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Abstract

In this paper, we give a brief overview of the phase
transition in np-complete problems, with a special
attention given to sat problem and its variants.
We introduce a new, k-gd-sat problem and pro-
vide experimental evidence for its phase transition.
In addition, our experiments suggest that for each
k, there is a linear relationship between phase tran-
sition points.

U ovom radu dajemo kratak pregled karak-
teristika fazne promene u np-kompletnim prob-
lemima sa akcentom na sat problem i njegove
varijante. Prikazaćemo novi, k-gd-sat model i
eksperimentalne rezultate koji ukazuju na faznu
promenu u ovom problemu. Dodatno, eksperimen-
talni rezultati za ovaj problem, za svaku vrednost
k, ukazuju i na linearnu zavisnost izmedju tačaka
fazne promene.

1 Introduction

For each np-complete problem not all of its in-
stances are equally hard. It is important to know
which instances are the hardest ones. This can be
used to predict behavior of an algorithm that solves
the problem. Also, this can be used to make a
relevant comparison of different algorithms for the
same problem.

During the last decade of the twentieth century,
it was discovered that in many np-complete prob-
lems the hardest instances can be characterized
by some simple syntactic rule [9]. First results
of this sort addressed sat (satisfiability) problem
[16]. For instance, it was experimentally shown
that the hardest instances for 3-sat problem are
the instances where the ratio of number of clauses

and number of variables is close to 4.25 [8]. Similar
results for other types of sat problems and other
np-complete problems were gained in the following
years, leading to a better understanding of the na-
ture of np-complete problems and their relationship
to the problems from the class p.

The rest of the paper is organized as follows: we
give the notion of the np-complete problems (Sec-
tion 2), and we discuss phase transition behavior
in some of them (Section 3). We comment on sat

problem (Section 4) and about phase transition in
different variants of sat problem (Section 5). We
introduce a new, k-gd-sat problem and provide ex-
perimental results about its phase transition (Sec-
tion 6). In Section 7 we draw final conclusions and
discuss future work.

2 NP-Complete Problems

A decision problem is a problem that as an out-
put requires an answer that is either yes or no. If
there is an algorithm that is able to produce the
correct answer for any input of length n in at most
c ·nk steps, where k and c are some constants inde-
pendent of the input, then we say that the problem
can be solved in polynomial time and we say that it
belongs to the class p. Intuitively, the problems in
the class p are those that can be solved efficiently.

Another important class of problems is np, the
class of non-deterministic polynomial problems. A
problem is in this class if there is some algorithm
that can guess the solution (while there are expo-
nentially many potential solutions in the size of the
input) and then can verify whether or not the guess
is correct in polynomial time.

np-complete problems make an important sub-
set of the class np. A decision problem C is np-
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complete if it is in np and it is np-hard, i.e., every
other problem in np is reducible to it. Reducible
here means that for every problem L from np, there
is a polynomial-time reduction, a deterministic al-
gorithm which transforms instances l from L into
instances c from C, such that the answer to c is
yes if and only if the answer to l is yes. To prove
that a np problem A is np-complete, it is sufficient
to show that a problem already known to be np-
complete reduces to A. Note that the above defini-
tion and the claim do not guarantee there are any
np-complete problems. The first problem proved
(by Cook, [4]) to be np-complete is sat problem
(for details see Section 4). Since Cook’s proof,
thousands of other problems have been shown to
be np-complete.

The question whether or not the classes p and
np are equal is one of the most important open
problems in theoretical computer science and math-
ematics. If one finds an efficient (polynomial-
bounded) solution to any np-complete problem,
then every problem in np can be solved efficiently
and therefore must be in p, hence proving p=np.
Most theoretical computer scientists currently be-
lieve that this is not the case.

3 Phase Transition in np-

Complete Problems

A phase transition is a point where a system un-
dergoes a sudden change of state. In many np-
complete problems, we are interested in the point
where problem instances transit from the state of
“most instances have solutions” to “most instances
have no solution”. In most cases there is a problem
size independent constraint parameter which indi-
cates how hard are the corresponding instances.

Phase transitions are typically shown by plot-
ting the proportion of solvable problems against
the constraint parameter. A characteristic of phase
transitions is that as the problem size increases,
the curves become sharper; that is, when plotted
against a constraint parameter, the transition oc-
curs in a shorter interval of this parameter.

When exploring phase transition, usually ran-
domly generated instances of a problem are consid-
ered. These random instances are generated with
respect to certain syntactical and probabilistic con-

straints.
Phase transition is a phenomenon observed in

many np-complete problems. Some of them are:

Number Partitioning Problem [9, 14] In this
problem, n numbers from a given range are to
be partitioned into l bags with the same sum.
The special sort of this problem is partitioning
n randomly chosen integers between 1 and 2m

into two subsets with sums S1 and S2 [3]. A
partition is called perfect if S1 − S2 = 0 when
the sum of all n integers in the original set is
even, or S1 − S2 = 1 when the sum is odd.
The decision problem is to determine whether
a perfect partition exists. It was proved that
when parameterizing the random problem in
terms of k = m/n, the problem has a phase
transition around k = 1.

