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Abstract-In this last part of our study on non-LTE line transfer with convective transport of excited 
atoms, we present self-consistent solutions of the radiative transfer equation and the kinetic equation of 
the excited two-level atoms when the excited atoms undergo elastic velocity-changing collisions. We 
assume pure Doppler broadening of the spectral line and investigate reflecting and destroying boundaries 
for the excited atoms. Concerning elastic collisions of the excited atoms, our study covers all cases, from 
a collisionless gas (free particle streaming) discussed in Part II of this series of papers to a collision- 
dominated gas with the limiting case of complete redistribution. We present arguments that the streaming 
pattern of the gas of excited atoms does not depend critically on the shape of the line profile. Therefore, 
our results for a pure Doppler profile may also be used for other line profiles (Voigt, Lorentz) in first 
approximation, at least when the streaming parameter r) is not too large. 

1. INTRODUCTION 

In two previously published papers, ‘** in the following referred to as Parts I and 11,s we considered 
non-LTE line transfer by two-level atoms when streaming of excited atoms is taken into account. 
In particular, in Part II we presented self-consistent solutions of the transfer equation for the 
radiation intensity Z”(n) and the kinetic equation for the distribution function of excited atoms F*(v) 
for the limiting case when the excited atoms do not undergo elastic velocity-changing collisions (free 
particle streaming). In this Part III, we take these elastic collisions into account. Hence, we must 
now deal with all three dimensionless parameters 6, 5, r~ [Eqs. (11.2.1-3)] which characterize, 
respectively, inelastic collisions, elastic collisions, and streaming of the excited atoms. By constrast, 
only two parameters t and q were used in Part II. 

Quite generally, elastic velocity-changing collisions of excited atoms affect the radiation transport 
in a spectral line in two distinct ways. 3*4 Firstly, strong collisions that lead to large momentum 
transfer between the collision partners give rise to complete redistribution in the atomic rest frame, 
which means that the atomic emission profile q*,(c) equals the atomic absorption profile u,*(r). 
Secondly, elastic collisions affect the velocity distribution of excited atoms f*(v). As can be seen 
from Eq. (1.2.17) both effects influence the line emission profile Ic/“, and hence the radiative transfer 
in the spectral line considered. For the case of pure Doppler broadening considered in this paper, 
the equality q2, (5) = oz,*(<) is always valid [Eq. (1.2.1)], so that here elastic collisions affect the line 
emission profile only via the velocity distribution f*(v). In our model, the excited atoms undergo 
elastic collisions with nonexcited atoms having a velocity distribution that is Maxwellian of 
temperature T (see Sec. 1.2.1). These elastic collisions therefore tend to makey, Maxwellian of 
temperature T. In particular, the macroscopic mean velocity of the excited atoms is normally less 
than for the collisionless case. However, near a boundary that destroys the excited atoms, the flow 
velocity into the boundary is always of the same order as the thermal velocity of the atoms (see 
Sets. 4.3 and 5.2; cf. also Sec. 1.5.6). 

The present paper is organized as follows. After recalling in Sec. 2 the governing equations, we 
present in Sec. 3 numerical solutions for the static case where streaming of excited atoms is 

tTo whom all correspondence should be addressed. 
SEquations and sections of these papers are referred to as Eq. (1.2.50) and Sec. 11.6.1. 
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neglected (v = 0, [ # 0). In Sec. 4, we investigate the general case of non-LTE line transfer with 
convective transport of excited atoms in the presence of elastic collisions (q # 0, [ # 0). Finally, 
in Sec. 5, we introduce the diffusion approximation for elastic collision-dominated gases character- 
ized by the inequalities i >> 1 and r/i << 1. 

2. GOVERNING EQUATIONS 

For easy reference we collect in this section the governing equations of our model. The main 
physical assumptions underlying our study have been summarized at the beginning of Sec. 11.2. 

The radiative transfer equation for the specific intensity J,(n) - Z,(p), where p = n-e;, remains 
unchanged [cf. Eq. (11.2.7)], 

p(dldr)Z&L; r) = cp,Z,(~; r) - ~(r)1(/,(/1;r). (2.1) 

Here, cpX denotes the Gaussian line absorption coefficient [cf. Eq. (11.2.8)] 

CPX = = -I/* exp(-x2), 

and the line emission coefficient n,tj, is given by [cf. Eq. (11.2.9)] 

(2.2) 

n2(7)ll/,(~; 7) = 
s 

F,(Y; 7)@x - n-y) d3y. (2.3) 

The normalized emission profile t,b,.(n) = $,(p) obeys the symmetry relation [cf. Eqs. (1.65) and 
(11.3.35)] 

@An; 7) = I//-,(--n; r), $A; 7) = 11/-,(-p; 7). (2.4) 

On the other hand, if the excited two-level atoms undergo elastic velocity-changing collisions with 
nonexcited two-level atoms, the kinetic equation for the distribution function F*(y) E F,(y, p), 

where p = y.e,/y, now takes the form [cf. Eq. (1.2.50)] 

?yAdldr)F&> P; 7) = F,(Y, FL; 7) - k + (1 - ~V,,(Y, P; 7W-“(~>-5b2(71_fMCV) - F,(y, P; 7)l 

(2.5a) 

or 

VYP(~ + i)P’(dldr)F2(yV pu; r) =F~(Y, P; 7) - (1 + i)-‘[t + (1 - EV~~(Y~P; 7) + h(711f”(y), 

(2.5b) 

which for 5 = 0 reduce to Eq. (11.2.10). Here, 

p(y) = n-3” exp(-y2)=~-312exp(-y-y) (2.6) 

is the normalized three-dimensional Maxwell distribution [cf. Eq. (11.2.12)], while Z,,(y) z Z,,(y, P) 
is defined by [cf. Eq. (11.2.1 l)] 

I,*(Y, Pi 7) = 
ss 

I,@; 7)6(x - n-y) dx dfA/4n. 

From Z,*(y) is derived the quantity [cf. Eqs. (11.3.23) and (11.3.42)] 

(2.7) 

J,*(7) = 
s 

I,,(y; 7)f”(y) d3y = 
ss 

Z,(n; 7)cp, dx dR/4rr. (2.8) 

Equation (2.5b) is the balance equation for the excited atoms of velocity y at the optical depth 
7. The left-hand side describes the streaming of these atoms, and the right-hand side their net 
production. More specifically, the first term of the r.h.s. describes the destruction of excited atoms 
of velocity y through de-excitation collisions, spontanteous emissions, and elastic collisions, while 
the second term of the r.h.s. describes the creation of such atoms through excitation collisions (c), 
absorptions (Z& and elastic collisions (m2). Due to our definition of the optical depth variable 
7 [see Eq. (1.2.48)], the destruction term here has a plus sign, and the creation term a minus sign. 
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The boundary conditions are unchanged. Since T = $” is a symmetry plane, one has [cf. Eq. 
(11.2.13)] 

(d/dr)Z,(p; r = fro) = (d/dz)F,(y, Jo; r = $r”) = 0. 

At z = 0, the photons escape from the system, so that [cf. Eq. (11.2.14)] 

z;@L;T =O)=O, 

while, for the excited atoms, a reflecting boundary corresponds to [cf. Eq. (11.2.15)] 

K(y,C1;r =O)=F:(y,PL;~ =O), 

and a destroying boundary to [cf. Eq. (11.2.16)] I 

F,(y,p;T =O)=O. 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

3. THE STATIC CASE 

We first consider the static case where no streaming of excited atoms occurs (II = 0). Here, the 
limiting case of no elastic collisions c = 0 corresponds to static partial redistribution as discussed 
in Sec. 11.4. The opposite limiting case 5 = cc leads to a Maxwellian velocity distribution 
f2 ( y) =fM (y) and thus to complete redistribution, y?, = cpX. Not surprisingly, the general case of 
a finite [ # 0 may formally be viewed as a superposition of static partial redistribution and complete 
redistribution, as will now be shown. 

