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Ahlfors-Schwarz lemma, Hyperbolic geometry, the Carathéodory, Kobayashi Met-
rics, Denjoy-Wolff theorem and Applications in Complex Analysis

1. Introduction

This is a working version. Throughout this paper, U will denote the unit disc
{z : |z| < 1}, T the unit circle, {z : |z| = 1} and we will use notation z = x + iy
and z = reiθ, where r = |z| and θ ∈ R are polar coordinates. For a function h, we
use notation ∂h = 1

2 (h′x − ih′y) and ∂h = 1
2 (h′x + ih′y); we also use notations Dch

and D
c
h instead of ∂h and ∂h respectively when it seems convenient. By h′x and

h′y we denote partial derivatives with respect to x and y respectively. We write

D2
zzh = D(Dh), where Dh = Dch and Dh = D

c
h.

Probably the best known equivalent of Euclid’s parallel postulate, contingent on
his other postulates, is Playfair’s axiom, named after the Scottish mathematician
John Playfair, which states:

In a plane, given a line and a point not on it, at most one line parallel to the
given line can be drawn through the point. Hyperbolic geometry was created in the
first half of the nineteenth century in the midst of attempts to understand Euclid’s
axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a
geometry that discards one of Euclid’s axioms (Euclid’s parallel postulate). The
development of non-Euclidean geometry caused a profound revolution, not just in
mathematics, but in science and philosophy as well. Einstein and Minkowski found
in non-Euclidean geometry a geometric basis for the understanding of physical time
and space.

Hyperbolic geometry is tightly related to the function theory of one and several
complex variables. Using Schwarz’s lemma it is proved that
(A) holomorphic functions do not increase the corresponding hyperbolic distances
between the corresponding hyperbolic domains.

The Caratheodory and Kobayashi metrics have proved to be important tools in
the function theory of several complex variables. In particular, we have:

(B) If G1 and G2 are domains in Cn and f : G1 → G2 holomorphic function,
then f does not increase the corresponding Caratheodory(Kobayashi) distances.

But they are less familiar in the context of one complex variable. Krantz [36]
gathers in one place the basic ideas about these important invariant metrics for
domains in the plane and provides some illuminating examples and applications.
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In [64], Wong proved:

(a) If G is a hyperbolic manifold in the sense of Kobayashi and the differential
Kobayashi metric KG is of class C2, then the holomorphic curvature of KG is
greater than or equal to −4.

(b) If G is Carathéodory-hyperbolic and the differential Caratheodory metric CG
is of class C2, then the holomorphic curvature of CG is less than or equal to −4.
With this result the author obtain an intrinsic characterization of the unit ball. For
(b) see also Burbea [13].

In [28], Earle, Harris, Hubbard and Mitra discuss the Carathéodory and Kobayashi
pseudometrics and their infinitesimal forms on complex Banach manifolds. Their
discussion includes a very elementary treatment of the Kobayashi pseudometric as
an integral of its infinitesimal form. They also prove new distortion theorems for
the Carathéodory pseudometric under holomorphic maps from the open unit disk
to a complex Banach manifold.

Although this is mainly review paper we treat known results with novelty and
outline a few new results. The content of the paper is as follows. In Section
2, we outline how to introduce hyperbolic distances from the point of complex
analysis (more precisely, using Schwarz’s lemma). We also shortly consider versions
of Ahlfors-Schwarz lemma related to ultrahyperbolic metric and the comparison
principle related to curvatures and distances. In Section 5 we consider Denjoy-Wolff
Theorem. In Section 6 we consider hyperbolic geometry, Möbius transformations
and Cayley-Klein model in several variables. It is supposedly classical and can
be found in the literature that the restriction of the Beltrami-Klein metric on the
ball of Rn to any minimal surface (minimal with respect to the flat metric) has
curvature ≤ −1. Using a heuristic argument we outline an application to minimal
surfaces.

XX In Sections 7 and 8 we present some result from [48] related to Schwarz
lemmma in the ball, and related to contraction properties of holomorphic functions
with respect to Kobayashi distances respectively. Note here that several years
ago, the author communicated at Belgrade seminar (probably around 1980 -1990),
some results related to the Carathéodory and Kobayashi pseudometrics and their
infinitesimal forms on complex Banach spaces (see also [42]) and that our approach
in Section 8 is probably known to the experts in the subject (in particular see
Theorems 8.3 and 8.4).

The properties (a) and (b) of holomorphic curvature of Kobayashi and Caratheodory
metric are considered in Section 9. XX New results related to distortion and
boundary Schwarz lemma for harmonic functions are announced in Section 10.
Short review of the results related to the Ahlfors-Schwarz lemma for holomorphic
maps,Kobayashi distance,holomorphic dynamics and related subject to it, is given
in 11.

We plan further to examine carefully this paper and to work on an extension
of this paper. We excuse to the reader for numerous mistakes which probably
appears in the text. 1. The text is based on [50] (see also a version published in
VII Simpozizijum Matematika i primene, p.1-17,Beograd, November 2017).

XX

1Because of limited time author could not settle some details related to this paper.
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2. Schwarz lemma and Hyperbolic geometry

2.1. The Schwarz lemma, Introduction. Throughout this paper by S(a, b) we
denote the set (a, b)× R, −∞ ≤ a < b ≤ ∞, and in particular S0 = S(−1, 1). Note
that S(a, b) is a strip if −∞ < a < b <∞ and S(a,+∞) is a half-plane if a is a real
number, and S(−∞,+∞) = C.

If w is complex number by <w (or u = Rew) we denote the corresponding real
part, and in a similar way if f is complex-valued function by <f (or u = Ref) we
denote the corresponding real valued function and by ∇f(z) = (f ′x, f

′
y) the gradient

of f .
Occasionally by λ0 and ρ0 we denote respectively hyperbolic metric on the unit

disk and on the strip S0. See [71] and also [72] for discussion in this subsection.
The following result is a corollary of the maximum modulus principle:

Proposition 2.1 (classical Schwarz lemma 1-the unit disk). Suppose that f : D→
D is an analytic map and f(0) = 0. The classic Schwarz lemma states : |f(z)| ≤ |z|
and |f ′(0)| ≤ 1.

It is interesting that this result(which looks simple and elementary at first glance)
has far reaching applications and forms. XX In this paragraph we follow [45, ?].
We will see below, if we do not specify the value of f(0), we get Picks lemma.

Pick’s lemma. Suppose f : D→ D is holomorphic. Then

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2
for any z ∈ U. Equality holds for some z ∈ D if and only if f is a conformal self-map
of D (and in that case equality holds everywhere). Picks lemma leads naturally to
the hyperbolic metric on D (see also Section 14).

2.1.1. the subordination principle. (A) Let f(z) and g(z) be analytic functions in
U, f(z) is said to be subordinate to g(z) in U written, or f ≺ g (z ∈ U), if there
exists a function w(z), analytic in U with w(0) = 0 and |w(z)| < 1, (z ∈ U) such
that (i) f(z) = g(w(z)), (z ∈ U).

(B) In particular, if the function g(z) is univalent in U, the above subordination
is equivalent to (ii) f(0) = g(0) and f(U) ⊂ g(U).

In the setting (B), then f(Ur) ⊂ g(Ur) for all 0 < r < 1 and |f ′(0)| ≤ |g′(0)|.
Since g is one-to-one, g is in fact a conformal map from U to g(U). Let h = g−1

be the inverse of g. Then h◦f is holomorphic and maps U into U with (h◦f)(0) = 0
since f(0) = g(0). By Schwarzs lemma, we have |(h◦f)′(0)| ≤ 1 and |(h◦f)(z)| ≤ |z|
for all z ∈ D. Hence f(Ur) ⊂ g(Ur). By the chain rule, (h ◦ f)′(0) = f ′(0)

g′(0) . So the

first inequality gives |f ′(0)| ≤ |g′(0)|.
As an exercise, formulate the condition for equality. Here we give a simple

example.

Example 1. (i) Let R = {z : Re(z) > 0} be the right half plane. Let f : D → R
be holomorphic. We claim that |f ′(0)| ≤ 2Re(f(0)).

(ii) Let f : D→ S0 be holomorphic. Then |f ′(0)| ≤ 4
π .

(iii) Let f : D→ D \ {0} be holomorphic. Then |f ′(0)| ≤ 2
e .

Proposition 2.2. Suppose (a) φ is univalent in U, f holomorphic in U and f(U) ⊂
φ(U).
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(b) φ(z0) = f(z0), z0 ∈ U.
Then |f ′(z0)| ≤ |φ′(z0)|.

2.2. The Schwarz lemma. If |a| < 1 define the Möbius transformation

(2.1) ϕa(ζ) =
ζ − a

1− a ζ
.

Example 2. Fix a ∈ D. Then ϕa(0) = −a, ϕa(a) = 0, ϕa is a one-to-one mapping
which carries T onto T, D onto D. The inverse of ϕa is ϕ−a.

Check that ϕ′a(z) = (1−|a|2)(1−āz)−2 and in particular ϕ′a(0) = (1−|a|2), ϕ′a(a) =
(1− |a|2)−1.

In the literature the notation Ta is also used instead of ϕa. Here we define
Ta = −ϕa and therefore we have T−1

a = Ta.

Proposition 2.3 (Schwarz lemma 1). Suppose that f : D→ D is an analytic map
and f(0) = 0. The classic Schwarz lemma states : |f(z)| ≤ |z| and |f ′(0)| ≤ 1.

Proof. A standard proof is based on an application of the Maximum Modulus The-

orem to the function g defined by g(z) = f(z)
z for z 6= 0 and g(0) = f ′(0).

Now we shall drop the assumption f(0) = 0. Let f : D → D is an arbitrary
analytic map. Fix an arbitrary point z ∈ D and consider the mapping F = ϕw ◦ f ◦
ϕ−z, where w = f(z). Since ϕ−z(0) = z, F (0) = 0. By an application of Schwarz
lemma,

(2.2) |F (ζ)| = |ϕw ◦ f ◦ ϕ−z(ζ)| ≤ |ζ|, ζ ∈ D,

and |F ′(0)| ≤ 1. Hence, since F ′(0) = ϕ′w(w)f ′(z)ϕ′−z(0), we find

(2.3)
|f ′(z)|

1− |f(z)|2
≤ 1

1− |z|2
, z ∈ D ,

with equality only if F = eiαId, that is f = ϕ−w ◦ (eiαϕz).
Hence, equality holds in (2.3) if and only if f is a Möbius transformation of D

onto itself. �

Let ω be an arbitrary point in D and ζ = ϕz(ω), then ϕ−z(ζ) = ω, and by (2.2),
we find |ϕw(f(ω))| ≤ |ϕz(ω)|.

It is convenient to introduce a pseudo-distance

(2.4) δ(z, ω) = |ϕz(ω)| =
∣∣∣∣ z − ω1− ω z

∣∣∣∣,
which is a conformal invariant. Thus

Proposition 2.4.

(2.5) δ(f(z), f(ω)) ≤ δ(z, ω)

with equality only if f is a Möbius transformation of D onto itself.

This shows that the Riemannian metric whose element of length is

(2.6) ds = λ(z)|dz| = 2 |dz|
1− |z|2
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is invariant under conformal self-mappings of the disk.
In this metric every rectifiable arc γ has length

|γ|hyp =

∫
γ

2 |dz|
1− |z|2

and |f ◦ γ|hyp = |γ|hyp if f is a Möbius transformation of D onto itself.
We call the distance determined by this metric the non-Euclidean distance (hy-

perbolic) and denote by λ; we also use notation λ(z) = 2
1−|z|2 for metric density

and ||h||λ = λ(z)|h| for h ∈ Tz.
The fact that the hyperbolic distance is invariant under self-mapping of the

disk we can state in the form: If h ∈ Tz, A ∈ Aut(D) and h∗ = A′(z)h, then
||h∗||λ = ||h||λ for every z ∈ D and every h ∈ Tz.

The shortest arc from 0 to any other point is along a radius. Hence the geodesics
are circles orthogonal to T = {|z| = 1}. The non-Euclidean distance from 0 to r is

(2.7) λ(0, r) =

r∫
0

2 dt

1− t2
= ln

1 + r

1− r
.

Since δ(0, r) = r it follows that non-Euclidean distance λ is connected with δ
through δ = tanh λ

2 .
Hence, the hyperbolic distance on the unit disk D is

(2.8) λ(z, ω) = ln
1 +

∣∣∣ z−ω1−zω̄

∣∣∣
1−

∣∣∣ z−ω1−zω̄

∣∣∣ .
If f : D→ D is an arbitrary analytic map, then

λ(fz, fω) ≤ λ(z, ω).

Exercise 1. Check the formula (2.7).

Hint. f(t) = 2
1−t2 , f(t) = 1

1−t + 1
1+t , F =

∫
f(t) = − ln(1− t) + ln(1 + t). Hence

λ(0, r) =
∫ r

0
f(t) = − ln(1− t)|r0 + ln(1 + t)r0 = ln(1 + r)− ln(1− r) = ln 1+r

1−r .

Exercise 2. If γ is a piecewise continuously differentiable path in D, whether
|γ|hyp = |γ|δ?

2.3. The upper half plane. A region G is conformally equivalent to a region D
if there is an analytic bijective function f mapping G to D; we call f conformal
isomorphism. Conformal equivalence is an equivalence relation. Conformal iso-
morphism of a domain onto itself is called conformal automorphism. Conformal
automorphisms of a domain D form a group which we denote by AutD.

If f0 : G → D is a fixed conformal isomorphism, then every conformal isomor-
phism f : G→ D can be represented in the form

(2.9) f = φ ◦ f0, φ ∈ Aut D .

The cross-ratio of a 4-tuple of distinct points on the real line with coordinates
z1, z2, z3, z4 is given by

(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
.
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Example 3. Describe Aut(H). If A ∈ Aut(H), there is a point x0 ∈ R such that
A(x0) =∞. We consider two cases.
Case (i) x0 =∞. Then A = L, where L(z) = λz + s, λ > 0 and s ∈ R.
Case (ii) x0 ∈ R. Define w = T (z) = − 1

z + x0. Then T−1(w) = 1
x0−w and

A ◦ T maps ∞ to ∞. Hence A ◦ T = L for some λ > 0 and s ∈ R and therefore
f = L ◦ T−1, that is A(w) = λT−1(w) + s = λ 1

x0−w + s = a1z+b1
x0−w , where a1 = −s

and b1 = λ+ sx0.
Therefore D(A) = λ it is readable that every A ∈ Aut(H) can represented in the
form

(2.10) f(z) =
az + b

cz + d
, where a, b, c, d ∈ R and D = D(f) = ad− bc = 1 .

If A is represented by (2.10), then

(2.11) Az −Az =
z − z̄
|cz + d|2

.

Hence it is clear that A ∈ Aut(H).
There is another way to describe Aut(H) using (w, 1; 0,∞) = w. Namely, if A

carries points x2, x3, x4 (x2 > x3 > x4) into 1, 0,∞, then w = (z, x2, x3, x4) �

If L ∈ Aut(H), then L is Möbius transformation and maps R onto itself and
symmetric points with respect to R onto symmetric points with respect to R. Hence,
if z1, z2 ∈ H and w1 = Lz1 and w2 = Lz2, then w1 = Lz1 and w2 = Lz2. Since the
cross-ratio is invariant under Möbius transformation, we get

(2.12) (z1, z1; z2, z2) = (Lz1, Lz1;Lz2, Lz2) = (w1, w1;w2, w2) .

Set Tz =
z − z2
z − z2

. Then (z1, z1; z2, z2) = T (z1)/T (z1). T maps H onto D and

symmetric points z1 and z1 with respect to R onto points T (z1) and T (z1) symmetric

with respect to T respectively. Hence T (z1)T (z1) = 1 and therefore (z1, z1; z2, z2) =
|T (z1)|2. The pseudo-hyperbolic distance on H can be defined by

δH(z1, z2) =
∣∣∣z1 − z2
z1 − z2

∣∣∣.
It is invariant with the group Aut(H) because of (2.12) and δ2

H(z1, z2) = (z1, z1, z2, z2).
We will give another proof of this fact in subsection on Schwarz lemma(below).

For a fixed z ∈ H, moving on to the limit value of δH(z, w)/e(z, w), where e is
Euclidean distance, when w → z we get an infinitesimal invariant ds = |dz|/y (we
drop multiple 2), where y = Imz. For a piecewise continuously differentiable path

γ(t) = (x(t), y(t)), 0 ≤ t ≤ 1, in H, we define |γ|hyp =
∫
γ

|d z|/y =
1∫
0

| γ′(t)|
y(t) dt. We

use this infinitesimal form to obtain Poincaré distance between two points p and q
in H by putting

dhyp(p, q) = inf |γ|hyp = inf
∫
γ

|d z|/y ,

where the infimum is taken over all paths γ joining p to q. The curve for which
infimum is attained we call geodesic. We also use shorter notation λ (λH(p, q) )
instead of dhyp = dhyp,H if it is clear that our considerations is related to H.

Proposition 2.5. In half-plane model, geodesics are the arcs of circles orthogonal
to the real axis. The pseudo-hyperbolic distance and the hyperbolic distance are
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related by

δ = tanh(λ/2).

Proof. To find geodesic which joins p and q we use A ∈ Aut(H) which maps z1

and z2 to iy1 and iy2. It is easy to conclude that a minimum is attained along the
vertical segment I0 that connects iy1 and iy2. If γ is a path which joins iy1 and
iy2, using obvious geometric interpretation, we find |γ|hyp ≥ |I0|hyp and hence

λH(iy1, iy2) = |I0|hyp = | ln(y2/y1)|.

It is interesting to prove this inequality directly (without geometric interpreta-
tion). We outline a proof. Suppose that y1 ≤ y2. Since

|γ|hyp =
∫
γ

|d z|/y =
1∫
0

| γ′(t)|
y(t) dt, we have

|γ|hyp ≥
1∫
0

| y′(t)|
y(t) dt ≥

1∫
0

y′(t)
y(t) = ln y(t)|10 = ln(y2/y1).

Hence it follows that geodesics are the arcs of circles orthogonal to the real axis.
There is circular arc K perpendicular to the real axis that contains z1 and z2

and connects real points a1 and a2. We can compute ω = (p, q, a1, a2). Suppose

that a1 > a2 and define A(z) =
z − a1
z − a2

, then det(1,−a1; 1,−a2) = a1 − a2 > 0

and therefore A ∈ Aut(H). Hence it maps K on one half of the imaginary axis. If
A(p) = iy1 and A(q) = iy2, the cross ratio ω equals

(iy2, iy1, 0,∞) = y2/y1.

Hence λH(p, q) = | ln(y2/y1)| = ln(p, q, a1, a2). Since, for y2 ≥ y1, we get

δ(iy1, iy2) =
y2 − y1

y2 + y1
=
eλ − 1

eλ + 1

and since δ = δH is invariant with respect to Aut(H), we find δ(iy1, iy2) = δ((p, q).
Hence eλ = 1+δ

1−δ , i.e.

δ = tanh(λ/2).

In a similar way one can prove that this formula is valid if y2 < y1. �

We consider the canonical Möbius transformation T of H onto D that maps the
points 0, i,∞ onto the points −1, 0, 1, respectively, and let S denote the inverse of
T . Then we find

w = Tz =
z − i
z + i

, z = Sw = i
1 + w

1− w
.

Note that if z, a ∈ H, b = Ta, then (z, z̄, a, ā) = (w,w∗, b, b∗) = |ϕb(w)|2.
It is convenient to introduce the mapping φa = T−1 ◦ ϕb ◦ T and the pseudo-

distance

(2.13) δ(z, ω) = |ϕz(ω)| =
∣∣∣∣ z − ω1− ω z

∣∣∣∣,
which is a conformal invariant. It is easy to check that δH(a, z) := |φa(z)| =
δU(T (a), T (z)).

Moving on to the limit value when ω → z we get infinitesimal invariant ds =
λ(z)|dz|, where λ(z) = 2(1 − |z|2)−1 is the hyperbolic density (we add multiple 2
so that the Gaussian curvature of the hyperbolic density is −1 see below).
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The shortest arc from 0 to any other point is along a radius. Hence the geodesics
are circles orthogonal to T.

Since δ(0, r) = r it follows that non-Euclidean distance λ is connected with δ

through δ = tanh
λ

2
.

There is another way of calculating that exhibits additivity.
Let γ be a circular arc (geodesic), orthogonal to T at the points w1 and w2, that

contains the points z1 and z2 of the unit disk (suppose that the points w1, z1, z2, w2

occur in this order). Since (r, 0,−1, 1) = (1 + r)/(1− r), we find

λ(z1, z2) = ln(z2, z1, w1, w2).

We leave to the interested reader to check that {z1, z2} = (z2, z1, w1, w2) > 0 if the
points are in the order indicated above.

In this form we can consider λ as the oriented distance which changes the sign
of the permutation z1 and z2. Additivity of the distance on geodesics follow from
(z2, z1, w1, w2) = (z2, z3, w1, w2)(z3, z1, w1, w2).

We summarize

Theorem 1.

λU = ln
1 + δU
1− δU

, λH = ln
1 + δH
1− δH

.(2.14)

2.4. Ahlfors-Schwarz lemma. It was noted by Pick that result can be expressed
in invariant form. We refer the following result as Schwarz-Pick lemma.

Theorem 2.1 (Schwarz-Pick lemma). Let F be an analytic function from a disk B
to another disk U . Then F does not increase the corresponding hyperbolic (pseudo-
hyperbolic) distances.

2.5. Convex Functions. A set is convex if it contains the line segment between
any two of its points. We wish to characterize the analytic functions f that define
a one-to-one conformal map of the unit disk on a convex region. For simplicity
such functions will be called convex univalent (Hayman [27]). An analytic function

f in B(a;R) is convex univalent if and only if C[f ](z) = Re (z−a)f ′′(z)
f ′(z) + 1 > 0,

z ∈ B(a;R).

Theorem 2.2. An analytic function f in U is convex univalent if and only if

C[f ](z) = Re zf
′′(z)

f ′(z) + 1 > 0, z ∈ U. When this is true the stronger inequality

also holds
| zf
′′(z)

f ′(z) −
2|z|2

1−|z|2 | ≤
2|z|

1−|z|2 .

Although this could be made into a rigorous proof, we much prefer an idea due
to Hayman. We may assume that f(0) = 0. If f is convex univalent, the function
g(z) = f−1[(f(

√
z)+f(−

√
z))/2] is well defined, analytic, and of absolute value < 1

in U. Hence |g′(0)| ≤ 1. But if f(z) = a1z + a2z
2 + ..., then g(z) = (a2/a1)z + ...,

and we obtain |a2/a1| ≤ 1, |f”(0)/f ′(0)| ≤ 2. This is (1) for z = 0. We apply this
result to F (z) = f [(z + c)/(1 + cz)], |c| < 1, which maps U on the same region.
Simple calculations give
F ′′(0)
F ′(0) = f ′′(c)

f ′(c) (1− |c|2)− 2c,

and we obtain (1-9) and its consequence (1-8).
The condition |f ′′(0)/f ′(0)| ≤ 2 has an interesting geometric interpretation.

Consider an arc γ in U that passes through the origin and whose image is a straight
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line. The curvature of γ is measured by d(arg dz)/|dz|. By assumption d(argdf) = 0
along γ so that d(arg dz) = −d arg f ′. The curvature is thus a directional derivative
of argf ′, and as such it is at most |f ′′/f ′| in absolute value. We conclude that the
curvature at the origin is at most 2.

Proposition 2.6. Let G be a convex domain in C different from C and H1 =
H(b; r1) an hyperbolic disk in G. Then H1 is convex wrt euclidean metric

Proof. Then there is a conformal map φ of U onto G such that φ−1(H) is an
hyperbolic disk H2 = H(a; r2) in U. Then ϕa(H2) = B := B(0; r) and φ ◦ϕa(B) =
H1. By th conv, H1 is convex. �

A1) Let γ be a curve and γ̃ = f ◦ γ, T and T̃ tangent vectors at point γ(t)

and γ̃(t) respectively, θ = arg T and θ̃ = arg T̃ . Then T̃ = f ′(γ(t))T and therefore

θ̃ = arg T̃ = arg f ′(γ(t)) + arg T . Hence θ̃′t = Im( f
′′

f ′ T ) + θt.

A2) In particular if w = γ(t) = a+ reit, then T = γ′(t) = ireit, θ = t+ π/2 and

therefore θ̃′t = Re f
′′(w)
f ′(w) z + 1.

A3) If f = ln, then θ̃′t = −Re z
z+a + 1 = 1− Rew−aw = Re aw .

A4) If a=0 in A3), θ̃′t = R[f ](reit).

There is a branch θ̃ of ArgT̃ along the path Kr defined by Kr(t) = reit

The assumption (1-8) implies that θ̃ = arg df increases with t on |z| = r.
Since f ′ is never zero, the change of arg df is 2π. Therefore, we can find t1 and t2

such that arg df increases from 0 to π on [t1, t2] and from π to 2π on [t2, t1 + 2π]. If
f(reit) = u(t)+iv(t), it follows that v increases on the first interval and decreases on
the second. Let v0 be a real number between the minimum v(t1) and the maximum
v(t2). Then v(t) passes through v0 exactly once on each of the intervals, and routine
use of winding numbers shows that the image of Ur intersects the line v = v0 along
a single segment. The same reasoning applies to parallels in any direction, and we
conclude that the image is convex.

Let A denote the class of functions f = z+a2z
2+a3z

3+· · · which are holomorphic
in the unit disc U. Conformal mappings of the unit disk onto convex domains have
been studied for a long time and are known to have many special properties. They

are described by the analytic condition R[f ](z) = Re zf
′′(z)

f ′(z) + 1 > 0, z ∈ U, which

essentially expresses the monotonic turning of the tangent vector at the boundary
(see, for instance, Duren [18]).

Implicit in this description is the hereditary property: if an analytic function
maps the unit disk univalently onto a convex domain, then it also maps each con-
centric subdisk onto a convex domain. It is natural to ask to what extent the special
properties of conformal mappings will generalize to harmonic mappings of the disk
onto convex domains.

In Euclidean geometry, a convex quadrilateral with at least one pair of parallel
sides is referred to as a trapezoid.

Example 4. Let f be holomorphic on UR, w = HR(z) = Rz, and F = f ◦ HR.
Then F ′(z) = Rf ′(w), F ′′(z) = R2f ′′(w) and R[F ](z) = R[f ](w).

Let A = 0, B = 1, C = 1+4πi, D = 4πi, E = 2πi and let R be rectangle ABCD,
T trapezoid ABCE and f(z) = ez. Check that R′ = f(R) = f(T ) = {1 < |w| < e}
and that f is bi-valent on R.
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Whether the following is true? Question. Let γ be a simple closed smooth
positively oriented curve in C, G = Int(γ) and f analytic function on G.
Suppose, in addition, that f ′ has no zeros on ∂G.
Define Γ = f ◦ γ and suppose that iΓ = 1.

Whether then (i): Γ is a closed Jordan curve and f is injective mapping of G
onto Int(Γ).

Covering Theorems and Coefficient Bounds The classical Koebe one-quarter the-
orem says that each function f ∈ A analytic and univalent in the unit disk U con-
tains the entire disk |w| < 1/4 in its range f(U). The Koebe function k(z) = z

(1−z)2
maps U conformally onto the full plane minus the portion of the negative real axis
from −1/4 to infinity, showing that the radius 1/4 is the best possible. The cele-
brated Bieberbach conjecture, now a theorem, asserts that the coefficients of each
such function f satisfy the sharp inequalities |an| ≤ n, n = 2, 3, ... . Both of these
results can be improved under the additional assumption that the range of f is con-
vex. Let C denote the class of functions in A that map the unit disk conformally
onto a convex region. It is known that the range of each function f ∈ C contains
the larger disk |w| < 1/2, and its coefficients satisfy the better bound |an| ≤ 1. The
function `(z) = z

(1−z) which maps U conformally onto the half-plane Rew > −1/2,

shows that both results are again best possible (see Duren [18], p. 45).

Lemma 2.1. If g(z) = c0 + c1z + · · · is analytic with Reg(z) > 0 in U, then
|cn| ≤ 2Re{c0}, n = 1, 2, ....

Proof. The Herglotz representation shows that g(z) = 2
∫ 2π

0
S(z, t)dµ(t) cn =

2
∫ 2π

0
e−intdµ(t), n = 1, 2, ... , so that |cn| ≤ ||µ|| = 2Re{c0}. �

We denote by S∗(α) the subclass of A consisting of functions f(z) which are
starlike of order α in U. Thus, if w /∈ f(U), a suitable rotation will give Re(eiα[f(z)−
w]) > 0

Proposition 2.7. If g is analytic in U and g ≺ f for some f ∈ C, then |gn| ≤ 1
for n = 1, 2, ....

Proof. ϕ(zn) = 1
n

∑n
k=1

1
ng(εkz) = gnz

n + · · ·
|g(z)| ≤

∑∞
k=1 |gk||zk|

∑∞
k=1 |rk| =

r
1−r = k(r), where r = |z|.

This last expression is an analytic function of zn, since
∑n
k=1(εk)m = 0 unless

m is a multiple of n. Thus, ϕ ≺ f , and |gn| = |ϕ′(0)| ≤ |f ′(0)| = 1, by the Schwarz
lemma. �

A sense-preserving harmonic mapping f ∈ SH is said to be starlike if its range is
starlike with respect to the origin. This means that the whole range can be ”seen”
h from the origin. In other words, if some point w0 = f(z0) is in the range of f ,
then so is the entire radial segment from 0 to w0. If f has a smooth extension to
the closed disk, an equivalent requirement is that arg(f(eit)) be a nondecreasing
function of t, or that d

dt arg(f(eit)) ≥ 0.
If f = h+g ∈ SH is a starlike function, and if H and G are the analytic functions

defined by zH ′(z) = h(z), zG′(z) = −g(z), H(0) = G(0) = 0, then F = H +G is a
convex function of class CH .

3. Harmonic functions

In this section we present some material from Duren’s [18].
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3.1. Euclidean harmonic function. Let D be a domain in C and f complex
valued function defined na D such that ∆f = 0 and ∆f2 = 0. Then f is analytic
or anti-analytic.

Since ∆f2 = 2(f2
x + f2

y ), we find fzfz = 0. Set A = {z ∈ D : fz = 0} and
B = {z ∈ D : fz = 0}. A and B are closed in D and D = A ∪ B; hence A = D or
B = D.

Connections with complex function theory
The real and imaginary part of any holomorphic function yield harmonic func-

tions on R2 (these are said to be a pair of harmonic conjugate functions). Con-
versely, any harmonic real function u on an open set D ⊂ R2 is locally the real
part of a holomorphic function. This is immediately seen observing that, writing
z = x+ iy, the complex function g(z) := ux − iuy is holomorphic in D, because it
satisfies the Cauchy-Riemann equations. Therefore, g has locally a primitive f , and
u is the real part of f up to a constant, as ux is the real part of f ′ = g . In a simply
connected domain D ⊂ C, a complex-valued harmonic function f = u+ iv has the
representation f = h + g, where h and g are analytic in D; this representation is
unique up to an additive constant and we call it local representation with analytic
functions h and g. For a proof, consider first the case when D is the unit disk. Then
u = <h1 and v = <g1, where h1 and g1 are analytic on D and therefore we have the
representation with h = (h1 + ig1)/2 and g = (h1 − ig1)/2. In general case we can
use conformal mapping ψ of D onto D and the fact that f ◦ ψ is a complex-valued
harmonic function which has the representation f ◦ ψ = h2 + g2. Hence we have
the representation on D with h2 ◦ φ and g2 ◦ φ, where φ is the inverse of ψ.

For a harmonic mapping f of the unit disk D, it is convenient to choose the
additive constant so that g(0) = 0. The representation f = h + g is then unique
and is called the canonical representation of f . Sometimes we denote by h harmonic
function and write the representation in the form h = f + g.

Although the above correspondence with holomorphic functions only holds for
functions of two real variables, still harmonic functions in n variables enjoy a number
of properties typical of holomorphic functions. They are (real) analytic; they have a
maximum principle and a mean-value principle; a theorem of removal of singularities
as well as a Liouville theorem one holds for them in analogy to the corresponding
theorems in complex functions theory.

complex-valued harmonic univalent functions whose real and imaginary parts are
not necessarily conjugate. They have a maximum and a maximum principle and a
mean-value principle: A nonconstant harmonic function u has nether a maximum
nor a minimum in its region of definition D. If F ⊂ D is a closed bounded set u
attains the maximum and the minimum on the boundary of F . The proof is the
same as for the maximum principle for analytic functions. It applies to the minimum
because −u is harmonic together with u. Note that the minimum principle for
analytic functions requires an extra hypothesis (non-vanishing of the function).

If f is a complex-valued harmonic function in D and |f | has a local maximum at
a ∈ D, then f is constant. Let M = |f(a)| and choose λ ∈ T such that λf(a) = M .
Then the real-valued harmonic function <(λf) attains the maximum value M at a.

In general, the minimum modulus principle for complex-valued harmonic func-
tions is not valid; see the following examples:
2. If f(z) = x + i, then |f(z)|2 = x2 + 1 and |f | attains minimum which is 1 for
every points on y axis
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2. If fc(z) = x+i(x2−y2+c), then Jf = −2y. Whether |f(0)| = |c| is the minimum
value for |f | if c < 0? The answer is yes. Let d(z) = |z|, g = fi, C(x) = x+ i(x2 + i)
and D = {(x, y) : y < x2 − 1}. Then d attains minimum on C at some point w0

and there is a real point x0 such that g(x0) = w0, g maps C onto D and |g| attains
minimum at x0.

As soon as analyticity is abandoned, serious obstacles arise. Analytic functions
are preserved under composition, but harmonic functions are not. A harmonic
function of an analytic function is harmonic, but an analytic function of a harmonic
function need not be harmonic. The analytic functions form an algebra, but the
harmonic functions do not. Even the square or the reciprocal of a harmonic function
need not be harmonic. The inverse of a harmonic mapping need not be harmonic.
The boundary behavior of harmonic mappings may be much more complicated
than that of conformal mappings. It will be seen, nevertheless, that much of the
classical theory of conformal mappings can be carried over in some way to harmonic
mappings. The Jacobian of a function

Jf (z) =

∣∣∣∣ u′x(z0) v′x(z0)
u′y(z0) v′y(z0)

∣∣∣∣ = uxvy − uyvx = |h′|2 − |g′|2.

where the subscripts indicate partial derivatives.
If f is analytic, its Jacobian takes the form Jf (z) = (ux)2 +(vx)2 = |f ′(z)|2. For

analytic functions f , it is a classical result that Jf (z) 6= 0 if and only if f is locally
univalent at z. Hans Lewy showed in 1936 that this remains true for harmonic
mappings. A relatively simple proof will be given in XXX

In view of Lewy’s theorem, harmonic mappings are either sense-preserving (or
orientation-preserving) with Jf (z) > 0, or sense-reversing with Jf(z) < 0 through-
out the domain D where f is univalent. If f is sense-preserving, then f̄ is sense-
reversing. Conformal mappings are sense-preserving. The simplest examples of
harmonic mappings that need not be conformal are the affine mappings f(z) =
az + bz̄ + c with |a| 6= |b|. Affine mappings with b = 0 are linear mappings. It is
important to observe that every composition of a harmonic mapping with an affine
mapping is again a harmonic mapping: if f is harmonic, then so is af + bf̄ + c .
Another important example is the function f(z) = z + 1

2 z̄
2, which maps the open

unit disk D onto the region inside a hypocycloid of three cusps inscribed in the
circle |w| = 3/2 . To verify its univalence, suppose f(z1) = f(z2).

Now let f be a complex-valued function defined in a domain D having continuous
second partial derivatives. Suppose that f is locally univalent D, with Jacobian
Jf (z) > 0. Let ω = fz̄/fz be its second complex dilatation; then |ω(z)| < 1 in D.
A1) f is harmonic
A2) ω is analytic

Differentiating the equation fz̄ = ωfz with respect to z, one finds fz̄z = ωz̄fz +
ωfzz̄. Now if f is harmonic in D, then fzz̄ = 1/44f = 0 there. Thus it follows
that ωz̄ = 0 in D, so that ω is analytic.

There is also another way to prove A1) implies A2)
Now if f is harmonic in D, using local representation of f with analytic functions

h and g, we find |h′| > |g′|, fz = h′, fz̄ = g′ and fz̄ = g′. Hence ω is analytic.
Conversely, if ω is analytic, then fz̄z = ωfzz̄. But since |ω(z)| < 1, this implies

that fzz̄ = 0, and f is harmonic. Thus, f is harmonic if and only if ω is analytic. In
particular, the second complex dilatation ω of a sense-preserving harmonic mapping
f is always an analytic function of modulus less than one. This function ω will be



SCHWARZ LEMMA,THE CARATHÉODORY AND KOBAYASHI METRICS 13

called the analytic dilatation of f , or simply the dilatation when the context allows
no confusion. Note that ω ≡ 0 if and only if f is analytic. The analytic dilatation
has some nice properties. For instance, if f is a sense-preserving harmonic mapping
with analytic dilatation ω and it is followed by an affine mapping A(w) = aw+c+bw̄
with |b| < |a|, then the composition F = A ◦ f is a sense-preserving harmonic
mapping with analytic dilatation

ωF =
Fz̄
Fz

=
āω + b̄

bω + a
,

where ω = ωf .
If Jf ≡ 0 on some open set U ⊂ D, then f = a + bu, where u real harmonic on

D.
h′ ≡ 0
h′ 6= 0 by maximum principle ω = eiα = const
eiαh′ = g′ c+ eiαh = g f = h+ c̄+ e−iαh̄
p = eiα/2h
If z0 ∈ J is an isolated zero, then there is an open neighborhood U such that Jf

does not change sing in U{z0} and h′(z0) = g′(z0) = 0
If z0 ∈ J is an isolated zero nh the order of zero of h
h′ = a(z − z0)nhh0(z), g′ = b(z − z0)ngg0(z)
If Jf > 0 in some neighborhood of z0, then nh < ng or
nh = ng and |a| > |b|. In this setting z0 is called a critical point of f of order

m = nh.
z0 ∈ J is not an isolated zero iff |ω(z0)| = 1.
Denote by J0 the set of isolated zeros and by J1 the set of all zeros which are

not isolated zeros.
Let h(z) = z+zn and g(z) = z−zn. Then h′(z) = 1+nzn−1, g′(z) = 1−nzn−1,

Xα(z) = eiα(1 + nzn−1)− 1 + nzn−1 = (1 + eiα)nzn−1 + eiα − 1 and in particular
X0(z) = 2nzn−1

Let ω(z0) = eiα ω(z) = eiα + (z − z0)nω0(z), where ω0(z0) 6= 0. Then the set
J1 in a neighborhood V of z0 consists of 2n analytic curves emanating from z0 at
equal angles and which divide V on 2n sectors.

Define Xα(z) = eiαh′(z) − g′(z), Lc = {=w = c}, Lcα = e−iα/2Lc, l(w) =
=(eiα/2w), f0 = fα = l ◦ f and Fc = {z : f0(z) = c}. Note that Fc is the inverse
image under f of line Lcα.

We now consider a point z0 ∈ J1 for which ω(z0) = eiα and fα(z0) = c.
If z0 ∈ Fc is zero of Xα of order n, then
P1) f0 = 2<B, B(z) = c

2 + (z − z0)n+1C, C(z0) 6= 0,
and then
P2) there is an open neighborhood U of z0 such that Fc ∩U consists of 2(n+ 1)

analytic curves emanating from z0 at equal angles and which divide U on 2(n+ 1)
sectors Uk, k = 1, · · · , n+ 1.

Let U+
k = Uk ∩ J+ and U−k = Uk ∩ J+

P3) f maps homeomorphically each U+
k , U−k

If Uk is subset of J+ or J−, then f maps Uk homeomorphically onto the half
disk XX.

see example ??
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XX A. Lyzzaik, Local properties of light harmonic mappings, Cand. J. Math.
35 (1992), 119.

Let f be a sense-preserving harmonic function in a Jordan domain D with bound-
ary C. Suppose f is continuous in D and f(z) 6== 0 on C. Then ∆Cargf(z) =
2πN , where N is the total number of zeros of f in D, counted according to multi-
plicity.

Every harmonic function h in D can be written in the form h = f + ḡ, where f
and g are holomorphic functions in D. ? Let h = f + g. An easy calculation shows
??
∂θh(z) = i(zf ′(z)− zg′(z)), hr = eiθf ′ + eiθg′, hθ + irhr = 2izf ′ and therefore

rhr is harmonic conjugate of hθ. Let

P (r, t) =
1− r2

(1− 2r cos(t) + r2)

denote the Poisson kernel.
If γ ∈ L1[0, 2π] and

h(z) = P [γ] =
1

2π

∫ 2π

0

Pr(θ − t) γ(t) dt,

then the function h = P [γ] so defined is called Poisson integral of γ.
If γ is of bounded variation, define Tγ(x) as variation of γ on [0, x]; and let V (γ)

denote variation of γ. If ?? γ (see, for example, [?] p.171).

Define

h∗(θ) = h∗(eiθ) = lim
r→1

h(reiθ)

when this limit exists.
If γ is continuos, then h is harmonic on D, continuos D
and h∗ = γ. Thus, h solves the Dirichlet problem for the unit disk.

The Dirichlet problem is to find a function harmonic in a domain D and contin-
uous in D that agrees with a prescribed continuos function on the boundary ∂D. A
solution exists (for prescribed continuos function on the boundary) iff the boundary
of D has no degenerate components; in particular, if D is a Jordan domain.

