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ABSTRACT

The iteration factors method (IFM) developed in Paper I [1] (Atanackovi¢-Vukmanovic
and Simonneau, 1994) to solve the NLTE line transfer problem for a two-level atom
model, is extended here to deal with a multilevel atom case. At the beginning of each
iteration step, for each line transition, angle and frequency averaged depth-dependent
iteration factors are computed from the formal solution of radiative transfer (RT)
equation and used to close the system of the RT equation moments, non-linearly
coupled with the statistical equilibrium (SE) equations. Non-linear coupling of the
atomic level populations and the corresponding line radiation field intensities is tackled
in two ways. One is based on the linearization of the equations with respect to the
relevant variables, and the other on the use of the old (known from the previous
iteration) level populations in the line-opacity-like terms of the SE equations. In both
cases the use of quasi-invariant iteration factors provided very fast and accurate
solution. The properties of the proposed procedures are investigated in detail by
applying them to the solution of the prototype multilevel RT problem of Avrett and

Loeser [2], and compared with the properties of some other methods.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

NLTE radiative transfer (RT) problems are among the
most difficult ones to deal with due to the important role
of scattering process which makes the properties of very
distant points in a medium non-locally coupled through
the radiation field. The multilevel line transfer problem is
especially difficult as it is in addition non-linear; the
atomic level populations and the radiation field intensities
in the corresponding line transitions are non-linearly
coupled via the statistical equilibrium (SE) equations.
Therefore, the problem requires a simultaneous solution
of the RT and SE equations, which can be achieved only
through an iterative method. The various methods
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basically differ in the way that linearity is achieved at
each iterative step, with linearization and preconditioning
being the two most used mathematical strategies [3].

The first self-consistent solutions of the RT problems
were obtained by the complete linearization (CL) method,
developed originally for the stellar atmosphere modelling
by Auer and Mihalas [4], and later applied to the NLTE line
formation problem by Auer [5]. It consists in the
linearization of all coupled equations by expansion to
the first order of the relevant variables around an initial
estimate and in the simultaneous determination of the
variables’ increments (corrections). The convergence rate
of this global approach is high. However, for a good
description of the physical system a very large number of
frequency, angle and depth points is usually needed,
involving big matrices and requiring huge memory
storage and a lot of computing time.

Therefore, more simple and efficient iterative methods
were developed. Such methods use a sequential iterative
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procedure, taking advantage of the fact that a problem can
be divided into separate tasks according to the physics of
the problem and the mathematical properties of the
relevant equations (see, e.g., the overviews [6,7]). The
current solution of each individual task is obtained by
assuming that the output of the others is known. Thus
each task can be optimized independently. More specifi-
cally, in the multilevel line formation problem, each step
of the iterative procedure is usually split into two parts so
that within each of them, one of the two systems of
equations, RT and SE, is solved by taking the solution, or
part of the solution, of the other one as known. The
coupling is performed at the end of the iterative
procedure, with the convergence rate that depends on
the amount of information transferred between the two
parts.

The simplest sequential iterative procedure, the so-
called A iteration, solves the problem equations alter-
nately. Although conceptually completely different, the CL
method and the A iteration method are akin in the sense
that both use the exact description of the RT process (the
full lambda operator). However, the convergence of this
simplest iterative scheme is in most cases of interest
extremely slow, as it transfers from one part of the
iterative step to the other more information than
necessary.

Several classes of iterative methods for NLTE line
transfer problems, converging rapidly towards the exact
solution, have been developed so far.

One of the first attempts to facilitate the solution of
multilevel line transfer problem was the so-called ETLA
(equivalent-two-level-atom) approach developed by
Avrett [8] and described by Mihalas [9] and Avrett and
Loeser [2]. It simplifies the use of the SE equations so that
only one transition in the model atom at a time is
combined with the transfer problem and the coupling of
all levels is achieved by iteration over all transitions.

An other approach employs certain approximation to
simplify the detailed description of the RT process, i.e. it
uses an approximate lambda operator (ALO) instead of the
exact one [10], accounting for a small error introduced
by this approximation iteratively [11]. This is the basic
idea of a very broad class of the so-called accelerated/
approximated lambda iteration (ALI) methods. The
approximation is based either on the physics of the
transport of photons through the medium (e.g. core
saturation assumption of Rybicki [12]) or on some
mathematical considerations (e.g. the diagonal of the full
A operator is proposed as an ALO by Olson et al. [13]). To
achieve the linearity at each iterative step ALI methods
usually employ either linearization (e.g. Scharmer and
Carlsson [14]) or preconditioning (e.g. Rybicki [12],
Rybicki and Hummer [15]) of the equations. A brief
review of ALI methods was already given in Paper I (for
more details see also Rybicki [16] and more recent
reviews by Hubeny [6] and Carlsson [17]). Here, we shall
mention only the methods, the solutions or properties of
which will be compared with those obtained by the
iteration factors method (IFM), developed in this paper.
One is the so-called MALI (multilevel accelerated lambda
iteration) method by Rybicki and Hummer [15], who were

the first to introduce ALOs directly into the SE equations
(preconditioning). The MALI method was successfully
applied to the solution of various multilevel RT problems
(e.g. in multidimensional multilevel line RT by Auer et al.
[18], in isolated solar atmospheric structures by Heinzel
[19] or in multilevel RT with partial frequency redistribu-
tion by Paletou [20] and Uitenbroek [21]). Other numer-
ical methods for NLTE RT applications that dramatically
accelerate the A iteration are the Gauss-Seidel (GS) and
successive overrelaxation (SOR) methods of Trujillo Bueno
and Fabiani Bendicho [22], the generalization of which to
the multilevel atom case was suggested in the same
paper, and summarized in Section 2 of the paper by
Fabiani Bendicho et al. [23]. The implementation details of
their multilevel Gauss-Seidel (MUGA) method were made
explicit by Asensio Ramos and Trujillo Bueno [24] (see
also [25]). Another extremely fast method is the forth-
and-back implicit lambda iteration (FBILI) of Atanackovic-
Vukmanovic et al. [26]. The convergence properties of
these latter methods compared to those of other ALI
methods are discussed in the papers [22-27].

The alternative way to speed up the convergence of the
classical A iteration is the iteration factors method. The
basic idea of this method is in the use of functions—the
so-called iteration factors (IFs)—as the inputs/outputs of
individual tasks, which, in order to ensure fast and stable
iterative procedure, have to be good quasi-invariants
along the iterations. At each iteration step the factors are
computed from the current solution and then used to
update it. Hence, by introducing appropriate modifica-
tions in the simple A iteration scheme, it is possible to
achieve an extremely high convergence rate.

