NOTE

Series Expansion and Reproducing Kernels for Hyperharmonic Functions

Miroljub Jevtić and Miroslav Pavlović

Matematički Fakultet, Studentski trg 16, 11000 Beograd, Yugoslavia

Submitted by William F. Ames

Received January 4, 2000

First we show that any hyperbolically harmonic (hyperharmonic) function in the unit ball B in \mathbb{R}^n has a series expansion in hyperharmonic functions, and then we construct the kernel that reproduces hyperharmonic functions in some $L^1(B)$ space. We show that the same kernel also reproduces harmonic functions in $L^1(B)$.

Key Words: harmonic and hyperharmonic functions; hypergeometric functions.

1. INTRODUCTION

For $m > n - 1$ we define the measures $d\nu_m$ on the unit ball $B = \{x \in \mathbb{R}^n : |x| < 1\}$ by

$$d\nu_m(x) = \frac{2(1 - |x|^2)^{m-n}}{nB(n/2, m + 1 - n)} d\nu(x),$$

where $d\nu$ is the normalized Lebesgue measure on B and $B(\cdot, \cdot)$ denotes the Euler beta function.

For a C^2 function u on B let

$$\Delta_h u(x) = (1 - |x|^2)[(1 - |x|^2)\Delta u(x) + 2(n - 2)Ru(x)];$$

here

$$Ru(x) = \sum_{i=1}^{n} x_i \frac{\partial u}{\partial x_i} \quad \text{and} \quad \Delta u(x) = \sum_{i=1}^{n} \frac{\partial^2 u(x)}{\partial x_i^2}, \quad x = (x_1, \ldots, x_n) \in \mathbb{R}^n.$$
A function $u \in C^2(B)$ is harmonic in B, $u \in H(B)$, if $\Delta u = 0$, and hyper-harmonic in B, $u \in h(B)$, if $\Delta_n u = 0$ (see [2]). (Note that if $n = 2$, then $H(B) = h(B)$, but if $n \geq 3$, then $h(B) \cap H(B) = \{\text{constants}\}$.)

The main purpose of this paper is to construct the kernel $K_m(x, y)$, $m \geq n$, that reproduces harmonic and hyperharmonic functions in the following sense:

(1.1) If $f \in H(B) \cap L^1(B, d\nu_m)$, $m \geq n$, then

$$f(y) = \int_B K_m(x, y) f(x) d\nu_m(x), \quad y \in B.$$

(1.2) If $f \in h(B) \cap L^1(B, d\nu_m)$, $m \geq n$, then

$$f(x) = \int_B K_m(x, y) f(y) d\nu_m(y), \quad x \in B.$$

We first prove (1.1) for an arbitrary harmonic polynomial f by using the fact that it is a sum of harmonic homogeneous polynomials. If f is arbitrary we can use the easily proved fact that harmonic polynomials are dense in $H(B) \cap L^1(B, d\nu_m)$.

To prove (1.2) we show that if $f \in h(B)$ then there exists a unique sequence of harmonic homogeneous polynomials f_k of degree k, $f_k \in \mathcal{H}_k(\mathbb{R}^n)$, such that

(1.3) $f(x) = \sum_{k=0}^{\infty} F_k(x)f_k(x), \quad x \in B,$

where $F_0(x) = 1$ and $F_k(x) = F(k, 1 - n/2, k + n/2; |x|^2)$, $k \geq 1$ (as usual, $F(a, b, c; \cdot)$ denotes the hypergeometric function with parameters a, b, c (see [5, Chap. III])). From this (1.2) follows easily.

A motivation for a series expansion (1.3) is paper [1] of Ahern et al., who considered the case of generalized \mathcal{M}-harmonic functions on the complex unit ball.

2. HYPERHARMONIC EXPANSIONS

In [1] it is shown that every generalized \mathcal{M}-harmonic function on the complex unit ball in \mathbb{C}^n has a series expansion in homogeneous polynomials. In this section we prove an analogous result for hyperharmonic functions.

THEOREM 2.1. If $u \in h(B)$, then there exists a unique sequence of harmonic homogeneous polynomials $h_k \in \mathcal{H}_k(\mathbb{R}^n)$ such that

(2.1) $u(x) = \sum_{k=0}^{\infty} F_k(x)h_k(x), \quad x \in B,$
the series converging uniformly and absolutely on compact subsets of B. Conversely, the sum of any such series that converges uniformly on compact subsets of B is hyperharmonic in B.

