into Euclidean space has homothetic Gauss map
(its third fundamental form is a constant multiple of the metric) [50, Proposition 1], while
in the case of codimension two it must be totally geodesic [50, Theorem 4].

One natural condition considers a flat normal bundle. We should mention that any
proper isometric immersion with flat normal bundle of an Einstein manifold into a space
form is locally holonomic [40, Theorem 1]. According to [36, Proposition 2], it is known
that an Einstein submanifold of codimension two and dimension n in a space of constant
curvature c has flat normal bundle in some special cases, namely for Sc ≥ n(n−1)c unless
Sc = n(n− 1)c and all sectional curvatures are equal to c [41, Exercise 3.18].

10Novica Blažić (1959–2005), Serbian mathematician
11Neda Bokan (1947), Serbian mathematician
12Aaron Fialkow (1911-1999), American mathematician
13Yoshio Matsuyama, Japanese mathematician
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Our main motivation comes from the work of Euh14, Kim15, Nikolayevsky, and Park16

in 2022 [45]. They have proved that a connected zwei-stein submanifold with flat normal
bundle in a space form has constant sectional curvature (Theorem 8.11). Additionally,
they manage to prove that a connected zwei-stein submanifold of codimension two in a
space form has flat normal bundle and therefore has constant sectional curvature (The-
orem 8.12).

Let M be an Einstein submanifold in a space of constant curvature c. Let Aσ be the
shape operators relative to an orthonormal basis ξσ in the normal space NpM at a point
p ∈ M. Because of II(X,Y) =

∑
σ g(II(X,Y), ξ

σ)ξσ =
∑

σ g(AσX,Y)ξσ , from the Gauss equation
(7.9) we have

JXY = cεXY− cg(X,Y)X+
∑
σ
g(AσX,X)AσY−

∑
σ
g(AσX,Y)AσX,

and therefore

JX = c(εX 1−X⊗ X♭) +
∑
σ
(g(AσX,X)Aσ − (AσX)⊗ (AσX)♭).

Consider the new curvature tensor R′ = R − cR1, where R1 is the curvature tensor of
constant curvature 1. It just shifts the eigenvalues of the corresponding reduced Jacobi
operator, so if R is k-stein for some positive integer k, then R′ is also k-stein, where

J ′
X =

∑
σ
(g(AσX,X)Aσ − (AσX)⊗ (AσX)♭).

Taking the trace, we obtain

TrJ ′
X =

∑
σ
(g(AσX,X)TrAσ − (AσX)♭(AσX)) =

∑
σ
(g(AσX,X)Hσ − g(AσX,AσX)),

where Hσ = TrAσ , and since M is Einstein, there exists a constant C1 such that

TrJ ′
X = C1εX = g

(∑
σ
(HσAσ − (Aσ)2)X,X

)
.

Since
∑

σ(HσAσ − (Aσ)2)−C1 1 is self-adjoint, after the polarization, the nondegeneracy
of scalar product implies

C1 1 =
∑
σ
(HσAσ − (Aσ)2). (8.16)

On the other hand, if we denote Tστ = Tr(AσAτ), then

Tr(J ′
X)

2 = Tr
∑
σ
(g(AσX,X)Aσ − (AσX)⊗ (AσX)♭)

∑
τ
(g(AτX,X)Aτ − (AτX)⊗ (AτX)♭)

implies
Tr(J ′

X)
2 =

∑
σ,τ

(
g(AσX,X)g(AτX,X)Tστ + g(AσX,AτX)2

− g(AσX,X)g(AτAσAτX,X)− g(AτX,X)g(AσAτAσX,X)
)
.

(8.17)

Theorem 8.11. A connected Riemannian zwei-stein submanifold with flat normal bundle in
a space form has constant curvature.

14Yunhee Euh, South Korean mathematician
15Jihun Kim, South Korean mathematician
16JeongHyeong Park, South Korean mathematician
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Proof. According to the Ricci equation (7.10) we have R⊥(X,Y, ξσ , ξτ) = g([Aσ ,Aτ]X,Y),
which means that the normal curvature operator R⊥ vanishes if all shape operators com-
mutes. Hence, if the submanifold has flat normal connection then all the shape operat-
ors at any point are simultaneously diagonalisable relative to some orthonormal basis
(e1, . . . en), which gives Aσei = λσi ei for some λσi ∈ R. Since M is zwei-stein, there exists
a constant C2 such that Tr(J ′

X)
2 = C2(εX)2.

If we apply the equality (8.16) on ei, then we obtain

C1 =
∑
σ
(Hσλσi − (λσi )2), (8.18)

while the same substitution into the equality (8.17) gives

C2 =
∑
σ,τ

(Tστλσi λ
τ
i − (λσi λ

τ
i )

2). (8.19)

On the other hand, if we substitute X = ei + ej into (8.17), we have

4C2 =
∑
σ,τ

(
Tστ(λσi + λσj )(λ

τ
i + λτj ) + (λσi λ

τ
i + λσj λ

τ
j )

2

− (λσi + λσj )(λ
τ
i λ

σ
i λ

τ
i + λτj λ

σ
j λ

τ
j )− (λτi + λτj )(λ

σ
i λ

τ
i λ

σ
i + λσj λ

τ
j λ

σ
j )
)
,

so if we subtract the equality (8.19) as well as the same equality for i = j, we obtain

2C2 =
∑
σ,τ

(
Tστ(λσi λ

τ
j + λσj λ

τ
i )+2λσi λ

τ
i λ

σ
j λ

τ
j − (λσi λ

τ
j λ

σ
j λ

τ
j + λσj λ

τ
i λ

σ
i λ

τ
i )− (λτi λ

σ
j λ

τ
j λ

σ
j + λτj λ

σ
i λ

τ
i λ

σ
i )
)
,

while the symmetry by σ and τ (because of Tστ = Tτσ) gives

C2 =
∑
σ,τ

(
Tστλσi λ

τ
j + λσi λ

σ
j λ

τ
i λ

τ
j − λσi λ

σ
j (λ

τ
j )

2 − λσj λ
σ
i (λ

τ
i )

2
)
.

Hence, since
∑

j λ
σ
j = TrAσ = Hσ and

∑
j λ

σ
j λ

τ
j = TrAσAτ = Tστ , using (8.18) we have∑

σ,τ,j
λσi λ

σ
j (λ

τ
j )

2 =
∑
σ,j

λσi λ
σ
j
∑
τ
(λτj )2 =

∑
σ,j,τ

Hτλσi λ
σ
j λ

τ
j −C1

∑
σ,j

λσi λ
σ
j =

∑
σ,τ

HτTστλσi −C1
∑
σ
Hσλσi ,

∑
σ,τ,j

λσi λ
σ
j (λ

τ
i )

2 =
∑
σ,j

λσi λ
σ
j
∑
τ
(λτi )2 =

∑
σ,j,τ

Hτλσi λ
σ
j λ

τ
i−C1

∑
σ,j

λσi λ
σ
j =

∑
σ,τ

HσHτλσi λ
τ
i−C1

∑
σ
Hσλσi ,

and therefore∑
j
C2 =

∑
σ,τ

(
HτTστλσi + Tστλσi λ

τ
i −HτTστλσi −HσHτλσi λ

τ
i

)
+ 2C1

∑
σ
Hσλσi ,

which yields
nC2 =

∑
σ,τ

(Tστ −HσHτ)λσi λ
τ
i + 2C1

∑
σ
Hσλσi .

Subtracting the equality (8.19) and using (8.18) we obtain

(n− 1)C2 = 2C1
∑
σ
Hσλσi −

∑
σ,τ

(HσHτλσi λ
τ
i − (λσi λ

τ
i )

2)

= 2C1(C1 +
∑
σ
(λσi )2)− (C1 +

∑
σ
(λσi )2)(C1 +

∑
τ
(λτi )2) +

∑
σ,τ

(λσi λ
τ
i )

2 = (C1)
2.
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However, if 0, λX1 , . . . , λ
X
n−1 are (real) eigenvalues of J ′

X, then the arithmetic-quadratic
mean inequality gives

(C1εX)2 = (TrJ ′
X)

2 =
( n−1∑

i=1
λXi
)2

≤ (n− 1)
n−1∑
i=1

(λXi )2 = (n− 1)Tr(J ′
X)

2 = (n− 1)C2(εX)2,

and consequently λX1 = · · · = λXn−1, which means that R′ has constant curvature C1/(n− 1).
Hence,

JX =

(
c+ C1

n− 1

)
(εX 1−X⊗ X♭),

and consequently R has constant curvature.

Suppose that M has dimension n and codimension 2. Let (e1
1, . . . , e1

n) and (e2
1, . . . , e2

n)
be the orthonormal bases that diagonalize the self-adjoint operators A1 and A2. In other
words, there are λ1

i , λ
2
i ∈ R such that A1e1

i = λ1
i e1

i and A2e2
i = λ2

i e2
i for each 1 ≤ i ≤ n. For

an arbitrary unit vector X =
∑

i α1
i e1

i =
∑

i α2
i e2

i , the Einstein condition (8.16) gives

C1 =
∑
i
(α1

i )
2λ1

i (H1 − λ1
i ) +

∑
i
(α2

i )
2λ2

i (H2 − λ2
i ),

where 1 =
∑

i(α1
i )

2 =
∑

i(α2
i )

2.
Starting with m1 = mini λ1

i (H1 − λ1
i ) and m2 = maxi λ2

i (H2 − λ2
i ) we can easily conclude

C1 = m1 + m2. However, λσi (Hσ − λσi ) = λσj (Hσ − λσj ) holds for λσi 6= λσj if and only if
λσi + λσj = Hσ . If we denote

Mσ
λ = Ker(Aσ − λ1),

then it is easy to see that for λ1
x(H1 − λ1

x) = m1 and λ2
y(H2 − λ2

y) = m2 we have

M1
λ1
x
+M1

H1−λ1
x
= Ker((Aσ)2 −HσAσ +mσ 1) = M2

λ2
y
+M2

H2−λ2
y
,

and we can repeat the process for the spectral decomposition TpM =
⊕

λM1
λ =

⊕
λM2

λ.
Hence A1 and A2 are simultaneously block-diagonal. Moreover, we can order the bases

such that all the blocks from the diagonal being of sizes either 1 × 1 or 2 × 2. For example,
in any large block we can find a unit v ∈ M1

λ1
x

such that

w = A2v− g(A2v, v)v ∈ M1
H1−λ1

x
,

where A2A2v = H2A2v−m2v implies that A2 is invariant on Span{v,w}, so we can extract
either 1 × 1 (if w = 0) or 2 × 2 (if w 6= 0) block, and repeat the process.

If the shape operators A1 and A2 are not simultaneously diagonalisable, then there ex-
ists a 2×2 block, so without loss of generality we have Aσeστ = λστ eστ for 1 ≤ σ, τ ≤ 2, where
Span{e1

1, e1
2} = Span{e2

1, e2
2} and λσ1 + λσ2 = Hσ . If we include the transition map between

bases we get the restrictions of the shape operators related to the basis (e1
1, e1

2) as blocks(
λ1

1 0
0 λ1

2

)
and

(
c2λ2

1 + s2λ2
2 sc(λ2

2 − λ2
1)

sc(λ2
2 − λ2

1) s2λ2
1 + c2λ2

2

)
,

where s = sin t, c = cos t for some t ∈ R. If we denote

α =
λ1

1 − λ1
2

2 , β = (c2 − s2)
λ2

1 − λ2
2

2 , γ = sc(λ2
2 − λ2

1),
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then our blocks are equivalent to(
α 0
0 −α

)
+

1
2H

1 1 and
(
β γ
γ −β

)
+

1
2H

2 1 .

Without loss of generality, we can suppose H2 = 0 by rotating the orthonormal basis
(ξ1, ξ2) in the normal space. Hence, if we denote 2h = H1 then our blocks become(

h+ α 0
0 h− α

)
and

(
β γ
γ −β

)
,

where αγ 6= 0 and C1 = h2 − α2 − β2 − γ2. The previous result is in fact equivalent to the
Lemma from [45].

It is not hard to calculate T11 +T22, where any 2×2 block yields 2(h2 +α2)+2(β2 +γ2) =
4h2 − 2C1, while any 1 × 1 block, with A1ei = μei and A2ei = νei, yields μ2 + ν2 = 2hμ − C1,
so the total amount is equal to 2hTrA1 − nC1, and therefore

T11 + T22 = 4h2 − nC1. (8.20)

Let us start with the equality (8.17). If we set X = xe1
1 + ye1

2, then

Tr(J ′
X)

2 =((h+ α)x2 + (h− α)y2)2T11 + ((h+ α)2x2 + (h− α)2y2)2

− 2((h+ α)x2 + (h− α)y2)((h+ α)3x2 + (h− α)3y2)

+ 2((h+ α)x2 + (h− α)y2)(βx2 + 2γxy− βy2)T12

+ 2((h+ α)βx2 + 2hγxy− (h− α)βy2)2

− 2((h+ α)x2 + (h− α)y2)(((h+ α)β2 + (h− α)γ2)x2

+ 4αβγxy+ ((h+ α)γ2 + (h− α)β2)y2)

− 2(βx2 + 2γxy− βy2)((h+ α)2βx2 + 2(h2 − α2)γxy− (h− α)2βy2)

+ (βx2 + 2γxy− βy2)2T22 + (β2 + γ2)2(x2 + y2)2

− 2(βx2 + 2γxy− βy2)(β2 + γ2)(βx2 + 2γxy− βy2)

holds for all x, y ∈ R. The trace of square is of the form Tr(J ′
X)

2 = Ax4 + Bx3y + Cx2y2 +
Dxy3 + Ey4, and we can calculate the coefficients A,B,C,D,E ∈ R.

The coefficients of x3y and xy3 are

B =4(h+ α)γT12 + 8(h+ α)hβγ − 8(h+ α)αβγ
− 4(h2 − α2)βγ − 4(h+ α)2βγ + 4βγT22 − 8(β2 + γ2)βγ,

D =4(h− α)γT12 − 8(h− α)hβγ − 8(h− α)αβγ
+ 4(h2 − α2)βγ + 4(h− α)2βγ − 4βγT22 + 8(β2 + γ2)βγ,

and therefore

B/4 = (h+ α)γT12 + βγT22 − 2hαβγ − 2(β2 + γ2 + α2)βγ,
D/4 = (h− α)γT12 − βγT22 − 2hαβγ + 2(β2 + γ2 + α2)βγ,

which yields
B+ D

8γ = h(T12 − 2αβ), (8.21)

B− D
8γ = α(T12 − 2αβ) + β(T22 − 2(β2 + γ2)). (8.22)
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The coefficients of x4 and y4 are

A =(h+ α)2T11 + (h+ α)4 − 2(h+ α)4

+ 2(h+ α)βT12 + 2(h+ α)2β2 − 2(h+ α)((h+ α)β2 + (h− α)γ2)− 2(h+ α)2β2

+ β2T22 + (β2 + γ2)2 − 2(β2 + γ2)β2,

E =(h− α)2T11 + (h− α)4 − 2(h− α)4

− 2(h− α)βT12 + 2(h− α)2β2 − 2(h− α)((h+ α)γ2 + (h− α)β2)− 2(h− α)2β2

+ β2T22 + (β2 + γ2)2 − 2(β2 + γ2)β2,

and therefore

A =(h+ α)2T11 + 2(h+ α)βT12 + β2T22 − (h+ α)4 − 2(h2 − α2)γ2 − 2(h+ α)2β2 + γ4 − β4,

E =(h− α)2T11 − 2(h− α)βT12 + β2T22 − (h− α)4 − 2(h2 − α2)γ2 − 2(h− α)2β2 + γ4 − β4,

which yields

A+ E
2 = C2

1 + (h2 + α2)(T11 − 2(h2 + α2)) + 2αβ(T12 − 2αβ) + β2(T22 − 2(β2 + γ2)). (8.23)

A− E
2 = 2hα(T11 − 2(h2 + α2)) + 2hβ(T12 − 2αβ). (8.24)

Finally, the coefficient of x2y2 is

C =2(h+ α)(h− α)T11 + 2(h+ α)2(h− α)2 − 2(h+ α)(h− α)3 − 2(h− α)(h+ α)3

+ (−2(h+ α)β + 2(h− α)β)T12 − 4(h+ α)(h− α)β2 + 8h2γ2

− 2(h+ α)((h+ α)γ2 + (h− α)β2)− 2(h− α)((h+ α)β2 + (h− α)γ2) + 2(h− α)2β2

+ 2(h+ α)2β2 − 8(h2 − α2)γ2 + (−2β2 + 4γ2)T22 + 2(β2 + γ2)2 − 2(β2 + γ2)(−2β2 + 4γ2),

and therefore

C
2 = (h2 − α2)T11 − 2αβT12 + (2γ2 − β2)T22 + C2

1 − 2h4 + 2α4 − 4γ4 + β2(4α2 + 2β2 − 2γ2).

Together with (8.23) it gives (A+ E+ C)/4 = h2T11 + γ2T22 +C2
1 −2h2(h2 +α2)−2γ2(β2 + γ2)

which can be written as

A+ E+ C
4 = C2

1 + 2h2α2 + h2(T11 − 2(h2 + α2)) + γ2(T22 − 2(β2 + γ2)). (8.25)

If M is zwei-stein, then there exists a constant C2 such that Tr(J ′
X)

2 = C2(x2+y2)2, which
gives A = E = C2, C = 2C2, and B = D = 0. In this case we introduce the short notation
K11 = T11 − 2(h2 + α2), K22 = T22 − 2(β2 + γ2), and K12 = T12 − 2αβ, where the equalities
(8.21), (8.22), (8.23), (8.24), and (8.25) yield

hK12 = 0,
αK12 + βK22 = 0,

(h2 + α2)K11 + 2αβK12 + β2K22 = C2 − C2
1,

2hαK11 + 2hβK12 = 0,
h2K11 + γ2K22 = C2 − C2

1,

while (8.20) additionally gives K11 + K22 = (2 − n)C1.
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The case h 6= 0 is easy, because first we have K12 = 0, from where K11 = 0 and βK22 = 0,
which give C2 = C2

1, and therefore K22 = 0. However, then (2 − n)C1 = 0, and due to n > 2
we have C1 = 0, as well as C2 = 0 (the sum of squares of eigenvalues of the Jacobi operator
is equal to zero), which implies R′ = 0.

It remains the case h = 0 where the previous equalities yield

K11 =
β2 + γ2

α2γ2 (C2 − C2
1), K22 =

1
γ2 (C2 − C2

1), K12 = − β
αγ2 (C2 − C2

1),

and therefore

(2 − n)C1 = K11 + K22 =
α2 + β2 + γ2

α2γ2 (C2 − C2
1) =

−C1
α2γ2 (C2 − C2

1),

so since C1 6= 0 (otherwise α = β = γ = 0 holds), we get C2 − C2
1 = (n− 2)α2γ2.

Since H1 = H2 = 0 we can rotate the orthonormal basis (ξ1, ξ2) in the normal space to
get T12 = 0, that is, K12 = −2αβ, which gaves β(n− 4) = 0, with additional K22 = (n− 2)α2

and K11 = (n− 2)(β2 + γ2).
The case n = 4 is Osserman, while in the case β = 0 we can discuss other blocks. In the

case that we have a 1×1 block, there exists a vector e3 such that A1e3 = μe3 and A2e3 = νe3.
Then from (8.17) we calculate

Tr(J ′
xe1+ye2+ze3)

2 =(αx2 − αy2 + μz2)2T11 + (α2x2 + α2y2 + μ2z2)2

− 2(αx2 − αy2 + μz2)(α3x2 − α3y2 + μ3z2)

+ 2(μνz2)2 − 2(αx2 − αy2 + μz2)(−αγ2x2 + αγ2y2 + μν2z2)

− 2(2γxy+ νz2)(−2α2γxy+ μ2νz2)

+ (2γxy+ νz2)2T22 + (γ2x2 + γ2y2 + ν2z2)2 − 2(2γxy+ νz2)(2γ3xy+ ν3z2).

The coefficient of xyz2 is 4γν(T22 − μ2 + α2 − ν2 − γ2) = 0, but because of a contradiction
T22 = μ2 + ν2 + γ2 − α2 = 2γ2 < T22 we obtain ν = 0. Now, equating the coefficients of x2z2

and y2z2 we have 4αμ(T11−μ2−α2−γ2) = 0, but because of μ 6= 0 we obtain T11 = 2α2 < T11,
a contradiction.

Finally, the case of another 2× 2 block includes vectors e3 and e4 such that A1e3 = α′e3,
A1e4 = −α′e4, A2e3 = γ′e4, A2e4 = γ′e3. The coefficient of xyzw in Tr(J ′

xe1+ye2+ze3+we4)
2 is

T22 + α2 − γ2 + α′2 − γ′2 = 0, and therefore T22 = γ2 − α2 + γ′2 − α′2 < T22, a contradiction.
Summarizing, we got the following theorem from [45]. Let us remark that our proof

differs from the original, thanks to additional things we noticed.

Theorem 8.12. A connected zwei-stein submanifold of codimension two in a space form has
flat normal bundle and therefore has constant curvature.
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CHAPTER 9

DUALITY PRINCIPLE

9.1 Duality principle

LetRbe an Osserman algebraic curvature tensor on a positive definite scalar product space
(V, g) of dimension n. Then for unit vectors X,Y ∈ V the implication

JXY = λY =⇒ JYX = λX (9.1)

appeared naturally, and it can significantly simplify some calculations. For a unit X ∈ V ,
Lemma A.21 gives an orthonormal eigenbasis (E1, . . . ,En−1) in X⊥ such that JXEi = λiEi
holds for 1 ≤ i ≤ n − 1. An arbitrary Y =

∑n−1
i=1 αiEi ∈ X⊥ satisfies g(JXY,Y) =

∑n−1
i=1 α2

i λi,
so all sectional curvatures lie between mini λi and maxi λi and they attain these extremal
values precisely when X and Y are eigenvectors relative to each other. Thus, the statement
(9.1) holds when λ is an extremal (minimum or maximum) eigenvalue of the Jacobi oper-
ator, which was used by Chi in 1988 [34, Lemma 3]. Moreover, Rakić used the implication
(9.1) to formulate and prove the duality principle in 1998 [102, 103].

However, in an indefinite setting the implication (9.1) is inaccurate whenX andYbelong
to different unit pseudo-spheres. This was corrected, according to Theorem 8.2, with the
following implication given by Andrejić in 2006 [3] (see also [15]),

JX(Y) = εXλY =⇒ JY(X) = εYλX. (9.2)

Because of the compatibility g(JYX,X) = g(JXY,Y), whenever X and Y are eigenvectors
relative to each other, the corresponding eigenvalues are the same and we can exclude λ
from (9.2) to introduce an equivalent implication,

Y is an eigenvector of JX =⇒ X is an eigenvector of JY. (9.3)

It is important (especially if we deal with the converse problem from Section 9.5) to
examine an optimal extension for our (X,Y) domain from (9.3). We use three kinds of
duality depending on that domain. If (9.3) holds for mutually orthogonal units X and Y,
just like in the original definition (see Rakić [102, 103]), we say that R is weak Jacobi-
dual. If (9.3) holds for all X,Y ∈ V with εX 6= 0, we say that R is Jacobi-dual or that R
satisfies the duality principle (see Andrejić and Rakić [16]). Finally, if (9.3) holds with
the only restriction X 6= 0 (a concept where the implication (9.2) has no restriction on X
and Y), we say that R is totally Jacobi-dual.

By definition, totally Jacobi-dual implies Jacobi-dual, while Jacobi-dual implies weak
Jacobi-dual. Let us consider other relations between our dual properties. Since

JX/
√

|εX|
(Y/
√

|εY|) = εX/√|εX|
λ(Y/

√
|εY|)

is equivalent to JX(Y) = εXλY (multiplication by |εX|
√
|εY| 6= 0), we have a straightforward

extension from unit to nonnull vectors. The mutually orthogonal condition can be easily
removed using the following lemma, given by Andrejić in 2010 [5, Lemma 2].
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Lemma 9.1. If the implication (9.2) holds for all mutually orthogonal X and Y with εX 6= 0,
then it holds with the only restriction εX 6= 0.

Proof. Let us suppose JX(Y) = εXλY for εX 6= 0 with g(X,Y) 6= 0. The orthogonal decompos-
ition Y = αX+ Z with g(Z,X) = 0 implies α 6= 0. Since

0 = g(JXX,αX+ Z) = g(JX(αX+ Z),X) = g(εXλ(αX+ Z),X) = g(εXλαX,X) = (εX)2αλ,

the conditions εX 6= 0 and α 6= 0 imply λ = 0. Hence JXZ = JX(αX + Z) = εXλ(αX + Z) = 0,
and because of g(Z,X) = 0 and εX 6= 0, the lemma assumptions give JZX = 0. Thus arises

JYX = JαX+Z(X) = αR(X,Z)X+R(X,Z)Z = −αJXZ+ JZX = 0,

which proves JYX = 0 = εYλX.

In the case that R is Jacobi-diagonalisable, our domain can be equivalently extended to
all X,Y ∈ V with εX 6= 0, which is given by Andrejić in 2006 [3, Theorem 3.1] (see also [15,
Theorem 3.2] and [5, Theorem 2]).

Theorem9.2. If R is a Jacobi-diagonalisable algebraic curvature tensor, thenR is Jacobi-dual
if and only if it is weak Jacobi-dual.

Proof. Let us suppose JXY = εXλY, g(X,Y) = 0, εX 6= 0, and εY = 0. Since R is Jacobi-
diagonalisable, then Ker(J̃X − εXλ1) 3 Y is an (generalised) eigenspace. According to
Lemma A.22 it is nondegenerate, so Lemma 4.10 allows a decomposition Y = S + T, such
that S,T ∈ Ker(J̃X − εXλ1) and εS = −εT = 1. For θ2 6= 1, S + θT is nonnull because of
εS+θT = εS + θ2εT = (1 − θ2) 6= 0. The vectors S+ θT, S, and T are nonnull, orthogonal to X,
eigenvectors of JX corresponding to the eigenvalue εXλ, so the weak Jacobi-duality gives

JS+θTX = εS+θTλX, JSX = εSλX, JTX = εTλX.

Hence

εS+θTλX = JS+θTX = JSX+ θ2JTX+ 2θJ (S,T)X = εSλX+ θ2εTλX+ 2θJ (S,T)X,

which, for any θ 6∈ {−1,0,1}, implies J (S,T)X = 0. Then

JYX = JS+TX = JSX+ JTX+ 2J (S,T)X = εSλX+ εTλX = 0 = εYλX,

which proves (9.2) for X ⊥ Y and εX 6= 0. Finally, Lemma 9.1 removes the condition X ⊥
Y.

Let R be a Jacobi-diagonalisable Osserman algebraic curvature tensor on a scalar
product space (V, g) of dimension n. For any fixed unit X = Ex ∈ V there exists an or-
thonormal eigenbasis (E1, . . . ,En) in V related to JX. For any root λ ∈ R of det(εXλ1−JX),
we can set Λ = {1 ≤ j ≤ n : εxεjRxjjx = λ} and apply Theorem 8.8 to get∑

i,j∈Λ
εiεj(Rixyj + Riyxj)

2 = 0,

for all 1 ≤ y 6= x ≤ n.
If we assume that JX has no null eigenvectors, then any eigenspace consists of vectors

of the same type, εiεj = 1 holds for i, j ∈ Λ, which implies
∑

i,j∈Λ(Rixyj + Riyxj)
2 = 0. Thus

arises Rixyj + Riyxj = 0 for all i, j ∈ Λ, and especially for i = j it yields Rixyi = 0 for all i ∈ Λ.
Since any z belongs to some Λ we have Rxzzy = 0 for all y 6= x, and therefore the condition
JExEz = εxλEz implies JEzEx =

∑
p εpRxzzpEp = εxRxzzxEx = εzλEx, which proves that R is

Jacobi-dual.
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Theorem 9.3. Let R be a Jacobi-diagonalisable Osserman algebraic curvature tensor such
that JX has no null eigenvectors for all unit X. Then R is Jacobi-dual.

Theorem 9.3 is established by Andrejić in 2006 [3, Theorem 3.4] (see also [15, Corollary
3.5]) and it has significant consequences. For example, an Osserman R with all different
eigenvalues of Jacobi operator is necessarily Jacobi-diagonalisable with one-dimensional
eigenspaces, and therefore it is Jacobi-dual. Let us remark that the previous statement can
be seen as a consequence of Theorem 8.7, rather than Theorem 8.8.

Anyway, the most valuable consequence comes in the definite case, where null vectors
do not exist and any R is Jacobi-diagonalisable. Therefore, any Riemannian Osserman R
is Jacobi-dual, moreover it is totally Jacobi-dual. Let us notice that this valuable statement
(in fact that a Riemannian Osserman R is weak Jacobi-dual) was first proven by Rakić in
1998 [102, Theorem 2.5] [103, Theorem 1.1], which is later reproved by Gilkey in 2001 [54,
Theorem 3.1.2].

Theorem 9.4. A Riemannian Osserman algebraic curvature tensor is totally Jacobi-dual.

9.2 Quasi-Clifford curvature tensors

Let us recall first examples of algebraic curvature tensors on a scalar product space (V, g).
These are R1 from (6.14) and RJ from (6.15), where J is a skew-adjoint endomorphism on
V . Example 6.6 shows that, a linear combination

R = μ0R1 +

m∑
i=1

μiRJi (9.4)

is an algebraic curvature tensor for skew-adjoint endomorphisms J1, . . . , Jm on V , where
μj ∈ R for 0 ≤ j ≤ m.

A Clifford family of rank m is an anti-commuting family of skew-adjoint complex
structures Ji for 1 ≤ i ≤ m. Algebraic curvature tensors of form (9.4) associated with a Clif-
ford family were introduced by Gilkey in 1994 [53] (see also [58]). However, we consider
a generalisation, an anti-commuting family of Ji such that J2i = ci 1 for some ci ∈ R, which
means that the Hurwitz-like relations,

JiJj + JjJi = 2ciδij 1, (9.5)

hold for 1 ≤ i, j ≤ m. We say that an algebraic curvature tensor R is quasi-Clifford if it has
a form (9.4) such that the relations (9.5) hold, introduced by Andrejić and Lukić1 in 2019
[12]. Especially, R is Clifford if it is quasi-Clifford with ci = −1 for all 1 ≤ i ≤ m.

