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ON CONFORMAL, HARMONIC MAPPINGS
AND DIRICHLET’S INTEGRAL

David Kalaj and Miodrag Mateljević

Abstract

This paper has an expository character, however we present as well some
new results and new proofs. We prove a complex version of Dirichlet’s princi-
ple in the plane and give some applications of it as well as estimates of Dirich-
let’s integral from below. Some of the results in the plane are generalized to
higher dimensions. Roughly speaking, under the appropriate conditions we
estimate the n- Dirichlet integral of a mapping u defined on a domain Ω ⊂ Rn,
n ≥ 2, by the measure of u(Ω) and show that equality holds if and only if it is
injective conformal. Also some sharp inequalities related to the L2 norms of
the radial derivatives of vector harmonic mappings from the unit ball in Rn,
n ≥ 2, are given. As an application, we estimate the 2-Dirichlet integrals of
mappings in the Sobolev space W 2

1 .

1 Introduction, background, notation and motiva-
tion

Let Ω be an open set of the Euclidean space Rn. A twice differentiable mapping
u = (u1, . . . , um) : Ω → Rm is called vector harmonic if the real functions ui,
i = 1, . . . , m, are harmonic. By B = Bn we denote the unit ball in Rn and by Sn−1

the unit n− 1 dimensional sphere. For n = 2 we write U instead of B2.
For x = (x1, . . . , xn) ∈ Rn, we denote by |x| = (x2

1 + · · ·+ x2
n)1/2 the norm of x.

Let m = mn denote the usual Lebesgue measure on Rn. Sometimes we use notation
dx = dx1 . . . dxn and |A| instead of dmn and m(A), where x = (x1, . . . , xn) ∈ Rn

and A is a Lebesgue measurable set in Rn, respectively. By dσ we denote the positive
Borel measure on Sn−1 invariant w.r.t. the orthogonal group O(n) normalized such
that σ(Sn−1) = 1.

Let f : Sn−1 → Rm be a Lebesgue integrable mapping. Then the mapping

u(x) = P [f ](x) =
∫

Sn−1

1− |x|2
|x− η|n f(η)dσ(η), (1.1)
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Research of the second author partially supported by MNTRS, Serbia, Grant No. 144 020



92 David Kalaj and Miodrag Mateljević

is a harmonic mapping on the unit ball Bn. The Sobolev space W p
1 (Ω), 1 ≤ p < ∞,

consists of all real-valued functions u in Lp(Ω) with weak first partial derivatives in
Lp(Ω). By considering component functions we extend this definition to Rm-valued
mappings using the same notation.
If f ∈ W p

1 (Bn), then the radial limit

fb(ζ) = f∗(ζ) = lim
r→1

f(rζ)

exists a.e. ζ ∈ S. So we consider that every f ∈ W p
1 (Bn) is defined a.e. on S.

For a given domain Ω ⊂ Rn, we say that a mapping u : Ω → Rn is quasiregular
(abbreviated qr) if

1. u is ACLn, and

2. there exists a real number K, 1 ≤ K ≤ ∞, such that

|u′(x)|n ≤ KJu(x) a.e. on Ω, (1.2)

where |u′(x)| = max
|h|=1

|u′(x)h|.
In this setting we shortly write that f is a K−qr mapping. For properties of qr-
mappings see [26], [9]. If f is a K−qr and homeomophic mapping then it is called
K− quasiconformal or shortly K−q.c. Let

‖u′(x)‖ =

√√√√
n∑

i,j=1

(∂jui(x))2

denote the Hilbert-Schmidt norm of u′(x), where ∂j = ∂xj denotes j − th partial
derivative. It is well known that if u is a K−qr mapping on Ω, then

‖u′(x)‖n ≤ nn/2KJu(x) a.e. on Ω.

Let

e(u) =

(
n∑

i=1

|∂iu|2
)1/2

and ep(u) = e(u)p; we also use the notation ∂u
∂xi

instead of ∂iu. In particular,

en(u)(x) =

(
n∑

i=1

|∂iu|2
)n/2

;

note that e(u)(x) = ‖u′(x)‖ and en(f) = ‖u′(x)‖n. For a given domain Ω ⊂ Rn, let

Dp(u) :=
∫

Ω

e(u)p(x) dmn(x).