Proof. Assume, first, that the series $\sum_{k=0}^{\infty} F_k(x)h_k(x)$ converges uniformly on compact subsets of B. To prove that the sum is hyperharmonic in B, it is enough to show that $\Delta_h(F_kh_k) = 0$, $k = 1, 2, \ldots$ (see [2]).

Let Δ_h be the Laplace–Beltrami operator on the unit sphere $S := \partial B$. Then there holds the formula

\begin{equation}
(2.2) \quad \Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{n - 1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \Delta_S u,
\end{equation}

where $u_r(y) = u(ry)$ for $y \in S$, $0 \leq r < 1$ (see [2]). A consequence is the formula

\begin{equation}
(2.3) \quad \Delta_S h_k(y) = -k(k + n - 2)h_k(y), \quad y \in S, k \geq 1.
\end{equation}

(See also [6, Section 3.1.4].)

The function $\phi_k(t) = F(k, 1 - n/2, k + n/2; t)$ satisfies the hypergeometric equation

\[t(1-t)\phi''_k(t) + [k + n/2 - (2 + k - n/2)t] \phi'_k(t) - k(1 - n/2)\phi_k(t) = 0. \]

Then a straightforward, although tedious, computation based on (2.2) and (2.3) shows that $\Delta_h(F_kh_k) = 0$.

Now let $u \in h(B)$. Since u_r, $0 < r < 1$, is continuous on S we have

\[u(ry) = u_r(y) = \sum_{k=0}^{\infty} u_k(ry), \quad y \in S, 0 \leq r < 1, \]

where the series converges in the norm of $L^2(S, d\sigma)$ and

\[u_k(ry) = \int_S u(ry)Z_k(y, \eta) d\sigma(\eta). \]

Here, Z_k are the zonal harmonics (see [4]), and $d\sigma$ is the normalized surface measure on S.

Applying (2.3) n times with $Z_k(y, \eta)$ instead of $h_k(\eta)$, and using the Green formula on the compact manifold S, we obtain

\[u_k(ry) = [-k(k + n - 2)]^{-n} \int_S Z_k(y, \eta)\Delta^2_S u(ry) d\sigma(\eta), \quad \text{for } k \geq 1. \]

Now the uniform convergence follows from the estimate

\[|Z_k(y, \eta)| \leq C(k + 1)^{n-2}, \quad \text{for } y, \eta \in S \text{ (see [4]).} \]
For fixed \(k \) and \(y \in S \) consider the function \(f(r) = u_k(ry) \). Since \(\Delta_k u = 0 \), we have

\[
\frac{\partial^2 u}{\partial r^2} + \frac{n-1}{r} \frac{\partial u}{\partial r} + \frac{2(n-2)}{1-r^2} r \frac{\partial u}{\partial r} = -\frac{1}{r^2} \Delta_S u_r.
\]

Hence,

\[
f''(r) + \frac{n-1}{r} f'(r) + \frac{2(n-2)}{1-r^2} rf'(r) = -\frac{1}{r^2} \int_S Z_k(y, \eta)(\Delta_S u_r)(\eta) \, d\sigma(\eta).
\]

Applying Green's formula again, we get

\[
\int_S Z_k(y, \eta)(\Delta_S u_r)(\eta) \, d\sigma(\eta) = \int_S \Delta_S Z_k(y, \eta) u_r(\eta) \, d\sigma(\eta),
\]

where \(\Delta_S Z_k \) is taken with respect to \(\eta \).

As in (2.3) we find that

\[
\Delta_S Z_k(y, \eta) = -k(k+n-2) Z_k(y, \eta).
\]

Thus,

(2.4) \quad f''(r) + \frac{n-1}{r} f'(r) + \frac{2(n-2)}{1-r^2} rf'(r) = \frac{k(k+n-2)}{r^2} f(r).

Now we define the function \(g(t), 0 < t < 1 \), by \(f(t) = t^k g(t^2) \). After a direct computation, we find from (2.4) that

\[
t(1-t)g''(t) + [k+n/2 - (2 + k - n/2)r]g'(t) - k(1-n/2)g(t) = 0.
\]

This is the hypergeometric equation with parameters \(a = k, b = 1 - n/2, c = k + n/2 \). The general solution is given by

\[
g(t) = C_1 F(a, b, c; t) + C_2 t^{1-c} F(a', b', c'; t),
\]

where \(a' = a + 1 - c, b' = b + 1 - c, c' = 2 - c \) (see [5]).