It is well known that a Clifford algebraic curvature tensor is Osserman. However, ac-
cording to Nikolayevsky [92, Section 2], in the definite setting the converse is true (any
Riemannian Osserman R is Clifford) in all dimensions except n = 16, and also in many
cases when n = 16.

Let us start with a quasi-Clifford R and an arbitrary vector X ∈ V . Each Ji is skew-adjoint
which implies g(JiX,X) = 0 and simplifies the calculation of the Jacobi operator,

JXY = R(Y,X)X = μ0(g(X,X)Y− g(Y,X)X) +
m∑
i=1

3μig(JiY,X)JiX,

and therefore

JXY = μ0(εXY− g(Y,X)X)− 3
m∑
i=1

μig(Y, JiX)JiX. (9.6)

1Katarina Lukić (1994), Serbian mathematician
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Additionally, the equality (9.5) implies g(JiX, JjX) = 0 and εJiX = −ciεX for 1 ≤ i 6= j ≤ m. If
we denote

Ft = {X, J1X, . . . , JtX}

for 1 ≤ t ≤ m, then we obtain

JX(JiX) = εX(μ0 + 3ciμi)JiX, JXZ = εXμ0Z,

for all 1 ≤ i ≤ m and Z ∈ F⊥
m .

It is important to distinguish the case ci 6= 0, 1 ≤ i ≤ k from the case ci = 0, k < i ≤ m. For
a nonnull X, the set Fk consists of mutually orthogonal nonnull eigenvectors, so SpanFk
and F⊥

k are nondegenerate, while Span(Fm \Fk) is a totally isotropic subspace. Then, from
F⊥
k ∩ Span(Fm \ Fk)

⊥ ≤ Ker((JX↾F⊥
k
− εXμ0 1)

n) follows

F⊥
k ∩ Ker((JX↾F⊥

k
− εXμ0 1)

n)⊥ ≤ Span{Jk+1X, . . . , JmX},

but a generalised eigenspace is nondegenerate (Lemma A.22), as well as its orthogonal,
which cannot be a subspace of a totally isotropic subspace, unless it is trivial, which yields
Ker((JX↾F⊥

k
− εXμ0 1)

n) = F⊥
k . Hence,

det
(
λ1− 1

εX
JX

)
= λ(λ− μ0)

n−k−1
k∏
i=1

(λ− (μ0 + 3ciμi))

is constant and according to Theorem 8.2, R is Osserman (see Andrejić and Lukić 2019 [12,
Theorem 2.1]).

Theorem 9.5. Any quasi-Clifford algebraic curvature tensor is Osserman.

Additionally, the Jordan normal form of JX has the critical part on F⊥
k , where we have

Im(JX↾F⊥
k
− εXμ0 1) ⊆ Span{Jk+1X, . . . , JmX} ⊆ Ker(JX↾F⊥

k
− εXμ0 1),

and therefore we have two-step nilpotency, (JX↾F⊥
k
− εXμ0 1)

2 = 0. Thus, a quasi-Clifford R
do not allows Jordan blocks of size greater than 2. However, Example 8.6 shows a Jordan-
Osserman curvature tensor such that the Jordan normal form has a Jordan block of size 3,
which means that the converse question fails in the signature (2,2), where an Osserman
R is not necessarily quasi-Clifford.

We follow the arguments given by Andrejić and Lukić in 2019 [12] (which is a gen-
eralisation of Andrejić and Rakić 2015 [16]), to investigate whether a quasi-Clifford R =
μ0R1 +

∑m
i=1 μiRJi is Jacobi-dual. Let X ∈ V be nonnull and suppose that Y is an eigenvector

of JX, which means that JXY = εXλY holds for some λ ∈ R. Then (9.6) implies

εX(λ− μ0)Y = −μ0g(Y,X)X− 3
m∑
i=1

μig(Y, JiX)JiX, (9.7)

while by interchanging the roles of X and Y in (9.6) we have

JYX = μ0(εYX− g(X,Y)Y)− 3
m∑
i=1

μig(X, JiY)JiY. (9.8)

In the case λ 6= μ0, we can express Y from (9.7) and get

Y =
−μ0g(Y,X)
εX(λ− μ0)

X− 3
m∑
i=1

μig(Y, JiX)
εX(λ− μ0)

JiX. (9.9)
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After the substitution in (9.8),

JYX = μ0

εYX− g(X,Y)

−μ0g(Y,X)
εX(λ− μ0)

X− 3
m∑
j=1

μjg(Y, JjX)
εX(λ− μ0)

JjX


− 3

m∑
i=1

μig(X, JiY)Ji

−μ0g(Y,X)
εX(λ− μ0)

X− 3
m∑
j=1

μjg(Y, JjX)
εX(λ− μ0)

JjX

 ,

which implies

JYX = μ0

(
εY +

μ0(g(X,Y))2

εX(λ− μ0)

)
X

+
3μ0g(X,Y)
εX(λ− μ0)

m∑
i=1

μi (g(Y, JiX) + g(X, JiY)) JiX

+
9

εX(λ− μ0)

m∑
i=1

m∑
j=1

μiμjg(X, JiY)g(Y, JjX)JiJjX.

Since any Ji is skew-adjoint, the middle term on the right-hand side vanishes. Additionally,
since μiμjg(X, JiY)g(Y, JjX)JiJjX + μjμig(X, JjY)g(Y, JiX)JjJiX = 0 holds for 1 ≤ i 6= j ≤ m, it
reduces the last term on the right-hand side. Hence, we obtain

JYX =

(
μ0εY +

μ2
0(g(X,Y))2

εX(λ− μ0)
− 9
εX(λ− μ0)

m∑
i=1

μ2
i (g(Y, JiX))2ci

)
X,

and therefore X is an eigenvector of JY.
Otherwise, we have the case λ = μ0 and the equality (9.7) becomes

μ0g(Y,X)X+ 3
m∑
i=1

μig(Y, JiX)JiX = 0. (9.10)

If we separate ci 6= 0 for 1 ≤ i ≤ k and ci = 0 for k < i ≤ m, then Span{X, J1X, . . . , JkX} is a
nondegenerate subspace of V of dimension k + 1, which is orthogonal to {Jk+1X, . . . , JmX},
for any nonnull X. For a nonnull X, from (9.10) we have μig(X, JiY) = μig(Y, JiX) = 0 for
1 ≤ i ≤ k with μ0g(Y,X) = 0, so it remains

∑m
i=k+1 μig(Y, JiX)JiX = 0, while from (9.8) we

obtain JYX = εYμ0X− 3
∑m

i=k+1 μig(X, JiY)JiY.
The case m = k + 1 gives μk+1g(Y, Jk+1X)Jk+1X = 0, and therefore μk+1g(Y, Jk+1X) = 0

holds anyway, and we get the duality, JYX = εYμ0X. Hence, we have proven the following
theorem (see [12, Theorem 3.1]).

Theorem9.6. Any quasi-Clifford algebraic curvature tensorwith atmost one ci = 0 is Jacobi-
dual.

However, this statement is no longer true if there are at least two such Ji with ci = 0. Let
(T1, . . .Tp, S1, . . . , Sq) be an orthonormal basis in a scalar product space (V, g) of signature
(p,q). Let us define an endomorphism J on V by

JT1 = T2 + S2 = −JS1, −JT2 = T1 + S1 = JS2

JT3 = T4 + S4 = −JS3, −JT4 = T3 + S3 = JS4

JT5 = · · · = JTp = JS5 = JS6 = · · · = JSq = 0.

It is easy to check that J is skew-adjoint with J2 = 0, so we make the algebraic curvature
tensor by R = RJ. Its Jacobi operator has JXY = −3g(Y, JX)JX by (9.6), from which it can be
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9.2. Quasi-Clifford curvature tensors

seen that its characteristic polynomial is equal to λp+q. If JX 6= 0, then the Jordan nor-
mal form of JX has exactly one block of size 2, while the case JX = 0 implies JX = 0
and there are no such blocks. If we set X =

∑p
i=1 αiTi +

∑q
i=1 βjSj, we see that JX = 0

holds if and only if αi = βi holds for each 1 ≤ i ≤ 4, which never happens for definite
X ∈ Span{T1, . . . ,T4, S1, . . . , S4}, and always for arbitrary X ∈ Span{T5, . . . ,Tp, S5, . . . , Sq}.
In the case 4 = p < q, an Osserman algebraic curvature tensor R = RJ is timelike Jordan-
Osserman, but it is not spacelike Jordan-Osserman, which is similar to Gilkey and Ivanova
[56, Theorem 3] and Gilkey [54, Section 3.2].

Theorem 9.7. There exist timelike Jordan-Osserman algebraic curvature tensors that are
not spacelike Jordan-Osserman.

To make an example of quasi-Clifford R which is not Jacobi-dual, in addition to the
already constructed skew-adjoint endomorphism J with J2 = 0, according to Theorem 9.6,
we need at least one more skew-adjoint endomorphismKwithK2 = 0, where it is necessary
to ensure that there is a nonnull X such that JX and KX are linearly dependent. However,
it is important to ensure the anti-commutativity JK = −KJ. Let us introduce an additional
endomorphism K on V by

KT1 = T2 + S2 = −KS1, − KT2 = T1 + S1 = KS2

KT5 = T6 + S6 = −KS5, − KT6 = T5 + S5 = KS6

KT3 = KT4 = KT7 = · · · = KTp = KS3 = KS4 = KS7 = · · · = KSq = 0.

A new endomorphism is modelled on J, where the vectors T3,T4, S3, S4 change roles
with T5,T6, S5, S6, respectively. That is why K is also skew-adjoint with K2 = 0, where we
additionally provided JK = KJ = 0, which solves the problem of anti-commutativity. If we
set

R = RJ − RK,

we get a quasi-Clifford algebraic curvature tensor, which is Osserman according to The-
orem 9.5.

From (9.6) follows JXY = 3(g(Y,KX)KX− g(Y, JX)JX). Since JT1 = KT1 = T2 + S2 we have
JT1Y = 0 for any Y ∈ V . On the other hand, for Y = T2 +

√
2S4 we have

g(Y, JT1) = g(Y,KT1) = g(T2 +
√

2S4,T2 + S2) = −1,

and therefore JYT1 = 3(g(Y, JT1)JY− g(Y,KT1)KY) = −3
√

2(T3 + S3). Thus, we obtain

JT1(T2 +
√

2S4) = 0, JT2+
√

2S4
(T1) = −3

√
2(T3 + S3),

which shows that R is not Jacobi-dual. Moreover, our counterexample contains mutually
orthogonal unit vectors X = T1 and Y = T2 +

√
2S4, such that the duality principle does not

work.

Theorem 9.8. There exist quasi-Clifford (and therefore Osserman) algebraic curvature
tensors which are not Jacobi-dual.

The first attempt to construct an example of Osserman algebraic curvature tensor that
is not Jacobi-dual was published in 2019 [12, Theorem 3.2], where K is constructed on the
model of J so that only S4 and S5 change roles. Unfortunately, this original example does
not provide anti-commutativity for J and K, and the obtained curvature tensor is neither
quasi-Clifford nor Osserman. However, the idea is good and our calculations after the
introduction of K are literally identical to the original ones.
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9.3 Total duality

Let R be a quasi-Clifford algebraic curvature tensor from the previous section. Skew-
adjoint endomorphisms with J2i = 0 change the Jordan normal form of JX and therefore
they are inadequate for the duality principle, which we have already seen in Theorem
9.8. Let us exclude them with m = k, which leaves only such Ji that are automorphisms.
Without loss of generality, using the rescaled (1/

√
|ci|)Ji, we can suppose ci ∈ {−1,1},

and we say that such R is semi-Clifford. It is easy to see that a semi-Clifford R is Jacobi-
diagonalisable and consequently Jordan-Osserman.

Thus, we consider a family {J1, . . . , Jk} of anti-commuting skew-symmetric orthogonal
and anti-orthogonal operators on V . In fact, these are complex structures (ci = −1) and
product structures (ci = 1). It is worth noting that a product structures Ji change the signa-
ture because of εJiX = −εX, and therefore any semi-Clifford R that is not Kleinian is Clifford.

We have already seen that a semi-Clifford R is Jacobi-dual, and the next step is to in-
vestigate whether R is totally Jacobi-dual. Andrejić and Rakić in 2015 [16, Proposition 5.2]
gave only a sufficient condition for the totally Jacobi-duality.
Theorem 9.9. If semi-Clifford algebraic curvature tensor R is generated by a semi-Clifford
family {J1, . . . , Jm}, such that for every null X the set {X, J1X, . . . , JmX} is linearly independent,
then R is totally Jacobi-dual.
Proof. By theorem 9.6, every semi-Clifford R is Jacobi-dual, which gives the implication
(9.2) for a nonnull X. In the case of a null X, the assumption that Y is an eigenvector of
JX, by Theorem 8.4 gives JXY = 0. Then the equality (9.6) implies (9.10), where the linear
independence of Fm, as before, yields μig(Y, JiX) = 0 for 1 ≤ i ≤ m with μ0g(Y,X) = 0.
Hence JYX = εYμ0X, so X is an eigenvector of JY.

Andrejić and Lukić in 2019 [12] considered the question of linear independence of the
set Fm = {X, J1X, . . . , JmX} for a null vector X. The discussion begins with the following
important theorem (see [12, Theorem 4.1]).
Theorem 9.10. If θ0X+ θ1J1X+ · · ·+ θmJmX = 0 holds for a quasi-Clifford family {J1, . . . , Jm}
with J2i = ci 1,1 ≤ i ≤ m, and θ0, . . . , θm ∈ R, X 6= 0, then θ2

0 − c1θ2
1 − · · · − cmθ2

m = 0.

Proof. For every α = (α1, . . . ,αm) ∈ {0,1}m we define the endomorphism Jα = Jαmm . . . Jα1
1 and

(−1)α = (−1)α1+···+αm . Applying (−1)αJα on the equality

θ0X+ θ1J1X+ · · ·+ θmJmX = 0,

we obtain
∑m

i=0(−1)αθiJαJeiX = 0, where we introduce ei = (δi1, δi2, . . . , δim) with additional
e0 = (0, . . . , 0), so Jei = Ji and Je0 = 1. Since (−1)αJαJei = (−1)αi+···+αm(ci)αiJα±ei holds for
1 ≤ i ≤ m, where α ± ei and α differ only in the i-th slot, for every α ∈ {0,1}m we get the
equality

m∑
i=0

(−1)αi+···+αm(ci)αiθiJα±eiX = 0.

In this way, we obtain a homogeneous system of 2m linear equations with 2m unknowns,∑
βMαβJβX = 0, where

Mαα = (−1)α1+···+αmθ0,

Mα(α±ei) = (−1)αi+···+αm(ci)αiθi,
for 1 ≤ i ≤ m, and Mαβ = 0 otherwise. Consider the matrix M2, and calculate its entries,

(M2)αα = MααMαα +Mα(α±e1)M(α±e1)α + · · ·+Mα(α±em)M(α±em)α = θ2
0 − c1θ2

1 − · · · − cmθ2
m,

(M2)α(α±ei) = MααMα(α±ei) +Mα(α±ei)M(α±ei)(α±ei) = 0,
(M2)α(α±ei±ej) = Mα(α±ei)M(α±ei)(α±ei±ej) +Mα(α±ej)M(α±ej)(α±ei±ej) = 0,
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9.3. Total duality

and (M2)αβ = 0 otherwise. Thus, M2 is a diagonal matrix with

(detM)2 = det(M2) = (θ2
0 − c1θ2

1 − · · · − cmθ2
m)

2m .

For detM 6= 0 the system has the unique zero solution X = J1X = · · · = JmX = 0, but since
X 6= 0, we have detM = 0, which proves the theorem.

In the case of a Clifford R, we have ci = −1 for all 1 ≤ i ≤ m, so Theorem 9.10 from the
condition θ0X+ θ1J1X+ · · ·+ θmJmX = 0 implies θ2

0 + θ2
1 + · · ·+ θ2

m = 0, and therefore θi = 0
holds for all 0 ≤ i ≤ m. Thus, Fm is a linearly independent set and according to Theorem
9.9, R is totally Jacobi-dual (see [12, Theorem 4.2]).

Theorem 9.11. Any Clifford algebraic curvature tensor is totally Jacobi-dual.

However, there are some problems in the case when we have ci = 1 for some i. Every
semi-Clifford R is Jacobi-dual according to Theorem 9.6, and if we want to check whether
R is totally Jacobi-dual, it is enough to check the implication (9.2) for a null X ∈ V . The
initial condition for a null X is JXY = 0, from where (9.6) gives (9.10), where we get θ0X +
θ1J1X+ · · ·+ θmJmX = 0 for concrete θ0 = μ0g(Y,X) and θi = 3μig(Y, JiX) for 1 ≤ i ≤ m. The
question of whether R is totally Jacobi-dual is equivalent to whether the initial condition
always give JYX = εYμ0X − θ0Y + θ1J1Y + · · · + θmJmY which is proportional to X, that is
obvious when θi = 0 holds for all 0 ≤ i ≤ m.

From the initial conditions θ0 = μ0g(Y,X) and θi = 3μig(Y, JiX), we can calculate

θ2
0 = μ0g(Y,θ0X) = −μ0

m∑
i=1

θig(Y, JiX) = −μ0

m∑
i=1

θ2
i

3μi
,

while from Theorem 9.10 follows

θ2
0 =

m∑
i=1

ciθ2
i = −μ0

m∑
i=1

θ2
i

3μi
, (9.11)

and therefore
m∑
i=1

(ci +
μ0
3μi

)θ2
i = 0.

If all the numbers (3ciμi + μ0)/μi are of the same sign for 1 ≤ i ≤ m, then the only
solution of the previous equation is θ1 = · · · = θm = 0, while (9.11) gives θ0 = 0, which
implies the following theorem (see [12, Theorem 4.3]).

Theorem 9.12. If (3ciμi + μ0)μi > 0 for all 1 ≤ i ≤ m or (3ciμi + μ0)μi < 0 for all 1 ≤ i ≤ m,
then the associated semi-Clifford R is totally Jacobi-dual.

In the case that ci = 1 holds for all 1 ≤ i ≤ m we say that R is anti-Clifford. With this
assumption, Theorem 9.10 for the hypothetical θ0 = 0 gives θ2

1 + · · ·+ θ2
m = 0 which shows

that the set {J1X, . . . , JmX} is linearly independent, but Fm can be linearly dependent.
Since J1X, . . . , JmX form a basis of a totally isotropic subspace of V , by Theorem 4.12

there exists a basis (P1, . . . ,Pm) of an isotropic supplement, such that g(JiX,Pj) = δij and
g(Pi,Pj) = 0 hold for 1 ≤ i, j ≤ m. Then

Z =
m∑
i=1

θi
3μi

Pi

has the properties θi = 3μig(Z, JiX), and consequently by (9.11), θ0 = μ0g(Z,X). It is easy to
see that Z+W has the same properties for any W ∈ {J1X, . . . , JmX}⊥.
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Chapter 9. Duality principle

From (9.8), we need such Y that −θ0Y+
∑m

i=1 θiJiY is not proportional toX. Therefore, we
search forY = Z+W such thatK(Z+W) is not proportional toXwhereK = −θ0 1+

∑m
i=1 θiJi.

For any nonnull D, the set {D, J1D, . . . , JmD} is linearly independent (mutually orthogonal
nonnull vectors), and therefore K(D) = 0 implies θ0 = · · · = θm = 0, which is impossible.
Thus, we have K(D) 6= 0 for all nonnull D.

The assumption n > 2m enables a nonnull vector H from {J1X, . . . , JmX,P1, . . . ,Pm}⊥.
We already have K(X) = −2θ0X. If R is totally Jacobi-dual, we have additional K(Z) = ζX
and K(Z + H) = ξX. Then K(H) = (ξ − ζ)X 6= 0, so K(Z − (ζ/(ξ − ζ))H) = 0, which implies
that Z − (ζ/(ξ − ζ))H is not nonnull, and therefore ζ = 0. Similarly, K(X + (2θ0/ξ)H) = 0,
which implies that X+(2θ0/ξ)H is not nonnull, and therefore θ0 = 0, that is a contradiction.
Hence, we have the following theorem (see [12, Theorem 5.2]).

Theorem 9.13. If there exist θ0, . . . , θm ∈ R (where not all are equal to zero), such that
θ0X + θ1J1X + · · · + θmJmX = 0 holds for some null X, with the condition (9.11), then the
associated anti-Clifford algebraic curvature tensor of dimension n > 2m is not totally Jacobi-
dual.

Let us show some concrete examples of anti-Clifford algebraic curvature tensors which
are not totally Jacobi-dual.

Example 9.1. For m = 1, Theorem 9.12 gives the necessary condition μ0 + 3μ1 = 0. A
skew-adjoint product structure given by JTi = Si and JSi = Ti for 1 ≤ i ≤ t, n = 2t ≥
4, where (T1, . . . ,Tt, S1, . . . , St) is an orthonormal basis in a scalar product space (V, g) of
neutral signature, provides an anti-Clifford R = 3μR1 − μRJ for μ 6= 0. We take X = S1 + T1,
because of the linear dependence X = JX, and apply Theorem 9.13. Therefore R = 3R1 −RJ

is anti-Clifford which is not totally Jacobi-dual. 4

Example 9.2. For m = 2, Theorem 9.12 gives the condition (μ0 + 3μ1)(μ0 + 3μ2)μ1μ2 ≤ 0
which is necessary. Consider skew-adjoint product structures J and K that are given by
JT2i−1 = S2i−1, JT2i = S2i, KT2i−1 = S2i, and KT2i = −S2i−1, for all 1 ≤ i ≤ t, n = 4t ≥ 8, where
(T1, . . . ,T2t, S1, . . . , S2t) is an orthonormal basis in a scalar product space (V, g) of neutral
signature. We can take X = cosα T1 + sinα T2 + cos β S1 + sin β S2 for some α, β ∈ R to see
that X = cos(β − α) JX+ sin(β − α)KX. The condition (9.11) gives

tan2(β − α) = sin2(β − α)
cos2(β − α) =

(
θ2
θ1

)2
= −

μ0 + 3μ1
μ0 + 3μ2

· μ2
μ1

,

so we can take α = 0,

β = arctan
√
−
μ0 + 3μ1
μ0 + 3μ2

· μ2
μ1

and apply Theorem 9.13 to get an anti-Clifford R = μ0R1 + μ1RJ + μ2RK which is not totally
Jacobi-dual. 4

9.4 Four-dimensional zwei-stein

Let R be a four-dimensional zwei-stein algebraic curvature tensor. Theorem 8.6 gives some
useful information. From (8.8) for 1 ≤ x ≤ 4 we have four equalities

ε1ε2R2112 + ε1ε3R3113 + ε1ε4R4114 = C1,

ε2ε1R1221 + ε2ε3R3223 + ε2ε4R4224 = C1,

ε3ε1R1331 + ε3ε2R2332 + ε3ε4R4334 = C1,

ε4ε1R1441 + ε4ε2R2442 + ε4ε3R3443 = C1,
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9.4. Four-dimensional zwei-stein

and after we solve the system of equations we get

ε2ε3R3223 = ε1ε4R4114,

ε2ε4R4224 = ε1ε3R3113,

ε3ε4R4334 = ε1ε2R2112.

(9.12)

From (8.9) for 1 ≤ x 6= y ≤ 4 we get six equalities

R2443 = −ε1ε4R2113, R1442 = −ε3ε4R1332,

R2334 = −ε1ε3R2114, R1443 = −ε2ε4R1223,

R3224 = −ε1ε2R3114, R1334 = −ε2ε3R1224.

(9.13)

From (8.10) for 1 ≤ x ≤ 4 we have four equalities

R2
2112 + R2

3113 + R2
4114 + 2ε2ε3R2

2113 + 2ε2ε4R2
2114 + 2ε3ε4R2

3114 = C2,

R2
1221 + R2

3223 + R2
4224 + 2ε1ε3R2

1223 + 2ε1ε4R2
1224 + 2ε3ε4R2

3224 = C2,

R2
1331 + R2

2332 + R2
4334 + 2ε1ε2R2

1332 + 2ε1ε4R2
1334 + 2ε2ε4R2

2334 = C2,

R2
1441 + R2

2442 + R2
3443 + 2ε1ε2R2

1442 + 2ε1ε3R2
1443 + 2ε2ε3R2

2443 = C2,

which after use (9.12) and (9.13) yield

ε2ε3R2
2113 + ε2ε4R2

2114 + ε3ε4R2
3114 = ε1ε3R2

1223 + ε1ε4R2
1224 + ε3ε4R2

3114

= ε1ε2R2
1332 + ε1ε4R2

1224 + ε2ε4R2
2114

= ε1ε2R2
1332 + ε1ε3R2

1223 + ε2ε3R2
2113.

The previous system of equations has the following solution,

ε2ε3R2
2113 = ε1ε4R2

1224,

ε2ε4R2
2114 = ε1ε3R2

1223,

ε3ε4R2
3114 = ε1ε2R2

1332.

(9.14)

The derived equations are enough to deal with the weak Jacobi-duality. The following
theorem is originally proved by Andrejić in 2006 [3] (see also [15, Theorem 4.1]), but we
present the simpler proof from [5, Theorem 3].

Theorem 9.14. Any four-dimensional zwei-stein algebraic curvature tensor is weak Jacobi-
dual.

Proof. Let JXY = εXλY holds for unit mutually orthogonal X,Y ∈ V . Let us set E1 = X,
E2 = Y and extend them to an orthonormal basis (E1,E2,E3,E4) in V . The assumption
JE1E2 = ε1λE2 gives R2112 = ε1ε2λ, R2113 = 0, and R2114 = 0. Thus, by (9.14) we have
R1224 = 0 and R1223 = 0. Finally, JE2E1 = ε1R1221E1 + ε3R1223E3 + ε4R1224E4 = ε2λE1,
therefore JYX = εYλX, so R is weak Jacobi-dual.

Under the same initial conditions we can solve the Jacobi-duality problem. It is time to
clarify the signature. If R is definite (Ind g = 0 or Ind g = 4) then it is Jacobi-diagonalisable,
where Theorem 9.2 and Theorem 9.14 imply thatR is Jacobi-dual. IfR is Lorentzian (Ind g =
1 or Ind g = 3), any zwei-stein R is necessarily of constant sectional curvature (Theorem
8.10), so it is Clifford, and therefore Jacobi-dual (Theorem 9.6).

This is why we should check only the neutral signature (2,2). Without loss of generality
we can set ε1 = ε2 = −ε3 = −ε4. Applying (8.11) for x = 2, y = 3 and for x = 3, y = 2, we get

R1221R1231 − R1224R1234 − R3221R3231 + R3224R3234 − R4221R4231 + R4224R4234 = 0,
R1331R1321 − R1334R1324 + R2331R2321 − R2334R2324 − R4331R4321 + R4334R4324 = 0,
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and after some arrangement and use of (9.12) and (9.13),

R2112R2113 − R1224R1234 + R1223R1332 + R3114R2114 − R1224R1324 + R3113R2113 = 0,
R3113R2113 − R1224R1324 − R1332R1223 − R2114R3114 − R1224R1234 + R2112R2113 = 0.

The sum and the difference of the previous equations are

R2112R2113 + R3113R2113 − R1224R1234 − R1224R1324 = 0, (9.15)
R1223R1332 + R2114R3114 = 0. (9.16)

From (8.12) for x = 2, y = 3 we get

2(R1221R1331 − 2R1224R1334 + R4224R4334)

+ 2(R2
2112 + R2

3113 + R2
4114 − 2R2

2113 − 2R2
2114 + 2R2

3114) + (R1231 + R1321)
2

+ R2
1232 − R2

1323 − (R1234 + R1324)
2 + R2

2321 − R2
2323 − R2

2324 − R2
3231 − R2

3232

+ R2
3234 − (R4231 + R4321)

2 − R2
4232 + R2

4323 + (R4234 + R4324)
2 = 0,

which after use of (9.12), (9.13), and (9.14) becomes

2R2112R3113 − 4R2
2113 + 2R3113R2112

+ 2R2
2112 + 2R2

3113 + 2R2
4114 − 4R2

2113 − 4R2
2114 + 4R2

3114 + 4R2
2113

+ R2
2114 − R2

3114 − (R1234 + R1324)
2 + R2

2114 − R2
4114 − R2

3114 − R2
3114 − R2

4114

+ R2
2114 − (R1324 + R1234)

2 − R2
3114 + R2

2114 + 4R2
2113 = 0.

Thus arises
4R2112R3113 + 2R2

2112 + 2R2
3113 − 2(R1234 + R1324)

2 = 0,
and finally

(R2112 + R3113)
2 = (R1234 + R1324)

2. (9.17)
The derived formulas are sufficient to prove the following theorem given by Andrejić in
2010 [5, Theorem 4].

Theorem 9.15. Any four-dimensional zwei-stein algebraic curvature tensor is Jacobi-dual.

Proof. From Theorem 9.14, the weak Jacobi-duality holds, so by Lemma 9.1 it is enough to
prove the implication (9.2) for X ⊥ Y with (εX)2 = 1 and εY = 0. Let us set E1 = X. Lemma
4.10 decomposesY = E2+E3 with mutually orthogonal unitE2 andE3, which are orthogonal
to X, such that ε1 = ε2 = −ε3. Let E4 be a vector which extends them to an orthonormal
basis (E1,E2,E3,E4). Because of the signature (2,2), we have ε1 = ε2 = −ε3 = −ε4, which
enables use of the previous equations. Our aim is to prove the following formula,

JE1(E2 + E3) = ε1λ(E2 + E3) =⇒ JE2+E3E1 = 0.

