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This is an addition materials to B. Jovanovic book [6](at this moment it is
a rough version); see also [8]. The material covered by the author in the course
Partial equation (elliptic of the second order) is roughly first 62 pages (including
Morrey’s inequality). In some parts we consider materials which reflects author’s
interest. (For example in Section 5 we consider Beltrami equation and Absolute
Continuity on Lines). We denote by ∗ the parts which can be omitted in first
reading.

The basic idea in distribution theory is to reinterpret functions as linear
functionals acting on a space of test functions. Standard functions act by inte-
gration against a test function, but many other linear functionals do not arise in
this way, and these are the ”generalized functions”. There are different possible
choices for the space of test functions, leading to different spaces of distributi-
ons. The basic space of test function consists of smooth functions with compact
support, leading to standard distributions. Use of the space of smooth, rapidly
(faster than any polynomial increases) decreasing test functions (these functions
are called Schwartz functions) gives instead the tempered distributions, which
are important because they have a well-defined distributional Fourier trans-
form. Every tempered distribution is a distribution in the normal sense, but
the converse is not true: in general the larger the space of test functions, the
more restrictive the notion of distribution. On the other hand, the use of spaces
of analytic test functions leads to Sato’s theory of hyperfunctions; this theory
has a different character from the previous ones because there are no analytic
functions with non-empty compact support.

1 harmonic in Rn

1.1 Stokes’ theorem, Green’s theorem, the divergence theorem-
Gauss’s theorem or Ostrogradsky’s theorem

Green’s theorem
Let C be a positively oriented, piecewise smooth, simple closed curve in a

plane, and let D be the region bounded by C. If L and M are functions of (x, y)
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defined on an open region containing D and have continuous partial derivatives
there, then ∮

C

(Ldx+M dy) =

∫∫
D

(
∂M

∂x
− ∂L

∂y

)
dx dy

where the path of integration along C is anticlockwise.
In physics, Green’s theorem is mostly used to solve two-dimensional flow in-

tegrals, stating that the sum of fluid outflows from a volume is equal to the total
outflow summed about an enclosing area. In plane geometry, and in particular,
area surveying, Green’s theorem can be used to determine the area and centroid
of plane figures solely by integrating over the perimeter. In vector calculus, the
divergence theorem, also known as Gauss’s theorem or Ostrogradsky’s theorem,
is a result that relates the flow (that is, flux) of a vector field through a surface
to the behavior of the vector field inside the surface.

More precisely, the divergence theorem states that the outward flux of a
vector field through a closed surface is equal to the volume integral of the di-
vergence over the region inside the surface. Intuitively, it states that the sum
of all sources (with sinks regarded as negative sources) gives the net flux out of
a region.

The divergence theorem is an important result for the mathematics of physics
and engineering, in particular in electrostatics and fluid dynamics.

In physics and engineering, the divergence theorem is usually applied in
three dimensions. However, it generalizes to any number of dimensions. In
one dimension, it is equivalent to the fundamental theorem of calculus. In two
dimensions, it is equivalent to Green’s theorem.

The theorem is a special case of the more general Stokes’ theorem
Suppose V is a subset of Rn (in the case of n = 3, V represents a volume

in 3D space) which is compact and has a piecewise smooth boundary S (also
indicated with ∂V = S). If F is a continuously differentiable vector field defined
on a neighborhood of V , then we have:∫∫∫

V

(∇ · F) dV =

∮ ∮
S

(F · n) dS.

The left side is a volume integral over the volume V, the right side is the
surface integral over the boundary of the volume V. The closed manifold ∂V is
quite generally the boundary of V oriented by outward-pointing normals, and
n is the outward pointing unit normal field of the boundary ∂V . (dS may be
used as a shorthand for n dS.) The symbol within the two integrals stresses once
more that ∂V is a closed surface. In terms of the intuitive description above, the
left-hand side of the equation represents the total of the sources in the volume
V , and the right-hand side represents the total flow across the boundary S.

For admissible domains see [3].
Also we will use the notation D[φ, ψ] =

∫ ∫
D

(
∑
∂kφ ∂kψ ) dx and D[φ] =

D[φ, φ] .
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Suppose that D is simple (more generally admissible) in Rn and S boundary
of D, u ∈ C1 and v ∈ C2 in D and ∂/∂n = Dn denotes differentation with
respect to the outer unit normal n.

Let dxk ∧ dσk = dx, that is dσk = (−1)k−1dx1 ∧ · · · ˆdxk · · · ∧ dxn.
Then nkdσ = dσk,

∫
S

u
∂v

∂n
dσ =

∑∫
S

u
∂v

∂xk
dσk = (1)∑∫

D

Dk(u
∂v

∂xk
)dx (2)

Thus ∫
S

u
∂v

∂n
dσ = D[u, v] +

∫
D

u∆vdx. (3)

Green’s indentity (which we need mainly in the special case when D is a
ball)

If u, v ∈ C2 in D, the second Green’s indentity∫
S

(
u
∂v

∂n
− v ∂u

∂n

)
dσ =

∫
D

(u∆v − v∆u) dx, (4)

A twice differentiable mapping u = (u1, . . . , um) : Ω → Rm defined in the
open set Ω of the Euclidean space Rn is called harmonic if the real functions ui,
i = 1, . . . ,m, are harmonic. By B = Bn we denote the unit ball in Rn and by
Sn−1 the unit n − 1 dimensional sphere. for a ∈ Rn by B(a,R), B(a,R) and
S(a, r) we denote the ball, the closed ball and the sphere of radius r with center
at a.

For n = 2 we frequently write U, D(a,R) and K(a, r) instead of B2, B(a,R)
and S(a, r) .

?? Let m = mn denote the usual the Lebesgue measure on Rn. Sometimes
we use notation dx = dx1 . . . dxn and |A| instead of dm and m(A), where x =
(x1, . . . , xn) ∈ Rn and A is a Lebesgue measurable set in Rn, respectively. By
dσ we denote positive Borel measure on Sn−1 invariant w.r. to orthogonal group
O(n) normalized such that σ(Sn−1) = 1.

For a function h, we use notation ∂h = 1
2 (h′x − ih′y) and ∂h = 1

2 (h′x + ih′y);

we also use notations Dh = hz and Dh = hz instead of ∂h and ∂h respectively
when it seems convenient.

Let f be of class C1 on D(z0, R) and let f and g = fz be continuous in
D(z0, R). Then we have the representation

f(z) =
1

2πi

∮
K(z0,R)

f(ζ)

ζ − z
dζ − 1

π

∫
D(z0,R)

g(ζ)

ζ − z
dξdη . (5)

We also use notation

Tg(z) = TDg(z) = − 1

π

∫
D

g(ζ)

ζ − z
dξdη
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if this integral exists in some sense.
Green’s formula
Suppose we want to find the solution u of the Poisson equation in a domain

D ⊂ Rn :∆u(x) = f(x), x ∈ D subject to some homogeneous boundary condi-
tion. Imagine f is the heat source and u is the temperature. The idea of Greens
function is that if we know the temperature responding to an impulsive heat
source at any point x0 ∈ D, then we can just sum up the result with the weight
function f(x0) (it specifies the strength of the heat at point x0) to obtain the
temperature responding to the heat source f(x) in D. Mathematically, one may
express this idea by defining the Greens function as the following: Let u = u(x),
x = (x1, ...xn), be the solution of the following problem: ∆u(x) = f(x), x ∈ D
satisfies some homogeneous boundary condition along the boundary ∂D.

Set E(x) = Ê2(x) = ln |x|
2π , x ∈ R2 \ {0}; En(x) = |x|2−n, and Ên = En

(2−n)σn
,

x ∈ Rn \ {0}, n ≥ 3. We also use Γ instead of Ên and Γy(x) = Γ(x− y).
In order to get Greens representation formula [16], it is convenient to intro-

duce Greens function.
We define the Greens function G on a domain Ω with Dirichlet BC by

(i) G(x, x0) = 0, x ∈ ∂Ω and
(ii) G(x, x0) = Ên(x− x0) + h(x, x0), where h(x, x0) is a harmonic function in
x.

We also use notation Gx0(x) = G(x, x0). For given x0 ∈ Ω, let hx0 be
harmonic in Ω and −Γx0 on ∂Ω. Then Gx0 = Γx0+.

In the distribution notation (ii) means ∆G(x, x0) = δx0
.

GREENS FUNCTION FOR LAPLACIAN XX. Greens function for the up-
per half plane H = {y > 0}. We first construct the Greens function in the
upper half plane with the Dirichlet boundary condition:

G(z, z0) = Γ(z − z0)− Γ(z − z0) = 1
4π ln |z−z0|

2

|z−z0|2
The outward unit normal to the boundary of the upper half plane is in the

−y direction. So we calculate

Dy(z, z0) =
1

4π
[
2(y − y0)

|z − z0|2
− 2(y + y0)

|z − z0|2
]

Since |z − z0| = |z − z0| for z = (x, 0, Dy(x, 0, z0) = − 1
π

y0
|x−z0|2

At point (x, 0), n = n(x) = (0,−1) and thereforeDn(x, 0, z0) = −Dy(x, 0, z0) =
1
π

y0
|x−z0|2 .

Greens function for the unit disk
z∗ = Jz = z/|z|2.
If z0 = r0e

iα then z∗0 = eiα/r0. Hence, for z = eit, r0|z − z∗0 | = r0|eit −
eiα/r0| = |r0e

it − eiα| = |eit − r0e
iα|. Thus |z − z0| = |z0||z − z∗0 |.

G(z, z0) = 1
2π [ln |z − z0| − ln |z − z∗0 | − ln |z0|]

For z = eiθ, n = eiθ and DnG(z, z0) = DrG(z, z0)
|z − z0|2 = r2 − 2rr0 cos(θ − θ0) + r2

0

Dr|z − z0|2 = 2(r − r0 cos(θ − θ0)) and Dr|z − z0| = r−r0 cos(θ−θ0)
|z−z0|

and Dr ln |z − z0| = r−r0 cos(θ−θ0)
|z−z0|2
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Dr ln |z − z∗0 | =
r− 1

r0
cos(θ−θ0)

|z−z∗0 |2
. Hence for z = eiθ

(Dr ln |z − z0|)z=eiθ =
1− r0 cos(θ − θ0)

|eiθ − z0|2
,

(Dr ln |z − z∗0 |)z=eiθ =
r2
0 − r0 cos(θ − θ0)

|eiθ − z0|2
,

DrG(z, z0)|z=eiθ =
1− r2

0

|eiθ − z0|2
.

Hence for boundary data f we have solution of Dirichlet’s problem u(z0) =
1

2π

∫ 2π

0
P (z0, e

iθ)f(eiθ)dθ.
Ta(z) = T (a, z) = a−z

1−az is aut U.

Using Green’s formula under some conditions we show that f = T (Df).
Then G(a, z) = − 1

2πi ln |T (a, z)| is Green’s function for U.
Suppose that D is simply-connected domain in C different then C and φ

conformal mapping of D onto U. Then by
GD(b, w) = − 1

2π ln |TD(b, w)|, b, w ∈ D, where TD(b, w) = T (φ(b), φ(w)), is
given Green’s function for D. In particular A(w) = w/R maps D(0, R) onto U
and T (b, w,R) = T (b/R,w/R) = R(b−w)

R2−bw and

G(b, w,R) = − 1
2π ln |T (b, w,R)| = 1

2πi ln | R
2−bw

R(b−w) |, b, w ∈ D(0, R), is Green’s

function for D(0, R).
B(w) = w − w0 maps D(w0, R) onto D(0, R) and

G(b, w;w0, R) =
1

2π
ln |R

2 − b− w0(w − w0)

R(b− w)
|, b, w ∈ D(w0, R),

is given Green’s function for D(w0, R).
In particular, for b = w0, we have

(1) G(w0, w;w0, R) = G(w0, w) = 1
2π ln | R

(w0−w) |.
Fix b ∈ D(0, R) and set A(b, ε) = A(b, 0; ε, R), P = R2 − bw and Q =

R(b− w). Then G(b, w,R) = 1
2π ln |X|, where X = P/Q.

Apply Green’s formula u = f and v = G(b, w,R) on A(b, ε). Compute
Dnv(w) for w ∈ K(0, R) and w ∈ K(b, ε). For a w ∈ K(0, R) locally v is real
part of function 1

2πF , where F is a branch lnX andX = (P/Q). Y = F ′ = Q
PX

′,

X ′ = R2−|b|2
(b−w)2 , Y = 1

R
R2−|b|2

(b−w)(R2−bw)
.

For w ∈ K(0, R) we write w = Reit; then ds = R dw
iw and (b−w)(R2− bw) =

Reit(b−w)(w− b) = Reit|b−w|2 Since n = n(w) = eit is the outer unit normal
at w on the circle K(0, R),

Dng = Re(eitF ′) = R2−|b|2
|b−w|2 = Rew+b

w−b , and therefore

Dngds = Rew+b
w−b

dw
iw .
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Set J(ε) =
∫
Sε

(
u ∂v∂n − v

∂u
∂n

)
ds, J1(ε) =

∫
Sε
u ∂v∂nds, J2(ε) =

∫
Sε
v ∂u∂nds and

I(R) =
∫
KR

(
u ∂v∂n − v

∂u
∂n

)
ds. Then

(2) I(R) =
∫
KR

u ∂v∂nds.

(3) J2(ε)→ 0 if ε→ 0+,
Using polar coordinate z − b = ρeit, we have
v = − ln |z − b|+ h(z) = − ln ρ+ h(z), where h is a harmonic function.
If n = n(w) = −eit is the outer unit normal at w on the circle K(0, ε),

Dnv = −1/ρ+ c+ o(1) when ρ→ 0. Hence, since ds = 2πρdt, we first u ∂v∂nds =
2πρ(−1/ρ+ c+ o(1)) when ρ→ 0 and then
(4) J1(ε)→ −u(a) if ε→ 0+.

Now by Green’s formula

I(R)− J(ε) =

∫∫
D(0,R)

(u∆v − v∆u) dx dy = −
∫∫

D(0,R)

v(z)∆u(z) dx dy

If ε→ 0+, using (2), (3) and (4), we get
f(b) =

∫
KR

DnG(b, z)f(z)ds−
∫∫
D(0,R)

G(b, z)∆u(z) dx dy.

An immediate corollary is if ϕ ∈ C2
0 (R2) and suppϕ ⊂ D(0, R) , then∫∫

D(0,R)

ln |z|∆ϕ(z) dx dy = −
∫∫

D(0,R)

G(0, z)∆ϕ(z) dx dy = 2πϕ(0). (6)

In the distribution notation 〈ln |z|〉 = 2πδ.
solutions of equation ∆f = g
Green’s function

G(ζ, z, R) =
1

2π
ln | R

2 − zζ
R(ζ − z)

|.

The representation of function and partial derivatives by Green’s function
and Laplacian: We have

Gw =
1

4π
(

1

ζ − w
− ζ

R2 − wζ
), Gww =

1

4π
(

1

(ζ − w)2
− ζ

2

(R2 − wζ)2
) (7)

|Gw| ≤
1

2π
(

1

|ζ − w|
, |Gww| =

1

2π

1

|ζ − w|2
. (8)

Let f be continuous on D(0, R) and let f be of class C2 on D(0, R) and let
g = ∆f = 4fzz be continuous on D(0, R). Then for z ∈ D(0, R),

f(z) =
1

2πi

∮
K(0,R)

Re(
ζ + z

ζ − z
)
f(ζ)

ζ
dζ − 1

π

∫
D(0,R)

G(ζ, z, R)g(ζ)dξdη,(9)

fz(z) =
1

2πi

∮
K(0,R)

f(ζ)

(ζ − w)2
dζ − 1

π

∫
D(0,R)

Gz(ζ, z, R)g(ζ)dξdη . (10)

Set f1(z) = 1
2πi

∮
K(0,R)

Re( ζ+zζ−z ) f(ζ)
ζ dζ and V (z) = 1

π

∫
D(0,R)

G(ζ, z, R)g(ζ)

dξdη .
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If f is C2 on D(w′, r], since G(w′, w;w′, r) = 0 for w ∈ K(w′, r), an appli-
cation of the above formula and (1) yield

If (w′) =
1

2πi

∮ 2π

0

[f(w′ + reit)− f(w′)]dt =

∫
D(w′,r)

ln
r

|w − w′|
∆fdudv . (11)

Example 1. If ∆2u = 0, u = 0 and ∂u
∂n = 0 on S, then u is harmonic.

If we set v = ∆u, then

0 =

∫
S

(
u
∂v

∂n
− v ∂u

∂n

)
dσ =

∫
D

(v∆u− u∆v) dx =

∫
D

v2dx = 0 . (12)

Hence v = 0, ie. u is harmonic.

Green’s indentity follows easily from the familiar divergence theorem of
advanced calculus.

Γ(x) = Γn(x) = Γ(|x|) =

{ 1
n(2−n)Ωn

|x|2−n if n > 2
1

2π ln |x| if n = 2.

DiΓ(x− y) =
1

nωn
(xi − yi)|x− y|−n (13)

|DiΓ(x− y)| = 1

nωn
|x− y|1−n . (14)

It is convenient to use notation fy(x) = f(x, y). Suppose that D is admissible
domain and u ∈ C2(D). For y ∈ D and v = Γy we wish to apply the second
Green’s identity, but the function Γy has a singularity for x = y. If Bε = Bε(y)
is the ball B(y, ε), Sε = S(y; ε) and Dε = D \ B(y, ε], then an application of
the second Green identity by v = Γy on Dε yields∫

Dε

Γ∆udx =

∫
S

(
Γ
∂u

∂n
− u∂Γ

∂n

)
dσ +

∫
Sε

(
Γ
∂u

∂n
− u∂Γ

∂n

)
dσ. (15)

Next Γy(x) = Γ(ε), for x ∈ Sε, and therefore

I1(ε) :=

∫
Sε

Γ
∂u

∂n
dσ = Γ(ε)

∫
Sε

∂u

∂n
dσ

Hence |I1(ε)| ≤ nωnεn−1|Γ(ε)| supBε |Du| → 0 when ε→ 0.
Since Γ′(r) = 1

σn
r1−n and DnΓy(x) = − 1

σn
ε1−n, for x ∈ Sε, we have

I2(ε) :=

∫
Sε

u
∂Γ

∂n
dσ = −Γ′(ε)

∫
Sε

uds = (16)

− 1

nωnεn−1

∫
Sε

uds→ −u(y) (17)

when ε→ 0.
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Set I(ε) :=
∫
Sε

(
Γ ∂u
∂n − u

∂Γ
∂n

)
dσ. Then I(ε) = I1(ε) − I2(ε) and therefore

I(ε)→ u(y) if ε→ 0. Hence, when ε→ 0 in (15), we get

u(y) =

∫
S

(
u
∂Γ

∂n
− Γ

∂u

∂n

)
dσ +

∫
D

Γ∆udx, y ∈ D. (18)

Thus u = V + V 0 + V 1, where
V is the Newtonian potential of a integrable function f = ∆u, which is

defined as the convolution

V (x) = Γ ∗ u(x) = (Γ ∗ u)D(x) =

∫
D

Γ(x− y)f(y) dy,

V 0 potential of simple layer:

V 0(x) = −(Γ ∗ ∂u
∂n

)S(x) = −
∫
S

Γ(x− y)
∂u

∂n
dσ(y) (19)

and V 1 - Double-layer potential:

V 1(x) = (
∂Γ

∂ny
∗ u)D(x) =

∫
S

u(y)
∂Γ(x− y)

∂ny
dσ(y) (20)

In particular, if u ∈ C1
0 (D), then u(y) =

∫
D

Γy∆udx. Thus 〈∆Γy〉 = δy.
Repeat
If D is admissible domain, S the boundary of G and u ∈ C1(D) ∩ C2(D),

then for x ∈ D

u(x) =

∫
D

Γ(x− y)∆u(y) dy +

∫
S

Γ(x− y)
∂u

∂n
dσ(y) +

∫
S

u(y)
∂Γ(x− y)

∂ny
dσ(y).

(21)
Suppose that h ∈ C1(D) ∩ C2(D) and g = Γ + h∫

S

(
u
∂h

∂n
− h∂u

∂n

)
dσ = −

∫
D

h∆u

u(y) =

∫
S

(
u
∂g

∂n
− g ∂u

∂n

)
dσ +

∫
D

g∆u .

If g = 0 on S, then

u(y) =

∫
S

u
∂g

∂n
dσ +

∫
D

g∆u . (22)

In particular if u ∈ C2
0 (D), then u(y) =

∫
D
gy∆udx = 〈Gy,∆u〉. Since

〈∆Gy, u〉 = 〈Gy,∆u〉 = u(y) we find 〈∆Gy〉 = δy.
Representation of harmonic function by boundary values. If u is harmonic

in C1(D) ∩ C1(D), then

8



u(y) =

∫
S

u
∂g

∂n
dσ . (23)

For η ∈ S, ∂g
∂n (x, η) is har in x as a limit of har functions ??

Embedding theorems have important role, cf. $ 2.7 Theorem 3 [6].
W 1,p

0 (G) ⊂ C0(G), for p > n, [2], p.154.
Let m = [n/2] + 1. If f ∈ Cm0 (G), then

|f |C(G) ≤ c|f |Hm(G). (24)

By passing to the limit we conclude that this estimate holds for f ∈ Hm
0 (G).

Hence Hm
0 (G) ⊂ G.

Theorem 1.1 ([4], p.155,$ 2.7 Theorem 3 [6]). Let k = [n/2] + l + 1 (l =
k − [n/2]− 1 ≥ 0).

If G be of class Ck, then Hk(G) ⊂ Cl(G). For n = 2, 3, [n/2] = 1, and we
have H2+l(G) ⊂ Cl(G). In particular, H2(G) ⊂ C0(G) and H3(G) ⊂ C1(G).

Dokaz. For f ∈ Hk(G), G ⊂ G′ there is F which is an extension of f and finite
in ⊂ G′ such that F ∈ Hk(G′).

(25)

The Newtonian potential w of f is a solution of the Poisson equation
∆w = f,
which is to say that the operation of taking the Newtonian potential of a

function is a partial inverse to the Laplace operator. The solution is not unique,
since addition of any harmonic function to w will not affect the equation. This
fact can be used to prove existence and uniqueness of solutions to the Dirichlet
problem for the Poisson equation in suitably regular domains, and for suitably
well-behaved functions : one first applies a Newtonian potential to obtain a
solution, and then adjusts by adding a harmonic function to get the correct
boundary data.

A Green’s function g(x, ξ) in D is a function which is
harmonic in x in D except for x = ξ,
continuous in D except for x = ξ, g = 0 on ∂D
and
g − |x− ξ|m−2 harmonic for x = ξ.
The Mean -Value Property
If u is harmonic on B(a, r), then u(a) equals the average of u over S(a, r)

u(a) =

∫
S

u(a+ rξ)dσ(ξ).

we applied Green’s identity with A = {x : ε < |x| < 1} and v(y) = |y|2−n
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∫
S

uds = ε1−n
∫
εS

uds

∫
S

udσ =

∫
S

u(εξ) dσ(ξ)

The Mean -Value Property, Volume Version If u is harmonic on
B(a, r), then u(a) equals the average of u over B(a, r)

u(a) =
1

Ωnrn

∫
B(a,r)

u(x)dV.

Let Ωn be volume of unit ball in Rn and σn of unit sphere, then σn = nΩn.
?? we applied Green’s identity with v(y) = |y|2−n, Γ(x) = 1

n(2−n)Ωn
|x|2−n,

n > 2

u(x) =
1

2− n

∫
S

uDnvdσ

A computation of Dnv yields

P (x, η) = PB(x, η) =
1− |x|2

|x− η|n
(26)

For η ∈ S, P (x, η) is harmonic in x as a limit of harmonic functions ??
the maximum principle Let G be connected, and let u : G→ R be harmonic.

If u has either a maximum or a minimum in G, then u is constant.
Symmetry lemma ∣∣|y|−1y − |y|x

∣∣ =
∣∣|x|−1x− |x|y

∣∣
illustration A = |x|−1x,B = |y|−1y,A1 = |y|x,B1 = |x|y triangles OAB1

and OBA1 are equilateral.
For y ∈ S,

∣∣y − x∣∣ =
∣∣|x|−1x − |x|y

∣∣ = |x|
∣∣Jx − y∣∣ and L(y) = R(y), where

L(y) = |y − x|2−n, and R(y) = |x|2−n
∣∣Jx− y∣∣2−n.

Denote ξ with A, Jξ with A′ and arbitrary point x with Q,
OQ = r,OA = ρ and θ angle QOA. Then

AQ2 = r2 + ρ2 − 2rρ cos θ,A′Q2 = r2 +
R4

ρ2
− 2r

R2

ρ
cos θ (27)

A′Q∂rA
′Q = r − R2

ρ
cos θ (28)

for Q ∈ S(0, R), A′Q = AQR/ρ
for m > 2
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Dng = [
1

AQm−2
− R

ρAQm−2
]r =

(m− 2)(R2 − ρ2)

R(AQ)m
(29)

Hence

Dng =
((R2 − ρ2)

R(R2 + ρ2 − 2Rρ cos θ)
, m = 2 (30)

Dng =
(m− 2)(R2 − ρ2)

R(R2 + ρ2 − 2Rρ cos θ)m/2
, m > 2. (31)

ε→ 0 on S(ξ, ε)

u(x) = u(ξ) +O(ε), Dnu = O(1), (32)

g(x) = o(ε1−m), Dnu = −ε−1 +O(1),m = 2; (33)

Dnu = −(m− 2)ε1−m +O(1),m > 2, (34)∫
S(ξ,ε)

ds = cmε
m−1 (35)

Hence

∫
S(ξ,ε)

(
u
∂g

∂n
− g ∂u

∂n

)
dσ =

{
−c2u(ξ) if m = 2
−(m− 2)cmu(ξ) + o(1) if m > 2.

and

u(ξ) =
1

cm

∫
S(0,R)

(R2 − ρ2)u(x)

R(R2 + ρ2 − 2Rρ cos θ)m/2
dsx (36)

Let t ∈ SR, n = t/|t|, L(t) = |x− t|2−n, and M = t. Then
K(x, t) = Dkv(M) = (2− n)|x− t|−n(xk − tk),
|t|DnL(M) = (2− n)|x− t|−n

∑n
k=1(xk − tk)tk and

for fixed t function |x− t|−n(x− t, t) is harmonic in x ??.
Since |x|2 = |x− t|2 + 2(x− t, t) + |t|2, hence K(x, t) is harmonic in x.
If v(t) = L(t)−R(t), then K(x, t) = Dnv(M).
Poisson kernel for ball B(a,R)

K(x, η) = KB(x, η) =
R2 − |x− a|2

nωnR|x− η|n

and in particular Poisson kernel for ball B(0, R) is

K(x, η) = KB(x, η) =
R2 − |x|2

nωnR|x− η|n
.

If u is harmonic on B(a,R), then

u(x) =

∫
S(a,R)

K(x, η)u(η)dσ(η) (37)

11



for every x ∈ B(a,R).
Solution of Dirichlet problem for the ball:
Suppose f is continuous and bounded on S. Define u on B by

u(x) =

{
PB [f ](x) if x ∈ B
f(x) if x ∈ Sn−1.

Then u is continuous on B and harmonic on B.
Check that for t ∈ S, P (·, t) is harmonic on Rn \ {t}. Namely,
|x− t|2 = 1− 2x · t+ |x|2 and since t ∈ S, 1− x · t = (t− x) · t, 1− ||x||2 =

2(t− x) · t− |x− t|2, and therefore P (x, t) = 2(1− x · t)|x− t|−n − |x− t|2−n.
Since functions P1(x, t) = (t−x)·t|x−t|−n =

∑
(ti−xi)ti|x−t|−n and |x−t|2−n

are harmonic in x, P (x, t) is harmonic.
Let f : Sn−1 → Rm be a bounded integrable mapping defined on the unit

sphere Sn−1. Then the function u defined by

u(x) = P [f ](x) =

∫
Sn−1

1− ||x||2

||x− η||n
f(η)dσ(η), (38)

is a bounded harmonic mapping on the unit ball Bn.
It is known that σ satisfies the condition:∫

Sn−1

1− ||x||2

||x− η||n
dσ(η) = 1, x ∈ B. (39)

If u is harmonic in Ω, then u is real analytic in Ω. It follows from

P (x, η) = PB(x, η) =
1− |x|2

|x− η|n
= (1− |x|2)

∑
ci(|x|2 − 2x · η)i (40)

and tn/2 =
∑
ci(t− 1)i on (0, 2).

Example 2. Laplacian in polar and spherical coordinates
(a) ∆u = 1

rUr(rUr) + 1
r2U

′′
θθ

(b) ∆u = 1
r2Ur(r

2Ur) + 1
r2 sinϕUϕ(sinϕUϕ) + 1

r2 sin2 ϕ
U ′′θθ

Interior estimate
Suppose that f0 : Sn−1(a, r) → Rn is a continuous vector-valued function,

and let f = P [f0] and

M∗a = sup{|f0(y)− f0(a)| : y ∈ Sn−1(a, r)}.

Then
r|f ′(a)| ≤ nM∗a . (41)
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2 Distribution

2.1 AC

Definicija 1. Neka je I ⊂ R interval. Funkcija f : I → R je apsolutno ne-
prekidna na I ako za svako ε > 0 postoji δ > 0 takvo da za svaki konačan niz
(x1, y1), . . . , (xn, yn) medusobno disjunktnih podintervala intervala I takvih da
je

n∑
j=1

(yj − xj) < δ

važi
n∑
j=1

|f(yj)− f(xj)| < ε.

Stav 1. Neka je f ∈ L1[a, b] i neka je F (x) =

∫ x

a

f(t)dt, x ∈ [a, b ]. Tada F

ima konačan izvod skoro svuda na [a, b ] i važi F ′ = f skoro svuda na [a, b ].

Stav 2. Neka su f, g : I → R apsolutno neprekidne funkcije. Tada su f + g i
−f apsolutno neprekidne funkcije na I.

Stav 3. Neka je I zatvoren interval i neka su f, g : I → R apsolutno neprekidne
funkcije. Tada je f · g apsolutno neprekidna funkcija na I.

Napomena 1. Sa f ′ obeležavamo klasičan izvod funkcije f a sa Df uopšteni
izvod funkcije f .

Stav 4. Neka je f ∈ L1[a, b] i neka je F (x) =
x∫
a

f(t)dt, x ∈ [a, b]. Tada

(1) Funkcija F ima konačan izvod skoro svuda na [a, b];

(2) F ′ = f skoro svuda na [a, b];

(3) Funkcija F je apsolutno neprekidna na [a, b].

Stav 5. Neka je f : [a, b]→ R apsolutno neprekidna na [a, b]. Tada

(1) f ′ postoji skoro svuda na [a, b];

(2) f ′ ∈ L1[a, b];

(3) Za svako x ∈ [a, b] važi
x∫
a

f ′(t)dt = f(x)− f(a).

Zadatak 1. Neka ja f ∈ L1[a, b ]. Funkcija f ima uopšteni izvod Df ∈ L1[a, b ]
(izvod u smislu distribucija, slab izvod) ako i samo ako f ∈ AC[a, b ].
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Rešenje.
Smer (⇐). Neka je ϕ ∈ C1

c (a, b) proizvoljna. Tada postoji funkcija ϕ̃ ∈
C1[a, b] takva da je ϕ̃(x) = ϕ(x) za svako x ∈ (a, b) i ϕ̃(a) = ϕ̃(b) = 0. Zbog
lakšeg obeležavanja u nastavku rešenja umesto ϕ̃ pǐsemo ϕ.

Kako je ϕ ∈ C1[a, b ] sledi da ϕ ∈ AC[a, b ]. Otuda je fϕ ∈ AC[a, b ].
Kako su fϕ, f, ϕ ∈ AC[a, b ] sledi da (fϕ)′,f ′ i ϕ′ postoje skoro svuda na

[a, b ] i važi (fϕ)′, f ′, ϕ′ ∈ L1[a, b ]. Otuda

(fϕ)′ = f ′ϕ+ fϕ′

skoro svuda na [a, b ].
Dalje, kako je ϕ ∈ C1[a, b] sledi da (fϕ)′, f ′ϕ, fϕ′ ∈ L1[a, b ].
Kako je fϕ ∈ AC[a, b ] i kako je ϕ(a) = ϕ(b) = 0 sledi∫ b

a

(fϕ)′(t)dt = (fϕ)(b)− (fϕ)(a) = 0− 0 = 0.

Otuda je ∫ b

a

(f ′ϕ+ fϕ′)(t)dt = 0,

odnosno ∫ b

a

f ′(t)ϕ(t)dt = −
∫ b

a

f(t)ϕ′(t)dt.

Kako je ϕ ∈ C1
c (a, b) proizvoljna iz poslednje formule, a na osnovu definicije

uopštenog izvoda, sledi da Df = f ′ i Df ∈ L1[a, b ].
Smer (⇒). Neka je g = Df . Kako je g ∈ L1[a, b ] korektno je definisana

funkcija

F (x) =

∫ x

a

g(t)dt, x ∈ [a, b ].

Štavǐse F ∈ AC[a, b ] i F ′ = g skoro svuda na [a, b ]. Na osnovu dokazanog
smera funkcija F ima uopšteni izvod i važi DF = g. Otuda funkcije f i F
imaju jednake uopštene izvode, pa postoji konstanta c tako da važi f = F + c.
Kako je konstantna funkcija apsolutno neprekidna i kako je zbir dve apsolutno
neprekidne funkcije apsolutno neprekidna funkcija sledi da f ∈ AC[a, b ]. 4

Potrebno je dokazati da ako za f, g ∈ L1[a, b ] važi Df = Dg onda postoji
konstanta c takva da je f = g + c.
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2.2 Distribution

Let U be an open subset of Rn. The space D(U) of test functions on U is
defined as follows. A function ϕ : U → R is said to have compact support if
there exists a compact subset K of U such that ϕ(x) = 0 for all x in U \ K.
The elements of D(U) are the infinitely differentiable functions ϕ : U → R with
compact support also known as bump functions. This is a real vector space. It
can be given a topology by defining the limit of a sequence of elements of D(U).
A sequence (ϕk) in D(U) is said to converge to ϕ ∈ D(U) if the following two
conditions hold: There is a compact set K ⊂ U containing the supports of all
ϕk:⋃

k
supp(ϕk) ⊂ K.

For each multi-index α, the sequence of partial derivatives ∂αϕk tends uni-
formly to ∂αϕ

With this definition, D(U) becomes a complete locally convex topological
vector space satisfying the Heine-Borel property.

Distributions
A distribution on U is a continuous linear functional T : D(U) → R (or

T : D(U)→ C). That is, a distribution T assigns to each test function f a real
(or complex) scalar T (f) such that

T (c1ϕ1 + c2ϕ2) = c1T (ϕ1) + c2T (ϕ2) for all test functions ϕ1, ϕ2 and scalars
c1, c2. Moreover, T is continuous if and only if

lim
k→∞

T (ϕk) = T

(
lim
k→∞

ϕk

)
for every convergent sequence ϕk inD(U). (Even

though the topology of D(U) is not metrizable, a linear functional on D(U) is
continuous if and only if it is sequentially continuous.) Equivalently, T is con-
tinuous if and only if for every compact subset K of U there exists a positive
constant CK and a non-negative integer nK such that
|T (ϕ)| ≤ CK sup

K
|∂αϕ| for all test functions ϕ with support contained in K

and all multi-indices a with |α| ≤ nK .
Why absolute values of Jacobians in change of variables for multiple integrals

but not single integrals?
Let I ⊂ R be an interval and ϕ : [a, b]→ I be a differentiable function with

integrable derivative. Suppose that f : I → R is a continuous function. Then∫ ϕ(b)

ϕ(a)

f(x) dx =

∫ b

a

f(ϕ(t))ϕ′(t) dt.

One may also use substitution when integrating functions of several variables.
Here the substitution function (v1, ..., vn) = f(u1, ..., un) needs to be injective
and continuously differentiable, and the differentials transform as

dv = dv1 · · · dvn = |det(Dϕ)(u1, . . . , un)| du1 · · · dun
where det(Df)(u1, ..., un) denotes the determinant of the Jacobian matrix

containing the partial derivatives of f . This formula expresses the fact that
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the absolute value of the determinant of a matrix equals the volume of the
parallelotope spanned by its columns or rows.

More precisely, the change of variables formula is stated in the next theorem:
Theorem. Let U be an open set in Rn and f : U → Rn an injective dif-

ferentiable function with continuous partial derivatives, the Jacobian of which
is nonzero for every x in U. Then for any real-valued, compactly supported,
continuous function f , with support contained in f(U),∫

ϕ(U)

f(v) dv =

∫
U

f(ϕ(u)) |det(Dϕ)(u)| du.

The conditions on the theorem can be weakened in various ways. First,
the requirement that f be continuously differentiable can be replaced by the
weaker assumption that f be merely differentiable and have a continuous inverse
(Rudin 1987, Theorem 7.26). This is guaranteed to hold if f is continuously
differentiable by the inverse function theorem. Alternatively, the requirement
that Det(Df) 6= 0 can be eliminated by applying Sard’s theorem (Spivak 1965).

For Lebesgue measurable functions, the theorem can be stated in the follo-
wing form (Fremlin 2010, Theorem 263D):

A weak solution (also called a generalized solution) to an ordinary or partial
differential equation is a function for which the derivatives may not all exist but
which is nonetheless deemed to satisfy the equation in some precisely defined
sense. There are many different definitions of weak solution, appropriate for
different classes of equations. One of the most important is based on the notion
of distributions.