In our case we have \(F(a', b', c'; 0) = 1 \) and \(g(t) = O(t^{-k/2}), t \to 0 \). It follows that \(u_k(ry) = A_k(y)F(a, b, c; r^2) r^k \). Clearly, \(A_k(y) \) is a spherical harmonics (i.e., the restriction to \(S \) of a harmonic homogeneous polynomial of degree \(k \)) because so is \(y \to Z_k(y, \eta) \). We define \(h_k \) by \(h_0(x) = u(0) \) and \(h_k(ry) = A_k(y) r^k \), whence \(u_k(x) = F_k(x) h_k(x) \). This finishes the proof of Theorem 2.1.
3. REPRODUCING KERNELS FOR HYPERHARMONIC FUNCTIONS

Following [4] let \(P(x, y) = (1 - |x|^2|y|^2)(1 - 2x \cdot y + |x|^2|y|^2)^{-n/2}, \) \(x \in B, y \in B, \) where \(x \cdot y \) stands for the inner product in the \(n \)-space. The kernel \(P(x, y) \) has the series expansion \(P(x, y) = \sum_{k=0}^{\infty} Z_k(x, y), \) \(x \in B, y \in B, \) where, now, \(Z_k(x, y) \) are the extended zonal harmonics (see [4]).

For an integer \(m \geq n \) let

\[
K_m(x, y) = 1 + \frac{1}{\Gamma(m)} \int_0^1 [(1 - t)(1 - t|x|^2)]^{m-1} \frac{dm}{dt} [t^{m-1}P(tx, y)] \, dt.
\]

Lemma 3.1. For \(x \in B \) and \(y \in \overline{B} \) we have

\[
K_m(x, y) = \frac{\Gamma(n/2)}{\Gamma(m)} \sum_{k=0}^{\infty} \frac{\Gamma(m + k)}{\Gamma(n/2 + k)} F(k, 1 - n/2, n/2 + k; |x|^2) Z_k(x, y).
\]

Here, as usual, \(\Gamma(\cdot) \) denotes the Euler gamma function.

Proof. Using the integral representation of hypergeometric functions,

\[
F(a, b, c; x) = \frac{1}{B(a, c - a)} \int_0^1 \frac{t^{a-1}(1-t)^{c-a-1}}{(1-t)^b} \, dt, \quad c > a > 0 \text{ (see [5])},
\]

we find that

\[
F(k, 1 - n/2, n/2 + k; |x|^2) = \frac{1}{B(k, n/2)} \int_0^1 t^{k-1}[(1 - t)(1 - t|x|^2)]^{n/2-1} \, dt.
\]

Hence

\[
K_m(x, y) = 1 + \frac{1}{\Gamma(m)} \int_0^1 [(1 - t)(1 - t|x|^2)]^{m-1} \frac{dm}{dt} \left(\sum_{k=1}^{\infty} t^{m+k-1} Z_k(x, y) \right) \, dt
\]

\[
= 1 + \frac{1}{\Gamma(m)} \sum_{k=1}^{\infty} \frac{\Gamma(k + m)}{\Gamma(k)} \frac{dm}{dt} \left(\sum_{k=1}^{\infty} \frac{\Gamma(k + m)}{\Gamma(k)} t^{k-1} Z_k(x, y) \right) \, dt
\]

\[
= 1 + \frac{1}{\Gamma(m)} \sum_{k=1}^{\infty} \frac{\Gamma(k + m)}{\Gamma(k)} \int_0^1 t^{k-1} F(k, 1 - n/2, k + n/2; |x|^2) \, dt
\]

\[
\times \int_0^1 t^{m+k-1} Z_k(x, y) \, dt
\]

\[
= \frac{\Gamma(n/2)}{\Gamma(m)} \sum_{k=0}^{\infty} \frac{\Gamma(k + m)}{\Gamma(k + n/2)} F(k, 1 - n/2, k + n/2; |x|^2) Z_k(x, y).
\]

Theorem 3.2. Let \(m \geq n \) be an integer.

(i) If \(f \) is a harmonic function in \(L^1(B, dv_m) \) then

\[
f(y) = \int_B K_m(x, y) f(x) \, dv_m(x), \quad y \in B.
\]
(ii) If \(f \) is a hyperharmonic function of class \(L^1(B, dv_m) \) then

\[
f(x) = \int_B K_m(x, y) f(y) \, dv_m(y), \quad x \in B.
\]

Proof.

(i) Assume first that \(f \) is a harmonic polynomial of degree \(k \). Then \(f(x) = \sum_{j=0}^k f_j(x) \), where \(f_j \in \mathcal{H}(\mathbb{R}^n) \).