Suppose that u is harmonic in D and continuous on D.
For z ∈ D define Tz(w) = w−z

1−z̄w and U = u ◦ Tz. By the mean value theorem

, u(0) = 1
2π

∫ 2π

0
u(s)ds and u(z) = U(0) = 1

2π

∫ 2π

0
U(s)ds. using the change of

variables t = Tz(s), s = Tz(t), and s′(t) = 1−|z|2
|1−ze−it|2 = P (z, t), we find

u(z) = 1
2π

∫ 2π

0
P (z, t)u(t)dt = P [u](z).

Since C(z, t)dt = C(w, z)dw, C(z̄,−t) = −1 + C(z, t), we find P [1] = 1.
A1) If f is continuous at t0, then P [f ] tends to f(t0) z approaches eit0 .
For a given t0 define I1 = I1(t0, δ) = {|t−t0| < δ}, I2 = I2(t0, δ) = {|t−t0| > δ},

ft0(t) = f(eit)− f(eit0) and M = max |f |; set
ε1(δ) = maxt∈I1{|ft0(t)|} and ε2(δ) =

∫
I2
P (z, t)dt. Using

|P [f ](z)− f(z0)| = |P [ft0 ](z)| ≤ ε1(δ) +Mε2(δ), one can verify A1) easily.
Define A(z) = i 1−z

1+z , U1(z) = a
πargz, U2(z) = b(1− argz

π ) and U = U1 + U2.
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More generally, as z approaches 0 along a linear segment (curve) at an angle α,
0 < α < π, with the tangent line, one can show that U1(z), U2(z) and U tend to
a/π, b(1− α

π ) and a/π + b(1− α
π ) respectively.

u1 = U◦A as z approaches 0 along a linear segment (curve) at an angle α,
0 < α < π, with the tangent line, one can show that u1(z) tends to a/π

If u(z) = a z ∈ T+

u(z) =

{
b z ∈ T+

a z ∈ T−

A1) as z approaches 0 along a linear segment (curve) at an angle α, 0 < α < π,
with the tangent line, one can show that u(z) tends to a/π + b(1− α

π ).
A2) If γ has a finite number of jump discontinuites, γ(θ−) 6= γ(θ+)

h∗(θ) =
1

2
(γ(θ−) + γ(θ+)) .

More generally, as z approaches eiθ along a linear segment at an angle α, 0 <
α < π, with the tangent line, one can show that h(z) tends to

α

π
γ(θ−) + (1− α

π
)γ(θ+) .

a = γ(θ−) b = γ(θ+) K(t) = a for t ∈ (θ − π, θ) and K(t) = b for t ∈ (θ, θ + π)
u = γ −K u(θ) = 0 is continuous at θ
z approaches eiθ along a linear segment at an angle α, 0 < α < π then P [u] tend

0 and A2) follows from A1).
Harnack’s inequality states that

R− r
R+ r

u(0) ≤ u(z) ≤ R+ r

R− r
u(0), |z| = r

for a positive harmonic function u in the disk |z| < R.
A critical point of u is a point where u′x and u′y both vanish.
All critical points of a nonconstant harmonic function are isolated.
The level set of a nonconstant harmonic function u through a critical point z0

consists locally of two or more analytic arcs intersecting with equal angles at z0.
Let f = u + iv be an analytic completion of u near z0. It follows from the C R
equations that f ′(z0) = 0.

Suppose for convenience that z0 = 0 and that f(z0) = 0. Then f has a local
structure f(z) = ϕm, where m ≥ 2 and ϕ is univalent near the origin.

the elementary function f(x, y) = (x, y3 ) maps R2 univalently onto R2, yet its
Jacobian Jf (z) = 3y2 vanishes on R. The Jacobian of a locally univalent analytic
function cannot vanish at any point; the same principle holds more generally for
harmonic functions in the plane.

Lewy’s theorem

Theorem 3.1. If a complex- valued harmonic function is locally univalent in a
domain D, then its Jacobian is different from 0 for all z ∈ D.

Let h = (u, v) and suppose that detJ(h) is zero at z0, that is∣∣∣∣ u′x(z0) u′y(z0)
v′x(z0) v′y(z0)

∣∣∣∣ = 0.
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Thus vectors (u′x(z0), u′y(z0)) and (v′x(z0), v′y(z0)) are ?? linearly dependent and
therefore there exists (α, β) 6= (0, 0) such that U ′x = 0, U ′y = 0 at z0, where
U = αu + βv. Let L = {z : U(z) = U(z0)}. The level-set L consists locally
of two or more analytic arcs intersecting with equal angles at z0. h maps this
level-set into the line. But h is locally univalent and the assumption has led to a
contradiction.
For a generalization of Lewy’s theorem we refer to [?], p.78:

Theorem 3.2 (Heinz). Suppose u : D → (S, ρ) is univalent (i.e. injective) ρ-
harmonic map.Then Ju(z) 6= 0 for all z ∈ D.

Radó there is no harmonic mapping of D onto C.
Recall that by S we denote the class of functions f(z) = z + a2z

2 + · · · analytic
and univalent in the unit disk D.

The classical Koebe one-quarter theorem says that each function f ∈ S contains
the entire disk |w| < 1/4 in its range f(D). The celebrated Bieberbach conjecture,
now a theorem, asserts that the coefficients of each function f ∈ S satisfy the sharp
inequalities |an| ≤ n, n = 2, 3, · · · .

Let C denote the class of functions that map the unit disk conformally onto a
convex region.

It is known that each function f ∈ C contains the entire disk |w| < 1/2 in its
range f(D) and its coefficients satisfy the better bound |an| ≤ 1, n = 2, 3, · · · .

The function `(z) = z
1−z which maps D conformally onto the half-plane <w >

−1/2, shows that both results are again best possible.
The above results on convex conformal mappings extend nicely to convex har-

monic mappings. Before stating the theorems, we need to introduce some termi-
nology. The class CH consists of all sense-preserving harmonic mappings f = h+ ḡ
of the unit disk onto convex domains, with the normalization h(0) = g(0) = 0 and
h′(0) = 1. Note that |g′(0)| < |h′(0)| = 1, since f preserves orientation and thus
has positive Jacobian. Let b1 = g′(0), a = (1−|b1|2)−1 and b = b1a. Postcomposing
a function f = h+ ḡ ∈ CH by the sense-preserving affine mapping A(w) = aw+bw̄,
which preserves convexity, the further normalization g′(0) = 0 can be achieved.
The resulting class of functions will be denoted by C0

H . Thus, a sense-preserving
harmonic function f = h + ḡ belongs to C0

H if it maps the unit disk univalently
onto a convex region with the normalization h(0) = g(0) = g′(0) = 0 and h′(0) = 1.

A primary example of a function of class C0
H is

L(z) = <`(z) + =k(z)
Although L maps T \ {1} onto a point −1/2, it maps the unit disk univalently

onto the convex region {w : <w > 1/2}.

Theorem 2. Each function h ∈ C0
H contains D1/2 in its range.

The proof depends on Herglotz representation

p(z) =

∫ 2π

0

eit + z

eit − z
dµ(t) + iγ

of a function p analytic in D with positive real part; here dµ is a positive measure
and γ is a real constant.

Since C(z, t) = (eit+z)(eit−z)−1 = 1+2
∑∞

1 e−iktzk, we find pn = 2
∫ 2π

0
e−iktdµ(t),

n ≥ 1. Hence |pn| ≤ 2<p0.
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By hypothesis, the range f(D) is convex. Thus, if w /∈ h(D), a suitable rotation
will give <F > 0 on D, where F (z) = eiα(f − w) + e−iαg. Hence F0 = −eiαw,
F1 = eiα and therefore 1 = |eiα| = |F1| ≤ 2|F0| = 2|w|, that is |w| ≥ 1/2 . This
proves the theorem.

Now we will give a generalization of Theorem 2 using a more geometric approach.
We need first the following result:

Lemma 1. Suppose that F is analytic on D, G = F (D) is convex and m =
dist(F (0), ∂G). Then |F ′(0)|/2 ≤ m.

Proof. We can suppose that F (0) = 0 and that F is not a constant and after a
suitable rotation that
(I1) <F +m > 0 on D.
By the subordination principle F = 2m`◦ω. Hence F ′(0) = 2mω′(0) and the result
follows. �

Theorem 3. Suppose that f is harmonic on D, G = F (D) is convex, g′(0) = 0 and
m = dist(F (0), ∂G). Then |h′(0)|/2 ≤ m.

Proof. After a suitable rotation, the function eiαf satisfies (I1). Note that <eiαf =
<Fα, where Fα = eiαh+ e−iαg. Since h′(0) = F ′α(0) an application of Lemma 1 to
the the function Fα yields the result.

�

Lemma 3.1. If h = f + ḡ ∈ CH , then exists α and β such that

Re
(
(eiαf ′(z) + e−iαg′(z)(eiβ − e−iβz2)

)
> 0

for all z ∈ U.

Proof. It suffices to assume that h has a smooth extension to the boundary.

Define h(t) = h(eit), λ(t) = h′(t) and T (t) = λ(t)
|λ(t)| .

There is a continuous real valued function ϕ such that T (t) = eiϕ(t), with ϕ(t+
2π) = ϕ(t). For each t there is a unique t∗ = α(t) with t < t∗ < t + 2π for which
ϕ(t∗) = ϕ(t) + π.

geometric interpretation: if L(t) denotes tangent line of C at ponit A(t) = h(t),
where C = h(T ), then lines L(t) anf L(t∗) are paralallel and if t∗ − t < π then
t∗∗ − t∗ > π. Since the function t∗ − t is continuous, one can show that t∗0 = t0 + π
for some t0.

Since t∗ is a continuous and t∗∗ = α(α(t)) = t + 2π, one can show t∗0 = t0 + π

for some t0. Define V (t) = T (t)/T (t0) = ei
(
ϕ(t)−ϕ(t0)

)
.

V (t) lies in the upper half-plane and sin
(
ϕ(t) − ϕ(t0)

)
≥ 0 for t0 < t < t0 + π,

whereas it lies in the lower half-plane and sin
(
ϕ(t) − ϕ(t0)

)
≤ 0 for t0 + π < t <

t0 + 2π. Hence

A(t) = Re

(
(ei(t0−t) − ei(t−t0))ei

(
ϕ(t)−ϕ(t0)

))
= 2 sin(t− t0) sin

(
ϕ(t)− ϕ(t0)

)
≥ 0

A simple calculation shows λ(t) = ieitf ′(eit)−ie−it g′(eit), λ(t)/λ(t0) = i(B−C),
and A(t) = Re

(
(ei(t0−t) − ei(t−t0)(iB − iC))

)
, where B = eitf ′(eit)/λ(t0) and C =
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eit g′(eit)/λ(t0). Hence

A(t) = Re

(
(eit0 − e−it0e2i(t))(i

f ′(eit)

λ(t0)
− ig

′(eit)

λ(t0)
)

)
≥ 0

or

Re
(
(eiαf ′(z) + e−iαg′(z)(eit0 − e−it0z2)

)
> 0

on the unit circle, where eiα = i|λ(t0)|/λ(t0). The result follows from the maximum
principle for harmonic functions. �

Lemma 3.2 (Hopf’s lemma). Let D be a Jordan domain with smooth boundary.
Let u be noncostant harmonic function in D that has a smooth extension to D. If
u has a local minimum at some point ζ ∈ ∂D, then its inner normal derivative is
strictly positive at that point: ?.

Suppose u(ζ) = 0. Then u > 0 in some disk B ⊂ D whose boundary is tangent
to ∂D at ζ. Suppose, after rotation and translation, that B = B(0; r) and ζ = r.

By Harnack’s inequality,

r − x
x+ r

u(0) ≤ u(x), 0 < x < r .

Hence, since u(r) = 0,

u(0)

x+ r
u(0) ≤ u(x)− u(r)

r − x
, 0 < x < r .

Now let x tend to r to conclude that

∂u

∂n
= −∂u

∂x
≥ u(0)

2r
> 0 .

The following theorem helps to explain the concavity of image persistently ap-
parent in harmonic mappings with dilatations of unit modulus on the boundary.

Theorem. Let f be a sense-preserving harmonic mapping of D onto a domain G.
Suppose that f has a C1 extension to some open arc I ⊂ T that it maps univalently
onto a convex arc L ⊂ ∂G. Let s denote arclength along L as a function of t for
eit ∈ I. Suppose s′(α) 6= 0 at some point a = eiα ∈ I. Then the dilatation of f has
a continuous extension to a subarc of I containing a , and |ω(a)| < 1.

Corollary. Let f be a sense-preserving harmonic mapping of D onto a convex
domain G and suppose f has a C1 extension to a homeomorphism of D onto G with
s′(t) > 0 at every boundary point. Then f is quasiconformal.

Deduction of Corollary. The dilatation ω = fz̄/fz has the property |ω(z)| < 1
in D, and it has a continuous extension to D which, by the theorem, still satisfies
|ω(z)| < 1 everywhere on T. Thus, |ω(z)| < k for some constant k < 1, and f is
quasiconformal in D.

If ψ ∈ L1[0, 2π] we define the Cauchy transform

C(ψ)(z) =
1

2π

∫ 2π

0

ψ(t)eit

eit − z
dt .

It is convenient to use notation

C(z, t) =
eit

eit − z
.
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An easy calculation shows

C(z, t) + C(z, t)− 1 = Pr(θ − t) .

3.2. Schwarz’s Lemma for harmonic mappings. Throughout this paper, U
will denote the unit disc {z : |z| < 1}, T the unit circle, {z : |z| = 1} and we will
use notation z = x+iy and z = reiθ, where r = |z| and θ ∈ R are polar coordinates.
For a function h, we use notation ∂h = 1

2 (h′x−ih′y) and ∂h = 1
2 (h′x+ih′y); we also use

notations Dch and D
c
h instead of ∂h and ∂h respectively when it seems convenient.

By h′x and h′y we denote partial derivatives with respect to x and y respectively.

We write D2
zzh = D(Dh), where Dh = Dch and Dh = D

c
h.

Example 5. Let S = {w : |Rew| < 1} and S1 = {w : |Rew| < π/4}. tan maps S1

onto D. Let B(w) = π
4w and f0 = tan ◦B, ie. f0(w) = tan(π4w). Then f0 maps S

onto D.
u =

√
2
π argA0(iz), v =

√
2
π argA0(z), t =

√
2
π ln |A0(z2)|

Let r < 1, A0(z) = 1+z
1−z , and let φ = i

2

π
lnA0; that is φ = φ0 ◦ A0, where

φ0 = i 2
π ln. Let φ̂ be defined by φ̂(z) = −φ(iz). Note that φ̂ = 4

π arctan is the
inverse of f0.

Then Reφ̂(z) = 2
π arg 1+iz

1−iz and |Reφ(z)| ≤ 4
π tan−1|z|.

Let F be analytic such that Reh = ReF on D with F (0) = 0.
By subordination, we show that |ReF (z)| ≤ 4

π arctan(|z|).
Example h(z) = 4

πRe(arctan z)+iay, a ∈ R shows that we can not control growth
of h in general at 0. h maps D into S, but |(Imh)y(0)| = |a| can be arbitrarily large.

But if f : D → D is harmonic and f(0) = 0, then the maximal distortion (i)
Lf (0) ≤ 4

π . (ii) In particular, if f is conformal at 0, then |f ′(0)| ≤ 4
π . The estimate

(i) is sharp.
It seems that if f is conformal at 0, then |f ′(0)| < 4

π .
By a normal family argument there is extremal function for the problem: (iii)

D(0) = sup{|L′f (0)|}, where supremum is taken over all harmonic maps f : D→ D
with f(0) = 0. But extremal functions f0(z) = 2

π arg 1+z
1−z maps D onto (−1, 1).

Lemma 3.3. Let S = {w : |Rew| < 1} and let h : U → U be a harmonic mapping
with h(0) = 0 . Then |Reh(z)| ≤ 4

π tan−1|z|.

Proof. Let Mh(r) = max{|h(z)| : z ∈ Tr}. Then there is zr = reiα such that
R = Mh(r) = |h(zr)|. If h(zr) = Reiβ and H(z) = e−iβh(eiαz), then Mh(r) =
MH(r) = R. By Lemma 3.4, MH(r) ≤ 4

π arctan r and the proof follows. �

Lemma 3.4 (Schwarz lemmma for harmonic functions [18]). Let S = {w : |Rew| <
1} and let h : D → S be a harmonic mapping with h(0) = 0 . Then |Reh(z)| ≤
4
π tan−1|z| and this inequality is sharp for each point z ∈ D .

Proof. Let A1 be defined by z 7→ A0(iz). Then A1 carries the segment [−i, i] onto
half circle T+ = {w : |w| = 1,Rew ≥ 0} and 4

π arctan r = φ1(r) = 2
π argA1(r) =

− 2
πα.

Observe now that the linear fractional mapping w = 1+z
1−z carries the circle Kr :

|z| = r < 1 onto the circle KR : |w−w0| = R with center w0 = (1+r2)/(1−r2) and
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radius R = 2r/(1− r2). Let r < 1, A0(z) = 1+z
1−z , s = A0(r), R =

s− s−1

2
=

2r

1− r2

and α be the maximum of | argw| on KR; therefore since w2
0 − R2 = 1, tanα = R

and α(r) = arctanR = 2 arctan r; recall S0 = {w : |Rew| < 1} and let φ = i
2

π
lnA0;

that is φ = φ0 ◦A0, where φ0 = i 2
π ln.

We prove: if h : D→ S is harmonic, h(0) = 0, then |h(z)| ≤ 2
πα(|z|).

The linear fractional transformation A maps the circle |z| = r onto the circle
K(a,R), where a = (1 + r2)/(1− r2) and R = 2r

1−r2 ; and therefore the disk Dr onto

the disk B(a;R) of radius R with the center at a.
Thus
(1) | arg A1| is bounded by α(r) = 2 arctan r on Dr and therefore
since Reφ = − 2

π arg A0,

(2) |Reφ| is bounded by α(r) = 4
π arctan r on Dr.

Thus, (1) says that A0 maps Dr in the angle of opening 2α(r) = 4 arctan r.
Let F be analytic such that Reh = ReF on D with F (0) = 0. By subordination

F (Dr) ⊂ φ0(B(a;R)). Hence, by (2) ( recall | arg z| ≤ 2 arctan r on B(a;R)),
(3) |Reφ| is bounded by α(r) = 4

π arctan r on Dr.
From (3), it follows

|Reh(z)| = |ReF (z)| ≤ 4

π
arctan |z|.

�

Example 6. Let C(t) = t + iA(t) and R(t) = |C(t)|2 = t2 + A2(t). Check that
R′′(t) = 2[1 +A′2 +AA′′].

If A(t) = lnB(t), then A′(t) = B′(t)
B(t) , A′′(t) = B′′(t)B−B′2(t)

B2(t) and R′′(t) = 2[B2 +

A(B′′B −B′2) +B′2]/B2.

Example 7. Let ln a branch of Ln on Π determined by ln(1) = 0 and K(a,R),
where a > 0 and 0 < R < a. Check that M(R) = M(a,R) = {| ln z| : z ∈
K(a,R)} = ln(a+R).

Outline. If z = ρeiϕ ∈ K(a,R), then (ρ−a cosϕ)2 = R2−a2 sin2 ϕ. Set A = ln ρ

and λ = ρ− a cosϕ. Check λρ′ = −aρ sinϕ, A′ = −a sinϕ
λ , λ′ = ρ′ + a sinϕ and

A′′ = −aλ cosϕ− λ′ sinϕ
λ2

= a
ρ′ sinϕ− ρ cosϕ+ a

λ2
= −aR2 cosϕ

λ3
.

Since A′′ ≤ 0, ϕ ∈ I0 = [0, ϕ0], and A′(0) = 0, A′ is non-positive on I0 and A is
decreasing. Compute R(ϕ) = 2[1 +A′2 +AA′′].

N. Mutavdzic suggested the following approach. Set f(r, θ) = arctan(reiθ) and

M(r, θ) = arctan2 2r sin θ

1− r2
+

1

4
log2 1 + 2r cos θ + r2

1− 2r cos θ + r2
, 0 < r < 1, 0 ≤ θ ≤ π

2
.

∂M

∂θ
(r, θ) =

2

r

2(1− r2) cos θ arctan 2r sin θ
1−r2 − (1 + r2) sin θ log 1+2r cos θ+r2

1−2r cos θ+r2

4 sin2 θ + (r − 1
r )2

.

Dokazac1emo da je ∂M
∂θ (r, θ) ≤ 0, 0 < r < 1, 0 ≤ θ ≤ π

2 , odakle c1e slediti da je
max

0≤θ≤π2
M(r, θ) = M(r, 0).
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Ako je P (r, θ) = 2(1 − r2) cos θ arctan 2r sin θ
1−r2 − (1 + r2) sin θ log 1+2r cos θ+r2

1−2r cos θ+r2

imac1emo da je sgn∂M∂θ (r, θ) = sgnP (r, θ). Posto je P (0, θ) = 0, 0 ≤ θ ≤ π
2 do-

voljno c1e biti da pokazhemo da je ∂P
∂r (r, θ) ≤ 0, 0 < r < 1, 0 ≤ θ ≤ π

2 . I konachno,
izrachunavshi

∂P

∂r
(r, θ) = −2r(2 cos θ arctan

2r sin θ

1− r2
+sin θ log

1 + 2r cos θ + r2

1− 2r cos θ + r2
), 0 < r < 1, 0 ≤ θ ≤ π

2

dobili smo trazhenu nejednakost.

Proposition 3.1 ([74]). Let F be holomorphic map from U into S0 with F (0) = 0.
Then MF (r) ≤ 2

π ln 1+r
1−r , 0 < r < 1.

3.2.1. Rado-Kneser-Choquet.

Example 8. Let h(z) = x + i(x2 − y2). Then Jh = −2y, h(i) = −1, h(H) =
D = {(x, y) : y < x2} and h(z) = h(z); Since h(z1) = h(z2) implies x1 = x2 and
y1 = ±y2, h is univalent on the upper half plane. Consider triangle ∆1 with vertices
A = 0, B = 2 and C = 1 + i and
∆2 with vertices A = 0, B = 2 and D = 1− i/2;
quadrilateral ∆3 = ∆1 ∪∆2, D = 1 + i/2 and let quadrilateral ∆4 consist of points
A = 0,D, B = 2 and C.
Verify that L0 = h(∂∆3) = h(∂∆4), h(∆3) 6= int(h(∂∆3)) and that h(∂∆3) is not
a convex set.
Consider a conformal mapping ϕ of the unit disk onto ∆3 and ȟ = h ◦ ϕ. Check
that a ȟ is harmonic on D, a homeomorphism of T onto L0, but ȟ is not 1− 1 onto
U.

Choquet showed For every Jordan domain D which is not convex, there exists a
homeomorphism φ : T→ ∂D such that h = P [φ] is not a homeomorphism in D.

Theorem 3.3. Assume that Ω ⊂ R2 is a convex domain with smooth boundary
∂Ω. Given any homeomorphism ϕ : S1 → ∂Ω, there exists a unique harmonic map
h : U→ Ω such that h = ϕ on S1 and h is a diffeomorphism.

Proof. Let h = (u, v). It suffices to show that detJ(h) 6= 0. Suppose that detJ(h)
is zero at z0, that is ∣∣∣∣ u′x(z0) u′y(z0)

v′x(z0) v′y(z0)

∣∣∣∣ = 0 .

Thus vectors X = (u′x(z0), u′y(z0)) and Y = (v′x(z0), v′y(z0)) are linearly dependent
and therefore there exists (α, β) 6= (0, 0) such that αX + βY = 0, that is U ′x = 0,
U ′y = 0 at z0, where U = αu + βv. Let L = {z : U(z) = U(z0)}. Since U is a real
harmonic function, there is an analytic function F such that U = ReF in U and
that F ′(z0) = 0. By the maximum principle for harmonic functions, no pair of the
arcs of L emanating from z0 can rejoin elsewhere in U. Since a neighborhood of z0

consists of at least four arcs emanating from z0, and each of these arcs must extend
out to the boundary, which means that L must meet T in at least four distinct
points (that is L ∩ ∆ contains at least 4 points). On the other hand, h maps L
into the line, which meets ∂Ω in exactly two points because of the assumption that
Ω is convex. It follows that h maps at least four points on T onto two points in
∂Ω, contradicting the hypothesis (ϕ being 1 − 1). This contradiction proves that
the Jacobian cannot vanish in U, so h is locally univalent. An application of the
argument principle(see Proposition 3.3 below) completes the proof. �
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Choquet’s Proof. We now turn to Choquet’s more analytic proof of the Rado-
Kneser-Choquet theorem. He begins by observing, as had Kneser, that it is enough
to establish the local univalence of f in U. Still with Kneser, he argues that the
vanishing of the Jacobian of f = u + iv at some point z0 in U would imply that
some nondegenerate linear combination ψ = au + bv has a critical point at z0.
Diverging from Kneser’s proof (of which he was unaware), Choquet then appeals
to the following lemma to reach a contradiction.

Since ψ is a real valued harmonic on U , there is an analytic function F on
U such that ψ = F + F . Hence ψ =

∑
akz

k +
∑
akz

k. Since ψz = Fz, a1 =
F ′(0) = ψz(0), we have the formula 2πψz(0) =

∫ π
−π e

−itψ(eit)dt and therefore

−2πImψz(0) =
∫ π

0
χ(t) sin tdt, where χ(t) = ψ(eit)− ψ(e−it).

Since 2πa1 =
∫ π
−π e

−itψ(e−it)dt, we have 4πiIma1 =
∫ π
−π χ(t)e−itdt and hence

−4πIma1 =
∫ π
−π χ(t) sin tdt.

Let ψ be a real-valued function harmonic in U and continuous in U. If ψ is at
most bivalent on T, then ψ has no critical points in U.

On the other hand, the bivalence hypothesis says that ψ can have only one local
maximum and one local minimum on the circle, and that ψ is monotonic on each
of the arcs joining those points. After a rotation of coordinates, which does not
change |ψz(0)|, we may conclude from the bivalence hypothesis that ψ increases
from a minimum at some point e−iα to a maximum at eiα, where α ∈ [0, π).

Set m0 = ψ(−α) and M0 = ψ(α). One can check that ψ is decreasing on
[−π,−α] ∪ [α, π] and increasing on [−α, α]. If t ∈ [α, π], then −t ∈ [−π,−α],
and ψ(t) > ψ(π) = ψ(−π) > ψ(−t). Thus, ψ is strictly increasing as eit moves

in either direction from e−iα to eiα, and so χ(t) = ψ(eit) − ψ(e−it) is odd and
χ(t) > 0, 0 < t < π. Consequently, −2πImψz(0) =

∫ π
0
χ(t) sin tdt > 0 proving that

ψz(0) 6= 0.
To say that ψ is at most bivalent on T means that ψ takes any given value at

most twice on T. Let us first observe that the function ψ = au+bv just constructed
does have this property if G is strictly convex; i.e., if the boundary Γ contains no
line segments. Indeed, no line au + bv = c can then intersect Γ in more than two
points, and each of these points has a unique preimage under f, since f is assumed
to map T in one-to-one fashion onto Γ. Thus, ψ(z) = c for at most two points
z on T. The lemma then says that ψ can have no critical points in D, which is
a contradiction. In other words, the Rado- Kneser-Choquet theorem follows from
the lemma under the extra assumption that G is strictly convex. As we shall see,
the strict convexity is inessential and, in fact, the argument can be generalized to
establish a much stronger form of the Rado-Kneser-Choquet theorem.

Theorem 3.4 (Summa of degrees of mappings). Let γ be a planar curve Jordan
curve which enclosed domain G Suppose that
a. ϕ : G→ C is continuous and C1 on G.
b. ϕ−1(0) = {a1, a2, ..., am} is a finite subset ofG
c. Kν = Kν(r) positively oriented circles with center aν , radius r, such that
closed circles Bν , which are enclosed by Kν , ν = 1, 2, ...,m , are disjoint; and let
γν = ϕ ◦ Kν , ν = 1, 2, ...,m and in particular γ0 = ϕ ◦ γ.
Then

(1) Indγ0(0) =

m∑
k=1

Indγk(0) .



SCHWARZ LEMMA,THE CARATHÉODORY AND KOBAYASHI METRICS 23

Proposition 3.2. If f is C1 on C and Jf (z) > 0 for every z ∈ C and f(z) = z+0(1),
when z →∞, then f homeomorphizm S2 onto itself.

Neka je w ∈ C fiksirana tačka i g = f −w. Proveriti da je V arArgKr (f −w) = 1
za dovoljno veliko r. Otuda je IndΓr (w) = 1, gde je Γr = f ◦Kr.

Neka je kr pozitivna kružnica sa sredǐstem u a i f(a) = w, tada je Indγr (w) = 1,
gde je γr = f ◦ kr za dovoljno malo r. Otuda, na osnovu Teoreme 3.4 postoji tačno
jedno a tako da je f(a) = w.

Proposition 3.3. Let γ and γ0 be two planar Jordan curves which enclosed domain
G and G0 respectively. Suppose that f : G→ C is continuous and C1 on G. If the
restriction f∗ of f is homeomorphism of tr(γ) onto tr(γ0). and the Jacobian of Jf
of f has no zeroes on G, then f is a homeomorphism of G onto G0.

Proof. Take w0 ∈ G0. Using homotopy, one can show that w0 ∈ f(G). Since f
is locally injective and f∗ is homeomorphism of tr(γ) onto tr(γ1), f−1(w0) has no
point of accumulation in G or tr(γ0). Thus f−1(w0) is a finite set, say z1, z2, ..., zm.
By Theorem 3.4, I := Indγ0(w0) =

∑m
k=1 Indγk(w0). If Jf > 0, then I = m and

if Jf < 0, then I = −m. Since I = ±1, we conclude that m = 1. Hence if f∗
preserves orientation then Jf > 0 on G. �

(A-1) If φ conformal mapping of a planar domain D onto U, we define the φ-
hyperbolic density on D by HypU(φz)|φ′(z)| = λφ,D(z). If another φ1 conformal
mapping of the domain D onto U, set w = φ(z), w1 = φ1(z), ω = φ1 ◦ φ−1 and
w1 = ω(w). Then φ1 = ω◦φ, and by the composition rule φ′1(z) = ω′(w)φ′(z). Since
ω ∈ Aut(U), 1− |w1|2 = |ω′(w)|(1− |w|2) and hence 1− |w1|2 = |φ′1(z)/φ′(z)|(1−
|w|2).

Therefore λφ,D = λφ1,D and the definition of the hyperbolic density is indepen-
dent of conformal maps from D onto U; and we write HypD(z) for the hyperbolic
density on D at z.

Exercise 3. (I-1) If G and D are simply connected domains different then C and
f conformal mapping of D onto G, then HypG(fz)|f ′(z)| = HypD(z).
Outline. Let ψ be conformal mappings of the domain D onto U, g = f−1 and ψ1 =
ψ ◦ g; set also z1 = f(z). Then λD(z) = λ0(ψz)|ψ′z| and λG(z) = λ0(ψ1z1)|ψ′z1|.
Exercise 4. Suppose that D is a simply connected domain different then C and
ω holomorphic map from D into self with ω(z0) = z0 for some z0 ∈ D. Then
|ω′(z0)| ≤ 1.

If G1 = kG, then H(z) = kz maps G onto G1 and H−1(w) = w/k. Hence
HypG1

(w) = 1
kHypG(w/k).

Example 9. 1. If Π = {w : Rew > 0}, then B0(w) = 1−w
1+w maps Π on U. Since

1 − |B0(w)|2 = 4u
|1+w|2 , where u = Rew, B′0(w) = 2(1 + w)−2, and HypΠ(w) =

λ0(B0(w))|B′0(w)|, we find

HypΠ(w) =
1

Rew
.

2. Since e = exp maps S = {y : |y| < π/2} onto Π, we have λS(z) =
HypΠ(ez)|ez| = 1

cos y .

3. Let λ0 be a hyperbolic density on S0. Then

(3.1) λ0(w) = HypS0(w) =
π

2

1

cos(π2u)
.
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4. λ0(iy1, iy2) = π
2 |y2 − y1|, y1, y2 ∈ R.

5. If a, b ∈ R, a < b, the linear map L defined by L(w) = 2w−(a+b)
b−a , maps S(a, b)

onto S0 and ρ(w) = ρ0(Lw) 2
b−a . Hence

(3.2) ρ(w) = HypS(a,b)(w) =
π

(b− a)

1

cos
(
π
2 [(2u− (a+ b))/(b− a)]

) .
Example 10. Check arctan( 2r

1−r2 = 2 arctan(r), 0 < r < 1.

Outline. If tgβ = r, then tg(2β) = 2tgβ
1−(tgβ)2 .

Example 11. For w1, w2 ∈ S0, ρ0(u1, u2) ≤ ρ0(w1, w2).

A plane region D whose complement has at least two points we call a hyper-
bolic plane domain. On a hyperbolic plane domain there exists a unique maximal
ultrahyperbolic metric, and this metric has constant curvature −1.

Using holomorphic covering π : U → D, one can define the pseudo-hyperbolic
and the hyperbolic metric on D.

3.3. hyperbolic domains. Now we outline how we can use powerful tools which
yield the uniformization theorem to get hyperbolic version of Ahlfors-Schwarz lemma.

XX Let W and W ∗ be surfaces and f : W ∗ → W a continuous surjective map
such that for every p ∈W , there exists an open neighborhood V of p, such that is a
union of disjoint open sets in W ∗ and every component of p−1(V ) is in one-to-one
correspondence with V . When this is so The map f is called the covering map
and the pair (W ∗, f) is called a covering surface of W . A deck transformation or
automorphism of a cover f : W ∗ → W is a homeomorphism A : W ∗ → W ∗ such
that f ◦ A = f . The set of all deck transformations of A forms a group under
composition, the deck transformation group Aut(f). Deck transformations are also
called covering transformations.

In particular, if W and W ∗ are Riemann surfaces and f : W ∗ →W holomorphic,
we call f the holomorphic covering map. If W ∗ is simply connected, we call the
pair (W ∗, f) a universal covering.

The uniformization theorem says that every simply connected Riemann surface
is conformally equivalent to a disk, the complex plane, or the Riemann sphere. In
particular it implies that every Riemann surface admits a Riemannian metric of
constant curvature. Every Riemann surface is the quotient of the deck transfor-
mation group (a free, proper and holomorphic action of a discrete group on its
universal covering) and this universal covering is holomorphically isomorphic (one
also says: ”conformally equivalent” or ”biholomorphic”) to the Riemann sphere,the
complex plane and the unit disk in the complex plane. If the universal covering
of a Riemann surface S is the unit disk we say that S is hyperbolic. XX Using
holomorphic covering π : U → S, one can define the pseudo-hyperbolic and the
hyperbolic metric on S. In particular, if S = G is hyperbolic planar domain we can
use
(I-2) HypG(πz)|π′(z)| = HypD(z) and
(I-3) If G and D are hyperbolic domains and f conformal mapping of D onto G,
then HypG(fz)|f ′(z)| = HypD(z).

XX

Proposition 3.4 (Schwarz lemma 1- planar hyperbolic domains, Ahlfors-Schwarz
(hyperbolic version) ). (a) If G and D are conformally isomorphic to U and f ∈
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Hol(G,D), then
δD(fz, fz′) ≤ δG(z, z′), z, z′ ∈ G.

(b) The result holds more generally: if G and D are hyperbolic domains and
f ∈ Hol(G,D), then

HypD(fz, fz′) ≤ HypG(z, z′), z, z′ ∈ G.
(c) If z ∈ G, v ∈ TzC and v∗ = dfz(v), then

|v∗|Hyp ≤ |v|Hyp.

For a hyperbolic planar domain G the Carathéodory distance CG ≤ λG with
equality if and only if G is a simply connected domain.

3.4. Khavinson extremal problem. We follow [52], arXiv:1805.02979v1. For a
hyperbolic plane domain D, we denote by ρD(or λD) the hyperbolic density and
by abusing notation the hyperbolic metric occasionally.

Lemma 2. If G and D are simply connected domains different from C and
ω ∈ Hol(G,D), then ρD(ωz)|ω′(z)| ≤ ρG(z), z ∈ G and

ρD(ωz, ωz′) ≤ ρG(z, z′), z, z′ ∈ G.

We denote the right half plane by Π.

Proposition 3.5. If ω is holomorphic from Π into itself, then

|ω′(z)| ≤ Reω(z)

Rez
.

If in addition ω maps R+ into itself, then |ω′(1)| ≤ Reω(1) = ω(1) and therefore
ω′(1) ≤ ω(1).

Definition 3.5. By C we denote the complex plane by U the unit disk and by T
the unit circle. For z1 ∈ U, define

Tz1(z) =
z − z1

1− z1z
,

ϕz1 = −Tz1 .
d1) Throughout this paper by S(a, b) we denote the set (a, b)×R, −∞ ≤ a < b ≤

∞, and in particular we write S0 for S(−1, 1). Note that S(a, b) is a strip if −∞ <
a < b <∞ and S(a,+∞) is a half-plane if a is a real number, and S(−∞,+∞) = C.
By λ0 and ρ0 we denote hyperbolic metrics on U and S0 respectively.

d2) Set I0 = (−1, 1), and for a ∈ I0 define

s = s(a) = tan(
π

4
(a+ 1)), e = e(a) = cot

(π
4

(a+ 1)
)
, and

X(r) = X+(r, a) =
4

π
arctan(s

1 + r

1− r
)−1, X−(r, a) = 1− 4

π
arctan

(
e

1 + r

1− r

)
, z ∈ U.

Further it is convenient to introduce the functions A,B,As and Bs by A(r) =
(1 + r)(1 − r)−1, B(r) = (1 − r)(1 + r)−1, As(r) = sA(r), Bs(r) = sB(r), and
Y (r) = X+(|z|, |a|).

d3) Set c = (a+ 1)/2, c = 2πc, α = α(c) = α(a) = c/2 = (a+ 1)π/2.
It is convenient to write fy(x) = f(x, y).
(A0) It is straightforward to check

X−a (r) =
4

π
arctan(Bs(r))− 1, X−a (r) ≤ a ≤ X+

a (r),
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X+(r, a) (respectively X−(r, a)) is increasing (respectively decreasing) in both vari-
ables r and a, X+

1 = 1 and X−−1 = −1.

Suppose that f is harmonic map from U into I0 = (−1, 1) with f(0) = a. Using
a version of Schwarz lemma [48], we will show

(3.3) ρ0(fz, a) = | ln s(fz)
s(a)

| ≤ ln
1 + r

1− r
, z ∈ U.

This inequality is equivalent to X−(|z|, a) ≤ f(z) ≤ X(|z|) = X+(|z|, a), z ∈ U.

Theorem 4. If u1, u2 ∈ (−1, 1), then

(3.4) ρ0(u1, u2) = | ln s(u2)

s(u1)
|.

Let h be a real valued harmonic map from U into I0 = (−1, 1) with h(0) = a,
a ∈ I0. Then

X−(|z|, a) ≤ h(z) ≤ X(|z|) = X+(|z|, a), z ∈ U,(3.5)

and |(dh)0| ≤ X ′(0) =
4

π
sinα.(3.6)

If a = 0, then a1 = tan π
4 = 1 and X(|z|, 0) = 4

π arctan |z|. Hence we get classical
Schwarz lemma for harmonic maps which states |h(z)| ≤ X(|z|) = X(|z|, 0) =
4
π arctan |z|.

Definition 3.6. d1) For a ∈ (−1, 1), let Hara denote the family of all real valued
harmonics maps f from U into (−1, 1) with f(0) = a.

d2) For a ∈ U and b ∈ (−1, 1), set L(a, b) = L(a, b) = sup |(du)a|, where the
supremum is taken over all real valued harmonics maps u from U into (−1, 1) with
u(a) = b.

d3) For a ∈ U and ` ∈ TaC a unit vector, set L(a) = sup |(du)a| and L(a, `) =
sup |(du)a(`)|, where the supremum is taken over all real valued harmonics maps
from U into (−1, 1).

Now, we can restate and strength the part of Theorem 4:

Theorem 5. If a ∈ (−1, 1) and h ∈ Hara, then
(3.7)

(i) h(z) ≤ X(|z|), (ii) |(dh)0| ≤ X ′(0) =
4

π
sinα and (iii) L(0, a) =

4

π
sinα(a).

Proof. We need only to prove (iii). There is a conformal mapping f of U onto S0

with f(0) = a and f ′(0) > 0; then for harmonic function u0 = Ref the equality
holds in (iii). �

Theorem 6. Let h be a real valued harmonics map from U into (−1, 1) with
f(a) = b, a ∈ U. Then

(3.8) h(z) ≤ 4

π
arctan

(
1 + |ϕa(z)|
1− |ϕa(z)|

tan
α(|b|)

2

)
− 1,

(3.9) |(dh)a| ≤
4

π

sinα(|b|)
1− |a|2

.
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Proof. Set w = ϕa(z). Apply Theorem 5 on ha = h ◦ ϕa, we find ha(z) ≤ X(|z|).
Hence h(w) = ha(z) ≤ X(|ϕa(w)|). Since we can identify (dϕa)0 with 1 − |a|2,
using (dha)0 = (dh)a ◦ (dϕa)0 and Theorem 5 we prove (3.9). �

Further set

A0(z) =
1 + z

1− z
, and let φ = i

2

π
lnA0;

that is φ = φ0 ◦ A0, where φ0 = i
2

π
ln. Let φ̂ be defined by φ̂(z) = −φ(iz). Note

that φ maps I0 = (−1, 1) onto y-axis and φ̂ maps I0 onto itself.

If û = Reφ̂, then

(3.10) û =
2

π
arg

(
1 + iz

1− iz

)
and û maps I0 = (−1, 1) onto itself.

Let a ∈ (0, 1) and ` ∈ TaC. There is a conformal mapping f = f` of U onto
S0 with f(a) = 0 and f ′(a)` > 0. We will show that u = u` = Ref` is extremal.
In particular, there is a conformal mapping f of U onto S0 with f(a) = 0 and
f ′(a) > 0; set u0 = Ref .

Theorem 7. If a ∈ (−1, 1) and ` ∈ TaC, then

(1) L(a) = (u0)′r(a) = 4
π (1− |a|2)−1 and

(2) L(a, `) = L(a) = (du`)a(`) = 4
π (1− |a|2)−1.

This yields solution of D. Khavinson extremal problem for harmonic functions
in planar case, cf. [34, 37, 8].

Proof. (1) By hypothesis ρ0(f(a))|f ′(a)| = 2(1 − |a|2)−1, ρ0(f(a)) = ρ0(0) = π
2 ,

(u0)′r(a) = f ′(a) and |(du0)a| = |∇u0(0)| = 4
π (1− |a|2)−1.

