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Abstract. We obtain a sharp estimate of the derivatives of harmonic quasiconformal extension
u = P [φ] of a Lipschitz map φ : Sn−1 → Rn. We also consider additional conditions which provide
that u is Lipschitz on the unit ball; in particular, we give characterizations of Lipschitz continuity
of u in the planar case and in the upper half space setting. We also answer a question posed by
Martio in [OM] and extend this to the case of several variables.

1. Introduction and notations

Let B = Bn = {x ∈ Rn : |x| < 1} and S = Sn−1 denote the unit ball and the
unit sphere in Rn respectively. We write U and T instead of B2 and S1 respectively;
for r > 0, let Br = {x : |x| < r} and Sr = {x : |x| = r}.

Let D ⊂ Rn and 0 < α ≤ 1. The vector space of all functions f : D → Rm

satisfying the following condition: there is a constant L = Lf such that |f(x)−f(y)| ≤
L|x− y|α for all x, y ∈ D is denoted by Lip(α,D), or simply Lip α.

For 0 < α < 1 we say that f ∈ Lip α is Hölder continuous on D with exponent
α; for α = 1 we write Lip instead of Lip 1 and we say that f ∈ Lip is Lipschitz
continuous on D with multiplicative (Lipschitz) constant L = Lf . Let Λα(D) = Λα

be the Banach space of all bounded Hölder continuous functions f : D → Rm with
norm

‖f‖α = sup
x∈D

|f(x)|+ sup
x,y∈D

|f(x)− f(y)|
|x− y|α .

It is known, even for n = 2, that Lipschitz continuity of φ : T → C, does not
imply Lipschitz continuity of u = P [φ]. In fact u = P [φ] is Lipschitz continuous iff
the Hilbert transform of ψ(θ) = d

dθ
φ(eiθ) (which is defined almost everywhere and

bounded since φ is Lipschitz) is also in L∞(T). This result is implicitly contained in
[Z], see also Theorem 2.4 below. The same theorem gives additional characterizations
of Lipschitz continuity of u in terms of the Cauchy transform of ψ. A similar charac-
terization, in terms of the Riesz transforms, is given in the setting of the upper half
space Rn+1

+ = {(x, y) : x ∈ Rn, y > 0} in Theorem 3.2. In particular, f ∈ C1,α(Rn)
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implies u = P [f ] ∈ C1,α(Rn+1
+ ). Here, for any n ≥ 2,

P [φ](x) =

ˆ

Sn−1

P (x, ξ)φ(ξ) dσ(ξ), x ∈ Bn,

where P (x, ξ) = 1−|x|2
|x−ξ|n is the Poisson kernel for the unit ball Bn, dσ is the normalized

surface measure on the unit sphere Sn−1 and φ : Sn−1 → Rn is a continuous mapping.
The corresponding formula for the upper half space is

P [φ](x, y) =

ˆ

Rn

P (x− t, y)φ(t) dt,

where

P (x, y) = cn
y

(|x|2 + y2)n+1/2
, cn = Γ(

n + 1

2
)π−(n+1)/2,

is the Poisson kernel for the upper half space. The Riesz transforms Rj, 1 ≤ j ≤ n,
in Rn are defined by principal value integrals

Rjf(x) = cn

ˆ

Rn

xj − yj

|x− y|n+1
f(y) dy,

they are bounded on Lp(Rn) (1 < p < ∞) and Λα(Rn) (0 < α < 1) spaces. It is
important to note that these operators are not bounded on L1(Rn), L∞(Rn) and
Λ1(R

n). We refer to [St] for a detailed discussion of these results in the context of
singular integral operators.

Similar results hold in the Sn−1 setting. Indeed, Hölder continuity of φ : Sn−1 →
Rn with exponent α, 0 < α < 1, implies Hölder continuity of its harmonic extension
u = P [φ], see [Dy], [NO]. In the case n = 2 it is a classical result, following from
Privalov’s theorem (see [Z]).