Since the first idea of iteration factors in the radiative
transfer literature that appeared in the paper by Feautrier
[28], many different applications of the IFs have been
discussed [1,20,21,28-38]. Feautrier suggested that the
use of the ratio of two moments of the radiation field
intensity could speed up the stellar atmosphere model
computations. The first realization of the idea was the
variable (depth-dependent) Eddington factor (VEF) tech-
nique developed for the solution of the monochromatic
transfer problem in plane-parallel [29] and in spherical
geometry [30]. Auer and Mihalas [29] were the first to
iterate on the ratio of two angular moments of the
radiation field K, /J,. They stressed that it is much better to
iterate on the ratio of two quantities than on the
quantities themselves, as the ratio changes much less
from one iteration to another. The VEFs have also been
successfully applied to the complete linearization method
for both the stellar atmosphere modelling and the line
formation problem to reduce the numerical description of
the system for its angular dimensions. They enabled a
complex explicit frequency-angle coupling to be simpli-
fied, so that only the frequency coupling is treated
explicitly, whereas the angle coupling is treated itera-
tively. However, a very large number of frequency points,
necessary for a good description of the physical system
still made the computations with the CL/VEF (the
complete linearization method using VEF) demanding.
One could say that the CL/VEF was the predecessor of the
so-called hybrid methods which combine the advantages
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of its constituents (see e.g. Hubeny [35], Heinzel et al. [36]
and Hubeny and Lites [37] for the ETLA/IF/CL method, and
Paletou [20], Uitenbroek [21] and Heinzel and Anzer [38]
for the MALI/IF method, both of which use the ratio p, of
the emission to the absorption profile coefficients as an
iteration factor in the solution of multilevel line transfer
with partial redistribution, or Hubeny and Lanz [39] for
the hybrid CL/VEF/ALI method used in stellar atmosphere
modelling).

Memory storage and a cost per iteration in the solution
of NLTE line transfer problem can be drastically reduced
by the use of both angle and frequency averaged iteration
factors. Such factors, defined for a line as a whole, were
used for the first time in the solution of the linear two-
level atom line formation problem in the paper by
Atanackovi¢-Vukmanovic¢ and Simonneau [1], hereinafter
referred to as Paper I. Owing to the use of these factors the
exact and fast-convergent solution is achieved with no
matrix calculations.

In the present paper we extend the IF method
developed in Paper I to the solution of the multilevel line
transfer problem. We propose an iterative procedure
which overcomes the above-mentioned drawback of the
CL/VEF method, retaining its favorable convergence
properties while becoming computationally cheap owing
to the use of both angle and frequency averaged iteration
factors. In the first part of each iteration, for each line
transition, the iteration factors are computed as the ratios
of the relevant intensity moments obtained from the
formal solution of the RT equation. They are then used to
close the system of the RT equation moments (for all line
transitions) non-linearly coupled with the statistical
equilibrium (SE) equations (for all level populations).
We use two approaches to solve these two systems of
equations simultaneously. The first one is based on the
linearization of the equations by neglecting the second-
and higher-order terms. A substitution of the linearized SE
equations into the linearized RT equation moments yields
the system of equations that involve only the corrections
of the frequency integrated mean intensity of the
radiation field explicitly. In the second approach, we
obtain the linear form of the SE equations by assuming
that the level populations in their line-opacity-like terms
are known from the previous iteration [15,40]. Thus we
derive linear relations between each line source function
and the full set of the radiation field mean intensities and
solve them together with the RT equation moments for all
line transitions linearly coupled in this way. On one hand
this is rather the method insensitive to the poor
conditioning of the original equations than the method
which copes with this problem by preconditioning [12].
On the other hand, the use of line opacities from the
previous iteration in the SE equations, which enables to
derive the linear relationships between each line source
function and all the radiation field mean intensities, can
be considered as a kind of preconditioning. Therefore, for
the sake of simplicity we denote our second approach as
“preconditioning”. In both approaches an extremely fast
convergence is provided by the use of quasi-invariant
iteration factors in the linearly coupled RT moment and SE
equations.

The aim of the present paper is to generalize the IF
method developed in Paper I to the solution of the
multilevel line transfer problem, to test its accuracy and
convergence properties on some benchmark problem,
compare it with some of the existing methods used to
solve the same kind of the RT problems, and assess its
advantages and limitations. Thus, the outline of this paper
is as follows. In Section 2 we formulate the multilevel line
formation problem, limiting ourselves to the complete
redistribution pure line transfer problem in a constant
property medium, and leaving the application of the IF
method to more realistic calculations for the forthcoming
paper (Paper III). In Section 3 we describe the Iteration
Factors Method proposed to solve this problem using two
families of iteration factors, defined in Paper I, and two
ways to solve the non-linear coupling of the RT and SE
equations (linearization and “preconditioning”). In order
to assess the convergence properties of our method, and
to check the accuracy of the solutions against the known
ones, in Section 4 we solve the prototype problem by
Avrett and Loeser [2] of multilevel line formation (a three-
level H atom model) with no background continuum in a
plane-parallel constant-property medium and compare its
solutions with the existing ones. Finally, in Section 5 we
draw our conclusions.

2. Multilevel atom line formation problem

The problem of line radiative transfer in a given
atmospheric model consists in the determination of the
radiation field and the state of the matter by simultaneous
solution of the RT and SE equations. The coupling between
the excitation state of the matter and the radiation field
intensity is highly non-local as the radiation field at one
depth point, via the RT equation, depends on the opacity
and emissivity, i.e. on the atomic level populations at all
other depth points of the medium. In turn, the level
populations depend on the mean intensity of the radiation
field via the statistical equilibrium equations.

Compared to the two-level-atom case in which the line
source function (i.e. the ratio of emissivity to opacity) can
be expressed explicitly as the linear function of the mean
line radiation field intensity, with multilevel line transfer
there is an additional difficulty due to a strong non-linear
coupling among atomic level populations and the corre-
sponding line radiation fields.

