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Abstract. In this paper, we study the conditions under which unique ex-
tremality of quasiconformal mappings occurs and provide a broader point of view
of this phenomenon. Additional information is obtained by means of specialized
constructions. In particular, we generalize the construction theorem in [BLMM],
thus providing a more basic understanding of it. We also generalize the notion of
unique extremality and give an analytic characterization of the generalized concept.

1 Introduction

Let f be a quasiconformal map of a region G of the complex plane, and µ = fz/fz

its complex dilatation. The basic problem we consider is to characterize those
dilatations µ that are uniquely extremal in their boundary class in the sense that
the corresponding mappings are uniquely determined by the requirement that the
essential sup of |µ| be minimal. Research on the problem started with Grötzsch
and Teichmüller in the 1930s. We obtain further results in this direction.

During the last several years, important progress has been made in char-
acterizing the conditions under which unique extremality occurs (see [BMM],
[BLMM],[M1], [Re9]). In particular, the Characterization Theorem, which gives
the characterization of unique extremality in functional-analytic fashion via special
sequences of integrable holomorphic functions has found interesting applications.

There are many examples of extremal dilatations with nonconstant modulus, but
all examples of uniquely extremal dilatations known up to the papers [BLMM] and
[BMM] were of Teichmüller type. Moreover, many results obtained by studying
the extremal problems spoke in favor of the conjecture that all uniquely extremal
dilatations µ satisfy |µ(z)| = ‖µ‖∞, for almost all z. In [BMM] and [BLMM],
it was shown that there are uniquely extremal dilatations with nonconstant mod-
ulus. Indeed, the form of a uniquely extremal complex dilatation can be very
complicated.
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Reich [Re3],[Re9] modified the construction in [BLMM],[BMM] by using
Runge’s Theorem instead of Mergelyan’s Theorem. Because of its highly technical
nature, one can miss an intuitive understanding of the construction in [BLMM].
This has motivated the author to continue the study of this subject and of related
properties of extremal and uniquely extremal dilatations.

In this paper, we consider uniquely extremal dilatations from a new point of
view. Roughly speaking, we study how uniquely extremal dilatations on a domain
are determined by their values on special sub-domains. In particular, we present
a new construction (Theorem 4.1 below). It is more visual, and a very special
case leads to the construction of a uniquely extremal complex dilatation which is
of Teichmüller type outside a set K of positive measure with empty interior and
has arbitrary values on K. See Section 4 for the corresponding definitions, further
details, and a discussion of the significance of our new constructions.

In [M1], we introduced the notion of a uniquely extremal complex dilatation
on an extremal set; this can be considered as a generalization of a uniquely ex-
tremal complex dilatation if the extremal set is of positive measure. Using this
notion, we generalize the results related to uniquely extremal dilatations; see the
Equivalence Theorem II for Pairs and Characterization Theorem II in Section 3.
In particular, a corollary of these results (Characterization Theorem II for Pairs)
finds applications in Section 4. We also provide some simplifications with respect
to the corresponding proof in [BLMM] (see Theorem 3.1). Taken together, these
results lead to a better understanding of unique extremality.

In Section 2, we discuss some of the background of the subject.

In Section 5, we collect some definitions and results that are required in the
sequel.

We have chosen to confine our discussion to subregions of the plane rather than
general Riemann surfaces. This enables us to focus on the basics, but still allows
for a rich variety of examples.

Part of this paper was published as a Warwick preprint [M5].

2 Definitions, Background; Extremal and uniquely ex-
tremal mappings

A. Extremal mappings. In this section, we give basic definitions and
state the main result about extremal quasiconformal mappings.

The interested reader can learn more about extremal mappings from the excel-
lent survey articles of Strebel [S5] and Reich [Re9] and the paper by Earle and Li
[ELi] (see also [M3]).
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The study of extremal mappings has been one of the main topics in the theory
of quasiconformal mappings since its earliest days, when Grötzsch solved the
extremal problem for two rectangles. In order to discuss such mappings, we recall
some familiar definitions.

For a function h Lebesgue integrable on a set M ⊂ C,

‖h‖M =

∫∫

M

|h|dxdy.

A homeomorphism f from a domain G onto another is called quasiconformal
(qc) if f is absolutely continuous on lines (ACL) in G and |fz̄| 6 k|fz| a.e. in G,
for some real number k, 0 6 k < 1. In this setting, it is well-known that the partial
derivatives fz, fz̄ are locally square integrable and that the directional derivatives
satisfy

(2.1) max |Dαf(z)| 6 K min |Dαf(z)|

for a.e. z ∈ G, where K = (1 + k)/(1 − k). Roughly speaking, (2.1) means that at
almost all points z ofG, infinitesimal circles are mapped onto infinitesimal ellipses
with axis ratio Df (z) 6 K. It is also well-known that if f is a quasiconformal
mapping defined on the region G, then the function fz is nonzero a.e. in G. The
function

µf =
fz̄
fz

is therefore a well-defined bounded measurable function on G, called the complex
dilatation (briefly, dilatation) or Beltrami coefficient of f . In the context of Riemann
surfaces, it is usually called a differential instead of a complex dilatation. The
L∞ norm of each Beltrami coefficient is less than one. Conversely, every µ in
L∞(G,C) with norm less than one is the Beltrami coefficient of some qc mapping
whose domain is G. A computation shows that

Df (z) =
1 + |µf (z)|

1 − |µf (z)|
.

The positive number

K(f) =
1 + ‖µf‖∞
1 − ‖µf‖∞

is called the maximal dilatation of f . We say that f is K-qc if f is a qc mapping
and K(f) 6 K.

Denote by QC(G) (briefly, QC) the family of all quasiconformal mappings
from G into C. Let QC0(G) denote the group of all quasiconformal mappings
from C onto itself that fix every point of C rG and are homotopic to the identity
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by a homotopy gt in which each gt is a homemorphism of C onto itself that fixes
every point of C r G. Two elements f, g ∈ QC(G) are equivalent (in the sense of
Teichmüller) if f−1 ◦ g ∈ QC0(G). This means that the equivalence class of f is
the set

Qf = [f ] = {f ◦ (φ0|G) : φ0 ∈ QC0(G)}.

Let S be a set of qc mappings whose domain isG. The mapping f0 in S is said to
be extremal in S ifK(f0) 6 K(g) for all g in S. In particular, a qc map f0 is extremal
in its Teichmüller class [f ] (abbreviated an EQC map) if K(f0) 6 K(g) for every
mapping g in the same class. A qc map f0 is uniquely extremal in its Teichmüller
class [f ] if every other mapping g in the same class satisfies K(f0) < K(g).

We closely follow the approach of Earle-Li [ELi] concerning the definition of
QC0 and extremal quasiconformal mappings on plane regions (see also below).
However, we find it more convenient in most of this paper to express the results in
terms of extremal and uniquely extremal dilatations. Thus, we refer to a complex
dilatation as extremal or uniquely extremal when a mapping with that complex
dilatation is extremal or uniquely extremal.