We will mainly consider the integrals Dn and D2 here.
We only need a version of Dirichlet’s principle for the unit ball Bn.
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Theorem A (Dirichlet’s principle). Let u ∈ W 2
1 (Bn). Then there exists u0 ∈

W 2
1 (Bn) such that u0 is harmonic in Bn and u∗0 = u∗ on Sn−1. Furthermore,

D2(u) ≥ D2(u0). For the proof see for example [20], [5].

For a similar statement for n-energy functional Dn(u) see [9]. Note if u∗ is
continuous on S, then u0 is continuous on B.

First we consider the case n = 2. In subsection 2.1, using Dirichlet’s principle,
the inequalities (2.3), (2.5) and (2.6) are proved, which give the estimate of D2 from
below. Note that the results of this subsection can be generalized to planar and
space domains and they should be considered as the motivation for the rest of the
paper.

In subsection 2.2 the complex version of Dirichlet’s principle is proved and as an
immediate application of it the Kühnau-Lehto area theorem for qc mappings with
conformal extension is obtained.

In section 3, we present results obtained in [10]. We present Theorem 3.3, which
roughly speaking states that ”absolutely conformal” mappings are conformal, and
a several dimension version of (2.3) stated as Theorem 3.5.

If f is qr we estimate Dirichlet’s integral Dn(f) from above; this can be related
to the estimates in section 2 which give short proof of Kühnau-Lehto area theorem.
Note that, using Theorems C, D and E stated in this section, the interested reader
can derive various versions and generalizations of Theorem 3.5.

In section 4, several dimension versions of (2.6) and (2.5) are proved: we estimate
L2-norm of the radial derivative of a harmonic function defined on Bn and using
it Dirichlet’s integral D2 of a function f ∈ W 2

1 defined on Bn, from below by the
square of L2 norm of the boundary function on S.

After writing this paper we realized that if we limit the considerations to injective
mappings then some results presented here can be related to the recent results of
K.Astala, T. Iwaniec, G. Martin, J. Onninen, S. Hencl and P. Koskela; namely, the
study of connection between extremal mappings of finite distortion and harmonic
mappings was initiated in [1] and further investigated in [8].

In particular, Theorem 10.8 [1] and Theorem 2.1 [8] (stated here as Theorem B)
are interesting concerning our work:

Theorem B. Let Ω and Ω′ be planar domains, f a homemorphism of Ω onto Ω′

and g the inverse of f . Suppose that g ∈ W 1,1
loc and

∫
Ω′ K(w, g)du dv < ∞ (where

K(z, g) is the outer distortion function), then f ∈ W 1,2
loc and

D2(f) =
∫

Ω

‖f ′(z)‖2dx dy = 2
∫

Ω′
K(w, h)du dv < ∞ . (1.3)

Using the theorem we can prove: If f satisfies the hypothesis of the theorem
then D2(f) ≥ 2|Ω′|; the equality holds here if and only if f is injective conformal.

In a similar way, we can use Theorem 10.8 [1] to prove a Sobolev version of
Theorem 3.5.
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2 Dirichlet’s integral in the plane

2.1 2-Dirichlet in the plane

In the plane we use the notation z = x + iy = reiθ, where r = |z| and θ are
polar coordinates; and dm = dx dy. If h = u + iv is a differentiable mapping, it is
convenient to use the notation
∂h = hz = 1

2 (∂xh− i∂yh), ∂h = hz = 1
2 (∂xh + i∂yh) and |∇h|2 = |∇u|2 + |∇v|2.

Suppose

1. h is continuous function on U and h ∈ W 2
1 (U) and

2. an := 1
2π

∫ 2π

0
h∗(eiθ)e−inθdθ, n ∈ Z.

We write then

h(eiθ) ∼
∞∑

n=−∞
aneinθ =

∞∑
n=1

a−n e−inθ +
∞∑

n=0

aneinθ. (2.1)

Let

H = P [h](z) =
∞∑

n=−∞
anr|n|einθ, (2.2)

f = H1 = C[h](z) =
∞∑

n=0

an zn and g = H2 =
∞∑

n=1

a−n zn.

It is easy to verify that

H = H1 + H2, ∂H = H ′
1, ∂̄H = H ′

2 and |∇H|2 = 2(
∣∣H ′

1|2 + |H ′
2|2

)
.

