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UNIFORMLY BOUNDED MAXIMAL ϕ-DISKS, BERS SPACE
AND HARMONIC MAPS
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(Communicated by Albert Baernstein II)

Abstract. We characterize Bers space by means of maximal ϕ-disks. As an
application we show that the Hopf differential of a quasiregular harmonic map
with respect to strongly negatively curved metric belongs to Bers space. Also
we give further sufficient or necessary conditions for a holomorphic function
to belong to Bers space.

Introduction

Holomorphic quadratic differentials on a Riemann surface arise in several distinct
areas of geometry, for instance in Teichmüller theory and in the theory of harmonic
maps (see, for example, Ahlfors [2], Earle and Eells [3], Wolf [21], Jost [7]).

In the introduction we give a short review of our results as well as some related
ones.

In §1, we use a special parameter (natural parameter) in terms of which the
differential has a particularly simple representation, along with the theorems of
Bloch and Koebe, to prove the following result:

Theorem 1. A holomorphic quadratic differential ϕdz2 on the unit disc is bounded
with respect to the Poincaré metric (i.e. it belongs to Bers space) if and only if the
radii of its maximal ϕ-discs are uniformly bounded.

After writing the previous version we realized that this result has its roots in
known characterizations of Bloch functions in terms of their image Riemann surface.
Pommerenke [11] proved that a function f belongs to Bloch space if and only if its
image surface Wf contains no large schlicht discs. For relevant definitions related
to this result and some generalizations we refer the interested reader to Stegenga
and Stephenson [15].

Note that when we work with a natural parameter, we have some additional
difficulties caused by possible zeroes of the corresponding quadratic differential.
Lemma 1.1 (see below) enables us to overcome those difficulties.

We will mention some recent results, which motivated us.
Wan [20] proved that a harmonic diffeomorphism of the hyperbolic plane H2

is quasiconformal if and only if its Hopf differential is uniformly bounded with
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respect to the Poincaré metric. This has also been generalized to hyperbolic Cartan-
Hadamard surfaces by Li, Tam and Wang [19]. See Tam and Wan [17], [18] and
Han [5] for a general discussion of this area, where this and other questions were
discussed.

As an application of Theorem 1 we show that the Hopf differential of a quasireg-
ular harmonic map with respect to a strongly negatively curved metric belongs to
Bers space (see below, Theorems 2 and 3, §2).

Thus, roughly speaking, we can extend one direction of the above-mentioned
characterizations ([20], [19]) of harmonic quasiconformal mappings to harmonic
quasiregular mappings.

For a precise definition of quasiregular mapping see §2, A4. Here we note only
that the notion of quasiregular mapping is a natural generalization of the notion of
a quasiconformal mapping since one does not require that quasiregular mappings
be homeomorphisms.

Our proofs of Theorems 2 and 3 are based on the fact that the Bochner formula
(see [13], [14], [7]) has a simple form with respect to the natural parameter. This
allows us to define a metric by means of the dilatation of the mapping, whose
Gaussian curvature is bounded from above by −1, and we use the classical Ahlfors-
Schwarz lemma.

In §3 we give further sufficient and necessary conditions for a holomorphic func-
tion to belong to Bers space, and show that every quasiregular harmonic mapping
is decomposable as a quasiconformal harmonic mapping followed by an analytic
function.

For further results and the literature in this growing area we refer the interested
reader to [5, 6, 9, 10, 13, 17, 18, 19, 20, 21, 22].

We close our paper with a short discussion concerning some further results and
open problems.

1. Maximal ϕ-disks and Bers space Q

Let ϕ be an analytic function on the unit disk ∆. Then ϕ belongs to Bers space
Q = Q(∆) if

ess supω(z)2|ϕ(z)| < +∞ ,

where ω(z) = 1− |z|2.
In this section we will give a characterization of Bers space by means of maximal

ϕ-disks (see Theorem 1 below). First we define maximal ϕ-disks.