If two elements f, g ∈ QC(G) are equivalent (in the sense of Teichmüller),
we also say that their dilatations µ = µf and ν = µg are equivalent (see also the
corresponding definition in Section 5). We denote the equivalence class of µ by
[µ].

We also write

k0([f ]) = k0([µf ]) = inf{‖µg‖∞ : g ∈ Qf}

and
K0([f ]) = K0([µf ]) = inf{K(g) : g ∈ Qf}.

In studying extremal qc mappings of a region, theL1 norms of functions analytic
(holomorphic) in that region play a special role.

Denote by L1
a = L1

a(G) the Banach space consisting of all holomorphic func-
tions ϕ belonging to L1 = L1(G) with norm

‖ϕ‖ = ‖ϕ‖G =

∫∫

G

|ϕ(z)|dxdy <∞.

Instead of L1
a the notation A = A(G) is also used.

In the sequel, we shall assume that the complement CrG of G contains at least
three points. This assumption insures that the space L1

a(G) has positive dimension.
Let Ω be denote a domain in C and L∞(Ω) the space of all measurable and

essentially bounded functions on Ω. If µ ∈ L∞(Ω), we say that µ is a complex
dilatation on Ω. Let ‖µ‖∞ = ‖µ‖∞,Ω denote the L∞-norm of µ on Ω.
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Let M = M(Ω) be he open unit ball in L∞. Thus, if µ ∈ L∞(Ω) and k =

‖µ‖∞,Ω < 1, we write µ ∈ M.
For k > 0, let Mk = Mk(Ω) = {µ ∈ L∞(Ω) : ‖µ‖∞,Ω 6 k} be the closed ball of

radius k in L∞.
We say that a sequenceϕn converges c-uniformly on Ω if it converges uniformly

on every compact subset of Ω.
It is convenient to write

Λµ(ϕ) = (µ, ϕ) =

∫∫

G

µϕdxdy, λµ(ϕ) = Re

∫

G

µϕ,

where µ ∈ L∞(G), ϕ ∈ A; we then say that the linear functional Λµ ∈ A∗ is induced
by µ. A function η ∈ L∞ is an annihilator of A in L∞ if (η, ϕ) = 0 for every ϕ ∈ A.

We denote by N = N (G) the set of all annihilators of A in L∞ and we say
that µ ∈ L∞(G) and ν ∈ L∞(G) are infinitesimally equivalent (belong to the same
equivalence class in the tangent space B = B(G)) if µ − ν ∈ N (G). By the Hahn-
Banach Theorem and the Riesz Representation Theorem, (L1

a)
∗ is isometrically

isomorphic to the Banach space B of equivalence classes of elements in L∞.
We say that χ ∈ L∞(G) is extremal in its infinitesimal class (or, for short,

extremal) and write χ ∈ EDα if the norm of the linear function Λχ ∈ A∗ induced
by χ is the same as the sup norm ‖χ‖∞ of χ. This means that ‖χ‖∞ 6 ‖µ‖∞ for
every complex dilatation infinitesimally equivalent by χ.

For µ ∈ L∞, we denote by ‖µ‖∗ the norm of the functional Λµ on A = L1
a(G).

We say that a µ ∈ L∞ satisfies the Hamilton-Krushkal condition if

‖µ‖∗ = ‖µ‖∞.

We are now ready to state the main result about extremal complex dilatations.

Theorem HKRS (Hamilton-Krushkal and Reich-Strebel). Let G be a plane

region whose complement C r G contains at least three points. Let f be a qc
mapping whose domain is G and µ = µf its Beltrami coefficient. A necessary and

sufficient condition that f be an EQC (extremal) mapping in [f ] is that

‖µ‖∗ = ‖µ‖∞.

The proof that the Hamilton-Krushkal condition is sufficient is based on the
Reich–Strebel inequality (also called the Main Inequality). Various forms of this
inequality play a major role in the theory of quasiconformal mappings and have
many applications. In particular, the generalized Delta Inequality (Theorem 3 in
[BLMM]), which is a very convenient tool in the theory of uniquely extremal qc
mappings, is proved using the Main Inequality.
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A Hamilton sequence for µf , is a sequence in A, such that ‖ϕn‖ = 1 and

lim
n→∞

(µ, ϕn) = ‖µ‖∞.

Now we can state the theorem of Hamilton-Krushkal and Reich-Strebel in the
form: f is extremal in its class [f ] if and only if µf has a Hamilton sequence.

Theorem HKRS gives, via Hamilton sequences, what may be called an “ana-
lytic” method to test for extremality, in distinction to the earlier methods, which
were more “geometric” in character. By the Hamilton-Krushkal and Reich-Strebel
theorem, χ ∈ M is extremal in its infinitesimal class if and only if it is extremal in
its Teichmüller class.

Equivalence Theorem I which follows is the statement parallel to Theorem
HKRS for unique extremality.

B. Unique extremality. We say that χ ∈ L∞(G) is uniquely extremal in
its infinitesimal class (χ ∈ HBUa) if it is extremal and the linear functional Λχ ∈ A∗

induced by χ,

Λχ(ϕ) = (χ, ϕ) =

∫∫

G

χϕdxdy,

has a unique norm-preserving extension from A to a bounded linear functional
on L1(G). This means that for any µ ∈ L∞(G) in the same infinitesimal class,
‖χ‖∞ < ‖µ‖∞.

It is convenient to write

δn = δµ(ϕn;G) = ‖µ‖∞

∫

G

|ϕn|dxdy − Re

∫

G

ϕnµdxdy

and δµ[ϕn], δG[ϕn], δ[ϕn] instead of δµ(ϕn;G) if the meaning of this is clear from
the context.

We say that a sequence ϕn ∈ L1
a is a weak Hamilton sequence for µ if δµ[ϕn]

converges to 0.
The next two theorems have been proved by Božin, Lakić, Marković and

Mateljević in [BLMM], [BMM] and [MM1].

Theorem A (Equivalence Theorem I). Let χ ∈ M. Then χ is uniquely ex-
tremal in its Teichmüller class if and only ifχ is uniquely extremal in its infinitesimal

class.

The proof of Equivalence Theorem I is based on estimates which allow us
to compare two Beltrami coefficients µ and ν in the same global (Teichmüller)
equivalence class and two complex dilatations in the same infinitesimal equivalence
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class. Equivalence Theorem I was an important step in understanding the notion
of uniquely extremal complex dilatation.

The next important step is to analyze the proof of Hahn–Banach theorem and
its applications to our setting. In particular, using Equivalence Theorem I, we have
obtained the following necessary and sufficient criterion for the unique extremality
of a given Beltrami coefficient χ.

Theorem B (Characterization Theorem I, [BLMM], [BMM]). The Beltrami

coefficient χ is uniquely extremal if and only if for every admissible variation χ̂ of
χ, there exists a sequence ϕn in L1

a(G) such that

(a) δ[ϕn] = ‖ϕn‖‖χ̂‖∞ − Re
∫

G ϕnχ̂→ 0;
(b) lim infn→∞ |ϕn(z)| > 0, for almost all z in E(χ̂).