Avoiding the language of distributions, one starts with a differential equation
and rewrites it in such a way that no derivatives of the solution of the equation
show up (the new form is called the weak formulation, and the solutions to it
are called weak solutions). Somewhat surprisingly, a differential equation may
have solutions which are not differentiable; and the weak formulation allows one
to find such solutions.

Weak solutions are important because a great many differential equations
encountered in modelling real world phenomena do not admit sufficiently smo-
oth solutions and then the only way of solving such equations is using the weak
formulation. Even in situations where an equation does have differentiable so-
lutions, it is often convenient to first prove the existence of weak solutions and
only later show that those solutions are in fact smooth enough.

2.2.1 Absolutely continuous

However, the function u(x) := x, x ∈ R, is absolutely continuous, but it is
unbounded and u′(x) = 1, which is not Lebesgue integrable. Also the function
u(x) := sinx, x ∈ R, is absolutely continuous, bounded, but u′ is not Lebesgue
integrable. These simple examples show that an absolutely continuous function
may not have bounded pointwise variation. Proposition XX below will show
that this can happen only on unbounded intervals.
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Example 3. Let u : I → R be differentable with bounded derivative, then
u ∈ AC(I).

If u, v ∈ AC([a, b]), then
(i) u± v ∈ AC([a, b])
(ii) uv ∈ AC([a, b])

Example 4. Let I ⊂ R be an interval and let u : I → R be uniformly continu-
ous.

i) Prove that u may be extended uniquely to I in such a way that the extended
function is still uniformly continuous.
(ii) Prove that if u belongs to AC(I), then its extension belongs to AC(I) and,
u′ is Lebesgue integrable on bounded subintervals of I.
(iii) Prove that there exist A,B > 0 such that |u(x)| ≤ A+B|x| for all x ∈ I.

Hint. For ε = 1, there is δ > 0 such that |u(x) − u(y)| ≤ 1 for |x − y| ≤ δ.
Set k = 1/δ. Then |u(nδ)| ≤ |u(0)| + n. If nδ ≤ x < (n + 1)δ, then |u(x)| ≤
|u(nδ)|+ 1 ≤ |u(0)|+ n+ 1 ≤ |u(0)|+ 1 + k|x|.

A real-valued function f on the interval [a, b] is said to be singular if it has
the following properties:

f is continuous on [a, b]. (**)
there exists a set N of measure 0 such that for all x outside of N the derivative
f ′(x) exists and is zero, that is, the derivative of f vanishes almost everywhere.
f is nondecreasing on [a, b].
f(a) < f(b).

A continuous monotone function f is said to be singular with respect to
Lebesgue measure (written f ⊥ m) provided that f is non-constant yet f ′(x) = 0
almost everywhere. A standard example of a singular function is the Cantor
function, which is sometimes called the devil’s staircase (a term also used for
singular functions in general). There are, however, other functions that have
been given that name. The Cantor function can be expressed in a ternary
expansion.

Absolute continuity (AC) is a smoothness property of functions that is stron-
ger than continuity and uniform continuity. The notion of absolute continuity
allows one to obtain generalizations of the relationship between the two central
operations of calculus, differentiation and integration, expressed by the funda-
mental theorem of calculus in the framework of Riemann integration. Such
generalizations are often formulated in terms of Lebesgue integration The fol-
lowing conditions on a real-valued function f on a compact interval [a, b] are
equivalent:

(1) f is absolutely continuous;
(2) f has a derivative f ′ almost everywhere, the derivative is Lebesgue inte-

grable, and
f(x) = f(a) +

∫ x
a
f ′(t) dt

for all x on [a, b];
(3) there exists a Lebesgue integrable function g on [a, b] such that
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f(x) = f(a) +
∫ x
a
g(t) dt

for all x on [a, b].
If these equivalent conditions are satisfied then necessarily g = f ′ almost

everywhere.
Equivalence between (1) and (3) is known as the fundamental theorem of

Lebesgue integral calculus, due to Lebesgue.
For an equivalent definition in terms of measures see the section Relation

between the two notions of absolute continuity.
A f ∈ BV [a, b] is singular if f ′(x) = 0 almost everywhere.
If f ∈ BV [a, b], then f = fac + fs where fac ∈ AC[a, b] and fs is singular.
Darboux’s theorem
Let I be an open interval, f : I → R a real-valued differentiable function.

Then f ′ has the intermediate value property: If a and b are points in I with
a < b, then for every y between f ′(a) and f ′(b), there exists an x in [a, b] such
that f ′(x) = y. Consider the equation

y′(x) = sgnx, x ∈ [−1, 1], (42)

gde je y : [−1, 1 ] → R nepoznata funkcija. Primetimo da funkcija sgn ima
prekid prve vrste u tački 0.

A Darboux function is a real-valued function f which has the ”intermediate
value property”: for any two values a and b in the domain of f, and any y
between f(a) and f(b), there is some c between a and b with f(c) = y. By
the intermediate value theorem, every continuous function is a Darboux func-
tion. Darboux’s contribution was to show that there are discontinuous Darboux
functions.

Every discontinuity of a Darboux function is essential, that is, at any point
of discontinuity, at least one of the left hand and right hand limits does not
exist.

By Darboux’s theorem, the derivative of any differentiable function is a
Darboux function. By Darboux’s theorem, sgn is not a Darboux function in
any nbgh V = (−a, a), a > 0, of 0. Therefore there is no differentiable function
u such that u′(x) = sgnx, x ∈ V .

Hence equation (42) there is no solutions in class differentiable function on
[−1, 1 ] ie. there is no function y : [−1, 1 ]→ R such that y′(x) = sgnx for every
x ∈ [−1, 1 ].

Instead of the equation (42) we can consider∫ 1

−1

y′(x)ϕ(x)dx =

∫ 1

−1

−y(x)ϕ′(x)dx =

∫ 1

−1

sgnxϕ(x)dx := l(ϕ), (43)

where ϕ arbitrary function of class C1[−1, 1 ] such that ϕ(−1) = ϕ(1) = 0. ??
Pri tome prirodno je rešenje jednačine (43) tražiti u klasi C[−1, 1]. We can
check that u(x) = |x| + c (c real constant) solutions of the equation (145) in
class C[−1, 1]. Hence it solution we call weak solution of the equation (42).

By partial integration,
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lu(ϕ) :=
∫ 1

−1
−u(x)ϕ′(x)dx =

∫ 1

−1
−(|x|+ c)ϕ′(x)dx = I1 + I2, where

I1 =
∫ 1

0
−(|x| + c)ϕ′(x)dx = cϕ(0) +

∫ 1

0
sgnxϕ(x)dx and I2 =

∫ 0

−1
−(|x| +

c)ϕ′(x)dx = −cϕ(0) +
∫ 0

−1
sgnxϕ(x)dx, and therefore

lu(ϕ) = l(ϕ).
Moral. By definition we express integral of u′ϕ by means of integral of uϕ′,

and then by partial integraratio we return again to the integral of u′ϕ plus the
jump of uϕ at discontinuity point of u.

If f, ϕ ∈ C[a, b] and f, ϕ ∈ C1(a, b), then∫ b

a

y′(x)ϕ(x)dx = fϕ|ba −
∫ b

a

y(x)ϕ′(x)dx, (44)

Show f ∈ L1,2 if f, f ′ ∈ L2; [f, g] =
∫
fgdx+

∫
f ′g′dx is a scalar product.

If M is subset of L2(−π, π) such that f ∈M if f ′ ∈ L2(−π, π) and |f ′|2 ≤ 1.
Whether M is compact in L2(−π, π)? A subspace of L1,2 consisting of AC
functions we denote by W 1,2.

What is difference between L1,2 and W 1,2? ACL property Whether W 1,2 ⊂
L1,2 ? Cantor function

Solve u′′ = f0 on I = [−1, 1].∫ 1

−1
u′′vdx = −

∫ 1

−1
u′v′dx, l(v) =

∫ 1

−1
vf0dx = (v, f0)2.

If f0 ∈ L2, l is bounded linear functional on L1,2 and there is u ∈ L1,2 such
that [u, v] = −l(v).

u′ = 0 a.e. then u is a singular function and therefore L1,2 is not right space.
To justify partial integration we need to suppose that v is AC[−1, 1]. A

subspace of L1,2 consisting of AC functions we denote by W 1,2.
If we suppose that functions are AC then we have Sobolev space W 1,2.
If u is AC and u′ = 0 then u = c.
Solve u′′ = δ0 on I = [−1, 1]. If v is AC[−1, 1] and v(−1) = v(1) = 0, then

δ0(v) = v(0) and therefore |δ0(v)| ≤
∫ 1

−1
|v′(x)|.

Hence δ0 is a is bounded linear functional on W 1,2.

Example 5. If f is of bounded variation on [a, b] and µ = µf measure defined
by µ([x, y]) = f(y)− f(x), whether 〈f ′〉 = µf?

Hint. If ϕ ∈ C1
0 ([a, b]), by partial integration

∫ b
a
fϕ′dx = −

∫ b
a
ϕdf .

Example 6. As an illustration of the concept, consider the first-order wave
equation

∂u
∂t + ∂u

∂x = 0 (1)
(see partial derivative for the notation) where u = u(t, x) is a function of

two real variables.
The function u0(x, t) = |x − t| has partial derivatives in classical sense on

G = R2 \ D, where D = {(x, t) : x = t} and satisfies this equation on D. We
will see that u0 is so called a weak solution of equation (1).

Assume that u is continuously differentiable on the Euclidean space R2, mul-
tiply this equation (1) by a smooth function ϕ of compact support, and integrate.
One obtains
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∫ ∞
−∞

∫ ∞
−∞

∂u(t, x)

∂t
ϕ(t, x) dtdx+

∫ ∞
−∞

∫ ∞
−∞

∂u(t, x)

∂x
ϕ(t, x) dtdx = 0.

Using Fubini’s theorem which allows one to interchange the order of inte-
gration, as well as integration by parts (in t for the first term and in x for the
second term) this equation becomes

−
∫ ∞
−∞

∫ ∞
−∞

u(t, x)
∂ϕ(t, x)

∂t
dtdx−

∫ ∞
−∞

∫ ∞
−∞

u(t, x)
∂ϕ(t, x)

∂x
dtdx = 0. (2)

(Notice that while the integrals go from −∞ to∞, the integrals are essentially
over a finite box because ϕ has compact support, and it is this observation which
also allows for integration by parts without the introduction of boundary terms.)

We have shown that equation (1) implies equation (2) as long as u is con-
tinuously differentiable. The key to the concept of weak solution is that there
exist functions u which satisfy equation (2) for any ϕ, and such u may not be
differentiable and thus, they do not satisfy equation (1). A simple example of
such function is u(t, x) = |t − x| for all t and x. (That u defined in this way
satisfies equation (2) is easy enough to check, one needs to integrate separately
on the regions above and below the line x = t and use integration by parts.) A
solution u of equation (2) is called a weak solution of equation (1).

Distributions are a class of linear functionals that map a set of test functions
(conventional and well-behaved functions) into the set of real numbers. In the
simplest case, the set of test functions considered is D(R), which is the set of
functions f : R→ R having two properties:

f is smooth (infinitely differentiable); f has compact support (is identically
zero outside some bounded interval).

A distribution T is a linear mapping T : D(R)→ R. Instead of writing T (f),
it is conventional to write 〈T, ϕ〉 for the value of T acting on a test function f.
A simple example of a distribution is the Dirac delta δ, defined by
〈δ, ϕ〉 = ϕ(0),
meaning that δ evaluates a test function at 0. Its physical interpretation is

as the density of a point source.
As described next, there are straightforward mappings from both locally

integrable functions and Radon measures to corresponding distributions, but
not all distributions can be formed in this manner.

2.2.2 Differentiation of distributions

Differentiation
Suppose A : D(U)→ D(U) is the partial derivative operator
Aϕ = ∂ϕ

∂xk
.

If f and ϕ are in D(U), then an integration by parts gives∫
U

∂ϕ
∂xk

ψ dx = −
∫
U
ϕ ∂ψ
∂xk

dx,
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so that At = −A. This operator is a continuous linear transformation on
D(U). So, if T ∈ D′(U) is a distribution, then the partial derivative of T with
respect to the coordinate xk is defined by the formula〈

∂T
∂xk

, ϕ
〉

= −
〈
T, ∂ϕ∂xk

〉
for all ϕ ∈ D(U).

With this definition, every distribution is infinitely differentiable, and the
derivative in the direction xk is a linear operator on D′(U).

More generally, if α = (α1, ..., αn) is an arbitrary multi-index and ∂α is the
associated partial derivative operator, then the partial derivative ∂αT of the
distribution T ∈ D′(U) is defined by
〈∂αT, ϕ〉 = (−1)|α| 〈T, ∂αϕ〉 for allϕ ∈ D(U).
Differentiation of distributions is a continuous operator on D′(U); this is an

important and desirable property that is not shared by most other notions of
differentiation.

For a locally integrable function f defined on a domain G in Rn,we define
If (ϕ) =

∫
G
f(x)ϕ(x)dx, ϕ ∈ D(G). It is also convenient to use notation 〈f〉 (or

simply f if it is not confusing) instead of If . For example, if G = R, we define
If (ϕ) =

∫∞
−∞ f(x)ϕ(x)dx. For a constant c, define Ic(ϕ) = c

∫∞
−∞ ϕ(x)dx. It is

also convenient to use notation 〈c〉 (or simply c if it is not confusing) instead of
Ic. We call distribution Ic constant distribution.

?? f ∈ D′ 〈Dαf〉 distributional derivative
If for some function f defined on a domain G in Rn, Dαf is locally integrable

on G, for classical derivative at x we use notation {Dαf}(x) and for distribution
defined by this function notation {Dαf}.

Then {Dαf}
is different from 〈Dαf〉 in general. Example H ′, where H is the Heaviside

function.
Bois-Raymond theorem. A distribution induced by a locally integrable func-

tion f is 0 at domain G iff f is is 0 a.e, G.

Example 7. For ε > 0 define, ωε(x) = cε exp(− ε2

ε2−|x|2 ), |x| < ε, and 0 for

|x| ≥ ε.
Check ωε ∈ D and ωε(x) = ε−nω1(x/ε).

Proposition 1. ωε → δ as ε→ +0 in distribution sense.

I(ε, ϕ) =
∫
Rn

ωε(x)ϕ(x)dx−ϕ(0) =
∫
Rn

ωε(x)(ϕ(x)−ϕ(0))dx =
∫
Kε
ωε(x)(ϕ(x)−

ϕ(0))dx. Hence
|I(ε, ϕ)| ≤M(ε)

∫
Kε
ωε(x)dx = M(ε), where M(ε) = maxx∈Kε |ϕ(x)−ϕ(0)|.

Since M(ε)→ 0 as ε→ +0,
Sohocki formula.

Distribution P0 = P 1
x or principal vale of function 1

x is defined by

I(ϕ) = 〈P 1
x , ϕ〉 = vp

∫∞
−∞

ϕ(x)
x dx, ϕ ∈ D(R).

Prove that xP0 = 1
Set I(ε) = I(ϕ, ε) =

∫∞
−∞

ϕ(x)
x+iεdx.

Distribution P+ = 1
x+i0 is defined as limε→+0 I(ϕ, ε).

Prove that P+ = −iπδ + P0.
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Then
R(ε) = I(ε)−I =

∫ a
−a fε(x)dx, where fε(x) = − iεϕ(x)

x(x+iε) and suppϕ ⊂ [−a, a].

If ϕ(0) = 0, then |ϕ(x)| ≤M0|x| and therefore |fε(x)| ≤M0, x ∈ R.
Since |fε(x)| ≤M0, by Lebesgue dominated convergence thm R(ε) tends to

0 if ε tends to 0. If ψ(x) = ϕ(x)−ϕ(0), then I(ϕ, ε) = I(ψ, ε)+ϕ(0)J(ε), where
J(ε) =

∫ a
−a

dx
x+iε . Since J(ε) tends to −πi if ε tends to 0, we find vpI(ϕ) =

I(ψ)− iπϕ(0). Using I(ψ) = vp.I(ϕ), we get
P+ = −iπδ + P0.
Hint. J(ε) =

∫ a
−a

dx
x+iε = ln(x + iε)|a−a = arg(a + iε) − arg(a − iε), where

arg is branch of Arg defined by 0 < arg < π.

Proposition 2. Denote by {Dαf} ordinary (classical) derivative, and set [f ]x0
=

f(x0 + 0)− f(x0 − 0).
Suppose that f ∈ C1(−∞, x0] ∩ C1[x0,∞) and that f has discontinuity of

first order at x0, then
f ′(x) = {f ′(x)}+ [f ]x0

δx0
, that is

(f ′, ϕ) = −(f, ϕ′) = [f ]x0
ϕ(x0) + L{f ′}(ϕ).

Rešenje. (f ′, ϕ) = −(f, ϕ′) = I1 + I2, where
I1 = −

∫ x0

−∞ f(x)ϕ′(x)dx and I2 = −
∫∞
x0
f(x)ϕ′(x)dx.

By partial integration, I1 = −f(x)ϕ(x)|x0
−∞ +

∫ x0

−∞{f
′(x)}ϕ(x)dx and

I2 = −f(x)ϕ(x)|∞x0
+
∫∞
x0
{f ′(x)}ϕ(x)dx

Hence (f ′, ϕ) = −f(x)ϕ(x)|x0
−∞+

∫ x0

−∞{f
′(x)}ϕ(x)dx−f(x)ϕ(x)|∞x0

+
∫∞
x0
{f ′(x)}ϕ(x)dx =

[f ]x0
ϕ(x0) + I{f ′}(ϕ). 4

Sometimes, in the literature by {Dαf} is denoted generalized derivative, see
[11]; by this notation {f ′(x)} = f ′(x) + [f ]x0

δx0
.

If f ∈ AC([a, b]), then the classical derivative f ′(x) exist a.e. and {f ′} = If ′

({f ′(x)} = f ′(x) = If ′).

Proposition 3. More generally, if f ∈ C1(−∞, x0)∩C1(x0,∞) and if f satisfy
regularity condition with limit A at x0:
f(x)(x−x0) tends 0 if x tends to x0, f(x0 + ε)− f(x0− ε) tends to A if ε tends
to 0
and there is P{f ′(x)}|x0

, then
f ′(x) = P{f ′(x)}+Aδx0

if f has discontinuity of first order at isolated points aj then
f ′ = {f ′}+

∑
[f ]ajδaj

f ′(x) = {f ′(x)}+
∑

[f ]ajδaj
?? Suppose that A = {aj} is discrete and that f ∈ C1(R \ A). Suppose

further that f satisfies regularity condition at every point aj with limit Aj. If
P{f ′}|A exists, then f ′(x) =

∑
Ajδaj + P{f ′}|A.

Example 8. 1. If f(x) = |x|, then f ′(x) = {f ′(x)} = sgnx, x 6= 0, in D′.
Solution of equation u′ = sgn in D′ is u = |x|+ Ic

2. (ln |x|)′ = P 1
x
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3. fa(x) = f(a, x) = sin(ax)
x limit in distribution sense if a→ 0 and a→∞

Set v = (ϕ(x) − ϕ(0))/x. Since v ∈ L1, l(ϕ) = (fa, ϕ) = (sin ax, v) +
ϕ(0)π/2 then by RiemannLebesgue lemma l(ϕ) tends to δ0π/2.

4. Solve xu′ = 1; u = c1 + c2H(x) + ln |x|

5. f0(x) = 1
2 −

x
2π , x ∈ [0, 2π), 2π-periodic

6. Generlized solutions of xmu = 0, are given by u =
∑m−1
k=0 ckδ

(k).

(1) 〈f ′0〉 = − 1

2π
+

∞∑
k=−∞

δ2πk.

7. Check that

(2)
∞∑

n=−∞
einx = 2π

∞∑
k=−∞

δ(x+ 2πk) = 2π

∞∑
k=−∞

δ2πk

as distributions.

Hint. F (x) =
∫ x

0
f0(t)dt = x

2 −
x2

4π , x ∈ [0, 2π), where f0 is given in the
item 5;

(3) F (x) =
π

6
− 1

2π

∞∑
k=−∞,k 6=0

1

k2
eikx.

Differentiating (3) two times and using (1), we find (2).

8. 4 ln |z| = 2πδz

9. 4|x|2−n = (2− n)σnδx

10. Show that the function

E(x, t) =
1

2a
H(at− |x|),

where a > 0, H is the Heaviside step function, satisfies the equation

�aE = δ,

where �a := ∂
∂t2 − a

2 ∂
∂x2 and δ(x, t) is δ-function in D′(R2).
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2.3 The Heaviside step function

The Heaviside step function, or the unit step function, usually denoted by
H, is a discontinuous function whose value is zero for negative argument and one
for positive argument. It is an example of the general class of step functions, all
of which can be represented as linear combinations of translations of this one.

The function was originally developed in operational calculus for the solution
of differential equations, where it represents a signal that switches on at a spe-
cified time and stays switched on indefinitely. Oliver Heaviside, who developed
the operational calculus as a tool in the analysis of telegraphic communications,
represented the function as 1. The distributional derivative of the Heaviside

step function is the Dirac delta function: dH(x)
dx = δ(x). Since H is usually used

in integration, and the value of a function at a single point does not affect its
integral, it rarely matters what particular value is chosen of H(0). Indeed when
H is considered as a distribution or an element of L∞ (see Lp space) it does not
even make sense to talk of a value at zero, since such objects are only defined
almost everywhere. If using some analytic approximation (as in the examples
above) then often whatever happens to be the relevant limit at zero is used.

There exist various reasons for choosing a particular value.
H(0) = is often used since the graph then has rotational symmetry; put

another way, H− is then an odd function. In this case the following relation
with the sign function holds for all x:

H(x) = 1
2 (1 + sgn(x)).

H(0) = 1 is used when H needs to be right-continuous. For instance cu-
mulative distribution functions are usually taken to be right continuous, as are
functions integrated against in LebesgueStieltjes integration. In this case H is
the indicator function of a closed semi-infinite interval:

H(x) = 1[0,∞)(x). The corresponding probability distribution is the dege-
nerate distribution.

H(0) = 0 is used when H needs to be left-continuous. In this case H is an
indicator function of an open semi-infinite interval:

H(x) = 1(0,∞)(x).
In functional-analysis contexts from optimization and game theory, it is of-

ten useful to define the Heaviside function as a set-valued function to preserve
the continuity of the limiting functions and ensure the existence of certain solu-
tions. In these cases, the Heaviside function returns a whole interval of possible
solutions, H(0) = [0, 1].

2.4 Primitive distribution

If ϕ ∈ D(R), then
∫ x
−∞ ϕ(t)dt is not distribution in general. There is a

distrubution ψ such that (i) ϕ = ψ′ +Aωε.
If (i) holds then ψ′ = ϕ − Aωε. Hence I1(ψ′) = I1(ϕ) − A. For A = I1(ϕ),

we have I1(ψ′) = 0.
Set D1(R) = {ϕ′ : ϕ ∈ D(R)}. f (−1) ∈ D′(R) is primitive distribution of

f ∈ D′(R) if
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〈f (−1), ϕ′〉 = −〈f, ϕ〉 for every ϕ ∈ D(R). f (−1) is not defined on all D(R), but
we show that f (−1) can be extended on D(R).

ϕ̂ = ϕ − Aωε, where A = I1(ϕ), and ψ(x) =
∫ x
−∞ ϕ̂(t)dt. Since ψ′ = ϕ̂,

ϕ̂ ∈ D1(R).
If f (−1) exists (can be extended on D(R)) we choose c =< 〈f (−1), ωε > for

a fixed ε. Note ωε is not in D1(R).
By additivity, 〈f (−1), ϕ〉 =< 〈f (−1), ψ′ > +A < 〈f (−1), ωε >= −〈f, ψ〉 +

Ic(ϕ), where c =< 〈f (−1), ωε >.
The converse holds.
In particular, 〈0(−1), ϕ〉 = Ic(ϕ)
(I) If u′ = 0 in distribution sense then u = Ic.
0 = (u′, ϕ) = (u, ϕ′). Hence 0 = (u, ϕ̂) = (u, ϕ)− I1(ϕ)(u, ωε).
We can choose a fixed ε > 0 and set c = (u, ωε). Hence u = Ic.
If F1 and F2 are primitive distributions of f , then F1 = F2 + Ic. Usually in

the literature it is written c instead of Ic.
General solution of equation u′ = f in distribution sense is u = f (−1) + Ic.

If f is continuous, we define F0(x) =
∫ x

0
f(t)dt. Here F0 is primitive function

and u = F0 + Ic.
In this setting, is it correct to say that that every solution is reduced to

classical solution.
Since H ′ = δ0, δ

(−1)
0 = H + Ic = H + c.

Fourier analysis
Superposition of sinusoidal wave basis functions to form a sawtooth wave

Spherical harmonics, an orthonormal basis for the Hilbert space of square-
integrable functions on the sphere, shown graphed along the radial direction

One of the basic goals of Fourier analysis is to decompose a function into
a (possibly infinite) linear combination of given basis functions: the associated
Fourier series. The classical Fourier series associated to a function f defined on
the interval [0, 1] is a series of the form∑∞

n=−∞ ane
2πinθ

where
an =

∫ 1

0
f(θ)e−2πinθ dθ.

The example of adding up the first few terms in a Fourier series for a sa-
wtooth function is shown in the figure. The basis functions are sine waves with
wavelengths λ/n (n=integer) shorter than the wavelength λ of the sawtooth
itself (except for n=1, the fundamental wave). All basis functions have nodes at
the nodes of the sawtooth, but all but the fundamental have additional nodes.
The oscillation of the summed terms about the sawtooth is called the Gibbs
phenomenon.

A significant problem in classical Fourier series asks in what sense the Fourier
series converges, if at all, to the function f. Hilbert space methods provide one
possible answer to this question. The functions en(θ) = e2πinθ form an ortho-
gonal basis of the Hilbert space L2([0, 1]). Consequently, any square-integrable
function can be expressed as a series

f(θ) =
∑
n anen(θ), an = 〈f, en〉
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and, moreover, this series converges in the Hilbert space sense (that is, in
the L2 mean).

The problem can also be studied from the abstract point of view: every
Hilbert space has an orthonormal basis, and every element of the Hilbert space
can be written in a unique way as a sum of multiples of these basis elements. The
coefficients appearing on these basis elements are sometimes known abstractly as
the Fourier coefficients of the element of the space. The abstraction is especially
useful when it is more natural to use different basis functions for a space such as
L2([0, 1]). In many circumstances, it is desirable not to decompose a function
into trigonometric functions, but rather into orthogonal polynomials or wavelets
for instance, and in higher dimensions into spherical harmonics. Fourier series
on a square

We can also define the Fourier series for functions of two variables x and y
in the square [−π, π]× [−π, π]:

f(x, y) =
∑

j,k∈Z (integers)

cj,ke
ijxeiky, cj,k =

1

4π2

∫ π

−π

∫ π

−π
f(x, y)e−ijxe−iky dx dy.

Aside from being useful for solving partial differential equations such as the
heat equation, one notable application of Fourier series on the square is in image
compression. In particular, the jpeg image compression standard uses the two-
dimensional discrete cosine transform, which is a Fourier transform using the
cosine basis functions.

Example 9. 1. For u ∈ C2(G) and v ∈ C1
0 (G),∫

G
∆uvdx = −

∫
G
Du ·Dvdx.

2. Check that div(fA) =
∑
Dk(fAk) = f

∑
Dk(Ak) +

∑
DkfAk = fdivA+

∇f ·A, where A = (A1, · · · , An) vector field.

3. Set E(x) = E2(x) = ln |x|
2π , x ∈ R2\{0}; A3(x) = x

|x|3 and E(x) = E3(x) =

− 1
4π|x| , x ∈ R3 \ {0}; En(x) = |x|2−n, x ∈ Rn \ {0}, n ≥ 3.Set A(x) =

An(x) = x
|x|n . We will prove, see Lemma 2.1 below, that ∆E2 = δ and

∆En = cnδ in distribution sense, where cn = −(n−2)σn, divA(x) = σnδ0.

If we introduce Ên = En
(2−n)σn

, then 〈∆Ên〉 = δ. Example 1

4. The negative of the Laplacian in Rd given by

−∆u = −
d∑
i=1

∂2
i u

is a uniformly elliptic operator. The Laplace operator occurs frequently in
electrostatics. If ρ is the charge density within some region Ω in R3, the
potential Φ must satisfy the equation

−∆Φ = 4πρ.
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If the unit charge is concentrated at 0, then Φ = 1
|x| .

2.5 Differentation of Distrubutions

Suppose u(x) and v(x) are two continuously differentiable functions. The
product rule states (in Leibniz’s notation): (uv)′ = u′v + uv′ then applying the
definition of indefinite integral,

u(x)v(x) =

∫
u′(x)v(x) dx+

∫
u(x)v′(x) dx∫

u(x)v′(x) dx = u(x)v(x)−
∫
u′(x)v(x) dx

gives the formula for integration by parts. Suppose u(x) and v(x) are two
continuously differentiable functions on [a, b] and v(a) = v(b) = 0. Then∫ b
a
u′(x)v(x) dx = −

∫ b
a
u(x)v′(x) dx

x = (x1, x
′), x′ = (x2, x3, ..., xn) If ϕ ∈ D and suppϕ ⊂ In, In = [−a, a]n. If

f ∈ C1(In), then
∫
In
D1fϕdx =

∫
In−1

dx′
∫ a
−aD1f(x1, x

′)ϕ(x1, x
′)dx1

Since
∫ a
−aD1f(x1, x

′)ϕ(x1, x
′)dx1 = −

∫ a
−a f(x1, x

′)D1ϕ(x1, x
′)dx1, by Fu-

bini’s theorem
∫
In
D1fϕdx = −

∫
In
fD1ϕdx∫

In
Dαfϕdx = (−1)|α|

∫
In
fDαϕdx

Let f ∈ D′(Rn) and α ∈ Nn0 . By Dαf we denote functional on D(Rn defined
by

(1) < Dαf, ϕ >= (−1)|α| < f,Dαϕ >,ϕ ∈ D(Rn).

?? Suppose that α ∈ Nn0 is a multi-index. A function f ∈ L1,loc(G) has weak
derivative Dαf ∈ L1,loc(G) if (1) holds.

Example 10. 1. Check (ln |x|)′ = P 1
x .

Set E(x) = E2(x) = ln |x|
2π , x ∈ R2\{0}; A3(x) = x

|x|3 and E(x) = E3(x) =

− 1
4π|x| , En(x) = |x|2−n, x ∈ R3 \ {0}.

Check that ∆E2 = δ and ∆En = cnδ in distribution sense, where cn =
−(n− 2)σn.

2. Recall
f ′ = {f ′}+ (cf) · δ, (45)

where cf is jump of f .

3. the Dirac delta function δ on surface.

For a smooth hyper surface S, we define

(δS , ϕ) :=

∫
S

ϕdσ.

δS is not regular distribution.
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Suppose that S smooth hyper surface, f is C∞ on Rn \ S and for every
x ∈ S there is limit from arbitrary side (locally) for all partial derivatives.

Difference between these limits we call jump we denote by c∂if . We asso-
ciate to ∂if distribution {∂if}

< {∂if}, ϕ >:= − < f, ∂iϕ >= −
∫
Rn

(f · ∂iϕ)dx.

In sense of differentiation of distribution

∂if = {∂if}+ (cf)S cosαi δS . (46)

Consider the case i = 1. For fixed (x2, · · ·xn), by (45), we find

J(x2, · · ·xn) = −
∫∞
−∞ f ∂iϕdx

1 = [f ]Sϕ+
∫∞
−∞ ∂if ϕdx

1

Since dx2, · · · dxn = cosαidσ,

I1 =

∫
x2

· · ·
∫
xn

[f ]S ϕdx
2, · · · dxn = (47)∫

S

[f ]S ϕ cosα1 dσ = ([f ]S cosα1δS)(ϕ) (48)

Hence

(∂if, ϕ) := −(f, ∂iϕ) =

∫
x2

· · ·
∫
xn
J(x2, · · ·xn)dx2, · · · dxn = (49)

I1 +

∫
Rn

∂if ϕdx. (50)

4. Let D be a bounded domain in Rm with smooth boundary S. Suppose that
A = (A1, · · ·An) vector field continuous in D, and divA integrable in D.
Set that vector field A is 0 out of D. Applying (46) to each componet Ai

of the field A and summing, we find

divA = {divA}+ (A · n) δS (51)

If ψ ∈ C∞0 equals 1 on D, then

0 = (divA, ψ) = {divA}+
(
(A · n) δS , ψ

)
and in classical notation it yields Gauss-Ostrogradski formula

0 =

∫
D

divA−
∫
S

(A · n)dσ.

5. E(x) = 1
4π|x| is fundamental solution of Laplace equation in R3.
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2.5.1 ACL-property & Sobolev spaces

If f ∈ D′(G) is induced by a locally integrable functions g1 and g2 onG, then
by Raymond lemma g1 is equivalent with g2 on G.

Definicija 2. For k ∈ N0 we denote

Hk
loc(G) = {f ∈ L2,loc(G) : 〈Dαf〉 ∈ L2,loc(G), for every α : |α| ≤ k} ,

Hk(G) = {f ∈ L2(G) : 〈Dαf〉 ∈ L2(G), for every α : |α| ≤ k} .

If f ∈ L2,loc(G), then 〈Dαf〉 is a distribution; f ∈ Hk
loc(G) (res f ∈ Hk(G))

means that for every |α| ≤ k the distribution 〈Dαf〉 can be identified with a
function g ∈ Hk

loc(G) (res g ∈ Hk(G)).
Hk(G) is a complex Hilbert space with Hermitian scalar product:

〈f, g〉Hk(G) =
∑
|α|≤k

∫
G

Dαf(x)Dαg(x) dx, (52)

and the norm

|f |Hk(G) = (
∑
|α|≤k

∫
G

|Dαf |2dx)1/2. (53)

For f ∈ L2(G), we define fε =
∫
G
ωε(x− y)f(y)dy.

If f̃(x) = f(x) for x ∈ G and 0 for x ∈ Rn \G, then fε = f̃ ∗ ωε.
If f ∈ Hk(G), then |f − fε|Hk(G′) → 0 if ε → 0, for every subdomain G′ in

G. If f is finite in G, then |f − fε|Hk(G) → 0 if ε→ 0.

We denote Rn−1
k = {x ∈ Rn : xk = 0}. The projection Pk, given by

Pkx = x− xk ek, is the orthogonal projection of Rn onto Rn−1
k .

Let I = {x ∈ Rn : ak ≤ xk ≤ bk} be a closed n-interval.
A mapping f : I → Rm is said to be absolutely continuous on lines (ACL)

if f is absolutely continuous on almost every line segment in I, parallel to the
coordinate axes.

More precisely, if Ek is the set of all x ∈ PkI such that the functions t →
u(x + tek) is not absolutely continuous on [ak, bk], then mn−1(Ek) = 0 for
1 ≤ k ≤ n.

If Ω is an open set in Rn, a mapping f : Ω→ Rm is ACL (absolutely conti-
nuous on lines) if f |I is ACL for every closed interval I ⊂ Ω.

In general, if f : Ω → Rm we say that f ∈ W 1,p(Ω) if f is ACL on Ω and
Dkf ∈ Lp(Ω).

Some authors consider only continuous mapping. For example in qc theory:
?? If f : Ω → R is continuous we say that f ∈ W 1,p if f is ACL and

Dkf ∈ Lp.
Note that there is unbounded function f ∈ W 1,n(Rn) so in general we can

not consider only continuous function.
If Ω ⊂ Rn, we say that f : Ω→ Rn is K-qc if f is continuous, f ∈ W 1,n(G)

and |f ′(x)|n ≤ Jf (x) for a.e. x ∈ G.
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Proposition 4. Let Q = {x ∈ Rn : ak < xk < bk} be an open n-interval. If
f ∈ ACL(Q) and ϕ ∈ D(Q), then∫

Q

Dkfϕdx =

∫
Q

fDkϕdx.

Absolutely Continuous on Lines (ACL) characterization of Sobolev functions

Theorem 2.1 (see for example Theorem 4.2 [8]). Let Ω be an open set in Rn
and 1 ≤ p ≤ ∞. If a function is in W 1,p(Ω), then, possibly after modifying the
function on a set of measure zero, the restriction to almost every line parallel
to the coordinate directions in Rn is absolutely continuous (Note in general it
does not mean that there is a modifying function which is continuous function);
what’s more, the classical derivative along the lines that are parallel to the co-
ordinate directions are in Lp(Ω). Conversely, if the restriction of f to almost
every line parallel to the coordinate directions is absolutely continuous, then the
pointwise gradient ∇f exists almost everywhere, and f is in W 1,p(Ω) provided
f and |∇f | are both in Lp(Ω). In particular, in this case the weak partial deri-
vatives of f and pointwise partial derivatives of f agree almost everywhere. The
ACL characterization of the Sobolev spaces was established by Otto M. Nikodym
(1933); see (Maz’ya 1985, 1.1.3).

Note that in general for a function in W 1,p(Ω) there is no a modifying func-
tion which is continuous function on Ω.

Theorem 2.2. Let u ∈W 1,1(G), where G ⊂ Rn is an open set having the form
G = {x = (x1, x

′) : x′ := (x2, ..., xn) ∈ G′, α(x′) < x1 < β(x′)}. Then there
exists a function ũ with ũ = u a.e.,such that the following holds: the functions
Ux
′

defined by Ux
′
(x1) = ũ(x1, x

′), are AC on I(x′) := [α(x′), β(x′)] for a.e.
x′ := (x2, ..., xn) ∈ G′ (w.r.t. the (n-1)-dimensional Lebesgue measure). Its
derivative coincides a.e. with the weak derivative D1u.

