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Abstract

State-of-the-art methods in multidimensional NLTE radiative transfer are based on the use of local approximate lambda operator
within either Jacobi or Gauss—Seidel iterative schemes. Here we propose another approach to the solution of 2D NLTE RT problems,
Forth-and-Back Implicit Lambda Iteration (FBILI), developed earlier for 1D geometry. In order to present the method and examine its
convergence properties we use the well-known instance of the two-level atom line formation with complete frequency redistribution. In
the formal solution of the RT equation we employ short characteristics with two-point algorithm. Using an implicit representation of the
source function in the computation of the specific intensities, we compute and store the coefficients of the linear relations J = a + bS
between the mean intensity J and the corresponding source function S. The use of iteration factors in the ‘local’ coefficients of these
implicit relations in two ‘inward’ sweeps of 2D grid, along with the update of the source function in other two ‘outward’ sweeps leads
to four times faster solution than the Jacobi’s one. Moreover, the update made in all four consecutive sweeps of the grid leads to an
acceleration by a factor of 6-7 compared to the Jacobi iterative scheme.
© 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction Hence the need to take it into account in modern 3D (mag-

neto) hydrodynamic simulations (see, e.g. Hayek et al.,

Radiative transfer (RT) is at the heart of many astro-
physical problems. In order to interpret the observed spec-
tra of astrophysical objects it is essential to solve the RT
problem. Radiation not only carries the information on
the physical state of the medium but also determines its
structure and properties. Above all, it plays a fundamental
role in the energy and force balance within the medium.
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2010). NLTE RT problems are very demanding because
of their non-local nature: radiation is decoupled from the
local thermal state of the gas via scattering processes, SO
that the state of the gas at one point in the medium
depends, via radiative processes, on the state of the gas
at all other points. In order to compute emergent intensity
in spectral lines (or, in general, the whole set of Stokes coef-
ficients) from a given atmospheric model (with a given run
of temperature and pressure/density), the coupled equa-
tions of radiative transfer and statistical equilibrium have
to be solved. The coupling of the atomic level populations
and the radiation fields in the corresponding spectral line
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transitions is generally highly non-linear. Because of all
that, the specific intensity of radiation, which fully
describes the radiation field, is a function of seven vari-
ables: three spatial and two angular coordinates, frequency
and time. Even if we neglect the time dependence in the line
transfer problems, and if we discretize all the variables
using a grid of 100 points for each of them, we have
the specific intensity characterized by 10" values. Thus,
the solution of the RT problem is very time and memory
consuming.

Due to these difficulties, NLTE RT problems have usu-
ally been restricted to 1D geometry. However, for many
objects (e.g. inhomogeneous stellar atmospheres, rotating
stars, accretion disks, solar prominences) the plane-parallel
or spherically symmetric 1D approximation is inadequate.
Although the theoretical formulation of the multidimen-
sional problem does not differ too much from 1D case,
the computational cost is increased by many orders of mag-
nitude. The direct solutions involving the inversion of huge
matrices are rather costly, while the most simple iterative
procedure, so-called A iteration,’ that solves the problem
equations in turn, is usually too slow to be of practical
use (for discussion on its convergence properties see, €.g.
Mihalas, 1978). Thus only fast iterative algorithms enable
efficient solution of multidimensional NLTE RT problems
with the short characteristics (SC) method almost exclu-
sively used for the formal solution. Mihalas et al. (1978)
were the first to apply the SC technique for the solution
of RT in 2D slab geometries by using the difference approx-
imation of the second-order differential equations. Kunasz
and Auer (1988) developed an algorithm for the formal
solution based on the SC solution of the first order differ-
ential RT equations and parabolic approximation of the
source function. This SC technique was widely exploited
in the last three decades within so-called ALI (Accelerated
Lambda Iteration) methods, based on the operator pertur-
bation technique (for a review see Hubeny, 2003). Probably
the most commonly used ALI method is the Jacobi itera-
tion scheme that employs the diagonal (local) part of the
exact Aoperator as an approximate lambda operator
(ALO) and computes the error introduced by this approx-
imation iteratively (Olson et al., 1986). It has been extended
to NLTE line transfer in 2D (see e.g. Kunasz and Olson,
1988; Auer and Paletou, 1994; van Noort et al., 2002),
and to polarized line RT: in 1D (Faurobert-Scholl et al.,
1997), in 2D cylindrical geometry (Mili¢, 2013), and in
3D with partial frequency redistribution (PRD) taken into
account (Anusha and Nagendra, 2011). The convergence
rate of the Jacobi method was usually increased by the
Ng acceleration technique (Ng, 1974). The Gauss—Seidel
method is twice as fast as the Jacobi method, being usually
further accelerated by the successive overrelaxation (SOR)
technique (Trujillo Bueno and Fabiani Bendicho, 1995). It

' A operator was firstly introduced by Schwarzschild as the operator
acting on the source function to give the mean intensity.

was generalized to the 2D line transfer problem by Léger
et al. (2007). Another very fast approach is the bi-conjugate
gradient method (e.g. Papkalla, 1995) that has been
recently generalized to the multidimensional polarized line
transfer with PRD by Anusha et al. (2011).