Here, an admissible variation χ̂ of χ is any complex dilatation that does not
increase the L∞-norm of χ, and which is allowed to differ from χ only on the set
Es = |χ(z)| 6 s < k, where k = ‖χ‖∞ and s is a constant, and the extremal set
E(χ̂) is the set on which χ̂(z) = ‖χ̂‖∞; in this setting, if χ̂ is different from χ only
on a set F ⊂ Es, we say that χ̂ is an admissible variation of χ on F .

Note that we do not require χ̂ and χ to be equivalent.
We say that µ ∈ L∞(G) satisfies the Reich condition on a set S ⊂ G, or that ϕn

is a Reich sequence for µ on S (relative to G if this is not clear from the context), if
(1) there exists a sequence ϕn ∈ L1

a(G) such that δµ(ϕn;G) → 0 (i.e., there is a
weak Hamilton sequence ϕn for λµ), and

(2) lim inf |ϕn(z)| > 0 a.e. in S.
Thus, by Characterization Theorem I, the Beltrami coefficient χ is uniquely

extremal if and only if for every admissible variation χ̂ of χ, there exists a Reich-
sequence ϕn in A(G) on the extremal set E(χ̂).

In particular, if |χ| is constant on G, χ is uniquely extremal on G if and only if
there exists a Reich sequence for χ on G.

The Characterization Theorem gives, via Reich-sequences, what may be called
an “analytic” method to test for unique extremality. Roughly speaking, we may
say that there is analogue between Theorem HKRS (via Hamilton sequences) and
the Characterization Theorem (via Reich-sequences).

Let χ ∈ L∞(G). It is convenient in some settings shortly to say χ ∈ L∞(G) is
uniquely extremal if the normalization χk = k χ/||χ||∞ is uniquely extremal in its
Teichmüller class for some 0 < k < 1 (and hence for every 0 < k < 1).

Definition 2.1 (complex dilatation of Teichmüller type). Let G be a domain
in C. If s is a nonnegative measurable function from G into [0, 1) and ψ is an
analytic function, not identically zero, on G, we say that µ = s(z)|ψ|/ψ is of
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general Teichmüller type (s, ψ) on G. If, in addition, s is a constant k a.e. on G,
we say that µ is of Teichmüller type (k, ψ) on G; and if ψ is an analytic integrable
function on G, we say that µ is a Teichmüller complex dilatation.

Thanks to the Characterization Theorem, we can study uniquely extremal di-
latations using an infinitesimal cotangent space A = L1

a, which is the space of
holomorphic integrable functions. Using new tools, some properties of uniquely
extremal dilatations of general Teichmüller type have been described. In particular,
the compactness of certain families of holomorphic functions and the mean value
theorem are used to prove the following results [M5].

Theorem C (Second removable singularity theorem). Let Ω be a bounded
domain (multiply connected in general), Ω∞ the unbounded component of Ωc

and Ω0 = (Ω∞)c. Let χ be a uniquely extremal complex dilatation of general
Teichmüller type (s, ϕ) on Ω. Then

(a) χ = k|ϕ|/ϕ a.e. in Ω, where k is a constant.

If, in addition, χ has a uniquely extremal extension to Ω0, then

(b) ϕ has an analytic extension ϕ̃ from Ω to Ω0

(c) χ = k|ϕ̃|/ϕ̃ a.e. in Ω0.

If D is a simply-connected domain and K a compact set such that K ⊂ D, we
say that (K,D) is a pair.

Theorem D. Let (K,D) be a pair and V = D rK.

(A) Suppose that
(a) |χ| is a constant a.e. on D and χ is HBUa on D.

Then
(b) there is a Reich sequence consisting of polynomials for χ on D (and, in

particular, on V ).
(B) Suppose that

(b1) there is a Reich-sequence consisting of polynomials for χ on V ; and
(c) χ is a complex dilatation of general Teichmüller type (s, ϕ) on V .

Then there is a unique complex dilatation χ0, which is the uniquely extremal

extension of χ to D (and which, consequently, is of Teichmüller type).

Note that the hypothesis in part (B) of this theorem and differs from that
Theorem C. Namely, the assumption in Theorem C that χ is uniquely extremal in
D = Ω0, is replaced in Theorem D by the assumption that there is a Reich-sequence
consisting of polynomials for χ on V .
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3 The equivalence and characterization theorem II

3.1 The Equivalence Theorem II. We first give a very short proof of a
version of the generalized infinitesimal delta inequality.

Theorem 3.1 (Generalized infinitesimal delta inequality-Version 2). Let µ
and ν be equivalent in B and ‖ν‖∞ 6 k0 = ‖µ‖∞. Suppose there exist a positive

number ε and a measurable set F such that

|µ(z) − ν(z)| > 2ε, a.e. on F.

Then

(k0 − d)‖ϕ‖F 6 δµ[ϕ], ϕ ∈ L1
a,

where d =
√

k2
0 − ε2.

Proof. By the parallelogram law, |µ+ ν|2 + |µ− ν|2 = 2(|µ|2 + |ν|2); therefore,
by hypothesis, |µ+ ν|2 + 4ε2 6 4k2

0 a.e. on F . Hence

(3.1)
∣

∣

∣

µ+ ν

2

∣

∣

∣
6 d, a.e. on F,

where d =
√

k2
0 − ε2.

Since

(3.2) δµ[ϕ] = k0‖ϕ‖ − Re

∫

G

µ+ ν

2
ϕ, ϕ ∈ A,

using (3.1), we conclude that

(k0 − d)‖ϕ‖F 6 δµ[ϕ],

where
‖ϕ‖F =

∫∫

F

|ϕ|dxdy. �

In order to obtain more insight into the notion of uniquely extremal dilations,
we introduce the concept of unique extremality on a subset of a given domain.

Definition 3.1 (Unique extremality on a subset of a given domain). LetW be a
subset of a given domain G. Suppose that W has positive Lebesgue 2-dimensional
measure. We say that χ ∈ M (respectively, χ ∈ L∞(G)) is uniquely extremal
(respectively, satisfies the unique extension property) on W relative (with respect)
toG in its Teichmüller class (respectively, in its infinitesimal class) if the hypothesis
that µ is equivalent to χ in its Teichmüller class (respectively, in its infinitesimal
class) in G together with the condition ‖µ‖∞ 6 ‖χ‖∞ implies that µ = χ a.e. onW .
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We are mainly interested in the cases when GrK is the corresponding ring of
a pair (K,G) or the extremal set of a dilation.

The proof of the following result uses Lemmas A and B stated in Section 5.

Theorem 3.2 (Equivalence Theorem II for pairs). Let (K,D) be a pair, V =

D rK and χ ∈ M(D).
Then the following conditions are equivalent:

(a) χ is uniquely extremal on V with respect to D in its Teichmüller class;
(b) χ satisfies the unique extension property on V with respect to D in its in-

finitesimal Teichmüller class in the tangent space B.

Proof. Following the same steps as those in the proof of Lemma 3 [BLMM]
and using Lemma A, we find that (a) implies (b). It remains to prove that (b) implies
(a). Assume (b). Let χ and ν belong to the same class in T . Then there exist qc
mappings f = fχ and g = fν , equivalent in the sense of Teichmüller, with Beltrami
coefficients χ and ν, respectively. Let α = Belt[f−1] ◦ f and β = Belt[g−1] ◦ f . Let
h = g−1 ◦ f , and η = Belt[h].