Rešenje. There is uk ∈ C∞(G), |uk − u|W 1,1(G) < 2−k, uk(x) → u(x) and
D1uk(x)→ D1u(x) a.e. G

f(x) = |u1(x)|+
∑∞
k=1 |uk+1(x)− uk(x)|,

g(x) = |D1u1(x)|+
∑∞
k=1 |D1uk+1(x)−D1uk(x)|

Choose a point y1 ∈ (α(x′), β(x′)) where the pointwise convergence For every
α(x′) < x1 < β(x′), since uk is smooth we

uk(x1, x
′) = uk(y1, x

′) +

∫ x1

y1

D1uk(t, x′)dt (54)

hence f, g ∈ L1(G) and the series in (4.3) are absolutely convergent for a.e.
x ∈ G. Therefore, they converge pointwise almost everywhere. Moreover, we
have the bounds |uk(x)| ≤ f(x), |D1uk(x)| ≤ g(x) or all k ≥ 1, x ∈ G. By the
dominated convergence theorem, the right hand of XX thus converges to

ũ(x1, x
′) := u(y1, x

′) +

∫ x1

y1

D1u(t, x′)dt (55)
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Clearly, the right hand side of (4.7) is an absolutely continuous function of the
scalar variable x1. On the other hand, the left hand side satisfies

ũ(x1, x
′) := limk→∞ uk(x1, x

′) = u(x1, x
′) for a.e. x1 ∈ I(x′)

This achieves the proof. 4

A stronger result holds in the case p > n. A function in W 1,p(Ω) is, after
modifying on a set of measure zero, Hölder continuous of exponent γ = 1−n/p,
by Morrey’s inequality. In particular, if p = +∞, then the function is Lipschitz
continuous.

Let Ω be an open set in Rn. The Sobolev spaceW 1,2(Ω) is also denoted
by H1(Ω). It is a Hilbert space, with an important subspace H1

0 (Ω) defined
to be the closure in H1(Ω) of the infinitely differentiable functions compactly
supported in Ω. The Sobolev norm defined above reduces here to

‖f‖H1 =

(∫
Ω

(
|f |2 + |∇f |2

)) 1
2

.

When Ω is bounded, the Poincar inequality states that there is a constant
C = C(Ω) such that ∫

Ω

|f |2 ≤ C2

∫
Ω

|∇f |2, f ∈ H1
0 (Ω).

When Ω is bounded, the injection from H1
0 (Ω) to L2(Ω) is compact. This

fact plays a role in the study of the Dirichlet problem, and in the fact that there
exists an orthonormal basis of L2(Ω) consisting of eigenvectors of the Laplace
operator (with Dirichlet boundary condition).

When Ω has a regular boundary, H1
0 (Ω) can be described as the space of

functions in H1(Ω) that vanish at the boundary, in the sense of traces (see
below). When n = 1, if Ω = (a, b) is a bounded interval, then H1

0 (a, b) consists
of continuous functions on [a, b] of the form

f(x) =

∫ x

a

f ′(t) dt, x ∈ [a, b]

where the generalized derivative f ′ is in L2(a, b) and has 0 integral, so that
f(b) = f(a) = 0. If for a function f exists f ′′. Check f ′′ = (f ′)′ in distribution
sense.

Example 11 (Example 20, Tao). The function | sinx| lies in W 1,∞(R), but
is not everywhere differentiable in the classical sense; nevertheless, it has a
bounded weak derivative of cosx sgn(sin(x)). On the other hand, the Cantor
function (aka the Devils staircase) is not in W 1,∞(R), despite having a classical
derivative of zero at almost every point; the weak derivative is a Cantor measure,
which does not lie in any Lp space. Thus one really does need to work with weak
derivatives rather than classical derivatives to define Sobolev spaces properly (in
contrast to the Ck,α spaces).

Example 12. If f ∈ D′, then f ′′ = (f ′)′ in distribution sense.
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If f ∈ D′, then (f ′′, ϕ) = (f, ϕ′′), and ((f ′)′, ϕ) = −((f ′), ϕ′) = (f, ϕ′′)

Proposition 5. If f is continuous on I = (a, b) and ?? f ∈ W 1,2(I), then f ′

is AC and f ∈ C1(I).

Proposition 6. (i) If f is continuous on R and f ∈W 1,1(R), then f(x) tends
0 if x tends ∞.
(ii) If f is continuous on R, g = f2 and f ∈W 1,2(R), then g ∈W 1,1(R).
In particular, f(x) tends 0 if x tends ∞.
If f is continuous on I = (a, b) and f ∈W 1,1(I), then f has continuous exten-
sion on [a, b].

Set A =
∫∞

0
f ′(t)dt. Since f(x) − f(0) =

∫ x
0
f ′(t)dt, f(x) tends f(0) + A if

x tends ∞.

Proposition 7. Suppose that (a, b) is bounded interval and M a bounded set
in H1(a, b). Then M is compact in C[a, b] and in particular in L2(a, b).

Rešenje. Let M be a bounded set of functions in H1(a, b), ie. there is a constant
c such that |f |H1 ≤ c.

If x0, x ∈ (a, b), then f(x)− f(x0) =
∫ x
x0
f ′(t)dt, and therefore

|f(x)− f(x0)| ≤ (|x− x0|)1/2|f ′|2 ≤ c(|x− x0|)1/2.
If (a, b) is bounded and m0 minimum |f |, then m0 ≤ c(|b− a|)1/2 and |f(x)| ≤
m0 + c(|b− a|)1/2 ≤ 2c(|b− a|)1/2.

Let a1 < a < b < b1. Then we can extend every function f ∈ H1(a, b) by
f̃ = f on (a, b), f̃(x) = f(b−) for x ∈ [b, b1) and f̃(x) = f(a+) for x ∈ (a1, a].
The set M1 = {f̃ : f ∈ M} is bounded in H1(a1, b1) by a constant c1. By
Arzela-Ascoli, M1 is normal in C(a1, b1).

What happens if the interval [a, b] is replaced by an arbitrary interval I ⊂ R
(possible unbounded)?

For a C1 domain in space (even for a rectangle in the plane) the proof is
much more difficult (way ?). 4

Proposition 8. Let R = I× (0, c), I = (a, b), be an open rectangle in the upper
half-plane. Suppose that
f is continuous on R and f ∈W 1,1(R),
then, for almost every y ∈ (0, c),
f(·, y) belongs to f ∈W 1,1(I), and
limits f(a+, y) and f(b−, y) of f(x, y) exist if x tends a+ (respectively b−).

f is ACL onR and in particular
∫ c

0
I(y)dy < +∞, where I(y) =

∫ b
a
|D1f(x, y)|dx <

+∞ for almost every y ∈ (0, c).

2.6 Newton potential and embedding theorems

.
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Recall: Let Ωn be volume of unit ball in Rn and σn of unit sphere, then
σn = nΩn and Γ(x) = 1

n(2−n)Ωn
|x|2−n. If D is admissible domain, S the

boundary of G and u ∈ C1(D) ∩ C2(D), then for x ∈ D

u(x) =

∫
D

Γ(x− y)∆u(y) dy +

∫
S

Γ(x− y)
∂u

∂n
dσ(y) +

∫
S

u(y)
∂Γ(x− y)

∂ny
dσ(y).

(56)
If divA = 0, then div(fA) = ∇f ·A.
Recall
Set E(x) = E2(x) = ln |x| and E(x) = Ê2(x) = ln |x|

2π , x ∈ R2 \ {0}; A3(x) =
x
|x|3 and E(x) = E3(x) = − 1

|x| , E(x) = Ê3(x) = − 1
4π|x| , x ∈ R3 \ {0}; En(x) =

|x|2−n, x ∈ Rn \ {0}, n ≥ 3.
Check that ∆E2 = 2πδ and ∆En = cnδ in distribution sense, where cn =

−(n− 2)σn.
If we introduce Ên = En

(2−n)σn
, then 〈∆Ên〉 = δ.

Lemma 2.1. Set A(x) = An(x) = x
|x|n . Prove that divA(x) = σnδ0.

An immediate corollary is 〈∆Ên〉 = δ.

Rešenje. Let ϕ ∈ D(Rn). For ε > 0, set A(ε) = {x : ε ≤ |x| ≤ 1
ε} and

I(ε) = −
∫
A(ε)

A · ∇ϕdx. Then I = 〈divA(x), ϕ〉 = − limε→0

∫
A(ε)

A · ∇ϕdx =

limε→0 I(ε). Since divA = 0, we have
∫
A(ε)

A · ∇ϕdx =
∫
A(ε)

div(ϕA)dx and by

the divergence theorem

I(ε) =

∫
A(ε)

div(ϕA)dx =

∫
Sε

ϕA · ndx .

For x ∈ Sε, x · n = −|x| and therefore A · n = 1
εn−1 . Hence I(ε) =

1
εn−1

∫
Sε
ϕdx = σnϕ(xε) , where xε ∈ Sε, and I = 〈divA(x), ϕ〉 = − limε→0

∫
A(ε)

A·
∇ϕdx = limε→0 I(ε) = σnϕ(0).

4

Example 13. 1. If f ∈ C2 and g ∈ C2, then

∆(f ◦ g) = f”(g(x))|∇g(x)|2 + f ′(g(x))∆g(x).

2. Check

(a) Dk|x|2 = 2|x|Dk|x|.
Since |x|2 =

∑n
k=1 x

2
k, we find

Dk|x|2 = 2xk, and therefore Dk|x| = xk/|x|. Thus

(b) Dk|x|p = p|x|p−2xk.

Hence (c) ∇|x|p = p|x|p−2x.

Using Dkk|x|p = Dk(Dk|x|p) = p
(
(p− 2)|x|p−4x2

k + |x|p−2
)
, we have

(d) ∆|x|p =
∑n
k=1Dkk|x|p = p(p+ n− 2)|x|p−2.

In particular, for p+ n− 2 = 0, i.e. p = 2− n, ∆|x|2−n = 0.
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3. Set A(x) = x/|x|−n, we have ∇|x|2−n = (2−n)A(x) and therefore divA =
0.

Hence |x|2−n is harmonic and divA = 0

For n = 3 and p = −1, 1
|x| and Dk

1
|x| = − xk

|x|3 are harmonic.

∇ 1
|x| = − x

|x|3 . We will see later that this is related to potential of electro-

static and gravity field.

4. Set E2(z) = ln |z|. Then 〈∆E2〉〈= ∆ ln |z|〉 = 2πδ

Let ϕ ∈ D and suppϕ ⊂ UR.

Set I(ε) =
∫
A(ε,r)

ln |z|∆ϕdz and J(ε) =
∫
S−ε

(ln |z|Dnϕ− ϕDn ln |z|)ds.

Then by definition A = 〈∆E2, ϕ〉 =
∫
UR

ln |z|∆ϕdz and A is limit of I(ε)
when ε→ 0. By Green formula,

I(ε) =
∫
A(ε,r)

ln |z|∆ϕdz = J(ε) =
∫
Sε

(ϕDn ln |z| − ln |z|Dnϕ)ds. Then

J(ε) = I1(ε)+I2(ε), where I1(ε) =
∫
Sε

(ϕDn ln |z|)ds and I1(ε) = −
∫
Sε

(ln |z|Dnϕ)ds.

Since I1(ε) =
∫
Sε

(ϕ(z) 1
r )ds = 1

ε

∫
Sε
ϕ(z), where r = |z|, I1(ε) → 2πϕ(0)

when ε→ 0 and I1(ε)→ 0, we conclude that J(ε)→ 2πϕ(0).

5. ∆(fg) = g∆f + 2
∑
DkfDkg + f∆g. Set f = ln |x| and g = En. Then

∆g = 0, ∆f = (n−2)|x|−2, Dkg = (2−n)xk|x|−n, ∇f ·∇g = (2−n)|x|−n
and therefore ∆(fg) = g∆f + 2

∑
DkfDkg = (n − 2)En|x|−2 + 2(2 −

n)|x|−n = (2− n)|x|−n.

∆(ln |x|En(x) = (2− n)|x|−n.

2.7 Convolution

distribution
Set Py(x) = 1

π
y

x2+y2 .

If f : R→ R continuous, bounded and u(x, y) = f ∗ Py, show that
∆u = f ∗ (∆Py), y > 0.
Suppose that (i) f, g ∈ L1,loc(Rn) and define

f ∗ g(x) =
∫
Rn f(x− y)g(y)dy.

Set h = |f | ∗ |g| and suppose that (ii) h ∈ L1,loc(Rn).
We say that a sequence ηj ∈ D(Rn) converges to 1 in Rn if
a) For every compact K there is index n0 such that ηj = 1 on K for j ≥ n0.
b) ηj together with Dαηj are uniformly bounded in Rn.
If (i) and (ii) hold, check that

(1) 〈f ∗ g, ϕ〉 =

∫
Rn
f(x)g(y)ϕ(x+ y)dxdy

and
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(2) 〈f ∗ g, ϕ〉 = lim
j→∞
〈f(x)g(y), ηj(x, y)ϕ(x+ y)〉

for ϕ ∈ D(Rn), where ηj(x, y) ∈ D(R2n) is an arbitrary sequence which conver-
ges to 1 in R2n.

We take the formula (2) for the definition of convolution.
For f ∈ D′(Rn) and g ∈ D′(Rm) we define the direct product f · g by

〈f · g, ϕ〉 = 〈f(x)g(y), ϕ(x + y)〉 = 〈f, 〈g, ϕx〉〉 for ϕ(x, y) ∈ D(Rn+m), where
ϕx(y) = ϕ(x, y).

Lemma 2.2. Set ψ(x) = 〈g(y), ϕ(x + y)〉. If g ∈ D′(Rm) and ϕ(x, y) ∈
D(Rn+m), then ψ ∈ D(Rn) and Dαψ = 〈g(y), Dα

xϕ(x + y)〉. In particular,
4ψ(x) = 〈g(y),4xϕ(x+ y)〉.

Theorem 2.3. For f, g ∈ D′(Rn), if g has finite support, the convolution f ∗ g
exist and

〈f ∗ g, ϕ〉 = 〈f · g, ϕ〉 = 〈f(x)g(y), η(y)ϕ(x+ y)〉,

where η is an arbitray test function equals 1 on neighborhood (nbg) supp g.

Set ψ(x) = 〈f(y), η(y)ϕ(x + y)〉, where η ∈ D(Rn) equals 1 on nbg supp f
and note that
(I) ψ(0) = 〈f(y), η(y)ϕ(y)〉 = 〈f, ϕ〉.

Set Vf = En∗f . Formally, Vf (x) =
∫
Rn

En(x−y)f(y)dy =
∫
Rn

Eyn(x)f(y)dy.
∆Vf (x) =

∫
Rn

∆Eyn(x)f(y)dy = cn
∫
Rn

δx(y)f(y)dy = cnf(x).

Theorem 2.4. Suppose that f ∈ D′(Rn) has finite support. Then 〈∆Vf , ϕ〉 =
−(n− 2)σnf = 〈En,∆ψ〉 = −(n− 2)σnψ(0) = −(n− 2)σn〈f, ϕ〉

Rešenje. Let ϕ ∈ D(Rn). By Theorem 2.3, we can express the convolution by
the direct product
I = 〈4Vf , ϕ〉 = 〈Vf ,4ϕ〉 = 〈En ∗ f,4ϕ〉 = 〈En(x)f(y), η(y)4ϕ(x+ y)〉.
Further, by definition of the direct product and by Lemma 2.2, we have
I =

〈
En(x), 〈f(y), η(y)4ϕ(x+ y)〉

〉
= 〈En,∆ψ〉,

where ψ(x) = 〈f(y), η(y)ϕ(x + y)〉. Now an application of Lemma 2.1 and (I)
yields I = I(ϕ) = −(n− 2)σnψ(0) = −(n− 2)σn. 4

For f ∈ D′(Rn), f ∗ δ = δ ∗ f = f .
For examples see [11].

Example 14. Let G be bounded domain in Rn bounded by piecewise smooth
surface S . Define

δS by < δS , ϕ >=
∫
S
ϕdA and for

µ ∈ D, < µδS , ϕ >=
∫
S
µϕdA.

Let A = (A1, ..., An) be vector field continuous in G, such that divA integra-
ble in G. If A is zero out of G
then divA = {divA} − (A · n)δS.
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Example 15. Here we will use physical notation and give physical interpreta-
tion of a three-dimensional delta function. In electromagnetism, charge density
is a measure of electric charge per unit volume of space, in one, two or three
dimensions.

Set A(x) = An(x) = x
|x|n . Recall that (1) divA(x) = σnδ0. The easiest way

to define a three-dimensional delta function is just to take the product of three
one-dimensional functions:

δ3(r) ≡ δ(x)δ(y)δ(z) (1).

The integral of this function over any volume V containing the origin is
again 1, and the integral of any function of r is a simple extension of the one-
dimensional case: ∫

G

f(r)δ3(r− a)d3r = f(a) (2).

In electrostatics, there is one situation where the delta function is needed to
explain an apparent inconsistency involving the divergence theorem. If we have
a point charge q at the origin, the electric field of that charge is

E =
1

4πε0

q

r2
r̂ (3),

where r̂ = r/|r|.
By (1), ∇ ·E = σ3δ0 = 4πδ0.
Suppose that smooth surface is boundary of V .According to the divergence

theorem, the surface integral of the field is equal to the volume integral of the
divergence of that field: ∮

S

E · da =

∫
V

∇ ·Ed3r (4),

where the integral on the left is over some closed surface, and that on the right
is over the volume enclosed by the surface. In electrostatics, the integral on the
right evaluates to the total charge contained in the volume divided by ε0∫

V

∇ ·Ed3r =

∫
V

q

ε0
δ0(r)d3r =

q

ε0
(5).

We only state,[6]:
F [ϕ](y) = (2π)−n/2

∫
Rn

ϕ(x)eiy·xdx, F−1[ϕ](y) = (2π)−n/2
∫
Rn

ϕ(x)e−iy·xdx

DαF [ϕ](y) = (2π)−n/2
∫
Rn

(ix)αϕ(x)eiy·xdx
Fourier transform is injective of S onto itself.
F [f ∗ g] = F [f ]F [g].
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2.8 The Newtonian potential

the Newtonian potential or Newton potential is an operator in vector calculus
that acts as the inverse to the negative Laplacian, on functions that are smooth
and decay rapidly enough at infinity. As such, it is a fundamental object of
study in potential theory. In its general nature, it is a singular integral operator,
defined by convolution with a function having a mathematical singularity at the
origin, the Newtonian kernel Γ which is the fundamental solution of the Laplace
equation. It is named for Isaac Newton, who first discovered it and proved
that it was a harmonic function in the special case of three variables, where it
served as the fundamental gravitational potential in Newton’s law of universal
gravitation. In modern potential theory, the Newtonian potential is instead
thought of as an electrostatic potential.

The Newtonian potential of a compactly supported integrable function f is
defined as the convolution

u(x) = Γ ∗ f(x) =

∫
Rd

Γ(x− y)f(y) dy

where the Newtonian kernel Γ in dimension d is defined by XX
The Newtonian potential w of f is a solution of the Poisson equation ∆w = f,

which is to say that the operation of taking the Newtonian potential of a function
is a partial inverse to the Laplace operator. The solution is not unique, since
addition of any harmonic function to w will not affect the equation. This fact
can be used to prove existence and uniqueness of solutions to the Dirichlet
problem for the Poisson equation in suitably regular domains, and for suitably
well-behaved functions f : one first applies a Newtonian potential to obtain a
solution, and then adjusts by adding a harmonic function to get the correct
boundary data.

The Newtonian potential is defined more broadly as the convolution

Γ ∗ µ(x) =

∫
Rd

Γ(x− y)dµ(y)

when µ is a compactly supported Radon measure. It satisfies the Poisson
equation

∆w = µ

in the sense of distributions. Moreover, when the measure is positive, the
Newtonian potential is subharmonic on Rd.

If f is a compactly supported continuous function (or, more generally, a
finite measure) that is rotationally invariant, then the convolution of f with Γ
satisfies for x outside the support of f

f ∗ Γ(x) = λΓ(x), λ =

∫
Rd
f(y) dy.
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In dimension d = 3, this reduces to Newton’s theorem that the potential
energy of a small mass outside a much larger spherically symmetric mass distri-
bution is the same as if all of the mass of the larger object were concentrated
at its center.

2.9 Extension of functions

f ∈ L2(Ω), fε =
∫

Ω
ωε(x − y)f(y)dy. Let f̃ be an extension of f such that

f̃(x) = 0, x ∈ Rn \ Ω. Then fε = f̃ ∗ ωε.

Lemma 2.3. If f ∈ Hk(Ω) and Ω′ subdomain of Ω, then |fε − f |Hk(Ω′) → 0,
ε→ 0.

Lemma 2.4. If Q is a paralepiped then the set C∞(Q) (in particular Ck(Q))
is dense in Hk(Q).

For hypersurface S in Rn we say that of class Cm if for every x0 ∈ S there
is ball B = B(x0, r) and function ϕ = ϕx0 in Cm(B) such that ∇ϕ(x0) 6= 0 and
{ϕ(x) = 0} = S ∩B.

ϕ(x, y) = x2 − y2

We say that a bounded domain Ω in Rn and its boundary belong to class
Ck,α, 0 ≤ α ≤ 1 if for every point x0 ∈ ∂Ω there exists a ball B = B(x0) and
mapping ψ from B onto D such that ([2], p. 95)

ψ(B ∩ Ω) ⊂ Rn+,
ψ(B ∩ ∂Ω) ⊂ ∂Rn+,
ψ ∈ Ck,α(B), ψ−1 ∈ Ck,α(D).
We say that domain is with Lipschitz boundary if ψ and ψ−1 are Lipschitz

functions.
the Schwarz reflection principle is a way to extend the domain of definition

of an analytic function of a complex variable, F, which is defined on the upper
half-plane and has well-defined and real number boundary values on the real
axis. In that case, the putative extension of F to the rest of the complex plane
is

F (z̄) or F (z̄) = F (z). That is, we make the definition that agrees along the
real axis.

If f ∈ C[0, 1), define f(x) = f(0) + f ′(0)x+ f ′(0)x2/2, x ∈ (−1, 0). See
A Vandermonde matrix, named after Alexandre-Thophile Vandermonde, is

a matrix with the terms of a geometric progression in each row, i.e., an m × n
matrix V : Vi,j = αj−1

i for all indices i and j. (Some authors use the transpose
of the above matrix.) The determinant of a square Vandermonde matrix (where
m = n) can be expressed as: det(V ) =

∏
1≤i<j≤n(αj − αi).

See [6] $ 2.3 Lema 1.

Lemma 2.5 (Extension 1). Let Qa = {x ∈ Rn : |xi| ≤ a} and Q+
a = Qa ∩ {x ∈

Rn : xn > 0}. Let f ∈ Ck(Qa
+) (respectively f ∈ Hk(Qa

+)), then f can be
extended to F ∈ Ck(Qa ) (respectively F ∈ Hk(Qa )).
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(i)If we set f(x′, xn) = f(x′,−xn), we have Dnf(x′, xn) = −Dnf(x′,−xn) ,
and Dnf(x′, xn) is not continuous at points (x′, 0). Set g(x′, xn) = gj(x

′, xn) =

f(x′,−xn/j), and F := Ef =
∑k+1
j=1 Ajgj(x

′, xn). Then

Ds
ng(x′, xn) = (−1/j)sDs

nf(x′,−xn/j), Ds
nF =

∑k+1
j=1 AjD

s
ngj(x

′, xn) =∑
Aj(−1/j)sDs

nf(x′,−xn/j)
and thereforeDs

nF (x′, 0) =
∑
Aj(−1/j)sDs

nf(x′, 0) = (
∑k+1
j=1 Aj(−1/j)s)Ds

nf(x′, 0),

s = 0, 1, ..., k. Hence we get the system (1)
∑k+1
j=1 Aj(−1/j)s = 1, s = 0, 1, ..., k.

Since the corresponding Vandermonde matrix is not singular, we can choose
A = (A1, A2, ..., An) to be the solution of system

∑k+1
j=1 Aj(−1/j)s = 1, s =

0, 1, ..., k.
Check that

||F ||Hk(Qa) ≤ c||f ||Hk(Q+
a ). (57)

(ii) If f ∈ Hk(Qa
+), there is a sequence fp ∈ Ck(Qa

+) which converges to
f in Hk(Qa

+). Denote by Fp = Efp extension of fp. By (57),

||Fp − Fq||Hk(Qa) ≤ c||fp − fq||Hk(Q+
a ).

Fp is Cauchy sequence in Hk(Qa) and since Hk(Qa) is complete, it converges
to a F ∈ Hk(Qa).

Fp(x) = fp(x) and fp(x) → f(x), a.e. x ∈ Q+
a , p → ∞. Therefore F is

extension of f in Hk(Qa).
The inequality (57) holds in this case.

Theorem 2.5 (Extension 2). Let Ω and Ω′ be domain in Rn and Ω ⊂ Ω′. Then
for every f ∈ Ck(Ω) (resp f ∈ Hk(Ω)) there is an extension F ∈ Ck(Ω′) (resp
F ∈ Hk(Ω′) ) finite in Ω′ such that
|F |Hk(Ω′) ≤ C|f |Hk(Ω),
where the constant C depends only on Ω and Ω′ .

In general, for f ∈ Hk(G) there is no equivalent function which is continuous
on G. There we can not use this result to define trace of f on ∂Ω.

2.10 Trace

We say that u ∈ Ck(Ω) if all derivatives of order ≤ k have continuous
extension to Ω.

Let Ck (Ω) denote family of functions (mappings) which belong Ck(Ω) and
all derivatives of order ≤ k have continuous extension to Ω.

A bounded domain Ω in Rn and its boundary belong to class Ck,α, 0 ≤ α ≤ 1
if for every point x0 ∈ ∂Ω there exists a ball B = B(x0) and mapping ψ from
B onto D such that ([2], p. 95):
(i) ψ(B ∩ Ω) ⊂ Rn+;
(ii) ψ(B ∩ ∂Ω) ⊂ ∂Rn+;
(iii) ψ ∈ Ck,α(B), ψ−1 ∈ Ck,α(D).
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Chapter 3 Introduction to Sobolev Spaces
Orane Jecker, Sobolev spaces, Trace theorems and Green’s functions. Boun-

dary Element Methods for Waves Scattering Numerical Analysis Seminar. Octo-
ber 21, 2010, https://www2.math.ethz.ch/education/bachelor/seminars/hs2010/wave/Orane
A bounded domain Ω in Rn is a Lipschitz domain (or domain with Lipschitz
boundary) if ψ and ψ−1 are both Lipschitz continuous functions. Many of the
Sobolev embedding theorems require that the domain of study be a Lipschitz
domain. Consequently, many partial differential equations and variational pro-
blems are defined on Lipschitz domains. Domains with Lipschitz boundary are,
for example, balls or polygonal domains in two dimensions where the domain is
always on one side of the boundary.

Intuitively, a Lipschitz continuous function is limited in how fast it can
change: there exists a definite real number such that, for every pair of po-
ints on the graph of this function, the absolute value of the slope of the line
connecting them is not greater than this real number; this bound is called a
Lipschitz constant of the function (or modulus of uniform continuity). For in-
stance, every function that has bounded first derivatives is Lipschitz. In the
theory of differential equations, Lipschitz continuity is the central condition of
the Picard-Lindelöf theorem which guarantees the existence and uniqueness of
the solution to an initial value problem. A special type of Lipschitz continuity,
called contraction, is used in the Banach fixed point theorem.

We have the following chain of inclusions for functions over a closed and
bounded [xx] subset of the real line

Continuously differentiable ⊆ Lipschitz continuous ⊆ a-Hölder continuous
⊆ uniformly continuous ⊆ continuous, where 0 < a ≤ 1. We also have

Lipschitz continuous ⊆ absolutely continuous ⊆ bounded variation ⊆ diffe-
rentiable almost everywhere

Given two metric spaces (X, dX) and (Y, dY ), where dX denotes the metric
on the set X and dY is the metric on set Y, a function f : X → Y is called
Lipschitz continuous if there exists a real constant K ≥ 0 such that, for all x1

and x2 in X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2).

Any such K is referred to as a Lipschitz constant for the function f . The
smallest constant is sometimes called the (best) Lipschitz constant; however, in
most cases, the latter notion is less relevant. If K = 1 the function is called a
short map, and if 0 ≤ K < 1 the function is called a contraction. Remark 1. In
general we can say that u Dirichlet Eigenfunction Ω if u ∈ C(Ω), u = 0 on ∂Ω,
∆u = λu on Ω. In this setting we do not suppose that u ∈W 1,2

0 (Ω).
If u ∈ W 1,p(Ω) and u has a continuous extension on Ω which is 0 on ∂Ω,

then u ∈W 1,p
0 (Ω). The converse is not true in general.

Lamberti: In order to guaranteed the validity of the converse, you need more
information on the boundary because if the boundary is ”thick”then you cannot
have pointwise control of the function ”far from the interior”. The condition Ω
has a Lipschitz boundary guarantees the converse. To be honest, I have never
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read a counterexample, but I am confident that such counterexample exists and
could probably be found either in the big book of Mazya (Sobolev spaces) or in
the smaller book of Mazya and Poborchi (Differentiable functions on domains).

It is interesting that that the direct implication does not require boundary
regularity. Simple proofs of these facts can be found in the book by Brezis
”Functional Analysis”.

Question (Lamberti). It would be interesting to see if it is true that given
an eigenfunction u in the broad sense (C2 inside and continuous up to the
boundary) then u is in W 1,2. I am not sure this is an easy question.

W 1,p
0 (Ω) ⊂ C0(Ω) for p > n; in planar case for p > 2. A Lipschitz domain

(or domain with Lipschitz boundary) is a domain in Euclidean space whose
boundary is ”sufficiently regular” in the sense that it can be thought of as
locally being the graph of a Lipschitz continuous function.

Lamberti: This is true if Ω has the extension property, for example if Ω
has a Lipschitz boundary. Indeed, if p > N then Morrey inequality holds in
RN , hence you have even Holder continuity. A simple discussion of this issue
can be found in the popular book in PDE’s by L. Evans. If you do not have
the extension property, then you can only conclude that if p > N then u in
continuous in the interior and is globally bounded.

Remark 2. It seems to me if we suppose that the Dirichlet eigenfunction
solution w ∈ W 1,2

0 (Ω) and Ω is convex, then we have that gradient of w is
bounded.

So the question is what we mean when we say that u is the Dirichlet eigen-
function (in particular, whether we suppose that w ∈W 1,2

0 (Ω)?
Let G be a Lipschitz open subset of Rd. There exists a unique continuous

linear mapping E : H1(G)→ L2(∂G) such that for all u ∈ C1(G), we have

E(u) = u|∂G .

In other words, the trace is the unique reasonable way of defining a boundary
value for H1 functions, as the continuous extension of the restriction to the
boundary for functions for which this restriction makes sense.

Outline

Theorem 2.6. Let G be C1 domain and S C1 hyper-surface (compact) in G.
Let f ∈ H1(G) and let fp be arbitrary sequence from C1(G) which converges to
f in H1(G). Then fp|S converges to f0 in L2(S).

Rešenje. We call f0 the trace of f on S.
Suppose that domain G is in first quadrant and first that f ∈ C1

0 (G).
Set x′ = (x1, · · · , xn−1). Let S′ be simple part of S given by equation

xn = ϕ(x′), ϕ ∈ C1(D), where D is a domain in hyper-plane xn = 0.

For x ∈ S′, f(x) = f(x′, ϕ(x′)) =
∫ ϕ(x′)

0
Dnf(x′, xn)dxn and by Cauchy-

Bunyakovsky-Schwarz Inequality |f(x)|2 ≤ ϕ(x′)A(x′) ≤ cA(x′), where A(x′) =∫ ϕ(x′)

0
|Dnf(x′, xn)|2dxn. Hence

(A1) |f(x′, ϕ(x′))|2 ≤ cA(x′), x′ ∈ D.
Set dσ = dS′σ = B(x′)dx′, whereB(x′) =

√
1 + |D1ϕ(x′)|2 + · · ·+ |Dn−1ϕ(x′)|2.
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Since B(x′) ≤ c1 on D, we have I =
∫
S′
|f |2dσ =

∫
D
|f(x′, ϕ(x′))|2B(x′)dx′ ≤

c1
∫
D
|f(x′, ϕ(x′))|2dx′, where dσ = dS′σ. Hence, using (A1) we find

(A2) I ≤ c2
∫
D
A(x′)dx′, where c2 = cc1.

Set V = {x′, xn) : x′ ∈ D, 0 ≤ xn ≤ ϕ(x′)}. By Fubini’s I1 =
∫
V
Dnf(x′, xn)|2dx =∫

D
(
∫ ϕ(x′)

0
|Dnf(x′, xn)|2dxn)dx′ and therefore

I1 =
∫
V
Dnf(x′, xn)|2dx =

∫
D
A(x′)dx′.

Hence, I ≤ c2I1 and since I1 ≤ |f |H1(G) we have
√
I ≤ c2|f |H1(G).

Since S can be covered by a finite number pieces of type S′, we find by
summing

|f |L2(S) ≤ C|f |H1(G), (58)

where the constant C does not depend on the function f .
An application of Theorem 2.5, shows that this inequality holds for f ∈

C1(G).
For f ∈ H1(G), there is a sequence of functions fp in C1(G) which converges

to f in the norm H1(G).
The sequence of traces fp|S is Cauchy, and there is a function fS to which

the sequence of traces fp|S converges. 4

For f ∈ H1(D,Rd), we define E(f) =
∫
D |df |

2.

Lemma 2.6 (Courant-Lebesgue lemma). (i) Let f ∈ H1(D,Rd), E(f) ≤ K,
δ < 1, p ∈ D.
Then there exists r ∈ (δ,

√
δ) for which f |Tr is AC, where Tr = S(p, r)∩D, and

|f(z1)− f(z2)| ≤ (8πK)1/2(ln
1

δ
)1/2, z1, z2 ∈ Tr. (59)

Example of trace. The Dirichlet Space
The Definition. The Dirichlet space D is the Hilbert space of the functions

f analytic in the unit disc D for which the semi-norm

|f |D,∗ =

∫
D
|f ′(z)|dm2 (60)

is finite.

Proposition 9. The Dirichlet space sits then inside the analytic Hardy space
H2. In particular, Dirichlet functions have nontangential limits f∗ at a.e. point
on the boundary of D. If f ∈ D, then

|f |D,∗ =

∞∑
0

|k||fk|2 <∞ ,

and f∗ is trace of f .
Hint. If r tends 1−, fr converges to f in D and to f∗ in L2(T ).
Construct a function f in D which has no continuous extension to D.
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For a function h, we use notation ∂h = hz = 1
2 (h′x − ih′y) and ∂h = hz =

1
2 (h′x+ ih′y); we also use notations Dh and Dh instead of ∂h and ∂h respectively
when it seems convenient.

Definition 2.1 (Quasiconformal mappings). A homeomorphism f : D 7→ G,
where D and G are subdomains of the complex plane C, is said to be K-
quasiconformal (K-q.c or k-q.c), K ≥ 1, if f is absolutely continuous on a.e.
horizontal and a.e. vertical line in D and there is k ∈ [0, 1) such that

|fz̄| ≤ k|fz| a.e. on D, (61)

where K = 1+k
1−k , YY i.e. k = K−1

K+1 .
Note that the condition (61) can be written as

Df :=
Λ

λ
=
|fz|+ |fz|
|fz| − |fz|

≤ K, (62)

where Λ = |fz|+ |fz|, λ = |fz| − |fz| and K = 1+k
1−k , i.e. k = K−1

K+1 .

Example 16. 1. The Cantor function K defines the measure µ = µK by
µ[x, y] = K(y)−K(x). Whether K ′ = µK in D′?

2. Let f(z) = 1−|z|
1−z , z ∈ U). Show that f ∈ W 1,p

0 (U), 0 < p < 2. Whether

f ∈ H1(U)? Hint. Ip(r) =
∫ 2π

0
1

|1−reit|p dt ≈ (1 − r2)p−1, p > 1, and

I1(r) =≈ ln 1
1−r2 .

3. For a ∈ R, define f : Rn → R by

f(x) =
1

|x|a
.

Then f is weakly differentiable if a+ 1 < n with weak derivative

Dkf == − a

|x|a+1

xk
|x|

.

4. If f is conformal mapping from the unit disc into C and f in The Dirichlet
space, then f has nontangential limits f∗ at a.e. point on the boundary of
D.

Define l(f, z) :=
∫ 1

0
|f ′(tz)|dt. If f conformal mapping from the unit disc

into C, then A = m(f(U)) =
∫
U
|f ′(z)|2dxdy. If A is finite then B =∫

U
|f ′(z)|dxdy =

∫ 2π

0
l(f, eit)dt is finite and by Fubini’s theorem l(f, eit)

is finite a.e. w.r. t.

Let f ∈ H1(U) and define curve γθ(ρ) = f(ρeiθ), ρ ∈ [0, 1).

If L(θ) is the length of curve γθ, then L(θ) ≤
∫ 1

0
|∇f(ρeiθ)|dρ. By Cauchy-

Schwarz, L2(θ) ≤ S(θ) :=
∫ 1

0
|∇f(ρeiθ)|2dρ and therefore∫ 2π

0
L2(θ)dθ ≤

∫ 2π

0
S(θ)dθ.
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If for a fixed ρ0, we define curve γθ(ρ) = f(ρeiθ), ρ ∈ [ρ0, 1), then∫ 2π

0
L2(θ)dθ ≤ ln 1

ρ0

∫
Aρ0
|∇f(z)|2dxdy <∞, where Aρ0 = {ρ0 < |z| < 1}.