Here we propose another approach to the solution of
2D NLTE radiative transfer problems. Our aim is to gen-
eralize to 2D geometry the Forth-and-Back Implicit
Lambda Iteration — FBILI, previously developed for
NLTE line transfer problems in 1D in the paper by
Atanackovic-Vukmanovic et al. (1997), hereinafter
ACS97. For simplicity, in this paper we shall use two-level
atom model. The multilevel atom case in 1D is considered
by ACS97 and the transition from 1D to 2D will be
described in a forthcoming paper. The FBILI is an extre-
mely fast method that, without additional acceleration
technique, significantly outperforms available methods in
1D problems (for its convergent properties and the prob-
lems solved, see Atanackovi¢-Vukmanovic¢, 2007). A very
fast convergence to the exact solution is achieved by the
iterative computation of the coefficients of implicit linear
relations between the in-going radiation field intensities
and the line source function during the forward sweep of
the 1D grid and by their use in updating the source func-
tion together with the out-going specific intensities during
the backward sweep. Moreover, the use of an iteration fac-
tor in the ‘local’ coefficient of the implicit linear relations
enormously increases the convergence rate (for details see
Section 2).

We recall the basic idea of the FBILI method in the
solution of NLTE line formation in 1D geometry in Sec-
tion 2. The implementation of the FBILI method to 2D
Cartesian geometry is described in Section 3. In Section 4
we solve a simple test problem and discuss the results,
and in Section 5 we comment on our future work.

2. Forth-and-Back Implicit Lambda Iteration (FBILI) basics

The FBILI method is developed and fully described in
the paper by ACS97. The essential features of this
approach are the following:

e Two-point boundary nature of the problem, i.e. the exis-
tence of two separate families of boundary conditions
naturally suggests the separate description of the propa-
gation of the in-going intensities of the radiation field /7,
with initial conditions at the surface and that of the out-
going intensities / :“ﬂ with initial conditions at the bottom
of the system. This recalls the basic idea of a forth-and-
back scheme.

e The physics of radiative transfer is almost linear, hence a
linear algorithm is feasible for the solution of the
problem.

e An implicit representation of the source function is used
in the computation of both the in-going and the out-
going intensities with a piecewise parabolic behavior of
the source function as a suitable assumption.
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Before we present the FBILI algorithm in more detail let
us stress here the main reason for its high convergence. As
well-known the slow convergence of the classical Lambda
iteration is due to the fact that it computes the total mean
intensity J(t) from the old source function $°(t), keeping
thus from the previous iteration more information than
necessary. Apart from using the two-stream representation
of the radiation field, the FBILI method splits the mean
intensities J(t) and J*(z) into the local and non-local
components, with the local parts linearly dependent on
the unknown local values of the source function S(t) and
its derivative S'(t). At each iterative step only the non-local
part of the in-going mean intensity J~ (t) is computed from
the old values S°(t) in the forward sweep of 1D grid,
whereas the non-local part of J* (1) and the local part of
both J (1) and J* (1) are computed from the updated val-
ues of S(7) in the backward sweep. The fact that the only
peace of information transferred from the previous itera-
tion is contained in the non-local part of the in-going mean
intensity J~(7) ensures an extremely high convergence rate
of the FBILI method.

In order to demonstrate the FBILI approach, we shall
consider the two-level atom line transfer with complete fre-
quency redistribution in a static and isothermal plane-par-
allel 1D medium with no background continuum. Under
these assumptions, the RT equation takes the form:

dl,,(t

2D _ g [14(0) - (2], 0
where 7, ,(7) is the specific intensity of the radiation field at
the mean optical depth 1, at frequency v and direction p(u
is the cosine of the angle between the photon’s direction
and the outward normal). The absorption-line profile, ¢,,
is normalized to unity. The frequency independent line
source function is

S(x) = eB+ (1 — 8)J (), 2)

where ¢ is the photon destruction probability, B is the
Planck function, and

s =5 [ o | 1fm<r>du 3)

is the scattering integral.

The specific intensities incident onto the boundaries, i.e.
the in-going intensities /, (r = 0) incident onto the surface
and the out-going intensities /| (¢ = T) incident onto the
bottom of the medium, are considered as given.

In the numerical solution of the RT equation (1), the
discrete set of specific intensities with frequencies
vi, i =1, NF, and directions y;, j =1, ND is considered,
and all the relevant depth-dependent functions are evalu-
ated on a finite grid of the mean optical depth values
T, /= 1, NL.

The propagation of the unknown radiation field “along
a ray” can be represented by using the integral form of the
RT equation

Lu(t) = Lu(tiy)e ™ —0—/0 S(t)edt, 4)

and by adopting a polynomial representation for the source
function S(t) between two successive depth points / — 1
and /. Here, A = At¢,/p is the monochromatic optical path
between the two points, with At =1, — 7,_;.

Assuming a piecewise parabolic behavior for the source
function we can rewrite the RT equation (4) for the in-
going intensities in the following form:

Iy =1 e +q;S1+p;Si+r/S) (5)

Thus we get an implicit linear relation between the in-
going specific intensities and yet unknown local source
function S; and its derivative S). For brevity, in Eq. (5)
we omitted the dependence of 7 on v and u, and we put
the depth index as the subscript of all depth-dependent
quantities. The coefficients p;,q; and r; are given in the
Appendix of ACS97 (the reader should note that the nota-
tion here is different from that used in the paper), and by
Eq. (20) of this paper as well. They depend only on the
optical distance A. The first two terms on the right-hand
side of Eq. (5) represent the non-local part of the in-going
specific intensity, which is the only one that depends line-
arly on the old values of the source function at all optical
depths 7 < ;. Proceeding from the given boundary condi-
tion for the in-going intensities at the surface (/] is usually
assumed to be zero), the explicit values of all other intensi-
ties /,_, are obtained by previous recursive application of
Eq. (5) with the old values of S(r) and S'(7) at 7 < 1,.
The derivatives S'(t) at t,(I =2, NL— 1) are computed
by using Lagrangian interpolation of the second order at
three successive points, whereas the linear behavior of
S(7) is assumed in the boundary layers.