Here, we shall limit our discussion to a time indepen-
dent, plane-parallel and semi-infinite atmosphere of
constant physical properties. Assuming complete redis-
tribution (CR), the radiative transfer equation for any line
transition ij between two discrete energy levels i and j
(E; > E;) with no background continuum has a dimension-
less form:

dl
ﬂ% = q)x(lxu_s)’ (1)

where we dropped indices ij for simplicity; Iy, is the
specific intensity of the radiation field at the mean line
optical depth , x is the frequency displacement from the
line center in Doppler-width units Avp, and u is the cosine
of the angle between the direction of photon propagation



0. Kuzmanovska-Barandovska, O. Atanackovic¢ / Journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010) 708-722 711

and the outward normal. The quantity ¢, is the absorp-
tion-line profile, normalized to unity. Under the assump-
tion of complete redistribution the line source function S
is frequency independent. Then, for each transition ij, the
line source function depends only on the ratio of the
corresponding level populations n; and n;:

3
n,-Bi]-—n]-Bj,- c2 E%_l ’
n; g

In the above expression A;, B; and Bj are Einstein
coefficients of the relevant radiative transitions, while g;
and g; are statistical weights of the atomic levels. This is
the implicit expression for the line source function as the
level populations depend on the radiation field intensity
through the statistical equilibrium equations (or rate
equations). At each depth point for each atomic level j of
an NL-level atom we have an equation of the form (e.g.
Mihalas [9]):

Q> (Ai+Bil + G+ > Bifis +Cir)

i<j k>j
= Zni(BuIZ; +Gj)+ an(Akj +Bkj]ﬂf +Cij), 3)
i<j k>j

where Cs are the inelastic collisional rates. The atomic
level populations depend on the radiation field in
different line transitions via the terms that contain the
so-called scattering integrals:

. r 00 0 1 1
o= [ es@d= [“gud [ o @

i.e. the frequency averaged mean intensities weighted by
the line absorption profile. Finally, for the NL- level atomic
model, NL—-1 linearly independent SE equations are closed
by the particle conservation equation:

NL
Z N = Niotal, (5)
i=1
where 1., is the total number density of atoms.

The SE equations (3) can be written formally as

Pn=b, (6)
where P is the rate matrix, 11 is the vector of atomic level
populations and b is the right-hand side vector. The
elements of the rate matrix are, therefore, given by the
radiative and collisional rates, except for the last row
corresponding to the particle conservation equation.

3. The iteration factors method

While for the linear two-level-atom line formation
problem either an iterative or a direct (differential or
integral) method can be applied, for the solution of non-
linear multilevel problem an iterative procedure is
required. To solve this problem, here we propose the
iteration factors method, the algorithm of which is given
in Fig. 1. Let us briefly describe its main steps.

In the first part of each iteration, starting from a given
(e.g. LTE) source function S° or the one known from the
previous iteration step S' we formally solve the RT Eq. (1)

Initial source function
SO

Formal solution of
RTequation

l
W
|

Moments of Ixu
and iteration factors

____________ l____________

Moments of RT equation
+

Statistical equilibrium equations

|

Si

Fig. 1. Flow-chart of the iteration factors method. Horizontal dashed line
divides the algorithm into two parts that can be independently
optimized (see the text for details).

for each line transition. The numerical solution of the RT
equation requires a discrete set of optical depth points 7,4
(d=1,N) at which the specific intensities I, for each
chosen frequency x; (i=1,NF) and direction ; (j=1,ND)
are to be computed. As the radiative transfer is a two-
point boundary value problem, we use the two-stream
model of the radiation field and compute the inward
specific intensities I, (tq) starting with the upper bound-
ary condition I;#(rl):o, and the outward intensities
L (tq) starting with the bottom boundary condition
L (tn) =S(tn). In the integral form of the RT equation
we assume that the line source function S(tr) has cubic
behavior between successive depth points. The obtained
intensities are then used for the computation of the
relevant angle and frequency integrated moments and the
iteration factors as their ratios. Therefore, the iteration
factors are angle and frequency independent, defined for
each line as a whole. They are used as the known
coefficients to close the moments of the RT equation (for
each line transition) that are to be solved simultaneously
with the SE equations (for each level population) to
update the solution in the second part of each iteration. At
this step we have to deal with a strongly non-linear
problem. The solution of the coupled non-linear equations
can be found either by the linearization of the relevant
equations or by their “preconditioning” (by use of an
assumption that makes the SE equations linear, hence
providing their linear coupling with the RT equation
moments).

3.1. The iteration factors

In order to close the moments of the RT equation, we
used two families of iteration factors, introduced in Paper 1.
For clarity and completeness, here we shall remind in brief
of their definitions.
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To obtain the frequency integrated mean intensity J,,
which is implicitly contained in the corresponding line
source function, we have to integrate the RT equations
over both angles and frequencies. For each line frequency
the first- and the second-order g—moments of Eq. (1) are
given by

dHy

df =¢xUX_S)a
dK
d‘L’X = ¢, Hx. (7)

By applying the operators [@2{...}dx and [¢,{...}dx to
the above two equations, respectively, for each line
transition we obtain one system of two first-order
moment equations:

dH .
2 (-0,

dK (1) _

g =Hp(D), ®)
i.e. one second-order differential equation of the form:
d?K
iz =l (O-0’S(. 9

Here we used the following notation for the intensity
moments (Q stands for J, H, K) and for the profile
moments:

Q= [ plad o= [l (10)

respectively.

The multilevel atom problem differs from the two-
level-atom case in that the line source function S(7) in
Eq. (9) depends, via Egs. (2) and (3), on the J,’s of all the
other line transitions in an implicit and non-linear way. As
we shall discuss in detail in the next section, we have two
possibilities to make the coupling of two sets of Egs. (9)
and (3), linear. Whichever we use, the introduction of
some scalar closure relationships among the unknown
intensity moments (J,, Ky, Hy2 and J,3) is necessary.

The first family of iteration factors contains the most
straightforward closure relations. Besides the generalized
(frequency independent) Eddington factor

K,
F=-2, 11
To an
it includes the factor
I
=% (12)

=7
that relates the photons in the core (J,3) to the photons of

the entire line (J,). Using the factors (11) and (12) we can
re-write Eq. (9) in the following form:

d*K,  fi(v)
de> ~ F(r)

Ky (0)—@*S(7). (13)

Apart from the Eddington factor (11), the second
family includes the factors that account for the two-
stream model of the radiation field and the non-local

character of the radiative transfer. In the formal solution
we treat separately the outgoing L (7) and incoming I, (1)
radiation field intensities and we remove the known, local
and “passive in transfer” photons I (t). We iterate only
on the ratios of the non-local components of the radiation
field I, (7):

L) =L (D—I5 (0) = L,(D)-S(x),

[0 =I,(0-I5 (0) = I, ()=S(T)(1—e /1), (14)

thus carrying on, from one iteration to the next one, lesser
amount of information.

Thus the factors of the second family are defined as
follows:

(xizi Qiz (/)2’ (15)

and used to put Eq. (9) in the form:

d?K,  fi(v)
dt2 ~ F(r)

dK
Ko@) +fu(0)~ (O —fs(0)S(). (16)

The coefficients f;, fy and fs are related to the factors (15)
in a simple way. The coefficient f; plays a role of diffusion
coefficient, fy is a measure of the anisotropy of the
radiation field and fs reproduces the kinetic behavior of
the transfer process.