5. Let f =
∑
fkz

k be holomorphic function on U and A(f) =
∫
U |f

′(z)|2dxdy.

Then B(f) =
∫
U |f(z)|2dxdy

∑∞
k=0

|fk|2
k+1 ,

A(f) =
∑∞
k=1

(k+1)2|fk+1|2
k+1 =

∑∞
k=1 k|fk|2, and

∫ π
−π |f

∗(eit)|2dt = 2π
∑∞
k=0 |fk|2.

If A(f) =
∫
U |f

′(z)|2dxdy <∞, then f ∈W 1,2(U) and f∗ = Tf on T.

6. If f is a harmonic in U, f ∈ H1(U) and trace of f |T = 0, then f = 0.

7. If f : U onto−−−→ G ⊂ C is a K-qc mapping and m2(G) <∞, then f ∈ H1(U).
If G is a Jordan domain, whether f has continuous extension to U.

8. If f is injective (homeomorphisam) and G = f(D) a Jordan domain in C
and f ∈ H1(D) , whether f has continuous extension on D?

9. If u ∈W 1,p(Ω) and u has a continuous extension on Ω which is 0 on ∂Ω,
then u ∈W 1,p

0 (Ω). The converse is not true in general.

Lamberti: In order to guaranteed the validity of the converse, you need
more information on the boundary because if the boundary is ”thick”then
you cannot have pointwise control of the function ”far from the interior”.
The condition Ω has a Lipschitz boundary guarantees the converse. To be
honest, I have never read a counterexample, but I am confident that such
counterexample exists and could probably be found either in the big book
of Mazya (Sobolev spaces) or in the smaller book of Mazya and Poborchi
(Differentiable functions on domains).

It is interesting that that the direct implication does not require boundary
regularity. Simple proofs of these facts can be found in the book by Brezis
”Functional Analysis”.

10. Question (Lamberti). It would be interesting to see if it is true that given
an eigenfunction u in the broad sense (C2 inside and continuous up to the
boundary) then u is in W 1,2. I am not sure this is an easy question.

11. Whether there exists a function f such that f ∈W 1,p
0 (U), for every p < 2,

and f is injective and it has no continuous extension to U?
Yes. Hint. For z = reit, define f(z) = R(t)(1 + r)eit, where R(t) = t for
0 ≤ t ≤ π/2 and R(t) = π − t for π/2 ≤ t ≤ π.

Check that f is injective on H+ and that f has no continuous extension
to 0.

Set g(z) = (1 − r)f(z). Then f is 2-to-1 and g ∈ W 1,p
0 (U+) for p < 2,

and it has no continuous extension to 0.

12. Let G = B be the open unit ball in Rn, with n ≥ 2. Prove that the
unbounded function f(x) = ln ln(1 + 1

|x| ) is in W 1,n(B).
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Whether f ∈W 1,n(Rn)? Yes.

Hint. If A = {x : r1 ≤ |x| ≤ r2}, 0 < r1 < r2, then f ∈W 1,∞
0 (A).

Set A(r) = 1+ 1
r = r+1

r and g(r) = ln ln(A(r). Then g′(r) = 1
ln(A(r)

1
A(r)A

′(r),

where A′(r) = −1/r2, and therefore (i) g′(r) = 1
ln(A(r)

1
r(r+1) .

Then f(x) = g(r), where r = |x|. Since Dkr = xk/r, |Dkr| = xk|/r ≤ 1
and Dkf(x) = g′(r)xk/r, we have |Dkf | ≤ c 1

lnA(r)
1
r . Hence |∇f |n ≤

cM(r), where M(r) = 1
(lnA(r)n

1
rn(r+1)n , and therefore rn−1M(r) ≤ 1

(lnA(r)n
1

r(r+1)n .

Set 0 < r0 < 1. Since rn−1M(r) ≤ c 1
r(r+1)n for r ≥ r0, we find

(1) I1 =
∫∞
r0
rn−1M(r)dr <∞.

Since for 0 < r < 1, lnA(r) ≥ −lnr, we find |g′(r)| ≤ 1
−lnr r

−1, and then

rn−1M(r) ≤ 1
(lnA(r)n

1
r ≤

1
(−lnr)n

1
r . Set a0 = − ln r0 and I2 =

∫ r0
0

1
(−lnr)n

rn−1

rn dr.

Using the substitution t = −lnr, we find I2 =
∫∞
a0

dt
tn <∞ for n ≥ 2.

Hence I =
∫
Rn |∇f |

ndx ≤ I1 + I2 <∞.

13. Whether there exists a function f ∈ W 1,n
0 (B) which has no continuous

extension to B?
Yes.Hint. Set xk = en/k, rk(x) = |x − xk|, fk(x) = f(rkx), ωk(x) =
ω1/2k(rk(x)), gk(x) = fk(x)ωk(x)/k2, and g(x) =

∑∞
k=1 gk(x). Show that

g ∈W 1,p
0 (B+) and that the trace of g is 0, but g has no continuous exten-

sion at 0.

The same function works for B(en; 1); take h(x) = g(x+ en) on B.

14. W 1,p
0 (Ω) ⊂ C0(Ω) for p > n; in planar case for p > 2,see for example [2].

A Lipschitz domain (or domain with Lipschitz boundary) is a domain in
Euclidean space whose boundary is šufficiently regular”in the sense that
it can be thought of as locally being the graph of a Lipschitz continuous
function. Lamberti: This is true if Ω has the extension property, for
example if Ω has a Lipschitz boundary. Indeed, if p > n then Morrey
inequality holds in Rn, hence you have even Holder continuity. A simple
discussion of this issue can be found in the popular book in PDE’s by
L. Evans. If you do not have the extension property, then you can only
conclude that if p > n then u in continuous in the interior and is globally
bounded.

Remark 2. It seems to me if we suppose that the Dirichlet eigenfunction
solution w ∈W 1,2

0 (Ω) and Ω is convex, then we have that gradient of w is
bounded.

So the question is what we mean when we say that u is the Dirichlet
eigenfunction (in particular, whether we suppose that w ∈W 1,2

0 (Ω))?

Theorem 2.7 (see [4]). For a function f ∈ L2(T ) to be the trace on the circle
T of the function belonging Sobolev space H1(U) it is necessary and sufficient
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that
∞∑
−∞
|k||fk|2 <∞ ,

where fk are Fourier coefficients of f on T.

The function f(θ) =
∑∞
k=1

cos(k3θ)
k2 is continuous, but it is not the trace of

any function belonging to H1(U).

Hint: If u = P [f ], then u ∈ H1(U).
For the next result see [10] and comments there.

Theorem 2.8. Let R = (a, b) × (0, c) be an open rectangle in the upper half-
plane. Suppose that
(a) F : R→ C is bounded C1 function, and
(b) DF ∈ Lp(R) for some p > 1.
Then F0(x) = limF (x+ iy) if y ↘ 0 exist a.e. for x ∈ (a, b).

Whether F0 is a trace of F on (a, b)?

Note that (b) is significant generalization of classical assumption that F ∈
H∞(R), ie. DF = 0. It is not known whether the theorem is true if p = 1.

Whether the function belonging to Sobolev space W 1,p(U) have trace?
Erich Miersemann, Linear Elliptic Equations of Second Order Lecture No-

tes,Version October, 2012 http://www.math.uni-leipzig.de/ miersemann/pde2book.pdf

2.11 Embeddings

We are reduced to evaluating a 1D integral, improper at 0, whose integrand
behaves like ρn−1g(ρ). By virtue of the assumptions about g, this is bounded
above by a multiple of ρn−1−s. Provided n − 1 − s > −1, this converges (at
a rate proportional to ρn−s). In the example, n = 2, s = 1, so convergence is
assured.

In one space dimension, a solution of the ODE −u′′ = f is given in terms of
the potential u(x) = − 1

2

∫
|x− y|f(y)dy.

If f ∈ Cc(R), then obviously u ∈ C2(R) and max |u′′| = max |f |. In more
than one space dimension, however, it is not possible estimate the maximum
norm of the second derivative D2u of the potential u = Γ∗f in terms of the ma-
ximum norm of f , and there exist functions f ∈ Cc(Rn) for which u /∈ C2(Rn).
In particular, if we measure derivatives in terms of their Holder continuity, we
can estimate the C2,α-norm of u in terms of the C0,α-norm of f .

Example 17.

I(ε) =

∫
B(ε)

dx

|x|α
=

∫
S

f(θ)dθ

∫ 1

ε

rn−1dr

rα
= cJ(ε) := c

∫ 1

ε

dr

rα−n+1
,

where c =
∫
S
f(θ)dθ. If ε→ 0+, I(ε) has finite limit if α < n.
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Consider equation ∆us = |x|s. Roughly speaking we try to guess us(x) =
c|x|s+2, c = c(s, n).

But, we have two exeptions:

1. Dk ln |x| = xk
|x|2 Dkk ln |x| = 1

|x|2 − 2
x2
k

|x|4

∆ ln |x| = (n− 2)|x|−2

2. ∆(ln |x|En(x)) = (2− n)|x|−n; see Example 13.
Check |∇y ln |x− y|| ≤ c|x− y|−1,
|∇y|x− y|−s| ≤ s|x− y|−s−1, s ≥ 1.

Lemma 2.7. If we set for n ≥ 3, us(x) = c|x|s+2, c = c(s, n) = s+2
s+n , s 6=

−2, s 6= −n, u−2(x) = ln |x|/(n − 2) and u−n(x) = −En(x) ln |x|/(n − 2) =
−En(x)u−2(x) then ∆us = |x|s for all x ∈ Rn, x 6= 0.

In order to prove the embedding theorem we first prove:
Let m = [n/2] + 1. If f ∈ Cm0 (G), then

|f |C(G) ≤ c|f |Hm(G). (63)

Let us first test this result for n = 3, 4, 5. The idea is to use the representation
theorem and Cauchy-Shwarz inequality.

Recall if f ∈ C2
0 (D), then for all x ∈ D,

f(x) =

∫
D

∆f(y) Γn(x− y)dy =

∫
D

∆pf(y) Γm(x− y)dy. (64)

Set Uxs (y) = |x−y|−s. By definition us in Lemma 2.7, when we apply this result
we need to pay attention to the case −sn = 2−n equals −n and −2. Note that
−sn = 2− n > −n and −sn = 2− n = −2 iff n = 4.

a) For n = 3, f(x) = c
∫
D

∆f(y)|x− y|−1dy.
Since Ux1 is in L2(D) we can prove (63).
b) For n = 4, f(x) = c

∫
D

∆f(y)|x− y|−2dy. If in addition f ∈ C3
0 (D), then

f(x) = c
∫
D

∆f(y)∆y ln |x− y|dy = c
∫
D
∇(∆f(y))∇y ln |x− y|dy.

By Bunyakovskii- Cauchy-Shwarz inequality, Then

|f(x)| ≤ |f |H3(D).

c) When n = 5, f(x) = c
∫
D

∆f(y)|x−y|−3dy (note that Ux3 is not in L2(D))
and by Lemma 2.7 ∆y|x−y|−1 = c|x−y|−3, f(x) = c

∫
D

∆f(y)∆y|x−y|−1dy =
c
∫
D
∇(∆f(y))∇y|x− y|−1.

Here m = m(5) = 3 and |∇y|x− y|−1| ≤ Ux2 (y) = |x− y|−2. Since Ux2 is in
L2(D) we can prove (63).

So our strategy is to find minimal p such that us ∈ L2(D), where ∆pus = Γn.
If ∇us /∈ L2(D), we use f = ∆f(y) ∗ us, but if ∇us ∈ L2(D), we can use the
formula f = ∇(∆f(y)) ∗ us.

If u ∈ C2
0 , v ∈ C2 in D, ∫

D

u∆vdx =

∫
D

v∆udx. (65)
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If an integer p ≥ 2, u ∈ Cp0 , v ∈ Cp in D,∫
D

u∆pvdx =

∫
D

v∆pudx. (66)

Set Γs(x) = |x|−s. For s = 2p− 2, s′ = s+ 2p = 4p− 2, ∆pΓs = cpΓs′

Suppose that f ∈ Cp0 , n = 4p− 2, n > 2 and x ∈ D.
Suppouse that n > 2. Set Uxs (y) = |x−y|−s, m = mp = (n−2)−2(p−1) =

n− 2p and α = αp = 2m = 2n− 4p and β = βp = 2(mp+1 + 1) = 2(n− 2p− 1).
Then

For f ∈ Cp0 , we have
(1) f(x) = c〈∆f, Uxn−2〉 = c〈∆pf, Uxmp〉 and

(2) for f ∈ Cp+1
0 , f(x) = c〈∆p+1f, Uxmp+1

〉 = c〈∇∆pf,∇Uxmp+1
〉.

For n we choose a convenient p. We will use that Uxmp ∈ L2 iff α < n,
i.e. n < 4p and since |∇Uxmp+1

| ≤ cUxmp+1+1, ∇Uxmp+1
∈ L2 if β < n, i.e.

n < 2(2p+ 1).
For n we choose a convenient p. There are four possibilities n = 4p − 2,

n = 4p− 1,n = 4p and n = 4p+ 1. We will use (1) if n < 4p and (2) if n ≥ 4p.

f(x) =

∫
D

∆f(y) Γn(x− y)dy =

∫
D

∆pf(y) Γm(x− y)dy. (67)

By Cauchy-Shwarz, |f(x)|2 ≤ A
∫
D
|∆pf |2dy, where A =

∫
D

Γm(x− y)2dy.
By Example 17, A is finite, if α = 2n− 4p < n, i.e. n < 4p. Then

|f(x)| ≤ |f |H2p .

f(x) = c4p

∫
D

∇(∆pf(y))∇(
1

|x− y|2p−2
)dy, n = 4p (68)

f(x) = c4p+1

∫
D

∇(∆pf(y))∇(
1

|x− y|2p−1
)dy, n = 4p+ 1. (69)

Let m = [n/2] + 1. If f ∈ Cm0 (G), then

|f |C(G) ≤ c|f |Hm(G). (70)

By passing to the limit we conclude that this estimate holds for f ∈ Hm
0 (G).

Hence

Theorem 2.9. Hm
0 (G) ⊂ C(G).

Namely, for f ∈ Hm
0 (G) there is a sequence fp ∈ Cm0 (G) which converges to

f in Hm
0 (G). But, by (77) it follows that f ∈ C(G).

Theorem 2.10 ([4], p.155,$ 2.7 Theorem 3 [6]). Let k = [n/2] + l + 1 (l =
k − [n/2]− 1 ≥ 0).

If G be of class Ck, then Hk(G) ⊂ Cl(G). For n = 2, 3, [n/2] = 1, and we
have H2+l(G) ⊂ Cl(G). In particular, H2(G) ⊂ C0(G) and H3(G) ⊂ C1(G).

Rešenje. For f ∈ Hk(G), and G′ such that G ⊂ G′ there is F which is an
extension of f and finite in G′ such that F ∈ Hk

0 (G′). 4
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2.12 Equivalent norm

Set L2u = aij(x)D2
iju, L1u = bi(x)Diu, L0u = cu, M = L2 + L1 and

L = L2 + L1 + L0; consider the equation Lu = f . Let G be a bounded C1

domain in Rn, aij ∈ L∞(G), c ∈ L∞(G), d ∈ L∞(S), where S = ∂G.
The Ermite form is

W (u, v) =

∫
G

(
∑

aij(x)DiuDjvdx) +

∫
G

c(x)u(x)v(x)dx+

∫
S

d(x)u(x)v(x)dA.

(71)
Further, let the matrix A = (aij) uniformlly elliptic with constant c0 > 0, and
in addition c ≥ 0, a.e. in G, d ≥ 0 a.e. in S, such that at least one of these
function is not 0 in the corresponding spaces L∞(G) or L∞(S).

Theorem 2.11. Under the above condition the Ermite form (71) defined on
H1(G) the scalar product which is equivalent with standard scalar product: (u, v)H1 =∫
G

(∇u∇v + uv)dx .

2.13 Compactness in Sobolev space

Embedding theorems In one space dimension, a function u : R → R which
admits a weak derivative Du ∈ L1(R) is absolutely continuous (after changing
its values on a set of measure zero). On the other hand, if G ⊂ Rn with
n ≥ 2, there exist functions u ∈ W 1,p(G) which are not continuous, and not
even bounded. This is indeed the case of the function u(x) = |x|−α, for ??
0 < α < n

n−p . Since

Dku == − α

|x|α+1

xk
|x|

,

Dku ∈ Lp if ?? (α+ 1)p < n, ie. α < n−p
p .

In several applications to PDEs or to the Calculus of Variations, it is impor-
tant to understand the degree of regularity enjoyed by functions u ∈W k,p(Rn).
We shall prove two basic results in this direction

Morrey
(Gagliardo-Nirenberg). If p < n, then every function u ∈ W 1,p(Rn) lies in

the space Lp∗(Rn), with the larger exponent p∗ = p+ p2

n−p = np
n−p .

Rellich-Kondrachov compactness theorem
Let G ⊂ Rn be a bounded open set with C1 boundary. Assume 1 ≤ p < n.

Then for each 1 ≤ q < p∗ one has the compact embedding

W 1,p(G) ⊂⊂ Lq(G) .

The basic approach is as follows:
I - Prove an a priori inequality valid for all smooth functions
II - Extend the embedding to the entire space, by continuity.
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2.13.1 Compactness in Hilbert spaces*

Let in addition S be C1 hyper-surface in G. Then bounded set in H1(G) is
compact in L2(G).

First we consider n = 1, one-dimensional case. To every function g that is
p-integrable on [0, 1], with 1 < p ≤ ∞, associate the function G defined on [0, 1]
by

G(x) =
∫ x

0
g(t) dt.

Let F be the set of functions G corresponding to functions g in the unit ball
of the space Lp([0, 1]). If q is the Hölder conjugate of p, defined by 1/p+1/q = 1,
then Hölder’s inequality implies that all functions in F satisfy a Hölder condition
with a = 1/q and constant M = 1.

It follows that F is compact in C([0, 1]). This means that the correspondence
g → G defines a compact linear operator T between the Banach spaces Lp([0, 1])
and C([0, 1]). Composing with the injection of C([0, 1]) into Lp([0, 1]), one sees
that T acts compactly from Lp([0, 1]) to itself. The case p = 2 can be seen as
a simple instance of the fact that the injection from the Sobolev space H1

0 (Ω)
into L2(Ω), for Ω a bounded open set in Rd, is compact.

Let H be a Hilbert Space with inner product < , >, and corresponding
norm ||. Furthermore there is the set B = {x ∈ H : |x| ≤ 1}.
a) Show, that B is closed and bounded11 regarding (the metric corresponding
to) |x|.
b) Show, that if H doesn’t have a finite dimension, then B isn’t compact regar-
ding (the metric corresponding to) |x|. (Hint: Look at a countable orthonormal
system {en|n ∈ N} in H.
c) Give an example of a Hilbert Space H, where B is not compact. In general
assumption that a set is closed and bounded does not imply that it is compact
- but if a set is compact then it is closed and bounded. If we assume that H
has finite dimension a set is closed and bounded if and only if it is compact.

Any closed ball is non-compact in infinite dimensional Hilbert space. The
functions en(θ) = e2πinθ form an orthogonal basis of the Hilbert space L2([0, 1]).
The set {en : n ∈ N} is bounded, but there is no convergent subsequence of
(en). The Banach-Alaoglu theorem (also known as Alaoglu’s theorem) states
that the closed unit ball of the dual space of a normed vector space is compact
in the weak* topology. The weak topology is characterized by the following
condition: a net (xλ) in X converges in the weak topology to the element x of
X if and only if f(xλ) converges to f(x) in R or C for all f in X∗.

In particular, if (xn) is a sequence in X, then xn converges weakly to x if
φ(xn)→ φ(x)
as n→∞ for all φ ∈ X∗. In this case, it is customary to write
xn

w−→ x
or, sometimes,
xn ⇀ x.
A sequence of φn ∈ X∗ converges to φ provided that
φn(x)→ φ(x)
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for all x in X. In this case, one writes

φn
w∗→ φ

as n→∞ .

2.13.2 Compactness in L2

We say that f ∈ L1,2(G) if f,∇f ∈ L2(G). We define (f, g) =
∫
G

(∇f · ∇g+
fg)dx.

If M is subset of L2(−π, π) such that f ∈M if f ′ ∈ L2(−π, π) and |f ′|2 ≤ 1.
Whether M is compact in L2(−π, π)?

What is difference between L1,2 and W 1,2?
ACL property

Whether W 1,2 ⊂ L1,2 ?
Cantor function

The bounded set in H1(G) is compact in L2(G).

Theorem 2.12. Let G be bounded C1 domain in Rn. Then bounded set in
H1(G) is compact in L2(G). Let in addition S be C1 hyper-surface in G. Then
bounded set in H1(G) is compact in L2(G).

Rešenje. Suppose first that M ⊂ H1
0 (G) is a bounded set in H1(G) and extend

all function from M to be 0 out of G. Set fε(x) =
∫
G
f(y)ωε(x − y)dy and

Mε = {fε : f ∈M}.
Check that |f − fε|L2(G) ≤ cε, and |Difε| ≤ cε−n−1

∫
G
|f(y)|dy ≤ C.

For fixed ε > 0, Mε is compact in C(G) and therefore in L2(G). Let fp be
an arbitrary sequence in M . Corresponding sequence fp,ε is in Mε and therefore
there is a subsequence (for which we use the same notation) which converges in
L2(G). fp is Cauchy sequence.

4

Theorem 2.13. Let G be bounded C1 domain in Rn. Let in addition S be C1

hyper-surface in G. Then bounded set in H1(G) is compact in L2(G).

Rešenje. Let S0 be simple part of S given by equation xn = ϕ(x′), ϕ ∈ C1(D),
where D is a domain in hyper-plane xn = 0.

Set Q = Qδ = {(x′, xn) : x′ ∈ D,ϕ(x′) ≤ xn ≤ ϕ(x′) + δ}, 0 < δ < δ0.
x = (x′, xn) ∈ S0 (x′, yn) ∈ Qδ
Then f(x′, yn) − f(x) =

∫ yn
xn

Dnf(x′, t)dt and |f(x)|2 ≤ 2|f(x′, yn)|2 +

2δ
∫ xn+δ

xn
|Dnf(x′, t)|2dt. Hence

δ|f(x)|2 ≤ 2
∫ xn+δ

xn
|f(x′, yn)|2dyn + 2δ2

∫ xn+δ

xn
|Dnf(x′, t)|2dt and

(X1) δS0 |f(x)|2dS ≤ c1
∫
Q
|f(x)|2dx+ c2δ

2
∫
Q
|∇f(x)|2dx.

By summing
|f |2L2(S) ≤

c1
δ |f |

2
L2(G) + c2δ|f |2H1(G).
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Let fp be an arbitrary sequence in M . By Theorem X bounded set in H1(G)
is compact in L2(G) and therefore there is a subsequence (for which we use the
same notation) which converges in L2(G). fp is Cauchy sequence. For ε > 0,
|fp − fq|2L2(G) ≤ ε. Using (X1) by δ = ε, it follows that fp is Cauchy sequence

in L2(S). 4

Recall. For the next result see [10] and comments there.

Theorem 2.14. Let R = (a, b) × (0, c) be an open rectangle in the upper half-
plane. Suppose that
(a) F : R→ C is bounded C1 function, and
(b) DF ∈ Lp(R) for some p > 1.
Then limF (x+ iy) if y ↘ 0 exist a.e. for x ∈ (a, b).

Note that (b) is significant generalization of classical assumption that F ∈
H∞(R), ie. DF = 0. It is not known whether the theorem is true if p = 1.

Sobolev spaces are often considered when investigating partial differential
equations. It is essential to consider boundary values of Sobolev functions. If
u ∈ C(Ω), those boundary values are described by the restriction u|∂Ω. However,
it is not clear how to describe values at the boundary for u ∈ W k,p(Ω), as the
n-dimensional measure of the boundary is zero. The following theorem resolves
the problem:

Trace Theorem. Assume Ω is bounded with Lipschitz boundary. Then there
exists a bounded linear operator T : W 1,p(Ω)→ Lp(∂Ω) such that

Tu = u|∂Ω u ∈W 1,p(Ω) ∩ C(Ω) (72)

‖Tu‖Lp(∂Ω) ≤ c(p,Ω)‖u‖W 1,p(Ω) u ∈W 1,p(Ω). (73)

Intuitively, taking the trace costs 1/p of a derivative. The functions u in
W 1,p(Ω) with zero trace, i.e. Tu = 0, can be characterized by the equality

W 1,p
0 (Ω) =

{
u ∈W 1,p(Ω) : Tu = 0

}
,

where

W 1,p
0 (Ω) :=

{
u ∈W 1,p(Ω) : ∃{um}∞m=1 ⊂ C∞c (Ω), such that um → u in W 1,p(Ω)

}
.

In other words, for Ω bounded with Lipschitz boundary, trace-zero functions
in W 1,p(Ω) can be approximated by smooth functions with compact support.

3 Sobolev,Elliptic equation

Elliptic equation
Second order linear partial differential equations (PDEs) are classified as eit-

her elliptic, hyperbolic, or parabolic. Any second order linear PDE in two varia-
bles can be written in the formAuxx + 2Buxy + Cuyy +Dux + Euy + Fu+G = 0,
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where A,B,C,D,E, F, and G are functions of x and y and where ux =
∂u

∂x
and

similarly for uxx, uy, uyy, uxy. A PDE written in this form is elliptic if

B2 −AC < 0,

with this naming convention inspired by the equation for a planar ellipse.
The simplest nontrivial examples of elliptic PDE’s are the Laplace equation,

∇2u = uxx + uyy = 0 , and the Poisson equation, ∇2u = uxx + uyy = f(x, y).
In a sense, any other elliptic PDE in two variables can be considered to be
a generalization of one of these equations, as it can always be put into the
canonical form

uxx + uyy + (lower-order terms) = 0

through a change of variables.
We derive the canonical form for elliptic equations in two variables, uxx + uyy + (lower-order terms) = 0
ξ = ξ(x, y) and η = η(x, y).
If we set φ = ξ + iη, we can define U = û = u ◦ φ−1 (i.e. u = û ◦ φ). Often

for simlicity of notation we write u(ξ, η) = u[ξ(x, y), η(x, y)]. Applying the chain
rule once gives

ux = uξξx + uηηx and uy = uξξy + uηηy,
a second application gives
uxx = uξξξ

2
x + uηηη

2
x + 2uξηξxηx + uξξxx + uηηxx,

uyy = uξξξ
2
y + uηηη

2
y + 2uξηξyηy + uξξyy + uηηyy, and

uxy = uξξξxξy + uηηηxηy + uξη(ξxηy + ξyηx) + uξξxy + uηηxy.
We can replace our PDE in x and y with an equivalent equation in ξ and η

auξξ + 2buξη + cuη + (lower-order terms) = 0,

where

a = Aξx
2 + 2Bξxξy + Cξy

2, (74)

b = 2Aξxηx + 2B(ξxηy + ξyηx) + 2Cξyηy, and (75)

c = Aηx
2 + 2Bηxηy + Cηy

2. (76)

To transform our PDE into the desired canonical form, we seek η such that
a = c and b = 0. This gives us the system of equations

Adding i times the second equation to the first and setting φ = ξ + iη gives
the quadratic equation

a− c+ ib = Aφx
2 + 2Bφxφy + Cφy

2 = 0.

Since the discriminant B2 −AC < 0, this equation has two distinct soluti-
ons,

φx, φy =
B ± i

√
AC −B2

A

53



which are complex conjugates.

Set ν1,2 = B±i
√
AC−B2

A , we transform eq in the form A(φx − ν1φy)(φx −
ν2φy) = 0.

Choosing either solution, we can solve for φ(x, y), and recover ξ and η with
the transformations ξ = Reφ and η = Imφ. Since ξ will satisfy a− c = 0 and
b = 0, so with a change of variables from x and y to η and ξ will transform the
PDE into the canonical form.

We also can transform eq (1) φx − ν2φy into Beltrami equation.
Since φx = φz + φz and φy = i(φz − φz)
φz = µφz, where µ = iν−1

iν+1 and ν = ν2.

ν ∈ H− iff µ ∈ D
Recall
Embedding theorems have important role, cf. $ 2.7 Theorem 3 [6].
W 1,p

0 (G) ⊂ C0(G), for p > n, [2], p.154.
Let m = [n/2] + 1. If f ∈ Cm0 (G), then

|f |C(G) ≤ c|f |Hm(G). (77)

By passing to the limit we conclude that this estimate holds for f ∈ Hm
0 (G).

Hence

Theorem 3.1. Hm
0 (G) ⊂ C(G).

Namely, for f ∈ Hm
0 (G) there is a sequence fp ∈ Cm0 (G) which converges to

f in Hm
0 (G). But, by (77) it follows that f ∈ C(G).

Theorem 3.2 ([4], p.155,$ 2.7 Theorem 3 [6]). Let k = [n/2] + l + 1 (l =
k − [n/2]− 1 ≥ 0).

If G be of class Ck, then Hk(G) ⊂ Cl(G). For n = 2, 3, [n/2] = 1, and we
have H2+l(G) ⊂ Cl(G). In particular, H2(G) ⊂ C0(G) and H3(G) ⊂ C1(G).

Rešenje. For f ∈ Hk(G), and G′ such that G ⊂ G′ there is F which is an
extension of f and finite in ⊂ G′ such that F ∈ Hk

0 (G′). 4

A function (or, more generally, a distribution) is weakly harmonic if it satis-
fies Laplace’s equation

∆f = 0
in a weak sense (or, equivalently, in the sense of distributions). A weakly har-

monic function coincides almost everywhere with a strongly harmonic function,
and is in particular smooth. A weakly harmonic distribution is precisely the
distribution associated to a strongly harmonic function, and so also is smooth.
This is Weyl’s lemma.

Example 18. 1. Find harmonic function in h0 U such that h0 = 1 on
(−π/2, π/2) and h0 = −1 on (π/2, 3π/2).

Hint: h0(z) = 2
πarg

i+z
i−z . Whether h0 belong H1(U)? no

54



2. Solve equation (1) ∆u = sgnx on the unit disk in C.

Set u0(x, y) = x2/2 for x > 0 and u0(x, y) = −x2/2 for x < 0 and
h0 = P [u∗0].

Check u0, h0 ∈ H1(Ω) and u = u0 − h0 is generalized solution of (1) in
H1

0 (U).

3. Set u0(x, y) = (x2 +y2)/4 for x > 0 and u0(x, y) = −(x2 +y2)/4 for x < 0
and Whether u0 belongs H1(U)? no

4. Let g ∈ L2(Ω), and define l(v) = lg(v) =
∫

Ω
gvdx, v ∈ H1(Ω). Then

|l(v)| ≤ |g|L2(Ω)|v|L2(Ω).

|v|L2(Ω) ≤ |v|H1
0 (Ω). Hence lg is bounded linear functional on H1(Ω) and

in particular on H1
0 (Ω).

Define l1(v) = l1g(v) =
∫

Ω
Digvdx. For v ∈ H1(Ω),

l1g(v) =
∫

Ω
Digvdx = −

∫
Ω
gDivdx and |l1g(v)| ≤ |g|L2(Ω)|v|L2(Ω). Since

|v|L2(Ω) ≤ |v|H1
0 (Ω), l

1
g is bounded linear functional on H1

0 (Ω).

5. Let g ∈ H1(Ω), and define l2(v) = l2g(v) =
∫

Ω
∆g vdx, v ∈ H1(Ω). For

v ∈ H1(Ω),

l2g(v) = −
∫

Ω
Dg ·Dvdx and therefore |l1g(v)| ≤ |g|H1(Ω)|v|H1(Ω).

Green’s identity follows easily from the familiar divergence theorem of advan-
ced calculus: ∫

D

divw dx =

∫
S

w · ndσ .

If w = vDu, then div w = Dv ·Du+ v∆u and therefore we have (3):∫
S

v
∂u

∂n
dσ =

∫
D

(v∆u+Dv ·Du) dx .

Since div w =
∑
kDk(vDku), if v ∈ C1

0 (D), then∑
k

∫
D

Dk(vDku)dx = 0

and therefore ∫
D

(v∆u) dx = −
∫
D

(Dv ·Du) dx .

If u, v are ACL on D and v ∈ C0(D), then
∫
D
Dkuvdx = −(

∫
D
uDkvdx).

We consider ∆u = f and u = 0 on S. If ϕ ∈ C1
c (D), then [u, ϕ] =

∫
D
Dϕ ·

Dudx = −(f, ϕ), where F (ϕ) = (f, ϕ) = −
∫
D
fϕdx. The completion of C1

c (D)

with respect to the scalar product [u, v] is Sobolev space H1
0 (notation W 1,2

0 is
also used). F can be extended to be bounded linear functional on H1

0 . By the
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Riesz theorem, there is u ∈ H1
0 such that [u, v] = (f, v) for all v ∈ H1

0 . Note
that u = 0 on S.

Let ∆u = f ,
Q = {x : |xi| < d, i = 1, 2, · · · , n}, u ∈ C2(Q)∩C0(Q), and f bounded in Q.
Using the comparison principle, one can derive
Diu(0) ≤ m

d sup∂Q |u|+ d
2 supQ |f |,

supΩ dx|Du(x)| ≤ c(supΩ |u|+ supΩ d
2
x|f(x)|). The integration by parts for-

mula yields that for every u ∈ Ck(Ω), where k is a natural number and for all
infinitely differentiable functions with compact support ϕinC∞(Ω),∫

Ω

uDαϕ dx = (−1)|α|
∫

Ω

ϕDαu dx,

where α a multi-index of order |α| = k and Ω is an open subset in Rn. Here,
the notation

Dαf =
∂|α|f

∂xα1
1 . . . ∂xαnn

= Dα1
1 (· · ·Dαn

n f),

is used.
The left-hand side of this equation still makes sense if we only assume u to

be locally integrable. If there exists a locally integrable function v, such that∫
Ω

uDαϕ dx = (−1)|α|
∫

Ω

ϕv dx, ϕ ∈ C∞c (Ω),

we call v the weak α-th partial derivative of u. If there exists a weak α-th
partial derivative of u, then it is uniquely defined almost everywhere. On the
other hand, if u ∈ Ck(Ω), then the classical and the weak derivative coincide.
Thus, if v is a weak α-th partial derivative of u, we may denote it by Dαu := v.

That is, the Sobolev space W k,p(Ω) is defined as

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀|α| ≤ k} .

The natural number k is called the order of the Sobolev space W k,p(Ω).
There are several choices for a norm for W k,p(Ω). The following two are

common and are equivalent in the sense of equivalence of norms:

‖u‖Wk,p(Ω) :=


(∑

|α|≤k ‖Dαu‖pLp(Ω)

) 1
p

, 1 ≤ p < +∞;

max|α|≤k ‖Dαu‖L∞(Ω) , p = +∞;

ACL-property We denote Rn−1
k = {x ∈ Rn : xk = 0}. The projection Pk,

given by Pkx = x− xk ek, is the orthogonal projection of Rn onto Rn−1
k .

Let I = {x ∈ Rn : ak ≤ xk ≤ bk} be a closed n-interval.
A mapping f : I → Rm is said to be absolutely continuous on lines (ACL) if

f is continuous and if f is absolutely continuous on almost every line segment
in I, parallel to the coordinate axes.
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More precisely, if Ek is the set of all x ∈ PkI such that the functions t →
u(x + tek) is not absolutely continuous on [ak, bk], then mn−1(Ek) = 0 for
1 ≤ k ≤ n.

If Ω is an open set in Rn, a mapping f : Ω→ Rm is ACL (absolutely conti-
nuous on lines) if f |I is ACL for every closed interval I ⊂ Ω.

If f : Ω→ R is continuous we say that f ∈W 1,p if f is ACL and Dkf ∈ Lp.
Absolutely Continuous on Lines (ACL) characterization of Sobolev functions

Theorem 3.3. Let Ω be an open set in Rn and 1 ≤ p ≤ ∞. If a function
is in W 1,p(Ω), then, possibly after modifying the function on a set of measure
zero, the restriction to almost every line parallel to the coordinate directions
in Rn is absolutely continuous; what’s more, the classical derivative along the
lines that are parallel to the coordinate directions are in Lp(Ω). Conversely, if
the restriction of f to almost every line parallel to the coordinate directions is
absolutely continuous, then the pointwise gradient ∇f exists almost everywhere,
and f is in W 1,p(Ω) provided f and |∇f | are both in Lp(Ω). In particular, in
this case the weak partial derivatives of f and pointwise partial derivatives of f
agree almost everywhere. The ACL characterization of the Sobolev spaces was
established by Otto M. Nikodym (1933); see (Maz’ya 1985, 1.1.3).

A stronger result holds in the case p > n. A function in W 1,p(Ω) is, after
modifying on a set of measure zero, Hölder continuous of exponent γ = 1−n/p,
by Morrey’s inequality. In particular, if p = +∞, then the function is Lipschitz
continuous.

Let Ω be an open set in Rn. The Sobolev spaceW 1,2(Ω) is also denoted
by H1(Ω). It is a Hilbert space, with an important subspace H1

0 (Ω) defined
to be the closure in H1(Ω) of the infinitely differentiable functions compactly
supported in Ω. The Sobolev norm defined above reduces here to

‖f‖H1 =

(∫
Ω

(
|f |2 + |∇f |2

)) 1
2

.