By grouping together the known terms and integrating
Eq. (5) over frequencies and directions, we obtain a local
implicit linear relation:

J, =a; +b;S+¢ S (6)

We compute the coefficients a;, b, and ¢;, and store
them for further use in the backward process of computa-
tion of the new values of S(7).

In the backward process, using the integral form of the
RT equation for the out-going intensities we can write

A
Iy =1,e" —|—/ S(t)e"dt
0

=1} e+ 4 St +p/Si+7S,. (7)

Here again we assume piecewise parabolic behavior of
the source function within each layer (t;,7,.,). The coeffi-
cients p/, ¢/ and r/ are given in the Appendix of ACS97.

We start from the bottom layer where the out-going spe-
cific intensities /), are given, and consequently J;, is
known.

By taking into account Eq. (6) for J,,, we derive a sim-
ilar relation for Jy;. Therefrom, after having eliminated the
derivative S}, according to
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Syi 1 = Sy = [Sve — Swi1]/Av, (8)

we obtain the coefficients ay;, by, and cy; of the linear
relationship

I = any + bSne + eneSni-- )

On the other hand, Eq. (6) and angle and line frequency
integrated Eq. (7), the both applied to the point / = NL — 1,
together with Eq. (8) allow us to express Jy;_; also as a
linear combination of Sy; and Sy;_; with the known
coefficients:

In—1 = anp—1 + by 1Sne + enp—1Sni-1- (10)

Substituting Eqs. 9 and 10 into Eq. (2) for 7y, and 7y,
respectively, we can easily derive the new values of Sy; and
Snr-1. The source function derivatives S}, and S, , are
obtained from Eq. (8), and the out-going intensities 7},
from Eq. (7).

Let us note that when solving the RT problem in a con-
stant property, semi-infinite medium (the usual test prob-
lem), we take that J), =Sy, and S), =0, hence
immediately updating the source function according to:

B+ (1 —e)ay,
S 1=(1—¢)(by + 1)

Sn (11)
For each successive upper depth point we proceed as fol-
lows. The coefficients of the relation for J, (Eq. (6)) are
known from the forward process. Since we assume para-
bolic behavior of the source function, we can use the
relation
! 2 /
SI:A—T[S,H -8 =S (12)
to express S) in terms of the known (just updated) values of
Si+1 and S| and the thus far unknown §,. Using Eq. (12)
we can eliminate the derivative S from Eq. (6) to get J; as
a linear function of S, only. Integrating the formal
solution for 7} (Eq. (7)) and taking into account that all
the terms except S, are known, similar expression for J;
is straightforwardly derived. Consequently, for each depth
point 7; we obtain the linear relation

J(t) =a+bS(7) (13)

that together with Eq. (2) allows us to derive the new value
of §;. With new source function S; we can compute new
derivative S, using Eq. (12) and I, using Eq. (7). So the
computation of the new source function together with the
outgoing intensities is performed during the backward pro-
cess layer by layer to the surface.

Let us stress here that the iterative computation of the
coefficients of the implicit relations, rather than that of
the intensities themselves, provides a high convergence
rate. A much higher convergence rate is achieved by
the use of the iteration factor (I; e +¢; S;-1)/S} in the
‘local’ coefficient (coefficient of the local source function
S;) of Eq. (5):

A,
I; = (%#S”erl)&qtr,s’,. (14)
I

In other words, during the forward process at cach
depth t; we retain, for further use in the back-substitution,
the ratio of the non-local part of the in-going intensity to
the value of the current local source function S7. It repre-
sents the only piece of information transferred from the
previous iteration. This ratio of two homologous quantities
is a good quasi-invariant iteration factor, which plays a
very important role in accelerating the iterative procedure.
It quickly attains its exact value and leads to the exact solu-
tion of the whole procedure with an extremely high conver-
gence rate.

3. FBILI method in 2D

In this Section we shall describe how FBILI method can
be implemented in the case of 2D medium in Cartesian
geometry.

For simplicity we shall consider again two-level atom
line transfer with complete frequency redistribution in a
static isothermal medium with no background continuum.
Let us assume that the medium is infinite and homoge-
neous in the z-direction, so that we solve the RT equation
in the (x,y) plane (see Fig. 1) in the ‘along the ray’ form:

dl(x,y,0,9,v)

= GO 0..v) = S(x.y)) (13)

In order to discretize the RT equation we choose a 2D
irregularly spaced spatial grid with NX points in the
x-direction and NY points in the y-direction. The direction
of propagation of the photons is given by the polar angle
0, measured with respect to the z-axis, and the azimuthal

Fig. 1. Ray propagation and the definition of angles in 2D geometry. The
short characteristics at grid point L for a ray propagating from the lower left
intersects the cell boundaries at upwind point U and downwind point D.
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angle ¢, measured with respect to the x-axis. The
normalized line absorption profile ¢(v) for pure Doppler-
broadening is given by the Gaussian profile function

d(v) = me’(""“)z/ A% and dr, is the line integrated
optical path length along the ray.

The two-level atom line source function in 2D is given
by:

S(x,y) =eB+ (1 —e)J(x,y)

1
:sB+(l—s)E

X /;: d)(v)dvf](x,y, 0,¢,v)dQ, (16)

where dQ = sin 0d0d .

Here we will describe how we can solve the problem
equations (15) and (16) using the basic ideas of FBILI.
Since the formal solution of the RT equation is at the heart

of each iterative method we will first present it as given by
ACS97.