In Section 3, using the maximum principle for harmonic functions, we prove:

Claim 1. If φ : Sn−1 → Rn is Lipschitz continuous with Lipschitz constant
Lφ = L, then u = P [φ] is Lipschitz continuous with constant Lu = L/r on the
spheres Sr, 0 < r < 1.

In the case n = 2, using Schwarz lemma for harmonic functions, we prove an
estimate |∂θh(z)| ≤ 4

π
L|z| (see Theorem 2.1).

Harmonic quasiconformal mappings were first studied by Martio in [OM]. Now
it is a very active area of investigation (see [K3]). The following theorem has recently
been proved in [AKM]:

Theorem 1.1. Assume φ : Sn−1 → Rn satisfies a Lipschitz condition

|φ(ξ)− φ(η)| ≤ L|ξ − η|, ξ, η ∈ Sn−1,

and assume its harmonic extension u = P [φ] : Bn → Rn is K-quasiregular. Then

|u(x)− u(y)| ≤ C ′|x− y|, x, y ∈ Bn,

where C ′ depends on L, K and n only.

Kalaj obtained a related result, but under additional assumption of C1,α regu-
larity of φ, see [K1]. In the case n = 2 this assumption (without hypothesis that u
is K-quasiregular) implies that partial derivatives of u are Hölder continuous and, in
particular, that u is Lipschitz on U (see Theorem 2.3).
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The proof of Theorem 1.1 was based on estimates of the gradient of the Poisson
integral kernel and did not yield sharp bounds on C ′. We give another proof of this
result, based on application of the maximum principle to a subharmonic function
A(x, a) =

∑n
ν=1 |dhν(x)a|2 and on Claim 1, where a is a unit vector. Using this

approach we obtain C ′ = KL (a dimension-free estimate).

2. The planar case

In the planar case we use the notation z = reiθ. If h is a function of variable
z, we consider also h as a function of variables (r, θ) (polar coordinates). Also, for
f : T → C, we define f̂ on [0, 2π] by f̂(t) = f(eit).

The following fact will be used below: if h is harmonic in U, then r∂rh is the
harmonic conjugate of ∂θh.

We refer the reader to [Du] for an excellent exposition on harmonic mappings in
the plane, see also [BH].

It is known that Privalov theorem for harmonic functions with Cα boundary
values, 0 < α < 1, fails for α = 1. The next theorem deals with the case α = 1 and
explains that this failure is due to the loss of control of the radial derivative, see also
[K].

Theorem 2.1. Suppose that h is a harmonic mapping from U continuous on U.
Then the following conditions are equivalent:

a)
|h(eiθ1)− h(eiθ2)| ≤ m|θ1 − θ2|. (1)

b)
|h′(z)T | ≤ M (2)

for every z ∈ U and unit vector T = ieiθ which is tangent to the circle Sr at
z = reiθ.

c) ∂θh is bounded on U.
a) implies b) with constant M = 4

π
m. b) implies a) with constant m = M .

Proof. Suppose that a) holds. Then | d
dθ

h(eiθ| ≤ m a.e. Since ĥ is absolutely
continuous on [0, 2π] and ∂θPr(θ − t) = −∂tPr(θ − t), using integration by parts, we
have

∂θh(z) = − 1

2π

ˆ 2π

0

∂tPr(θ − t) h(eit) dt =
1

2π

ˆ 2π

0

Pr(θ − t) dĥ = P [ĥ′].

Therefore, by Proposition 3.2, |∂θh(z)| ≤ m, z ∈ U. Since ∂θh(0) = 0, by the
harmonic version of Schwarz lemma, we find |h′θ(z)| ≤ 4

π
m|z|.