The assumption is

ε1λ(E2 + E3) = JE1(E2 + E3)

= ε2(R2112 + R3112)E2 + ε3(R2113 + R3113)E3 + ε4(R2114 + R3114)E4,

which implies

ε2(R2112 + R3112) = ε1λ = ε3(R2113 + R3113), ε4(R2114 + R3114) = 0,

and finally

R2112 + R3113 + 2R2113 = 0, (9.18)
R2114 + R3114 = 0. (9.19)
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The substitution (9.19) into (9.16) gives

R1223R1332 = −R2114R3114 = R2
2114 = R2

1223,

and therefore R1223 = 0 or R1332 = R1223. However, from (9.14) and (9.19) we have

R1223 = 0 ⇒ R2114 = 0 ⇒ R3114 = 0 ⇒ R1332 = 0

and therefore the equation
R1332 = R1223, (9.20)

holds anyway. By the substitution (9.18) into (9.15) we get

(R1234 + R1324)R1224 = (R2112 + R3113)R2113 = −2R2
2113 = −2R2

1224.

Thus R1224 = 0 or R1234 + R1324 = −2R1224. Similarly we use (9.14), (9.18), and (9.17) for

R1224 = 0 ⇒ R2113 = 0 ⇒ R2112 + R3113 = 0 ⇒ R1234 + R1324 = 0,

and undoubtedly
R1234 + R1324 = −2R1224 = −(R1224 + R1334). (9.21)

The final computation shows

JE2+E3E1 =

4∑
p=1

εp(R122p + R123p + R132p + R133p)Ep

= ε1(R2112 + R3113 + 2R2113)E1 + ε2(R1332 − R1223)E2

+ ε3(R1223 − R1332)E3 + ε4(R1224 + R1334 + R1234 + R1324)E4.

The equations (9.18), (9.20), and (9.21) finally give JE2+E3E1 = 0, which completes the proof.

Of course, an Osserman R is zwei-stein and therefore any four-dimensional Osserman
algebraic curvature tensor is Jacobi-dual.

9.5 Converse problem

In the previous sections we proved that Osserman algebraic curvature tensors are Jacobi-
dual under assumptions of small index or low dimension. In the Riemannian setting
(Indg = 0), any Osserman R is totally Jacobi-dual (Theorem 9.4). In the Lorentzian set-
ting (Indg = 1), any Osserman R has a constant sectional curvature (Theorem 8.10) and
therefore it is totally Jacobi-dual (Theorem 9.11).

In the case of dimension n = 4, any OssermanR is Jacobi-dual (Theorem 9.15). However,
a four-dimensional Osserman R is not necessarily totally Jacobi-dual (Example 9.1), so the
main converse question should be whether a Jacobi-dual R necessarily implies that R is
Osserman.

Let us start with an elementary and elegant proof that every Riemannian Jacobi-dual
R is at least Einstein (Andrejić and Lukić 2024 [14]).

Lemma 9.16. Any Riemannian Jacobi-dual algebraic curvature tensor is Einstein.

Proof. For an arbitrary unit E1 ∈ V there exists an orthonormal eigenbasis (E1, . . . ,En) in V
related to JE1 , so there are λ1, . . . , λn ∈ R that depend on E1, such that JE1Ei = λiEi holds for
1 ≤ i ≤ n. If R is Jacobi-dual then JEiE1 = λiE1 and considering the sharp of the Ricci tensor
as a linear operator we have Ric♯ = JE1 + · · ·+JEn , and therefore Ric♯(E1) = (λ1+ · · ·+λn)E1.
Hence, any unit E1 ∈ V is an eigenvector of Ric♯, so all eigenvalues of Ric♯ are the same,
which gives that λ1 + · · ·+ λn is constant, and proves that R is Einstein.
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In solving the converse problem, the following universal lemma given by Andrejić in
2009 [4, Lemma 1] is very useful.

Lemma 9.17. If JX(Y) = εXλY and JY(X) = εYλX for X ⊥ Y, then for all α, β ∈ R holds

JαX+βY(εYβX− εXαY) = εαX+βYλ(εYβX− εXαY).

Proof. This is a consequence of straightforward calculations,

JαX+βY(εYβX− εXαY) = R(εYβX− εXαY,αX+ βY)(αX+ βY)
= (εXα2 + εYβ2)R(X,Y)(αX+ βY)
= εαX+βY(βJY(X)− αJX(Y)) = εαX+βYλ(εYβX− εXαY).

We consider the converse problem in low dimensions. Let us start with three-
dimensional Jacobi-dual algebraic curvature tensor R. Since three-dimensional Einstein
R has constant sectional curvature (Example 6.13), we expect the following theorem given
by Andrejić in 2009 [4, Theorem 1].

Theorem 9.18. Three-dimensional Jacobi-dual algebraic curvature tensor has constant sec-
tional curvature.

Proof. Let (E1,E2,E3) be an arbitrary orthonormal basis in V , such that ε2 = ε3. Since the
Jacobi operator JE1 has the matrix

JE1 =

0 0 0
0 ε2R2112 ε2R3112
0 ε3R2113 ε3R3113

 ,

the characteristic polynomial of its reduced Jacobi operator J̃E1 is

ω̃E1(λ) = λ2 − (ε2R2112 + ε3R3113)λ+ ε2ε3R2112R3113 − ε2ε3R3112R2113.

The discriminant D of the quadratic equation ω̃E1(λ) = 0 is

D = (ε2R2112 + ε3R3113)
2 − 4ε2ε3R2112R3113 + 4ε2ε3R3112R2113

= (ε2R2112 + ε3R3113)
2 + 4(R2113)

2 ≥ 0.

For D > 0 our quadratic equation has two distinct real roots, which give two distinct
eigenvalues of J̃E1 , so there are two one-dimensional eigenspaces. Otherwise, D = 0
gives ε2R2112 = ε3R3113 and R2113 = 0, and therefore J̃E1 is diagonal with a double root,
so we have a two-dimensional eigenspace. Thus, there exists an orthonormal eigenbasis
(E1,E2,E3) related to JE1 .

Since R is Jacobi-dual, E1 is an eigenvector of JE2 which fulfils the requirements of
Lemma 9.17, and hence ε2βE1 − ε1αE2 is an eigenvector of JαE1+βE2 . Moreover, for α, β ∈ R
such that α2ε1+β2ε2 6= 0 holds, both αE1+βE2 and ε2βE1−ε1αE2 are nonnull and mutually
orthogonal. SinceJαE1+βE2 is self-adjoint, JαE1+βE2E3 is orthogonal to both ε2βE1−ε1αE2 and
αE1 + βE2, and therefore E3 is an eigenvector of JαE1+βE2 . By the Jacobi-duality, αE1 + βE2
is an eigenvector of JE3 , which is possible only if Span{E1,E2} is a two-dimensional ei-
genspace of J̃E3 . Similarly, one can prove that Span{E1,E3} is an eigenspace of J̃E2 . Thus
arises ε1ε2R1221 = ε2ε3R2332 = ε1ε3R1331 = κ and R2113 = R1223 = R1332 = 0. This equations
completely determine R, and therefore R has constant sectional curvature κ.
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Let R be a four-dimensional Jacobi-dual algebraic curvature tensor on (V, g). Suppose
that there exists some nonnull X such that JX is diagonalisable. Then, there exists an or-
thonormal eigenbasis (E1,E2,E3,E4) in V such that JE1Ei = ε1λ1iEi holds for i = 2,3,4.
Without loss of generality we assume ε3 = ε4.

Since the Jacobi-duality gives JE2E1 = ε2λ12E1, we see that JE2 is invariant on the def-
inite subspace Span{E3,E4}. Hence, JE2 is diagonalisable with two mutually orthogonal
eigenvectors α3E3 +α4E4 and ε4α4E3 −ε3α3E4 for some α3,α4 ∈ R such that α2

3ε3 +α2
4ε4 6= 0.

Thus, we obtain the proportionalities

α2
3JE3(E2) + α2

4JE4(E2) + 2α3α4J (E3,E4)(E2) ∝ E2,

α2
4JE3(E2) + α2

3JE4(E2)− 2ε3ε4α3α4J (E3,E4)(E2) ∝ E2,

and therefore
(ε3ε4α2

3 + α2
4)JE3(E2) + (ε3ε4α2

4 + α2
3)JE4(E2) ∝ E2.

Thus, JE3E2 ⊥ E4 with JE3(Span{E2,E4}) ⊆ Span{E2,E4} (from JE3E1 = ε3λ13E1) implies
JE3E2 ∝ E2 and consequently JE3E4 ∝ E4. Hence JE2E3 ∝ E3 and JE2E4 ∝ E4, which
means that our basis diagonalizes any of operators JE1 ,JE2 ,JE3 ,JE4 . In this way, we obtain
JEi(Ej) = εiλijEj where λij = λji for all 1 ≤ i, j ≤ 4.

This conclusion allows simple calculations,

J (E1,E2)(E3) =
∑
i
εi

1
2(R312i + R321i)Ei =

1
2ε4(R3124 + R3214)E4,

which holds in all permutations of indices from {1,2,3,4}. Since,

Jα1E1+α2E2(E3) = (α2
1ε1λ13 + α2

2ε2λ23)E3 + α1α2ε4(R3124 + R3214)E4,

Jα1E1+α2E2(E4) = (α2
1ε1λ14 + α2

2ε2λ24)E4 + α1α2ε3(R4123 + R4213)E3,

after the substitution Q12 = R3124 + R3214 = R4123 + R4213, we have

Jα1E1+α2E2(α3E3 + α4E4) = (α3(α2
1ε1λ13 + α2

2ε2λ23) + α4α1α2ε3Q12)E3

+ (α4(α2
1ε1λ14 + α2

2ε2λ24) + α3α1α2ε4Q12)E4.

We should discuss two cases Q12 6= 0 and Q12 = 0.
First, let us suppose that Q12 6= 0. For any α1,α2 ∈ R such that α2

1ε1 + α2
2ε2 6= 0, by

Lemma 9.17 we have Jα1E1+α2E2(ε2α2E1 − ε1α1E2) = εα1E1+α2E2λ12(ε2α2E1 − ε1α1E2), so there
exist α3,α4 ∈ R such that α2

3ε3 + α2
4ε4 6= 0 and Jα1E1+α2E2(α3E3 + α4E4) ∝ α3E3 + α4E4. Thus

α4(α3(α2
1ε1λ13 + α2

2ε2λ23) + α4α1α2ε3Q12) = α3(α4(α2
1ε1λ14 + α2

2ε2λ24) + α3α1α2ε4Q12),

which implies

α3α4(α2
1ε1(λ13 − λ14) + α2

2ε2(λ23 − λ24)) = α1α2Q12(α2
3ε4 − α2

4ε3).

However, the Jacobi-duality implies that α1E1 + α2E2 is an eigenvector of Jα3E3+α4E4 , and
because of Q34 = R2341 + R2431 = R1342 + R1432 = Q12, we can use the symmetric formula to
get

α1α2(α2
3ε3(λ31 − λ32) + α2

4ε4(λ41 − λ42)) = α3α4Q12(α2
1ε2 − α2

2ε1).

Let us rescale this with α1 = x,α2 = 1 and α3 = y,α4 = 1, which means that for any x (with
x2 6= −ε1ε2) there exists y (with y2 6= −ε3ε4) such that

(ε4Q12x)y2 − (ε1x2(λ13 − λ14) + ε2(λ23 − λ24))y− ε3Q12x = 0,
(ε3(λ13 − λ23)x)y2 − (Q12(ε2x2 − ε1))y+ ε4(λ14 − λ24)x = 0.
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Chapter 9. Duality principle

Since the solutions (of quadratic equation by y) goes in pairs (mutually orthogonal eigen-
vectors), the two previous equations give the same solutions, which implies

ε4Q12x = Kε3(λ13 − λ23)x,
ε1x2(λ13 − λ14) + ε2(λ23 − λ24) = KQ12(ε2x2 − ε1),

−ε3Q12x = Kε4(λ14 − λ24)x,

for infinitely many x and some K = K(x) ∈ R. Immediately, λ13 − λ23 = −(λ14 − λ24), which
gives

λ13 + λ14 = λ23 + λ24.

Additionally, we have

ε3(λ13 − λ23)(ε1x2(λ13 − λ14) + ε2(λ23 − λ24)) = ε4Q2
12(ε2x2 − ε1),

and the polynomial equation

(ε1ε3(λ13 − λ23)(λ13 − λ14)− ε2ε4Q2
12)x2 + ε2ε3(λ13 − λ23)(λ23 − λ24) + ε1ε4Q2

12 = 0

has infinitely many solutions, so we obtain

(λ13 − λ23)(λ13 − λ14) = ε1ε2ε3ε4Q2
12,

(λ13 − λ23)(λ23 − λ24) = −ε1ε2ε3ε4Q2
12.

Hence λ13 − λ14 = λ24 − λ23, which together with λ13 + λ14 = λ24 + λ23 implies

λ13 = λ24 and λ14 = λ23.

Moreover, we have
(λ13 − λ14)

2 = ε1ε2ε3ε4Q2
12, (9.22)

that immediately implies ε1ε2ε3ε4 = 1, which means that Q12 6= 0 is impossible in the
Lorentzian setting.

We turn now to the case Q12 = 0, where Jα1E1+α2E2(E3) = (α2
1ε1λ13 + α2

2ε2λ23)E3 holds,
and the Jacobi-duality gives

α1ε3λ13E1 + α2ε3λ23E2 = JE3(α1E1 + α2E2) = ε3
α2

1ε1λ13 + α2
2ε2λ23

α2
1ε1 + α2

2ε2
(α1E1 + α2E2),

that implies λ13 = λ23. Similarly, Jα1E1+α2E2(E4) = (α2
1ε1λ14 + α2

2ε2λ24)E4 gives λ14 = λ24.
The conclusion of the discussion is that Q12 6= 0 gives λ13 = λ24 and λ14 = λ23, while

otherwise Q12 = 0 yields λ13 = λ23 and λ14 = λ24. We obtain similar conclusions using the
symmetries for Q13 = R2134 + R2314 and Q14 = R3142 + R3412 relative to Q12 = R3124 + R3214.
The case Q13 6= 0 gives λ12 = λ34 and λ14 = λ23, while Q13 = 0 yields λ12 = λ23 and λ14 = λ34,
as well asQ14 6= 0 gives λ13 = λ24 and λ12 = λ34, whileQ14 = 0 yields λ13 = λ34 and λ12 = λ24.

The case Q12 = Q13 = Q14 = 0 immediately gives λ12 = λ13 = λ14 = λ23 = λ24 = λ34,
while 0 = R1234+R2314+R3124 = R1234+(Q13−R2134)+(R3412−Q14) = 3R1234 follows from the
first Bianchi identity, so R1234 = −R1324 = 0. Hence R = λ12R1, and therefore R has constant
sectional curvature. Notice that this is the only possible case in the Lorentzian setting,
because if Q1i 6= 0 holds for some 2 ≤ i ≤ 4, then immediately, due to (9.22), ε1ε2ε3ε4 = 1
holds.

Since the first Bianchi identity gives Q12 + Q13 + Q14 = 0, the other cases have at least
two of Q12, Q13, and Q14 which are nonzero. Thus, it is obvious that in any case (including
the one with Q12 = Q13 = Q14 = 0) we have

λ12 = λ34, λ13 = λ24, λ14 = λ23.
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Thanks to the formula (9.22) which holds for Q12 6= 0, as well as its symmetric formulas,
we additionally have ε1ε2ε3ε4 = 1 and the equations (λ14 − λ13)

2 = Q2
12, (λ12 − λ14)

2 = Q2
13,

(λ13 − λ12)
2 = Q2

14, because for a possible Q1i = 0 we have λ1j = λik = λij = λ1k, where
{i, j,k} = {1,2,3}. Changing the sign of one vector in our basis, if necessary, we can set

λ14 − λ13 = Q12, λ12 − λ14 = Q13, λ13 − λ12 = Q14.

For example, the case Q12 6= 0 implies λ14 − λ13 = −Q12, which after we change E4 by −E4,
gives λ14−λ13 = Q12. Hence, if λ12−λ14 6= Q13 then we have λ12−λ14 = −Q13, and we obtain
±(λ13 − λ12) = Q14 = −Q12 − Q13 = λ12 − 2λ14 + λ13. Since λ14 6= λ13 it implies λ14 = λ12, so
Q13 = 0 = λ12 − λ14. Thus

λ14 − λ13 = Q12 = −R1324 + R1432 = R1234 − 2R1324,

λ12 − λ14 = Q13 = −R1234 + R1423 = −2R1234 + R1324,

and therefore

R1234 = −2
3λ12 +

1
3λ13 +

1
3λ14, R1324 = −1

3λ12 +
2
3λ13 − 1

3λ14.

In this way, we calculated the last two of the 20 independent coordinate curvature
tensor components (see Theorem 6.4), which completely determines R. The calculations
were made depending on three parameters λ12, λ13, λ14 ∈ R, while previously we have
6 independent terms of the form Rijji = λij = λkl and another 12 of the form Rjiik = 0,
where {i, j,k, l} = {1,2,3,4}. Every semi-Clifford algebraic curvature tensor is both Os-
serman (Theorem 9.5) and Jacobi-dual (Theorem 9.6), so the basic idea is to construct a
semi-Clifford algebraic curvature tensor that will have components equal to those of our
R, and from the uniqueness, we see that R is Osserman.

If the signature is definite, without loss of generality we suppose ε1 = ε2 = ε3 = ε4 = 1,
and introduce a quaternionic Clifford family {J1, J2, J3} given by

J1E1 = E2, J1E2 = −E1, J1E3 = E4, J1E4 = −E3,

J2E1 = E3, J2E2 = −E4, J2E3 = −E1, J2E4 = E2,

J3E1 = E4, J3E2 = E3, J3E3 = −E2, J3E4 = −E1,

to see that our R is induced by Clifford

R = −λ12
3 RJ1 − λ13

3 RJ2 − λ14
3 RJ3 .

If the signature is neutral, we can suppose ε1 = ε2 = −1, ε3 = ε4 = 1, and introduce
paraquaternionic semi-Clifford family {J1, J2, J3} given by

J1E1 = −E2, J1E2 = E1, J1E3 = E4, J1E4 = −E3,

J2E1 = E3, J2E2 = E4, J2E3 = E1, J2E4 = E2,

J3E1 = E4, J3E2 = −E3, J3E3 = −E2, J3E4 = E1,

to see that our R is induced by semi-Clifford

R = −λ12
3 RJ1 +

λ13
3 RJ2 +

λ14
3 RJ3 .

The previous considerations prove the following theorem given by Andrejić in 2018 [9,
Theorem 4.2].

Theorem 9.19. Any four-dimensional Jacobi-dual algebraic curvature tensor such that JX
is diagonalisable for some nonnull X is Osserman.
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Consequently, any Riemannian four-dimensional Jacobi-dual R is Osserman, which is
a variant of this theorem originally proved by Brozos-Vázquez2 and Merino3 in 2012 [27].
Additionally, we notice that any Lorentzian four-dimensional Jacobi-dual R has constant
sectional curvature.

According to Theorem 8.10 a Lorentzian Osserman curvature tensor has a constant
sectional curvature, so it is natural to have the following theorem given by Andrejić and
Rakić in 2015 [16, Theorem 4.1].

Theorem 9.20. A Lorentzian totally Jacobi-dual algebraic curvature tensor has constant
sectional curvature.

Proof. Let T be a unit timelike vector in a Lorentzian scalar product space (V, g). Then T⊥

is positive definite, so J̃T is diagonalisable. Let (S1, . . . , Sn−1) be an orthonormal eigenbasis
of T⊥ related to J̃T. Then JTSi = εTλiSi and the Jacobi-duality gives JSiT = εSiλiT for all
1 ≤ i ≤ n− 1. Because of

JT±SiT = R(T,T± Si)(T± Si) = ∓JTSi + JSiT = λi(T± Si),
JT±SiSi = R(Si,T± Si)(T± Si) = JTSi ∓ JSiT = ∓λi(T± Si),

it follows that JT±Si is invariant on Ui = Span{T, Si}, and since it is self-adjoint, it is also
invariant on U⊥

i = Span
⋃

j ̸=i{Sj}. The restriction JT±Si↾U⊥
i

is diagonalisable as a self-adjoint
operator on a definite space. If M is a nonnull eigenvector of JT±Si↾U⊥

i
, then JT±SiM = μM

together with the totally Jacobi-dual condition gives JM(T± Si) = ν(T± Si). However,

μεM = g(JT±SiM,M) = g(JM(T± Si),T± Si) = νεT±Si = 0,

so μ = 0, and therefore JT±SiM = 0. Consequently, JT±Si = 0 on U⊥
i , and therefore JT±SiSj =

0 holds, for all 1 ≤ i 6= j ≤ n − 1. Then the relation JT+SiSj = 0 and the total Jacobi-duality
implies that T + Si is an eigenvector of JSj . Since g(T,T + Si) = −1 6= 0, eigenvectors T
and T+ Si of JSj are not orthogonal, so they have the same eigenvalues. Thus, JSjSi = λjSi,
which implies λi = λj and R has constant sectional curvature.

Alternatively, from JT±Si = JT + JSi ± 2J (T, Si) we get JT+Si + JT−Si = 2(JT + JSi). Thus
JT±SiSj = 0 implies JSiSj = −JTSj = λjSj. Comparing this equation after (i, j)-symmetry
JSjSi = λiSi and after the Jacobi-dual property JSjSi = λjSi, we easily conclude that λi = λj
for 1 ≤ i 6= j ≤ n− 1, which proves that R has constant sectional curvature.

9.6 Osserman perturbations

LetR be a Jacobi-diagonalisable algebraic curvature tensor on a scalar product space (V, g).
Consider an analytic curve γ : I → V for some open interval I ⊆ R. Form the one-parameter
family of self-adjoint endomorphisms A(t) = Jγ(t) for t ∈ I. According to Lemma 6.5, the
entries of the matrix Jγ(t) are homogeneous polynomials of degree 2 in the components of
γ(t), and therefore analytic on I. On the other hand, since R is Jacobi-diagonalisable, each
Jγ(t) has a hyperbolic characteristic polynomial.

The conditions of Theorem A.26 are satisfied, which yields an analytic eigenvalue func-
tion λ : I → R and an analytic eigenvector curveV : I → V such thatJγ(t)V(t) = λ(t)V(t)holds
for t ∈ I. Hence,

R(V(t), γ(t), γ(t),V(t)) = g(Jγ(t)V(t),V(t)) = λ(t)g(V(t),V(t)) = λ(t)εV(t).

2Miguel Brozos-Vázquez, Spanish mathematician
3Eugenio Merino, Spanish mathematician
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Taking the derivative with respect to t, we obtain

2g(Jγ(t)V(t),V′(t)) + 2g(JV(t)γ(t), γ′(t)) = λ′(t)g(V(t),V(t)) + 2λ(t)g(V(t),V′(t)),

which leads to the identity

2g(JV(t)γ(t), γ′(t)) = εV(t)λ′(t). (9.23)

Suppose that R is Osserman, which gives λ(t) = εγ(t)C for some constant C ∈ R, and
implies λ′(t) = 2g(γ(t), γ′(t))C. Using (9.23), we obtain g(JV(t)γ(t), γ′(t)) = εV(t)g(γ(t), γ′(t))C,
which means that the vector JV(t)γ(t) − εV(t)Cγ(t) is orthogonal to γ′(t). Now consider a
nonnull vector X ∈ V such that JXY = εXμY for some μ ∈ R and nonzero vector Y ∈ V .
Take an arbitrary vector Z ∈ V and define the curve γ : I → V by γ(t) = X + tZ near 0 ∈ I.
Applying our result at t = 0 we conclude that JV(0)X−εV(0)CX is orthogonal to each Z, so by
nondegeneracy of the scalar product, we have JV(0)X = εV(0)CX. Theorem A.26 additionally
ensures that V(0) = Y and λ(0) = μ = C, and therefore JYX = εYμX, which proves that R is
Jacobi-dual.

Conversely, suppose that R is Jacobi-dual, which implies JV(t)γ(t) = (εV(t)/εγ(t))λ(t)γ(t)
whenever γ(t) is nonnull. In that case, using (9.23), we obtain 2λ(t)g(γ(t), γ′(t)) = εγ(t)λ′(t).
Let X,Z ∈ V be such that εX = εZ 6= 0, and define the curve γ : R → V by γ(t) = X cos t +
Z sin t. Then εγ(t) is constant and nonzero, which implies 2g(γ(t), γ′(t)) = 0, and therefore
λ′(t) = 0. Hence, λ is constant, which means that JX and JZ has the same eigenvalues, and
consequently R is Osserman.

Theorem 9.21. A Jacobi-diagonalisable algebraic curvature tensor is Osserman if and only
if it is Jacobi-dual.

The previous theorem is a consequence of a more general result due to Nikolayevsky
and Rakić, established in 2016 [94]. Specifically, any Jordan-Osserman algebraic curvature
tensor is Jacobi-dual [94, Theorem 1], while a semisimple algebraic curvature tensor is
Osserman if and only if it is Jacobi-dual [94, Theorem 2]. Let us also note that a Riemannian
algebraic curvature tensor is Osserman if and only if it is Jacobi-dual, which is a special
case of Theorem (9.21), previously proved by Nikolayevsky and Rakić in 2013 [93, Theorem
2.1].
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CHAPTER 10

OSSERMAN TENSORS AND MANIFOLDS

10.1 Simple-root Osserman tensors

Let R be an algebraic curvature tensor on a scalar product space (V, g) of dimension n. We
say that R is k-root if the reduced Jacobi operator J̃X has exactly k distinct eigenvalues
(counting complex roots) for any nonnull X ∈ V (see Andrejić [10]). Accordingly, we say
that a pseudo-Riemannian manifold (M, g) is k-root if the curvature tensor is k-root at each
point, which means that the reduced Jacobi operator J̃X has exactly k distinct eigenvalues
for any nonnull X ∈ TM.

Of course, any Osserman R is k-root for some fixed k ∈ N. Consider a k-root Osserman
R for which

ωX(λ) = det(λ1−JX) = λ(λ− εXλ1)
ν1 · · · (λ− εXλk)νk

is the characteristic polynomial of the Jacobi operator, and (λ − εXλ1)
μ1 · · · (λ − εXλk)μk is

the minimal polynomial of the corresponding reduced Jacobi operator. In general we know
that 1 ≤ μi ≤ νi holds for 1 ≤ i ≤ k, while for a Jacobi-diagonalisable R (for example, for a
Riemannian R) we have μi = 1.

Any of self-adjoint linear operators Ki
X = JX − εXλi 1 for 1 ≤ i ≤ k share with JX the

same generalised eigenspaces,

Ker(Ki
X − εX(λj − λi)1)μj = Ker(JX − εXλj 1)μj ,

for 1 ≤ j ≤ k. Every two such operators commute,

Ki
XK

j
X = Kj

XK
i
X = (JX)

2 − εX(λi + λj)JX + ε2
Xλiλj 1,

and therefore their composition is also self-adjoint. This motivates us to define a self-
adjoint linear operator L(X) : V → V for any nonnull X ∈ V by

L(X) = (K2
X)

μ2(K3
X)

μ3 · · · (Kk
X)

μk .

In a chosen orthonormal basis (E1, . . . ,En) for X =
∑n

i=1 xiEi we get

g(Ki
X(Ea),Eb) =

n∑
p,q=1

(Rapqb − εaεpδabδpqλi)xpxq,

so the entries of the matrix L(X) are homogeneous polynomials of degree 2(μ2 + · · ·+ μk).
However, for a nonnull X ∈ V , because of

V = Span{X} k

k
ë

j=1
Ker(Kj

X)
μj ,
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it is easy to see that

KerL(X) ⊇
k

ë

j=2
Ker(Kj

X)
μj

holds with additional L(X)X = (−εX)μ2+···+μkλμ2
2 λμ3

3 · · · λμkk X.
In this section we examine the case ν1 = 1, which means a simple eigenvalue λ1, where

L(X) = (εX)μ2+···+μk(λ1 − λ2)
μ2(λ1 − λ3)

μ3 · · · (λ1 − λk)μk 1 on Ker(K1
X)

μ1 . If λ2λ3 · · · λk 6= 0,
then we consider a new algebraic curvature tensor defined by R′ = R − λkR1 instead of
the original R, which is a common trick. The associated reduced Jacobi operator J̃ ′

X has
the same eigenspaces as those of J̃X, but eigenvalues are shifted in such a way that λ′k = 0,
which allows L(X)X = 0.

In this way, for any nonnullX ∈ V , we have the self-adjoint matrix L(X) of rank one such
that its entries Lij are homogeneous polynomials of degree 2(μ2 + · · · + μk) in n variables
x1, . . . , xn. Any submatrix of order two in a rank one matrix is singular which gives

Lii(X)Ljj(X) = Lij(X)Lji(X)

for all 1 ≤ i, j ≤ n. However, L(X) is self-adjoint which implies

εiLij(X) = g(L(X)Ej,Ei) = g(L(X)Ei,Ej) = εjLji(X),

and consequently
εiεjLii(X)Ljj(X) = Lij(X)2. (10.1)

If we fix some monomial order (for example, the lexicographical order) then there is
a unique monic (the coefficient of the largest monomial is 1) G(X) which is the greatest
common divisor of all Lij(X). Permuting the basis we can set

εiLii(X) = σiG(X)Qi(X)Pi(X)2,

where Pi(X) and Qi(X) are some non-zero polynomials for 1 ≤ i ≤ m, with additional
Lii(X) = 0 for m < i ≤ n, while σi ∈ {−1,1}. However, such decomposition is unique up to
sign of Pi(X) if we set that Qi(X) is monic square-free. Then

σiσjG(X)2Qi(X)Qj(X)Pi(X)2Pj(X)2 = Lij(X)2

implies Qi(X) = Qj(X) = Q(X) and σi = σj = σ for 1 ≤ i, j ≤ m, and therefore we have

εiLij(X) = εjLji(X) = σijεiεjG(X)Q(X)Pi(X)Pj(X),

where σij ∈ {−1,1}. Additionally, by (10.1), Lij = 0 holds whenever m < i ≤ n or m < j ≤ n,
which can be treated as Pi(X) = 0 for m < i ≤ n and extend the indices to m = n. Since all
the matrix entries are divisible by G(X)Q(X) it must be Q(X) = 1.