3.1. Formal solution

In 2D geometry the formal solution of the RT equation
is obtained by sweeping the grid four times. We label with
k=1,2,3,4 the four sweeps in the corresponding quad-
rants of the x — y coordinate system (see Fig. 2). Let us
denote by k£ =1 the sweep that includes the directions of
the specific intensity corresponding to 0 < ¢ < 7/2 (i.e.
the sweep characterized by increasing x and y); by £ =2
the sweep that includes the directions corresponding to
n/2 < ¢ < 7 (i.e. the sweep characterized by decreasing x
and increasing y), etc. We take that y = 0 is the surface
of the medium closer to the observer. We will refer to the
directions corresponding to the sweeps 1 and 2 as “inward”
and those corresponding to the sweeps 3 and 4 as
“outward.”

YA
ymax U3
j+1 U4 @ ®
: L
® ©) ,
-1 U U
0
i-1 i i+1
0 X X

max

Fig. 2. Four sweeps through the local point L of 2D grid in (x,y) plane.
Short characteristics and the corresponding upwind points U' — U* are
indicated.

Like in most of the contemporary methods, we combine
the integral form of the radiative transfer equation for its
formal solution with the so-called short characteristics
approach. In 2D geometry, for each sweep we can rewrite
Eq. (4) in the following form:

A
I, =1Iye® +/0 S(t)e'Adt. (17)

For simplicity’s sake we dropped the sweep index k.
Here A denotes the monochromatic optical path between
the local grid point L = (i, ), i.e. the point where the spe-
cific intensity is to be computed, and the “upwind” point
U, namely the point of intersection between the direction
of propagation of the ray and the nearest previous grid line
(see Figs. 1 and 2). The integral in Eq. (17) can be solved
analytically if we assume some polynomial representation
of the source function on each given subinterval. In the
standard short characteristics approach (e.g. Kunasz and
Olson, 1988), assuming Lagrangian parabolic approxima-
tion, the integral is expressed in terms of the source func-
tions at three points: upwind (U), local (L) and
downwind (D) (the latter being the successive intersection
point, see Fig. 1), so that Eq. (17) becomes:

I, =1Iye ™™+ (PuSuy + V1S, + ¥nSh), (18)

where the coefficients W depend on the interpolation
weights. Instead, short characteristics between two points
U and L are employed in the FBILI. The integral is then
expressed in terms of the source function at these two
points and the source function derivative at local point L:

IL :[U67A+pLSL+qLSU+FLSIL. (19)

It is important to note that upwind point U is not the
grid point and that the corresponding values of intensity
and source function, /; and Sy, must be evaluated by inter-
polation (see e.g. Auer and Paletou, 1994). The coefficients
p;, q; and r; depend solely on A, and thus implicitly on
direction and frequency. If we assume a piecewise parabolic
behavior of the source function, their values are given by:

2 W (2 2
n=l-gret 3ty
2 2 2
= (1+34)
A 2
rp=—-14+——e?(1+—). (20)

Let us note that the specific intensity / and the first
derivative of the source function S are the functions not
only of the coordinates (like S), but also of the direction
and the frequency. The local derivative of the source func-
tion over the optical path length can be expressed in terms
of partial derivatives with respect to x and y-axes, and in
the case of unit opacity (y = 1) can be cast into the form:
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S (v,0,¢9) = 20 K£>L cos ¢ sin 0 + <3_y>L sin ¢ sin 0}.
(21)

The angles 0 and ¢ are shown in Fig.1.
Using Eq. (21), Eq. (19) can be written for each sweep as
follows:

[L_]UeA+pLSL+qLSU+rL,x<%>L+VL4,\/‘((;_§>L» (22)
where the coefficients ;. and r;, follow directly from the
above definition of the coefficient »; and Eq. (21). Once
the values of the specific intensity and the source function
at the upwind point are obtained by interpolation and after
computing the coefficients p,,q,,7.. and r;,, the only
values that remain to be computed are the local partial
derivatives of the source function with respect to x and y.

3.1.1. Computation of the derivatives

The partial derivatives at the local point are obtained by
numerical differentiation. Here we use the Lagrangian
interpolation of the second order at three successive points
centered at the local one, that is:

oS
(a) = Wi_1jxSi-1 + WijxSij + Wir1jxSis1 (23)
ij
and
oS
(8_y> = Wij—18ij-1 + WijpSij + Wijs1Sij1- (24)
ij

The explicit expressions for the weights in Eq. (23) are:

W _ (xXi — Xi41)
i—1jx =
o (imt =) (i1 — Xi1)
1 1
Wiy =
W Xi —Xip1 Xp — Xi—1
X; — Xi_
Wit g = = Xi) 25)

(Xis1 —x,-)(xm —xi,l)

The weights used in Eq. (24) have the same form, except
they depend on the discrete values of y. At the boundaries
of the grid, linear approximation is used. Let us note that
the local source function S;; contributes to the local partial
derivatives, so that the corresponding weights can be
summed up with the coefficient p, in Eq. (22). In some of
the iterative procedures described in the next section this
led to a better stability and improved the convergence rate
of the method.

The formal solution given above will be implemented in
the different iterative schemes described in the next section.

