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Abstract. We show two versions of the Koebe theorem: one for quasiregular harmonic func-
tions and another for quasiconformal functions. We also give an elementary proof of a version of
the Koebe one-quarter theorem for holomorphic functions. As an application, we show the har-
monic analogue of the Koebe one-quarter theorem and that holomorphic functions (more generally,
quasiregular harmonic functions) and their modulus have similar behaviour in a certain sense.

1. Introduction

The harmonic analogue of the Koebe one-quarter theorem proved by Clunie and
Sheil-Small [Cl-Sh] (cf. Theorem CS) attracted certain attention. In particular, the
method of the proof was not expected by some experts in univalent functions. It
provides at least a partial motivation to study their approach and, in particular,
raises the following question.

Question A. Which property of holomorphic (more generally harmonic) uni-
valent functions is essential for the validity of a version of the Koebe one-quarter
theorem?

Among other things, the study of the approach in the paper mentioned [Cl-Sh]
leads to a version of the Koebe theorem for quasiconformal functions (see Theorem
3.1 below, which can be considered as the main result of this paper). Theorem CS
and Lemma 6.1 are derived as an application of Theorem 3.1, and it also leads to
the classical Koebe’s one-quarter theorem; cf. Theorem K. Note that Theorem 3.1
is strictly related to results in subsections V.6.7 in the book [LV]; see subsection 3.2
for further comments. Using the method of extremal length (more precisely, the
Grötzsch theorem; see Section 2 and [Ahl]) we prove Theorem 3.1 in Section 3. We
refer to this result as the version of Koebe’s theorem for quasiconformal mappings.

In connection with the above indicated subject and applications of Bloch and
Koebe theorem in [AMM], we have also found a new version of the Koebe one-quarter
theorem, which holds for holomorphic functions, and which has an independent
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interest; in detail, using the subordination principle, we give a very short proof
of a new version of the Koebe one-quarter theorem for holomorphic functions (see
Section 4, Lemma 4.1 and Theorem 4.1, which we call the Koebe lemma (theorem)
for holomorphic functions, respectively).

In Section 6, combining the decomposition property for quasiregular functions
with the Koebe lemma for holomorphic functions and Lemma 6.1, we derive the
Koebe lemma for quasiregular harmonic mappings; cf. Lemma 6.2. As an application
of the Koebe lemma for quasiregular harmonic mappings, we immediately obtain
Theorem 6.1, which we call the Koebe theorem for quasiregular harmonic mappings.

Theorem 6.1 is applied to show Dyakonov’s theorem [Dyk], stated as Theorem
A in Section 5, as well as the corresponding generalization for quasiregular harmonic
functions.

2. Extremal module

For r > 0, by ∆r, we denote the disc {z : |z| < r} in the complex plane and by
∆ = ∆1 the unit disc in the complex plane.

The proof of Theorem 3.1 is based on the extremal property of the Grötzsch
annulus, which we need to discuss first.

2.1. Grötzsch annulus. If Ω is a double-connected domain, by M(Ω) we
denote the modulus of Ω; and for a given family of curves Γ by M(Γ) the modulus
of the family of curves Γ. If Ω is a double-connected domain and E1 and E2 the
components of ∂Ω, the extremal distance dΩ(E1, E2) between E1 and E2 is the
modulus of Ω. Note that if Γ is the family of curves which joins the components E1

and E2, then dΩ(E1, E2) = 1/M(Γ), and if Γ′ is the family of curves which separates
the components E1 and E2, then M(Ω) = M(Γ′).

Let 0 < r < 1 and c be any continuum that contains {0, r}, and let Γ, Γ0 and
Γc be the families of closed curves in the unit disc that separate {0, r}, s = [0, r]
and c from the circumference, respectively. There is an extremal metric ρ0 for the
family Γ0, which is obviously symmetric with respect to s.

Given any γ ∈ Γ, we obtain a path γ0 of equal ρ0- length by reflecting part of γ
across s. Hence, we conclude M(Γ) = M(Γ0). Note the crucial role of symmetry.

Since Γc is a smaller family than Γ, we find

M(Γc) ≤ M(Γ) = M(Γ0).

In view of conformal invariance, we get:

Theorem 2.1. (Grötzsch) Of all the continua that join the point R > 1 to ∞,
the segment [R, +∞] has the greatest extremal distance from the unit circle.