Once we get the RT moment equations (13) or (16) we
have to solve them simultaneously with the SE equations
(3) in the second part of each iteration to get the improved
values of the source function S(7).

In our computations we used both families of the
iteration factors but, in order to present two methods to
solve the coupled RT and SE equations, for the sake of
simplicity in the following we use the first IFs family only.

3.2. Non-linear coupling of RT and SE equations

3.2.1. Linearization

The first way to solve the above equations is to rewrite
the second-order differential RT moment equations as
difference equations and to linearize them in a similar
way as first proposed by Auer and Mihalas [4]. We expand
to the first order all the relevant variables x around their
current estimates xo, obtained in the previous iteration:
X =Xp+0x. For each line transition and for each of N—2
depth points we get a linearized RT moment equations
(13) in the following form:

1 1 1 1
— 0K, g 1——— + oK,
AtgAty 1, 24 Aty (ATduz Afd+1/2> o4

1
+ -
AtgATy, 1,2

35, . MaOXa) _ @ _3Ma
+Cad)g1+ @ (bnm 2 )—5d+ FdK(p’d @ 1

a7

fia «
5K(p,d+1 - I{TZ bK{p,d +ad5%d—1 +bd5Xd
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where

o [d’K, 1 1, Atgqp
= O0Yd-1 { dr? }_ Ad+ Xa—1 [%H—zﬁd Aty }

0 de(/,} 1 [ 1 A‘L'd.m/z}
Cqg = = og+ = fg——"=|,
T a1 { dr? Tatra L 2 Pa Aty

0 [d*K, e
d= 6%(! dr2 —td d>
K, qa—K K, qa—K
@.d  Npd+1 o.dRed-1
Og= +——7—""", =V, =0g+V4,
! AtgAty 1) AtgAty_q)2 P AL

ATy 10 =Tqg—Tg_1,
ATgi12 =Td41—Tds

A’L’d = %(A’Ed_]/z +A‘Ed+ 1/2).

The linearized equations (17) are to be solved for the
unknown corrections of the frequency integrated second
order y- moments of the radiation field intensities, 6K,.
To do that we express the changes in absorption and
emission coefficients, dy and oy, in terms of the changes
in level populations (on; and Jn;) of a given transition ij:

; ) 2h
O%4 =09 (5nid_&5njd)> Mg = Ugl onjq, (18)
&j Og;
where

0= E i AVD '
Now we can express the changes in the level popula-

tions in terms of 6K, (i.e. 6], = 0K, /F) by means of the
following expressions:

1 on ¢ 1 anJ
IZZ FK ajkl oKy, Z FX ajkl tp’ (20)
with
on oP
——=-P" n 21
Ao (5](p ) @D

obtained by linearizing equation (6). Substitution of the
expressions for dygy, 014, i.e. 6n;, onj, into Egs. (17) yields
the following system of coupled equations for the
corrections 0K, only

—Ad51 pd— 1+Bd5K(pd Cd51<(/)d+1 =L, (22)

At the surface (d=1) and at the bottom (d=N) of the
atmosphere we use the linearized form of the boundary
conditions

dK
(d_r(p> =Pa+qaKp(Ta). @3
T="Ty

Proceeding from the second equation (8) and taking that
the intensity at the surface is I;N(‘L'1)=0 and that at the
bottom I}, (Ty) = S(Ty), We have

X[
p1=0, q1=74,

Py =— /N Ko™ (ty )—— HL@w|,  av="7n, 24

where the ratios:

q,z (‘51) ;—2 (t1) H;,,z (Tn)

an =" 25
M= Ry~ Kg @) =K, ) 22)

are computed at the first step of each iteration together
with the iteration factors.

The tridiagonal system (22) is solved by the standard
Gaussian elimination consisting of forward-backward
recursion sweep. Its solution satisfies both the linearized
transfer and the rate equations. At each depth point we
have NT linearized RT equations, where NT is the number
of line transitions. Hence, each element of the tridiagonal
system is either NT x NT matrix or a vector of length NT.
Let us note here that, compared to the complete
linearization method of Auer and Mihalas [4] where the
matrices of dimensions (NF x ND) x (NF x ND) (or NF x
NF if VEFs are used) have to be inverted, now we have to
invert the NT x NT matrices only.

The corrections 6K, obtained by solving (22) are used
to update the current values of the K,’s and to compute
the new values of the J,’s through the Eddington factor
(11). At the end of each iteration, with the new J,’s we
compute the improved values of the level populations
from the SE equations with which we enter the next
iteration step. The iterative procedure is terminated when
the prescribed convergence criterion is achieved.

The level populations used in the solution of the
coupled equations are those obtained in the previous
iteration and corrected by one A iteration after the formal
solution. Hence, the procedure within one iteration step is
as follows: (i) the level populations (i.e. S(t)) from the
previous iteration are used in the formal solution of the RT
equation to obtain the radiation field intensities, their
moments and the iteration factors, (ii) with the computed
]2{; we re-compute level populations from the SE equa-
tions, (iii) together with the iteration factors, these level
populations are then used in the solution of the coupled
linearized RT and SE equations to obtain SKY and (iv)
with 6K} we compute the new values of Ji, and from the
SE equations the updated values of the level populations
(i.e. S(1)) that enter the next iteration step.

3.2.2. Modification of the SE equations (“preconditioning”)

In another approach to the simultaneous solution of
the two systems of equations (RT and SE), certain
approximation is used in the SE equations that makes
the coupling linear. As well-known a way to transform the
original non-linear equations into the linear ones is to
take some quantities from the previous iteration as
known. All the iterative methods developed to solve the
RT problems assume, during the formal solution of the RT
equation (at the beginning of each iteration step) that all
the line absorption coefficients are known from the
previous iteration. Here, we employ this assumption, i.e.
we use the old (from the previous iteration) level
populations {n°}, not only in the formal solution of the
RT equation, but also in the line-opacity-like terms of the
SE equations (see e.g. [15,40]). This enables the level
populations and, consequently, the relevant line source
function, to be expressed as a linear function of the full set
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of radiation field mean intensities in all line transitions (as
described by Crivellari et al. [40]).