When Ω is bounded, the Poincar inequality states that there is a constant
C = C(Ω) such that ∫

Ω

|f |2 ≤ C2

∫
Ω

|∇f |2, f ∈ H1
0 (Ω).

When Ω is bounded, the injection from H1
0 (Ω) to L2(Ω) is compact. This

fact plays a role in the study of the Dirichlet problem, and in the fact that there
exists an orthonormal basis of L2(Ω) consisting of eigenvectors of the Laplace
operator (with Dirichlet boundary condition).

When Ω has a regular boundary, H1
0 (Ω) can be described as the space of

functions in H1(Ω) that vanish at the boundary, in the sense of traces (see
below). When n = 1, if Ω = (a, b) is a bounded interval, then H1

0 (a, b) consists
of continuous functions on [a, b] of the form
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f(x) =

∫ x

a

f ′(t) dt, x ∈ [a, b]

where the generalized derivative f ′ is in L2(a, b) and has 0 integral, so that
f(b) = f(a) = 0.

the Sobolev embedding theorem. Here k is a non-negative integer and 1 ≤
p ≤ ∞. The first part of the Sobolev embedding theorem states that if k > l
and 1 ≤ p < q ≤ ∞ are two extended real numbers such that (k − l)p < n and:

1

q
=

1

p
− k − `

n
,

then

W k,p(Rn) ⊆W `,q(Rn)

and the embedding is continuous.
This special case of the Sobolev embedding is a direct consequence of the

Gagliardo-Nirenberg-Sobolev inequality.
The second part of the Sobolev embedding theorem applies to embeddings

in Hölder spaces Cr,α(Rn). If (k− r−α)/n = 1/p with α ∈ (0, 1), then one has
the embedding

W k,p(Rn) ⊂ Cr,α(Rn).

This part of the Sobolev embedding is a direct consequence of Morrey’s
inequality. Intuitively, this inclusion expresses the fact that the existence of
sufficiently many weak derivatives implies some continuity of the classical deri-
vatives.

Recall
W 1,p

0 (G) ⊂ C0(G), for p > n, [2], p.154.
Let s = [n/2] + 1. If f ∈ Cs0 , n ≥ 1, then
|f |C(G) ≤ c|f |Hs(G).

By limit we conclude thatthis estimate holds for f ∈ Hs
0(G).

Let k = [n/2] + l + 1 (l = k − [n/2]− 1 ≥ 0).
If G of class Ck, then Hk(G) ⊂ Cl(G), [4], p.155.
For n = 2, 3, [n/2] = 1, and we have H2+l(G) ⊂ Cl(G). In particular,

H2(G) ⊂ C0(G) and H3(G) ⊂ C1(G).

3.1 Dirichlet boundary problem

Given a matrix-valued function A(x) which is symmetric and positive definite
for every x, having components aij , the operator

Lu = −∂i(aij(x)∂ju) + bj(x)∂ju+ cu

is elliptic. This is the most general form of a second-order divergence form linear
elliptic differential operator. The Laplace operator is obtained by taking A = I.
These operators also occur in electrostatics in polarized media.
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We suppose that operator L uniform (strongly) elliptic, ie.

A(x, ξ) = aij(x)ξiξj ≥ λ|ξ|2, x ∈ Ω, ξ ∈ Rn . (78)

If ζ = ξ + iη ∈ Cn, then ζiζj = ξiξj + ηiηj + i(ξjηi + ξiηj)
and A(x, ζ) = A(x, ξ) +A(x, η) ≥ λ|ξ|2 + λ|η|2 = λ|ζ|2.
(1) Lu = λu, u(x) = 0 on ∂G.

Example 19. One can check that for G = [0, L]n, u(x) = ( 2
L )n/2

∏n
i=1 sin πmixi

L , mi ∈
N are eigenfunctions with corresponding eigenvalues λ = π2

L2

∑n
i=1m

2
i for La-

place differential operator Lu = −4u.

Given a matrix-valued function A(x) which is symmetric and positive definite
for every x, having components aij , the operator

Lu = −∂i(aij(x)∂ju) + bj(x)∂ju+ cu

is elliptic. This is the most general form of a second-order divergence form
linear elliptic differential operator. The Laplace operator is obtained by taking
A = I. These operators also occur in electrostatics in polarized media. Let
G ⊂ Rn. Consider

Lu = −∂i(aij(x)∂ju) + cu = f0 +

n∑
i=1

Difi, (79)

u(x) = g(x)onS . (80)

In particular consider Lu = f . Suppose that aij ∈ C1(G), aij = aji, c, f ∈
C(G), g ∈ C(∂G), and L strongly elliptic on G. If u ∈ C2(G) ∩ C(∂G), we call
u classical solution.

Multiply by v ∈ C1
0 (G). By partial integration,

W (u, v) =
∫
G
aij(x)DjuDivdx+

∫
G
cuvdx = lf (v) =

∫
G
fv.

A function u ∈ H1(G) we call generalized solution if (1) W (u, v) = lf (v) for
all v ∈ C1

0 (G)).
Since C1

0 (G) is dense in H1
0 (G) it is equivalent with requirement that (1) holds

for all v ∈ H1
0 (G). This is important roe application of Riesz theorem.

This is weak form of equation (79). Note that the weak form can be consider
under weak hypothesis u ∈ H1(G), v ∈ H1

0 (G), f ∈ L2(G) and aij , c ∈ L∞(G).
Set L2u = Ldiv2 u = −∂i(aij(x)∂ju).

We will further assume aij , c ∈ L∞(G), aij = aji a.e. in G, and L strongly
elliptic on G a.e.

Theorem 3.4. Let c ≥ 0 a.e. in G, fk ∈ L2(G), k = 0, 1, ..., n.
(i) If g = 0, The Dirichlet boundary problem has week unique solution in H1

0 (G).
(ii) If g is trace of H1(G) function, the Dirichlet boundary problem has week
unique solution in H1(G).
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Set [u, v] = [u, v]H1
0

= W (u, v) and l(v) = (f0, v)2 −
∑n
i=1(fi, Div)2. Then l

is a bounded anti linear functional on H1
0 (G) with respect to the scalar product

[, ].
Consider the equation [u, v] = l(v). By Riesz theorem there is w ∈ H1

0 (G)
such that [w, v] = l(v) for all v ∈ H1

0 (G).
For (ii) see [6], p.100. For g there is g̃ ∈ H1(G) such that g = tr(g̃). Set

u = u(x)− g̃.
Hence Lu = Lu(x)− Lg̃.

Theorem 3.5. ?? Let l = k+1−[n/2] ( that is k = [n/2]+l−1). If f ∈ Hk
0 (G),

then f ∈ Cl(G).
Hk
loc(G) is embedded in Cl(G). If G of class Ck, then Hk(G) ⊂ Cl(G).

If G of class Ck, then Hk(G) ⊂ Cl(G).
For n = 3, H2+l(G) ⊂ Cl(G).

A priori estimate

Theorem 3.6 (Corollary, 8.11 [2]). Let G be Ck+2, f ∈ Hk(G), aij ∈ Ck(G),
c ∈ Ck(G), and c ≥ 0. Then Dirichlet problem Lu = f , u = 0 on ∂G has unique
generalized solution in Hk+2(G).

Using the Sobolev embedding theorem, one can prove:

Theorem 3.7 (Corollary, 8.11 [2]). Let aij , bi, ci, d, f belong C∞(Ω) and let
u ∈W 1,2(Ω) be weak solution of strongly elliptic equation Lu = f . Then u also
belongs to C∞(Ω).

Corollary 1. In particular, if G is domain in Rn, u : G → C and ∆u = 0 in
generalized sense, then u harmonic in G.

If G is domain in C, f : G → C and fz = 0 in generalized sense, then f
holomorphic in G.

Eigen-values There exists an orthonormal set Xk in L2(G) forms of eigen-
functions of L such that for f in L2(G)

f(x) =
∑∞
k=1(f,Xk)Xk(x).

Set M = [aij(x)], m = inf essx∈Gc(x) and c̃(x) = c(x)−m+ 1.
Def (u, v)M = (Mu, v)e.
Set [u, v]0 = [u, v]H1

0 (G) =
∫
G

(
∑
aij(x)DiuDjvdx) +

∫
G
c̃(x)u(x)vdx

By partial integration (Lu, v)2 = [u, v]0, v ∈ H1
0 (G).

By (1) (Lu, v)2 = λ(u, v)2 and therefore [u, v]0 = (λ−m+ 1)(u, v)2.
By [Au, v]H1

0 (G) = (u, v)L2(G), v ∈ H1
0 (G), is defined bounded liner operator

A : L2(G)→ H1
0 (G).

Proposition 10. The restriction of A on H1
0 (G) is self-adjoint operator, posi-

tive completely continuous.

For u ∈ L2(G), l(v) = (u, v)L2(G) is anti-linear functional on H1
0 (G).
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3.1.1 Morrey’s inequality∗

Spherical coordinate system
A spherical coordinate system is a coordinate system for three-dimensional

space where the position of a point is specified by three numbers: the radial
distance of that point from a fixed origin, its polar angle measured from a
fixed zenith direction, and the azimuth angle of its orthogonal projection on a
reference plane that passes through the origin and is orthogonal to the zenith,
measured from a fixed reference direction on that plane. It can be seen as the
three-dimensional version of the polar coordinate system.

The use of symbols and the order of the coordinates differs between sour-
ces. In one system frequently encountered in physics (r, θ, ϕ) gives the radial
distance, polar angle, and azimuthal angle, whereas in another system used in
many mathematics books (r, ϕ, θ) gives the radial distance, azimuthal angle,
and polar angle. In both systems ρ is often used instead of r.

The surface element spanning from θ to θ+dθ, and ϕ to ϕ+dϕ on a spherical
surface at (constant) radius r is

dSr = r2 sin θ dθ dϕ.

Thus the differential solid angle is

dΩ =
dSr
r2

= sin θ dθ dϕ.

The volume element spanning from r to r+ dr, θ to θ+ dθ, and ϕ to ϕ+ dϕ is

dV = r2 sin θ dr dθ dϕ,

where the notation is commonly used in physics (ISO convention). Thus, for
example, a function f(r, θ, ϕ) can be integrated over the ball B(0, R) by the
triple integral

2π∫
ϕ=0

π∫
θ=0

R∫
r=0

f(r, θ, ϕ)r2 sin θ dr dθ dϕ.

Sometimes it is convenient to switch to spherical coordinates. Write Sn−1

for the unit sphere in Rn. Points y ∈ B(a, r) have the form y = a + tω, where
0 ≤ t < r and ω ∈ Sn−1. Moreover, the change of variables formula yields∫

B(a,r)

f(y)dy =

∫ r

0

∫
Sn−1

f(x+ tω)dtdω,

where dω = tn−1dω0 and dω0 is corresponding measure on Sn−1. For example
for n = 3, dω = r2 sin θ dθ dϕ.

see [8]

Theorem 3.8. Let G ⊂ Rn be a bounded open set with C1 boundary. Then
every function f ∈ W 1,p(G), n < p < ∞, coincides a.e. with a function f̃ ∈
C0,α(G), where α = 1− n/p > 0.
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Theorem 3.9 (Morrey’s inequality,see [8]). Assume n < p < ∞ and set α =
1− n/p > 0. Then there exists a constant C, depending only on p and n, such
that

|f̃ |C0,α(Rn) ≤ C|f |W 1,p(Rn)

for all f ∈ C1(Rn) ∩W 1,p(Rn).

Rešenje. * Let y, y′ ∈ Rn. From an integral estimate on the gradient of the
function u, say
(1)

∫
B
|∇u| ≤ c0,

where B is a ball containing y and y′, we seek a pointwise estimate of the form
|u(y)− u(y′)| ≤ c1|y − y′|α, y, y′ ∈ Rn.

Set L(t) = ty + (1− t)y′, v = u ◦ L, u(y)− u(y′) =
∫ 1

0
v′(t)dt.

(2) |u(y)− u(y′)| ≤
( ∫ 1

0
|∇u(L(t))|dt

)
|y − y′|.

However, the integral on the right hand side of (2) only involves values of ∇u
over the segment joining y with y′. If the dimension of the space is n > 1, this
segment has zero measure. Hence the integral in (2) can be arbitrarily large,
even if the integral in (1) is small. To address this difficulty, we shall compare
both values u(y), u(y′) with the average value uB of the function u over an(n-
1)-dimensional ball centered at the midpoint z = (y+ y′)/2, as shown in Figure
8, left. Notice that the difference |u(y) − uB | can be estimated by an integral
of |∇u| ranging over a cone of dimension n. In this way the bound (1) can thus
be brought into play.

Hint. see http://math.stackexchange.com/questions/593698/the-proof-of-
morreys-inequality-in-evans-book

The idea behind the proof is to examine how much the value of u(x) varies
from the average value of u on a ball B that contains x. To start, let B = B(z, r)
be a ball of radius r and let x ∈ B. Then

|u(x)− uB | =
∣∣∣∣u(x)− 1

|B|

∫
B

u(y)dy

∣∣∣∣ =
1

|B|

∫
B

|u(x)− u(y)|dy.

It is helpful to re-center the integral at x. Since B ⊂ B(x, 2r) and |B| =
2−n|B(x, 2r)|, we have

1

|B|

∫
B

|u(x)− u(y)|dy ≤ 2n

|B(x, 2r)|

∫
B(x,2r)

|u(x)− u(y)|dy.

The problem at this point is to estimate the last integral using the gradient
of u. It is convenient to switch to spherical coordinates. Write Sn−1 for the unit
sphere in Rn. Points y ∈ B(x, 2r) have the form y = x + tω, where 0 ≤ t < 2r
and ω ∈ Sn−1. Moreover, the change of variables formula yields

∫
B(x,2r)

|u(x)− u(y)|dy = I(x, 2r) :=

∫ 2r

0

∫
Sn−1

|u(x)− u(x+ tω)|dtdω.
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Fix ω ∈ Sn−1. The fundamental theorem of calculus applied to the function
φ(s) = u(x+ sω) states that

u(x+ tω)− u(x) =

∫ t

0

Du(x+ sω) · ωds, 0 < t < 2r.

Since |ω| = 1 this leads to

f+(t, ω) := |u(x)− u(x+ tω)| ≤
∫ t

0

|Du(x+ sω))|ds ≤
∫ 2r

0

|Du(x+ sω))|ds.

Hence ∫ 2r

0

f+(t, ω)dt ≤ 2r

∫ 2r

0

|Du(x+ sω))|ds

and therefore

I(x, 2r) :=

∫ 2r

0

∫
Sn−1

|u(x)− u(x+ tω)|dtdω ≤ 2rI+(x, 2r),

where I+(x, 2r) :=
∫ 2r

0

∫
Sn−1 |Du(x+ sω))|dsdω.

At this point we can go back to Cartesian coordinates to note first that
I+(x, 2r) =

∫
B(x,2r)

|Du(y)|dy and hence to get

|u(x)− uB | ≤ 2n+1r
|B(x,2r)|

∫
B(x,2r)

|Du(y)|dy.

Since |B(x, 2r)| = cn2nrn, Holder’s inequality implies∫
B(x,2r)

|Du(y)|dy ≤

(∫
B(x,2r)

|Du(y)|pdy

)1/p

|B(x, 2r)|1/p
′
≤ |Du|p(cn2nrn)1/p′ ,

where 1/p′ = 1− 1/p, and hence, using again that |B(x, 2r)| = cn2nrn,

|u(x)− uB | ≤ 2c
−1/p
n rα|Du|p.

Note if p = n, we have α = 0 and therefore |u(x)− uB | ≤ 2c
−1/p
n |Du|p.

Finally, if x, y ∈ Rn and let B be a ball with diameter (barely larger than)
|x− y| containing both x and y to obtain

|u(x)− u(y)| = |u(x)− uB |+ |u(y)− uB | ≤ 21+n/pc−1/p
n |x− y|α|Du|p.

4

Note that the above proof shows that
(a) if u ∈W 1,1 then |u(x)− uB | � 1

rn−1 ,
(b) if u ∈W 1,p, 1 ≤ p ≤ n, then |u(x)− uB | � 1

rn/p−1 and
(c) if u ∈W 1,p, p > n, then |u(x)− uB | � rα.

Example 20. Suppose that u ∈ W 1,n(B) and Bx = B(x, d(x)/2). Prove that
|u(x)− uBx | → 0 if |x| → 0.

There is Eu ∈W 1,p(Rn) with support contained inside B(0; 2).
Explain why we can not derive from those results that u has continuous

extension to B.
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Since C∞ is dense in W 1,p, Morrey’s inequality yields:

Corollary 2 (embedding). Let G ⊂ Rn be a bounded open set with C1 boundary.
Assume n < p < ∞ and set α = 1 − n/p > 0. Then every function f ∈ W 1,p

coincides a.e. with a function f̃ ∈ C0,α(G). Moreover, there exists a constant
C such that

|f̃ |C0,α ≤ C|f |W 1,p for all f ∈W 1,p(G).

Hint. Let G̃ := {x ∈ Rn) : d(x,G) < 1} be the open neighborhood of
radius one around the set G. By Theorem XX there exists a bounded extension
operator E, which extends each function f ∈ W 1,p(G) to a function Ef ∈
W 1,p(Rn) with support contained inside G̃. We can find a sequence of functions
gn ∈ C1(Rn) converging to Ef in W 1,p(Rn). By Morrey’s inequality

|gn(x)− gm(y)| ≤ c|x− y|α|gn − gm|W 1,p .

�
By Morrey’s inequality, if G ⊂ Rn and w ∈ W 1,p with p > n, then w

coincides a.e. with a Holder continuous function. This by itself does not imply
that w should be differentiable in a classical sense. Indeed, there exist Holder
continuous functions that are nowhere differentiable. However, for functions
in a Sobolev space a much stronger differentiability result holds. Theorem 8.1
(almost everywhere differentiability). Let G ⊂ Rn and let u ∈ W 1,p

loc for some
p > n. Then u is differentiable at a.e. point x ∈ G, and its gradient equals its
weak gradient.

3.2 Eigenvalues and eigenfunctions*

Recall a compact operator is a linear operator L from a Banach space X to
another Banach space Y , such that the image under L of any bounded subset
of X is a relatively compact subset of Y . Such an operator is necessarily a
bounded operator, and so continuous. A crucial property of compact operators
is the Fredholm alternative, which asserts that the existence of solution of linear
equations of the form (λK+I)u = f (where K is a compact operator, f is a given
function, and u is the unknown function to be solved for) behaves much like as
in finite dimensions. The spectral theory of compact operators then follows,
and it is due to Frigyes Riesz (1918). It shows that a compact operator K on
an infinite-dimensional Banach space has spectrum that is either a finite subset
of C which includes 0, or the spectrum is a countably infinite subset of C which
has 0 as its only limit point. Moreover, in either case the non-zero elements of
the spectrum are eigenvalues of K with finite multiplicities (so that K − λI has
a finite-dimensional kernel for all complex λ 6= 0.

An important example of a compact operator is compact embedding of So-
bolev spaces, which, along with the Garding inequality and the LaxMilgram
theorem, can be used to convert an elliptic boundary value problem into a Fred-
holm integral equation. Existence of the solution and spectral properties then
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follow from the theory of compact operators; in particular, an elliptic boundary
value problem on a bounded domain has infinitely many isolated eigenvalues.
One consequence is that a solid body can vibrate only at isolated frequencies,
given by the eigenvalues, and arbitrarily high vibration frequencies always exist.
Completely continuous operators

Let X and Y be Banach spaces. A bounded linear operator T : X → Y
is called completely continuous if, for every weakly convergent sequence (xn)
from X, the sequence (Txn) is norm-convergent in Y (Conway 1985, VI.3).
Compact operators on a Banach space are always completely continuous. If X is
a reflexive Banach space, then every completely continuous operator T : X → Y
is compact.

Hilbert spaces
Consider, for example, the difference between strong and weak convergence

of functions in the Hilbert space L2(Rn). Strong convergence of a sequence
ψk ∈ L2(Rn) to an element ψ means that∫

Rn

|ψk − ψ|2 dµ → 0

as k →∞. Here the notion of convergence corresponds to the norm on L2.
In contrast weak convergence only demands that∫

Rn

ψ̄kf dµ→
∫
Rn

ψ̄f dµ

for all functions f ∈ L2 (or, more typically, all f in a dense subset of L2

such as a space of test functions, if the sequence ψk is bounded). For given test
functions, the relevant notion of convergence only corresponds to the topology
used in C.

For example, in the Hilbert space L2(0, π), the sequence of functions
ψk(x) =

√
2/π sin(kx)

form an orthonormal basis. In particular, the (strong) limit of ψk as k →∞
does not exist. On the other hand, by the RiemannLebesgue lemma, the weak
limit exists and is zero.

The Hilbert-Schmidt theorem, also known as the eigenfunction expansion
theorem, is a fundamental result concerning compact, self-adjoint operators on
Hilbert spaces. In the theory of partial differential equations, it is very useful
in solving elliptic boundary value problems. Statement of the theorem

Let (H,<,>) be a real or complex Hilbert space and let A : H → H be a
bounded, compact, self-adjoint operator. Then there is a sequence of non-zero
real eigenvalues λi, i = 1, ..., n, with n equal to the rank of A, such that |λi| is
monotonically non-increasing and, if n = +∞,

limi→+∞ λi = 0.
Furthermore, if each eigenvalue of A is repeated in the sequence according

to its multiplicity, then there exists an orthonormal set ϕi, i = 1, ..., n, of corre-
sponding eigenfunctions, i.e.

Aϕi = λiϕi for i = 1, . . . , n.

65



Moreover, the functions ϕi form an orthonormal basis for the range of A and
A can be written as

Au =
∑N
i=1 λi〈ϕi, u〉ϕi for all u ∈ H.

f is in ML if f C2(G) ∩ C1(G) and Lf ∈ L2(G).
The sets of eigenfunctions is complete in L2(G)
f in ML

f(x) =
∑∞
k=1(f,Xk)Xk(x) see [6] $3.5 Example 2

Spectral theorem. For every compact self-adjoint operator T on a real or
complex Hilbert space H, there exists an orthonormal basis of H consisting of
eigenvectors of T . More specifically, the orthogonal complement of the kernel
of T admits, either a finite orthonormal basis of eigenvectors of T , or a coun-
tably infinite orthonormal basis {en} of eigenvectors of T , with corresponding
eigenvalues {λn} in R, such that λn → 0.

(λ−m+ 1)Au = u λ is eigenvalues for L iff (λ−m+ 1)−1 for A : H1
0 (G)→

H1
0 (G)

Set sk = λ−m+ 1 and ũk = uk/sk. Then skAuk = uk
f ∈ H1

0 (G) Af =
∑ ˜(Af)kũk Hence since exists A−1, f =

∑
f̃kũk

see [6] $3.5

4 Elliptic differential equations*

Any differential operator exhibiting this property is called a hypoelliptic
operator; thus, every elliptic operator is hypoelliptic. The property also means
that every fundamental solution of an elliptic operator is infinitely differentiable
in any neighborhood not containing 0.

As an application, suppose a function f satisfies the Cauchy-Riemann equa-
tions. Since the Cauchy-Riemann equations form an elliptic operator, it follows
that f is smooth. General definition

strong and weak derivatives, elliptic equation in the divergence form
Set L2u = aij(x)D2

iju, L1u = bi(x)Diu, L0u = cu, M = L2 + L1 and
L = L2 + L1 + L0; consider the equation Lu = f .

Theorem 4.1 (Hopf’s Lemma). Assume u ∈ C2(U)∩C(U), Lu ≥ 0 in U , and
there exists a point x0 ∈ ∂U such that u(x0) > u(x) for all x ∈ U . Assume
finally that U satisfies the interior ball condition at x0; that is, there exists an
open ball B ⊂ U such that x0 ∈ ∂B. Then If c ≡ 0, then Dnu(x0) > 0 where n
is the outer normal to B at x0.
If c ≤ 0, then the same holds if u(x0) ≥ 0.

It is clear that we can simply take U = B. The idea is to construct an
auxiliary function v with Dnv > 0 on ∂B and furthermore u + εv still reaches
maximum at x0. Without loss of generality, assume B is in fact the ball Br(0).
As we cannot specify where x0 is, necessarily v should be radially symmetric.
Furthermore since we would like u+εv to reach maximum at x0, we should take
v = 0 on ∂B. Guided by this, we set v(x) = e−α|x|

2 − e−αr20 . Or equivalently
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we need Lv ≥ 0. We compute Mg = e−α|x|
2

P , where P = 4α2
∑
aijxixj −

2α
∑
aixi − 2α

∑
aii

Now it is clear that, no matter what α we choose, Lv ≥ 0 cannot hold in the
whole ball B. However, if we consider the annular region A = B \Br0/2(0), then
we can take α large enough that Lv ≥ 0 in A. Mu > 0 in A if α is sufficiently
large. To apply the weak maximum principle, we need (i) u(x) + εv(x) ≤ u(x0)
for all |x| = r0/2. This is done as follows. Since u(x0) > u(x) for all |x| = r0/2
as long as ε is small enough we have (i).

We also have u(x0)− u(x) ≥ ε(v(x)− v(x0))

set r = |x|, we find v′(r) = −2αre−αr
2

and therefore u(x0)−u(x) ≥ c(|x0|−
|x|) = cdU (x).

Example 21. Let a 6= 0. A radial mapping fa in n-space is given by: f(X) =
fa(X) = |X|a−1X, where X ∈ Rn. Prove
(i.2) KI(f) = |a|, KO(f) = |a|n−1 if |a| ≥ 1; in particular K(f3) = KO(f3) =
3n−1;
KI(f) = |a|1−n, KO(f) = |a|−1 if |a| ≤ 1.
In particular, for n = 3, X = (x, y, z) ∈ R3,
KI(f) = |a|, KO(f) = |a|2 if |a| ≥ 1;
Now we consider 3-space.
(i.3) For a = 3 set g = f3; then ∂kg(0) = 0, ∂2

ijg(0) = 0 and g1(X) = x3 +

xy2 +xz2. An easy computation shows that ∆g1 = 10x and if c(X) = −10(x2 +
y2 + z2)−1 then ∆g1 + cg1 = 0 and ∆g + cg = 0.

Suppose that F is mapping from a domain G ⊂ Rn (in particular, from the
unit ball B ⊂ Rn) onto a bounded convex domain D = F (G).

To every a ∈ ∂D we associate a nonnegative function u = ua = F a. Since
D is convex, for a ∈ ∂D, there is a supporting hyper-plane (a subspace of
dimension n − 1) Λa defined by Λa = {w ∈ Rn : (w − a, na) = 0}, where
n = na ∈ TaRn is a unit vector such that (w − a, na) ≥ 0 for every w ∈ D.
Define u(z) = F a(z) = (F (z)− a, na).

If a vector valued function f satisfies the equation Lu = 0, then fa satisfies
the same equation. If c ≤ 0, we can apply the maximum principle.

Suppose that h satisfies the equation Lu = 0 and maps the unit ball B ⊂ Rn
onto a bounded convex domain D = h(B), which contains the ball B(h(0);R0) .
Then
(i.1) d(h(z), ∂D) ≥ (1− |z|)cR0, z ∈ B.

Lu = Di(a
ij(x)Dj + bi(x)u) + ci(x)Diu+ d(x)u

We suppose that operator L uniform (strongly) elliptic, ie.

aij(x)ξiξj ≥ λ|ξ|2, x ∈ Ω, ξ ∈ Rn . (81)

L(u, v) =
∫

Ω
[(aij(x)Dj + bi(x)u)Div − (ci(x)Diu + d(x)u)v] dx for all v ∈

C1
0 (Ω).
L(u, v) ≤ c|u|1,2|v|1,2
Lu = g +Dif

i, F (v) =
∫

Ω
(f iDiv − gv)dx, F ∈ H∗

H = W 1,2
0 Iuv =

∫
Ω
uvdx
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Suppose that ϕ ∈W 1,2(Ω) g, f i ∈ L2(Ω), i = 1, 2, · · · , n,
Then generalized Dirichlet problem Lu = g +Dif

i in Ω, u = ϕ on ∂Ω,
has unique solution.

w = u− ϕ, Lw = Lu− Lϕ = ĝ +Dif̂
i, w ∈W 1,2

0

g = (g, f1, · · · , fn)

Suppose that u ∈W 1,2(Ω) weak solution Lu = f ,uniform (strongly) elliptic,
coefficients aij , bi, i, j = 1, 2, · · · , n uniformly lipschitz continuous in Ω, coeffi-
cients ci, d ∈ L∞(Ω), i = 1, 2, · · · , n, function f belong L2(Ω). Then for every
Ω′ ⊂⊂ Ω, u belong W 2,2(Ω′) and the estimate holds

|u|W 2,2(Ω′) ≤ c(|u|W 1,2(Ω′) + |f |L2(Ω)) .

Lu = f a.e. in Ω, where Lu = (aij(x)Diju + (Dja
ji + bi(x) + ci(x))Diu +

(Dib
i + d(x))u.

By induction, coefficients aij , bi belong Ck,1(Ω), coefficients ci, d belong
Ck−1,1(Ω), function f belong W k,2(Ω), k ≥ 1. Then for every Ω′ ⊂⊂ Ω, u
belong W k+2,2(Ω′) and the estimate holds

|u|Wk+2,2(Ω′) ≤ c(|u|W 1,2(Ω′) + |f |Wk,2(Ω)) .

Let Lu = (aij(x)Diju + biDiu + c(x)u be uniform (strongly) elliptic, aij ∈
C0,1(Ω), bi, c ∈ L∞(Ω), c ≤ 0. Then for L2(Ω) and ϕ ∈ W 1,2(Ω), there is
unique u ∈W 1,2(Ω) ∩W 2,2

loc (Ω) such that Lu = f in Ω and u− ϕ ∈W 1,2
0 (Ω).

if ∂Ω enough smooth ϕ ∈W 2,2(Ω) the result holds under condition that aij

are continuous on Ω. However for discontinuous coefficient the result doe not
hold as the following example shows.

∆u+ b
xixj
|x|2 Diju = 0, b = −1 + n−1

1−λ
for n > 2(2 − λ) has two solutions u1(x) = 1 and u2(x) = |x|λ in W 2,2(B),

which coincide on S.
Generalizing the maximum principle for harmonic functions which was alre-

ady known to Gauss in 1839, Eberhard Hopf proved in 1927 that if a function
satisfies a second order partial differential inequality of a certain kind in a do-
main of Rn and attains a maximum in the domain then the function is constant.
The simple idea behind Hopf’s proof, the comparison technique he introduced
for this purpose, has led to an enormous range of important applications and
generalizations.

Proposition 1: If B is positive definite matrix and A non- positive definite
matrix, then AB is non positive definite matrix and in particular tr(AB) ≤ 0.

Let a : R2 → R+ be arbitrary function, u0(z) = 1 + x2 + y2, c = 4a
1+x2+y2

and Lu = a∆u+ cu.
L is elliptic and u0(z) = 1 + x2 + y2 is solution of equation Lu = 0.

Theorem 4.2 (Maximum principle). Let u = u(x), x = (x1, · · · , xn) be a C2

function in Ω which is continuous on Ω and which satisfies the differential ine-
quality
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Lu =
∑
ij

aij(x)
∂2u

∂xi∂xj
+
∑
i

bi
∂u

∂xi
≥ 0

in an open domain Ω, where the symmetric matrix aij = aji(x) is locally unifor-
mly positive definite in Ω and the coefficients aij , bi = bi(x) are locally bounded.

Then supΩ u = supbΩ u.

If u has local maximum in x0 ∈ Ω, then aij(x0)Diju(x0) ≤ 0.
Weak maximum principle
Case 1. Suppose first that Lu > 0. If u has local maximum in x0 ∈ Ω,

then Du(x0) = 0 and matrix D := D2u((x0) non-positive and in particu-
lar Diiu(x0) ≤ 0. Since L is elliptic, the matrix A = [aij ] is positive defi-
nite in Ω and in particular aii(x0) > 0. Hence, by Proposition 1, Lu(x0) =∑
ij aij(x) ∂2u

∂xi∂xj
(x0) = tr(DA) ≤ 0 which is a contradiction.

Case 2. There is a such that L(eax1) > 0. Then for every ε > 0, L(u +
εeax1) > 0. By proved in Case 1, supΩ(u+ εeax1) = supbΩ(u+ εeax1). Letting ε
tends 0 we obtain supΩ u = supbΩ u.

Theorem 4.3. Let L be elliptic in Ω and let c ≤ 0. Suppose that u and v belong
C2(Ω) ∩ C0(Ω) and that Lu = Lv in Ω and u = v on bΩ. Then u = v in Ω. If
Lu ≥ Lv in Ω and u ≤ v on bΩ, then u ≤ v in Ω.

Question. If u takes a maximum value M in Ω whether u = M? Yes. It is
The strong Maximum principle; the proof is based on Hopf lemma.

It is usually thought that the Hopf maximum principle applies only to linear
differential operators L. In particular, this is the point of view taken by Courant
and Hilbert’s Methods of Mathematical Physics. In the later sections of his
original paper, however, Hopf considered a more general situation which permits
certain nonlinear operators L and, in some cases, leads to uniqueness statements
in the Dirichlet problem for the mean curvature operator and the MongeAmpre
equation.

- Mariano Giaquinta, Luca Martinazzi, An Introduction to the Regularity
Theory for Elliptic Systems, Harmonic Maps, 2012 Scuola Normale Superiore
Pisa

u ∈ Ck(Ω) if all derivatives of order ≤ k have continuous extension to Ω.
Let Ck (Ω) denote family of functions (mappings) which belong Ck(Ω) and

all derivatives of order ≤ k have continuous extension to Ω.
A bounded domain Ω in Rn and its boundary belong to class Ck,α, 0 ≤ α ≤ 1

if for every point x0 ∈ ∂Ω there exists a ball B = B(x0) and mapping ψ from
B onto D such that ([2], p. 95):
(i) ψ(B ∩ Ω) ⊂ Rn+;
(ii) ψ(B ∩ ∂Ω) ⊂ ∂Rn+;
(iii) ψ ∈ Ck,α(B), ψ−1 ∈ Ck,α(D).

Theorem 6.19 [2]:Let Ω be of class Ck,α. If f ∈ Ck,α(Ω), then P [f ] ∈
Ck,α(Ω), k ≥ 2; for k=1 it is proved in Gilbarg-Hörmander in Arch. Ration.
Mech. Anal. GERMANY

69



Gilbarg, David; Hörmander, Lars Intermediate Schauder estimates. Arch.
Rational Mech. Anal. 74 (1980), no. 4, 297–318. 35J25 (see also references in
[2])

Theorem 4.4 (Lemma 6.18 [2]). Let boundary of Ω contain part T of class
C2,α, ϕ ∈ C2,α(Ω) u ∈ C0(Ω) ∩ C2(Ω), u = ϕ on T , Lu = f on Ω, f and
coefficients of L belong Cα(Ω).
Then u ∈ C2,α(Ω ∪ T ).

[?], Ch 7, quasi-linear equation
The linear form

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ F = 0 (82)

was considered previously with the possibility of the capital letter coefficients
being functions of the independent variables. If these coefficients are additio-
nally functions of u which do not produce or otherwise involve derivatives, the
equation is called quasilinear. It must be emphasized that quasilinear equations
are not linear, no superposition or other such blessing; however these equati-
ons receive special attention. In general, A = A(x, y, ux, uy). Recall A priori
estimate

Using the Sobolev embedding theorem, one can prove:

Theorem 4.5 (Corollary, 8.11 [2]). Let aij , bi, ci, d, f belong C∞(Ω) and let
u ∈W 1,2(Ω) be weak solution of strongly elliptic equation Lu = f . Then u also
belongs to C∞(Ω).

Let Ω and Ω′ be domain in Rn and Ω ⊂ Ω′. Then for every f ∈ Ck(Ω) (resp
f ∈ Hk(Ω)) there is an extension F ∈ Ck(Ω′) (resp F ∈ Hk(Ω′) ) finite in Ω′

such that
|F |Hk(Ω′) ≤ C|f |Hk(Ω).
Updates on my research and expository papers, discussion of open problems,

and other maths-related topics. By Terence Tao
https://www.math.psu.edu/bressan/PSPDF/sobolev-notes.pdf
https://terrytao.wordpress.com/2009/04/30/245c-notes-4-sobolev-spaces/

Theorem 4.6 (Exercise 15 (Schauder estimate, Tao [9])). Let 0 < α < 1, and
let f ∈ C0,α(R3) be a function supported on the unit ball B(0, 1). Let u be the

unique bounded solution to the Poisson equation ∆u = f (where ∆ =
∑3
j=1

∂2

∂x2
j

is the Laplacian), given by convolution with the Newton kernel:

u(x) :=
1

4π

∫
R3

f(y)

|x− y|
dy.

(i) Show that u ∈ C0(R3).
(ii) Show that u ∈ C1(R3), and rigorously establish the formula

∂u

∂xj
(x) = − 1

4π

∫
R3

(xj − yj)
f(y)

|x− y|3
dy
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for j = 1, 2, 3.
(iii) Show that u ∈ C2(R3), and rigorously establish the formula

∂2u

∂xi∂xj
(x) =

1

4π
lim
ε→0

∫
|x−y|≥ε

[
3(xi − yi)(xj − yj)

|x− y|5
− δij
|x− y|3

]f(y) dy

for i, j = 1, 2, 3, where δij is the Kronecker delta. (Hint: first establish this
in the two model cases when f(x) = 0, and when f is constant near x.)