2.2. Teichmüller theorem. Another extremal problem of similar nature was
solved by Teichmüller; notice that we do not use the Teichmüller theorem in our
proof of Theorem 3.1.
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Theorem 2.2. (Teichmüller) Of all double-connected domains that separate
the pair {−1, 0} from a pair {ω0,∞} with |ω0| = R, the one with the greatest
modulus is the complement of the segments [−1, 0] and [R, +∞].

In [Ahl], the proof makes use of Koebe’s one-quarter theorem and the distortion
theorem.

Define

k(z) = z(1 + z)−2, kR(z) = 4Rz(1 + z)−2, k+
R(ρ) = 4R ρ(1− ρ)−2,

k−R(ρ) = 4R ρ(1 + ρ)−2 and k+ = k+
1 .

Let f be a conformal mapping of ∆ normalized by f(0) = 0, which omits ω0.
Then, by Koebe’s one-quarter theorem |f ′(0)| ≤ 4R and hence by the distortion
theorem,

(2.1) |f(z)| ≤ k+(|z|)|f ′(0)| ≤ 4 R k+(|z|) = k+
R(|z|).

Let Ω be a double-connected domain that separates the pair {−1, 0} from the
pair {ω0,∞} and E1 be the bounded component of the complement. By Riemann’s
mapping theorem there exists a univalent function φ from the unit disc onto Ω∪E1

such that φ(0) = 0. Let ω be the inverse image of −1; that is, φ(ω) = −1. We note
further that the modulus of Ω is the extremal distance between φ−1(E1) and the unit
circle and we already know, by the Grötzsch theorem, that this extremal distance
is greatest when φ−1(E1) is the line segment between 0 and ω. Let ω∗ = k−1

R (−1).
Then kR maps ∆\ [0, ω∗] onto the complement of the segments [−1, 0] and [R, +∞].

On the other hand, by Koebe’s one-quarter theorem |φ′(0)| ≤ 4R and hence by
the distortion theorem,

(2.2) |φ(z)| ≤ k+(|z|)|φ′(0)| ≤ 4Rk+(|z|) = k+
R(|z|), z ∈ ∆.

Since kR(ω∗) = −1, it follows that ω∗ = −|ω∗|. Hence k+
R(|ω∗|) = |kR(ω∗)| =

| − 1| = |φ(ω)| ≤ k+
R(|ω|), which implies |ω| ≥ |ω∗|. Hence the modulus is indeed

the maximum for the Teichmüller annulus.
Since there is a proof of Koebe’s one-quarter theorem by means of the Grötzsch

theorem, it seems natural to try to prove the Teichmüller theorem more directly
(without Koebe’s one-quarter theorem and the distortion theorem). We can do
this, for example, using the symmetry if ω0 > 0.

Let Γ be the family of curves which separates the pair {−1, 0} from {R, +∞}
and let Γ0 be the family of all closed curves which separates [−1, 0] and [R, +∞),
and let Λ = [−1, 0] ∪ [R, +∞). There is an extremal metric ρ0 for the family Γ0,
which is obviously symmetric with respect to Λ.

Given any γ ∈ Γ, we obtain a γ0 of equal ρ0 length by reflecting part of γ across
Λ. Hence, we conclude M(Γ) = M(Γ0). Note the crucial role of symmetry.

3. Koebe’s one-quarter theorem and generalizations

3.1. Proof of Koebe’s one-quarter theorem for univalent functions. It
is interesting that we can prove Koebe’s one-quarter theorem for univalent functions
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using a method based on the Grötzsch theorem. It also gives motivation for a proof
of Theorem 3.1.

First, we prove the estimate (3.3) (see below).
It is convenient to introduce the notation CR, R ≥ 0, for the complex plane cut

along [R, +∞) and CR
r = CR \ ∆r for the complement of the closed disc ∆r and

[R, +∞) (known as the Grötzsch annulus).
Let τR

− = (k+
R)−1 and τR

+ = (k−R)−1. It is clear that τ− ≤ τ+. It is also convenient
to use the short notation τ+ = τR

+ and τR
− = τ− if the meaning of R is clear from

the context.
Note that τ+ maps [0, R] onto [0, 1] and τ− maps [0, +∞) onto [0, 1); kR maps

the disk ∆τ−(r) into ∆r, r > 0, and ∆r ⊂ kR(∆τ+(r)), 0 < r < R.
For δ > 0, the function kδ maps ∆ onto Cδ, the plane cut along [δ, +∞).
Hence, for 0 < r < R,

(3.1)
1

2 π
ln

1

τ+(r)
≤ M(CR

r ) ≤ 1

2 π
ln

1

τ−(r)
.