Define

A :=
∫∫

U

| ∂H |2 dxdy = π

∞∑
n=1

n | an |2, B :=
∫∫

U

| ∂̄H |2 dxdy = π

∞∑
n=1

n | a−n |2 .

It is clear that D2(H) = 2(A + B). Let

P :=
∫

U

Jh(z)dxdy.

Using the index of the curve γ defined by w = h(eiθ), 0 ≤ θ ≤ 2π, or Lemma 3.7.2
[9], one can verify that

P =
∫

U

JH(z)dxdy.

Hence
P =

∫

U

(|f ′(z)|2 − |g′(z)|2)dxdy = A−B
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and therefore, by Dirichlet’s principle, D2(h) ≥ D2(H) ≥ 2P .
Using ∫ 2π

0

|h(eiθ)|2dθ = 2π

∞∑
n=−∞

n | an |2

and

D2(H) = 2π

∞∑
n=−∞

|n| | an |2,

we find, if a0 = 0,

D2(H) ≥
∫ 2π

0

|h(eiθ)|2dθ.

On the other hand, by Dirichlet’s principle,

D2(h) ≥ D2(H).

Hence

D2(h) ≥
∫ 2π

0

|h(eiθ)|2dθ.

Since
e2(h)(z) ≥ 2(|∂xu ∂yv|+ |∂xv ∂yu|) ≥ 2|Jh(z)|,

we find
D2(h) ≥ 2

∫

U

|Jh(z)|dxdy ≥ 2|h(U)|

and hence (2.4) (see below). If h is harmonic, then h = H = f + g. An easy
calculation shows

∂θh(z) = i(zf ′(z)− zg′(z)), ∂rh = eiθf ′ + eiθg′

and therefore r ∂rh is the harmonic conjugate of ∂θh. By using

|∂rh|2 = |f ′|2 + |g′|2 + 2 Re(ei2θf ′g′),

we find
D2(h) = 2

∫

U

|∂rh|2 dxdy.

We can summarize the above consideration as the following result:

Theorem 2.1. Suppose that h satisfies the condition (1) and the above notation.
Then

D2(h) ≥ 2P, (2.3)

D2(h) ≥ 2|h(U)|. (2.4)

If a0 = 0, then

D2(h) ≥
∫ 2π

0

|h(eiθ)|2dθ. (2.5)
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If h harmonic and a0 = 0 then

D2(h) = 2
∫

U

|hr|2 dxdy ≥
∫ 2π

0

|h(eiθ)|2dθ. (2.6)

The equality holds in (2.3) if and only if g′ ≡ 0, i.e. h is conformal. If h is
smooth then the equality holds in (2.4) if and only if h is constant or h is univalent
conformal mapping. The equality holds in (2.5) if and only if h(z) = az + bz,
a, b ∈ C.

The case of equality in (2.4) is considered in Theorem 3.5 below. We gener-
alize those inequalities to n ≥ 2; see Theorem 2.2, Theorem 3.5, Corollary 3.8,
Theorem 3.9, Theorem 4.2, Theorem 4.5 and Corollary 4.6.

2.2 Complex version of Dirichlet’s principle and Kühnau-
Lehto theorem

Let h satisfy the relation (2.1), H = P [h](z) =
∑∞

n=−∞ anr|n|einθ and

A := π

∞∑
n=1

n | an |2, B = π

∞∑
n=1

n | a−n |2 .

Theorem 2.2 (Complex version of Dirichlet’s principle). With notation and hy-
pothesis just stated,

∫∫

U

| ∂H |2 dxdy ≤ α :=
∫∫

U

| ∂h |2 dxdy

and ∫∫

U

| ∂̄H |2 dxdy ≤ β :=
∫∫

U

| ∂̄h |2 dxdy.

We can rewrite the theorem in the form:

A = π

∞∑
n=1

n | an |2≤ α

and

B = π

∞∑
n=1

n | a−n |2≤ β.

Proof. Since h ∈ W 2
1 (U), then H ∈ W 2

1 (U) and therefore

D[H] =
∫∫

U

| ∇H |2 dxdy = 2 (A + B), and (2.7)

D[h] =
∫∫

U

| ∇h |2 dxdy = 2 (α + β). (2.8)
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By Dirichlet’s principle D[H] ≤ D[h], so that A + B ≤ α + β.
Hence, since I = P = α− β = A−B, it follows α ≥ A and β ≥ B.