Following the same steps as those in the proof of Lemma 4 [BLMM] and using
Lemma B, we find α = β a.e. on V , so that h is conformal on V . Since h has
boundary values of the identity on ∂D, we see that h is the identity on V ; therefore,
f = g on V . Thus we have proved that (a) holds. �

3.2 Characterization Theorem II and unique extremality. For a
given χ ∈ L∞(G), it is convenient to mark the extremal vector χe defined by
χe = χ, onE and χe = 0, onGrE. Thus χe = KEχ, whereKE is the characteristic
function of E.

The discussion in [BLMM] shows that χe has an important role in characteri-
zations of an uniquely extremal complex dilatation χ.

Let A = L1
a, and let Ae = Aχe

be the smallest subspace of L1 which contains
A∪ {χe}.

In [M1] and [M3], a proof of the following result is outlined.

Theorem 3.3 (Characterization Theorem II). Let χ ∈ L∞. The following

conditions are equivalent:
(a) χ satisfies the unique extension property on its extremal set E;

(b) satisfies the Reich-condition on its extremal set E.

Proof. (a) implies (b). Assume (a) and let λ = λχ. Since χ is extremal,
k = ‖χ‖∞ = ‖λ‖∗; and therefore ‖λ‖Ae

= k. We first prove
(c) λχ has a unique norm-preserving extension from A to Ae.
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Let ν ∈ L∞ be such that λν = λ on A and ‖λν‖Ae
= k.

By the Hahn-Banach theorem, there exists µ ∈ L∞ such that λµ = λν on Ae

and ‖µ‖∞ = k. Hence, by (a), µ = χ on E; and we conclude that λ(χe) = λµ(χe)

and λ = λµ on Ae. Thus λ = λµ = λν on Ae and, in particular, λν = λ on Ae. This
means that (c) holds. Hence, as in [BLMM], we conclude that (b) holds.

An application of the generalized Delta Inequality shows that (b) implies (a). �

Using the considerations in this paper as well as those in [BLMM] and [BMM],
one can verify the following results.

Proposition 3.1. (d) If ϕn ∈ L1
a is a weak Hamilton sequence for µ and

A = E−
s = {z : |µ(z)| 6 s < ‖µ‖∞}, then ‖ϕn‖A converges to 0.

If χ is uniquely extremal, then

(e) the set E−
s = {z : |χ(z)| 6 s < k = ‖χ‖∞} has empty interior;

(f) every annihilator with support on E−
s is trivial; and

(g) every admissible variation χ̂ of χ is uniquely extremal.

Here is an outline of the proof of (g). Suppose that χ̂ is an admissible variation
ofχ on F ⊂ E−

s and there is an annihilator η such that χ̂+η ∈ Mk, where k = ‖χ‖∞.
Since Mk is convex, χ1 = χ+ εη ∈ Mk for ε > 0 small enough. Hence, since χ is
uniquely extremal, η is trivial.

Theorem 3.4 (Characterization Theorem II for pairs). Let (K,D) be a pair
and V = D rK. Suppose that V is an extremal set of χ ∈ M(D). Then

a) Then χ is uniquely extremal on V with respect to D if and only if there is a

Reich-sequence for χ on V .

b) Suppose, in addition, that |χ| 6 s a.e. on K, where s < ‖χ‖∞. Then χ is
uniquely extremal on D if and only if there is a Reich-sequence for χ on V

and K has empty interior.

Proof. Part a) is an immediate corollary of Characterization Theorem II and
Equivalence Theorem II for pairs.

It remains to consider part b). Suppose there is a Reich-sequence for χ on V
and K has empty interior. Let ν be equivalent to χ in its infinitesimal class and
η = χ − ν. By part a), χ = ν a.e. on V . Thus η has support on K. Hence, by
Lemma R (see Section 5), η = 0 a.e. on K; and therefore χ is uniquely extremal
on D.

If χ is uniquely extremal on D, then by Proposition 3.1 (see also Proposition A
in Section 4), K has empty interior. On the other hand, since V is an extremal set
of χ ∈ M(D), there is a Reich-sequence for χ on V . �
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In a forthcoming paper, we plan to prove the results of this subsection in detail
and to elaborate their connections with the subject discussed in this paper and
[M5].

4 Constructions

Thanks to the characterization of unique extremality by Reich-polynomials and the-
orem of Runge and Mergelyan, we can make interesting constructions of uniquely
extremal dilatations.

Before we state our results, we introduce a class of sets which is important in
our investigation. LetK be a compact subset of C whose complement is connected
in C (Mergelyan set, M -set) and whose interior is empty. We say that K is a
special Mergelyan set (special M-set). The motivation for this definition is
the following celebrated result of Mergelyan.

Theorem E (Mergelyan’s Theorem). Let F be a compact set in the plane
whose complement is connected and f a continuous complex function on F which

is holomorphic in the interior of F . Then for any ε > 0, there exists a polynomial

P such that |f(z) − P (z)| < ε for all z ∈ F .

LetK be a compact subset of a Jordan domainD, containing at least two points,
such that DrK is doubly connected. We call (K,D) a doubly-connected pair.
This notion is convenient for application of the Runge’s Theorem. In particular,
this means thatK is a connectedM -set. In connection with Mergelyan’s Theorem,
note that the hypothesis of that result requires only that K does not separate the
plane: the theorem is applicable even if K is not connected.

Let f be a qc mapping on G and let µ = µf and k = ‖µ‖∞. Suppose that there
is a ball B ⊂ G such that ess sup{|µ(z)| : z ∈ B} < k. Let f(B) = B∗ and let
ϕ and ϕ∗ be conformal mappings from B and B∗ onto Π+, respectively. Define
f∗ = ϕ−1

∗ ◦ AK ◦ ϕ, where K > 1. Then f∗ = f on ∂B and if K is close to 1 then
ess sup{|µf∗(z)| : z ∈ B} < k. This means f is not uniquely extremal. Thus, we
have proved the following result, which was observed by Reich [Re7].

Proposition A. If χ ∈ HBUa(G) and k = ‖χ‖∞, then ess sup |χ(z)| = k over

each open set G0 ⊂ G

Therefore, the following question arises naturally (see [Re7] and [S5]).

Question. Does χ ∈ HBUa actually imply that |χ(z)| = k a.e.?

The next theorem shows that the answer to the corresponding question, con-
cerning the more general concept of uniquely extremal complex dilatation, is
negative.
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Proposition 4.1. Let (K,∆) be a doubly connected pair and let V = ∆ rK.

Then there exists χ ∈ L∞(∆) such that χ is zero on K; V is its extremal set, that is,
V = {z ∈ ∆ : |χ(z)| = ‖χ‖∞ = k > 0}; and χ is uniquely extremal on its extremal

set V relative to ∆.

Note that only those cases in which K is of positive measure are of interest.