Using Lemma 3.1 and the orthogonality of spherical harmonics of different degree, we find that

\[
\int_B K_m(x, y) f(x) \, dv_m(x)
\]

\[
= \frac{\Gamma(n/2)}{\Gamma(m)} \sum_{j=0}^k \frac{\Gamma(m + j)}{\Gamma(n/2 + j)} \int_0^1 r^{n-1}(1 - r^2)^{m-n} F(j, 1 - n/2, j + n/2; r^2) \, dr
\]

\[
\times \frac{2}{nB(n/2, m + 1 - n)} \int_S Z_j(r, \eta) f_j(r\eta) \, d\sigma(\eta)
\]

\[
= \frac{2\Gamma(n/2)}{\Gamma(m)} \sum_{j=0}^k \frac{\Gamma(m + j)}{\Gamma(n/2 + j)B(n/2, m + 1 - n)}
\]

\[
\times \int_0^1 r^{n-1+2j}(1 - r^2)^{m-n} F(j, 1 - n/2, j + n/2; r^2) \, dr.
\]

Using the equality

\[
\int_0^1 F(a, b, c; \xi t) t^{c-1}(1 - t)^{d-c-1} \, dt = \frac{\Gamma(c)\Gamma(d - c)}{\Gamma(d)} F(a, b; d; \xi),
\]

which holds provided that \(d > c > 0 \) (see [5]), we find that the last integral is equal to

\[
\frac{1}{2} \int_0^1 r^{n/2 - 1 + j}/(1 - r)^{m-n} F(j, 1 - n/2, n/2 + j; r) \, dr
\]

\[
= \frac{1}{2} \frac{\Gamma(n/2 + j)\Gamma(m - n + 1)}{\Gamma(j + m - n/2 + 1)} F(j, 1 - n/2, m - n/2 + j + 1; 1)
\]

\[
= \frac{\Gamma(m - n + 1)}{2} \frac{\Gamma(n/2 + j)\Gamma(m - n + 1)}{\Gamma(m + j)}.
\]

Hence,

\[
\int_B K_m(x, y) f(x) \, dv_m(x) = \sum_{j=0}^k f_j(y) = f(y).
\]

If \(f \) is arbitrary, we can use the easily proved fact that harmonic polynomials are dense in the harmonic \(H(B) \cap L^1(B, dv_m) \) space.
(ii) By Theorem 2.1,

\[f(y) = \sum_{k=0}^{\infty} F(k, 1 - n/2, k + n/2; |y|^2) f_k(y), \]

where \(f_k \in \mathcal{H}^k(\mathbb{R}^n) \). Assume that the series converges uniformly on \(B \). Then

\[\int_{B} K_m(x, y) f(y) \, dv_m(y) \]

\[= \sum_{k=0}^{\infty} \frac{\Gamma(n/2)}{\Gamma(m)} \frac{\Gamma(k + m)}{\Gamma(k + n/2)} F(k, 1 - n/2, k + n/2; |x|^2) \]

\[\times \int_{B} F(k, 1 - n/2, k + n/2; |y|^2) f_k(y) Z_k(x, y) \, dv_m(y). \]

Here, we have used again the orthogonality of spherical harmonics of different degree.

The last integral equals

\[\int_{B} F(k, 1 - n/2, k + n/2; |y|^2) f_k(y) Z_k(x, y) \, dv_m(y) \]

\[= \frac{2n}{nB(n/2, m + 1 - n)} \int_{0}^{1} r^{n-1} F(k, 1 - n/2, k + n/2; r^2) r^k \]

\[\times \int_{S} f_k(\eta) Z_k(x, \eta) \, d\sigma(\eta) \]

\[= \frac{f_k(x)}{B(n/2, m + 1 - n)} \int_{0}^{1} F(k, 1 - n/2, k + n/2; r) r^{k+n/2-1} (1 - r)^{m-n} \, dr. \]

Since

\[\int_{0}^{1} F(k, 1 - n/2, k + n/2; r) r^{k+n/2-1} (1 - r)^{m-n} \, dr \]

\[= \frac{\Gamma(n/2 + k) \Gamma(m - n + 1) \Gamma(m)}{\Gamma(m - n/2 + 1) \Gamma(m + k)}, \]

we obtain

\[\int_{B} K_m(x, y) f(y) \, dv_m(y) = \sum_{k=0}^{\infty} \frac{\Gamma(n/2) \Gamma(m + k)}{\Gamma(m) \Gamma(n/2 + k)} F(k, 1 - n/2, n/2 + k; |x|^2) \]

\[\times \frac{\Gamma(n/2 + k) \Gamma(m - n + 1) \Gamma(m) f_k(x)}{B(n/2, m - n + 1) \Gamma(m - n/2 + 1) \Gamma(m + k)} \]

\[= \sum_{k=0}^{\infty} F(k, 1 - n/2, k + n/2; |x|^2) f_k(x) = f(x). \]

If \(f(x) = \sum_{k=0}^{\infty} F_k(x) f_k(x) \) is hyperharmonic on \(B \) and \(0 < \rho < 1 \), we define a function \(F_{\rho} \) by \(F_{\rho}(x) = \sum_{k=0}^{\infty} F_k(x) \rho^k f_k(x) \), \(x \in B \).