Maximal ϕ-disk. Let ϕ be an analytic function on the unit disk ∆ and let z0 be
a regular point of ϕ, i.e. ϕ(z0) 6= 0. Let Φ0 be a single valued branch of

w = Φ(z) =
∫ √

ϕ(z) dz

near z0, Φ(z0) = 0. There is a neighborhood U of z0 which is mapped one-to-one
conformally onto an open set V in the w-plane. We can assume, by restriction,
that V is a disk around w = 0. The inverse Φ−1

0 is a conformal homeomorphism
of V into ∆ and evidently there is a largest open disk V0 around w = 0, such that
the analytic continuation of Φ−1

0 (which is still denoted by Φ−1
0 ) is homeomorphic

and Φ−1
0 (V0) ⊂ ∆. The image U0 = Φ−1

0 (V0) is called the maximal ϕ-disk around
z0; its ϕ-radius (injectivity radius) r0 is the Euclidean radius of V0.
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For the definition of ϕ-disks and a discussion of their important role in the theory
of holomorphic quadratic differentials we refer the interested reader to Strebel’s
book [16].

Bloch’s and Koebe’s theorems. The two following theorems play an important
role in the proof of Theorem 1. We need the following versions of Bloch’s and
Koebe’s theorems.

Theorem A (Bloch). Let w = f(z) be an analytic function on the disk B =
B(z0, r) = {z : |z − z0| < r}, r > 0, and let f ′(z0) 6= 0. Then there is an
open disk U together with an open set V ⊂ B such that f restricted to V defines a
one-to-one mapping of V onto U and the radius R of U satisfies

R ≥ C|f ′(z0)|r ,
where C is an absolute constant.

Theorem B (Koebe). Let V be a domain in C, let f be an analytic and univalent
mapping which maps V onto the disk U = {w : |w−w0| < R} and let z0 = f−1(w0).
Then

dist(z0, ∂V )|f ′(z0)| ≥ R

4
.

The following lemma enables us to use Bloch’s theorem. In the proof of this
lemma we will use the hyperbolic metric on a disk.

Hyperbolic distance. Let B be the disk with center at z0 and radius r. Using
the conformal automorphisms φa(z) = z−a

1−az , a ∈ ∆, of ∆, one can define pseudo-
hyperbolic distance on ∆ by

δ(a, b) = |φa(b)|, a, b ∈ ∆ .

Next, using the conformal map A(ζ) = ζ−z0
r from B onto ∆, one can define

pseudo-hyperbolic distance on B by

δB(z, w) = δ(A(z), A(w))

and the hyperbolic metric on B by

ρ(z, w) = log
1 + δB(z, w)
1− δB(z, w)

for z, w ∈ B.
The following result is well known.

Theorem C. Let F be an analytic function from a disk B to another disk U . Then
F does not increase the corresponding hyperbolic (pseudo-hyperbolic) distances.

Lemma 1.1. Let ϕ be a bounded analytic function on the disk B = B(z0, r0) and
let M0 = sup{|ϕ(z)| : z ∈ B}. Suppose that ϕ(z0) 6= 0 and let r1 = r0

M0
|ϕ(z0)|.

Then ϕ has no zeroes in the disk B(z0, r1).

Proof. Let ϕ(z) = 0 for some z ∈ B. Using the hyperbolic (or pseudo-hyperbolic)
distances on B and B(0,M0), an application of Theorem C to the analytic function
ϕ and the points z and z0 yields

|z − z0|
r0

≥ |ϕ(z0)|
M0

.
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Let ϕ be an analytic function on the unit disk ∆. Let 0 < r < 1 and ϕr(z) =
ϕ(rz) r2, ψ(z) = |ϕr(z)| 12 and ω(z) = 1 − |z|2. Assume that the function h(z) =
ω(z)ψ(z) has the maximum on ∆ at the point z0 ∈ ∆. Next let r0 = 1−|z0|

2 and let
M0 = max{|ϕr(z)| : z ∈ B(z0, r0)}. Since

h(z0) ≥ h(z)

and

2ω(z) ≥ ω(z0) for z ∈ B(z0, r0),

then

M0 ≤ 4|ϕr(z0)|.(1)

An application of Lemma 1.1 to the disk B(z0, r0) shows that ϕr does not have
zeroes in the disk B(z0, r1), where r1 = r0

M0
|ϕr(z0)|. Next, by (1)

r1 ≥
r0

4
= r2 .

Since ϕr does not have zeroes in B(z0, r2) = B, there is a regular branch of the
function

√
ϕr in B, and therefore a regular branch Φ of

∫ √
ϕr in B. Since |Φ′(z0)| =√

|ϕr(z0)|, then, by Bloch’s theorem, there is a disk V of radius

R = R(z0) ≥ Cψ(z0) · r2 ,

where C is an absolute constant, such that Φ−1 is univalent on V . Let R∞ =
sup{Rz : z ∈ ∆}, where Rz is the radius of the maximal ϕ-disk around z. Suppose
that R∞ is finite. Then

R∞ ≥
C

8
ψ(z0)(1− |z0|) ≥

C

16
ψ(z0)ω(z0).

