0 PFAFIJANIMA.

D ${ }^{\text {r. Bogid }}$ gavrilovió.

(Preštumpano iz 143. knjige „Rada" jugoslavenske akademije znanosti i umjetnosti.)

U ZAGREBU

TISAK DIONICKE TISKARE
1900.
$\mathbf{P}_{\text {ozato }}$ je da se Cayley mnogo bavio o ispitivanju osobina koso simetricnih determinanata. Izmedu ostaloga dokazao je Cayley, ${ }^{1}$ da je koso simetrična determinanta parnoga stepena kvadrat nekog potpuno određenog polinoma. Taj polinom je važna funkcija elemenata pomenute koso simetrǐ̌ne determinante, važna po tome, što se takve funkcije javljaju u Integralnom Računu u znamenitoj Pfaff-ovoj problemi. Mi ćemo taj polinom bilježiti sa P i źvaćemo ga po Cayley-u pfafijanom.

Uočimo sada ovu koso simetričnu determinantu parnoga stepena:

$$
a_{i k}=-a_{k i}
$$

[^0]Jasno je da je u toj determinanti Δ prvi minor elementa prve rrste i prve kolone takoder koso simetrična determinanta. Ako je sad $x_{i k}$ prvi minor elementa $a_{i k}$ te determinante, t. j. ako je $\alpha_{i k}$ jedan potpuno određen drugi minor prvobitne koso simetrične determinante, onda se ta determinanta može ovako izraziti: ${ }^{1}$

$$
\begin{align*}
\Delta & =\left(\sum a_{1 i} V{x_{i 1}}^{2}\right)^{2} \\
& =\left(a_{12} V{x_{22}}+a_{13} V{\varkappa_{233}}+\ldots+a_{1}, 2 n V \overline{x_{2 n, 2 n}}\right)^{2}, \tag{1}
\end{align*}
$$

a po tome se vidi da je pfafijan P linearna funkeija elemenata prve vrste determinante Δ. Tajj pfafijan predstavlja se ovim simbolom:

$$
\begin{array}{cccccc}
P=\begin{array}{ccccc}
a_{12} & a_{13} & a_{14} & \ldots & a_{1}, 2 n-1
\end{array} & a_{1}, 2 n \\
& a_{23} & a_{24} & \ldots & a_{2}, 2 n-1 & a_{2}, 2 n \\
& & a_{34} & \ldots & a_{2,2 n-1} & a_{3}, 2 n \tag{2}\\
& & & \ldots & \ldots & \ldots \\
& & & & a_{2 n-2,2 n-1} & a_{2 n-2,2 n} \\
& & & & a_{2 n-1,2 n}
\end{array}
$$

Qlavni član toga pfafijana je

$$
a_{12} \quad a_{3 \pm} \quad a_{36} \quad \ldots \quad a_{2 n-1,2 n .}
$$

U tome članu ima n elemenata, t. j. pfafijan P je pfafijan n-toga reda.

Zamislimo sad da smo u matrici pfafijana P preko elemenata $a_{13}, a_{14}, \ldots a_{1}, 2 n-1, a_{1}, 2 n$ povukli prave linije pravcem glavne dijagonale njegove. Te prave zvacemo zajedno sa glavnom dijagonalom prosto dijagonalama, a sve te dijagonale podijelicemo u dvije vrste: u neparne i u parne dijagonale. Neparne dijagonale biće glavna dijagonala i sve one dijagonale što prelaze preko elemenata $a_{1+}, a_{16}, \ldots a_{1}, 2 i, \ldots$, a parnim dijagonalama

