ADDENDA TO “FUNCTION CLASSES”

MIROSLAV PAVLOVIĆ

Abstract. This text contains a conjecture on (C, α)-summability of Fourier series, and also new proofs which I was not able to find during the writing the book.

1. A CONJECTURE ON (C, α) CONVERGENCE

On page 192, Problem 4.1, I posed the question: Whether there exists a function $f \in H^p(\mathbb{T})$, $1 < p \leq 2$, such that $\sigma_n^{1/p-1} f(\zeta)$ diverges for a.e. $\zeta \in \mathbb{T}$? Here we add:

Conjecture. Let $1 < p \leq 2$ and $\alpha = 1/p - 1$.

(i) If $\beta > \alpha$ then $\sigma_n^\beta f(\zeta) \to f(\zeta)$ for a.e. $\zeta \in \mathbb{T}$.

(ii) There is a function $f \in H^p(\mathbb{T})$ such that $\sigma_n^\alpha f(\zeta)$ diverges a.e.

(iii) There exists a function $f \in C(\mathbb{T})$ such that $\sigma_n^{-1/2} f(\zeta)$ diverges a.e.

Of course, (iii) imply (ii) for $p = 1/2$.

We recall that if $f \in H^p$, $p < 1$, then $\sigma_n^\alpha(\zeta) \to f(\zeta)$ [Zygmund]. On the other hand, there exists a function $f \in H^1(\mathbb{T})$ such that $\sigma_n^0 f(\zeta)$ diverges a.e. [Kolmogorov–Hardy–Rogosinski].

The above conjecture is based on the relation [3, Theorem 4.13]

\[
\lim \inf_{n \to \infty} |\sigma_n^{\alpha} f(\zeta) - f(\zeta)| = 0, \quad \text{for a.e. } \zeta \in \mathbb{T},
\]

which is obtained from

\[
\lim \inf_{n \to \infty} \|\sigma_n^{\alpha} f - f\|_p = 0
\]

by means of Fatou’s lemma, whereas (2) follows from

\[
\lim_{n \to \infty} \frac{1}{L_n} \sum_{k=0}^{n} \frac{1}{k+1} \|\sigma_k^{\alpha} f - f\|_p = 0, \quad \text{where } L_n = \sum_{k=0}^{n} \frac{1}{k+1}.
\]

The latter can be “easily” deduced from

\[
\frac{1}{L_n} \sum_{k=0}^{n} \frac{1}{k+1} \|\sigma_k^{\alpha} f\|_p^p \leq C_p \|f\|_p^p,
\]

and the deduction is left to the reader.

The “reader’s” proof of (3). Let $f \in H^p$, $\varepsilon > 0$, and choose a polynomial P of degree s such that $\|f - P\| < \varepsilon$. Then we have

\[
S_n f := \frac{1}{L_n} \sum_{k=0}^{n} \frac{1}{k+1} \|\sigma_k^{\alpha} f - f\|_p = \frac{1}{L_n} \sum_{k=0}^{m} \ldots + \frac{1}{L_n} \sum_{k=m+1}^{n} \ldots =: Q_n + R_n, \quad n > m > s,
\]
where m is fixed integer which will be chosen later on. It is easily checked that $\lim_{n \to \infty} Q_n = 0$. In order to estimate R_n we start from the inequality

$$R_n \leq 2^{p-1} \frac{1}{E_n} \sum_{k=m+1}^{n} \frac{1}{k+1} \left(||\sigma_k^p(f - P)||^p + ||\sigma_k^p P - P||^p + ||f - P||^p \right) = R'_n + R''_n + R'''_n.$$

By (4), we have $R'_n \leq C2^{p-1} ||f - P||^p < C2^{p-1} \varepsilon^p$, and, obviously, $S'''_n \leq 2^{p-1} \varepsilon^p$, so it remains to deal with S''_n. Since P is a polynomial, we have

$$\lim_{k \to \infty} ||\sigma_k^p P - P|| = 0.$$

Now choose m so that $||\sigma_k^p P - P|| < \varepsilon$ for $k > m$, which implies $R'''_n \leq 2^{p-1} \varepsilon^p$, concluding the proof.

2. Proof of Theorem 10.10

In the book, I prove this theorem under the hypothesis that $d \arg f(z) > 0$ and forgot to say that the reader should read the proof in the general case in the Spencer’s paper [4]. However, a proof can be created by analysis of Hörmander’s proof [2, pp. 160–161] of Prawitz’s theorem. It is shown there that if $f(0) = 0$, then, for a fixed r,

$$\begin{align*}
D(r) := \frac{2\pi r}{p} \frac{d}{dr} I_p(r, f) &= \frac{2\pi r}{p} \int_{\partial f(r\mathbb{D})} |w|^p \, d(\arg w)
\end{align*}$$