Remark 2.3. Note that we have just derived the complex version of Dirichlet’s
principle from the classical Dirichlet’s principle. Note that we can also derive the
classical Dirichlet’s principle from the complex version of Dirichlet’s principle.

Namely, it follows from the complex version of Dirichlet’s principle that A+B ≤
α + β. Since

D[H] =
∫∫

U

| ∇H |2 dxdy = 2 (A + B), (2.9)

D[h] =
∫∫

U

| ∇h |2 dxdy = 2 (α + β), (2.10)

we have Dirichlet’s principle D[H] ≤ D[h].

Corollary 2.4. Suppose that h satisfies the condition (1) and the above notation.
In addition, if h is k − qr, then B ≤ k2A.

Proof. Since h is k − qr, then β ≤ k2α, and therefore P ≥ (1 − k2)α. Hence, since
α ≥ A, it follows that A−B = P ≥ (1− k2)A, so that B ≤ k2A.

2.3 Area

Let us consider a conformal mapping h which belongs to class
∑

, i.e. h is univalent
in E = {z : |z| > 1} and has a power series expansion of the form

h(z) = z +
∞∑

n=1

a−nz−n

in E. If h has a quasiconformal extension to the plane with complex dilatation µ,
satisfying the inequality ‖µ‖∞ = k < 1, we say that h belongs to the subclass

∑
k

of
∑

.
Lehto (see [12] and [13] and Kühnau (see [11]) established the area theorem for∑

k.
Theorem KL (Kühnau-Lehto). Let h ∈ ∑

k. Then

B =
∞∑

n=1

n |a−n|2 ≤ k2.

The estimate is sharp.
If we denote by P the area of the omitted set of h(E), then Theorem KL states

that
P ≥ π(1− k2).
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In this setting, A = 1, so that Theorem KL is an immediate consequence of Corollary
2.4.

In [15] (see Theorem M2) we announce a generalization of Theorem KL to univa-
lent harmonic mappings using the Dirichlet’s principle. Furthermore, our approach
shows that we can get the corresponding result without assumption that mapping is
univalent (see Theorem M3 [15], which we call Dirichlet’s principle for qr mappings).

3 Dn estimate

Recall, in this section, we present some results obtained in [10] and some other
essentially well-known results.

For convenient of the reader we first consider the case concerning C1 mappings.
We need the following proposition in the sequel (see Theorem D below for a more
general result).

Proposition 3.1. [22] Let Ω be an open subset of Rn and let u : Ω → Rn be a C1

mapping. Then the function y 7→ N(y, u) is measurable on Rn and
∫

Rn

N(y, f) dy =
∫

Ω

|Ju(x)|dx, (3.1)

where Ju(x) is the Jacobian of u at x and N(y, u) denotes the cardinal number of
the set u−1(y) if the last set is finite and it is +∞ in the other case.

Corollary 3.2. Under the condition of the previous proposition there holds the
inequality ∫

Ω

|Ju(x)| dx ≥ |u(Ω)|. (3.2)

The equality holds in (3.2) if and only if u is univalent on Ω.

For 1-qr mapping we also say generalized conformal mapping. The generalized
Liouville theorem states: for n ≥ 3 every 1-qr mapping on a domain Ω ⊂ Rn, is a
restriction of a Möbius transformation or a constant.

The proof of Theorem 3.5 is based on the following result, which is of indepen-
dent interest.

Theorem 3.3. [10] Let Ω be a domain in Rn and let u : Ω → Rn be a C1 mapping
such that

‖u′(x)‖n = nn/2|Ju(x)|, x ∈ Ω (We say that u is absolutely conformal.). (3.3)

Then, for n = 2, u is analytic or anti-analytic function. For n ≥ 3, u is a restriction
of a Möbius transformation or a constant.

Note that if we suppose instead of (3.3)

‖u′(x)‖n = nn/2Ju(x), x ∈ Ω, (3.4)

then the Theorem 3.3 is a version of the Liouville theorem.
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Example 3.4. [10] Let x = (x1, . . . , xn) and

u(x) =
{

(x1, x2, . . . , xn) if xn ≥ 0
(x1, x2, . . . ,−xn) if xn ≤ 0

u is not C1 on the set xn = 0 and the Theorem 3.3 does not hold.