Since τ ′−(0) = 1
4R

and hence τ− (ρ) = ρ
4R

+ o(ρ), ρ → 0, it follows that

(3.2) M(CR
ρ ) ≤ 1

2 π
ln

4R

ρ + o(ρ)
, ρ → 0,

and since τ+ (ρ) = ρ
4R

+ o(ρ), ρ → 0, we also obtain the opposite estimate. Hence,

(3.3) M(CR
ρ ) =

1

2 π
ln

4R

ρ + o(ρ)
, ρ → 0.

Now, we introduce a particulary interesting class of conformal mappings of the
disc, the class S .

By S , we denote the family of holomorphic univalent functions f on the unit
disc, with normalization f(0) = 0 and f ′(0) = 1.

Theorem K. (Koebe’s one-quarter theorem) If f ∈ S then f(∆) ⊃ ∆1/4.

Proof. Let f ∈ S , 0 < ε < 1, Aε = ∆ \ ∆ε, Gε = f(Aε), and δ = δf =
dist

(
0, ∂f(∆)

)
. Since the modulus is a conformal invariant, it follows that M(Gε) =

1

2π
ln

1

ε
.

For 0 < ε < 1, let ε∗ = min{|f(z)| : |z| = ε}. Then, by (3.3),

M(Cδ
ε ) =

1

2π
ln

4δ

ε + o(ε)
.

By the monotonous principle for modulus and Grötzsch’s theorem, M(Gε) ≤ M(Cδ
ε∗)

and hence, since ε∗ = ε + 0(ε),

ln
1

ε
≤ ln

4δ

ε + 0(ε)
.

Now passing to the limit when ε → 0, it follows that 1
4
≤ δf ; that is, f(∆) ⊃ ∆1/4.

¤
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3.2. Remarks on generalizations of Koebe’s one-quarter theorem for
quasiconformal mappings. First, we need to introduce some notations.

It is well known that if f is a quasiconformal mapping defined on a region G,
then the function fz is nonzero a.e. in G. The function

µf =
fz̄

fz

is therefore a well defined bounded measurable function on G, called the complex
dilatation or the Beltrami coefficient of f .

Let µ be a complex dilatation on ∆. For z ∈ ∆, we define µ+(z) = ess sup{|µ(ζ)| :
|ζ| = |z|}, where ess sup is taken with respect to the arc length (the angular mea-
sure) on the circle of the radius |z|. Set

τ = τ(f) = τf =

∫ 1

0

2µ+(t)

1 + µ+(t)

dt

t
, and δ = δ(f) = δf = dist

(
f(0), ∂f(∆)

)
.

Note that µ+ is a radial function. Define

I(r) =
1

2π

∫∫

|z|≤r

D(z)− 1

|z|2 dx dy,

where D = Df denotes the dilatation of f .
If f is a quasiconformal mapping on ∆ with f(0) = 0, then

(3.4) |∂f(0)| ≤ 4 δ eI(1).

This inequality is proved in the book [LV], pp. 219–233, as a corollary of Theorem
V.6.1 in the same book, and there the reader is referred to Pfluger and Juve for fur-
ther generalizations of Koebe’s one-quarter theorem for quasiconformal mappings;
see also Astala and Gehring [AsGe].

Using (3.4), one can derive a harmonic analogue of the Koebe one-quarter the-
orem with constant c = 2−10.

Now, we are going to prove Theorem 3.1.

3.3. A new version of Koebe one-quarter theorem for qc. By Ac we
denote C \A. Suppose that f is a quasiconformal mapping on ∆r for all 0 < r < 1,
conformal at 0, and f(0) = 0; for 0 < ε < 1 define Gε = f(Aε).

Let ρ be a non-negative Borel measurable function defined on ∆; set

D+ =
1 + µ+

1− µ+
and I+(ρ) = I+

f (ρ; ε) =

∫∫

Aε

ρ2(z)D+(z) dx dy.

It is convenient to use the notation p = ∂f, q = ∂f , Lf (z) = |p(z)| + |q(z)| and
lf (z) = |p(z)| − |q(z)| .

First we prove an estimate of M(Gε) from below by choosing an admissible
metric for the family of curves Γε in Aε, which join the components of Ac

ε, and then
we apply Grötzsch’s theorem in order to get an estimate of M(Gε) from above.
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In order to get an estimate of M(Gε) from below, we consider the family of curves
Γ∗ε in Gε, which join the components of Gc

ε. Note that Γ∗ε is the complementary
family to the family which separates the components of Gc

ε.