When r → 1−, one can obtain that

R2
∞ ≥

( C
16

)2

‖ϕ‖, ‖ϕ‖ = sup
z∈∆

ω2(z)|ϕ(z)|.(2)

Lemma 1.2. Suppose that ϕ ∈ Q. Then R∞ is finite.

Proof. Let ∆z be the maximal ϕ-disk around z ∈ ∆ and let Rz be the euclidean
radius of the disk Φ(∆z), where Φ is the natural parameter. By Koebe’s Theorem

dist(z, ∂∆z)|Φ′(z)| ≥ Rz
4
.

Since 1− |z| ≥ dist(z, ∂∆z) and |Φ′(z)| =
√
|ϕ(z)| then

‖ϕ‖ ≥ R2
∞

16
.(3)

The following result is an immediate corollary of (2) and Lemma 1.2.

Theorem 1. Let ϕ be an analytic function on ∆. Then ϕ ∈ Q iff R∞ is finite.
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2. Harmonic maps and Bers space Q

Harmonic maps play an important role in the parametrization of Teichmüller
spaces (see Earle and Eells [3] and Wolf [21]), so it is interesting to understand
the relation between universal Teichmüller space and quasiconformal harmonic dif-
feomorphisms. For further results see Wan [20], Tam and Wan [17], Reich and
Strebel [12]. In this direction we have the following result (the terminology will be
explained, and the proof given, later in this section).

Theorem 2. Let ρ be the metric with Gaussian curvature K ≤ −a for some con-
stant a > 0, and let f be a harmonic quasiregular map from ∆ into itself with
respect to ρ. Then the Hopf differential ϕ of f belongs to Q.

Theorem 2 is an immediate corollary of Theorem 1 and Lemma 2.1. See below
for the proof of this lemma and for the definition of a quasiregular function.

Let R and S be two surfaces. Let σ(z)|dz|2 and ρ(w)|dw|2 be the metrics with
respect to the isothermal coordinate charts on R and S respectively, and let f be
a C2-map from R to S.

It is convenient to use notation in local coordinates df = p dz+q dz, where p = fz
and q = fz. Also we introduce the complex (Beltrami) dilatation

µf = Belt[f ] =
q

p

where it is defined.
The energy integral of f is

E(f, ρ) =
∫
R

ρ ◦f(|p|2 + |q|2) dxdy .

A critical point of the energy functional is called a harmonic mapping. The
Euler-Lagrange equation for the energy functional is

τ(f) = fzz + (log ρ)w ◦f pq = 0 .

Thus, we say that a C2-map f from R to S is harmonic if f satisfies the above
equation. For basic properties of harmonic maps and for further information on
the literature we refer to Jost [7] and Schoen-Yau [13].

The following facts and notation are important in our approach:

(A1). If f is a harmonic mapping, then

ϕdz2 = ρ ◦f pq dz2

is a quadratic differential on R, and we say that ϕ is the Hopf differential of f and
we write ϕ =Hopf(f).

(A2). The Gaussian curvature on S is given by

KS = −1
2

∆ log ρ
ρ

.

(A3). We will use the following notation: µ = Belt[f ] = q
p and τ = log 1

|µ| and the
Bochner formula (see [13])

∆τ = −KS|ϕ| sinh τ .
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(A4) Definition of quasiregular function. Let R and S be two Riemann sur-
faces and let f : R → S be a C2-mapping. If P is a point on R, P̃ = f(P ) ∈ S, φ
a local parameter on R defined near P and ψ a local parameter on S defined near
P̃ , then the map w = h(z) defined by h = ψ ◦ f ◦ φ−1|V (V is a sufficiently small
neighborhood of P ) is called a local representer of f at P . The map f is called
k-quasiregular if there is a constant k ∈ (0, 1) such that for every representer h, at
every point of R, |hz| ≤ k|hz|.
Lemma 2.1. Let ρ be the metric on ∆ with Gaussian curvature K uniformly
bounded from above on ∆ by the negative constant −a, and let f be a harmonic
k-quasiregular map from ∆ into itself with respect to the metric ρ. If R = Rz is
the radius of the maximal ϕ-disk around z, where ϕ = Hopf(f), then R is bounded
from above by the constant C which depends only on k and a.