Another submatrix of order two gives

L1i(X)Lij(X) = L1j(X)Lii(X),

which implies σ1iσij = σ1jσii, but σii = σi = σ yields σij = σσ1iσ1j, and therefore
εjLij(X) = σG(X)σ1iPi(X)σ1jPj(X). Since the polynomials Pi(X) are unique up to sign, we
can use σ1iPi(X) instead of Pi(X) to obtain

εjLij(X) = σG(X)Pi(X)Pj(X)

189



Chapter 10. Osserman tensors and manifolds

for all 1 ≤ i, j ≤ n. The previous equality implies

L(X)
( n∑

i=1
Pi(X)Ei

)
=

n∑
i=1

Pi(X)L(X)Ei =
n∑
i=1

Pi(X)
n∑
j=1

Lji(X)Ej

=
n∑
j=1

n∑
i=1

Pj(X)(σεjG(X)Pi(X)Pj(X))Ei

= σG(X)
n∑
j=1

εjPj(X)2
( n∑

i=1
Pi(X)Ei

)
.

Hence,
∑n

i=1 Pi(X)Ei is an eigenvector of L(X) associated to the simple eigenvalue

σG(X)
n∑
j=1

εjPj(X)2 =

n∑
j=1

Ljj(X) = TrL(X).

Moreover,
∑n

i=1 Pi(X)Ei is an eigenvector of J̃ ′
X for εX(λ1 − λk) and also an eigenvector of J̃X

corresponding to the eigenvalue εXλ1. However,

σG(X)
n∑
i=1

εiPi(X)2 = TrL(X) = (εX)μ2+···+μk(λ1 − λ2)
μ2 · · · (λ1 − λk)μk ,

which gives G(X) = (εX)s = (ε1x2
1 + · · ·+ εnx2

n)
s for some integer s ≥ 0, and consequently

σ
n∑
i=1

εiPi(X)2 = (εX)d(λ1 − λ2)
μ2 · · · (λ1 − λk)μk , (10.2)

where d = μ2 + · · ·+ μk − s.
Although we originally observed only nonnull X, Pi are homogeneous polynomials of

order d ≤ μ2 + · · · + μk, and Pi(X) exists for every X ∈ V . This allows us to construct the
map P : V → V by

P(X) = 1√
|(λ1 − λ2)μ2 · · · (λ1 − λk)μk |

n∑
i=1

Pi(X)Ei.

If X is nonnull, then P(X) is nonnull and orthogonal to X, such that

JXP(X) = εXλ1P(X), (10.3)

while the equality (10.2) yields
εP(X) = δ(εX)d, (10.4)

where δ = σ sgn((λ1 − λ2)
μ2 · · · (λ1 − λk)μk) is the fixed sign.

Let R be Jordan-Osserman. Then it is Jacobi-dual (see comments after Theorem 9.21), so
the equality (10.3) gives JP(X)X = εP(X)λ1X, and consequently by Lemma 9.17 for all α, β ∈ R
we have

JαX+βP(X)(εP(X)βX− εXαP(X)) = εαX+βP(X)λ1(εP(X)βX− εXαP(X)).
Thus, for a nonnull αX+ βP(X) we obtain P(αX+ βP(X)) ∝ εP(X)βX− εXαP(X), which means
that there exists the proportionality coefficient 0 6= KX(α, β) ∈ R such that

P(αX+ βP(X)) = KX(α, β)(αP(X)− β(εP(X)/εX)X).

For a fixed X =
∑

i xiEi we have fixed P(X) =
∑

i piEi, so for each 1 ≤ i ≤ n holds

Pi(. . . ,αxj + βpj, . . . )√
|(λ1 − λ2)μ2 · · · (λ1 − λk)μk |

= KX(α, β)(αpi − βδ(εX)d−1xi),
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from which it can be seen that KX(α, β) is continuous, as a rational function of α and β,
where α2 + β2δ(εX)d−1 6= 0, which is equivalent to the fact that αX + βP(X) is nonnull, as
well as that αP(X)− βδ(εX)d−1X is nonnull.

Since Pi(−X) = (−1)dPi(X) holds for 1 ≤ i ≤ n, we have P(−X) = (−1)dP(X) Therefore, in
addition to the obvious KX(1,0) = 1, we also have KX(−1,0) = (−1)d−1. From (10.4) we get

(KX(α, β))2 =
εP(αX+βP(X))

εαP(X)−β(εP(X)/εX)X
=

δ(α2εX + β2εP(X))d

εP(X)(α2 + β2εP(X)/εX)
=

(
α2εX + β2εP(X)

εX

)d−1

,

and therefore for an even d we always have α2 + β2δ(εX)d−1 > 0, so the domain of KX is
the connected set R2 \ {(0,0)} whose image is not a connected set because of KX(1,0) > 0,
KX(−1,0) < 0, and KX(α, β) 6= 0. Hence d is odd and P(−X) = −P(X) holds.

Additionally, we have KX(α, β) = SX(α, β)(α2 + β2δ(εX)d−1)
d−1

2 , where SX(α, β) ∈ {−1,1}.
Thus SX(α, β)(α2+β2δ(εX)d−1)

d−1
2 (αpi−βδ(εX)d−1xi) is a homogeneous polynomial by α and

β of degree d, and its coefficient by αd is fixed and it is equal to SX(α, β)pi, so choosing i such
that pi 6= 0 we obtain that SX is constant. Hence SX(α, β) = SX(1,0) = 1, which leads us to
the formula

P(αX+ βP(X)) = (α2 + β2δ(εX)d−1)
d−1

2
(
αP(X)− βδ(εX)d−1X

)
. (10.5)

Let us remark that the formula (10.5) also holds when αX + βP(X) is null (the case
δ = −1), because from the continuity of polynomial map we have P(αX + βP(X)) = 0.
In particular, the formula (10.5) for α = 0, β = 1 implies

P(P(X)) = (δ(εX)d−1)
d−1

2 (−δ(εX)d−1)X = −δ
d+1

2 (εX)
d2−1

2 X. (10.6)

Lemma 10.1. Let R be a k-root Jordan-Osserman algebraic curvature tensor on (V, g)whose
reduced Jacobi operator J̃X has a simple eigenvalue εXλ1, while μi for 2 ≤ i ≤ k are root
multiplicities of the minimal polynomial. Then there exists a homogeneous polynomial map
P : V → V of odd degree d ≤ μ2 + · · ·+ μk such that for any nonnull X ∈ V holds (10.3), (10.4),
and (10.5).

The most often case of Lemma 10.1 considers a Jacobi-diagonalisable R where we have
μi = 1 for 1 ≤ i ≤ k, while the most important case is a Riemannian R where additionally
we have εj = 1 for 1 ≤ j ≤ n, and consequently (10.4) gives δ = 1. Therefore as a corollary
we have the following lemma similar to one given by Nikolayevsky in 2003 [88, Lemma
2.1].

Lemma 10.2. Let R be a Riemannian k-root Osserman algebraic curvature tensor on (V, g)
whose reduced Jacobi operator J̃X has a simple eigenvalue εXλ1. Then there exists a homo-
geneous polynomial map P : V → V of odd degree d ≤ k− 1 such that for any nonzero X ∈ V
and all α, β ∈ R we have

J̃XP(X) = εXλ1P(X), εP(X) = (εX)d,
P(αX+ βP(X)) = (α2 + β2(εX)d−1)(d−1)/2(αP(X)− β(εX)d−1X

)
.

10.2 Riemannian Osserman tensors

Let R be an algebraic curvature tensor on a positive definite scalar product space (V, g) of
dimension n. If λ ∈ R is an eigenvalue with a constant multiplicity r of the reduced Jacobi
operators J̃X for all X ∈ Sn−1 = {X ∈ V : εX = 1} ⊂ V , then

J̃X − λ1X⊥
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is a tangent bundle homomorphism over Sn−1 with the identification TXSn−1 ∼= X⊥. Since
it has a constant rank n − r, according to Theorem 3.3, Ker(J̃X − λ1X⊥) is a subbundle of
TSn−1. Thus we have the following useful lemma.

Lemma 10.3. Let R be a Riemannian algebraic curvature tensor of dimension n. If λ ∈ R
is an eigenvalue with a constant multiplicity r of J̃X on Sn−1, then Ker(J̃X − λ1X⊥) is an r-
dimensional distribution on Sn−1.

According to Theorem 3.5, Sn−1 for ρ(n) ≤ k ≤ n − 1 − ρ(n) does not admit a k-
dimensional distribution, where ρ is the Hurwitz–Radon function given by the equation
(3.3). Hence, Lemma 10.3 reduces the possibilities for the multiplicity of eigenvalues of JX
on Sn−1.

Theorem 10.4. A Riemannian Osserman algebraic curvature tensor of odd dimension has
constant sectional curvature.

Proof. The Osserman condition implies that any eigenvalue λ of the reduced Jacobi oper-
ator J̃X for X ∈ Sn−1 has constant multiplicity r, which allows to apply Lemma 10.3. The
fact that ρ(n) = 1 holds for odd n excludes multiplicities r with 1 ≤ r ≤ n− 2, which leaves
us with r = n − 1, and therefore Ker(J̃X − λ1X⊥) = TSn−1. Hence, J̃X = λ1 holds for all
X ∈ Sn−1, so R has constant sectional curvature λ.

Consider the next simplest case of twice an odd dimension n = 4m+2. Lemma 10.3 and
the fact ρ(4m+2) = 2 left us with r ∈ {1,n−2,n−1}. There are no two eigenvalues λ and μ
with multiplicities 1, because then Ker(JX− λ1)⊕Ker(JX−μ1) defines a two-dimensional
distribution which is not possible. Thus, either we have a constant sectional curvature as
before, or two different eigenvalues with multiplicities 1 and n− 2.

Theorem 10.5. A Riemannian Osserman algebraic curvature tensor of twice an odd dimen-
sion has constant sectional curvature or it is Clifford of rank 1.

Proof. Let J̃X has exactly two eigenvalues, a simple eigenvalue εXλ and εXμ with multipli-
city n − 2. Applying Lemma 10.2 we construct a homogeneous polynomial map P : V → V
of degree d = 1 (it means that P is linear) such that J̃XP(X) = εXλP(X) holds with εP(X) = εX.
Moreover, P is a complex structure on V , since the equality (10.6) gives P2 = −1. Addi-
tionally, if we set Y = αX + βP(X) + Z for Z ∈ Span{X,P(X)}⊥ = Ker(J̃X − εXμ1), then
X ∈ Ker(J̃Z − εZμ1) = Span{Z,P(Z)}⊥, which implies X ⊥ P(Z). Therefore we have
g(P(X),Y) = βεP(X) = βεX = −g(X,P(βP(X))) = −g(X,P(Y)) and P is skew-adjoint. Since
our orthogonal skew-adjoint endomorphism P on V uniquely determines the Jacobi oper-
ators, it determines the curvature tensor. Thus, the only solution is R = μR1 + (μ− λ)/3RP,
which is Clifford.

We have already seen that thanks to Lemma 10.2 the previous theorem is very easy
to prove. However, this case can be resolved by direct calculations, as Chi originally did
in 1988 [34, Section 2]. Also interesting is the solution given by García-Río, Kupeli, and
Vázquez-Lorenzo [62, Lemma 2.1.4]. In the following example we show some calculations
based on their ideas.

Example 10.1. Let J̃X has exactly two eigenvalues, a simple eigenvalue εXλ and εXμ with
multiplicity n−2. A smooth one-dimensional distribution Ker(J̃X− λ1) gives a vector field
J : Sn−1 → TSn−1 such that X 7→ JX ∈ X⊥. Let UX = Span{X} ⊕ Ker(J̃X − εXλ1) = Span{X, JX}
and U⊥

X = Ker(J̃X − εXμ1). By Theorem 9.4 we have Y ∈ U⊥
X if and only if X ∈ U⊥

Y , while
Lemma 9.17 additionally gives Y ∈ UX if and only if X ∈ UY. According to this, we have
J(X cosθ + JX sinθ) = ±(JX cosθ − X sinθ) where the sign is determined using continuity
and values at θ = 0,

J(X cosθ + JX sinθ) = JX cosθ − X sinθ,
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10.3. Schur problems

and consequently we obtain J(−X) = −JX and J2 = −1.
We use the shortcuts c = cosθ, s = sinθ to calculate J(X cosθ + Y sinθ), where Y ∈ U⊥

X .
From Y ∈ U⊥

X = U⊥
JX we have X, JX ∈ U⊥

Y , so JY ⊥ {X, JX,Y}. For Z ∈ Span{X, JX,Y, JY}⊥,
we have Z ∈ U⊥

X ∩ U⊥
Y , hence X,Y ∈ U⊥

Z , and therefore cX + sY ∈ U⊥
Z , which finally gives

Z ∈ U⊥
cX+sY = U⊥

J(cX+sY). For every Z ∈ Span{X, JX,Y, JY}⊥ we have Z ⊥ J(cX + sY), and
therefore J(cX+ sY) ∈ Span{X, JX,Y, JY}. On the other hand, we have

JcX+sY(sX− cY) = R(sX− cY, cX+ sY)(cX+ sY) = R(X,Y)(cX+ sY)
= sJYX− cJXY = μ(sX− cY),

which additionally gives J(cX+ sY) ⊥ Span{X,Y} and yields J(cX+ sY) ∈ Span{JX, JY}.
Let us set J(cX + sY) = αJX + βJY, where α = α(θ) and β = β(θ) with α2 + β2 = 1. From

αJX + βJY ∈ UcX+sY follows cX + sY ∈ UαJX+βJY, which gives JαJX+βJY(cX + sY) = λ(cX + sY).
Hence,

α2JJX(cX+ sY) + β2JJY(cX+ sY) + 2αβJ (JX, JY)(cX+ sY) = λ(cX+ sY),
α2(cλX+ sμY) + β2(cμX+ sλY) + αβ(R(cX+ sY, JX)JY+R(cX+ sY, JY)JX) = λ(cX+ sY),
(μ− λ)(β2cX+ α2sY) + αβ(cR(X, JX)JY+ sR(Y, JX)JY+ cR(X, JY)JX+ sR(Y, JY)JX) = 0.

Since X, JX, cX+ sY ∈ U⊥
JY imply JY ∈ U⊥

X ∩U⊥
JX ∩U⊥

cX+sJX we have J (X, JX)JY = 0, that gives
R(JY,X)JX + R(JY, JX)X = 0. If we include the first Bianchi identity, we get the equality
R(X, JX)JY = 2R(X, JY)JX, and similarly R(Y, JY)JX = 2R(Y, JX)JY. Thus arises,

(μ− λ)(β2cX+ α2sY) + 3αβ(cR(X, JY)JX+ sR(Y, JX)JY) = 0.

Since R(X, JY, JX,X) = 0 = R(Y, JX, JY,Y), taking the scalar product by X and Y we obtain

(μ− λ)β2c+ 3αβsR(Y, JX, JY,X) = 0
(μ− λ)α2s+ 3αβcR(X, JY, JX,Y) = 0

and therefore
(μ− λ)β2c2 = −3αβscR(X, JY, JX,Y) = (μ− λ)α2s2.

Hence α2s2 = β2c2 holds, which gives α2 = cos2 θ and β2 = sin2 θ. Again, by continuity we
get

J(X cosθ + Y sinθ) = JX cosθ + JY sinθ,
which proves that J is linear. The extension J(tX) = tJ(X) for t ∈ Rdefines an endomorphism
J on V , and so on... 4

10.3 Schur problems

In this section we consider pseudo-Riemannian manifolds and investigate results related
to Schur type of problems, based on Theorem 6.8. We say that a pseudo-Riemannian man-
ifold (M, g) is k-stein if its curvature tensor at each point of M is k-stein. In other words,
(M, g) is k-stein if there exist smooth functions Cj ∈ F(M) such that

Tr(JX
j) = (εX)jCj(p)

holds for any p ∈ M, X ∈ TpM, and 1 ≤ j ≤ k. We want to study if the functions Cj are
necessarily constant, and such problems are called Schur-like problems (see Gilkey [54,
Section 1.13]).

The simplest case considers the function C1, where the following theorem is just The-
orem 6.12 written differently.
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Theorem 10.6. Any connected 1-stein manifold of dimension n 6= 2 has constant C1.
We say that a symmetric A ∈ T0

2(M) has the Schur property if, given A = fg for some
function f ∈ F(M), then f is constant (see Carpenter 1980 [32, Chapter 2]). Hence, according
to Theorem 10.6, the Ricci tensor has the Schur property, unless dimM = 2.

Let us define an interesting symmetric covariant tensor Ω ∈ T0
2(M) by setting in a neigh-

bourhood of some point

Ω(X,Y) =
∑

1≤i,j,k≤n
εiεjεkR(X,Ei,Ej,Ek)R(Y,Ei,Ej,Ek),

where (E1, . . . ,En) is an orthonormal local frame over that neighbourhood. If (F1, . . . ,Fn)
is some other orthonormal local frame, then the link with the old frame is Ei =

∑
tmtiFt

and Fp =
∑

tmtpEt, where
∑

tmitmtp = δip (inverse matrix) and εpmpi = g(Ei,Fp) = εimip.
Since

∑
i εimpimui =

∑
i εumpimiu = εuδpu, we have∑

i,j,k
εiεjεkR(X,Ei,Ej,Ek)R(Y,Ei,Ej,Ek)

=
∑
i,j,k

εiεjεk
∑
p,q,r

mpimqjmrkR(X,Fp,Fq,Fr)
∑
u,v,w

muimvjmwkR(Y,Fu,Fv,Fw)

=
∑

p,q,r,u,v,w
R(X,Fp,Fq,Fr)R(Y,Fu,Fv,Fw)

∑
i
εimpimui

∑
j
εjmqjmvj

∑
k
εkmrkmwk

=
∑
p,q,r

εpεqεrR(X,Fp,Fq,Fr)R(Y,Fp,Fq,Fr),

and Ω is well defined because it does not depend on the choice of an orthonormal frame.
This natural invariant is algebraically the simplest one after the scalar and Ricci

curvatures, and it is mentioned by Besse in 1978 [18, pp.164–165]. If we introduce
εR = ‖R‖2 = trg Ω,

then we have the following lemma.
Lemma 10.7. For an Einstein manifold holds ∇εR = 4 div Ω.
Proof. In an orthonormal local frame we have,

(div Ω)(Ek) =
∑

1≤i≤n
εi∇EiΩ(Ek,Ei) =

∑
1≤i,p,q,r≤n

εiεpεqεr∇Ei(RkpqrRipqr)

=
∑

1≤i,p,q,r≤n
εiεpεqεrRipqr∇iRkpqr +

∑
1≤i,p,q,r≤n

εiεpεqεrRkpqr∇iRipqr.

For an Einstein manifold Rij = εiδijC1 holds, so ∇Rij = 0. Thus (6.10) implies∑
1≤i≤n

εi∇iRipqr =
∑

1≤i≤n
εi(−∇rRipiq −∇qRipri) =

∑
1≤i,l≤n

gil∇rRipql −
∑

1≤i,l≤n
gil∇qRiprl

= ∇ErRpq −∇EqRpr = 0,
and therefore the second term vanishes,

∑
1≤p,q,r≤n εpεqεrRkpqr

∑
1≤i≤n εi∇iRipqr = 0. Then,

(div Ω)(Ek) =
∑

1≤i,p,q,r≤n
εiεpεqεrRipqr∇iRkpqr

=
1
2

∑
1≤i,p,q,r≤n

εiεpεqεrRipqr(−∇kRpiqr −∇pRikqr +∇iRkpqr)

=
1
2

∑
1≤i,p,q,r≤n

εiεpεqεrRipqr∇kRipqr =
1
4

∑
1≤i,p,q,r≤n

εiεpεqεr∇Ek(Ripqr)
2 =

1
4∇EkεR.
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According to Gray and Willmore [63], an Einstein manifold (M, g) of dimension n > 4 is
called super-Einstein if it satisfies Ω = fg for some f ∈ F(M). In this case, taking the trace
with respect to g, we have εR = fn, and therefore by (6.30),

div Ω = div fg = ∇f = 1
n∇εR.

Using Lemma 10.7, we have
1
4∇εR =

1
n∇εR,

which implies ∇εR = 0, and therefore εR is constant. Thus, we see that in an Einstein
manifold, Ω has the Schur property unless n = 4. Additionally, a super-Einstein manifold
of dimension n = 4 is defined to be an Einstein manifold with constant εR.

Let us consider a 2-stein manifold (M, g) of dimension n. In an orthonormal local frame
(E1, . . . ,En), Theorem 8.6 for 1 ≤ x 6= y ≤ n gives the equality (8.12),

2
∑

1≤i,j≤n
εiεjRixxjRiyyj +

∑
1≤i,j≤n

εiεj(Rixyj + Riyxj)
2 = 2εxεyC2.

Using the symmetry
∑

i,j εiεj(Rixyj)
2 =

∑
j,i εjεi(Riyxj)

2, it becomes∑
1≤i,j≤n

εiεj
(
RixxjRiyyj + RixyjRiyxj + (Rixyj)

2
)
= εxεyC2.

We multiply by εy and sum over the index y for all y 6= x. We add and subtract the case
y = x on the left hand side, while

∑
i,j εiεj(Rixxj)

2 = C2 holds from (8.10), so

−3εxC2 +
∑

1≤y,i,j≤n
εyεiεj

(
RixxjRiyyj + RixyjRiyxj + (Rixyj)

2
)
=

∑
1≤y≤n,y ̸=x

εxC2,

and therefore ∑
1≤y,i,j≤n

εyεiεj
(
RixxjRiyyj + RixyjRiyxj + (Rixyj)

2
)
= (n+ 2)εxC2. (10.7)

Let us discuss the terms on the left hand separately. We use the Einstein formulas (8.8) and
(8.9) for the first term,∑

1≤y,i,j≤n
εyεiεjRixxjRiyyj =

∑
1≤i ̸=j≤n

εiεjRixxj
∑

1≤y≤n
εyRiyyj +

∑
1≤i≤n

Rixxi
∑

1≤y≤n
εyRiyyi

=
∑

1≤i≤n
Rixxi · εiC1 = εxC2

1.

For the second term in (10.7) we use some symmetries and the first Bianchi identity,∑
1≤y,i,j≤n

εyεiεjRixyjRiyxj =
1
2

∑
1≤y,i,j≤n

εyεiεj(RxijyRxjiy + RxiyjRxyij)

=
1
2

∑
1≤y,i,j≤n

εyεiεj(Rxijy(−Rxiyj − Rxyji) + RxijyRxyji)

=
1
2

∑
1≤y,i,j≤n

εyεiεjRxijyRxijy =
1
2Ω(Ex,Ex).

The last term is simple, ∑
1≤y,i,j≤n

εyεiεj(Rixyj)
2 = Ω(Ex,Ex).
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After the substitution in (10.7) we have

εxC2
1 +

1
2Ω(Ex,Ex) + Ω(Ex,Ex) = (n+ 2)εxC2,

and therefore
Ω(Ex,Ex) =

2
3εx((n+ 2)C2 − C2

1).

After the polarization it yields

Ω =
2
3((n+ 2)C2 − C2

1)g,

and therefore
εR =

2
3n((n+ 2)C2 − C2

1).

Our calculations show that a 2-stein manifold of dimension n > 4 is super-Einstein, which
implies that εR is constant, and therefore C2 is constant. Additionally, in dimension n = 3,
according to Example 6.13, R has constant section curvature. However, there are problems
in the remaining dimensions because C1 may not be constant in n = 2 and εR may not be
constant in n = 4.

Some variations of the following result, mostly restricted to the Riemannian setting, one
can find in Besse [18, pp.164–165], Gilkey, Swann1, Vanhecke2 [58, Theorem 2.4], Gilkey [54,
Section 1.13, pp.75–78], García-Río, Kupeli, Vázquez-Lorenzo [62, pp.10–15].

Theorem 10.8. If (M, g) is a connected 2-stein manifold of dimension n /∈ {2,4}, then C2 is
constant.

10.4 One-root manifolds

Let R be a k-root algebraic curvature tensor on a scalar product space (V, g). Consider
the Jacobi operator JX for a nonzero vector X =

∑n
i=1 xiEi. The entries of its (real) matrix

related to some orthonormal basis (E1, . . . ,En) are homogeneous polynomial functions of
degree two in coefficients x1, . . . , xn,

(JX)ab = εag(JX(Eb),Ea) = εa
n∑

i,j=1
Rbijaxixj.

Since the k-root condition implies no crossing of eigenvalues, the multiplicities of eigen-
values do not change as X varies. According to Theorem A.28, this allows us to label the
eigenvalues so that they depends analytically on the coordinates of X(x1, . . . , xn) 6= 0.

The simplest case k = 1 is associated with one-rootmanifoldswhich is considered by
Andrejić in 2018 [9, Section 5]. Let R be an algebraic curvature tensor on (V, g) such that
the reduced Jacobi operator J̃X has a single eigenvalue εXμX for any nonnull X ∈ V . Let us
remark that in this case, the single eigenvalue is necessarily real.

In the Riemannian setting we obtain X⊥ = Ker(J̃X− εXμX 1X⊥). Therefore, for mutually
orthogonal nonnull X,Y ∈ V we have JX(Y) = εXμXY and JY(X) = εYμYX, so

εXεYμX = g(JX(Y),Y) = εXεYκ(X,Y) = g(JY(X),X) = εXεYμY,

which implies a constant sectional curvature μX = μY = κ(X,Y). The same proof remains
valid for a Jacobi-diagonalisable R (see [62, p.102]). The final touch of the Schur’s theorem
(Theorem 6.8) implies the following theorem.

1Andrew Francis Swann, Danish mathematician
2Lieven Vanhecke, Belgian mathematician

196



10.5. Two-root Osserman manifolds

Theorem 10.9. A connected one-root Jacobi-diagonalisable manifold of dimension n ≥ 3
is a space of constant sectional curvature. In particular, a connected Riemannian one-root
manifold of dimension n ≥ 3 is a space of constant sectional curvature.

Let us consider the same problem in the Lorentzian setting. In this case we can use the
fact that JT is diagonalisable for any timelike T. For a spacelike X orthogonal to timelike
T we can apply JX+tT = JX + 2tJ (X,T) + t2JT on an arbitrary A ∈ Span{X,T}⊥. Then
JX+tT(A) = εX+tTμX+tTA for εX+tT < 0, while JX(A) = αA + B, J (X,T)A = βA + C, and
JT(A) = εTμTA, where B,C ∈ A⊥. Thus, B + 2tC = 0 holds for all |t| >

√
−εX/εT which

implies B = C = 0, and hence A is an eigenvector of JX. Therefore JX is diagonalisable for
any spacelike X and like before we have a constant sectional curvature. This proves the
following theorem given by Andrejić in 2018 [9, Theorem 5.1].

Theorem 10.10. Any Lorentzian one-root algebraic curvature tensor has constant sectional
curvature. A connected Lorentzian one-root manifold of dimension n ≥ 3 is a space of con-
stant sectional curvature.

The problem of one-root algebraic curvature tensor in higher signatures are more com-
plex. For example, in Section 8.2 we have seen some globally Osserman one-root manifolds
which are not Jacobi-diagonalisable.

Additionally, let us suppose that a one-root manifold is pointwise Osserman, with the
single eigenvalue εXμ(p) ∈ R of J̃X for X ∈ TpM. Since any Osserman R is Einstein, we
have εXC1(p) = Tr(JX) = εX(n − 1)μ(p). A connected 1-stein M of dimension n 6= 2 by
Theorem 10.6 has constant C1, therefore μ is constant on M and consequently M is globally
Osserman.

Theorem 10.11. A connected one-root pointwise Osserman manifold of dimension n ≥ 3 is
globally Osserman.

10.5 Two-root Osserman manifolds

Consider the next simplest k = 2. Let (M, g) be a connected pointwise Osserman manifold
of dimension n such that at each p ∈ M for every X ∈ TpM the associated reduced Jacobi
operator J̃X has exactly two distinct eigenvalues εXλ(p) and εXμ(p) with multiplicities σ(p)
and τ(p) respectively.

According to Theorem 8.3, an Osserman algebraic curvature tensor for n ≥ 3 is n-stein.
This is why there exist smooth functions C1, . . . ,Cn ∈ F(M) such that

(εX)jCj(p) = Tr(JX
j) = (εX)j(σ(p)(λ(p))j + τ(p)(μ(p))j).

holds for all 1 ≤ j ≤ n.
We already know that C1 is constant for n 6= 2 (Theorem 10.6), and that C2 is constant for

n 6∈ {2,4} (Theorem 10.8). Hence, the condition n ≥ 5 excludes the undesirable cases and
we have constant both C1 and C2. Let us set C0 = n− 1 and look at the system of equations
for j ∈ {0,1,2}:

σ(p) + τ(p) = C0,

σ(p)λ(p) + τ(p)μ(p) = C1,

σ(p)λ(p)2 + τ(p)μ(p)2 = C2.

From the first two equations we have

σ =
C1 − C0μ
λ− μ , τ =

C1 − C0λ
μ− λ ,
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and after the substitution into the third equation it implies

C1(λ+ μ)− C0λμ = C2.

Since τ ≥ 1, we have C1 − C0λ 6= 0, so the previous equation gives

μ =
C2 − C1λ
C1 − C0λ

.

The other functions can be expressed in terms of λ in the following way

σ =
C0C2 − C2

1
C0λ2 − 2C1λ+ C2

, τ =
(C1 − C0λ)2

C0λ2 − 2C1λ+ C2
.

Hence, a concrete σ gives at most two values for λ, which are solutions of the related quad-
ratic equation. Since values for σ are integers 1 ≤ σ ≤ n−2, it follows that λ can get at most
2(n− 2) concrete values. From Cj(p) = σ(p)λ(p)j + τ(p)μ(p)j, we can see that Cj(p) for j > 2
can get at most 2(n − 2) concrete values. The function Cj(p) is smooth, so it is continuous,
and therefore it can get exactly one value. Thus Cj is constant as is the case with all other
functions (σ, τ, λ, and μ), which proves that M is globally Osserman.