(iv) Show that u ∈ C2,α(R3), and establish the Schauder estimate

‖u‖C2,α(R3) ≤ Cα‖f‖C0,α(R3)

where Cα depends only on α.
(v) Show that the Schauder estimate fails when α = 0. Using this, conclude

that there exists f ∈ C0(R3) supported in the unit ball such that the function u
defined above fails to be in C2(R3). (Hint: use the closed graph theorem.) This
failure helps explain why it is necessary to introduce Hölder spaces into elliptic
theory in the first place (as opposed to the more intuitive Ck spaces).

4.1 Green-Laplacian formula 1, 2

We will prove:

Proposition 11 (Interior estimate). Let s : B → R be a continuous function
from the closed unit ball U into the real line satisfying the conditions:

1. s is C2 on U,

2. sb(θ) is C2 on S and

3. |∆s| ≤ a0|∇s|2 + b0, on B for some constants a0 and b0 (the last inequ-
ality we will call Poisson-Laplace type inequality or the interior estimate
inequality with constants a0 and b0).

Then the function |∇s| is bounded on B.
Suppose that
(a1) Let D be a domain contained in the unit ball and X : D → [−1, 1]

C2-vector function.
There are positive constants a, b, c, d, e such that:
(b1) D(X,Kn−2, B) ≤ cr2 + dMX(x, r) for every ball B = B(x, r] ⊂ D
(c1) |∇X(x)| ≤ eMX(x, r) + aD(X,Kn−1, B) + br.

Theorem 4.7. Suppose: (a) Let D be a domain contained in the unit ball and
X : D → [−1, 1] C2-vector function.

(b) X satisfy the Poisson-Laplace differential inequality with parameters a, b
on D.
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Then there exists a fixed positive constants c = c(a, b, α, β, γ) such that for
every closed ball B(x0, R0) in D, the following inequality holds

|∇X(x0)| ≤ c(1 +
M(x0, R0)

R0
), (83)

where K = M(x0, R0) = Mχ(w0, R0) := max{|X(x)−X(x0)| : x ∈ B(x0, R0)}.
(c) There exists a real-valued function Φ defined on interval [−r, r] of class

C2, where r = 1 + ε, ε > 0, such that |∇Φ| ≤ α on [−1, 1] and
∆Φ ≥ β(|∇X|2)− γ,
where Φ = Φ ◦X and α, β, γ are positive constants.
Then there exists a fixed positive constants c = c(a, b, α, β, γ) such that for

every closed ball B(x0, R0) in D, the following inequality holds

|∇X(x0)| ≤ c(1 +
M(x0, R0)

R0
), (84)

where K = M(x0, R0) = Mχ(w0, R0) := max{|X(x)−X(x0)| : x ∈ B(x0, R0)}.

Proof of Proposition 11. Let Φ(x) = eλx, x ∈ R. Then |∆Φ = λ2eλs(|∇s|2 +
∆/λ) and therefore hypothesis (c) is satisfied. By an application of Theorem
4.7 we have Proposition 11. �

Hint for Theorem 4.7. Using Green -Laplacian formula for derivatives of
X, we estimate |∇X(x0)| by K and a functional V +

X (a, r) which is integral of
B(a, r) and a majorant of the derivative of Newton potential of ∆X and using
the hypothesis (b) by the Dirichlet integral of X .

In order to estimate the Dirichlet integral by the oscillation we first use
a corollary of a version of Green-Laplacian formula (see (93)) to estimate the
majorant of derivative of the Newtonian potential of ∆X from above by the
oscillation MX(a, r). Then using the hypothesis (c) of Theorem 4.7 we estimate
V +
X (a, r) (for convenient choose of B(a, r)) from below by the Dirichlet integral

of X and we also use the inequality (99).
The inverse of a point P with respect to a reference circle (sphere) S(O, r)

with center O and radius r is a point P ′, lying on the ray from O through P
such that OP ×OP ′ = r2. We also use notation x∗ for the inverse of a point x
with respect to S(o,R), so we have

x∗ = JRx =
R2

|x|2
x. (85)

Set BR = B(0, R]. If x, ξ ∈ BR, r = |x| and A = 〈ξ, x〉, then |x − ξ|2 =

|ξ|2 − 2A+ |x|2 and |ξ − x∗|2 = |ξ|2 − 2R
2

r2 A+ |x∗|2.

Then (1) |x− ξ∗| ≥ |ξ − x| iff R4

r2 − 2R
2

r2 A ≥ −2A+ r2, that is (2) R4 − r4 ≥
2(R2 − r2)A.

Since |A| ≥ |ξ||x|, (2) holds and therefore (1).
|x| = R, then |x||ξ − x∗| = R|x− ξ|
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g(x, ξ) = Γ(x− ξ)− Γ(|x||ξ − x∗|/R), x 6= 0 (86)

g(x, ξ) = Γ(ξ)− Γ(R), x = 0. (87)

G(x, y) = G(y, x), G(x, y) ≤ 0, x, y ∈ BR. (88)

Set G+(x, y) = |G(x, y)|. Check that (a) G(x, y, r) = r2−nG(x/r, y/r), x, y ∈
Br,
DkG(x, y, r) = r2−nDkG(x/r, y/r)1/r = r1−nDkG(x/r, y/r) and therefore
|DkG(x, y, r)| ≤ 2cnr

1−n 1
|x/r−y/r|n−1 = 2cn|x− y|1−n.

(b) |Br| = σnr
n/n, G+(0, y, r) = cn( 1

|y|n−2 − 1
rn−2 )

(c)
∫
Br

1
|y|n−2 dy = σn

∫ r
0
ρdρ = σnr

2/2.

Set E1(x, ξ) = |ξ−x|2−n, E2(x, ξ) = (|x||ξ−x∗|/R)2−n, U1(x, ξ) = Γ(x− ξ)
and U2(x, ξ) = Γ(|x||ξ − x∗|/R). Partial derivative wr ξ,

DkU1 = cn(ξk − xk)|ξ − x|−n = cn(ξk − xk)E1(x, ξ)|ξ − x|−2 (89)

DkU2 = cn|
x

R
|2−n(ξk − xk)|ξ − x|−n = cn(ξk − xk)E2(x, ξ)|ξ − x|−2 (90)

By (1), for |x| ≥ R/2, |Dkg| ≤ c|ξ − x|−n+1.
|DkU1| ≤ cnE1(x, ξ)|ξ − x|−1 and |DkU2| ≤ cnE2(x, ξ)|ξ − x|−1.
It is clear that |DkU1| ≤ cn|ξ − x|1−n. By (1) and E2(x, ξ) ≤ E1(x, ξ),

|DkU2| ≤ cn|ξ − x|1−n and therefore

|DkG| ≤ 2cn|ξ − x|1−n. (91)

and at point ξ ∈ S,
DkE(ξ, x) = cn| xR |

2(ξk − xk)|ξ − x|−n
DiΓ(x− y) = 1

nωn
(xi − yi)|x− y|−n

Since x∗k = (JRx)k = R2

|x|2xk,

Dkg(ξ, x) = cn
R2−|x|2
R2 ξk|ξ − x|−n

Hence

Dng(ξ, x) = 〈Dg, ξ〉 = cn
R2 − |x|2

R2
|ξ − x|−n (92)

Set B = B(x0, R) and S = S(x0, R) and g = gB . Suppose that u ∈ C2(B).
Then
(i1) u(x0) =

∫
S
P (x0, x)u(x)dσ(x) +

∫
B
g(x0, x)∆u(x)dx.

The function (i2) u1(y) =
∫
S
P (y, x)u(x)dσ(x) and (i3) V (y) =

∫
B
G(y, x)∆u(x)dx.

By (i1), u(y) = u1(y) + V (y). Write y ∈ S in the form y = x0 + Rω, where
ω ∈ S. Note that (i4) for y ∈ S, g(y, x) = 0 and therefore V (y) = 0.

Since u1(y) is harmonic in y, by the mean value theorem
(i5)

∫
S u1(x0 +Rω)dσ = u1(x0).

Hence I =
∫
S[u(x0 +Rω)− u(x0)]dσ = −V (x0).
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Hence −V (x0) ≤Mu(x0, R) and

|V (x0)| ≤Mu(x0, R). (93)

Proof of Theorem 4.7. Differentation of (i3) yieldsDkV (y) =
∫
B
DkG(y, x)∆u(x)dx.

By (91), |DkV (y)| ≤
∫
B
|DkG(y, x)||∆u(x)|dx ≤ 2cn

∫
B
|y − x|1−n|∆u(x)|dx.

In order to estimate the quantity |∇u|2(x) in the ball B(x0, R0) we introduce
M = maxB(x0,R0)(R0−|x−x0|)|∇X|(x). Thus R0|∇X|(w) ≤M . We will show
that M ≤ c(K +R0), where K = MX(w0, R0).

It is clear that M = (R0 − |x1 − a|)|∇X|(x1). Now let d = R0 − |x1 − x0|
and let 0 < q < 1.

If x ∈ B(x1, r), then |x−x0| ≤ |x−x1|+ |x1−x0| ≤ r+R0−d and therefore
d(x) = R0 − |x− x0| ≥ R0 − (r +R0 − d) ≥ d− r.

If r = λd, then d(x) ≥ λd(1− λ), and d(1− λ)|∇u|(x) ≤M .
Set

D(X, a, r) :=

∫
B(a,r)

|∇X|2(x)dx, (94)

V +
X (a, r) := V +

∆X(a, r) = K1(∆X, a, r) = D(X,Kn−1, B) =

∫
B(a,r)

|∆X|
|x− a|n−1

dx, (95)

IX(a, r) = K1
S(|∇X|2) :=

∫
S(a,r)

|∇X|2(x)

|x− a|n−1
dσ, (96)

GX(a, r) = G(|∇X|2; a, r) = D(X,Kn−2, B) :=

∫
B(a,r)

G+(a, x, r)|∇X|2(x)dx, (97)

G2
X(a, r) = G∆X(a, r) = N(∆X,B) :=

∫
B(a,r)

G+(a, x, r)|∆X|(x)dx. (98)

Set B1 = B(a, r1). For 0 < r1 < r and x ∈ B1, G+(a, x, r) = 1
|x−a|n−2 ≥ 1

rn−2
1

and therefore

G(|∇X|2; a, r) ≥ 1

rn−2
1

D(X, a, r1). (99)

Since using spherical coordinate
∫
B
|x− a|1−ndx = c

∫ r
0
dρ = cr,

Iu(x1, r) ≤ c M2λ
d(1−λ)2 . If we set A(λ) = cλ(1− λ)2, we find

M/d ≤ K
dλ + M2A(λ)/d + c0r. If we multiple this inequality by d and

remember that d ≤ R0, we obtain M ≤ K
λ +M2A(λ) + c0R

2
0. If we set C(λ) =

K
λ + c0R

2
0, we have A(λ)C(λ) tends to K, if λ tends 0.

We need to improve this estimate. We can adapt the procedure from [24] or
consider V .

?? Since |∇u1| is bounded, then |∇u| ≤ |∇u1|+ |∇V | ≤ c+ |∇V |. Hence V
satisfies the differential Laplacian-gradient inequality.

If we use the above notation by V instead of u, we obtain M ≤ M2A(λ) +
c0R

2
0. �
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5 Beltrami equation and Absolute Continuity
on Lines

In this section we study differentiability of quasiconformal mappings. Our
main goal is to outline a proof that a quasiconformal mapping is differentiable
almost everywhere in the sense of the Lebesgue measure. We also generalize the
analytic definition of quasiconformal mappings which was earlier studied in the
special case of quasiconformal diffeomorphisms only. We sketch some proofs or
state only some results. For details we refer to [?, ?, ?].

Let f be a complex valued function defined on a subinterval [a, b] of R.
Suppose that for all ε > 0 there exists δ > 0 such that

n∑
k=1

|f(ak)− f(bk)| < ε

for all a = a1 < b1 ≤ . . . ≤ an < bn = b such that

n∑
k=1

|ak − bk| < δ.

Then f is said to be absolutely continuous in [a, b]. Obviously, an absolutely
continuous function is continuous. It is easy to see (see [7]) that an absolutely
continuous function is differentiable a.e. in [a, b].

Recall that if f ∈ L1[a, b] and

F (x) =

x∫
a

f(t) dt, a ≤ x ≤ b ,

then F is absolutely continuous on the segment [a, b]. If F is absolutely conti-
nuous on the segment [a, b], then F ′ exist a.e. on [a, b], F ′ ∈ L1[a, b], and

F (x)− F (x0) =

x∫
x0

f(t)dt,

where f = F ′. Then we say F ′ = f in the distributional sense.
We make the following assumptions: the function F is continuous on the

segment [a, b], F is differentiable a.e on the segment [a, b], and F ′ ∈ L1[a, b].
This does not imply that, in general, F is absolutely continuous on the segment
[a, b]. The standard counterexample is the Cantor function.

A continuous real function is said to be absolutely continuous on lines (ACL)
in Ω ⊂ C if for each rectangle [a, b] × [c, d] ⊂ Ω the functions x 7→ u(x + iy)
are absolutely continuous on [a, b], for almost all y ∈ [c, d], and the functions
y 7→ u(x + iy) are absolutely continuous on [c, d], for almost all x ∈ [a, b]. If Ω
and Ω′ are domains in C, a homeomorphism f : Ω → Ω′ is called ACL if the
restriction of f to Ω \ {∞, f−1∞} is in ACL.
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An ACL-mapping f : Ω → C has partial derivative a.e. in Ω. The func-
tion f is said to be ACLp, where p ≥ 1, if the partial derivatives of f are
locally Lp-integrable. In this case, we also say f has Lp-generalized derivati-
ves. For convenience, we have restricted ourselves to continuous mappings (see
[?]). A homeomorphism f : Ω → Ω′ is called ACLp if the restriction of f to
D \ {∞, f−1∞} is ACLp.

5.1 QC

5.1.1 Regularity of Quasiconformal Mappings and the Analytic
Definition

Let Ω be a domain and f a sense-preserving homeomorphism of Ω. A quadri-
lateral Q = Q(Ω1; z1, z2, z3, z4) where Ω1 ⊂ Ω is mapped by f onto quadrilateral
Q∗. Then the number

K(Ω) = Kmod(f ; Ω) := sup
M(Q∗)

M(Q)
,

where supremum is taken over all quadrilaterals Q ⊂ Ω is called the maximal
modulus dilatation of f in Ω.

Occasionally we write shortly Kmod(Ω) or Kmod(f) for maximal modulus
dilatation of f in Ω.

Next we will study the behavior of the Jacobian of a quasiconformal map-
ping. Our aim is to give in the general case an analytic definition of quasicon-
formality that is similar to the one we discussed for the quasiconformal diffeo-
morphisms. We shall also prove that it is equivalent to the geometric definition.
We start by noting that Definition 4 is equivalent to the following:

Definicija 3. A sense-preserving homeomorphism f of Ω is called quasicon-
formal (in the geometric sense) if its maximal modulus dilatation is finite. If
K(Ω) = Kmod(Ω) ≤ K <∞, then f is called K-quasiconformal (in the geome-
tric sense).

If f is differentiable at a point z, and its Jacobian Jf (z) does not vanish,
we say that z is a regular point of f. The dilatation quotient (distortion) at a
regular point is then

Df (z) =
|fz|+ |fz|
|fz| − |fz|

.

Lemma 5.1. Let Ω be a domain and f a sense-preserving homeomorphism
(difeomorphism) of Ω. Between the maximal dilatation and the dilatation quo-
tient of a regular quasiconformal mappings holds

Kmod(Ω) ≤ sup
z∈Ω

Df (z) . (100)

Proof. Let K = supz∈Ω Df (z). We have to prove that mod-dilation of an
arbitrary quadrilateral Q is at most K.
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Consider a quadrilateral Q, Q ⊂ Ω, and its image Q∗ = f(Q). Define M =

M(Q) and M∗ = M(Q∗). Now we need to show that

M∗ ≤ KM. (101)

Suppose that f1 maps Q conformally onto a rectangle R = R(M) with
sides of length 1 and M, preserving the vertices. Let f2 map the quadrilateral
Q∗ = f(Q) conformally onto a rectangle R∗ = R(M∗). Consider the mapping
g = f2 ◦ f ◦ f−1

1 which maps R onto R∗ and thus preserves vertices. Because
f is K- quasiconformal, the mapping g is K-quasiconformal and K(g) = K(f).
The inequality (101) follows from the Proposition ??. 4

The class of K-quasiconformal diffeomorphisms is not compact. This is one
reason to replace the classical definition of Grötzsch with a more general one,
which will be given next.

Let Uz ⊂ Ω denote a neighborhood of z ∈ Ω and K(Uz) = Kmod(Uz) the
maximal dilatation of f in Uz. The number

Kmod(z) = inf K(Uz) ,

where the infimum is taken over all Uz ⊂ Ω is called the maximal dilatation of
f at the point z.

Theorem 5.1. Let f be a K-quasiconformal mapping on Ω in the geometric
sense. If f is differentiable at z0 ∈ Ω, then(

|fz|+ |fz|
)
(z0) ≤ K

(
|fz| − |fz|

)
(z0) . (102)

Proof. The idea of the proof is to consider a small square centered at z0 and
regard it as a quadrilateral with the vertices. The area and the distance of the
sides of f(Q) can be approximated by expressions involving the partial derivati-
ves of f at z. Application of Rengel’s inequality then yields a lower estimate for

M(f(Q)) from which the inequality follows. Without loss of generality we can
suppose that z0 = 0 and we may choose r such that the closure of the domain

Q = Qr = {z : |x|, |y| < r}

is a subset of Ω.
By using a translation and rotation we may assume that f(z) = ax+ i by +

o(z), for some a, b ∈ R and a ≥ |b| ≥ 0. Let Q∗ = f(Q). Then u(z) = ±ar+o(r)
on the b-sides of Q, and hence sb(Q∗) = 2ar + o(r). Because M(Q) = 1, by the
assumptions

M(Q∗) ≤ KM(Q) = K,

where K = K(Qr). By using Rengel’s inequality, we estimate M(Q∗) from the
below:

s2
b

M(Q∗)
≤M(Q∗).
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We have the estimate M(Q∗) = 4abr2 + o(r2), and hence s2
b ≤ Km(Q∗), i.e.

4a2r2 + o(r2) ≤ 4K abr2 + o(r2).

Hence a ≤ Kb. Since Λf (0) = a and λf (0) = b, the proof follows. 4

From the proof of Theorem 5.2, we obtain the following estimate for the
dilatation of f.

Corollary 3. For a quasiconformal mapping f : Ω→ C it holds

Df (z) ≤ Kmod(z) (103)

at every regular point z ∈ Ω. In particular, Df (z) ≤ K at every regular point.

Example 22. A regular quasiconformal mapping of a domain Ω satisfies

D(z) = Kmod(z),

at every point z ∈ Ω.

By Lemma 5.1 and Corollary 3, we have shown the following:

Proposition 12. If f is a diffeomorphism, then the geometric and analytic
definitions of a quasiconformal mapping are equivalent.

Example 23. Let f : Ω→ f(Ω) be a sense-preserving homeomorphism. Prove
that
a) f is K-quasiconformal in the sense of Definition 3 if and only if for every
quadrilateral Q ⊂ Ω,

m(Q)

K
≤ m(f(Q)) ≤ Km(Q).

Note that the condition m(f(Q)) ≤ Km(Q) implies the double inequality

m(Q)

K
≤ m(f(Q)) ≤ Km(Q).

b) K(Ω) = supz∈ΩKmod(z).
c) f is K-qc if and only if Kmod(z) ≤ K at every point z ∈ Ω.

We leave to the reader to verify the following properties of quasiconformal
mappings.

(a) f is K-quasiconformal ⇒ f−1 is K-quasiconformal.

(b) If g is conformal and f is K-quasiconformal, then f ◦ g and g ◦ f are
K-quasiconformal.

(c) If g is K1-quasiconformal and f is K2-quasiconformal, then f ◦ g and g ◦f
are K1K2-quasiconformal.

(d) If f is C1, then the two definitions of quasiconformality agree.
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5.1.2 Geometric Definition of Quasiconformality

For more details about qc (quasiconformal) mappings see [33]. Let f be a
conformal mapping of a quadrilateral Q = Q(Ω; z1, z2, z3, z4) onto a Euclidean
rectangle R. If the boundary correspondence is such that f maps the four distin-
guished points to the vertices of R, then the mapping f is called the canonical
mapping of Q, and R is called the canonical rectangle of Q. Clearly, every con-
formal equivalence class of quadrilaterals contains rectangles. In addition, all
rectangles that can be obtained from each other by sense-preserving similarity
transformations obviously belong to the same class. Conversely, it follows from
the reflection principle that every conformal mapping between two rectangles is
a similarity transformation. Hence, all canonical rectangles of a given quadri-
lateral Q have the same ratio of sides M(Q) = a/b, where a denotes the length
of the images of a-sides and b denotes the length the images of b-sides of the
canonical rectangle, respectively. Then the number M(Q) is called (conformal)
modulus (or module) of the quadrilateral Q.

Recall that a quadrilateral Q1 = Q(Ω; z1, z2, z3, z4) consists of a Jordan
domain Ω together with four distinct boundary points given in the positive
order. The parts of the boundary arc γ connecting the points z1, z2 and z3, z4 are
called the a-sides, and the two remaining sides the b-sides of the quadrilateral,
respectively. Suppose that f maps the quadrilateral Q1 conformally onto a
rectangle with sides of length a and b so that a-sides are mapped onto the
a-sides of the rectangle.

Then the conjugate quadrilateral is Q2 = Q(Ω; z2, z3, z4, z1). In other words,
it is the same as Q with complementary arcs, the b-sides, considered as its a-
sides. It was shown in the previous section that if Γ is the family of curves
connecting the b-sides, then the module of Q is

M(Q) = λ(Γ)−1 =
b

a
,

and the module of the conjugate quadrilateral

M(Q̃) = M(Q)−1 =
a

b
.

Now we are ready to state the geometric definition of quasiconformality.

Definicija 4 (Geometric Definition). Let f : Ω → f(Ω) be a homeomorphism.
We say that f is K-quasiconformal if for every quadrilateral Q ⊂ Ω

M(Q)

K
≤M(f(Q)) ≤ KM(Q).

We will later show that a homeomorphism f : Ω→ f(Ω) is quasiconformal if
and only if Hf (z) is bounded in Ω. We leave to the reader to verify the following
basic properties:

(i) If f is K-quasiconformal then f−1 is K-quasiconformal.
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(ii) If g is conformal and f is K-quasiconformal, then f ◦ g and g ◦ f are
K-quasiconformal.

(iii) If g is K1-quasiconformal and f is K2-quasiconformal, then f ◦ g and g ◦f
are K1K2-quasiconformal.

(iv) If f is C1, then the two definitions of quasiconformality agree.

Example 24. Prove the properties (i)–(iv).

Example 25. The constant K1K2 in (iii) is not, in general, sharp. Give an
example of K1-quasiconformal f and g such that f ◦ g is K2-quasiconformal for
some K2 < K1.

Theorem 5.2. Let f be a K-quasiconformal mapping on Ω in the geometric
sense. If f is differentiable at z0 ∈ Ω, then(

|fz|+ |fz|
)
(z0) ≤ K

(
|fz| − |fz|

)
(z0) . (104)

Lemma 5.2. A qc mapping (in the geometric sense) f of a domain Ω is abso-
lutely continuous on lines in Ω.

From Lemma 5.2, it follows that a quasiconformal mapping has finite partial
derivatives almost everywhere. Hence, further conclusions can be derived using
the following result of Gehring and Lehto:

Theorem 5.3. Let f : Ω → C be a continuous and open mapping of a plane
domain Ω which has finite partial derivatives a.e. in Ω. Then f is differentiable
a.e. in Ω.

Application of this Theorem to the quasiconformal case yields the following
basic result:

Lemma 5.3. A K-quasiconformal mapping f of the domain Ω is differentiable
and satisfies the dilatation condition (104) a.e. in Ω.

Note that, by Corollary 3, f satisfies the dilatation condition (103) at its
regular points.

Let f be a homeomorphism of a domain Ω. Define µf (E) = m(f(E)). We
say that µ′f (z) is the volume derivative of f at z, where

µ′f (z) = lim
r→0

m(fD(z, r))

πr2
.

¿From Lebesgue’s theorem we obtain (see [7], Theorem 8.6, for a more general
result) the following:

• µ′f (z) < +∞ a.e.,

• µ′f is measurable
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• The integral ∫∫
B

µ′f dσ ≤ m(f(B))

for every Borel set B ⊂ Ω.

If f is differentiable at z, µ′f (z) = |J(z, f)|.
Our aim is to prove Theorem 5.4 which states that integrating the Jacobian

of the quasiconformal mapping over a Lebesgue measurable set gives the measure
of the image set. First we need some lemmas.

Lemma 5.4. If the homeomorphism f of a domain Ω has finite partial deriva-
tives a.e. in Ω, then ∫∫

B

Jf dxdy ≤ m(f(B))

for every Borel set B ⊂ Ω. Furthermore f is absolutely continuous in Ω if and
only if ∫∫

E

Jf dxdy = m(f(E))

for every measurable set E ⊂ Ω.

Lemma 5.5. A K-quasiconformal mapping (in the geometric sense) f of a
domain Ω has L2-partial derivatives in Ω.

Proof. The dilatation condition (103) implies

|fx(z)|2 ≤ KJ(z), and |fy(z)|2 ≤ KJ(z) a.e. in Ω.

It follows by Lemma 5.4 that the Jacobian of an almost everywhere differenti-
able homeomorphism is locally integrable, and thus fx and fy are locally L2-
integrable. 4

Lemma 5.6 ([?]). A homeomorphism f = u + iv of the domain Ω, which has
L2-partial derivatives in Ω, is locally absolutely continuous in Ω and∫

E

Jf dxdy = m(f(E)) (105)

for every Borel (measurable) set E ⊂ Ω.

Proof. Let µ(E) =
∫
E

Jf dx dy and µf (E) = m(f(E)). We show first the

equality if E is the closed rectangle R with sides parallel to the axes.
Because f is in ACL(Ω) and the integral (105) depends continuously on

E, we can, by enlarging R if necessary, ensure that f is absolutely continuous
on ∂R. Then f is also of the bounded variation on ∂R and the image of ∂R
under f is consequently rectifiable. By applying generalized Green’s formula [?]
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(note the partial derivatives of u and v belong to L2) to the domains R and
R∗ = f(R), we obtain∫

∂R

udv =

∫∫
R

Jf dxdy, and

∫
∂R∗

u ◦ f−1 dv(f−1) =

∫∫
R∗

dx dy.

By the invariance property of the Stieltjes integral the left sides of the above
equation are equal. We note that an open set of the finite plane consists of
countably many non-intersecting half-open rectangles with sides parallel to the
coordinate axes.

For general Borel set E, for every ε > 0 there exists an open set Gε, E ⊂ Gε,
Gε ⊂ Ω, with m(Gε \ E) < ε. Because the integral (105) is a set function, we
have ∫

E

Jf dxdy = lim
ε→0

∫
Gε

Jf dxdy = lim
ε→0

m(f(Gε)) ≥ m(f(E)).

By Lemma 5.4 the equality holds, and therefore the claim is proved.
Note that it is also true that lim

ε→0
m(f(Gε)) = m(f(E)) and therefore the

equality holds. 4

Question: Suppose that f is a homeomorphism of the domain Ω, which has L1-
derivatives (or is in ACL) in Ω. Is it true that f is locally absolutely continuous
in Ω and the formula (105) holds (see also Lemma 3.3 [?])?

Example 26. Let 0 < ε < 1/2, rk, k ≥ 1 sequence of rational numbers in
I := (0, 1) and

Jk =
(
rk − ε2−k−1, rk + ε2−k−1

)
∩ (0, 1),

where
A = ∪∞k=1Jk, B = (0, 1) \A.

Define f(x) =
x∫
0

KA(t) dt and F (z) = f(x) + iy. Then f ′ = KA a.e. on I, F is

homeomorphism on I2, JF (z) = f ′(x) a.e on I2, JF = 1 a.e on A× I, JF = 0
a.e on B × I, m(B × I) > 0, m

(
F (B × I)

)
= 0, and F maps a set of positive

measure on null-set. Verify that the formula (105) holds for F .

Theorem 5.4. If f is a quasiconformal mapping of a domain Ω then∫
E

Jf dxdy = m(f(E)) (106)

for every measurable set E ⊂ Ω.

Thus, under a quasiconformal mapping the image area is an absolutely con-
tinuous set function. This means that null sets are mapped on null sets, and
that the image area can always be represented by (106).

Applying (106) to f−1, we conclude that J(z) > 0 almost everywhere.
Hence, by Lemma 5.3, we have proved the following:
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Lemma 5.7. A K-quasiconformal mapping f of a domain Ω is regular and
satisfies the dilatation condition (103) a.e. in Ω.

Example 27. Let f(z) = z + C(x) = (x + C(x), y). Then f maps the line
ly = {x + iy : 0 ≤ x ≤ 1} onto l′y = {x + iy : 0 ≤ x ≤ 2}, where y ∈ I. Hence
f maps the square Q = I × I onto the rectangle R = [0, 2] × I, KA = 2, and
Kf = 1 a.e. on the square Q = I × I. Because the inequality KA ≤ Kf does
not hold f does not satisfy qc geometric definition.

Example 28. Let f(z) = z + iC(x), where C is singular Cantor function on
I. Because C ′(x) = 0 a.e. on I, i.e. C ′(x) = 0 a.e. on I \A, where A ⊂ I and
m1(A) = 0. Thus, for z ∈ A× I, f ′x(z) = 1, f ′y(z) = i, and therefore Df(z) = 0
and µf = 0, Kf = 1 a.e. on the square Q = I × I. In spite of this, the mapping
f is not quasiconformal. It is not absolutely continuous on any of the segment
ly = {x+ iy : 0 ≤ x ≤ 1}, y ∈ I.
Let f(z) = C(x) + iC(y). Check that f ′x = f ′y = 0 a.e. on I2 in the classical
sense, but not in distributional (generalized) sense.

Definicija 5. If a homeomorphism f : Ω→ Ω∗ satisfies

(i) f is ACL on Ω

(ii) |fz| ≤ k |fz| almost everywhere in Ω, where k =
K − 1

K + 1
we say that f is

K-quasiconformal in the analytic sense.

Napomena 2. This definition is equivalent to the following: f is a homeo-
morphism and it has locally integrable distributional derivatives which satisfy
(ii).

¿From Lemma 5.2 and Lemma 5.3, it follows that: if a homeomorphism
f : Ω → Ω∗ is K-quasiconformal in the geometric sense then f is K-quasicon-
formal in the analytic sense. A proof that the converse is true can be based on
the fact that the analytic definition is invariant under conformal mapping. For
the higher dimensional case by Fuglede’s theorem, see [37, p. 95].

Theorem 5.5 (The analytic Definition). A homeomorphism f : Ω → Ω∗ is
K-qc iff

(i) f is ACL on Ω

(ii) |fz| ≤ k |fz| almost everywhere in Ω, where k =
K − 1

K + 1
.

5.1.3 Beltrami equation

Quasiconformal mappings are related to the equation

∂f = µ∂f (107)

where µ : Ω → C is measurable and ‖µ‖∞ < 1. This equation is called the
Beltrami equation (the µ-Beltrami equation).
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A function f : Ω → C is said to be an Lp-solution of (107) in Ω if f has
Lp-derivatives and (107) holds a.e. in Ω. It is shown that the Beltrami equation
fz = µfz can be solved for given µ satisfying ‖µ‖∞ ≤ k < 1. First we prove that
the Beltrami equation (107) has always a homeomorphic solution. It is easier
to see the uniqueness of the solution.

Let f and g be quasiconformal mappings of a domain Ω and write h = f◦g−1.
Then a direct calculation yields

µh(ζ) =
µf (z)− µg(z)
1− µf (z)µg(z)

(
∂g(z)

|∂g(z)|

)2

. (108)

Theorem 5.6.
(i) A 1-qc map is conformal.
(ii) If f is a qc of a domain D and µf = 0 a.e. onD. Then f is conformal

on D.

Theorem 5.7. Let f and g be quasiconformal mappings of a domain Ω onto
itself whose complex dilatations agree a.e. in Ω. Then f ◦ g−1 is a conformal
mapping.

Proof. By (108), the complex dilatation of h = f ◦ g−1 vanishes a.e. in Ω.
Hence, it follows from Theorem 5.5 that h is 1-quasiconformal. Then by Theo-
rem ?? and Theorem 5.6(ii) it is conformal. 4

In the end of this section, our goal is to prove the following result. In
addition, we consider the uniqueness of solutions.

Theorem 5.8 (Existence theorem). Let µ be a measurable function in a domain
Ω with ‖µ‖∞ < 1. Then there is a quasiconformal mapping of Ω whose complex
dilatation agrees with µ almost everywhere.

5.1.4 Integral Transforms

Let p > 2. For h ∈ Lp(C), the Cauchy transform is defined by

(Ph)(w) = − 1

π

∫∫
C

h(z)

(
1

z − w
− 1

z

)
dxdy. (109)

For h ∈ C1
0 (C) we may write

(Ch)(w) = − 1

π

∫∫
C

h(z)

(
1

z − w

)
dxdy = − 1

π

∫∫
C

h(ζ + w)
1

ζ
dξ dη. (110)

Then (Ph)(w) = (Ch)(w)− (Ch)(0). Note that (Ph)(0) = 0.

Lemma 5.8. For h ∈ Lp(C), p > 2, the Cauchy transform (Ph) is Hölder
continuous with exponent 1− 2/p.
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Proof. By using the Holder inequality, where q is the conjugate exponent of p,
we obtain

|Ph(w)| = 1

π

∣∣∣∣∫∫ h(z)

(
1

z − w
− 1

z

)
dxdy

∣∣∣∣
≤ |w|

π

(∫∫
|h(z)|pdxdy

)1/p(∫∫
1

(|z − w||z|)q
dxdy

)1/q

Because q is the conjugate exponent of p > 2, we have q ∈ (1, 2), and therefore
the last integral is finite. A change of variables shows that∫∫

1

(|z(z − w)|)q
dxdy = |w|2−2q

∫∫
1

|z(z − 1)|q
dxdy

where the value of the last integral is some constant A = Ap depending only on
p. Write Kp = A1/p. It follows that

|(Ph)(w)| ≤ |w|1−2/pKp‖h‖p.

We note that (Ph)(w1)−(Ph)(w2) = (Ph1)(w1−w2), where h1(z) = h(z+w2).
Then we have

|(Ph)(w1)− (Ph)(w2)| ≤ Kp‖h1‖p|w1 − w2|1−2/p, (111)

and ‖h1‖p = ‖h‖p. 4

5.1.5 Green’s Formula

If f ∈ C1(Ω), where Ω is a domain having a finite number of boundary
components, each being a regular Jordan curve, and Γ the positively-oriented
boundary of G, then Green’s formula states that

I =

∫
Γ

f dz =

∫∫
G

d(f dz).

Because d(f dz) = (df ∧dz), and df = Df(z)dz+Df(z)dz, we have d(f dz) =
(Df(z) dz +Df(z) dz) ∧ dz = Df(z) dz ∧ dz. Thus we may write

I =

∫
Γ

f dz =

∫∫
G

Df (dz ∧ dz).

Note that dz ∧ dz = 2idx ∧ dy, and the second integral is usual the Lebegue
integral because dx ∧ dy is the Lebegue measure in R2. It follows that∫

Γ

f dz = 2 i

∫∫
G

Df dxdy. (112)
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If g ∈ C1(G), where G is a domain having a finite number of boundary
components, each being a regular Jordan curve and Γ is the positively-oriented
boundary of G, then Green’s formula (112) yields∫

Γ

g dz =

∫∫
G

Dg (dz ∧ dz) = −2 i

∫∫
G

Dg dx dy. (113)

Let ε > 0 and Bε = {z : |z − w| < ε}. Define Gε to be the set G\{z :
|z −w| < ε}. Suppose that a ∈ G. We apply Green’s formulas (112) and (113),
respectively, with

f =
h

z − a
and g =

h

z − a
,

where h ∈ C1(G). Let γ = γε be the curve defined by

γ(t) = a+ εeit, where 0 ≤ t ≤ 2π.

Because the function z 7→ (z − a)−1 is holomorphic, we have

Df = fz =
(Dh)(z)

z − a
, gz = Dg(z) =

Dh(z)

z − a
− h(z)

(z − a)2
. (114)

Verify

lim
ε→0

∫
γ

f dz = 2πih(a), lim
ε→0

∫
γ

g dz = 0. (115)

Hence

h(a) =
1

2πi

∫
Γ

h(z)dz

z − a
− 1

2πi

∫∫
G

(Dh)(z)

z − a
dz ∧ dz (116)

∫
Γ

h(z)dz

z − a
=

∫∫
G

(
Dh(z)

z − a
− h(z)

(z − a)2

)
dz ∧ dz. (117)

The proof of the formula (117) shows the following: For each h ∈ C2
0 (space of

twice differentiable functions with compact support), the Hilbert transform is
defined by the Cauchy principal value:

(Th)(w) = lim
ε→0

(
− 1

π

∫∫
|z−w|>ε

h(z)

(z − w)2
dxdy

)
. (118)

For w ∈ BR, we prove

w = − 1

π

∫∫
BR

1

z − w
dxdy. (119)
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Example 29. First, one may apply (116) with h(z) = z and to use the indentity
zz = R2 for z ∈ KR, to obtain∫

KR

z dz

z − w
= R2

∫
KR

dz

z(z − w)
= 0 .