3.2. Iterative procedures

Let us recall again that the simplest iterative scheme, A
iteration, computes the mean intensity (J = AS) and the
source function (S = S(J)) in turn. In order to compute
the mean intensity at any grid point it is necessary to

I Milié, O. Atanackovi¢| Advances in Space Research 54 (2014) 12971307

perform four sweeps of the grid, i.e. to compute the specific
intensities (using Eq. (22)) at all the grid points along each
sweep with the old values of the source function known
from the previous iteration. Once the mean intensities at
all grid points are obtained, one can compute new source
function using Eq. (16). Iterations are repeated until the
convergence is achieved. As already mentioned, this is an
extremely slow procedure because it transfers from one
part of the iterative step to the other more information
than necessary. In what follows we will explain how A
iteration in 2D has been accelerated up to now and how
it can be further accelerated by our approach. More specif-
ically, we will describe our implementation of Jacobi and
Gauss—Seidel methods, and two variants of the FBILI
procedure applied to 2D line transfer problem.

3.2.1. Jacobi-type iteration

An efficient way to accelerate the A iteration is to sim-
plify the treatment of the RT process, fully described by
the exact Lambda operator, by replacing the latter with
an approximate lambda operator A* (ALO). The errors
introduced by this approximation are then corrected itera-
tively. By using the “operator splitting” techniques (well-
known from numerical analysis) we can rewrite the formal
solution of the RT equation in the form:

J=AS=(A—-AN)S+A"S. (26)

Olson et al. (1986) were the first to point out that the
diagonal of the exact Amatrix itself represents an almost
optimum ALO.

In the following we will describe a Jacobi-type iterative
procedure and show that the coefficients b; of the local
source function play the role of the diagonal ALO in the
Jacobi method.

In our Jacobi-type procedure applied to 2D radiative
transfer, first we have to sweep the grid 4 times, and in
every sweep k to compute and store the coefficients of the
linear relation:

JE=dt +bls). (27)

This equation is obtained by the angle- and line profile
integration of Eq. (22), in such a way that the coefficients
dat contain all the non-local contributions to the specific

intensity at the given point L:
ak*i/mqﬁ(v)dv/ ke L gish 4 os k—Q—rJ‘ os '
L4 ) . U 9Py Ty ox), Lo\ By .

and are computed using the current values of the source
function and its derivatives, whereas the coeflicients blz,
which play the role of the diagonal ALO, have the form:

] 1 o
t=g [ o [ paa.

do,

(28)

(29)
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To be consistent, the contribution of the local source
function to the local partial derivatives (see Eqgs. (23) and
(24)) should be included in the coefficient bf rather than
in the coefficient at.

The total mean intensity at point L is obtained by
summing up the mean intensities in all the sweeps, and is
given by

JL :aL+bLSLa (30)

where a; =X} ¢ and b, =3, b are the total
coefficients.

Once we know the coefficients of Eq. (30), by inserting
Eq. (30) into Eq. (16) we can update the source function
at all depth points throughout the 2D grid by means of:

B+ (1 —¢)a
a 1—(1—8)bL '

In this way, the iterative computation of the coefficients
a; and b; of the implicit relation (30) instead of the
unknown quantities (J; and S;) themselves leads to much
more efficient corrections than in A iteration. This scheme
reduces the number of iterations by a few orders of magni-
tude with respect to the ordinary A iteration. However,
even this is not fast enough for some more demanding
problems (strong, scattering dominated lines).

S, (31)

3.2.2. Gauss—Seidel-type iteration

As it has just been explained, in the Jacobi iteration the
grid is swept four times and in every sweep the coefficients
d* and b* are computed from the “old” values of the source
function. Only after getting the total coefficients a; and b,
at all grid points, the source function is updated using Eq.
(31).

The Jacobi scheme can be substantially accelerated if the
new source function is computed as soon as the total coef-
ficients ay and by in Eq. (30) are available (known) at some
point. This is, for example, the situation at the boundary
grid points after sweeping the grid three times and comput-
ing the corresponding coefficients af and bf (k=1,3). We
start the fourth sweep with given values of @} and b; at
two boundaries: (1,5); j=1, NY and (i, NY); i=1, NX
(see Fig. 3). The new source function S; at these points is
easily computed using Eq. (31). As the sweep goes on,
the values of the source function at subsequent points are
progressively computed. The use of these updated values
in the computation of the local intensities along the fourth
sweep accelerates the convergence of the method. This
numerical scheme corresponds to the Gauss—Seidel method
known from numerical algebra (see e.g. Saad, 2003). For
the solution of the 1D NLTE RT problem this idea was
implemented in two different ways by Trujillo Bueno and
Fabiani Bendicho (1995) and ACS97. In the paper by
Trujillo Bueno and Fabiani Bendicho (1995) a standard
approximate A operator approach with three-point algo-
rithm to set up short characteristics of the second order
is used. This method has been explicitly generalized to
2D geometry by Léger et al. (2007). The FBILI method,

o . = - ®
¢ ® ® & )
¢ ® ® ® O j+1
L
¢ ° ® B O
N\
y N
X
® ® ® o o 1
i-1 i i+1
X

Fig. 3. 2D grid sweep in the 4th direction. Full dots correspond to the new
values of the source function, empty ones to the old values. The boundary
conditions are defined at L(1,/), j=1, NY and at L(i,NY), i =1, NX.

developed by ACS97, uses a two-point algorithm and com-
putes the coefficients of the implicit relations expressing the
intensities in terms of the source functions and its deriva-
tives at pairs of successive depth points.

The whole procedure is more complicated in multidi-
mensional geometries because of the spatial interpolations
needed to obtain values of the upwind source function
and intensities. Let us consider the 2D procedure in more
detail.