For q = 0, Eq. (2Sb) gives the distribution function F, in terms of the radiation intensity Z, as 

F,(y) = (1 + i)-‘k + (1 - c)z,,(Y) + i%lf”(Y)~ 
which upon integration 5 d3y yields 

in view of Eqs. (2.8) and 

n2=c +(l -t)J,, 

(11.3.36). Hence, Eq. (3.1) can also be written as 

&(Y) = n2fM(y) + 1 + i l-t [Z,,(Y) - J121f”(Y)* 

(3.1) 

(3.2) 

(3.3) 

For [ = co, Eqs. (3.1) and (3.3) reduce to a Maxwell distribution corresponding to complete 
redistribution, 

FyR(y) = n,f”(y); (3.4) 

for c = 0, we recover the distribution function corresponding to static partial redistribution [cf. Eqs. 
(11.4.1) and (11.4.4)] 

FTR(y) = [c + (1 - ~)Zr2(~)lfM(.v) = nzf”(y) + (1 - ~)[Z,,(Y) -JIJfM(~). (3.5) 

Thus, in terms of the normalized velocity distributionf,(y) = F*(y)/n, [Eq. (1.2.2)] or of the reduced 
velocity distribution T*(y) =fz(y)/fM(y) [Eq. (1.2.23)], Eq. (3.3) takes the form 

f2(y) JR(Y) + V"(Y),J(y) =iT"(Y) + r 
1+r l+i ’ 

(3.6) 

the interpretation of which is straightforward. 
We now turn to the emission profile tiX. Inserting Eq. (3.3) into Eq. (2.3) and using Eq. (11.4.6) 

leads to the static line-emission coefficient 

1-C 
n&.(n)=n,rp,+I+i[J MY)~~(Y)~(x - n-y) d3y - WA 1 9 (3.7) 

which can be written as 

n211/x(n) =n2cpx+ 1 +[ h? [R,(n) - J,,cp,l (3.8) 
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in terms of the redistribution integral 

R,(n) = 
ss 

Z,.(n’)R,,(x’, n’; x, n) dx’ dR’/4rr. (3.9) 

Here, the redistribution function RIA (in Hummer’s’ notation) corresponds to isotropic, pure 
Doppler broadening, 

RIA(x’, n’; x, n) = 
s 

6(x’ - n’*y)b(x - n*y)f”(Y) d3yy, (3.10) 

and obeys the relations 

R,,(x’, n’; x, n) = R,,(x, n; x’ n’), (3.11) 

ss 
R,, (x’, n’; x, n) dx’ dQ’/4n = cpl, (3.12) 

ssss 
RIA(x’, n’; x, n) dx’ dQ’ dx dQ/(4x)’ = 1. (3.13) 

We recall that redistribution functions can be employed only in the static case in the absence of 
elastic collisions (q = c = 0)4. 

For c = co, Eq. (3.8) yields the emission coefficient of complete redistribution 

n,ll/Y = n2(Px. (3.14) 

For 5 = 0, Eq. (3.8) reduces to the emission coefficient corresponding to static partial redistribution 

n&“(n) = % + (1 - t)R,(n), (3.15) 

where UP, and (1 - E)R, are the emission coefficients due to atoms that have been excited by 
excitation collisions and absorptions, respectively. Thus, in terms of the normalized emission profile 
tiX(n) or of the reduced emission profile qX(n) = t,bX(n)/cpX [Eq. (1.2.29)], Eq. (3.8) takes the form 

(3.16) 

in analogy to Eq. (3.6). 
It should be observed that the various derived relations are formal in the sense that the quantities 

n,(r), f!“(y; t), II/,‘“(n; r) depend on the radiation intensity Z,(n; T) and, therefore, depend 
implicitly on i, because the self-consistent intensity Z,(n; 2) depends on the parameter [ that 
characterizes the gas under consideration. Hence, we should write +(r I< ),f,‘“(y;z 1 c), $,‘“(n; z I[). 
Nevertheless, Eqs. (3.6) and (3.16) are instructive and, moreover, display the dominant dependence 
off2 and II/, on the parameter 4’, as opposed to the indirect, much weaker dependence on c through 

f T" and II/z”. 
Thus, the velocity distribution f2 and the emission profile II/, corresponding to a given [ are 

readily estimated using Eqs. (3.6) and (3.16) together with Figs. 11.2. On the other hand, the 
dependence of the number density n2 on [ can be characterized by the quantity 

b,(r) = m?“(r) - nz(r li)l/GR(r), (3.17) 

where n:“(r) E n2(r I[ = co) is th e d ensity of excited atoms corresponding to complete redis- 
tribution (see Fig. 11.4). It turns out that for optical depths smaller than the thermalization length, 
7<6_' , b,(t) is rather independent of 7, while for 7 > c -', b,(7) N 0 of course. Table 1 lists b,(O) 
at the surface 7 = 0 for various values of .C and c. As expected, the deviations of n, from n:” increase 

with decreasing parameters 6 and i. 

4. THE GENERAL CASE 

We now turn to the general case where both streaming of excited atoms and elastic collisions 
of excited atoms are taken into account (v # 0, 5 # 0). Since we are interested only in non-LTE 
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Table 1. The quantity b&O), Eq. (3.17), at the surface r =0 of a semi-infinite (TO= a~), static (0 =0) gas layer, for 
various values of L and i. The case C = 0 corresponds to static partial redistribution (Sec. 11.4.) 

0 0.01 0.1 1 IO 100 

10-Z 0.046 0.045 0.038 0.013 0.000 0.000 

10-4 0.165 0.163 0.148 0.076 0.013 0.003 

10-6 0.245 0.242 0.221 0.118 0.021 0.003 

gases, E << 1 is always understood in the following whenever a nonspecified t is mentioned. As in 
Part II, we present numerical results for a gas layer specified by 

c = 1o-4 ) z0=2 x 106, 

which behaves like a semi-infinite layer because its optical thickness is much larger than the 
thermalization length corresponding to pure Doppler broadening, z’>>L -‘. The numerical inte- 
gration of the two coupled kinetic equations (2.1) and (2.5) was performed by using the method 
of variable Eddington factors (see Sec. 11.3). It will prove convenient to present the numerical 
results for the macroscopic quantities n,(r), u(z), $(T) of the gas of excited atoms together with 
the corresponding quantities that follow from the two-fluid model introduced in Sec. 11.6.1 and 
suitably modified below to allow for the occurrence of elastic velocity-changing collisions (i # 0). 

4.1. Two-fluid model 

The two-fluid model for a semi-infinite gas layer, introduced in Sec. 11.6.1, replaces the 
distribution function F2(y; T) and the radiation intensity Z,(n; t) by two functions F’(r), F-(T) 
and Z+(r), Z-(r), respectively, that describe the “outgoing” and “incoming” atoms and photons 
in a first approximation. In this model, elastic collisions are taken into account by replacing 
Eqs. (II. 6.la,b) by 

r#fi’ dF+/dr = (1 + [)F+ - [c + (1 - c)J,~ + [%I, (4.la) 

-qj+’ dF-/dr = (1 + OF- - [c + (1 - E)J,~ + in,], (4.lb) 

in view of Eq. (2.h). On the other hand, the transfer equation (11.6.2) the definition of the various 
moments, Eqs. (11.6.4,5), and the boundary conditions (11.6.68) remain unchanged. We recall that 
p‘ = y*ei/y and ,u = n-e, here denote the direction cosines with respect to the z-axis of the atomic 
velocity y and the photon direction n, respectively. 