Let h ∈ C2
0 and ψ(z) = (Th)(z)− h(z0)z. Then we may show that ψ has at

z0 derivative ψ′(z0) = ∂ψ(z0). By direct calculation

ψ′(z0) = ∂ψ(z0) = (Th)(z0) =

(
− 1

π

∫∫
B

h(z)− h(z0)

(z − z0)2
dxdy

)
, (120)

where B = BR is an arbitrary disk containing the point z0 and the support of
h. Because ψ has at z0 derivative ψ′(z0) = ∂ψ(z0) which is independent of
direction, it follows that ∂ψ(z0) vanishes.

This example can also be used for obtaining a proof of the items (a) and (b)
of Lemma 5.9 (see [?, pp. 155–157]).

Lemma 5.9. If h ∈ C2
0 , then (Th) is well-defined and (Th) ∈ C1.

(a) (Ph)z = h,

(b) (Ph)z = (Th), and

(c)
∫∫
C
|(Th)|2 dx dy =

∫∫
C
|h|2 dxdy.

Remark. Note that (a) solves the d-bar problem ∂f = h.

Proof. Let

(Ch)(w) = − 1

π

∫∫
C

h(ζ + w)
1

ζ
dξ dη. (121)

Then, by formal differentiation,

∂(Ch)(w) = − 1

π

∫∫
C

∂h(ζ + w)
1

ζ
dξ dη. (122)

By change of variables, we have z = w + ζ and

(Ph)w = − 1

π

∫∫
hz

z − w
dx dy and (Ph)w = − 1

π

∫∫
hz

z − w
dx dy. (123)

Now, (a) and (b) follow respectively from formulas (116) and (117). By Green’s
formula, we have

− 1

2πi

∫∫
hz

z − w
dz dz =

1

2πi

∫∫
dh ∧ dz

z − w
.
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Now define Ωε to be C\{z : |z − w| < ε}. Then

(Ph)w = lim
ε→0

1

2πi

∫∫
Ωε

dh ∧ dz

z − w
= lim
ε→0
− 1

2πi

∫
∂Ωε

h

z − w
dz = h(w)

by Green’s formula. Note that the change of sign comes from the orientation of
the path integral. Similary, we obtain (Ph)w = (Th).

Finally, we prove (c). First observe that formula (123) can be written in the
following form. Recall that if h ∈ C2

0 , by Green’s formulas (116) and (117) for
the terms in formula (123) hold

P (hz) = h− h(0), P (hz) = (Th)− (Th)(0). (124)

Under the assumption h ∈ C2
0 , we can apply (123) to hz, and by use the second

equation (124) we obtain (Th)z = P (hz)z = hz and (Th)z = P (hz)z = T (hz) =
P (hzz) + (Th)z(0). Thus (Th) ∈ C1 and (Ph) ∈ C2.

Because h has a compact support it is immediate that Ph = O(1) and
Th = O(|z|−2). We have now sufficient information to justify all steps in the
calculation. Let KR denote circle of radius R. Since (Ph)(Th) = O(|z|−2), and∫

KR

PhThd z

approaches 0 when R tends ∞, by integrating by parts and using parts (a) and
(b), we find∫∫

|(Th)|2 dxdy = − 1

2i

∫∫
(Ph)z((Ph))z dz dz =

1

2i

∫∫
(Ph)((Ph))zz dz dz.

Again, integrating by parts and using parts (a) and (b), we obtain

=
1

2i

∫∫
(Ph)(h)z dz dz = − 1

2i

∫∫
h(Ph)z dz dz =

∫∫
|h|2 dxdy. Λ

Example 30. Prove (i) and (ii) directly from (123).

Now (Th) is defined for h ∈ C2
0 , but since C2

0 is dense in L2(C), using the
isometry the operator T can be extended to all h ∈ L2(C). But we cannot
extend P in the same way.

Using the Calderón-Zygmund lemma, we can even define T on Lp(C) for
any p > 1, but T will no longer be an isometry, although ‖Th‖p is bounded.
Approximate h ∈ Lp(C) by hn ∈ C2

0 , such that hn → h in the Lp-norm. The
Calderón-Zygmund lemma says that for p > 1, we have

‖(Thn)‖p ≤ Cp‖hn‖p
for some constant Cp, and Cp → 1 as p→ 2. It follows that (Thn) is a Cauchy
sequence in Lp(C) and therefore it converges. We define (Th) = lim

n→∞
(Thn).

The Calderon-Zygmund lemma says that for p > 1,

‖Th‖p ≤ Cp‖h‖p
for some constant Cp, and Cp → 1 as p→ 2.
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5.1.6 Absolutely Continuous Functions

Recall that if f ∈ L1[a, b] and

F (x) =

x∫
a

f(t) dt, a ≤ x ≤ b ,

then F is absolutely continuous on the segment [a, b]. If F is absolutely con-
tinuous on the segment [a, b], then F ′ = f exists a.e. on [a, b], f ∈ L1[a, b],
and

F (x)− F (x0) =

x∫
x0

f(t)dt.

Then we say F ′ = f in the distributional sense.
We make the following assumptions: the function F is continuous on the

segment [a, b], F is differentiable a.e on the segment [a, b], and F ′ ∈ L1[a, b].
This does not imply that, in general, F is absolutely continuous on the segment
[a, b]. The standard counterexample is the Cantor function.

Lemma 5.10. For h ∈ Lp(C), p > 2, then (Ph)z = h, and (Ph)z = (Th) in
the sense of distributions.

Proof. Let ϕ ∈ C1
0 be a test function. If h ∈ C2

0 , then by Lemma 5.9∫∫
(Ph)ϕz = −

∫∫
ϕh, and

∫∫
(Ph)ϕz = −

∫∫
ϕ(Th). (125)

Approximate h ∈ Lp(C) by hn ∈ C2
0 , such that hn → h in the Lp-norm. Replace

h with hn ∈ C2
0 . The right hand members have the right limits since

‖Th− Thn‖p ≤ Cp‖h− hn‖p.

On the left hand side, we know by Lemma 5.8 that P (h − hn) converges 0
uniformly on compact subsets and since ϕ has compact support equation (125)
holds with h replaced by h. 4

Remarks. A solution of equation Df = h is given by f = (Ph). If g is holomorphic
f = Ph+ g is also a solution. If f1 and f2 are two solutions, then D(f1 − f2) = 0 and
by Weyl’s lemma f1 − f2 is holomorphic.

Let X be a Banach space and A : X → X a linear operator such that ‖A‖ < 1.
Then the operator A : X → X is surjective, the operator (I −A)−1 exists, and

(I −A)−1 =

∞∑
k=0

Ak.

It follows that, for every y ∈ X, the equation x−Ax = y has a unique solution x ∈ X.
The proof can be based on the following:

∞∑
k=0

‖Ak‖ ≤
∞∑

k=0

‖A‖k <∞.
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5.1.7 Solutions of the Beltrami Equation

Suppose that f has locally integrable derivatives in the complex plane C and
that f(z)→ 0 as z →∞. With the notation

(Cω)(z) = − 1

π

∫∫
C

ω(ζ)

ζ − z
dξ dη,

we then obtain from Green’s formula

f = C∂f. (126)

For a smooth ω with compact support we define the Hilbert transform Hω of
ω by

Hω = ∂(Cω).

By differentiation we obtain an expression for H as the principal value

(Hω)(z) = lim
ε7→0+

− 1

π

∫∫
Aε

ω(ζ)

(ζ − z)2
dξ dη,

where Aε = {ζ : ε < |ζ| < 1
ε }. Instead of H we use also the notation T .

Fix 0 < k < 1, and let L∞(k,R) denote the measurable functions on C,
bounded by k, and supported in the disk BR. We let QC1(k,R) denote the
continuous differentiable homeomorphisms f of C such that ∂f = µ∂f , for any
µ ∈ L∞(k,R), normalized so that

f(z) = z + O
(1

z

)
, as z 7→ ∞.

Let f ∈ QC1(k,R). Then by (126), we have

f(z)− z = C(∂f)(z).

Thus, if we set g = ∂f − 1 and use ∂f = µ∂f , we obtain

g = H(∂f) = H(µ∂f) = H(µg) + H(µ).

In terms of the operator,

Hµ(g) = H(µg), g ∈ Lp(C),

we obtain the equation
(I −Hµ)g = H(µ). (127)

If we fix p = p(k) > 2 so that ‖Hµ‖ < 1, then I − Hµ is invertible. Thus, we
can solve the equation (127) for g to obtain

g = (I −Hµ)−1H(µ) ∈ Lp(C). (128)

Now we are ready to give the main result of this section.

90



Theorem 5.9. Fix 0 < k < 1, R > 0 and p = p(k) > 2 as above. For

µ ∈ L∞(k,R), there is a function f on C, normalized so that f(z) = z + O
(
1

z

)
at ∞, with distribution derivatives satisfying the Beltrami equation ∂f = µ∂f .

Proof. (Outline) Define g by (128), and let

f(z) = z + C(µg + µ).

Because T is the convolution operator with kernel 1/z that is locally in L1, the
function f is continuous. Moreover, f is normalized at ∞,

∂f = µg + µ,

and
∂f = 1 +H(µg + µ) = 1 + g

in the distributional sense, so f satisfies the Beltrami equation. 4

Recall the Beltrami equation

fz = µfz (129)

where ‖µ‖∞ ≤ k < 1. We first treat the case where µ has compact support, so
that f be analytic in a neighborhood ∞. We shall use a fixed p > 2 such that
kCp < 1, where Cp is from the Calderón-Zygmund inequality.

Theorem 5.10. Under the above assumptions, there exists a unique solution
of (129) such that f(0) = 0 and fz − 1 ∈ Lp(C). By a solution, we mean f has
distributional derivative and is continuous.

We summarize the following:
Let µ be a measurable function in a domain D with k = ‖µ‖∞ < 1. If

f : D → D′ is a solution of of the µ- Beltrami equation (107) and g is is an
analytic function on D′, then g ◦ f is also solution of the same equation.

Let µ be a measurable function on C with k = ‖µ‖∞ < 1. Then there is a
unique quasiconformal mapping f of C, normalized by f(i) = i, f(1) = 1 and
f(−1) = −1, whose complex dilatation agrees with µ almost everywhere.

We let fµ be the solution f of the Beltrami equation (107) normalized by
f(i) = i, f(1) = 1 and f(−1) = −1.

Suppose complex dilatation µ has a bounded support and define inductively
h1 = µ, hn = µHhn−1, n = 2, 3, · · · .

If we fix p > 2 such that |µ|∞|H|p < 1, then
limn→∞

∑n
i=1 hi = Df and it is a function in Lp, that is

(A1) Df =
∑∞
i=1 hi in Lp sense.

Let f be qc with complex dilatation µ and which satisfies the condition
f(z) = z+O(1/z) at ∞. Then f(z) = z+

∑∞
i=1(Chi)(z). The series absolutely

and uniformly converges in the plane.
There is a conjecture that for the norm Hilbert transform is |H|p = p − 2,

p ≥ 2.
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6 Appendix 1

6.1 Astala distortion theorm, The Nitsche conjecture

If f is analytic on a domain D, then f with all derivatives is locally bounded.
In particular, it is true for conformal mapping.

Astala [?]: If f is K-quasiconformal, fz ∈ Lp for p < p(K) = 2K
K−1 .

This would follow from the methods outlined in Sec if the conjectural
values ||T ||p = p− 1 for p ≥ 2 were to be proven.

The example f(z) = r1/K−1z = r1/Keiθ shows that the esimate is optimal.
Since f ′r = 1

K r
1/K−1eiθ,

and therefore fz ∈ Lp(D) iff p < p(K).

Theorem 6.1 (Astala). Let f : C → C be K-quasiconformal, f conformal on
C \ D and f(z) = z + a1

z + ... near ∞.
Let E ⊂ D be measurable, then

|f(E)| ≤ Kπ1−1/K |E|1/K .

The proof is based on:

(i) If E ⊂ D with f conformal on C \ E, then

|f(E)| ≤ K |E|.

(ii) If f is conformal on C \ E, then

|f(E)| ≤ π1−1/K |E|1/K .

Recent proof of this result by Eremenko and Hamilton [?] have distilled
Astala’s idea’s (from dynamics) and now they are fairly straightforward, without
using the ideas from dynamics.

XX Mateljevic: If h : D onto−→ D is a harmonic mapping, h(0) = 0, then
h(Dr) ⊂ Dr̂, where r̂ = (1 + r)/2 and 0 < r < 1.

XX Kovalev: If h : D onto−→ D is a bijective harmonic mapping, then |h(Dr) ≤
|Dr|, 0 < r < 1.

Does it hold for injective harmonic mappings (or even arbitrary) h : D→D?

7 Appendix 2

7.0.1 Stokes theorem

If f ∈ L1(Bn), then∫
B

fdν = n

∫ 1

0

rn−1dr

∫
S

f(rζ)dσ(ζ). (130)
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Since dm = dx = Ωndν and ωn−1 = nΩn, we can rewrite the formula (130) in
the form: ∫

B

fdx = ωn−1

∫ 1

0

rn−1dr

∫
S

f(rζ)dσ(ζ). (131)

Define ∆ = D2
1 + · · · + D2

n. We say that a function u defined on a open
set D harmonic function if u ∈ C1(D) ∩ C2(D) and ∆u = 0 on D. Laplacian
commutes with orthogonal transformation; more precisely, if T is orthogonal
and u ∈ C2(D) then ∆(u ◦ T ) = ∆(u) ◦ T .

The reader can find details in [1].
see bounded harmonic function, ch 2; and
The Dirichlet Problem and Boundary Behavior, ch 11.
XX

Recall that B denote the unit disc.
The volume of a parallelepiped
The volume of a parallelepiped is the product of the area of its base A and

its height h. The base is any of the six faces of the parallelepiped. The height
is the perpendicular distance between the base and the opposite face.

An alternative method defines the vectors a = (a1, a2, a3), b = (b1, b2, b3) and
c = (c1, c2, c3) to represent three edges that meet at one vertex. The volume
of the parallelepiped then equals the absolute value of the scalar triple product
a · (b× c):

V = |a · (b× c)| = |b · (c× a)| = |c · (a× b)|

Coxeter called the generalization of a parallelepiped in higher dimensions a
parallelotope.

Specifically in n-dimensional space it is called n-dimensional parallelotope,
or simply n-parallelotope. Thus a parallelogram is a 2-parallelotope and a pa-
rallelepiped is a 3-parallelotope.

If S is oriented surface by S− we denote the opposite oriented surface.
Let D = {(x, y, z) : (x, y) ∈ G, f1(x, y) < z < f2(x, y)} and Sk surface

defined by G 3 (x, y) 7→ (x, y, fk(x, y)) ∈ Sk, k = 1, 2. Note that this parame-
terization of S1 is not consistent with orientation of S1 as part of S. If S1 and
S2 are smooth, we call D elementary domain in z-directions; in similar way we
define elementary domain in x and y -directions. We say that domain is simple
in z-directions if it is finite union of domains elementary in z-directions, and
domain is simple if it is is simple in x, y, z-directions.

By Fubini’s theorem
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∫
D

∂R

∂z
dx dy dz =

∫
G

dx dy

∫ f2(x,y)

f1(x,y)

∂R

∂z
dz = (132)∫

G

(R(x, y, f2(x, y))−R(x, y, f1(x, y)))dx dy = (133)∫
S2

Rdx ∧ dy +

∫
S−1

Rdx ∧ dy =

∫
S

Rdx ∧ dy , (134)

where S consists of S−1 , S2 and the corresponding cylinder C. We used that
the form dx ∧ dy is 0 on C.

Now, let S be a positively oriented, piecewise smooth, simple closed surface in
the space R3, and let D be the region bounded by S. If P,Q and R are functions
of (x, y, z) defined on an open region containing D and have continuous partial
derivatives there, then:

Again, by Fubini’s theorem

∫
D

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
) dx dy dz =

∫
S

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

∫
D

∂R

∂z
dx dy dz =

∫
S

Rdx ∧ dy .

Surface-area measure on S
Let S smooth hyper-surface in oriented euclidean space Rm, oriented with

continuous unit field of normals n(x), x ∈ S, V -n dimensional volume form in
Rm, σ- (m-1) dimensional volume form in S, and let a1, · · · am−1 reper in TxS
from the class of orientation given by n(x); then

V (x)(n, a1, · · · , am−1) = σ(x)(a1, · · · , am−1). Here n = (n1, · · · , nm) is unit
normal in x on surface S. Both side are non negative and equal in magnitude be-
cause the volume of a parallelepiped defined (spaned) by vectors n, a1, · · · , am−1

is the product of the area of its base A = σ(x)(a1, · · · , am−1) and its height
h = |n| = 1.

On the other hand,

V (x)(n, a1, · · · , am−1) =

∣∣∣∣∣∣∣∣
n1 . . . nm

a1
1 . . . am1
. . .
amm−1 . . . amm−1

∣∣∣∣∣∣∣∣ = (135)

m∑
k=1

(−1)k−1nk(x)σi(x)(a1, · · · , am−1), (136)

where σk(x) = dx̂k = dx1 ∧ · · · dxk−1 ∧ d̂xk ∧ · · · ∧ dxm(a1, · · · , am−1) and the
symbol ̂ denotes that the corresponding multiple is dropped.
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Hence σ(x)(a1, · · · , am−1) =
∑m
k=1(−1)k−1nk(x)dx1 · · · dxk−1d̂xk · · · dxm(a1, · · · , am−1)

and X · σ(x) =
∑m
k=1(−1)k−1Xkσk(x).

Using a similar geometric consideraration as the above we conclude, for fixed
k, that

V (x)(ek, a1, · · · , am−1) = (n(x), ek)σ(x)(a1, · · · , am−1). Hence

nk dσ = dσk = dx̂k = (−1)k−1dx1 · · · dxk−1d̂xk · · · dxm .

If nk = (n(x), ek) = cosαk, then cosαkσ = dx̂k|S and therefore
σ2 =

∑n
k=1(dx̂k)2.

X · dσg = det(X, ·)√g =
∑

(−1)k−1Xk√gdσk,
d(X · dσg) = (

∑
Dk(Xk√g)V0 = [ 1√

g (
∑
Dk(Xk√g)]Vg. Hence

divX =
1
√
g

(
∑

Dk(Xk√g) .

If x, y, z- the Cartesian (Descartes’ ) coordinate system in R3,

dσ = cosα1dy ∧ dz + cosα2dz ∧ dx+ cosα3dx ∧ dy

orjented area of projection

cosα1 dσ = dy ∧ dz (137)

cosα2 dσ = dz ∧ dx (138)

cosα3 dσ = dx ∧ dy (139)

Here n(x) = (cosα1, cosα2, cosα3).
Integral of function ρ over oriented surface S is∫

S

ρ σ (140)

of differential form ρσ, where σ is XX area-volume form on S.
Integral XX does not depend on orientation of S because σS− = −σS .
In functional analysis, the concept of an orthonormal basis can be gene-

ralized to arbitrary (infinite-dimensional) inner product spaces (or pre-Hilbert
spaces).[4] Given a pre-Hilbert space H, an orthonormal basis for H is an ortho-
normal set of vectors with the property that every vector in H can be written
as an infinite linear combination of the vectors in the basis. In this case, the
orthonormal basis is sometimes called a Hilbert basis for H. Note that an ort-
honormal basis in this sense is not generally a Hamel basis, since infinite linear
combinations are required. If B is an orthogonal basis of H, then every element
x of H may be written as

x =
∑
b∈B

〈x,b〉
‖b‖2 b.

When B is orthonormal, this simplifies to
x =

∑
b∈B〈x, b〉b
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and the square of the norm of x can be given by
‖x‖2 =

∑
b∈B |〈x, b〉|2.

Even if B is uncountable, only countably many terms in this sum will be non-
zero, and the expression is therefore well-defined. This sum is also called the
Fourier expansion of x, and the formula is usually known as Parseval’s identity.
See also Generalized Fourier series.

If B is an orthonormal basis of H, then H is isomorphic to l2(B) in the
following sense: there exists a bijective linear map F : H → l2(B) such that
〈Φ(x),Φ(y)〉 = 〈x, y〉
for all x and y in H.
The concept of eigenvectors and eigenvalues extends naturally to abstract

linear transformations on abstract vector spaces. Namely, let V be any vector
space over some field K of scalars, and let T be a linear transformation mapping
V into V . We say that a non-zero vector v of V is an eigenvector of T if (and
only if) there is a scalar λ in K such that

T (v) = λv.
This equation is called the eigenvalue equation for T , and the scalar λ is the

eigenvalue of T corresponding to the eigenvector v. Note that T (v) means the
result of applying the operator T to the vector v, while λv means the product
of the scalar λ by v.

The matrix-specific definition is a special case of this abstract definition.
Namely, the vector space V is the set of all column vectors of a certain size
n × 1, and T is the linear transformation that consists in multiplying a vector
by the given n× n matrix A.

Some authors allow v to be the zero vector in the definition of eigenvector.
This is reasonable as long as we define eigenvalues and eigenvectors carefully:
If we would like the zero vector to be an eigenvector, then we must first define
an eigenvalue of T as a scalar λ in K such that there is a nonzero vector v in V
with T (v) = λv. We then define an eigenvector to be a vector v in V such that
there is an eigenvalue λ in K with T (v) = λv. This way, we ensure that it is not
the case that every scalar is an eigenvalue corresponding to the zero vector.

The eigenspaces of T always form a direct sum (and as a consequence any
family of eigenvectors for different eigenvalues is always linearly independent).
Therefore the sum of the dimensions of the eigenspaces cannot exceed the di-
mension n of the space on which T operates, and in particular there cannot be
more than n distinct eigenvalues.

Any subspace spanned by eigenvectors of T is an invariant subspace of T ,
and the restriction of T to such a subspace is diagonalizable.

The set of eigenvalues of T is sometimes called the spectrum of T . If λ is an
eigenvalue of T , then the operator T − λI is not one-to-one, and therefore its
inverse (T − λI)−1 does not exist. The converse is true for finite-dimensional
vector spaces, but not for infinite-dimensional vector spaces. In general, the
operator T − λI may not have an inverse, even if λ is not an eigenvalue.

For this reason, in functional analysis one defines the spectrum of a linear
operator T as the set of all scalars λ for which the operator T − λI has no
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bounded inverse. Thus the spectrum of an operator always contains all its
eigenvalues, but is not limited to them.

Let H be a Hilbert space, L(H) be the bounded operators on H. T ∈ L(H)
is a compact operator if the image of each bounded set under T is relatively
compact. We list some general properties of compact operators.

If X and Y are Hilbert spaces (in fact X Banach and Y normed will suffice),
then T : X → Y is compact if and only if it is continuous when viewed as a
map from X with the weak topology to Y (with the norm topology).

A bounded operator T on a Hilbert space H is said to be self-adjoint if
T = T ∗, or equivalently,
〈Tx, y〉 = 〈x, Ty〉, x, y ∈ H.
It follows that < x, Tx >=< Tx, x > and < x, Tx >= < Tx, x > and

therefore < Tx, x > is real for every x ∈ H, thus eigenvalues of T , when they
exist, are real.

If λ is the eigenvalue of T corresponding to the eigenvector x then< Tx, x >=
λ < x, x > and therefore λ is real. If λ1 and λ2 are the eigenvalue of T cor-
responding to the eigenvector v1 and v2, then λ1 < v1, v2 >=< Tv1, v2 >=<
v1, T v2 >= λ2 < v1, v2 >. Hence < v1, v2 >= 0.

The classification result for Hermitian n×n matrices is the spectral theorem:
If M = M∗, then M is unitarily diagonalizable and the diagonalization of M has
real entries. Let T be a compact self adjoint operator on a Hilbert space H. We
will prove the same statement for T : the operator T can be diagonalized by an
orthonormal set of eigenvectors, each of which corresponds to a real eigenvalue.

Theorem 7.1 ( Spectral theorem). Theorem. For every compact self-adjoint
operator T on a real or complex Hilbert space H, there exists an orthonormal
basis of H consisting of eigenvectors of T . More specifically, the orthogonal
complement of the kernel of T admits, either a finite orthonormal basis of ei-
genvectors of T , or a countably infinite orthonormal basis {en} of eigenvectors
of T , with corresponding eigenvalues {λn} in R, such that λn → 0.

In other words, a compact self-adjoint operator can be unitarily diagonalized.
This is the spectral theorem.

When H is separable, one can mix the basis {en} with a countable ortho-
normal basis for the kernel of T , and obtain an orthonormal basis {fn} for H,
consisting of eigenvectors of T with real eigenvalues {µn} such that µn → 0.

Corollary. For every compact self-adjoint operator T on a real or complex
separable infinite-dimensional Hilbert space H, there exists a countably infinite
orthonormal basis {fn} of H consisting of eigenvectors of T , with corresponding
eigenvalues {µn} in R, such that µn → 0.

The idea
Proving the spectral theorem for a Hermitian n × n matrix T hinges on

showing the existence of one eigenvector x. Once this is done, Hermiticity
implies that both the linear span and orthogonal complement of x are invariant
subspaces of T . The desired result is then obtained by iteration. The existence
of an eigenvector can be shown in at least two ways:
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One can argue algebraically: The characteristic polynomial of T has a com-
plex root, therefore T has an eigenvalue with a corresponding eigenvector. Or,
The eigenvalues can be characterized variationally: The largest eigenvalue is
the maximum on the closed unit sphere of the function f : R2n → R defined by
f(x) = x∗Tx =< Tx, x >.

Note. In the finite-dimensional case, part of the first approach works in
much greater generality; any square matrix, not necessarily Hermitian, has an
eigenvector. This is simply not true for general operators on Hilbert spaces.

The spectral theorem for the compact self adjoint case can be obtained ana-
logously: one finds an eigenvector by extending the second finite-dimensional
argument above, then apply induction. We first sketch the argument for matri-
ces.

Since the closed unit sphere S in R2n is compact, and f is continuous, f(S)
is compact on the real line, therefore f attains a maximum on S, at some unit
vector y. By Lagrange’s multiplier theorem, y satisfies
∇f = ∇ y∗Ty = λ · ∇ y∗y
for some λ. By Hermiticity, Ty = λy.
However, the Lagrange multipliers do not generalize easily to the infinite-

dimensional case.
A subset F ⊂ C(X) is said to be equicontinuous if for every x ∈ X and

every ε > 0, x has a neighborhood Ux such that
∀y ∈ Ux,∀f ∈ F : |f(y)− f(x)| < ε.
A set F ⊂ C(X,R) is said to be pointwise bounded if for every x ∈ X ,
sup{|f(x)| : f ∈ F} <∞.

Theorem 7.2 (Arzela-Ascoli). A family F of functions with values in a metric
space X is normal in the region Ω of the complex plane if and only if
(i) for every z in Ω, the values f(z), f ∈ F , lie in a compact subset of X and
(ii) F is equi-continuous on every compact set K ⊂ Ω.

Rešenje. The sufficiency of (ii) together of (i) is proved by Cantor’s famous dia-
gonal process. We observe first that there exists an every where dense sequence
of points ωk in Ω, for instance the points with rational coordinates.

A subsequence gk = fnk of fn converges at all points ωk. Given an ε > 0
we choose δ > 0 such that, for z, ω ∈ K and f ∈ F , |z − ω| < δ implies

d(f(z), f(ω)) <
ε

3
. Because K is compact, it can be covered by a finite number

of
δ

2
- neighborhoods. We select a point ωk from each of these neighborho-

ods. There exists an n0 such that n,m > n0 implies d(gm(ωk), gn(ωk)) < ε
3

for all these ωk. For each z ∈ K one of the ωk is within distance δ from z;
hence d(gm(z), gm(ωk)) <

ε

3
, d(gn(z), gn(ωk)) <

ε

3
. The three inequalities yield

d(gn(z), gm(z)) < ε. 4

Let T be a separable topological space and let X be a metric space, and let
F be a family of continuous functions from T to X. The family F is normal on
a subset Y ⊂ T if for every sequence fn ∈ F , there exists a subsequence which
converges uniformly on every compact subset of Y .

98



Theorem 7.3 (Ascoli). If T is a separable topological space and if X is a
compact metric space, then every equicontinuous family F of mappings f : T →
X is a normal family.

The Arzela- Ascoli theorem is thus a fundamental result in the study of the
algebra of continuous functions. Various generalizations of the above result are
possible. For instance: Let T be a compact Hausdorff space and X a metric
space. Then a subset F of C(T,X) is compact in the compact-open topology if
and only if it is equicontinuous, pointwise relatively compact and closed.

Here pointwise relatively compact means that for each x ∈ T , the set Fx =
{f(x) : f ∈ F} is relatively compact in X.

If M(G) is the set of all meromorphic functions we can consider it as a subset
of C(G,C) and endow it the metric of C(G,C).

Let fn be sequence in M(G) (resp. H(G)) and suppose that fn → f in
C(G,C). Then either f is meromorphic (resp. analytic) or f ≡ ∞. Hence
M(G) ∪ {∞} is a complete metric space.

We can adopt simple terminology. We say that F ⊂ M(G) is normal (in a
wider sense or C- normal) if
(i) every sequence in F contains a subsequence which converges or tends ∞
uniformly on compact subsets.

Eigendecomposition
A bilinear form on a vector space V is a bilinear map V ×V → K, where K is

the field of scalars. In other words, a bilinear form is a function B : V ×V → K
that is linear in each argument separately:

Let V be an n-dimensional vector space with basis C = {e1, ..., en}. Define
the n× n matrix A by Aij = B(ei, ej).

If the n × 1 matrix x represents a vector v with respect to this basis, and
analogously, y represents w, then:

B(v,w) = xTAy =

n∑
i,j=1

aijxiyj .

Let B be bilinear form on V and C = {e1, ..., en} basis in V and A matrix
wrt C. Let C ′ = {e′1, ..., e′n} be another basis in V e′k = Sek, S is an invertible
matrix. Now the new matrix representation for the symmetric bilinear form is
given by

A′ = STAS.

A basis C = {e1, ..., en} is orthogonal with respect to B if and only if:

B(ei, ej) = 0 ∀i 6= j.

When the characteristic of the field is not two, V always has an orthogonal basis
say C∗ = {e∗1, ..., e∗n}. This can be proven by induction.

A basis C∗ is orthogonal if and only if the matrix representation A∗ =
diag(λ1, ..., λn) is a diagonal matrix.

If x =
∑
xkek =

∑
x∗ke
∗
k, then B(x, x) = aijxixj =

∑
λk(x∗k)2. Further if

V = Rn and λ = min{λ1, ..., λn} and Λ = max{λ1, ..., λn}, then
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λ|x|2B(x, x) ≤ Λ|x|2.
The trace of an n-by-n square matrix A is defined to be the sum of the

elements on the main diagonal (the diagonal from the upper left to the lower
right) of A, i.e.,

tr(A) =

n∑
i=1

aii = a11 + a22 + · · ·+ ann

where aii denotes the entry on the ith row and ith column of A. The trace
of a matrix is the sum of the (complex) eigenvalues, and it is invariant with
respect to a change of basis. This characterization can be used to define the
trace of a linear operator in general. Note that the trace is only defined for a
square matrix (i.e., n× n).

The trace is similarity-invariant, which means that A and P−1AP have the
same trace. This is because

tr
(
P−1AP

)
= tr

(
P−1(AP )

)
= tr

(
(AP )P−1

)
= tr

(
A
(
PP−1

))
= tr(A).

If A is symmetric and B is antisymmetric, then

tr(AB) = 0.

If A is a linear operator represented by a square n-by-n matrix with real or
complex entries and if λ1, ..., λn are the eigenvalues of A (listed according to
their algebraic multiplicities), then

tr(A) =
∑
i

λi

This follows from the fact that A is always similar to its Jordan form, an
upper triangular matrix having λ1, ..., λn on the main diagonal. In contrast, the
determinant of A is the product of its eigenvalues; i.e.,

det(A) =
∏
i

λi

More generally,

tr
(
Ak
)

=
∑
i

λki .

Let V be a finite dimensional vector space over some field K, and let (, ) be
a nondegenerate bilinear form on V .

We then have for every linear endomorphism A of V , that there is a unique
endomorphism A∗ of V such that (Ax, y) = (x,A∗y) for all x and y ∈ V .

The existence and uniqueness of such an A∗ requires some explanation, but
I will take it for granted.

An endomorphism of a vector space V is a linear map, A : V → V .
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Proposition: Given an endomorphism A of a finite dimensional vector space
V equipped with a nondegenerate bilinear form (, ), the endomorphisms A and
A∗ have the same set of eigenvalues.

Proof: Let λ be an eigenvalue of A. And let v be an eigenvector of A
corresponding to λ (in particular, v is nonzero). Let w be another arbitrary
vector. We then have that: (vλ,w) = (λv,w) = (Av,w) = (v,A∗w). This
implies that (v, λw−A∗w) = 0 for all w ∈ V . Now either λ is an eigenvalue of A∗

or not. If it isn’t, the operator λw−A∗w is an automorphism of V since λI−A∗
being singular is equivalent to λ being an eigenvalue of A∗. In particular, this
means that (v, z) = 0 for all z ∈ V . But since (, ) is nondegenerate, this implies
that v = 0. A contradiction. λ must have been an eigenvalue of A∗ to begin
with. Thus every eigenvalue of A is an eigenvalue of A∗. The other inclusion can
be derived similarly. We are working over a real vector space and considering
the dot product as your bilinear form. Now consider an endomorphism T of Rn
which is given by T (x) = Ax for some n× n matrix A. It just so happens that
for all y ∈ Rn we have T ∗(y) = Aty. Since T and T ∗ have the same eigenvalues,
so do A and At.

In linear algebra, a symmetric n × n real matrix M is said to be positive
definite if zTMz is positive for every non-zero column vector z of n real numbers.
Here zT denotes the transpose of z.

Let x1, . . . , xn be a list of n linearly independent vectors of some complex
vector space with an inner product 〈·, ·〉. It can be verified that the Gram matrix
M of those vectors, defined by Mij = 〈xi, xj〉, is always positive definite. Con-
versely, if M is positive definite, it has an eigendecomposition P−1DP where
P is unitary, D diagonal, and all diagonal elements Dii =

√
λi of D are real

and positive. Let E be the real diagonal matrix with entries so D = E2 and
M = (EP )∗EP . Its leading principal minors are all positive. The kth leading
principal minor of a matrix M is the determinant of its upper-left k by k sub-
matrix. It turns out that a matrix is positive definite if and only if all these
determinants are positive. This condition is known as Sylvester’s criterion, and
provides an efficient test of positive-definiteness of a symmetric real matrix. Na-
mely, the matrix is reduced to an upper triangular matrix by using elementary
row operations, as in the first part of the Gaussian elimination method, taking
care to preserve the sign of its determinant during pivoting process. Since the
k-th leading principal minor of a triangular matrix is the product of its diagonal
elements up to row k, Sylvester’s criterion is equivalent to checking whether its
diagonal elements are all positive. This condition can be checked each time a
new row k of the triangular matrix is obtained. It has a unique Cholesky decom-
position. The matrix M is positive definite if and only if there exists a unique
lower triangular matrix L, with real and strictly positive diagonal elements, such
that M = LL∗. This factorization is called the Cholesky decomposition of M .

Suppose that B is positive definite. Then there is B1/2. Look, the eigenva-
lues of a symmetric matrix are real, thus the eigenvectors too. So the Jordan
form is real B = USUT with S being diagonal positive and U orthogonal. Then
construct B1/2 as US1/2UT .

If we call B1/2 the symmetric matrix such that B1/2B1/2 = B (i.e. the
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standard square root of a positive definite matrix) then AB = AB1/2B1/2 =
B−1/2(B1/2AB1/2)B1/2, that is AB is similar to the positive definite matrix
B1/2AB1/2, sharing all eigenvalues. It makes the eigenvalues of AB be positive
if A is positive definite and non positive if A is non-positive definite.

By definition I := xTB1/2AB1/2x = zTAz for z = B1/2x. Hence if A is
positive definite (non-positive definite) I > 0 (I ≤ 0) z = B1/2x 6= 0 iff x 6= 0.
Thus positive definite.

Proposition: If B is positive definite matrix and A non- positive definite
matrix, then AB is non positive definite matrix and in particular tr(AB) ≤ 0.

8 Motivacija

Svetlik
Razmotrimo diferencijalnu jednačinu

y′(x) + p(x)y(x) = q(x), x ∈ [a, b], (141)

pri čemu su p, q : [a, b ] → R zadate neprekidne funkcije a y : [a, b ] → R
nepoznata funkcija. Kako se u jednačini (141) javlja prvi izvod funkcije y,
prirodno je zahtevati da rešenje tražimo u klasi diferencijabilnih funkcija na
[a, b ]. Medutim kako je

y′(x) = −p(x)y(x)− q(x),

a funkcije p, q i y su neprekidne, sledi da i y′ mora biti neprekidna. Dakle, ako
postoji diferencijabilna funkcija y takva da zadovoljava jednačinu (141) onda je
ta funkcija i neprekidno diferencijabilna tj. pripada klasi C1[a, b ].

Neka je ϕ proizvoljna funkcija klase C1[a, b ] takva da je ϕ(a) = ϕ(b) = 0.
Ako levu i desnu stranu jednačine (141) pomnožimo sa ϕ(x) dobijamo jednačinu

y′(x)ϕ(x) + p(x)y(x)ϕ(x) = q(x)ϕ(x),

a nakon integraljenja i jednačinu∫ b

a

y′(x)ϕ(x)dx+

∫ b

a

p(x)y(x)ϕ(x)dx =

∫ b

a

q(x)ϕ(x)dx. (142)

Ako u integralu

∫ b

a

y′(x)ϕ(x)dx primenimo parcijalnu integraciju dobijamo

∫ b

a

y′(x)ϕ(x)dx = y(x)ϕ(x)

∣∣∣∣∣
b

x=a

−
∫ b

a

y(x)ϕ′(x)dx = −
∫ b

a

y(x)ϕ′(x)dx.