Now the estimate (2), with M = 4
π
m, follows easily. The remaining straightfor-

ward implications are left to the reader. ¤
An easy corollary of the above theorem is the following result:

Proposition 2.1. Suppose that h is a harmonic quasiregular map in U. Then
the following conditions are equivalent:

(1) h is Lipschitz continuous on U.
(2) h has continuous extension to U which belongs to Lip on T.
(3) grad h is bounded on U, i.e. | grad h(z)| ≤ A, z ∈ U.
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For a function f defined on U, we define

f∗(θ) = f ∗(eiθ) = lim
r→1

f(reiθ)

whenever the limit exists.
If ψ ∈ L1[0, 2π], the Cauchy transform C[ψ] of ψ is defined by

C[ψ](z) =
1

2π

ˆ 2π

0

ψ(t)eit

eit − z
dt,

and the Hilbert transform of ψ is defined by

Hψ(θ) =
1

π

ˆ π

−π

ψ(θ − t) dt

tan(t/2)
,

where the integral is interpreted in the principal value sense.
In [OM] the following situation was considered: u is a harmonic function in

the unit disc which assumes continuous boundary values f on T, ur and uθ are
derivatives of u with respect to r and θ. A question posed in that paper is: find
necessary and sufficient conditions ensuring that the limits limz→ζ ur(z) = φ(ζ) and
limz→ζ uθ(z) = ψ(ζ) exist at each boundary point ζ ∈ T. The following proposition
answers that question, a related problem in higher dimensions is discussed in the
next section.

Proposition 2.2. In the above situation, both limits limz→ζ ur(z) = φ(ζ) and
limz→ζ uθ(z) = ψ(ζ) exist at each boundary point ζ ∈ T if and only if f̂(t) = f(eit)

is continuously differentiable and H[f̂ ′] is continuous.

Proof. Assume that the two limits exist at each boundary point, then they
define continuous functions ψ(t) = limz→eit uθ(z) and φ(t) = limz→eit ur(z). Therefore
uθ(re

it) converges uniformly over t as r → 1, which shows that f̂ is a C1 function
and uθ(re

it) ⇒ f̂ ′(t) as r → 1. Similarly, ur(re
it) converges uniformly over t as r → 1

to a continuous function g(t), hence rur(re
it) ⇒ g(t) as r → 1. However, rur is the

harmonic conjugate of uθ and therefore the corresponding boundary functions are
related by the Hilbert transform: H[f̂ ′] = g.

Conversely, if f is C1 and H[f̂ ′] = g is continuous, then the harmonic extension
of f̂ ′ is equal to uθ and the harmonic extension of g is the harmonic conjugate of
uθ, that is, rur. Hence both uθ and rur, and therefore ur as well, have continuous
extension to the boundary. ¤

In fact, in [OM], boundary functions f of the form f̂(t) = f(eit) = eiχ(t) were
considered, where χ is a continuous increasing function on R such that χ(t + 2π) =
χ(t) + 2π and the characterization problem was posed in terms of the function χ.

Theorem 2.2. In the above situation, the limits limz→ζ ur(z) = φ(ζ) and
limz→ζ uθ(z) = ψ(ζ) exist at each boundary point ζ ∈ T if and only if χ(t) is contin-
uously differentiable and H[χ′] is continuous.

Proof. Since f̂ is C1 if and only if χ is C1, in view of the above proposition it
suffices to prove the following statement: if χ is C1, then H[f̂ ′] is continuous if and
only if H[χ′] is continuous. Indeed, we have

H(f̂ ′)(θ) =
1

π

ˆ π

−π

f̂ ′(θ − t) dt

tan(t/2)
= − 1

π

ˆ π

+0

f̂(θ + t) + f̂(θ − t)− 2f̂(θ)

2 sin2(t/2)
dt



Lipschitz-type spaces and harmonic mappings in the space 383

almost everywhere and therefore

e−iχ(θ)H(f̂ ′)(θ) = − 1

π

ˆ π

0

ei(χ(θ+t)−χ(θ)) + ei(χ(θ−t)−χ(θ)) − 2

2 sin2(t/2)
dt.

Define S(θ, t) =
∑∞

k=2 ak(θ, t), where

ak(θ, t) = ik
(χ(θ + t)− χ(θ))k + (χ(θ − t)− χ(θ))k

k! sin2(t/2)
.