The result is also valid in the case of complex eigenvalues. The existence of a complex
eigenvalue α(p) + iβ(p) of J̃X implies that its conjugate α(p) − iβ(p) is also a root of char-
acteristic polynomial with the same multiplicity (n− 1)/2. Then we have C1 = (n− 1)α(p)
and C2 = (n− 1)(α(p)2 − β(p)2), which imply that α(p) and β(p) are constant, too. Constant
α and β give constant eigenvalues and therefore we have a globally Osserman manifold.

Theorem 10.12. Any connected two-root pointwise Osserman manifold of dimension n ≥ 5
is globally Osserman.

There is a variant of Theorem 10.12 that requires constant multiplicities σ(p) and τ(p)
(see García-Río, Kupeli, Vázquez-Lorenzo [62, pp.10–16]), but we have already seen that
this requirement is not necessary since σ is an integer by definition as Andrejić showed in
2013 [7, Theorem 2.1].

10.6 Two-root Riemannian tensors

Let R be a two-root algebraic curvature tensor on a positive definite scalar product space
(V, g) of dimension n. Then, the reduced Jacobi operator J̃X for a nonzero X ∈ V has exactly
two eigenvalues εXμX and εXνX with constant multiplicities, so the characteristic polyno-
mial of Jacobi operator is

ωX(λ) = det(λ1−JX) = λ(λ− εXμX)p(λ− εXνX)q

for fixed integers p ≥ q ≥ 1 with p+ q = n− 1.
Let us focus on the unit sphere S = Sn−1 = {X ∈ V : εX = 1} ⊂ V . Consider J̃X−μX 1X⊥ as

a smooth tangent bundle homomorphism over S with the identification TXS ∼= X⊥. Since it
has a constant rank q, Ker(J̃X− μX 1X⊥) is a subbundle of TS (see Theorem 3.3), that is, a p-
dimensional distribution on S . Similarly, Ker(J̃X − νX 1X⊥) is a q-dimensional distribution
on S . By Theorem 3.5, S for ρ(n) ≤ k ≤ n − 1 − ρ(n) does not admit a k-dimensional
distribution, which leaves us with

q < ρ(n), (10.8)
where ρ is the Hurwitz–Radon function from (3.3).

The inequality (10.8) significantly reduces the possibilities for the multiplicities p and
q. For example, it immediately removes an odd n because of ρ(n) = 1, which means that n
must be even, noticed by Andrejić in 2023 [10, Theorem 3].
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Theorem 10.13. There is no odd-dimensional Riemannian two-root algebraic curvature
tensor. In particular, there is no Riemannian two-root manifold of odd dimension.

Without loss of generality we can suppose μX < νX, since otherwise we consider −R as
a new algebraic curvature tensor. For any nonzero X ∈ V we define the eigenspaces,

M(X) = Ker(J̃X − εXμX 1X⊥), N (X) = Ker(J̃X − εXνX 1X⊥),

where dimM(X) = p and dimN (X) = q, which allows an orthogonal decomposition

X⊥ = M(X) k N (X).

For nonzero X,Y ∈ V that satisfy Y ∈ M(X), we can decompose X = M + N such that
M ∈ M(Y) and N ∈ N (Y). Because of

g(JX(Y),Y) = g(εXμXY,Y) = εXεYμX,
g(JY(X),X) = g(εYμYM+ εYνYN,M+N) = εYεMμY + εYεNνY,

we have εXμX = εMμY + (εX − εM)νY, and consequently

εM = εX
νY − μX
νY − μY

, (10.9)

which gives
0 ≤ νY − μX

νY − μY
≤ 1,

and hence μY ≤ μX ≤ νY. In a similar fashion, Y ∈ N (X) implies

εN = εX
μY − νX
μY − νY

and 0 ≤ νX − μY
νY − μY

≤ 1,

and therefore μY ≤ νX ≤ νY. Hence

0 6= Y ∈ M(X) =⇒ μY ≤ μX ≤ νY,
0 6= Y ∈ N (X) =⇒ μY ≤ νX ≤ νY.

(10.10)

The restrictions μ↾S : S → R and ν↾S : S → R are continuous functions on a compact, so
their ranges are closed intervals. Because of JtX/εtX = JX/εX we obtain μ(tX) = μ(X) for all
X 6= 0 and t ∈ R. Hence, for a nonzeroX ∈ V we reach μX ∈ [μmin, μmax] and νX ∈ [νmin, νmax],
which allows us to define

U = μ−1(μmin) ∪ {0}, W = ν−1(νmax) ∪ {0}.

If 0 6= Y ∈ M(X) holds for 0 6= X ∈ U , then (10.10) gives Y ∈ U , while (10.9) implies
εM = εX, that is, X = M ∈ M(Y). Similarly it can be done for Y ∈ N (X) and X ∈ W . In this
way we get some kind of the Rakić duality principle when the eigenvalues are extremal,

0 6= Y ∈ M(X) ∧ 0 6= X ∈ U ⇐⇒ 0 6= X ∈ M(Y) ∧ 0 6= Y ∈ U ,
0 6= Y ∈ N (X) ∧ 0 6= X ∈ W ⇐⇒ 0 6= X ∈ N (Y) ∧ 0 6= Y ∈ W .

(10.11)

If we have both JX(Y) = εXλY and JY(X) = εYλX for nonzero mutually orthogonal vec-
tors X,Y ∈ V and λ ∈ R, then for all α, β ∈ R, by Lemma 9.17 we have

JαX+βY(εYβX− εXαY) = εαX+βYλ(εYβX− εXαY). (10.12)
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According to (10.11), Y ∈ M(X) with X ∈ U implies X ∈ M(Y) with Y ∈ U , so (10.12) yields
εYβX− εXαY ∈ M(αX+βY) with αX+βY ∈ U . Hence, 0 6= U ∈ U gives Span{U}kM(U) ⊆ U ,
or consequently U⊥ ⊆ N (U), as well as its analogue for W ,

0 6= U ∈ U =⇒ Span{U} k M(U) ⊆ U ,
0 6= W ∈ W =⇒ Span{W} k N (W) ⊆ W .

(10.13)

Since dim(Span{U} k M(U)) = p + 1, dim(Span{W} k N (W)) = q + 1, while we have
dimV = p+q+1 > (p+1)+(q+1), the Grassmann formula gives a non-trivial intersection,

0 6= (Span{U} k M(U)) ∩ (Span{W} k N (W)) ⊆ U ∩W . (10.14)

The formula (10.14) allows to take 0 6= A ∈ U ∩ W , as an initial step, and exploit its nice
properties μA = μmin and νA = νmax.

Due to Theorem 10.13, nmust be even, so we consider the next simplest case of twice an
odd dimension n. In that case ρ(n) = 2, so the inequality (10.8) gives q = 1, which means a
simple root.

Let us assume that one eigenvalue is simple, that is, q = 1. If we suppose p > n/2 (which
excludes only n = 4), then according to the Grassmann formula any two M spaces have
a non-trivial intersection. Thus, for nonzero X,Y ∈ U there exists 0 6= S ∈ M(X) ∩ M(Y),
so (10.11) yields X,Y ∈ M(S) with S ∈ U , and therefore by (10.13), Span{X,Y} ⊂ U , which
proves that U is a subspace of V .

We want to show that μ is constant, or equivalently U = V . Assuming the opposite,
U 6= V , since U is a subspace, applying (10.13) we have dimU = n− 1, and therefore

0 6= X ∈ U =⇒ U = Span{X} k M(X) ∧ U⊥ = N (X). (10.15)

Let us start with 0 6= A ∈ U ∩ W from (10.14). For 0 6= Z ∈ N (A) = U⊥, by (10.11) we
have A ∈ N (Z) with Z ∈ W , so M(A) = M(Z) = Span{A,Z}⊥. For 0 6= B ∈ M(A) = M(Z) we
have B ∈ U , so by (10.15), Z ∈ U⊥ = N (B). Then g(JB(Z),Z) = g(JZ(B),B) gives νB = μZ = c.
However, if B and Z are units, then by (10.12) holds

JZ cos t+B sin t(B cos t− Z sin t) = c(B cos t− Z sin t),

which implies μ(t) = μ(Z cos t + B sin t) = c or ν(t) = ν(Z cos t + B sin t) = c, for any t ∈ R.
The functions μ, ν : R → R are continuous with μ < ν and μ(0) = ν(π/2) = c, and hence
R = μ−1(c) t ν−1(c) is a disjoint union of nonempty closed sets, which is not possible.

It proves that μX = μ must be constant for q = 1, unless n = 4. This allows us
to introduce a new algebraic curvature tensor R′ = R − μR1, where R1 ∈ T0

4(V) is the
tensor of constant sectional curvature one given by (6.14). This trick just shifts the eigen-
values, which means the characteristic polynomial of the new Jacobi operator becomes
det(λ1−J ′

X) = λn−1(λ− εX(νX − μ)).
In order not to complicate things too much, we shall keep the previous notation and

assume that JX has a simple eigenvalue εXνX > 0, while other eigenvalues are all zero.
This essentially means that the original reduced Jacobi operator J̃X has a simple eigenvalue
εX(νX + μ), while the other root is εXμ with multiplicity n− 2.

A simple eigenvalue motivates us to modify the ideas from Section 10.1. Let us choose
an arbitrary orthonormal basis (E1, . . . ,En) in V . Then for any nonzero X =

∑n
i=1 xiEi ∈ V ,

the Jacobi operator JX is of rank one such that its matrix entries Jij(X) are quadratic forms
in n variables x1, . . . , xn. Any submatrix of order two in a rank one symmetric matrix is
singular which gives

Jii(X)Jjj(X) = Jij(X)2 (10.16)
for all 1 ≤ i, j ≤ n. If we fix some monomial order then there is a unique monic G(X) which
is the greatest common divisor of all Jij(X). Permuting the basis we can set

Jii(X) = σiG(X)Qi(X)Pi(X)2,
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where Pi(X) and Qi(X) are some nonzero polynomials for 1 ≤ i ≤ m, with additional
Jii(X) = 0 for m < i ≤ n, while σi ∈ {−1,1}. However, such decomposition is unique
up to sign of Pi(X) if we set that Qi(X) is monic square-free. Then

σiσjG(X)2Qi(X)Qj(X)Pi(X)2Pj(X)2 = Jij(X)2

implies Qi(X) = Qj(X) = Q(X) = 1 and σi = σj = σ for 1 ≤ i ≤ m, and therefore we have
Jij(X) = σijG(X)Pi(X)Pj(X), where σij ∈ {−1,1}. Additionally, by (10.16), Jij(X) = 0 holds
whenever m < i ≤ n or m < j ≤ n, which can be treated as Pi(X) = 0 for m < i ≤ n and
extend the indices to m = n.

Another submatrix of order two gives J1i(X)Jij(X) = J1j(X)Jii(X), so σ1iσij = σ1jσii.
Because of σii = σi = σ we have σij = σσ1iσ1j, and therefore Jij(X) = σG(X)σ1iPi(X)σ1jPj(X).
Since the polynomials Pi(X) are unique up to sign, we can use σ1iPi(X) instead of Pi(X) to
obtain Jij(X) = σG(X)Pi(X)Pj(X) for all 1 ≤ i ≤ n.

Moreover, comparing the degrees in a polynomialJij(X)we conclude that all Pi have the
same degree, zero or one. The degree zero yields constant polynomials Pi, so JX = G(X)M,
for some constant matrix M. In that case, if JX(Y) = εXνXY, then JX(Z) = 0 for all Z ∈ Y⊥,
which gives MZ = 0. However, then JY(Z) = G(Y)MZ = 0, which gives the contradiction
JY = 0. Therefore, all Pi have degree one, while G(X) has degree zero and consequently
G(X) = 1.

Summarizing the previous results, the equality

Jij(X) = σPi(X)Pj(X)

holds for all 1 ≤ i, j ≤ n, where Pi are linear homogeneous polynomials. If we set

P(X) =
n∑
i=1

Pi(X)Ei,

then it implies

JX(P(X)) =
n∑
i=1

Pi(X)
n∑
j=1

Jji(X)Ej = σ
n∑
i=1

Pi(X)2(P(X)).

Thus, P(X) is an eigenvector of J̃X associated to the simple eigenvalue

σεP(X) = σ
n∑
i=1

Pi(X)2 = TrJX = εXνX,

but since we set νX > 0, it must be σ = 1. In this way we construct a linear map P : V → V
such that N (X) = Span{P(X)} and

νX =
εP(X)
εX

with νP(X) ≥ νX (because of (10.10)) for any nonzero X ∈ V .
Let us start with 0 6= A ∈ W , when P(A) ∈ N (A), because of (10.11), implies A ∈ N (P(A))

with P(A) ∈ W . Hence, by (10.12),

JαA+βP(A)(εP(A)βA− εAαP(A)) = εαA+βP(A)νmax(εP(A)βA− εAαP(A)),

which gives ν(αA+ βP(A)) = νmax and P(αA+ βP(A)) ∝ εP(A)βA− εAαP(A). Using the lin-
earity of P and the fact that P(A) ⊥ Span{A,P2(A)}, we get the coefficient of proportionality
equal to −1/εA, and consequently P2(A) = −νAA with Span{A,P(A)} ⊆ W .

We can continue in a similar manner, using A1 = A and ν1 = νmax as the induc-
tion basis. Let us suppose that we already have mutually orthogonal nonzero vectors
A1,P(A1), . . . ,Ak,P(Ak) such that

Span{Ai,P(Ai)} \ {0} ⊆ ν−1(νi) and P2(Ai) = −νiAi (10.17)
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hold for all 1 ≤ i ≤ k with 0 < νk ≤ · · · ≤ ν1. We define

νk+1 = max{νX : X ∈ S ∩M(A1) · · · ∩M(Ak)} ≤ νk

and take arbitrarily 0 6= Ak+1 ∈ ν−1(νk+1). It is fruitful to notice that, since μ is constant,
the duality (10.11) always provides Y ∈ M(X) ⇐⇒ X ∈ M(Y). As a consequence of this,
Ak+1 ∈ M(Ai) = M(P(Ai)) = Span{Ai,P(Ai)}⊥ implies Ai,P(Ai) ∈ M(Ak+1) ⊥ N (Ak+1), and
therefore P(Ak+1) ∈ Span{Ai,P(Ai)}⊥ = M(Ai). Thus we have νP(Ak+1) ≤ νk+1, which by
the formula (10.10) yields νP(Ak+1) = νk+1, while (10.12) gives Span{Ak+1,P(Ak+1)} \ {0} ⊆
ν−1(νk+1) and P2(Ak+1) = −νk+1Ak+1.

This procedure uses constants 0 < νn/2 ≤ · · · ≤ ν1 with the properties (10.17) to exhaust
the space

V =
n/2
ë

i=1
Span{Ai,P(Ai)}. (10.18)

Having that on mind, it is easy to conclude that P is skew-adjoint. Namely, if we intro-
duce X =

∑n/2
i=1(xiAi + xiP(Ai)) and Y =

∑n/2
i=1(yiAi + yiP(Ai)), then

g(P(X),Y) =
n/2∑
i=1

g(xiP(Ai)− xiνiAi, yiAi + yiP(Ai)) =

n/2∑
i=1

νiεAi(xiyi − xiyi) = −g(P(Y),X).

The key idea is that any skew-adjoint endomorphism P on V , according to Example 8.3
generates an algebraic curvature tensor RP ∈ T0

4(V), where we have

J P
X =

{
−3εXνX 1 on Span{P(X)}
0 on Span{P(X)}⊥

.

Therefore, taking into account the shifting of eigenvalues for εXμ, and the possible choice
of νX < μX from the beginning of discussion, the algebraic curvature tensor must be of
form

R = ±
(
−1

3R
P + μR1

)
. (10.19)

This result is better expressed in an orthonormal basis (E1,F1, . . . ,En/2,Fn/2) obtained
from (10.18) by rescaling Ei = Ai/

√εAi and Fi = P(Ai)/
√εP(Ai). Conversely, it is easy to see

that for any orthonormal basis (E1,F1, . . . ,En/2,Fn/2) in V , constants 0 < νn/2 ≤ · · · ≤ ν1
define a skew-adjoint endomorphism P on V by

P(Ei) =
√νiFi, P(Fi) = −

√νiEi, (10.20)

for all 1 ≤ i ≤ n/2. Hence we obtain the following theorem given by Andrejić in 2023 [10,
Theorem 4].

Theorem 10.14. Any Riemannian two-root algebraic curvature tensor of dimension n > 4
with a simple root is of the form (10.19), for μ ∈ R and some skew-adjoint endomorphism P
defined by (10.20) using positive constants ν1, . . . , νn/2 ∈ R.

10.7 Two-root Riemannian manifolds

Theorem 10.14 and the formula (10.19) characterize all possible two-root algebraic
curvature tensors of twice an odd dimension. The next step is then based on the use of the
second Bianchi identity with an idea to decide which of these algebraic curvature tensors
may be realized as curvature tensors of a Riemannian manifold.
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We shall study the Riemannian manifold M locally in a neighbourhood U ⊂ M of some
point. There we can set a local orthonormal frame and smoothly extend the elements of
our construction. The smoothness of the curvature tensor R ∈ T0

4(U) gives the smoothness
of μ ∈ F(U), while ν is smooth on the tangent bundle TU minus the zero section. Then,
the way we constructed P brings the smoothness of Pi(X) ∈ F(U), which yields a skew-
adjoint operator P ∈ T1

1(U). Finally, ν ∈ F(TU \ (M × {0})) implies ν1, . . . , νn/2 ∈ F(U), and
we can extend our orthonormal bases from the construction to a local orthonormal frame
(E1,F1, . . . ,En/2,Fn/2) in X(U) that fits the formula (10.20). It is convenient to use this frame
in the following proof.

Such extensions allow us to apply covariant derivatives to our tensors. It is important
to notice that ∇VP ∈ T1

1(U) is also skew-adjoint, since PX ⊥ X implies

0 = ∇V(g(PX,X)) = g(∇V(PX),X) + g(PX,∇VX) = g(∇V(PX),X)− g(P∇VX,X) = g((∇VP)X,X),

which after the polarization gives

g((∇VP)X,Y) = −g((∇VP)Y,X),

for all X,Y,V ∈ X(U).
Since ∇R1 = 0, the covariant derivative along a vector field V ∈ X(U) of our curvature

tensor R from the formula (10.19) can be expressed by

∇VR = ∓1
3∇VRP ± (∇Vμ)R1.

For all X,Y,Z,W,V ∈ X(U) we can calculate

(∇VRP)(X,Y,Z,W) = g
(
g(PX,Z)(∇VP)Y− g(PY,Z)(∇VP)X+ 2g(PX,Y)(∇VP)Z,W

)
+ g
(
g((∇VP)X,Z)PY− g((∇VP)Y,Z)PX+ 2g((∇VP)X,Y)PZ,W

)
,

(10.21)

and
(∇VRP)(X,Y,Y,X) + (∇XRP)(Y,V,Y,X) + (∇YRP)(V,X,Y,X)
= 3g(PX,Y)

(
2g((∇VP)Y,X)− g((∇XP)Y,V) + g((∇YP)X,V)

)
− 3g

(
g((∇XP)X,Y)PY+ g((∇YP)Y,X)PX,V

)
.

Thus, applying the second Bianchi identity yields

0 =(∇VR)(X,Y,Y,X) + (∇XR)(Y,V,Y,X) + (∇YR)(V,X,Y,X)
=∓ g(PX,Y)

(
2g((∇VP)Y,X)− g((∇XP)Y,V) + g((∇YP)X,V)

)
± g
(
g((∇XP)X,Y)PY+ g((∇YP)Y,X)PX,V

)
± (∇Vμ)(εXεY − g(X,Y)2)± (∇Xμ)(g(X,Y)g(Y,V)− εYg(X,V))
± (∇Yμ)(g(X,Y)g(X,V)− εXg(Y,V)).

(10.22)

Assuming Y ⊥ PX in (10.22) we get

0 = g
(
g((∇XP)X,Y)PY+ g((∇YP)Y,X)PX,V

)
+ (∇Xμ)g(g(X,Y)Y− εYX,V) + (∇Yμ)g(g(X,Y)X− εXY,V) + (∇Vμ)(εXεY − g(X,Y)2),

and thus
(εXεY − g(X,Y)2)(∇μ)♯ =− g((∇XP)X,Y)PY− g((∇YP)Y,X)PX

+ (X(μ)εY − Y(μ)g(X,Y))X+ (Y(μ)εX − X(μ)g(X,Y))Y.

Therefore, for nowhere vanishing X,Y ∈ X(U) such that Y ∈ Span{X,PX}⊥ we have that
(∇μ)♯ ∈ Span{X,PX,Y,PY} holds. However, using our frame with (10.20) we get

(∇μ)♯ ∈
⋂

1≤i<j≤n/2
Span{Ei,Fi,Ej,Fj} = 0,
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which gives ∇μ = 0. Therefore μ must be constant, while the formula (10.22) yields

g(PX,Y)
(
2g((∇VP)Y,X)− g((∇XP)Y,V) + g((∇YP)X,V)

)
− g
(
g((∇XP)X,Y)PY+ g((∇YP)Y,X)PX,V

)
= 0.

(10.23)

Again, Y ⊥ PX gives g((∇XP)X,Y)PY + g((∇YP)Y,X)PX = 0, while the additional Y ⊥ X
provides linear independence for PX and PY (since X and Y are linearly independent as
orthogonal), and therefore g((∇XP)X,Y) = 0 for Y ∈ Span{X,PX}⊥. However, we know that
g((∇XP)X,X) = 0 holds, which implies (∇XP)X ∝ PX.

Let us define the map λX : U → R for any X ∈ X(U) by λX = g((∇XP)X,PX)/g(PX,PX)
on (εPX)−1(R+) = (εX)−1(R+) ⊆ U and λX = 0 on (εX)−1({0}), where the previously proven
proportionality yields

(∇XP)X = λXPX. (10.24)

It is easy to check that λfX = fλX holds for f ∈ F(U). On the other hand, from (10.24) for any
X,Y ∈ X(U) we have

(∇XP)Y+ (∇YP)X = (λX+Y − λX)PX+ (λX+Y − λY)PY,

which after taking the scalar product by X gives

(λX+Y − λY)g(PY,X) = g((∇XP)Y,X) = −g((∇XP)X,Y) = −λXg(PX,Y),

and therefore (λX+Y − λY − λX)g(PX,Y) = 0. Hence, the additivity

λX+Y = λX + λY

holds whenever g(Y,PX) is nowhere zero. For any p ∈ U, the condition Yp ⊥ PXp can be
excluded by continuity of λ(p) : TpU → R given by λ(p)(Xp) = λX(p). Thus, the additivity
holds for all X,Y ∈ X(U), which means that λ is F(U)-linear. Consequently, since λE ∈ F(U)
for a unit E ∈ X(U), we have λX ∈ F(U) for any X ∈ X(U), and finally λ ∈ T0

1(U) = X∗(U).
With this in mind, the equality (10.23) becomes

g(PX,Y)
(

2g((∇VP)Y,X)− g
(
(∇XP)Y− (∇YP)X+ λXPY− λYPX,V

))
= 0.

Hence,
2g((∇VP)Y,X) = g

(
(∇XP)Y− (∇YP)X+ λXPY− λYPX,V

)
(10.25)

holds in the case that g(PX,Y) is nowhere zero. However, since the right hand side is lin-
ear in Y and there is a frame consisting of vector fields that are not orthogonal to PX, the
equality (10.25) holds for all X,Y,V ∈ X(U). Applying (10.25) twice, we have

4g((∇VP)Y,X) = g
(
(∇VP)Y− (∇YP)V+ λVPY− λYPV,X

)
+ 2g

(
− (∇YP)X+ λXPY− λYPX,V

)
,

and therefore

2λXg(PY,V) = g
(
3(∇VP)Y− (∇YP)V− λVPY− λYPV,X

)
,

which implies
2g(PY,X)λ♯ = 3(∇XP)Y− (∇YP)X− λXPY− λYPX.

On the other hand, the definition of λ ∈ X∗(U) gives (∇XP)Y + (∇YP)X = λYPX + λXPY,
and therefore we obtain g(X,PY)λ♯ = (∇XP)Y− (∇YP)X, which can be written as

2(∇XP)Y = g(X,PY)λ♯ + λYPX+ λXPY. (10.26)
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Now that we know ∇P, it remains to calculate ∇2P and use the Ricci identity for the
tensor field P ∈ T1

1(U). From (10.26) we have

2(∇X∇YP)Z =2∇X((∇YP)Z)− 2(∇YP)(∇XZ)
=∇X(g(Y,PZ)λ♯ + λZPY+ λYPZ)− (g(Y,P(∇XZ))λ♯ + λ∇XZPY+ λYP(∇XZ))
=(g(∇XY,PZ) + g(Y,∇XPZ))λ♯ + g(Y,PZ)∇Xλ♯

+ (g(∇Xλ♯,Z) + g(λ♯,∇XZ))PY+ λZ∇XPY
+ (g(∇Xλ♯,Y) + g(λ♯,∇XY))PZ+ λY∇XPZ
− g(Y,P(∇XZ))λ♯ − λ∇XZPY− λYP(∇XZ)

=(g(∇XY,PZ) + g(Y, (∇XP)Z))λ♯ + g(∇Xλ♯,Z)PY+ (g(∇Xλ♯,Y) + g(λ♯,∇XY))PZ
+ g(Y,PZ)∇Xλ♯ + λZ∇XPY+ λY(∇XP)Z,

and therefore

2(∇2
X,YP−∇2

Y,XP)Z = 2(∇X∇YP−∇Y∇XP−∇∇XY−∇YXP)Z
=(g(∇XY,PZ) + g(Y, (∇XP)Z))λ♯ + g(∇Xλ♯,Z)PY+ (g(∇Xλ♯,Y) + g(λ♯,∇XY))PZ
+ g(Y,PZ)∇Xλ♯ + λZ∇XPY+ λY(∇XP)Z
− (g(∇YX,PZ) + g(X, (∇YP)Z))λ♯ − g(∇Yλ♯,Z)PX− (g(∇Yλ♯,X) + g(λ♯,∇YX))PZ
− g(X,PZ)∇Yλ♯ − λZ∇YPX− λX(∇YP)Z
− g(∇XY−∇YX,PZ)λ♯ − λZP(∇XY−∇YX)− λ∇XY−∇YXPZ,

=(g(Y, (∇XP)Z)− g(X, (∇YP)Z))λ♯ − g(∇Yλ♯,Z)PX+ g(∇Xλ♯,Z)PY
+ (g(∇Xλ♯,Y)− g(∇Yλ♯,X))PZ+ g(Y,PZ)∇Xλ♯ − g(X,PZ)∇Yλ♯

+ λZ(∇XP)Y− λZ(∇YP)X+ λY(∇XP)Z− λX(∇YP)Z.

Applying (10.26) again we obtain

2(∇2
X,YP−∇2

Y,XP)Z
=λZg(Y,PX)λ♯ − g(∇Yλ♯,Z)PX+ g(∇Xλ♯,Z)PY

+ (g(∇Xλ♯,Y)− g(∇Yλ♯,X))PZ+ g(Y,PZ)∇Xλ♯ − g(X,PZ)∇Yλ♯

+ λZg(X,PY)λ♯ +
1
2(λYg(X,PZ)− λXg(Y,PZ))λ♯ +

1
2λYλZPX− 1

2λXλZPY

=
1
2(λYg(X,PZ)− λXg(Y,PZ))λ♯ + (

1
2λYλZ − g(∇Yλ♯,Z))PX− (

1
2λXλZ − g(∇Xλ♯,Z))PY

+ (g(∇Xλ♯,Y)− g(∇Yλ♯,X))PZ+ g(Y,PZ)∇Xλ♯ − g(X,PZ)∇Yλ♯.

We introduce the operator Q ∈ T1
1(U) defined by QX = 1

2λXλ
♯ − ∇Xλ♯ to simplify the

notation, so the previous equality becomes

2(∇2
X,YP−∇2

Y,XP)Z =g(X,PZ)QY− g(Y,PZ)QX
+ g(Z,QY)PX− g(Z,QX)PY+ (g(QY,X)− g(QX,Y))PZ.

(10.27)

On the other hand, for the curvature operator R we have ±3R = −RP + 3μR1 from
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(10.19), and therefore

±3(R(X,Y)PZ− P(R(X,Y)Z))
=−RP(X,Y)PZ+ 3μR1(X,Y)PZ+ P(RP(X,Y)Z)− 3μP(R1(X,Y)Z)
=− g(PX,PZ)PY+ g(PY,PZ)PX− 2g(PX,Y)P2Z+ 3μ(g(Y,PZ)X− g(X,PZ)Y)

+ g(PX,Z)P2Y− g(PY,Z)P2X+ 2g(PX,Y)P2Z− 3μ(g(Y,Z)PX− g(X,Z)PY)
=− g(PX,PZ)PY+ g(PY,PZ)PX+ 3μg(Y,PZ)X− 3μg(X,PZ)Y

+ g(PX,Z)P2Y− g(PY,Z)P2X− 3μg(Y,Z)PX+ 3μg(X,Z)PY.

We introduce the self-adjoint operator S ∈ T1
1(U) defined by SX = 3μX+P2X, so the previous

equality becomes

±3(R(X,Y)PZ− P(R(X,Y)Z)) = g(PX,Z)SY− g(PY,Z)SX+ g(SX,Z)PY− g(SY,Z)PX.

The Ricci identity (6.36), ((∇X∇Y − ∇Y∇X − ∇[X,Y])P)Z = R(X,Y)PZ − P(R(X,Y)Z), holds for
all X,Y,Z ∈ X(U), which using (10.27) yields

g(X,PZ)QY− g(Y,PZ)QX+ g(Z,QY)PX− g(Z,QX)PY+ (g(QY,X)− g(QX,Y))PZ

=± 2
3
(
g(PX,Z)SY− g(PY,Z)SX+ g(SX,Z)PY− g(SY,Z)PX

)
.

It is convenient to introduce another operator K = Q± 2
3S ∈ T1

1(U), that is

KX =
1
2λXλ

♯ −∇Xλ♯ ±
2
3(3μX+ P2X),

for X ∈ X(U), so the previous equality becomes

g(X,PZ)KY− g(Y,PZ)KX+ g(Z,KY)PX− g(Z,KX)PY+ (g(KY,X)− g(KX,Y))PZ = 0.