Defining 

a, = a(1 + 5)-i’* = fjJj?‘(l + [)-I’*, /? = ,li/cp,, t (4.2) 

we readily derive for the moments n, and J,* the relations [cf. Eqs. (11.6.10-15)] 

afn;(z) = n*(T) - [E + (1 - c)J,~(z)], (4.3) 

B’JY2(t) = J12(r) - n2(zh (4.4) 

n*(m) = J12(~) = 1, (4.5) 

a,n;(O) = yn,(O); yR = 0; yD = (1 + [)“*, (4.6) 

BJ;2(0) = J,z(O)> (4.7) 

4(T) = (a:/‘l)n;(T); U(T) = b(T)/nz(T). (4.8) 

In Eq. (4.6), the superscripts R and D refer to reflecting and destroying boundaries, respectively. 
Comparison with Eqs. (11.6.10-l 5) shows that the only changes concern the replacement a --f a, and 
the appearance of the factor yD = (1 + c)“* rather than yD = 1 for a destroying boundary. 

Concerning the representative values p, p’ for the excited atoms and 2, p for the photons, we 
adopt the same values as in Sec. 11.6.1. As discussed there, this choice leads to too small values 
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of the thermalization length & and, for q > 1, of the streaming length L,, but, leaving aside the 
absolute magnitudes of L, and &, it describes adequately the streaming of excited atoms which 
primarily arises in the surface layer 0 < z < L,. Thus, in our model [cf. Eq. (11.6.21)], 

a, = 2-W/(1 + [)-“2, p = 1/3”2Cp, N 1. (4.9) 

By analogy to Eq. (11.6.27) we also introduce the quantity 

w, = ci,/fi = o(1 + [)-‘!2= q/2”2/3(1 + [)“2. (4.10) 

Therefore, in our two-fluid model, the following orders of magnitude arise: 

a,-o,-V(l +i))‘:‘, p N 1. (4.11) 

However, as in Part II, we keep in our formulas the parameter /I in order to display explicitly the 
dhmCe of the representative photon frequency 2 on the results obtained. 

The thermalization length L, and the streaming length L, are the positive roots of the 

characteristic equation corresponding to Eqs. (4.3) and (4.4,), that is, of Eq. (11.6.24) with a 

replaced by a,. Thus, for t << 1 and in the presence of elastic collisions [ + 0, one obtains in analogy 
to Eqs. (11.6.25) and (11.6.26) 

L, = ,-‘/Z(rJf + P’)“’ = 6 P’l’p(l + &)“2, (4.12) 

L, = crJ?(af + p2)-1’2 = cr,(l + of)-“2 = j&X,(1 + Of)-“2. (4.13) 

Comparison with the following numerical results will show that (as for the collisionless case 
i = 0) using the orders of magnitude (4.11) in Eqs. (4.12) and (4.13) leads to too small a 
thermalization length L,, and that the correct streaming length L, is obtained only if w, < 1. The 
scale lengths L, and L, will further be discussed in Sec. 6. 

However, the great merit of Eqs. (4.12) and (4.13) consists in displaying the functional 
dependence of LT and L, on the parameters L, n, [. First, from the relation 

L,/L, = E”2W,/(1 + wf) < 61’2, 

we conclude that L,cL, in non-LTE gases with t << 1; as stated repeatedly, in our model L.r N c - ‘I2 
rather than _LT N L -‘. 

Next, Eqs. (4.12) and (4.13) predict both Lr and Ls to decrease with increasing elastic collision 
frequency, that is, with increasing [. This result is most easily seen by writing 

L,=6-“y?[l +o’/(l +[)]“2, L,=a(l +i +w2)-“2, 

where 01 and o [cf. Eqs. (11.6.21) and (11.6.27)] correspond to the collisionless case i = 0, and are 
hence independent of 5. 

In the limiting case o,<< 1 where streaming is not very important, one obtains from Eqs. (4.12) 
and (4.13) 

L,-c-“2& Ls-Lx,-?/(l +l)--1’2. (4.14) 

Thus, L, here is independent of q and [, as expected, while Ls depends on these parameters through 
the characteristic combination CI, N o, N ~(1 + i)-“2. 

In the opposite limiting case w,>> 1 where streaming is important, Eqs. (4.12) and (4.13) yield 

Lr-c 
-l/2 

POCNC -‘Q(l + [)-“2, L, N p. (4.15) 

Here, the thermalization length increases with increasing parameter 0,. In terms of the parameters 
q and [, & increases with increasing q, and decreases with increasing i, as expected on physical 
grounds. On the other hand, for o,>> 1, the two-fluid model with the choice of parameters (4.11) 
leads to a streaming length Ls N /? N 1 independently of rl and [ (see also Sec. II.6.1). 

In the two-fluid model with elastic collisions, the particle and photon moments that are solutions 
of Eqs. (4.3H4.8) can be written as [cf. Eqs. (11.6.28-3O)l 

n2(r) = 1 - A.exp(-T/L,) - A,exp(-z/L,), (4.16) 

4(r) = 2-“2[/TAT exp(-t/L,)) + fs& exp(-r/L& (4.17) 

J’2(t) = 1 - [AT/(1 - k+)]exp(-r/b) - k/(l - ki)]exp(-7/Ls). (4.18) 
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Here, the characteristic lengths L-r and Ls are defined by Eqs. (4.12) and (4.13). The coefficients 
A:, At, A?, A? are again given by Eqs. (11.6.35)-(11.6.38). However, kT, IT, ks, Is are now given 

by 

k, = /?I& = E I’*/( 1 + of)“‘, (4.19) 

I, = a,/L,(l + c)“* = C”2W,/(l + of)“z(l + [)I’*, (4.20) 

ks = /?/Ls = (1 + o;)“*/o,, (4.21) 

Is = a,/L,(l + i)“2 = (1 + of)“2/(1 + r)“** (4.22) 

For [ = 0, they reduce to Eqs. (11.6.31-34). Again, kT, iT < L”* and k, > 1, but now I, 2 1 as 
opposed to Is > 1 in the collisionless case c = 0. 

4.2. Reflecting boundary 

We first consider a gas enclosed between boundaries that reflect the excited atoms. In this case, 
the effect of elastic velocity-changing collisions of excited atoms can be summarized by saying that 
they tend to thermalize the velocity distribution f*(v) at each point of the gas (in contrast to the 
case of destroying boundaries, see Sec. 4.3). In other words, with increasing parameter [, one 
approaches static complete redistribution where, in particular, u(r) and 4(z) vanish identically. 

For reflecting boundaries, the formulas corresponding to the two-fluid model in the presence of 
elastic collisions are obtained from those of the collisionless case by replacing o by m,, and by 
multiplying the formulas for 4(z) and u(r) by the factor (1 + <)-I’*. Thus, formally, in the 
expressions of Sec. 11.6.2, we must make the substitutions 

0 -+w,, C$R(r)+(l +l)“24”(2) 24R(r)+(l +i)“‘U”(T)), 

o, being defined in Eq. (4.10). 
Let us first consider the case r] 5 1. Here, the transport of excited atoms from deeper layers into 

the boundary region more or less compensates the decrease of the density n2 there that is due to 
partial redistribution (see Fig. 11.4), resulting in a density distribution n*(r) which resembles that 
of complete redistribution (see Fig. 11.5). As a result, elastic collisions hardly affect n*(~) if q 5 1, 
because even the limiting distributions n*(t) corresponding to 5 = 0 (partial redistribution) and 
[ = cc (complete redistribution) practically do not differ from each other. On the other hand, the 
mean velocity u(z) decreases with increasing parameter 5 according to the scaling law (1 + C))“*. 
For these reasons, we do not illustrate this case by figures. 

To illustrate the effect of elastic collisions in the more interesting situation q >> 1, we choose the 
case q = 100. In the collisionless case i = 0, the increase of the thermalization length due to 
streaming and partial redistribution is clearly visible on the n*(T) distribution (see Fig. 11.5). On 
the other hand, for q = 100 and c = 0, the mean velocity u(z) as a function of optical depth has 
two maxima (see Fig. 11.7), the origin or which was discussed in Sec. 11.5. The evolution of these 
two characteristic features with increasing [ can be followed in Figs. 1 and 2. 