Each of the functions ak(θ, t), k ≥ 2, is continuous and there is a constant C inde-
pendent of k such that |ak(θ, t)| ≤ Ck−2/k! for k ≥ 2. Therefore, S is a continuous
function and

´ π

0
S(θ, t) dt is a continuous function of θ.

Hence, using eiu = 1 + iu + E(u), where E(u) =
∑∞

k=2(iu)k/k!, we find

e−iχ(θ)H(f̂ ′)(θ) = iH(χ′)(θ) + R(θ),

where R is a continuous function. Hence, H(f̂ ′) is continuous if and only if H(χ′) is
continuous. ¤

Suppose that φ is Lipschitz on T and h = P [φ]. Then ∂θh is bounded on U and
∂rh ∈ Hp, 0 < p < ∞; hence (∂rh)∗ exists a.e. on T. Using a routine argument one
can show that ∂rh(eit) exists a.e. and (∂rh)∗(eit) = ∂rh(eit) a.e. on T, where

∂rh(eit) = lim
r→1−0

h∗(eit)− h(reit)

1− r
.

We say that φ ∈ C1,α(T), 0 < α < 1, if φ̂′ belongs to Lip α on [0, 2π].
In the next two theorems we use the following representation of a complex valued

harmonic function h on U: h = f + ḡ, where f and g are analytic. Note that f and
g are unique, up to an additive constant.

Theorem 2.3. If φ ∈ C1,α(T), 0 < α < 1, and h = P [φ], then
a) ∂θh and ∂rh belong to Lip α on U , and
b) |f ′′(z)|+ |g′′(z)| = O(1− r)α−1, z ∈ U, where r = |z|.

In particular, h is Lipschitz on U.

Proof. Since φ̂ is absolutely continuous on [0, 2π], we find

∂θh(z) =
1

2π

ˆ 2π

0

Pr(θ − t) dφ̂(t) =
1

2π

ˆ 2π

0

Pr(θ − t) φ̂′(t) dt.

Hence, by Privalov’s theorem, ∂θh belongs to Lip α on U. Since Hölder continuity of
a harmonic function implies Hölder continuity of its harmonic conjugate, we conclude
that ∂rh belongs to Lip α on U; therefore f ′ and g′ belong to Lip α on U and we get
b).

In particular, grad h is bounded on U and therefore h is Lipschitz on U. ¤

Theorem 2.4. Suppose that φ is Lipschitz on T and h = P [φ]. Then the
following conditions are equivalent:

(1) h is Lipschitz on U.
(2) The Cauchy transform C[φ̂′] is bounded.
(3) The Cauchy transform C[φ̂′] is bounded.
(4) (∂rh)∗ is bounded on T.
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(5) ∂rh(eit) is bounded on T.
(6) |f ′(z)|+ |g′(z)| is bounded on U.

Proof. Since φ is Lipschitz on T, φ is absolutely continuous, and then C[φ′](z) =

izf ′(z) and C[φ̂′](z) = izg′(z), where C is the Cauchy transform and izf ′(z) is the
analytic part of ∂θh.

Since, by Theorem 2.1, ∂θh(z) = i(zf ′(z) − zg′(z)) is bounded on U, we see at
once that (2), (3) and (6) are equivalent.

If (3) holds, then ∂rh is bounded on U. The rest of the proof is routine. ¤

3. Higher dimensions

Now we turn to the general case.
Let f be a vector-valued function defined in a neighborhood of a point z ∈ Rn,

differentiable at z. By f ′(z) we denote the linear operator df(z) between the tangent
spaces at z and f(z).

For linearly independent x, y ∈ Rn, we denote by L(x, y) the plane defined by 0,
x and y. We can choose an orthonormal base e1, . . . , en such that L(x, y) = L(e1, e2).
For z = (z1, . . . , zn) =

∑n
k=1 zkek define Pz = z1e1 + z2e2 and Qz = z3e3 + · · ·+ znen.