Theorem 3.5. [10] Let Ω be a domain in the Euclidean space Rn, n ≥ 2, and
u ∈ C1(Ω).
Then

Dn(u) ≥ nn/2|u(Ω)| . (3.5)

If u is a C1 mapping , then the equation in (3.5) holds if and only if u is an
injective conformal mapping or a constant mapping.

Let Ω ⊂ Rn be a domain and A : Ω → Rn, n > 2, be a Möbius transformation
and Ω′ = A(Ω); define the class F of all C1 mappings f such that f(Ω) ⊃ Ω′. Using
Theorem 3.5, we conclude that the minimization problem has a solution:

min
f∈F

Dn(f) = Dn(A) .

Roughly speaking, Möbius transformations (respectively injecitive conformal map-
pings) are absolute minimizers of the n- Dirichlet integral subject to the correspond-
ing constraint in the space (respectively in the plane).

Remark 3.6. Note that Reshetnyak [23] has proved: every ACLn-homeomorphisam
satisfies the condition (N). The condition (N) means that a mapping maps sets of
measure zeros to sets of measure zeros. Therefore, using Theorem E below, one can
show that the inequality (3.5) holds.

Remark 3.7. Observe that the Möbius transformations in the space, except or-
thogonal transformations, are not harmonic. However, they are n−harmonic, i.e.
those mappings satisfying the equation (see [25], [7] and [19]):

div(|∇ui|n−2∇ui) = 0 .

The reader can verify that Möbius transformations also satisfy a similar equa-
tion:

div(|∇u|n−2∇u) :=
n∑

i=1

div(|∇u|n−2∇ui) · ei = 0.

We also have the estimate of opposite type related to the inequality (3.5) for
quasiregular mappings. In order to prove the estimate of opposite type and to
generalize the inequality (3.5) if u is in the corresponding Sobolev space, we first
need the following results.

Theorem C (Theorem 1.8 [6], Change of variables). Let Ω be an open subset of
Rn and let u : Ω → Rn be continuous and satisfy the conditions :
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(K) u has K-differential a.e. in Ω.

(L.I) Ju(x) is locally integrable on Ω.

(N) m(f(F )) = 0 whenever F ⊂ D is a compact set of measure zero.

Then the function y 7→ N(y, u) is measurable on Rn and
∫

Rn

N(y, f) dy =
∫

Ω

|Ju(x)|dx. (3.6)

See also Theorem 5.2.1 [9].
Note that the condition u ∈ Wn

1 (Ω) implies the conditions (K) and (L.I).

Theorem D. Let Ω be an open subset of Rn and let u : Ω → Rn be a qr mapping.
Then the function y 7→ N(y, u) is measurable on Rn and

∫

Rn

N(y, f) dy =
∫

Ω

|Ju(x)| dx (3.7)

For the proof of the theorem see Proposition 4.14 [26].

Theorem E (Theorem 2.3 [6]). Let f : Ω → Rn be continuous, satisfy the condition
(N) and f ∈ Wn

1 (Ω). Then for every compact set K ⊂ Ω
∫

K

|Jf (x)| dx =
∫

K

N(y, f) dy ≥ |u(K)|. (3.8)

See also Theorem 1.6 in [6].

Corollary 3.8. Under the conditions of the Theorem C, Theorem D or Theorem E
there hold the inequalities

∫

Ω

|Ju(x)| dx ≥ |u(Ω)| and (3.5). (3.9)

Theorem 3.9. Let f : Ω → Rn be continuous, satisfy the condition (N), f ∈
Wn

1 (Ω) and Ω′ = f(Ω). Then

nn/2|Ω′| ≤ Dn(u). (3.10)

More generally

nn/2|Ω′| ≤ nn/2

∫

Ω′
N(y, f)dy ≤ Dn(u). (3.11)

If, in addition, f is a K-qr mapping, then

Dn(u) ≤ nn/2K

∫

Ω′
N(y, f)dy, (3.12)

where N(y, f) is the multiplicity of y in Ω.
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Proof. Let en(f) =
(∑n

i=1 |∂if |2
)n/2. Suppose that partial derivatives of f exist at

a point x ∈ Ω. By Hadamard’s inequality,

nn/2Jf (x) ≤ en(f)(x).

Now, integration and an application of Theorem E gives (3.11) and as a corollary
(3.10). It remains to prove (3.12).