At this point we need a lemma.
LEMMA 3.3. Let $f \in L^1(B, d\nu_m) \cap h(B)$. Then
\[
\lim_{\rho \to 1} \| F_\rho - f \|_{L^1(B, d\nu_m)} = 0.
\]

Proof. Since $\phi_f(x) = \phi_f(\rho y) = \sum_{k=0}^{\infty} F_k(r^k f_k(\rho y)$, $0 \leq \rho \leq 1$, $y \in S$, is a harmonic function on B for fixed $0 < \rho < 1$, we have
\[
\int_{S} | F_\rho(r^k(y)) | d\sigma(y) = \int_{S} | \phi_f(\rho y) | d\sigma(y) \leq \int_{S} | \phi_f(y) | d\sigma(y) = \int_{S} | f(r^k(y)) | d\sigma(y).
\]
Hence, $\int_{S} | f(\rho y) - F_\rho(\rho y) | d\sigma(y) \leq 2 \int_{S} | f(r^k(y)) | d\sigma(y)$, and the dominated convergence theorem shows that $\lim_{\rho \to 1} \| f - F_\rho \|_{L^1(B, d\nu_m)} = 0$.

Now let $f(x) = \sum_{k=0}^{\infty} F_k(x)f_k(x)$ be an arbitrary function in $L^1(B, d\nu_m) \cap h(B)$. Assuming that the series $\sum_{k=0}^{\infty} F_k(x)\rho^k f_k(x)$ converges uniformly on B for any fixed $0 < \rho < 1$, we see that
\[
\int_{B} K_m(x, y)F_\rho(y) d\nu_m(y) = F_\rho(x).
\]
Using this and Lemma 3.3, we find that
\[
\int_{B} K_m(x, y)f(y) d\nu_m(y) = f(x).
\]

So, to finish the proof of Theorem 3.2(ii) it remains to show that the series $\sum_{k=0}^{\infty} F_k(x)\rho^k f_k(x)$ converges uniformly on B for fixed $0 < \rho < 1$.

Let $x = r y$, $0 < r < 1$, $y \in S$. Using the same argument as in the proof of Theorem 2.1, we find that
\[
F_k(x)\rho^k f_k(x) = \frac{F_k(x)}{F_k(px)} F_k(px) f_k(px)
= \frac{F_k(x)}{F_k(px)} \left[-k(k+n-2)\right]^{-n} \int_{S} Z_k(y, \eta) \Delta^2_{x} f(rp \eta) d\sigma(\eta).
\]

The integral representation of hypergeometric functions, already used in the proof of Lemma 3.1, shows that
\[
F_k(x) = \frac{1}{B(k, n/2)} \int_{0}^{1} t^{k-1}(1 - t)(1 - t|x|^2)^{n/2-1} dt.
\]
Thus, $F_k(x) \leq F_k(px)$, $x \in B$, $k \geq 1$, $0 < \rho < 1$. Now the uniform convergence of the series $\sum_{k=0}^{\infty} F_k(x)\rho^k f_k(x)$ follows from this estimate and the estimates
\[
|Z_k(y, \eta)| \leq C(k+1)^{n-2}, \quad y, \eta \in S,
\]
and
\[
|\Delta^2_{x} f(rp \eta)| \leq C_f(\rho, n), \quad 0 < r < 1, \eta \in S.
\]

Remark. A similar argument shows that if $f \in L^1(B, d\nu_m) \cap h(B)$ and $P_h f_\rho$, $0 < \rho < 1$, is a hyperharmonic Poisson integral of a function f_ρ defined by $f_\rho(y) = f(\rho y)$, $y \in S$, then $\lim_{\rho \to 1} \| f - P_h f_\rho \|_{L^1(B, d\nu_m)} = 0$. So, to finish the proof of Theorem 3.2 (ii), we can use the functions $P_h f_\rho$ instead of the functions F_ρ.
REFERENCES