can be represented as

$$\begin{align*}
\sum_{j=1}^{n} \int_{A_j} \left(R_{1,j}(\alpha)^p + \sum_{k=1}^{m_j} \left[R_{2k+1,j}(\alpha) - R_{2k,j}(\alpha)^p \right] \right) d\alpha \left(\sum_{k=1}^{m_j} \int_{A_j} d\alpha \right) &= 0,
\end{align*}$$

where $A_j \subset [0, 2\pi]$ are disjoint intervals such that $|A_1| + \ldots + |A_n| = 2\pi$, and

$$R_{1,j} < R_{2,j} < \ldots < R_{2m_j+1,j}.$$

Assuming that $p > 2$, we apply the reverse Hölder inequality with exponent $2/p, 2/(2 - p)$ to obtain

$$D(r) \geq \left(\sum_{j=1}^{n} \int_{A_j} \left(R_{1,j}(\alpha)^2 + \sum_{k=1}^{m_j} \left[R_{2k+1,j}(\alpha) - R_{2k,j}(\alpha)^2 \right] \right) d\alpha \right)^{p/2} \left(\sum_{j=1}^{n} \int_{A_j} d\alpha \right)^{1-p/2}.$$

Since $(a - b)^\gamma \geq a^\gamma - b^\gamma$ when $a > b > 0$ and $0 < \gamma < 1$, we conclude that

$$D(r) \geq \left(\sum_{j=1}^{n} \int_{A_j} \left(R_{1,j}(\alpha)^2 + \sum_{k=1}^{m_j} \left[R_{2k+1,j}(\alpha) - R_{2k,j}(\alpha)^2 \right] \right) d\alpha \right)^{p/2} (2\pi)^{1-p/2} = \left(2\pi r \frac{d}{dr} I_2(r, f) / 2 \right)^{p/2} (2\pi)^{1-p/2} = 2^{p/2} A(r, f)^{p/2} (2\pi)^{1-p/2}.$$

Hence

$$\frac{d}{dr} I_p(r, f) \geq \frac{p}{2\pi r} 2^{p/2} A(r, f)^{p/2} (2\pi)^{1-p/2}$$

just in the case when $d \arg f(z) > 0$.

Remark 1. Since, by Green’s formula,

$$\int_{\partial G} |w|^p \, d(\arg w) = \text{Im} \int_{\partial G} |w|^{p-2} \overline{w} \, dw = p \int_{G} |w|^{p-2} \, dA(w),$$

we see that the Hörmander’s proof yields the inequality

$$\begin{align*}
p \int_{G} |w|^{p-2} \, dA(w) &\geq 2^{p/2} (2\pi)^{1-p/2} |G|^{p/2},
\end{align*}$$

where $G = f(r\mathbb{D}), 0 < r < 1$, and f is a real-analytic homeomorphism from \mathbb{D} onto $f(\mathbb{D})$ such that $f(0) = 0$.

3. A **Hardy–Stein identity for locally univalent harmonic mappings**

A function \(f \in h(\mathbb{D}) \) is said to be locally univalent if for every \(a \in \mathbb{D} \) it is univalent in some neighborhood of \(a \).

Theorem 2. If \(p > 0 \) and \(f \) is locally univalent, then the function \(M_p(r, f) \), \(0 \leq r < 1 \), is of class \(C^1 \) and the formula

\[
d\ell_{M_p}(r, f) = \frac{1}{2\pi r} \int_{\partial \mathbb{D}} \left(p^2 |f|^{p-2}(|h'|^2 + |g'|^2) + 2p(p-2)|f|^{p-4} \text{Re}(f^2h'g') \right) \, dA(z)
\]

holds, where the integral is absolutely convergent.

Proof. The absolute convergence of the integral is a consequence of its absolute convergence on the closed discs \(D \subset \mathbb{D} \) in which \(f \) is univalent. In order to prove the latter, it suffices to note that \(D \) can be chosen so that \(f \) is quasiconformal on \(D \). This implies

\[
\int_D |\ldots| \, dA \leq C \int_D |f|^{p-2} \, dA, \quad \text{where } J_f \text{ is the Jacobian of } f,
\]

i.e.,

\[
\int_D |\ldots| \, dA \leq C \int_{f(D)} |w|^{p-2} \, dA < \infty.
\]

Because of that we may assume that \(r \neq |a_j| \) for all \(j \). By Lewi’s theorem, we have that \(J_f \neq 0 \) in \(\mathbb{D} \), and the zeroes of \(f \) are isolated; denote the zeroes by \(a_j, j \geq 1 \), and assume that the sequence \(|a_j| \) is increasing. Let \(|a_j| < r \) for \(j \leq k \). Let \(\Omega = \Omega_{r, \rho} \) denote the domain bounded by the circles \(|z| = r \) and \(|z - a_j| = \rho \), where \(\rho \) is chosen to be “infinitesimally” small. Then apply the (Green) formula

\[
\int_{\Omega} \Delta u \, dA = \oint_{\partial \Omega} \frac{\partial u}{\partial n} \, d\ell,
\]

where \(d\ell \) is the arc-length element, and \(\frac{\partial u}{\partial n} \) the derivative of \(u \) in the direction of the unit vector \(\vec{n} \) oriented accordingly with the orientation of \(\partial \Omega \). We get

\[
\int_{\Omega} \Delta u \, dA = r \frac{d}{dr} \int_0^{2\pi} u(r e^{i\theta}) \, dt - \sum_{j=1}^{k} \rho \frac{d}{d\rho} \int_0^{2\pi} u(a_j + \rho e^{i\theta}) \, d\theta, \quad \text{where } u = |f|^p, \ p > 0.
\]