[^1]zvaćemo dijagonale što prelaze preko elemenata a_{13}, a_{15}, \ldots $a_{1} ; 2 i+1, \ldots$ Po toj definiciji vidi se na prvi pogled ovo: kad je u nekog elementa $a_{i k}$ zbir $i+k$ kazaljaka neparan broj, onda taj elemenat leži na neparnoj dijagonali i obratno, ako je zbir $i+k$ kazaljaka elementa $a_{i k}$ paran broj, onda preko elementa $a_{i k}$ mora prelaziti parna dijagonala. Ako dakle nazovemo elemenat $a_{i k}$ parnim elementom pfafijana P, kad je zbir $i+k$ paran broj, a neparnim elementom, kad je $i+k$ neparan broj, onda cemo smjeti tvrditi, da ce svi parni elementi ležati na parnim, a svi neparni na neparnim dijagonalama. Na primjer, pfafijan

a	b	c	d	e
	f	g	h	i
		j	k	l
			m	n
				p

ima tri neparne i dvije parne dijagonale.
Promijenimo sad u matrici pfafijana P prvo znake svima elementima neparnih dijagonala. Tada cemo dobiti ovaj pfafijan:

$$
\begin{array}{lrrrcc}
P^{\prime}=1-a_{12} & a_{13} & -a_{14} & \cdots & a_{1}, 2 n-1 & -a_{1,2 n} \\
& -a_{23} & a_{2 \pm} & \cdots & -a_{2,2 n-1} & a_{2,2 n} \\
& & -a_{34} & \cdots & a_{3,2 n-1} & -a_{3,2 n} \\
& & & \cdots & \cdots & \cdots \\
& & & & & -a_{2 n-2,2 n-1} \\
& & & & & a_{2 n-2,2 n} \\
& & & & & -a_{2 n-1,2 n}
\end{array}
$$

Promijenimo li obratno u matrici pfafijana P znake svima elementima parnih dijagonala, onda cemo dobiti ovaj pfafijan :

$$
\begin{array}{rrrrrc}
P^{\prime \prime}=a_{12} & -a_{13} & a_{14} & \ldots & -a_{1}, 2 n-1 & a_{1,2 n} \\
& a_{23} & -a_{24} & \cdots & a_{2,2 n-1} & -a_{2 \cdot 2 n} \\
& & a_{34} & \ldots & -a_{3,2 n-1} & a_{3}, 2 n \\
& & & \cdots & \cdots & \cdots \\
& & & & a_{2 n-2,2 n-1} & -a_{2 n-2,2 n} \\
& & & & & a_{2 n-1,2 n}
\end{array}
$$

Pita se, kako stoje transformovani pfafijani P^{\prime} i $P^{\prime \prime}$ prema prvobitnom pfafijanu P.

Da bih na to pitanje odgovorio, moraću obici Jacobi-jevu ${ }^{1}$ interpretaciju simbola (2) i zamijeniću je drugom jednom, kojoj osnovu treba tražiti u razvijenom obliku (1) determinante Δ.

Prije svega pomenuću 1 -vo, da u svakom članu pfafijana P ima kao i u osnovnom članu njegovu svega n elemenata i 2-go, da se u svakom članu javlja svaka između kazaljaka $1,2,3, \ldots 2 n$, ali svaka samo jedanput. Ako je dakle sa $\ddot{i} k l \ldots$...rs označena neka pemutacija tih kazaljaka, onda de u opée svaki član u razvijenom obliku pfafijana P morati biti ovog oblika:

$$
\begin{equation*}
\pm a_{i j} a_{k l} \ldots a_{r s} \tag{3}
\end{equation*}
$$

ali odmah treba primijetiti da obratno svi ti proizrodi (3) ne ce biti članovi pfafijana P. Na primjer, zna se da je

$$
\begin{array}{lll:l}
a_{12} & a_{13} & a_{14} & =a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23} . \\
& a_{23} & a_{24} & \\
& & a_{34} &
\end{array}
$$

U razvijenom obliku toga pfafijana ima svega tri člana, a u tim članovima javljaju se samo ove tri permutacije kazaljaka:

$$
1234, \quad 1324, \quad 1423
$$

ili ove tri :

$$
3412, \quad 2413, \quad 2314 .
$$

To znači da se sve permutacije kazaljaka $1,2,3, \ldots 2 n$ ne javljaju u pfafijanu P, već samo neke između tih permutacija. Te permutacije dobijao je Jacobi određenim cikličkim permutovanjem i dokazao je ${ }^{2}$ da ih svega ima

$$
N=(2 n-1)(2 n-3) \ldots 5 \cdot 3.1
$$

[^2]i tim brojem N bio bi određen i broj svih članova u razvijenom obliku pfafijana n-toga reda.