Step 1. (Proof of inequality (3.7)) Let ρ be admissible for the family of curves
Γε in Aε, which join the components of Ac

ε, and let ρ∗ be defined by

ρ∗(w) =
ρ(f−1(w))

lf (f−1(w))
, w ∈ Gε,

where recall lf = |p| − |q|. We shortly write lf (z)ρ∗(w) = ρ(z), where w = f(z).
If γ∗ ∈ Γ∗ε, then for γ := f−1 ◦ γ∗,∫

γ∗
ρ∗(w) |dw| ≥

∫

γ

ρ∗(f(z)) lf (z) |dz| =
∫

γ

ρ(z) |dz|.

Thus ρ∗ is admissible for the family of curves Γ∗ε in Gε, which join the compo-
nents of Gc

ε. Hence

M(Γ∗ε) ≤
∫∫

Gε

ρ2
∗(w) du dv =

∫∫

Aε

ρ2(z)

l2f (z)
Jf (z) dx dy,

and since
Jf (z)

l2f (z)
= Df (z) ≤ D+

f (z),

it follows that

(3.5)
1

M(Gε)
= M(Γ∗ε) ≤ I+(ρ)

for every ρ, which is admissible for the family of curves Γε.
Let

sε =

∫ 1

ε

1− µ+

1 + µ+

dt

t
,

and let ρ1 be defined by ρ1(z)D+(z) = 1
|z| and ρ0 be the normalization of ρ1 defined

by

ρ0(z) =
ρ1(z)

sε

=
1

sε |z|D+(z)
.

Since ∫

γ

ρ1|dz| ≥
∫ 1

ε

1

tD+(t)
dt = sε,

for every γ ∈ Γε, it follows that ρ0 is admissible for the family of curves Γε.
Using the polar coordinates,

I+
f (ρ0; ε) =

2π

s2
ε

∫ 1

ε

1

tD+(t)
dt =

2π

sε

.
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Hence, by (3.5),

(3.6) M(Gε) =
1

M(Γ∗ε)
≥ 1

I+(ρ0)
=

sε

2π
,

and, therefore, it yields

(3.7) 2πM(Gε) ≥ ln
1

ε
− τε,

where τε =
∫ 1

ε
2µ+

1+µ+
dt
t
.

It is also convenient to rewrite this inequality in the form

M(Aε) ≤ M(Gε) + τ ∗ε ,

where τ ∗ε = 1
2π

∫ 1

ε
2µ+

1+µ+
dt
t
.

Step 2. (Application of the Grötzsch theorem) For 0 < ε < 1, let ε∗ =
min{|f(z)| : |z| = ε}, and let a1 = f ′(0). Since f is a quasiconformal mapping
on ∆, which is conformal at 0, then ε∗ = |a1|ε + o(ε).

Let τ = τ(f) =
∫ 1

0
2µ+(t)

1+µ+(t)
dt
t
and let δ = δf = dist

(
0, ∂f(∆)

)
. We are going to

prove
|a1|e−τ ≤ 4δ.

By the monotonous principle for modulus and the Grötzsch theorem,

M(Gε) ≤ M(Cδ
ε∗)

and hence, since ε∗ = |a1|ε + o(ε),

ln
1

ε
− τε ≤ ln

4δ

|a1|ε + o(ε)
, ε → 0,

and passing to the limit when ε → 0, it follows that

−τ ≤ ln
4δf

|a1| and, therefore,
|a1|
4

e−τ ≤ δf .

Thus, we can summarize the above considerations:

Theorem 3.1. Suppose the above notation and
a) f is a quasiconformal mapping on ∆r for all 0 < r < 1, and
b) f(0) = 0 and f is conformal at 0.

Then

(3.8) |f ′(0)| ≤ 4 δf eτ(f).

Note that τ does not converge in general. If τ converges, by Theorem 6.1 in
[LV] f is conformal at 0.

If f is a conformal mapping, then µf equals 0 on ∆ and, therefore, τ(f) = 0.
Hence, Koebe’s one-quarter theorem follows from the estimate (3.8).