Now it suffices to prove that

\[
\lim_{\rho \to 0^+} \rho \int_0^{2\pi} u(\rho e^{i\theta}) \, d\theta = 0,
\]

and then translate this identity to the points \(a_j \) to obtain the desired result. We may assume that \(f(0) = 0 \) because otherwise the proof is trivial. Then write \(f \) as \(f(z) = h(z) + g(z) \). Since \(J_f(0) \neq 0 \), we see that \(|h'(0)| \neq |g'(0)| \). Assuming this, we have

\[
\left| \frac{d}{d\rho} \int_0^{2\pi} |f(\rho e^{i\theta})|^p \, d\theta \right| \leq p \int_0^{2\pi} |f(\rho e^{i\theta})|^{p-1} \left| \frac{d}{d\rho} f(\rho e^{i\theta}) \right| \, d\theta
\]

\[
\leq C \int_0^{2\pi} |f(\rho e^{i\theta})|^{p-1} \, d\theta \leq C \int_0^{2\pi} \left| h'(0) - g'(0) \right| \rho - \rho^2 \psi(\rho e^{i\theta}) \, d\theta,
\]

where \(\rho \) is sufficiently small and \(\psi \) is a function continuous in the disc \(\rho \mathbb{D} \). This implies that

\[
\rho \frac{d}{d\rho} \int_0^{2\pi} |f(\rho e^{i\theta})|^p \, d\theta \leq C \rho^p,
\]

which, together with the formula

\[
\Delta(|f|^p) = p^2 |f|^{p-2}(|h'|^2 + |g'|^2) + 2p(p-2)|f|^{p-4} \text{Re}(f^2h'g'),
\]

concludes the proof. \(\square \)
4. **A Holland–Twomey–Spencer theorem for QC harmonic mappings**

The case $p < 2$ of the following theorem is discussed in [3, Corollary 10.8].

Theorem 3. Let f be a QC harmonic mapping and $p \geq 2$. Then each of the following quantities is equivalent to $\|f\|_p^p$:

\begin{equation}
\int_0^1 |f(r \mathbb{D})|^{p/2} dr, \quad \int_0^1 \left(\int_{r \mathbb{D}} (|h'|^2 + |g'|^2) \, dA \right)^{p/2} dr, \quad \int_0^1 P(r, f)^p dr,
\end{equation}

where $P(r, f) = \sum_{n \in \mathbb{Z}} |\hat{f}(n)| r^n$.

Proof. Denote these quantities by Q_1, Q_2, and Q_3, respectively. Since

\begin{equation}
|f(r \mathbb{D})|^2 = \int_{r \mathbb{D}} (|h'|^2 - |g'|^2) \, dA,
\end{equation}

we have, by the quasiconformality of f that $Q_1 \asymp Q_2$. In proving that $\|f\|_p^p \leq CQ_2$, we start from the inequality

\begin{equation}
M^p_p(r, f) \leq \frac{C}{r} \int_{r \mathbb{D}} |f|^{p-2}(|h'|^2 + |g'|^2) \, dA,
\end{equation}

which follows from (8), and

\begin{equation}
\int_0^1 M^p_\infty(r, f)^p dr \leq C\|f\|_p^p,
\end{equation}

and then proceed exactly as in [1]. It remains to prove that $\|f\|_p^p \geq CQ_1$, since “$Q_2 \asymp Q_3$” can be proved by use of “L^p-integrability”.

It follows from Theorem 2 that

\begin{align*}
2\pi r \frac{d}{dr} M^p_p(r, f) &\geq \int_{r \mathbb{D}} (p^2|f|^{p-2}(|h'|^2 + |g'|^2) - 2p(p-2)|f|^{p-2}|h'| |g'|) \, dA \\
&\geq \int_{r \mathbb{D}} 2p|f|^{p-2}(|h'|^2 + |g'|^2) \, dA \geq \int_{r \mathbb{D}} 2p|f|^{p-2}(|h'|^2 - |g'|^2) \, dA \\
&= 2p \int_{f(r \mathbb{D})} |w|^{p-2} dA(w).
\end{align*}

Now, by Remark 1, we see that if $f(0) = 0$, then $\|f\|_p^p \geq CQ_1$. That should be all. □

References