The special case Z = Y implies

g(X,PY)KY+ g(Y,KY)PX+ (g(KY,X)− 2g(KX,Y))PY = 0, (10.28)

which holds for all X,Y ∈ X(U). For an arbitrary nowhere vanishing Y ∈ X(U) we can take
a nowhere vanishing X ∈ Span{Y,PY}⊥. In this case X ⊥ PY gives

g(Y,KY)PX+ (g(KY,X)− 2g(KX,Y))PY = 0,

but since X and Y are linearly independent as mutually orthogonal, PX and PY are linearly
independent, which implies g(Y,KY) = 0.

Hence, KY ⊥ Y holds for any Y ∈ X(U), so the polarization gives g(KX,Y) + g(KY,X) = 0,
and proves that K is also skew-adjoint. With this in mind, the equality (10.28) becomes

g(X,PY)KY+ 3g(KY,X)PY = 0,

and holds for all X,Y ∈ X(U). Substituting X = PY for a nowhere vanishing Y ∈ X(U),
we obtain KY ∝ PY, while taking the inner product by PY we get 4εPYg(KY,PY) = 0, and
therefore K = 0. Thus arises the important formula

∇Xλ♯ =
1
2λXλ

♯ ± 2
3(3μX+ P2X). (10.29)

For any X,Z ∈ X(U), we use (10.26) to calculate

∇X(εPZ) = ∇Xg(PZ,PZ) = 2g(∇X(PZ),PZ) = 2g((∇XP)Z+ P∇XZ,PZ)
= g(X,PZ)λPZ + g(PX,PZ)λZ + g(PZ,PZ)λX − 2g(∇XZ,P2Z).
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On the other hand, ∇X(εPZ) = ∇X(νZεZ) = νZ∇XεZ + εZ∇XνZ, which gives

νZ∇XεZ + εZ∇XνZ = g(X,PZ)λPZ − g(X,P2Z)λZ + εPZλX − 2g(∇XZ,P2Z).

Consider the eigenspaces of P2, defined by

Pj = Ker(P2 + νj 1) =
ë

νi=νj
Span{Ei,Fi}.

If Z ∈ Pj holds for some 1 ≤ j ≤ n/2, then −2g(∇XZ,P2Z) = 2νjg(∇XZ,Z) = νj∇XεZ, which
implies

εZ∇Xνj = g(X,PZ)λPZ + νjg(X,Z)λZ + νjεZλX.

Hence, we obtain

d(ln νj)(X) =
∇Xνj
νj

=

{
2λX for X ∈ Span{Z,PZ}
λX for X ∈ Span{Z,PZ}⊥

, (10.30)

whenever Z ∈ Pj, and therefore

λ =
2

n+ 2

n/2∑
i=1

d(ln νi) =
2

n+ 2d(ln(ν1ν2 · · · νn/2)). (10.31)

The equation (10.31) shows that λ cannot be any covector field, but at least one that
is the differential of a smooth function. Moreover, using (10.29) we have the necessary
condition,

∇X grad(ln(ν1ν2 · · · νn/2)) =
1
2λX grad(ln(ν1ν2 · · · νn/2))±

n+ 2
3 (3μX+ P2X),

that holds for any X ∈ X(U). This finally proves the following theorem given by Andrejić
in 2023 [10, Theorem 5].

Theorem 10.15. A two-root Riemannian manifold of dimension n ≡ 2 (mod 4) locally has
the curvature tensor of the form (10.19), for a constant μ and some skew-adjoint linear oper-
ator P defined by (10.20) using positive smooth functions ν1, . . . , νn/2. In addition, the equa-
tions (10.26), (10.29), (10.30), and (10.31) hold.

The most natural case has λ = 0, where the equation (10.26) implies ∇P = 0, so (10.21)
gives ∇RP = 0, and consequently ∇R = 0, which means that M is locally symmetric.
Moreover, the equation (10.29) for λ = 0 implies P2 = −3μ1, which implies ν = 3μ, and
consequently M is globally Osserman, where the reduced Jacobi operator J̃X has a simple
eigenvalue 4εXμ, while the other eigenvalue (with multiplicity n− 2) is four times smaller.
Thus, a connected two-root Riemannian manifold of dimension n ≥ 3 with n ≡ 2 (mod 4)
that has λ = 0 is globally Osserman, and hence is two-points homogeneous.

Let us remark, that if ∇νj = 0 holds for some 1 ≤ j ≤ n/2, then λ = 0, and the previous
conclusion holds. The question whether there are two-root Riemannian manifolds of twice
an odd dimension that are not Osserman remains open and requires a construction of
concrete manifolds with λ 6= 0. Let us remark that the first attempt could be λ♯ = Ek for
some 1 ≤ k ≤ n/2, where (10.30) yields d(ln νk) = 2λ = 2d(ln νi) for any i 6= k, and therefore
there exist constants Ci such that νk = Ciν2

i .
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10.8 Proportionality principle

LetRbe a k-root Jacobi-diagonalisable algebraic curvature tensor on a scalar product space
(V, g) such that

ω̃X(λ) = det(λ1−J̃X) = (λ− εXλ1(X))ν1 . . . (λ− εXλk(X))νk

holds for all nonnull X ∈ V and some scalars ν1, . . . , νk ∈ N and λ1(X), . . . , λk(X) ∈ R, which
are ordered by λ1(X) < · · · < λk(X). In other words, J̃X has eigenvalues εXλ1(X), . . . , εXλk(X)
with multiplicities ν1, . . . , νk, respectively. Let us define νi-dimensional (generalised) ei-
genspaces

Vi(X) = Ker(J̃X − εXλi(X)1)
of J̃X for any nonnull X ∈ V and 1 ≤ i ≤ k. In this way, for any nonnull X ∈ V one has a
direct orthogonal decomposition

V =
k

ë

i=0
Vi(X), (10.32)

where V0(X) = Span{X}.
We say that a k-root Jacobi-diagonalisable R is Jacobi-proportional if for any pair of

nonnull vectors X,Y ∈ V we have the proportionality

εX(εY0 , εY1 , . . . , εYk) = εY(εX0 , εX1 , . . . , εXk),

where X =
∑k

i=0 Xi and Y =
∑k

j=0 Yj are decomposed such that Xi ∈ Vi(Y) and Yj ∈ Vj(X).
In the Riemannian setting, the important special case, where Y ∈ Vi(X) for some 1 ≤

i ≤ k implies X ∈ Vi(Y), is related to the Jacobi-dual implication (9.3). Hence, it is clear that
a Riemannian Jacobi-proportional R is weak Jacobi-dual, by Theorem 9.2 it is Jacobi-dual,
and according to Theorem 9.21, R is Osserman, with λi(X) = λi for 1 ≤ i ≤ k.

Vk(X)

V2(X)

Vi(X) = Ker(J̃X − εXλi 1)

V1(X)

X
JX

Y
JY

V1(Y)

V2(Y)

Vk(Y)

Y0

Yk

Y2

Y1 X0

Xk

X2

X1

The Jacobi-proportionality for Riemannian Osserman tensors was invented by Andrejić
in 2022 [11], while a generalisation to the pseudo-Riemannian case is presented in [13]. The
main idea was to consider a Jacobi-proportional Osserman algebraic curvature tensor R,
and use JXV = εXλiV to define KXV = εXμiV for arbitrary μ1, . . . , μk ∈ R. Of course, we need
to add KXX = 0, which means μ0 = 0. In this way, we obtain endomorphisms KX for any
nonnull X ∈ V by keeping the existing eigenspaces and replacing the eigenvalues.

Since (10.32) decomposes Y =
∑k

i=0 Yi and Z =
∑k

i=0 Zi with Yi,Zi ∈ Vi(X) for 0 ≤ i ≤ k,
we have

g(KXY,Z) = g

 k∑
i=0

KXYi,
k∑
j=0

Zj

 = εX
k∑

i,j=0
μig(Yi,Zj) = εX

k∑
j=0

μjg(Yj,Zj) = g(Y,KXZ),

which means that each KX is self-adjoint.
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Since R is Jacobi-proportional, if we decompose nonnull X,Y ∈ V by X =
∑k

i=0 Xi and
Y =

∑k
j=0 Yj such that Xi ∈ Vi(Y) and Yj ∈ Vj(X) hold, then we have εXεYi = εYεXi for all

0 ≤ i ≤ k. Hence, it yields

g(KXY,Y) = g
( k∑

i=0
εXμiYi,Y

)
= εX

k∑
i=0

μig(Yi,Y) = εX
k∑
i=0

μiεYi ,

g(KYX,X) = g
( k∑

i=0
εYμiXi,X

)
= εY

k∑
i=0

μig(Xi,X) = εY
k∑
i=0

μiεXi ,

and therefore the compatibility g(KYX,X) = g(KXY,Y) holds for nonnull X,Y ∈ V . Thus,
we fulfilled the conditions of Theorem 6.7, which gives the following theorem (see [13,
Theorem 2] and [11, Theorem 2]).

Theorem10.16. If there exists a Jacobi-proportional Jacobi-diagonalisable k-root Osserman
algebraic curvature tensor such thatdet(λ1−J̃X) =

∏k
i=1(λ−εXλi)νi , then for any μ1, . . . , μk ∈

R there is a new Osserman algebraic curvature tensor such that det(λ1−J̃X) =
∏k

i=1(λ −
εXμi)νi .

Any Riemannian Jacobi-proportional R is Osserman, while it turns out that any known
example of Riemannian Osserman R is Jacobi-proportional. Since εYX0 = g(X,Y)Y and
εXY0 = g(Y,X)X always hold, we obtain

εYεX0 = (g(X,Y))2 = εXεY0 . (10.33)

Any two-point homogeneous manifold of nonconstant sectional curvature is two-root.
In that case k = 2, because of εX = εX0 + εX1 + εX2 and εY = εY0 + εY1 + εY2 , the equality
(10.33) yields

εXεY1 − εYεX1 = εYεX2 − εXεY2 .

On the other hand, g(JXY,Y) = g(JYX,X) gives εX(λ1εY1 + λ2εY2) = εY(λ1εX1 + λ2εX2), and
therefore

λ1(εXεY1 − εYεX1) = λ2(εYεX2 − εXεY2).

However, since λ1 6= λ2, from the previous two equalities we obtain

εXεY1 − εYεX1 = 0 = εYεX2 − εXεY2 ,

which implies εY(εX0 , εX1 , εX2) = εX(εY0 , εY1 , εY2) and gives the following theorem.

Theorem 10.17. Any two-root Jacobi-diagonalisable Osserman algebraic curvature tensor
is Jacobi-proportional.

The previous theorem is given by Andrejić in 2022 [11, Theorem 3], but it is essentially
the weak duality lemma published by the same author in 2010 [6, Lemma 5.6] (see also
[8, Lemma 9]), which can be considered a precursor to the proportionality principle for
Osserman manifolds.

However, although every known Riemannian Osserman manifold is either one-root
or two-root, this does not necessarily apply to Riemannian Osserman algebraic curvature
tensors. Fortunately, every known example of a Riemannian k-root Osserman algebraic
curvature for k > 2 is Clifford.

Let R be semi-Clifford, and consequently R is Jacobi-diagonalisable Osserman. If we
split Y = α0X+

∑m
i=1 αiJiX+P and X = β0Y+

∑m
i=1 βiJiY+Q, where P ∈ Span{X, J1X, . . . , JmX}⊥

and Q ∈ Span{Y, J1Y, . . . , JmY}⊥, then we obtain

−ciεXαt = εJtXαt = g(Y, JtX) = −g(X, JtY) = −εJtYβt = ciεYβt
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for 1 ≤ t ≤ m, which gives ε2
Xα2

t = ε2
Yβ

2
t , so εYεβtJtY = −ciε2

Yβ
2
t = −ciε2

Xα2
t = εXεαtJtX. We

already have ε2
Yβ

2
0 = ε2

Xα2
0 from (10.33), so it remains

εYεQ = εYεX − ε2
Yβ

2
0 + ε2

Y

m∑
i=1

ciβ2
i = εXεY − ε2

Xα2
0 + ε2

X

m∑
i=1

ciα2
i = εXεP,

which is enough to conclude that R is Jacobi-proportional (see [11, Theorem 4]).

Theorem 10.18. Any semi-Clifford algebraic curvature tensor is Jacobi-proportional.

Let R be a Riemannian k-root Osserman algebraic curvature tensor on a scalar product
space (V, g) of dimension n, such that ω̃X(λ) =

∏k
i=1(λ− εXλi)νi . According to Nikolayevsky

[88, 89, 90, 91], any such R is Clifford, except for n = 16, with νi = 7 or νi = 8 for some
1 ≤ i ≤ k.

Let us suppose that R is Riemannian Jacobi-proportional k-root for k ≥ 3 that is not
Clifford, which implies n = 16. We can order the multiplicities by ν1 ≥ ν2 ≥ · · · ≥ νk,
to conclude that ν1 = 8 or ν1 = 7. According to Theorem 10.16, there is a new Osserman
algebraic curvature tensor such that ω̃X(λ) =

∏k
i=1(λ−εXμi)νi for any scalars μ1, . . . , μk ∈ R.

Let us use μ2 = λ1 with μi = λi for i 6= 2 to create R1, and μ2 = λ2 − λ1 with μi = 0 for i 6= 2
to create R2. It is easy to conclude that R = R1 + R2. However, R1 is (k − 1)-root Osserman
with νmax = ν1 + ν2 and therefore Clifford, unless

ν1 = 7, ν2 = · · · = ν9 = 1, (10.34)

while R2 is 2-root Osserman with νmax = n− 1 − ν2 which is Clifford, except

ν1 = ν2 = 7, ν3 = 1. (10.35)

Hence, if we exclude the cases (10.34) and (10.35), R = R1 + R2 is a sum of two Clif-
ford tensors. However, R1 and R2 have compatible Jacobi operators, so if J1 is a complex
structure from Clifford family of rank ν3 + · · · + νk in R1, and J2 is a complex structure
from Clifford family of rank ν2 in R2, then J1X ⊥ J2X holds for all X ∈ V . Hence, we obtain
g(J1J2X,X) = 0, which after the polarization gives g(J1J2X,Y)+g(J1J2Y,X) = 0 for all X,Y ∈ V .
Thus we have g((J1J2 + J2J1)X,Y) = 0, and consequently J1J2 + J2J1 = 0, which means that
the union of our Clifford families is also a Clifford family, and therefore R is Clifford.

Moreover, the case (10.34) is also Clifford, because in a similar way as before, it decom-
poses into two Clifford tensors, R1 given by μ2 = μ3 = λ1 with μi = λi for i 6= 2,3 and R2
given by μ2 = λ2 − λ1, μ3 = λ3 − λ1 with μi = 0 for i 6= 2,3. Then, R1 is 7-root Osserman
with νmax = 9, while R2 is 3-root Osserman with νmax = 13 and therefore both of them are
Clifford.

On the other hand, the remaining case ν1 = 8, ν2 = 7 was mentioned by Nikolayevsky
[91, Theorem 1.2] who announced the statement that such an Osserman manifold is locally
isometric to OP2 or OH2 (but one should be careful since no proof is given). Let us remark
that these are the only known Osserman manifolds which are not Clifford. Other potential
counterexamples that are Jacobi-proportional should be sought in the case (10.35).

Theorem 10.19. If R is a Riemannian Jacobi-proportional algebraic curvature tensor which
is not Clifford then R is 2-root with multiplicities 8 and 7, or it is 3-root with multiplicities 7,
7, and 1.

The previous theorem, given by Andrejić in 2022 [11, Theorem 5], can be useful in solv-
ing the Osserman conjecture. Therefore, the key question is whether we can prove that
Osserman algebraic curvature tensors are Jacobi-proportional.
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CHAPTER A

APPENDIX

A.1 Set theory

To avoid potential ambiguities, let us clarify the notation for the standard sets we use
throughout this book. We denote the set of all natural numbers (without zero) by N =
{1,2, . . . }, while N0 = N ∪ {0} = {0,1,2, . . . }. The set of integers is Z, the set of rational
numbers is Q, the set of real numbers is R, and the set of complex numbers is C.

A set is countable if there is an injective map from it into the set of natural numbers N.
In other words, each element of the set can be assigned a unique natural number, which
means that either the set is finite or there is a bijective map between it and N. If we want
to emphasize that a countable set is not finite, we say that is is countably infinite. Let us
remark that there are authors who use the term at most countable instead of our countable,
while they use the word countable only if the set is not finite. Anyway, we consider a finite
set to be countable.

Let us state some basic facts about countable sets. The setsN,Z,Q are countable, whileR
is not countable. Every subset of a countable set is countable. The product of two countable
sets is countable. A countable union of countable sets is countable.

The following lemma tells us how a map between sets behaves with respect to set op-
erations.

LemmaA.1. The image of the union of subsets under an arbitrary map is equal to the union
of their images. The image of the intersection of subsets under an injective map is equal to
the intersection of their images.

Proof. Let X and Y be arbitrary sets, Aα ⊆ X for each α ∈ Λ, and f : X → Y be a map. From
Aβ ⊆

⋃
α Aα it follows f(Aβ) ⊆ f(

⋃
α Aα) for each β ∈ Λ, so

⋃
α f(Aα) ⊆ f(

⋃
α Aα). On the other

hand, for x ∈ f(
⋃

α Aα) there exists y ∈
⋃

α Aα such that f(y) = x, so there is β ∈ Λ such that
y ∈ Aβ, whence x = f(y) ∈ f(Aβ) ⊆

⋃
α f(Aα), which gives f(

⋃
α Aα) ⊆

⋃
α f(Aα) and proves

f
(⋃

α
Aα
)
=
⋃
α
f(Aα). (A.1)

From
⋂

α Aα ⊆ Aβ it follows f(
⋂

α Aα) ⊆ f(Aβ) for each β ∈ Λ, so f(
⋂

α Aα) ⊆
⋂

α f(Aα). On
the other hand, for x ∈

⋂
α f(Aα) we have x ∈ f(Aβ) for each β ∈ Λ, and using the condition

that f is injective we get f−1(x) ∈ Aβ for each β ∈ Λ and therefore x ∈ f(
⋂

α Aα), which gives⋂
α f(Aα) ⊆ f(

⋂
α Aα) and proves

f
(⋂

α
Aα
)
=
⋂
α
f(Aα). (A.2)

Let us remark that the formula (A.2) does not have to hold if f is not injective, for example
for constant f and disjoint Aα.
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A.2 Topology

This book is written for readers who already have a solid understanding of basic topology,
while Lee [77] and Crainic1 [37] can serve as a reminder. In this section we give the basic
ideas from topology we have used throughout this book.

A topology on a set X is a family T of subsets of X such that ∅,X ∈ T , while an arbitrary
union of elements from T , as well as a finite intersection of elements from T are also
in T . The elements of topology are open subsets, while a subset A ⊆ X is closed if its
complement X \ A is open. A topological space is an ordered pair (X, T ) consisting of a
set X equipped with a topology T on X, but when topology is well known, it is common to
say that X is a topological space.

For a given x ∈ X, a neighbourhood of x is any open subset U ⊆ X such that x ∈ U.
Many authors use the term neighbourhood more broadly to refer to any subset containing
an open subset around x. We use the term generalised neighbourhood for such subsets
that are not necessarily open. In this text, however, a neighbourhood is always considered
to be an open set.

Example A.1. Let (X, T ) be a topological space and A ⊂ X. The subspace topology is the
topology TA on a set A given by TA = {A ∩ U : U ∈ T }. 4

Example A.2. Let (X, T ) be a topological space, and q : X → Y be a surjective map. The
quotient topology is the topology Tq = {V ⊆ Y : q−1(V) ∈ T } given on the set Y. The
surjection q is often the natural projection that sends elements from X to their equivalence
classes for some equivalence relation on X. 4

A map f : X → Y between topological spaces is continuous if the inverse image f−1(U) ⊆
X is open for every open U ⊆ Y. A bijective map f : X → Y such that both f and f−1 are
continuous is called homeomorphism. If there is a homeomorphism from X to Y, then
we say that X and Y are homeomorphic.

The union of all open subsets that are subset of the set A is called the interior of A
and is denoted by IntA. The intersection of all closed subsets that are a superset of the
set A is called the closure of A and is denoted by A. The boundary of the set A is the set
∂A = A \ IntA. A point x ∈ A is said to be an isolated point of A if x has a neighbourhood
U such that U ∩ A = {x}.

For a sequence (xn)n∈N of points of a topological sapce X we say that converges to x ∈ X
if for every neighbourhood U of x there is N ∈ N such that xn ∈ U for all n ≥ N, then we
write limn→∞ xn = x.

A topological space X is said to be Hausdorff space if for every pair of distinct points
p,q ∈ X there exist open subsets U,V ⊆ X with p ∈ U and q ∈ V such that U ∩ V = ∅. In
other words, a topological space is Hausdorff if every two distinct points can be separated
by its disjoint neighbourhoods. A topological space X is a regular space if for every x ∈ X
and every closed subset C 63 x, the point x and the set C can be separated by disjoint neigh-
bourhoods. The space is normal if any two disjoint closed subsets of X can be separated
by disjoint neighbourhoods.

Let (X, T ) be a topological space. A topology basis is a family B ⊆ T such that each
U ∈ T is the union of some elements from B. A local basis at x ∈ X is a family Bx ⊆ T
of neighbourhoods of x such that each neighbourhood of x contains at least one element
from Bx. Some authors allow elements of a local basis not to be open sets, so a general-
ised local basis at x ∈ X is a family of generalised neighbourhoods of x such that each
neighbourhood of x contains at least one element from that family. We say that a topolo-
gical space is first countable if every point in the space has a countable basis, and it is
second countable if it has a countable topology basis.

1Marius Crainic (1974), Romanian-Dutch mathematician
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Two most frequently studied topological properties throughout the history of topology
are certainly connectedness and compactness. We say that a topological space is connec-
ted if it cannot be expressed as the union of two disjoint nonempty open sets. A topological
space is path-connected if there is a path joining any two points (for any x, y ∈ X there
exists a continuous map f : [0,1] → X such that f(0) = x and f(1) = y). We say that a subset
of a topological space is connected or path-connected if it has these properties with re-
spect to the subspace topology. Connectedness is a continuous map invariant, and every
path-connected topological space is connected.

Roughly speaking, we say that a topological property is satisfied locally if each small
region of the space resembles a region of a space where that property holds. More con-
cretely, if X is a topological space and P is an adjective which can apply to spaces, then X
is locally P often means that for every x ∈ X and every neighbourhood U 3 x there exists
a subset A ⊆ U that satisfies the property P and contains a neighbourhood of x. In other
words, a topological space is locally P if and only if every point has a generalised local basis
consisting of sets with the property P.

A topological space is locally connected if every point has a local basis consisting of
connected neighbourhoods. Since the union of local bases over all points forms a topology
basis, and every topology basis includes a local basis for each point, a topological space
is locally connected if and only if it has a basis consisting of connected sets. Similarly, a
topological space is locally path-connected if it has a basis of path-connected sets.

A connected component of a topological space is its maximal connected subset. Each
point of a topological space X belongs to some of its connected components, and the con-
nected components are disjoint and closed in X. If a topological space is locally connected,
then all connected components are open, from which it follows that it is the disjoint union
space of its connected components, which is not true in the general case.

Example A.3. A connected space that is not locally connected nor path-connected can
even be found as a subset of the Euclidean plane, and classic examples are the topologist’s
sine curve (the graph of sin(1/x) for x ∈ (0,1], together with the segment {0}× [−1,1]) and
the infinite broom (the union of segments joining the origin to the point (1,1/n) for n ∈ N,
together with the segment [1/2,1]× {0}) 4

A cover of a set is a family of sets whose union contains this set as a subset, and if all
elements of that family are open, then it is an open cover. A subcover of some cover is
its subset that is still a cover. A topological space or some its subset is called compact if
each of its open covers has a finite subcover. We say that a subset is relatively compact
if its closure is compact.

Every closed subset of a compact space is compact, while every compact subset of a
Hausdorff space is closed. Compactness is an invariant of a continuous map, and the fol-
lowing lemma also holds.

Lemma A.2. If f : M → N is a continuous map between a compact space M and Hausdorff
space N, then f is closed.

Proof. Every closed subset X ⊆ M of a compact set is compact, so f(X) ⊆ N is compact and
therefore closed.

The structure of compact subsets of Euclidean space was well understood through the
Heine2–Borel3 theorem.

Theorem A.3. A subset of Rn is compact if and only if it is closed and bounded.
2Heinrich Eduard Heine (1821–1881), German mathematicain
3Félix Édouard Justin Émile Borel (1871–1956), French mathematician and politician
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A topological space is locally compact if every point has a generalised local basis con-
sisting of compact sets. If the space is Hausdorff (which is almost always the case), it can
be shown that it is locally compact if and only if every point has a local basis consisting
of relatively compact sets. However, it turns out that a Hausdorff space is locally compact
if and only if every point has a compact generalised neighbourhood, which is the most
commonly used definition. Of course, any compact Hausdorff space is locally compact.

It is interesting to consider the domain invariance theorem, which is a deep result
introduced by Brouwer4 in 1911 [26], and we give it without proof.

Theorem A.4. If U ⊆ Rn is open for some n ∈ N and f : U → Rn is continuous and injective,
then f(U) ⊆ Rn is open.

In other words, any continuous injective map between Euclidean spaces of the same
dimension is an open map. An important consequence of domain invariance is the di-
mension invariance theorem.

TheoremA.5. A nonempty subset ofRm is not homeomorphic to an open subset ofRn except
for m = n.

Proof. Let an openU ⊆ Rm be homeomorphic toV ⊆ Rn under a homeomorphism f : U → V.
Without loss of generality we can assume that n ≤ m (otherwise consider f−1), so there
exists a linear inclusion ı : Rn ↪→ Rm. The map ı ◦ f : U → Rm is continuous and injective,
and according to Theorem A.4 ı(f(U)) is open. However, this is impossible forn < mbecause
the inclusion image lies in a hyperplane, while every neighbourhood of a hyperplane point
contains points that are not in the hyperplane, which implies m = n.

A.3 Eigen-structure of endomorphisms

In this section, we review some fundamental concepts from linear algebra and discuss
both the algebraic and analytic aspects related to the eigenstructure of a vector space. A
primary reference for this material is the book by Friedberg5, Insel6, and Spence7 [51].

Let V be a vector space of dimension n ∈ N over a field F, where we primarily consider
the cases F = R and F = C. An endomorphism of the vector space V is a linear map
A : V → V , and the set of all endomorphisms of V is denoted by End(V).

An eigenvector of A ∈ End(V) is a nonzero vector that does not change direction after
applying A. In this case, the endomorphism A simply scales X by some λ ∈ F which is
called the eigenvalue of A, which can be written as AX = λX with X 6= 0. The set of all
eigenvectors of A corresponding to the value λ, together with the zero vector, is called the
eigenspace and is denoted by Eλ = Ker(A− λ1) ≤ V .

In the presence of a basis e = (E1, . . . ,En) for V , each A ∈ End(V) is identified with the
matrix [A]e ∈ Fn×n for which the relation A(Ej) =

∑n
i=1([A]e)ijEi holds for each 1 ≤ j ≤ n. If

X is an eigenvector of A for the eigenvalue λ, then (λ1−A)X = 0, and the matrix [λ1−A]e =
λ1−[A]e cannot be invertible, as this would lead to a unique solution X = 0, so we must
have det(λ1−[A]e) = 0. Conversely, if det(λ1−[A]e) = 0, the equation (λ1−A)X = 0 has
infinitely many solutions (since X = 0 is certainly a solution), so there exists an eigenvector
for which λ is an eigenvalue.

The polynomial ωA(x) = det(x1−A) = det(x1−[A]e) does not depend on the choice of
basis e, and we call it the characteristic polynomial of A, while the eigenvalues of the
endomorphismA are exactly the roots of the polynomialωA. The characteristic polynomial

4Luitzen Egbertus Jan Brouwer (1881–1966), Dutch mathematician and philosopher
5Stephen Howard Friedberg, American mathematician
6Arnold Joseph Insel (1940), American mathematician
7Lawrence Edward Spence (1946), American mathematician
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is of degree n, so the number of distinct eigenvalues cannot exceed the dimension of the
space.

Multiplicity (or algebraic multiplicity) of an eigenvalue λ of the endomorphism
A ∈ End(V) is the largest r ∈ N such that the polynomial (x − λ)r divides ωA(x), while
its geometric multiplicity is given by s = dim Eλ. If a basis for Eλ is extended to a basis e
for V , then [A]e is an upper triangular block matrix. From this, we can see that the polyno-
mial (λ−x)s divides ωA(x), which implies that the geometric multiplicity of the eigenvalue
is not greater than its algebraic multiplicity, and is certainly at least 1.

For an endomorphism A ∈ End(V), we say that A is diagonalisable if there exists a
basis e for V such that the matrix [A]e is diagonal. If some eigenvectors of A form a basis
for V , we call this an eigenbasis, and A is diagonalisable if and only if V has an eigenbasis
with respect to A. A polynomial from F[x] is split (over F) if it can be factored into linear
factors, that is, if all of its roots lie in F. The characteristic polynomial of a diagonalisable
endomorphism is obviously split.

Lemma A.6. Eigenvectors of an endomorphism of a vector space corresponding to distinct
eigenvalues are linearly independent.

Proof. Let r ∈ N be a minimal number of linearly dependent vectors corresponding to
distinct eigenvalues of A ∈ End(V), and let α1X1 + · · ·+ αrXr = 0 hold for some Xi ∈ V \ {0},
αi ∈ F where AXi = λiXi for 1 ≤ i ≤ r, with distinct eigenvalues λi ∈ F. Then, we have
α1AX1 + · · · + αrAXr = 0, which leads to α2(λ2 − λ1)X2 + · · · + αr(λr − λ1)Xr = 0. Since r is
minimal, the vectors X2, . . . ,Xr are linearly independent, so α2(λ2−λ1) = · · · = αr(λr−λ1) =
0. From this, we obtain α2 = · · · = αr = 0, and then α1X1 = 0 implies α1 = 0, soX1, . . . ,Xr are
linearly independent, which contradicts the assumption, thus proving the statement.