(2) Recall there is a conformal mapping f = f` of U onto S0 with f(a) = 0 and
f ′(a)` > 0. If u = u` = Ref`, then (du)a(`) = Re

(
f ′(a)`

)
. We leave the interested

reader to fill details. �

Theorem 8. Let h be a real valued harmonics map from U into (−1, 1) with
f(a) = b, a ∈ U. Then

(3.11) (i) |(dh)a| ≤
4

π

sinα(|b|)
1− |a|2

, (ii) L(a, b) =
4

π

sinα(|b|)
1− |a|2

.

Proof. There is a conformal mapping of U onto S0 with f(a) = b. We leave the
interested reader to show that u0 = Ref is extremal for (i) and therefore (ii)
holds. �

3.5. Schwarz lemma at the boundary for holomorphic functions. It this
subsection we discuss some known results related to the subject.

3.5.1. Jack’s lemma. In connection with Jack’s lemma we state:
(T1) Let f be analytic function on the unit disk. Then for given r ∈ (0, 1), |f |
attains maximum at a point z0 ∈ Tr. Then z0f

′(z0) = kw0, where w0 = f(z0).
Using homothety, rotation and translation we can reduce it to the following.

(T2) Let B = B(a0; a0), a0 > 0, f be analytic function on B, f(B) ⊂ B
and f(0) = 0. Then f ′(0) = k, where k > 0. Contrary, if f ′(0) = keiα, where
0 < α < 2π, then by the little o technique we can show that there is a small arc L
on the boundary of B centered at the origin such that f(L) is out of B.
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Q1. If D is domain and f is analytic function on D, f(D) ⊂ D and there is
z0 ∈ ∂D such that f(z0) = z0 whether f ′(z0) > 0. It seems that using similar
approach as the above we can prove that answer to Q1 is positive if ∂D is smooth
at z0.

For r > 0, set Mf (r) = max{|f(z)| : |z| = r}.

Proposition 3.6. a) Let f : U→ U. Assume that (H0): there is a point b ∈ T so
that f extends continuously to b, |f(b)| = 1 (say that f(b) = c), and and f is R-
differentiable at b.

b) Further assume that there is a function A such that A : [0, 1] → [0, 1], A′(1)
exists and Mf (r) ≤ A(r).

Then |Λf (b)| ≥ A′(1).

Proposition 3.7. Under the above hypothesis, if there exists f ′(b), then
(i) |f ′(b)| ≥ A′(1).

In [57], R. Osserman offered the following boundary refinement of the classical
Schwarz lemma. It is very much in the spirit of the sort of result that we wish to
consider in the future.

Theorem 3.7. Let f : U→ U be holomorphic. Assume that f(0) = 0.
a1) Further assume that there is a point b ∈ T so that f extends continuously to b,
|f(b)| = 1(say that f(b) = c), and f ′(b) exists. Then (i) |f ′(b)| ≥ 2

1+|f ′(0)| .

a2) If f has a zero of order p at 0, then (ii) |f ′(b)| ≥ p.

Proof. Let f : U → U be holomorphic and satisfy f(0) = 0. Then |f(ζ)| ≤
|ζ| |ζ|+|f(0)|

1+|f(0)||ζ| for |ζ| < 1.

Set r = |z| and k = |f ′(0)|. Then 1 − |f(z)| ≥ 1 − r r+k1+rk = 1−r2
1+rk and therefore

1−|f(z)|
1−r ≥ 1+r

1+rk . Hence |f ′(b)| ≥ 2
1+|f ′(0)| . Without loss of generality we reduce

the proof to the case b = 1 and f(1) = 1. By Schwarz lemma |f(z)| ≤ |z|. Hence
|1− f(x)| ≥ |1− x|.
a2) Mf (r) ≤ A(r) := rp. Hence, since A′(1) = p, we have (ii). �

We also outline the following proof of (i). Set k = |f ′(0)|, g(z) = f(z)/z and
F = Tk ◦ g. Then g = T−k ◦ F , MT−k(r) ≤ T−k(r) = r+k

1+rk and therefore Mf (r) ≤
A(r) := r r+k1+rk . Hence, since A′(1) = 2

1+k , we have (i).

Theorem 3.8. Let f : U → U be holomorphic function. Suppose that there is an
extension of f at b ∈ T such that |f(b)| = 1 and there exists f ′(b). Then

(3.12) |f ′(b)| ≥ 2(1− |f(0)|)2

1− |f(0)|2 + |f ′(0)|

Now we state a version of Lowner and Velling result.

Proposition 3.8. Let f : U → U be holomorphic and f(0) = 0. Let S ⊂ T be a
nontrivial arc, and suppose that f extends continuously to S. Further assume that
f(S) lies in T. Let s denote the length of S and σ the length of f(S) (which is also
necessarily an arc, since it is a connected subset of the circle ). Then

σ ≥ s 2

1 + |f ′(0)|
.
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Proof: By Schwarz reflection, we may take it that f is analytic on the interior
of the arc S. Hence it certainly satisfies the hypotheses of the first lemma at each
point of the interior of S. The conclusion of that lemma then holds, and integration
yields the desired result.

Theorem 3.9. Let f : U → U be holomorphic. Further assume that there is a
point b ∈ T so that f extends continuously to b, |f(b)| = 1 (say that f(b) = c), and
f ′(b) exists. Then

|f ′(b)| ≥ 2(1− |f(0)|)2

1− |f(0)|2 + |f ′(0)|
.

Suppose f is an analytic map of U into itself. If |b| < 1, we say b is a fixed point
of f if f(b) = b. If |b| = 1, we say b is a fixed point of f if limr→1−f(rb) = b.
Julia-Caratheordory Theorem implies If b is a fixed point of f with |b| = 1, then
limr→1−f

′(rb) exists (call it f ′(b)) and 0 < |f ′(b)| ≤ ∞.
Perhaps, we can restate the hypothesis. The following boundary version of the

Schwarz lemma was proved in 1938 by Unkelbach in [61] and then rediscovered and
partially improved by Osserman [59] in 2000.

Theorem 3.10. In addition to hypothesis of Theorem 3.7, suppose that f = cpz
p+

o(zp) if z tends 0. Then (ii) |f ′(c)| ≥ p +
1−|cp|
1+|cp| . The equality in (ii) holds if and

only if f is of the form f = −zpϕa on U for some constant a ∈ (−1; 0].

Outline: Set c = cp, k = |cp|, g(z) = f(z)/zp and F = Tc ◦ g. Then g = T−c ◦F ,

MT−c(r) ≤ T−k(r) = r+k
1+rk and therefore Mf (r) ≤ A(r) := rp r+k1+rk .

Hence, since A′(r) = prp−1T−k(r) + rpT ′−k(r) and T ′−k(r) = (1− k2)(1 + rk)−2,

we have A′(1) = p+ 1−k
1+k , and therefore (iii.1).

The inequality (ii) is a particular case of a result due to Dubinin in (see [17]),
who strengthened the inequality |f ′(c)| ≥ 1 by involving zeros of the function f .

Suppose (iii): Let f(z) = b+ cp(z − a)p + cp+1(z − a)p+1 + ..., cp > 0, p ≥ 1 be
a holomorphic function in the disc U satisfying f(a) = b, |a| ≤ 1 and
(c) |f(z)− α| < α for |z| < 1, where α is a positive real number and 1/2 < α ≤ 1,
and f(z) − b has no zeros in U except z = a. Assume that, for some c ∈ T, f has
an angular limit f(c) at c, f(c) = 2α.

There are several papers by B. Örnek and Örnek-Akyel(see for example [56]
and [55]) related to the subject. In [55], under the hypothesis (iii.2) the optimal
lower estimate for |f ′(c)| are obtained, and the following functions are used. Let
z1, z2, .., zn be zeros of the function f(z)− b in U that are different from z = a. Set

B(z) = zp
n∏
k=1

z − zk
1− zkz

,

φ = ϕd, where d = f(0), Υ = φ/B and κ = ϕe, where e = Υ(0). Set B0(z) = zp,
p = φ/B0 and

Θ(z) =
ln p(z)− ln p(0)

ln p(z) + ln p(0)
.

Set F = Fα = f − α. Then the hypothesis (c) can be rewritten as (c1): F maps
the unit disc into the disc of radius α and F (c) = α. The auxiliary function Θ is
a holomorphic in the unit disc T, |Θ(z)| < 1,Θ(0) = 0 and |Θ(b)| = 1 for b ∈ T.
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Apply
2

1 + |Θ′(0)|
≤ |Θ′(b)|.

Theorem 3.11 (Burns/Krantz [12]). Let g be an analytic function of the unit disk
U into self which satisfy (i) g(z) = z + O(1 − z)4 when z approaches 1 throughout
U. Then g = Id.

Then g = Id. The result is the sharpest possible. Indeed, since g(z) = z − (z −
1)3/10 maps the unit disc to itself, this example shows that the exponent 4 in the
theorem cannot be replaced by 3. The proof in fact shows that 4 can be replaced
by o((z − 1)3).

In [26], a new theory of regular functions over the skew field of Hamilton num-
bers (quaternions) and in the division algebra of Cayley numbers (octonions) has
been recently introduced by Gentili and Struppa (Adv. Math. 216(2007) 279-
301). For these functions, among several basic results, the analogue of the classical
Schwarz’Lemma has been already obtained. In this paper, following an interest-
ing approach adopted by Burns and Krantz in the holomorphic setting, they prove
some boundary versions of the Schwarz Lemma and Cartans Uniqueness Theorem
for regular functions. We are also able to extend to the case of regular functions
most of the related ”rigidity” results known for holomorphic functions.

4. Cartan theorem and FPT

The following is a result of Cartan, Kaup, Caratheodory, and Wu.

Theorem 4.1 (Theorem 3.3 [35]). Let M be a hyperbolic manifold and o a point
of M . Let f : M →M be a holomorphic such that f(o) = o. Then The eigenvalues
of dfo have absolute value ≤ 1; If dfo is the identity linear transformation, then
f is the identity transformation of M ; If |detfo| = 1, then f is a biholomorphic
mapping.

Recall: Let G be bounded connected open subset of complex Banach space,
p ∈ G and v ∈ TpG. We define kG(p, v) = inf{|h|, where infimum is taking over all
h ∈ T0C for which there exists a holomorphic function such that f : U → G such
that f(0) = p and df(h) = v.

Recall one can prove

Theorem 4.2. Suppose that G and G1 are bounded connected open subset of com-
plex Banach space and f : G → G1 is holomorphic. Then kG(fz, fz1) ≤ kG(z, z1)
for all z, z1 ∈ G.

Theorem 4.3. Suppose that G is bounded connected open subset of complex Banach
space and f : G → G is holomorphic, s0 = dist(f(G), Gc), d0 = diam(G) and
q0 = d0

d0+s0
. Then kG(fz, fz1) ≤ q0kG(z, z1).

Perhaps there are applications of this result in the Teichmüller theory.
One can prove for example

Theorem 4.4. Suppose that G is bounded connected open subset of complex Banach
space and f : G → G∗ is holomorphic, G∗ ⊂ G, s0 = dist(G∗, G

c), d0 = diam(G)
and q0 = d0

d0+s0
. Then kG∗(fz, fz1) ≤ q0kG∗(z, z1) for z, z1 ∈ G∗.

Hence we have
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Theorem 4.5. Let D ⊂ Cn domain for which Carthéodory pseudo-distance is
distance and f : D → D holomorphic mapping such that f(D) is a compact subset
of D. Then f is contraction with respect to Carthéodory metric on D. In particular
f has fixed points in D.

There is the theory of holomorphic functions with domain and range contained
in a complex Banach space. We then review some well-known fixed point theorems
for holomorphic functions. Perhaps the most basic is the Earle-Hamilton fixed
point theorem, which may be viewed as a holomorphic formulation of Banach’s
contraction mapping theorem.

A set S is said to lie strictly inside a subset G of a Banach space if there is some
ε > 0 such that B = (x, ε) ⊂ G whenever x ∈ S. The following theorem may be
viewed as a holomorphic version of the Banach’s contraction mapping theorem.

Theorem 4.6 (Earle-Hamilton theorem). Let G be a nonempty domain in a com-
plex Banach space X and let h : G → G be a bounded holomorphic function. If
h(G) lies strictly inside G, then h has a unique fixed point in G.

The Earle-Hamilton theorem still applies in cases where the holomorphic function
does not necessarily map its domain strictly inside itself. In fact, the following
interesting fixed point theorem is a consequence of two applications of the Earle-
Hamilton theorem.

Theorem 4.7 (Khatskevich-Reich-Shoikhet theorem). Let G be a nonempty bounded
convex domain in a complex Banach space and let h : G → G be a holomorphic
function having a uniformly continuous extension to G. If there exists an ε > 0
such that |h(x)− x| ≥ ε whenever x ∈ ∂G, then h has a unique fixed point in G.

The Hahn-Banach Theorem is a central tool in functional analysis. It allows the
extension of bounded linear functionals defined on a subspace of some vector space
to the whole space, and it also shows that there are ”enough” continuous linear
functionals defined on every normed vector space to make the study of the dual
space ”interesting”.

Let S be a vector space over the real numbers, or, more generally, some ordered
field. This includes Euclidean spaces. A set C in S is said to be convex if, for all
x and y in C and all t in the interval [0, 1], the point (1 − t)x + ty also belongs
to C. In other words, every point on the line segment connecting x and y is in
C. This implies that a convex set in a real or complex topological vector space is
path-connected, thus connected. Furthermore, C is strictly convex if every point on
the line segment connecting x and y other than the endpoints is inside the interior
of C.

A balanced set, circled set or disk in a vector space (over a field K with an
absolute value function ||) is a set S such that for all scalars a with |α| ≤ 1 αS ⊆ S.

The open and closed balls centered at 0 in a normed vector space are balanced
sets. Any subspace of a real or complex vector space is a balanced set. The
cartesian product of a family of balanced sets is balanced in the product space of
the corresponding vector spaces (over the same field K).

A set C is called absolutely convex if it is convex and balanced.

Theorem 4.8 (Rudin [69]). Let B be unit ball (or completely circular domain)
strongly convex F : B → B holomorphic, F (0) = 0. Then F and A = F ′(0) have
the same fixed point.
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Consider examples B2, and U2.

Proof. Let z0 ∈ B. Then z0 = ru0, where |u0| = 1 and 0 < r < 1. By Hahn-
Banach there is L such that Lu0 = 1 and |L| = 1. Define g(λ) = L(F (λu0).
g maps U intoself and g(0) = 0. We use (1) g′(0) = L(Au0). Suppose that
F (z0) = z0. Then g(r) = r and therefore g = Id and in particular g′(0) = 1,
and g′(0) = L(Au0) = 1. Since B is strongly convex, we conclude Au0 = u0 and
therefore Az0 = z0 Contrary suppose that A(z0) = z0. Since A is linear then
Au0 = u0. Hence by (1), g′(0) = L(Au0) = L(u0) = 1 and therefore g = Id. Hence
we conclude that r = g(r) = L(F (z0)) and using that rB is strongly convex and
L(z0) = r, we get Fz0 = z0. �

See also Kang-Hyurk Lee, Almost Complex Manifolds and Cartan’s Uniqueness
Theorem, Transactions of the American Mathematical Society, Vol. 358, No. 5
(May, 2006), pp. 2057-2069.

The group of biholomorphic maps from a domain onto itself is called Aut(D).
(Convince yourself that Aut(D) is indeed a group!) Given a ∈ D, one can form the
subgroups Auta(D) of biholomorphic maps on D which leave a invariant.

The following example shows that a real version is not true.

Example 12. If f(x, y) = (x − x3/3 + 1/3, y − y3/3 + 1/3), then f maps [0, 1]2

onto itself and f ′(0) = Id.

We now prove Cartan uniqueness theorem (strongly convex pluriharmonic ver-
sion).

Theorem 4.9. Let D be a bounded domain in Cn and given a ∈ D. If f ∈ Auta(D)
satisfies f ′(a) = 1, then f(z) = z for all z ∈ D.

Proof. By a translation of coordinates (replace D with D − a), we can assume
a = 0. Because D is bounded, one has D ⊂ Dn(0, R) for some R > 0. Every f ∈
Aut0(D) has a Taylor expansion at the origin f(z) =

∑
n anz

n. Cauchy’s estimates
give |an| ≤ Mrn, where r is such that Dn(0, r) ⊂ D and M = supz∈D|f(z)|.
By assumption, f has a Taylor expansion f = z + fn0

(z) + · · · , where fk are n-
tuples of homogeneous polynomials of degree k and n0 is chosen to be the smallest
possible. The k’th iterate fk of f has then the Taylor expansion fk = z+kfn0(z) +
· · · . kfm(z) =

∫ π
−π f

k(eit)e−imtdt, kfm(z) ≤ R which violates the above Cauchy

estimate for large k unless fn0 = 0. But if f(z) = z in D(0, r), then also f(z) = z
in D by the principle of analytic continuation. �

Corollary 1 (Corollary 4.6 (Cartan)). . Let D be a bounded circular domain in
Cn and assume 0 ∈ D and f ∈ Aut0(D). Then f is linear.

If G is a simply connected domain in Cn, then it is clear that a mapping f :
G → C is pluriharmonic if and only if f has a representation f = h + g, where
h, g are holomorphic in G. A vector-valued mapping f = (f1, , fN )T defined in G
is said to be pluriharmonic, if each component fj(1 ≤ j ≤ N is a pluriharmonic
mapping from G into C, where N is a positive integer and T is the transpose of a
matrix. We refer to [4, 6, 7, 11, 12, 20] for further details and recent investigations
on pluriharmonic mappings.

Corollary 2. Suppose
(a) G1 and G2 are circular and 0 ∈ G1, 0 ∈ G2
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(b) F biholomorphic F (0) = 0
(c) G1 bounded
Then F is a linear transformation.

If f ∈ Aut(B) fixes a point of B, then the fp set of f is affine. Conversely, XXX

Theorem 4.10 (Hayed-Suffridge). If f ∈ Aut(B) fixes three point of S, then f
fixes a point of B.

An open subset G of Cn is called Reinhardt domain if (z1, . . . , zn) ∈ G implies
(eiθ1z1, . . . , e

iθnzn) ∈ G for all real numbers θ1, . . . , θn.
The reason for studying these kinds of domains is that logarithmically convex

Reinhardt domain are the domains of convergence of power series in several complex
variables. Note that in one complex variable, a logarithmically convex Reinhardt
domain is simply a disc. The intersection of logarithmically convex Reinhardt
domains is still a logarithmically convex Reinhardt domain, so for every Reinhardt
domain, there is a smallest logarithmically convex Reinhardt domain which contains
it.

A Reinhardt domain D is called logarithmically convex if the image of the set
D∗ = {z = (z1, · · · , zn) ∈ D/z1 · · · zn 6= 0} under the mapping
λ : z → λ(z) = (ln(|z1|), · · · , ln(|zn|)) is a convex set in the real space Rn.

A simple example of logarithmically convex Reinhardt domains is a polydisc,
that is, a product of disks.

See Wang and Ren[85]. Abstract. In this paper, we generalize a recent work
of Liu et al. from the open unit ball Bn ⊂ Cn to more general bounded strongly
pseudoconvex domains with C2 boundary. It turns out that part of the main result
in this paper is in some certain sense just a part of results in a work of Bracci and
Zaitsev. However, the proofs are significantly different: the argument in this paper
involves a simple growth estimate for the Caratheodory metric near the boundary
of C2 domains and the well-known Grahams estimate on the boundary behavior
of the Caratheodory metric on strongly pseudoconvex domains, while Bracci and
Zaitsev use other arguments.

5. Complex Dynamics and Denjoy-Wolff Theorem

5.1. Application to complex Dynamics. Let f be a complex function. We
define the iterates of f as f2 = f ◦ f , fn = fn−1 ◦ f . Given z0, the sequence of
points {zn} defined by zn = f(zn−1) is called the orbit of z0.

The Fatou set F of f is defined to be the set of points z0 ∈ C such that fn is a
normal family in some neighborhood of z0.

The Julia set J is the complement of the Fatou set. Let R be a rational function.
Consider a fixed component U of Fatou set of R.

1. If R(U) = U , we call U a fixed component of F
2. If Rn(U) = U for some n > 1, we call U a periodic component of F
3. If Rm(U) is periodic for some m ≥ 1, we call U a preperiodic component of F
4. Otherwise, all Rn(U) are distinct, and we call U a wandering domain.

Theorem 5.1. A rational map has no wanderings domains.

Assume U0 is wandering and let Un = Rn(U0), n ≥ 1. We assume ∞ is in
some component V of F other than the U ′ns. this implies that area(Un) < ∞,
which implies that only possible limit functions of Rn on U0 are constants. In fact,
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(Rn)′ → 0. Replacing Un by Un+m, we may assume no Un contains a critical point
of R.

We claim that R maps each Un one-to-one onto Un+1. For this it suffices to
prove that each Un is simply connected.

We will now construct a family of qc mappings {ft} with t ∈ Cm, so that
f−1
t ◦R ◦ ft is an m-dimensional analytic family of distinct rational maps.

So fix m > 2d− 1, and suppose B2ε ⊂ U0. Let D0 = Bε and Dn = Rn(D0). For
|t| < δ, we define a Beltrami coefficient (ellipse field) µ on D0 by

µ(z) =

m∑
1

tκe
−i kθ, z = reiθ ∈ D0.

we can extend the ellipse field to ∪Dn to be invariant under R. For other z set
µ = 0, and then the ellipse field is everywhere invariant.

Let ft(z) = f(z, t) be the solution of the Beltrami equation, normalized so
f(z, t) = z + o(1) at ∞.

From the invariance of the ellipse field, we see that Rt = f−1
t ◦R ◦ ft is analytic.

The normalized coefficients of Rt are holomorphic functions of t and agree with
those of R at t = 0. Let V be the connected component containing 0 of |t| < δ
determined by the equations aν(t) = aν(0), bν(t) = bν(0).

Suppose f : C → C is a meromorphic function. The Fatou set of f is defined
to be the set of points a such that fn is a normal family in some neigh of a.
We say that a set E is completely invariant if both it and its complement are in-
variant. Since R is onto, this occurs if and only if R−1(E) = E.
J (f) is the closure of the set of repelling periodic points of f .

Prop. If there is a neighborhood U of a such that fnk uniformly on U , then a is
a Fatou point.

Conversely, let a ∈ J there is a repelling periodic point z0 with period p. Without
loss of generality, we can assume that the orbit of z0 consists of finite point.

Let g = fp and λ = g′(z0); so that |λ| > 1. Using chain rule, we can verify that
(fnk)′(z0) tends to ∞. Since |fnk(z0)| is bounded, fnk uniformly converges to an
analytic function in some neigh of z0. This gives a contradiction.

See Bergweler W., Iteration of meromorphic functions, Bull. Am. Math. Soc.
29(2) (1993), 151-188.

If ∞ /∈ J , then R is hyperbolic on J if there exists m ≥ 1 such that |(Rm)′| > 1
on J .

R is hyperbolic on J if and only if every critical point belongs to F and is at-
tracted to an attracting circle.

Suppose that P a polynomial with finite postcritical set, such that no finite
critical point is periodic. Then the Julia set J is a dendrite.

Example 13. (a) P (z) = z2 − 2, 0→ −2→ 2→ 2→ . . . , J = [−2, 2].
(b) P (z) = z2 + i, 0→ i→ i− 1→ −i→ i− 1→ . . . .

If there are two completely invariant components of the Fatou set, at least one of
which has an attracting fixed point, then the Julia set J is a simple closed Jordan
curve.
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Let CP = CP (f) denote the set of critical points of f . The postcritical set of f
is defined to be the forward orbit P (f) = ∪n≥0f

n(CP (f)) of the critical points. ?
On its complement all branches of f−n, n ≥ 1, are locally defined and analytic.

Let U1 and U2 be bounded, open, simply connected domains with smooth bound-
aries, such that U1 ⊂ U2 Let f be holomorphic on U1 and maps U1 onto U2

with d-fold covering, so that f maps ∂U1 onto ∂U2; we call the triple (f ;U1, U2)
polynomial-like.

If (f ;U1, U2) is polynomial-like of degree d, then there are a polynomial P of
degree d and a qc map ϕ with ϕ(z) = z + o(1) near ∞, such that f = ϕ ◦ P ◦ ϕ−1

on U1. For qc surgery see T 5.1 [19].
Sullivan: Suppose that the Fatou set of a rational function R has exactly two

components and that R is hyperbolic on the Julia set J . Then J is a quasicircle.
For stability of the Julia set see Theorem 6.2 [86], and for Bers-Royden Theorem

6.8

Example 14. f(z) = z2 + i; P (f) = {∞, i,−1 + i,−i}.
The Lattès example

l(z) =

(
z − i
z + i

)2

has P (l) = {0,∞,−1, 1}; 0→ 1,→ −1,→ −1.

Theorem 5.2. Let f and g be topologically conjugate critically finite rational maps.
Then either
f and g are conformally conjugate; or
f and g are double-covered by integral torus endomorphisms.

Let Q(f) = f−1(P (f)) and φ topological conjugacy; then φ maps P (f) and Q(f)
to P (f) and Q(f).
f and g are covering maps between C \Q(f) and C \ P (f)

deforme φ to the Teichmüller mapping

ψ0 : C \ P (f)→ C \ P (f)

in the homotopy class of φ. Lifting ψ0 to ψ1; K(ψ1) = K(ψ0); ψ0 and ψ1 are
homotopic relP (f). By uniqueness of the Teichmüller mapping, we have ψ0 =
ψ1 = ψ. If ψ is conformal, then it provides a conformal conjugacy.
Now suppose ψ is strictly qc. and let α be its associate quadratic differential. Then
f∗(α) = deg(f)α because f and ψ comute; so f is affine.

Let F : S2 → S2 be a smooth map of positive degree. We say that F is a
branched cover if near any point p, we can find smooth charts φ, ψ ? such that

φ ◦ F ◦ ψ−1 = zd

for some d ≥ 1.

Theorem 5.3 (Thom). Any branched covering F between a pair of spheres is
equivalent to a rational map f .

identify S2 with C; solve the Beltramy equation

Dh

Dh
=
DF

DF
= µ.

Since h and F have the same complex dilatation f = F ◦ h−1 is a rational map.
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Theorem 5.4 (Sullivan). A branched cover F is qc conjugate to a rational map iff
the iterates of F are uniformly quasiregular; that is, K(Fn) ≤ K0 <∞

If F = φ ◦ f ◦ φ−1 with f rational and φ qc, then Fn = φ ◦ fn ◦ φ−1 and then
K(Fn) ≤ K(φ)2.
A rational map is critically finite if |P (f)| <∞.

Let f and g be critically finite branched covers of the sphere. We say f and g
are combinatorially equivalent if there are homeomorphisms φ0 and φ1 such that
φ0, φ1 : (S2, P (f))→ (S2, P (g)), φ0 ◦ f = g ◦ φ1 and φ0 is isotopic to φ1 relP (f) .

For any finite set A ⊂ S2, we denote by Teich(S2, A) the Teichmüller space of
the sphere with the points in A marked. Any point in Teich(S2, A) is represented
by a finite set B ⊂ C together with marking homeomorphism g : (S2, A)→ (C, B).

Now let F : S2 → S2 be a critically finite branched cover. (C, P0) ∈ Teich(S2, P (F )
with a marking homeomorphism g : (S2, P (F ))→ (C, P0); use the covering

F : (S2, Q(F ))→ (S2, P (F ))

we can form a new Riemann surface

F ∗(C, P0) = (C, Q0) ∈ Teich(S2, Q(F )).

g ◦ F is local chart on (S2, Q(F )) and define complex structure A.
Let h : (S2, Q(F )) → (C, Q0) be a qc such that complex structure h∗(C, Q0) is

? def equivalent with A and g ◦ F ◦ h−1 is a covering (C, Q0) onto (C, P0). Mark a
subset P1 = h(P (F )) of Q0.

The covering (C, Q0)→ (C, P0) then prolongs to a rational map

f : (C, P1)→ (C, P0).

Define TF (C, P0) = (C, P1).
Now suppose that (C, P0) = (C, P1). Then after adjusting with a Möbius we can

assume that P0 = P1, and thus f is a rational map with P (f) = P0.
f is combinatorial equivalent to F .

The converse is also easy to check, so we have

Theorem 5.5. F is combinatorially equivalent to a rational map iff TF has a fixed
point on Teichmüller space.

5.2. dynamics. Suppose f : C → C is a meromorphic function. The Fatou set of
f is defined to be the set of points a such that fn is a normal family in some neigh
of a.
J (f) is the closure of the set of repelling periodic points of f .

Proposition 5.1 ([74]). If there is a neighborhood U of a such that fnk uniformly
converges on U , then a is a Fatou point.

Proof. Conversely, let a ∈ J there is a repelling periodic point z0 with period p.
Without loss of generality, we can assume that the orbit of z0 consists of finite
point.

Let g = fp and λ = g′(z0); so that |λ| > 1. Using chain rule, we can verify that
(fnk)′(z0) tends to ∞. Since |fnk(z0)| is bounded, fnk uniformly converges to an
analytic function in some neigh of z0. This gives a contradiction. �
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Se also Bergweler W., Iteration of meromorphic functions, Bull. Am. Math.
Soc. 29(2) (1993), 151-188.

The Schwarz Lemma is related to the following result.
See https://en.wikipedia.org/wiki/Denjoy-Wolff−theorem.

Denjoy-Wolff Theorem (1926). Theorem. Let U be the open unit disk
in C and let f be a holomorphic function mapping U into U which is not an
automorphism of U (i.e. a Möbius transformation). Then there is a unique point
z in the closure of U such that the iterates of f tend to z uniformly on compact
subsets of U. If z lies in U, it is the unique fixed point of f . The mapping f leaves
invariant hyperbolic disks centered on z, if z lies in U, and disks tangent to the unit
circle at z, if z lies on the boundary of U.

When the fixed point is at z = 0, the hyperbolic disks centred at z are just
the Euclidean disks with centre 0. Otherwise f can be conjugated by a Möbius
transformation so that the fixed point is zero. An elementary proof of the theorem
is given below, taken from Shapiro (1993) and Burckel (1981). Two other short
proofs can be found in Carleson & Gamelin (1993).

For the subject se for example:
Beardon, A. F. (1990), ”Iteration of contractions and analytic maps”, J. London

Math. Soc., 41: 141-150,
Burckel, R. B. (1981), ”Iterating analytic self-maps of discs”, Amer. Math. Monthly,
88: 396-407, doi:10.2307/2321822,
Carleson, L.; Gamelin, T. D. W. (1993), Complex dynamics, Universitext: Tracts
in Mathematics, Springer-Verlag, ISBN 0-387-97942-5,
Shapiro, J. H. (1993), Composition operators and classical function theory, Univer-
sitext: Tracts in Mathematics, Springer-Verlag, ISBN 0-387-94067-7
See also https://www.math.iupui.edu/ ccowen/Talks/FixPts1005.pdf, Fixed Points
of Functions Analytic in the Unit Disk by Carl C. Cowen, IUPUI (Indiana Univer-
sity Purdue University Indianapolis). Conference on Complex Analysis, University
of Illinois, May 22, 2010.

Definition. Suppose f is an analytic map of U into itself. If |b| < 1, we say
b is a fixed point of f if f(b) = b. If |b| = 1, we say b is a fixed point of f if
limr→1− f(rb) = b.

Julia-Caratheordory Theorem implies that if b is a fixed point of f with |b| = 1,
then limr→1− f

′(rb) exists (call it f ′(b)) and 0 < f ′(b) ≤ ∞.
Denjoy-Wolff Theorem (1926). (a) If f is an analytic map of U into itself, not

the identity map, there is a unique fixed point, a, of f in U such that |f ′((a)| ≤ 1.
(b) If f is not an automorphism of U (i.e. a Mobius transformation) with fixed

point in U, iterates of f tend to a uniformly on compact subsets of U
This distinguished fixed point will be called the Denjoy-Wolff point of f .
The Schwarz-Pick Lemma implies f has at most one fixed point in U and if f

has a fixed point in U, it must be the Denjoy-Wolff point. See
C. C. Cowen, Iteration and the Solution of Functional Equations for Functions
Analytic in the Unit Disk. Trans. Amer. Math. Soc. 265 (1981) 69-95.
C. C. Cowen and Ch. Pommerenke, Inequalities for the Angular Derivative of an
Analytic Function in the Unit Disk. J. London Math. Soc. 26 (1982) 271-289.

Question 3. Is there a version of this result for quasi-regular mappings? For
Danjoy-Wolff theorem see [19], [20]. It seems that using the analityc covering
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theorem (the uniformization theorem for hyperbolic domains) one can get a version
of Theorem Danjoy-Wolff for hyperbolic domains.

Exercise 5. Set T (z0, R) = {|1 − z0z|2 = R(1 − |z|2)} For and z0 ∈ T, the set
Dz0 = D(z0, R) = {z ∈ U : |1 − z0z|2 < R(1 − |z|2)} is called a horocycle at z0

with radius R. This set is a disc in which is internally tangent to T at z0. Since
|1− z0z|2 = |z|2− 2Rez0z+ 1, z ∈ T (z0, R) iff (R+ 1)|z|2− 2Rez0z = R− 1. Hence
z ∈ T (z0, R) iff |z − w0| = R0, where w0 = z0

R+1 and R0 = R
R+1 .

Exercise 6. Check that
a) For a ∈ C, the function Ta has singularity at a∗ := 1/a, and for s ≤ 1/|a|, the set
σ(w, a) < s is Euclidean disk disk, the circle E(a; s) = σ(w, a) = s has the center

at a0 = τa, where τ = 1−s2
1−s2|a|2 and radius R = s(1−|a|2)

1−s2|a|2 ;

Thus E(a; s) = T (a0;R); and if s = |a| ≤ 1, then |a0| ≤ 1/2 .

b) In particular 0 ∈ Ea := E(a; |a|) = T ( a
1+|a|2 ; |a|

1+|a|2 ), and E(1; 1) = T (1/2; 1/2)

and T (1/2; 1/2) = {|w|2 = 2Rew}.
c) Suppose that f : U→ U is continuous and non-expansive wrt pseudo-hyperbolic
metric on U. Prove that there is a boundary point z0 such that f leaves any given
disk tangent to the boundary at z0 invariant.
Outline. c)Set fm(z) = ρmz, where ρm → 10, when tends to∞, and let zm be fixed
point of fm. Since fm(zm) = zm, σ(fm(0), zm) = σ(fm(0), f(zm)) < σ(zm, 0) =
|zm| and therefore fm(0) ∈ E(zm; |zm|). Next Em := E(zm; |zm|) = T (Om;Rm),

where Om = zm
1+|zm|2 and Rm = |zm|

1+|zm|2 . Hence |fm(0)|2 ≤ 2Re(wOm) and since

Om tends to 1/2 when m→∞, we conclude f(0) ∈ B(1/2; 1/2).
c1) Visualize the proof in the point c); draw the picture of the circles Em and give

geometric interpretation of the relations fm leaves Em invariant and Em ”tends”
to T (1/2; 1/2).

Theorem Danjoy-Wolff. Let U be the open unit disk in C and let f be a
holomorphic function mapping U into U which is not an automorphism of U (i.e. a
Mobius transformation). Then there is a unique point z0 in the closure of U such
that the iterates of f tend to z0 uniformly on compact subsets of U. If z0 lies in U,
it is the unique fixed point of f . The mapping f leaves invariant hyperbolic disks
centered on z0, if z0 lies in U, and disks tangent to the unit circle at z0, if z0 lies
on the boundary of U.

Proof. When the fixed point is at z0 = 0, the hyperbolic disks centred at z0 are
just the Euclidean disks with centre 0. Otherwise f can be conjugated by a Mobius
transformation so that the fixed point is zero. An elementary proof of the theorem
is given below, taken from Shapiro (1993) and Burckel (1981). Two other short
proofs can be found in Carleson & Gamelin (1993)[19].

Case 1(Fixed point in the disk). If f has a fixed point z in U then, after conju-
gating by a Möbius transformation, it can be assumed that z = 0. Let M(r) be the
maximum modulus of f on |z| = r < 1. By the Schwarz lemma |f(z)| ≤ δ(r)|z|,
for |z| ≤ r, where δ(r) = M(r)

r . Since f is not automorphism of U, δ(r) < 1. It
follows by iteration that |fn(z)| ≤ δ(r)n for |z| ≤ r. These two inequalities imply
the result in this case.

Case 2 (No fixed points in the unit disk). When f acts in U without fixed points,
Wolff showed that there is a point z0 on the boundary such that the iterates of f
leave invariant each disk tangent to the boundary at that point. Take a sequence
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rk increasing to 1 and set fk(z) = rkf(z). By applying Rouché’s theorem to
fk(z)− z and g(z) = z, fk has exactly one zero zk in D. Passing to a subsequence
if necessary, it can be assumed that zk → z0. The point z0 cannot lie in U, because,
by passing to the limit, z0 would have to be a fixed point. The result for the case
of fixed points implies that the maps fk leave invariant all Euclidean disks whose
hyperbolic center is located at zk. We leave the interested reader to fill details for
proof of the following(use Exercise 6c)):
(I1)Explicit computations show that, as k increases, one can choose such disks so
that they tend to any given disk tangent to the boundary at z0. By continuity, f
leaves each such disk B invariant.

To see that fn converges uniformly on compacta to the constant z0, it is enough
to show that the same is true for any subsequence fnk , convergent in the same sense
to a function g, say. Such limits exist by Montel’s theorem, and if g is non-constant,
it can also be assumed that fnk+1−nk has a limit, h say. Set mk = nk+1 − nk. But
then fnk+1 = (fnk)mk and fnk(w)→ g(w) and fnk+1(w)→ g(w). Hence since fmk

holomorphic function does not increase hyperbolic distance on U, we find
d
(
fmk(fnk(w)), fmk(g(w))

)
≤ d

(
fnk(w), g(w)

)
and therefore h(g(w)) = g(w) for

w in U.
Since h is holomorphic and g(U) open, h(w) = w for all w.
It can also be assumed that fmk−1 is convergent to F say.
But then fmk(w) = fmk−1(fw) = f(fmk−1(w)) and therefore
f(F (w)) = w = f(F (w)), contradicting the fact that f is not an automorphism.
Hence every subsequence tends to some constant uniformly on compacta in U.
The invariance of B implies each such constant lies in the closure of each disk B,

and hence their intersection, the single point z0. By Montel’s theorem, it follows
that fn converges uniformly on compacta to the constant z0.

For the subject see: What are the most recent versions of The Schwarz Lemma at
the Boundary? - ResearchGate. Available from: https://www.researchgate.net/post/

�

5.3. Further results related to Denjoy-Wolff Theorem. For and z0 ∈ T, the
set Dz0 = D(z0, R) = {z ∈ U : |1 − z0z|2 < R(1 − |z|2)} is called a horocycle at
z0 with radius R. This set is a disc in which is internally tangent to T at z0(see
Exercise5).

The classical Denjoy-Wolff theorem is the following one-dimensional result: Let
U be the open unit disc in the complex plane C. If F ∈ Hol(U) is not the identity
and is not an automorphism of with exactly one fixed point in U, then there is a
unique point a in the closed unit disc such that the iterates {Fn} of F converge
to a, uniformly on compact subsets of U. This result is, in fact, a summary of the
following three assertions A)-C) due to A. Denjoy and J. Wolff.

A) The Wolff-Schwarz lemma: If has no fixed point in U, then there is a unique
unimodular point a such that every horocycle Da in U, internally tangent to T at
a, is F -invariant, i.e., F (Da) ⊂ Da.

This assertion is a natural complement of the Julia-Wolff-Carathodory theorem.
B) If F ∈ Hol(U,U) has no fixed point in U, then there is a unique unimodular

point b such that the sequence {Fn} converges to b , uniformly on compact subsets
of U.
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C) If F ∈ Hol(U,U) is not an automorphism of but has a fixed point c in U,
then this point is unique in U, and the sequence {Fn} converges to c uniformly on
compact subsets of U.

The limit point in B) is sometimes called the Denjoy-Wolff point of F .
When is a complex Hilbert space with the inner product (, ), and B is its open

unit ball, the following generalization of the Wolff-Schwarz lemma is due to K.
Goebel [78]: If F ∈ Hol(B) has no fixed point, then there exists a unique point
a ∈ S such that for each the set E(a,R) = {z ∈ B : |1 − (z, a)|2 < R(1 − |z|2)} is
F -invariant.

Geometrically, the set E(a,R) is an ellipsoid the closure of which intersects the
unit sphere at the point a. It is a natural analogue of the horocycle D(a,R).

Another look at the DenjoyWolff theorem is provided by a useful result of P.
Yang [83] concerning a characterization of the horocycle in terms of the Poincar
hyperbolic metric in (cf. also Poincar model). More precisely, he established the
following formula:

(A2) d0(z, a) := lim
w→a

[d(z, w)− d(0, w)] =
1

2
ln
|1− az|2

1− |z|2
.

Outline. Set

A(z, w) =
1 + σ(z, w)

1− σ(z, w)

1− |w|
1 + |w|

=
B

C

1− |w|
1 + |w|

,

where B = (|1− zw|+ |z−w|)2 and C = |1− zw|2− |z−w|2 = (1− |z|2)(1− |w|2).

Hence A(z, w) tends B(z,a)
4(1−|z|2) when w tends a and since |1−az| = |z−a|, B(z, a) =

4|1− az|2. Therefore horocycle E(a,R) is given by {z ∈ U : d0(z, a) < 1
2 lnR}.

Since Kobayashi metric (whether a hyperbolic metric exists ?) can be defined
in each bounded domain in Cn, one can try to extend this formula and use it as a
definition of the horosphere in a domain in Cn. Unfortunately, in general the limit
in (A2) does not exist.