If α is the oriented angle between x and y, we define the rotation R = Rx,y by
Rz = (ei αPz, Qz). Hence R is in the orthogonal group O(n), acts as the identity
map on the orthocomplement of L(x, y) and, in the case |x| = |y|, maps x to y.

For x ∈ Rn, x 6= 0, we set x∗ = x
|x| ∈ S. Note that |Rz − z| = |ei αPz − Pz| =

|Pz||1− ei α| ≤ |x∗−y∗| for z ∈ B; and if |x| = |y|, then Rx = y and Rx∗ = y∗. Thus

(3.1) max{|Rz − z| : z ∈ S} ≤ |x∗ −Rx∗| = |x∗ − y∗|.
Since the Laplacian commutes with orthogonal transformations [ABR, pp. 3–4],

we have:

Proposition 3.1. If h : Bn → Rn is harmonic on Bn, then h ◦R is harmonic.

Proposition 3.2. Suppose that h is a harmonic mapping from Bn continuous
on B

n and M = max{|h(t)| : t ∈ S}. Then |h(t)| ≤ M for |t| ≤ 1.

A proof can be based on the Poisson representation, or, alternatively, reduced
(using scalar product) to the classical real valued case.

We will also use a version of Harnack’s inequality (see [MV]): Let B = B(a; r) ⊂
Rn be a ball. Suppose h : B → Rn is a vector valued harmonic mapping on B and
Ma = sup{|h(y)− h(a)| : y ∈ B}. Then
(3.2) r|h′(a)| ≤ nMa.

Conjecture 1. Let D be a domain in Rn with C1 (or C∞) boundary, let y0 ∈ D
and let g(x) = g(x, y0) be the Green’s function for D. Set Sc = {x ∈ D : g(x) = c}.
Suppose that h : D → Rm is a harmonic mapping which is continuous on D. The
following conditions are equivalent:

a) h is Lipschitz on ∂D.
b)

|h′(x)T | ≤ M

for every x ∈ D and unit vector T which is tangent to Sc, c > 0, at x.

We prove this conjecture for the unit ball, taking y0 = 0.
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Theorem 3.1. Suppose that h : B
n → Rn is harmonic on Bn and continuous

on B
n. Then the following conditions are equivalent:
a)

|h(x)− h(y)| ≤ L|x− y|, x, y ∈ S. (1′)
b)

|h′(x)T | ≤ M (2′)
for every x ∈ Bn and unit vector T which is tangent on Sr, where r = |x|.

If we suppose, in addition, that h is K-quasiregular mapping, then
c)

|h′(x)| ≤ K L (3′)
for every x ∈ Bn.

Proof. It is clear that b) implies a), with constant L = M .
Suppose that a) holds. Let x0 ∈ S be fixed. Then |h(x) − h(x0)| ≤ C1 = 2L on

S and by Poisson representation |h(x)− h(x0)| ≤ C1 = 2L on B. Using translation,
we can suppose that h(x0) = 0. Hence |h(x)− h(a)| ≤ C2 = 4L for x, a ∈ B.

If |x| ≤ 1/2, then an application of (3.2) on the ball B(x; 1/2) gives |h′(x)| ≤
2nC2. Hence there is a constant C3 = 2nC2 = 8nL such that

(3.3) |h(x)− h(y)| ≤ C3|x− y|
for every x, y ∈ B1/2.