As a consequence of the previous lemma, it can be shown that Eμ ∩
∑

λ ̸=μ Eλ = {0},
which means that the eigenspaces form a direct sum

⊕
λ Eλ ≤ V . Note that the notation

⊕
λ

formally represents a direct sum over all scalars λ ∈ F, but if λ is not an eigenvalue, then by
definition Eλ = {0}, so essentially we have a direct sum over the eigenvalues λ. The equality⊕

λ Eλ = V holds if and only if A is diagonalisable, and in the case of a diagonalisable A, the
geometric multiplicity is equal to the algebraic multiplicity for each eigenvalue of A.

For W ≤ V , we say that it is A-invariant subspace of V for A ∈ End(V) if A(W) ⊆ W
holds, that is, if A(X) ∈ W for every X ∈ W . In this case A↾W ∈ End(W), and if we extend
a basis for W to a basis e for V then the matrix [A]e is an upper triangular block matrix,
which shows that the polynomial ωA↾W (x) divides ωA(x).

Lemma A.7. The characteristic polynomial of the restriction of an endomorphism A on a
finite-dimensional vector space to an A-invariant subspace divides the characteristic polyno-
mial of A.

A basic example of anA-invariant subspace of V forA ∈ End(V) is theA-cyclic subspace
CX = Span

⋃
r∈N0

{Ar(X)} generated by a nonzero vector X ∈ V , which is the smallest A-
invariant subspace of V that contains X. If m ∈ N is the largest integer such that the set⋃m−1

r=0 {Ar(X)} is linearly independent (m ≤ n), then Span
⋃m−1

r=0 {Ar(X)} is A-invariant and
equal to CX. In this case e = (X,A(X), . . . ,Am−1(X)) is a basis for W = CX, and we have
dim CX = m. If for α0, . . . ,αm−1 ∈ F it holds that

α0X+ α1A(X) + · · ·+ αm−1Am−1(X) + Am(X) = 0,

then the matrix of the restricted endomorphism A in our basis is

[A↾W ]e =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −am−1

 ,
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and we obtain the characteristic polynomial ωA↾W (x) = a0 + a1x+ · · ·+ am−1xm−1 + xm.
Hence (ωA↾W (A))(X) = (a0 1+a1A + · · · + am−1Am−1 + Am)(X) = 0, and since by Lemma

A.7 the polynomial ωA↾W (x) divides ωA(x), it follows that (ωA(A))(X) = 0 for every X 6= 0. Of
course, ωA(A) is linear, so (ωA(A))(0) = 0, which completes the equality ωA(A) = 0, known
as the Cayley–Hamilton theorem.
Theorem A.8. An endomorphism of a finite-dimensional vector space annihilates its char-
acteristic polynomial.

Every endomorphism A ∈ End(V) annihilates its characteristic polynomial, so there
exists a monic polynomial μA(x) ∈ F[x] of the smallest possible degree that satisfies μA(A) =
0. Such a polynomial μA is unique and is called the minimal polynomial, and it is clear
that it must divide the polynomial ωA. If p(x) =

∑m
j=0 αjxj ∈ F[x] is such that p(A) = 0, then

we have

p(x)1 = p(x)1−p(A) =
m∑
j=0

aj((x1)j − Aj) = (x1−A)
m∑
j=1

aj
j∑

k=1
xj−kAk−1,

from which it follows thatωA(x) = det(x1−A) divides the polynomial det(p(x)1) = (p(x))n,
where n = dimV , and proves the following lemma, which especially holds for the minimal
polynomial.
Lemma A.9. If an endomorphism annihilates a polynomial, then this polynomial has as
factors all the irreducible factors of the characteristic polynomial.

The basic idea is to decompose V into a direct sum of A-invariant subspaces because
the behaviour of the endomorphism A on V can be understood from its behaviour on the
individual subspaces. If V =

⊕m
k=1 Wk, where Wk ≤ V are A-invariant for 1 ≤ k ≤ m, then

from the individual bases, we can construct a basis for V in which A had a block diagonal
matrix, so the characteristic polynomial of A is equal to the product of the characteristic
polynomials of the individual restrictions,

ωA(x) =
m∏
k=1

ωA↾Wk
(x).

LetA be an endomorphism of an n-dimensional vector space V over a field F. A nonzero
vector X ∈ V for which there exists r ∈ N such that (A−λ1)r(X) = 0 is called a generalised
eigenvector of A corresponding to λ ∈ F. The set of all eigenvectors of A for the value λ,
together with the zero vector, is denoted by Vλ and is called the generalised eigenspace.
It is easy to verify that Vλ is a vector subspace of V . For a more concise notation, we define
Aλ = A− λ1 ∈ End(V) for λ ∈ F.

If d < n is the multiplicity of the eigenvalue λ, then there exist a polynomial p(x) ∈ F[x]
and 0 6= μ ∈ F such that ωA(x) = (x− λ)d(p(x)(x− λ)+ μ). By the Cayley–Hamilton theorem
(Theorem A.8) we have 0 = ωA(A) = p(A)(Aλ)

d+1+μ(Aλ)
d. From this, it follows that (Aλ)

d =
−(1/μ)p(A)(Aλ)

d+1, so if (Aλ)
rX = 0 for r > d, then (Aλ)

dX = 0 as well, and this holds for
d = n by Theorem A.8. Therefore, we conclude that Vλ = Ker(Aλ)

d, and since d ≤ n, we can
always express this as Vλ = Ker(Aλ)

n.
For arbitrary polynomials p(x),q(x) ∈ F[x] it holds p(A)q(A) = q(A)p(A). Applying this

to q(A) = (Aλ)
d yields p(A)(Vλ) ⊆ Vλ, which means that every generalised eigenspace Vλ is

p(A)-invariant, and hence also A-invariant. Moreover, if a polynomial p(x) is not divisible
by x−λ, then the restriction of p(A) to Vλ is injective. Assuming X ∈ Vλ∩Kerp(A), we obtain
the minimal 0 ≤ r ≤ d such that (Aλ)

rX = 0, as well as 0 = p(A)(X) = q(A)AλX + μX for
some q(x) ∈ F[x] and 0 6= μ ∈ F. For r ≥ 1, this leads to q(A)(Aλ)

rX + μ(Aλ)
r−1X = 0. Since

r is minimal, this implies (Aλ)
r−1X = 0 and therefore r = 0, that is, X = 0. Thus p(A)↾Vλ

is
an automorphism of the subspace Vλ whenever p(x) is not divisible by x− λ. In particular,
this holds for Aμ when μ 6= λ.
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Lemma A.10. Let A be an endomorphism of a finite-dimensional vector space V over a field
F, let λ be its eigenvalue, and let p(x) ∈ F[x] be an arbitrary polynomial. The generalised
eigenspace Vλ is p(A)-invariant, and if the polynomial x − λ does not divide p(x) then the
restriction p(A)↾Vλ

is an automorphism of the subspace Vλ.

By the rank–nullity theorem applying to (Aλ)
d ∈ End(V), the A-invariant subspaces

Ker(Aλ)
d = Vλ and Im(Aλ)

d = (Aλ)
d(V) are complementary, meaning that V = Vλ⊕(Aλ)

d(V).
For X = (Aλ)

d(Y), the condtion Aλ(X) = 0 implies that Y ∈ Vλ which leads to X = 0. Thus,
there is no X ∈ (Aλ)

d(V) that is an eigenvector of A for λ, meaning that λ is not an eigen-
value of the restriction of A to (Aλ)

d(V). Since A↾Vλ
annihilates the polynomial (x − λ)d,

its characteristic polynomial, by Lemma A.9, has no irreducible factors other than x − λ,
which means it must be exactly (x− λ)d.

Lemma A.11. If d is the multiplicity of an eigenvalue λ for an endomorphism A of a finite-
dimensional vector space V , then dimVλ = d and the characteristic polynomial of the restric-
tion A↾Vλ

is (x− λ)d.

IfX ∈ Vλ∩
∑

μ ̸=λ Vμ, then (Aλ)
n(X) = 0, and since, by Lemma A.10,Aλ is an automorphism

on Vμ for μ 6= λ, it follows that (Aλ)
n is an automorphism on

∑
μ ̸=λ Vμ 3 X, from which we

conclude that X = 0. Thus, the generalised eigenspaces form a direct sum
⊕

λ Vλ ≤ V ,
generalising Lemma A.6. If the characteristic polynomial ωA is split, then the sum of the
multiplicities of the eigenvalues is equal to n, which gives V =

⊕
λ Vλ.

Theorem A.12. If an endomorphism A of a finite-dimensional vector space V has a split
characteristic polynomial, then V decomposes as a direct sum of the generalised eigenspaces
with respect to A.

Let us consider how an endomorphism A acts on the generalised eigenspace Vλ. For a
fixed eigenvalue λ, let W = Vλ and B = Aλ↾W ∈ End(W). By Lemma A.11, we have Bd = 0
for d = dimW , so it follows that for every 0 6= Y ∈ W there exists r(Y) ∈ N such that
Br(Y)Y = 0. Thus, for f(Y) = Br(Y)−1Y 6= 0 and f(0) = 0, we define the map f : W → Eλ = KerB,
which assigns to each generalised eigenvector for the eigenvalue λ an eigenvector for λ.

For every nonzero X ∈ Eλ we introduce the nonempty set UX = {Y ∈ W : Br(Y)−1Y = X},
where an arbitrary nonzero Y ∈ UX for which s = r(Y) holds, gives the B-cyclic sub-
space CY = Span

⋃s−1
k=0{Bk(Y)} ≤ W with the property f(CY) = Span{X}. The cycle

(Bs−1Y, . . . ,B2Y,BY,Y) is a canonical basis for CY, and with respect to this basis, the mat-
rix of the endomorphism A↾CY = Aλ↾CY + λ1CY = B↾CY + λ1CY takes the form

Js(λ) =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


∈ Fs×s, (A.3)

which is referred to as the (standard) Jordan block or Jordan matrix of order s for the
value λ ∈ F.

Let (E1, . . . ,Em) be an arbitrary basis of the eigenspace Eλ, and Yi ∈ UEi for 1 ≤ i ≤ m
an arbitrary choice of vectors. By mathematical induction on m we prove that

∑m
k=1 CYk =⊕m

k=1 CYk , which is obvious for m = 1. For the induction step, we have
∑

k CYk = CYj +∑
k ̸=j CYk = CYj +

⊕
k ̸=j CYk , and since CYj ∩

⊕
k̸=j CYk = {0} holds because of f(CYj) = Span{Ej}

and f(
⊕

k ̸=j CYk) ⊆ Span
⋃

k ̸=j{Ek}, we obtain the direct sum
⊕m

k=1 CYk ≤ W .
If we choose Yi ∈ UEi for 1 ≤ i ≤ m so that r(Yi) is maximal for Yi ∈ UEi , we can prove

that W =
⊕m

k=1 CYk . We perform the proof by mathematical induction on d = dimW , which
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is obvious for d = 1. For the induction step, we consider the subspace B(W) ≤ W and the
restriction B↾B(W), where we have KerB = Eλ, and therefore dimB(W) = d−m < d. By the
induction hypothesis, we have B(W) =

⊕m
k=1 CBYk , where by convention C0 = {0}, which

we have in the case Yk = Ek. Since dim
⊕m

k=1 CYk = m + dim
⊕m

k=1 CBYk = d, we obtain
W =

⊕m
k=1 CYk .

Lemma A.13. A generalised eigenspace of an endomorphism A decomposes into a direct
sum of A-cyclic subspaces.

As a consequence of Theorem A.12, we obtain the following theorem.

TheoremA.14. If an endomorphismAof a finite-dimensional vector spaceV has a split char-
acteristic polynomial, then V decomposes into a direct sum of A-cyclic subspaces, and there
exists a basis consisting of disjoint cycles of generalised eigenvectors in which the matrix of
A is block-diagonal with Jordan matrices on the diagonal.

Let us consider the most important case for us, where F = R, meaning V is a finite-
dimensional real vector space. The characteristic polynomial ωA of A ∈ End(V) has real
coefficients, but its roots are not necessarily real. Thus, it is possible for an endomorphism
A to have a non-split characteristic polynomial and, consequently, not be diagonalisable.
The field of complex numbers is algebraically closed, and the fundamental theorem of
algebra states that every non-constant polynomial in C[x] has at least one complex root,
so in the case F = C, every endomorphism has a split characteristic polynomial.

That motivates us to naturally extend the real vector space V to a complex vector space
VC = {(X,Y) : X,Y ∈ V} = V × V = V ⊕ iV = {X + iY : X,Y ∈ V} which we call the
complexification of V . Any basis V is also a basis of its complexification VC. Of course, if
(E1, . . . ,En) is a basis for V , and we view VC as a real vector space, then its natural basis is
given by (E1, iE1, . . . ,En, iEn).

For A ∈ End(V), the complexification of A is the endomorphism AC ∈ End(VC) defined
by AC(X+ iY) = A(X) + iA(Y) for all X,Y ∈ V . It is common to identify the eigenvalues and
eigenvectors ofAwith those ofAC, allowing us to say that the eigenvalues ofA are precisely
the roots of its characteristic polynomial ωA. If λ /∈ R is an eigenvalue of AC, we refer to
λ ∈ C as a complex eigenvalue of A. Complex eigenvalues must appear in conjugate
pairs, as demonstrated in the following lemma.

Lemma A.15. Let A be an endomorphism of a real vector space V . If λ ∈ C is an eigenvalue
of AC with eigenvector Z ∈ VC, then λ is also an eigenvalue of AC with eigenvector Z ∈ VC.

Proof. If λ = α + iβ for α, β ∈ R and Z = X+ iY for X,Y ∈ V , then by assumption,

A(X) + iA(Y) = AC(X+ iY) = (α + iβ)(X+ iY) = (αX− βY) + i(αY+ βX).

From this, we obtain the real and imaginary parts, A(X) = αX − βY and A(Y) = βX + αY,
and therefore

AC(X− iY) = A(X)− iA(Y) = (αX− βY)− i(αY+ βX) = (α − iβ)(X− iY),

which proves AC(Z) = λZ, while Z 6= 0 because of Z 6= 0.

If the characteristic polynomial of A is not split, we can use complexification to obtain
AC ∈ End(VC) from A ∈ End(V). The characteristic polynomial of AC is split, so by Theorem
A.12, we get the decomposition VC =

⊕
λ(VC)λ. Since by Lemma A.15 complex eigenvalues

appear in conjugate pairs, we define, in addition to usual Aλ = A − λ1 for λ ∈ R, the
endomorphism

Aλ = (A− λ1)(A− λ1) = A2 − 2<(λ)A+ |λ|2 1
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for complex eigenvalues λ ∈ C \ R, which gives additional generalised eigenspaces of
the form

Vλ = Ker(Aλ)
n = <

(
Ker

(
(AC − λ1)(AC − λ1)

)n)
= <

(
(VC)λ ⊕ (VC)λ

)
and allows the decomposition

V =
⊕

λ,ℑ(λ)≥0
Vλ.

For Z = X+ iY ∈ VC and λ = α + iβ ∈ C, we can compute for any r ∈ N:

(AC − (α ± iβ)1)r(X± iY) =
r∑

k=0

(
r
k

)
(−1)k(α ± iβ)k(AC)

r−k(X± iY)

=
r∑

k=0

(
r
k

)
(−1)k

k∑
j=0

(
k
j

)
αk−jβj(±i)j(Ar−kX± iAr−kY),

where the vectors (i)j(Ar−kX+ iAr−kY) and (−i)j(Ar−kX− iAr−kY) are complex conjugate of
each other (which can be easily verified for both even and odd j), from which we obtain:

(AC − λ1)rZ = (AC − λ1)rZ. (A.4)

Therefore (AC − λ1)sZ = 0 if and only if (AC − λ1)sZ = 0, so every (AC − λ1)-cyclic
subspace CZ of (VC)λ generated by the vector Z and of dimension s has a corresponding
conjugate (AC−λ1)-cyclic subspace CZ of (VC)λ generated by the vector Z and of dimension
s. This allows us to combine the two subspaces and obtain the space CZ ⊕ CZ ≤ (VC)λ ⊕
(VC)λ. If we introduce Ej = (AC − λ1)s−jZ and Fj = (AC − λ1)s−jZ for 1 ≤ j ≤ s, then
e = (E1, . . . ,Es,F1, . . . ,Fs) is a natural basis for CZ ⊕ CZ, while the endomorphism AC in this
basis has the form,

[
AC↾CZ⊕CZ

]
e
=

(
Js(λ) 0

0 Js(λ)

)
=



λ 1 · · · 0 0 0 · · · 0
0 λ · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · λ 0 0 · · · 0
0 0 · · · 0 λ 1 · · · 0
0 0 · · · 0 0 λ · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · λ


∈ C2s×2s.

Since Ej and Fj are conjugate to each other, by formula (A.4), we can rearrange the basis
vectors as

Gj = <(Ej) =
Ej + Fj

2 ∈ V , Hj = =(Ej) =
Ej − Fj

2i ∈ V ,

and define a new basis e′ = (G1,H1, . . . ,Gs,Hs). Since for 2 ≤ j ≤ swe haveACEj = λEj+Ej−1
and ACFj = λFj + Fj−1, for λ = α + iβ we obtain

AGj = <(λEj) + <(Ej−1) = αGj − βHj + Gj−1,

AHj = =(λEj) + =(Ej−1) = αHj + βGj +Hj−1,

with the additional relations AG1 = αG1 − βH1 and AH1 = αH1 + βG1. In the new basis, the
restriction of AC to CZ ⊕ CZ, and consequently the restriction of A to <(CZ ⊕ CZ) ≤ Vλ, takes
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the form

Js(α, β) =



α β 1 0 · · · 0 0 0 0
−β α 0 1 · · · 0 0 0 0
0 0 α β · · · 0 0 0 0
0 0 −β α · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · α β 1 0
0 0 0 0 · · · −β α 0 1
0 0 0 0 · · · 0 0 α β
0 0 0 0 · · · 0 0 −β α


∈ R2s×2s,

which is a real Jordan block or a real Jordan matrix of order 2s corresponding to the
pair of conjugate eigevalues α± iβ ∈ C\R. A consequence of Theorem A.14 is the following
theorem, which allows us, in the case F = R, to decompose V canonically as a direct sum
where each summand corresponds to a Jordan block.

Theorem A.16. If A is an endomorphism of a finite-dimensional real vector space V , then
there exists a basis for V in which the matrix of A is block-diagonal, with (standard or real)
Jordan matrices on the diagonal.

The unordered family of Jordan blocks from the preceding theorem is called the
Jordan normal form of the endomorphism.

The coefficients of the characteristic polynomial ωA of an endomorphism A are ex-
pressed polynomially in terms of the matrix of A. In particular, we recognise the trace
and determinant as coefficients in the equation

ωA(x) = xn − Tr(A)xn−1 + · · ·+ (−1)n det(A),

while additional invariants are given by the traces of powers, as shown in the following
lemma.

Lemma A.17. If A is an endomorphism of a vector space with characteristic polynomial
ωA(x) = xn + σ1xn−1 + · · ·+ σn−1x+ σn, then

mσm + σm−1 Tr(A) + σm−2 Tr(A2) + · · ·+ σ1 Tr(Am−1) + Tr(Am) = 0 (A.5)

holds for every 1 ≤ m ≤ n.

Proof. Let ω(x) = xn+σ1xn−1+ · · ·+σn = (x− λ1)(x− λ2) · · · (x− λn) (if complex eigenvalues
exist, we may consider AC instead of A). The coefficients σm for 1 ≤ m ≤ n are expressed
using Viète’s8 formulas,

σm = (−1)m
∑

i1<···<im

λi1λi2 · · · λim .

For 1 ≤ j ≤ m− 1, we obtain

σm−j Tr(Aj) = (−1)m−j(λj1 + λj2 + · · ·+ λjn)
∑

i1<···<im−j

λi1λi2 · · · λim−j ,

which, after substituting

Spq =
n∑
i=1

λpi ·
∑

j1<···<jq, jl ̸=i
λj1λj2 · · · λjq

 ,

8François Viète (1540-1603), French mathematician
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becomes σm−j Tr(Aj) = (−1)m−j(Sj+1
m−j−1 + Sjm−j), from which it follows that

m−1∑
j=1

σm−j Tr(Aj) =
m−1∑
j=1

(−1)m−j(Sj+1
m−j−1 + Sjm−j) = −Sm0 + (−1)m−1S1

m−1.

Clearly, Sm0 =
∑n

i=1 λ
m
i = Tr(Am), while we also have

S1
m−1 =

n∑
i=1

λi ·
∑

j1<···<jm−1, jl ̸=i
λj1λj2 · · · λjm−1

 .

Each term in
(−1)mσm =

∑
i1<···<im

λi1λi2 · · · λim ,

for instance λ1λ2 · · · λm, appears exaclty m times in S1
m−1, which gives S1

m−1 = m(−1)mσm.
Finally, we obtain

m−1∑
j=1

σm−j Tr(Aj) = −Tr(Am)−mσm,

which proves the equation (A.5).

The characteristic and minimal polynomial share the same roots, so if λ1, . . . , λk are
distinct eigenavlues, then ωA(x) = (x − λ1)

α1(x − λ2)
α2 · · · (x − λk)αk , where αj for 1 ≤ j ≤ k

are the (algebraic) multiplicities of the eigenvalues. The minimal polynomial must be of
the form μA(x) = (x−λ1)

β1(x−λ2)
β2 · · · (x−λk)βk , where its multiplicities satisfy 1 ≤ βj ≤ αj.

Considering Theorem A.14 and Theorem A.16, we observe that βj is the largest order of a
(standard) Jordan block withing the subspace Vλj .

A.4 Self-adjoint endomorphisms

This section is a natural continuation of the previous one, where we studied the eigen-
structure of endomorphisms. If we introduce a scalar product that interacts well with en-
domorphism, we can fine-tune aspects related to the eigenstructure and achieve certain
advantages. As a reference, we recommend Malcev 9 [81].

It is customary to consider a self-adjoint endomorphism on a scalar product space, but
it is also useful to have an appropriate extension for a complex vector space.

Let V be a finite-dimensional vector space over the field C. A complex scalar product
g on V is usually a nondegenerate symmetric bilinear form g : V×V → C, which generalises
the scalar product. A complex scalar product space is a complex vector space equipped
with a complex scalar product.

A sesquilinear form on V is a function g : V × V → C that is C-linear in the first
argument and conjugate-linear in the second argument, i.e., such that g(αX + βY,Z) =
αg(X,Z) + βg(Y,Z) and g(X,αY+ βZ) = αg(X,Y) + βg(X,Z) hold for all X,Y ∈ V and α, β ∈ C.
An Hermitian form on V is a sesquilinear form g on V such that for all X,Y ∈ V , we have
g(Y,X) = g(X,Y). An Hermitian scalar product is a nondegenerate Hermitian form,
while an Hermitian scalar product space is a complex vector space equipped with an
Hermitian scalar product.

9Anatoly Ivanovich Malcev, Russian mathematician
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Example A.4. An Hermitian scalar product space that is positive definite is called a unit-
ary space. A standard example of a unitary space is Cn with an Hermitian form g defined
by

g((X1, . . . ,Xn), (Y1, . . . ,Yn)) = X1Y1 + X2Y2 + · · ·+ XnYn,

for all X1, . . . ,Xn,Y1, . . . ,Yn ∈ C. 4

Following the real case, the quadratic form associated with g is a function ε : V → C
defined by εX = g(X,X). The sesquilinear form g is certainly R-bilinear, and for X,Y ∈ V ,
we have the polarization identities

4g(X,Y) = εX+Y − εX−Y + iεX+iY − iεX−iY, 2g(X,Y) = (1 + i)εX + (1 + i)εY − εX−Y − iεX−iY.

For the Hermitian form g, for every X,Y ∈ V and α, β ∈ C, the following equality holds:

g(αX+ βY,αX+ βY) = |α|2εX + 2<(αβg(X,Y)) + |β|2εY,

which implies that εX ∈ R for every X ∈ V .
Let (V, g) be a (real) scalar product space. The complexification yields the complex vec-

tor space VC, and we can perform complexification of the scalar product g in two natural
ways. For any X,Y,Z,W ∈ V , the formulas

gC(X+ iY,Z+ iW) = (g(X,Z)− g(Y,W)) + i(g(Y,Z) + g(X,W)),

gHC(X+ iY,Z+ iW) = (g(X,Z) + g(Y,W)) + i(g(Y,Z)− g(X,W)),

define the complex scalar product gC : VC × VC → C and the Hermitian scalar product
gHC : VC × VC → C. If for every Z ∈ V we have gC(X + iY,Z) = 0 or gHC(X + iY,Z) = 0,
then we obtain g(X,Z) = 0 and g(Y,Z) = 0, so X + iY = 0, proving that both forms are
nondegenerate. Moreover, in a Hermitian scalar product space, Sylvester’s law of inertia
holds, and the Hermitian extension preserves the signature of the original space. In any
case (V, g) induces both a complex scalar product space (VC, gC) and an Hermitian scalar
product space (VC, gHC).

If A is a self-adjoint endomorphism on V , then in the complex scalar product space
(VC, gC) we have

gC(AC(X+ iY),Z+ iW) = (g(AX,Z)− g(AY,W)) + i(g(AY,Z) + g(AX,W))

= (g(X,AZ)− g(Y,AW)) + i(g(Y,AZ) + g(X,AW)) = gC(X+ iY,AC(Z+ iW)),

while in the Hermitian scalar product space (VC, gHC) we have

gHC(AC(X+ iY),Z+ iW) = (g(AX,Z) + g(AY,W)) + i(g(AY,Z)− g(AX,W))

= (g(X,AZ) + g(Y,AW)) + i(g(Y,AZ)− g(X,AW)) = gHC(X+ iY,AC(Z+ iW)),

which means that the complexification AC ∈ End(VC) is also self-adjoint in both cases.
It is important to note that if A is a self-adjoint endomorphism of a complex scalar

product space, then A− λ1 for λ ∈ C, as well as p(A) where p(x) ∈ C[x] is an arbitrary poly-
nomial, are also self-adjoint. However, this does not hold in the Hermitian scalar product
space, where we have g((A− λ1)X,Y) = g(AX,Y)− λg(X,Y) = g(X, (A− λ1)Y).

From the proof of Theorem A.12, we know that the generalised eigenspaces have a
trivial intersection and thus form a direct sum. In the case where A is a self-adjoint endo-
morphism, this direct sum is orthogonal.

Lemma A.18. The generalised eigenspaces of a self-adjoint endomorphism of a real or com-
plex scalar product space are orthogonal to each other.
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Proof. LetA ∈ End(V), and letX ∈ Vλ and Y ∈ Vμ be arbitrary for λ 6= μ. By Lemma A.10, the
restriction ofAλ is an automorphism ofVμ, so there existsZ ∈ Vμ such that (Aλ)

nZ = Y. Since
A is self-adjoint, (Aλ)

n is also self-adjoint, so we have g(X,Y) = g(X, (Aλ)
nZ) = g((Aλ)

nX,Z) =
0, which proves that Vλ ⊥ Vμ.

Lemma A.19. The generalised eigenspaces of a self-adjoint endomorphism of an Hermitian
scalar product space corresponding to non-conjugate eigenvalues are orthogonal to each
other. In particular, the generalised eigenspace corresponding to eigenvalues that are not
real are totally isotropic.

Proof. Similarly to the proof of Lemma A.18, for λ 6= μ, there exists Z ∈ Vμ such that
(Aλ)

nZ = Y. Since A is self-adjoint, we get g(X,Y) = g(X, (Aλ)
nZ) = g((Aλ)

nX,Z) = 0.

Additional advantages arise if the (real) scalar product is (positively) definite, as in this
case all eigenvalues are real.

Lemma A.20. The eigenvalues of a self-adjoint endomorphism on a definite scalar product
space are real.

Proof. Let λ = α + iβ ∈ C be a complex eigenvalue of a self-adjoint endomorphism A on a
definite scalar product space (V, g). Then there exists a nonzero Z = X+ iY ∈ VC such that
ACZ = λZ, which gives AX = αX − βY and AY = βX + αY. Since A is self-adjoint, we have
g(αX − βY,Y) = g(X, βX + αY), which leads to β(εX + εY) = 0. As V is definite, εX + εY 6= 0,
thus we conclude β = 0, which gives λ ∈ R.

For 0 6= X ∈ V there exists r ∈ N such that (Aλ)
rX 6= 0, from which the definite scalar

product gives g((Aλ)
2rX,X) = g((Aλ)

rX, (Aλ)
rX) 6= 0, but (Aλ)

2rX = 0 for 2r > r, which im-
plies r = 0, and thus AλX = 0 so Vλ = Eλ. By Lemma A.20, the characteristic polynomial ωA
is split, and by Theorem A.12, V decomposes into a direct sum of eigenspaces Vλ, which,
due to Lemma A.18, is orthogonal. Thus, A is diagonalisable and admits a spectral decom-
position V =

Ë

λ Eλ, which is the statement we call the spectral theorem.

Lemma A.21. A self-adjoint endomorphism A on a definite scalar product space V is diag-
onalisable and satisfies V =

Ë

λ Ker(A− λ1).

Spectral decomposition is not always possible when g is indefinite, primarily because
ωA may not be split. The characteristic polynomial of AC is split, and from Theorem A.12
and Lemma A.18, we obtain VC =

Ë

λ(VC)λ, which subsequently allows the decomposition
V =

Ë

λ,ℑ(λ)≥0 Vλ. Since the direct sum is orthogonal, the generalised eigenspaces Vλ are
nondegenerate.

Lemma A.22. The generalised eigenspaces of a self-adjoint endomorphism on a scalar
product space are nondegenerate, and the space is equal to their orthogonal sum.

The generalised eigenspace Vλ for A ∈ End(V) is, by Lemma A.13, decomposed into a
direct sum of A-cyclic subspaces. Consider CY = Span

⋃s−1
k=0{BkY}, where B = (A − λ1)↾Vλ

,
and s = r(Y) (Bs−1Y is an eigenvector).