To overcome this difficulty, M. Abate [79] introduced two kinds of horospheres.
More precisely, he defined the small horosphere Ez0(a,R) of centre a, pole z0 and
radius R by the formula

Ez0(a,R) = {z ∈ D : lim sup
w→a

[KD(z, w)−KD(z0, w)] <
1

2
lnR,

and the big horosphere of centre a, pole z0 and radius R by the formula

Fz0(a,R) = {z ∈ D : lim inf
w→a

[KD(z, w)−KD(z0, w)] <
1

2
lnR,

where is D a bounded domain in Cn and KD is its Kobayashi metric (cf. Hyperbolic
metric). For the Euclidean ball in Cn, Ez0(a,R) = Fz0(a,R).

Thus, each assertion which states for a domain D in Cn the existence of a point
a ∈ ∂D such that F (Ez(a,R)) ⊂ Fz(a,R) is a generalization of the Wolff-Schwarz
lemma. This is true, for example, for a bounded convex domain in Cn, see [79].
However, in this case B) does not hold in general.Nevertheless, the convergence
result does hold for bounded strongly convex domains, and for strongly pseudo-
convex hyperbolic domains with a C2 boundary [79, 80].

In the hyperboloid model, a horosphere is represented by a plane whose normal
lies in the asymptotic cone. More recently, Shoiket et al. have also obtained [84] a
boundary version of the Earle-Hamilton theorem for the Hilbert ball: If F : B→ B
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is a fixed point free mapping of the open unit ball B in (complex) Hilbert space
such that F (B) is contained in a horosphere in B, then the iterates Fn converge to
a boundary point of B.

We are now ready to formulate and establish the main theorem of ?? this section.
In [81], the authors proved the following results:

Theorem 5.6. If D is a bounded and strictly convex domain in an arbitrary com-
plex Banach space (X; ||), and f : D → D is compact, kD-nonexpansive and fixed-
point-free, then there exists a point z0 ∈ ∂D such that the sequence {fn} of the
iterates of f converges in the bounded-open topology to the constant map taking the
value z0, that is, the sequence {fn} tends to z0, uniformly on each kD -bounded
subset C of D.

Theorem 5.7. Let X be a complex strictly convex Banach space with an open unit
ball B. For each compact, holomorphic and fixed-point-free mapping f : B → B
there exists z0 ∈ ∂B such that the sequence {fn} of iterates of f converges locally
uniformly on B to the constant map taking the value z0.

Abstract. In [82], the authors study the dynamics of fixed point free mappings
on the interior of a normal, closed cone in a Banach space that are nonexpansive
with respect to Hilbert’s metric or Thompson’s metric. They establish several
Denjoy-Wolff type theorems that confirm conjectures by Karlsson and Nussbaum
for an important class of nonexpansive mappings. They also extend and put into
a broader perspective results by Gaubert and Vigeral concerning the linear escape
rate of such nonexpansive mappings.

5.4. Curvature. Let D be a domain in z = x+ iy-plane and a Riemannian metric
be given by the fundamental form

ds2 = σ|dz|2 = σ(dx2 + dy2)

which is conformal with euclidian metric. If M = (D,σ|dz|2, then the Gaussian
curvature of M is

KM = − 1

2σ
4 lnσ .

Instead of KM it is also convenient to use notation Kσ and call σ shortly metric
coefficient.

Often in the literature a Riemannian metric is given by ds = ρ|dz|, ρ > 0, that
is by the fundamental form

ds2 = ρ2(dx2 + dy2) .

In some situations it is convenient to to call ρ shortly metric density.
If ρ > 0 is a C2 function on D and M = (D, ρ|dz|), the Gaussian curvature of

M is expressed by the formula

KM = K̄ρ := −ρ−24 ln ρ.

We also call the above term the Gaussian curvature of a Riemannian metric
density ρ on D. Also we write K(ρ) and K̄ρ instead of Kρ and K̄(ρ) respectively.
It is clear that K̄ρ = K(ρ2).

For a > 0, K̄(aρ) = a−2K̄(ρ).
Recall that a pseudohermitian metric on D is a non-negative upper semicontin-

uous function ρ such the set ρ−1(0) is discrete in D.
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If u is an upper semicontinuous function on D and ω ∈ D, the lower generalized
Laplacian of u is defined by ([2], see also [25])

4L u(ω) = 4 lim inf
r→0

1

r2

[ 1

2π

∫ 2π

0

(
u(ω + reit)− u(ω)

)
dt
]
.

When u is a C2 function, then the lower generalized Laplasian of u reduces to the
usual Laplacian

4u = uxx + uyy .

The Gaussian curvature of a pseudohermitian metric density on D is defined by
the formula

K = K̄ρ = −ρ−24L ln ρ .

For all a > 0 define the family of functions λa

λa(z) =
2

a(1− |z|2)
.

Also, it is convenient to write λ instead of λ1.
XXX Suppose ρ is a semimetric density on a region G and f : D → G is a

holomorphic function. The pull-back of ρ by f is f∗(ρ) = ρ(f(z))|f ′(z)|.
Suppose a ∈ D, f ′(a) 6= 0, ρ(f(a)) > 0 and ρ is of class C2 at f(a). Then

Kf∗(ρ)(a) = Kρ

(
f(a)

)
.The Gaussian curvature of the density λa is K̄(λa) = −a2.

This family of Hermitian metrics on D is of interest because it allows an ordering
of all pseudohermitian metrics on D in the sense of the following ([2]).

Theorem 5.8. Let ρ be a pseudohermitian metric density on D such that

K̄ρ(z) ≤ −a2

for some a > 0. Then ρ ≤ λa.

This kind of estimate is similar to Ahlfors-Schwarz lemma.
Ahlfors lemma can be found in Ahlfors [5].

A metric ρ is said to be ultrahyperbolic in a region Ω if it has the following
properties :
(a) ρ is upper semicontinuous; and
(b) at every z0 with ρ(z0) > 0 there exits a supporting metric ρ0 , defined and
class C2 in a neighborhood V of z0 , such that ρ0 ≤ ρ and K̄ρ0 ≤ −1 in V , while
ρ0(z0) = ρ(z0).

Theorem 5.9. (Ahlfors Lemma 1). Suppose ρ is an ultrahyperbolic metric on
D . Then ρ ≤ λ .

The version presented in Gardiner [24] has a slightly modified definition of sup-
porting metric. This modification and formulation is due to Earle. This version
has been used (see [24]) to prove that Teichmüller distance is less than equal to
Kobayashi′s on Teichmüller space.
Ahlfors [5] proved a stronger version of Schwarz’s lemma and Ahlfors lemma 1.

Theorem 5.10. (Ahlfors lemma 2 ). Let f be an analytic mapping of D into a
region on which there is given ultrahyperbolic metric ρ. Then ρ[f(z)] |f ′(z)| ≤ λ .
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The proof consists of observation that ρ[f(z)] |f ′(z)| is ultrahyperbolic metric
on D. Observe that the zeros of f ′(z) are singularities of this metric.

Note that if f is the identity map on D we get Theorem 3 (Ahlfors lemma 1)from
Theorem 4.

The notation of an ultrahyperbolic metric makes sense , and the theorem remains
valid if Ω is replaced by a Riemann surface.

In a plane region Ω whose complement has at least two points, there exists a
unique maximal ultrahyperbolic metric, and this metric has constant curvature −1.

The maximal metric is called the Poincarémetric of Ω , and we denote it by
λΩ. It is maximal in the sense that every ultrhyperbolic metric ρ satisfies ρ ≤ λΩ

throughout Ω.
The hyperbolic density (metric) of a disk |z| < R is given by

λR(z) =
2R

R2 − |z|2
.

If ρ is ultrahyperbolic in |z| < R , then ρ ≤ λR . In particular , if ρ is
ultrhyperbolic in the whole plane, then ρ = 0. Hence there is no ultrahyperbolic
metric in the whole plane.

The same is true of the punctured plane C∗ = {z : z 6= 0} . Indeed, if ρ were ul-
trahyperbolic metric in the whole plane, then ρ(ez) | ez | would be ultrahyperbolic
in the whole plane. These are only cases in which ultrahyperobolic metric fails to
exist.
Ahlfors [5] used Theorem 4 to prove Bloch and the Picard theorems. Ultrahy-
pebolic metrics (without the name) were introduced by Ahlfors. They found many
applications in the theory of several complex variables.

The comparison principle.

Theorem 9 ([43]). If ρ and σ are two metrics (densities) on the disk D, σ is
complete and 0 > K̄σ ≥ K̄ρ on D, then σ ≥ ρ.

Here, K̄ is Gaussian curvature. For the hyperbolic density on the disk we have
K̄ = −4 (or −1, depends of normalization).

Example 15. If σ is the Poincaré metric with Kσ = −1 and ρ is any other metric
with Kρ ≤ −1, then ρ ≤ σ. In particular this holds if ρ = F ∗(σ) for a holomorphic
map F : D → D. (That is, the map F must be conformal with respect to the
complex structures induced by the respective metrics.)

5.5. An inequality opposite to Ahlfors-Schwarz lemma. Mateljević [43] proved
an estimate opposite to Ahlfors-Schwarz lemma.

A metric H|dz| is said to be superhyperbolic in a region Ω if it has the following
properties:
(a) H is continuous (more general, lower semicontinuous) on Ω.
(b) at every z0 there exists a supporting metric (from above) H0, defined and class
C2 in a neighborhood V of z0, such that H0 ≥ H and KH0 ≥ −1 in V , while
H0(z0) = H(z0).

Theorem 5.11 ([43]). Suppose H is a superhyperbolic metric on D for which
(c) H(z) tends to +∞ when |z| tends to 1−
Then λ ≤ H.
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Proof. XXX Let ρr(z) = 2r(1− |rz|2)−1, where r ∈ (0, 1), and let

Ψr(z) = log |H(z)| − log ρr(z) .

By the hypothesis of theorem Ψr has a minimum on D at a point z0. Let H0 be
supporting metric density from above to H at z0 in a neighborhood V and

τr(z) = log |H0(z)| − log ρr(z) .

τr has a minimum on V at z0 and so

(1) 0 ≤ ∆τr(z0) = ∆ log |H0(z0)| −∆ log ρr(z0) .

By the hypothesis, we have

K̄H0(z0) = −H0(z0)−2(4 lnH0)(z0) ≥ −1 ,

that is

(4 lnH0)(z0) ≤ H0(z0)2 ,

and

(4 ln ρr)(z0) ≤ (ρr(z0))2 .

Hence by (1),

(2) 0 ≤ ∆τr(z0) = ∆ log |H0(z0)| −∆ log ρr(z0) ≤ H2
0 (z0)− (ρr(z0))2

and therefore ρr(z0) ≤ H0(z0). Since H0(z0) = H(z0) it follows that Ψr has
non-negative minimum at z0 and hence we conclude that ρr ≤ H for every z ∈ D.
If r tends to 1−, we find ρ ≤ H on D. XXX

�

By applying a method developed by Yau in [68] (or by generalized maximum
principle of Cheng and Yau [16] ), it follows that this result holds if we suppose
instead of (c) that
(d) H is a complete metric on D.

Theorem 5.12. If ρ and σ are two metrics (density) on D, σ complete and 0 >
K̄σ ≥ K̄ρ on D, then σ ≥ ρ.

This theorem remains valid if ρ is ultrahyperbolic metric and σ superhyperbolic
metric on D. Also, we can get further generalizations if D is replaced by a Riemann
surface.

Suppose that Ω is a hyperbolic domain and
(a) H0 : Ω→ (0,∞) is continuous (more general, lower semicontinuous) on Ω,
(b) The generalized Gaussian curvature of H0, KH0

≥ −1 on Ω.
Then λΩ ≤ H.

For convenient of the reader we recall the definition of the curvature. Let D be a
domain in z = x+ iy-plane and a Riemannian metric be given by the fundamental
form

ds2 = σ|dz|2 = σ(dx2 + dy2)
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which is conformal with euclidian metric. If M = (D,σ|dz|2, then the Gaussian
curvature of M is

KM = − 1

2σ
4 lnσ .

Instead of KM it is also convenient to use notation Kσ and call σ shortly metric
coefficient.

Often in the literature a Riemannian metric is given by ds = ρ|dz|, ρ > 0, that
is by the fundamental form

ds2 = ρ2(dx2 + dy2) .

In some situations it is convenient to to call ρ shortly metric density.
If ρ > 0 is a C2 function on D and M = (D, ρ|dz|), the Gaussian curvature of

M is expressed by the formula

KM = K̄ρ := −ρ−24 ln ρ.

We also call the above term the Gaussian curvature of a Riemannian metric
density ρ on D. Also we write K(ρ) and K̄ρ instead of Kρ and K̄(ρ) respectively.
It is clear that K̄ρ = K(ρ2).

Proposition 5.2 ([74]). If ρ, ρ0, ρ̃ metric density on B0 = B(z0; r0). Suppose that

(i) η := ρ̃
ρ has a local minimum at z0

K̄ρ̃ ≥ K̄ρ0 at z0, and
ρ0 ≥ ρ and ρ(z0) = ρ0(z0).
Then ρ ≤ ρ̃ on B0.

Proof. If K̄ρ̃ ≥ K̄ρ0 then

I =
4 ln ρ̃

4 ln ρ0
≤ χ :=

ρ̃2

ρ2
0

If ρ̃ρ has a local minimum at z0 on B0 = B(z0; r0), then 4 ln ρ̃ ≥ 4 ln ρ. If 4 ln ρ >

0, then I ≥ 1, and therefore χ(z0) ≥ 1. Hence ρ0 ≤ ρ̃ on B0. ρ0 ≥ ρ ρ(z0) = ρ0(z0).

Set η := ρ̃
ρ and η0 := ρ̃

ρ0
. If η has a local minimum at z0 on B0 = B(z0; r0), then

η0 does. Since η0(z0) = 1, we conclude ρ ≤ ρ̃ on B0. �

A metric ρ is said to be ultrahyperbolic in a region Ω if it has the following
properties :
(a) ρ is upper semicontinuous; and
(b) at every z0 with ρ(z0) > 0 there exits a supporting metric ρ0,defined and class
C2 in a neighborhood V of z0 , such that ρ0 ≤ ρ and K̄ρ0 ≤ −1 in V , while
ρ0(z0) = ρ(z0).

Set Iu(a, r) :=
∫ 2π

0

(
u(a + reit) − u(a)

)
dt. If u is a C2 function in a neighbor-

hood V , then u(a+ reit)− u(a) = Ar cos t+Br sin t+Dr2 cos2 t+Er2 cos t sin t+
Fr2 cos2 +o(r2), whereD = uxx(a)/2 and F = uyy(a)/2. Hence Iu(a, r) = π

2 r
24u(a)+

o(r2) and therefore
(i) 2

π r
−2Iu(a, r) tends to 4u(a) if r tends to 0.

Definition 5.13. If u is an upper semicontinuous function, the lower generalized
Laplacian of u is defined by ([2], see also [25])

4L u(ω) = 4 lim inf
r→0

1

r2

[ 1

2π

∫ 2π

0

(
u(ω + reit)− u(ω)

)
dt
]
.
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When u is a C2 function, then by (i) we conclude that the lower generalized
Laplasian of u reduces to the usual Laplacian

4u = uxx + uyy .

Definition 5.14. A region Ω is hyperbolic if C\Ω contains at least two points. The
hyperbolic metric λΩ on Ω is the unique metric on Ω such that λD(z) = λΩ(z)|f ′(z)|,
where f : D → Ω is any holomorphic universal covering projection. The hyperbolic
metric has constant curvature −1.

Theorem 5.15 (Ahlfors Lemma 1). Suppose ρ is an ultrahyperbolic metric on D .
Then (1) ρ ≤ λ .
Definition 5.16. A conformai metric ρ(z)|dz| on a region Ω is called an SK metric
provided ρ : Ω→ [0,+∞) is upper semicontinuous and 4L log ρ(a) ≥ ρ2(a) at each
point a ∈ Ω such that ρ(a) > 0.

Thus, an SK metric is a conformai metric with generalized curvature at most −1
at each point where it does not vanish.

Here λD|dz| is the hyperbolic metric on normalized to have curvature −1. (In
some references and some parts of this paper the curvature is taken to be −4; the
reader can translate all such results to the context of curvature −1.) Ahlfors did
not show that equality in (1) at a single point implied ρ = λD which would be the
analog of the equality statement in Schwarz ’s lemma. Heins [2] 2 introduced the
class of SK metrics, which includes ultrahyperbolic metrics, and verified that (1)
remains valid for SK metrics. In addition, he showed that equality at a single point
implied ρ = λD. However, his proof of the equality statement is not as elementary
as the proof of Ahlfors’ lemma since it relies on an integral representation for a
solution of the nonlinear partial differential equation ∆u = exp(2u).

In [53] D. Minda also considered the strong form of Ahlfors’ lemma and present
a relatively elementary proof of the equality statement for Ahlfors’ lemma for SK
metrics; it relies on the fact that the Laplacian of a real-valued function is non-
positive at any point where the function has a relative maximum. His proof is in
the spirit of Ahlfors’ derivation of (1) and is a modification of a method introduced
by Hopf [3] for linear partial differential equations. A related proof was given by
Jorgensen Jorgensen [4] in the special case of metrics with constant curvature −1.

Theorem 5.17. Let Ω be a hyperbolic region in C and λΩ the hyperbolic metric on
Ω. If ρ(z)|dz| is an SK metric on Ω, then either ρ(z) < λΩ(z) for all z ∈ Ω or else
ρ(z) = λΩ(z) for all z ∈ Ω.

Proposition 5.3 ([53]). Suppose G is a region in C, u : G → [−∞,∞) is upper
semicontinuous and there is a positive constant K such that ∆u(z) ≥ Ku(z) at any
point z ∈ G with u(z) > −∞. If lim supz→ζ u(z) ≤ 0 for all ζ ∈ ∂G, then either
u(z) < 0 for all z ∈ G or else u(z) = 0 for all z ∈ G.

Outline. Fix a ∈ G and take r > 0 such that B = B(a, r). There exists M > 0
such that ρ ≤ λ ≤ M on B. now u = ln(ρ/λ), is upper semicontinuous on B,
u(z) ≤ 0 for z ∈ B and at any point z ∈ B where u(z) > −∞; that is, where
ρ(z) > 0, we have
4u ≥ ρ2 − λ2 ≥ 2M(ρ− λ). Hence 4u ≥ 2M2u. Theorem 1 implies that either

ρ(z) < λG(z for all z ∈ B or else ρ(z) = λG(z for all z ∈ B.

2See D. Minda [53] for papers Heins [2], Hopf[3],Jorgensen [4].
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Note that H.L Royden [The Ahlfors-Schwarz lemma: the case of equality, J.
Analyse Math. 46 (1986), 261-270] also established the sharp form of Ahlfors’
lemma by a different method.

Theorem 5.18 ([74]). If ρ and σ are two metrics (density) on D, σ complete and
0 > K̄σ ≥ K̄ρ on D (where Kσ and Kρ are the generalized curvatures), then σ ≥ ρ.

The method of sub-solutions and super-solutions have been used in study har-
monic maps between surfaces cf. [38].

6. hyperbolic geometry, Möbius transformations and Cayley-Klein
model in several veriables

The unit sphere in three-dimensional space R3 is the set of points (x, y, z) such
that x2 + y2 + z2 = 1. Let N = (0, 0, 1) be the ”north pole”, and let M be the rest
of the sphere. The plane z = 0 contains the center of the sphere; the ”equator” is
the intersection of the sphere with this plane.

For any point P on M , there is a unique line through N and P , and this line in-
tersects the plane z = 0 in exactly one point P ′. Define the stereographic projection
of P to be this point P ′ in the plane.

In Cartesian coordinates (x, y, z) on the sphere and (X,Y ) on the plane, the
projection and its inverse are given by the formulas

(X,Y ) =

(
x

1− z
,

y

1− z

)
,

(x, y, z) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
−1 +X2 + Y 2

1 +X2 + Y 2

)
.

If M is a surface in R3 space and suppose that f is a difeomorphism of U onto
M we can transfer the Poincaré disk model onto M . For example, L is line on M if
f−1(L) is a U-line on U. We define dhyp,M (p, q) = dhyp,U(f−1(p), f−1(q)), p, q ∈M .
The disk model and M - model are isomorphic under f .

The inverse of the stereographic projection S maps the unit disk onto the hemi-
sphere S2

− and defines a S2
−- hyperbolic model and an orthogonal (orthographic)

projection of this model on xy-plane defines the Klein model on U.
Thus, the two models are related through a projection on or from the hemisphere

model.
Shortly, the Klein model is an orthographic projection of the hemisphere model,

while the Poincaré disk model is a stereographic projection.
Given two distinct points U and V in the open unit ball of the model in Eu-

clidean space, the unique straight line connecting them intersects the unit sphere
at two ideal points A and B, labeled so that the points are, in order along the
line, A,U, V,B. Taking the centre of the unit ball of the model as the origin, and
assigning position vectors u,v,a,b respectively to the points U, V,A,B, we have
that that |a − v| > |a − u| and |u − b| > |v − b|, where | · | denotes the Euclidean
norm. Then the distance between U and V in the modelled hyperbolic space is
expressed as

d(u,v) =
1

2
log
‖v − a‖ ‖b− u‖
‖u− a‖ ‖b− v‖

,

where the factor of one half is needed to make the curvature −1.
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We will prove below that on the unit ball in Rn the associated metric tensor is
given by the formula: if v ∈ TxRn, then

ds2(v) = Kle(x,v) =
‖dv‖2

1− ‖x‖2
+

(
∑n
k=1 xkvk)2(

1− ‖x‖2
)2 .(6.1)

It is supposedly classical and can be found in the literature that the restriction
of the Beltrami-Klein metric on the ball of Rn to any minimal surface (minimal
with respect tot he flat metric) has curvature ≤ −1. Unfortunately, the B-K metric
is not conformally equivalent to the Euclidean one. Hence, a conformal minimal
disk is not isothermal with respect to the B-K metric, and the pull-back is not a
hermitian metric on the disk. Probably it is not even quasiconformal.

6.1. The Cayley-Klein model of hyperbolic geometry. The Poincaré disk
model also called the conformal disk model, is a model of 2-dimensional hyperbolic
geometry in which the points of the geometry are inside the unit disk, and the
straight lines consist of all segments of circles contained within that disk that are
orthogonal to the boundary of the disk, plus all diameters of the disk. Hyperbolic
straight lines consist of all arcs of Euclidean circles contained within the disk that
are orthogonal to the boundary of the disk, plus all diameters of the disk.

By arcosh and arsinh we denote inverses of hyperbolic functions:

arsinhx = ln
(
x+

√
x2 + 1

)
, arcoshx = ln

(
x+

√
x2 − 1

)
;x ≥ 1 . By (14.1),

we find

cosh d =
1

2
(ed + e−d) =

1

2
(
1 + σ

1− σ
+

1− σ
1 + σ

) =
1 + σ2

1− σ2
= 1 +

2σ2

1− σ2
,

where d = dhyp,H and σ = δH. Hence,

cosh d = 1 + 2
|z1 − z2|2

|z1 − z2|2 − |z1 − z2|2
,

and
since |z1 − z2|2 − |z1 − z2|2 = 4y1y2, we find

cosh d = 1 +
|z1 − z2|2

2y1y2
.

Thus, in general, the distance between two points in H measured in hyperbolic
metric along such a hyperbolic geodesic is:

dist(〈x1, y1〉, 〈x2, y2〉) = arcosh

(
1 +

(x2 − x1)
2

+ (y2 − y1)
2

2y1y2

)
.

The Cayley-Klein model of hyperbolic geometry
Distances in this model are Cayley-Klein metrics. Given two distinct points p

and q inside the disk, the unique hyperbolic line connecting them intersects the
boundary at two ideal points, a and b, label them so that the points are, in order,
a, p, q, b and |aq| > |ap| and |pb| > |qb|.

The hyperbolic distance between p and q is then

d(p, q) = log
|aq| |pb|
|ap| |qb|

.
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Set {p, q} = |aq| |pb|
|ap| |qb| . If the ideal points, a and b, label them so that the points are,

in order, a, p, q, r, b, then {p, q}{q, r} = {p, r} and therefore d(p, r) = d(p, q)+d(q, r).
The vertical bars indicate Euclidean length of the line segment connecting the

points between them in the model (not along the circle arc), log is the natural
logarithm. Both the Poincaré disk model and the Klein disk model are models
of the hyperbolic plane. An advantage of the Poincaré disk model is that it is
conformal (circles and angles are not distorted); a disadvantage is that lines of
the geometry are circular arcs orthogonal to the boundary circle of the disk. This
section focuses on the projection of the unit sphere from the north pole onto the
plane through the equator. Other formulations are treated in later sections.

The unit sphere in three-dimensional space R3 is the set of points (x, y, z) such
that x2 + y2 + z2 = 1. Let N = (0, 0, 1) be the ”north pole”, and let M be the rest
of the sphere. The plane z = 0 contains the center of the sphere; the ”equator” is
the intersection of the sphere with this plane.

For any point P on M , there is a unique line through N and P , and this line in-
tersects the plane z = 0 in exactly one point P ′. Define the stereographic projection
of P to be this point P ′ in the plane.

In Cartesian coordinates (x, y, z) on the sphere and (X,Y ) on the plane, the
projection and its inverse are given by the formulas

(X,Y ) =

(
x

1− z
,

y

1− z

)
,

(x, y, z) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
−1 +X2 + Y 2

1 +X2 + Y 2

)
.

If M is a surface in R3 space and suppose that f is a difeomorphism of U onto
M we can transfer the Poincaré disk model onto M . For example, L is line on
M if f−1(L) is a U-line on U. We define dhyp,M (p, q) = dhyp,U (f−1(p), f−1(q)),
p, q ∈M . The disk model and M - model are isomorphic under f .

The inverse of the stereographic projection S maps the unit disk onto the hemi-
sphere S2

− and defines a S2
−- hyperbolic model and an orthogonal (orthographic)

projection of this model on xy-plane defines the Klein model on U.
Thus, the two models are related through a projection on or from the hemisphere

model.
Shortly, the Klein model is an orthographic projection of the hemisphere model,

while the Poincaré disk model is a stereographic projection.
Let o be an orthographic projection defined by o(y1, y2, y3) = (y1, y2, 0) and

denote by S the inverse of the stereographic projection. Then S maps the unit disk
onto S2

− and S1 = o ◦S the unit disk onto itself. S maps circles K orthogonal to T
onto circles S(K) in S2

− orthogonal to T and every S(K) belongs to a plane parallel
to e3. Let L be a plane parallel to e3 and let the half- circle K be the intersection
of L and S2

−. If a, b ∈ S(K), c and d are ideal point on K, and a′ = o(a) and
b′ = o(b), then by similarity |a− d|2 = 2R|a′ − d| and |a− c|2 = 2R|a′ − c|, where
R is the radius of S(K). Hence

(i) |a′, b′, c, d| = |a, b, c, d|2. Now let z, w ∈ U be points on the circle K and let
points z∗, w∗ be the intersection of the unit circle by the circle K.

Since S(z∗) = z∗, S(w∗) = w∗ and the absolute cross ratio is invariant under
Möbius, (ii) |z, w; z∗, w∗| = |Sz, Sw; z∗, w∗|.
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Let Kl (in honor of Klein) denote the inverse of S1. Note that Kl fixes the points
on the unit circle T.

Proposition 6.1. The distance in Klein model is dkle(z, w) = dhyp(Kl(z),Kl(w))
an it equals 1

2 ln |z, w; ẑ, ŵ|, where ẑ, ŵ are the intersection of the unit circle by line
zw.

When projecting the same lines in both models on one disk both lines go through
the same two ideal points(the ideal points remain on the same spot) also the pole
of the chord is the centre of the circle that contains the arc.

6.2. The Hyperbolic Metric and Möbius transformations. For Möbius trans-
formations in several dimensions see [6]. By e1, . . . , en we denote the coordi-
nate unit vectors of Rn. For example, e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0) and
e3 = (0, 0, 1, . . . , 0). We denote by x1, . . . , xn the coordinates of a point x ∈ Rn.
Thus x = (x1, . . . , xn) and x = x1e1 + · · ·+ xnen.

We denote by Rn∞ = Rn = Rn ∪ {∞} the one point compactification of Rn.
By Bn(a; r) we denote ball {x ∈ Rn : |x − a| < r} and by Sn−1(a; r) sphere

{x ∈ Rn : |x− a| = r}.
Möbius transformation is a mapping which is composition of a finte number of

the following:

(1) Translation: f(x) = x+ a
(2) Stretching f(x) = rx, r > 0
(3) Orthogonal: f is linear and |f(x)| = |x| for all x ∈ Rn.
(4) Inversion in a sphere S = S(a; r): J(x) = a+ r2 x−a

|x−a|2 .

Every isometry of Rn can be uniquely written as the composition t ◦ k where t is a
translation and k is an isometry xing the origin.

An n×n matrix A is called orthogonal if ATA = In, or equivalently if AAT = In.
The geometric meaning of the condition ATA = In is that the columns of A are
mutually perpendicular unit vectors (check!). Let O(n) = On(R) denote the set of
n× n orthogonal matrices.

The group of similarities consists of all mappings x 7→ mx+ b where b ∈ Rn and
m is a conformal matrix, i.e. m = λk with λ > 0 and k ∈ O(n). Every Möbius can
be expressed as a composite of inversions.

The reflection with respect to the unit sphere in Rn is defined by

x 7→ x∗ = Jx = x/|x|2, J0 =∞, J∞ = 0 .

The matrix J ′(x) has components J ′(x)ij = 1
|x|2 (δij − 2xixj

|x|2 ). We adapt a special

notation for the matrix Q(x) with entries Q(x)ij =
xixj
|x|2 . This enables us to write

J ′(x) = 1
|x|2 (I − 2Q(x)). This an important formula. From Q2 = Q we obtain (I −

2Q)2 = I. In higher dimensions, a Möbius transformation is a homeomorphism of
Rn, the one-point compactification of Rn, which is a finite composition of inversions
in spheres and reflections in hyperplanes. Lioville’s theorem in conformal geometry
states that in dimension at least three, all conformal transformations are Möbius
transformations. Every Möbius transformation can be put in the form

f(x) = b+
αA(x− a)

|x− a|ε
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where a, b ∈ Rn, α ∈ R, A is an orthogonal matrix, and ε is 0 or 2. The group of
Möbius transformations is also called the full Möbius group and denote by M̂(Rn).

The orientation-preserving Möbius transformations form The sub-group of M̂(Rn)
which we denote by M(Rn) and which is the connected component of the iden-

tity in the Möbius group. For any γ ∈ M̂(Rn) we denote by |γ′(x)| the posi-
tive number such that γ′(x)/|γ′(x)| ∈ O(n). In other words, |γ′(x)| is the lin-
ear change of scale at x which is the same in all directions. In higher dimen-

sions, we define absolute cross ratio |a, b, c, d| = |a−c|
|a−d| : |b−c||b−d| , which is invariant

|γa, γb, γc, γd| = |a, b, c, d|, γ ∈ M̂(Rn). This is clear when γ is a similarity, and for
J we obtain |Jx− Jy|2 = |J ′(x)||J ′(y)||x− y|2.

For a ∈ Bn (a 6= 0), R = R(a) = (|a∗|2 − 1)1/2 =
√

1− |a|2/|a|. Then
Sn−1(a∗, R(a)) is orthogonal to the unit sphere S.

The reflection (inversion) with respect to this sphere is given by

(6.2) σax = a∗ +R(a)2(x− a∗)∗ .
Define canonical mapping

(6.3) Ta(x) = (I − 2Q(a))σax .

The explicit expression for Ta(x) is

(6.4) Ta(x) = −a+ (1− |a|2)(x∗ − a)∗ =
(1− |a|2)(x− a)− |x− a|a

[x, a]2
,

where [x, a] = |x||x∗ − a| = |a||x− a∗|.
If γ ∈ M̂(Rn) maps a in 0, then γ = kv, where k ∈ O(n).

Let x = (x1, . . . , xn) be the coordinates on Rn. The Poincaré metric on the unit
B ⊂ Rn is given by

ds2
B =

4|dx|2

(1− |x|2)2
.

It is conformally equivalent to the Euclidean metric. The 2-dimensional case n = 2
is the standard Poincaré metric on the unit disk D ⊂ R2 ∼= C.

The Hyperbolic Metric.
Let B3 be the unit ball {x ∈ R3 : ||x|| < 1} in Euclidean 3-space. Using analogy

with the planar unit disk
the hyperbolic density on B3 is defined by

λ(x) =
2

1− ||x||2
.

The hyperbolic length of a smooth curve γ : [a, b]→ B3 is then

L(γ) =

∫ b

a

λ(γ(t))||γ′(t)||dt =

∫ b

a

2||γ′(t)||
1− ||γ(t)||2

dt.

The hyperbolic metric λ on B3 is defined by λ(x0, x1) = inf{L(γ), where the
infimum is taken over all γ smooth curves in B3 from x0 to x1.

A curve that attains this infimum is a hyperbolic geodesic from x0 to x1. The
arguments used for the hyperbolic metric on the unit disc (Lemma XX and Theorem
XX) show that:

Proposition 6.2 (Hyperbolic metric on B3). The hyperbolic metric is a metric on
the unit ball B3.
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Moreover, the hyperbolic geodesic from the origin 0 to any point x ∈ B3 is a

radial path with hyperbolic length log 1+||x||
1−||x|| .

Hyperbolic distance between arbitrary point x, y ∈ B3 is

λ(x, y) = log |y, x, ξ, η| = log
1 + ||Ty(x)||
1− ||Ty(x)||

,

where ξ and η are ends of geodesics through x and y, and Ty is defined by (6.4).
We can use the arguments above for any ball in R3

∞ and obtain a hyperbolic
metric on the ball for which the orientation preserving isometries are the Möbius
transformations. The most important example is when the ball is the upper half-
space:R3

+ = {(x1, x2, x3) ∈ R3 : x3 > 0} . The boundary of this is the extended
complex plane C∞ = R2

∞ . We can show that any Möbius transformation acting
on this boundary extends to an orientation preserving isometry of the upper half-
space for the hyperbolic metric with density: λ(x) = 1

x3
. We can also deduce the

results for the upper half-space directly from those for the ball B3 for inversion in
the sphere.

We have seen how to put a hyperbolic metric on the unit ball B3 in R3 or the
upper half-space R3

+. We will denote both of these by H3 and call them hyperbolic
3-space. The orientation preserving isometries for hyperbolic 3-space have been
identified with the group of Möbius transformations acting on the boundary ∂H3.

6.3. Klein model. We can show that (A) the group M(Hn) is isomorphic with
the group M(Bn), using a Mobius transformation of Hn onto Bn. We choose so
that 0, en,∞ correspond by y = σx to −en, 0, en, where en is the last coordinate
vector. The restriction of σ on Rn−1 is the usual stereographic projection.

The correspondence is given by

y = σx = (en + 2(x− en)∗)∗

x = σ−1(y) = en + 2(y∗ − en)∗

When xn = 0, one verifies that |y|2 = 1, y∗ = y and (X) reduces to

yi =
2xi

1 + |x|2
, yn =

|x|2 − 1

1 + |x|2
(6.5)

and for |y| = 1, we find

xi =
yi

1− yn
, xn = 0(6.6)

the stereographic projection (6.5) maps ball Bn−1 = {(x1, x2, ..., xn−1, 0) : x2
1 +

x2
2 + · · · + x2

n−1 < 1} on the lower hemi-sphere Sn−1. The composition of the
stereographic projection with the mapping (y1, y2, ..., yn−1, yn) 7→ (y1, y2, ..., yn−1)

y =
2x

1 + |x|2
, (x ∈ Rn−1, |x| < 1),(6.7)

and it maps Bn−1 onto itself. The inverse mapping is L is given by

x = Ly =
y

1− yn
, (y ∈ Rn−1, |y| < 1),(6.8)

where −yn = (1− |y|2)1/2. Note that here y = (y1, y2, ..., yn−1).
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The equation of an orthogonal circle is of the form |x − a|2 = |a|2 − 1, |a| > 1
or |x|2 + 1 = 2xa and (6.7) is equivalent to ay = 1, the equation of a straight line.
This can be used to construct the Klein model of hyperbolic space. In this model
the noneuclidean lines are the lines segments in Bn−1.

Proof of (6.1) (Klein-Finsler norm) (see also 14.5).
Set ωhyp = 2(1 − |X|2)−1|dX|, ω2

hyp = 4(1 − |X|2)−2|dX|2 and ωkle = L∗ωhyp.
Note that

(1) 1− yn = 1
1+|X|2

(2) 1− |X|2 = 2yn
1−yn

(3) yndyn = −ω, where ω = y1dy1 + y2dy2 + · · ·+ yn−1dyn−1 = y · dy.
Hence

dX =
dY

1− yn
+ Y

dyn
(1− yn)2

=
dY

1− yn
+ Y

ω

yn(1− yn)2

and
(1 − |X|2)−1|dX| = 1

2yn
|ω1|, where ω1 = dY − Y ω

yn(1−yn) . Set Pv = PY v =

(Y, v)Y/|Y | and Qv = v − Pv. For v ∈ TY Rn−1, we find

ω1(v) = Pv +Qv − |Y |2

yn(1− yn)
Pv = − 1

yn
Pv +Qv,

and therefore

ω2
kle(v) =

|v|2

y2
n

+
|(v, Y )|2

y4
n

=
|v|2

1− |Y |2
+
|(v, Y )|2

(1− |Y |2)2
.(6.9)

6.4. Conformal minimal immersion. Let x = (x1, . . . , xn) be the coordinates
on Rn. The Poincaré metric on the unit B ⊂ Rn is given by

ds2
B =

4|dx|2

(1− |x|2)2
.

It is conformally equivalent to the Euclidean metric. The 2-dimensional case n = 2
is the standard Poincaré metric on the unit disk D ⊂ R2 ∼= C. Let S ⊂ B be a
minimal surface (with respect to the Euclidean metric). Let h = ds2

hyp|S be the

metric on S obtained by restricting the Poincaré metric form ds2
B on S (inherited

from form ds2
B) . Since ds2

P is conformally equivalent to the Euclidean metric, it
introduces the same conformal structure on S as the Euclidean metric.

Problem 1. Does the Gaussian curvature of (S, h) satisfy Kh ≤ −1?

If S is euclidean disk then the Gaussian curvature of (S, h) equals −1.
Under ”hyperbolic” we mean the Poincare metric, then the answer is no, the

curvature of minimal submanifolds need not decrease; we get this informaion via
Forstneric [66].

Proposition 6.3. Let f : D → B ⊂ Rn be a conformal immersion, S = f(U) and
Kh ≤ −1. Then f∗dsP ≤ dsP . That is, the pullback of the Poincaré metric on B
to the disk D is bounded above by the Poincaré metric on D. By integration we get

dist
B

(f(z), f(w)) ≤ dist
D

(z, w), z, w ∈ D.

Proof. The conformal surface (S, h) has a unique Riemann surface structure. In any
isothermal local complex coordinate z on S we have h = λ(z)|dz|2, so h is a Kähler
metric. Furthermore, a conformal parametrization f : D→ S is a holomorphic map
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(up to a correct choice of orientation). If Kh ≤ −1 were, we could apply the Ahlfors
lemma which tells us that

f∗(ds2
B) = f∗(h) ≤ ds2

D.

�

Via Forstneric [66], we get the following information.
It is supposedly classical and can be found in the literature that the restriction

of the Beltrami-Klein metric on the ball of Rn to any minimal surface (minimal
with respect tot he flat metric) has curvature ≤ −1. This is what we need. Un-
fortunately, the B-K metric is not conformally equivalent to the Euclidean one.
Hence, a conformal minimal disk is not isothermal with respect to the B-K metric,
and the pull-back is not a hermitian metric on the disk. Probably it is not even
quasiconformal.

There is a related results related to the estimate of the Gaussian curvature of
analytic disks and more generally for complex submanifolds of Hermitian manifolds.
For the following result, see [35]:

Theorem 10. If M ′ is a complex submanifold of a Hermitian manifold M , then
the holomorphic bisectional (sectional) curvature of M ′ does not exceed that of M .

It is also interesting fact that The Bergman metric and the Beltrami-Klein metric
are tightly related.

The Bergman metric is on the unit ball in Cn is given by

ds2 = (n+ 1)(
|dz|2

1− |z|2
+
∑
µ,ν=1

zµzνdzµdzν
(1− |z|2)2

) .

More precisely, if v ∈ TzCn, then

ds2(v) = Ber(z,v) = (n+ 1)(
‖dv‖2

1− ‖z‖2
+

(
∑n
k=1 zkvk)2(

1− ‖z‖2
)2 ) .(6.10)

The restriction of this metric on the unit ball in Rn is up to the constant the
Klein metric. More precisely, if v ∈ TxRn, then Ber(z,v) = (n+ 1)Kle(x,v).

7. Schwarz lemma in the unit ball

In this section we follow [48].For further result see [49]. If f is a function on a set
X and x ∈ X sometimes we write fx instead of f(x). We write z = (z1, z2, ..., zn) ∈
Cn.

On Cn we define the standard Hermitian inner product by
< z,w >=

∑n
k=1 zkwk for z, w ∈ Cn and by |z| =

√
< z, z > we denote the norm

of vector z. We also use notation (z, w) instead of < z,w > on some places. By Bn
we denote the unit ball in Cn. In particular we use also notation U and D for the
unit disk in complex plane.

For planar domains G and D we denote by Hol(G,D) the class of all holomorphic
mapping from G into D. For complex Banach manifold X and Y we denote by
O(X,Y ) the class of all holomorphic mapping from X into Y .

We need some properties of bi -holomorphic automorphisms of unit ball (see
[69] for more details). For a fixed z, Bz = {w : (w − z, z) = 0, |w|2 < 1} and
denote by R(z) radius of ball Bz. Denote by Pa(z) the orthogonal projection onto
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the subspace [a] generated by a and let Qa = I − Pa be the projection on the
orthogonal complement. For z, a ∈ Bn we define

(7.1) z̃ = ϕa(z) =
a− Pz − saQz

1− (z, a)
,

where Pa(z) =
< z, a >

< a, a >
a and sa = (1−|a|2)1/2. Set Ua = [a]∩B, Qb = b+[a]⊥∩Bn,

ϕ1
a(z) =

a− Pz
1− (z, a)

, ϕ2
a(z) =

−saQz
1− (z, a)

and δ(a, z) = |ϕa(z)|.
Then one can check that

(I1) The restriction of ϕa onto Ua is automorphisam of Ua and the restriction onto
Bz maps it bi-holomorphically mapping onto Bz̃.