Moja interpretacija simbola (2) bice sad ovo: Da bih dobio sve permutacije kazaljaka, koje se javljaju u članovima pfafijana P, poći ću sa osnovne permutacije $123 \ldots 2 n$ tih kazaljaka i spojiću elemenat 1 najprije s elementom 2 , pa onda s elementom 3 , \ldots. i na posljetkı s elementom $2 n=m$. 'Tim putem dobiću ove sklopove:

$$
12, \quad 13, \quad \ldots \quad 1 m
$$

Pri tome ću ostale elemente osnovne permutacije ostaviti u prvobitnom rasporedu njihovu. Tada ce svakom sklopu $1 i$ odgovarati jedna permutacija ostalih (2n-2) elemenata osnovne permutacije. Tu permutaciju zvaću komplementarnom permutacijom sklopa 1i. Tako bi n. pr. komplementarna permutacija sklopa 12 bila $34 \ldots m$; komplementarna permutacija sklopa 13 bila bi $24 \ldots m$ i t. d. Iza svakog takvog sklopa $1 i$ napisaćemo sad komplementarnu mu permutaciju i dobicemo tada svega $m-1=$ $2 n-1$ permutacija elemenata $1,2,3, \ldots 2 n$:

$$
\begin{equation*}
12345 \ldots m, 13245 \ldots m, \ldots . \tag{4}
\end{equation*}
$$

Sad demo iz svake komplementarne permutacije izvesti nov jedan niz permutacija i to po istom onom pravilu, po kome smo i malo čas izvodili permutacije (4) iz osnovne permutacije $123 \ldots m$. Tada cemo n. pr. iz permutacije $345 \ldots m$ dobiti ovih $m-3$ permutacija:

$$
\begin{equation*}
34567 \ldots m, 35467 \ldots m, \ldots \ldots \tag{5}
\end{equation*}
$$

i sve te permutacije ćemo napisati iza sklopa 12 . Dalje demo iz komplementarne permutacije $2456 \ldots m$ dobiti ovih $m-3$ permutacija:

$$
24567 \ldots m, 25467 \ldots m
$$

i sve demo ih napisati iza sklopa 13 it t.

Permutacije

bile bi komplementarne permutacije komplementarnih permutacija. S toga bismo te permutacije mogli \quad zvati komplementarnim permutacijama drugogareda, a samo permutovanje komplementarnimpermutovanjem. Na taj način dobili bismo već

$$
(m-1)(m-3)=(2 n-1)(2 n-3)
$$

razlicitih permutacija kazaljaka $1,2,3, ., 2 n$. Sad bismo opet po istom pravilu iz svake komplementarne permutacije drugoga reda mogli izvesti svega $m-5$ novih permutacija. Te permutacije cemo opet napisati iza onog sklopa, uz koji se nalazila ta komplementarna permutacija i dobićemo tada svega

$$
(m-1)(m-3)(m-5)=(2 n-1)(2 n-3)(2 n-5)
$$

permutacija kazaljaka $1,2,3, \ldots 2 n$. Tako bismo stvarali komplementarne permutacije viših redova i na posljetku bismo komplementarnim permutovanjem dobili sve one permutacije kazaljaka $1,2,3, \ldots 2 n$ koje se javljaju u pfafijanu P, a broj njihov bio bi očevidno N.

Neka su nam na primjer date kazaljke 1, 2, 3, 4, 5, 6. Tada ćemo dobiti ove permutacije:
$123456, \quad 132456, \quad 142356, \quad 152346, \quad 162345$.
Komplementarne permutacije su u ovaj mah

$$
3456, \quad 2456, \quad 2356, \quad 2346, \quad 2345
$$

a iz ovih se komplementarnim permutovanjem dobivaju ove permutacije:

3456,	3546,	3645
2456,	2546,	2645
2356,	2536,	2635
2346,	2436,	2634
2345,	2435,	2534.