In order to make the SE equations (3) linear, let us first
rewrite them by grouping the terms induced by the
radiation field (both absorptions and stimulated emis-
sions) in the right-hand side. Assuming that the line
opacities are known, we modify the rate equations in such
a way that only the coefficients of the terms Jg, (which are
the corresponding line absorption coefficients to the
constant factor hv/4n) contain old (known) level popula-
tions. Thus, the modified (linear) SE equations have the
following form (see [40]):

quni + Z(ij +Akj)nk— lZ(ql +Aji)+ Zq’l;| n;

i<j k>j i<j k>j
=—> (n?By—nB;)J}+> (n?Bj—17Bi)]J. (26)
i<j k> j

Egs. (26) can be put in the concise form:
U.-n=f, (27)

where the elements of the matrix U (of size NL x NL)
contain only the spontaneous emission Aj;, and the
inelastic electron collision C; terms (except in the last
row that contains 1's due to the particle conservation
Eq. (5)), while the vector f contains the net radiative rates
(n;’Bij—nj’Bji)]g. By inverting the matrix U it is possible to
express new (unknown) level populations n; as linear
functions of yet unknown mean intensities in all line
transitions:

n=nf+y TTK. (28)
kl

In Eq. (28) the terms n¢, given as

-1
nj = U - Neotals (29)

contain only Aj;, G; and n, that are known for a given
atomic and atmospheric model, while the matrix ele-
ments F}" contain not only the elements u]f of the inverse
matrix but also the old level populations {n°} via the
coefficients n?B;—n?B;;.

With the known absorption coefficients, from Egs. (2)
and (28) it is easy to derive the similar linear relations for
each line source function S¥ in terms of the full set of
radiation fields in all NT line transitions:

SY=SI+Y ayl. (30)
]
Here
B A
SU — LA ns,
¢ n?B,-j—n]‘?Bﬁ J
gt~ i pu G

~ no°B..—n°B.. " J
n?B;; njBﬂ

By means of the Eddington factor it is straightforward
to write the linear relations between S¥ and the full set of
the K,’s

gk Kl
i Kq‘,. (32)

SI=5I+%"
Kkl

The modified SE equations provide a situation analogous
to that of the two-level-atom line transfer problem in
which the linear SE equations are solved together with the
RT equation moments. Substituting Eq. (32) into the RT
moment Eq. (13) rewritten in the difference equation
form, we finally get the following system:

;K — L 1 + 1 K
AtgAtg 1y "7 Atg\Ataan  Ataiapn) P
1 fu ik
Kpas1— ;—ded + @3; FL‘,;,K(’;’d =—(3Seq.
K

(33)

This system can be expressed in the tridiagonal form and
solved together with the boundary conditions (23) by the
standard Gaussian elimination procedure. The improved
values of the K,’s satisfy the RT and SE equations
simultaneously.

Let us briefly summarize the above procedure. At the
beginning of each iteration step, the level populations
given (in the first iteration) or obtained from the previous
iteration step are used in the formal solution of the RT
equation and, hence, in the computation of the iteration
factors. These populations {n°} also enter the modified SE
equations (26) and, consequently, the coefficients of the
linear relations (32) between each line source function S¥
and the radiation fields in all NT line transitions. By
substituting Eq. (32) in the RT moment equations (13) for
the first family of iteration factors, i.e. into the RT moment
equations (16) for the second family, we compute the
improved values of the K,’s and, hence, of the J,’s. With
these new mean intensities the original SE equations are
solved, resulting in the new values of level populations
that enter the next iteration step.

+ _—
ATdATd+1/2

4. Numerical tests and results

The iterative procedures proposed above were tested on
the standard benchmark model for the multilevel atom
problems given by Avrett and Loeser [2]. They analyzed
spectral line formation by three-level hydrogen atoms in a
plane-parallel, semi-infinite isothermal (T = 5000K) atmo-
sphere, with no background opacity, giving the solutions for
two cases: with constant collisional deexcitation rates
Gi= 10° s~! (Case 1), and with collisional rates decreasing
rapidly near the surface C; = 10°(1-0.99exp(—0.1712)) 5!
(Case 2).

We solved these test cases using both families of
iteration factors (F1 and F2) and both methods for the
solution of non-linear coupling of the RT and SE equations
(linearization (L) and the modification of the SE equations
(M)). Thus we obtained and analyzed four solutions: F1-L,
F1-M, F2-L and F2-M.

In all these solutions the iterative procedure was
initialized by assuming equilibrium (LTE) values of the
level populations. In order to provide stable convergence,
the relaxation was needed: Q¥ = (1-r) (ﬂﬁ—rQﬁf. where
QY and Q) are the input and the current values of the
variable Q in the i-th iteration (Q? =Q¢-1),and 0 <r <1
is the relaxation parameter. The fact that the IF method
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may need the under-relaxation when applied to a
physically simple, but numerically difficult problem was
already known from the analysis of its convergence
properties given in Paper I. For small departures from
LTE the relaxation is not necessary, but for larger
departures the under-relaxation (found by a trial-and-
error approach, but usually either 0.5 or 0.75) is needed to
slow down the convergence. In all four solutions con-
sidered here, r =0.75 was used. Let us point out (as stated
in Paper I) that in some more realistic applications of the
method, the relaxation is not necessary.

The properties of the iterative procedures are analyzed
by calculating at each iteration step i the following
quantities [18]:

the maximum relative change

) i cic1
R=2] . 34)
S max
the maximum relative convergence error
i i_ Qoo
C= S j , 35)
S max
and the maximum relative true error
X Si_soo
T,= —OOREF . (36)
SREF max

Here, S is the fully converged solution of the IFM
obtained by a preliminary long run. Since the analytical
solution of this benchmark problem is not known, the true
accuracy of the IFM is expressed with respect to Sgy;—the
fully converged “exact” solution obtained with a well-
tested RT code. In this paper we used the FBILI method
[26] as the reference (REF) one, primarily because we
could run both methods (FBILI and IFM), straightfor-
wardly getting the solutions for different choices of input
parameters, and because the FBILI solutions differ with
respect to the solutions of Avrett and Loeser [2] by less
than 3%. Note, however, that Avrett and Loeser solutions
are given only for the spatial grid with three depth points
per decade. We also compared the convergence rate of the
IFM with that of the MALI method, using the results given
in [15] for the same benchmark problem.

The computations were performed using 23 Avrett and
Loeser frequencies, four Gauss-Legendre angles and three
different grids in optical depth (with 3, 6 and 9 points per
decade), from 7=10"2 to 10'. The coarser grids are
chosen so that their points coincide exactly with some of
those corresponding to the finest grid. The comparison of
the solutions obtained by the IFM in each particular
spatial grid with the FBILI “exact” solutions obtained with
the finest grid, enabled us to investigate the dependence
of its accuracy on the grid refinement.

4.1. The first family of iteration factors

Firstly we used the most simple family of iteration
factors, defined by Eqs. (11) and (12), in order to check the
validity of the proposed procedures.