Although this result can be considered as a corollary of a very special case of
Theorem 4.1 (see below) and the Delta Inequality, we state it separately because
it has a significant corollary (see Proposition 4.3 and Remark 4, following the
statement of Theorem 4.1). Namely, if K is a set with empty interior (i.e., in this
setting, a special M -set with connected complement) and with positive Lebesgue
two-dimensional measure, then we can use the result to construct an example of
an uniquely extremal complex dilatation with nonconstant modulus.

Moreover, it explains the difference between two concepts of unique extremal-
ity: more precisely, in the setting described by the proposition, χ is uniquely
extremal on ∆ if and only if K is a set with empty interior.

Using the Mergelan’s theorem instead of Runge’s theorem, one can prove that
the proposition supposing only that ∆ rK is connected (thus, without assumption
that K is connected).

Proposition 4.2. Let (K,∆) be a doubly connected pair and let V = ∆ rK.

a) Then there exists a sequence of polynomials ϕn and χ ∈ L∞(∆) such that

χ is zero on K, ‖χ‖∞ = k > 0, V is its extremal set (i.e., V = E(χ) =

{z ∈ ∆ : |χ(z)| = ‖χ‖∞ = k > 0}), and ϕn is a Reich-sequence for χ on V

relative to ∆.
b) Moreover, χ described in a) is uniquely extremal on its extremal set V with

respect to ∆.

Proof. Part a) is a very special case of Theorem 4.1. Part b) is an immediate
corollary of the part a) of Theorem 3.4. �

Proposition 4.1 follows from Proposition 4.2.

Remark 1. One can also verify that χ defined by the proposition is uniquely
extremal on its extremal set V with respect to ∆ in its Teichmüller class, using
the method of the proof of Theorem V. 3.1 [Re9], which is a special case of the
Characterization Theorem. It follows because the proof of Theorem V. 3.1 [Re9] is
more elementary then the proof of the generalized Delta Inequality in Teichmüller
class.
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The situation described in the proposition (in particular, in which K is a set
with empty interior and with positive two-dimensional measure) is one that we
often encounter. Hence it is convenient to introduce new terminology.

Definition 4.1 (Special sequence of polynomials). Suppose that (K,D) is a
pair and K has positive Lebesgue two-dimensional measure. If a sequence of
polynomials ϕn uniformly converges to 0 on K and satisfies the Reich-condition
on V = D r K, we call ϕn a special sequence of polynomials for the pair
(K,D).

We are mainly concerned in this paper with the case in which (K,D) is a doubly-
connected pair. Special sequences of polynomials play an important role in the
constructions of uniquely extremal dilatations. Namely, the following special case
of Proposition 4.2 is important: if (K,D) is a special doubly-connected pair, then
there is a special sequence of polynomials for it.

It is interesting that the following surprisingly simple lemma (concerning spe-
cial sets) plays a role in the construction of uniquely extremal dilatations with
nonconstant modulus.

Lemma R (Annihilators on special sets). Let K ⊂ G be a special Mergelyan

set and ν an annihilator of A(G) in L∞ such that supp ν ⊂ K. Then ν = 0.

In the case when G is the unit disk, this lemma was proved by Reich in [Re7]
(see also [MM1] and Lemma 6 [BLMM]).

For the reader who likes to have some pictures of special connected Mergelyan
sets, the following example may be useful.

Example 1. Let C0 be a Cantor set on the segment l = [0, 1] with positive
one-dimensional Lebesgue measure and K0 = {(x, y) : x ∈ C0, |y| 6 1}. Then
K = K0 ∪ l is a special connected Mergelyan set.

The following result is an immediate corollary of Proposition 4.1 and Lemma
R.

Proposition 4.3 ([BLMM]). LetK be a compact set of positive measure with

no interior (K,∆) double connected pair and let V = ∆ r K. Then there exists

χ ∈ HBUa such that χ(z) = 0 in K and |χ(z)| = k > 0 a.e. in V = Kc = ∆ rK.

Proof. By Proposition 4.1, there exists χ ∈ L∞(∆) such that χ is zero on K;
V is its extremal set, i.e. V = {z ∈ ∆ : |χ(z)| = ‖χ‖∞ = k > 0}; and χ is uniquely
extremal on its extremal set V relative to ∆. Hence, if µ is equivalent to χ in its
Teichmüller infinitesimal class in ∆ and ‖µ‖∞ 6 ‖χ‖∞ , it follows that µ = χ a.e.
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on V ; and therefore ν = µ− χ is an annihilator of A in L∞ and has support on K.
So, by Lemma R, ν = 0 a.e. on ∆. Thus, χ is uniquely extremal. �

In [BLMM] we showed, using Mergelyan’s Theorem, that the result holds if
K ⊂ ∆ is a special Mergelyan set of positive Lebesgue 2-dimensional measure.

We refer to the proof of this result as the construction of a uniquely extremal
complex dilatation with nonconstant modulus (briefly, “the construction”).

Simplifications of the construction have been given by the author during his
lectures at Scoala Normala Superioara Buchurest (SNSB), 2003–2004 (to appear
in [M4]).

Theorem F (Runge’s Theorem). Suppose K is a compact set in the plane,

C rK is connected, and f is a holomorphic function on Ω (i.e., f ∈ H(Ω)), where
Ω is some open set containing K. Then there is a sequence {Pn} of polynomials

such that Pn → f uniformly on K.

Outline of new construction. Let (K,D) be a doubly-connected pair. We
show that there exists a sequence of Jordan-domains Jn such that

(4.1) Jn ⊂ IntJn+1,
∞
⋃

1

Jk = D rK.

In this setting, we say that sequence of Jordan-domains Jn exhausts D r K.
Namely, since D r K is doubly connected and K contains at least two point,
there is a conformal mapping Φ of ∆ r B onto D r K, where ∆ denotes the
unit disk and B is the closed disc of radius centered at 0. Let rn = r + 1/n,
J ′
n = {ρeiθ : rn < ρ < 1, 0 < θ < 2π − 1/n} and Jn = Φ(J ′

n). It is clear that the
sequence of Jordan-domains Jn satisfies condition (4.1).

Definition 4.2 (Simply-connected triple). Let Ir = (r, 1) be an interval, Λ =

Φ(Ir), V = DrK, and V ′ = V rΛ. We call (K,D, V ′) a simply-connected triple (a
doubly-connected pair (K,D) with cut Λ). If, in addition, K has empty interior we
say that (K,D, V ′) is a special simply-connected triple and that (K,D) is a special
doubly-connected pair.

Suppose that (K,D) is a pair and χ is of general Teichmüller type (s, ϕ) on
V = D r K. In this setting, the proof of Theorem D (see also Theorem C) tells
us that if χ 6= 0 a.e. on V and has a Reich-sequence consisting of polynomials
on V , then the corresponding normalized sequence of polynomials Pn converges
c-uniformly on D and gives the analytic continuation ϕ̃ of ϕ to D. Since ϕ̃ is not
identically zero on D, we can define χ̃ = k |ϕ̃|

ϕ̃ . It is not difficult to verify that Pn is
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a Reich-sequence for χ̃ on D and therefore that χ̃ ∈ HBUa(D) (see Theorem D).
In particular, if χ is uniquely extremal on D and χ = 0 on K, then χ = 0 on D a.e.
or K is a finite set.