Komplementarne permutacije drugoga reda su u ovaj mah

$$
56, \quad 46, \quad 45, \quad 36, \quad 35, \quad 34
$$

a te permutacije nemaju više svojih komplementarnih permutacija. Ako dakle permutaciju $1 i j k r s(i=2,3,4,5,6 ; j, k, r, s=3$,

4, 5, 6) označimo sa $1 i$ (jkrs), onda de nam jasno biti da ćemo u ovaj mah komplementarnim permutovanjem dobiti ove permutacije:

12	$(3456$,	3546,	$3645)$,
13	$(2456$,	2546,	$2645)$,
14	$(2356$,	2536,	$2635)$,
15	$(2346$,	2436,	$2634)$,
16	$(2345$,	2435,	$2534)$.

S toga su članovi u razvijenom obliku pfafjana

$$
\left.\begin{array}{|ccccc}
a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
& a_{23} & a_{24} & a_{25} & a_{26} \\
& & a_{34} & a_{35} & a_{36} \\
& & & a_{45} & a_{45} \\
& & & a_{36}
\end{array} \right\rvert\,
$$

ovo:

$$
\begin{array}{llll}
a_{12} a_{34} a_{56}, & a_{12} a_{35} a_{46}, & a_{12} a_{36} a_{45} \\
a_{13} a_{24} a_{56}, & a_{13} a_{25} a_{16}, & a_{13} a_{26} a_{45} \\
a_{14} a_{23} a_{56}, & a_{14} a_{25} a_{36}, & a_{14} a_{26} a_{35} \\
a_{15} a_{23} a_{16}, & a_{15} a_{24} a_{36}, & a_{15} a_{26} a_{34} \\
a_{16} a_{23} a_{45}, & a_{16} a_{24} a_{35}, & a_{16} a_{25} a_{34} .
\end{array}
$$

Znak, koji pojedini članovi imaju u razvijenom obliku pfafijana P, odreduje se po broju inversija, a po ovom pravilu: ako je u permutacijama dobivenim komplementarnim permutovanjem broj inversija paran, onda članovi u kojimase javljajutakve permatacije imaju pozitivan znakurazijenom obliku pfafijana; u suprotnom slučaju je znak članova negativan. Na primjer, u posljednjem, malo čas pomenutom pfafijanu, javlja se član $a_{12} a_{35} a_{45}$ sa znakom minus, a član $a_{12} a_{36} a_{46}$ sa znakom plus.

Da vidimo sad šta ce biti sa pfafijanom P, kad se u matrici njegovoj promijene bilo znaci svih elemenata neparnih, bilo znaci svih elemenata parnih dijagonala. Pfafijan dobiven prvom transformacijom označićemo ponovo sa P^{\prime}, a onaj drugi sa $P^{\prime \prime}$.

To pitanje riješićemo sad lako, samo demo pri tome posebice morati proučiti ova dva slučaja.

Shučaj I. Neka je zbir kazaljaka paran broj, pa uočimo neku permutaciju lijkrs...tu ($i=2,3, \ldots 2 n ; j, k, \ldots t, u=$ $3,4, \ldots 2 n$) kazaljaka $1,2,3, \ldots 2 n$. Tu permutaciju ćemo podijeliti na n ovakvih sklopova:

$$
\begin{equation*}
1 i, \quad j k, \quad r s, \quad \ldots \quad t u . \tag{6}
\end{equation*}
$$