Fig. 1. Density of excited atoms a, vs optical depth 
r of a gas layer for r = 10m4, f = 100, r” = 2 x 106, 
with reflecting boundaries. Curve labeled n 
(n = -2,. . . ,2) corresponds to [ = IO”; dashed 

curve to 5 = co (complete redistribution). 

o-’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ‘- 
_, _ log ‘J 

-2 

-3 

-4 

-5 

-6 

_q 

-1, -3 -2 -1 0 1 2 3 L 5 6 

Fig. 2. Mean velocity of excited atoms u vs optical 
depth r of a gas layer with c = 10m4, q = 100, 
r” = 2 x 106, with reflecting boundaries. Curve la- 

beled n (n = -2,. . ,2) corresponds to [ = IO”. 
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The density distributions plotted in Fig. 1 show a one-exponential decay [cf. Eq. (11.6.44)] with 
a thermalization length that decreases with increasing [, approaching for c + cc the value L -I 
corresponding to complete redistribution. According to the two-fluid model, the surface density 
is given by [cf. Eq. (11.6.39)] 

C l/2 

n2R(o) = (1 + of)“2 - w,; ~“2w,,(1 + of)l/2' 
(4.23) 

in reasonable agreement with the numerical results (see Fig. 1). In particular, for given i, q -+ co 
corresponds to w, -+ co, and Eq. (4.23) leads to n:(O) = 1 corresponding to LTE, while for given 
Q, i -P cc corresponds to oC+O, and Eq. (4.23) leads to n:(O) = c’12 corresponding to complete 
redistribution. 

In Fig. 2, the mean velocity U(T) is plotted for the same values of q and 5 as in Fig. 1. The two 
maxima of u(z) occurring for [ << 1 disappear with increasing [ as a consequence of the 
thermalization of the velocity distribution f2(v) by elastic collisions. According to the two-fluid 
model, the mean velocity in the boundary region 0 < z -C L, is given by [cf. Eq. (11.6.49)] 

UR(T) = 2,,‘p(;+ r),,2 Kl + 4)‘” - %lT. 

In the limiting case w,>> 1, which applies to all cases shown in Fig. 2, this reduces to 

UR(r) N (l/21)7 (4.25) 

ndependently of C,. Equation (4.25) which coincides with Eq. (11.6.51), is in good agreement with 
the numerical results (see Fig. 2). The corresponding maximum velocity, occurring at T N L,, is 
given by [cf. Eq. (11.6.52)] 

2-w 

6 = (1 f ,Y)W(l +m,:)l:2 [(l + C0y2 -C&l, 

reducing for a,>> 1 to 

u& N /?/2q N 1121 (4.27) 

independently of i, which is in reasonable agreement with the numerical results (see Fig. 2). 
Turning now to the reduced velocity distribution y2(v) zf2(y)/‘“~) and the reduced emission 

profile $&) = $,(p)/(p,, we discuss only the latter quantity since the general features ofs are quite 
analogous to those of $X. In analogy to Fig. II. 10, Fig. 3 plots q,(p) at the optical depth r = 1 

_ -4-3-2-1 0 1 2 3 L -h-3-2-1 0 1 2 3 L 
5 , , , I, , , , , 

C:lO 

,,;I+ , , -1 , , -yj 
-4-3 -2-l 0 1 2 3 L 

r\=l q = 100 
Fig. 3. Reduced emission profile $,(JL) vs frequency x of a gas layer c = 10e4, TO = 2 x 106, with reflecting 
boundaries at the optical depth T = 1, for q = 1 and 100, and for vari_ous values of [. Curves labeled l(4) 

correspond to p, = 0.875 & = 0.125). For negative p’s, use $,@) = I,_,(-p), Eq. (2.4). 



Resonance line transfer and transport of excited atoms-III 435 

Ix T=O 

t I 1 I I I I I A’1 
-L -3 -2-l 0 1 2 3 L 

1 - --_---------- _ 

4 t=10 
1 b 

1 

0.1 !YI!z! X 

-4 -3-2-l 0 1 2 3 4 
Tl= 100 

Fig. 4. Emerging intensity I&; T = 0) vs 
frequency x of a gas layer L = 10e4, 
q = 100, P=2 x 106, with reflecting 
boundaries, for various values of 1. Curves 
labeled l(4) correspond to & = 0.875 

& = 0.125). 

log T 

1o-4 ’ ’ ’ ’ ’ ’ 1 1 1 I I I 
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Fig. 5 Density of excited atoms n2 vs optical depth r of 
a gas layer c = lo-“, n =O.Ol, r0=2 x 106, with de- 
stroying boundaries. Curve labeled n (n = -2,. . ,2) 

corresponds to [ = lo”. 

for q = 1 and 100, respectively. We_recall that 6, is largely independent of q as long as 0 < tl 5 1. 
On the other hand, for given 5, $,(,u; t) varies very little in the interval 0 <r 5 1, while it 
thermalizes rapidly for r > 1. Figure 3 shows that elastic collisions lead to an approach to complete 
redistribution, as expected. As in the collisionless case (see Fig. II. lo), the emission profile GX for 
q = 100 is always flatter than that for r] = 1 as a consequence of the much flatter n2(T) distribution 
for rl = 100 (see Fig. 11.5). 

The emergent intensity for small values of q, 0 c rl 5 1, is hardly affected by elastic collisions, 
and practically coincides with the emergent intensities corresponding to static complete and partial 
redistribution which do not differ very much from each other. On the other hand, Fig. 4 shows 
the emergent intensity for the case q = 100. Here, elastic collisions strongly affect the emitted 
spectral line via their influence on the density distribution n*(T) (see Fig. 1). For [ > 10, the 
emergent intensities strongly resemble that for c = 10 except that the intensity in the line core is 
determined by the corresponding surface value n,(O) (see Fig. 1). 

4.3. Destroying boundary 

The streaming pattern of a gas of excited atoms enclosed between destroying boundaries differs 
significantly from that of a gas between reflecting boundaries. Indeed, the excited atoms stream 
into a destroying boundary with a macroscopic velocity that is of the order of the thermal speed 
of the atoms (cf. Figs. I.2 and 11.7), whereas the macroscopic velocity at a reflecting boundary 
vanishes. In this section we investigate the streaming pattern of the gas of excited atoms in the 
presence of destroying boundaries as a function of the collision parameter [, for the streaming 
parameters rl = 0.01 and 100, respectively. 

In Fig. 5 we plot the density q(T) for the case v = 0.01. For q << 1, the surface layer in which 
streaming due to particle destruction at the boundary occurs is clearly visible. With increasing 
collision frequency, both the thickness L, of this surface layer and the surface density n,(O) 
decrease. The decrease of LS with increasing i is approximately described by the two-fluid model, 
Eq. (4.14), while the corresponding decrease of n,(O) is a consequence of the fact that elastic 
collisions make the velocity distribution f2 more isotropic so that fewer atoms arrive at the 
boundary when 5 is increased (cf. Sec. 1.5.6). As seen in Fig. 5, also the thermalization length L, 
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Fig. 6. 

-4 -3 -2 -1 0 1 2 3 L 5 6 

Density of excited atoms n2 vs optical depth T of a gas layer with c = lo-‘, q 
and destroying boundaries. Curve labeled n (n = -2, ,2) corresponds 

=lOo,r0=2x 
to [ = lo”. 

106, 

decreases slightly with increasing i due to the destruction of partial redistribution by elastic 

collisions, and therefore not accounted for by the two-fluid model [cf. Eq. (4.14)]. 

On the other hand, for q >> 1 the streaming length Ls is not discernible on the n*(T) distribution, 
while the decrease of the surface density q(0) with increasing [ is again clearly seen (see Fig. 6). 
For q >> 1 and w, >> 1, the thermalization length & is affected by elastic collisions not only indirectly 
through the destruction of partial redistribution as in the case q << 1, but also directly through the 
alteration of the particle streaming as predicted by the two-fluid model [cf. Eq. (4.1411. 