If, in addition, the normalized sequence of polynomials Pn is special for χ and
the pair (K,D), then we first conclude that ϕ̃ is zero on K. Therefore, χ cannot be
of Teichmüller type on V unless K is a finite set or s = 0 a.e. on V .

The two next lemmas are immediate corollaries of the Runge and Mergelyan
theorem respectively.

Lemma Ru. LetK be aM -set andG be a Jordan domain such thatG∩K = ∅.

Suppose that ψ0 is a holomorphic function on K, and ϕ0 is a holomorphic function
on G. Then, for every ε > 0, there exists a polynomial P such that

(1) |P − ψ0| < ε on K

(2) |P − ϕ0| < ε on G.

Lemma Ru-M. LetK be a specialM -compact set andG be a Jordan domain
such that G ∩ K = ∅. Suppose that f is a continuous function on K and ϕ0 a

holomorphic function on G. For every ε > 0, there exists polynomial P such that

(1) |P − f | < ε on K
(2) |P − ϕ0| < ε on G.

Concerning Lemma Ru, we note that we can consider it the germ of a new
construction. If ψ is a holomorphic function on K, we can modify the original
construction from [BLMM] (see also the proof of Theorem 4.1 and Reich’s survey
[Re9]) to prove that there is a sequence of polynomials ϕn which converge uni-
formly to ψ onK and satisfy the Reich-condition on V = DrK for some complex
dilatation µ.

Theorem 4.1 (Construction Theorem). Let (K,D, V ′) be a simply-connected
triple and ψ0 a holomorphic function on K.

a) There is a sequence of polynomials ϕn which converge uniformly to ψ0 on K

and converge c-uniformly to a holomorphic nonzero function ϕo on V ′, and
which is a Reich-sequence on V .

b) If, in addition, ψ0 is different from 0 a.e. in K, and if χ is defined on D by
χ = |ψ0|

ψ0

on K and χ = |ϕ0|
ϕo

on V ′, then the sequence ϕn is a Reich-sequence

for χ on D, and therefore χ is HBUa on D.

The situation described in the theorem is often encountered. Hence it is conve-
nient to introduce new terminology.
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Definition 4.3 ((ϕo, ψ0)-special sequence of polynomials). We call the se-
quence ϕn described in Theorem 4.1 a (ϕ0, ψ0)-special sequence of polynomi-
als for the simply-connected triple (K,D, V ′).

Before proving the theorem, we state some remarks and corollaries which
provide some indication of its significance.

Remarks on and corollaries to Theorem 4.1
1. The theorem holds if we only suppose that ψ0 is continuous on K and

holomorphic in the interior of K.
2. The assumption that ϕn is a Reich-sequence of polynomials on V ′ which

converges c-uniformly to a not identically zero function ϕo holomorphic on V ′,
implies that ϕo is different from 0 on V ′.

3. (Holomorphic function as germ of uniquely extremal complex dilatation.) If
the holomorphic function ψ0 is different from 0 a.e. in K and χ is defined on K by
χ = |ψ0|

ψ0

, then it follows from part b) of the theorem that χ has an extension which
is uniquely extremal on D.
Namely, if we extend χ to D by χ = |ϕ0|

ϕo

on V ′, where the function ϕ0 is defined
by the sequence ϕn on V ′, then ϕn is a Reich-sequence for χ on D. Therefore, by a
special case of Characterization Theorem (Proposion B, see Section4), χ is HBUa
on D, i.e., χ is uniquely extremal.
In this way, we can roughly state that every ψ0 is a germ of a uniquely extremal
complex dilatation on D.
Continuous function as germ of uniquely extremal complex dilatation.
In particular, if K is a special set, f is a continuous function on K which is
different from 0 a.e. in K, and if χ0 = |f |

f on K, then using the method of the proof
of Theorem 4.1 and Mergelyan’s Theorem instead of Runge’s, one can show that
χ0 has a uniquely extremal extension to D (see Corollary 2).

4. (Construction of uniquely extremal complex dilatation with nonconstant
modulus.) If ψo ≡ 0, and χ is defined on D by χ = |ϕ0|/ϕo on V ′ and χ = 0 on K,
using the Delta Inequality in the tangent space B (as in [BLMM]), one can show
that χ is uniquely extremal on V relative to D (see Proposition 4.2).
If, in addition, the set K has empty interior and positive two-dimensional mea-
sure, then using Lemma R, which states roughly that annihilators with support on
special sets vanish, one can show that χ is uniquely extremal (HBUa) on D (see
Proposition 4.3). This gives an example of uniquely extremal complex dilatation
with nonconstant modulus.
Note that one can verify that χ defined in this item is uniquely extremal by means
of Theorem V. 3.1 [Re9], which is a special case of the Characterization theorem.
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That makes sense because the proof of this theorem is much simpler than the proof
of the Characterization Theorem.

5. If ψ0 has no analytic continuation to D, then by Theorem C, the complex
dilatation χ is not of Teichmüller type on V (i.e., the function ϕo has no analytic
continuation to V ). Thus we can construct a uniquely extremal complex dilatation
µ on D which is of Teichmüller type on both V ′ and K, but not on K ∪ V ′.

The next statement is an immediate corollary of Theorem 4.1.

Corollary 1 (HBUa continuation of holomorphic function). Let (K,D) be a
doubly-connected pair, ψ0 a holomorphic function on K, which is nonzero 0 a.e. in

K. If χ0 = |ψ0|
ψ0

on K, then there exists χ ∈ HBUa on D such that χ = χ0 on K.

Corollary 2 (HBUa continuation of continuous function). Let (K,D) be a

special doubly-connected pair, and let f be a continuous function on K which is

nonzero a.e. in K. If χ0 = |f |
f on K, then there exists χ ∈ HBUa on D such that

χ = χ0 on K.

Using Mergelyan’s Theorem as in [BLMM], one can show that the Correlary 1
holds if (K,D) is a pair and K a special M -set.

The proof of Corollary 2 is similar to the proof of Theorem 4.1 below. The
only difference is in the application of Mergelyan’s Theorem (instead of Runge’s
Theorem), which gives

(2′′) ϕn − f = 0(1) on K.

The proof of the part b) of Theorem 4.1 is based on the following important
corollary of the Characterization Theorem.

Proposition B. If |χ| is a constant on G, then χ is uniquely extremal if and

only if χ satisfies the Reich-condition on G.

Proof of Theorem 4.1. Inductively, we can find a sequence of polynomials
{ϕn} and a sub-sequence Vn of the sequence Jn such that

(1)
∫ ∫

Λn

|ϕn| = 0(1), where Λn = V r Vn+1.
(2) ϕn − ψ0 = 0(1) on K
(3) |ϕn+1 − ϕn| <

1

2n
on Vn+1

Note that we have used Lemma Ru in the inductive procedure. After application
of Lemma Ru on the pair K and Vn, we construct function ϕn. It seems that we
have difficulties because we do not control ϕn on the canal Λn−1 = V r Vn. Since
⋃

Jk = V ′, there is m such that
∫

VrJm

|ϕn| = 1/2n. Set Vn+1 = Jm.