By using the linearization to solve the coupled RT and
SE equations (F1-L) the convergence was not achieved for
Avrett and Loeser’s original test case (with the collisional
deexcitation parameter Cj,-=105 s~1). The solution was,
however, obtained for smaller departures from LTE. Thus,
for example, with G = 10°% s~ the procedure converged in
only 10 iterations with the true accuracy of 1% when the
finest spatial grid (with 9 points per decade) was used.
This result proved the correctness of our method and
confirmed the existence of stability problems with the
most straightforward closure relations, already known
from Paper L

The use of the modified SE equations (F1-M) led to the
“exact” solution of the original test case in a very small
number of iterations. As an example, only eight iterations
were needed to reach the maximum relative change R. of
1% and the maximum relative true error T, of only 2% with a
coarser grid of 6 points per decade. In Fig. 2 we show the
behavior over iterations of the first family of factors, F and f},
for all three line transitions. After a few iterations the factors
reach their “exact” values. At great optical depths they have
their equilibrium values, so that the generalized Eddington
factor F approaches 1, while f; tends to the value of ¢3.

The behavior of the source functions over iterations for
the three hydrogen spectral lines is presented in Fig. 3,
together with the corresponding FBILI solutions. It is
interesting to note the well-known /éB law (where ¢ is
the standard NLTE parameter and B is the Planck function)
at the surface for the strong resonance Lyman o line, for
which even the two-level atom model is quite appropriate.
As can be seen from the plots, already after the first iteration
the solution attains the correct thermalization length. This is
the most important difference with respect to the simple A
iteration procedure. A iteration corrects the solution at each
iteration step only within a unit optical path, so that in the
early stages of iteration it gives no indication where the
thermalization takes place. Here, the corrections are made
simultaneously throughout the entire medium owing to the
use of the iteration factors. Being defined as the ratios of the
relevant intensity moments, the IFs depend only slightly on
the poor (equilibrium) initial estimates of level populations
(i.e. source functions) and reach their almost exact values
already in the first few iterations. The line source functions
are thus largely corrected at the very beginning of the
iterative procedure, reaching the accuracy of 2% in a few
iterations. Note, however, that the maximum relative
change R < 1073 could not be achieved.

Thus, we were again faced with the fact, known from
Paper I, that the most straightforward closure relation,
although providing an extremely fast and accurate
solution, does not satisfy completely the requirement of
stability in the cases of large departures from LTE. This
problem was solved by the use of more general closure
relationship as is shown below.

4.2. The second family of iteration factors

The improved iteration factors family, Eq. (15), derived
from the best numerical simulation of the transfer
process, led to the fast, exact and more stable solutions
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Fig. 2. The variation of the iteration factors F and f; for three hydrogen line transitions, obtained by the use of modified SE equations (F1-M) for Avrett and

Loeser Case 1 in the indicated number of iterations.

with both methods for solving the non-linear coupling of
the RT and SE equations.

In the procedure based on linearization (F2-L) when
iterations started from the LTE populations, a few
negative radiation field intensities occurred in the first
iteration due to large corrections near the surface; these,
however, did not affect the overall procedure, which
resulted in positive mean intensities in all subsequent
iterations. The procedure remained stable up to the
maximum relative corrections R, of about 10~°, while
the maximum convergence error of 1% was reached in
about 15 iterations.

The instabilities that led to negative intensities in the
first iteration were removed by initializing the procedure

with the independent solutions of the two-level atom
problems, taking into account only the spectral lines of
the Lyman series, from which the solution for the
subordinate line can be easily derived. It was even not
necessary to take the final solutions of the two-level atom
problems, but the solutions obtained in the second
iteration, since they are closer to the final solution of
the multilevel problem than the equilibrium ones. The
convergence was rapid, reaching the maximum relative
change R. of 1% in only 12 iterations, and the maximum
convergence error C. of 1% also in about 15 iterations
(see Table 1).

Having obtained the exact, stable and fast solutions we
investigated the accuracy and the convergence properties
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Fig. 3. The convergence of the source function for three line transitions using the first family of the factors and the modified SE equations (F1-M) for
Avrett and Loeser Case 1 in the indicated number of iterations. The solutions obtained with FBILI are given by dots.

Table 1
Number of iterations needed by the IFM (using procedure F2-L) to satisfy

various convergence criteria: (a) R. <1072, (b) R <0.1Tu(c0), (c)
Ce <1072 and (d) C, <107 for four spatial grids (N; is the number of
depth points per decade).

N, R.<1072 Rc<0.1T, C. <1072 C.<10™*
Case 1

3 12 13 14 28
6 12 15 14 27
9 13 21 16 32
18 13 23 15 28
Case 2

3 13 13 15 28
6 13 16 14 27
9 12 18 14 26
18 13 23 39 49

Above for Case 1, below for Case 2 of the three-level H atom benchmark
problem [2].

of the method in more details. In order to investigate the
dependence of the accuracy on the spatial grid resolution,
we solved the test cases in three grids (with 3, 6 and 9
points per decade) and compared the solutions with the
fully converged source functions obtained with the FBILI
code in the finest spatial grid. The variation of the
maximum relative true error T. corresponding to these
grids with the iteration number is shown in
Figs. 4a and 5a for Avrett and Loeser Cases 1 and 2,
respectively. One can see that after a rapid initial
improvement T, exhibits an asymptotic behavior with
iterations, reaching the so-called truncation error T,(c0)
(a measure of the true accuracy) of about 9%, 3% and 1%,
for the grids with 3, 6 and 9 points per decade,
respectively. Let us note that the accuracy of 1% is
usually considered as good enough when two different
numerical codes are compared. Further increase in the
grid resolution led to an even higher accuracy, so that
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Fig. 4. (a) The maximum relative true error T, for three spatial grids with the iteration number, (b)-(d) the maximum relative change R., the maximum
relative convergence error C, and the maximum relative true error T, as a function of the iteration number for 3, 6 and 9 depth points per decade,
obtained by the IFM, using the second family of factors and the linearization (F2-L), for Case 1.

with 18 depth points per decade the true accuracy of
0.25% was achieved.

For each of the three spatial grids used, in the panels
(b)-(d) of Figs. 4 and 5 (for the Cases 1 and 2,
respectively), we show the variations with the iteration
number of the maximum relative change R. and the
maximum convergence error C. (over all line transitions
and all depth points in the atmosphere), together with the
corresponding true error T.. We see that the iterations can
be stopped once the criterion R.<0.1T.(c0) [18] is
satisfied, as the further decrease in relative corrections
does not increase the accuracy achieved any more.