Note that the integral τ does not converge in general, and the theorem has
useful content only when τ =

∫ 1

0
2µ+(t)

1+µ+(t)
dt
t
converges.
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It also seems that we can get a version of Theorem 3.1 if we instead of the
hypothesis a) suppose that

a1) f is an ACL homeomorphism on ∆.
Having Theorem 3.1 in mind, it is clear that one can prove the corresponding

version of the Bloch theorem for quasiregular mappings by means of the Bloch
theorem for holomorphic functions and the decomposition property for quasiregular
functions.

3.4. Application to harmonic univalent functions. δh ≥ 1
16
. Now, we

discuss an application of Theorem 3.1 to harmonic univalent mappings.
First of all, we observe that if h is a conformal mapping normalized by h(0) = 0

and h′(0) = 1, then µ ≡ 0 and, therefore, τ = 0, and hence we obtain Koebe’s
one-quarter theorem for univalent mappings.

Let h be a harmonic mapping in the Euclidean sense on ∆. Then h = f + g,
where f and g are analytic on ∆.

By Σ, we denote the family of harmonic univalent, orientation-preserving func-
tions with normalization h(0) = 0, f ′(0) = 1 and g′(0) = 0.

Theorem CS. [Clunie, Sheil-Small] If h ∈ Σ, then δh ≥ 1
16
.

Proof. Note µ = µh =
g′

f ′
. Since µ(0) = 0 and |µ(z)| ≤ 1, by the Schwarz

lemma, |µ(z)| ≤ |z| for z ∈ ∆, and we first obtain µ+(t) ≤ t, 0 ≤ t < 1, and,
therefore,

τ = τ(f) = τf =

∫ 1

0

2µ+(t)

1 + µ+(t)

dt

t
≤ 2

∫ 1

0

1

1 + t
dt = 2 ln 2.

Hence, Theorem CS follows from Theorem 3.1. ¤
Notice that further study of the application of Theorem 3.1 to harmonic map-

pings with the non-negative Gaussian curvature of the target is a subject of a forth-
coming paper. The method of the extremal length also works for some classes of
mappings which boundedly distort some extremal length related metrics but which
need not be quasiconformal. Some distortion results for such mappings were proved
in [FMV, 3.21, 3.24, 4.21].

4. Koebe’s one-quarter theorem for holomorphic functions

We will use the following notation. If r > 0 and a is a complex number,

B(a; r) = {z ∈ C : |z − a| < r}
is the open circular disc with centre at a and radius r. We also use the notation
∆r = B(0, r) and ∆ = ∆1.

If B = B(a; r) is a disc, we say that f is holomorphic (harmonic) on B if there is
an open set Ω such that B ⊂ Ω and f is holomorphic (harmonic) on Ω, respectively.
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The next example shows that holomorphic functions in general do not enjoy the
property described by the Koebe theorem for univalent functions and it indicates a
completely new phenomenon.

Example 1. The example fn(z) = 1
n
(enz − 1) shows that if f is a holomorphic

function on the unit disc ∆, f(0) = 0 and |f ′(0)| ≥ 1, then there is not an absolute
constant s > 0 such that the disc ∆s belongs to f(∆).

This example shows that the hypothesis f ∈ S, which is roughly speaking the
injectivity of f , is essential for the validity of the classical Koebe’s one-quarter
theorem. Therefore, it seems that the following question is natural: does there
exists an appropriate generalization of this theorem to the functions which are not
injective?

After writing several versions of this paper, the author has found a very simple
proof of the following result, which seems to be an appropriate generalization of
the Koebe one-quarter theorem (with the best constant 1

4
). In order to state the

theorem, we need to introduce some notations.
If θ ∈ R and a is a complex number, we write Λθ, Λθ

a and Λ(a) instead of
{ρeiθ : ρ ≥ 0}, {a + ρeiθ : ρ ≥ 0} and {ρ a : ρ ≥ 0}, respectively.

By ω = ωf , we denote the modulus of continuity of f .

Lemma 4.1. (Koebe lemma for holomorphic functions) Suppose that f is a
holomorphic function on the closed unit disc ∆, f(0) = 0 and |f ′(0)| ≥ 1. Then for
every θ ∈ R there exists a point w on the half-line Λθ which belongs to f(∆), such
that |w| ≥ 1

4
.

Proof. On the contrary, suppose there exists a θ for which the theorem is not
true. Without loss of generality, we can assume that

(∗) f(∆) does not intersect Λ = [1/4,∞).