Note that we do not yet have control of ϕn on the set Λ′
n = Vn+1 r Vn.
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It is interesting that another application of Lemma Ru enables to overcome this
difficulty. Namely, for givenϕn, there is a polynomialϕn+1 such that |ϕn+1−ϕn| <

1/2n on Vn+1 and ϕn+1 − ψ0 = 0(1) on K. Thus, we modify ϕn by ϕn+1 on Vn+1.
By the triangle inequality and (3), it follows that

|ϕm − ϕn| <
1

2n
+

1

2n+1
+ · · · =

1

2n−1

on Vn+1 (m > n > 1) and therefore ϕn forms a Cauchy sequence, which converges
c-uniformly to a holomorphic function ϕ0 on V ′. In particular, |ϕn − ϕ0| = 1/2n−1

on Vn+1 and hence
(3′) ϕn − ϕ0 = 0(1) on Vn+1, and |ϕn| − |ϕ0| = 0(1) on Vn+1.

One can choose ϕ1 such that ϕ1 ≡ 2 on C.
Since |ϕ1(z) − ϕ0(z)| 6 1 for all z ∈ V2, ϕ0 does not vanish in V2; therefore, ϕ0

can only have isolated zeros in V ′. Suppose that ψ0 is different from 0 a.e. in K.
Define χ on D as follows χ = |ψ0|

ψ0

on K and χ = |ϕ0|
ϕ0

on V ′.

By (2), it follows first that |ϕn| = |ψ0| + 0(1) on K and then |ψ0|
ψ0

ϕn =
|ψ0|
ψ0

(ψ0 + 0(1)) = |ψ0| + 0(1) on K. Therefore,
(2′) δn(K) = δχ(ϕn;K) tends to 0.

In a similar way, if we substitute ϕn = ϕ0 + 0(1) and |ϕn| = |ϕ0| + 0(1) in
δn(Vn+1) = δχ[ϕn] = δχ(ϕn;Vn+1), since

|ϕ0|

ϕ0

ϕn =
|ϕ0|

ϕ0

(ϕ0 + 0(1)) = |ϕ0| + 0(1) on Vn+1,

we get
(3′) δn tends 0.

Since δn(V ) = δn(Vn+1) + δn(Λn), using (1) and (3′′), we see that
(4) δn(V ) tends 0.

Since δn(D) = δn(K) + δn(V ), it follows from (2′) and (4) it follows that δn(D)

tends to 0. Therefore ϕn is a Reich-sequence for χ on D and hence, by Proposition
B, χ ∈ HBUa on D. Part b) of Theorem 4.1 is proved.

In particular, ϕn is a Reich-sequence for χ on V ; and part a) of Theorem 4.1 is
also proved if ψ0 is different from 0 a.e. in K.

Combining (2) and that δn(V ) tends 0, we obtain that the part a) also holds if
ψ0 ≡ 0 on K. �

Question. If χ is smooth (only continuous) and uniquely extremal is χ of
Teichmüller type?

Remark 2. If G is a ring domain and K belongs to a bounded component of
Gc, we cannot apply Runge’s Theorem on the pairK andG in the general situation,
so canals Λn = D r Jn+1 have an important role in the construction.
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Also, one can modify our construction [BLMM] so that the corresponding
sequence µn(z) is a Cauchy sequence on all of D i.e., µ(z) = limµn(z) exists for
every z ∈ D. In addition, we can choose polynomials Pk such that Pk = 1+0(1)/k2

uniformly on Vk, where Vk is the corresponding exhaustion of V . We can verify
that

∏

Pk converges c-uniformly to a holomorphic functionϕ on V ′. Hence µ = |ϕ|
ϕ

on V ′.

Using Runge’s Theorem, we can prove the following result.

Lemma Ma. Let K be a M -set and G a Jordan domain such that G ∩K = ∅

and let B = BR contains F = K ∪G. For given positive numbers p, q and ε, there
exists a polynomial P which has no zeros in BR such that

(a1) |P | < p on K,
(a2) q < |P | on G,

(a3) |1 − |P |/P | < ε on F = K ∪G.

Remark. By Runge’s Theorem, there is a polynomial Q such that |Q| < ln p

onK and ln q < |Q| onG and which is close to ln p and ln q onK andG, respectively.
For suitable Q close to constant functions on K and G the entire function φ = eQ

satisfies the above conditions. Hence, there is a nonvanishing entire function
which satisfies the above conditions. Let δ = min{|φ(z)| : z ∈ BR} and choose
0 < ε < δ/2. Let P = Pn be a partial sum of the Taylor series of φ such that
|P (z)−φ(z)| < ε for every z ∈ BR. Moreover, we can choose ε small enough such
that P satisfies condition (a3) of the theorem.

Using only (a1) and (a2) of Lemma Ma, we can prove the following proposition.

Proposition 4.4. Let K be a M -set. There is a sequence of polynomials Pn
which tends uniformly to 0 on K such that Pn(z) → ∞ for every z ∈ C rK.

5 Appendix

5.1 Teichmüller class It is useful to give the definition of a Teichmüller
class using the solution of the Beltrami equation.

Let L∞ = L∞(G) be the space of essentially bounded complex-valued measur-
able functions on G and M = M(G) the open unit ball in L∞. For any µ in M

there exists a quasiconformal solution f = fµ : G 7→ C of the Beltrami equation

∂f = µ∂f,

unique up to a postcomposition by a conformal transformation.
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Two elements µ0 and µ1 in M are equivalent if we can choose the corresponding
solutions fµ0 and fµ1 to be equivalent; in the other words, two elements µ0 and
µ1 in M are equivalent if there are equivalent qc mappings f0 and f1 in G, whose
Beltrami coefficients are µ0 and µ1, respectively. It is known that this definition is
equivalent to the corresponding definition given in Section 2.

It is very difficult to recognize this equivalence by direct comparison of µ0

and µ1. Because we cannot solve the global problem, we study the local one
for infinitesimal deformations. For this, the roles of Theorem HKRS and the
Characterization theorem are crucial.

For given µ ∈ M, the equivalence class [µ] contains at least one element µ0

such that

‖µ0‖∞ = inf{‖ν‖∞ : ν ∈ [µ]}.

Such a µ0 is referred to as an extremal complex dilatation, and f0 = fµ0 as an
extremal quasiconformal mapping (abbreviated EQC mapping). We say µ0 is
uniquely extremal in its Teichmüller class if every other complex dilatation ν in
the same class satisfies ‖µ0‖∞ < ‖ν‖∞.

The Teichmüller space T = T (G) may be represented as the space of equiva-
lence classes of Beltrami coefficients µ in the unit ball M(G).

5.2 The Uniform Convergence Theorem and the Generalized Delta
Inequality in T We say that a Reich-sequenceψn for µ = k|ψ|/ψ is normalized
at a point z0 ∈ G if ψn(z0) → ψ(z0) 6= 0.