The various features encountered in the presence of destroying boundaries for q << 1 and q>> 1, 
respectively, are satisfactorily accounted for by the two-fluid model. From Eqs. (4.16), (4.21) (4.22), 
(11.6.37), and (11.6.38), we derive the surface density 

E 112 

ny(o) = (1 + 01’2 + (1 + Of)“2 - 0, + ,“2W,/(l + 0;)“” 
(4.28) 

For small E << 1 and for q << 1, co,<< 1, this relation reduces to 

n,D(O) N t ‘I’/[( 1 + [)‘12 + 11; (4.29) 

similarly, for fj >> 1, co,>> 1, 

nf(0) N c”2/(1 + c)“2. (4.30) 

Comparison with Figs. 5 and 6 shows that Eqs. (4.29) and (4.30) are in reasonable agreement with 
the numerical solutions. 

For q << 1 one has to a first approximation A: N 1 - 6 Ii2 and hence A E = 1 - A F - nf(0) N t ‘I* - 
n?(O), so that from Eq. (4.16) 

n:(z)- 1 -(l -~“‘)exp(-z/L,)-[~112-nnf(0)]exp(-r/Ls), (4.3 1) 

which agrees with Eq. (X6.57). On the other hand, for q ~1, A? N 1 - ~“~(1 + l)-“* or 
A? ‘Y 1 -n?(O) in view of Eq. (4.30), and hence A! = 1 -A: - n:(O) 2: 0, and Eq. (4.16) takes the 
form 

n:(7) N 1 - [l -n?(O)] exp(-z/L,), (4.32) 

which agrees with Eq. (11.6.59). Equation (4.31) explains the occurrence of the “step” in n*(z) at 
7 N Ls in Fig. 5, while Eq. (4.32) accounts for the fact that the scale length L, is not visible in 
Fig. 6. 

The mean velocity u(7) is plotted in Figs. 7 and 8 for the same cases as depicted in Figs. 5 and 
6. At the surface one has always u(0) = 2- ‘I2 If q<< 1, U(T) drops rapidly in the interval 0 < 7 < Ls, . 
followed by a much slower decrease for 7 > L, (see Fig. 7). As a result, the streaming length L, 
is easily discernible on the u(z) distribution, and the decrease of LS with increasing i can again 
be observed. On the other hand, the slow decay of u(7) for 7 > Ls is governed by the thermalization 



Resonance line transfer and transport of excited atoms-III 437 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 

-4 - 

-6 - lJ z 100 

-L -3 -2 -1 0 1 2 3 4 5 6 

Fig. 7. Mean velocity of excited atoms u vs optical depth 
7 of a gas layer t = 10m4, q = 0.01, T” = 2 x 106, with 

Fig. 8. Mean velocity of excited atoms u vs optical 
depth 5 of a gas layer c = 10e4, q = 100, TO = 2 x lo6 

destroying boundaries. Curve labeled n (n = -2, . . ,2) with destroying boundaries. Curve labeled n 
corresponds to c = 10”. (n = -2,. . ,2) corresponds to [ = lo”. 

length. That there the u(t) curves are nearly parallel corresponds to the fact that Lr is 
approximately independent of c (see also Fig. 5). In the opposite limiting case n D 1, Fig. 8, the 
streaming length L, is not visible on the u(7) distribution, as it was the case with the ~(7) 

distribution (see Fig. 6), and the decay of u(7) is governed by the thermalization length L, 
throughout. Again, it can be seen that & decreases with increasing [ (see Figs. 6 and 8). 

The particle flux into a destroying boundary decreases with increasing elastic collision frequency. 
Indeed, 4(O) = n,(O) u(O), where u(0) is independent of c, while n,(O) decreases with increas- 
ing [. 

In order to study the influence of elastic collisions on the emission profile tiX (and hence on the 
velocity distributionf, too, becausef, behaves essentially like tj,), we consider the reduced emission 
profile G,(p) for the same cases that were discussed in Fig. II. 12 of Part II. For simplicity, we 
consider the corresponding angle-averaged profiles of outgoing (,u > 0) and incoming (p < 0) 
photons defined by 

which according to Eq. (2.4) are related through 

tJ+,=$;. (4.34) 

Here we have used the fact that the absorption profile cpX, Eq. (2.2), which enters 5, through 
J,(p) = $,(p)/(p,, is independent of p and obeys cpX = ~p-~. 

Estimates of the anisotropy of eX@) and hence of_f,(y) may be obtained from Fig. II.12 which 
corresponds to [ = 0. For [ # 0, the anisotropy of $,(p) at the surface t = 0 is almost the same 
as in the collisionless case c = 0 because of the identical boundary conditionf,(y, p; 7 = 0) = 0 for 
p < 0. On the other hand, in deeper layers 7 > 0, the anisotropy of qX(p) is smaller for 5 # 0 than 
for c = 0, and decreases with increasing parameter c, as expected on physical grounds. 

Our results are presented in Fig. 9. Consider first the surface r = 0 where the mean velocity takes 
the value u(0) 2: 2-l’* (see Figs. 7 and 8). As a result, the core of the profiles $:, which is 
determined by this macroscopic flow, is practically independent of the parameters q and [. On the 
other hand, the wings of the profiles 3: show the usual “overpopulation” due to partial 
redistribution, which is more pronounced for q = 0.01 than for q = 100, and which decreases with 
increasing c, as expected. 

Let us now follow the depth dependence of &z(7) in the case q = 0.01. Figure 7 shows that at 
the depth 7 = q = 0.01 the mean velocity is already much smaller than the surface velocity 
u(O)-2- . ‘P As a result 6: at 7 = q = 0.01 is only slightly asymmetric about the line center for 
[ << 1, and is practically ‘symmetric for 5 k 1. At the larger depth 7 = 1, the macroscopic velocity 
is already so small (see Fig. 7) that $:is symmetric for all c. Consider now the case q = 100. Here, 
the macroscopic velocity at 7 = 1 is still practically the surface velocity u(0) N 2-‘12 as long as [ 5 10 
(see Fig. 8), so that 3,: at 7 = 1 differs from 5: at 7 = 0 only for [ > 10 (see Fig. 9). At the depth 

Q.S.R T 38,&c 
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Fig. 9. Angle-average reduced emission profiles 6: and 4; , Eqs. (4.33) and (4.34), vs frequency x of 
a gas layer L = 10W4, TO = 2 x 106, with destroying boundaries for 1 = 0.01 and 100, at various optical 

depths 5. Curves labeled n (n = 0, 1,2) correspond to c = lo”, dashed curves to [ = 0. 

z = rl = 100, the cases c = 10 and 100 in Fig. 9 correspond approximately to complete redis- 
tribution, while $,+ for 5 5 1 still shows the effect of partial redistribution superimposed on a 
macroscopic flow velocity (cf. Figs. 5-8). 

Finally, we turn to the emergent intensity Z: (p; t = 0) for the same cases rl = 0.01 and 100. For 
q = 0.01, the streaming of excited atoms is restricted to the very thin surface layer 0 < 7 < &CC I, 
which means that almost all of the layer of line formation 7qx 5 1 behaves as a static gas 
(Sec. 3), even in the presence of a destroying boundary. In contrast, for q >> I, streaming of excited 
atoms is important in the layer of line formation rep, 6 1 in a large frequency range about the line 
center x = 0, and thus affects the emergent intensity at these frequencies. Figure 10 shows a plot 
of the emergent mean intensity at the surface 7 = 0, viz. 

J,(o)=; 
s 

1 

1, (P ; 0) dp. (4.35) 
0 

It can be seen that the core of the emitted spectral line varies as a function of 5 according to the 
corresponding variation of the surface density n,(O) (see Fig. 6). Moreover, for 5 6 10, it is 
asymmetric about the line center due to particle streaming (see Fig. 8). On the other hand, the line 
wings, being formed at large optical depths, depend only slightly on 6, and are symmetric. 