First note that the Koebe function k, which is defined by k(z) = z(1 + z)−2,
maps ∆ onto C \ Λ. Since, k(0) = f(0) = 0 and k′(0) = 1, by the subordination
principle, |f ′(0)| ≤ 1. If |f ′(0)| = 1, then f = k and, therefore, f(1) = k(1) = 1/4,
which is a contradiction with the hypothesis (∗). Hence |f ′(0)| < 1, which is again
a contradiction with the hypothesis |f ′(0)| ≥ 1. ¤

As an application of Lemma 4.1, we immediately obtain the following result,
which we call the Koebe theorem for holomorphic functions.

Theorem 4.1. (Koebe theorem for holomorphic functions) Suppose that f is
a holomorphic function on B, where B = B(a; r), and f(a) = b. Then, for every
θ ∈ R, there exists a point w on the half-line Λθ

b which belongs to f(B), such
that |w − b| ≥ ρf (a), where ρf (a) := 1

4
r|f ′(a)|. In particular, there exists a point

ω ∈ f(B) such that |ω| − |b| = |ω − b| ≥ ρf (a).

Proof. If f ′(a) 6= 0, applying Lemma 4.1 to the function s · (f(rz + a) − b
)
,

where s =
1

rf ′(a)
, immediately gives the result. ¤
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5. Applications

As an application of the estimates obtained in Section 4, we prove Dyakonov’s
theorem; see also [P], [MM1], [MM2] and [Ka1].

In the discussion that follows, we suppose that α ∈ (0, 1). By Lip(α) = Lip(α; A),
we denote the family of Hölder functions with exponent α and the multiplier con-
stant A.

Roughly speaking, the Koebe theorem for holomorphic functions states that
holomorphic functions have the same dilatation in all directions and indicates a
similar behaviour of holomorphic functions and their modulus in a certain sense
and leads, via the crucial estimate (5.3), to what we call geometrically a visual
proof of Dyakonov’s theorem stated here as:

Theorem A. Suppose that f is a holomorphic function on ∆. Then f belongs
to Lip(α) if and only if |f | belongs to Lip(α).

Namely, if f belongs to Lip(α), then, by the triangle inequality, |f | belongs to
Lip(α).

The proof of the opposite result is more delicate as the next example indicates:

Example 2. Let R = Rr = (−r, r) × (−∞, +∞) = {z : −r < Re z < r},
r > 0, ϕ a conformal mapping of ∆ onto R such that ϕ(0) = 0 and φ(z) = φn(z) =
exp(ϕ(z)/n). Then ωφn(1) ≥ 2 and φn(∆) = An, where An = {w : exp(−r/n) <
|w| < exp(r/n)}, and, therefore, ω|φn|(1) ≤ 2r/n + o(1/n) → 0, when n →∞.

Thus, the example shows the following: even if we consider the family H ∞ of
bounded holomorphic functions on the unit disc, there is no absolute constant c
such that ωf ≤ c ω|f | for every f ∈ H ∞.

Note that, by the triangle inequality, ω|f | ≤ ωf , and φn does not belong to⋃
0<α<1 Lip(α).

The following lemma, which is an immediate corollary of the key estimate (5.3),
gives, for a holomorphic function f, the estimate of the modulus of the derivative by
means of the modulus of continuity of |f |. It immediately yields, with the gradient
growth lemma (see below), the proof that

(∗∗) if |f | belongs to Lip(α), then f belongs to Lip(α).

Lemma 5.1. Let f be a holomorphic function on ∆. Then,

(5.1) (1− |z|)|f ′(z)| ≤ 4 ω(1− |z|), z ∈ ∆,

where ω = ω|f | is the modulus of continuity of |f |.
In addition, if |f | belongs to Lip (α; A) on ∆, then

(5.2) |f ′(z)| ≤ 4 A · (1− |z|)α−1 , z ∈ ∆.

Proof. Let z ∈ ∆, r = s · (1 − |z|), 0 < s < 1, B = B(z; r), w = f(z) and
B̃ = f(B). We suppose for a moment that s is a fixed constant. By Theorem 4.1,
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there is a point w1, which belongs to B̃ ∩ Λ(w), such that

(5.3) |w1 − w| ≥ 1

4
|f ′(z)|r.

That is obvious if w = 0. If w 6= 0, then B̃ ∩ Λ(w) contains two points, w1

and w2. It is clear that we can choose the numeration of those points such that
0 ∈ Λ(w,w2) := {w + ρ(w2 − w) : ρ ≥ 0} and, therefore, |w1 − w| = |w1| − |w|.