Since f ′(x)ej = ∇fj(x), | ∇fj(x)| ≤ |f ′(x)| and therefore
n∑

i=1

|∂if |2 ≤ n|f ′(x)|2,

that is
en(f)(x) ≤ nn/2|f ′(x)|n.

Thus we have
nn/2Jf (x) ≤ en(f)(x).

Hence, since by definition of K-qr,

|f ′(x)|n ≤ KJf (x),

we find
en(f) ≤ Knn/2Jf (x).

Now, integration and an application of Theorem E completes the proof.

An immediate consequence is:

Corollary 3.10. Let f : Ω → Rn be K-qc and Ω′ = f(Ω).
Then

nn/2|Ω′| ≤ Dn(u) ≤ nn/2K|Ω′|. (3.13)

The interested reader can learn more about the subject related to the result pre-
sented in this section from the excellent Iwaniec-Martin book [9], which, of course,
contains much more than is needed here. In particular, it seems that we can gener-
alize some of the above results using ideas from section 14.2 [9]

4 D2 estimate

The results of this section are related to the famous Poincaré inequality, however
we believe that some of the inequalities, statements and proofs we preset here are
new. For u ∈ L2(Ω) and f ∈ L2(Sn−1) we define L2 norms by

‖u‖Ω = ‖u‖2,Ω =
(∫

Ω

|u(x)|2dm(x)
)1/2

,

and

‖f‖S = ‖f‖2,Sn−1 =
(∫

Sn−1
|f(ζ)|2dσ(ζ)

)1/2

.

For the following result we refer to [2]:
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Theorem F. For f ∈ L2(Sn−1) we have the following decomposition:

f(ζ) =
∞∑

ν=0

pν(ζ),

where pν are the spherical harmonics of degree ν which are orthogonal on the
sphere: i.e. there holds the equality:

〈pm, pk〉 =
∫

Sn−1
pm(ζ) · pk(ζ)dσ(ζ) = 0, for all m 6= k. (4.1)

Note that harmonic polynomials of degree 1 on Rn are of the form h(x) =∑n
k=1 akxk, where ak ∈ R, k = 1, . . . n; and spherical harmonics of degree 1 on

Sn−1 are the restrictions to S of harmonic polynomials of degree 1, i.e of real linear
mappings.

For a C1 mapping u we define the radial derivative by

∂u

∂r
(x) =

n∑

i=1

∂u

∂xi

xi

r
,

where r = ‖x‖.
Let Ωn = |Bn| and ωn = |Sn|. It is known ωn−1 = nΩn. Denote by ν the

Lebesgue measure on Rn normalized such that ν(B) = 1.
If f ∈ L1(Bn), then

∫

B

fdν = n

∫ 1

0

rn−1dr

∫

S

f(rζ)dσ(ζ). (4.2)

Since dm = dx = Ωndν and ωn−1 = nΩn, we can rewrite the formula (4.2) in the
form: ∫

B

fdx = ωn−1

∫ 1

0

rn−1dr

∫

S

f(rζ)dσ(ζ). (4.3)

Using a standard procedure the reader can verify:
if

∣∣∣
∣∣∣∂f

∂r

∣∣∣
∣∣∣
Bn

< ∞, then the radial limit f∗ exists a.e. on S and f∗ ∈ L2(S).

Lemma 4.1. If f is a real harmonic function defined on the unit ball Bn, satisfying
the condition f(0) = 0, and

∣∣∣
∣∣∣∂f

∂r

∣∣∣
∣∣∣
2,Bn

< ∞, then

∣∣∣∣
∣∣∣∣
∂f

∂r

∣∣∣∣
∣∣∣∣
2,Bn

≥
√

Ωn · ‖f∗‖2,Sn−1 . (4.4)

The equality holds in (4.4) if and only if f is a real linear mapping.

Proof. First of all, by Theorem F, we have the following representation of the func-
tion f :

f(x) =
∞∑

j=0

pj(x), x ∈ B,
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where pj(x) are homogeneous harmonic polynomials on Rn of degree j. Hence we
have that f(rζ) =

∑∞
j=0 rj pj(ζ), where r ∈ [0, 1) and ζ ∈ Sn−1. Therefore, for

x = rζ, we find
∂f

∂r
(x) =

∞∑

j=1

j rj−1pj(ζ).