5. DIFFUSION APPROXIMATION 

In this section we discuss elastic collision-dominated gases in which the excited atoms undergo 
many elastic velocity-changing collisions during their lifetime, 5 >> 1. This is the opposite limiting 



Resonance line transfer and transport of excited atoms-111 

Jx, T=O 

0.5 

-L -3 -2 -1 0 1 2 3 L 

Fig. 10. Emerging mean intensity J,(s = 0), Eq. (4.35), vs frequency x of a gas layer 6 = 10-4, q = 100, 
TO = 2 x 106, with destroying boundaries. Curve labeled n (n = 0, 1,2) corresponds to [ = lo”, dashed 

curve to [ = 0. For comparison: a blackbody radiator I:(p) = 1 emits J, = 0.5. 
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case to the situation considered in Part II where such elastic collisions were negligible, c << 1. 
Intuitively, it is clear that for c >> 1 complete redistribution is approached, and that streaming of 
excited atoms is described by a diffusion flow (as opposed to free particle streaming in the case 
[<<l), except in a thin surface layer near a destroying boundary where the macroscopic flow 
velocity is always of the order of the thermal velocity of the atoms (see Sec. 4.3). In the following 
we develop an approximate method of solving the coupled kinetic equations for the excited atoms 
and the photons, referred to as the diffusion approximation, which applies if simultaneously the 
two inequalities 

5>>1, V/C<<1 (5.1) 

hold. In view of Eqs. (11.2.2) and (11.2.3), the first inequality expresses the fact that the mean path 
length traveled by an excited atom in much smaller than the gas-kinetic mean free path (&XC~<&), 
and the second, that the mean free path of the excited atoms is much smaller than the mean path 
length traveled by the photon (Aeel<<&,). Since the scale length of gradients due to non-LTE line 
transfer is of the order of A,,,, , the second inequality is therefore a necessary condition for a diffusion 
regime to apply, which requires that the mean free path is small compared to the scale length of 
the gradients. 

The starting point is the kinetic equation (2.5a) which upon integration over all velocities y yields 
[cf. Eqs. (11.3.37) and (2.8)J 

q d4/dz = n2 - [C + (1 - c)J,*]. (5.2) 

In the diffusion approximation, the flux density is proportional to the density gradient, 4 a dn,/dz 
[see Eq. (5.15)], thus leading to a second order diffusion equation for n2 [see Eq. (5.17)] (cf. also 
Sec. 1.4). 

5.1. The d.$iision approximation 

We start from the kinetic equation (2.5b) of the excited atoms, which we write as 

mY)= 1 +c -!- [c +(I -t)l,*o+~n*lf"(Y)+~~F,(Y~. (5.3) 

Here and in the following, we distinguish,explicitly between the direction cosines referring to the 
atoms and the photons, respectively. That is, as in Sets. 4.1, 11.3.2, and 11.6.1, we designate 
p’ = y*e,/y and ,u = n-e,. 

We now introduce two approximations in Eq. (5.3). First, in accord with Eq. (5.1), we put 
(1 +C)-’ NC-‘, C/(1 + i) = 1 -C-l,. q/(1 + C) = q/C. And second, in the last term of Eq. (5.3) 
which is small because it contains the factor q/C c 1, we set F,(y) N n/‘(y) which is expected to 
hold in an elastic collision-dominated gas except in a thin surface layer near a destroying boundary. 
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We thus obtain the (approximate) distribution function 

4(Y) = %.f”(Y) +; k + (1 -MY,* - n23f”ty) + f~YP’f”(Y). (5.4a) 

Performing here the integration j d3y and taking Eq. (2.8) into account leads to the (approximate) 
density 

n2=t +(l -c)J,~ 

[cf. Eq. (3.2)], which, when substituted back into Eq. (5.4a), yields the distribution function 

F,(Y) = n2fMtv) + 7 MY) - J1*IS"tY> + ;~Y"Y"tY). 

Here, in analogy to Eq. (3.3), the first term on the r.h.s. corresponds to static complete 
redistribution, while the second and third terms are correction terms due to partial redistribution 
and streaming of the excited atoms, respectively. 

On the other hand, the line emission coefficient n2$x(n) corresponding to the distribution 
function (5.4b) follows from Eq. (2.3). Taking Eqs. (11.4.6) (3.9), (3.10) and (11.344) into account, 
one obtains 

Again, by analogy to Eq. (3.8), the first term on the r.h.s. corresponds to complete redistribution, 
while the second and third terms are correction terms due to partial redistribution and streaming 
of the excited atoms, respectively. 

In Eqs. (5.4b) and (5.5) the corrections terms due to partial redistribution and streaming are 
small since they contain the small factors l/c and q/c, Moreover, their mean values vanish, 

s 
[Z,,(Y) - J,Jf”(~) d3y = 0, 

s 
Y/JL’~~(Y) d3y = 0, (5.6) 

JJ 
[RX(n) - J,, cp,] dx dR/4n = 0, 

ss 
X/UP, dx dR/4n = 0, (5.7) 

using Eqs. (2.8), (3.11), and (3.12). 
We now introduce a last approximation by requiring that the distribution function &(y), Eq. 

(5.4b), be determined using a radiation field that corresponds to a static gas. In a static gas (that 
is, in the absence of particle streaming), the radiation intensity is symmetric about the line center 
[cf. Eq. (11.4.7)] 

C(P) = P,(p), (5.8) 

and the emission profile obeys the symmetry relations [cf. Eqs. (11.4.8) and (2.4)] 

(5.9a) 

JIo,(P) = $0x(-P), 

where the superscript 0 refers to the static case. 

(5.9b) 

The justification of this approximation derives from the following consideration. The nonstatic 
(asymmetric) part of the radiation intensity is due to the nonstatic part of the partial redistribution 
term of ll/Jn), on the one hand, and the streaming term of JIX(n), on the other, which are of the 
order of l/c and q/c, respectively. Inserted into Eq. (5.4b), they give rise to contributions 
proportional to { -* which are neglected in the diffusion approximation. 

Thus, the line emission coefficient in the diffusion approximation reads [cf. Eq. (5.5)] 

n211/%Q =n2cpx+W -~)/~lWX+J~2(oxl~ (5.10) 

which obeys Eqs. (5.9a,b). Here, R:(n) and .Jy2 are defined by Eq. (3.9) and (2.8), there using the 
static intensity C(n) which obeys Eq. (5.8). We remark that using the static emission coefficient 



(5.10) in the transfer 
absorption coefficient 
Eq. (1.2.4). 

On the other hand, 

Here 
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equation (2.1) automatically yields the static intensity Z!(n) since the 
(2.2) corresponds to the static Maxwell distribution F,(v) = nJ”( u), 

the distribution function of excited atoms is now given by [cf. Eq. (5.4b)] 

F,(Y) = Z?(Y) + (rllr)(dn,ldz)y~‘f”(y). (5.11) 

G(Y) = %f”(JJ) + [Cl - ~MV?,(Y) - J%-“(V)~ (5.12) 

which obeys the symmetry relation [cf. Eq. (11.4.10)] 

FX_Y, P) = FKY? -P). (5.13) 

In Eq. (5.12), Z&(y) and Jy2 are defined by Eqs. (2.7) and (2.8) there using the static intensity Z:(n). 
We note that 

j-Z%(y) d3_v = 1%) d3y 

The distribution function (5.11) leads according to Eq. 
atoms 

4 = (q/20 dn,ldr 

= n2. (5.14) 

(11.3.37) to the flux density of excited 

(5.15) 

because the static part fi does not contribute on account of Eq. (5.13). Here the minus sign of 
the usual expression 4 = -DVn is missing due to the definition of r, Eq. (1.2.48). On the other 
hand, Eq. (5.2) now takes the form 

tl d4/dz = n2 - [c + (1 - L)J;~]. (5.16) 

Combining Eqs. (5.15) and (5.16) leads to the diffusion equation for the density of excited atoms 
n2 [see Eq. (1.4.14) where xz should read J,,] 

n*(z) - &Z;(T) = 6 + (I - c)Jf’&) (5.17) 

if here and in the following a prime ’ stands for d/dr, and [see Eq. (1.4.15)] 