Let us prove that

|h(x)− h(y)| ≤ L|x∗ − y∗| = Lr|x− y|, |x| = |y| = r,

where Lr = L/r.
Let R = Rx,y be the rotation described above which maps x to y. Note that

max{|Rz − z| : z ∈ S} ≤ |x∗ − y∗|. By Proposition 3.1, the function h(z) − h(Rz)
is harmonic in z. By hypothesis a), |h(z) − h(Rz)| ≤ L|Rz − z|, z ∈ S. Hence, by
(3.1), max{|h(z) − h(Rz)| : z ∈ S} ≤ L|x∗ − Rx∗|. Now applying Proposition 3.2
(the maximum principle), we conclude that |h(x) − h(Rx)| ≤ Lr|x − Rx|. Thus
|h(x) − h(y)| ≤ Lr|x − y| whenever |x| = |y| = r < 1. Clearly this proves the
following estimate:

(3.4) |h′(x)T | ≤ Lr

for every x ∈ Bn and unit vector T which is tangent to Sr, where r = |x|. In
particular, for r ≥ 1/2, |h′(x)T | ≤ 2L. By (3.3), we can choose M = 8nL.

Now we prove c). Let a ∈ Sn−1 be a fixed unit vector. Then the function
A(x, a) = |dh(x)a|2 =

∑n
ν=1 |dhν(x)a|2 is subharmonic in x ∈ B. Using estimate

(3.4) and quasiregularity of h we obtain |dh(x)a| ≤ KL/ρ on Sρ, 0 < ρ < 1. Now
the maximum principle for subharmonic functions gives, as ρ → 1, |dh(x)a| ≤ KL
on B, and since a is an arbitrary unit vector we conclude |h′(x)| ≤ KL. ¤

One consequence of the tangential estimate (3.4) is:

Proposition 3.3. Suppose that φ : Sn−1 → Rn is Lipschitz. Let u = P [φ]. Then
the following conditions are equivalent:

(1) u = P [φ] : Bn → Rn is Lipschitz on Bn.
(2) The radial derivative of u is bounded on Bn.
(3) grad u is bounded on Bn.
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Next we consider the upper half space Rn+1
+ setting. First, we note that a har-

monic map u : Rn+1
+ → Rn+1 is bounded and extends continuously to the boundary

if and only if u = P [f ] for some bounded continuous map f : Rn → Rn+1. In this
case f is Lipschitz continuous if and only if the partial derivatives ∂ju, 1 ≤ j ≤ n, are
bounded on Rn+1

+ . This is, of course, a necessary condition for Lipschitz continuity
of u. To get a necessary and sufficient condition, one has to ensure that ∂u/∂y is
bounded as well. Let Ff(ξ) be the Fourier transform of f in the sense of distri-
butions, i.e., Ff is in the space S ′ of tempered distributions. Then iξjFf(ξ) is
the Fourier transform of ∂jf for 1 ≤ j ≤ n. Also, the Fourier transform of u(x, y)
for a fixed y > 0 is e−y|ξ|Ff(ξ) and therefore the Fourier transform of ∂yu(x, y) is
−|ξ|e−y|ξ|Ff(ξ). Hence, taking the limit y → 0 in S ′, we see that the boundary val-
ues g of ∂u/∂y satisfy Fg(ξ) = −|ξ|Ff(ξ). Therefore, F (∂jf)(ξ) = −iξi/|ξ|Fg(ξ)
which means that ∂jf = Rjg, where Rj denotes the Riesz transform. We can sum-
marize the above discussion in the following theorem.

Theorem 3.2. A harmonic map u : Rn+1
+ → Rn+1 is bounded and Lipschitz

continuous if and only if u = P [f ], where f is bounded and Lipschitz continuous
on the boundary Rn, φj = ∂f/∂xj are in L∞(Rn) for all 1 ≤ j ≤ n and for some
(equivalently all) j the function φj is the Rj transform of a function in L∞(Rn).

Note that the theorem remains valid, with essentially the same proof, if one
replaces “bounded and Lipschitz continuous” with “bounded with continuous and
bounded partial derivatives” and L∞(Rn) with BC(Rn) (the space of continuous
and bounded functions on Rn). This extends Proposition 2.2 to the multidimensional
case.

It is easy to derive sufficient conditions from the above result: since the Riesz
transforms Rj preserve Λα spaces, 0 < α < 1, any bounded function with partial
derivatives in Λα extends to a Lipschitz continuous harmonic function in the upper
half space, in fact that extension is in C1,α(Rn+1

+ ).
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