Fig. 3 illustrates the situation when the fourth (last)
sweep arrives at the grid point (i, j), after the 2D grid has
been swept three times. We assume that the source function
has been already updated at the points represented by full
dots. From now on we will refer to the sweeps during
which the formal solution is performed, and appropriate
coefficients are stored, with no correction of the source
function as the forward sweeps, whereas the sweeps during
which the source function is updated as the backward
ones.”

It is essential to realize that all the non-local contribu-
tions to the coefficient a; in Eq. (31) must be properly taken
into account. Some of these contributions have been
already updated in the current sweep (“new”), while the
others still have their values from the previous iteration
(“old”).

In our implementation of Gauss—Seidel iterative scheme
we first modify the formal solution in the following way:
We use Eq. 22 with partial derivatives given by Egs. (23)
and (24), thus expressing explicitly the contributions of

2 For example, Jacobi iteration consists of four forward sweeps followed
by the simultaneous update of the source function over the entire grid.
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Si—1j,Si+1,,8ij-1 and S; ;1 to the local specific intensity.
Furthermore, upwind source function Sy is also expressed
in terms of the source function values at the neighboring
grid points. As an example, for the point U; in Fig. 2 we
have:

Su=Wi1j1Si1jo1 +WijaSijo1 + Wisr 1811 (32)

In the above equation the weights W follow from the
Lagrangian interpolation of the second order, and, for con-
venience, we give the expressions:

(xu —x;)(xu — xi11)

W,'_ i—1 — 9
ol (xim1 = x;) (i1 — Xis1)
W.. | — (xU —XH)(XU _xi+1)
S (i = 2x;-1) (0 — Xip1) ’
Xy — Xi— Xy — X;
W = A =)~ x) (33)

(xi+1 - Xifl)(xm - xi) .

Finally, Eq. (22) for each sweep k takes the new form:
I=15e™ kS + 37> Sey. (34)
i j/

The expression for the parabolic interpolation formula
in the above equation is similar to the one given by Eq.
(5) in the paper by Kunasz and Auer (1988). Here the coef-
ficients ry ; depend on the approximations used to compute
the local derivative of the source function §; and to inter-
polate the value of the source function at upwind point Sy,.
Note that r;; (indices (i,;) refer to the grid point L) is
always zero, as all local contributions are added to the
coefficient p,. In this way, all the non-local contributions
(in all sweeps) except the upwind specific intensities are
explicitly expressed using eight neighboring source
functions.

Integration of Eq. (34) over angles and line profile
yields:

Ji=dl +bSL+ DD Sy (35)
i
Here, the coefficients are defined as:
= / $(v)dv / %ﬂgew, (36)
v = [owar [0 (37)
and
cf}’j, = /(j)(v)dv/%rfﬁj. (38)

After computing the coefficients af, b* and < i all four
directions, the source function can be updated according
to:

S B eB —+ (1 — 8) (GL —+ Zi’Zj'Ci’j’Si’j’) 39
L= 1= (1= o)y ! (39)

k -
where a; = 37 ,aj, by = Y ,b) and ¢y = Y.l

Let us point out here that the upwind intensity /7, con-
tained in the coefficient af, is computed from the updated
source function at previous points along the fourth sweep.
It is important to stress that if Eq. (39) is used to update the
source function in the backward sweep, all the proper
contributions of “new” and “old” neighboring source
functions are automatically taken into account, through
the sum 37,5 .c;ySyy;. We now propose the following,
Gauss—Seidel like scheme:

1. Sweep the grid in the first three directions (forward
sweeps), computing and storing the corresponding coef-
ficients a¥, b* and ¢ s, (k=1,3) of Eq. (35) by means of
the old values of the source function.

2. Start the fourth (backward) sweep. At the grid points on
the two boundaries (i.e. the points L= (1,j) and
L = (i, NY), marked in bold in Fig. 3), specific intensi-
ties of the incident radiation field are known so that
al, by and ¢} , are known, and the source function S,
can be straightforwardly computed using Eq. (39). After
updating the source function, specific intensity /; is com-
puted using Eq. (34).

3. At all the subsequent points of the backward sweep,
with the updated values of the specific intensities /; at
previous points, the upwind intensity /3, is to be com-
puted, and, hence the coefficient a;. Once the total coef-
ficients a;, b, and ¢y s, are obtained, the source function
is updated by means of Eq. (39) and specific intensity is
computed using Eq. (34).

4. Steps 1-3 are repeated until convergence.

The main difference between this scheme and the above
described Jacobi-like scheme is that the source function is
updated in the course of the fourth sweep (instead after
the fourth sweep is completed). This modification intro-
duced by the Gauss—Seidel approach significantly
increases the rate of convergence. As we shall see in the
next section, even further acceleration in 2D is possible
by the application of the forth-and-back approach and
the use of iteration factors.

3.2.3. “Two-by-two” FBILI method

FBILI method proposed by ACS97 brought about
improvements upon the existing techniques because of:
(i) the iterative computation of the coefficients of the
implicit linear relation between the specific intensities
and the local source function and its derivative in the for-
ward sweep, combined with an efficient method of back-
substitution (a two-point, not a three-point scheme),
which led to a quick update of S and S/ along the 1D
grid, and (ii)) the wuse of the iteration factor
((Iye®+¢Sy)/S,) in the forward sweep, which
“enhances” the local operator. This resulted in an extre-
mely fast convergence with respect to the previous
schemes. The acceleration of the iterative procedure is
due to the fact that it is much faster to iterate on the ratio
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of the unknowns than on the unknowns themselves.> In
1D case, introduction of the iteration factor increased
the convergence rate of the FBILI method by a factor
of 4.