6 = $/2l. (5.18) 

To derive the boundary conditions at z = 0, consider the density of outgoing @’ > 0) excited 
atoms 

cc 

s I 

I 

n2 + = 2lr y2dy FzC_w')dr~'. (5.19) 
0 0 

According to Eq. (5.11) it obeys the relation 

n: = $z2 + (2n’/2)-‘(~/[) dn,/dz, (5.20) 

where Eqs. (5.13) and (5.14) have been used to obtain the first term on the r.h.s. Now, at a reflecting 
boundary at r = 0, n: (0) = i n,(O), while at a destroying boundary at T =O, n:(O) = n,(O). 
Therefore, using Eq. (5.20), the boundary condition at r = 0 takes the form 

n;(O) = p,(O); yR = 0, yD = a”‘l/1. (5.21) 

In terms of the mean velocity u = 4/n, = (q/20n;/n2 [cf. Eq. (5.1311, this means 

UR(0) = 0, an(o) = $“2. (5.22) 

Above, the superscripts R and D stand again for reflecting and destroying boundaries, respectively. 
Turning now to the radiation field, the transfer equation for the static intensity Z:(n) is [see Eq. 

(2.1)1 

~(d/d~)P,(~)=cp,lO,(~)-n,~~(~) (5.23) 
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with n2$“, given by Eq. (5.10). In terms of outgoing (p > 0). and incoming (p < 0) intensities [see 
Eq. (1.2.52)] 

p(d/dr)Z: (p) = cp,Z: (P) - nz$lt(~), (5.24a) 

-p(d/dr)Z; (p) = cp,Z;(~) - nzlC/%), (5.24b) 

where p > 0, and where Eq. (5.9b) has been used in Eq. (5.24b). Defining now [no confusion with 
Eqs. (11.3.2&21) should arise] 

J,(~)=~[z:(~)+z;(~Ll, H,(c1)=li[z:(~L)--I,(cL)I, 

one obtains from Eqs. (5.24) 

(5.25) 

p(dldr)ZZ,(p) = cp,J&) - uYXP), (5.26a) 

Adldr)JA) = cp,H,(~), (5.26b) 

leading to the second order differential equation for .ZX(p) 

P2J:‘(Pi r) = cp:JX(P; r) - %n*(r)$P(P; r). (5.27) 

The boundary condition at T = 0 is Z;(p) = 0 and hence JX(p) = H,.(p), which in view of 
Eq. (5.26b) can be written as 

PLJXPU; 0) = CPXJAG 0). (5.28) 

We recall that 

J&L; r) = J-A; r) (5.29) 

because of Eq. (5.Q so that [see Eqs. (2.8) and (3.9)] 

5$(2)=2 mdx 
s s 

I 
dp cpxJ& T), (5.30) 

0 0 

m 

R;(p; z) = 2 
s s 

I 

dx’ dp’ Z,,(P’; z)R,A(x’, P’; 4 P), (5.31) 
0 0 

with the redistribution function R,, given by Eq. (3.10). 
To sum up, the diffusion approximation consists of the diffusion equation (5.17) with boundary 

condition (5.21) for the density n2, and the transfer equation (5.27) with boundary condition (5.28) 
for the intensity .Z,. These two equations are coupled to each other through Eqs. (5.10), (5.30), and 
(5.31). 

5.2. Method of solution and results 

We have solved the coupled diffusion and transfer equations, Eqs. (5.17) and (5.27), for a gas 
layer specified by 

t = 10-4 9 P= co 3 

rather than to = 2 x lo6 as considered previously. The differences between these two cases are 
negligible, apart from the fact that the emergent spectral line of the semi-infinite medium has the 
shape of an absorption line, whereas that of the layer of finite optical thickness has the shape of 
a (double-humped) emission line. 

In order to solve Eqs. (5.17) and (5.27) we have employed the method of discrete ordinates. 
Choosing F positive frequencies xi (; = 1, . . . , F) and D positive direction cosines hj (j = 1, . . . , D), 
and writing for brevity Jii c Jxi (pj), qjii - II/z, (pj), ‘pi = cpx,, we write Eq. (5.30) in discrete form as 

J&(T) = c WiJii(7), (5.32) 
ki 

and Eq. (5.10) on account of Eq. (5.31) as 

nz(z)t+bv(z) = n2(z)qi + [(l - c)/{]qi 1 (Ry’ - Wi’)Jiy,(T). (5.33) 
i’, j' 
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Here the integration weights IV’ and Rr correspond to the quantities cpX and R,,/cp,, respectively, 
and they are normalized according to 

;Wi=xR1;“=l 
i’.j 

(5.34) 

in view of the normalizations (1.2.28) and (3.12). We notice that the normalization of W’ includes 
a summation over j = 1, . . . , D (that is, it contains the factor D). 

For a semi-infinite gas layer, we therefore have the following system of equations [see Eqs. (5.17), 
(5.21), (5.27), (5.28)] 

nz(z) - &z;(t) = CC + (1 - 6) 1 WV&), (5.35) 
i,j 

&G(r) = rpf 
C 

Jij(r) - n2(r) - 5 1 (RGj’- Wi’)Ji,&) [ , (5.36) i,,j 1 
n*(co) = JJco) = 1, (5.37) 

n;(O) = yn,(O); YR = 0, yn = 7c”zr/& (5.38) 

/AjLiJ,>(0) = cpiJi/(0). (5.39) 

These are FD + 1 equations with appropriate boundary conditions for the FD + 1 unknows 
(1 density n2, FD intensities Jg). The flux density C#J and the mean velocity u follow from the density 

n, according to [see Eq. (5.15)] 

9(r) = (V/2r)n;(r), u(r) = 4(r)/&). (5.40) 

To solve Eqs. (5.35)-(5.39), we write 

n*(2) = 1 - C N,exp( -il,r) 
k 

(5.41) 

Ji/(T) = 1 - 1 Nkgvkexp( -AkT). 
k 

(5.42) 

Here the sum over k runs from k = 1 to FD + 1. The FD + 1 numbers & must be positive on 
account of the boundary condition (5.37). 

Inserting now Eqs. (5.41) and (5.42) into the transfer equation (5.36) and taking Eq. (5.34) into 
account yields 

gj&Uf~: - qp:) + Cp’ + [(1 - 6)/c] 1 (Rj;r” - Wi’)&sk = 0. 
i',j 

(5.43) 

In the diffusion approximation which neglects terms proportional to C-‘, we may replace in the 
last term of the r.h.s. the quantity gi?‘k by its value corresponding to complete redistribution 
(5 = co). We then obtain 

(5.44) 

which is correct up to the order [-I. 
On the other hand, inserting Eqs. (5.41) and (5.42) into the diffusion equation (5.35) and taking 

Eq. (5.34) into account yields 

1 -t%;-(1 --6)x w’g,k=o. 
i,i 

(5.45) 

Substituting Eq. (5.44) into Eq. (5.45) now leads to the characteristic equation 

(1 -6)’ 
-7EWi qf* = 0, (5.46) 

ii cp;, - p;,n: 
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Fig. 11. Density of excited atoms n2 and mean velocity u of excited atoms vs optical depth 5 of a 
semi-infinite gas layer with t = 10e4, with reflecting and destroying boundaries, respectively. Curves 
labeled n (n = -2, - 1,O) correspond to 6 = lo”, Eq. (5.18). The calculations have been performed using 
the diffusion approximation, Sec. 5. The dashed curve for n, corresponds to static complete redistribution 

(6 = 0, [ = co). In the case [ = 10, 6 = 1, the condition q/i CC 1, Eq. (5.1), is not well satisfied. 

from which the positive 1,‘s (k = 1, . . . , FD + 1) are to be determined. In Eq. (5.46), the second 
and fourth terms are due to particle streaming and partial redistribution, respectively. Setting 6 = 0 
and [ = co, one recovers, of course, the characteristic equation for static complete redistribution. 