Let z1 be a preimage of w1. Since

|w1 − w| = ||w1| − |w|| = ||f(z1)| − |f(z)|| and |z1 − z| ≤ r,

then

(5.4) s · (1− |z|)|f ′(z)| ≤ 4 ω [s · (1− |z|)] , z ∈ ∆.

Hence, if s → 1−, then (5.1) follows from (5.3).
Note that if |f | belongs to Lip(α), then (5.1) reduces to (5.2). ¤
Now, an application of the next lemma (for the proof, see, for example, [R],

Lemma 6.4.8) immediately yields the proof of (∗∗).
Lemma 5.2. (Gradient growth lemma) If u : ∆ → C and

|grad u(z)| ≤ A (1− |z|)α−1, z ∈ ∆,

for some A > 0 and α ∈ (0, 1), then u ∈ Lip(α) with the multiplier constant
Mα = (1 + 2 α−1)A.

Thus, if |f | belongs to Lip(α), then it follows from the inequality (5.2) and
Lemma 5.2 that f belongs to Lip α, that is, (∗∗) is proved.

6. Koebe theorem for quasiregular harmonic functions

In this section, we will show that a version of Theorem 4.1 holds for quasiregular
harmonic functions. For basic definitions and results we refer to the books [Ah2],
[LV] and [Ri].

First, we need to introduce some notations and results:
Every harmonic function f in ∆ can be written in the form f = ḡ + h, where g

and h are holomorphic functions in ∆. For f ∈ S0
H (see [Cl-Sh] for the notation),

|g′(z)| ≤ |z||h′(z)|.
Lemma 6.1. Let f be a diffeomorphism of ∆,

1) |∂̄f(z)| ≤ |z||∂f(z)| for z ∈ ∆, and
2) f(z) = z + O(|z|β) for some β > 1 as z → 0.

Then f(∆) ⊃ ∆1/16.

Clunie and Sheil-Small proved the lemma for harmonic mappings f = ḡ + h ∈
S0

H . For the proof of the lemma in general, one can repeat their approach using ∂f(z)

and ∂̄f(z), respectively, instead of h′ and g′. The details are left to the interested
reader. The lemma also appears in [He-Sc], [He-Po].

The lemma is true if the hypothesis 2) is replaced by the hypothesis
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3) f is conformal at 0 and f ′(0) = 1.

We now outline an argument which shows that the lemma is also an immediate
corollary of Theorem 3.1.

Let µ = µf . By the hypotheses of the lemma, |µ(z)| ≤ |z|, z ∈ ∆, and we obtain
first µ+(t) ≤ t, 0 ≤ t < 1, and, therefore, τ ≤ 2 ln 2. Hence, since the hypothesis
2) implies the hypothesis 3), an application of Theorem 3.1 gives 2−4 ≤ δ, that is,
f(∆) ⊃ ∆1/16.

Lemma 6.2. Suppose that f is a K-quasiregular harmonic mapping on the unit
disc ∆, f(0) = 0 and |grad f(0)| ≥ 1. Then for every θ ∈ R there exists a point w on
the half-line Λθ which belongs to f(∆), such that |w| ≥ c, where c = c(K) = 1

K
2−6.

We call this result the Koebe lemma for quasiregular harmonic mappings with
constant c.

Proof. Let us first verify the decomposition property for quasiregular harmonic
functions (shortly qrh): if f is a K-quasiregular harmonic mapping, then f = F ◦ g,
where F is an analytic function from ∆ and g is a K-quasiconformal mapping from
∆ onto itself.

It is known that there is a quasiconformal mapping g from ∆ onto itself such
that g is a solution of the Beltrami equation

gz = µgz

(see [Ah2], [LV]).
Let F = f ◦ g−1. Then we have for µF (see [Ah2], [LV]) that

µF ◦ g =
gz

gz

· µf − µg

1− µfµg

= 0

and we conclude that F is a holomorphic function.
Before we proceed with the proof, we give some remarks which are useful for

understanding it.

Notes: Let us first observe that if g is euclidean harmonic, then Lg(0) ≤ 2. The
following simple proof was suggested by the referee:

Let Kr be a positively oriented circle of radius r with centre at the origin. Then
2πi∂g(0) =

∫
Kr

g(z)z−2 dz for r ∈ (0, 1). Hence by g(∆) = ∆, we find |∂g(0)| ≤ 1;
therefore, Lg(0) ≤ 2|∂g(0)| ≤ 2.