In order to generalize FBILI to 2D we ought to take
into account that, due to the twofold two-point boundary
nature of the problem, we have two pairs of the mutually
opposite sweeping directions (1-3 and 2-4). We can, there-
fore, emulate the original FBILI approach by considering
two inward directions (1 and 2) as the forward ones and
two outward directions (3 and 4) as the backward ones.
The update of the source function is thus performed twice
during the single iteration. Moreover, in the forward
sweeps we can introduce appropriate iteration factors into
the ‘local’ coefficient b; to speed up the convergence.

In general, the method can be used in many different
ways: it is possible to use iteration factors in one or two
sweeps, or not at all; there can be one, two, or even four
backward sweeps. In the following we present some of
the most efficient schemes.

As before, we use Egs. (34) and (35), and we include the
iteration factors in the computation of the coefficient b;
during the two in-going (forward) sweeps 1 and 2:

12 12 1}}29%1'2
by”= [ ¢(v)dv pr +W dQ, (40)
L

while in the out-going (backward) sweeps the coefficient b;
contains only angle- and line profile-integrated coefficient
p,, from Eq. (34).

We propose the following iteration procedure:

1. Sweep the grid three times (forward sweeps), computing
the specific intensity by means of Eq. (34) and iteration
factors in directions 1 and 2 as given by Eq. 40. Com-
pute the corresponding coefficients a; >, b;* and ¢} ;.

2. In the fourth (backward) sweep, starting from the grid

points on two corresponding boundaries with known
boundary conditions, update the source function by
means of Eq. (39) and the out-going specific intensity
using Eq. (34) point by point throughout the grid.

. Sweep the grid in direction 1 (iteration factor is used).

4. Sweep the grid in direction 3 (no iteration factor).
Update the source function and the intensity while per-
forming the sweep. Note that this sweep is now backward
sweep.

5. Sweep the grid in direction 2 (iteration factor is used).

6. Sweep the grid in direction 4 (no iteration factor).
Update the source function and the intensity while
performing the sweep.

7. Repeat steps 3—6 until convergence.

w

The only differences in the above scheme, with respect to
our GS-like procedure described in Section 3.2.2 are: (a)

3 This refers to the iteration factor, but also, in a way, to the coefficients
of the implicit relations.

inclusion of the iteration factors in the (in-going) sweeps
1 and 2; (b) a reordering of the sweeps (1-3-2-4) and (c)
updating of the source function in the (out-going) sweeps
3 and 4, i.e. there are two backward sweeps now instead
of just one. Hence, the source function is updated twice
per iteration, i.e. once per each pair of the mutually oppo-
site sweeping directions (1-3 and 2-4). This implementa-
tion shows a very good stability and also much better
convergence properties with respect to other methods
described previously. This inspired us to try to further
accelerate the method by updating the source function in
all four sweeps.

3.2.4. “Sweep by sweep” FBILI procedure

In the previous section we have seen that the update of
the source function can be performed more than once
during a single iteration. This idea was realized in 1D
plane-parallel geometry by means of SSOR (symmetric
successive overrelaxation) method (see, for example:
Samproorna and Trujillo Bueno, 2010). In principle, as
soon as the grid is swept four times in the first iteration
and coefficients a'~#, b'* and c}-* are known, one can
update the source function in every sweep of the grid.

Here, the only difference with respect to the “two-by-
two” procedure is that after the step 2, the source function
is updated during all four sweeps (“sweep by sweep”). This
leads to four updates per iteration at essentially no addi-
tional computational cost (computation of the source func-
tion takes a negligible time with respect to the formal
solution). This very same procedure without iteration fac-
tors would correspond to the Symmetric Gauss—Seidel
(SGS) method in 2D geometry. As we will see in the next
section, this method, with the help of iteration factors,
extremely accelerates the convergence with no additional
numerical acceleration technique.

4. Results

In order to test the properties of the above mentioned
procedures we solved the problem given by Auer and
Paletou (1994). We considered a slab of the optical depth
=10" along both (x and y) axes, with ¢=10"" and
B = 1. Equidistant logarithmic spacing in optical depth
with approximately 10 points per decade (129x 129 points)
is used. The slab is irradiated at the bottom and on both
sides, from the angles © < ¢ < 2x, with the radiation equal
to B. For the discretization in angle we used Carlson’s set B
(Carlson, 1963) with n = 8 (12 angles per octant). For the
frequency quadrature the trapezoidal rule is used with nine
frequency points in a half of the Doppler line profile.

The convergence properties of the iterative procedures
are analyzed by calculating at each iteration step 7 the max-
imum relative change of the source function between two
successive iterations i — 1 and i

Si _ Si*l

R =
Sl

(41)

max
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The first tested procedure, denoted here as the Jacobi-type
procedure, needed 118 and 195 iterations to reach the
maximum relative changes R, = 103 andR, = 107>, respec-
tively. It is evident that higher convergence rate is desired.
As mentioned before, it is customary to apply the Ng
acceleration (Ng, 1974) to the Jacobi method. However,
since its implementation is not straightforward (it requires
some preliminary numerical tests and analysis) we have
not used it, i.e. we present here the results with no additional
mathematical acceleration techniques like the Ng’s.

When we applied the Gauss—Seidel type procedure we
obtained the corresponding solutions in 77 and 126 itera-
tions. The increase in the convergence rate is evident, but
not as great as in 1D case.