Proof. Let R = Rz be the radius of the maximal ϕ-disk U = Uz around z ∈ ∆.
Since f is k-quasiregular then τ ≥ m, where m = log 1

k . m > 0. Let ζ = Φ(z)
be the natural parameter in U and Φ(U) = V = B(0, R). With respect to the
parameter ζ the Bochner formula takes the simple form

∆τ = −K sinh τ .

Since K ≤ −a and τ ≥ m, we conclude that

∆τ ≥ δeτ on V,(4)

where δ = a sinhm
em . Let ds = λ(ζ)|dζ|, where λ(ζ) = 2R

R2−|ζ|2 is the hyperbolic metric

on V and let λ̃(ζ) =
(
δ
2e
τ(ζ)
) 1

2 . From (4) we have for the Gaussian curvature of the
metric ds̃ = λ̃(ζ)|dζ| on V that K̃ ≤ −1, and then we can use the Ahlfors-Schwarz
Lemma (see [1]) to obtain

δ

2k
≤ λ̃2(ζ) ≤ λ2(ζ) .(5)

Setting ζ = 0 in (5) one obtains

R2 ≤ 8k
δ
.(6)

Let ϕ be a quadratic differential on a hyperbolic Riemann surfaceR with Poincaré
metric ds2 = ρ(z)|dz|2. Let p ∈ R and let z be a local parameter near p. We will
define

‖ϕ‖(p) = ρ−1(z(p))|ϕ(z(p))|.
We say that ϕ belongs to the Bers space of R (notation Q(R)) if ‖ϕ‖ is a uniformly
bounded function on R.

Theorem 3. Let R and S be hyperbolic surfaces with metric densities σ and ρ
respectively and let the Gaussian curvature of the metric ds2 = ρ(w)|dw|2 be uni-
formly bounded from above on S by the negative constant −a. If f is a harmonic
k-quasiregular map from R into S with Hopf differential ϕ, then ϕ ∈ Q(R).

Proof. Let f̃ be the lifting of f which maps ∆ into itself and let ϕ̃ be the lifting
of the quadratic differential ϕ. Let ρ̃ be the lifting of the density ρ. Since f̃ is
harmonic with respect to the metric ρ̃(w̃)|dw̃|2 on ∆ and k-quasiregular then, by
Theorem 2, ϕ̃ ∈ Q(∆). Hence ϕ ∈ Q(R).
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3. Further results

In Theorem 4 we will give a characterization of a quasiregular harmonic map.

Theorem 4. Let f be a k-quasiregular harmonic map from ∆ into itself with re-
spect to some metric ds2 = ρ(w)|dw|2. Then f = F ◦ g, where F is an analytic
function from ∆ into itself and g is a k-quasiconformal mapping from ∆ onto itself,
which is harmonic with respect to the metric ds̃2 = ρ̃(ζ)|dζ|2, where ρ̃ = ρ◦F |F ′|2.

Proof. Since f is harmonic on ∆ then ϕ = ρ ◦ f p q is an analytic function on ∆.
Therefore p has isolated zeroes or p is identically 0 on ∆. If p ≡ 0 on ∆, then q ≡ 0
and f ≡ const on ∆ and our theorem is trivial. If p has isolated zeroes on ∆, then
we can define µ = q

p a.e. on ∆.
It is known that there is a quasiconformal mapping g from ∆ onto itself such

that g is a solution of the Beltrami equation

gz = µgz

(see [2], [8]).
Let F = f ◦g−1. Then we have for Belt[F ] (see [2], [8]) that

µF ◦g =
gz
gz
· µf − µg

1− µfµg
= 0,

and we conclude that F is an analytic function.
Since f is harmonic with respect to ρ then

ϕ(z) = ρ(f(z)) pq

is an analytic function in ∆, where p = fz and q = fz. Since p(z) = F ′(ζ)A(z) and
q(z) = F ′(ζ)B(z), where A = gz, B = gz and ζ = g(z), one can obtain that

ϕ(z) = ρ̃(ζ)AB .

Since g is quasiconformal |A| 6= |B| a.e. and ϕz ≡ 0 on ∆, one can show that
τ(g) = 0 (for computation of ϕz see, for example, Jost [7] and Tam-Wan [18]).