Svaki takav sklop predstavljace očevidno par kazaljaka u onom članu pfafijana, koji odgovara permutaciji 1ijkrs ... tu, pa kako je zbir svih kazaljaka paran broj, to de se u sistemi (6) javljati paran broj sklopova, a to ce reći, da će u ovom slučaju pfafijan \boldsymbol{P} morati biti parnoga reda. Razredimo sad sklopove sisteme (6) u dva razreda: u razred parnih, i u razred neparnih sklopova. Pri tome demo parnim sklopom zvati sklop, kad je zbir elemenata toga sklopa paran broj, a kad je zbir tih elemenata neparan broj, onda cemo i sklop zvati neparnim sklopom. Ako je sad sklop $1 i$ paran, onda ce i zbir

$$
(j+k)+(r+s)+\ldots+(t+u)
$$

biti paran broj i obratno, ako je sklop $1 i$ neparan, onda de i zbir ostalih kazaljaka biti neparan broj. To znači da i u jednom i u drugom slučaju ima u sistemi (6) paran broj parnih i paran broj neparnih sklopova. Drugim riječima, usvakom članu pfafijana parnogareda ima paran brojparnih i paran broj neparnih elemenata. Kako međutim parne dijagonale prelaze u matrici pfafijana P preko parnih, a neparne preko neparnih elemenata, to se očevidno nijedan član pfafijana P ne de promijeuiti, kad se u njemu promijene bilo znaci svih parnih, bilo znaci svih neparnih elemenata. To znači da je u ovaj mah

$$
P=P^{\prime}=P^{\prime \prime}
$$

Dobili smo dakle ovu teoremu:
Teorema I. Kad se u matrici nekog pfafijana parnoga reda promijene znaci bilo svima elementima parnih, bilo svima elementima neparnih dijagonala, onda pfafijan nikako ne mijenjasvoju vrijednost.

Slučaj II. Neka je zbir kazaljaka neparan broj. U ovaj mah može se dokazati ovo: 1 -vo, da je pfafijan P neparnog reda; 2-go, da u sistemu (6) ima neparan broj
neparnih, a paran broj parnih sklopova, a to de redi da u svakom članu nekog pfafijana neparnog redaima neparan broj neparnih, a paran broj parnih elemenata. Prema tome ce svaki član toga pfafijana promijeniti svoj znak, ali vrijednost ne, kad se u njemu promijene znaci svih neparnih elemenata i obratno, nijedan clan toga pfafijana nikako se ne ce promijeniti, kad se u njemu promijene znaci svih parnih elemenata. To znači da je u ovaj mah

$$
P^{\prime}=-P
$$

a

$$
P^{\prime \prime}=P
$$

Otuda ove teoreme:
Teorema $I I$. Kad se u matrici nekog pfafijana neparnog reda promijene znaci svima elementima neparnih dijagonala, ondase znak tome pfafijanu mijenja, ali vrijednost ne mijenja.

Teorema $I I I$. Kad se u matrici nekog pfafijananeparnog reda promijene znaci svima elementima parnih dijagonala, onda pfafijan nikako ne mijenja svoju vrijednost.

Sve te tri teoreme mogu se obuhvatiti ovom jednom teoremom:
Teorema. Kad se umatrici nekog pfafijana promijene znaci svima elementima neparnih dijagonala, onda pfafijan nikako ne de promijeniti svoju vrijednost ako mu je red bio paran, a promijeniće samo svoj znak ako muje red bioneparan; a ako se u matrici promijene znaci svima elementima parnih dijagonala, onda se nikako ne ée promijeniti niti pfafijan parnoga, niti pfafijan neparnoga reda.

Po tim teoremama je na primjer

$$
\begin{aligned}
& \left.\begin{array}{rrrrr}
a & b & c & d & e \\
& f & g & h & i \\
& j & k & l \\
& & m & n \\
& & & & p
\end{array} \left\lvert\,=\begin{array}{rrrrr}
a & -b & c & -d & e \\
& & & -g & h \\
-i & - \\
& & & & \\
& & & -k & l \\
& & & & m
\end{array}\right.\right)
\end{aligned}
$$

[^0]: ${ }^{1}$ Cayley: Sur les déterminants gauches. Journal für die reine und angew. Mathem. t. XXXVIII. i Collected mathem. Papers, t. I. p. 410.

[^1]: ${ }^{1}$ Baltzer: Theorie uis d Anwendungder Determinanten, p. 45 .

[^2]: ${ }^{1}$ Jacobi: Theoria novi multiplicatoris systemati aequat. different. Werke, t. IV. p. 420.
 ${ }^{2}$ Jacohi, ibid. p. 421.