Vertex Covering Problem This problem is one
of the basic np-complete problems [10]. Hav-
ing an undirected graph G = (V,E) with n
vertices and e edges, a vertex cover is defined
as a subset Vvc of vertices such that for all
edges (i, j) ∈ E there is at least one of its end
points in Vvc. The decision problem is to de-
termine whether a vertex cover of fixed cardi-
nality X exists or not. It was proved that for
random variant of this problem there is a phase
transition in parameterX/n [19]. The position
of phase transition depends on average degree
of random generated graphs. If the probabil-
ity of adding an edge to a graph is equal to
c/n, then the expected average degree is equal
to c · (n − 1)/2. For example, if c = 2 then
the problem has a phase transition around the
value 0.4.

Graph Coloring Problem In this problem, a
graph with n vertices and e edges is to be col-
ored with m colors in such a way that con-
nected vertices have different colors. The de-
cision problem is to determine if a coloring
for the fixed m exists. The phase transition
was observed for the average degree used as
the parameter. For example, in random 3-
coloring graph problem [9] the phase transi-
tion has been observed around average degree
of 4.6.

The Travelling Salesman Problem We con-
sider a random TSP where n cities are
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uniformly distributed over a square with the
side equal to a. The decision problem is to
determine whether there is a tour of length
less or equal to d which visits all n cities. For
this problem, it is experimentally shown in [7]
that the phase transition occurs at the point
0.75 for the parameter d/(a

√
n).

4 SAT Problem

Propositional satisfiability is the problem of deter-
mining, for a formula of the propositional calculus,
if there is an assignment of truth values to its vari-
ables for which that formula evaluates to true. By
sat we mean the problem of propositional satisfia-
bility for formulae in conjunctive normal form.

It was shown by Cook that sat is np-complete
[4]. This was the first problem to be shown np-
complete, and still holds a central position in the
study of computational complexity as the canonical
np-complete problem. The importance of the sat

problem is also grounded in practical applications,
since many hard real-world problems (or their com-
ponents) in areas such as AI planning, circuit satis-
fiability and software verification can be efficiently
reformulated as instances of sat. Also, many de-
cision problems, such as graph coloring problems,
planning problems, and scheduling problems can
be rather easily encoded into sat. Therefore, good
sat solvers are of great importance and significant
research effort has been devoted in trying to find
efficient sat algorithms.

Due to a general belief that a polynomial time
algorithm for sat is not likely to be found, for now
the only way to grade a solver is by its performance
on the average, or in the worst case. In this context
a phase transition in sat problem is very important
since experimental results show that most difficult
problems for all sat solvers are formulae in the re-
gion of phase transition.

There are two classes of algorithms for solving
sat: complete (they guarantee a correct answer for
each input) and incomplete algorithms (they are
usually much more efficient). Most of the modern
complete algorithms are variants of dll [5] algo-
rithms such as Chaff. The second group includes
stochastic local search algorithms, such as Walk-
SAT, genetic algorithms, survey propagation algo-
rithms, etc.

5 Phase Transition For Differ-

ent Random sat Problems

Experimental results suggest that there is a phase
transition in sat problems between satisfiability
and unsatisfiability as the ratio of the number of
clauses and the number of variables is increased
[16]. It is conjectured that, for different types of
problem sets, there are values c0 of L/N , which we
call phase transition points such that:

lim
N→∞

s(N, [cN ]) =

{
1, for c < c0
0, for c > c0

,

where s is a satisfiability function that maps sets
of propositional formulae (of L clauses over N vari-
ables) into the segment [0, 1] and corresponds to
a percentage of satisfiable formulae. Experimental
results also suggest that in all sat problems there is
a typical easy-hard-easy pattern as the ratio L/N is
increased, while the most difficult sat formulae for
all decision procedures are those in the crossover
region.

A definition of random sat problem includes in-
formation on the distribution of clause lengths and
on distribution of literals within one clause. In ran-
dom k-sat model, for given values N and L, an
instance of random k-sat formula is produced by
randomly generating L clauses of length k. Each
clause is produced by randomly choosing k distinct
variables from the set of N available variables, and
negating each with probability 0.5 [16]. In ran-

dom mixed sat [8], each clause is generated as in
random k-sat except that the length of clauses is
chosen randomly according to a finite probability
distribution φ on integers. In 2+p-sat model [1], a
formula with L clauses has (approximately) (1−p)L
clauses of the length 2 and pL clauses of the length
3 (0 ≤ p ≤ 1). Hence, this model smoothly inter-
polates between 2-sat and 3-sat model. In con-

stant probability model [12], given N variables and
L clauses, each clause is generated so that it con-
tains each of 2N different literals with probability
p.