Note that g is harmonic with respect to the metric ds̃2 = ρ̃(ζ)|dζ|2, where
ρ̃ = |F ′|2. Although g is not in general harmonic with respect to the euclidean
metric, it turns out that one can estimate the distortion of g at 0. Namely, if g is
conformal at 0, since µf = µg, we can apply Lemma 6.1 and it yields Lg(0) ≤ 16
(see Case 1 below).

We now continue the proof. Without loss of generality, one can suppose that
g(0) = 0, and let dg(0) = p∗ dz + q∗ dz̄.
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Case 1: q∗ = 0. Now it is convenient to use the notation f ∗ instead of g and
to write f = F ◦ f ∗ and f in the form f = g + h, where h and g are holomorphic
functions on ∆. Since µf = g′

h′ , µf = µf∗ and µf∗(0) = 0, f ∗/|p∗| satisfies the
conditions of Lemma 6.1, and hence f ∗(∆) contains an open disc of radius |p∗|

16
and,

therefore, 1
16
|p∗| ≤ 1, that is |p∗| ≤ 16.

Hence, since Lf (0) = |F ′(0)|Lf∗(0), and Lf∗(0) = lf∗(0) = |p∗|, it follows
that Lf = |F ′(0)||p∗| ≤ 16|F ′(0)|. By the hypothesis, 1 ≤ Lf (0) and, therefore,
1 ≤ 16|F ′(0)|, that is |F ′(0)| ≥ 2−4. Hence, it follows from Lemma 4.1 (Koebe lemma
for holomorphic functions) that the theorem holds for f with constant c0 = 2−6.

Note that the function f ∗0 = L ◦ f ∗ satisfies conditions of Lemma 6.1 in general,
where L = (A∗)−1 and A∗(ζ) = p∗ζ + q∗ζ, and, in particular, if f ∗ is Euclidian
harmonic, then |p∗| ≤ 1.

Case 2: q∗ 6= 0. Let df(0) = p dz + q dz̄ and A = df(0), that is A(ζ) = pζ + q ζ,
and let B = A−1 and f0 = B ◦ f. Since f0 is harmonic and df0(0) = Id, it satisfies
the conditions of the previous case. Thus the theorem holds for f0 with constant
c0 = 2−6.

By the hypothesis, Lf (0) ≥ 1, and, therefore, lf (0) ≥ 1/D(0), where D(0) =
Lf (0)/lf (0) is the dilatation of f at 0. Hence, since f = A ◦ f0 and A(∆c0) contains
an open disc of radius r0 = lf (0) · c0 = (|p| − |q|) · c0, it follows that the theorem
holds for f with constant lf (0)2−6 and, therefore, with constant 2−6/D(0). Since
K ≥ D(0), it holds with constant c(K). ¤

As an application of the Koebe lemma for quasiregular harmonic mappings,
we immediately obtain the following result, which we call the Koebe theorem for
quasiregular harmonic mappings.

Theorem 6.1. (Koebe theorem for quasiregular harmonic mappings) Suppose
that f is a K-quasiregular harmonic mapping on B, where B = B(a; r); let D =
f(B) and f(a) = b. Then, for every θ ∈ R, there exists a point w on the half-line Λθ

b

which belongs to f(B), such that |w−b| ≥ Rf (a), where Rf (a) := c(K)r| grad f(a)|.
In particular, there exists a point ω ∈ f(B) such that |ω|−|b| = |ω−b| ≥ Rf (a).

Now, it is clear that one can prove a version of Theorem A for quasiregular
harmonic mappings by means of the Koebe theorem for quasiregular harmonic map-
pings, using a similar procedure to the one in the case of holomorphic functions. It
is left to the interested reader as an exercise (see also [MM1]).

The following example shows that the constant 1/16 is sharp for quasiconformal
mappings with dilatation |µ(z)| ≤ |z|.

Example 3. Let A(z) = 4z/(1+|z|)2, k0(z) = z(1−z)−2 and f = k1 = k0◦A/4.
By a straightforward calculation, one can verify that k1(∆) contains the disc of
radius 1/16, that 1/16 is on the boundary of k1(∆) and that |fz̄| = |z||fz|.

Concerning the harmonic Koebe theorem, Clunie and Sheil-Small in the paper
[Cl-Sh] mentioned that they had first found a proof with a weaker constant, and
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then Hinkkanen suggested to use the metric which gave 1/16, the best constant
which the method could produce.

There is a conjecture that the best constant is 1/6 in the harmonic analogy of
the Koebe one-quarter theorem (see [Du]).
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