Theorem G (Uniform Convergence Theorem, [BLMM]). Let χ be a complex

dilatation of Teichmüller type (k, ϕ) defined by an analytic functionϕonG. Suppose
that χ is uniquely extremal on G. Then every normalized Reich-sequence ϕn for χ

on G converges uniformly on compact subsets of G to ϕ.

Suppose µ and ν belong to the same class in T . Then there exist qc mapings
f = fµ and g = fν equivalent in the sense of Teichmüller with Beltrami coefficients
µ and ν, respectively.

Theorem H (Generalized Delta Inequality, [BLMM]). Let h = g−1 ◦ f , χ =

Belt[h] and I = I(ϕ) =
∫

G
|χ|2|ϕ|. In addition, suppose that ‖ν‖∞ 6 k = ‖µ‖∞.

Then

I(ϕ) 6 Cδµ(ϕ), ϕ ∈ A,

where C is a constant which depends only on k = ‖µ‖∞.

We outline a proof. Let α = Belt[f−1] ◦ f and β = Belt[g−1] ◦ f .
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Note that
χ =

µ

α

α− β

1 − αβ

and
|χ|2 =

∣

∣

∣

α− β

1 − αβ

∣

∣

∣

2

.

Define χ1 = χ|α|/µ. One can verify that

(5.1) Reχ1 − |χ|2 = A|χ|2 −B1(|β| − |α|),

where A = 2−1|α|−1(1 − |α|)2 and B1 = 2−1|α|−1(|α| + |β|)(1 − |α|2)|1 − αβ|−2.
Define

J [ϕ] =

∫∫

G

Re
(χ1|ϕ| − χϕ)

1 − |χ|2
dx dy

and
J+[ϕ] =

∫∫

G

|χ|

|µ|(1 − |χ|2)
‖α‖ϕ| − µϕ|dx dy.

An easy consequence of the Main Inequality yields

(5.2)
∫∫

G

Reχ1 − |χ|2

1 − |χ|2
6 J [ϕ] 6 J+[ϕ].

Let τ = τ [ϕ] =
∫

G(k − |µ|)|ϕ|.
Suppose first that |µ| is bounded from below by a positive constant s for almost

every z in G.
Using the Cauchy-Schwarz inequality and the identity

∣

∣|w| − w
∣

∣

2
= 2|w|(|w| − Rew),

we obtain

(5.3) J+
6 cI1/2δ1/2µ .

The proof now follows from (5.1), (5.2), (5.3), and an argument which appears
in the proof of Theorem 3 in [BLMM], pp. 315–317. �

Proposition 5.1. Assume the hypothesis of Theorem H and the above notation.

If ϕn is a weak Hamilton sequence (in particular, a Reich-sequence) for µ, then
J [ϕn] and I[ϕn] converge to 0.

Proof. If ϕn is a weak Hamilton sequence (in particular, a Reich-sequence)
for µ, then, by the inequality (5.3), J [ϕn] converges 0. Since τ [ϕn] converges 0, it
follows that I[ϕn] converges 0. �
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5.3 Lemma R In this subsection, we outline a proof of Lemma R, which
roughly states that annihilators with support on special sets vanish.

Lemma R (Annihilators on special sets). Let K ⊂ G be a special Mergelyan

set and ν an annihilator of A(G) in L∞ such that supp ν ⊂ K. Then ν = 0.

Outline of proof of Lemma R. Let ν ∈ L∞(G) be such that supp ν ⊂ K.
Put ν = 0 on C r G, so that ν ∈ L∞(C), and let P denote the Cauchy integral
operator defined on [Ah, p. 85]. By hypothesis, K∞ = C r K is connected, so
K∞ is the unbounded component of Kc. We first show that if ν is an annihilator
with respect to polynomials, then Pν = 0 on K∞. There is a disc B = BR such
that K ⊂ BR. Let Γ = ΓR be positively-oriented boundary of BR. Then by the
generalized Green formula and [Ah, Lemma 3, p. 90], we have

(5.4)
∫

Γ

Pν(z)zndz =

∫

B

∂
(

Pν(z) zn
)

dz ∧ dz = 2 i

∫

B

ν(z) zn dxdy = 0, n > 0.

Therefore, since Pν is an analytic function on K∞, Pν = 0 in a neighborhood of
∞ and therefore on the unbounded component of K, i.e., on K∞. Since Pν is
continuous on C and every point of K is a limit point of K∞, it follows that Pν = 0

on C. Another application of [Ah, Lemma 3, p. 90], shows that ν is zero a.e. on C.

5.4 Lemma A, B and Equivalence Theorem III We outlined proofs
of the following lemmas in [M1].

Lemma A. Let µ be uniquely extremal on its extremal setE in its Teichmüller
class, and letF ⊂ E be a compact set of positive measure on which |µ| = ‖µ‖∞ < 1.

Then for each r > 0, there is a unit vector ϕ ∈ A such that

(5.5) δµ[ϕ] 6 C(k) r

∫

F

|ϕ|.

Lemma B. Let µ satisfy the unique extension property on its extremal set E,
and let K ⊂ E be a compact set of positive measure on which |µ| = ‖µ‖∞ = k.

Then for each r > 0, there is a unit vector ϕ ∈ A such that

δµ[ϕ] 6 kr

∫

K

|ϕ|.

We announce the following result, whose proof can be based on applying a
procedure similar to that in [BLMM].

Theorem 5.1 (Equivalence Theorem III). Let χ ∈ M and let W ⊂ G be a set
of positive measure.
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(A) Suppose that

(a) χ is uniquely extremal on W with respect to G in its Teichmüller class.
Then

(b) χ satisfies the unique extension property on W with respect to G in its
infinitesimal Teichmüller class in the tangent space B.

(B) Moreover if (b) holds, then
(c) χ̃ is uniquely extremal on f(W ) with respect to f(G) in its Teichmüller

class, where f is a quasiconformal mapping with domainG and Beltrami
coefficient χ and χ̃ is the Beltrami coefficient of f−1.

The author thanks Stephen Taylor, for his interest in this paper and advice
concerning the language.
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[BMM] V. Božin, V. Marković and M. Mateljević, Unique extremality in the tangent space of the
universal Teichmüller space, Integral Transform. Spec. Funct. 6 (1998), 145–149.

[ELi] C. J. Earle and Li Zhong, Extremal quasiconformal mappings in plane domains, Quasicon-
formal Mappings and Analysis, Springer, New York, 1998, pp. 141–157.

[Ga] F. P. Gardiner, Teichmüller Theory and Quadratic Differentials, Wiley–Interscience, New
York, 1987.

[Kru1] S. Krushkal, Extremal quasiconformal mappings, Sib. Math. J. 10 (1969), 411–418.

[Kru2] S. Krushkal, Quasiconformal Mappings and Riemann Surfaces, V. H. Winston & Sons,
Washington, D.C., 1979.

[Leh] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1987.

[Mar1] V. Markovic, Uniquely Extremal Quasiconformal Mappings and Stationary Points of the
Energy Integral, Ph.D. thesis, University of Belgrade 1998.

[Mar2] V. Markovic, Extremal problems for quasiconformal maps of puncured plane domains Trans.
Amer. Math. Soc. 354 (2001), 1631–1650.
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