A domain U is called complete circular if whenever z ∈ U and |λ| ≤ 1 then
λz ∈ U . Note in passing that a complete circular domain automatically contains 0.

We need a few results from Rudin [69].

For a we define s = sa =
√

1− |a|2.

Theorem 11 (2.2.2 [69]). For every a ∈ B, ϕa has the following properties:
(i) ϕa(0) = a and ϕa(a) = 0
(ii) ϕ′a(0) = −s2P − sQ, ϕ′a(a) = −P/s2 −Q/s
(iii) the identity

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− (z, a)|2
,

(iv) ϕa is an involution: ϕa(ϕa(z)) = z
(v) ϕa is a homeomorphism of B onto B, and ϕa ∈ Aut(B).
(vi) Aut(B) acts transitively on B.

We only outline a proof. Since (1 − (z, a))−1 = 1+ < z, a > +O(|z|2) and
|a|2Pz = a < z, a >, ϕa(z) = a− (P + sQ)z + a < z, a > +O(|z|2). Hence

ϕa(z)− ϕa(0) = −s2Pz − sQz +O(|z|2)

and therefore the first formula in (ii) follows; the second one follows from

ϕa(a+ h) =
−Ph− sQh
s2− < h, a >

.

From (iv), it follows that ϕa is one-to-one of B onto B, and that ϕ−1
a = ϕa. If

a, b ∈ B, ϕb ◦ ϕa is an automorphism of B that takes a to b.
If f ∈ Aut(B), a = f−1(0), JRf denotes real Jacobian, then

(7.2) JRf(z) = (
(1− |a|2)

|1− (z, a)|2
)n+1.

Proposition 7.1 ( Theorem 8.1.2). Suppose that (i)G andG′ are complete circular
domains in Cn and Cm respectively,
(ii) G′ convex and bounded
(iii) F : G→ G′ holomorphic
Then
(a) F ′(0) maps G into G′

(b) F (rG) ⊂ rG′ (0 < r ≤ 1) if F (0) = 0.
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The following is an immediate corollary of Proposition 7.1:

Corollary 3. Suppose that f ∈ O(Bn,Bm). If f(0) = 0, then
(A1) |f ′(0)| ≤ 1.

We give another proof which is more in spirit of this paper.

Proof. For z∗ = z/|z| define Dz = {ζz∗ : ζ ∈ U} and F (ζ) = f(ζz∗), ζ ∈ U. Let
p be projection of Bm on the slice Df(z). By one dim version of Schwarz lemma
|F (ζ)| ≤ |ζ| and in particular for ζ = |z|, |f(z)| ≤ |z|. Hence (A1) |f ′(0)| ≤ 1. �

Proposition 7.2 (Theorem 8.1.4 [69]). Suppose that f : Bn → Bm holomorphic,
a ∈ Bn and b = f(a).
Then
|ϕb(f(z))| ≤ |ϕa(z)|, z ∈ Bn
or equivalently

(7.3)
|1− (fz, fa)|2

(1− |fa|2)(1− |fz|2)
≤ |1− (z, a)|2

(1− |a|2)(1− |z|2)
.

Set

σn(z, a) :=
|1− (z, a)|2

(1− |a|2)(1− |z|2)
.

For z, w ∈ Cn, |1− < z,w > |2 = 1 + | < z,w > |2 − (|z|2 + |w|2) + |z − w|2 and
therefore
(A1) |1− < z,w > |2 ≤ (szsw)2 + |z−w|2 and |1− < z,w > |2 = (szsw)2 + |z−w|2,
z, w ∈ C, that is

(B1) σn(z, w) ≤ 1 +
|z − w|2

(szsw)2
, σ1(z, w) = 1 +

|z − w|2

(szsw)2
, z, w ∈ C.

Theorem 12 ([32, 48]). Suppose that f ∈ O(Bn,Bm), a ∈ Bn and b = f(a).

(i) Then s2
a|f ′(a)| ≤ sb, i.e. (1− |a|2)|f ′(a)| ≤

√
1− |f(a)|2.

(ii) If m = 1, then s2
a|f ′(a)| ≤ s2

b , and
(iii) If m > 1, the inequality (a) σm(fz, fw) ≤ σn(z, w), z, w ∈ Bn, does not hold
in general, but if f ∈ O(Bn,B1) then σ1(fz, fw) ≤ σn(z, w), that is the following
inequality holds:

(7.4) σ1(fz, fa) =
|fz − fa|2

(1− |fa|2)(1− |fz|2)
≤ |z − a)|2

(1− |a|2)(1− |z|2)
, z ∈ Bn.

Proof. (i) Suppose first that f(0) = 0 and take z ∈ Bn. Hence (A1) |f ′(0)| ≤ 1.
For u ∈ TaC

m, by Theorem 11(ii), v = ϕ′a(a)u = −Pu/s2 − Qu/s and, by
Pitagora’s theorem,

|u| =
√
|Pu|2 + |Qu|2, |v|2 = |Pu|2/s4 + |Qu|2/s2

and therefore we find

(B1)
|u|
s
≤ |ϕ′a(a)u| ≤ |u|

s2
.

If f(a) = b, set h = ϕb ◦ f ◦ ϕa. By the chain rule h′(0) = ϕ′b(b) ◦ f ′(a) ◦ ϕ′a(0).
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Set u ∈ TaC
n, v = f ′(a)u ∈ TaC

m, u′ = ϕ′a(a)u and v′ = ϕ′b(b)v. By (A1),
|v′| ≤ |u′|. Since, by (B1),

|v|
sb
≤ |v′| and |u′| ≤ |u|

s2
a

,

hence s2
a|f ′(a)| ≤ sb, i.e. (1−|a|2)|f ′(a)| ≤

√
1− |f(a)|2 and therefore (i) is proved.

(ii) If m = 1, then s2
b |v′| = |v| and (ii) follows.

(iii) By (B1) and (7.3),

σ1(fz, fa) = 1 +
|fz − fa|2

(sfzsfa)2
≤ σn(z, a) =

|1− (z, w)|2

(szsa)2
≤ 1 +

|z − a|2

(szsa)2

and therefore (7.4). If z tends a, (ii) also follows from (7.4). If (a1) holds, then
(b1) s2

a|f ′(a)| ≤ s2
b . For function f0 = ϕb ◦ ϕa we have (1− |a|2)|f ′0(a)| = (1− |b|2)

which yields a contradiction with (b1). �

8. Contraction properties of holomorphic functions with respect to
Kobayashi distances

The author also published a paper [42] about holomorphic fixed point theorem
on Riemann surfaces.

Definition 8.1. Let G be bounded connected open subset of complex Banach
space, p ∈ G and v ∈ TpG. We define kG(p,v) = inf{|h|}, where infimum is taking
over all h ∈ T0C for which (i): there exists a holomorphic function φ : U→ G such
that φ(0) = p and dφ0(h) = v.

Let H = H(p, v) be the set of functions φ for which (i) holds I = I(p, v) be the
set of h > 0 for which (i) holds and let J = J(p, v) be the set of λ > 0 for which
there exists a holomorphic function φ : U→ G such that φ(0) = p and dφ0(1) = λv,
and λ0 = sup{λ ∈ J}. Since λ ∈ I iff (λ)−1 ∈ J ,then kG(p,v) = inf{h : h ∈ I} =
inf{h : h−1 ∈ J} = inf{h−1 : h ∈ J} = 1/λ0.

If φ is a holomorphic map of U into G, we define LGu(p, v) = sup{λ : φ(0) =
p, dφ0(1) = λv}, and LG(p, v) = supLGu(p, v), where the supremum is taken
over all maps φ : U → G which are analytic in U with φ(0) = p. Note that
LG(p, v)kG(p, v) = 1. By Definition 8.1,

(8.1) KobG(p, v) =
1

LG(p, v)
.

If G is the unit ball, we write Lφ(p, v) instead of LGφ(p, v).
We define the distance function on G by integrating the pseudometric kG: for

z, z1 ∈ G

(8.2) KobG(z, z1) = inf
γ

∫ 1

0

kG(γ(t), γ̇(t)) dt

where the infimum is over all piecewise paths γ : [0, 1] → G with γ(0) = z and
γ(1) = z1. For complex Banach manifold X and Y we denote by O(X,Y ) the class
of all holomorphic mapping from X into Y . If φ ∈ O(U, X) and f ∈ O(X,Y ), then
φ ◦ f ∈ O(U, Y ).

We can express Kobayashi-Schwarz lemma in geometric form:
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Theorem 8.2. If a ∈ X and b = f(a), u ∈ TaX and u∗ = f ′(a)u, then

(8.3) Kob(b, u∗) ≤ Kob(a, u) .

The proof is based on the fact that if φ ∈ H(a, u), then f ◦ φ ∈ H(b, u∗).
Using Theorem 8.2, one can prove:

Theorem 8.3. Suppose that G and G1 are bounded connected open subset of com-
plex Banach space and f : G→ G1 is holomorphic. Then

(8.4) KobG1(fz, fz1) ≤ KobG(z, z1)

for all z, z1 ∈ G.

Let A = {1 < |x| < 4}, A∗ = {2 < |x| < 3}, l(t) = 2 + 1
3 (t − 1) andf(x) =

−l(|x|)x. l maps the interval (1, 4) onto the interval (2, 3) and therefore f maps
A onto A∗ ⊂ A, but f has no fixed point (there is no point x ∈ A such that
f(x) = x. Hence this example shows that there is no a metric d on G such that f
is a contraction wrt d. The situation is completely different for analytic functions.

Theorem 8.4. Suppose that G is bounded connected open subset of complex Banach
space and G∗ ⊂ G, s0 = dist(G∗, G

c), d0 = diam(G) and q0 = d0
d0+s0

. Then

(i) KobG ≤ q0KobG∗ on G∗.
(ii) In addition if f : G→ G∗ is holomorphic, then

(8.5) KobG∗(fz, fz1) ≤ q0KobG∗(z, z1)

for z, z1 ∈ G∗.

(8.6) KobG(fz, fz1) ≤ q0KobG(z, z1)

for z, z1 ∈ G.

Proof. Suppose that p ∈ G∗, v ∈ TpG∗ and φ : U → G is a holomorphic function

such that φ(0) = p and dφ(h) = v. Set Rs = d0+s
d0

and qs = d0
d0+s . For h ∈ U

define φs(h) = p + Rs(φ(h) − p). Then φs(h) − φ(h) = (Rs − 1)(φ(h) − p) and
therefore |φs(h) − φ(h)| ≤ s. For s < s0, φs maps U into G and dφs(h) = Rsv.
Hence kG(p, v) ≤ qskG∗(p, v) and if s approaches s0 we first get (i) kG(p, v) ≤
q0kG∗(p, v) and by a standard procedure KobG ≤ q0KobG∗ . Now, by (8.4), we
have (ii) KobG∗(fz, fz1) ≤ KobG(z, z1). Combining (i) and (ii) we get (8.5) and
(8.6). �

If d0 = diam(G) is not finite, elementary example: Ha = {z : Imz > a} with
f(z) = z + ia which maps H onto Ha, shows that the theorem does not hold.

Theorem 8.5 (Carthéodory). Let D ⊂ Cn domain for which Kobayshi pseudo-

distance is distance and f : D → D holomorphic mapping such that f(D) is a
compact subset of D. Then f is contraction with respect to Kobayshi (Carthéodory)
metric on D. In particular f has fixed points in D.

It is a corollary of Theorem 8.4. A version of Theorems 8.3-8.4 was proved in
1968 by Clifford Earle and Richard Hamilton [21] (see subsections 8.2 for further
comments).
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8.1. Addition to the proof of Theorem 12(iii) and and Theorems 8.3-8.4.
The Schwarz-Pick lemma states that every holomorphic function from the unit disk
U to itself, or from the upper half-plane H to itself, will not increase the Poincaré
distance between points.

It is convenient to introduce a pseudo-distance

(8.7) δ(z, ω) = |ϕz(ω)| =
∣∣∣∣ z − ω1− ω z

∣∣∣∣, z, ω ∈ U

which is a conformal invariant.
Shwarz-Pick lemma: If f holomorphic function from the unit disk U to itself,

then

(8.8) δ(f(z), f(ω)) ≤ δ(z, ω), z, ω ∈ U
with equality only if f is a Möbius transformation of D onto itself.

For z, w ∈ C, set a = (1−|z|2)(1−|w|2), b = |z−w|2, A = (1−|fz|2)(1−|fw|2),
and B = |fz − fw|2. By this notation,
(A2) |1− < z,w > |2 = 1 + | < z,w > |2 − (|z|2 + |w|2) + |z − w|2 = a+ b,
(B2) |1− < fz, fw > |2 = A+B.

If f ∈ O(B1,B1), using (A2) and (B2) Shwarz-Pick lemma can be rewritten in
the form B

b ≤
A+B
a+b and therefore Ba ≤ Ab, that is

(I) |fz − fw|
√

(1− |z|2)
√

(1− |w|2) ≤
√

(1− |fz|2)
√

(1− |fw|2)|z − w|.3

We can rewrite (I) as

(I1) If (z, w) :=
|fz − fw|
|z − w|

√
(1− |z|2)

√
(1− |w|2) ≤

√
(1− |fz|2)

√
(1− |fw|2).

Note if w → z, then If (z, w)→ (1− |z|2)|f ′(z)|.
By B we denote the Bloch space of holomorphic function on U with the ”norm”

|f |B := sup{(1− |z|2)|f ′(z)| : z ∈ U}. XX Since g := fz−fw
z−w is holomorphic in two

variables z, w, show that max Mg(r) of |g| on U2
r is attained on T 2

r .
For z, w ∈ Tr let K(z, w) be circle arc joins z and w. Since fz − fw =∫

K(z,w)
f ′(ζ)dζ, we have (1 − r2)Mg(r) ≤ |f |B. D. Jocić has mentioned the fol-

lowing question:
Question. Whether sup{If (z, w) : z, w ∈ U, z 6= w} = sup{(1− |z|2)|f ′(z)| : z ∈

U} = |f |B?
Set

(I2) I2
f (z, w) :=

|fz − fw − f ′(w)(z − w)|
|z − w|2

√
(1− |z|2)

√
(1− |w|2).

Question. Determine F such that I2
f (z, w) ≤

√
(1− |fz|2)

√
F (w).

Question 1 (D. Jocić). If f ∈ O(Bn,Bm) whether (I) holds?
For z, w ∈ Cn, |z − w|2 = |z|2 + |w|2 − 2Re < z,w >, and |1− < z,w > |2 =

1− 2Re < z,w > +| < z,w > |2.
Hence
|1− < z,w > |2 = 1 + | < z,w > |2 − (|z|2 + |w|2) + |z − w|2 and
|1− < fz, fw > |2 = 1 + | < fz, fw > |2 − (|fz|2 + |fw|2) + |fz − fw|2 and

3D. Jocić turns my attantion on this form and after communication with him we have added
the proof of (7.4))
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By Cauchy-Shwarz inequality | < z,w > |2 ≤ |z||w| and therefore

(C2) |1− < z,w > |2 ≤ an+bn, where an = (1−|z|2)(1−|w|2), and bn = |z−w|2.
Set Am = (1− |fz|2)(1− |fw|2) and Bm = |fz − fw|2. By (C2) and (7.3),

σ1(fz, fw) =
A1 +B1

A1
≤ σn(z, w) =

|1− (z, w)|2

an
≤ an + bn

an

and therefore (7.4).
We show that (I) does not hold in general. Contrary suppose that (I) holds and

that f ∈ O(Bn,Bm), a ∈ Bn and b = f(a).
Recall if m > 1 we proved,
(II) (1− |a|2)|f ′(a)| ≤

√
1− |f(a)|2.

Note that for function f0 = ϕb ◦ ϕa we have equality in (II).
If (I) holds and z tends a then we have,
(III) (1− |a|2)|f ′(a)| ≤ (1− |b|2).
An application of (II) and (III) tof0 shows that sb ≤ s2

b and consequently sb ≥ 1.
Since sb < 1 for b 6= 0, we have a contradiction.

8.2. Further comments related to Theorems 8.3-8.4. We have worked on the
subject from time to time between 1980 -1990 and in that time we proved Theorems
8.3-8.4(4). But we realized these days that it is a version of the Earle-Hamilton
(1968) fixed point theorem, which may be viewed as a holomorphic formulation
of Banach’s contraction mapping theorem. A version of this result was proved
in 1968 (when I enroled Math Faculty) by Clifford Earle and Richard Hamilton
[21] by showing that, with respect to the Carathéodory metric on the domain, the
holomorphic mapping becomes a contraction mapping to which the Banach fixed-
point theorem can be applied. Perhaps there are applications of this result in the
Teichmüller theory.

9. Curvature of Kobayashi and Carathéodory metric

9.1. On the Hessian of the Carathéodory metric. Here we collect some ma-
terials from Burbea’s paper [13].

In [13], the generalized lower Hessian of an upper semi-continuous function near
a point z in Cn is introduced (for n = 1 see Heins[31]). With this Burbea in-
troduces a ”sectional curvature” and he proves that the sectional curvature of the
Carathéodory-Reiffen metric is always ≤ −4. This generalizes a result of Suita [60]
in the one dimensional case. The sectional curvatures of the ball and polydisk are
always −4. A few other properties of the Hessian of the above metric are shown.

Now we give more details.
For ζ in D we write Hζ(D,U) = {f ∈ Hol(D,U) : f(ζ) = 0}. For each ζ in D,

CD(ζ, ) is the function defined on the complex tangent space of D at ζ by
CD(ζ,v) = sup{| < ∂f(ζ),v > | : f ∈ Hol(D,U)}.

Exercise 7. For example, in the polydisk CUn(0, z) = maxk ln 1+|zk|
1−|zk| ;and

in the ball CBn(0, z) = ln 1+|z|
1−|z| .

4we found a my hand written manuscript 1990 and did not pay much attention to it at that
time



SCHWARZ LEMMA,THE CARATHÉODORY AND KOBAYASHI METRICS 61

Let (z, w) and (z′, w′) be points in U2 and define A(z, w) = (Tz′(z), Tw′(w)).
Then A ∈ Aut(U2) and A(z′, w′) = (0, 0) and if |Tz′(z)| ≥ |Tw′(w)|, then

CU2((z, w), (z′, w′)) = ln
1 + |Tz′(z)|
1− |Tz′(z)|

.

Since Hol(D,U) is a normal family, the supremum in the definition of CD(ζ; v)
is attained by some F ∈ Hζ(D,U). Here F (z) = F (z; ζ,v). By a normal family
argument CD(ζ; v) is continuous in (ζ,v).

The Hessian.
Let f be upper semi-continuous near z ∈ Cn and let u ∈ Cn\{0}. The generalized

lower Hessian (or ”Laplacian”) of at z along the direction u is defined by

4uf(z) = 4 lim inf
r→0

1

r2

[ 1

2π

∫ 2π

0

(
f(z + reitu)− f(z)

)
dt
]
.

Note that, if f is a C2 function near z, then 4uf(z) reduces to four times the usual
Hessian of at z along u, that is

∆uf(z) = 4
∑

D2
zizjf(z)uiuj = 4Hz(f,u).

If u is the restriction of f on the complex line z = l(z0+ζu), that is u(ζ) = f◦l(ζ),
then using the chain rule we have

D2
ζζ
u = Hz(f,u) =

∑
D2
zizjf(z)uiuj .

Hence, since ∆u = 4D2
ζζ
u, ∆u = ∆uf(z) = 4Hz(f,u).

Especially, if f is a C1 function near the point z, and v = (v1, v2, ..., vn) ∈ Cn,
then < ∂f, v >=

∑n
j=1D

c
jf vj . Let v ∈ Cn \ {0} and consider F (z) = F (z, ζ,v) as

before. Define

λ(z; u) =
| < ∂F (z),u > |

1− |F (z)|2
.

Therefore, lnλ(z; u) = ln | < DcF (z),u > | − ln(1− |F (z)|2). The first term on the
right is pluriharmonic and hence its Hessian along any direction (independently of
u) is zero. Consequently,
4w lnλ(z; u) = 4λ(z; w)2, for each direction w ∈ Cn. Especially,
4w lnλ(ζ; v) = 4λ(ζ; w)2.
Note that λ(ζ; v) = CD(ζ; v).

Theorem 13. Let ζ ∈ D and v ∈ Cn \ {0} be fixed. Then
4u lnCD(ζ; v) ≥ 4λ(ζ; u)2 for each direction u ∈ Cn and thus again logCD(ζ; v)

is plurisubharmonic.

Let v ∈ Cn \ {0} and assume that the metric density µ(z; v) is a positive upper
semi-continuous function at z. The ”curvature” of µ(z; v) at z in the direction v is
given by

K(µ; z,v) = − 1

µ(z; v)2
4v lnµ(z; v).

If ρ = µv is the restriction of µ on the complex line z = l(z0 +ωv), then ρ = µv

is function of one complex variable ω. If we consider ρ as a metric density then
Kρ = K(µ; z,v).

The ”curvature” of λ(z; v) is −4 at z = ζ.
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Theorem 14. The curvature of CD(ζ; v) is always ≤ −4.

Proof. By Theorem 13, 4v lnCD(ζ; v) ≥ 4λ(ζ; v)2 and, since λ(ζ; v) = CD(ζ; v),
the assertion follows. �

We also note that the Carathéodory metric has the ”distance-decreasing” prop-
erty that is, if f : D → D∗ is a holomorphic mapping, then CD(f(z); f∗(v)) ≤
CD(z; v). The Carathéodory metric may be defined on arbitrary complex man-
ifolds, although it may be zero in some directions v. Clearly the Carathéodory

metric for the unit disk U is given by (B1) CU(z; v) = |v|
1−|z|2 .

Proposition 9.1. CD(z; v)||t; ||/d(z), where d(z) is the distance of z ∈ D from the
boundary of D.

Proposition 9.2. Let v ∈ Cn\{0} be fixed. Then log CD(z; v) is plurisubharmonic
in z ∈ D.

9.2. Kobayashi and Carathéodory metric. For complex Banach manifold X
and Y we denote by O(X,Y ) the class of all holomorphic mapping from X into Y .

A complex Finsler metric F on a complex (Banach) manifold M is an upper
semicontinuous function F : T 1,0M → R+ satisfying
(i) F (p ; v) > 0 for all p ∈M and v ∈ T 1,0

p M with v 6= 0;

(ii) F (p ;λv) = |λ|F (p ; v) for all p ∈M , v ∈ T 1,0
p M and λ ∈ C.

B. Wong proved the following interesting result, see also [13]:

Theorem 15 ([64]). (A) If G is a hyperbolic manifold in the sense of Kobayashi
and the differential Kobayashi metric KG is of class C2, then the holomorphic
curvature of KG is greater than or equal to −4.
(B)If G is Carathéodory-hyperbolic and the differential Caratheodory metric CG is
of class C2, then the holomorphic curvature of CG is less than or equal to −4.

Here we shortly outline Wong approach [64].

Lemma 3. Let M , N be complex manifolds, and N complete hyperbolic in the
sense of Kobayashi, suppose that we fix two points x1 and x2 in M and N respec-
tively. Then S = {f ∈ O(M,N), f(x1) = x2} is compact in O(M,N) with respect
to the compact open topology.

Definition 9.1. (a)Suppose that F is a C2 hermitian Finsler metric on a complex
one dimensional manifold. It is obvious that in this case F is just a C2 hermitian
metric in the usual sense of differential geometry. Then the holomorphic curvature
of F is given by the following formula:

(9.1) K(F ) = −D
2
zz lnF

F
.

(b) Let G be a complex manifold as before and Mp(v) any complex one dimen-
sional submanifold through the point p and whose tangent space at p is spanned by
{v, Jv}. In the following, G(v)p is the set of all Mp(v). The holomorphic curvature
kF (p,v) of a C2 hermitian Finsler metric F at (p,v) ∈ T (G) is defined to be the
following number:

(9.2) kF (p,v) = sup
G(v)p

{the holomorphic curvature of the restriction of F toMp(v)}.
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If X and Y are complex Banach manifolds by O(X,Y )(the notation Hol(X,Y )
is also used in the literature) we denote the family of holomorphic mappings of X
into Y . Let G be a complex manifold and T (G) the tangent bundle; we define the
differential Caratheodory metric as follows: CG : T (G)→ R+ ∪ {0},

(9.3) CG(z, υ) = sup{|dfz(v)| : f ∈ O(G,U), f(z) = 0}

one can obtain a mapping f belonging to O(G,U) satisfying the following condi-
tions:
(1) f(p) = 0 and
(2) CG(p, υ) = |dfp(v)|.

We observe that dfp 6= 0. For any Mp(v) one can choose a neighborhood U of
the origin 0 in U such that f : Mp(v) → U is a biholomorphism (for sufficiently
small choice of Mp(v)).

Proof. (A) Let us fix a tangent (p,v) at p. It is clear from Definition 9.1(b) that it
suffices to prove the holomorphic curvature of the restriction of CG to any Mp(v)
of G(v)p is less than −4.

With respect to the local coordinates {z, z} of Mp(v), f∗(BU) (the pullback of
BU by f restricted to Mp(v)) and the restriction of CG to Mp(v) can be written as
follows:

The restriction of f∗(BU) to Mp(v) is hdzdz; The restriction of CG to Mp(v) is
gdzdz, where h and g = gC are smooth functions on Mp(v).

It is important to point out here that the Caratheodory metrics enjoy the dis-
tance decreasing property under holomorphic mappings. Therefore we have the
following inequality: f∗(BU) ≤ CG (i.e. h ≤ g), where BU is Finsler form of
Poincare metric U.

We let u = h/g. From (2) we have h(p) = g(p) (f realizes CG at the point p).
Together with the above inequality (h ≤ g on Mp(v) ) and the definition of u, one
can obtain the following two conditions of u:
(a) u(p) = 1 (i.e. log u(P) = 0),
(b) u ≤ 1 on Mp(v) (i.e. logu ≤ 0).

This means log u attains a maximum at p. Therefore we have Dc
zz lnu(p) ≤ 0.

From the fact that log u = log h− log g, we have the following inequality:

Dc
zz lnh(p) ≤ Dc

zz ln g(p).

However, since h(P ) = g(P ) and 1/h ≥ 1/g, we easily get

− 1

h
Dc
zz lnh(p) ≥ −1

g
Dc
zz ln g(p),

that is −4 = Kh(p) ≥ Kg(p).
The left-hand side is just the holomorphic curvature of the Poincaré metric on

U, which is equal to −4. The right-hand side is the holomorphic curvature of the
restriction of CG to Mp(v). This completes the proof.

(B) From the definition of the differential Kobayashi metric there exists a se-
quence of holomorphic functions {fi} in O(U, G), such that fi(0) = p, K(P, v) =
lim dfi(wi)|, where dfi(wi) = v, wi is a tangent at the origin of U, and |wi| is taken
with respect to the Poincaré metric in the unit disc U.
G is assumed to be hyperbolic in the sense of Kobayashi, so that it is a tight

manifold in the sense of Wu (see [65]). Therefore there exist neighborhoods U1, U2



64 M. MATELJEVIĆ

of 0 and p, respectively, such that fi(U1) ⊂ U2 for all i. Furthermore, U2 can be
chosen to be complete hyperbolic (for example, biholomorphic to the unit ball).

Applying the lemma in part (A) again, we obtain a holomorphic mapping f :
U1 → U2 satisfying the following conditions: f : U1 → U2 satisfying the following
conditions:
(i) f(0) = p, (df)0(w0) = υ and |w0| = KG(p, υ).

Since f does not increase the corresponding distances we have
(ii) HypU(z, w) ≥ KG(f(z), (df)0(w)) for all (z, w) ∈ T (D), z ∈ U1.

Let gdzdz (g = gK) be the pullback of the restriction of KG to Mp(v) by f , and
let hdzdz be the Poincaré metric of the unit disc U. We let u = h/g. Clearly, by

(i), log u attains a minimum at 0 in U. Hence we have the following inequalities:
Therefore we have D2

zz lnu(0) ≥ 0 and
Kh(0) ≤ Kg(0). One observes that the left-hand side of the above second in-

equality is the holomorphic curvature of the Poincaré metric, which is identically
equal to −4 (Kh(0) = −4). The right-hand side is equal to the holomorphic cur-
vature of the restriction of KG to Mp(v) at the point p. Our proof is therefore
completed. �

Exercise 8. (a)Check that in unit ball KB(0, z) = CB(0, z) = ln 1+|z|
1−|z|

(b) Fill the details for the proofs
Dc
zz lnh(p) ≤ Dc

zz ln gC(p) in the case (A) and
−4 = Kh(0) ≤ Kg(0), where g = gK .

The following question is fundamental in hyperbolic complex analysis. If G is
complete hyperbolic, does KG satisfy the maximum modulus principle in T (G).

A Schwarz-Pick system is a functor, denoted by X 7→ dX , that assigns to each
complex Banach manifold X a pseudometric dX so that the following conditions
hold: (a) The pseudometric assigned to D is the Poincare metric (b) If X and Y
are complex Banach manifolds then (2.2) dY (f(x1), f(x2)) ≤ dX(x1, x2) if x1 ∈ X,
x2 ∈ X and f ∈ O(X,Y ).

Because of conditions (a) and (b) the sets O(D, X) and O(X,D) provide upper
and lower bounds for dX . These upper and lower bounds lead to the definitions
of the Kobayashi and Caratheodory pseudometrics, which we shall study in the
remainder of this paper.

In this paper dD will always be the Poincaré metric (2.1) on the unit disk D.

Definition 9.2. A Schwarz-Pick pseudometric on the complex Banach manifold
X is a pseudometric d such that (3.1) d(f(z), f(w)) ≤ dD(z, w) for all z and w in
D and f in O(D, X). If X 7→ dX is a Schwarz-Pick system, then dX is obviously a
Schwarz-Pick pseudometric on X for every complex Banach manifold X.

The Carathéodory length of a piecewise C1 curve γ : [a, b]→ X in X is L̃X(γ) =∫ b
a
cX(γ(t), γ′(t))dt and the distance C̃X(x, y) is the infimum of the lengths of all

piecewise C1 curves joining x to y. Observe that the integrand in (4.6) is piecewise

continuous. The functor assigning C̃X to each complex Banach manifold X is a
SchwarzPick system. In particular, if x and y are points in X, then d(fx, fy) ≤
C̃X(x, y) for all f in O(X,D). Definition (4.3) therefore implies that CX(x, y) ≤
C̃X(x, y) for all x and y in X.
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Complex geodesics. Since X 7→ C̃X is a Schwarz-Pick system, C̃X is a Schwarz-
Pick pseudometric on X for every complex Banach manifold X. Therefore C̃X ≤
KX for every X. Combining that inequality with (4.7) we obtain

CX(f(z), f(w)) ≤ C̃X(f(z), f(w)) ≤ KX(f(z), f(w)) ≤ dD(z, w) whenever X is
a complex Banach manifold, f ∈ O(D, X), and z and w are points of D.

Following Vesentini [Ves81], we call f in O(D, X) a complex geodesic (more
precisely a complex CX - geodesic) if there is a pair of distinct points z and w in D
with

(9.4) CX(f(z), f(w)) = dD(z, w)

so that none of the inequalities in (5.1) is strict.

Definition 9.3. A holomorphic map ϕ : U → X in a complex manifold X is a
complex geodesic if it is an isometry between the Poincaré distance dhyp and the
Kobayashi distance kX .

It is a well-known result of Lempert [40] that on convex domains the Kobayashi
and Carathodory distances(resp metrics) coincide.

In his famous 1981 paper [40], Lempert proved that given a point in a strongly
convex domain the complex geodesics (i.e., the extremal disks) for the Kobayashi
metric passing through that point provide a very useful fibration of the domain.

In communication with Forstneric and the author the following question has
been mentioned:
Question. Whether, in the ball or a bounded convex domains of Rn, there exist
minimal geodesics, i.e. conformal minimal (=harmonic) disks which are extremal
at every point. This holds for holomorphic disks in any bounded convex domain in
Cn by a famous theorem of Lempert (1981).

9.3. Calculation of the curvature. Let G be a bounded domain and K(z;w) be
the Bergman Kernel on G. Write φ(z) = logK(z, z). The Bergman metric

(9.5) ds2 =

n∑
µ,ν=1

D2
zµzνφdzµdzν

is the Kahler metric with Kahler form i∂∂φ. We use notation bD or BergD for the
Bergman distance on D. Note that the distance in the Bergman metric from the
origin in the unit ball B ⊂ Cn is

(9.6) bB(0, z) =
√
n+ 1 ln

1 + |z|
1− |z|

=
√
n+ 1bB(0, z) .

In the polydisk bU(0, z) = 1√
2

√∑n
k=1 ln 1+|zk|

1−|zk| and

CU(0, z) = maxk ln 1+|zk|
1−|zk| .

Let (z, w) and (z′, w′) be points in U2 and define A(z, w) = (Tz′(z), Tw′(w)).
ThenA ∈ Aut(U2) andA(z′, w′) = (0, 0) and if |Tz′(z)| ≥ |Tw′(w)|, then C2

U((z, w), (z′, w′)) =

ln 1+|Tz′ (z)|
1−|Tz′ (z)|

.

For u > 0:

∆ lnu =
u∆u− |∇u|2

u2
.
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Let g, f ∈ O(D,Cn) and let f map D into the unit ball in Cn.

|g|∆|g| = 2|g′(z)|2 − | < g, g′ > |2

|g|2
.

|∇|g||2 =
| < g, g′ > |2

|g|2
:= A.

∆|f2| = 4|f ′|2

|∇|f |2|2 = 4| < f ′, f > |2.
Set u = |g|, g = f ′, λ1 := lnu, v := 1− |f |2, λ2 := ln v, I1 = ∆λ1 and I2 = −∆λ2.
Then

I1 = u−22(|g′|2 −A) and I2 = −∆λ2 = 4v−2(v|f ′|2 + | < f ′, f > |2).

Set

ρ = |f ′|(1− |f |2)−1.

Hence I = ∆ ln ρ = I1 + I2. Since

I2 = 4v−2(|f ′|2 − |f |2|f ′|2 + | < f ′, f > |2,

it seems that for n = 1, I = ∆ ln ρ ≥ 4ρ2. But, for n > 1, we have some difficulties.
Note that I1 ≥ 0. Perhaps, we can try to apply Schwarz’s

(1− |z|2)−1|f ′(z)| ≤ v = 1− |f |2

to estimate

R = I1 + 4v−2(−|f |2|f ′|2 + | < f ′, f > |2)..

Wikipedia says that the metric

(9.7) h =
4|dx|2

(1− |x|2)2

on the ball B = {|x|2 < 1} ⊂ Rn (for any n ∈ N) is the Poincare model of the
hyperbolic space; presumably it has constant (Gaussian?) curvature −1. However,
it seems that this metric might not the most suitable for our purposes.

There is another model of a hyperbolic n-space, the so called Beltrami-Klein
model, which is represented by the ball B ⊂ Rn by the metric

(9.8) g = 4
|dx|2 + (x· dx)2

(1− |x|2)2
; x· dx =

n∑
j=1

xjdxj .

In the complex case, replacing Rn by Cn, the metric h is obviously not Kähler.
The natural standard Kähler metric on the ball is the Bergman metric. Up to a
normalizing constant, the Bergman kernel for the ball Bn ⊂ Cn on the diagonal
z = w equals

(9.9) KB(z) =
1

(1− |z|2)n+1

The Bergman metric on B = Bn is defined by the Kähler (1, 1)-form

(9.10) kB = −i(n+ 1)∂∂ log(1− |z|2) =
i(n+ 1)

(1− |z|2)2

n∑
j,k=1

z̄jzk dzj ∧ dz̄k.
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That is, up to a constant we have

(9.11) ds2
B =

n+ 1

(1− |z|2)2

n∑
j,k=1

z̄jzk dzj ⊗ dz̄k.

This is similar to the expression for g (9.8), while h (9.7) amounts to the diagonal
terms.

Now, if F = (F1, . . . , Fn) : D → Bn is a holomorphic map the the pull-back F ∗

commutes with the ∂ and ∂ operators. Hence, the induced metric on D is given by
the Kähler form

F ∗(kB) = −i(n+ 1)∂∂ log(1− |F |2).

Up to a constant, the metric is therefore given by

F ∗(ds2
B) =

n+ 1

2
4 log(1− |F (ζ)|2)|dζ|2.

It might now be possible to complete the calculation of the curvature and use the
comparison principle.

Concerning the conformal minimal disks, there might be another problem with
using the Beltrami-Klein metric (9.8): this metric is not conformally equivalent
to the Poincaré metric (9.7). Hence, disks which are conformal harmonic in the
standard flat (Euclidean) metric (and hence in the Poincaré metric) are no longer
conformal in the Beltrami-Klein metric. Maybe this is not essential since in calcu-
lations we get various expressions of standard inner products which may anyhow
simplify if the the disk is conformal in the Euclidean metric.

10. boundary Schwarz lemma and harmonic functions

For the next results see [74, 75]. We outline short proofs of some results related
to Kalaj’s communication [33].

Theorem 10.1. A) Let f = g+h be complex valued continuous on U and harmonic
on U and γ(t) = f(eit), t ∈ [0, 2π]. If γ is a rectifiable curve and L = |γ| is length
of γ, then
a) 2π|g′(0)| ≤ L, 2πmax{|g′(0)|, |h′(0)|} ≤ L with equality iff f = L, where
L(z) := az + b.

b) 2π(1− |z|2)|g′(z)| ≤ L, z ∈ U with equality iff f = L ◦ ϕz.

As a corollary we get, π(|g′(0)|+ |h′(0)|) ≤ L.

Proof. a)Since ft = ig′eit + ih′eit, 2πig′(0) =
∫ 2π

0
fte
−itdt. Hence

2π|g′(0)| ≤
∫ 2π

0
|fte−it|dt = L.

Set X(t) = g′ − h′e2it. If the equality holds in a) then there is c such that
cX = A+, where A+ is a nonnegative function Set u = P [X] and H = h′z2. Then
u = g′−H and cu is a nonnegative function. Hence Im(cg′) = Im(cH) and therefore
cg′ = −cH + c1, ie g′ = c2H + c3. Thus X = c2H + c3−H on T , u = c2H + c3−H
and Imc(c2H+ c3) = ImcH, ie c4H+ c5 = c6H. Hence H = 0 and therefore g′ = a,
ie g = az + b.

b) For z ∈ U apply a) on f ◦ ϕz. �
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Theorem 10.2. B) Suppose that f : U→ R3 conformal and harmonic and γ(t) =
f(eit), t ∈ [0, 2π]. If γ is a rectifiable curve and L = |γ| is length of γ, then
a) 2π|f ′x(0)| ≤ L.
b) 2π(1− |z|2)|f ′x(z)| ≤ L, z ∈ U.
b1) The equality holds in b) for some z ∈ U iff f(U) is in a plane say X and
f = f(z) +R, where R : U→ X is a composition of a rotation in X around z and
homotety wrt z. After rotation we can suppose that X is y1y2 which we can identify
with C-plane. Then f = L ◦ ϕz.

Proof. a) Let S = f(U), M0 = f(0) and X tangent plane of S at M0. Further
suppose that P is the projection of S into X, f1 = P ◦ f , and γ1(t) = F (eit). Then

f1 = g1 + h1. If L1 = |γ1| is length of γ1, then by Theorem 10.1a)
2π|(g1)′(0)| ≤ L1.
Since L1 ≤ L and |(g1)′(0)| = f1

x(0) = fx(0), we get the part a) of B).
b) Apply a) on f ◦ϕz. Note that L1 ≤ L with equality iff f(U) is in a plane. If for
some z ∈ U the equality holds in b), then L1 = L. �

Check that
C) Let f : U → Rm be continuous on U and harmonic on U, and γ(t) = f(eit).
Then f = g + h, where g, h : U→ Cm are holomorphic on on U and 2π|g′(0)| ≤ L,
where L = |γ| is length of γ.

Define the harmonic density

(10.1) Har(w) =
1√
2

1

R̂(w)

on U, where R̂(w) =
√

1− |w|2 and denote by dhar the corresponding distance.

Theorem 10.3. If f is a harmonic mapping from the unit disk U into self, then

dhar(fz, fz
′) ≤ dhyp(z, z′), z, z′ ∈ U.

For a function h, we use notation ∂h = 1
2 (h′x − ih′y) and ∂h = 1

2 (h′x + ih′y);

we also use notations Dh and Dh instead of ∂h and ∂h respectively when it seems
convenient. We use the notation λf (z) =

∣∣|∂f(z)|−|∂̄f(z)|
∣∣ and Λf (z) = |∂f(z)|+

|∂̄f(z)|, if ∂f(z) and ∂̄f(z) exist.

Theorem 10.4 ([74]). Let f : U→ U be harmonic. Assume that f(0) = 0. Further
assume that there is a point b ∈ T so that f extends continuously to b, |f(b)| = 1
(say that f(b) = b′), and and f is R- differentiable at b. Then |Λf (b)| ≥ 2/π.

Define A(z) = (1 + z)(1− z)−1, Ag := Ag = (1 + g)(1− g)−1, Bg = Rg = Ag −A
and h = Re(Ag −A). Then A′ = 2(1− z)−2, and if g is a holomorphic function we
have A′g = 2(1− g)−2g′, and R′g = 2(1− g)−2g′ − 2(1− z)−2.

XXX Ornek-Akyel [54, 55] use the following form of maximum principle:

Proposition 10.1. If u is harmonic on the unit disk and for every w ∈ T,
lim infz→w u(z) ≥ 0, then u ≥ 0.