From Figs. 4 and 5, one can also see that the convergence
rate of the IFM is practically insensitive to the spatial grid
used. This is also illustrated by Table 1 in which, for both test
cases and for different spatial grids (including N; =18 as
well), we display the number of iterations needed by the IFM

code to reach: the stopping condition R. < 102 usually used
in the literature (see, e.g. [1,21]), the criterion R < 0.1T(c0)
(suggested in [18]), as well as C. < 1% and C, < 0.01% (as the
measures of the method’s internal accuracy). One can see that
whatever the condition, the convergence rate is very high and
insensitive to the spatial grid.

The use of the F2-M approach for the solution of this
benchmark problem led to similar results. For the same
spatial grids considered, the maximum relative true error
T. reached the same asymptotic values as in the F2-L
solution. Convergence is achieved in a similar number of
iterations, reaching, however, the maximum relative
changes of only up to about 107*. The convergence
properties of the Avrett and Loeser case 2 were almost
identical to those of case 1.

As a further test, we applied our method to the Call ion
model with five bound levels, five radiative and 10
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Table 2

Number of iterations needed by the IFM (for all four procedures) to reach
a given maximum relative change in the solution of a five-level Call test
problem.

Rc F1-L F1-M F2-L F2-M
1072 9 6 7 7
1073 12 13 11 13
10~* 15 30 13 30
107> 24 58 24 58

collisional transitions in an isothermal atmosphere at
T =5000K, using the input parameters given in [8,25].
This test case was also solved with four runs, using both
families of iteration factors and both methods for the
solution of the non-linear coupling of the RT and SE
equations. It was again initialized assuming LTE. The

convergence properties are found to be generally similar
to, and in some cases even better than, those of the
three-level H atom test case. The accuracy grows at
approximately the same rate with grid resolution. The
convergence rates of the four solutions are summarized
in Table 2. The results are given for 6 points per
decade, but they coincide completely for the other grids
used, demonstrating again the independence of the
convergence rate on the grid resolution.

4.3. Convergence properties: comparison with other
methods

In this section we shall compare the convergence rate
and the total computational work of the IFM with those of
some other methods. Our intention is not to argue that
this approach is better or not than some other one, but
rather to show that its further generalization to other
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more realistic and more complex problems is fully
justified.

Apart from the comparison with the FBILI method that
we use as the reference one, we shall also compare the
properties of our method with those given by Rybicki and
Hummer [15], who solved the same benchmark problem
[2] with the MALI method. Rybicki and Hummer used
diagonal (D) and tridiagonal (T) approximate Lambda
operators, without (N) and with Ng acceleration (A). They
reported that with no acceleration a “true” accuracy of
about 1% was obtained after about 80 iterations with the
diagonal method (D/N) and after about 25 iterations with
the tridiagonal method (T/N). By “true” accuracy Rybicki
and Hummer meant the “true” relative error of maximum
absolute size, based on the “exact” solution found by a
preliminary long run with their fastest method (internal
accuracy). This criterion corresponds to that defined by
Eq. (20) in Auer et al. [18] or to the convergence error
given by Eq. (35) of the present paper. The true accuracy
that we used (Eq. (36)) was defined with respect to some
other “reference” method (external accuracy). Having in
mind that about 15 iterations are needed by the IFM to
reach the internal accuracy of 1% (see Table 1), we see that
the convergence rate of the IFM is higher than that of
MALI by a factor of more than 5 with respect to the D/N,
and by a factor of about 2 for the T/N method. Concerning
MALI methods with acceleration, Rybicki and Hummer
reported that an accuracy of 0.01% was obtained in 25 and
12 iterations, with D/A and T/A, respectively. The same
accuracy is reached by the IFM after about 29 iterations,
which is comparable with the number of iterations
needed by the diagonal method, accelerated (D/A). Only
the use of tridiagonal ALO with Ng acceleration (T/A)
provided more rapid convergence than the IFM. It is,
however, known that the optimal convergence of the
iterative procedure using Ng acceleration depends on the
optimal values of two control parameters: the iteration
number at which the acceleration is turned on and the
number of previous iterations used that require some
preliminary numerical tests and analysis (see, e.g., the
discussion on this topic in [15,21]). We want to stress that
the IFM does not need any additional acceleration.

The above considerations, however, do not give us a
complete insight into the efficiency of the IFM. Namely,
the saving in the number of required iterations does not
necessarily imply the saving in the total computational
work (CW). It is necessary to compare the computing time
per iteration and then to derive the conclusions about the
total CW.

To do this, let us recall that at each iteration step the
IFM requires the solution of a block tridiagonal system for
NT transitions and the solution of the SE equations for NL
level populations at each depth. Thus the computing time
scales as ~ N x NT®> +N x NL3. The diagonal MALI method
(as well as the FBILI method) requires the solution of the
SE equations for NL populations at each depth, which
scales in each iteration approximately as ~ N x NL>. The
computing time for the tridiagonal MALI method, which
requires the solution of a block tridiagonal system for the
populations, also scales as ~ N x NL>. Therefore, there is
an extra cost in the IFM of the NT x NT matrix inversions,

Table 3

Computational work (CW) in seconds, the number of iterations required
(iter) and the computation time per iteration (CPU/it) for the three-level
H atom benchmark problem [2] as a function of the number of depth
points per decade N-.

N, A iteration  FBILI IFM

CPU/it cw iter CPUJit CW iter CPU/it
3 0.0135 0.172 11 0.0156 0.422 23 0.0183
6 0.0264 0438 15 0.0292 0.813 23 0.0353
9 0.0395 0.828 19 0.0436 1.469 28 0.0525

The results are obtained with an Intel(R) Pentium(R) Dual CPU at
2.2 GHz. The stopping criterion is R, = 107%.

which is, as we shall see, compensated by its high
convergence rate.

The cost per iteration of the above iterative methods
can be expressed in terms of the CPU time per A iteration,
which is known to be the shortest possible. Thus, for the
sake of comparison of their total computational work we
ran the classical A iteration, the IFM and the FBILI codes,
bearing in mind that in the MALI D/N method the
computing time per iteration is practically the same as
that per classical A iteration. In all the codes the integral
form of the RT equation and the same short-character-
istics formal solver with the cubic representation of the
source function between two successive depth points are
used. In Table 3 for each chosen grid we show the CPU
time per A iteration, as well as the total computational
work, the number of iterations needed to reach the
maximum relative change R, = 10~* and the CPU time per
iteration for the FBILI and the IFM. All three codes were
run with the same discretization in angles, frequencies
and depths. The condition R, = 10~* is sufficient to claim
that the convergence to the exact solution is achieved in
all the chosen grids. We can see that the computing time
per IFM iteration is about 20% longer than the computing
time per FBILI iteration, and about 30% longer than the
computing time per A iteration. We can also infer that, in
terms of the total CW, the IFM is slower than the FBILI by
a factor of 2. On the other hand, using the known
convergence rates of the MALI and IFM (given in [15]
and in this paper), we can conclude that the total
computational work needed by the IFM is at least 4
times less than that needed by MALI to get the solutions of
the same accuracy.