Having calculated the FD + 1 positive 2,‘s as solutions of Eq. (5.46) one determines the FD + 1 
constants Nk in Eqs. (5.41) and (5.42) from the boundary conditions (5.38) and (5.39), that is, as 
solutions of the FD + 1 equations 

(5.47) 

(5.48) 

where &k is given by Eq. (5.44). This completes the solution of Eqs. (5.35-39). 
Some numerical results are shown in Fig. 11 for the cases c = 10 and 100. The behavior of an 

elastic collision-dominated gas of excited atoms in the surface layer 0 < z < Ls is again determined 
by the boundary condition. The various features seen in Fig. 11 are to a large extent explained 
by the two-fluid model of Sec. 4, carrying out the substitutions 

1 + [ + [, 0, + 6 “2/fl w 6 “2 

in agreement with the diffusion approximation. 
It should be observed that for [ >> 1, only a gas confined by a reflecting boundary is in a true 

diffusion regime where the macroscopic gas velocity is small compared with the thermal speed of 
the atoms, and where the particle flow is described by a diffusion flow due to density gradients.6.7 
In a diffusion regime, the density of excited atoms is specified by only two parameters t and 6 (see 
Sec. 1.4), ignoring a very slight dependence on the parameter [ due to partial redistribution which 
vanishes for c + 00. By contrast, in the neighborhood of a destroying boundary, the density of 
excited atoms depends even in a collision-dominated regime on all three parameters e, 6, 4’ (or, 
equivalently, on c, v, <), as can be seen in Fig. 11. This different behaviour can formally be traced 
back to the boundary condition (5.21) where for a destroying boundary the ratio C/q arises, in 
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contrast to a reflecting boundary. Hence, apart from the parameter t, two different quantities rl’/[ 
[in Eq. (5.35)] and q/C [in Eq. (5.38)] intervene in the case of a destroying boundary. 

For numerical results for the case of important diffusion flow (6 >> 1 with reflecting boundaries) 
we refer to Ref. 7. 

6. DISCUSSION 

Our study has reconsidered the classic problem of non-LTE line transfer by two-level atoms in 
a stationary and homogeneous gas. Our approach supposes the distribution functions of nonexcited 
atoms and free electrons to be known, so that only the distribution function of excited atoms and 
the specific intensity of the radiation field are to be determined from the kinetic equation of the 
excited atoms and the radiative transfer equation, respectively. These two equations are coupled 
to each other through the various source and sink terms of excited atoms and photons. In constrast 
to the usual approach, we take into account the streaming of the excited atoms, on the one hand, 
and the occurrence of elastic collisions of the excited atoms, on the other. These two phenomena 
give rise to two new dimensionless parameters q and [ that characterize the streaming and the elastic 
collisions, respectively. Together with the well-known dimensionless parameter t that characterizes 
the inelastic collisions, they specify the gas of two-level atoms under consideration. 

Taking particle streaming into account leads to a differential equations for the distribution 
function of excited atoms which must be supplemented by boundary conditions. We have discussed 
the two limiting cases of reflecting and destroying boundaries for the excited atoms. In this context, 
a new scale length arises, the so-called streaming length Ls, which constitutes a second character- 
istic scale length of the radiative tranfer problem considered, in addition to the well-known 
thermalization length of the photons L/T. 

In our paper we have considered only the case of pure Doppler broadening. We now present 
arguments that make it plausible that the streaming pattern of the gas of excited atoms is rather 
insensitive to the shape of the line profile, so that our results for pure Doppler broadening may 
also be used for other line profiles (Voigt, Lorentz) in a first approximation. 

It is well known that the thermalization length is determined by the radiation transfer in the line 
wings, and therefore depends very critically on the shape of the line profile. By contrast, the 
radiation field near the boundary is determined by the radiative transfer in the line core and is 
practically independent of the line profile, leading to a radiation intensity whose depth variation 
is governed by a scale length of the order oft - ‘I2 In view of the fact that particle streaming arises . 
primarily in these boundary layers, this suggests that the streaming properties of the gas of excited 
atoms should be largely independent of the line profile because the value of the normalized profile 
coefficient near the line center is always of the order of unity. 

More precisely, the streaming length LO, in a given radiation field (that is, disregarding the 
influence of particle streaming on the radiation transport) is according to Eq. (4.3) of the order 
of a,, or, on account of Eq. (4.1 I), 

Lo, - q(l + [)-“2. (6.1) 

On the other hand, as already mentioned, the scale length of the radiation field near the boundary 
is of the order of 6 -‘I*. Therefore, if q(l + [)-1’2 < t- ‘/2 the streaming interval 0 < z < L,O lies inside 
the boundary layer 0 c ‘5 < L - ‘I2 where the radiation field is practically independent of the particular 
line profile considered. It is thus reasonable to assume that all of our results for Doppler broadening 
(except the thermalization behavior at large optical depths) will also apply to Voigt and Lorentz 
profiles in a first approximation as long as q(l + C))“* < 6 - “2 For larger values of q such that . 
~(1 + [)-“2 > C-I/~, the streaming interval 0 < r < Li comprises optical depths z > L -‘I2 where 
radiative transfer in the line wings plays a role, so that in this case, differences between Doppler, 
Voigt, and Lorentz broadened lines are to be expected. 

This argument is also corroborated by the two-fluid model. Indeed, leaving aside the question 
of the absolute magnitudes of the scale lengths L,r and &, the success of the two-fluid model with 
the choice j3 - 1 (see Eq. (4.1 l)] shows that the hydrodynamic properties of the gas of excited atoms 
(surface density, maximum flow velocity, one- or two-exponential behavior, etc.) are mainly 
determined by the line transfer in the line core. 
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In order to get some estimate of the actual values of the thermalization and streaming lengths 
for a general line profile, we employ the two-fluid model by choosing the representative photon 
frequency such that the thermalization length in the absence of particle streaming L!: is reproduced 
[see also Sec. 11.6.11, namely,8 

E 
-I Doppler, 

L;- UC2(6 <a < 1) Voigt, 

c-2 Lorentz. 

Thus, on account of Eq. (11.6.19) and recalling that j? = ii/vi [Eq. (4.2)], 

B N c ‘/2LO 
T. 

From Eq. (4.10) and recalling that LO, N a,, one gets 

0, = a,/fl N L~/c”~L~, 

(6.2) 

and Eqs. (4.12) and (4.13) now yield the scale lengths 

(6.3a) 

(6.3b) 

where LO, and Lt are given by Eqs. (6.1) and (6.2), respectively. In particular, if ~(1 + [)-iI* < c -I/*, 

LrN L$, L,- Lo,, LJL,<<I 

for all three profiles.For Doppler broadening, the estimates (6.3) are in fair agreement with the 
numerical results. It would be desirable, of course, to test these estimates by numerical calculations 
for the other profiles as well. 

In an elastic collision-dominated gas, the influence of the boundary on the behavior of the gas 
of excited atoms pertains in the neighborhood of the boundary. In deeper layers, however, a 
diffusion regime is attained which is characterized by the dimensionless parameter 6 = q2/2[. In 
the limit c + co, complete redistribution is approached everywhere, except in a surface layer near 
a destroying boundary whose thickness, however, tends to zero. 

The physical significance of the three dimensionless parameters 6, c, q for the considered problem 
of non-LTE line transfer by two-level atoms can be summarized as follows: 

t=l 
6 << 1 

LTE 
non-LTE 
c << 1 kinetic regime (elastic collisions negligible) 

?j << 1 static partial redistribution 
‘t >> 1 kinetic flow (free particle streaming) 

[ >> 1 diffusion regime (elastic collisions important) 
q << 1 static complete redistribution 
r] >> 1 6 = q2/21 

6 << 1 static complete redistribution 
6 >> 1 diffusion flow. 
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