For random k-sat, estimates for phase transition
points are c2 = 1, c3 ≈ 4.267, c4 ≈ 9.931, c5 ≈
21.117, c6 ≈ 43.37, c7 ≈ 87.79 [15] (ck denotes a
crossover point for k-sat). In [2], there are rigorous
bounds for ck given: 2k ln 2− k ≤ ck ≤ 2k ln 2
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6 Random k-gd-sat Model

We consider a family of random sat problems that
we introduced in [18], based on geometric distribu-
tion of clause lengths, denoted by k-gd-sat. This
model is a generalization of gd-sat model [13].
In this model, generating of clauses over the set
of N variables, for the probability parameter p
(0 < p ≤ 1), is specified by the stochastic context-
free grammar1 given in Table 1. Clauses are gener-
ated independently of each other.

Rule Prob.
〈clause〉 := 〈clause〉 ∨ 〈literal〉 1− p
〈clause〉 := 〈literal〉 ∨ . . . ∨ 〈literal〉

︸ ︷︷ ︸

k

p

〈literal〉 := 〈variable〉 | ¬〈variable〉 0.5
〈variable〉 := v1 | v2 | . . . | vN 1/N

Table 1: Stochastic grammar for generating k-gd-

sat clauses

By the given stochastic grammar, for k-gd-sat,
only clauses of length equal or greater than k can be
generated. Lengths of clauses in k-gd-sat model
have a geometric distribution; the probability of a
clause of length l is p(1 − p)l−k, for l ≥ k, and is
equal to 0, for l < k. According to the properties
of geometric distribution, the most probable clause
length in k-gd-sat model is k (with the probability
p), while the expected clause length can be shown
to be equal to k − 1 + 1/p. For p = 1, k-gd-sat

model becomes random k-sat model. For p = 1,
2-gd-sat model becomes 2-sat model and, hence,
it belongs to the class p. For any fixed p such that
p < 1, k-gd-sat is np-complete. As p decreases,
2-gd-sat problems smoothly interpolate between
2-sat and np-complete 2-gd-sat problems. This
makes k-gd-sat model convenient for exploring a
computational cost for directly linked p and np-
complete problems.

Our experiments show there is a phase transi-
tion between satisfiability and unsatisfiability in
k-gd-sat model, for a range of values of k and
of the probability parameter p. All experimen-
tal results2 presented in this paper were obtained

1A stochastic context-free grammar is a context-free

grammar with a stochastic component that attaches a prob-

ability to each of the production rules and controls its use.
2All experimental data and used programs are available
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Figure 1: Satisfiability function (top) and compu-
tational cost (bottom) for random k-gd-sat, for
k = 2, for p = 1/2, and for N = 100, 200, 500.

by using zChaff sat solver [17]. Figure 1 shows
satisfiability function and computational cost for
random k-gd-sat, for k = 2, p = 1/2, and for
N = 25, 50, 75, 100. Fraction of satisfiable formu-
lae is shown against parameter L/N ; for each N ,
in each L/N point, there were 1000 formulae ran-
domly generated. These results confirm the general
experience with other np-complete problems that
the hardest problem instances are in region of the
phase transition.

We are also interested in a relationship between
crossover points for different values of p (for a fixed
k). For that purpose, for each p, we consider 50%
satisfiability points, i.e., L/N values for which there
are 50% satisfiable formulae. For different types of
k-gd-sat problem (for different values of k, p and
N), we experimentally approximate these 50% sat-
isfiability points. Since the phase transition region
narrows as N grows, these 50% satisfiability points
converge to the crossover point.

We performed a series of experiments and ob-
tained experimental approximation for 50% satis-
fiability points for different values of k, p, and N .

upon request from the first author.
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Figure 2: 50% satisfiability points for k-gd-sat,
for N = 50, k = 2, 1/p ranging from 1 to 101 and
the line y = 0.987281x+ 0.558788 that is the least
square fit (top); Residuals from the best square fit
line (bottom).

Figure 2 (top) shows 50% satisfiability points for
k-gd-sat, for k = 2, N = 50, 1/p ranging from 1
to 101 by step 1. For each point on the curve 1000
random formulae were generated. We determined
a line that is the least square fit (i.e., a line for
which the sum of squares of residuals is the least
possible) and we measured residuals for all points
and for the fit given by this line. The residuals
are shown in Figure 2 (bottom). Although there
is a noise in these results due to a relatively small
sets of formulae used in experiments, all residuals
are much less then 1. Similar results were obtained
for other values of k and N (see Figure 3). These
results provide evidence that crossover curves for
k-gd-sat model are (asymptotically) linear in pa-
rameter 1/p.
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Figure 3: Experimentally approximated 50% satis-
fiability points forN = 25, 50, 75, 100, based on val-
ues for 1/p = 10 and 1/p = 50, and for k = 2, 3, 4.

7 Conclusions and Further

Work

In this paper, we gave a brief overview of the phase
transition in np-complete problems, with a focus
on sat problem. We introduced a new random
sat model — k-gd-sat, based on probability pa-
rameter p, that controls geometrical distribution on
clause lengths. We provided experimental evidence
about the phase transition for this model. Our ex-
periments also gave a surprising outcome, suggest-
ing that for each k, there is a linear relationship
between crossover points (in parameter 1/p).

In our further work, we are planning to look
for theoretical confirmation and explanation of our
experimental results. We hope that these results
could shed some new light on understanding the
nature of np-complete problems.
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