Theorem 10.5. Let B : U → U be a finite Blaschke product which equal w0 on a
finite set X = X(w0) ⊂ T and let f be a holomorphic function in the unit disc and
|f(z)− 1| < 1 for |z| < 1. Suppose the following condition is satisfied
(ii.2) For all a ∈ A, f(z) = 1 +B(z) + o(z − a)2, z ∈ T, z → a.
Then u(z) = ReAF −ReAB is continuous on U ∪A and satisfies the condition
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(ii.1) lim infz→w u(z) ≥ 0 for every w ∈ T, and
it is non-negative on U.
For every a ∈ X, u(z) = o(1) if z tends a.

Theorem 10.6 ([74]). Let B : U → U be a finite Blaschke product which equal
w0 on a finite set A ⊂ T and let f be a holomorphic function in the unit disc and
|f(z) − 1| < 1 for |z| < 1. Suppose in addition to (ii.2) the following conditions is
satisfied
(ii.3) there is a a0 ∈ A, such that f(z) = 1 +B(z) + o(z − a0)3, z ∈ T, z → a0.
Then u(z) = o(z − 1) if z tends 1 and
f = 1 +B.

In joint work with M. Knežević and the author, it is proved:

Proposition 10.2 (the unit disk euclidean-qch version,[38]). Let f be a k - quasiconfo-
rmal euclidean harmonic mapping from the unit disc U into itself. Then for all
z ∈ U we have

|fz(z)| ≤
1

1− k
1− |f(z)|2

1− |z|2
.

Using Lf (z) ≤ (1 + k)|fz(z)|, we get

(A) Lf (z) ≤ K 1−|f(z)|2
1−|z|2 and therefore

(A1) λ(fz′, fz) ≤ Kλ(z′, z), z′, z ∈ U.
In proof we use the metric density σf (z) = (1 − k)2λ(f(z))|fz(z)|2 and check

that the curvature K(σ)(z) ≤ −1.
In communication with Pavlović appears the following question:
Question 2. Whether (A1) holds if f is k-qr? We announce a positive answer to

this question in [48]:

Theorem 16. (i): Let f be a k - quasiregular euclidean harmonic mapping from
the unit disc U into itself.

Then for any two points z1 and z2 in U we have

λ(f(z1), f(z2)) ≤ 1 + k

1− k
λ(z1, z2) .

11. Further comments

Because of limited space we mention only a few papers related to Schwarz lemma
holomorphic maps.We first recall the definition of normality. Let X, Y be two
complex manifolds; a family F of holomorphic maps from X to Y is normal if every
sequence in F admits either a convergent subsequence or a compactly divergent
subsequence. A complex manifold X is taut if Hol(U, X) is a normal family. Let X
be a taut complex manifold. Then Hol(Y,X) is a normal family for every complex
manifold Y . A connected complex manifold X is (Kobayashi) hyperbolic if kX is a
true distance. Every complete hyperbolic manifold is taut.

(1) For a review about Schwarz lemma holomorphic maps between Kahler
manifolds see Jianbo Chen [15], Abstract. In Section 1, we introduce
some background knowledge of complex geometry. In Section 2, classi-
cal Schwarz lemma and its interpretation is discussed. In Section 3, we
study the Ahlfors-Schwarz’s lemma and its generalization to holomorphic
maps between the unit disk and Kahler manifolds with holomorphic sec-
tional curvature bounded from above by a negative constant. In Section
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4, we focus on the case when equality holds at a certain point is discussed
for holomorphic maps between the unit disk and classical bounded sym-
metric domains of type I, II and III. In Section 5, two higher-dimensional
generalizations of the Ahlfors-Schwarz lemma for holomorphic maps from a
compact Kahler manifold to another Kahler manifold, both of which satisfy
respective conditions on curvature, are studied. In Section 6, we investigate
two applications of various versions of Ahlfors-Schwarz lemma.

(2) James J. Faran [23], Abstract. The problem of local equivalence of Her-
mitian Finsler metrics under holomorphic changes of coordinates is solved.
On such a Finsler metric we find some differential conditions which imply
that the Finsler metric is the Kobayashi metric of the underlying manifold
(these conditions are satisfied if the metric is the Kobayashi metric on a
bounded, strictly convex domain in Cn with smooth boundary).

(3) Gunnar Pór Magnússon [41], Abstract. Lars Alhfors proved a differential
geometric version of the classical Schwarz lemma in 1938. His version of
the lemma gives an interesting connection between the existence of non-
constant entire functions with values in a given domain and metrics with
negative curvature on such domain. We recall the classical Schwarz lemma
and review the notions necessary to understand Ahlfors’ lemma, before
proving both the new form of the lemma and giving some applications.

(4) In the survey [22] (see Abstract), C. Frosini and F. Vlacci give geometric
interpretations of some standard results on boundary behaviour of holo-
morphic selfmaps in the unit disc of C and generalize them for holomorphic
selfmaps of some particular domains of Cn.

(5) Marco Abate [3], Abstract.These are the notes of a short course I gave in the
school ”Aspects métriques et dynamiques en analyse complete”, Lille, May
2015. The aim of this notes is to describe how to use a geometric structure
(namely, the Kobayashi distance) to explore and encode analytic proper-
ties of holomorphic functions and maps defined on complex manifolds. We
shall first describe the main properties of the Kobayashi distance, and then
we shall present applications to holomorphic dynamics in taut manifolds,
strongly pseudo convex domains and convex domains, and to operator the-
ory in Bergman spaces (Carleson measures and Toeplitz operators).

Theorem 11.1 ( Theorem 2.40 (Budzynska; Abate-Raissy, [3])). Let D ⊂⊂
Cn be a bounded strictly convex domain, and take f ∈ Hol(D,D) without
fixed points. Then the sequence of iterates {fk} converges to a constant
map defined by z0 ∈ ∂D.

As often happens with objects introduced via a general definition, the
Kobayashi pseudodistance can seldom be explicitly computed. ”Besides the
cases listed in Proposition 1.17 [3], as far as we know there are formulas
only for some complex ellipsoids [39], bounded symmetric domains [38], the
symmetrized bidisk [11] and a few other scattered examples. ” Recall that
in particular (see [35], p.47):

Kob(z, w) = max{Kob(zk, wk) : k = 1, · · · , n}.

On the other hand, it is possible and important to estimate the Kobayashi
distance; see Subsection 1.5 [3].
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(6) For Iteration theory of holomorphic maps on taut manifolds we refer the
interested reader to M. Abate monograph[4], in which a Wolff-Denjoy the-
orem for hyperbolic Riemann surfaces is proved:

Theorem 11.2 (Theorem 1.3.12, [4]). Let X be a hyperbolic Riemann
surface, and let f ∈ Hol(X,X). Then either:
(i) f has an attractive fixed point in X, or
(ii) f is a periodic automorphism,or
(iii) f is a pseudoperiodic automorphism,or
(iv) the sequence {fk} is compactly divergent. Furthermore, the case (iii)
can occur only if X is either simply connected (and f has a fixed point ) or
doubly connected (and f has no fixed points ).

If X is compact, Theorem 1.3.12 drastically simplifies, becoming: Corol-
lary 1.3.13: Let X be a compact hyperbolic Riemann surface. Then every
function f ∈ Hol(X,X) is either constant or a periodic automorphism.

(7) Suzuki, Masaaki,[73]. Abstract. In this paper we study the intrinsic metrics
for the circular domains in Cn. We calculate the Kobayashi (pseudo-)
metric at its center for pseudoconvex complete circular domain D using
the result of Sadullaev. From this we have that such D is hyperbolic iff D
is bounded. If a convex complete circular domain is complete hyperbolic,
then the Caratheodory and Kobayashi metrics coincide at the center. Using
this and the results of Hua we explicitly compute the intrinsic metrics of
the classical domains. Furthermore we define the extremal function and
extremal disc for intrinsic metrics and compute them in some special cases.

(8) In [1], the author(Simonic) introduces Ahlfors’ generalization of the Schwarz
lemma. With this powerful geometric tool of complex functions in one
variable, he is able to prove some theorems concerning the size of images
under holomorphic mappings, including the celebrated Picards theorems.
The article concludes with a brief insight into the theory of Kobayashi
hyperbolic complex manifolds.

(9) Filippo Bracci, John Erik Fornaess, Erlend Fornaess Wold, [11], Abstract.
We prove that for a strongly pseudoconvex domain D ⊂ Cn, the infinites-
imal Carathéodory metric C(z, v) and the infinitesimal Kobayashi metric
K(z, v) coincide if z is sufficiently close to bD and if v is sufficiently close
to being tangential to bD. Also, we show that every two close points of D
sufficiently close to the boundary and whose difference is almost tangential
to bD can be joined by a (unique up to reparameterization) complex geo-
desic of D which is also a holomorphic retract of D. The same continues
to hold if D is a worm domain, as long as the points are sufficiently close
to a strongly pseudoconvex boundary point. We also show that a strongly
pseudoconvex boundary point of a worm domain can be globally exposed,
this has consequences for the behavior of the squeezing function.

(10) and let f : U → U be a holomorphic function with f(0) = 0. It is easy to
show that the inequality

(11.1) |f(z)− f ′(0)z| ≤ 2|z|2

1− |z|
(1− |f ′(0)|).

Lawrence A. Harris,[30],Abstract. Our main result is an inequality which
shows that a holomorphic function mapping the open unit ball of one
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normed linear space into the closed unit ball of another is close to be-
ing a linear map when the Frechet derivative of the function at 0 is close to
being a surjective isometry. We deduce this result as a corollary of a kind
of uniform rotundity at the identity of the sup norm on bounded holomor-
phic functions mapping the open unit ball of a normed linear space into the
same space. In the following, a function h defined on an open subset of a
complex normed linear space with range in another is called holomorphic
if the Frechet derivative of h at x (denoted by Dh(x) exists as a bounded
complex-linear map for each x in the domain of definition of h.(See [7,
Def. 3.16.4].) Denote the open (resp.,closed) unit ball of a normed linear
space X by X0 (resp.,X1). Throughout, X and Y denote arbitrary complex
normed linear spaces. Our main result is Let h : X0 → Y1 be a holomorphic
function with h(0) = 0.

Put L = Dh(0) and let U he the set of all linear isometries of X onto Y .
Suppose U is nonempty and let d(L,U) denote the distance of L from U in
the operator norm.

Theorem 11.3. Then

(11.2) |h(x)− L(x) ≤ 8|x|2

(1− |x|)2
d(L,U), (x ∈ X0).

I
(11) For Pluriharmonic Functions in Balls see Rudin [70]. Abstract. It is proved

that a function is pluriharmonic in the open unit ball of Cn if and only if it
is harmonic with respect to both the ordinary Laplacian and the invariant
Laplace-Beltrami operator.

Theorem 11.4 ([74]). Suppose that G = Gn = (a, b) × Rn−1, −∞ < a <
b ≤ ∞, f : Bn → Gn. If f1 is pluriharmonic on Bn and f is K-qc at
a ∈ Bn, then kG(fa)|f ′(a)| ≤ KkB(a), where k is quasi-hyperbolic density.

12. surfaces

See
By a standard argument in the calculus of variations, a minimal graph z = f(x, y)

can be shown to satisfy the nonlinear partial differential equation (1 + f2
y )fxx −

2fxfyfxy + (1 + f2
x)fyy = 0.

LetG be a planar domain enclosed by a Jordan curve C. J [u] =
∫∫
G
L(x, y, u, ux, uy)dxdy

Set h(t) = J [u + tv], p = ux and q = uy. If v = 0 on bG, then h′(0) =∫∫
G

(vLu + vxLp + vyLq)dxdy.

By partial integration, h′(0) =
∫∫
G
v
(
Lu − (Lp)x − (Lq)y

)
dxdy. Lu − (Lp)x −

(Lq)y = 0, Lu − Lxp − Lyq − uxLup − uyLuq − uxxLpp − 2uxyLpq − uyyLqq = 0
Let us derive the EulerLagrange equation for the minimal surface problem L =√
1 + p2 + q2 Definition A smooth surface in R3 is a subset S ⊂ R3 such that each

point has a neighbourhood U ⊂ S and a map X : V → R3 from an open set V ⊂ R2

such that
X : V → U is a homeomorphism
X is C1

Xu and Xv are linearly independent. Definition (an abstract smooth surface)
A smooth surface is a surface with a class of homeomorphisms ϕU such that each
map ϕU ′ϕ

−1
U is a smoothly invertible homeomorphism.
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Clearly, since a holomorphic function has partial derivatives of all orders in x, y,
a Riemann surface is an example of an abstract smooth surface.

Definition. Two surfaces S, S′ are isometric if there is a smooth homeomorphism
f : S → S′ which maps curves in S to curves in S′ of the same length.

The cylinder X(u, v) = (a cos v, a sin v, u) du2 + a2dv2

locally isometry X(u, v) = (a cos(v/a), a sin(v/a), u) du2 + dv2

The helicoid is homeomorphic to the plane R2. To see this, let α decrease
continuously from its given value down to zero.

However, harmonic minimal immersions in R3 are not necessarily conformal as
the following parameterization of the half helicoid shows X : C → R3, X(z) =
Re(ez, iez, iz) = (ex cos y,−ex sin y,−y.

http://www.michaelbeeson.com/research/papers/IntroMinimal.pdf Notes on Min-
imal Surfaces Michael Beeson Aug. 9, 2007 with revisions and additions fall 2010
file last touched November 11, 2015

Unlike Gauss curvature, the mean curvature is extrinsic and depends on the
embedding, for instance, a cylinder and a plane are locally isometric but the mean
curvature of a plane is zero while that of a cylinder is nonzero. A surface of least area
bounded by γ would be a critical point of A, but not necessarily conversely. There
could be relative minima of area which are not absolute minima of area. There can
also be unstable critical points of area which are not even relative minima.

A parametric surface is the image of an open subset of the Euclidean plane
R2 by a continuous function, in a topological space, generally an Euclidean space
of dimension at least three. Usually the function is supposed to be continuously
differentiable, and this will be always the case in this article.

Specifically, a parametric surface in R3 is given by three functions of two variables
u and v, called parameters

x = f1(u, v)

y = f2(u, v)

z = f3(u, v) .

As the image of such a function may be a curve (for example if the three functions
are constant with respect to v), a further condition is required, generally that, for
almost all values of the parameters, the Jacobian matrix

∂f1

∂u

∂f1

∂v
∂f2

∂u

∂f2

∂v
∂f3

∂u

∂f3

∂v


has rank two. Here ”almost all” means that the values of the parameters where

the rank is two contain a dense open subset of the range of the parametrization.
For surfaces in a space of higher dimension, the condition is the same, except for
the number of columns of the Jacobian matrix. Tangent plane and normal vector

A point p where the above Jacobian matrix has rank two is called regular, or,
more properly, the parametrization is called regular at p.

The tangent plane at a regular point p is the unique plane passing through p
and having a direction parallel to the two row vectors of the Jacobian matrix. The
tangent plane is an affine concept, because its definition is independent of the choice
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of a metric. In other words, any affine transformation maps the tangent plane to
the surface at a point to the tangent plane to the image of the surface at the image
of the point.

The normal line, or simply normal at a point of a surface is the unique line passing
through the point and perpendicular to the tangent plane. A normal vector is a
vector which is parallel to the normal.

The Gaussian curvature at a point on an embedded smooth surface given locally
by the equation
z = F (x, y)
in Euclidean space (E3), is defined to be the product of the principal curvatures

at the point;[5] the mean curvature is defined to be their average. The principal
curvatures are the maximum and minimum curvatures of the plane curves obtained
by intersecting the surface with planes normal to the tangent plane at the point.
If the point is (0, 0, 0) with tangent plane z = 0, then, after a rotation about the
z-axis setting the coefficient on xy to zero, F will have the Taylor series expansion

F (x, y) = 1
2k1x

2 + 1
2k2y

2 + · · ·
The principal curvatures are k1 and k2. In this case, the Gaussian curvature is

given by
K = k1 · k2.K = k1 · k2.
and the mean curvature by
Km = 1

2 (k1 + k2).
Since K and Km are invariant under isometries of E3, in general

K =
RT − S2

(1 + P 2 +Q2)
2

and

Km =
ET +GR− 2FS

(1 + P 2 +Q2)
2

where the derivatives at the point are given by P = Fx, Q = Fy, R = Fxx, S =
Fxy, and T = Fyy.

For every oriented embedded surface the Gauss map is the map into the unit
sphere sending each point to the (outward pointing) unit normal vector to the
oriented tangent plane at the point. In coordinates the map sends (x,y,z) to

N(x, y, z) =
1√

1 + P 2 +Q2
(P,Q,−1).

Direct computation shows that: the Gaussian curvature is the Jacobian of the
Gauss map.

Line and area elements
Taking a local chart, for example by projecting onto the xy-plane (z = 0), the

line element ds and the area element dA can be written in terms of local coordinates
as

ds2 = Edx2 + 2Fdxdy +Gdy2

and
dA = (EG− F2)1/2dxdy.
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The expression Edx2 + 2Fdxdy +Gdy2 is called the first fundamental form.
The matrix (

E(x, y) F (x, y)
F (x, y) G(x, y)

)
is required to be positive-definite and to depend smoothly on x and y.
In a similar way line and area elements can be associated to any abstract Rie-

mannian 2-manifold in a local chart.
Second fundamental form
Definition of second fundamental form
The extrinsic geometry of surfaces studies the properties of surfaces embedded

into a Euclidean space, typically E3. In intrinsic geometry, two surfaces are ”the
same” if it is possible to unfold one surface onto the other without stretching it,
i.e. a map of one surface onto the other preserving distance. Thus a cylinder is
locally ”the same” as the plane. In extrinsic geometry, two surfaces are ”the same”
if they are congruent in the ambient Euclidean space, i.e. there is an isometry of E3

carrying one surface onto the other. With this more rigid definition of similitude,
the cylinder and the plane are obviously no longer the same.

Although the primary invariant in the study of the intrinsic geometry of surfaces
is the metric (the first fundamental form) and the Gaussian curvature, certain
properties of surfaces also depend on an embedding into E3 (or a higher dimensional
Euclidean space). The most important example is the second fundamental form,
defined classically as follows.

Take a point (x, y) on the surface in a local chart. The Euclidean distance from
a nearby point (x+ dx, y+ dy) to the tangent plane at (x, y), i.e. the length of the
perpendicular dropped from the nearby point to the tangent plane, has the form
edx2 + 2fdxdy + gdy2

plus third and higher order corrections. The above expression, a symmetric
bilinear form at each point, is the second fundamental form. It is described by a
2× 2 symmetric matrix (

e(x, y) f(x, y)
f(x, y) g(x, y)

)
which depends smoothly on x and y. The Gaussian curvature can be calculated as
the ratio of the determinants of the second and first fundamental forms:

K =
eg − f2

EG− F 2
.

For example, a sphere of radius r has Gaussian curvature 1/r2 everywhere, and
a flat plane and a cylinder have Gaussian curvature 0 everywhere. The Gaussian
curvature can also be negative, as in the case of a hyperboloid or the inside of a
torus.

Remarkably Gauss proved that it is an intrinsic invariant (see his Theorema
Egregium below). One of the other extrinsic numerical invariants of a surface is
the mean curvature Km defined as the sum of the principal curvatures. It is given
by the formula.

Km =
1

2
· eG+ gE − 2fF

EG− F 2
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The coefficients of the first and second fundamental forms satisfy certain compat-
ibility conditions known as the Gauss-Codazzi equations; they involve the Christof-
fel symbols Γkij associated with the first fundamental form:

ey − fx = eΓ1
12 + f(Γ2

12 − Γ1
11)− gΓ2

11, fy − gx = eΓ1
22 + f(Γ2

22 − Γ1
12)− gΓ2

12.

These equations can also be succinctly expressed and derived in the language of
connection forms due to lie Cartan.[23] Pierre Bonnet proved that two quadratic
forms satisfying the Gauss-Codazzi equations always uniquely determine an embed-
ded surface locally.[24] For this reason the Gauss-Codazzi equations are often called
the fundamental equations for embedded surfaces, precisely identifying where the
intrinsic and extrinsic curvatures come from. They admit generalizations to surfaces
embedded in more general Riemannian manifolds.

A curve C on the surface S is defined as an equivalence class of mappings X =
Φ(U(t)) from a real interval a ≤ t ≤ b to G. If we set C(t) = U(t), then C = X ◦C.
The differential of the mapping X = Φ(U) is dX = Xudu+Xvdv. The arclength s
of a smooth curve C on S is found by integrating the square root of the differential
form ds2 = |dX|2 = dX · dX = Edu2 + 2Fdudv + Gdv2, where E = Xu ·Xu, F =
Xu ·Xv, G = Xv ·Xv. This is known as the first fundamental form of the surface. It
is invariant under change of parameters although its individual coefficients are not.
In particular, the arclength of C is well-defined, being independent of the choice of
parameters.

A tangent vector to the curve C at a point X0 = X(t0) is X ′(t0) = Xuu
′(t0) +

Xvv
′(t0).

The tangent plane of S at X0 is the set of all tangent vectors to curves on the
surface through X0, the two-dimensional subspace spanned by the (independent)
vectors Xu and Xv. The cross product Xu×Xv is orthogonal to the tangent plane.
When normalized to have unit length, it becomes the unit normal vector

n =
Xu ×Xv

|Xu ×Xv|
at the point X0. Thus, the orientation of parameters assigns a local orientation
to the surface. However, the surface may not be (globally) orientable; it may be
impossible to assign a normal direction in a continuous and consistent manner over
the whole surface. The Mobius strip and the Klein bottle are familiar examples of
nonorientable surfaces. The components of the cross product Xu ×Xv are exactly
the three Jacobians that appear in the formula for surface area. Thus,

Curvature is a second-order effect, requiring the assumption that the surface S
has continuous second partial derivatives in its parametric representations. It will
also be assumed that the curve C on S is regular (U ′(t) 6= 0) and twice continuously
differentiable. If C is parametrized in terms of arclength s, the tangent vector
T = X ′(s) has unit length and is called the unit tangent vector. The curvature
vector T ′(s) = dT/ds is orthogonal to T . Its normal projection κ(T ) = T ′(s) · n

is called the normal curvature of S at X0 in the direction T . The normal cur-
vature will be shown to depend only on the tangent direction T of the curve C at
X0. Intuitively, it measures the rate at which the surface is rising out of its tangent
plane in a specified direction. A more concrete way to define normal curvature is to
consider only the normal sections of S. In other words, for each tangent direction
T at X0, let C be the curve of intersection of the surface S with the plane through
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X0 that contains both the normal vector n and the tangent vector T. Then dT/ds
is parallel to n and k(T ) = |dT/ds|, the sign depending on the choice of orientation
of the surface. The principal curvatures k1 and k2 of S at X0 are the maximum
and minimum of k(T ) as T ranges over all directions in the tangent space. The
mean curvature of S at X0 is the average value H = 1

2 (k1 + k2), whereas the Gauss
curvature is the product K = k1k2. The beautiful theorema egregium of Gauss as-
serts that K is a ”bending invariant,” unchanged whenever the surface is deformed
without stretching. The mean curvature and the Gauss curvature can be computed
in terms of surface invariants.

By the chain rule, the unit tangent vector of the curve C is
k = T ′(s) · n = Lu′(s)2 + 2Mu′(s)v′(s) +Nv′(s)2, where
L = Xuu · n,M = Xuv · n,N = Xvv · n.
The notation e, f, g is also used instead of L,M,N respectively. For an orthog-

onal parametrization (i.e., F = 0), Gaussian curvature is:

K = − 1

2
√
EG

(
∂

∂u

Gu√
EG

+
∂

∂v

Ev√
EG

)
.

For a surface described as graph of a function z = F (x, y), Gaussian curvature
is:

K =
Fxx · Fyy − F 2

xy

(1 + F 2
x + F 2

y )2

Isothermal Parameters
In studying the intrinsic properties of surfaces, it is advantageous to choose

parameters that will reflect in some way the geometry of the surface. Isothermal
parameters are those that preserve angles. In other words, the angle between a pair
of curves in the parameter plane is equal to the angle between the corresponding
pair of curves on the surface. Here the curves are oriented by their parametrizations,
and the angle between them is understood to be the angle between their tangent
vectors. As usual, this angle is chosen to lie between 0 and π.

The conclusion is that angles between curves are preserved everywhere if and only
if the first fundamental form has the structure ds2 = λ2(du2 +dv2), λ = λ(u, v) > 0.
In this case the surface is said to be represented in terms of isothermal parameters.

If a surface X = Φ(U) is expressed in terms of isothermal parameters, we show
that the Laplacian ∆X = Xuu +Xvv is orthogonal to both Xu and Xv:

∆X ·Xu = ∆X ·Xv = 0.

This means that ∆X is orthogonal to the tangent plane of the surface, so that
|∆X| = ±∆X · n = ±(L+N). In isothermal parameters, F = 0 and E = G = λ2,
so the formula reduces to

H =
1

2λ2
(L+N).

13. Weierstrass-Enneper parameterization of minimal surfaces

Heinz’s inequality asserts that |fz(0)|2 + |fz(0)|2 ≥ c for all harmonic mappings
f of the unit disk onto itself with f(0) = 0, where c > 0 is an absolute constant. the
sharp form of the inequality with the constant c = 27/4π2 = 0.6839..., established
by Richard Hall [2] in 1982.
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For the sharp estimate of curvature, a constrained form of Heinz’s lemma is
required. Specifically, it is required to find the sharp lower bound of |h′(0)|2+|g′(0)|2
among all harmonic self-mappings of the disk with f(0) = 0 and dilatation ω = q2

for some analytic function q. It is reasonable to conjecture that the ”extremal
function” is now the canonical mapping of the disk onto an inscribed square (see

Section 4.2), with dilatation ω(z) = z2. This mapping has a1 = h′(0) = 2
√

2/π and
b1 = g′(0) = 0, so the constrained form of Heinz’s lemma can be expected to run
as follows.

Conjecture 1. Let f be a harmonic mapping of D onto D with f(0) = 0, whose
dilatation ω = fz/fz is the square of an analytic function. Then |fz(0)|2+|fz(0)|2 ≥
8
π2 and the bound is sharp. The canonical mapping onto the square lifts to Scherk’s
first surface, as was observed in Section 9.4. The Weierstrass-Enneper parameters
for Scherk’s surface, adjusted to lie above a square inscribed in the unit circle, are

p(z) = 2
√

2
π(1−z4) and q(z) = iz.

It seems that as an application of Heinz’s inequality, we can get the following
estimate. Define P (x1, x2, x3) = (x1, x2) and let let D be a domain in plane and
X : D → R3, the projecting mapping f of X is P ◦X.

Theorem 13.1. Let X : U → R3 be harmonic such that the projecting mapping
f is injective and f(U) ⊃ U. If f(0) = 0, then |Xz(0)|2 + |Xz(0)|2 ≥ c0, where
c0 = 27/4π2 = 0.6839....

In particular, let S be a minimal graph (minimal surface) over a domain G
which contains the unit disk U and X : U → S isothermal parametrization. If
P (X(0)) = 0, then the above estimate holds.

The only minimal graphs that extend over the entire plane are themselves planes,
a theorem of S. Bernstein.

Let S = {(u, v, F (u, v)) : u+ iv ∈ C} be a regular minimal graph over a simply
connected domain C, and let X : U → S ⊂ R3 be harmonic conformal. Then
??|Xz(0)|2 + |Xz(0)|2 ≥ c0R2.

Finally, the upper bound for curvature has an interesting consequence. We
have shown that if a minimal graph lies above the entire unit disk, then its Gauss
curvature at the point above the origin is bounded by the absolute constant C0 =
16π2/27. From this it follows more generally that whenever a minimal graph covers
a full disk of radius R, then its curvature at the point above the center of that
disk satisfies |K| ≤ C/R2. Consequently, if a minimal graph actually lies above the
entire plane, its Gauss curvature at every point is K = 0. Since the mean curvature
of a minimal surface also vanishes, it follows that any such minimal graph must
have both principal curvatures equal to zero at every point. This proves a classical
theorem of S. Bernstein.

Bernstein’s Theorem. A minimal graph that lies above the entire plane must
itself be a plane.

S(f) = S(h) +
2q

1 + |q|2
(q′′ − q′h′′

h′
)− 4

( q′q

1 + |q|2
)2
.

Theorem 1. For a locally univalent sense-preserving harmonic function f with
dilatation ω = q2, the following are equivalent: (i) S(f) is analytic.
(ii) The curvature K of the minimal surface locally associated with f is constant.
(iii) K ≡ 0 so that the corresponding minimal surface is a plane.
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(iv) The dilatation of f is constant.
(v) f = h+ah for some analytic locally univalent function h and for some complex
constant a with |a| < 1. A surface can be viewed informally as a two-dimensional set
of points in three-dimensional Euclidean space R3. Formally, it is a two-dimensional
manifold with a ”smooth” structure. For most of our purposes it will suffice to
regard a surface S as an equivalence class of differentiable mappings X = Φ(U)
from a domain D ⊂ R2 onto a set S ⊂ R3. Here U = (u, v) and X = (x, y, z)
denote points in R2 and R3, respectively.

The surface S is said to be regular at a point if the Jacobian matrix has rank 2
there or, equivalently, if the two row vectors Xu and Xv are linearly independent.
This means it is possible to solve locally for one of the coordinates x, y, or z in
terms of the other two. The surface S is regular if it is regular at every point.
Regularity is an intrinsic property of S, independent of the choice of parameters.
Henceforth we will assume that S is regular. A surface is said to be embedded in R3

if it has no self-intersections. A nonparametric surface is one with the special form
z = f(x, y) or with x or y expressed in terms of the other two coordinates. Thus, a
regular surface is locally nonparametric but need not be (globally) nonparametric.
A nonparametric surface is also called a graph.

Lagrange’s identity in vector analysis shows that
|Xu ·Xv|2 = |Xu|2|Xv|2 − (Xu ·Xv)

2 = EG− F 2.
The differential form Ldu2 + 2Mdudv + Ndv2 is known as the second funda-

mental form of the surface. Like the first fundamental form, it is intrinsic to the
surface, invariant under sense-preserving change of parameters. Because the first
fundamental form represents the arclength differential ds2, the normal curvature
may be expressed symbolically as a ratio of the two fundamental forms:

We now turn to minimal surfaces. A surface S is called a minimal surface if
for each sufficiently small simple closed curve C on S the portion of S enclosed
by C has the minimum area among all surfaces spanning C. Minimal surfaces can
be constructed physically by dipping a loop of wire into soap solution. Because
of surface tension, the resulting soap film will assume the shape that minimizes
surface area.

A nonparametric minimal surface will be called a minimal graph.
By a standard argument in the calculus of variations, a minimal graph z = f(x, y)

can be shown to satisfy the nonlinear partial differential equation (1 + f2
y )fxx −

2fxfyfxy + (1 + f2
x)fyy = 0. This equation has the elegant geometric interpretation

that the mean curvature of the surface is everywhere equal to zero. Indeed, the
coefficients of the first and second fundamental forms are easily computed in the
nonparametric case, and the minimal surface equation is seen to reduce to EN −
2FM +GL = 0, or H = 0. It is convenient to take the identical vanishing of mean
curvature as the definition of a minimal surface. As an immediate consequence, the
Gauss curvature of a minimal surface is negative unless both principal curvatures
vanish. The simplest example of a minimal surface is of course the plane. Two
other classical examples are the catenoid z = cosh−1r, where r2 = x2 + y2, and
the helicoid z = tan−1(y/x), both shown in Figure XX 9.1. Aside from the plane,
the catenoid is the only minimal surface of revolution, and the helicoid is the only
ruled minimal surface. The only minimal surface of translation z = f(x) + g(y) is
Scherk’s first surface, z = log cosycosx , |x| < π/2, |y| < π/2.
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H = 1
2
EN−2FM+GL

EG−F 2 . In isothermal parameters, F = 0 and E = G = λ2, so the

formula reduces to H = 1
2λ2 (L+N).

In view of the relation |4X| = ±(L+N), this shows that 4X = 0 if and only if
H = 0. But minimal surfaces are characterized by the vanishing of mean curvature.
We have therefore proved the following theorem.

Theorem 17. Let a regular surface S be expressed in terms of isothermal parame-
ters. Then the position vector is a harmonic function of the parameters if and only
if S is a minimal surface.

Corollary 4. If a nonparametric minimal surface is expressed in terms of isother-
mal parameters, the projection onto the base plane defines a harmonic mapping.

To be more specific, suppose a nonparametric minimal surface t = F (u, v) lies
over a region G in the uv- plane. Suppose it is represented by isothermal parameters
(x, y) in a region D of the xy-plane. Then the three coordinate functions u =
u(x, y), v = v(x, y), and t = t(x, y) = F (u(x, y), v(x, y)) are all harmonic. Because
the mapping from D to the surface is injective and the surface is nonparametric,
the projection w = u+ iv = f(z), where z = x+ iy, defines a (univalent) harmonic
mapping of D onto G.

construct three complex-valued functions ϕk by the operation 2DcX = (ϕ1, ϕ2, ϕ3) =
DuX − iDvX. In other words, ϕk = 2Dcxk == DuXk− iDvXk. Recalling the def-
initions of E, F, and G in the first fundamental form of S, one finds by direct calcu-
lation that ϕ2

k = (Duxk)2−2iDuxkDvxk−(Dvxk)2 and |ϕk|2 = (Duxk)2 +(Dvxk)2

and therefore

(13.1)

3∑
k=1

ϕ2
k = E −G− 2iF,

3∑
k=1

|ϕk|2 = E +G .

Suppose now that the parametric representation of S is isothermal. Then F = 0
and E = G > 0, so

(13.2)

3∑
k=1

ϕ2
k = 0,

3∑
k=1

|ϕk|2 > 0 .

If S is a minimal surface, the coordinates xk are harmonic and, hence, the
functions ϕk are analytic. Consequently, to every regular minimal surface there
correspond three analytic functions ϕk with the properties (13.2). Furthermore,
the process is reversible and the converse is true. In other words, each triple of
analytic functions satisfying (13.2) will generate a regular minimal surface. Let us
formulate the result more precisely as a theorem.

Theorem 18. Let X = φ(U) be an isothermal parametrization of a regular min-
imal surface and let w = u + iv. Then the function ϕ = 2DwX is analytic and
have the properties (13.2). Conversely, let {ϕ1, ϕ2, ϕ3} be an arbitrary triple of
functions analytic in a simply connected region, satisfying (13.2). Then the func-
tion X = ReF , where F =

∫
ϕ, gives an isothermal parametrization of a regular

minimal surface.

Proof. We have already established the first statement. Only the converse remains
to be proved. Set Fk =

∫
ϕk(w)dw and xk = ReFk = Re

∫
ϕk(w)dw. Let S be

defined by X.
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Then Duxk = ReF ′k. Since (Fk)u = ϕk, therefore Xu = Re(ϕ1, ϕ2, ϕ3) and

Xv = −Imϕ. Hence E −G− 2iF =
∑3
k=1 ϕ

2
k = 0, ie. E = G and F = 0. �

The following lemma describes the relevant triples of analytic functions.

Lemma 4. Let p be an analytic function and q a meromorphic function in some
domain D ⊂ C. Suppose that p has a zero of order at least 2m wherever q has a
pole of order m. Then the functions

ϕ1 = p(1 + q2), ϕ2 = −ip(1− q2), ϕ3 = −2ipq(13.3)

are analytic in D and have the property

3∑
k=1

ϕ2
k = 0.(13.4)

Conversely, every ordered triple of functions ϕ1, ϕ2, ϕ3 analytic in D with the prop-
erty (13.4) has the structure (13.3), unless ϕ2 = iϕ1. The representation is unique.

p and q are called the Weierstrass-Enneper parameters associated to ϕ.
Outline. It is easy to verify that every triple with the structure (13.3) satisfies

(13.4). The condition on the zeros of p ensures that the functions ϕk are analytic.
Conversely, let ϕk be any analytic functions with the property (13.4). If ϕ2 6= iϕ1

we may define

p =
1

2
(ϕ1 + iϕ2), q =

iϕ3

(ϕ1 + iϕ2)
,(13.5)

so that iϕ3 = 2pq. If ϕ2 = iϕ1, then ϕ2
1 + ϕ2

2 = 0, and it follows that ϕ3 = 0. The
representation (13.3) then follows with the uniquely determined choices p = ϕ1 and
q = 0. In this degenerate case, the corresponding minimal surface is a horizontal
plane.

The conclusion is that angles between curves are preserved everywhere if and only
if the first fundamental form has the structure ds2 = λ2(du2 +dv2), λ = λ(u, v) > 0.

Let S be a regular minimal surface and φ : D → S be an isothermal parametriza-
tion of S and let z = x+ iy(we write also X = φ(z)). Then the function ϕ = 2DzX
is analytic and have the properties (13.2). We say that ϕ is associated to φ(or to
S). p and q are called the Weierstrass-Enneper parameters associated to ϕ(or S).
Let f = (φ1, φ1) be the projection mapping and f = h+ g be the canonical decom-
position. Set w = u + iv and w = f(z). Then Dzu = (ϕ1)/2 and Dzv = (ϕ2)/2,
h′ = Dzf and g′ = Dzf . Hence h′ = Dzf = Dz(u+iv) = Dzu+iDzv = (ϕ1+iϕ2)/2
and g′ = Dzf = (ϕ1 − iϕ2)/2.

Theorem 19. the dilatation ω = g′/h′ of f is given by ω = − ϕ2
3

4h′2 and therefore it
is the square of a meromorphic function.
If f is sense-preserving, then ω = q2. In particular, f is sense-preserving if and
only if q is analytic and |q(z)| < 1 in U

Then the dilatation ω = g′/h′ of f is an analytic function with |ω(z)| < 1 in U
and with the further property that ω = q2 for some function q analytic in U. The
minimal surface S over U has the isothermal representation
xk = Re

∫
ϕk(w)dw,k = 1, 2, 3,for z ∈ U, with

ϕ1 = h′ + g′ = p(1 + q2), ϕ2 = −i(h′ − g′) = −ip(1− q2),
and ϕ3 = −2ipq, where p and q are the Weierstrass-Enneper parameters. Thus
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ϕ2
3 = −4ωh′2 and h′ = p. This shows that ω = − ϕ2

3

4h′2 is the square of a meromorphic
function. In other words, the harmonic mappings that result from projection of
minimal graphs have dilatations with single valued square roots. If f is sense-
preserving, this is equivalent to saying that its dilatation function ω has no zeros of
odd order. The formula for ω is further illuminated when the Weierstrass-Enneper
functions p and q are introduced. Then

and a similar calculation shows that h′ = p and g′ = pq2, which gives the elegant
expression ω = q2 for the dilatation of the projected harmonic mapping f . In
particular, f is sense-preserving if and only if q is analytic and |q(z)| < 1 in U.

The first fundamental form of S is ds2 = λ2|dz|2, where

λ2 =
1

2

3∑
k=1

|ϕk|2 > 0 .

A direct calculation shows that λ2 == |h′|2 + |g′|2 + 2|h′||g′| = (|h′|+ |g′|)2 so that
λ = |h′|+ |g′| = |p|(1 + |q|2).

We are now prepared to connect minimal surfaces with harmonic mappings. If a
surface X = Φ(U) is expressed in terms of isothermal parameters, then, as we have
just seen, Xu ·Xv = 0 and Xu ·Xu = Xv ·Xv. Further differentiations produce the
relations

the Weierstrass-Enneper parameterization of minimal surfaces is a classical piece
of differential geometry.

Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as
1863.

Let f and g be functions on either the entire complex plane or the unit disk,
where g is meromorphic and f is analytic, such that wherever g has a pole of
order m, f has a zero of order 2m (or equivalently, such that the product fg2 is
holomorphic), and let c1, c2, c3 be constants. Then the surface with coordinates
(x1, x2, x3) is minimal, where the xk are defined using the real part of a complex
integral, as follows:

xk(ζ) = <

{∫ ζ

0

ϕk(z) dz

}
+ ck, k = 1, 2, 3(13.6)

ϕ1 = f(1− g2)/2(13.7)

ϕ2 = if(1 + g2)/2(13.8)

ϕ3 = fg(13.9)

The converse is also true: every nonplanar minimal surface defined over a simply
connected domain can be given a parametrization of this type.[1]

For example, Enneper’s surface has f(z) = 1, g(z) = z.
It was shown in the previous chapter that when a minimal surface is represented

by isothermal parameters, its three coordinate functions are harmonic. As a conse-
quence, the projection of a minimal graph to its base plane is a harmonic mapping.
Our object is now to characterize the harmonic mappings obtained in this way and
to show how they lift to minimal surfaces.

Consider a regular minimal graph S = {(u, v, F (u, v)) : u + iv ∈ G} over a
simply connected domain G ⊂ C containing the origin. Suppose that G is not the
whole plane. (It will be shown later that the only minimal graphs that extend over
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the entire plane are themselves planes, a theorem of S. Bernstein.) In view of the
Weierstrass-Enneper representation, as developed in Section 9.3, the surface has a
reparametrization by isothermal parameters z = x+ iy in the unit disk U.

There is no loss of generality in supposing that z ranges over the unit disk,
because any other isothermal representation can be precomposed with a conformal
map from the disk whose existence is guaranteed by the Riemann mapping theorem.
The functions ϕk may be expressed in the form
ϕ1 = p(1 + q2), ϕ2 = −ip(1− q2), ϕ3 = −2ipq,
where p is analytic and q is meromorphic in U, with p nonvanishing except for a
zero of order 2m wherever q has a pole of order m.

In terms of p and q, the Weierstrass-Enneper representation is
u = Re(

∫ z
0
p(1 + q2)dζ), v = Im(

∫ z
0
p(1− q2)dζ), F (u, v) = 2Im(

∫ z
0
pqdζ), z ∈ U.

Now let w = u + iv and let w = f(z) denote the projection of S onto its
base plane: The formula for ω is further illuminated when the Weierstrass-Enneper
functions p and q are introduced. Then
f(z) = Re(

∫ z
0
p(1 + q2)dζ) + iIm(

∫ z
0
p(1− q2)dζ)

and a similar calculation shows that h′ = p and g′ = pq2, which gives the elegant
expression ω = q2 for the dilatation of the projected harmonic mapping f . In
particular, f is sense-preserving if and only if q is analytic and |q(z)| < 1 in U. In
view of the remarks at the end of Section 9.3, the relation ω = q2 also identifies
−i/
√
w as the stereographic projection of the Gauss map of the corresponding

minimal surface. The problem now arises to give a full description of the harmonic
mappings that are projections of minimal surfaces. In other words, what properties
of a harmonic mapping are necessary and sufficient for it to lift to a minimal graph
expressed by isothermal parameters? A necessary condition, as we have just shown,
is that the dilatation of the harmonic mapping is the square of a meromorphic
function. Surprisingly, the condition is also sufficient. To verify this assertion, we
may suppose without loss of generality that the mapping is sense-preserving.