In the presence of a real or complex scalar product g, we can construct a sequence of
scalars α0,α1, . . . ,αs−1 ∈ F by recursively defining α0 = 1 and

αs−1−m = −1
2

s−2−m∑
j=0

min(s−1−m−j,s−2−m)∑
k=0

αjαkg(Bm+j+kY,Y)
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for s− 2 ≥ m ≥ 0, in order to introduce Z =
∑s−1

j=0 αjBjY ∈ CY and obtain

g(BmZ,Z) = g

Bm s−1∑
j=0

αjBjY,
s−1∑
k=0

αkBkY

 =

s−1∑
j=0

s−1∑
k=0

αjαkg(Bm+jY,BkY)

=

s−1−m∑
j=0

s−1−m−j∑
k=0

αjαkg(Bm+j+kY,Y) = 0.

The sequence of vectors Ej = Bs−jZ for 1 ≤ j ≤ s forms a basis e = (E1, . . . ,Es) for CY = CZ.
With respect to this basis, the endomorphism has a Jordan matrix [A↾CY ]e = Js(λ), while
the Gram matrix is [g↾CY ]e = νNs, where ν = g(Bs−1Z,Z) and

Ns =



0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

... . .
. ...

...
...

0 1 · · · 0 0 0
1 0 · · · 0 0 0


∈ Fs×s. (A.6)

If ν = 0, we cannot do much, as CY is a totally isotropic subspace. However, if ν 6= 0,
in the construction, we can replace the vector Z with the vector μZ for any 0 6= μ ∈ F,
so we obtain g(Bs−1μZ, μZ) = μ2g(Bs−1Z,Z), which allows us, in the case F = R to choose
μ = 1/

√
|g(Bs−1Z,Z)| and thus normalise ν = ±1, while in the case F = C, the choice

μ = (g(Bs−1Z,Z))−1/2 gives ν = 1.
From the existing basis, we can construct a new basis with

Gj = Ej + sgn(2j− s− 1)Es+1−j,

for 1 ≤ j ≤ s, from which we obtain

g(Gj,Gk) = g
(
Ej + sgn(2j− s− 1)Es+1−j,Ek + sgn(2k− s− 1)Es+1−k

)
= νδjs+1−k + ν sgn(2k− s− 1)δjk + ν sgn(2j− s− 1)δjk
+ ν sgn((2j− s− 1)(2k− s− 1))δjs+1−k

= 2νδjk sgn(2j− s− 1) + νδjs+1−k

(
1 − sgn(2j− s− 1)2

)
= νδjk

(
2 sgn(2j− s− 1) + δ2j

s+1

)
,

which gives

g(Gj,Gk) =


2νδjk за 2j > s+ 1
νδjk за 2j = s+ 1

−2νδjk за 2j < s+ 1

and proves that our basis is orthogonal.
The main idea is to decompose each Vλ into an orthogonal sum of nondegenerate

subspaces of the form CY. If we choose an arbitrary definite vector D ∈ Vλ, we have
X = f(D) ∈ Eλ, and since CY 3 D is not totally isotropic, it follows ν 6= 0. Now, the or-
thogonal basis we had can easily be transformed into an orthonormal one, and CY is a
nondegenerate subspace of index s/2 for even s, or (s− sgn ν)/2 for odd s. This procedure
can be continued on the nondegenerate subspace Vλ ∩ (CY)⊥, and thus in dim Eλ steps, we
decompose the entire Vλ.
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Theorem A.23. If A is a self-adjoint endomorphism on a complex scalar product space V ,
then V decomposes into an orthogonal sum of nondegenerate A-cyclic subspaces, and there
exists a basis for V in which the matrix of A is block-diagonal with Jordan blocks, and the
Gram matrix is block-diagonal with blocks of the form (A.6).

It remains to consider Vλ for a complex eigenvalue λ in the case F = R. In the
proof of Theorem A.16, we decomposed Vλ into a direct sum of subspaces of the form
CZ ⊕ CZ ≤ (VC)λ ⊕ (VC)λ. We had a canonical basis (E1, . . . ,Es,F1, . . . ,Fs) in which the en-
domorphism has a block-diagonal matrix with Js(λ) and Js(λ) on the diagonal. The new
basis (G1,H1, . . . ,Gs,Hs), where Gj = <(Ej) and Hj = =(Ej), led us to the matrix Js(α, β),
where λ = α + iβ, and it remains to determine how the Gram matrix looks in this basis.

If we extend g to the complex scalar product gC, by Lemma A.18 we have gC(Ej,Fk) = 0,
while gC(Fj,Fk) = gC(Ej,Ek) = gC(Ej,Ek). Now, we can compute:

g(Gj,Gk) = gC(<(Ej),<(Ek)) =
1
2<(gC(Ej,Ek)),

g(Gj,Hk) = gC(<(Ej),=(Ek)) = 0,

g(Hj,Hk) = gC(=(Ej),=(Ek)) = −1
2<(gC(Ej,Ek)),

and since gC(Ej,Ek) = δjs+1−kν, if ν 6= 0, by appropriately choosing the vector μZ instead of
Z, we can normalise ν = 2 to obtain g(Gj,Gk) = 1 and g(Hj,Hk) = −1 only for j+ k = s+ 1,
while the other components are zero, Thus, we arrive at a basis in which the endomorph-
ism has the matrix Js(α, β), while the Gram matrix takes the form

0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 −1
0 0 · · · 1 0 0 0
0 0 · · · 0 −1 0 0
...

... . .
. ...

...
...

...
1 0 · · · 0 0 0 0
0 −1 · · · 0 0 0 0


∈ R2s×2s, (A.7)

which has index s and means the neutral signature.
As in the case λ ∈ R, we choose an arbitrary definite vector D ∈ (VC)λ, to ensure that

CY 3 D is not totally isotropic (although by Lemma A.19, in the Hermitian case (VC)λ is
totally isotropic, but our case is complex), and by exhaustion, we decompose the entire Vλ
as before.

Theorem A.24. If A is a self-adjoint endomorphism of a real scalar product space V , then
V decomposes into an orthogonal sum of nondegenerate subspaces, and there exists a basis
for V in which the matrix of A is block-diagonal with (standard or real) Jordan matrices, and
the Gram matrix is block-diagonal with blocks of the form (A.6) and (A.7).

A.5 Perturbation theory

Understanding how the spectral decomposition of an endomorphism on a scalar product
space depends on parameters is a natural and significant problem. It is well known that
the n roots of a real or complex polynomial of degree n depend continuously on the polyno-
mial’s coefficients. Consequently, the eigenvalues of an endomorphism vary continuously
with the entries of its matrix. It is important to emphasise that we consider the roots as an
unordered n-tuple of scalars. Since there is no canonical way to order the roots, it is not
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always possible to label the eigenvalues so that they individually form continuous func-
tions.

However, we are primarily interested in the question of the smoothness or analyticity of
the eigenstructure. The history of perturbation theory began in 1937 with Rellich10 and his
first article in a series [104], which ultimately led to his book [105]. The theory culminates
in the classic monograph by Kato11 [71]. For a modern perspective, we recommend the
survey by Parusiński12 and Rainer13 [99].

Let PA(x) = xn + a1xn−1 + · · · + an denote a monic polynomial of degree n with real
coefficients A = (a1, . . . ,an) ∈ Rn. A monic polynomial PA is called hyperbolic if all its
roots λ1, . . . , λn (counted with multiplicities) are real.

For an open interval I ⊆ R containing 0, we consider a one-parameter family of hy-
perbolic monic polynomials PA(t) of degree n for t ∈ I, where A = (a1, . . . ,an) : I → Rn is
analytic. Applying the Tschirnhaus transformation 14

PB(x) = PA
(
x− a1

n
)
=

n∑
j=0

aj
n−j∑
k=0

(
n− j
k

)
xk
(
−a1
n

)n−j−k
=

n∑
k=0

bn−kxk,

we obtain B = (b1, . . . , bn) : I → Rn, where a0 = 1 and

bn−k =
n−k∑
j=0

(
n− j
k

)(
−1
n

)n−j−k
aja

n−j−k
1 ,

for 0 ≤ k ≤ n. Thus, we obtain a family of polynomials PB(t) that remain monic (b0 = 1)
and have the coefficient of xn−1 equal to zero (b1 = 0). Such a polynomial PB is said to be
in Tschirnhaus form. Its roots are μj = λj + a1/n for 1 ≤ j ≤ n, so PB is also hyperbolic,
and B : I → Rn remains analytic.

Since
∑

j μ2
j =

∑
j,k μjμk − 2

∑
j<k μjμk = (−b1)

2 − 2b2, the condition b1 = 0 implies
−2b2 = μ2

1 + · · · + μ2
n, and consequently b2 ≤ 0. The case b2 = 0 is straightforward, since

then μj = 0 for 1 ≤ j ≤ n, which implies that the original roots λj = −a1/n are analytic.
Otherwise, we may shrink the interval so that −b2(t) = t2mu(t), where u(0) > 0 for some
m ∈ N0 (note that if b2(0) 6= 0 then m = 0) and t ∈ I′, with 0 ∈ I′ ⊆ I.

Since the parameter space is one-dimensional, we can always choose θ(t) = ±tmu1/2(t)
as one of the two analytic square roots of −b2(t), and define

PC(x) = θ−nPB(θx) = xn − xn−2 +
n∑
j=3

θ−jbjxn−j.

In this way, we obtain an analytic function C = (c1, . . . , cn) : I′ → Rn such that c1 = 0 and
c2 = −1. Hence, ξ1 + · · · + ξn = 0 and ξ2

1 + · · · + ξ2
n = 2, where ξj = θ−1μj for 1 ≤ j ≤ n

are the roots of PC. This allows us to factor PC(0) = PDPE, where PD and PE are monic real
polynomials of positive degree with no common root.

Consider the map ψ : Rp × Rq → Rp+q defined by ψ(Y,Z) = W, where PW = PYPZ holds.
In other words, for Y = (y1, . . . , yp) and Z = (z1, . . . , zq), we obtain W = (w1, . . . ,wp+q) such
that wk =

∑k
j=0 yk−jzj for all 1 ≤ k ≤ p + q, where y0 = z0 = 1. The Jacobian matrix of this

polynomial map ψ is exactly the Sylvester matrix associated with PY and PZ. Furthermore,
10Franz Rellich (1906–1955), Austrian-German mathematician
11Tosio Kato (1917–1999), Japanese mathematician
12Adam Parusiński, Polish mathematician
13Armin Rainer, Austrian mathematician
14Ehrenfried Walther von Tschirnhaus (1651–1708), German mathematician, physicist, and philosopher
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the resultant of PY and PZ is, up to sign, equal to the determinant of the Sylvester matrix.
Hence, PY and PZ have no common (complex) roots if and only if ψ is invertible.

Since PD and PE have no common roots, ψ is invertible at (D,E), and by the Inverse
function theorem (Theorem A.30), it remains invertible in a neighbourhood of (D,E). Thus,
there exists a neighbourhood U ⊆ Rn of C(0) = ψ(D,E) such that, for any W ∈ U , the
corresponding polynomial splits uniquely as PW = PYPZ. Moreover, the inverse map ψ−1

is analytic on U , so the compositions π1 ◦ψ−1 : W 7→ Y and π2 ◦ψ−1 : W 7→ Z are analytic as
well, with π1 ◦ ψ−1(C(0)) = D and π2 ◦ ψ−1(C(0)) = E.

In this way, we obtain the identity PY(t)PZ(t) = PC(t) for all t ∈ I′′, where 0 ∈ I′′ ⊆ I′ ⊆ I,
and the maps Y : I′′ → Rp, Z : I′′ → Rq are analytic. Since p = degD < n and q = degE < n,
we may apply the induction hypothesis on degA = n to obtain analytic functions λj : I′′ → R
for 1 ≤ j ≤ n, which parametrise the roots of PA(t).

This local result may be regarded as a reformulation of Rellich’s theorem [104, Lemma
2] inspired by the approach developed in [99]. However, owing to the uniqueness of ana-
lytic continuation, we may, without loss of generality, assume that I ⊆ R is an arbitrary
open interval and that I′′ = I. Consequently, we obtain the following global version of the
theorem.

Theorem A.25. Let PA(t)(x) = xn+a1(t)xn−1 + · · ·+an(t) for t ∈ I be a one-parameter family
of hyperbolic monic polynomials of degree n with real analytic coefficients aj : I → R for
1 ≤ j ≤ n, where I ⊆ R is an open interval. Then there exist analytic functions λj : I → R for
1 ≤ j ≤ n such that PA(t)(x) =

∏n
j=1(x− λj(t)) for all t ∈ I.

Let I ⊆ R be an open interval containing 0, and consider a one-parameter family of
endomorphisms A(t) on a vector space V of dimension n ∈ N. Fix a basis (E1, . . . ,En) of V .
The matrix entries of A(t) in this basis are given by A(t)(Ej) =

∑
k Akj(t)Ek for 1 ≤ j,k ≤ n,

and we assume that all functions Ajk : I → R are analytic. It is important to note that the
analyticity of the matrix entries Ajk is preserved under a change of basis, provided that the
transition matrix depends analytically on t.

If the characteristic polynomial of A(t) is hyperbolic for all t ∈ I, then we may apply
Theorem A.25. This yields analytic eigenvalues λj : I → R for 1 ≤ j ≤ n, such that

det(x1−A(t)) =
n∏
j=1

(x− λj(t))

holds for all t ∈ I.
Let V(t) =

∑
j vj(t)Ej be an eigenvector corresponding to an eigenvalue λ(t). Denote

M(t) = A(t) − λ(t)1. Then the eigenvalue equation M(t)V(t) = 0 yields the system∑n
k=1 Mjk(t)vk(t) = 0 for 1 ≤ j ≤ n, where Mjk(t) = Ajk(t)− λ(t)δjk are analytic functions.
If M(0) 6= 0, then, since detM(0) = 0, there exists r ∈ N such that all minors of order

r+1 vanish, while there is a minor of order r = |A| = |B| for which det((Mjk(0))j∈A,k∈B 6= 0.
Let Njk(t) denote the cofactor of Mjk(t) in the (r+ 1)× (r+ 1) matrix (Mjk(t))j∈A′,k∈B′ , where
A′ = A t {a} and B′ = B t {b}. Define vk(t) = Nak(t) for k ∈ B′ and vk(t) = 0 for k /∈ B′, so
that the vector V(t) =

∑
k vk(t)Ek satisfies

n∑
k=1

Mjk(t)vk(t) =
∑
k∈B′

Mjk(t)Nak(t) =

∣∣∣∣∣∣∣∣∣∣∣

Mp1q1(t) Mp1q2(t) · · · Mp1qr(t) Mp1b(t)
Mp2q1(t) Mp2q2(t) · · · Mp2qr(t) Mp2b(t)

...
...

. . .
...

...
Mprq1(t) Mprq2(t) · · · Mprqr(t) Mprb(t)
Maq1(t) Maq2(t) · · · Maqr(t) Mab(t)

∣∣∣∣∣∣∣∣∣∣∣
= 0,

for all 1 ≤ j ≤ n, where A = {p1, . . . ,pr} and B = {q1, . . . , qr}. By continuity, we may shrink
the interval so that

D(t) = det(((Mjk(t))j∈A,k∈B) 6= 0,
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for all t ∈ I′, where 0 ∈ I′ ⊆ I. Hence, vb(t) = Nab(t) = D(t) 6= 0, so V(t) is an eigenvector of
A(t) corresponding to the eigenvalue λ(t) for all t ∈ I′.

If M(0) = 0, then the case M(t) = 0 for all t ∈ I is trivial. Otherwise, since all functions
Mjk : I → R are analytic and satisfy Mjk(0) = 0, there exists m ∈ N such that M(t) = tmMo(t),
where Mo(0) 6= 0. In this case, we may solve the system

∑n
k=1 Mo

jk(t)vk(t) = 0 as before and
construct the eigenvector V(t).

Suppose that A(0)X = μX holds for some nonzero vector X ∈ V and μ ∈ R. There
exists a basis (E1, . . . ,En) of V in which the matrix of A(0) is block-diagonal with Jordan
matrices on the diagonal such that E1 = X (see Theorem A.14). Using λ(0) = μ, there
exist indices 1 ≤ a,b ≤ n such that Mak(0) = 0 and Mkb(0) = 0 hold for all 1 ≤ k ≤ n
(with b = 1, of course), and therefore a /∈ A and b /∈ B. Applying the previous results we
obtain the eigenvector V(t) =

∑
k vk(t)Ek for λ(t), where vk(0) = 0 for all k 6= b = 1, which

gives V(0) = v1(0)E1, and therefore W(t) = V(t)/D(t) generates an analytic eigenvector
corresponding to λ(t) such that W(0) = X and λ(0) = μ.

Theorem A.26. Let A(t), for t ∈ I, be a one-parameter family of endomorphisms on a finite-
dimensional vector space V with a hyperbolic characteristic polynomial, such that the entries
of the corresponding matrices are real analytic functions on an open interval I ⊆ R contain-
ing 0. If A(0)X = μX holds for some nonzero vector X ∈ V and μ ∈ R, then there exist an
analytic function λ : I′ → R and an analytic map V : I′ → V \ {0} such that A(t)V(t) = λ(t)V(t)
holds for t ∈ I′, where 0 ∈ I′ ⊆ I, with V(0) = X and λ(0) = μ.

If we have a scalar product space (V, g), then it is natural to assume that all A(t) are self-
adjoint. We also assume that each A(t) is diagonalisable (with hyperbolic characteristic
polynomial). This condition is geometrically natural and automatically satisfied when V is
definite (see Lemma A.20 and Lemma A.21).

Let (E1, . . . ,En) be an orthonormal basis such that A(0)Ei = μiEi for all 1 ≤ i ≤ n. We
have already shown (Theorem A.26) that for any μi, say μ1, there exist an analytic eigen-
value function λ : I′ → R and a corresponding analytic map V : I′ → V such that V(t) is an
eigenvector of A(t) with eigenvalue λ(t) for all t ∈ I′, where 0 ∈ I′ ⊆ I, λ(0) = μ1, and
V(0) = E1. Furthermore, possibly after shrinking the interval, the map V can be normal-
ised to obtain a unit analytic map.

Define the endomorphism P(t) : V → V , called the projection operator, by P(t)U =
g(V(t),U)V(t), where V is the analytic map constructed above. The matrix entries of P(t)
with respect to a fixed orthonormal basis are given by pjk(t) = εkvj(t)vk(t). These entries
are analytic functions of t. We now consider the new family of self-adjoint endomorphisms
defined by B(t) = A(t)− P(t).

Any eigenvector of A(0) corresponding to the eigenvalue λ(0) that is orthogonal to V(0)
is also an eigenvector of B(0) for the same eigenvalue. Moreover, consider an eigenvector
map W : I′′ → R such that A(t)W(t) − g(V(t),W(t))V(t) = B(t)W(t) = λ(t)W(t) for t ∈ I′′,
where 0 ∈ I′′ ⊆ I′. Since A(t)− λ(t)1 is self-adjoint, we obtain

0 = g((A(t)− λ(t)1)V(t),W(t)) = g((A(t)− λ(t)1)W(t),V(t)) = g(V(t),W(t))g(V(t),V(t)),

which implies V(t) ⊥ W(t) for all t ∈ I′′.
This construction allows us to proceed by induction on the multiplicity ν of λ(0),

thereby obtaining ν orthonormal analytic eigenvector maps Vi associated with λ satisfying
AVi(t) = λ(t)Vi(t), with Vi(0) = Ei whenever μi = λ(0). Applying the same argument to each
eigenvalue of A(0) recovers the classical result of Rellich: the eigenvalues and correspond-
ing eigenvectors of A(t) can be chosen to depend analytically on t in a neighbourhood of 0
(see [104, Proposition 1], [105, Theorem 1], [99]). As before, this local construction implies
a global statement on any open interval I, yielding I = I′ after analytic continuation.
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Theorem A.27. Let A(t), for t ∈ I, be a one-parameter family of diagonalisable self-adjoint
endomorphisms on a scalar product space V of dimension n, such that the entries of the
corresponding matrices are real analytic functions on an open interval I ⊆ R. Then, there
exist analytic functions λj : I → R and analytic maps Vj : I → V for 1 ≤ j ≤ n, such that
(V1(t), . . . ,Vn(t)) forms an orthonormal basis of V for all t ∈ I, and each Vj(t) satisfies
A(t)Vj(t) = λj(t)Vj(t) for all t ∈ I and 1 ≤ j ≤ n.

If the entries of the corresponding matrices are not analytic, but merely smooth, the ei-
genvectors may fail to admit even a continuous choice, as shown in the following example
from [104].
Example A.5. Consider the one-parameter family of self-adjoint endomorphisms defined
by the matrices

A(t) = e−
1
t2

(
cos 1

t sin 1
t

sin 1
t − cos 1

t

)
for t 6= 0 and set A(0) = 0. This family is smooth for all t ∈ R, including t = 0, but is not
analytic at t = 0 (see Example A.7). Since TrA(t) = 0 and detA(t) = −e−2/t2 , the eigenval-
ues of A(t) are λ(t) = ±e−1/t2 . For example, the vector V(t) = (cos(1/2t), sin(1/2t)) is an
eigenvector corresponding to λ(t) = e−1/t2 . However, this eigenvector cannot be extended
to a non-vanishing continuous map at t = 0, since the map t 7→ V(t) oscillates wildly and
has no limit as t → 0. 4

However, both Theorem A.25 and Theorem A.27 do not extend to the multi-parameter
case, as demonstrated by the following example from [104].
Example A.6. Consider the two-parameter family of self-adjoint endomorphisms defined
by the matrices

A(t, s) =
(

1 + 2t t+ s
t+ s 1 + 2s

)
for t, s ∈ R. The eigenvalues of A(t, s) are given by λ(t, s) = 1 + t + s ±

√
2(t2 + s2), which

are not analytic in any neighbourhood of the origin. 4
Some multi-parameter versions have been proposed by Kurdyka15 and Paunescu16 [75],

but for our purposes, it is sufficient to consider only simpler cases. When dealing with
multi-parameter families of self-adjoint endomorphisms, analytic dependence of eigen-
values and eigenvectors is generally lost, as demonstrated in Example A.6.

If we consider a multi-parameter family of hyperbolic monic polynomials PA(T) of de-
gree n, where T ∈ U ⊆ Rm is an open set with m > 1, then the proof of Theorem A.25 cannot
be directly extended, as we are no longer able to choose an analytic square root of −b2(T).
For instance, taking A(t, s) = (0,−t2 − s2) yields the family PA(t,s)(x) = x2 − t2 − s2, whose
roots ±

√
t2 + s2 are not analytic at the origin.

However, if the eigenvalue multiplicities remain constant in a neighbourhood of a given
point, then partial regularity can be recovered. When the multiplicities do not change as
T varies, we have no crossing of eigenvalues, so the polynomial PB(T) in Tschirnhaus form
splits simultaneously, which prevents the case of non-constant b2 with b2(0) = 0. Thus, the
square roots of −b2 > 0 are analytic, and we can proceed in the same manner as before.
If the domain U is simply connected, the eigenvalues may be labelled so as to be analytic.
Theorem A.28. Let PA(T)(x) = xn + a1(T)xn−1 + · · · + an(T) for T ∈ U be a multi-parameter
family of hyperbolic monic polynomials of degree n with real analytic coefficients aj : U → R
for 1 ≤ j ≤ n, where U ⊆ Rm is a simply connected open set and m > 1. If the multiplicities
of the roots remain constant throughout U, then there exist analytic functions λj : U → R for
1 ≤ j ≤ n such that PA(T)(x) =

∏n
j=1(x− λj(T)) for all T ∈ U.

15Krzysztof Kurdyka (1957), Polish mathematician
16Laurentiu Paunescu (1952), Romanian-Australian mathematician
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A.6 Analysis

In this section, we have some results from the real analysis that we need in the book.

Example A.7. Consider the function f : R → R defined by

f(x) =
{
e− 1

x if x > 0
0 if x ≤ 0

.

For x < 0 it is obviously f(n)(x) = 0. For x > 0 we can use the induction over n to prove that
the n-th derivative of the function f has the form

f(n)(x) = Pn−1(x)
x2n f(x), (A.8)

wherePn−1(x) is a polynomial of degree n−1. The induction basis n = 1 gives f′(x) = f(x)/x2,
which is realized for P0(x) = 1. The induction step follows from

f(n+1)(x) =
(P′

n−1(x)
x2n − 2nPn−1(x)

x2n+1 +
Pn−1(x)
x2n+2

)
f(x)

=
x2P′

n−1(x)− (2nx− 1)Pn−1(x)
x2n+2 f(x) = Pn(x)

x2(n+1) f(x),

where Pn(x) is a polynomial of degree n given by Pn(x) = x2P′
n−1(x) − (2nx − 1)Pn−1(x).

Although it is sufficient to say that Pn(x) is a polynomial of degree not greater than n, it
is easy to see that the leading coefficient of Pn(x) is obtained by multiplying the leading
coefficient of Pn−1(x) by −(n+ 1), and it is equal to (−1)n(n+ 1)! 6= 0.

It remains to show that the right-hand derivative of f at x = 0 is zero. The exponential
dominates the powers of x > 0, for example for all m ∈ N0 we have

1
xm = x

(
1
x

)m+1
≤ (m+ 1)!x

∞∑
i=0

1
i!

(
1
x

)i
= (m+ 1)!xe 1

x ,

and therefore

lim
x↘0

e− 1
x

xm ≤ (m+ 1)! lim
x↘0

x = 0. (A.9)

Using (A.9) for m = 1, we see that

f′(0) = lim
x↘0

f(x)− f(0)
x− 0 = lim

x↘0

e− 1
x

x = 0.

Since (A.8) is established for x > 0, the limit (A.9) for m = 2n+ 1, with the assumption that
f(n)(0) = 0, implies

f(n+1)(0) = lim
x↘0

f(n)(x)− f(n)(0)
x− 0 = lim

x↘0

Pn−1(x)
x2n+1 e− 1

x = Pn−1(0) lim
x↘0

e− 1
x

x2n+1 = 0,

which by induction over n proves that f(n)(0) = 0 for every n ∈ N, and therefore f is smooth.
The function f is not analytic (at zero), since f(n)(0) = 0 holds for all n ∈ N0, and therefore

the Maclaurin17 series of f converges everywhere to the zero function, which cannot be
equal to f(x) for x > 0. In this way we obtain an example of smooth function that is not
analytic. 4

17Colin Maclaurin (1698–1746), Scottish mathematician
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LemmaA.29 (Hadamard’s lemma). If U 3 a is an open convex neighbourhood in Rn, then
for f ∈ F(U) there exist functions li ∈ F(U) for 1 ≤ i ≤ n such that for each x ∈ U we have

f(x) = f(a) +
n∑
i=1

(πi(x)− πi(a))li(x),

where li(a) = (∂f/∂πi)(a).

Proof. If we define h : [0,1] → R by h(t) = f(a+ t(x− a)), then since

h′(t) =
n∑
i=1

∂f
∂πi

(a+ t(x− a))(πi(x)− πi(a)),

we have

f(x)− f(a) = h(1)− h(0) =
∫ 1

0
h′(t)dt =

n∑
i=1

(πi(x)− πi(a))
∫ 1

0

∂f
∂πi

(a+ t(x− a))dt,

where
li(x) =

∫ 1

0

∂f
∂πi

(a+ t(x− a))dt,

so the function li is smooth and li(a) = (∂f/∂πi)(a) holds.

If f : U → V is a smooth function, where U ⊆ Rm and V ⊆ Rn are open subsets of Eu-
clidean spaces, then the (total) derivative of f at p ∈ U is the linear map f′(p) : Rm → Rn

such that for v ∈ Rm we have

(f′(p))(v) = d
dt

∣∣∣∣
t=0

f(p+ tv).

Theorem A.30 (Inverse function theorem). Let f : U → Rn be a smooth function for an
open U ⊆ Rn. If f′(p) is invertible for p ∈ U, then there exists a neighbourhood V ⊆ U of p
such that f↾V : V → f(V) is a diffeomorphism.

Proof. For example, see Lee [78, Theorem C.34].

A.7 Algebra

Let a set V has two binary operations + and ×, and let 0 be the neutral element for +. The
Jacobi identity is the equality given by

x× (y× z) + y× (z× x) + z× (x× y) = 0, (A.10)

for all x, y, z ∈ V . The standard cross product x × y satisfies the Jacobi identity, as well as
the commutator operation [x, y] = x × y − y × x. In a general case, we have the following
lemma.

Lemma A.31. In a submodule of an algebra over a ring that is closed to the commutator,
the Jacobi identity (A.10) holds for the commutator operation.

Proof. The Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 can be easily checked by com-
putation, since the direct substitution resulting twelve terms on the left hand side cancel
in pairs, xyz− xzy− yzx+ zyx+ yzx− yxz− zxy+ xzy+ zxy− zyx− xyz+ yxz = 0.
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It is interesting to consider a bilinear map f : Rm × Rm → Rn. In general, the image
Im f ⊆ Rn is not a vector subspace. However, if it is, then the following inequalities apply,
as stated in the theorem given below due to Howard18 in 1980 [69] (see also [98] for a
simpler proof).

Theorem A.32. If f : Rm×Rm → Rn is bilinear and surjective, then n ≤ 2m−1. Additionally,
if f is skew-symmetric, then n ≤ 2m− 3.

A.8 Number theory

Lemma A.33 (Dirichlet’s approximation theorem). For every c ∈ R and N ∈ N, there
exist m,n ∈ N0 with n ≤ N such that |nc−m| ≤ 1/N.

Proof. Consider the numbers pc − bpcc ∈ [0,1) for integers 0 ≤ p ≤ N. If we split the
interval [0,1) into N subintervals of equal lengths, according to the pigeonhole principle,
two of our numbers 0 ≤ p < q ≤ N must be in the same subinterval from where we obtain
|(qc− bqcc)− (pc− bpcc)| < 1/N. Finally, we put n = q− p and m = bqcc − bpcc.

18Ralph Elwood Howard (1950), American mathematician
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