Let D be a hyperbolic domain in C, z ∈ D, and let ds = ρ(z)|dz| be the
corresponding hyperbolic metric on D. Then it is known that (Theorem 1.11, [1])

ρ(z) ≤ 2
r(z)

, z ∈ D ,(7)

where r(z) = dist(z, ∂D), and we call r(z) the distance function (see [1]).
For an analytic function ϕ on a domain D ⊂ C we say that ϕ ∈ Q̃ if

ess sup dist2(z, ∂D)|ϕ(z)| <∞.

Since the distance function is geometrically simpler than the hyperbolic density,
it is reasonable to study the space Q̃.

We say that a domain D ⊂ C is strongly hyperbolic if it is hyperbolic and di-
ameters of boundary components are uniformly bounded from below by a positive
constant.

Theorem 5. Let D be a strongly hyperbolic and bounded domain in C. Then ϕ ∈ Q̃
iff ϕ ∈ Q.
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Proof. Because of (7) we have that Q ⊂ Q̃. Let the diameters of boundary compo-
nents of D be bounded from below by d > 0, and let the diameter of D be equal
to M .

Now let z ∈ D. We can find a component l of ∂D for which r(z) = |z − z0|,
where z0 ∈ l. Let D̃ = C \ l and let ρ and ρ̃ be the corresponding hyperbolic linear
densities of D and D̃ respectively. Since D ⊂ D̃ then ρ̃(z) ≤ ρ(z) for z ∈ D (see
[1]).

Let r̃(z) = dist(z, ∂D̃), and let c ∈ l such that |z0 − c| = d
2 . The function

ψ(ζ) = 1
ζ−c maps D̃ conformally onto the domain G ⊂ C. Since G is conformally

equivalent to the unit disk, by the Koebe Theorem

σ(w) ≥ 1
4|w − w0|

,(8)

where w = ψ(z), w0 = ψ(z0) and σ is the linear density of hyperbolic metric on G.
From (8) we can conclude that

ρ̃(z) ≥ |z0 − c|
|z − c| ·

1
|z − z0|

and hence

ρ̃(z) ≥ C

r̃(z)
,(9)

where C = d
d+2M .

Since r̃(z) = r(z) we finally obtain that

ρ(z) ≥ C

r(z)
.

Hence Q̃ ⊂ Q.

The next example shows that if the boundary of a domain D has a point as a
component, then the spaces Q and Q̃ are different.

Example 1. Let D be ∆ \ {0}, and ϕ(z) = 1
z2 . It is obvious that ϕ ∈ Q̃. The

linear density of the hyperbolic metric on D is

ρ(z) =
1

|z| log 1
|z|
.

Then

ρ−2(z)|ϕ(z)| = log
1
|z|

which is not bounded in D; hence ϕ /∈ Q.
In fact, any function

ϕ(z) =
1
z2
ψ(z) ,

where ψ is an analytic function in ∆ with ψ(0) 6= 0, is not in Q.

Example 2. Let D be C\ [−1, 1]. Then ψ(w) = 1
2

(
w+ 1

w

)
is a conformal mapping

from ∆\{0} onto D. Let ϕ be an analytic function on D. It is clear that ϕ ∈ Q(D)
iff ϕ1 ∈ Q(∆ \ {0}), where

ϕ1(w) = ϕ(z)
(
ψ′(w)

)2
.
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Let ϕ(z) = 1
z2 . It is obvious that ϕ ∈ Q̃(D). Since

ϕ1(w) =
1
w2

1
2

(w2 − 1
w2 + 1

)2

then, by Example 1, we conclude that ϕ1 /∈ Q(∆ \ {0}); hence ϕ /∈ Q(D).

Using Koebe’s Theorem as in Lemma 1.2 one can prove the following result:

Proposition 3.1. Let D be a hyperbolic domain in the complex plane C. If ϕ ∈
Q̃(D), then the radii of the maximal ϕ-disks are uniformly bounded on D.

As we mentioned in the Introduction we close with a short discussion of some
further results in this area.

Wolf [22] and Minsky [10] have shown that estimates on the dilatation of a
harmonic map depend to a great extent on the geometry of the Hopf differential ϕ
(in particular, on the placement of the zeroes of ϕ and the injectivity radius in the
ϕ-metric).

Han [5] and Han, Tam, Treibergs and Wan [6] have used the Wolf-Minsky type
estimates mentioned above to study among other things the images of harmonic
diffeomorphisms of C into the hyperbolic plane H.

We believe that our results can be of use in understanding some parts of this
interesting area, as well as being of interest in their own right.
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