Otuda se jednačina (142) svodi na jednačinu∫ b

a

(−y(x)ϕ′(x) + p(x)y(x)ϕ(x))dx =

∫ b

a

q(x)ϕ(x)dx. (143)
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Primetimo da se u jednačini (143) ne pojavljuje izvod nepoznate funkcije y, kao
i da ima smisla tražiti rešenje iste u klasi C[a, b ]. Takode, na osnovu prethodnog
izvodenja, sledi da ako je y rešenje jednačine (141) onda je y rešenje i jednačine
(143).

Razmotrimo sada i jednačinu

y′(x) = sgnx, x ∈ [−1, 1], (144)

gde je y : [−1, 1 ] → R nepoznata funkcija. Primetimo da funkcija sgn ima
prekid prve vrste u tački 0. S druge strane prvi izvod neke funkcije ne može imati
prekide prve vrste. Otuda jednačina (144) nema rešenja u klasi diferencijabilnih
funkcija na [−1, 1 ] tj. ne postoji funkcija y : [−1, 1 ] → R takva da je y′(x) =
sgnx za svako x ∈ [−1, 1 ].

Medutim umesto jednačine (144) analagno kao u prvom primeru možemo
posmatrati jednačinu∫ 1

−1

−y(x)ϕ′(x)dx =

∫ 1

−1

sgnxϕ(x)dx, (145)

pri čemu je ϕ proizvoljna funkcija klase C1[−1, 1 ] takva da je ϕ(−1) = ϕ(1) = 0.
Pri tome prirodno je rešenje jednačine (145) tražiti u klasi C[−1, 1]. Neposred-
nom proverom se utvrduje da je funkcija y(x) = |x| + c (c realna konstanta)
rešenje jednačine (145) u klasi C[−1, 1]. Otuda to rešenje nazivamo i slabo
rešenje jednačine (144).

Suppose that ϕ is C1[−1, 1 ] such that ϕ(−1) = ϕ(1) = 0. By partial inte-
gration,∫ 1

−1
|x|′ϕ(x)dx = −

∫ 1

−1
y(x)ϕ′(x)dx =

∫ 0

−1
|x|′ϕ(x)dx +

∫ 1

0
|x|′ϕ(x)dx =∫ 1

−1
sgnxϕ(x)dx

9 surfaces

Supp that in ngb V of point y0 ∈ Rn surface S is given by ψ = 0, where
ψ ∈ C2(V ) and |Dψ| > 0 in V . The unit normal in y ∈ S ∩ V is given
by ν = Dψ/|Dψ|. Let L = (dν)y0 be linear operator which can be identi-
fied with matrix A = dν = [Di(Djψ/|Dψ|)] with respect the standard system
C = {e1, ..., en−1, en} in Rn. There is orth system C ′ = {e′1, ..., e′n−1, e

′
n},

e′1, ..., e
′
n−1 ∈ Ty0S, e′n = ν(y0) wrt A in which the corresponding matrix A′ has

diagonal form A′ = diag(k1, ..., kn−1, kn).
Let L′ be the restriction of L = (dν)y0 on Ty0S. Since ν · ν = 1, we have

Diν ·ν = 0. Hence since Diν ∈ Ty0S, Diνn = 0 and in particular kn = Dnνn = 0
wrt the system C ′. It is known that tr(L) is independent of coordinates. So (1)
tr(A) = tr(A∗) =

∑n
i=1 κi =

∑n
i=1Di[Diν](y0).

The mean curvature is defined H(y0) = 1
n−1

∑n
i=1Di[Diψ/|Dψ|].

In particular if S is graph in Rn+1 over a domain G, given by xn+1 =
u(x1, ..., xn), where u ∈ C2(G) is a real valued function, we can consider ψ =
u(x1, ..., xn)− xn+1.
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If we set A = Â =
√

1 + |Du|2, then Djψ = Dju = Aνj , ADjA =∑n
k=1DjuDjku and DjA =

∑n
k=1 νjDjku. Hence

Diνj =
Diju

A
−Dju

DiA

A2
=
Diju

A
− 1

A

n∑
k=1

νjνkDiku.

Set uik = Diku, U = [uik] and denote the columbs of U with U1, ...

Un. If we add to j-th columb of the matrix [
Diju
A ], the linear combination

of 1
A

∑n
k=1 νjνkU

k, then the determinant of new matrix is (1− ν2
j )det[

Diju
A ]. If

we do this procedure respectively for j = 1, ..., n, we can conclude that

det[Diνj ] = det[
Diju

A
] =

detD2u

An+2
.

Set N = [Diνj ] tkj = νkνj , T = [tkj ], rkj = δkj − νkνj and R = [rkj ]. Since
R = I−T AN = U−UT = U(I−T ) = UR and therefore AndetN = detUdetR

detR = A−2

Now an application of (1) yields H(y0) = 1
n

∑n
i=1Di[Diu/A].

The Gaussian curvature is

K(x0) = det(L′) = Πκi = det[Diνj(y0)] =
detD2u

An+2
.

10 Minimal surfaces

p = ux q = uy
Finding the extrema of functionals is similar to finding the maxima and

minima of functions. The maxima and minima of a function may be loca-
ted by finding the points where its derivative vanishes (i.e., is equal to zero).
The extrema of functionals may be obtained by finding functions where the
functional derivative is equal to zero. This leads to solving the associated Eu-
lerLagrange equation.

Consider the functional
J [u] =

∫
G
L(x, y, u, p, q)dxdy, where L(x, y, u, p, q) is twice continuously dif-

ferentiable with respect to its arguments.
h(t) = J [u+ tv] = L(x, y, u+ tv, p+ tvx, qtvy)dxdy Since h′(t) =

∫
G
Ltdxdy

and Lt = vLu + vxLp + vyLq, h
′(t) =

∫
G
Ltdxdy =

∫
G

(vLu + vxLp + vyLq)dxdy
and in particular h′(0) = I :=

∫
G

(vLu + vxLp + vyLq)dxdy.
By partial integration, I =

∫
G
v(Lu − (Lp)x − (Lq)y)dxdy and therefore

(1) Lu − (Lp)x − (Lq)y = 0.
For example, if f(x, y) denotes the displacement of a membrane above the

domain D in the x, y plane, then its potential energy is proportional to its
surface area:

U [ϕ] =

∫∫
D

√
1 +∇ϕ · ∇ϕdx dy.
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Plateau’s problem consists of finding a function that minimizes the surface
area while assuming prescribed values on the boundary of D; the solutions
are called minimal surfaces. The EulerLagrange equation for this problem is
nonlinear:

ϕxx(1 + ϕ2
y) + ϕyy(1 + ϕ2

x)− 2ϕxϕyϕxy = 0.

Here
See Courant (1950) for details.

Here L = A =
√

1 + p2 + q2 and by (1) div(∇f/A) = 0.
Dirichlet’s principle
It is often sufficient to consider only small displacements of the membrane,

whose energy difference from no displacement is approximated by

V [ϕ] =
1

2

∫∫
D

∇ϕ · ∇ϕdx dy.

L = p2 + q2, Lp = 2p, (Lp)x = 2uxx and by (1), uxx + uyy = 0
The functional V is to be minimized among all trial functions f that assume

prescribed values on the boundary of D. If u is the minimizing function and v
is an arbitrary smooth function that vanishes on the boundary of D, then the
first variation of V [u+ εv] must vanish:

d

dε
V [u+ εv]|ε=0 =

∫∫
D

∇u · ∇v dx dy = 0.

Provided that u has two derivatives, we may apply the divergence theorem
to obtain

∫∫
D

∇ · (v∇u) dx dy =

∫∫
D

∇u · ∇v + v∇ · ∇u dx dy =

∫
C

v
∂u

∂n
ds,

where C is the boundary ofD, s is arclength along C and ∂u/∂n is the normal
derivative of u on C. Since v vanishes on C and the first variation vanishes, the
result is ∫∫

D

v∇ · ∇u dx dy = 0

for all smooth functions v that vanish on the boundary of D. The proof for
the case of one dimensional integrals may be adapted to this case to show that

∇ · ∇u = 0

in D.
The difficulty with this reasoning is the assumption that the minimizing

function u must have two derivatives. Riemann argued that the existence of a
smooth minimizing function was assured by the connection with the physical
problem: membranes do indeed assume configurations with minimal potential
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energy. Riemann named this idea the Dirichlet principle in honor of his teacher
Peter Gustav Lejeune Dirichlet. However Weierstrass gave an example of a
variational problem with no solution: minimize.

11 QCH

In this section we present the results from Filomat 31:10 (2017), 3023-3034,
https://doi.org/10.2298/FIL1710023M.

Sažetak

In [18], we study the growth of gradients of solutions of elliptic equ-
ations, including the Dirichlet eigenfunction solutions on bounded plane
convex domain. Several results related to Bi-Lipschicity of quasiconformal
harmonic (qch) mappings with respect to quasi-hyperbolic and euclidean
metrics, are proved. In connection with the subject, we announce a few
results concerning the so called interior estimate, including Proposition
13. In addition, a short review of the subject is given.

11.1 Introduction

There is a numerous literature related to the subject, see [33] and the lite-
rature cited there and in this paper. Here we give a short review of the subject,
announce and consider new results. In particular, here our discussion is related
to the following items:

(i) In Section 11.3, we outline a proof of result of Bozin- Mateljevic which
gives an answer to an intriguing problem probably first posed by Kalaj and
which states that Quasiconformal and HQC mappings between Lyapunov Jor-
dan domains are co-Lipschitz.

(ii) In [35], Li Peijin, Jiaolong Chen, and Xiantao Wang proved the gradi-
ent of Quasiconformal solutions of poisson equations are bounded under some
hypothesis. In Section 11.4 we announce some results related to the local version
of the interior estimate(see for example Proposition 22), and discuss whether
their result holds without the hypothesis that the radial derivative is bounded.

(iii) In Section 11.6, the author shows that the Dirichlet eigenfunction solu-
tions on bounded plane convex domain have bounded gradients. Our conside-
rations gives contribution to the problem posed in communication of the author
with Yacov Sinai.

(iv) Bi-Lipschicity property of Harmonic K-quasiconformal maps with re-
spect to k-metrics (quasi-hyperbolic metrics) in space is subject of of Section
11.7.

(v) In Section 11.8, we extend a result of Tam and Wan, [38], 1998. More
precisely, we prove if f is K-qc hyperbolic harmonic mappings of Hn with respect
to the hyperbolic metric with K < 3n−1, then f is a quasi-isometry.

Concerning the items (i), (ii) and (iii) we only outline some proofs. Note
that in Section 11.4, we only announce the following result:
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Proposition 13 (Local version of Interior estimate). Let s : U → R be a
continuous function from the closed unit disc U into the real line satisfying the
conditions:

1. χ is C1,α on U, then the the corresponding version of this result holds.

2. |∆χ| ≤ a0|∇χ|2 + b0, on V = V (r) = U ∩ B(w0, r), where w0 = eit0 ,
for some constants a0 and b0 (the last inequality we will call the interior
estimate inequality) and

3. χb(θ) = χ(eiθ) is C1,α on the interval l = {eit : t ∈ (t0 − e, t0 + e)} =
V (r) ∩ T.
Then there is 0 < r1 < r such that the function |∇χ| is bounded on
V (r1) = U ∩B(w0, r1).

See also Proposition 221 in Section 11.4 which is more complete statement.
In Section 11.2 we shortly consider the background of the subject and in

Section 11.9, we collect some definitions.

11.2 Bacground

For a function h, we use notation ∂h = 1
2 (h′x − ih′y) and ∂h = 1

2 (h′x + ih′y);

we also use notations Dh and Dh instead of ∂h and ∂h respectively when it
seems convenient.

We use the notation λf = lf (z) = |∂f(z)| − |∂̄f(z)| and Λf (z) = |∂f(z)|+
|∂̄f(z)|, if ∂f(z) and ∂̄f(z) exist.

Throughout the paper we denote by Ω, G and D open subsets of Rn, n ≥ 1.
Let B(x, r) == Bn(x, r) = {z ∈ Rn : |z−x| < r}, Sn−1(x, r) = ∂Bn(x, r)

(abbreviated S(x, r)) and let Bn, S = Sn−1 stand for the unit ball and the unit
sphere in Rn, respectively. In particular, by D (or U) we denote the unit
disc B2 and T = ∂D we denote the unit circle S1 in the complex plane. For
a domain D in Rn with non-empty boundary, we define the distance function
d = dD = dist(D) by d(x) = d(x; ∂D) = dist(D)(x) = inf{|x−y| : y ∈ ∂D}; and
if f maps D onto D′ ⊂ Rn, in some settings it is convenient to use short notation
d∗ = d∗(x) = df (x) for d(f(x); ∂D′). It is clear that d(x) = dist(x, Dc), where
Dc is the complement of D in Rn.

Proposition 14 (Proposition 5 [29]). If h is a harmonic univalent orientation
preserving k-qc mapping of domain D onto D′, then

d(z)Λh(z) ≤ 16K dh(z), and d(z)λh(z) ≥ 1− k
4

dh(z) . (146)

Proposition 15 (Corollary 1, Proposition 5 [29]). Every e-harmonic quasi-
conformal mapping of the unit disc (more generally of a strongly hyperbolic
domain) is a quasi-isometry with respect to hyperbolic distances.

1We believe that this result will find further application.
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From Proposition 14 directly follows next result (Proposition 16). 2

Proposition 16 ( [27]). Every e-harmonic quasi-conformal mapping of a do-
main different from C is a quasi-isometry with respect to quasi-hyperbolic di-
stances.

The next theorem concerns harmonic maps onto a convex domain. For the
planar version of Theorem 11.1 cf. [28, 29], also [33], pp. 152-153. The space
version was communicated on International Conference on Complex Analysis
and Related Topics (Xth Romanian-Finnish Seminar, August 14-19, 2005, Cluj-
Napoca, Romania), by Mateljević and stated in [29], cf. also [31].

Theorem 11.1 (Theorem 1.3, [29]). Suppose that h is an Euclidean harmonic
mapping from the unit ball Bn onto a bounded convex domain D = h(Bn), which
contains the ball h(0) +R0Bn. Then for any x ∈ Bn

d(h(x), ∂D) ≥ (1− ‖x‖)R0/2
n−1.

Although the proofs of the above results are not difficult, it turns out that
they have further impact on the subject. We will shortly discuss it in this paper.

We use a distortion property of quasiconformal maps to prove that for n-
dimensional Euclidean harmonic quasiconformal mappings with KO(f) < 3n−1,
Jacobian is never zero.

Theorem 11.2. [32, 19] Suppose that h : Ω 7→ Rn is a harmonic quasiconformal
map. If KO(h) < 3n−1, then its Jacobian has no zeros.

Theorem 11.3. Suppose h is a harmonic K-quasiconformal mapping from the
unit ball Bn onto a bounded convex domain D = h(Bn), with K < 3n−1. Then
h is co-Lipschitz on Bn.

We can generalize this result:

Theorem 11.4. Suppose that f : D1 −→ D2, where D1, D2 ⊂ Rn and the
complement D1 has at least one point, is a harmonic K-quasiconformal mapping
with KO(f) < 3n−1, (or and that f belongs to a non-zero Jacobian family of
harmonic maps), then f is bi-Lipschitz with respect k-metrics.

This theorem is stated as Theorem 11.12 in Section 11.7 and it is also proved
by Shadia Shalandi [36].

In particular,
(A) f is Lipschitz with respect to k-metrics.

Note that (A) holds more generally without the hypothesis that f belongs
to a non-zero Jacobian family, cf. [34].

Theorem 11.5 ([34]). Suppose that Ω ⊂ Rn, f : Ω → Rn is K-qr and Ω′ =
f(Ω). Let ∂Ω′ be a continum containing at least two distinct point.
If f is a vector harmonic map, then f is Lipschitz w.r. to quasi-hyperbolic
metrics on Ω and Ω′.

2In that time, the author did not realized that quasi-hyperbolic metrics have important
applications and did not state this version which due to V. Manojlovic.
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11.3 Quasiconformal and HQC mappings between Lyapu-
nov Jordan domains

Although the following two statements did not get attention immediately
after their publication, it turns out surprisingly that they have an important
role in the demonstration of Theorem 11.8 (co-Lip), [20].

Proposition 17 (Corollary 1, Proposition 5 [29]; see also [27]). Every e-
harmonic quasi-conformal mapping of the unit disc (more generally of a strongly
hyperbolic domain) is a quasi-isometry with respect to hyperbolic distances.

Theorem 11.6 ([28]). (ii.1) Suppose that h = f+g is a Euclidean orientation
preserving harmonic mapping from D onto bounded convex domain D = h(D),
which contains a disc B(h(0);R0) . Then |f ′| ≥ R0/4 on D.
(ii.2) Suppose, in addition, that h is qc. Then lh ≥ (1 − k)|f ′| ≥ (1 − k)R0/4
on D
(ii.3) In particular, h−1 is Lipschitz.

Further Kalaj [39] proved that

Theorem 11.7. Suppose h : D1 → D2 is a hqc homeomorphisam, where D1

and D2 are domains with C1,µ boundary.
(a)Then h is Lipschitz.
(b)If in addition D2 is convex, then h is bi-Lipschitz.

But this theorem in mind the following question:
Question 1: whether Quasiconformal and HQC mappings between Lyapunov
Jordan domains is co-Lipschitz?
is natural.

The proof of the part (a) of Theorem 11.7 in [39] is based on an application
of Mori’s theorem on quasiconformal mappings, which has also been used pre-
viously by Miroslav Pavlović in [40] in the case D1 = D2 = U, and a geometric
lemma related to Lypunov domains. It seems that using local version of the
interior estimate, Proposition 22, one can prove that the theorem holds if D2

has C2 boundary.
Note that our proof of Proposition 22 is not based on Mori’s theorem on

quasiconformal mappings, and a natural question arises:
Question 2. Whether a proof of Theorem 11.7(a) can be based on Propo-

sition 22.
It seems that we can use

Proposition 18. Every Lyapunov domain is exhausted by a monotonous sequ-
ence of C∞-domains which are Lyapunov - uniformly bounded.

Theorem C. Let f be harmonic K-qc map of U onto a domain G which is
exhausted by a monotonous sequence of domains which are Lyapunov- uniformly
bounded. Then f is L- Lipschitz and we have explicit estimate for L. Outline
of proof of Theorem C:

109



Rešenje. Let ω conformal and f be harmonic K-qc map of U onto C1,µ domain
G, rn = 1 − 1/n, Un = D(0; rn), Gn = ω(Un), γn boundary of Gn, Vn =
f−1(Gn), ψn conformal mapping of U onto Vn such that ψn(0) = 0 and ψ′n(0) >
0 and fn = f ◦ ψn.

Let fn be Ln-Lipschitz on U . An application of Theorem XX shows then
there are constants c0 and L0 such that

Lypγn ≤ c0 and Ln ≤ L0.
Since ψ′n(z) converges to 1 for every z ∈ U, f is L0-Lipschitz on U. 4

As an application of Gehring-Osgood inequality[22] concerning qc mappings
and quasi-hyperbolic distances, in the particular case of punctured planes, we
prove

Proposition 19. Let f be a K-qc mapping of the plane such that f(0) = 0,
f(∞) = ∞ and α = K−1 . If z1, z2 ∈ C∗, |z1| = |z2| and θ ∈ [0, π] (respec-
tively θ∗ ∈ [0, π]) is the measure of convex angle between z1, z2 (respectively
f(z1), f(z2)), then

θ∗ ≤ cmax{θα, θ},

where c = c(K). In particular, if θ ≤ 1, then θ∗ ≤ cθα.

We shortly refer to this result as (GeOs-BM). Through the paper we fre-
quently consider the setting (Uqc): Let h : U → D be K-qc map, where U is
the unit disk and suppose that D is Lyapynov domain. Under this hypothesis,
using (GeOs-BM), we prove that for every a ∈ T = {|z| = 1}, there is a special
Lyapunov domain Ua, of a fixed shape, in the unit disk U which touches a and
a special, convex Lyapunov domain lyp(D)−b , of a fixed shape, in D such that
lyp(D)−b ⊂ h(Ua) ⊂ Hb, where Hb is a half-plane Hb, which touches b = h(a).
We can regard this result as ”good local approximation of qc mapping h by its
restriction to a special Lyapunov domain so that codomain is locally convex”.
In addition if h is harmonic, using it, we prove that h is co-Lip U:

Theorem 11.8. Suppose h : U → D is a hqc homeomorphisam, where D is a
Lyapanov domain with C1,µ boundary. Then h is co-Lipschitz.

It settles an open intriguing problem in the subject and can be regarded as
a version of Kellogg- Warschawski theorem for hqc.

11.4 Quasiconformal solutions of poisson equations

In [35], Li Peijin, Jiaolong Chen, and Xiantao Wang proved the gradient of
Quasiconformal solutions of poisson equations are bounded under some hypot-
hesis. Using local version of the interior estimate, Proposition 22, we outline an
argument that their result holds without hypothesis (ii.2) (see below)3.

3At this point it may seem that we use a heuristic approach, but we hope to fill details in
a forth-coming paper.
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We introduce the following hypothesis:
(i.1) Let g be a function from D to C with a continuous extension to the closure
D of D, and
(i.2) let f : S→ C be a bounded integrable function on S and
(i.3) let Ω be a Jordan domain with C2 boundary.

Further, let
(ii.1) DD→Ω(g) denote the family of solutions w : D→ Ω of the Poisson equation
∆w = g, where w|S = f ∈ L1(S) and each w is a sense-preserving diffeomorp-
hism. In [35], it is proved if Ω is C2 domain,
(ii.2) |∂u/∂r| is bounded on D, where u = P [f ], and
(ii.3) w belongs to DD→Ω(g), then w is Lip on D.

For example, it seems natural to ask whether we can weaken (or remove) the
hypothesis that |∂u/∂r| is bounded and whether we can weaken the hypothesis
that g is continuous on the closure of the unit disk. We suggest the procedure
to drop the hypothesis (i1).

We study to which extent conformal theory can be extended to harmonic qc
mappings. It turns out that the following result is very useful.

Proposition 20 (Interior estimate). (Heinz-Bernstein, see Theorem 4’
[24]). Let s : U→ R be a continuous function from the closed unit disc U into
the real line satisfying the conditions:

1. s is C2 on U,

2. sb(θ) = s(eiθ) is C2 and

3. |∆s| ≤ a0|∇s|2 +b0, on U for some constants a0 and b0 (the last inequality
we will call the interior estimate inequality).

Then the function |∇s| is bounded on U.

We call Theorem 4’ [24], the interior estimate of Heinz-Bernstein.

Proposition 21. If w belongs DD→Ω(g), then |∇w| is bounded on D.

By hypotheses (i.1) and (ii.1), |∆w| is bounded on D, and w satisfies the
Poisson type inequality on D. It seems the idea4 behind the proof is to use
local coordinates ψ to make the part of boundary of the image to lay on R
(a hyperplane if we work in space) whose 2-th coordinate is 0 and then to
apply inner estimate on 2-th coordinate of function ψ ◦ u, which is 0 on the
the part of boundary of the unit disk D. An application of Proposition 20 (the
interior estimate of Heinz-Bernstein) (more precisely the local version of Interior
estimate, Proposition 22 below) yields the proof.

4We discussed this shortly as a new idea at Workshop on Harmonic Mappings and Hyper-
bolic Metrics, Chennai, India, Dec. 10-19, 2009, see Course-materials [41].
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11.5 Further results related to the interior estimate

We can refine the methods of the proof of Theorem 4’ [24] to derive:

Proposition 22 (Local version of Interior estimate). Let s : U → R be a
continuous function from the closed unit disc U into the real line satisfying the
conditions:

1. χ is C2 on U,

2. |∆χ| ≤ a0|∇χ|2 + b0, on V = V (r) = U ∩ B(w0, r), where w0 = eit0 ,
for some constants a0 and b0 (the last inequality we will call the interior
estimate inequality) and

3. χb(θ) = χ(eiθ) is C2 on the interval l = {eit : t ∈ (t0−e, t0+e)} = V (r)∩T.

4. More generally χ ∈ L1(0, 2π), χ′ ∈ L∞(l) and the Hilbert transform of
H(χ′) ∈ L∞(l).

Then there is 0 < r1 < r such that the function |∇χ| is bounded on V (r1) =
U ∩B(w0, r1).

If χ is C1,α on U, then the the corresponding version of this result holds.

The proof of this result will appear elsewere. Using Proposition 22, one can
prove:

Theorem 11.9. Let f be a quasiconformal C2 diffeomorphism from the plane
domain Ω onto the plane domain G. Let γΩ ⊂ ∂Ω and γG = f(γΩ) ⊂ ∂G
be C1,α respectively C2 Jordan arcs. If for some τ ∈ γΩ there exist positive
constants r, a and b such that

|∆f | ≤ a|∇f |2 + b , z ∈ Ω ∩D(τ, r), (147)

then f has bounded partial derivatives in Ω ∩ D(τ, rτ ) for some rτ < r. In
particular it is a Lipschitz mapping in Ω ∩D(τ, rτ ).

Under the stronger hypothesis that γG is C2,α this is proved in [25](and it
has been used there as the main tool).

11.6 the boundary regularity of Dirichlet Eigenfunctions

In communication with Yakov Sinai5 (April 2016, Princeton) the following
question appeared:

Question S-M. What can we say about the boundary regularity of Dirichlet
Eigenfunctions on bounded domains which are C2 except at a finite number of
corners6.

We have discussed the subject with Pier Lamberti who informed about nu-
merous literature related to this subject and in particular about items 1)-3).

5Abel prize Laureate 2014
6we address this question as Y. Sinai’s question or shortly S-M question
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1) the eigenfunctions of the Dirichlet Laplacian are always bounded, not
matter what the boundary regularity is.

2) the gradient of the eigenfunctions may not be bounded. The typical
situation in the plane is as follows. If you have a corner with angle β, then the
gradient is bounded around it if β ≤ π and unbounded if β > π.

3) An example: if Ω is a circular sector in the plane with central angle β,
then for all n ∈ N, ∇ϕn ∈ L∞(Ω) if 0 < β ≤ π; if π < β < 2π then for all
n ∈ N, ∇ϕn ∈ Lp(Ω) for all 1 ≤ p < 2β

β−π and there exists an infinite number of

eigenfunctions ϕn such that ∇ϕn /∈ Lp(Ω) if p ≥ 2β
β−π .

This example is discussed in Example 6.2.5 in E.B. Davies, Spectral theory and
differential operators, Cambridge University Press, Cambridge, 1995.
For example, if Ω is C2, using the so called interior estimate one can show that
the Dirichlet eigenfunctions are Lipschitz.

In standard spectral theory for differential operators, the eigenvalue problem
for the Dirichlet Laplacian is defined as follows:

Find u ∈W 1,2
0 (Ω) (eigenfunction) and λ ∈ R (eigenvalue) such that∫

Ω

∇u · ∇ϕdx = λ

∫
Ω

uϕdx

for all functions ϕ ∈W 1,2
0 (Ω).

We will call eigenfunctions in the above sense eigenfunctions for the Dirichlet
Laplacian (in SSTM; in standard spectral theory meaning) if there is possibility
of misunderstanding.

By w we denote a unique solution to the Dirichlet problem L(∂x)w = f ,

w ∈ Wm,2
0 (Ω), where f ∈ W 1−m,q(Ω) with q ∈ (2,∞). Here W l,p

0 (Ω) is the

completion of C∞0 (Ω) in the Sobolev space W l,p(Ω), 1 < p <∞, and W−l,p
′
(Ω)

with p′ = p/(p − 1) is the dual of W l,p
0 (Ω). The operator L(∂x) is strongly

elliptic and given by L(∂x) =
∑

0≤k≤2m ak∂
k
1∂

2m−k
2 . We can apply Kozlov-

Mazya result:

Theorem 11.10 (Theorem 2, [26]). Let u be a solution of the Dirichlet pro-
blem for elliptic equations of order 2m with constant coefficients in an arbitrary
bounded plane convex domain G. Then m-th order derivatives of u are bounded
if the coefficients of the equation are real.

Laplacian is elliptic equation of order 2. An application of Theorem 11.10
yield

Theorem 11.11. Suppose that the Dirichlet eigenfunction solution w ∈W 1,2
0 (Ω)

and Ω is bounded plane convex domain, then we have that gradient of w is bo-
unded.
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11.7 Bi-Lipschicity of quasiconformal harmonic mappings
in n-dimensional space with respect to quasi-hyperbolic
metrics

By the distortion property of qc (see [21], p. 383, [37], p. 63), there are the
constants C∗ and c∗ depend on n and K only, such that

B(f(x), c∗d∗) ⊂ f(Bx) ⊂ B(f(x), C∗d∗), x ∈ G, (148)

where d∗(x) := d(f(x)) = d
(
f(x), ∂G′

)
and d(x) := d(x, ∂G).

For definition od a non-zero Jacobian family see Definition 11.2 in Section
11.9 below.

Using our considerations in [34, 30, 32, 19], we can give a short proof of the
following result:

Theorem 11.12. Suppose that f : D1 −→ D2, where D1, D2 ⊂ Rn and the
complement of D1 has at least one point, is a harmonic K-quasiconformal map-
ping with KO(f) < 3n−1, (or and that f belongs to a non-zero Jacobian family
of harmonic maps), then f is bi-Lipschitz with respect k-metrics.

In particular,
(A) f is Lipschitz with respect to k-metrics.

Note that (A) holds more generally without the hypothesis that f belongs
to a non-zero Jacobian family, cf. [34].

It seems that there is a simple proof of Theorem 11.12.

Rešenje. Set r = r(z) = d(z, ∂D1) and R = R(fz) = d(f(z), ∂D2). Then, by
(148) (see also [30]), there is a constant c such that

f(B(z, r(z)) ⊃ B(fz, cR(z)), z ∈ D1. There there is a constant c0 such that
r(z)λf (z) ≥ cR(z), z ∈ D1, and hence
(B) f is co-Lipschitz with respect to to quasi-hyperbolic metrics.

The following result completes the proof.

Theorem 11.13 ([34]). Suppose that Ω ⊂ Rn, f : Ω → f(Ω) is harmonic and
K-qc.

Then h is pseudo-isometry w.r. to quasi-hyperbolic metrics on Ω and Ω′ =
f(Ω). In particular, it is Lipschitz with respect to k-metric.

4

By J(z) = Jf (z) = J(f, z) we denote the Jacobian determinant of f at z.
The above consideration also shows that
(C) r(z)J

1
n (z) ≈ R(z), z ∈ D1.

After writing a version of this manuscript we received information about
Shadia Shalandi work, see [36]. She also proved Theorem 11.12. Note that in
her formulation the hypothesis that the complement of D1 has at least one point
is missing.
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11.8 On harmonic K-quasiconformal map on Hn

Given Riemannian manifolds (M, g), (N,h) and a map φ : M → N , the
energy density of e(φ) at a point x in M is defined as

e(φ) =
1

2
‖dφ‖2 .

The energy density can be written more explicitly as

e(φ) =
1

2
traceg φ

∗h.

The energy of φ on a compact subset K of M is

EK(φ) =

∫
K

e(φ) dvg =
1

2

∫
M

‖dφ‖2 dvg,

where dvg denotes the measure on M induced by its metric.
Using the Einstein summation convention, if the metrics g and h are given

in local coordinates by g =
∑
gijdx

idxj and h =
∑
hαβdu

αduβ , the right hand
side of this equality reads

e(φ) =
1

2
gijhαβ

∂φα

∂xi
∂φβ

∂xj
.

We define the tension field τ(u) of u by coordinates

τ(u)ν = ∆gu
ν + gijΓ′ναβ ◦ uuαi u

β
j , (149)

where ∆g is the Laplace-Beltrami operator on M and Γ′ναβ are the Christoffel
symbols on N . The Euler-Lagrange equation for this energy functional is the
condition for the vanishing of the tension, which is, in local coordinates given
by (149), τ(u)ν = 0.

If Hm is identified as {(x1, ..., xm) : xm > 0} with the metric:

1

(xm)2
((dx1)2 + · · · (dxm)2)

then the tension field of u is given by

τ(u)ν = (xm)2
(
∆0y

ν − m− 2

(xm)2
yνm −

2

(ym)2
〈∇0y

ν ,∇0y
m〉
)

for 1 ≤ ν ≤ m− 1, and

τ(u)m = (xm)2
(
∆0y

m − m− 2

(xm)2
ymm +

1

(ym)2
(

m−1∑
ν=1

|∇0y
ν |2 − |∇0y

m|2
)
,

where ∇0 is the Euclidean gradient and ∆0 is the Euclidean Laplacian.
In [32], we proved:
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Proposition 23. Suppose that f has continuous partial derivatives up to the
order 3 at the origin 0 and that f : U(0) → Rn is K-qc, where U(0) is a
neighborhood of 0 in Rn. If KO(f) < 3n−1, then J(f, 0) 6= 0.
In particular, if g is analytic (more generally C(3)(U(0)) or g only has partial
derivatives up to the order 3), and if g is K-qc withKO(g) < 3n−1, then J(g, 0) 6=
0.

The result of the next proposition is based on Proposition 23.

Proposition 24. Let F be K-qc hyperbolic harmonic mappings of Hn with
respect to the hyperbolic metric. If K < 3n−1, then f is a quasi-isometry.

Tam and Wan, [38], 1998, proved the result if K < 2n−1.

Rešenje. We follow their argument. Suppose that there is a sequence of points
xn ∈ Hn, such that en(F )(xn) → 0 as n → ∞. Let o ∈ Hn be a fixed point
and An and Bn be isometry such that An(o) = xn and Bn(F (xn)) = o. Then
un = Bn ◦ F ◦ An are harmonic maps such that e(un)(o) → 0 as n → ∞. A
subsequence of un converges uniformly to a K-qc hyperbolic harmonic mappings
u with u(o) = o and e(u)(o) = 0. This contradicts the statement of a version of
Proposition 23 for C3 mapping, cf. also [31]. 4

11.9 Appendix

11.10 Some definitions and results

Let Ω ∈ Rn and R+ = [0, ∞) and f, g : Ω → R+. If there is a positive
constant c such that f(x) ≤ c g(x) , x ∈ Ω , we write f � g on Ω. If there is a
positive constant c such that

1

c
g(x) ≤ f(x) ≤ c g(x) , x ∈ Ω ,

we write f ≈ g (or f � g ) on Ω.
Let G ⊂ R2 be a domain and let f : G → R2, f = (f1, f2), be a harmonic

mapping. This means that f is a map from G into R2 and both f1 and f2 are
harmonic functions, i. e. solutions of the two-dimensional Laplace equation

∆u = 0 . (150)

The above definition of a harmonic mapping extends in a natural way to the case
of vector-valued mappings f : G→ Rn, f = (f1, . . . , fn), defined on a domain
G ⊂ Rn, n ≥ 2. Let h be a harmonic univalent orientation preserving mapping
on a domain D, D′ = h(D) and dh(z) = d (h(z), ∂D′). If h = f + g has the
form, where f and g are analytic, we define λh(z) = D−(z) = |f ′(z)| − |g′(z)|,
and Λh(z) = D+(z) = |f ′(z)|+ |g′(z)|.

Theorem 11.14. Let (fj), fj : Ω 7→ Rn, be a sequence of K-quasiconformal
maps, which converges pointwise to a mapping f : Ω 7→ Rn. Then there are
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three possibilities:
A. f is a homeomorphism and the convergence is uniform on compact sets.
B. f assumes exactly two values, one of which at exactly one point; covergence
is not uniform on compact sets in that case.
C. f is constant.

Definition 11.1. We say that a family F of maps from domains in Rn to Rn
is RHTC-closed if the following holds:

• (Restrictions) If f : Ω 7→ Rn is in F , Ω′ ⊂ Ω is open, connected and
nonempty, then f |Ω′ ∈ F .

• (Homothety) If f : Ω 7→ Rn is in F , a ∈ R, a > 0 then g : Ω 7→ Rn and
h : aΩ 7→ Rn are in F , where g(x) = af(x) and h(x) = f(x/a).

• (Translations) If f : Ω 7→ Rn is in F , t ∈ Rn, then g : Ω 7→ Rn and
h : t+ Ω 7→ Rn are in F , where g(x) = t+ f(x) and h(x) = f(x− t).

• (Completeness) If fj : Ω 7→ Rn, j ∈ N are in F , (fj) converges uniformly
on compact sets to g : Ω 7→ Rn, where g is non-constant, then g ∈ F .

For instance, families of harmonic maps and of gradients of harmonic func-
tions are RTHC-closed. Also, due to Theorem 11.14, for any given K ≥ 1, a
subfamily of K-quasiconformal members of a RTHC-closed family is also RTHC-
closed.

Definition 11.2. We say that a family F of harmonic maps from domains in
Rn to Rn is non-zero Jacobian closed, if it is RHTC-closed and Jacobians of all
maps in the family have no zeros.

Note that uniform convergence on compact sets in the case of harmonic maps
implies convergence of higher order derivatives, via Hölder and Schauder apriori
estimates (see [23], pp. 60, 90). This is related to elliptic regularity and holds
for more general elliptic operators, and not just Laplacian, so that this method
applies in that more general setting too.
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[31] M. Mateljević, The lower bound for the modulus of the
derivatives and Jacobian of harmonic univalent mappings
http://arxiv.org/pdf/1501.03197v1.pdf, [math.CV] 13 Jan 2015,
arXiv:1501.03197v2 [math.CV] 7 Feb 2015
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