Theorem 20. If a minimal graph S = {(u, v, F (u, v)) : u+iv ∈ G} is parametrized
by sense-preserving isothermal parameters z = x + iy ∈ U, the projection onto its
base plane defines a harmonic mapping w = u + iv = f(z) of U onto G whose
dilatation is the square of an analytic function. Conversely, if f = h+ g is a sense-
preserving harmonic mapping of U onto some domain G with dilatation ω = q2 for
some function q analytic in U, then the formulas
u = Ref(z), v = Imf(z), t = 2Im(

∫ z
0
q(ζ)h′(ζ)dζ)

define by isothermal parameters a minimal graph whose projection is f . Except
for the choice of sign and an arbitrary additive constant in the third coordinate
function, this is the only such surface.

Question
Let Q = [−1, 1]2 and p0 = (u0, v0) ∈ Q. Denote by Ŝp0 family of minimal graphs

S with base Q, parametrized by F : U → S, for which Q is tangent plane at p0.
Find J(p0) = sup{|F ′(0)| : F (U) ∈ Ŝp0}. Whether J(p0) = 4

π cos(π2u0) if v0 ≤ u0.
Set Is = [−s, s]. For s near 1 Q is not extremal disk in Q× Is.
Let r < 1, A0(z) = 1+z

1−z , and let φ = i
2

π
lnA0;. that is φ = φ0 ◦ A0, where

φ0 = i 2
π ln. Let φ̂ be defined by φ̂(z) = φ(iz). Note that φ̂ = 4

π arctan is the inverse
of f0.
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For a second example, consider the function

f(z) =
1 + i

π
√

2

3∑
k=0

ik arg(
z − ik

z − ik+1
)

which maps U harmonically onto the square region Q = [− 1√
2
, 1√

2
]2. Check that

u =
√

2
π argA0(iz), v =

√
2
π argA0(z), t =

√
2
π ln |A0(z2)| This can be recognized as

Scherk’s surface, as presented in Duren, Section 9.4, with the scale factor
√

2
π .

Example 16. f(z) = Imf1(z), where f1(z) = 2
π lnA(z) and A(z) = 1+z

1−z .

Since f ′(0) = 4
π , this example shows that (ii) is sharp.

g = h = −if1/2, ω = 1, t = 2Im(
∫ z

0
q(ζ)h′(ζ)dζ) = 2Im(h(z)) = −Im(if1(z)) =

−Ref1(z) = 2
π ln |A(z)|.

For example, we can consider the unit ball B in R3 and metric h on minimal
surface S induced by hyperbolic metric on the unit ball B and try to compute the
Gaussian curvature of (S, h).

Roughly speaking then we can try to apply theorem:
If ρ and σ are two metrics (density) on U, σ complete and 0 > K̄σ ≥ K̄ρ on U,

then σ ≥ ρ.
K̄ is Gaussian curvature.
U the unit disk
For hyperbolic density K̄ = −4 or −1 (it depends of normalization).
Two examples will now be given to illustrate the process of lifting a harmonic

mapping to a minimal surface. First consider the function f(z) = z − 1
3z

3, which
provides a harmonic mapping of the unit disk U onto the region G inside a hypocy-
cloid of four cusps inscribed in the circle |w| = 4/3 (see Section 1.1).
ω = −z2 . Because ω is the square of an analytic function, the theorem says

that f lifts to the minimal surface defined by the equations
u = Ref(z), v = Imf(z), t = 2Im(

∫ z
0
q(ζ)h′(ζ)dζ) = Rez2.

This is a nonparametric portion of Enneper’s surface, as presented in Section 9.4.
The complete surface is obtained as z ranges over the whole plane.

Therefore, in terms of the Weierstrass-Enneper parameters, the Gauss curvature

is found to be K = − 4|q′|2
|p|2(1+|q|2)4 . Since |q(z)| < 1, the SchwarzPick lemma gives

(1− |z|2)|q′(z)| ≤ 1− |q|2.
Furthermore, the bound is sharp everywhere (but is attained only at the origin)

for univalent harmonic mappings f of U onto itself with f(0) = 0. Extremal function
f0(z) = 2

π arg 1+z
1−z . Since ln 1+z

1−z = 2z + 0(z), when z → 0,

f0(z) = 4
πy and Lf0(0) = 4

π .
A metric defined by CH disks
pseudo Finsler norm
Let G be bounded connected open subset of Rn (in general,real or complex

Banach space ??), p ∈ G and v ∈ TpG. We define kG(p, v) = inf{|h|}, where
infimum is taking over all h ∈ T0C for which there exists conformal harmonic
mappings φ : U → G such that φ(0) = p and dφ(h) = v. Hence hdφ(1) = v and
kG(p, v)dφ(1) = v, kG(p, v)|dφ(1)| = |v|

Since h = |v|
|dφ(1)| , kG(p, v) = inf{|h|} = |v| |v|

sup |dφ(1)| , where supremum is taking

over all conformal harmonic mappings φ : U→ G such that φ(0) = p and dφ(h) =
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sv, s ∈ R. Hence we define pseudo Finsler density as kG(p) = 1
sup |dφ(1)| and

Dg(p) = sup |dφ(1)|. We call the corresponding distance CH-distance. Are there
some interesting application of CH-distances (as Kobayashi, Caratheodory, etc)?

Your question related to the analogy famous theorem of Lempert (1981) seems
to be interesting.

Today I have exams (so I am very busy) but as soon as possible I will give more
details. Shortly, I will give only an idea.

There is a version of Koebe one quoter theorem for harmonic maps. We can try
to prove it for minimal surface.

By e we denote euclidean distance in Rn space.
In some settings the following is true: If f : U → R3 conformal-harmonic,

f(0) = 0 and S = f(U), then e(0, ∂S) ≥ |f
′(0)|
16 .

Suppose that S is a minimal graph defined over a domain G in xy-plane, by
z = F (x, y), (x, y) ∈ G.

Let p(x, y, z) = (x, y) and f = p ◦ f . Then f is univalent harmonic and an
application

the version of Koebe one quoter theorem for harmonic maps, yields the result.
Let S be a minimal surface in the unit ball B in R3 and consider the metric d = dS

on S induced by the hyperbolic metric on the unit ball B and try to compute the
Gaussian curvature KS of (S, d).

Question: It will be nice if KS ≤ −1. Is it possible that KS ≥ −1? If S is the
intersection a plane through the origin with B, then KS = −1.

Let f be isothermal parametrization of S defined on the unit disk U . If KS ≤ −1,
then dhyp,B(fz, fw) ≤ d(fz, fw) ≤ dhyp,U (z, w), z, w ∈ U .

It seems that this implies that CH-Finsler density for unit ball at 0 is CH(0) = 1
and extremal disks are euclidean disks.

If (S, d) is complete and KS ≥ −1, then d(fz, fw) ≥ dhyp(z, w), z, w ∈ U .
If f : U → Bn is holomorphic (analytic disk), then the pull back of Hermitian-

euclidean metric e on Cn is ds2 =
∑n
k=1 |dwk|2 = (

∑n
k=1 |f ′k(z)|2)|dz|2 = |f ′(z)|2|dz|2

and λ = |f ′(z)|. By Schwarz’s lemma λ ≤ 1
1−|z|2 . Hence, if d = de,S metric on

S = f(U) inherited from Cn, then d(fz, fw) ≥ dhyp(z, w), z, w ∈ U .
As I understand, in the setting of Cn (identified by R2n analytic disks are CH-

disks.
Is it known something about the Gaussian curvature KS of analytic disk S in

the unit ball B with metric inherited by Kobayshi metric of B?
Question:
dhyp hyperbolic metric on U . KS the Gaussian curvature of (S, d).
conformal harmonic map of the unit disk U into the unit ball B in Rn.
best regards, Miodrag
Dear Miodrag,
I do not see a connection between this comparison result and the calculation/estimation

of the CH-metric; I must be missing something.
I am really curious whether, in the ball or a bounded convex domains of Rn,

there exist minimal geodesics, i.e. conformal minimal (=harmonic) disks which are
extremal at every point. This holds for holomorphic disks in any bounded convex
domain in Cn by a famous theorem of Lempert (1981).
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Q. Let f : D → Bn be a harmonic univalent mapping with l(f ′(0) ≥ 1 and
f(0) = 0 . Is there an absolute constant c > 0, such that δ = dist(0, ∂h(D) ≥ c ??

Q. Let f : D→ Bn be a K-qr harmonic mapping. Whether f is a quasi-isometry
w.r. the hyperbolic distances ?

14. Appendix- Schwarz lemma 2

The model of the hyperbolic plane is the half-plane model. The underlying space
of this model is the upper half-plane model H in the complex plane C,defined to be
H = {z ∈ C : Im(z) > 0}. In coordinates (x, y) the line element is defined as ds2 =
1
y2 (dx2+dy2). The geodesics of this space are semicircles centered on the x-axis and

vertical half-lines. The geometrical properties of the figures on the half-plane are
studied by considering quantities invariant under an action of the general Möbius
group, which consists of compositions of Möbius transformations and reflections [4].
The curvilinear triangle formed by circular arcs of three intersecting semicircles is
one of the principal figures of the upper half-plane model H. The hyperbolic laws
of sines-cosines for that triangle are proved by using properties of the Möbius group
and the upper half-plane H.

In [67] Yamaleev suggests another way of construction of proofs of the sines-
cosines theorems of the Poincaré model. The curvilinear triangle formed by circular
arcs is the figure of the Euclidean plane; consequently, on the Euclidean plane we
have to find relationships antecedent to the sines-cosines hyperbolic laws. There-
fore, first of all, we establish these relationships by making use of axioms of the
Euclidean plane, only. Secondly, we prove that these relationships can be formu-
lated as the hyperbolic sine-cosine theorems. For that purpose we refer to the
general complex calculus and within its framework establish a relationship between
exponential function and the cross-ratio. In this way the hyperbolic trigonometry
emerges on Euclidean plane in a natural way.

For the benefit of the reader we add some details concerning some parts of
subsection 2.2. The cross-ratio of a 4-tuple of distinct points on the real line with
coordinates z1, z2, z3, z4 is given by

(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
.

Let γ be a circular arc (geodesic), orthogonal to T at the points w1 and w2, that
contains the points z1 and z2 of the unit disk (suppose that the points w1, z1, z2, w2

occur in this order). Since (r, 0,−1, 1) = (1 + r)/(1− r), we find

λ(z1, z2) = ln(z2, z1, w1, w2).

We leave to the interested reader to check that {z1, z2} = (z2, z1, w1, w2) > 0 if the
points are in the order indicated above.

In this form we can consider λ as the oriented distance which changes the sign
of the permutation z1 and z2. Additivity of the distance on geodesics follow from
(z2, z1, w1, w2) = (z2, z3, w1, w2)(z3, z1, w1, w2).

Let K = K(z1, z2) circle orthogonal on T throughout points z1 i z2 and denote
by a and b the intersection points K and T. Usually we denote the intersection
points such that z1 is between a and z2.
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Recall [z1, z2; a, b] = z1−a
z1−b : z2−az2−b . For example if a = −1, b = 1, then according

convention about the notation we write z1 = 0 i z2 = r, 0 < r < 1.
Since [0, r;−1, 1] = 1−r

1+r , it is 0 < [0, r;−1, 1] < 1. Therefore it is convenient to

define {z1, z2} = [z2, z1; a, b]2 = z2−a
z2−b : z1−az1−b .

Check that according our convention on notation {z1, z2} > 1 and
{z1, z2}·{z2, z3} = {z1, z3}. Define dhyp(z1, z2) = ln{z1, z2}. Check {0, r} = 1+r

1−r .

Define Tz1(z) = z−z1
1−z1z , ϕz1 = −Tz1 and

δ(z1, z2) = |Tz1(z2)| = | z−z11−z1z |. Schwarz’s lema yields motivation to introduce the

hyperbolic distance: If f ∈ Hol(U,U), then δ(fz1, fz2) ≤ δ(z1, z2).
Consider F = ϕw1

◦ f ◦ ϕz1 , wk = f(zk). Then F (0) = 0 and |ϕw1
(w2)| ≤

|ϕz1(z2)|.
Hence

|f ′(z)| ≤ 1− |fz|2

1− |z|2
.

By notation w = f(z) i dw = f ′(z)dz,

|dw|
1− |w|2

≤ |dz|
1− |z|2

.

Define the density ρ(z) = 1
1−|z|2 .

For v ∈ TzC vector def |v|ρ = ρ(z)|v| and set v∗ = dfz(v). Then |v∗|ρ ≤ |v|ρ.
If γ piecewise smooth then define |γ|ρ =

∫
γ
ρ(z)|dz| and d(z1, z2) = inf |γ|ρ,

where the infimum is taken over all paths γ in U joining the points z1 and z2.
We summarize

λU = ln
1 + δU
1− δU

, λH = ln
1 + δH
1− δH

.(14.1)

For v ∈ TzC vector we define |v|ρ = ρ(z)|v| and set v∗ = dfz(v).

Proposition 14.1. If f ∈ Hol(U,U), then |v∗|ρ ≤ |v|ρ.
If γ piecewise smooth then define |γ|ρ =

∫
γ
ρ(z)|dz| and d(z1, z2) = inf |γ|ρ,

where the infimum is taken over all paths γ in U joining the points z1 and z2.
Let G be a simply connected domain different from C and let φ : G → U be a

conformal isomorphism. Define the pseudo hyperbolic distance on G by ϕGa (z) =
ϕb(φ(z)), where b = φ(a), and δG(a, z) = |ϕGa (z)| = δU(φ(a), φ(z)). Verify that
the pseudo hyperbolic distance on G is independent of conformal mapping φ. In
particular, using conformal isomorphism A(w) = Aw0(w) = w−w0

w−w0
of H onto U, we

find ϕH,w0
(w) = A(w) and therefore δH(w,w0) = |A(w)|.

Proposition 14.2. The definition of δG is independent of conformal isomorphism.

Proof. Let φ, φ1 : G→ U be two conformal isomorphism and let z1, z2 be two points
in G and wk = φ(zk) and w′k = φ1(zk), k = 1, 2. If A = φ−1

1 ◦ φ, then A ∈ Aut(U)
and A(wk) = w′k, k = 1, 2. Hence δU(w1, w2) = δU(w′1, w

′
2). �

For a domain G in C and z, z′ ∈ G we define δG(z, z′) = sup δU(φ(z′), φ(z)),
where the suprimum is taken over all φ ∈ Hol(G,U).

Proposition 14.3. (a) If G and D are conformally isomorphic to U and f ∈
Hol(G,D), then

δD(fz, fz′) ≤ δG(z, z′), z, z′ ∈ G.
(b) The result holds more generally if G and D are hyperbolic domains.
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Proof. Let φ : G → U and φ1 : D → U be two conformal isomorphisms and set
F = φ1 ◦ f ◦ φ−1. Next let z1, z2 be two points in G and wk = f(zk), ζk = φ(zk)
and ζ ′k = φ1(wk), k = 1, 2. Then δU(ζ ′1, ζ

′
2) ≤ δU(ζ1, ζ2) and the result follows.

A proof of (b) can be based on the fact:
if φ ∈ Hol(D,U), then φ ◦ f ∈ Hol(G,U). �

Set d0(z, w) = | z−w1−wz |. In a response to nice post Principle of subordination [71]

KKK(05/03/2012 at 8:27 pm) says: ”In most textbooks, the hyperbolic metric g
is given first and then it is deduced that the isometry group is exactly the group
of all conformal self maps of the disk i.e. disk-preserving holomorphic and anti-
holomorphic functions. Suppose we want to reverse this process and want to find
a (hyperbolic) metric which is preserved by the conformal self maps. We observe
from the equality case of the Pick’s lemma that for w = w(z) to be a conformal self

map, |dwdz | =
1−|w|2
1−|z|2 i.e. |dw|

1−|w|2 = |dz|
1−|z|2 .

Thus we find that the hyperbolic metric is given by (up to a positive factor)

g = |dz|2
(1−|z|2)2 = dx2+dy2

(1−x2−y2)2 .

Interestingly, the other form of Picks lemma is given by d0(fz, fw) ≤ d0(z, w)
with equality hold iff f is a conformal self map. It suggests (without integrating)
that the hyperbolic distance is actually given by (up a scaling) d0(z, w) = | z−w1−wz |.
However, it is different from the usual definition d(z, w) = tanh−1(| z−w1−wz |), I cant

think if any way to ”see” (except integrating) that the correct definition is the later
one instead of the former one (actually I havent checked if the former one really
satisfies the triangle inequality).”

Note that the former one really satisfies the triangle inequality and we call it the
pseudo-hyperbolic distance. The pseudo-hyperbolic distance is not additive along
hyperbolic geodesics.

14.1. the hyperbolic law of cosines and sines. A good reference for this sub-
section is Ahlfors book [6]. For a right triangle in hyperbolic geometry with sides
a, b, c and with side c opposite a right angle, the relation between the sides takes
the form:

cosh c = cosh a cosh b

where cosh is the hyperbolic cosine. This formula is a special form of the hyperbolic
law of cosines that applies to all hyperbolic triangles:

Proposition 14.4 (I. the hyperbolic law of cosines).

cosh c = cosh a cosh b− sinh a sinh b cos γ

with γ the angle at the vertex opposite the side c.

By using the Maclaurin series for the hyperbolic cosine, coshx = 1+x2/2+o(x2),
it can be shown that as a hyperbolic triangle becomes very small (that is, as a, b,
and c all approach zero), the hyperbolic relation for a right triangle approaches the
form of Pythagoras’ theorem.

In hyperbolic geometry when the curvature is −1, the law of sines becomes:

Proposition 14.5 (II. the hyperbolic law of sines). For a hyperbolic triangle ABC,
sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
.
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In the special case when B is a right angle, one gets

sinC =
sinh c

sinh b
,

which is the analog of the formula in Euclidean geometry expressing the sine of an
angle as the opposite side divided by the hypotenuse.

Proof of I. By an abuse of notation, we use the same symbols for vertices and the
measures of corresponding angles. Without loss of generality we can suppose C = 0,
0 < B < 1 and A = eiCs, where 0 < s < 1. Then B = tanh(a/2), A = tanh(b/2)eiC

and σ(A,B) = tanh(c/2). As in euclidean trigonometry all trigonometric function
we can express by tanh. For cos and sin (see also Proposition ??),

coshx =
1 + tanh2(x/2)

1− tanh2(x/2)
, sinhx =

2 tanh(x/2)

1− tanh2(x/2)
.

cosh c =(14.2)

(1 + tanh2(a/2))(1 + tanh2(b/2))− 4 tanh(a/2) tanh(b/2) cosC

(1− tanh2(a/2))(1− tanh2(b/2))
(14.3)

= cosh a cosh b− sinh a sinh b cos γ .(14.4)

�
Proof of II. By the hyperbolic law of cosines,

cosC =
cha chb− chc

sha shb
,

sin2 C =
(ch2a− 1)(ch2b− 1)− (cha chb− chc)2

sh2ash2b
,

sin2 C

sh2c
=

1− ch2a− ch2b− ch2c+ 2cha chb chc

sh2ash2bsh2c
.

Since the formula is symmetric, II follows. �

14.2. Klein model. Recall for given two distinct points U and V in the open
unit ball of the model in Euclidean space, the unique straight line connecting them
intersects the unit sphere at two ideal points A and B, labeled so that the points
are, in order along the line, A,U, V,B. Taking the centre of the unit ball of the
model as the origin, and assigning position vectors u, v, a, b respectively to the
points U, V,A,B, we have that that |a− v| > |a−u| and |u− b| > |v− b|, where | · |
denotes the Euclidean norm. Then the distance between U and V in the modelled
hyperbolic space is expressed as

d(u,v) =
1

2
log
‖v − a‖ ‖b− u‖
‖u− a‖ ‖b− v‖

,

where the factor of one half is needed to make the curvature −1.
XXX The associated metric tensor is given by

ds2 = g(x, dx) =
‖dx‖2

1− ‖x‖2
+

(x · dx)2(
1− ‖x‖2

)2 .
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More precisely, if v ∈ TxRn, then

ds2(v) = Kle(x,v) =
‖v‖2

1− ‖x‖2
+

(
∑n
k=1 xkvk)2(

1− ‖x‖2
)2 .(14.5)

14.3. Schwarz in Rn. XX In terms of the so-called contact angle (the angle be-
tween the normal to the sphere at the bottom of the cap and the base plane)

Set N0 = (0, ..., 0, 1), E1 = (1, 0, ..., 0) and Q(x, ξ) = |x|2 + |ξ|2 − 2〈x, ξ〉. Note
that P (x, ξ) = (1− |x|2)Q−n/2.

Check that
if x = |x|N0, then |x− ξ|2 ≤ |x− E1|2 = 1 + |x|2, ξ ∈ S+ and
|x− E1|2 = 1 + |x|2 ≤ |x− ξ|2, ξ ∈ S−.
Set M(x) = M2(x) = (1− |x|2)(1 + |x|2)−n/2. Then
M(x) ≤ P (x, ξ) for ξ ∈ S+, and P (x, ξ) ≤M(x) for ξ ∈ S−. Define

U0 = P [χS+ − χS− ]

Theorem 21 (Theorem 6.16 [ABR]). Suppose that u is complex valued harmonic
on B, |u| < 1 on B, and u(0) = 0. Then

|u(x)| ≤ U0(|x|N0)(14.6)

for every x ∈ B.

After a rotation, we can assume that x = |x|N0 = (0, ..., 0, |x|).
First we consider the case in which u is real valued. There is f ∈ L∞(S), such

that u = P [f ]. We claim that u(x) ≤ U0(x). This inequality is equivalent to
I1 ≤ I2, where

I1 :=

∫
S−

P (x, ξ)(1 + f)dσ(ξ) and I2 :=

∫
S+

P (x, ξ)(1− f)dσ(ξ).

It is convenient to introduce J1 :=
∫
S−

Q−n/2(x, 0)(1 + f)dσ(ξ) and J2 :=∫
S+ Q

−n/2(x, 0)(1− f)dσ(ξ).

The condition u(0) = 0 implies
∫
S−

fdσ = −
∫
S+ fdσ and therefore J1 = J2.

Since ξn is negative on S− and positive on S−, Q−n/2(x, ξ) ≤ Q−n/2(x, 0),
ξ ∈ S−, and Q−n/2(x, 0) ≤ Q−n/2(x, ξ), ξ ∈ S+. Hence I1 ≤ J1 = J2 ≤ I2.

It is useful to present a small variation of the above proof. Set A :=
∫
S+(1 −

f(ξ))dσ(ξ) and B :=
∫
S−

(1 + f(ξ))dσ(ξ). The condition u(0) = 0 implies A = B.
Then J1 = BM(x), J2 = AM(x) and I1 ≤ J1 = J2 ≤ I2.

Theorem 22. Suppose that u is complex valued harmonic on B, |u| < 1 on B.
Then

|(∇u)(0)| ≤ τn = 2
V (Bn−1)

V (Bn)
.(14.7)

Equality holds if and only if u = U0 ◦ T for some orthogonal transformation.

Note that B1 = (−1, 1) and V (B1) = 2.

Proof. For a fixed ξ, DnQ(x, ξ) = 2(xn − ξn) and therefore
DnP (x, ξ) = −2xnQ

−n/2 − n(1− |x|2)Q−n/2−1(xn − ξn).
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For ξ ∈ S, Q(0, ξ) = 1 and therefore DnP (0, ξ) = nξn. Hence Dnu(0) =∫
S
DnP (0, ξ) f(ξ) dσ(ξ) = n

∫
S
ξn f(ξ) dσ(ξ) ≤ nτn, where τn :=

∫
S
|ξn| dσ(ξ). �

Set ωn = V (Bn).

Exercise 9. Check that ω1 = 2, ω2 = π, ω3 = 4π/3, τ2 = 4/π and τ3 = 3/2.
When n = 2, |(∇u)(0)| ≤ 4/π. For z = (x, y) ∈ B2, U0

2 (x, y) = 2
π arctan 2y

1−x2−y2

and U0
2 (|z|N0) = 4

π arctan |z|.
Suppose w is a harmonic mapping of U into itself. Then, the following statement

holds: |w(z)−M(z)w(0)| ≤ 4
π , z ∈ U.

Show that

U0
3 (|x|N0) =

1

|x|

[
1− 1− |x|2√

1 + |x|2

]
and

U0
4 (|x|N0) =

2

π

(1 + |x|2)2 arctan |x| − |x|(1− |x|2)

|x|2(1 + |x|2)
.

Definition 14.1 (Har(p),Harc(p)). For p ∈ U, let Har(p) (respectively Harc(p))
denote the family of all complex valued harmonics maps f from U into itself with
f(0) = p (which are conformal at 0 respectively).

Burgeth

Hc := {h is harmonic (hyperbolic-harmonic) onBp : h(0) = c, 0 < h < 1}
By IA we denote the characteristic function of A. Set

Mp
c (|x|) = 2

∫
Sp

IS(c,x̂)Pxdσ − 1(14.8)

mp
c(|x|) = 2

∫
Sp

IS(c,−x̂)Pxdσ − 1,(14.9)

where x ∈ Bp and S(c, x̂) denotes the polar cap with center x̂ and σ-measure c.
Check that

Mp
c (|x|) =

2√
π

Γ(p/2)

Γ(p/2)
(1− |x|2))ν

∫ α(c)

0

sinp−2 ϕ

(1− 2|x| cosϕ+ |x|2)µ
dϕ,(14.10)

mp
c(|x|) =

2√
π

Γ(p/2)

Γ(p/2)
(1− |x|2))ν

∫ α(c)

0

sinp−2 ϕ

(1− 2|x| cosϕ+ |x|2)µ
dϕ,(14.11)

where (ν, µ) = (1, p/2) in the harmonic case resp. (ν, µ) = (p − 1, p − 1) in the
hyperbolicharmonic case and α(c) is the spherical angle of S(c, x̂). For the sake
of simplicity we consider g = (1 + h)/2 ∈ Hc (g(0) = a). Our aim is to find the
extreme values of the integral

∫
Sp
Pxg

∗dσ where g is varying in Hc.

Theorem 23. Let h be a harmonic or hyperbolic-harmonic function with |h| ≤ 1
and h(0) = a, −1 < a < 1. Then for XX c = σn(a+ 1)/2 and all x ∈ Bp

mp
c(|x|) ≤ h(x) ≤Mp

c (|x|)(14.12)

Equality on the right (resp.,left-) hand side for some z ∈ Bp \ {0} implies

h(x) = Uzc (x) := 2

∫
Sp
χS(c,ẑ)Px − 1(14.13)

h(x) = uzc(x) := 2

∫
Sp
χS(c,−ẑ)Px − 1(14.14)
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Set A(t, x) = {Px > t} and µ(t, x) = σ(A(t, x)). First, note that the function
defined by t 7→ µ(t, x) (t ∈ R+, x ∈ Bp) is continuous and strictly decreasing, so
to each c ∈]0, 1[ there exists a unique number tc such that µ(tc, x) = cσp. Further
note that IS(c,x̂ = IA(tc,x) ∈ Kc. Fixing x ∈ Bp we conclude that for every g∗ ∈ Kc

with g∗ 6= IS(c,x̂)∫
Sp
Pxg

∗dσ =

∫
(Px − tc)g∗dσ + cσptc(14.15)

=(14.16)

<

∫
(Px − tc)IA(tc,x)dσ + cσptc(14.17)

=

∫
IS(c,x̂Pxdσ =

1

2

(
Mp
c (|x|) + 1

)
.(14.18)

MM Set Mp(r, c) = Mp
c (r).

Mp(r, c) is increasing wrt c. Whether there is some kind of monotonicity with
respect to r?

Let g ∈ Hc, g = P [g∗] and y0 = g(x0) there is c0 such that
∫
S0
Px0dσ = y0,

where S0 = S(x̂0, c0); set σ0 = σ(S0).
Then Px0

= t0 on bS0.

g(x) =

∫
S

Pxg
∗dσ =

∫
S
(Px − t0)g∗dσ + t0

∫
S
g∗dσ

≤
∫
S(x̂0,c0)

(Px − t0)g∗dσ + t0σpg(0) ≤
∫
S(x̂0,c0)

(Px − t0)dσ + t0σpg(0)

=

∫
S(x̂0,c0)

(Px − t0)dσ + t0σpg(0) =

∫
S(x̂0,c0)

Pxdσ − t0σ0 + t0σpg(0)

= Mp
c0(|x|) + c1(x)

?? t0 = t0(x)

Definition 14.2 (Har(p),Harc(p)). For p ∈ U, let Har(p) (respectively Harc(p))
denote the family of all complex valued harmonics maps f from U into itself with
f(0) = p (which are conformal at 0 respectively). Set

Lhar(p) = sup{|f ′(0)| : f ∈ Har(p)} and Khar(p) =
L(p)√
1− |p|2

,

Lc(p) = sup{|f ′(0)| : f ∈ Harc(p)} and Kc(p) =
Lc(p)

1− |p|2
.

For planar domains D and G and given points z ∈ D and p ∈ G denote by

Lhar(z, p) = Lhar(z, p;D,G) = sup{|f ′(z)|},

where the supremum is taken over all f ∈ Har(D,G) with f(z) = p. If I ⊂ R is an
interval, and u0 ∈ I, we define Lhar(z, p;D, I) in a similar way.

If D = U we write Har(G) instead of Har(U, G) and if in addition z = 0, we
write simply Lhar(p,G) (or shortly Lh(p,G)) and if in addition G = U, we write
Lhar(p).
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For a ∈ (−1, 1), let Hara denote the family of all real valued harmonics maps f
from U into (−1, 1) with f(0) = a. Set c = (a + 1)/2, c = 2πc, α = α(c) = c/2 =

(a+ 1)π/2 and X(r) = 4
π arctan

(
1+|z|
1−|z| tan α(c)

2

)
− 1, where r = |z|.

Theorem 24. If h ∈ Hara, then h(z) ≤ X(|z|) and |(dh)0| ≤ X ′(0) = 4
π sinα.

MM For p = 2, Mp
c (|z|) = X(r) = 4

π arctan
(

1+|z|
1−|z| tan α(c)

2

)
− 1, where r = |z|,

c = σ2(a + 1)/2 = (a + 1)π and α = α(c) = π − c/2. Then M2
c (0) = a, X ′(0) =

4
π sinα and therefore L(a) = Lhar(a) = 4

π sinα, 0 ≤ a < 1.
In general for p ∈ U, L(p) = L(|p|).
Set

Lhar(p) = sup{|f ′(0)| : f ∈ Har(p)} and Khar(p) =
L(p)√
1− |p|2

,

Lc(p) = sup{|f ′(0)| : f ∈ Harc(p)} and Kc(p) =
Lc(p)

1− |p|2
.

Up(z) = sup{|f(z)| : f ∈ Har(p)}.

u(0) = a ∈ (0, 1) u = P [f ]
Set A :=

∫
S+(1 − f(ξ))dσ(ξ) and B :=

∫
S−

(1 + f(ξ))dσ(ξ). The condition
u(0) = 0 implies A = B. Then J1 = BM(x), J2 = AM(x) and I1 ≤ J1 = J2 ≤ I2.

Set A(f) :=
∫
A+(1− f(ξ))dσ(ξ) and B(f) :=

∫
A−

(1 + f(ξ))dσ(ξ).

A+ = S(1, l1) A− = S(1, l2) l(A+) = l(A−) + a l1 = (1 + a)/2 α(a) = (1 + a)π

the central angle of cup A+, ζ0 = eiα/2 = b+ i
√

1− b2
|1− ζ0|2 = 2(1 + b) U(z) =

∫
A+ Pzdσ −

∫
A−

Pzdσ

Set A(f) :=
∫
A+(1− f(ξ))dσ(ξ) and B(f) :=

∫
A−

(1 + f(ξ))dσ(ξ). Since U(0) =∫
A+ dσ(ξ) −

∫
A−

dσ(ξ) = l(A+) − l(A−) = a, U(0) = u(0) and therefore A(f) =
B(f).
I1 ≤ Pz(ζ0)A = Pz(ζ0)B ≤ I2
Let Cn be the complex Euclidean n-space. In this paper, we write a point z ∈ Cn

as a column vector of the following n× 1 matrix form.
Theorem B. ([3, Theorem 1.1’]) Suppose f is a holomorphic self-mapping of U

with f(0) = 0, and, further, f is holomorphic at z = a ∈ Bn with w(a) = b ∈ S1.
Then, the following two conclusions hold:

(1) bf ′(a)a ≥ 1.
(2) bf ′(a)a = 1 if and only if f(z) = eiαz, where eiα and α ∈ R.
Theorem 1.4. Let f be a holomorphic self-mapping of Bn. If f is holomorphic at

z = a ∈ Bn with w(a) = b ∈ Sn, then we have the following inequality:

(14.19) b
T
Jf (a)a ≥ 2|1− bT f(0)|2

1− |bT f(0)|2 + ||Jf (0)||
.

Set g(ζ) = b
T
f(aζ). Then g is a holomorphic self-mapping of U satisfying

g(0) = b
T
f(0), g(1) = b

T
f(a) = 1, g′(0) = b

T
Jf (0)a and g′(1) = b

T
Jf (a)a. Now

apply complex 1-dim version, Theorem 3.8.
In 2016, Tang et al proved the following theorem which is an improvement of

Theorem B.
Theorem F. ([17, Theorem 3.1]) Let f : Bn → Bn be a holomorphic mapping,

and let f(c) = c for some c ∈ Bn. Then we have the following two conclusions: (1)
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If f is holomorphic at z = a ∈ Bn with w(a) = b ∈ Sn, then

(14.20) b
T
Jf (a)a ≥ |1− c

T b|2

|1− cTa|2

Theorem 1.9. Let w be a pluriharmonic self-mapping of Bn satisfying w(0) = 0.
If w(z) is differentiable at z = a ∈ Bn with w(a) = b ∈ Sn, then

(14.21) Re
[
b

T
(wz(a)a + wz(a)a)

]
≥ 4

π

1

1 + π
4 Λw(0)

.

Using the authomorphism of Bn one can obtain version with w(c) = 0, where
c ∈ Bn.

See
Jian-Feng Zhu, Schwarz lemma and boundary Schwarz lemma for pluriharmonic

mappings, manuscript December 2017
H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings,

Bull. Amer. Math. Soc., 42 (1936), 689692.
[3] T. Liu and X. Tang, A new boundary rigidity theorem for holomorphic self-

mappings of the unit ball in Cn, Pure Appl. Math. Q., 11 (2015), 115130.
T. Liu, J. Wang and X. Tang, Schwarz lemma at the boundary of the unit ball

in Cn and its applications, J. Geom. Anal., 25 (2015), 18901914.
T. Liu and X. Tang, Schwarz lemma at the boundary of strongly pseudoconvex

domain in Cn, Math. Ann., 366 (2016), 655666.
In communication (4/8/2018) Jian-Feng Zhu asked questions:
Can we obtain similar results like Lemma 2.2 in the paper of ”Liu Taishun

JGA” and Lemma 2.3 in the paper of ”Math Ann” for pluriharmonic mappings
and harmonic K-q.c.?

14.4. Hopf fibration. We write z = (z1, z2, ..., zn) ∈ Cn. On Cn we define the
standard Hermitian inner product by

< z,w >=

n∑
k=1

zkwk

for z, w ∈ Cn and by |z| =
√
< z, z > we denote the norm of vector z. We also

use notation (z, w) instead of < z,w > on some places. By B = Bn we denote the
unit ball in Cn. In particular we use also notation U(and occasionally D) and H for
the unit disk and the upper half-plane in complex plane respectively. Identify Cn
with R2n and define Euclidean scalar product on Cn with < z,w >e= Re < z,w >.
If we wish to emphasize that z ∈ Cn we occasionally write z instead of z.. Let
e1 = (1, 0) ∈ C2. Set of vectors w = (w0, w1) orthogonal on e1 wrt Hermitian
inner (res Euclidean) product is given by e⊥1 = {w :< w, e1 >= w0 = 0} (res
e.
⊥
1 = {w :< w, e1 >e= Rew0 = 0}. The sets e⊥1 and e.

⊥
1 have real dimensions 2 and

3 respectively.
Direct construction
Identify R4 with C2 and R3 with C×R(where C denotes the complex numbers)

by writing:

(x1, x2, x3, x4)↔ (z0, z1) = (x1 + ix2, x3 + ix4)

and
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(x1, x2, x3)↔ (z, x) = (x1 + ix2, x3)(x1, x2, x3)↔ (z, x) = (x1 + ix2, x3).

Thus S3 is identified with the subset of all (z0, z1) in C2 such that |z0|2+|z1|2 = 1,
and S2 is identified with the subset of all (z, x) in C × R such that |z|2 + x2 = 1.
(Here, for a complex number z = x + iy, |z|2 = zz∗ = x2 + y2, where the star
denotes the complex conjugate.) Then the Hopf fibration p is defined by

p(z0, z1) = (2z0z
∗
1 , |z0|2 − |z1|2).

By easy calculation |p(z0, z1)|2 = |2z0z1|2 + (|z0|2− |z1|2)2 = (|z0|2 + |z1|2)2 and
therefore p maps the 3-sphere into the 2-sphere. Furthermore, if two points on
the 3-sphere map to the same point on the 2-sphere, i.e., if p(z0, z1) = p(w0, w1),
then (w0, w1) must equal (λz0, λz1) for some complex number λ with |λ|2 = 1.
The converse is also true; any two points on the 3-sphere that differ by a common
complex factor λ map to the same point on the 2-sphere. These conclusions follow,
because the complex factor λ cancels with its complex conjugate λ∗ in both parts
of p: in the complex 2z0z

∗
1 component and in the real component |z0|2 − |z1|2.

Since the set of complex numbers λ with |λ|2 = 1 form the unit circle in the
complex plane, it follows that for each point m in S2, the inverse image p−1(m) is
a circle, i.e., p−1m ∼= S1. Thus the 3-sphere is realized as a disjoint union of these
circular fibers.

A direct parametrization of the 3-sphere employing the Hopf map is as follows.

z0 = ei
ξ1+ξ2

2 sin η, z1 = ei
ξ2−ξ1

2 cos η.

Where η runs over the range 0 to π/2, and ξ1 and ξ2 can take any values between 0
and 2π. Every value of η, except 0 and π/2 which specify circles, specifies a separate
flat torus in the 3-sphere, and one round trip (0 to 2π) of either ξ1 or ξ2 causes you
to make one full circle of both limbs of the torus. Geometric interpretation using
rotations

Another geometric interpretation of the Hopf fibration can be obtained by con-
sidering rotations of the 2-sphere in ordinary 3-dimensional space. The rotation
group SO(3) has a double cover, the spin group Spin(3), diffeomorphic to the 3-
sphere. The spin group acts transitively on S2 by rotations. The stabilizer of a
point is isomorphic to the circle group. It follows easily that the 3-sphere is a
principal circle bundle over the 2-sphere, and this is the Hopf fibration.

To make this more explicit, there are two approaches: the group Spin(3) can
either be identified with the group Sp(1) of unit quaternions, or with the special
unitary group SU(2).

In the first approach, a vector (x1, x2, x3, x4) in R4 is interpreted as a quaternion
q ∈ H by writing

q = x1 + ix2 + jx3 + kx4.

The 3-sphere is then identified with the versors, the quaternions of unit norm, those
q ∈ H for which |q|2 = 1, where |q|2 = qq∗, which is equal to x2

1 + x2
2 + x2

3 + x2
4 for

q as above.
On the other hand, a vector (y1, y2, y3) in R3 can be interpreted as an imaginary

quaternion

p = iy1 + jy2 + ky3.
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Then, as is well-known since Cayley (1845), the mapping

p 7→ qpq∗

is a rotation in R3: indeed it is clearly an isometry, since |qpq∗|2 = qpq∗qp∗q∗ =
qpp∗q∗ = |p|2, and it is not hard to check that it preserves orientation. In fact, this
identifies the group of versors with the group of rotations of R3, modulo the fact that
the versors q and -q determine the same rotation. As noted above, the rotations
act transitively on S2, and the set of versors q which fix a given right versor p have
the form q = u + vp, where u and v are real numbers with u2 + v2 = 1. This is a
circle subgroup. For concreteness, one can take p = k, and then the Hopf fibration
can be defined as the map sending a versor ω to ωkω∗. All the quaternions ωq,
where q is one of the circle of versors that fix k, get mapped to the same thing
(which happens to be one of the two 180 rotations rotating k to the same place as
ω does). Another way to look at this fibration is that every versor ω moves the
plane spanned by {1, k} to a new plane spanned by {ω, ωk}. Any quaternion ωq,
where q is one of the circle of versors that fix k, will have the same effect. We put
all these into one fibre, and the fibres can be mapped one-to-one to the 2-sphere of
180o rotations which is the range of ωkω∗. This approach is related to the direct
construction by identifying a quaternion q = x1 + ix2 + jx3 + kx4 with the 2 × 2
matrix: [

x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

]
.

This identifies the group of versors with SU(2), and the imaginary quaternions
with the skew-hermitian 2× 2 matrices (isomorphic to C R).

Fluid mechanics. If the Hopf fibration is treated as a vector field in 3 dimensional
space then there is a solution to the (compressible, non-viscous) Navier-Stokes
equations of fluid dynamics in which the fluid flows along the circles of the projection
of the Hopf fibration in 3 dimensional space. The size of the velocities, the density
and the pressure can be chosen at each point to satisfy the equations.