Integrating the square of the previous expression over the unit ball and using rela-
tions (4.2) and (4.1), we obtain

∫

Bn

(
∂f

∂r
(x)

)2

dx =
∞∑

j=1

ωn−1j
2

∫ 1

0

rn−1dr

∫

Sn−1
r2j−2p2

j (ζ)dσ(ζ).

Hence we have
∫

Bn

(
∂f

∂r
(x)

)2

dx =
∞∑

j=1

ωn−1j
2

n + 2(j − 1)

∫

Sn−1
p2

j (ζ)dσ(ζ).

Therefore, since j2

n+2(j−1) ≥ 1
n for j ≥ 1, n ≥ 2, we obtain

∫

Bn

(
∂f

∂r
(x)

)2

dx ≥ ωn−1

n

∞∑

j=1

∫

Sn−1
p2

j (ζ)dσ(ζ) . (4.5)

Observe that, the equality holds in the previous inequality for f(x) = xi, where
xi is i-th coordinate of x. From (4.5), using ωn−1

n = Ωn, we now get (4.4).
Now we consider the equality case. If j > 1, n ≥ 2, then j2

n+2(j−1) > 1
n . Hence,

if the equality holds in (4.4), then pj = 0 for j > 1 and therefore f∗ = p1 on S.

Theorem 4.2. If f : Bn → Rm is a vector harmonic function, satisfying the
condition f(0) = 0 and

∣∣∣
∣∣∣∂f

∂r

∣∣∣
∣∣∣
2,Bn

< ∞, then

∣∣∣∣
∣∣∣∣
∂f

∂r

∣∣∣∣
∣∣∣∣
2,Bn

≥
√

Ωn · ‖f∗‖2,Sn−1 . (4.6)

The equality holds if and only if fi, i = 1, . . . ,m, are spherical harmonic of degree
1, i.e. if and only if f is a linear mapping.

Proof. Let f = (f1, . . . , fm). Then by (4.4), we obtain
∣∣∣∣
∣∣∣∣
∂fi

∂r

∣∣∣∣
∣∣∣∣
2

2,Bn

≥ Ωn · ‖fi‖22,Sn−1 . (4.7)

Summing from i = 1, . . . , m the previous inequality, we obtain (4.6):
∣∣∣∣
∣∣∣∣
∂f

∂r

∣∣∣∣
∣∣∣∣
2

2,Bn

≥ Ωn ·
m∑

i=1

‖fi‖22,Sn−1 = Ωn

∫

Sn−1
|f∗(ζ)|2dσ(ζ).
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We now consider the equality case. An inspection of the proof shows that if
equality holds in (4.6), then equality holds in (4.7) for i = 1, . . . , m. Hence the
equality holds in (4.7) if and only if f is a linear mapping.

Corollary 4.3. If f is a harmonic mapping of the unit ball into itself satisfying
the conditions ‖f∗(ζ)‖ = 1 for a.e ζ on S and f(0) = 0, then

∣∣∣∣
∣∣∣∣
∂f

∂r

∣∣∣∣
∣∣∣∣
2

2,Bn

≥ Ωn . (4.8)

The inequality is sharp.

Proof. Since ‖f∗(ζ)‖ = 1 for a.e ζ on S and therefore ‖f‖S = 1, we obtain (4.8).
If A is an orthogonal transformation of Bn, then |∂A

∂r | = 1. Hence the equality
holds in (4.8) for f(x) = Ax, where A is an arbitrary orthogonal transformation of
Bn. Thus the inequality is sharp.

Lemma 4.4. If u ∈ W 2
1 (Bn), then

∣∣∣∣∂u
∂r

∣∣∣∣
2,Bn ≤ D2(u) < ∞.

Proof. By the definition we have

∣∣∣∣
∂u

∂r

∣∣∣∣
2

=
n∑

j=1

∣∣∣∣
∂uj

∂r

∣∣∣∣
2

=
n∑

j=1

(
n∑

i=1

∂uj

∂xi

∂xi

∂r

)2

.

It follows that ∣∣∣∣
∂u

∂r

∣∣∣∣
2

≤
n∑

j=1

n∑

i=1

(
∂uj

∂xi

)2 ∣∣∣∣
∂x

∂r

∣∣∣∣
2

.