From Table 3 we can also see the dependence of the
total computational work (CW) of the IFM on the grid
spacing. It is known that the computational work of the
MALI method with local approximate operator [15], as
well as of all the methods based on Jacobi’s iteration
[13,18], scales approximately as N; x N; (N.—the number
of depth points per decade), since both the CW of the
formal solver and the number of iterations needed to
reach the convergence scale with N;. The method based
on Gauss-Seidel iterations scales as N; x N;/2, the SOR-
based technique as N;+/N;/2+/2, while the multilevel
nonlinear multigrid methods scale as N; [23]. Note that, as
pointed out by Trujillo Bueno and Fabiani Bendicho [22],
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the Gauss-Seidel and SOR methods for radiative transfer
applications can be easily implemented in such a way that
the number of iterations required to reach convergence is
actually an extra factor 2 smaller, as was done in practice
by Trujillo Bueno and Manso Sainz [41] for the non-LTE
polarization radiative transfer problem. From Table 3 we
see that the CW of the IFM scales simply as N, since the
CPU time per iteration scales as N; and the number of
iterations required to reach the given criterion is practi-
cally insensitive to the grid resolution.

The above considerations show that the convergence
properties of the IFM (speed and accuracy) are compar-
able with those of the ALI methods. Moreover, two basic
advantages of the IFM with respect to the ALl methods
currently in use are: (1) extremely fast convergence with
no need for an extra mathematical acceleration, and (2)
there is no increase in the number of iterations with the
grid resolution refinement.

On the other hand, we show that it is possible to define
angle and frequency integrated iteration factors so that
the dimensions of the problem are drastically reduced, not
only for angles but also for frequencies. Hence, we see that
this approach, similarly to the hybrid ones, combines good
properties of the global CL approach (its high convergence
rate) and of the ALI methods (computationally cheaper
and faster per iteration). These conclusions explain and
justify the motivation for our approach.

5. Conclusions

The method of iteration factors, developed in Paper I
for the linear 2-level atom line formation problem, is in
this paper extended to the multilevel atom case.

Besides the non-local coupling between the radiation
field and the state of the gas that is inherent to all
radiative transfer problems, the multilevel line formation
has, from the mathematical point of view, the additional
difficulty arising from the non-linear dependence of the
atomic level populations (i.e. source functions) on the line
radiation field intensities. Therefore, in comparison with
the linear two-level-atom RT problem studied in Paper I,
an additional computational effort is required for the
simultaneous solution of the RT and SE equations, being
now non-linearly coupled. We solve this problem in two
ways: by linearization of the relevant equations and by
modification of the SE equations that makes them linear.

In the first approach, in the difference-equation form of
the RT moment equation we expand to the first order all
the relevant variables and eliminate the changes in
absorption and emission coefficients, i.e. the changes in
level populations, by means of the linearized SE equa-
tions. The resulting system of equations contains the
changes in the radiation field 6/, only. Its solutions satisfy
both sets of equations, the RT and SE. In the second
approach we use the linear form of the SE equations
obtained assuming that the level populations in the line-
opacity-like terms are known from the previous iteration.
This enables to write the rate equations in a linear form
and to express each line source function as a linear
function of the radiation fields in all the relevant line

transitions. Substitution of such modified SE equations
into the RT equation moments results in the system for J,
only, satisfying again both sets of equations simulta-
neously. Whichever approach is chosen, the RT equation
moments are closed by the quasi-invariant iteration
factors, computation of which leads extremely fast to an
accurate solution.

In order to test the method and check its accuracy and
efficiency we applied it to the well-known complete
redistribution pure line-transfer problem for three-level
hydrogen atoms in a constant property medium [2]. We
compared our solutions with those obtained with some
other methods used to solve the same kind of RT problems
in order to investigate in more details its properties,
advantages and limitations. We have shown that the use
of iteration factors leads to a very fast convergence (in
about 10-20 iterations) to the solution that differs by only
1-3% from the solutions obtained by other methods in the
usual spatial grids, and even by about 0.25% in the same
number of iterations with a high grid resolution of 18
depth points per decade. The generalization to the
multilevel case confirmed again that the more refined
factors are used, the better the convergence properties.
The convergence is extremely rapid even though the
iterative procedure is started with the corresponding
equilibrium values and no additional acceleration is used.
Very high convergence speed is not affected by the
refinement of the grid resolution, i.e. the convergence
rate is practically insensitive to the spatial grid, so that the
total computational work scales linearly with the number
of grid points. As an additional check we applied the IFM
to the solution of a 5-level Call ion model, obtaining
similar, and in some cases even better results.

By applying the IFM to the simplest, from the physical
and mathematical point of view, but not so simple from
the numerical point of view, test problem we aimed at
investigating its accuracy and convergence properties. For
the sake of clarity and self-consistency of the analysis, we
postpone its extension to physically more general cases
(line formation with background continuum in a variable
property media) to the forthcoming Paper III (as an-
nounced already in Paper I). Let us emphasize that the
IFM, as already shown in Paper I, has better convergence
properties, i.e. higher convergence rate and greater
stability (with no relaxation needed) when applied to
physically more complex, but numerically more stable
problems.

In general, the method of iteration factors is problem
dependent as the choice of the IFs as good quasi invariants
is determined by the physics of the problem itself and the
mathematical structure of the equations one has to solve.
However, this potential disadvantage is amply compen-
sated by its very fast convergence to the exact solution
with no need for an extra acceleration. Therefore, its
overall convergence properties are similar to those of the
global CL method. On the other hand, our factors, being
defined for each spectral line as a whole, drastically
reduce the need for large memory storage and a cost per
iteration, thus successfully removing the main drawback
of the CL approach. The fact that the total computational
work of the IFM scales linearly with the number of grid
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points is an advantage with respect to the ALl methods
currently in use.

There is no doubt that an impressive progress is made
in the last two decades in the RT numerical modelling and
that quite robust ALl methods are already employed in
solving various and complicated physical problems.
However, the study and examination of other possible
solutions is still actual, as it is always of interest and
importance to have as many independent methods as
possible in order to check and verify the obtained results.
The accuracy and convergence properties of the IF method
are so good that its study, further development and use
are fully justified.
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