Finally, two FBILI procedures that use iteration factors
(“2-by-2” and “sweep-by-sweep”) dramatically increased
the convergence rate (see Fig. 4). In these procedures, we
define one iteration as the whole set of four sweeps, although
the source function is updated two (four) times (recall that
the computation of the source function is very fast). The
“two-by-two” FBILI that employs the iteration factors in
two ‘inward’ sweeps and updates the source function in
two ‘outward’ sweeps, achieves the maximum relative
change R. = 107" in 28 iterations and R. = 107" in 44 iter-
ations. We see that the convergence rate of this scheme is
higher than that of the Jacobi method by a factor of four.
The “sweep-by-sweep” procedure that employs the itera-
tion factors in two ‘inward’ sweeps updating the source
function in all four sweeps achieves the above maximum
relative changes in 19 and 29 iterations, respectively (i.e.
6-7 times faster than the Jacobi scheme). The “sweep-by-
sweep”” scheme without iteration factors, i.e. the generaliza-
tion of the SGS-type method, satisfies the above conver-
gence criteria in 39 and 61 iterations, respectively. The
importance of the iteration factors is evident, as they
improve the convergence rate of the SGS method by a fac-
tor of more than two.

In order to study the performance of an iterative
method, also the maximum relative true error ought to be

1.E+00E
Jacobi—type iteration
Gauss—Seidel—type iteration ------ 1
TE-0TEN Two—by—Two FBILI — - |4
'\\ Sweep—by—Sweep FBILI —-=- |3
1.E-02¢ =
. E
o
1.E-03 ¢ =
1.E-04 ¢ J
1.E-05 y | A )
0 50 100 150 200

Number of iterations

Fig. 4. Variation of the maximum relative change with iterations for the
iterative procedures considered.

analyzed. Since the analytical solution of this benchmark
problem cannot be obtained, the true accuracy of a method
is expressed with respect to Sgpr — the fully converged
‘exact’ solution obtained with some well-tested reference

(REF) code in the finest spatial grid:
s - SORCEF

= (42)
SREF

TQ:’

max

In this case we used as the “exact” solution the result
obtained in the 2000th Jacobi iteration (R, =~ 1071 ), with
an extremely fine grid (i.e. a grid with 40 points per dec-
ade). Considering that the source function along the central
line of the slab, S(NX/2,j); j=1, NY, has a similar
behavior to the solution in a 1D semi-infinite stellar atmo-
sphere, we took the central surface point (NX/2,1) as the
point of interest in analyzing the true error.

The variation of the maximum relative true error 7, with
the iteration number is shown in Fig. 5 for all the procedures
considered. After a rapid initial improvement 7, exhibits an
asymptotic behavior with iterations, reaching the so-called
truncation error 7,(co) (a measure of the true accuracy)
of about 0.35%. From Figs. 4 and 5 we see that the iterations
can be stopped once the criterion R, < 0.17,(o00) is satisfied
(see Auer et al., 1994), as the further decrease in relative
corrections does not increase the accuracy achieved any
more. Note here that Auer and Paletou (1994) used
AS/S < 10~2¢ as their stopping criterion.

From Fig. 5, excellent properties of the FBILI method
are again evident. For a fast convergent method such as
this one, one can actually use a weaker convergence crite-
rion in terms of R.. To make this statement clear, recall
that a slowly converging method may reach small relative
change quickly being, however, far from the “true” solu-
tion. In principle, the true error should be used for setting
the convergence criterion, but as it is not known, good
knowledge of the convergence properties of the method
in question must be obtained in order to set the proper
value of R. as the convergence criterion, thus optimizing
the computing time.

1.E+01 7
[ A . .
,‘,\ Jacobi—type iteration
:‘.\ Gauss—Seidel—type iteration ------
ph Two—by—Two FBILI — —
1.E+00 Y, ' Sweep—by—Sweep FBILI —-=- |4
E W ]
[
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T.E=01EF ,
) E
> Eoy
2 \
= Lo
R
'
1.E-02F ' |
R
L < S e e T
1.£-03 | | I
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Number of iterations

Fig. 5. Variation of the true error with iterations for the procedures
considered.
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5. Conclusions

We have presented a new iterative scheme for the NLTE
line radiative transfer in 2D Cartesian geometry. It uses the
basic ideas of the FBILI method developed previously for
1D radiative transfer problems. The proposed iterative
procedure dramatically increases the convergence rate with
respect to the existing techniques by introduction of the
iteration factor in the ‘local’ coefficient of the linear rela-
tion between the mean intensity J and the corresponding
source function S (in two ‘inward’ sweeps of the grid),
along with the use of new values of the source function
as soon as they are available (in all four sweeps).

Even better comparative convergence properties of the
FBILI method can be expected in applications to some
more realistic problems; e.g. in the semi-infinite atmo-
sphere with periodic boundary conditions. Just as 1D
FBILI iterative scheme shows its full advantage for opti-
cally thick media and scattering dominated problems that
need fast methods to be solved efficiently, we are aimed
at achieving the same with FBILI generalized to the 2D
and 3D cases. Our first goal is to implement the periodic
boundary conditions in the code and also to test more
accurate interpolating strategies (for example, cubic inter-
polation, as suggested by Simonneau et al. (2012)) in com-
puting the formal solution, the source function derivatives,
and the spatial interpolation at the upwind point. We are
aimed at generalizing the backward elimination scheme
from 1D FBILI to 2D more straightforwardly, expressing
the local derivative in terms of the updated values of the
source function and its derivative at previous grid points.
This would eliminate the need for keeping eight ¢y, coeffi-
cients and lead to more elegant solution.

In the future work we will also test the scaling of the
convergence properties with respect to grid resolution
and demonstrate the generalization of the method to the
multilevel atom case, and to polarized line transfer with
PRD in a two-level atom approximation as well.
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