Therefore ∣∣∣∣
∂u

∂r

∣∣∣∣
2

≤ ‖u′‖2 . (4.9)

Let S0 (respectively T0) be the family of mappings: f : Sn−1 → Sn−1 (respec-
tively f : Sn−1 → Rn) satisfying the conditions f ∈ L1(Sn−1) and

∫

Sn−1
f(x)dσ = 0 . (4.10)

Theorem 4.5 (Poincaré inequality). Let u : Bn → Rn, u ∈ W 2
1 (Bn), and let u be

continuous on B
n
. If u∗ ∈ T0, then

D2(u) ≥ Ωn

∫

Sn−1
|u∗(ζ)|2dσ(ζ). (4.11)

Proof. Using the Theorem A, Lemma 4.4 and Theorem 4.2 it follows the desired
conclusion.
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Corollary 4.6. If u : Bn → Bn, u ∈ W 2
1 (Bn), and u∗ ∈ S0, then

D2(u) ≥ Ωn. (4.12)

Using the inequality (4.7) and taking F = f − a, we can prove the following
generalization of the previous corollary.

Corollary 4.7. Let u : Bn → Ω ⊂ Rn, u ∈ W 2
1 (Bn), u∗ : Sn−1 → ∂Ω and

P [u∗](0) = a, where a ∈ Ω. Then,

D2(u) ≥ Ωn · d(a, ∂Ω). (4.13)

Let

Ip(u) :=
(∫

Bn

e(f)p(x) dν(x)
)1/p

.

Since Ip ≥ I2, p ≥ 2, using Corollary 4.6, we get

Corollary 4.8. Let p ≥ 2, u : Bn → Bn, u ∈ W 2
1 (Bn), and u∗ ∈ S0. Then

Dp(u) ≥ Ωn. (4.14)

In the following example it is shown that for validity of Theorem 4.5 the condition
(4.10) is essential even for diffeomorphisms. It is also shown that we cannot obtain
any analogous version of inequality (3.5) replacing Dn by D2. More precisely, there
is a family of diffeomorphisms Fn of B3 onto itself such that D2(Fn) tends to 0
when n tends to infinity.

4.1 Example

Let f be a conformal mapping of the unit disk onto itself. The function

F (z, t) = (f(z),
√
|f ′(z)|t),

z = (x, y), f(z) = (u(z), v(z)), is a diffeomorphism of the unit ball in R3 onto itself.
The mapping

φa(z) =
z − a

1− zā
, |a| < 1,

is a conformal mapping of the unit disk onto itself. The family of all conformal
mapping of the unit disk onto itself, AUT(U) is given by

f(z) = eiαφa(z), |a| < 1,

and each f ∈ AUT(U) satisfies the equation

|f ′(z)| = 1− |f(z)|2
1− |z|2 , i.e.

√
1− |z|2

√
|f ′(z)| =

√
1− |f(z)|2.
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Hence, for a fixed |z| < 1, F maps the segment Iz = {(z, t) : −
√

1− |z|2 ≤
t ≤

√
1− |z|2} onto the segment If(z) = {(f(z), τ) : −

√
1− |f(z)|2 ≤ τ ≤√

1− |f(z)|2}. Since (z, t) ∈ B3 if and only if |z|2 + t2 < 1, it follows that F
maps the unit ball onto itself. For f(z) = eiαφa(z), |a| < 1, let r = |a| < 1, and
let ϕ(r) = D2(F ).

Using the Mathematica software (Mathematica for Windows Version 5.0), we
obtain

ϕ(r) : =
∫

B3
‖F ′‖2dxdydt =

∫

B3
‖Fx‖2 + ‖Fy‖2 + ‖Ft‖2dxdydt

=
4π(1− r2)(r −√1− r2 arcsin r)

r3

+
2π(−15r + 17r3 − 2r5 − 3

√
1− r2(−5 + 4r2) arcsin r)

12r3

− π2
√

1− r2(−8 + 4r2 − 5r4 + 8
√

1− r2)
24r2

+
2π
√

1− r2(r
√

1− r2 + (−1 + 2r2) arcsin r)
r3

.

Hence
lim

r→1−0
ϕ(r) = 0 and lim

r→0+0
ϕ(r) = 4π.

Observe also that for α = 0
lim

r→0+0
F = Id

and that

ϕ(0) =
∫

B3
|Id′|2dxdydt =

∫

B3
3dxdydz = 3 · 4π/3 = 4π.
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