15. App

15.1. several variables. The definition of a holomorphic function generalizes to
several complex variables in a straightforward way. Let D denote an open subset of
Cn, and let f : D → C. The function f is analytic at a point p in D if there exists an
open neighborhood of p in which f is equal to a convergent power series in n complex
variables.[14] Define f to be holomorphic if it is analytic at each point in its domain.
Osgood’s lemma shows (using the multivariate Cauchy integral formula) that, for
a continuous function f, this is equivalent to f being holomorphic in each variable
separately (meaning that if any n - 1 coordinates are fixed, then the restriction of f
is a holomorphic function of the remaining coordinate). The much deeper Hartogs’
theorem proves that the continuity hypothesis is unnecessary: f is holomorphic if
and only if it is holomorphic in each variable separately.

More generally, a function of several complex variables that is square integrable
over every compact subset of its domain is analytic if and only if it satisfies the
CauchyRiemann equations in the sense of distributions.

Functions of several complex variables are in some basic ways more complicated
than functions of a single complex variable. For example, the region of convergence
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of a power series is not necessarily an open ball; these regions are Reinhardt do-
mains, the simplest example of which is a polydisk. However, they also come with
some fundamental restrictions. Unlike functions of a single complex variable, the
possible domains on which there are holomorphic functions that cannot be extended
to larger domains are highly limited. Such a set is called a domain of holomorphy.

A function f(z) defined on a domain U ⊂ Cn is called holomorphic if f(z) satisfies
one of the following two conditions.

(i) a = (a1, . . . , an) ∈ U ⊂ Cn f(z) is expressed as a power series expansion that
is convergent on U :

(1) f(z) =
∑

ck1,...,kn(z1 − a1)k1 · · · (zn − an)kn

which was the origin of Weierstrass’ analytic methods.
(ii) a) f(z) is continuous on U , and b) for each variable zλ, f(z) is holomorphic,

namely,

(2)
∂f

∂z̄λ
= 0

which is a generalization of the CauchyRiemann equations (using a partial Wirtinger
derivative), and has the origin of Riemann’s differential equation methods. (Using
Hartogs’extension theorem, continuity in (ii) is not necessary.)

To show that above two conditions (i) and (ii) are equivalent, it is easy to prove
(i) implies (ii). To prove (ii) implies (i) one uses Cauchy’s integral formula on the
n-multiple disc for several complex variables. Therefore, Liouville’s theorem for
entire functions, and the maximal principle hold for several variables. Also, the
inverse function theorem and implicit function theorem hold as in the one variable
case.

b) means the following: if a ∈ U , 1 ≤ i ≤ n, and g(λ) = f(a + λei), then g is
holomorphic in some neighborhood of 0 in C.
z = (z′, zn), z′ ∈ Cn−1 K(z, w) =

∏n
j=1(1− wjzj)−1 f(z′, ·)

f(z′, zn) =

∫
T

f(z′, wn)(1− wnzn)−1dλ1(wn)

f(z) =

∫
Tn
K(z, w)f(w)dλn(w)

K(z, w) = Σαw
αzα

A biholomorphic function is a bijective holomorphic function whose inverse is
also holomorphic.

If n = 1, every simply connected open set other than the whole complex plane
is biholomorphic to the unit disc (this is the Riemann mapping theorem). The
situation is very different in higher dimensions. For example, open unit balls and
open unit polydiscs are not biholomorphically equivalent for n > 1. In fact, there
does not exist even a proper holomorphic function from one to the other.

For every holomorphic f : Un → Bm with f(0) = 0, the differential A = Df |0
maps Un into Bm, and conversely, for every holomorphic g : Bm → Un with
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g(0) = 0, the differential Dg|0 maps Bm into Un. Hence, if there exists any bi-
holomorphism between the ball and the polydisk, then there exists a linear biholo-
morphism between them. Since a linear biholomorphism exists only in dimension
one, where ball and polydisk are the same, the ball and the polydisk are not bi-
holomorphically equivalent in complex dimensions n ≥ 2.

For n = 2, set ak = A(ek), I = {e1 + λe2 : 0 ≤ λ ≤ 1} and I ′ = {a1 + λa2 : 0 ≤
λ ≤ 1}. Then I belongs ∂U2, I ′ = A(I) and since I ′ does not belong ∂B2, we have
a contradiction.

Note that a priori, we don’t know that the considered biholomorphism is linear,
but we know that there exists a linear biholomorphism by XX, and we look at that
instead. A posteriori, theorem XX shows that the biholomorphism (that fixes 0)
was indeed linear, and we looked at the original.

An analytic disc in Cn is a nonconstant holomorphic mapping f : U → Cn.
A closed analytic disc in Cn is a continuous mapping g : U → Cn such that g is
holomorphic on U. In practice we may refer to either of these simply as an ”analytic
disc”. The center of an analytic disc is f(0) or g(0).

In order to get a filling about the subject, we first construct bi-holomorphic
automorphism of the unit ball in complex dimension 2. We will use notation (z, w)
for points in C2. For a fixed w define Bw = {(z, w) : |z|2 + |w|2 < 1} and for a
fixed z, Bz = {(z, w) : |z|2 + |w|2 < 1} and denote by R(z) radius of ball Bz.

Check that the mapping f(z, w) = (z,R(z)w) maps U2 onto B2.
Whether there is a holomorphic motion f of U such that F (z, w) = (z, f(z, w))

maps U2 onto B2.
Take A = (a, 0) ∈ B0. We can identify points (z, 0) with z and B0 with U, and

consider automorphism z̃ = ϕa(z) of U. Since 1− |z̃|2 = |ϕ′a(z)|(1− |z|2), then

k(z) =
R(z̃)

R(z)
=

sa
|1− az|

,

where sa = (1− |a|2)1/2, and the mapping Z = (z, w) 7→ (z̃, k(z)w) maps Bz onto
Bz̃. But this mapping is not holomorphic wrt z. We can modify this mapping to
the bi -holomorphic automorphism of unit ball:

(1) (z, w) 7→ (z̃, λ(z)w) =
(z − a, saw)

1− < z, a >
,

where λ(z) = sa
1−az . This mapping can be written in the form ϕ = (ϕ1, ϕ2), where

ϕ1(z, w) = z̃ and ϕ1(z, w) = λ(z)w. Since R(z̃) = |λ(z)|R(z), ϕ2 maps Bz onto
Bz̃. In general, we consider the orthogonal projection Pa(z) onto the subspace [a]
generated by a and let Qa = I−Pa be the projection on the orthogonal complement.
If A = (a, 0) then PA(z, w) = (z, 0) and QA(z, w) = (0, w). (1) can be rewritten in
the form

(2) Z → a− PZ − saQZ
1− (Z,A)

.

If we set z1 = Pz and z2 = Qz, then z = z1 + z2, and ϕa(z) = ϕ1
a(z1) + ϕ2

a(z2).
Motivated by (2), for z, a ∈ Bn, we define the analytic disk φa = âϕ|a|,

z̃ = ϕ1
a(z) =

a− Pz
1− (z, a)

and ϕ2
a(z) =

−saQz
1− (z, a)

,
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and therefore

ϕa(z) =
a− Pz − saQz

1− (z, a)
,

where Pa(z) = <z,a>
<a,a>a. Set Ua = [a] ∩ B, Qb = b+ [a]⊥ ∩ B. Note φa maps U onto

Ua, and φa(ζ) = ϕ1
a(z), for z = âζ and ζ ∈ U. The restriction of ϕa onto Ua is

automorphism of Ua and the restriction onto Qz maps it bi-holomorphicaly onto
Qz̃.
ϕa maps a n− 1-dimensional plane onto a n− 1-dimensional plane.
Let L = {(z, b) = 0} and L′ = ϕa(L). If w ∈ L′, then ϕa(w) ∈ L and therefore

(ϕa(w), b) = 0. Set Sw = a− Pw − saQw.Hence
(a−Pw− saQw, b) = 0 and Sw = a− saw− (1− sa)Pw, (a, b) = sa(w, a) + (1−

sa)(Pw, b)
Since (Pw, b) = (a, b)(w, a)/|a|2, we conclude that L′ is complex n−1-dimensional

plane.
Let u ∈ TpCn and p ∈ Bn. If A = dϕp, set |Au|e = M0(p, u)|u|e, ie.

(15.1) M0(p, u) =
|Au|e
|u|e

.

In general, if Ω ⊂ Cn, we define M(p, u) = MΩ(p, u) by

Kob(p, u) = MΩ(p, u)|u|e.

We show below that on Bn, Kob(0, u) = |u|e and therefore M(p, u) = M0(p, u),
u ∈ TpCn.

Note that:
(V0) If ϕ ∈ Aut(Ω), a ∈ Ω, b = ϕ(a), u ∈ TpCn and u∗ = ϕ′(a)u, then
(i) Kob(b, u∗) = MΩ(a, u)|u|e.
(V1) M(a, u) = M(a, û).
(V2) In particular, if Ω is a planar hyperbolic domain then HypΩ(p) = 2MΩ(p, u),
p ∈ Ω. We first compute Kobayashi-Finsler norm at the origin 0 if Ω is the ball or
the polydisk and use (V0) to compute Kobayashi-Finsler norm in these cases.

Proposition 15.1. If the measure of the angle between u ∈ TpCn and p ∈ Bn is
α = α(p, u), then

(15.2) M0(p, u) = M0
B(p, u) =

√
1

s4
p

cos2 α+
1

s2
p

sin2 α.

Proof. Set Ak = dϕkp and u = u1 + u2, where u1 ∈ TpU
p and u2 ∈ TpQ

p, and

u′k = Ak(uk), k = 1, 2. By the classical Schwarz lemma 2-the unit disk, Proposition
?? (Schwarz lemma 1-the unit ball) and (B1), |u′1|e = |u1|e/s2

p and |u′2|e = |u2|e/sp.
Then u′ = A(u) = u′1 + u′2 and u′1 and u′2 are orthogonal.

Hence, since |u1|e = cosα|u|e, |u2|e = (sinα)|u|e and |u′|e =
√
|u′1|2e + |u′2|2e, we

find (15.2). �

It is clear that

(15.3)
1

sp
≤M0(p, u) ≤ 1

s2
p

.

Suppose that (i) f ∈ O(Bn,Bm), a ∈ Bn and b = f(a), u ∈ TpCn and u∗ = f ′(a)u.
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Set A = dϕa, B = dϕb, g = ϕb ◦f ◦ϕa, v = Au and v∗ = Bu∗. We first conclude
(dg)0 = B ◦ (df)a ◦ A and therefore v∗ = (dg)0(v). Then by Proposition 15.1, we
find |Au|e = M(a, u)|u|e and |Bu∗|e = M(b, u∗)|u∗|e. Finally, by Schwarz 1-unit
ball, |v∗|e ≤ |v|e, ie. |Bu∗|e ≤ |Au|e. Hence

Theorem 15.1. Suppose that f ∈ O(Bn,Bm), a ∈ Bn and b = f(a), u ∈ TpCn
and u∗ = f ′(a)u. Then

(15.4) M0(b, u∗)|u∗|e ≤M0(a, u)|u|e .

In particular, we have

Theorem 15.2 (Schwarz lemma 2-unit ball,see [32, 49]). Suppose that f ∈ O(Bn,Bm),
a ∈ Bn and b = f(a).

Then s2
a|f ′(a)| ≤ sb, i.e.

(1− |a|2)|f ′(a)| ≤
√

1− |f(a)|2.

Theorem 15.3. Let a ∈ Bn and v ∈ TpCn. For Bn, Kob(a, v) = M0(a, v)|v|e. In
particular, M(a, v) = M0(a, v).

Proof. Let φ be a holomorphic map of U into Bn, φ(0) = a, v ∈ TaCn, |v|e = 1,
(dφ)0(1) = λv = v′}.

1◦. Consider first the case a = 0.
Let p be the projection on [v]. Then (dp)0 = p, φ1 = p ◦ φ is a holomorphic

map of U into Uv and (dφ1)0(1) = (dp)0(v′) = λv. By classical Schwarz lemma
|λ| = |φ′1(0)| ≤ 1 and therefore since (dφ0)0(1) = v, where φ0(ζ) = vζ, φ0 is
extremal. Hence Kob(0, v) = 1.

2◦. Let a 6= 0, A = (dϕa)a and v∗ = A(v). Then by 1◦, Kob(a, v) = Kob(0, v∗) =
|v∗|e = M0(a, v)|v|e.

We give another proof using analytic discs. If a 6= 0, in general the part of the
projection of φ(U) on a + [v] can be out of Bn. So we can not use the procedure
in 1◦ directly and we consider g = ϕa ◦ φ and set u = v∗ = A(v). Since (dg)0(1) =
A(v′) = A(λv) = λv∗, by classical Schwarz lemma λ|v∗|e ≤ 1, ie. (i) λ ≤ 1/|u|e.
Further define φv by φv(ζ) = ζû and set φa = ϕa ◦ φv. Then (dφa)0(1) = A(u) =
v
|u|e = λ0v, where λ0 = 1/|u|e. Hence by (i), the mapping φa is extremal and

therefore Kob(a, v) = |u|e. �

Let p ∈ B2 and v ∈ TpB2. Note that df(v) = d
(
Re f

)
(v) + id

(
Im f

)
(v).

If the measure of the angle between v ∈ TpC2 and x1x2-plane is β = β(p, u),
then
|
(
d(Re f)

)
p
(v)| = (cosβ′)|dfp(v)|, where β′ = β(p′, v∗), v∗ = dfp(v) and p′ =

f(p).
(h1) Let h : B2 → S(a, b) be a pluriharmonic function and let v′ = (dReh)p(v),

v∗ = dhp(v) and p′ = h(p).
We leave the reader to check that

(E1) there is an analytic function f : B2 → S(a, b) such that Re f = Reh on B2,
and HypS(a,b)(w) = HypS(a,b)(Rew), w ∈ S0,

and then using (E1) to prove
(VI)Under the hypothesis (h1), kS(a,b)2(p′, v∗) ≤ (tanβ′)kB2(p, v)λ(p′2)/λ(p′1),

where λ is the hyperbolic density on S(a, b).
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15.2. stereographic projection. Geometrically, a Möbius transformation can be
obtained by first performing stereographic projection from the plane to the unit
two-sphere, rotating and moving the sphere to a new location and orientation in
space, and then performing stereographic projection (from the new position of the
sphere) to the plane.

The inversion wrt the unit sphere is defined by x 7→ x∗ = Jx = x
|x|2 . J maps

sphere S(a, r) onto sphere. The S(a, r) is defined by |x − a|2 = r2. Hence |x|2 −
2(x, a) + |a|2 = r2. Suppose that 0 < r < |a| and set s = |a|2 − r2. Since

x = y∗ = Jy, then 1
|y|2 −

(y,a)
|y|2 + s = 0 and therefore s|y|2 − 2(y, a) + 1 = 0. Hence

|y|2 − 2(y, a/s) + 1/s = 0, |y − a/s|2 = |a/s|2 − 1/s = |r/s|2. If we set b = a/s
and R = r/s, then J maps sphere S(a, r) onto S(b, R). Check that J maps sphere
S(a, |a|) onto hyperplane.

The map A defined by Ax = a+rx maps the unit sphere onto the sphere S(a, r)
the inversion wrt S(a, r) is given by Jra = A ◦ J ◦A−1, Jra(x) = a+ r2 x−a

|x−a|2 .

Check that Jra maps sphere S(b, r1), r1 < |b − a| onto a sphere and a sphere S
which contains a onto a hyperplane.

Set E3 = (0, 0, 1), S0 = S(E3, 1) and S1 = S(E3/2, 1/2).
The stereographic projection p wrt S1 is restriction of the inversion J1 wrt S0.
Let K be a circle. K is the intersection of a hyperplane L and a sphere S. If

E3 does not belong to L ∪ S, then J1(K) and J1(L) are respectively two sphere S′

and L′ and the intersection of S′ and L′ is a circle K ′.

Lemma 15.1. Neka je γ pozitivno orjentisana granica kruga B, funkcija f neprekidna
na B i Γ = f ◦ γ.
Tada važi
a) Ako b 6∈ f(B) tada je IntΓb = 0
b) ako je IntΓb 6= 0, onda b ∈ f(B)
c) ako je f jednolisno na B, tada je Γ Jordan-ov put, i f(B) = Int(Γ).

B a) Ako b 6∈ f(B) tada je sa H(t, s) = f(sγ(t)) definisana homotopija puta Γ
u tačku, u C \ {b}. Otuda je IntΓb = 0.
b) Iz a) sledi b).
c) Na osnovu b. Int(Γ) ⊂ f(B). Ako b ∈ Ext(Γ)∩ f(B) tada je, s obzirom da je
f jednolisno na B, prvo Γ∗∩f(B) = ∅ i otuda f(B) ⊂ Ext(Γ); što je kontradikcija.
�

16. qc

16.1. Definitions.

Example 17. Let A(z) = az + bz.
1. If |a| 6= |b|, the mapping A is univalent; it maps lines onto lines, parallel lines
onto parallel lines, squares onto rectangles .
Show that A maps
2. circles onto ellipses if |a| 6= |b|.
3. if |a| > |b|, positively oriented circles Kr of radius r with center at origin onto
positively oriented ellipse Er with major axis length Lr = Λr and minor axis length
lr = λr, where Λ = (|a|+ |b|) i λ = (|a| − |b|).

Outline for 2 i 3. Let a = |a|eiα, b = |b|eiβ i z = ρeiϕ. Then

A(z) = |a|eiαρeiϕ + |b|eiβρe−iϕ = (|a|ei(α+ϕ) + |b|ei(β−ϕ))ρ .
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Let γ = α+β
2 i γ0 = α−β

2 . Hence

A(z) = (|a|ei(γ0+ϕ) + |b|e−i(γ0+ϕ))ρeiγ .

Define u + iv = A0(z) = (|a|eiϕ + |b|e−iϕ)ρ. We have u = (|a| + |b|)ρ cosϕ
i v = (|a| − |b|)ρ sinϕ (for fixed ρ these parametric equation of ellipse). A is
composition of two rotation and A0. The mapping A0 maps positively oriented
circles onto positively oriented ellipse if |a| > |b| and hence 3. follows. �

Let f : Ω → f(Ω) be a C1-diffeomorphism and z0 ∈ Ω; and z = x + iy is a
coordinate on Ω at z0 and w = u+ iv is a coordinate on f(Ω) at w0 = f(z0). Then

du = uxdx+ uydy, dv = vxdx+ vydy,

fx = ux + ivx, fy = uy + ivy.

it is convenirt to use notation

p = Df = fz =
1

2
(fx − ify), q = Df = fz =

1

2
(fx + ify).

Hence dw = df = fzdz + fz dz and

(16.1) fx = p+ q, fy = i(p− q).

It is convenient to use notation A = df(z0), h = ρeiϕ ∈ Tz0 . Then A(h) = ph+ qh,
i.e. A(ρeiϕ) = (p eiϕ + q e−iϕ) ρ. The maximum of |peiϕ + qe−iϕ| is attained when

(16.2)
qe−iϕ

peiϕ
=
q

p
e−2iϕ

is positive, the minimum when it is negative. If we introduce the complex dilatation

(16.3) µf =
q

p

with df = |µf |.
The maximum corresponds to the direction ϕ = α = 1

2argµ and the minimum to

the direction α±π/2. In the w-plane the direction of the major axis is β = 1
2arg ν,

where

(16.4) νf =
q

p
= (

p

|p|
)2 µf

The quantity νf is called the second complex dilatation. Observe that β−α = argp.
Recall that we suppose that we work with orientation preserving mapping.

µ e−2i α = s > 0; argν = argp2 + argµ.
Since f is a diffeomorphism, it is locally linear (in this case at z0), ie. df is a

linear map, which maps D onto an ellipse with major axis of length ?Λ = |p|+ |q|
and minor axis of length λ = |p| − |q|. The area of D is π, and the area of df(D) is
πΛλ, so the Jacobian Jf (z0) is Λλ.

Example 18. Show Jf = |fz|2 − |fz|2.

Example 19. Let f be a diffeomorphism in a neighborhood U of a point z0. Then
f is orientation preserving mapping in U if and only if Jf (z0) > 0.
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The dilatation (or distortion) at z0 is defined to be

(16.5) Df :=
|fz|+ |fz|
|fz| − |fz|

≥ 1

The complex dilatation at z0 is

(16.6) µf =
fz
fz

It is often more convenient to consider

df = |fz
fz
|.

The dilatation and distortion are related by

Df =
1 + |µf |
1− |µf |

.

Proposition 16.1. Let f ∈ C1, then f is conformal ⇒ fz ≡ 0 (Cauchy-Riemann
equations).

If f is conformal, Df = 1 and α = β above, so df maps circles to circles.

Definition 16.1 (Grotzsch analytic definition for regular mappings). Let f : Ω→
C be a diffeomorphism. We say that f is a quasiconformal map if Df (z) is bounded
in Ω. We say f is a K-quasiconformal map if Df (z) ≤ K for all z ∈ Ω.

K(f) = ess supz∈ΩDf (z) is called the coefficient of quasi-conformality (or linear
dilatation) of f in the domain Ω.

Proposition 16.2. A C1 diffeomorphism is conformal iff it is 1-quasiconformal.

Definition 16.2. b1) For a C1 mapping u : U → Rm, set S = u(U), D[u] =∫
U(|D1u|2 + |D2u|2)dxdy, E = |D1u|2, G = |D2u|2, F = D1u · D2u, Ju =√
EG− F 2, and A = A(S) ==

∫
U Judxdy.

b2) We say that u is K-qc if E + F ≤ KJu.
b3) Suppose that u : U → Rm is harmonic on U. Then u = ReF , where F is
analytic. Set D[F ] =

∫
U |F

′(z)|2dxdy.

b4) For a planar domain D and C1 mapping u : D → Rm, set S = u(D),

K∗(f, z) =
E +G

2Ju

andK∗(f) = ess supz∈DK∗(f, z) which is called the coefficient of quasi-conformality
(or linear dilatation) of f in the domain D.

If S is in a plane and K the standard coefficient of quasi-conformality, then

K∗ = K2+1
2K ,that is K = K∗ +

√
K2
∗ − 1, where K∗ = K∗(f) and K = K(f).

For a fixed integer k, 1 ≤ k ≤ n define Pk by Pkx = x − xk ek. It is readable
that Pk is the orthogonal projection of Rn onto Rn−1

k = {x ∈ Rn : xk = 0}.
Let I = {x ∈ Rn : ak ≤ xk ≤ bk} be a closed n-interval.
A mapping f : I → Rm is said to be absolutely continuous on lines (ACL) if f

is continuous and if f is absolutely continuous on almost every line segment in I,
parallel to the coordinate axes.
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More precisely, if Ek is the set of all x ∈ PkI such that the functions t →
f(x+tek) is not absolutely continuous on [ak, bk], then mn−1(Ek) = 0 for 1 ≤ k ≤ n.
Note that for fixed k and x the line L(t) = x+ tek is parallel to ek.

If Ω is an open set in Rn, a mapping f : Ω→ Rm is absolutely continuous if f |I
is ACL for every closed interval I ⊂ Ω.
If Ω and Ω′ are domain in Rn, a homeomorphisam f : Ω → Ω′ is called ACL if
f |Ω \ {∞, f−1(∞)} is ACL.

If f : Ω→ Rm is ACL, then the partial derivatives of f exist a.e. in Ω, and they
are Borel functions.

Definition 16.3. An ACL-mapping f : Ω → Rm is said to be ACLp, p ≥ 1, if
the partial derivatives of f are locally Lp-integrable. A homeomorphism f : D → D′

is called ACLp if the restriction of f to D \ {∞, f−1∞} is ACLp.

? Roughly speaking, Fuglede’s theorem states that an ACLp function is abso-
lutely continuous on almost every path.

Theorem 16.4. (Fuglede’s theorem) Suppose that U is an open subset in Rn

and that f : U → Rm is ACLp. Let Γ be the family of all locally rectifiable path
in U which have a closed subpath on which f is not absolutely continuous. Then
Mp(Γ) = 0.

Theorem 16.5. Suppose that f : Ω→ Ω∗ is a homeomorphism such that H(x, f)
is bounded. Then
1)f is ACL.
2) f is differentiable a.e. in Ω

1) Let Q be a closed n-interval in Ω \ {∞, f−1(∞)}. Consider the orthogonal
projection P : Rn → Rn−1. For each Borel set A ⊂ intPQ define EA = Q ∩ P−1A
and set ϕ(A) = m(fEA). By Lebesgue’s theorem, ϕ has a finite derivative ϕ′(y)
a.e. y ∈ PQ. Fix such y. We shall prove that f is absolutely continuous on the
segment J = Ey.

Let F be a compact subset of J ∩ intQ. Prove that

Λ1(fF )n ≤ C ϕ′(y)m1(F )n−1.

2) f have partial derivatives a.e. and f has a.e. a finite volume derivative µ′f (x).

Consider x0 such that µ′f (x0) <∞.

Since H(x0, f) <∞, there are positive numbers r0 and H such that L(x0, f, r) ≤
H l(x0, f, r) for 0 < r < r0. For all such r we have Ωn L(x0, f, r)

n ≤ Hnm(fB(x0, r)).
Hence

L(x0, f, r)
n

rn
≤ Hnm(fB(x0, r))

m(B(x0, r))
.

Letting r → 0 yields L(x0, f)n ≤ Hnµ′f (x0) <∞.
By the theorem of Rademacher-Stepanov, f is differentiable a.e.

Theorem 16.6. Suppose that f : Ω→ Ω∗ is a homeomorphism. Then the following
condition are equivalent
1) KO(f) ≤ K.
2)f is ACL, f is differentiable a.e. in Ω, and |f ′(x)|n ≤ K|J(x, f)| a.e.
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Suppose that f : Ω→ Ω∗ is a homeomorphism and x ∈ Ω, x 6=∞ and f(x) 6=∞.
For each r > 0 such that S(x; r) ⊂ Ω we set
L(x, f, r) = max|y−x|=r |f(y)− f(x), l(x, f, r) = min|y−x|=r |f(y)− f(x).

Definition 16.7. The linear dilatation of f at x is

H(x, f) = lim sup
r→0

L(x, f, r)

l(x, f, r)
.

Theorem 16.8 (The metric definition of qcty). A homeomorphism f : Ω→ Ω∗ is
qc iff H(x, f) is bounded.
H(f) = ess supx∈ΩH(x, f) is called the coefficient(metric) of quasi-conformality

(or linear dilatation) of f in the domain Ω.

Let Ω be a domain in Rn and f : Ω → Rn be continuous. We say that f is
quasiregular (shortly qr) if
(1) f belongs to Sobolev space Wn

1, loc(Ω)

(2) there exists K, 1 ≤ K <∞, such that

(16.7) |f ′(x)|n ≤ K Jf (x) a.e.

The smallest K in (16.7) is called the outer dilatation KO(f).
If f is qr, also

(16.8) Jf (x) ≤ K ′ l(f ′(x))n a.e.

for some K ′, 1 ≤ K ′ < ∞, where l(f ′(x)) = inf{|f ′(x)h| : |h| = 1}. The smallest
K ′ in (16.8) is called the inner dilatation KI(f) and K(f) = max(KO(f),KI(f))
is called the maximal dilatation of f . If K(f) ≤ K, f is called K-quasiregular.

Reshetnyak’s main theorem: every nonconstant qr map is discrete and open.
Poleckii’s inequality: If f : M → N nonconstant qr map and Γ a path family in

M , then
M(fΓ) ≤ KI(f)M(Γ).

17. Holomorphic motions

Theorem 17.1. Let FK be the family of K-quasiconformal maps of S2 fixing 0,1
and ∞. Then FK is compact.

17.1. Cross-ratio. Let z2, z3, z4 be points of S2. Define S such that S(z2) = 1,
S(z3) = 0 S(z4) =∞; the explicit formula for S is given by

Sz =
(z − z3)(z2 − z4)

(z − z4)(z2 − z3)
.

Let z1, z2, z3, z4 be four points of S2. Then the cross-ratio ρ(z1, z2, z3, z4) = [z1, z2, z3, z4]
of z1, z2, z3, z4 is S(z1).

We write [z1, z2, z3] instead [z1, z2, z3,∞]. Let FK be the family ofK-quasiconformal
maps of S2 fixing 0,1 and ∞. Then FK is compact.

For given K and for every non-degenerate annulus A with center at origin, there
exists non-degenerate annulus A∗ with center at origin, such that every f ∈ FK
maps A in A∗. In particular, we find
a. there is a constant C(K) such that

|f(z)| < C(K)
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for every f ∈ FK and for all z ∈ T.
Using a. we can prove:
b. there is a constant C(K) such that

|ρ(f(z1), f(z2), f(z3), f(z4))| < C(K)

for every K-qc mapping f of S2(without normalization) and for all z1, z2, z3, z4 for
which ρ(z1, z2, z3, z4) = 1.
and
Corollary 3.3 (see [86]): A K-qc mapping distors the cross-ratio of any 4 points by
a bounded amount, as measured in the hyperbolic metric on C0,1 = C \ 0, 1; see
also [5] p.53-61.

Proof. Let f a K-qc mapping of S2, wk = f(zk),

Sz =
(z − z3)(z2 − z4)

(z − z4)(z2 − z3)
, S∗w =

(w − w3)(w2 − w4)

(w − w4)(w2 − w3)
.

and f̃ = S∗ ◦ f ◦ S−1. Since f̃ ∈ FK ,it follows that

c. |f̃(z)| < C(K) for all z ∈ T.
Hence, by definition of cross-ratio (which is invariant under Mobius transfor-

mation), it follows that b. holds for all K-qc mappings of S2 (without normaliza-
tion). �

We say that f (or family Ff ) satisfies condition C
if f(∞) =∞ and

(17.1) | (w1 − w3)

(w2 − w3)
| < C(K) for | (z1 − z3)

(z2 − z3)
| = 1

i.e. |[z1, z2, z3]| = 1 implies |[w1, w2, w3]| ≤ c; hence, since |[z1, z2, z3]| = |[z2, z1, z3]|−1,
it follows that |[z1, z2, z3]| = 1 implies c−1 < |[w1, w2, w3]| ≤ c

In particular, if f(∞) =∞, it follows from b. that f satisfies condition C.
Let z = z3 be the center of a circle Kr and let |f − f(z)| attains respectively

maximum and minimum at points z1, z2 on Kr. If we apply condition (17.1), we
get that circular dilation H(z) < C(K) for every z ∈ C. Hence, it follows, known
result:
d. If f is a K-qc mapping of S2 (without normalization), then H(z) < C(K) for
every z ∈ C \ {f−1(∞)}

For details about circular dilation (the the distortion function) H = Df see
[?],pp.177-178.

Let f : S2 → S2 be a homeomorphism and Ff = {g = A ◦ f ◦ B : A,B ∈
Möb, g fixes 0, 1,∞}.
We say that f (or family Ff ) satisfies condition A:
if there is a constant C = C(f) such that

|g(z)| < C(K)

for every g ∈ Ff and for all z ∈ T.
In this setting we also say that the family Ff satisfies condition A.
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We say that f (or family Ff ) satisfies condition B:
if there is a constant C(f) such that

|ρ(g(z1), g(z2), g(z3), g(z4))| < C(f)

for every g ∈ Ff and for all z1, z2, z3, z4 for which ρ(z1, z2, z3, z4) = 1.

Theorem 17.2. Let f : S2 → S2 be a homeomorphism and Ff = {g = A ◦ f ◦B :
A,B ∈ Möb, g fixes 0, 1,∞}. The following conditions are equivalent
f is quasiconformal
F is compact
family Ff satisfies condition A
family Ff satisfies condition B
f satisfies the condition C

Proof. We will use the above notations. If F is compact, then F satisfies the

condition a. Since, by f ∈ F and f̃ = S∗ ◦ f ◦ S−1 belongs F , we get that for f
holds condition b. and therefore d. Hence, it follows (see [?],pp.177-178) that f is
qc.*
Converse follows from Theorem 17.1. �

Definition 17.3. If E ⊂ S2 is any subset of the Riemann sphere S2, the function
f : E × D→ S2 is called a holomorphic motion of E if
(a) f(z, 0) = z, for all z ∈ E
(b) f(z, t) is C-valued holomorphic (meromorphic) in t for all z ∈ E and
(c) f(z, t) is injective univalent in z on E for each t ∈ D.

To f we associate F : E × D→ C2 defined by F (z, ζ) = (z, f(z, ζ).
If f(z, ζ) = eit(1− r2)αζ, z = reit and F = Fα associated to f , describe F (U2).

For α = 1/2, whether F (U2) = B2.
Note that there is no assumption regarding the continuity of f as a function of

z or the pair (z, t). That such continuity occurs is a consequence of the following
remarkable λ-lemma of Mañé-Sullivan-Sad (extended by Slodkowski).

Example 20. a) If t has at least one rational coordinate, ft = etId, otherwise
ft = −etId. Is ft a holomorphic motion ? no.

b) Define

fζ(z) =

{
z + ζ/z |z| ≥ 1
z + ζz |z| < 1.

f is a holomorphic motion of S2.

If f(z, t) : S2 × D is a injective holomorphic motion, parameterized by the unit
disk, then it is a qc holomorphic motion.
Suppose that z1, z2, z3 are fixed for a moment; define wk = wk(ζ) = fζ(zk) and
ω(ζ) = [fζ(z1), fζ(z2), fζ(z3)].
Define C0,1 = C \ {0, 1}.

Note, since fζ is injective, if z1, z2, z3 are different finite complex numbers,
ω(ζ) ∈ C0,1 for every ζ ∈ D.
Denote by λ0,1 hyperbolic metric on C0,1. Since f is a holomorphic motion of S2,
ω is a holomorphic function in D ; by f0 = Id, ω(0) = [z1, z2, z3] and then by
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Schwarz lemma λ0,1(ω(ζ), ω(0)) ≤ λ(ζ, 0); in particular, if r < 1, there is a con-
stant cr = λ(r, 0) such that λ0,1(ω(ζ), ω(0)) ≤ cr for all |[z1, z2, z3]| = 1. Thus
if r < 1, there two constant 0 < r1 < R1, which depends only on r, such that
ω(Dr) ⊂ A(r1;R1) for all |[z1, z2, z3]| = 1. Thus each fζ satisfies the condition (C)
for every ζ ∈ D.
We also outline an alternative approach.

Consider fz(0) = z, | 0−z0−1 |, λ(ω) = 0−fz(ω)
0−1 ; λ maps holomorphic C0,1 into itself; in

particular λ(K2) is a compact subset of C0,1, where K2 is circle of radius 2.
Suppose that z1, z2, z3 are fixed; define wk = wk(ζ) = fζ(zk) and φ(ζ) = S∗◦fζ◦S−1

and let φ̃ be lift of φ. Since f is a holomorphic motion of S2, φ̃ is a holomorphic

function; by f0 = Id, φ(0) = 0 and then by Schwarz lemma |φ̃(ζ)| ≤ |ζ|; thus if
r < 1, |Sz1| = 2, then |S∗w1| ≤ C for |ζ| ≤ r, where the constant C depends of r.
Thus each fζ satisfies the condition (C).

XXX motion: using the analytic dependence Φ(λ, z) on λ, one can show that
the Beltrami coefficient µλ is an analytic function of λ, valued in the unit ball of
L∞(C).

Let lζ(υ) =
∫
D µζυ and ||υ||1 = 1; for fixed υ, lζ is holomorphic in ζ, and by

classical (usual) Schwarz lemma
|lζ | ≤ |ζ|; |µζ |∞ = sup |lζ(υ)| = sup |

∫
D µζυ| over ||υ||1 = 1. Thus |µζ |∞ ≤ |ζ|

and K(fλ) ≤ 1+|λ|
1−|λ| .

The Beltrami coefficients µλ(z) are an analytic function of λ for almost every z ∈ C
and by the composition formula for Beltrami coefficients,

|µΨ(Φλ2
(z))| = | µλ1

(z)− µλ2
(z)

1− µλ1
(z)µλ2

(z)
| ≤ | λ1 − λ2

1− λ1λ2

|

and |µΨ|∞ ≤ | λ1−λ2

1−λ1λ2
|.

18. App

Lundberg, E. & Weitsman, A. Calc. Var. (2015) 54: 3385. https://doi.org/10.1007/s00526-
015-0908-0

Erik Lundberg Allen Weitsman, Calculus of Variations and Partial Differential
Equations

December 2015, Volume 54, Issue 4, pp 33853395 Mathematics Subject Classifi-
cation 49Q05

We consider minimal graphs u = u(x, y) > 0 over unbounded domains D with
u = 0 on bD. Assuming D contains a sector properly containing a halfplane, we
show that u grows at most linearly. We also provide examples illustrating a range
of growth.

Weitsman, A.: Growth of solutions to the minimal surface equation over domains
in a half plane. Commun. Anal. Geom. 13, 10771087 (2005)

Weitsman, A.: On the growth of minimal graphs. Indiana Univ. Math. J. 54,
617625 (2005)

On the growth of solutions to the minimal surface equation over domains con-
taining a halfplane For sharp Pointwise Estimates for Directional Derivatives and
Khavinsons Type Extremal Problems for Harmonic Functions see Chapter 6, [37].
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Sharp pointwise estimates for the gradient of harmonic functions are of use in prob-
lems relating electrostatics as well as hydrodynamics of ideal fluid, elasticity and
hydrodynamics of the viscous incompressible fluid.

A certain estimate of such a type appeared in a D. Khavinson’s problem for
harmonic functions which will be describe now. In [Kh], Khavinson found the sharp
constant K(x) in the inequality for the radial derivative of a harmonic function u
in the ball B = {x ∈ R3 : |x| < 1}

|Dru(x)| ≤ K(x)sup|y|<1|u(y)|, x ∈ B,(18.1)

where r = |x| and, in a conversation, made a conjecture that the same constant
K(x) should appear in the stronger sharp inequality

|∇u(x)| ≤ K(x)sup|y|<1|u(y)|, x ∈ B,(18.2)

i.e. K(x) = K(x). Now, consider the sharp inequality

|D`u(x)| ≤ K(x; `)sup|y|<1|u(y)|, x ∈ B,(18.3)

where u is a harmonic function in B, x ∈ B, and ` is an arbitrary unit vector in R3.
By Khavinson’s conjecture, given any x ∈ B, the maximum value of K(x; `) with
respect to ` is attained at a radial direction. By Khavinson’s extremal problem for
harmonic functions we mean the problem of finding the direction of ` as well as
the maximal value of K(x; `). Note that at present no solution of this particular
problem is known.

A PROOF OF KHAVINSONS CONJECTURE IN R4 DAVID KALAJ, arXiv:1601.03347v1
[math.CV] 13 Jan 2016 Abstract. The paper deals with an extremal problem for
bounded harmonic functions in the unit ball of R4. We solve the generalized Khavin-
son problem in R4. This precise problem was formulated by G. Kresin and V.
Maz’ya for harmonic functions in the unit ball and in the halfspace of R4. We find
the optimal pointwise estimates for the norm of the gradient of bounded realvalued
harmonic functions.

G. Kresin and V. Mazya, Sharp pointwise estimates for directional derivatives
of harmonic functions in a multidimensional ball, J. Math. Sci. 169(2010), 167187.

[8] G. Kresin and V. Mazya, Optimal estimates for the gradient of harmonic
functions in the multidimensional half-space, Discrete Contin. Dyn. Syst. 28(2010),
425440.

[9] G. Kresin and V. Mazya, Sharp real-part theorems. Springer, Berlin, Jan. 1,
2007. (Lecture Notes in Mathematics, 1903). ISBN: 978-3-540-69573-8.

[10] M. Marković, On harmonic functions and the hyperbolic metric, Indaga-
tiones Mathematicae 26(2015), 1923.

[11] M. Marković, Proof of the Khavinson conjecture near the boundary of the
un it ball, arXiv:1508.00125v1. See Gehring-Osgood

1) F.W. Gehring and B.G. Osgood, Uniform domains and the quasi-hyperbolic
metric, J. Anal. Math. 36(1979), 50-74.

2) THE VISUAL ANGLE METRIC AND QUASIREGULAR MAPS GENDI
WANG AND MATTI VUORINEN, arXiv:1505.00607v3 [math.MG] 13 Jul 2016

Abstract. The distortion of distances between points under maps is studied. We
first prove a Schwarz-type lemma for quasiregular maps of the unit disk involving
the visual angle metric. Then we investigate conversely the quasiconformality of
a bilipschitz map with respect to the visual angle metric on convex domains. For
the unit ball or half space, we prove that a bilipschitz map with respect to the



110 M. MATELJEVIĆ

visual angle metric is also bilipschitz with respect to the hyperbolic metric. We
also obtain various inequalities relating the visual angle metric to other metrics
such as the distance ratio metric and the quasihyperbolic metric.

3) For K-qc maps in the plane f : B → B, the best inequality of the form
d(f(z), f(w)) ≤ c(K)max((d(z, w), d(z, w)1/K), where d is hyperbolic metric It
was proved in the paper Wang-Vuorinen, PAMS 2016.

Wei DaiZhao LiuGuozhen Lu, Liouville Type Theorems for PDE and IE Systems
Involving Fractional Laplacian on a Half Space, Sep 2016,Potential Analysis.

In this paper, let a be any real number between 0 and 2, we study the Dirichlet
problem for semi-linear elliptic system involving the fractional Laplacian: (−∆)α/2u(x) = vq(x), x ∈ Rn+,

(−∆)α/2v(x) = up(x), x ∈ Rn+,
u(x) = v(x) = 0, x /∈ Rn+.

(1) We will first establish the equivalence between PDE problem (1) and the corre-
sponding integral equation (IE) system (Lemma 2). Then we use the moving planes
method in integral forms to establish our main theorem, a Liouville type theorem
for the integral system (Theorem 3). Then we conclude the Liouville type theorem
for the above differential system involving the fractional Laplacian (Corollary 4).

(8) Potential Analysis — RG Impact & Description — Impact Rankings (2017
and 2018). Available from:

Acknowledgement. We have discussed the subject at Belgrade Analysis seminar
(in 2016) and in particular in connection with minimal surfaces with F. Forstnerič
and get useful information about the subject via Forstnerič [66]. We are indebted
to the members of the seminar and to professor F. Forstnerič for useful discussions.

For Theorema Egregium of Gauss see http://uregina.ca/ mareal/cs6.pdf
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